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Preface

The 5th Workshop on Biomedical Image Registration (WBIR) was held on the
Vanderbilt University campus in Nashville, Tennessee, USA. It followed a series
of workshops that were held in Bled, Slovenia (1999), in Philadelphia, USA
(2003), in Utrecht, The Netherlands (2006), and in Lübeck, Germany (2010).

This workshop series brings together researchers involved in developing new
registration methods and users of these methods. Papers submitted to the work-
shop were reviewed blindly by three members of the workshop’s international
Program Committee. This year, 44 papers were submitted, 20 papers were ac-
cepted for oral presentation and 11 papers were accepted for poster presentation.
All papers presented at the workshop are published in this volume. The program
clearly shows that medical image registration is a vibrant research area. Papers
were submitted by researchers from many parts of the world and address fun-
damental algorithmic issues as well as issues related to the translation of these
algorithms to the medical imaging community at large. The keynote speakers
also discussed a spectrum of topics. Dr. J. Michael Fitzpatrick presented a histor-
ical overview covering more than 20 years of theoretical developments aiming at
elucidating the relation between target registration error (TRE), fiducial regis-
tration error (FRE), and fiducial localization error (FLE). Dr. John Gore, Direc-
tor of the Vanderbilt Institute of Imaging Science, discussed registration needs
and challenges in large imaging institutes involved in small animal and human
imaging research. Dr. Nassir Navab discussed registration needs and challenges
to support research in the area of computer-assisted procedures.

We are grateful to those who contributed to the success of WBIR 2012.
In particular, we would like to thank the organization staff and members of the
Program Committee for their work. We also thank Medtronic Surgical Technolo-
gies, the Vanderbilt Initiative for Surgery and Engineering, and NDI (Northern
Digital Inc.) for their generous support. Last but not least, we thank all the
participants of this workshop for their contributions to the many discussions.
We hope they found the workshop stimulating and enjoyed Nashville and the
Vanderbilt Campus. For those who could not attend the workshop, we hope that
this volume will provide you with valuable information and that you will be able
to participate to the next WBIR workshop.

July 2012 Benôıt M. Dawant
Gary E. Christensen

J. Michael Fitzpatrick
Daniel Rueckert
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Robust Global Registration through Geodesic

Paths on an Empirical Manifold with Knee MRI
from the Osteoarthritis Initiative (OAI)

Claire R. Donoghue1, Anil Rao1, Anthony M.J. Bull2, and Daniel Rueckert1

1 Department of Computing, Imperial College London, London, UK
2 Department of Bioengineering, Imperial College London, London, UK

Abstract. Accurate affine registrations are crucial for many applica-
tions in medical image analysis. Within the Osteoarthritis Initiative
(OAI) dataset we have observed a failure rate of approximately 4%
for direct affine registrations of knee MRI without manual initialisation.
Despite this, the problem of robust affine registration has not received
much attention in recent years. With the increase in large medical im-
age datasets, manual intervention is not a suitable solution to achieve
successful affine registrations. We introduce a framework to improve the
robustness of affine registrations without prior manual initialisations.
We use 10,307 MR images from the large dataset available from the OAI
to model the low dimensional manifold of the population of unregistered
knee MRIs as a sparse k-nearest-neighbour graph. Affine registrations are
computed in advance for nearest neighbours only. When a pairwise image
registration is required the shortest path across the graph is extracted to
find a geodesic path on the empirical manifold. The precomputed affine
transformations on this path are composed to find an estimated transfor-
mation. Finally a refinement step is used to further improve registration
accuracy. Failure rates of geodesic affine registrations reduce to 0.86%
with the registration framework proposed.

1 Introduction

Many applications of medical image analysis rely on a sufficiently accurate affine
registration, including multi-atlas segmentation [1], statistical shape models [2],
atlas building [3], non-rigid registration [4] and many more applications for com-
puter aided diagnosis which need spatial information [5]. Within many exper-
iments we have found that affine registration algorithms frequently fail if not
given an adequate initialisation where patient position and anatomical struc-
tures can vary significantly. Such initialisation is typically provided as an initial
manual guess by a user for every pair of images to be registered. More robust
automated initialisation methods could dramatically reduce this burden.

With the dawn of large datasets of medical images, any form of manual in-
tervention is quickly becoming infeasible and full automation is important. The
dataset used within this work is from a large, longitudinal imaging study of
the knee provided by the Osteoarthritis Initiative (OAI). In total 10,307 MRI

B.M. Dawant et al. (Eds.): WBIR 2012, LNCS 7359, pp. 1–10, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 C.R Donoghue et al.

scans of the knee are used here, at such scales it is indisputable that automatic
accurate initialisation of registrations is crucial.

We present a data driven framework to reduce the affine registration failure
rate. It takes advantage of the large number of knee MRI which are acquired
in a variety of orientations, scales and positions (in addition to many non-rigid
variations). The population of these images can be modelled as a low dimensional
manifold in high dimensional space, where each image is a sample on or near the
low dimensional manifold and samples close together are more “similar” to each
other. We assume that similar images which are closer together on the manifold
should have an increased likelihood of a successful registration. Since this space
is well sampled, we can travel between a pair of images embedded in the manifold
on a shortest geodesic path, passing similar images at each sampled point. An
affine registration can be defined by composing transformations between each
image on the path. The proposed method suggests a way for a small number of
registrations between similar images to be precomputed, which means the run
time computational cost is low.

2 Related Work

Accurate affine registration is required for many previous works for medical
image analysis of knee MRI [1,3,2,4,5]. However, most recent works assume affine
registrations are a solved problem and few focus on improving success rates.

Registration across geodesic paths of a manifold has been previously per-
formed for non-rigid registration for large deformations by [9], where, like in this
method, the population is modelled as a graph. A similar approach is taken for
atlas-based segmentation [11], registrations are computed via the near neigh-
bours in a learnt low dimensional Laplacian eigenmap embedding. Learning an
embedding has the drawback of restricting the dimensionality to a fixed value
across the entire space. For both [9,11] registrations are not precomputed which
means run time costs are higher than the method presented here. Manifold learn-
ing has been applied to medical image analysis in a variety of applications. For
example, Isomap has been used to learn the manifold structure of brain im-
ages to reconstruct images at new locations on the manifold [10]. Additionally,
ABSORB has also been proposed to create unbiased atlases through learning a
manifold of images [12].

Previously, affine registration initialisation has been proposed by extracting
features to locate key landmark points followed by an iterative closest point al-
gorithm (ICP) [6]. Due to severe disease in some subjects potentially dominating
image appearance, selecting landmark points might not be sufficiently resilient.
A thorough review of image registration techniques can be found in [7]. The
affine registration algorithm employed in this article is based on [8].
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3 Method

3.1 Overview

Upon registering images in a large dataset it has been noted that the failure rate
of affine registration between pairs of images without prior manual initialisation
is high at 4.08%, where failure is defined in section 3.2. Many registrations fail
because a large component of registration is an optimisation, which only finds the
local minima and will not reliably locate the global minimum. We hypothesise
that pairs of images with greater similarities are closer to their global optimum.
Therefore, we assume that images with high similarity will generally achieve
a good affine registration. We propose a registration framework where affine
registration is only considered reliable when the similarity between two images is
high. An empirical manifold of the space of unregistered knee MRI is estimated.
From this low dimensional representation registrations between similar images
are precomputed. When a registration between a pair of image is required a
series of transformations are composed to achieve a strong global geodesic affine
registration. Figure 1 depicts an overview of this framework.

1 2 3

Graph (G) of images (V) and 
transformations for similar 
images (E).  This is precomputed.

Select a target and source 
image for registration

Find the shortest path between
the target and the source and 
compose transformations.

Fig. 1. Diagram of the proposed registration framework

3.2 Dataset

Image Data. The experiments presented use 10,307 MRI scans of left and right
knees, which are obtained from the Osteoarthritis Initiative (OAI) database,
available for public access at http://www.oai.ucsf.edu/. Specific datasets used
are 1.C.0 and 1.E.0 at baseline and 1.C.1 and 1.E.1 at 12 months after the
baseline date. The fat-suppressed, sagittal 3D dual-echo in steady state (DESS)
sequence with selective water excitation (WE) has been selected since it has both
high in plane resolution (0.36 by 0.36mm) and a small slice thickness (0.7mm).
Further information regarding the imaging protocol can be found in [13].

Validation Data. For validation of registration accuracy, 97 MRIs were ran-
domly selected and annotated with landmark points. Each image is landmarked
with four distinct points, at the ACL and PCL ligament insertions on the femur
and the tibia. The middle voxel of each ligament is selected just before it meets
the bone. These landmarks are selected as they visible in most subjects and due
to high landmark placement reproducibility by reader.
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Since the ligaments are thin and cylindrical, the landmarks were found to be
reproducible. The error for validation is computed as mean euclidean distance be-
tween the set of landmark points. A reproducibility study was performed to test
how reproducible landmark placement was, 13 subjects were annotated twice,
the mean error computed between landmarks was 1.1mm. An intra-subject pose
study was performed for 13 subjects by measuring the error between a subject
registered affinely at two time points, the mean error is 2.1mm. In the latter
case it is probable that the errors cannot be entirely attributed to reader er-
ror but also to non-rigid pose variations or anatomical changes. Based on these
experiments, registrations with error greater than 10mm are defined as failures.

3.3 Geodesic Registration Framework

Representation of the Population. A graph G = (V,E) is constructed to
model the low dimensional manifold space of all MRI scans in native space for an
anatomical site of interest (in this case the knee) using a prespecified acquisition
protocol. Each vertex in V is a sample on the manifold and represents an image
in the dataset. Each edge in E is weighted based on how similar the two images
at the vertices it connects are and represents a transformation between the pair
of images. G is chosen to be an undirected graph since affine transformations
are invertible. G models the local neighbourhood properties on the non-linear
manifold, therefore G is required to be a sparse graph with small |E|. This is
achieved by enforcing a k-nearest neighbour constraint on the graph.

Choosing the Edge Weights. Initially pairwise similarities are computed for
all pairs in V and so at this stage G is fully connected. The complexity clearly
grows quadratically with the number of images |V | and so this is not feasible at
full image resolution. Therefore the images are blurred and downsampled. Since
the goal of the method is to achieve a strong global transformation, pairwise
similarities of images at this lower resolution are sufficient.

We choose the smallest k such that there is only one connected component and
thus all vertices can be reached from any selected vertex. When k is very large,G
is fully connected and thus as k grows the shortest path across the graph is more
likely to be equivalent to a direct registration. Improvements upon computing
k-nearest neighbours are discussed in section 5.1.

Local Registrations. For each edge in E, affine registrations are computed
between the images at the vertices it connects. The direction of the affine regis-
tration is stored such that an inversion can be computed should the registration
be required in the opposite direction. These registrations are all precomputed
and so any local registration can be retrieved instantaneously.

Global Pairwise Registrations. An affine registration between any target
image and source image is derived by finding the shortest path in G between
the two corresponding vertices. The shortest path is computed using Dijkstra’s
algorithm [14]. The geodesic path across the empirical manifold is comprised of n
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edges, each edge is composed to create the global geodesic affine transformation
TG. As local registrations are computed in advance the composition is simply a
short series of matrix multiplications, which means that any pairwise registration
can be retrieved rapidly.

TG = T1 ◦ T2 . . . ◦ Tn (1)

When affine transformations are composed, small errors at each edge in the path
will be propagated and accumulate. Therefore the geodesic transformation TG is
suboptimal and might not reflect the true transformation. A further refinement
step can be employed, TG is considered to be an initialisation for a further affine
registration and serves as a good estimate for the desired registration. The refined
geodesic transformation is referred to as TG′ , illustrated in figure 2.

TG′ = TG ◦ Trefine (2)

Fig. 2. Illustration of accumulation of affine registration error and refinement step to
eradicate error

4 Results

4.1 Parameter Selection

For the graph construction any similarity metric that reflects registration quality
could be applied, in this work both normalised cross correlation and normalised
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mutual informationwere tried. For the dataset in question, normalised cross corre-
lation outperformed normalised mutual information. For consistency normalised
cross correlation was also used as a similarity metric for affine registrations.

All similarity computations and registrations assume that the central voxel
of the two images are aligned as an initialisation. Experiments regarding the
number of degrees of freedom appropriate for affine registration with this dataset
was performed and nine degrees of freedom were deemed sufficient.

4.2 Visualisation

In this work an empirical manifold is constructed to represent a population of
unregistered knee MRI. Figure 3 is a visualisation of the manifold in a low
dimensional space which can be used to help understand the structure of the
data. Since geodesic paths are the basis of this work the visualisation is created
using Isomap [15]. Isomap learns a low dimensional manifold embedding from the
k-nearest neighbour graph through preserving global geodesic distances. Please
note that this low dimensional representation is not used in the method but is
simply useful for visualisation.

−0.04
−0.02

0
0.02−0.03−0.02−0.0100.010.020.03

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Fig. 3. Isomap Embedding of Manifold of 10,307 images. 97 images used for validation
indicated by red circles, all others are represented as a blue cross.

4.3 Validation

In this section the validation of the method is discussed. Validation is carried out
using the pairwise registration accuracy between a set of 97 randomly selected
and annotated images. Since the graph is symmetric 4656 registrations are tested.
The registrations are validated by computing the error as the mean euclidean
distance between sets of landmarked points in two registered images, specifically

err =
1

N

N∑
i

||TG′(pi)− qi|| (3)
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where pi and qi are the ith landmark vectors of a set of N landmarks for the
source and target image respectively. || . || indicates an Lnorm

2 .
Figure 4 shows the distribution of errors for all the pairwise registration.

Fig. 4. Histograms of registration error (mean euclidean distance between a set of
landmarked points) distribution for all pairwise registrations

Table 1 shows the mean and variance of the registration errors and the pro-
portion of failed registrations. As can be seen from the results the geodesic reg-
istration improves upon direct registration. However it does accumulate errors
as the composed transformations are added at each vertex in the geodesic path,
therefore the resultant transformation does not achieve an excellent registration.
When the geodesic registration is considered to be an approximation or initial-
isation of affine registration, the results are improved through this refinement.
This is evident in the statistics and histograms presented.

Table 1. Mean and variance of registration error and the percentage of failed registra-
tions. A failed registration is considered to have an error of greater than 10mm.

Affine registration algorithm
mean euclidean distance

[mean( var)] (mm)
failed registrations

(%)

direct registration [8] 4.71 (9.05) 4.08%
geodesic registration 4.72 (7.19) 2.94%

geodesic registration (refined) 3.92 (2.73) 0.86%

The focus of this work is to reduce the failure rate of affine registration, figure 5
shows the error distribution across the worst 5% of affine registration (the 95th
- 100th percentile). It can be observed that the geodesic registration method
proposed here improves upon the direct registration, reducing the number of
failed registrations, this is also evident in the statistics reported in table 1.

Figure 6 gives a qualitative example of failed direct affine registration which
was improved by the geodesic registrations framework.
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Fig. 5. Histograms of registration error distribution of 95th-100th percentile of ordered
errors. These allow the reader to compare the algorithms performance on the worst 5%
of affine registrations for each approach.

Target image

Source Image

geodesic direct

registered source  images

Fig. 6. Qualitative example of bad registrations improved by geodesic framework

5 Conclusions

We propose modelling the population of unregistered knee MRI as an empirical
manifold using a graph, where the local properties of the manifold are modelled
at each vertex. This enables registrations to be precomputed at each edge of
the graph. Since the graph is a sparse k-nearest neighbour graph, where k is
small, the maximum number of registration required would be k ∗ |V |. However
it is frequently observed that nearest neighbours might be common between
vertices and so this upper bound is unlikely to be reached. Since all of these
registrations can be precomputed as part of the learning process and Dijkstra’s
shortest path algorithm is highly efficient, the run time computational cost is
low. A request for an initialisation between any pair of images can be retrieved
quickly. A refinement step is also proposed, leading to to dramatically increased
registration accuracy relative to direct affine registrations.
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In this work the manifold space of unregistered knee images is represented as
a graph, in contrast, a manifold learning method could have been used to find
shortest paths in the learnt manifold space [11]. However, with the geodesic ap-
proach proposed here all registrations required are precomputed and so any pair-
wise registration can be requested on the fly. This speed could not be achieved
across a learnt manifold since the number of potential paths increases vastly, reg-
istrations in the shortest path in the learnt manifold would need to be computed
when requested. Additionally, a manifold learning approach requires the user
to choose the intrinsic dimensionality of the manifold embedding in advance.
In contrast to this work where the dimensionality of the graph is implicitly de-
fined by the number of connections or degree at each vertex. This means the
dimensionality effectively varies across the embedding space.

5.1 Future Work and Improvements

The search for k-nearest neighbours for the graph construction is exhaustive
and the number of comparisons grows quadratically with the number of images.
There are many contributions in the literature which discuss improvements,
including hashing [16] or tree based searches [17]. However since the graph only
needs to be constructed once, this was considered out of the scope of this work.

An out-of-sample extension could be added to this framework, where an un-
seen image could be accurately registered to any image in the population. Ini-
tially the nearest neighbour of the unseen image would need to be determined,
then the method proposed here can be applied to find the registration. This
scenario would benefit from an efficient nearest neighbour algorithm to find the
nearest image in the empirical manifold, a sub-linear search would be preferable
to an exhaustive linear search.

Similarity metrics computed at low resolutions appear to be sufficient in these
experiments. However the effect of similarities at higher resolutions could be
explored using a multiscale approach. The l-nearest neighbours of G determined
by pairwise similarity of low resolution images can be found, where |V | � l > k.
From the set of l selected neighbours, the k-nearest neighbours can be determined
using similarity metrics of higher resolution images.

Upon manually investigating poor registrations using the geodesic framework,
it appears the failure is typically due to a singular erroneous edge on the graph.
Future work could explore approaches to omit such erroneous edges or improve
paths through more sophisticated machine learning algorithms.
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Abstract. Geodesic regression generalizes linear regression to general
Riemannian manifolds. Applied to images, it allows for a compact ap-
proximation of an image time-series through an initial image and an ini-
tial momentum. Geodesic regression requires the definition of a squared
residual (squared distance) between the regression geodesic and the mea-
surement images. In principle, this squared distance should also be de-
fined through a geodesic connecting an image on the regression geodesic
to its respective measurement. However, in practice only standard regis-
tration distances (such as sum of squared distances) are used, to reduce
computation time. This paper describes a simplified geodesic regression
method which approximates the registration-based distances with re-
spect to a fixed initial image. This results in dramatically simplified
computations. In particular, the method becomes straightforward to im-
plement using readily available large displacement diffeomorphic metric
mapping (LDDMM) shooting algorithms and decouples the problem into
pairwise image registrations allowing parallel computations. We evaluate
the approach using 2D synthetic images and real 3D brain images.

Keywords: Geodesic regression, time-series, image registration.

1 Introduction

The increasing availability of longitudinal image time-series to study aging pro-
cesses, brain development, or disease progression requires image analysis meth-
ods, and in particular image registration methods, customized for longitudinal
data. A standard approach is to directly extend methods devised for pair-wise
image registration to image time-series. In the case of LDDMM registration [1]
a spatio-temporal velocity field is estimated over the full time-duration of the
available measurements, with image similarity terms at the measurement time-
points. This results in a piece-wise geodesic interpolation path [2,3] with jumps
of the velocity field caused by the measurements.

To avoid these jumps, two directions have been pursued: (i) spline(-like) in-
terpolations or general temporal smoothness terms (primarily for shapes) [4, 5]
or methods based on kernel regression [6] and (ii) approximations of time-series

B.M. Dawant et al. (Eds.): WBIR 2012, LNCS 7359, pp. 11–20, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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through geodesic regression [7, 8]. While the former models are more flexible,
geodesic regression directly yields a simple generative model which compactly
parameterizes a full spatio-temporal trajectory using only an initial image and
an initial momentum.

Geodesic regression seeks to minimize the sum of squared distances of the
measurements to the regression geodesic. Closed-form solutions are generally
not available. However, for some spaces analytical expressions for the “forces”
exerted by the measurements on the regression geodesic (the equivalent to the
model residuals for linear regression) can be computed [8]. Unfortunately, this
is not the case when working with diffeomorphisms for image-valued geodesic
regression [7]. Here, the squared distances can either be defined by registrations
themselves, which is computationally expensive, or by using standard similarity
measures for image registration (such as sum of squared intensity differences)
assuming that all measurements are close to the regression geodesic.

This paper proposes an approximation to image-valued geodesic regression [7]
with registration-based distances using a distance approximation for image-to-
image registration proposed in [9]. This approximation allows for the computa-
tion of the regression geodesic (for a fixed initial image) by a weighted average of
the initial momenta obtained by registering the initial image with the measure-
ment images pairwise. Hence, standard shooting-based LDDMM implementa-
tion methods can be used for the computation of the regression geodesic and its
computation decouples into pairwise registrations (see Fig. 1 for an illustration)
which can be solved in parallel.

We motivate the weighting of the initial momenta for the image-valued case
by illustrating the concept for linear regression in Sec. 2. Sec. 3 describes the
image-valued case. To demonstrate the effectiveness of our scheme, we apply it
to both synthetic and real image time-series in Sec. 4. We conclude and discuss
future work in Sec. 5.
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Fig. 1. Simple geodesic regression: the regression geodesic (bold) is determined by
pairwise registrations between the base image, I(t0), and the measurement images, Yi
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2 Linear Regression (w/ fixed base-point) Reformulated

Given a set of N measurements {yi} at time instants {ti} we want to find the
slope, a, and the y-intercept, b, of the best fitting line y = at + b in a least
squares sense. We assume that one point on this line is known1. Without loss of
generality, we assume this point to be at the origin. Hence, we want to minimize

E(a) =
1

2

N∑
i=1

(ati − yi)
2 ⇒ a =

∑
i yiti∑
i t

2
i

. (1)

Assume that instead of fitting one line to all the measurements, we fit lines
from the origin to all the measurement points individually. This amounts to
independently minimizing

Ei(ai) =
1

2
(aiti − yi)

2 ⇒ ai =
yi
ti
. (2)

Since yi = aiti, we obtain upon substitution in (1)

a =

∑
i t

2
i ai∑

i t
2
i

=
∑
i

wiai, with wi =
t2i∑
i t

2
i

,
∑
i

wi = 1. (3)

Hence, the slope of the regression line can be computed as a weighted average
of the slopes of the individual lines. What remains to be shown is that a similar
averaging procedure can be used for the image-valued case.

3 Simple Geodesic Regression

Geodesic regression for image time-series generalizes linear regression to the
space of images [7]. It uses a shooting formulation to LDDMM registration [11]
and is based on the minimization of

E(I(t0), p(t0)) =
1

2
〈p(t0)∇I(t0),K(p(t0)∇I(t0))〉+

∑
i

wid
2(I(ti), Yi), (4)

s.t. It +∇IT v = 0, pt + div(pv) = 0, v +K(p∇I) = 0, (5)

where I(t0) and p(t0) are the unknown initial image and the unknown initial
Hamiltonian momentum respectively, K is a chosen smoothing kernel, wi > 0
scalar weights and Yi is the measured image at time ti; d2(A,B) denotes a
squared distance(-like) image similarity measure between the two images A and
B and can be one of the standard image similarity measures or can be based
on image registration itself to allow for large deviations between the geodesic
regression line and the Yi [7]. A numerical scheme using registration-based dis-
tances can be derived, but is impractical, because it would require frequent

1 This is a simplifying assumption akin to formulating a growth model with respect
to an initial image.
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costly recomputations of the distances in an iterative solution scheme. Hence,
an approximation of the registration-based distance is desirable. We define the
squared distance [1] as

d2 (A,B) =
1

2

∫ 1

0

‖v∗‖2L dt, where (6)

v∗ = argmin
v

1

2

∫ 1

0

‖v‖2L dt+
1

σ2
‖I(1)−B‖22, s.t. It +∇IT v = 0, I(0) = A.

This is an inexact matching formulation since an exact matching is typically im-
possible by a spatial transformation alone due to noise and appearance changes2.

To simplify the geodesic regression formulation (4) we use a first order ap-
proximation of pairwise distances [9]. In contrast to [9], the time-series aspect
of the images has to be considered. For all pairwise distances, I(t0) becomes the

base image. For two images A, B and given spatial transformations Φ
vA
0

t and

Φ
vB
0

t which map I(t0) to A and B in time t, the composition Φt = Φ
vB
0

t ◦ (ΦvA
0

t )−1

maps A to B. Since both transformations are parameterized by initial velocity
fields vA0 and vB0 respectively, we approximate Φt to first order as

Φt = ExpId(tv
B
0 ) ◦ ExpId(−tvA0 ) ≈ ExpId(t(v

B
0 − vA0 )). (7)

Then the squared distance can be approximated as

d2(A,B) ≈ 1

2
t2〈K−1(vB0 − vA0 ), v

B
0 − vA0 〉 (8)

or in momentum form

d2(A,B) ≈ 1

2
t2〈(p(t0)B − p(t0)

A)∇I(t0),K((p(t0)
B − p(t0)

A)∇I(t0)〉. (9)

Using this approximation to rewrite the geodesic regression formulation (4) yields

E(I(t0), p(t0)) =
1

2
〈p(t0)∇I(t0),K(p(t0)∇I(t0))〉

+
∑

wi
1

2
(ti − t0)

2〈(p(t0)Yi − p(t0))∇I(t0),K((p(t0)
Yi − p(t0))∇I(t0)〉. (10)

We assume that I(t0) is on the geodesic3. All p(t0)
Yi are precomputed by pairwise

registrations with I(t0). The approximated energy only depends on the initial
momentum p(t0). Taking the variation of (10) with respect to p(t0) results in

δE(I(t0), p(t0); δp) = 〈∇I(t0)
TKm(t0), δp〉

+
∑

wi(ti − t0)
2〈∇I(t0)

TK(mi(t0)−m(t0)),−δp〉, (11)

2 A metamorphosis approach [10] could be used instead.
3 Otherwise registrations between I(t0) and all other images would be required when
I(t0) changes, providing no benefit over the original geodesic regression method.
This is a simplifying assumption, which transforms the model into a type of growth
model described by a geodesic.
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whereK is assumed to be a symmetric kernel,m(t0) = p(t0)∇I(t0) and mi(t0) =
p(t0)

Yi∇I(t0). Collecting terms yields

δE(I(t0), p(t0); δp) = 〈∇I(t0)
TK[m(t0) +

∑
wi(ti − t0)

2(m(t0)−mi(t0))], δp〉.
(12)

For a candidate minimizer δE needs to vanish for any admissible δp. Hence,

m(t0) +
∑

wi(ti − t0)
2(m(t0)−mi(t0)) = 0 (13)

or in momentum space

p(t0) +
∑

wi(ti − t0)
2(p(t0)− p(t0)

Yi) = 0. (14)

Solving for p(t0) results in

p(t0) =

∑
wi(ti − t0)

2p(t0)
Yi

1 +
∑

wi(ti − t0)2
. (15)

In practice most frequently, wi = w = const and w >> 1 simplifying (15) to

p(t0) ≈
∑

(ti − t0)
2p(t0)

Yi∑
(ti − t0)2

, (16)

which is a simple averaging of the initial momenta with weights gi =
(ti−t0)

2∑
(ti−t0)2

.

This formulation recovers the original image-to-image registration result for the
special case of two images. To obtain the initial momenta p(t0)

Yi which are
needed to approximate the registration distance at time ti one could modify the
registration problem (6) by integrating between t0 and ti and solve it with the
algorithm proposed in [1]. However, such an approach would suffer from two
short-comings: (i) it would not guarantee geodesic solutions and (ii) the relative
weighting of the image similarity measure would be influenced by the different
time-periods used to perform the deformations (since ‖v‖2L is integrated over
time, the same deformation becomes cheaper for a longer time interval). We
therefore use (i) a shooting method [11] to compute the registrations and (ii)
compute p(t0)

Yi by registering I(t0) to Yi in unit time followed by a rescaling of
the momentum to account for the original time duration: p(t0)

Yi = 1
ti−t0

p(t0)
Yi .

Using the momenta computed for a unit time, the initial momentum for the
regression geodesic can be written as

p(t0) ≈
∑

(ti − t0)p(t0)
Yi∑

(ti − t0)2
. (17)

Given the base image I(t0) and p(t0), we can integrate Eq. (5) forward or back-
ward in time to obtain the regression geodesic. Our approximate geodesic regres-
sion results in a dramatic simplification of the optimization method for geodesic
regression. Pairwise registrations can be computed in parallel if desired.
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4 Experiments

Implementation. In the following experiments, the smoothing kernel K is set
as the weighted sum of N Gaussian kernels Kσn [12]: K(x) =

∑N
n=1 cnKσn(x),

cn = c′n/g(Kσn , IS , IT ). Usually we set c′n = 1. We first compute cn for image
pairs (following [12]) and then take the average of all the cn as the weights for
the kernels. All images are slightly blurred before registration.

Fig. 2. Synthetic bull’s eye experi-
ment (top row) and results for sim-
ple geodesic regression (bottom row).
The movement is well captured.

Synthetic Images. In the first experi-
ment, we synthesized the movement of a
bull’s eye using a series of 2D binary images
(32 × 32 pixels, spacing 0.04) as shown in
Fig. (2). The white circle inside of the eye
grows at a constant speed while the outside
white loop shrinks. We used four images
at time instants 0, 10, 20, 30s, I(0) as the
base image, and 7 Gaussian kernels for K,
{K0.5, K0.4, K0.3,K0.2,K0.15,K0.1,K0.05};
σ2 = 0.01. The simple geodesic regression
result (2nd row of Fig. (2)) shows that
changes are captured well.

To quantify the regression accuracy we compute the overlay error between
measurement images and the images on the geodesic:

Eoverlay(I(ti), Yi) =
1

|Ω| ||ε(I(ti), Yi)||L1 , ε(I, J)(x) = |I(x) − J(x)|. (18)

Table 1. Comparison of overlay errors among image
pairs, the original geodesic regression, and our simple
geodesic regression

Eoverlay(I(ti), Yi)
Measurement Images Y0 Y1 Y2 Y3

Image pairs(I(ti) = Y0, Yi) 0 0.0820 0.1914 0.3242
OGR(fixed initial image: Y0) 0 0.0247 0.0306 0.0311

SGR(base image: Y0) 0 0.0274 0.0329 0.0261

Tab. 1 shows the over-
lay errors between the ini-
tial image and all other
measurements, the results
of the original geodesic
regression (OGR) and of
the simple geodesic re-
gression (SGR) regression
respectively. The regres-
sion models are compara-

ble in accuracy indicating that SGR works correctly in this experiment.
To illustrate the necessity of using a registration-based distance rather than

the squared L2 distance of two images, two test cases in Fig. 3 are employed for
comparing the results of the original geodesic regression and our method. In the
cases, five binary images (64×64 pixels, spacing 0.02) are generated to describe a
square moving from left to right at uniform speed without oscillation (subfigure
(a)) and with strong vertical oscillation by a constant amplitude (subfigure (b)).
Here, K is {K1, K0.75, K0.5, K0.4, K0.3, K0.2, K0.15, K0.1}.
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(a) (b)

Fig. 3. Square moving from left to right without oscillation (a) and with vertical oscil-
lation (b). Top: original images. Middle: the results of the original geodesic regression.
Bottom: the results of our method.

Fig. 4. Scalar experiment

When there is no oscillation in the movement
(Fig. 3(a)), the original geodesic regression has
comparable performance to our method. In case
(b), similar to the regression lines for the scalar
case (Fig. 4), the square is expected to move to
the right while moving down slightly, which is
consistent with the SGR result (bottom row of
subfigure (b)). However, the square in the orig-
inal geodesic regression (using the L2 distance)
leads to a stronger shape deformation and devia-
tion from the horizontal line.

Fig. 5 compares the proposed weighting of initial momenta for SGR (Eq. (16))
to a direct arithmetic average for a set of 3 images (64× 64 pixels; spacing 0.02)
at time points 0, 10, 40s respectively. The images at 10s and 40s are displaced by
an equal distance vertically with respect to the image at 0s, but the horizontal
displacements differ by a factor of 3. We chose the same multi-Gaussian kernel
as in the first experiment. The SGR weighting is clearly more appropriate.

Real Images. We also evaluated SGR on two sets of longitudinal magnetic
resonance images: 2D slices of a longitudinal dataset from the OASIS database
and a 3D longitudinal dataset from a macaque monkey. One K, {K3.0, K1.5,
K0.5, K0.4, K0.3, K0.2, K0.1, K0.05}, was applied to all the real images4.
The four images in the first row of Fig. 6(a) are slices from an OASIS data set
(161×128 pixels, spacing 0.5) for a subject scanned at age 67, 68, 71, and 73. We
applied SGR with the youngest slice as the base image. The changes between the
base image and other measurements are subtle, as illustrated by the difference
images in the left column of Fig. 6(b) and the overlay errors in the first row of
Tab. 2. However, our method successfully captures the variations in the brain
images, especially the ventricle expansion, which is supported by the generated
images (Fig. 6(a), 2nd row) and the difference images (right column Fig. 6(b)).

4 Slightly better results may be achievable by data-set-dependent tuning of the kernel.
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(a) (b)

Fig. 5. Scalar and image-valued cases comparing arithmetic averaging and the pro-
posed weighting approach for initial momenta. (a) Scalar case. (b) Image case: image
time-series (0, 10, 40s) (top), the initial momentum and the images generated by simply
averaging the initial momenta (middle) and by our weighting method (bottom).

(a) (b) (c)

Fig. 6. OASIS data: (a): Original images (top, left to right: 67, 68, 71, 73 [years]),
geodesic I with youngest slice as base image (middle), and geodesic II with oldest slice
as base image (bottom). (b): Difference images of measurement images (up to down:
68, 71, 73 [years]) with youngest image (left) and images on geodesic I (right). (c):
Difference images of measurement images (up to down: 71, 68, 67 [years]) with oldest
image (left) and images on the geodesic II (right).

We also took the oldest slice as the base image to verify the efficiency of our
model. As shown by the generated trajectory (Fig. 6(a), 3rd row), the difference
images (Fig. 6(c)), and overlay errors in Tab. 2, our method works well.

The images (150× 125× 100 pixels with spacing 0.5468) in Fig. 7 are from a
longitudinal data-set of a macaque monkey at the age of 3, 6, 12 and 18 months
respectively5. We set the image at 3 months as the base image and applied
our approach to capture the changes of the ventricle marked by the magenta

5 Note that this is a time-range of active brain myelination for the macaque. Hence
image intensities for the white matter are not constant over time and therefore a
perfect image match is not expected.
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Table 2. Overlay error among image pairs, the original geodesic regression (OGR),
and our simple geodesic regression (SGR) for longitudinal subject data shown in Fig. 6

Eoverlay(I(ti), Yi)
Measurement Images [Years] Y0 = 67 Y1 = 68 Y2 = 71 Y3 = 73
Image pairs (I(ti) = Y0, Yi) 0 0.0468 0.0342 0.0472
OGR (fixed initial image: Y0) 0 0.0452 0.0298 0.0313

SGR (base image: Y0) 0 0.0449 0.0304 0.0286

Measurement Images [Years] Y0 = 73 Y1 = 71 Y2 = 68 Y3 = 67
Image pairs (I(ti) = Y0, Yi) 0 0.0536 0.0631 0.0472
OGR (fixed initial image: Y0) 0 0.0448 0.0457 0.0284

SGR (base image: Y0) 0 0.0438 0.0432 0.0258

(a) (b) (c)

(d) (e) (f)

Fig. 7. Results for the macaque monkey data (up to down: 3, 6, 12, 18 [months], the
youngest one as base image). (a-c): axial, coronal and sagittal slices of the original
images (left) and images on the geodesic (right). (d-f): difference images of the oldest
image with the youngest one (left) and with the images on the geodesic (right).

windows. As the monkey’s age increases, the ventricle gradually approaches the
edges of the windows, which is well captured by SGR.

5 Discussion and Conclusions

We developed a simplified geodesic regression model by approximating the
squared distances between the regression geodesic and the measurement images.
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In contrast to the original geodesic regression formulation for images, SGR can be
efficiently computed. In fact, it only requires pair-wise registrations of the mea-
surement images with respect to a chosen base-image (typically either the first
or the last image of a time-series). The regression geodesic is then determined
by the base image and the initial momentum obtained by appropriate averaging
of the initial momenta of the pairwise registrations. Future work will focus on
using this regression model for longitudinal image-based population-studies and
on extending it to capture spatial and appearance changes simultaneously.
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Abstract. Non-rigid image registration is used pervasively in medical image 
analysis for applications ranging from anatomical and functional studies to 
surgical assistance. Error in specific instances of a non-rigid registration 
process, however, is often not determined. In this paper, we propose a method 
to determine the magnitude and spatial location of error in non-rigid 
registration. The method is independent of the registration method and 
similarity measure used. We show that our algorithm is capable of detecting the 
distribution and magnitude of registration error in a simulated case. Using real 
data, our algorithm also is able to identify registration error that is consistent 
with error that can be seen visually. 

Keywords: Image registration, registration circuits, non-rigid registration, error 
detection. 

1 Introduction 

Detection of error in non-rigid registration has been detailed in various studies as a 
difficult and important problem [1,2,3]. Intensity-based image registration algorithms, 
which are the most commonly used methods for non-rigid registration tasks, depend 
on similarity measures to estimate how well two images match. However, registration 
algorithms are unable to determine the quality of their results based on image 
intensity alone. The problem of correspondence error and its potential negative effect 
on studies that use voxel-based morphometry is described in [1]. The paper was 
published in 2003 and, to the best of our knowledge no method has yet to be 
developed in response to the problem they pose, that is "most widely used methods 
are essentially dumb in that, for a particular registration task, they report only a 
measure of image similarity which does not allow a judgment of 'success' or 'failure' 
to be made. Worse the magnitude and spatial distribution of errors in NRR are 
unknown". The aim of this paper is to begin to address this problem. 

Analytical solutions to calculate error have been developed for the rigid-body 
registration case when fiducial markers are available [4]. It has been shown, however, 
that it does not allow for the estimation of error in individual cases [5]. Other attempts 
at quantifying error in cases without fiducial markers simplify the registration 
problem and are therefore un-applicable to most medical image registration problems. 
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Möller et al. [6] developed a method in computer vision that quantifies the quality of a 
registration, yet the method is restricted to translations. Simonson et al. [7] developed 
a statistical method that gives a measure of confidence for a given registration, yet, 
this method is restricted to affine, rigid body and translational transformations and can 
only be applied to binary images. Simpson et al. [8] recently proposed a method that 
estimates the uncertainty at each voxel, and then utilizes this uncertainty value to 
regularize the deformation field that results from the registration algorithm. While 
novel, this technique requires the usage of a specific registration framework the group 
has developed and requires voxel-level similarity metrics.  

The following section details our algorithm which we call AQUIRC for Assessing 
Quality Using Image Registration Circuits. AQUIRC was recently proposed in [9] 
where it was utilized to estimate error in rigid registrations and [10] where it was used 
for atlas selection. AQUIRC utilizes the deformation fields that result from a 
registration algorithm, and thus can be applied to any registration algorithm. In this 
paper, we describe AQUIRC applied at the voxel-level, which differs from previous 
work that has utilized a global metric. We apply our algorithm to identify error in a 
simulated problem as well as to identify error in a registration between two images. 
We will show that AQUIRC is able to identify the magnitude and spatial location of 
registration error, discuss regions in which AQUIRC is not able to identify 
registration error, and propose future applications and avenues of research. 

2 AQUIRC 

AQUIRC builds on the idea of registration circuits which was proposed as a 
consistency measure by Woods et al. [11] and Holden et al. [12]. A registration circuit 
involves three images A, B, and C and three transformations TAB, TBC, and TCA. As 
discussed by Fitzpatrick [13], using only one registration circuit can lead to an 
underestimation of registration error because the error made along one edge in the 

circuit may correct error 
introduced from a separate edge 
in the circuit. 

In this work, we expand upon 
the idea of registration circuits 
to multiple circuits. We start 
with a set of images and 
compute pair-wise registrations 
between all elements in the set, 
creating a complete graph as 
shown in Figure 1. The complete 
graph of registrations is similar 
to what is done by Christensen 
[14]. In [14], however, they used 
the complete graph of 
registrations as an overall 
measure of the quality of a 

Fig. 1. Example complete graph with one circuit
shown in red arrows 
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registration algorithm, rather than as a method to determine the quality of individual 
registrations as we have done here. If our initial set contains N images, the graph 
contains N  edges. There are N  unique registration circuits that can be formed from 
a complete graph (we have used registration circuits of size 3; the circuit size can be 
increased to form more registration circuits but this was not explored here). With each 
edge in this graph, we associate an initially unknown measure of registration quality 
called ε that we wish to solve for. In this work, we solve for a registration quality at 
each voxel, ε ε , ε , .  .  . , εQ , with Q equal to the number of voxels in the common 
image space. Thus, ε represents a rasterised vector of registration quality for each 
voxel in an image.  

Next, we define a measure of registration error that can be computed across a 
circuit. We compute this error for every voxel in the image. This requires a common 
coordinate system for each of the images in the network, thus if all the images in the 
network do not have the same dimension or voxel size, they are re-sampled. To 
compute the error we take the set of coordinates in an image, call it X. We then 
compute the transformed coordinates  as  AB BC CA . The error across 
circuit A, B, C, is then defined for each voxel i, as  , .  , , .  .  . , Q  is then defined as a vector of errors across a circuit. The values in 

 are affected by the error of three registrations, i.e., the registration error between A 
and B, the registration error between B and C, and the registration error between C 
and A. With only one circuit the contribution of each component cannot be computed. 
It can, however, be estimated with more than one circuit. To achieve this we make the 
assumption that each registration affects the quality measure multiplicatively, i.e., 
log(εABC) = log(εA)+log(εB)+log(εC). An additive model may also be applicable, but 
this was not explored here. Computing this expression for all unique circuits and 
rearranging them in matrix form, we obtain 

1 1 1 0 . . 01 0 1 1 . . 01 1 0 1 . . 00 1 1 1 . . 0.                  .                   .                    

log ε , ε , … , εQlog ε , ε , … , εQlog ε , ε , … , εQ...log ε N , ε N , … , ε NQ

log , , … , Qlog , , … , Qlog , , … , Q...log N , N , … , NQ
    (1) 

in which  is defined as the ,  value around circuit p at voxel i and ε  is defined as the quality of the registration l at voxel i. This expression can be 
rewritten as  P log ε log E . Where P is a matrix that represents the links utilized 
for each circuit, with the value of P set to 1 if the link is utilized in the circuit and 0 
otherwise. As a result of the multiplicative assumption, log ε  can be solved for 
using a linear least squares solution log ε PTP PTlog E                                           (2)                                       
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and solving for ε ε  e                                                            (3)  

In this implementation, we calculate  separately for the x, y, and z directions. Thus 
we calculate equation (3) using three different distance metrics, i.e. ε  is calculated 
using ,   , ε  is calculated using ,  ,  and ε  is calculated using ,  . This results in an 
estimation of error for the x, y, and z directions at each and every voxel. We then 

calculate the magnitude error for each registration as ε ε  ε  ε . 

We are currently working on a proof of conditions on the registration circuits for 
when  is full rank and therefore T  is invertible. Experimentally  has been 
observed to be full rank when N 5. We define  to be all unique circuits in the 
graph of size 3, although it may be possible to utilize fewer circuits to eliminate 
redundancy. There are two known instances where AQUIRC is not able to identify the 
error in a registration between two images.  

• First, if each of the registrations in a complete graph resulted in identical 
transformations then the metric E  would be the same for each registration 
circuit and AQUIRC would be unable to identify a relevant error value for 
each registration.  

• Secondly, if there is an error that is the same across all registrations into one 
image, AQUIRC is unable to account for this error. This is because for every 
possible circuit, the error is first added to, and then subtracted from the 
resulting combination of transformations. No circuit is thus able to account 
for that error since it is always removed from the final error value of a 
circuit.  

We do not believe these two instances are likely to appear often in practice, but their 
impact is under continuing evaluation. 

2.1 Image Information and Registration Method 

In the experiments discussed in this article, we used 5 MR images that are T1-weighted 
sagittal volumes with 256x256x170 voxels 1mm in each direction acquired with the 
parameters TE = 2.4 ms, TR = 12.2 ms. The images were acquired with the SENSE 
parallel imaging technique (T1 W/3D/TFE) from Phillips on a 3 Tesla scanner.  The 
images were registered utilizing the Adaptive Bases Algorithm (ABA) [15], which uses 
Normalized Mutual Information (NMI) [16] as its similarity measure. Briefly, ABA 
computes a deformation field that is modeled as a linear combination of radial basis 
functions with finite support. This results in a transformation with thousands of degrees 
of freedom. Two transformations (one from the atlas to the subject and the other from 
the subject to the atlas) are computed simultaneously and constrained to be inverses of 
each other. When calculating a circuit, AB BC CA , the deformation fields are 
interpolated using tri-linear interpolation.  
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3 Experiments 

In this work we perform three experiments. In the first experiment we simulate error 
and apply AQUIRC to estimate this error. We compare the estimated error and the 
known simulated error visually and statistically. In the second experiment, we add 
simulated error to a non-rigid registration between two randomly chosen images. We 
then apply AQUIRC to estimate the error. Finally we estimate the error in a non-rigid 
registration between two images without adding any simulated error. For all 
experiments, 5 separate images are pair-wise non-rigidly registered to each other. We 
visually show AQUIRC 's overall magnitude estimation of error for each experiment. 
We do not show the estimation of directional error due to space considerations. In 
general, the quality of the results for the magnitude error estimation are representative 
of the results for the directional error.   

3.1 Experiment 1 

In the first experiment, we create a simulated image which is a deformed copy of an 
image from our data set. We call the original image I  and the deformed image I . 
The simulated image is deformed using a radially symmetric growth model. There are 
three sizes of deformations that are utilized in the growth model in three different 
locations in the image. The largest deformation in the center of the image has a radius 
of 30mm with a maximum displacement of 8mm, the moderately sized deformation 
has a radius of 15mm with a maximum displacement of 5mm, and the smallest 
deformation has a radius of 10mm with a maximum displacement of 3mm. The 
simulated image and the growth model can be seen in Figure 2. The transformation 
between the simulated image and the image it was copied from is defined to be the 
identity transformation. This simulates a case in which the two images are mis-
registered by the growth added to the deformed image. The other images in our data 
set are then non-rigidly registered to the simulated image, creating a network of 6 
images as illustrated in Figure 3. AQUIRC is then applied, calculating a voxel-level 
error estimation of the simulated error. We calculate the correlation between the 
growth model and the error estimation and show a scatter plot of the values.  

 

Fig. 2. Left: Original image. Middle: Grid deformed by the simulated growth model. Right: 
Simulated image 
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3.2 Experiment 2 

In the second experiment, two images are chosen, which we call images I  and I . The 
images I  and I  are non-rigidly registered to each other. Then I  is deformed utilizing 
the same growth model that was used in Experiment 1, resulting in I . The non-rigid 
registration between  and  is used for the transformation between  and , but 
the other images within the data set are re-registrered to  as can be seen in Figure 3. 
This simulates a case in which the growth model adds a known mis-registration to an 
unknown base mis-registration. AQUIRC  is run and we compare the voxel-wise error 
that the algorithm detects with the simulated error. Because we do no know the base 
mis-registration, we present qualitative and visual results for this experiment. 

3.3 Experiment 3 

In the third experiment, we run AQUIRC across the reference set images. We 
consider the images, I  and I , and the error in the registration between them is 
estimated. This is illustrated in the right panel of  Figure 3. Through this experiment 
we investigate the ability of AQUIRC to localize mis-registration errors in practical 
situations. 

 

Fig. 3. Diagram illustrating the 3 experiments performed. Left: Experiment 1, Middle: 
Experiment 2, Right: Experiment 3. The larger link represents the registration that each 
experiment is testing. 

4 Results 

An example slice of the results obtained in Experiment 1 is shown in Figure 4. The 
left panel of the figure is the magnitude of the simulated error, the middle panel is 
magnitude of AQUIRC 's voxel-wise error estimation and the right panel is a grid that 
has been deformed by the simulated growth model overlayed on top of the error 
estimation. Figure 5 shows a magnified area where the moderate sized simulated error 
was added, alongside the original image and the deformed image. We also calculated 
the correlation between the magnitude of AQUIRC's error estimation and the 
magnitude of the simulated growth that was added to the image, and find a strong 
correlation with an r = 0.7008 that is statistically significant with a p < 0.001. 
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Fig. 4. Left: magnitude of the growth model.  Middle: Error estimation. Right: overlay of the 
error estimation onto a grid that has been deformed by the growth model. 

 

Fig. 5. Left: the original image. Middle Left: region of moderate deformation. Middle Right: 
Error estimation. Right: overlay of the error estimation onto the deformed image. 

 

Fig. 6. Scatter plot comparing the estimation of error to the magnitude of the simulated 
deformation field. Voxels within the head and in one transverse slice were included. 

 

Fig. 7. Left:  registered to . Middle Left: magnitude of the growth model. Middle Right: 
. Right: Error estimation of the registration between  and . 
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We show a scatter plot of the magnitude of the simulated growth error and the 
AQUIRC's error estimation in Figure 6. The scatter plot utilizes data from one slice 
(the slice shown in Figure 4) since otherwise there are too many data points to 
produce a useful visualization of the results (note, the r-correlation from the slice 
differs slightly than the overall correlation). We only consider voxels within the brain 
for both the scatter plot and correlation. AQUIRC was able to identify the simulated 
error well in the region of the large deformation and was able to identify some of the 
simulated error in the region of the moderate deformation; however, AQUIRC was 
unable to identify the simulated error in the region of the small deformation.   

 

Fig. 8. Row 1-5 shows the transverse plane and row 6 shows the sagittal plane. From left to 
right the column rows are the original image, the original image registered to the target, the 
target image, estimation of the error, and error overlayed on top of the original image registered 
to the target image. Areas of interest are highlighed with an orange circle. 
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The results from Experiment 2 are show in Figure 7. The image on the left is I  
registered to I , the left middle image is the magnitude of the growth model, the 
image in the middle right is the image , and on the right is the final error estimation 
of the registration between  and . As can be seen in Figure 7, the added 
simulation error is apparent in the center of AQUIRC's error estimation figure, 
although it is difficult to identify the medium and small growth deformations from the 
background registration error estimation. 

The results from Experiment 3 are shown in Figure 8. In the very left column of 
Figure 8 we show the original image, followed by the original image registered to the 
target, followed by the target image, followed by AQUIRC's estimation of the error 
and finally the error overlayed on top of the original image registered to the target 
image. In rows 1-5 we show the results in the transverse plane and row 6 shows the 
results in the sagittal plane. We found that most of the highest registration error levels 
were found in the sulci of the brain, which is logical since there is a high level of 
inter-patient variability in sulci regions. In rows 1 and 2 we show the left and right 
side of the head in the same image slice. AQUIRC estimates a high amount of 
registration error for the left side of the head, and a small amount of error for the 
other. Rows 3 and 4 also show the left and right side of the same image slice, and we 
again find a high estimated error on the left side compared to a small amount of 
estimated error on the right side. Qualitatively, it appears that regions with low 
estimated error are better registered than the regions of high estimated error. In row 5 
we show a region in the CSF where the registration appears correct, but that AQUIRC 
identifies as having some registration error. A potential cause for this is that in the 
CSF region there is no contrast to direct the registration, and without a consistent 
possible correspondence, AQUIRC may mis-identify error. In row 6 of Figure 8 we 
see an example in the brainstem where visually we can identify a clear registration 
error that AQUIRC is also able to identify as being a registration error. 

5 Discussion and Future Work 

We have presented an algorithm to estimate voxel-wise registration error. In 
Experiment 1 AQUIRC is able to identify simulated errors, with a high correlation (r 
= 0.7008) between the estimated and actual error. In Experiment 2, AQUIRC is able 
to identify the large registration error that has been added to the center of an inter-
patient registration. However, it is not obvious whether or not AQUIRC is able to 
identify the moderate and small simulated deformations. In Experiment 3, AQUIRC 
has identified areas that are visually mis-registered, but the results in this instance are 
qualitative because the ground truth is unknown. 

Our results suggest that AQUIRC is able to identify regions of simulated error 
better when the growth model affects regions with contrast. This can be seen in Figure 
5 in the region of moderate growth where the simulated error affects a region with 
contrast as well as a homogeneous region. AQUIRC is not able to identify the 
simulated growth in the homogeneous region but is able to identify the simulated 
growth in the area with contrast. When the growth region is larger and contains 
homogeneous regions as well as regions with contrast, AQUIRC is able to identify 
error in both types of regions. 
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We are continuing to explore the sensitivity of our technique to a variety of 
parameters and situations. We are currently extending the method to voxel-level atlas 
selection and are testing AQUIRC using a larger number of images and with various 
error combination metrics. 
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Abstract. Motivated by previous work [16] and recent diffeomorphic
image registration developments in which the characteristic velocity field
is represented by spatiotemporal B-splines [3], we present a diffeomorphic
B-spline-based image registration algorithm combining and extending
these techniques. The advancements of the proposed framework over pre-
vious work include a preconditioned gradient descent algorithm and po-
tential weighting of the metric gradient permitting, among other things,
enforcement of stationary boundary conditions. In addition to theoret-
ical and practical discussions of our contribution, we also describe its
parallelized implementation as open source in the Insight Toolkit and
perform an evaluation on publicly available brain data.

Keywords: B-splines, DMFFD, diffeomorphisms, image registration,
ITK.

1 Introduction

Significant algorithmic developments characterizing modern intensity-based im-
age registration research include the B-spline parameterized approach (so called
free-form deformation) with early contributions including [10,11,7]. Amongst the
variant extensions, the directly manipulated free-form deformation approach [16]
addressed the hemstitching issue associated with steepest descent traversal of
problematic energy topographies during the course of optimization.

Other important image registration research reflected increased emphasis on
topological transformation considerations in modeling biological/physical sys-
tems where topology is consistent throughout the course of deformation or a
homeomorphic relationship is assumed between image domains. Methods such
as LDDMM [2] optimize time-varying velocity field flows to yield diffeomor-
phic transformations. Alternatively, the FFD variant reported in [8] enforced
diffeomorphic transforms by concatenating multiple FFD transforms, each of
which is constrained to describe a one-to-one mapping. Another FFD registra-
tion incorporated the recent log-Euclidean framework for enforcing diffeomorphic

B.M. Dawant et al. (Eds.): WBIR 2012, LNCS 7359, pp. 31–39, 2012.
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transformations [5]. Recently, the work of [3] combined these registration con-
cepts into a single framework called temporal free-form deformation in which the
time-varying velocity field characteristic of LDDMM-style algorithms is modeled
using a 4-D B-spline object (3-D + time). Integration of the velocity field yields
the mapping between parameterized time points.

In this work, we describe our extension to these methods. Similar to [3], we
also use an N -D + time B-spline object to represent the characteristic velocity
field. However, we use the directly manipulated free-form deformation optimiza-
tion formulation to improve convergence during the course of optimization. This
also facilitates modeling temporal periodicity and the enforcement of station-
ary boundaries consistent with diffeomorphic transforms. We also incorporate
B-spline mesh multi-resolution capabilities for increased control during registra-
tion progression. Most importantly, we also describe the parallelized algorithmic
implementation as open source available through the Insight Toolkit.1

We first describe the methodology by laying out a mathematical description
of the various algorithmic elements coupled with implementation details where
appropriate. This is followed by an evaluation on publicly available brain data.

2 Methods: Formulae and Implementation

In this section, we explain the underlying theory focusing on differences with
previous work. We first explain how B-spline velocity fields can be used to pro-
duce diffeomorphisms through numerical integration involving the B-spline ba-
sis functions. We then show how our previous work involving optimization in
B-spline vector spaces [16] can be used for optimization of diffeomorphisms. Ad-
ditional insight is then gleaned by illustrating correspondence between theory
and implementation.

2.1 B-Spline Velocity Field Transform

Briefly, as with other diffeomorphic formulations based on vector flows, we as-
sume the diffeomorphism, φ, is defined on the image domain, Ω, with stationary
boundaries such that φ(∂Ω) = Id. φ is generated as the solution of the ordinary
differential equation

dφ(x, t)

dt
= v(φ(x, t), t), φ(x, 0) = x (1)

where v is a (potentially) time-dependent smooth field, v : Ω × t → Rd parame-
terized by t ∈ [0, 1]. Diffeomorphic mappings between parameterized time points
{ta, tb} ∈ [0, 1] are obtained from Eq. (1) through integration of the transport
equation, viz.

φ(x, tb) = φ(x, ta) +

∫ tb

ta

v(φ(x), t)dt. (2)

1 http://www.itk.org/

http://www.itk.org/
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In the case of d-dimensional registration, we can represent the time-dependent
velocity field as a (d+ 1)-dimensional B-spline object

v(x, t) =

X1∑
i1=1

. . .

Xd∑
id=1

T∑
it=1

vi1,...,id,itBit(t)

d∏
j=1

Bij (xj) (3)

where vi1,...,id,it is a (d+ 1)-dimensional control point lattice characterizing the
velocity field and B(·) are the univariate B-spline basis functions separately
modulating the solution in each parametric dimension.

Although various methods exist for solving Eqns. (1) and (2), we use 4th-order
Runge-Kutta, i.e.

φn+1 = φn +
1

6
(k1 + 2k2 + 2k3 + k4) (4)

tn+1 = tn +Δt (5)

φ0 = φ(t0) (6)

where

k1 = v (φn, tn)Δt (7)

k2 = v

(
φn +

k1
2
, tn +

Δt

2

)
Δt (8)

k3 = v

(
φn +

k2
2
, tn +

Δt

2

)
Δt (9)

k4 = v (φn + k3, tn +Δt)Δt (10)

which provides a more stable and reliable alternative than other numerical meth-
ods [6].

2.2 Directly Manipulated Free-Form Deformation Optimization
of the B-Spline Velocity Field

In [16] it was observed that optimization of FFD registration with gradient de-
scent is intrinsically susceptible to problematic energy topographies. However,
a well-understood preconditioned gradient was proposed based on the work de-
scribed in [14] which we denote as directly manipulated free-form deformation
(DMFFD) image registration. This alternative demonstrates improved perfor-
mance over the steepest descent equivalent [16].

Similarly, for the time-varying velocity field case we propose the following
preconditioned gradient, δvi1,...,id,it , given the similarity metric, Π ,2

2 Current options include neighborhood cross correlation (CC), mutual information
(MI), and sum of squared differences (SSD).
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δvi1,...,id,it =

⎛⎝NΩ×Nt∑
c=1

(
∂Π

∂x

)
c

Bit(t
c)

d∏
j=1

Bij (x
c
j)

·
B2

it
(tc)
∏d

j=1 B
2
ij
(xc

j)∑r+1
k1=1 . . .

∑r+1
kd=1

∑r+1
kt=1 B

2
kt
(tc)
∏d

j=1 B
2
kj
(xc

j)

)

·

⎛⎝NΩ×Nt∑
c=1

B2
it(t

c)

d∏
j=1

B2
ij (x

c
j)

⎞⎠−1

(11)

which is a slight modification of Eqn. (21) in [16] which takes into account the
temporal locations of the dense gradient field sampled in t ∈ [0, 1]. Nt and NΩ

are the number of time point samples and the number of voxels in the reference
image domain, respectively. r is the spline order in all dimensions3 and c indexes
the spatio-temporal dense metric gradient sample.

Additionally, in [14] it was shown that one could associate each metric gradient
sample,

(
∂Π
∂x

)
c
with a confidence weighting. Thus, in order to enforce stationary

boundaries, we assign image boundary metric gradients a value of zero with a
corresponding large confidence value.

2.3 Implementation

As mentioned previously, the registration algorithm has been implemented and
introduced into the Insight Toolkit and consists of the following major classes:

– itk::TimeVaryingVelocityFieldIntegrationImageFilter— Implemen-
tation of the Runge-Kutta integration. Given a sampled velocity field derived
from the control point lattice as input and the lower and upper integration
limits, integration is performed in a multi-threaded fashion (since each point
in the domain can be integrated separately).

– itk::TimeVaryingBSplineVelocityFieldTransform: Handles the mapping
of geometric primitives using the transform described in this work. It is de-
fined by the velocity field control point lattice which is sampled prior to
being integrated to yield the resulting displacement field.

– itk::TimeVaryingBSplineVelocityFieldImageRegistrationMethod:Co-
ordinates the optimization using gradient descent given an user-specified
number of resolution levels, shrink factors, and smoothing choices.

– itk::TimeVaryingBSplineVelocityFieldTransformParametersAdaptor:
Handles the decomposition of the B-spline mesh resolution during the multi-
resolution optimization given a user-specified scheduling.

– itk::BSplineScatteredDataPointSetToImageFilter: Calculates the sim-
ilarity metric gradient (cf. Eqn. 11) which takes as input the dense similarity
metric gradient and an optional weighting for each gradient sample. As de-
scribed earlier, this permits enforcement of stationary physical boundaries.

3 In terms of implementation spline orders can be specified separately for each dimen-
sion but, for simplicity, we only specify a single spline order.
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Access to the new ITK registration framework (including the B-spline velocity
field transform) is facilitated via the command line module antsRegistration

available both in ANTs4 and accompanied by a technical report offered through
the Insight Journal [12].5

3 LPBA40 Evaluation

As a preliminary evaluation for our algorithm we used a portion of the approach
of Klein et al. [4] in which various open brain data sets were used to evaluate
different segmentation algorithms. Specifically, we used the first 20 subjects of
the LPBA40 data set [9]6 publicly available from the Laboratory of Neuro Imag-
ing at the University of California, Los Angeles. Preprocessing included brain
extraction using the provided masks and N4 bias correction [15].

A portion of the batch script used to produce the registrations is found in List-
ing 1.1. Each image was histogram- matched prior to application of an initial
affine transform using the Demons metric. The resulting transform was composed
with the proposed work using a neighborhood cross correlation similarity metric
[1] of radius = 4. A multi-resolution strategy was employed where the initial
B-spline velocity field mesh size was 24× 24× 12× 1 which was doubled at each
level. Other registration parameters can be gleaned from the Listing 1.1. Batch

# Register the n4 corrected moving LPBA subject to the
# n4 corrected fixed LPBA subject.

antsRegistration --dimensionality 3 \
--output ${prefix} \
--use-histogram -matching 1 \
--transform Affine [0.5] \ # affine stage
--metric Demons [${fixed_n4 },${moving_n4},1,0,Regular ,0.01] \
--iterations 100x100x100 \
--smoothing -sigmas 4.0x3.0x2.0 \
--shrink -factors 4x3x2 \
--transform tvdmffd [0.75,24x24x12x1 ,4] \ # tv dmffd stage
--metric CC[${fixed_n4 },${moving_n4},1,4] \
--iterations 40 x50x2 \
--smoothing -sigmas 1.0x0.5x0.0 \
--shrink -factors 3x2x1

# Apply the resulting transforms (affine + tvdmffd) to the
# moving labels.

antsApplyTransforms --dimensionality 3 \
--input ${moving_labels} \
--reference -image ${fixed_n4 } \
--output ${moving_warped_labels} \
--n NearestNeighbor \
--transform ${prefix }1Warp.nii.gz \
--transform ${prefix }0Affine.mat \
--default -value 0

Listing 1.1. Representative script used for the LPBA40 evaluation

4 http://www.picsl.upenn.edu/ANTs
5 http://hdl.handle.net/10380/3334
6 http://www.loni.ucla.edu/Atlases/LPBA40

http://www.picsl.upenn.edu/ANTs
http://hdl.handle.net/10380/3334
http://www.loni.ucla.edu/Atlases/LPBA40


36 N.J. Tustison and B.B. Avants

processing was performed on the linux cluster at the University of Virginia with
allocation of 4 nodes for each job multi-threading purposes. Each registration
took approximately 3 hours.

Registration assessment used the average target overlap [13] for each of the
56 LPBA40 labeled regions. The numerical values of this assessment are given
in Table 1. These values were projected onto LBPA40 Subject 1 for display in
Fig. 1 which can be compared to a similar display given in [4] with the caveat
that the colormap is slightly different.

Table 1. Average target overlap values for cross-registration of the first 20 subjects of
the LPBA40 data set. A visual depiction of these values is given in Figure 1.

Region Overlap

L superior frontal gyrus 0.802
R superior frontal gyrus 0.810
L middle frontal gyrus 0.790
R middle frontal gyrus 0.778
L inferior frontal gyrus 0.753
R inferior frontal gyrus 0.728
L precentral gyrus 0.687
R precentral gyrus 0.674
L middle orbitofrontal gyrus 0.687
R middle orbitofrontal gyrus 0.671
L lateral orbitofrontal gyrus 0.669
R lateral orbitofrontal gyrus 0.607
L gyrus rectus 0.654
R gyrus rectus 0.652
L postcentral gyrus 0.604
R postcentral gyrus 0.620
L superior parietal gyrus 0.709
R superior parietal gyrus 0.701
L supramarginal gyrus 0.619
R supramarginal gyrus 0.623
L angular gyrus 0.594
R angular gyrus 0.620
L precuneus 0.668
R precuneus 0.659
L superior occipital gyrus 0.548
R superior occipital gyrus 0.561
L middle occipital gyrus 0.671
R middle occipital gyrus 0.696

Region Overlap

L inferior occipital gyrus 0.621
R inferior occipital gyrus 0.637
L cuneus 0.622
R cuneus 0.624
L superior temporal gyrus 0.750
R superior temporal gyrus 0.737
L middle temporal gyrus 0.660
R middle temporal gyrus 0.644
L inferior temporal gyrus 0.662
R inferior temporal gyrus 0.674
L parahippocampal gyrus 0.711
R parahippocampal gyrus 0.707
L lingual gyrus 0.694
R lingual gyrus 0.681
L fusiform gyrus 0.703
R fusiform gyrus 0.719
L insular cortex 0.812
R insular cortex 0.768
L cingulate gyrus 0.691
R cingulate gyrus 0.676
L caudate 0.704
R caudate 0.717
L putamen 0.773
R putamen 0.761
L hippocampus 0.753
R hippocampus 0.742
cerebellum 0.935
brainstem 0.899
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Fig. 1. Average regional total overlap measures mapped onto Subject 1 of the LPBA40
data set
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4 Discussion and Conclusions

This work constitutes an advantageous combination of the continuous aspects
of B-splines with the diffeomorphic registration framework via vector field flows.
We incorporate DMFFD optimization of the B-spline velocity field which facil-
itates convergence and permits enforcement of stationary boundary conditions.
While not discussed, further advantages include incorporation of temporal pe-
riodicity in dealing with the possibility of multiple images describing periodic
motion (e.g. cardiac or pulmonary motion). A future publication will explore
these possibilities in greater detail.
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2. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation
metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vision 61,
139–157 (2005), http://dl.acm.org/citation.cfm?id=1026574.1026580

3. De Craene, M., Piella, G., Camara, O., Duchateau, N., Silva, E., Doltra, A.,
D’hooge, J., Brugada, J., Sitges, M., Frangi, A.F.: Temporal diffeomorphic free-
form deformation: Application to motion and strain estimation from 3d echocar-
diography. Med. Image Anal. (November 2011)

4. Klein, A., Andersson, J., Ardekani, B.A., Ashburner, J., Avants, B., Chiang, M.C.,
Christensen, G.E., Collins, D.L., Gee, J., Hellier, P., Song, J.H., Jenkinson, M.,
Lepage, C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, R.P., Mann,
J.J., Parsey, R.V.: Evaluation of 14 nonlinear deformation algorithms applied to
human brain MRI registration. Neuroimage 46(3), 786–802 (2009)

5. Modat, M., Ridgway, G.R., Daga, P., Cardoso, M.J., Hawkes, D.J.: Log-Euclidean
free-form deformation. In: Progress in Biomedical Optics and Imaging - Proceed-
ings of SPIE, vol. 7962 (2011)

6. Press, W.H.: Numerical recipes. Cambridge University Press, code cd-rom v 2.06
edn. (1996), http://www.loc.gov/catdir/description/cam0210/99382414.html

7. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Non-
rigid registration using free-form deformations: application to breast MR images.
IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

8. Rueckert, D., Aljabar, P., Heckemann, R.A., Hajnal, J.V., Hammers, A.: Diffeo-
morphic registration using B-splines. Med. Image Comput Comput. Assist. Interv.
9(pt. 2), 702–709 (2006)

9. Shattuck, D.W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr,
K.L., Poldrack, R.A., Bilder, R.M., Toga, A.W.: Construction of a 3D probabilistic
atlas of human cortical structures. Neuroimage 39(3), 1064–1080 (2008)

10. Szeliski, R., Coughlan, J.: Spline-based image registration. International Journal
of Computer Vision 22, 199–218 (1997),
http://dx.doi.org/10.1023/A:1007996332012 , doi:10.1023/A:1007996332012
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Abstract. The use of polynomial expansion in image registration has
previously been shown to be beneficial due to fast convergence and high
accuracy. However, earlier work has only been for mono-modal image
registration. In this work, it is shown how polynomial expansion and
mutual information can be linked to achieve multi-modal image registra-
tion. The proposed method is evaluated using MRI data and shown to
have a satisfactory accuracy while not increasing the computation time
significantly.

1 Introduction

The use of image registration within the medical image domain is vast and
includes various tasks, such as; surgical planning, radiotherapy planning, image-
guided surgery, disease progression monitoring and image fusion. Especially
image fusion is becoming more and more important in several clinical work-
flows, since patients tend to have multiple examinations from different imaging
modalities that need to be registered before image fusion is possible. Intensity-
based similarity metrics, such as; sum-of-squared-difference or normalized cross-
correlation, are often inadequate for handling multi-modal image registration.
A frequently applied measure that can handle multi-modal registration is mu-
tual information. Since the introduction of mutual information in image reg-
istration by Collignon et al. [1] and by Viola and Wells [10], it has become a
well-established similarity metric for multi-modal image registration [8].

Polynomial expansion was introduced by Farnebäck [3] as a method to locally
approximate a signal with a polynomial. It was later shown by Farnebäck and
Westin [4] how polynomial expansion could be used to perform both linear (e.g.
translation and affine) and non-rigid image registration. The idea of image reg-
istration using polynomial expansion was further developed by Wang et al. [11].
Both Farnebäck and Westin [4] and Wang et al. [11] showed that image registra-
tion using polynomial expansions has some valuable qualities. Firstly, since it is

B.M. Dawant et al. (Eds.): WBIR 2012, LNCS 7359, pp. 40–49, 2012.
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based on an analytical solution, the convergence rate is fast, typically only need-
ing a few iterations per scale. Secondly, also the accuracy of the registration has
been demonstrated to be on a similar or even better level than some of the algo-
rithms included in ITK. However, thus far, image registration using polynomial
expansion has only been applicable for mono-modal image registration.

The contribution of this paper, is to present how mutual information can
be integrated into polynomial expansion in order to achieve multi-modal image
registration, thus, making image registration based on polynomial expansion
feasible for not only mono-modal registration but also for multi-modal image
registration.

2 Background

2.1 Polynomial Expansion

The basic idea of polynomial expansion is to locally approximate each signal
value with a polynomial. In case of a linear polynomial, this approximation can
be expressed as f(x) ∼ bTx + c, where the coefficients are determined by a
weighted least squares fit to the local signal. The weighting depends on two
factors, certainty and applicability. These terms are the same as in normalized
convolution [3,6], which forms the basis for polynomial expansion.

2.2 Image Registration Using Polynomial Expansion

Global Translation. Let both the fixed and the moving images be locally
approximated with a linear polynomial expansion and assume that the moving
image is a globally translated version of the fixed image, thus,

If(x) = bT
f x+ cf , (1)

Im(x) = bT
mx+ cm = If(x− d) = bT

f (x− d) + cf , (2)

which gives cm = cf − bT
f d and hence, the translation d can be is estimated as

d = (bfb
T
f )

−1bf (cf − cm). (3)

In practice, a point-wise polynomial expansion is estimated, i.e. bf (x), cf (x),
bm(x), and cm(x). Since it cannot be expected that bf (x) = bm(x) holds, they
are replaced with the average

b(x) =
bf (x) + bm(x)

2
. (4)

Also, set
Δc(x) = cf (x)− cm(x) (5)

and thus, the primary constraint is given by:

b(x)Td = Δc(x) (6)
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To solve (6), compute d by minimizing the squared error in the constraint over
the whole image,

ε2 =
∑
x

‖b(x)d−Δc(x)‖2. (7)

Affine Registration. If a space-variant displacement is assumed, then the
previous solution can be extended to handle affine registration. Let d(x) =
S(x)p, where

S(x) =

(
x y 0 0 1 0

0 0 x y 0 1

)
, (8)

p =
(
a1 a2 a3 a4 a5 a6

)T
. (9)

To estimate the parameters of the affine displacement field, replace d with
d(x) = S(x)p in (7),

ε2 =
∑
x

‖b(x)TS(x)p−Δc(x)‖2 (10)

and the parameters p are given by the least squares solution of (10).

Non-rigid Registration. A non-rigid registration algorithm can be achieved
if the assumption about a global translation is relaxed and we instead sum over
a neighborhood around each pixel in (7), thereby obtaining an estimate for each
pixel. In this case, a local translation is assumed but it could easily be changed
to a local affine transformation as is done by Wang et al. [11]. More precisely
(7) is changed to

ε2(x) =
∑
y

w(y)
(
‖b(x− y)Td(x)−Δc(x− y)‖2

)
, (11)

where w weights the points in the neighborhood around each pixel. This weight
can be any low-pass function, but here it is assumed to be Gaussian. This equa-
tion can be interpreted as a convolution of the point-wise contributions to the
squared error in (7) with the low-pass filter w. The solution is given as

G(x) = b(x)b(x)T , (12)

h(x) = b(x)Δc(x), (13)

Gavg(x) = (G ∗ w)(x), (14)

havg(x) = (h ∗ w)(x), (15)

d(x) = Gavg(x)
−1havg(x). (16)

Note that in this work only a linear polynomial expansion have been used, but as
shown in [4,11] a quadratic polynomial expansion along with similar derivations
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can also be used for image registration. In fact, it is possible to combine both
in order to obtain a more robust solution. Further, the described method for
non-rigid registration can be extended to handle diffeomorphic deformations by
using diffeomorphic field accumulation as described by Forsberg et al. [5].

2.3 Mutual Information

Mutual information is typically based on the Shannon Entropy and defined as

H =
∑
i

pi log
1

pi
= −

∑
i

pi log pi, (17)

where pi is the probability that event ei occurs. Based on the Shannon entropy
we can define the mutual information of the random variables A and B as

MI(A,B) = H(A) +H(B)−H(A,B), (18)

where H(A,B) is the joint entropy of A and B. The Shannon entropy for the
joint distribution is given by

−
∑
i,j

pi,j log pi,j . (19)

3 Polynomial Expansion and Mutual Information

3.1 Algorithm Overview

The basic idea of combining polynomial expansion and mutual information lies
in replacingΔc(x) in (5). The termΔc(x) can be interpreted as how much If (x)
should change in order to match Im (x) based on intensity-difference. Instead,
estimate Δc(x) as how much If (x) should change in order to match Im (x)
but based on a pixel-wise minimization of the conditional entropy, i.e. a pixel-
wise maximization of the mutual information. This is estimated according to the
following scheme:

– Estimate the joint distribution p (If , Im) given If and Im.
– For each x:

• Retrieve the corresponding pixel values if = If (x) and im = Im (x+ d).
• Estimate the conditional distribution p (If |Im = im).
• Estimate how the conditional entropy H (If |Im = im) is affected by if .
• Find i� for which the conditional entropy has a local minimum and
estimate Δc(x) as if − i�.

Knowing that mutual information can also be defined as

MI(A,B) = H(A)−H(A|B), (20)

ensures that the last step is reasonable for finding a Δc(x) that matches If
and Im based on mutual information, since minimizing H(If |Im) will maximize
MI(If , Im) in a point-wise manner.
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3.2 Channel Coding and Probability Distribution Estimation

A well-known issue with mutual information is how to estimate the needed prob-
ability distributions, since the straightforward solution of using a standard his-
togram is insufficient. A common approach is to use some sort of soft histograms
where the intensity of each pixel is distributed fractionally over multiple bins.
This will give a more stable and often close to continuous result. In this work,
channel coding and B-splines have been used to achieve this, which in practice
is similar to kernel density estimation introduced by Rosenblatt and Parzen to
estimate probability density functions [7,9].

The basic concept of channel coding consists of representing a value x by pass-
ing it through a set of localized basis functions {B (x− k)}K1 . The output signal
from each basis function is called a channel, thus, the channel representation of
x is given by a vector of a set of channel values

ϕ(x) = [B (x− 1) B (x− 2) . . . B (x−K)]T . (21)

A suitable basis function is the quadratic B-spline function, defined as the unit
rectangle convolved with itself two times. A B-spline of degree two, B2(x), is
chosen because it is continuously differentiable and has compact support.

The probability distribution of an image, usingK channels, is, thus, estimated
as:

1. Map each intensity value I(x) to [1,K − 1], Ĩ(x).
2. Compute the channel representation of each mapped value ϕ(Ĩ (x)).
3. Compute the bins hk of the soft histogram as the element-wise sum of the

channel representations.
4. Estimate a probability distribution pk by normalizing the soft histogram.

The fractional bins of the joint histogram can then be estimated as the sum
of the element-wise products of the channel representations over the respective
images

hk,l =
∑
x

ϕk

(
Ĩf (x)

)
ϕl

(
Ĩm (x+ d)

)
, (22)

which is then normalized to obtain the joint probability distribution, pk,l.

3.3 Conditional Entropy

To estimate Δc(x) for the corresponding pixel values if = If (x) and im =
Im (x+ d(x)), we start by estimating the conditional probability distribution
pk (If |Im = im) as

pk (If |Im = im) =
hk (If |Im = im)∑K
k=1 hk (If |Im = im)

(23)

where

hk (If |Im = im) =

L∑
l=1

ϕl

(̃
im
)
pk,l (If , Im) for k = 1 . . .K, (24)
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and where ĩm is the mapped im value. Here ϕl

(̃
im
)
pk,l (If , Im) acts as a sub-

channel interpolation term.
Given the conditional probability distribution pk (If |Im = im), the conditional

entropy is estimated as

H (If |Im = im) = −
∑
k

pk (If |Im = im) log pk (If |Im = im). (25)

However, in our case we are interested in understanding how if affects the con-
ditional entropy. This can be investigated by an infinite small addition of the
intensity value if to create a new distribution

pk (if ) =
pk (If |Im = im) + ε× ϕk

(̃
if
)

1 + ε
, (26)

where ε is small. Thus, the modified entropy is given by

H (if ) = −
∑
k

pk (if ) log pk (if) =
1

1 + ε

(
H (If |Im = im)−

ε
∑
k

ϕk

(̃
if
) (

1 + log pk (If |Im = im)
))

+O
(
ε2
)
. (27)

Differentiating (27) with respect to if and omitting O
(
ε2
)
gives

∂H (if )

∂if
=

ε

1 + ε

(∑
k

ϕk

(̃
if
) (

1 + log pk (If |Im = im)
))

. (28)

Using the expressions in (27) and in (28), it is straightforward to find a i�, which
minimizes H (i�). This in turn, can be viewed as a pixel-wise minimization of
the conditional entropy. The found i� is used to estimate Δc(x) as

Δc(x) = if − i�. (29)

The term Δc(x) can, as previously explained, be interpreted as how much if
should change in order to match im in a mutual information sense, instead of
in a intensity-difference sense. The estimated Δc(x) can now be used for image
registration as previously described in Sect. 2.2, but with the difference that
b(x) = bf (x) instead of as defined in (4).

4 Results

The proposed method was evaluated using both affine and non-rigid image reg-
istration as described in Sect. 2.2 and 2.2. For the non-rigid registration, diffeo-
morphic field accumulation was used for achieving diffeomorphic deformations.
For some of the performed experiments, the proposed method was compared
with its mono-modal counterpart on mono-modal data. The image data used in
the experiments were obtained from BrainWeb [2].
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In the first experiment, the proposed multi-modal method was compared with
the previously presented mono-modal method using a linear polynomial expan-
sion [4]. A single T1-weighted brain image was used as moving image. From the
moving image, 20 fixed images were created using known affine transforms. The
affine transforms were obtained according the following schema: the scaling fac-
tors within [0.80, 1.30], the rotation factor within [-π/4, π/4], and the translation
factors within [-15, 15]. The moving image was then registered to each of the 20
fixed images using affine registration. The obtained affine transforms where then
compared with the known transforms, yielding the results in Table 1, comparing
the average error for each parameter type. The experiment was run twice, one
time where noise was added (Gaussian noise with σ = 200) and one time with-
out any added noise. Timing the experiment showed that the computation time
increased with a mere 40% for adding the computational steps for multi-modal
image registration, i.e. from approximately 1.0 seconds to 1.4 seconds.

Table 1. Results (average error and its standard deviation) for comparing accuracy
per parameter type (scale, rotation and translation) of affine mono-modal registration
with the proposed multi-modal registration on mono-modal data

Transformation factor Scale Rotation Translation

Mono-modal (noise added) 1.0e-5 ± 1.1e-3 -5.8e-4 ± 2.4e-3 2.0e-4 ± 3.2e-2

Mono-modal -4.1e-6 ± 4.9e-5 1.8e-5 ± 1.4e-4 6.9e-4 ± 3.2e-3

Multi-modal (noise added) 7.4e-4 ± 1.7e-3 -1.0e-3 ± 4.1e-3 1.6e-4 ± 5.3e-2

Multi-modal -2.9e-5 ± 1.3e-4 -2.1e-6 ± 5.7e-5 6.3e-4 ± 3.3e-3

In the second experiment, the proposed multi-modal method was evaluated
in the same manner as in the first experiment but on multi-modal data, i.e. on a
T1-weighted image and a T2-weighted image, where the T2-weighted image was
transformed according to a set of known affine transforms (in this experiment the
rotation factor was limited to [-π/6, π/6]), and without running the mono-modal
registration algorithm. The experiment was also executed twice, one time where
noise was added and one time without any added noise (Gaussian noise with
σ = 200). The results for this experiment are given in Table 2. Example images
from the second experiment are depicted in Fig. 1. In both the experiments
for affine registration, the number of scales and iterations per scale were kept
constant, five scales and ten iterations per scale.

To evaluate the accuracy for non-rigid registration, a similar setup was used as
for affine registration. A single image was deformed using 20 known displacement
fields (randomly created and with an average displacement of 5 pixels and max-
imum displacement of 15 pixels). The original image was then registered to the
deformed images and the obtained displacements fields were compared with the
known displacement fields using the target registration error (TRE). As before,
the experiment was first run on mono-modal data to compare the accuracy of
multi-modal registration with mono-modal registration (with and without added
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Table 2. Results (average error and its standard deviation) for comparing accuracy
per parameter type (scale, rotation and translation) of affine multi-modal registration
on multi-modal 2D data

Transformation factor Scale Rotation Translation

With added noise -4.1e-3 ± 6.8e-3 -5.5e-4 ± 4.3e-3 1.3e-2 ± 4.9e-2

Without added noise -9.82e-4 ± 2.0e-4 -2.8e-4 ± 4.9e-4 -8.7e-3 ± 9.0e-3

Fig. 1. An example of affine multi-modal registration, showing from left the moving
image (T2-weighted), the fixed image (T1-weighted), the absolute difference between
fixed and moving, and fixed and deformed for T2-weighted images

noise) and then it was run on multi-modal data (also with and without added
noise). Also here Gaussian noise with σ = 200 was used. The results for this
experiment are given in Table 3 and some example images are shown in Fig. 2.
Also in this experiment, the number of scales and iterations per scale were kept
constant, four scales and ten iterations per scale. Timing the experiment further
showed that for non-rigid registration the computation time increased with only
30% for adding the computational steps for multi-modal image registration, i.e.
from approximately 3.0 seconds to 3.8 seconds per registration.

Table 3. Average target registration error (TRE) of 20 non-rigid 2D registrations,
comparing accuracy of multi-modal registration on mono-modal and multi-modal data
with mono-modal registration on mono-modal data, with and without added noise.
TRE is given in pixels.

Registration Mono Multi Multi

Data Mono Mono Multi

With added noise 0.59 0.68 1.16

Without added noise 0.35 0.42 0.91
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Fig. 2. An example of non-rigid multi-modal registration on multi-modal data, showing
from left the moving image (T1-weighted), the fixed image (T2-weighted), the absolute
difference image between fixed and moving, and fixed and deformed for T1-weighted
images

5 Discussion

In this work, we have presented how polynomial expansion can be utilized for
multi-modal image registration (both linear and non-rigid). This is achieved by
incorporating a pixel-wise minimization of the conditional entropy, in order to
estimate a pixel-wise intensity change that maximizes the mutual information.

The results in Tables 1 and 2 demonstrate the accuracy of the proposed
method for multi-modal image registration but also when compared to its mono-
modal counterpart in mono-modal image registration. In the case of affine reg-
istration of mono-modal image data, both algorithms achieves a descent reg-
istration accuracy. The accuracy of the registration decreases with a factor of
approximately ten when adding Gaussian noise to the images but is still suffi-
cient. For affine registration of multi-modal data, the accuracy is on a similar
level as for registration of mono-modal data, hence sufficient for achieving a
good registration. One thing that differed between the multi-modal registration
of mono-modal data and multi-modal data was that the capture range for rota-
tions decreased from [-π/4, π/4] to [-π/6, π/6] when running the registration on
multi-modal data.

In the case of non-rigid registration, see Table 3, the accuracy of mono-modal
registration and multi-modal registration of mono-modal data is also on similar
levels and achieving sub-pixel accuracy. For non-rigid registration of multi-modal
data the accuracy decreased by a factor of two and reached an average TRE of
approximately one pixel.

A difference that could be noted between the mono-modal registration and
the multi-modal registration was that the multi-modal was more iterative in its
nature, i.e. the mono-modal algorithm converged within a few iterations, whereas
the multi-modal often required at least twice as many iterations. Hence, the large
number of iterations per scale used in the experiments.

Future work includes a more thorough investigation of how the number of
channels affect the end result of the registration. In our experiments we only
empirically decided how to set the number of channels, typically eight channels
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for coarse scales and step-wise increasing up to 24 or 32 for the finest scales.
For instance, a better use of the number of channels might decrease the TRE
further for non-rigid registration and making sub-pixel accuracy also possible for
multi-modal registration. Further evaluation and implementation in 3D will also
be of interest to better compare with other existing algorithms for multi-modal
image registration and on various types of multi-modal data.
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Abstract. Understanding and quantifying the uncertainty involved when regis-
tering images is an important problem in medical imaging, where clinical de-
cisions are made based on the registered solution. This is especially important
in non-rigid registration where the higher degrees of freedom may provide un-
warranted confidence in the results, through over-fitting. The Bayesian approach,
which defines uncertainty as the posterior distribution on deformations, requires
a generative model of the image formation process where the fixed image is mod-
eled as a deformed version of the moving image plus a noise term. As per this
model, the likelihood term is equivalent to the sum-of-squared differences image
matching metric and is therefore valid only for same-mode image registration.
In this paper, we propose a general formalism to quantify Bayesian uncertainty
in the registration of multi-modal images through an extended probability model
that introduces and then marginalizes out a stochastic transfer function between
moving and fixed image intensities.

1 Introduction

1.1 Motivation

Registration is a fundamental tool for many bio-medical image analysis tasks such as
longitudinal and population studies, and image guided surgery. However, assuming the
physical validity of the deformation mechanism used in the registration procedure, imag-
ing noise and artifacts, such as distortion or bias-field, along with the highly variable
presentation of pathology affect the confidence in the optimal solution. This problem is
compounded by the high degrees of freedom afforded by non-rigid registration models
which introduces the possibility of over-fitting, for example, by through complex warps
of regions which have insufficient contrast to guide the registration. This can happen
primarily through the use of regularization, which is needed to condition the ill-posed
model inversion, but which introduces long range dependencies in the solution. And fi-
nally, there is the uncertainty in the specification of model hyper-parameters, such as the
mechanical properties of the underlying tissue or the statistics of imaging noise, all of
which degrade the validity, sufficiency and accuracy of the deformation obtained through
optimization. Therefore, quantifying and conveying the uncertainty in registration is ex-
tremely important, especially when clinical decisions are based on registration results.

In the Bayesian approach to non-rigid registration, the registration parameters are
random variables and optimization may be used to obtain their maximum a posteriori

B.M. Dawant et al. (Eds.): WBIR 2012, LNCS 7359, pp. 50–59, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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(MAP) estimates. More importantly, however, the Bayesian approach enables quantifi-
cation of uncertainty as the posterior distribution over deformations, via measures such as
variance, inter-quartile ranges, credibility intervals and entropy [2,9,5]. Here, the likeli-
hood function, corresponding to the data fidelity term, measures the alignment of the two
images under a transformation, while the prior corresponds to the regularization term pe-
nalizing implausible deformations. While different deformation and regularization com-
binations – such as freeform deformations with b-splines [9] or finite element (FE) meshes
with elastic deformation penalty [2,5] – have been used, the likelihood terms have allowed
for only same-modality image registration while assuming additive normal noise.

Specifically, denote the moving image as M : ΩM → IM and F : ΩF → IF, where
ΩM ⊆ R

3 and ΩF ⊆ R
3 are the spatial domain of the fixed and moving images respec-

tively, and IM = IF ⊆ R are their equal intensity ranges. The images F and M are treated
as random fields and the fixed image is assumed to be generated by applying a trans-
formation u to the moving image domain as per: F = M ◦ u + ε which also introduces
normal noise ε ∼ N (0, τε). Here, the transform u too is treated as a random variable
with a probability measure, given by the prior distribution. Additionally, the likelihood
is assumed to spatially iid.

Therefore, the log-posterior distribution of the transform is:

ln p (u | M,F) =−
∫
ΩF

|Fx −Mu[x]|2
2τε

dx− Ereg(u)

2τreg
+ const, (1)

where Ereg(u) is the regularization energy of the transformation. Here, the first term
is proportional to the log-likelihood term ln p(F,M|u) while the second is proportional
to the log-prior on the transformations ln p(u). The temperatures τε and τreg are model
hyper-parameters, where τε is related to the variance of the image noise, while τreg
controls the variance of the prior on transformations.

This model provides a principled basis for the interpretation of the posterior density
as uncertainty in parameter estimates, for setting priors on the model hyper-parameters
and as shown in [4], for eliminating the uncertainty due to HPs by marginalizing them
out.

1.2 Contribution

One of the main drawbacks, however, of this framework is that it restricts the image
similarity term to sum-of-squared differences (SSD) metric and is applicable to only
same-mode images. Here, we present an extension for multi-modal image registration
through a generalization of the SSD metric that accounts for arbitrary intensity trans-
formations. Specifically, we introduce a latent random process ηu[x](m) ∈ IF defined on
moving image intensities m ∈ IM which serves as a link function between the moving
image intensity range to that of the fixed image. The posterior density of the link process
is directly estimated from the data, and is marginalized out by means of the free-energy
equivalence. In this paper, non-parametric kernel density estimation is used, although
this framework supports any alternative parametric or non-parametric density estima-
tion method. The new registration model is evaluated on a synthetic T1-to-T2 MR image
registration problem with ground-truth. A clinical application (cryoablation) to register
pre-operative abdominal MR with an intra-procedural CT image is also demonstrated.
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1.3 Related Work

In addition to fixed (known) transfer functions, parametric and non-parametric
methods to estimate the intensity transformation from the data are commonly used in
multi-modal registration [7]. For example, Guimond et al. [3] learn a polynomial map-
ping between the intensities. Roche et al. [6] use the conditional expectation
E {m ∈ IM|f ∈ IF} as the intensity transformation as which leads to the correlation
ratio as the image-matching metric. These metrics use point-estimates of the transfer
function, in contrast to the full posterior as done here, thereby limiting their ability to
deal with non-stationary and noisy intensity mappings.

η M

u

ε

F

τrτr

Fig. 1. Proposed probability
model for multi-modal im-
age registration. Here, F and
M are the fixed and mov-
ing images respectively, ε is
white normal noise with vari-
ance τε, u are the trans-
formation parameters with
prior distribution variance
controlled by τreg, and η is
the link process that maps
moving image intensities to
fixed image intensities.

While image matching based on the joint-histogram
of intensities, such as mutual information, generalize to
a very wide class of intensity transformations, they do
not have an associated probabilistic model and therefore
cannot be used to compute a posterior. Zöllei et al. [10]
present an alternative probabilistic model for image reg-
istration using Dirichlet priors on the latent parameters of
joint multinomial models on discrete intensities. Marginal-
ization led to objective functions that approximate entropy
or likelihood formulations and only MAP estimates were
sought.

2 Method

2.1 Multi-modal Registration Model

The proposed Bayesian model for the multi-modal regis-
tration problem is as follows:

Fx = ηu[x]

(
Mu[x]

)
+ εx. (2)

In this model, the moving and fixed image M and F and
additive normal noise ε are all spatially iid random pro-
cesses, while the transformation parameters u have a prior distribution specified by the
regularization term. The link function η is a stochastic process defined on ΩF × IM,
with ηu[x] defined on the moving image intensity range IM, such that ηu[x]

(
Mu[x]

) ∈ IF

maps moving image intensity Mu[x] ∈ IM to a fixed image intensity. We assume η to
be iid in the space dimension (ΩF) and ηu[x] to be independent in the moving intensity
dimension (IM ). In the following discussion, define fu[x] � ηu[x](Mu[x]). Also, we will
drop explicit conditioning on u, F and M except when there is ambiguity.

Under the spatial iid assumptions of F andM, and approximating εx by its conditional
expectation E

{
εx | Mu[x]

}
= 0, the strong law of large numbers yields that the marginal

posterior density of the link process

p
(
ηu[x](Mu[x]) | u,F,M

)
= p

(
fu[x] | Mu[x]

) ≈ vol
{
[F = fu[x]] ∩ [M ◦ u = Mu[x]]

}
vol

{
[M ◦ u = Mu[x]]

} (3)
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We can marginalize out the latent process ηu[x] under its posterior using the free-energy
equivalence:

ln p(u | F,M) =

∫
p(η|u,F,M) ln p(u, η | F,M)dη −

∫
p(η|u,F,M) ln p(η|u,F,M)dη

=

∫
p(η|u,F,M) ln p(u, η | F,M)dη +H {η|u,F,M}, (4)

where H
{
ηu[x]|u,F,M

}
is the differential entropy of p(ηu[x]|u,F,M). In the case of the

model given in eqn. (2), the log-posterior of the deformations is:

ln p (u | F,M) =−
∫
ΩF

∫
IF

p
(
ηu[x](Mu[x])

) ∣∣Fx − ηu[x](Mu[x])
∣∣2

2τε
dηu[x](Mu[x])dx

+

∫
ΩF

H
{
ηu[x](Mu[x])

}
dx− Ereg(u)

2τreg
+ const.

Now, under the spatial iid assumptions of the model, the integral

∫
ΩF

H
{
ηu[x](Mu[x])

}
dx =

∫
ΩF

∫
IF

p
(
fu[x] | Mu[x]

)
ln p

(
fu[x] | Mu[x]

)
dfu[x]dx

is equal to vol{ΩM}H{
fu[x] | mx

}
, where

H
{
fu[x] | mx

}
=

∫
IM

p
(
Mu[x]

) ∫
IF

p
(
fu[x] | Mu[x]

)
ln p

(
fu[x] | Mu[x]

)
dfu[x]dMu[x],

is the conditional entropy of the link-process posterior.
Putting it all together, the log-posterior of the deformation model becomes:

ln p (u | F,M) =− 1

2τε

∫
ΩF

∫
IF

p
(
fu[x] | Mu[x]

) ∣∣Fx − fu[x]

∣∣2 dfu[x]dx

+ vol{ΩF}H
{
fu[x] | Mu[x]

}− Ereg(u)

2τreg
+ const. (5)

It can be easily seen that this distribution satisfies an intensity transformation invariance,
i.e. p(u|F,M) = p(u|F, α(M)) where α : IM → R is a monotonic transfer function on
the moving image intensity range such that α′(m) 	= 0, at all m ∈ IM.

2.2 Estimating the Link Process Posterior

The marginal posterior p
(
fu[x] | Mu[x]

)
of the link process ηu[x](Mu[x]) (§ eqn. (3)), are

obtained in non-parametric form using kernel density estimation (KDE) [8]:

p
(
fu[x]| Mu[x]

)
=

∑N
i=1 k1(fu[x] − fi)k2(Mu[x] −mi)∑N

j=1 k2(Mu[x] −mj)
, (6)
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where k1 and k2 are two non-negative symmetric kernel functions that integrate to unity,
with scales h1 and h2 respectively. And, fi � F[xi] and mi � Mu[xi] are fixed and
moving image values sampled at locations xi, i = 1 . . . N .

Therefore,∫
ΩF

∫
IF

p
(
fu[x]| Mu[x],u,F,M

) ∣∣Fx − fu[x]

∣∣2 dfu[x]dx

=

∫
ΩF

∑N
i=1 k2(Mu[x] −mi)

∣∣Fx − fi
∣∣2∑N

j=1 k2(Mu[x] −mj)
dx+ h2

1vol{ΩF},

and

∫
IM

H
{
fu[x]| m

}
p (m | u,F,M), dMu[x] = − 1

N

N∑
i=1

ln

∑N
j=1 k1(fi − fj)k2(mi −mj)∑N

j=1 k2(mi −mj)
.

As a result, the KDE version of log-posterior of the transformation model is:

ln p (u | F,M) =− 1

2τε

∫
ΩF

∑N
i=1 k2(Mu[x] −mi)

∣∣Fx − fi
∣∣2∑N

j=1 k2(Mu[x] −mj)
dx

− vol{ΩF}
N

N∑
i=1

ln

∑N
j=1 k1(fi − fj)k2(mi −mj)∑N

j=1 k2(mi −mj)
− Ereg(u)

2τreg
+ const.

(7)

3 Results

In this section, we show results registering both synthetic and clinical multi-modal im-
ages. A tetrahedral finite-element (FE) model together with a bio-mechanically plau-
sible elastic energy penalty on mesh deformations was used in the experiments. The
posterior distribution on deformations was characterized by the Metropolis-Hastings
(MH) Markov Chain Monte Carlo (MCMC) method described in [5].

3.1 Synthetic Data

From the BrainWeb[1] database, we acquired simulated T1 and T2 weighted MR im-
ages of the brain that are in perfect alignment. The images were resampled to a res-
olution of 2 × 2 × 4 mm and size 90×108×45 voxels, and were Gaussian smoothed
with 1mm variance. Normally distributed white noise of standard deviation of 0.02 was
added to the T1 weighted image which was treated as the fixed image in all the syn-
thetic experiments. Two synthetic moving images were created by applying the same
b-spline deformation field (maximum and average displacement of 10.1mm and 4.3mm
respectively) to (a) the T1 image; and (b) the T2 image, as shown in Fig. 2.
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(a) Fixed T1 (b) Deformed T1 (c) Deformed T2

Fig. 2. The three images used in the synthetic experiments. (a): The T1-weighted MR image. (b):
The deformed T1-weighted image. (c): The deformed T2-weighted image.

For registration, an FE-based deformation model was employed where the moving
image domain containing brain tissue was discretized with 104 tetrahedral elements and
44 FE vertices (giving 3×44 deformation parameters in 3D). The posterior distribution
on deformations was characterized by MH-MCMC sampling with a noise temperature
of τε = 0.04 and prior temperature of τreg = 200. The bandwidths h1 and h2 of the
kernels k1 and k2 were selected using cross-validation. A total of 800×103 samples
were generated for each MCMC chain, and with burn-in of 300×103 samples and a
thinning factor of 10, effectively giving 50×103 samples from the posterior distribution
in each chain.

The posterior mode (MAP), serving as a point estimate, and inter-quartile ranges
(IQR), serving as a measure of uncertainty, were computed from the MCMC samples
using kernel density estimation for each of the 3 × 44 components of the deformation
field. In Fig. 3(a), the error in the T1-T1 registration versus that in the T1-T2 registra-
tion (determined with respect to the ground truth deformations) of the MAP estimate
shown. For the T1-T1 experiment, the maximum and median absolute error was 1.6mm
and 0.37mm respectively, while for the T1-T2 experiment it was 1.6mm and 0.45mm.
Here, we can observe a strong linear relationship between the errors in the estimating
same deformation from two different modalities (r2 = 0.80). The T1-T1 registration
IQRs are plotted against the T1-T2 registration IQRs in Fig. 3(b). The IQRs are highly
correlated across modalities (r2 = 0.89), but the correlation diminishes at higher uncer-
tainties. For the T1-T1 case, the maximum and median IQRs were 0.67mm and 0.34mm
respectively, while for the T1-T2 case they were 0.76mm and 0.37mm. These results
imply that there is a slight but statistically insignificant decrease in registration accu-
racy and precision for multi-modal data (one-sided two-sample t-test, no effect for any
p < 0.26).

For all 3×44 deformation components, the KL-divergence between their posterior
distributions from the T1-T1 and T1-T2 cases is graphed in Fig. 4. It can be seen that the
posterior distributions over most components are very similar but with a few outliers.
Estimating the null distribution of KL-divergences by bootstrapping from the MCMC
chain of the T1-T1 registration case, the difference between the posterior distributions
of the T1-T1 and T1-T2 cases were not significant at any p < 0.31 (false discovery rate
corrected).
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Fig. 3. (a): Error in MAP estimates of the T1-T1 versus that from T1-T2 registration cases (with
respect to ground truth) plotted for each of the 3×44 vertex deformation components. (b): The
IQRs posterior distributions of each displacement component for the T1-T1 case versus the T1-T2
case.
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Fig. 4. (a): Histogram of the KL-divergences between the posterior distributions (per displace-
ment component) of the T1-T1 and T1-T2 registration cases. The median and maximum KL-
divergences were 0.2 and 1.1 respectively. (b) Cumulative distribution function (cdf) of the
posterior distribution corresponding to the displacement component with the maximum KL-
divergence. (c) Cdf of the posterior distribution corresponding to the displacement component
with the median KL-divergence.

3.2 Clinical Data

In ablation therapy of liver tumors, the procedure is often planned on pre-operative MR
images which provide superior soft-tissue contrast while CT is used for intra-operative
guidance. Although registering the pre-operative MR with the intra-operative CT en-
ables real-time guidance of the ablation probe using the enhanced contrast provided by
MR, the uncertainty in the results can provide equally important information for the
decisions of the surgeon. Next, we demonstrate the quantification of this uncertainty
using a data-set obtained during such a procedure (§ Fig. 5). A T1-weighted MR im-
age (size: 512×512×96, spacing: 0.8× 0.8× 2.5 mm) was acquired pre-procedurally,
while a CT image (size: 512×512×41, spacing: 1.0 × 1.0 × 5.0 mm) was acquired
intra-procedurally. The MR image was sub-sampled by a factor of 2 in all dimensions,
while the CT image was subsampled by a factor of 2 in the x- and y-directions. Both
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(a) MRI (b) CT (c) Deformed MRI

(d) IQR (e) Checkerboard Before (f) Checkerboard After

Fig. 5. Registration of pre-operative abdominal MRI in (a) with the CT in (b) acquired prior to
insertion of cryo probe. (c): The registered MRI. (d): Spatial IQR along the z-direction. The
brightest spot in the image has IQR of 3.8mm, while darkest has IQR of 1.0mm. (e): Original
MR image checker-boarded with CT image. (f): Registered MR image checker-boarded with CT
image. Notice that the boundaries liver and spleen are well aligned after registration.

images were smoothed with a Gaussian filter of 2.0mm variance and intensities were
normalized between the [0, 1] interval. The anatomy in the MR image was fitted with an
FE-mesh consisting of 155 vertices and 512 tetrahedra. Starting from a manually deter-
mined rigid alignment of the images, 106 deformation samples were generated through
MH-MCMC, with a burn-in factor of 50% and a thinning factor of 10. The remaining
50× 103 samples were used to compute the posterior statistics.
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Fig. 6. Marginal probability distribution on displacements (in mm) along the z-direction for the
FE-node located in the zone with high uncertainty (IQR)



58 F. Janoos, P. Risholm, and W. Wells (III)

Fig. 5 shows qualitative results from the alignment as well as corresponding uncer-
tainty estimates. It can be seen that that there is relatively high uncertainty in the center
of the slice in the abdominal aortal region. The marginal distribution over displace-
ments in the z-direction of one FE-node in this location of high uncertainty is shown
in Fig. 6. It can be observed that it has one distinct mode, but in addition has two two
other, smaller, modes.

4 Conclusion

In this paper, we have presented a principled approach to quantifying the uncertainty
associated with multi-modal image registration, based on a forward model of the im-
age generation process. This approach augments the standard Bayesian framework for
same-mode registration by introducing a stochastic link process that maps moving a
image intensity to the fixed image intensity range, and is associated with a probabil-
ity measure. This can capture a wider range of complex relationships than possible by
using a parametric or specific functional representation of the map, similar to the MI
metric. The framework furthermore marginalizes out the link-process using the free-
energy equivalence. Therefore, in contrast to MI, the fully specified Bayesian model
enables measuring the posterior over transformations, without dependencies on the in-
tensity transfer function.

The formulation presented here and by Roche et al. [6] are examples of kernel re-
gression. The main difference is that they use kernel regression to estimate the expected
value of the fixed image intensity given moving image intensity, while we use kernel
regression to estimate the expected difference between the observed and predicted fixed
image values. In a regression framework, this is equivalent to the difference between us-
ing only the squared bias of the estimator (i.e. of the intensity transformation) as in [6]
versus using the full mean squared error (MSE) as here, in the image similarity func-
tion. Moreover, marginalizing out the link process requires including the entropy of the
conditional distribution in the cost function.

The differentiability of the kernel used in eqn. (7) permits computation of gradients of
p (u | F,M). Therefore, we can perform direct MAP estimation of the registration param-
eters, without MCMC sampling in an expectation maximization framework. In the n-th
iteration of EM, the E-step computes the link-process posterior p

(
fu(n)[x] | Mu(n) [x]

)
,

while the M-step optimizes p (u | F,M) with respect to u.
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Abstract. Nonrigid image registration algorithms commonly employ multireso-
lution strategies, both for the image and the transformation model. Usually a 
hierarchical approach is chosen: the algorithm starts on a level with reduced 
complexity, e.g. a smoothed and downsampled version of the input images, and 
with a limited number of degrees of freedom for the transformation. Gradually 
the level of complexity is increased until the original, non-smoothed images are 
used, and the transformation model has the highest degrees of freedom. In this 
study, we define two alternative approaches in which low- and high-resolution 
levels are considered simultaneously. An extensive experimental comparison 
study is performed, evaluating all possible combinations of multiresolution 
schemes for image data and transformation model. Publicly available CT lung 
data, with annotated landmarks, are used to quantify registration accuracy. It is 
shown that simultaneous multiresolution strategies can lead to more accurate 
registration. 

Keywords: Nonrigid Registration, Multiresolution, Hierarchical, Transforma-
tion, Scale Space. 

1 Introduction 

Nonrigid registration can be regarded as a large scale numerical optimization  
problem, which finds the optimal parameters for a selected transformation model to 
recover the deformation between images [1, 2, 3]. In practical registration tasks, local 
minima often exist in the optimization space. How to avoid these local traps, and 
reach the “correct” minimum, is a major challenge for registration algorithms. To 
tackle this issue, multiresolution strategies have become popular. Lester and Arridge 
[4] provided a comprehensive review on multiresolution strategies. They classified 
the multiresolution strategies into three groups: increasing data complexity, increasing 
warp complexity, and increasing model complexity. In most existing implementations 
of nonrigid registration algorithms, one or more of these multiresolution strategies are 
incorporated. Rueckert et al. [5] adopted both increasing data and warp complexities 
to implement a coarse-to-fine registration with free-form deformations (FFD).  
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For registration of lung data, Yin et al. [6] applied transformation models at two le-
vels to one image resolution level. Gholipour et al. [7] presented several multiresolu-
tion approaches that can be used in brain data. Recently, Risser et al. [8] proposed a 
multiresolution strategy for large deformation diffeomorphic metric mapping. Besides 
the above mentioned works, hierarchical strategies have been widely used in many 
other registration tasks [9,10,11,12,13,14].  

Most current multiresolution approaches adopt a step-by-step approach: the fine-
scale registration will not be executed until all of the coarser registrations have been 
carried out. For example, a common strategy for FFD registration with B-splines is to 
combine the coarsest B-spline grid with the most blurred image at the beginning of 
optimization. After the optimization on this combination is complete, a denser B-
spline grid and higher resolution image are used for further optimization. So, in these 
methods both transformation and data complexities are increased hierarchically. 

Different from these hierarchical methods, several simultaneous multiresolution 
approaches were also presented previously. Stralen and Pluim [15] proposed a simul-
taneous multiresolution registration approach using a directed acyclic graph (DAG) 
and dynamic programming (DP). First, they constructed a DAG based on control 
points at different resolution levels. The DAG cost was defined as the sum of image 
dissimilarity at multiple scales and the difference between control point displacements 
in adjacent resolution levels. Then, they applied DP to find the optimum control point 
displacements. Somayajula et al. [16] also proposed a simultaneous multiresolution 
method for nonrigid registration. They defined corresponding scale-space feature 
vectors from multiresolution stacks of fixed and moving images at each voxel. Then, 
they used mutual information to align these feature vectors. In this way, different 
resolution levels were registered simultaneously, because the elements of each feature 
vector contained information from different resolution levels.  

In this paper, we define three multiresolution concepts, named Hierarchical (H), 
Simultaneous (S) and Hierarchically Simultaneous (HS) respectively. These strategies 
can be implemented both for image data (D) and transformation model (T): 

• Image data 

─ DH = start with most blurred image, then less blurred image, and so on, until 
original image resolution; 

─ DS = use the entire scale stack of different resolutions at once; 
─ DHS = start with blurred image, then use blurred and less-blurred, and so on, 

until the entire scale stack is used. 

• Transformation model 

─ TH = start with coarsest B-spline grid, next level use finer B-spline grid, and so 
on, until the finest control point spacing; 

─ TS = optimize coarse and fine B-spline deformations simultaneously; 
─ THS = start with coarse B-spline, then add finer scale while still optimizing 

coarse scale, and so on, until all scales are being optimized simultaneously. 
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Combining these strategies gives 3 3×  possibilities, which we implemented and  
compared in an experiment on publicly available CT lung data with manually anno-
tated landmarks. In the following sections a detailed explanation of the proposed mul-
tiresolution strategies is given, followed by a description of the evaluation study. 

2 Method 

2.1 Multiresolution Strategies for Image Data 

The N-dimensional moving and fixed images can be denoted by ( )M x  and ( )F y , 

where , N∈x y  represent the image coordinates in M  and F , respectively. Mov-

ing and fixed images on resolution level s  can be generated by convolution of the 
original  images with a Gaussian kernel: 

( ) ( ) ( )
( ) ( ) ( )

,

,

s

s

M s G M

F s G F

σ
σ

= ∗


= ∗

x x

y y
,                              (1) 

where ( )G ⋅  is the Gaussian kernel. sσ  is the variance of the Gaussian filter corres-

ponding to resolution level s  of the image. For a larger s , sσ  has a smaller value. 

Nonrigid image registration is a process which aligns moving image M  to fixed 
image F  using a nonrigid transformation model. Mathematically, registration is 
formulated as an optimization problem, in which the nonrigid transformation μ

T  is 

estimated by minimizing the difference diffC  between moving and fixed images: 

 ( )( )arg min ,diffC F M=  μT
μ

μ ,                          (2) 

where μ  represents the parameters of the transformation T . By making diffC  depen-

dent on the resolution level we can introduce a multiresolution scheme for the image 
data. Below, we define the objective functions that correspond to DH, DS, and DHS: 

DH: ( ) ( )( ), , ,p
diff diffC C F p M p=  μy x T ,                      (3) 

DS: ( ) ( )( )
1

, , ,
S

p
diff diff

s

C C F s M s
=

=  μy x T ,                    (4) 

DHS: ( ) ( )( )
1

, , ,
p

p
diff diff

s

C C F s M s
=

=  μy x T ,                  (5) 

where [ ]1,p S∈  is the current resolution level of the registration, and S  denotes 

the number of resolution levels. Figure 1(a) provides an overview of these three mul-
tiresolution strategies, where 3S = . Note that the objective function for DS is actual-
ly independent of p, since all levels of the image scale stack are taken into account  
simultaneously. 
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2.2 Multiresolution Strategies for the Transformation 

A classic FFD transformation model based on B-splines [5] can be defined as follows: 

( ) ( )( )
i

r
i i

I

gβ
∈

= + −
y

μ
y

T y y c y y ,                        (6) 

where iy  is a control point of the B-spline grid, and I y  represents the set of control 

points within a compactly supported region of the B-spline at y . ic  is the B-spline 

coefficient vector corresponding to control point iy , and the parameter vector μ  is 

formed by the elements of all ic . ( )rβ ⋅  is the selected rth order multidimensional 

B-spline polynomial, and g  is the spacing between grid points. By making the defi-

nition of the transformation model dependent on the resolution level p , we can de-

fine a multiresolution scheme for the transformation complexity. Below, we define 
the transformation models that correspond to TH, TS, and THS, in which we also 
introduce a dependence on s , in order to couple the image scale to the transformation 
complexity: 

TH: ( ) ( ) ( )( ),
p

i

p p r
i i

I

s g pβ
∈

= + −
y

μ
y

T y y c y y ,                  (7) 

TS: ( ) ( ) ( )( )
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THS: ( ) ( ) ( )( )
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where p  is the current resolution level of the registration. ( ),p sμT y  represents the 

transformation at registration level p  for a point ( ), sy  in the scale stack defined by 

(1). [1, ]l S∈  denotes the B-spline grid level. p
ic  and l

ic  are the B-spline coefficient 

vectors at levels p  and l , with corresponding grid spacing ( )g p  and ( )g l ; the 

grid spacing ( )g l  reduces with increasing l. Figure 1(b) provides an overview of 

these three multiresolution strategies for the transformation. With TH, the transforma-
tion is upsampled after each resolution (i.e., p

ic  are determined based on 1p
i

−c  such 

that ( )  ( )1, ,p ps s−=μ μ
T y T y  at the start of level p ) and only the currently finest level 

is being optimized, so μ  at level p  consists of the elements of p
ic . With TS, the 

transformation model is independent of p , and formed by a summation of multiple 

B-spline models with different grid spacings; the parameter vector μ  consists of all 

elements of l
ic , [1, ]l S∀ ∈ . With THS, the model is similar to TS, but the finer B-

spline models are only used in the later resolution levels; at resolution level p , the 

parameter vector μ  consists of all elements of l
ic , [1, ]l p∀ ∈ . 
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1p = 2p = 3p = 1p = 2p = 3p =

 

Fig. 1. Multiresolution strategies of data and transformation: (a) Most blurred, less blurred and 
original images are marked in blue, orange and black, respectively. (b) Coarsest, finer and 
finest B-spline grid are marked in blue, orange and black, respectively. 

2.3 Combinations of Multiresolution Strategies 

Because there are three different multiresolution strategies for both data and transfor-
mation, we can construct 3 3×  combinations for multiresolution registration. Figure 
2 presents all possible combinations in which registration processes have three multi-
resolution levels. In these combinations, the traditional multiresolution strategy is the 
combination of TH and DH. We impose the restriction that transformation level l  
(corresponding to the B-spline model with grid spacing ( )g l ) can only be applied to 

the finer image resolutions [ , ]s l S∈ . According to this principle, the combination of 

TH and DHS becomes equivalent to the traditional multiresolution strategy TH-DH. 
In addition, TS-DH and TS-DHS are equivalent to THS-DH and THS-DHS,  
respectively.  

2.4 Implementation Details 

All experiments were performed with elastix [17], which is an open source package 
for registration. For diffC , we used the common mean squared difference measure. 

Image intensities at non-grid positions were obtained by trilinear interpolation. Third 
order ( 3r = ) B-splines were adopted for the transformation model. The adaptive 
stochastic gradient descent optimizer (ASGD) [18] was selected as optimization me-
thod. In each iteration of ASGD, a small, randomly selected, subset of samples from 
the entire image is used. Downsampling the image is not necessary because the com-
putation time is independent of the size of the image. To facilitate the optimization of 
combined B-spline levels of TS and THS, a diagonal preconditioning matrix B  was 
defined to scale the parameters corresponding to the different transformation levels: 
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1p = 3p =2p = 1p = 3p =2p = 1p = 3p =2p =

 

Fig. 2. Different combinations of multiresolution strategies of data and transformation for mul-
tiresolution registration 

( )1k k k kα+ = + Bdμ μ μ ,                          (10) 

where k  is current iteration number. 1k +μ  and kμ  denote the new and current pa-

rameter vector, respectively. ( )kd μ  is the derivative of the cost function with re-

spect to μ . kα  is a scalar gain factor that determines the step size [18], and B  is a 

diagonal matrix diag( [b1,1 b1,1 b1,1 … bl,l bl,l bl,l ... bS,S bS,S bS,S] ) with ( )
,

S l
l lb ε − −= . 

Based on initial trial-and-error experiments on one of the datasets (c1, described be-
low), we set 4ε = . Here B  works as a preconditioning strategy [19], which can 
enhance the convergence rate. 

3 Experiments and Results 

3.1 Experimental Data and Settings 

To evaluate the performances of different multiresolution combinations, a set of lung 
data from DIR-lab [20] was used. Table 1 provides a description of these data.  

Since manually marked landmarks have been provided in these data, mean of tar-
get registration error (mTRE) [21] can be used to evaluate the registration accuracy: 

( )
1

1
mTRE ,

n
reg gold reg gold

i i
in =

= −p p p p ,                   (11) 

where regp  and goldp  represent the registered and ground truth landmarks. 300n =  

is the number of landmarks in all test cases.  
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Table 1. Description of experimental data 

Case ID Dimensions Voxelsize (mm) Landmarks Initial mTRE(voxel) 

c1 256 x 256 x 94 0.97 x 0.97 x 2.5 300 1.97 

c2 256 x 256 x 112 1.16 x 1.16 x 2.5 300 2.12 

c3 256 x 256 x 104 1.15 x 1.15 x 2.5 300 3.36 

c4 256 x 256 x 99 1.13 x 1.13 x 2.5 300 4.42 

c5 256 x 256 x 106 1.10 x 1.10 x 2.5 300 3.69 

We selected the image data at exhale as moving image, and the image data at in-
hale as fixed image. In all test cases, 4S =  resolution levels were used. The image 
scale stacks were generated using { }1,..., Sσ σ  = { }8, 4, 2,1  . For the transformation, 

the coarsest grid spacing ( )1g  was set to 64mm, isotropically. This value is a rea-

sonable choice because it is almost one fourth of the image size. In the experiments 
the finest grid spacing ( )g S  was set to 8mm, 10mm, 13mm, or 16mm. So the grid 

schedule for four transformation levels can be calculated as 

( ) ( ) ( ) ( )( ){ 2 3
1 , 1 ,g g S g g S  ( ) ( ) ( )( ) ( )}1 3

1 ,g S g g S g S . For example, the grid 

schedule for ( ) 8mmg S =  is { }64, 32,16, 8  . For each iteration of optimization, the 

number of random samples was set to 16000 for all combinations. Note that with the 
DS and DHS approaches these 16000 samples are spread over multiple levels of the 
image scale stack, whereas with DH all 16000 samples are placed in the current active 
level s p= .  The number of iterations was set to 2000 per resolution level. 

3.2 Comparison of Different Multiresolution Strategies 

The different multiresolution combinations are evaluated using five data pairs with 
four different finest grid spacings of the B-spline transformation. Figure 3 shows the 
registration results of all these combinations. As described in Section 2.3, TH-DHS, 
TS-DH and TS-DHS are actually equivalent to TH-DH, THS-DH and THS-DHS, 
respectively. So the results of TH-DH, THS-DH and THS-DHS are assigned to their 
equivalent combinations. In this way we can still make comparison among different 
multiresolution strategies of data and transformation in a general view. From Figure 
3, it can be seen that the differences in most test cases are small, and THS generates 
better results than TH and TS in most of test cases. In addition, DS generates higher 
accuracy than DH and DHS. The traditional TH-DH approach has relatively worse 
performance in most cases. Especially in data pair c4, TH-DH results in unsatisfacto-
ry results. As shown in Table 1, c4 has larger average landmarks displacements than 
the other four data. So this significant deterioration could be caused by too large de-
formation of data. 
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Fig. 3. Performance comparison of different multiresolution combinations. (a)-(e) are the re-
sults of lung data c1 to c5. The numbers represent the mTRE in voxels. 

To make a further comparison among these combinations, a ranking of the 9 me-
thods was made for each of the 5 4×  test cases. The average rank of each method 
over all 5 4×  test cases is presented in Figure 4. We can see that THS-DS has the 
best registration accuracy. The traditional TH-DH approach has the highest average 
rank number. It can also be noticed that the combinations with THS have lower rank 
than the other two multiresolution transformation strategies, when keeping the image 
resolution strategy the same. 

4 Conclusions and Future Work 

In this study different multiresolution strategies of data and transformation were com-
pared on a publicly available lung CT dataset. Most observed differences among these 
combinations were small, and perhaps not statistically significant in this small number 
of datasets. However, some patterns could be observed. In current test cases, THS 
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Fig. 4. Average rank of different multiresolution combinations in 20 test cases 

performed better than the other multiresolution strategies for the transformation. 
Compared to DH and DHS, the combinations using DS had better registration results 
in most cases. The rank analysis indicated that the combination of THS and DS is 
indeed the best choice in this application. These results suggest that 1) keeping the 
low-dimensional B-spline transformation active while going to finer control point is 
advantageous, and 2) the simultaneous use of image data from multiple scales helps to 
improve registration quality. A limitation of the current work, is that we evaluated the 
different techniques within the context of one application. In future work, we plan to 
repeat this comparative evaluation on different data.  
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Abstract. Electrophysiology procedures such as catheter ablation for
atrial fibrillation are non-invasive approaches for treating heart arrhyth-
mia. These operations necessitate contrast liquid injections for the left
atrium and pulmonary veins to be visible under fluoroscopy. However,
injections have to be minimized because of their toxicity. To provide vi-
sual guidance after the contrast liquid has washed away, it is possible to
overlay a mesh of the left atrium obtained from a pre-operative 3D vol-
ume over the intra-operative 2D fluoroscopic images. This paper presents
a novel mesh-based registration algorithm providing such an overlay by
registering the left atrium mesh to fluoroscopic images showing contrast
liquid injection. The registration is based on image bisections generated
by mesh projections, which bypasses the original volumetric data and
digitally reconstructed radiographs generation. The algorithm was vali-
dated on 7 clinical datasets and registers with a mean target registration
error of 6.56 ± 2.67mm.

Keywords: Mesh Registration, 3D/2D Registration, 2D/3D Registra-
tion, Model-Based Registration, Hybrid Registration, Image-Guided,
Atrial Fibrillation, Catheter Ablation, Electrophysiology.

1 Introduction

Image guidance during electrophysiology (EP) procedures such as catheter ab-
lation (CA) for atrial fibrillation (AF) has been shown to decrease procedure
duration and likelihood of AF recurrence [1]. Since the left atrium (LA) and
pulmonary veins (PV)s are not visible under fluoroscopy without the injection
of contrast liquid [1], the operation is facilitated by overlaying a 3D mesh ex-
tracted from pre-operative 3D volume (CT or MRI) over the intra-operative
fluoroscopic images. To provide a correctly aligned overlay, the 3D mesh of the
LA with attached PVs is registered at the time on contrast liquid injection to
serve as a visual reference after the contrast liquid has washed away.

It is possible to register the mesh manually, but a quick and automatic reg-
istration algorithm is desirable because it allows reducing the number of op-
erative workflow steps, higher reproducibility of results and does not require

B.M. Dawant et al. (Eds.): WBIR 2012, LNCS 7359, pp. 70–78, 2012.
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a trained professional to be present. Typical automatic 3D-2D registration al-
gorithms transform a 3D pre-operative volumetric image into a 2D digitally
reconstructed radiograph (DRR), which is in turn compared to intra-operative
fluoroscopic 2D images [2]. The assumption is that since the DRRs simulate
fluoroscopic images, they will be resemblant enough so that a well chosen simi-
larity measure between the two will have its global minimum coincide with the
registered position of the two (3D-2D) modalities.

An alternative to DRR-based methods is to directly register the mesh to the
fluoroscopic images, thus allowing exploitation of the information contained in
the mesh’s manual segmentation from pre-operative 3D volume. This paper de-
scribes such an algorithm that relies on analysis of the image bisection generated
by the projection of the mesh. It allows bypassing the production of DRRs as
well as not requiring the use of volumetric data. This is useful in EP procedures
that do not use the volumetric data as part of their workflow as well as having
the potential to be faster than DRR-based registration. The DRR production
is usually the main bottleneck to achieve fast registration because it has to be
iteratively evaluated in the optimizer inner loop – replacing the DRR by a faster
process would greatly enhance registration speed.

The algorithm is described in section 2 and validated on 7 clinical cases (sec-
tion 3). The potential use, advantages and drawbacks of the solution are outlined
in section 4.

2 Methods

This section describes the steps of the mesh-derived registration algorithm:

1. Pre-process the 2D and 3D data (section 2.1).
2. Bisect the fluoroscopic images using mesh-to-mask projection (section 2.2).
3. Compute a cost from the image bisection (section 2.3).
4. Find the registered position using an optimizer (section 2.4).

The four steps are illustrated in figure 1.

2.1 Data Pre-processing

Generating the 2D Subtracted Images. Our source data consists of a bi-
plane DICOM sequence of between 15 to 40 fluoroscopic frames of 1024x1024
pixels (2D) showing the injection of contrast liquid in the LA. As can be seen in
figure 2 (a), the region of interest (LA and PVs) is not visible under fluoroscopy
unless injected with contrast liquid [1]. Contrast liquid cannot be constantly in-
jected during the operation because it is harmful to the patient. It is therefore
crucial to process the images taken during the injection in order to get the best
approximation of the 2D LA topology. In order to obtain a good delineation of
the LA from the background and reduce interference from other image compo-
nents, a frame that contains contrast liquid is subtracted to a frame that does
not. No motion compensation is applied to account for movement between the
two time points. The images are downsampled to a resolution of 256x256 pixels
in order to speed-up the registration process.
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Fig. 1. Overview of the registration algorithm. The mesh is first projected into a mask,
which creates a bisection of the 2D image. The cost of the bisection is evaluated by
the similarity measure which is fed to the optimizer. The optimizer then iteratively
modifies the parameters of the rigid transformation T to find the minimum cost.
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Fig. 2. (a) to (d): Sequence of fluoroscopic images showing the injection of contrast
liquid in the LA (frames 0, 10, 19 and 35). (e): Subtracted image (frame 10 - frame 0).
Note that the surgical instruments used for EP procedures are present in the images.
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Segmentation of the Volumetric Data. In the clinical cases used for this
paper, the MRI data was manually segmented into a mesh by a health-care
professional.

Mesh Pre-processing. 3D meshes of the LA with attached PVs were used
in our experiments. Since the extremities of the small PVs are not visible even
during the injection of the contrast liquid, they are manually cut off the mesh
before the operation in order to have a better match between the 2D fluoroscopic
images and the projected mesh (figure 3).

��� ���

Fig. 3. The LA with PVs mesh, without pre-processing (a) and with shortening of the
PVs (b)

2.2 Bisection Using Mesh to Mask Projection

The mesh-derived image bisection method directly uses a mesh extracted from
volumetric data to create different groups of pixels once projected over a fluoro-
scopic image. The two groups formed are the pixels that fall under the projection
of the mesh (∈ mask) and the ones that do not (/∈ mask) (see figure 4). The
main insight is that when the mesh is properly registered, the grouped pixels will
share common characteristics because they belong to the same entity (e.g. an
organ or a zone that contains contrast liquid).

A projection system is setup in order to transform the mesh into a mask that
aggregates the pixels in two groups.

mask := MaskProjection
(
T, P, mesh

)
(1)

where T = {Tx, Ty, Tz, θx, θy, θz} are the extrinsic rigid-body transformation
parameter and P = {f, ox, oy, sx, sy, θbiplaney } the intrinsic perspective projec-

tion parameters. θbiplaney is a rotation parameter centered on the middle of the
mesh used to create a second view in cases of biplane registration. The intrinsic
parameters P are determined from the fluoroscopic imaging system and the ex-
trinsic parameters T are estimated by the registration algorithm. The projection
system and the parameters are illustrated in figure 5.
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Fig. 4. The projections of the mesh creates a bisection of the image (im2D) into two
pixel groups: im2D

∈mask and im2D
/∈mask
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Fig. 5. Projection system used to create the mask from the mesh with extrinsic rigid-
body parameters T = {Tx, Ty, Tz, θx, θy , θz} and intrinsic perspective projection pa-
rameters P = {f, ox, oy , sx, sy, θbiplane

y }

2.3 Similarity Measure Driven by Image Bisection

In order to evaluate if the groups of pixels formed by the current mesh pose
correspond to a registered mesh, it is necessary to derive a similarity measure
that is minimum when the mask is overlaid over the 2D image’s target structure
and high when over other image regions. The idea to register using pixel groups
is inspired by snake methods, where a segmentation is found by iteratively evolv-
ing a curve via the minimization of an energy function. The difference in our
approach is that the rigid-body parameters T are iteratively modified instead of
the curve’s control points, thus indirectly changing the contour of the segmenta-
tion curve according to the mesh’s topology. Another way to see our solution is
that it constrains the possible curves to the subset of curves that can be obtained
by projecting the mesh.
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If one assumes that the target 2D region is relatively homogeneous and
markedly different from the other zones of the 2D image, a simple compari-
son of the average pixel values that fall inside and outside of the mask with the
pixels in and out of these groups can be a good indication of the fitness of the
position. This is inspired by the cost function of a level-set segmentation ap-
proach introduced in [3], which leads to the definition of the following similarity
measure:

CostFn(im2D, mask) :=
∑

∀(x,y)∈mask

(
im2D

(x,y) − avg(im2D
∈mask)

)2
+

∑
∀(x,y)/∈mask

(
im2D

(x,y) − avg(im2D
/∈mask)

)2
(2)

where im2D
(x,y) is the intensity value of the fluoroscopic image at position (x, y)

and avg(im2D
∈mask), avg(im

2D
/∈mask) are the average intensity values for the group

of pixels inside and outside the mask respectively.

2.4 Finding the Registered Position Using an Optimizer

The complete registration algorithm, illustrated in figure 1, solves the following
equation:

T̂n = argmin
Tn

CostFn

(
im2D, maskTn

)
(3)

where maskTn is a mask created by the projection of the mesh under transfor-
mation Tn (equation 1). The ‘argmin’ is approximated by a chain of two Powell
optimizers. The first operates over translation only, followed by an optimization
over translation and rotation. The solution of the registration is the rigid trans-
form T̂n applied to the atrial mesh, generating the grouping of pixels on the 2D
image that minimizes equation 2.

3 Results

3.1 Experiment Description

Our dataset contains 7 cases (labeled as ‘C#’, e.g. C200) of CA for AF, each of
which has an atrial mesh that was manually segmented from MRI data along
with intra-operative biplane fluoroscopic sequences showing the injection of con-
trast liquid. The biplane intrinsic perspective projection parameters and the
ground truth extrinsic rigid-body transformations that register the meshes to the
biplane images are found by careful interactive visual examination of the mesh
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and subtracted fluoroscopic images. The cost function (equation 2) is adapted
for biplane cases by summing the cost for each plane. In order to evaluate the
accuracy of the registration algorithm, a deviation of the rigid transformation T
is applied to the ground truth before registration. The deviation is in millime-
ters/degrees and contained in the interval:ΔTdeviation = {ΔTx, ΔTy, ΔTz, Δθx,-
Δθy, Δθz} = {−15..15,−15..15,−15..15,−10..10,−10..10,−10..10}where ‘A..B’
signifies a random number between A and B following a uniform distribution.

Both the mean target registration error (mTRE) and mean projection distance
(mPD) [4] are used to assess the accuracy of the algorithm. The mTRE is the
mean distance between the registered and ground truth points in 3D space and
mPD is similar but after 3D-2D projection:

mTRE(P, Tregist, Ttruth) =
1

k

k∑
i=1

‖Tregistpi − Ttruthpi‖ (4)

mPD(P,Mregist,Mtruth) =
1

k

k∑
i=1

‖Mregistpi −Mtruthpi‖ (5)

where P = {p1, . . . , pk} are the mesh’s vertices (typically k ≈ 15, 000). Tregist

and Ttruth are the rigid body transformation found by the registration algorithm
and the ground truth; Mregist and Mtruth the perspective projection matrixes
(the mPD is understood to be calculated after division by the homogeneous
coordinate).

3.2 Experiment Results

Using the experiment parameters described in section 3.1, 100 starting positions
randomly deviated according to ΔTdeviation are generated for every case (total
700 starting positions). After registration, the mTRE and mPD error (equations
4 and 5) are measured in millimeters (mm). Table 1 contains the results of the
experiment.

Profiling of the mask generation process (implemented in OpenGL) reveals
that it takes 0.4 millisecond on a NVIDIA Quadro 2000M to generate a 256x256
mask. This compares favorably to DRR generation implemented on GPU which
takes 15 milliseconds to produce a 256x256 image [5].

Figures 6 and 7 show graphical examples of registration results with typical
registration errors. Note that the ground truth is not unambiguously visually
better than the registered result. This is due to the fact that it is very difficult
to discern the LA and PVs’ frontier under fluoroscopy, even when contrast liquid
is injected.
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Table 1. mTRE and mPD error after registration initialized with starting positions
derived from the ground truth. The variability measure (±σ) is one sample standard
deviation.

Case mTRE (mm±σ) mPD (mm±σ)

C037 6.76 ± 2.71 6.04 ± 2.11
C129 5.97 ± 2.18 5.83 ± 2.43
C130 6.37 ± 1.96 7.15 ± 2.07
C135 5.59 ± 2.27 4.87 ± 1.84
C137 5.91 ± 1.15 5.49 ± 1.14
C154 9.55 ± 3.42 8.58 ± 3.53
C200 5.76 ± 2.20 6.12 ± 2.23

Average 6.56 ± 2.67 6.30 ± 2.55
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Fig. 6. Case C200 registration result compared with ground truth. The projection
distance error for this registration is 7.23mm.

Fig. 7. Case C135 registration result compared with ground truth. The projection
distance error for this registration is 4.69mm.
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4 Discussion and Conclusion

We presented a mesh-based 2D/3D registration algorithm that can successfully
register meshes derived from 3D volumes to fluoroscopic images. The algorithm
has the potential to provide near real-time registration. It is especially useful in
applications where a 3D mesh is available pre-operatively.

In cases of CA for AF, the fluoroscopic images must contain contrast liq-
uid in order to be used for registration. This means that the algorithm cannot
continuously update the registration during the whole operation. However, the
registered LA mesh at the time of contrast liquid injection can be used as an
initialization for follow-up tracking methods that do not require the presence of
contrast liquid [6].

It is not clear if the main source of error is due to the algorithm itself, or to
the conditions of the experiment. An important source of error could come from
inexact projective geometry and ground truth positions since they were found
by visual inspection. The difficulty to evaluate the registration result visually is
highlighted in figures 6 and 7.

In the future, we plan to use fully calibrated projection systems and ground
truth positions obtained by a medical expert. To get higher precision, we plan
to modulate the local cost in function of the mesh’s thickness. This will also
allow bypassing the manual cutting of the PVs because their thinness will result
in a low or null cost for that zone. We also plan to experiment with different
similarity measures, including gradient correlation and histogram matching.
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Abstract. Bias in image registration has to be accounted for when per-
forming morphometric studies. The presence of bias can lead to unreal-
istic power estimates and can have an adverse effect in group separation
studies. Most image registration algorithms are formulated in an asym-
metric fashion and the solution is biased towards the transformation
direction. The popular free-form deformation algorithm has been shown
to be a robust and accurate method for medical image registration. How-
ever, it suffers from the lack of symmetry which could potentially bias
the result. This work presents a symmetric and inverse-consistent variant
of the free form deformation.

We first assess the proposed framework in the context of segmentation-
propagation. We also applied it to longitudinal images to assess regional
volume change. In both evaluations, the symmetric algorithm outper-
formed a non-symmetric formulation of the free-form deformation.

1 Introduction

Non-rigid image registration is a key component of many medical image analysis
pipelines. Typically, when performing registration, a floating image is warped
into the space of a reference image and the established spatial correspondences
can be used to quantify changes through morphometric studies. Tensor-based
morphometry, for example, is used to assess differences between different
population whereas the Jacobian integration technique [1] aims at quantifying
intra-patient longitudinal changes in specific regions of interest. Symmetry in
registration is a desired property. Results should be the same when registration
is performed from the first image to the second or from the second to the first
image. In order to remove bias from the direction of registration, algorithms
such as Symmetric Normalization (SyN) [2] from the Advanced Normalization
Tools (ANTs1) package or the demons-based approaches by Tao et al. [3] or
Vercauteren et al. [4] have been proposed. Bias in registration directionality
has recently received a lot of attention and shown to generate unrealistic power
estimates [5,6,7].

1 http://picsl.upenn.edu/ANTS
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The Free-Form Deformation (FFD) algorithm [8] is a well-known and estab-
lished method which has been found to perform well for inter-subject regis-
tration [9]. It has also been shown to be reliable for longitudinal intra-subject
registration [1]. In the last decade, various improvements have been made to
the original implementation in order to, for example, ensure one-to-one mapping
between the registered scans using either soft constraints on the transformation
Jacobian determinants [10] or using hard constraints in the form of boundary
conditions [11,12]. The FFD approach is however lacking in symmetry, possibly
causing bias towards the registration direction.

Feng et al. [13] presented work based on the FFD algorithm where they con-
currently optimised a forward and backward transformation in order to minimise
the sum of squared differences and a term based on the inverse consistency er-
ror [14]. Their implementation however could not be used for morphometric
studies as they were only dealing with 2D images and they did not use any reg-
ularisation in order to enforce one-to-one correspondences. The proposed work
expands the framework in order to obtain a symmetric inverse-consistent reg-
istration algorithm. Based on the FFD, we concurrently optimised the forward
and backward transformations and penalised both transformations to ensure
a one-to-one mapping and generate inverse-consistent and symmetric warping.
The normalised mutual information (NMI) is used as a measure of similarity
making the algorithm suitable for multi-modal registration.

We assessed our implementation using two datasets. The first part of the val-
idation is based on segmentation-propagation where segmentations were propa-
gated from one subject to another and were compared to manual segmentations
that were performed on the same subject. The method was also validated by
comparing brain atrophy measurement evaluated in several regions of interest.

2 Method

2.1 Classical Free-Form Deformation Approach

The FFD algorithm is a parametric approach for non-rigid registration of medical
images [8]. The transformation T is parameterised by a regular lattice of control
points {μ} and a cubic B-Spline approximation scheme. The normalised mutual
information (NMI) is used to assess the alignment between a reference image R
and a floating image F after transformation F (T). Maximising the NMI aims at
maximising the amount of information that one image has about the other. In
order to favor a smooth transformation, one or several penalty terms are added to
the objective function. The bending energy (BE) is commonly used but one can
also use other penalty terms, for example those based on the divergence of the
transformation [15] or on the Jacobian determinant at every voxel position [10],
the latter enabling an unfolded and invertible deformation.

2.2 Symmetric Transformation Model

A typical approach is to seek a transformation defined in the space of the refer-
ence image that warps the floating image to the reference image space. In order
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to ensure symmetry, we propose to optimise two transformations: TFw and TBw

where TFw is the forward transformation that maps the space of the reference
image to the space of the floating image and TBw maps the space of the floating
image to the space of the reference image. This joint optimisation should reduce
directionality bias and increase capture range by using bi-directional gradient in
the optimisation procedure.

2.3 Objective Function

In order to ensure inverse-consistency, as in Christensen [14], we used a penalty
term based on the inverse-consistency error PIC :

PIC =
∑
x∀R

‖TFw(TBw(x))‖2 +
∑
x∀F

‖TBw(TFw(x))‖2 (1)

A PIC value of zero leads to the following equalities:

TFw ≈ T−1
Bw and TBw ≈ T−1

Fw

The computation of the measure of similarity, NMISym, also takes advantage of
the forward and backward transformation:

NMISym =
H(R) +H(F (TFw))

H(R,F (TFw))
+

H(R(TBw)) +H(F )

H(R(TBw), F ))
, (2)

where H(.) and H(., .) denote marginal and joint entropies respectively. En-
tropies are computed from two joint histograms filled using a Parzen windows
approach [16]. The window we used here is a cubic B-Spline kernel.

In order to promote smoothness and to enforce topology conservation we used
two other symmetric penalty terms based first on the BE:

PBE =
∑
x∀R

∣∣∣∣∣∣∣∣∂2TFw(x)

∂x2
+

∂2TFw(x)

∂y2
+

∂2TFw(x)

∂z2
(3)

+ 2×
(
∂2TFw(x)

∂xy
+×∂2TFw(x)

∂yz
+×∂2TFw(x)

∂xz

)∣∣∣∣∣∣∣∣
+

∑
x∀F

∣∣∣∣∣∣∣∣∂2TBw(x)

∂x2
+

∂2TBw(x)

∂y2
+

∂2TBw(x)

∂z2

+ 2×
(
∂2TBw(x)

∂xy
+×∂2TBw(x)

∂yz
+×∂2TBw(x)

∂xz

)∣∣∣∣∣∣∣∣
and second on the determinant of the Jacobian matrices of the transformation:

PJac =
∑
x∀R

log(|Jac(TFw(x))|)2 +
∑
x∀F

log(|Jac(TBw(x))|)2 (4)

Note that the penalty term based on the inverse-consistency error does not guar-
antee folding-free transformations as the inverse-consistency error is minimised
but not null.
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The final objective function O(R,F ;μFw,μBw) to optimise is thus:

O(R,F ;μFw,μBw) = (1− α− β − γ)×NMISym (5)

+ α× PBE + β × PJac + γ × PIC ,

where {μFw} and {μBw} correspond to the control point positions that define
the transformation TFw and TBw respectively and (α+ β + γ < 1)

2.4 Optimisation

In order to optimise the objective function value, we used a conjugate gradient
ascent approach. It requires the computation of the gradient of O according to
each set of control points:

∂O(R,F ;μFw,μBw)

∂μFw
and

∂O(R,F ;μFw,μBw)

∂μBw
.

We refer the reader to [17] for an efficient computation of the NMI and BE deriva-
tives and to [18] for the analytical derivative of the Jacobian-based penalty term.
The derivatives of the inverse-consistency error penalty term are computed using
a voxel-to-node approach where we first compute the derivative of each term at
each voxel position and then concatenate the information at each control point
position. We perform these computations by first computing four displacement
fields through composition:

– D1R(x) = x−TFw(TBw(x)) where x ∈ R

– D2R(x) = x−TBw(TFw(x)) where x ∈ R

– D1F (x) = x−TFw(TBw(x)) where x ∈ F

– D2F (x) = x−TBw(TFw(x)) where x ∈ F

The residual displacement images D1R and D2R are then convolved by a cubic
B-Spline kernel in order to reproduce the cubic B-Spline parametrisation of the
TFw and the residual displacement images D1F and D2F are convolved by a
kernel that reproduce the cubic B-Spline parametrisation of the TBw. Using
linear interpolation we then extract the gradient information at each control
point position {μFw} inD1R andD2R and at each control point position {μBw}
in D1F and D2F

2.5 Implementation

The proposed algorithm has been implemented as part of the NiftyReg package,
BSD licence, and can be downloaded from: http://sourceforge.net/projects/
niftyreg/. Most symmetric registration implementations require the resampling

http://sourceforge.net/projects/
niftyreg/
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using a rigid or affine transformation of one image into the space of the other.
This enables both images to have the same resolution making the computations
easier. It could however bias the registration as different results are obtained de-
pending to which image is interpolated. In the proposed implementation, both
transformations TFw and TBw are defined in the original spaces of the input
images and thus no prior resampling is required.

3 Evaluation

3.1 Segmentation Propagation

In order to evaluate the proposed algorithm, we first performed the
cross-registration of 40 T1-weighted images from the LPBA40 database2. As
in Klein et al. [9], we quantify the overlap between manually segmented regions
of interest and segmentation propagated through registration. This experiment
enables direct comparison to the 14 registration algorithms that have been eval-
uated by Klein et al. [9]. The LPBA40 database consists of 40 MRI and their
associated brain parcellation into 56 regions of interest. LPBA40 images have
been acquired using a 1.5T GE scanner and were used to generate a probabilistic
atlas of the human cortical structures [19].

We used a block-matching approach for affine registration in order to ini-
tialise every registration [20]. Each non-rigid registration was performed using
the proposed symmetric approach as well as using an asymmetric free-form de-
formation (FFD) implementation in NiftyReg. For every registration, we used a
control point spacing of 2.5 millimetres along each axis. This spacing was chosen
to replicate the image registration toolkit (IRTK3) parameters used in Klein et
al., as IRTK is also an FFD implementation. For the proposed approach, FFD-
SYM, we set the weights of α (PBE), β (PJac) and γ (PIC) in equation 5 to 1%,
1% and 10% respectively. The weights for FFD were set to 1% for α (PBE) and
β (PJac). Each registration was performed using a coarse-to-fine approach with
3 levels and the maximum number of iteration for each level was set to 1000.

Figure 1 presents the mean target overlap (TO) defined as:

TO =
1

N

∑
i∀k

GSk ∩ PSk
GSk

, (6)

where GSk and PSk are the gold standard segmentation and the propagated

segmentation, respectively, of the kth region of interest and N is the number of
regions of interest. The mean (std) target overlap values were 0.650 (0.022), 0.706
(0.025) and 0.714 (0.021) when performing the segmentation propagation using
the affine transformation, FFD and the proposed symmetric approach respec-
tively. The symmetric approach yielded significantly higher (p < 10−4) target
overlap values when compared to the non-symmetric free-form deformation.

2 http://www.loni.ucla.edu/Atlases/LPBA40
3 http://www.doc.ic.ac.uk/~dr/software/

http://www.loni.ucla.edu/Atlases/LPBA40
http://www.doc.ic.ac.uk/~dr/software/
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Fig. 1. Left-hand side: Segmentation propagation results. Target overlap are presented
after affine registration and two different non-rigid registration approaches, a non-
symmetric FFD implementation (FFD) and the proposed symmetric FFD scheme
(FFD-SYM).

Right-hand side: Image S01 from the LPBA40 database and its corresponding
parcelation.

3.2 Atrophy Measurement

The following experiments are based on a database that consists of T1-weighted
MRI scans of 32 subjectswithAlzheimer’s disease (confirmedwithhisto-pathology)
and 19 age-matched controls. We used three scans for each subject: two back-to-
back scans at baseline and one follow-up scan after a year. The data acquisition
was performed on a 1.5 T Signa Unit (GEMedical Systems, Milwaukee) with a in-
version recovery (IR)-prepared spoiled GRASS sequence: TE 6.4 ms, TI 650 ms,
TR 3000 ms, bandwidth 16 kHz, 256 × 256 × 128 matrix with a field of view of
240× 240× 186 mm. The first baseline scan and follow-up scan have four manual
segmented structures: full brain (white matter plus grey matter), ventricles and
left and right hippocampi.

Using the proposed symmetric approach and a non-symmetric FFD imple-
mentation, we registered every second baseline scan to its corresponding first
baseline scan. As previously, the registrations were initialised using a block-
matching technique for affine registration. In order to quantify the amount of
deformation, we computed the mean and standard deviation of the Jacobian
matrix determinants computed at every voxel position. The Jacobian determi-
nant has the advantage of being unbiased towards any residual error of the
initial global registration. The mean (std) in the full brain region of interest
for FFD and FFD-SYM were 0.997 (0.006) and 0.998 (0.002) respectively and
0.986 (0.018) and 0.996 (0.011) in the hippocampi regions. Under the assump-
tion that no changes should occur between same day scans, we observed smaller
deformations using the proposed symmetric approach when compared to a non-
symmetric approach, demonstrating the added value and robustness due to the
inverse-consistent constrain.

For the next experiment we registered the first baseline scan of each patient
to the corresponding follow-up scan. We also registered the follow-up scan to
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the first baseline scan. For every registration we assessed the inverse-consistency
error and computed the volume change for every region of interest using the
integration of the Jacobian map over the regions of interest. We assessed the
symmetry of the transformation by comparing the forward transformation from
baseline to follow-up with the backward transformation from follow-up to base-
line and comparing the backward transformation from baseline to follow-up with
the forward transformation from follow-up to baseline. Table 1 presents the
inverse-consistency error defined as the euclidean distance between the composi-
tion of the forward and backward transformation to the identity transformation.

Table 1. Inverse consistency error. Presented values have been computed from all
longitudinal registrations using a non-symmetric (FFD) and a symmetric approach
(FFD-SYM).

IC error (in mm) Mean values over all subjects

mean(IC) std(IC) max(IC)

FFD
‖TFw(TBw(x))− Id‖ 0.6465 0.1012 0.8991
‖TBw(TFw(x))− Id‖ 0.6498 0.1030 0.9005

FFD-SYM
‖TFw(TBw(x))− Id‖ 0.0696 0.0063 0.0864
‖TBw(TFw(x))− Id‖ 0.0698 0.0063 0.0821

Due to order independent construction of the algorithm, no symmetric er-
ror was found up to numerical precision, using both single or double floating
precision. The proposed method is thus order independent, as for every regis-
tration, the forward transformation from follow-up to baseline and backward
transformation from baseline to follow-up are identical.

Figure 2 presents the volume changes from baseline to follow-up and follow-up
to baseline computed on three regions of interest relevant to Alzheimerś disease:
ventricles and hippocampi (left and right hippocampi have been merged into one
figure).

In order to assess the symmetry of the method, we performed a one-sample
t-test to compare the volume changes computed by registering follow-up to base-
line and baseline to follow-up. The confidence intervals and their ranges are
shown in table 2.

This confidence intervals show some degree of bias between the values obtained
using both the forward and backward Jacobian integrations for every approach.
It can however be noticed from the confidence interval that the bias is not only
lower but also has a variability range one order of magnitude smaller when
using the symmetric approach compared to the non-symmetric approach. Using
the proposed symmetric method, the reduced bias towards chosen directionality
and the reduced inverse-consistency error lead to an increase in registration
robustness, as seen by the reduced number of outliers. It thus results in more
realistic group separation estimates. Nonetheless, other sources of bias on both
the pre-processing pipeline such as differential bias field and on the manual
segmentations still require further investigation.
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Fig. 2. Regions of interest volume change. The plots presents the volume changes from
baseline to follow-up for three regions of interest: ventricles and both hippocampi. The
volume changes have been estimated using a non-symmetric (FFD) and a symmetric
(FFDS) registration approach and they have been estimated from the registration from
follow-up to baseline (FOR) and from baseline to follow-up (BCK). The red and blue
crosses correspond to volume change for Alzheimer’s disease (AD) patients and for
healthy control (CTL) respectively.

Table 2. Confidence intervals of the difference in longitudinal volume changes over
the regions of interest estimated through Jacobian integration using both forward and
backward transformations

Ventricles Hippocampi

FFD
95% CI [2.2730 11.6473] [0.6749 2.1020]
CI range 8.2743 1.4271

FFD-SYM
95% CI [-1.9593 -1.1673] [0.0547 0.3497]
CI range 0.7919 0.2950

4 Conclusion

We presented an extension of the work of Rueckert et al. [8] and Feng et al. [13]
in order to register images without bias towards directionality. Our transfor-
mations, forward and backward, are both parameterised using a uniform cubic
B-Spline and the normalised mutual information is used as a measure of similar-
ity. The proposed framework has been implemented using a open-source package
for registration and is thus available to download under a BSD licence

Using segmentation-propagation to evaluate the proposed method showed the
added value of symmetry and inverse-consistency as it leads to increased overlap.
We used longitudinal data in order to evaluate atrophy inmultiple regions of inter-
est. The proposed approach decreased bias towards the transformation direction
when estimating volume changes compared to a non-symmetric approach sharing
the same deformation model, regularisation and measure of similarity.

Future work will include a more extensive validation using larger cohort of pa-
tients. We also want to apply the proposed algorithm to tensor-based morphome-
try analysis to quantify the bias towards directionality as in Yushkevich et al. [21].
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On amore methodological point of view, we will expand the framework to account
for multiple time points (more than two) in a common registration framework.
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Abstract. Percutaneous cochlear implantation (PCI) is an image-guided surgic-
al approach, where access to the cochlea is achieved by drilling a channel from 
the outer skull to the cochlea. The PCI requires pre- and intra-operative plan-
ning. Computation of a safe drilling trajectory is performed in a pre-operative 
CT. This trajectory is mapped to intra-operative space using the transformation 
matrix that registers the pre- and intra-operative CTs. However, the misalign-
ment between the two CTs is too extreme to be recovered by standard  
registration methods. Thus the registration is initialized manually. In this work 
we present a method that aligns the scans completely automatically. We com-
pared the performance of this method to the manually initialized registration. 
There is a maximum difference of 0.19 mm between the entry and target points 
resulting from the automatic and manually initialized registrations. This sug-
gests that the automatic method is accurate enough to be used in a PCI surgery. 

Keywords: Surface registration, feature extraction, level sets, cortical surface, 
cochlear implant, pre- and intra-operative CT. 

1 Introduction 

Cochlear implantation (CI) is a procedure in which an electrode array is surgically 
implanted in the cochlea to treat profound hearing loss. We have recently introduced a 
minimally-invasive, image-guided CI procedure referred to as percutaneous cochlear 
implantation (PCI) [1]. In PCI, access to the cochlea is achieved by drilling a linear 
channel from the outer part of the skull into the cochlea. At present, PCI requires pre-
operative and intra-operative planning. In the pre-operative planning phase, a safe 
drilling trajectory is computed on a high-resolution pre-operative CT scan [2]. This is 
done a few days before the surgery. In the intra-operative planning phase, the patient 
is positioned on the operating table in such a way that is convenient for performing 
the surgery. Then, a CT scan of the head is obtained using an intraoperative CT scan-
ner (e.g. xCAT ENT flat panel volume computerized tomography (Xoran Technolo-
gies, Ann Arbor, MI)) and the pre- and intra-operative scans are registered. Finally, 
the pre-operatively computed drilling trajectory is mapped onto the intra-operative CT 
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scan space using the transformation matrix that registers the pre- and intra-operative 
scans. The pre- and intra-operative scans are registered using intensity-based  
algorithms after they are manually brought into approximate alignment. 

The manual registration initialization is performed by selecting three or more ho-
mologous points in each scan. The transformation matrix that registers these points is 
used to roughly align the scans. We are now working to automate the registration 
process because: (1) Manually initializing the registration process requires someone 
who is expert in both temporal bone/inner ear anatomy and in using the planning 
software to be present at every surgery. (2) The registration step is a time critical 
process because it must be completed before the next portion of the intervention – 
creation of a customized microstereotactic frame – can be undertaken. Since this is a 
critical bottleneck, manual intervention is often stressful. Extra time required to  
perform this step may prolong the surgical intervention.   

Several properties of the intra-operative images obtained with the xCAT scanner 
complicate automation of the process. While using the xCAT is desirable because it is 
portable and acquires images with relatively low radiation dose, the images acquired 
are noisy and suffer from severe intensity inhomogeneity. This diminishes the capture 
range of standard, gradient descent-based registration techniques. Furthermore, the 
position, orientation, and field of view of the patient’s head in the intra-operative CT 
are inconsistent. This variation in head orientation alone is larger than the capture 
range of the image registration algorithm. The inconsistent field of view results in 
exclusion of regions of the patient’s head, which prevents the use of rough orientation 
matching techniques such as alignment of the pre- and intra-operative images by prin-
cipal components analysis. Figure 1 shows a typical pre-registered intra-operative 
image (shown in white and blue) overlaid with a pre-operative image (black and 
white) in axial, coronal and sagittal views.  

We have recently presented a method for coarse registration that is accurate 
enough to replace the manual initialization process currently used in the intra-
operative registration step [3]. This is a feature-based registration method that relies 
on extracting corresponding features on each image and computes a transformation 
that best aligns these features. Although this method leads to registration results that 
are as accurate as the manual initialization-based approach, it cannot be used in the 
clinical workflow because it still requires some manual intervention and is too slow to 
be used in the operating room. In this paper, we present a fast and completely auto-
matic approach for pre- to intra-operative CT registration.  

2 Methods 

2.1 Data 

In this study, we analyzed four pairs of pre- and intra-operative CT scans, and one 
intra-operative reference scan. Typical scan resolutions are 768 × 768 × 145 voxels 
with 0.2 × 0.2 × 0.3 mm3 voxel size for the pre-operative images and 700 × 700 × 360 
voxels with 0.3 × 0.3 × 0.3 mm3 voxel size for intra-operative images. 
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Fig. 1. Intra-operative (blue and white) overlaid on pre-operative (black and white) CT image 
shown in axial (left panel), coronal (middle panel) and sagittal (right panel) view 

2.2 Overview 

The approach we follow consists of two main steps. First, we perform a coarse fea-
ture-based surface registration using an algorithm that is invariant to initial pose [4]. 
Next, the registration is refined using a standard intensity-based registration. The 
coarse registration is performed by matching features computed at the vertices of the 
cortical surface. This algorithm is sensitive to differences in the field of view of the 
surfaces, and it is not possible to obtain a full cortical surface from the patient’s  
pre-operative CT because the field of view of these images typically spans only the 
temporal bone region. Instead of registering the two images directly, we register the 
intra-operative cortical surface to a reference intra-operative cortical surface, and this 
reference image is registered offline to the pre-operative CT automatically as de-
scribed below. Thus, a coarse registration between the pre- and intra-operative CTs 
can be achieved using the compound transformation. This registration process can 
replace the manual registration step that is currently performed and, when followed by 
an intensity-based rigid-body registration to refine the transformation, results in accu-
rate automatic registration of pre- and intra-operative CTs.  

A flow chart of the pre- to intra-operative CT scan registration process is shown in 
Figure 2. In this flow chart, a rectangle represents an operation on images, and a circle 
represents a transformation matrix when the text is a Greek letter and an image when 
the text is Roman. P and I are the target pre- and intra-operative images we want to 
register. IR is another subject’s intra-operative scan that we selected to serve as a 
reference intra-operative image. IR is registered by hand once—offline—to a pre-
operative atlas CT A, and A is automatically registered to P in the pre-operative plan-
ning stage using standard intensity-based techniques. Thus, using the compound 
transformation, offline registration between IR and P is achieved automatically prior 
to surgery. The cortical surface of IR is extracted with a procedure described in sec-
tion 2.3. In the intra-operative registration step of PCI, the same techniques applied 
offline on IR for cortical surface extraction are also applied on I to extract the cortical 
surface. Then, the cortical surface of I is rigidly registered to the cortical surface of IR 
via a feature-based registration method called spin-image registration [4] described in 
section 2.4. We combine the transformation matrix obtained from the spin-image 
registration  and the offline intensity-based registration . Then, we project I to the 
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Fig. 2. Registration flow chart 

P space using the combined transformation. The final registration of I to P is obtained 
by performing an intensity-based rigid registration between the projected I and P. The 
full pre- to intra-operative registration transformation matrix is computed as the com-
pounded transformation of   ,  and,   . 
2.3 Level Set Segmentation of the Cortex 

The cortex was chosen as the surface of interest for registration because its surface 
features are distinct yet similar across subjects. To extract the 3D surface representing 
the cortex in the intra-operative CT images, we use a level set segmentation method 
[5]. This method evolves a surface using information from a high dimensional func-
tion. The high dimensional time-dependent function, usually defined as a signed dis-
tance map, is called the embedding function , , and the zero level set Γ , , 0  represents the evolving surface. The evolution of the surface in time is 
governed by 
 

  | | 1 • | | . (1)

 
The term  specifies the speed of evolution at each voxel in I, and the mean curva-
ture • | |⁄  is a regularizing term that constrains the evolving surface to be 
smooth. We designed the speed term that guides the evolution of the surface using the 
result obtained after applying a “sheetness” filter to , described in the following sub-
section. The level set method also requires the initial embedding function  ,0  to be defined. We initialize the embedding function automatically with a procedure 
described below. In the experiments we conducted,  is empirically set to 0.8. 

Sheetness Filter. As will be described below, our speed function and our procedure 
for initialization of the embedding function rely on voxel sheetness scores computed 
by applying a sheetness filter to I [6]. The sheetness filter uses the eigenvalues of the 
local Hessian matrix to compute a sheetness score that is high for voxels whose un-
derlying iso-intensity surface is sheet-like and low otherwise (for more detailed de-
scription on sheetness filter, please see [6]). We limit detection to only include bright 
sheet-like structures with a darker background. Thus, the sheetness filter will detect  
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Fig. 3. Images used in the level set initialization process. (a) Saggital view of intra-operative C 
(b) H, the sheetness filter output. 

bone as well as some sheet-like soft tissue structures. Figure 3b shows the resulting 
sheetness score image H of the image I in Figure 3a. 

Level Set Initialization. We initialize the embedding function as a signed distance 
map with zero level inside the cortex and design our speed function to expand until 
reaching the cortex. Since some parts of the boundary of the cortex have little contrast 
with surrounding structures, leaking of the level set could occur. To minimize the 
possibility of leakage, we have designed an approach in which we only propagate the 
evolving front for a fixed number of iterations (20 in our experiments). We initialize 
the evolving front such that its distance to the cortex is approximately constant over 
its surface so that the required number of iterations is consistent.  

The procedure we use to identify this initialization surface consists of three main 
steps that are outlined in Figure 4: (1) A threshold, Tbone, that optimally separates the 
bone from the soft-tissue structures is computed based on the intensity histogram of 
the image using Reddi’s method [7]. However, instead of trying to compute a value 
for bone using the histogram of the whole image, which includes several peaks and 
valleys, we limit the histogram to contain information only from voxels that  
correspond to bone and sheet-like soft tissue structures, creating a histogram with one 
distinct valley, and thus simplifying the problem. Specifically, we use the intensity 
histogram of voxels with: (a) a sheetness score greater than 0.5, which removes in-
formation from noisy voxels that don’t belong to bright sheet-like structures such as 
bone and sharpens the histogram so that the valleys are more distinct; and (b) intensi-
ty greater than -100, which removes extraneous valleys that exist at lower intensities. 
The intensity histogram of this set of voxels is shown in Figure 5. As can be seen in 
the figure, in the limited distribution that we sample, the principal valley is easily 
identifiable and lies in the middle of the region where the intensity distributions of 
bone and soft tissue overlap. (2) A rough segmentation of the bone is performed by 
thresholding the image using Tbone. This results in a binary image that contains the 
skull, some sheet-like soft-tissue structures, and some metal-related artifacts. We filter 
the segmentation to remove extraneous components inside the cortex. To do so, we  
 

 

(a) (b)
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Fig. 4. Level set initialization process 

 
first dilate the resulting binary image with a spherical structuring element with a di-
ameter of 6 mm. Next, we compute 8-connected components in a slice by slice fa-
shion (we use a 2D rather than a 3D approach to improve computation time).  
Then, we eliminate the components that have fewer than 100 pixels. (3) A 3D  
distance map is computed on the resulting binary image. Next, a triangle mesh is ob-
tained by isosurfacing the distance map at 6.0 mm. This mesh contains multiple dis-
connected surfaces (see Figure 6). The surface with the most triangles corresponds to 
a distance of 6 mm outside the skull (part of the red contour in the figure). The second 
largest surface corresponds to a distance of 6 mm inside the skull, and this is used to 
define the initial position of the evolving front (yellow contour in the figure). Note 
that the interior portion of the filtered skull segmentation approximates the cortex 
surface. While this data alone is too noisy to identify and separate the cortex from 
other structures (see green contour in Figure 6), our technique essentially applies an 
extreme dilation to the data, which both removes noise and allows a separable surface 
to be identified that is close enough to the cortex that it can be used to initialize the 
level set segmentation. 

Level Set Segmentation. The speed function is set to 1 , where  is the sheet-
ness score image, which ranges in value from 0 to 1. Instead of defining the speed func-
tion using the intensity or intensity gradient type information, which would be very noisy 
in this application, we use this sheetness score based approach. It consistently assigns low 
speeds to voxels where there are bones. Thus, the speed function will expand the evolv-
ing surface until the zero level set reaches the cortex-bone interface where it will be 
slowed. Once the speed function is computed, the level set segmentation can be per-
formed. An example segmentation result is shown in Figure 7a, and the 3D surface  
representation of the segmentation result is shown in Figure 7b. 

1. Compute a threshold, Tbone, that optimally separates the bone and soft-tissue  
2. Perform a rough segmentation of the skull (bones) 
 2.1. Threshold the images using Tbone to keep the bones 
 2.2. Dilate the resulting image from 2.1 
 2.3. Find 8-connected components  in a slice by slice fashion   

 2.4. Eliminate the components with fewer than 100 pixels 
3. Extract a 3D surface inside the cortex 
 3.1. Compute the 3D distance map of the skull segmentation 
 3.2. Extract a 3D surface representation of the 6 mm level set 
 3.3. Find the second largest connected surface component 
 3.4. The result from 3.3 is used to define the position of the evolving front 
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Fig. 7. Result of level set segmentation. Shown in (a) in white are the contours of the cortex 
level set segmentation result. (b) is a 3D surface representation of the resulting cortex. 

 

 

 

 

 

 

Fig. 8. Reference intra-operative cortical surface. The colors encode the value of curvature on 
the vertices of the surface. 

2.4 Cortical Surface Registration 

The first step in feature based registration is feature extraction. We extracted features 
for each vertex that capture the local shape of the 3D surface using the so-called spin 
image technique [4]. A spin image describes the organization of neighboring vertices 
around a vertex in the surface. Given a vertex  in the surface with normal vector  
and a plane  passing through  and perpendicular to , two distances are computed 
from each other vertex  to the given vertex : (1) the signed distance in the  direc-
tion, •  and (2) the distance perpendicular to , .  

Fig. 5. Intensity histogram of voxels that have 
both an intensity value greater than -100 and a 
sheetness value of 0.5.  The vertical line is the 
threshold that optimally separates bone and
soft tissue on a global scale. 

Fig. 6. Shown in green are the contours of the 
binary skull segmentation. Contours of the 6 
mm level set of the skull distance map are 
shown in yellow for the second largest surface 
component and red for all other components. 

(a) (b)
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Fig. 9. Cortical surfaces of reference (left) and target (right) intra-operative CT images. Three 
corresponding points and their associated spin images are shown.  

These distances are then used in constructing what are called spin images, one for 
each vertex. A spin image is a 2D histogram with  on the x-axis and  on the y-axis. 
Each entry in the histogram represents the number of vertices in a neighborhood of 
the vertex for which the spin image is computed that belong to that entry.  

The cortical surface of the reference intra-operative CT is extracted using the tech-
nique described in section 2.3. At each vertex in the extracted reference surface, we 
compute a curvature measure that ranges from 0 to 1 (see Figure 8) [8]. Then, spin 
images are computed only at vertices on the reference surface that have curvature 
value above 0.59. We do this because the regions of the cortex where the curvature is 
low are those that are flat, and their associated spin images are similar to those of their 
surrounding vertices. Thus, we increase computational efficiency by using only high 
curvature regions of the surface that tend to result in distinctive spin images. For the 
target surface, spin images are computed only for 30% of its vertices (uniformly sam-
pled around the cortical surface) to achieve similar reductions in computation time. 

A transformation that best aligns the surfaces is computed by registering corres-
ponding surface points. A candidate correspondence is established between each spin 
image in the target surface and the set of spin images in the reference surface that 
satisfy a linear correlation-based similarity constraint. A one-to-one point correspon-
dence between surfaces is subsequently established by optimizing on these sets of 
candidate correspondences (for more detailed description on spin image registration, 
please see [4]). Figure 9 shows an example of pairs of corresponding points on a  
target and reference surfaces and their associated spin images. 

3 Results 

Each testing pre- and intra-operative image pair was registered with expert initializa-
tion or the automatic registration method we propose. Since expert initialization has 
led to clinically useable results in the clinical trials that have been performed [9], we 
quantitatively validate our results by comparing transformations computed from our 
automated technique to those computed using the manual initialization approach. We 
measured the Euclidean distance between the “entry” (point along the trajectory near 
critical ear anatomy) and “target” (cochlear implant insertion point) points resulting 
 

A 
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A 
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Table 1. Distance in millimeters from the entry and target points of the drilling trajectory that is 
mapped with the proposed registration approach and the previous method [3] which minimize 
manual intervention to the manually initialized registration 

 

from the automatic and manually initialized registration processes. Table 1 presents 
these distances in millimeters. Table 1 also presents these distances for the registra-
tion method we previously developed which minimized manual intervention to one 
step [3]. The maximum distance for the proposed approach is 0.1943 mm and the 
average distances at the entry and target points are 0.13 and 0.1308 mm, respectively. 
These results are comparable to those achieved using our previous approach and sug-
gest that the automatic registration method we propose and the previously presented 
semi-automatic method are both accurate enough to perform a PCI surgery. 

4 Conclusions 

PCI surgery requires the registration of the pre- and intra-operative images to map the 
pre-operatively computed drilling trajectory into the intra-operative space. The field 
of view and the position and orientation of the patient’s head in the intra-operative CT 
are inconsistent. These differences between the pre- and intra-operative CTs are too 
extreme to be recovered by standard, gradient descent-based registration methods. In 
this work, we presented a completely automatic method of pre- to intra-operative CT 
registration for PCI that is just as accurate as performing the registration using manual 
initialization. This approach relies on a feature-based registration method that, to the 
best of our knowledge, has not been used by the medical imaging community. We 
found this technique to be efficient and accurate. 

To quantitatively measure performance, we compared the target and entry points of 
an automatically registered trajectory to a trajectory mapped using the manual initiali-
zation-based approach, which is being clinically validated [9], and we have found a 
maximum error distance of 0.19 mm. However, since both approaches use the same 
intensity-based registration approach as the final optimization step and converge to 
similar results, it is likely that both methods produce equally accurate results. We are 
currently evaluating the automatic procedure prospectively to confirm this. 

We recently presented another method for automating the manual initialization 
process that also relies on a surface registration component [3]. In that method, fea-
ture-based surface registration is performed by matching features on the skull surface. 
The drawbacks of that method are that the skull surface extraction requires manual 
intervention and the time required to perform surface extraction is ~20 min. The ad-
vantage of the proposed approach is that it eliminates all manual intervention, and it 
only requires 0.75 min, which is fast enough to be integrated into the PCI workflow 

Patient 1 2 3 4 Average
Proposed Target point 0.1943 0.0589 0.1215 0.1483 0.1308
approach Entry point 0.1938 0.0544 0.1234 0.1483 0.1300
Previous Target point 0.1792 0.0402 0.0211 0.1499 0.0976
approach Entry point 0.1802 0.0418 0.0209 0.1631 0.1015
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since the manual initialization-based approach we currently use typically requires 
more than 2 min.  

One limitation of our proposed registration approach is that it is not invariant to 
scale. Future work will focus on addressing this issue. 
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Abstract. Current longitudinal image registration methods rely on the
assumption that image appearance between time-points remains con-
stant or changes uniformly within intensity classes. This assumption,
however, is not valid for magnetic resonance imaging of brain develop-
ment. Registration methods developed to align images with non-uniform
appearance change either (i) locally minimize some global similarity mea-
sure, or (ii) iteratively estimate an intensity transformation that makes
the images similar. However, these methods treat the individual images
as independent static samples and are inadequate for the strong non-
uniform appearance changes seen in neurodevelopmental data. Here, we
propose a model-based similarity measure intended for aligning longitu-
dinal images that locally estimates a temporal model of intensity change.
Unlike previous approaches, the model-based formulation is able to cap-
ture complex appearance changes between time-points and we demon-
strate that it is critical when using a deformable transformation model.

1 Introduction

2wk 3mo 6mo 12mo 18mo

Fig. 1. MR images of the developing mon-
key brain (2 weeks through 18 months). Un-
myelinated white matter in the early stages
of development appears darker than the
myelinated white matter in later stages.

The analysis of longitudinal images is
important in the study of neurode-
velopment and its disorders. If global
measures are insufficient for analysis,
change can be localized by establish-
ing image correspondence via regis-
tration. The aim of the registration
method is then to find a reasonable
geometric transformation between the
images according to some similarity
measure and a model of spatial trans-
formation. Although longitudinal reg-
istration has received some attention in recent years, most of the effort has
been focused on the spatial extent of change (various formulations of large-
deformation-diffeomorphic-mapping (LDDMM) registration [2,6]) while relying
on conservative assumptions about the temporal changes in image appearance.
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Commonly used global similarity measures (sum of squared differences (SSD),
normalized cross correlation (NCC), mutual information (MI) [10]), for instance,
expect a one-to-one relationship between the spatially corresponding intensities
(or intensity ranges in the case of mutual information due to histogram binning)
of the different time-points. This is not a valid assumption for certain registra-
tion problems. In longitudinal magnetic resonance (MR) imaging studies of brain
development, for example, the biological process of myelination causes a substan-
tial shift in the MR appearance of white matter tissue that is both spatially and
temporally non-uniform [1,8] (Fig. 1 shows MR images of the developing brain).
As a result, deformable registration methods that use global similarity measures
often fail to recover the correct alignment in this setting since inconsistencies
in appearance can be resolved by introducing erroneous local deformations that
are not supported by the underlying structural information [5].

The various approaches that have been proposed for aligning images with non-
uniform appearance change (often for less severe intensity variation arising from
magnetic field inhomogeneities) either (i) locally minimize some global similarity
measure in overlapping subregions that are small enough to have near constant
intensities within tissue types [9,5], or (ii) jointly with registration, estimate an
intensity transformation that makes the images similar [3,7]. While local meth-
ods are appropriate for aligning images with spatially smooth and slowly varying
intensity changes within tissue classes, the trade off between registration accu-
racy and subregion size means that they are inadequate for the strong intensity
gradients seen in myelinating white matter tissue. Intensity transform methods
either have similar spatial limitations due to the slowly varying basis functions
used to approximate the intensity transform [3], or discard spatial information
and therefore cannot capture complex intensity transformations [7].

Here, we formulate a model-based similarity measure (mSM) that estimates
local appearance change over time. Once the temporal model is estimated, exist-
ing deformable registration methods can also be used with the model to recover
the correct alignment by changing the appearance of one image to match the
other. After formulating our method in the following section, we first demon-
strate in Sect. 3 that MI and our approach both perform well with an affine
transformation model in the presence of non-uniform appearance change, but
then show that using the model-based approach is critical for deformable regis-
tration. This method can either (i) estimate the temporal intensity change model
without any prior, or (ii) use a known model for the initial alignment.

2 Modeling Appearance Change

We introduce a spatio-temporal model of appearance change into a general regis-
tration framework via a model-based similarity measure. To motivate the model-
based similarity measure consider the standard sum of squared differences (SSD)
similarity term. If a transformation model is involved the SSD can be written as

SSD(I0, I1) =

∫
Ω

(I0(x) ◦ Φ(x) − I1(x))
2 dx, (1)
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where Φ(x) is the transformation that maps the coordinate system of image
I0 to that of image I1. If we consider the SSD measure a simple model-based
registration method, where the image model is simply the given image I = I0,
then SSD aims to minimize the squared residuals to this model subject to the
sought for transformation. We will therefore consider SSD a special case of a
sum of squared residual (SSR) model. With a time-dependent image model and
a generalization to multiple images, we can write the corresponding SSR as

SSR({Ii}) =
n−1∑
i=0

∫
Ω

(Ii(x, ti) ◦ Φi(x)− Î(x, ti))
2 dx,

where Ii(·, ti) denotes the measured image at time-point ti and Î(·, ti) the model
(estimate) at the same time-point. Note that for two time-points and Î = I1
the model simplifies to the standard SSD. For simplicity, consider a quadratic
(in-time) appearance model

Î(x, t) = α(x)t2 + β(x)t + γ(x), (2)

where α, β, and γ are spatially varying model coefficients.

2.1 Transformation Model

Assume that we aim to estimate the affine transform of the form Ax+ b for each
image back to the coordinate system of the model Î and denote the set of these
transformations as {Ai, bi}. Then the registration model becomes

SSR({Ii}, {Ai, bi}, α, β, γ) =
n−1∑
i=0

∫
Ω

(Ii(Aix+ bi, ti)− Î(x, ti))
2 dx, (3)

resulting in the point-wise linear system

n−1∑
i=0

⎛⎝t4i t3i t2i
t3i t2i ti
t2i ti 1

⎞⎠⎛⎝α(x)
β(x)
γ(x)

⎞⎠ =

n−1∑
i=0

Ii(Aix+ bi, ti)

⎛⎝t2i
ti
1

⎞⎠ ,

which amounts to a local fitting of the quadratic model (2) given the current
estimate of the affine transformation parameters. Any other model could be
substituted here. Note that the image-comparison terms in (3) are strictly with
respect to the model (2) which is estimated jointly. Estimation of the model and
the affine parameters can then be accomplished by alternating model fitting and
transformation parameter estimation steps. In the extreme case one (i) estimates
the affine transforms given the current model then (ii) re-estimates the model and
then repeats these two steps to convergence. Note also that there is a rotational
ambiguity, so one of the coordinate systems should be fixed, e.g., A0 = x, b0 = 0.

Here, to introduce the decoupled registration and model estimation steps, we
started with an affine transformation model. However, the same principle can
be applied to more flexible registration methods, such as the deformable elastic
registration used for the experiments in Sect. 3.



102 I. Csapo et al.

2.2 Spatial Regularization

Instead of estimating the appearance model parameters independently for each
voxel, we can get a more robust estimate by estimating the parameters over
subregions of the image, where the subregions are defined on a template (atlas)
image. This, however, still leaves the problem of choosing the image subregions.
If tissue segmentation is available, one reasonable choice would be to estimate
the parameters for each tissue class. Using this approach, for each assumed to
be uniform template region Rl the parameter fitting equations for the quadratic
case become

|Rl|
n−1∑
i=0

⎛⎝t4i t3i t2i
t3i t2i ti
t2i ti 1

⎞⎠⎛⎝αl

βl

γl

⎞⎠ =

n−1∑
i=0

∫
Rl

Ii(Aix+ bi, ti) dx

⎛⎝t2i
ti
1

⎞⎠ ,

everything else stays the same. Here, |Rl| denotes the cardinality of the set Rl

and αl, βl, and γl denote the model parameters valid (constant) on Rl. This
approach, however, assumes that the intensity change within a tissue class is
spatially uniform.

2.3 Model Parameter Estimation

P

A

P

A

I0

I1

I2

In−1

w

Nl

Rl

...

Fig. 2. Subregion based model estima-
tion. Each subregion Rl (red) is defined
on the available white matter segmenta-
tion (usually at the last-time point). The
subregions are perpendicular to the PA
direction. The model parameters for Rl

are estimated from a neighborhood Nl of
width w (yellow).

For the current implementation of the
method spatial regularization of the
model parameters was achieved by a
subregion based approach shown in
Fig. 2. Since the intensity change in the
white matter occurs dominantly in the
posterior-anterior (PA) direction (see
Fig. 3) we chose subregions, Rl, that
span across the white matter perpendic-
ular to the posterior-anterior direction.
So far, this is the same as the subre-
gion method described above. However,
instead of estimating the model parame-
ters from Rl only, we use a neighborhood
Nl of width w centered on Rl and use ro-
bust statistics to estimate the model pa-
rameters for Rl. The neighborhoods for
adjacent Rl are overlapping and therefore encourage spatial regularization in the
posterior-anterior direction.

Estimation of the model and affine parameters can be accomplished by al-
ternating the model fitting and transformation parameter estimation steps. In
the extreme case we can first estimate the transformation given the model as a
separate registration step and then re-estimate the model and repeat these two
steps until convergence. In fact, taking this idea even further, one can change the
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appearance of the estimated image according to the model and use any registra-
tion method to estimate the transformation parameters. Here, we use the latter
approach which allows the testing of existing registration algorithms with mSM.
The algorithm for iterative registration and estimation is is set up as follows:

0) Initialize model (Î) parameters to α = α0, β = β0, γ = γ0.
1) Affinely pre-register images {Ii} to Î.
2) Estimate the appearance of Î at times {ti}, giving {Î(ti)}.
3) Estimate displacement fields {ui} by registering images {Ii} to {Î(ti)}.
4) Estimate model parameters α, β, γ from the registered images {Ii ◦ ui}
5) Repeat from step 2 until convergence.

Convergence was achieved when the change in the registration energy function
between iterations was below tolerance (typically less than 5 iterations).

3 Experimental Results

The similarity measures were tested by registering pairs of 2D synthetic images
with a known ground truth transformation between them. The registration ac-
curacy was determined by computing the distance between the ground truth and
the recovered transformation. The root mean squared (RMS) error of the voxel-
wise distance within the mask of the target image then yielded the registration
error. All experiments are in 2D, but the method generalizes to 3D.

3.1 White Matter Intensity Distributions from Real Data
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Fig. 3. Spatio-temporal distribution of white matter in-
tensities in 9 monkeys. A single slice from each time-
point is shown in order in the left column (2 week at the
bottom), and the white matter segmentation (red) at 12
months is shown in the middle. Plotted, for each time-
point, the mean (line) ± 1 standard deviation (shaded
region) of the spatial distribution of the white matter in-
tensities averaged over the whole brain of each monkey
in the PA direction. The images were affinely registered
and their gray matter intensity distributions matched.

An important part of
the registration exper-
iments is testing the
similarity measures on re-
alistic appearance change
while knowing the ground
truth deformations. To
this end, we calculated
the spatial and tempo-
ral intensity changes from
the MR images of 9 rhe-
sus monkeys during the
first 12 months of life.
The white matter inten-
sity trajectories acquired
from the real monkey
data were then used to
generate the simulated
brain images for Experi-
ment 2 (Sect. 3.3).
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The spatial white matter distributions were calculated for each time-point
(2 week, 3, 6, 12 month) of the 9 monkeys. The early time-points have low
gray-white matter contrast, therefore the white matter segmentation of the 12
month image was transferred to the earlier time-points (this is often the case
for longitudinal studies where good tissue segmentation might only be available
at the latest time-point). Due to the few images available at this stage of the
study, we averaged the white matter intensity change of the whole brain in a
single dimension along the posterior-anterior direction (most of the intensity
change is along this direction [4]). Figure 3 shows the mean and variation of the
white matter intensity profiles from all four time-points. Myelination starts in
the posterior and central regions of the white matter and continues towards the
periphery and, dominantly, towards the anterior and posterior regions. These
findings agree with existing studies on myelination [4]. Of note is the strong
white matter intensity gradient in the early time-points due to the varying onset
and speed of the myelination process.

3.2 Experiment 1:
Synthetic Data

target I0(1) I0(n)

I1 In error

Φi ◦ Φ̂−1
i

Φ1 Φn

Φ̂−1
i

1

2
3

4

1

0

Fig. 4. Experimental setup: 1) Increasing white
matter intensity gradient is added to the target,
I0. 2) Adding known random deformations yields
the source images, 3) which are registered back to the
target. 4) Registration error is calculated from the
known (Φi) and recovered (Φ̂−1

i ) transformations.

In this experiment, we created
sets of 64 × 64 2D synthetic
images. Each set consisted
of 11 time-points (Ii, i =
0, . . . , 10). I0 was designated
as the target image and all
subsequent time-points as the
source images. The gray mat-
ter intensities of all 11 images
were fixed (Igmi = 80). For the
source images, I1, . . . , I10, we
introduced two types of white
matter appearance change:

i) Uniform white matter appearance change over time, starting as dark (un-
myelinated) white matter (Iwm

1 = 20) and gradually brightening (myeli-
nated) white matter (Iwm

10 = 180) resulting in contrast inversion between
gray and white matter. The target white matter intensity was set to 100.

ii) White matter intensity gradient along the posterior-anterior direction with
increasing gradient magnitude over time. The target image had uniform
white matter (Iwm

0 = 50). For the source images the intensity gradient
magnitude increased from 1 to 7 intensity units per pixel (giving Iwm

1 =
{50, . . . , 70} up to Iwm

10 = {50, . . . , 200}). These gradients are of similar
magnitude as observed in the real monkey data.

We tested the similarity measures for two types of transformation models: affine;
and deformable with elastic regularization. Figure 4 shows the experimental
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setup with deformable transformation model (for the affine registration exper-
iments Φi was an affine transform; for the deformable registration experiment
Φi was a spline deformation with 20 control points). The aim of the experiment
was to recover the ground truth inverse deformation, Φ−1

i , by registering the

10 source images to I0 (giving Φ̂−1
i ) with each of the four similarity measures

(SSD, NCC, MI, mSM). We repeated each experiment 100 times for each trans-
formation model with different random deformations giving a total of 16000
registrations (2 white matter change × 2 transformation model × 10 source im-
age × 4 measure × 100 experiment). Significance was calculated with Welch’s
t-test (assuming normal distributions, but unequal variances) at a significance
level of p < 0.01.

Note that the synthetic images have longitudinal intensity changes over time,
but the random spatial deformations do not have a temporal model. This is in-
tended to be a challenging scenario for the parameter estimation, as true longitu-
dinal data is much less spatially variable, and avoid bias towards any particular
longitudinal growth model. Next, we describe the results of the experiments for
each transformation model.

Affine Transformation Model. Affine registration is often appropriate for
images from the same adult subject. In our case, it is only a preprocessing step
to roughly align the images before a more flexible, deformable registration. Nev-
ertheless, the initial alignment can greatly affect the initial model estimation
and the subsequent deformable solution. Therefore we first investigate the sensi-
tivity of affine registration to white matter appearance changes separately from
deformable registration.

Figure 5 shows the results for registering I1 through I10 to the target image
I0 from multiple sets (n = 100, giving 1000 pair-wise registrations for each sim-
ilarity measure) of longitudinal images with both uniform and gradient spatial
white matter intensity profiles. A registration error of less than 1 voxel can be
considered good alignment.

With uniform white matter, all four measures performed well when the con-
trast of the source image was close to the contrast of the target image (near
0 white matter intensity difference in the first plot of the median root means
squared registration error). The results for the gradient white matter profiles
show that the performance of both SSD and NCC declined as the gradient mag-
nitude increased, while MI and mSM aligned the images well even with the
strongest gradient. Overall, mSM significantly outperformed SSD and NCC but
not MI, however, for individual time-points mSM did significantly better for
3, . . . , 10.

The experiments suggest that affine registration can be reliably achieved by
MI or mSM, but for simplicity MI should be used if affine alignment is the only
objective.
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SSD 1.36 ± 2.87 0.17 5.79
NCC 0.51 ± 0.60 0.27 1.52

MI 0.09 ± 0.05 0.08 0.13
mSM 0.08 ± 0.36 0.06 0.10
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Fig. 5. Results for Experiment 1 with affine transformation, uniform and gradient white
matter intensity change. For uniform white matter, the line plot shows the median RMS
error vs. the white matter intensity difference between the source and the target images
(Iwm

i − Iwm
0 ) for each time-point (0 means the images have the same contrast). For the

gradient white matter, the x-axis of the line plot is the magnitude of the gradient.
The boxplots and the tables summarize the aggregate results over all time-points (the
box is the 25th and 75th percentile, the red line is the medium, the whiskers are 1.5 ×
interquartile range, and the red marks are outliers). The small boxplots show results
for each time-point (S, N, M, and m are SSD, NCC, MI, and mSM respectively). For
each boxplot, the x-label is highlighted in red if mSM performed significantly better
than that particular measure. The row of images shows the target and source images
for a single trial. Note that all box plots and the bottom line plot have log y scales.

Deformable Registration. Similarly to the affine experiment, Fig. 6 shows the
error plots for deformable registrations in the presence of white matter intensity
change. For uniform white matter, SSD again produced small registration errors
when the contrast difference was small, but fared worse than MI and mSM in the
presence of large intensity differences between the target and the source images.
mSM performed slightly better than MI for all time-points.

The setup with deformable registration and white matter gradient resembles
the real problem closely and therefore is the most relevant. Here, SSD and NCC
introduced considerable registration errors with increasing gradient magnitude.
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mSM 1.25 ± 0.35 1.20 1.71
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Fig. 6. Experiment 1 results with deformable transformation. The graphs are set up
similarly as in Fig. 5 except all plots have linear y scales. The last setup with deformable
transformation model and gradient white matter intensity is the most challenging and
relevant to the real world problem.

The registration error of MI remained under 2 voxels (mean = 1.62±0.45), while
mSM led to significantly less error (mean = 1.25± 0.35) for all time-points.

3.3 Experiment 2: Simulated Brain Data

SSD NCC MI mSM
0

1

2

3
Mean ± std Median 90th pct

SSD 1.08 ± 0.30 1.04 1.47
NCC 0.98 ± 0.25 0.94 1.31

MI 1.04 ± 0.30 0.99 1.43
mSM 0.67 ± 0.23 0.63 0.98

Table 2.

Fig. 7. Experiment 2 results. mSM lead to significantly
better alignments than the global measures.

The next set of experiments
used simulated brain im-
ages with white matter in-
tensity distributions based
on the monkey data. Four
time-points I0, . . . , I3 were
generated corresponding to
the four time-points of the
monkey data. At each time-
point, the spatial white
matter intensity distribution of the simulated image was obtained by a random
perturbation of the mean monkey white matter distribution for that particular
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time-point (see Fig. 3). The local magnitude of the perturbation was propor-
tional to the local variation of monkey white matter data, therefore the generated
curves had similar variation to the real data. The first time-point was designated
as the target image. The other three time-points were deformed by a random
deformation. The source images generated this way, similarly to Experiment 1,
were then registered to I0 with the four similarity measures. The experiment
was repeated 200 times, each time with different random white matter intensity
profiles and different random deformations. The boxplot and Tab. 2 in Fig. 7
show the aggregate results for all the time-points. mSM performed significantly
better than SSD, NCC, and MI.

4 Conclusions

We presented a temporally-dependent model-based similarity measure and com-
pared it to three of commonly used measures. mSM performed significantly bet-
ter in the majority of experiments than the other measures, especially in the
presence of considerable intensity gradients. These experiments provide strong
evidence for the usefulness of a model based approach. Considerable improve-
ment might be achieved by better model selection, spatial regularization of the
model parameters, and improved model of intensity variation (instead of the
quadratic model). These improvements and validation on real 3D data will be
part of future work.
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Abstract. We present a method to automatically select the regulariza-
tion parameter in the two-term compound cost function used in image
registration. Our method is called CFS (Constant Flow Sampling). It
samples the regularization parameter using the constraint that the warp-
induced image flow be of constant magnitude on average. Compared to
other methods, CFS provably provides a global solution at a specified
precision and within a finite number of steps. CFS can be embedded
within any algorithm minimizing a two-term compound cost function de-
pending on a regularization parameter. We report experimental results
on the registration of several datasets of laparoscopic images.

1 Introduction

A warp W is a parametric function that allows one to register a source to a
target image. We here write q′ = W(q;x) ∈ R

2 the image of a point q ∈ Ω by
the warp W with x ∈ R

p the warp’s parameter vector and Ω ⊂ R
2 the warp’s

domain. The optimal warp parameters x∗ ∈ R
p are computed by minimizing a

cost function containing a data term Ed and a regularization term Er as:

x∗(λ) = arg min
x∈Rp

Ed(x) + λEr(x), (1)

where λ ∈ R
+ is the regularization parameter, specifying the amount of regu-

larization. Automatically choosing an optimal value for λ is a difficult problem
which has not yet received a commonly agreed solution in the scientific commu-
nity. On the one hand, if the chosen λ is ‘too low’ the data term will prevail and
the warp will overfit the data, including the noise. Consequently, portions of the
warp with fewer data will not capture the true deformation. On the other hand,
if the chosen λ is ‘too large’ the warp will be too smooth and will underfit the
data.

The general approach to automatically select λ is to construct some test cost
function Em : R

+ → R, λ �→ Em(λ) whose value approximates the difference
between the warp estimate at λ and the true image deformation, and minimize:

λ∗ = arg min
λ∈R+

Em(λ). (2)

B.M. Dawant et al. (Eds.): WBIR 2012, LNCS 7359, pp. 110–119, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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This raises two difficult problems: (i) constructing the test cost function from
a limited set of data and (ii) finding the global minimimum of the test cost
function. While problem (i) has been well-studied in the literature, problem (ii)
still lags behind. For instance, the test cost function can be constructed from
the paradigm of CV (Cross-Validation) [11] or by combining landmarks and
dense intensity-based error measurements [5]. In any case, the test cost function
is always nonlinear and nonconvex, making problem (ii) extremely difficult to
solve efficiently and with guarantees of optimality on the estimated solution.
Current approaches use general purpose nonlinear optimization methods such
as golden-section search and gradient descent, which cannot cope with the ex-
tremely nonlinear behaviour of test cost functions such as Ordinary-CV.

We propose CFS (Constant Flow Sampling), a novel approach to the problem
of finding λ by optimizing Em. The key idea is to sample values of λ over the
range of admissible values. The difficulties are obviously to find an upper bound
λinit and to sample in such a way that the test cost function’s global minimum
is not overlooked. Defining an a priori sampling scheme, with regular spacing
within the space of λ is not relevant, since Em is typically almost constant for
‘large’ values of λ, and may oscillate for ‘small’ values of λ. CFS proceeds as
follows. We first compute an initial value λinit of λ large enough so that the cor-
responding warp be the λ→∞ asymptotically regularized warp that minimizes
the regularization term. We then sample λ between this initial value λinit and
0. Our key contribution is to sample λ regularly with respect to the magnitude
of the flow induced by the warp. More specifically, we select the decrease δ such
that the average magnitude of the flow between the warp at λ and at λ − δ be
some fixed constant τ ∈ R

+. The value of τ is expressed in number of pixels and
is thus easily fixed. We typically choose τ = 1 pixel. With CFS, λ undergoes
large decreases at the early steps since Em’s graph is typically flat, and smaller
decreases around the global minimum of Em. Our algorithm is thus guaranteed
to sample the range of admissible values of λ evenly and in a finite number of
steps. The global minimum is found, assuming that the test cost function is
convex within a small region, the size of which being related to the chosen flow
magnitude constant τ .

Paper Organization. We review the state of the art in §2. We present our CFS
method and algorithm in §3. We give experimental results in §4. We finally
conclude in §5.

2 State of the Art

The hyperparameter λ is often manually selected by trial and error [3,6]. Here
we will describe some methods used to select it automatically.

2.1 Defining the Test Cost Function

The problem of constructing the test cost function Em from a limited set of data
has been well studied and several criteria have been proposed. The input is a set
of n point matches {qk ↔ q′

k}k=1,...,n.
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The first three criteria are feature-based; they are applicable only when ‘enough’
point matches are available. The fourth criterion is pixel-based; it uses all the raw
information available from the images.

Training/Test Splitting (TTS). TTS is the simplest criterion. It consists in split-
ting the dataset into a training set used for the optimization of the warp pa-
rameters given λ and a test set used for the optimization of λ. It is a classical
approach in statistical learning [8]. Let {rk ↔ r′k}k=1,...,ntest

be points matches
forming the test set (a subset of the input point matches) and x∗

train(λ) the warp
parameters obtained using the training set. The TTS score ETTS

m is defined by:

ETTS
m (λ) = 1

ntest

ntest∑
k=1

‖r′k −W (rk;x∗
train(λ))‖2. (3)

Ordinary-CV (OCV). OCV is also based on a partition of the dataset. Each
point is used in turn as a test set while the others form the training set. For a
given regularization parameter λ, let x∗

(k)(λ) be the warp parameters estimated
from the data with the k-th point left out. The OCV score EOCV

m is defined by:

EOCV
m (λ) =

1

n

n∑
k=1

∥∥∥q′
k −W

(
qk;x∗

(k)(λ)
)∥∥∥2. (4)

This score has been used in [1,7]. Its computation time is low thanks to a closed-
form solution [11].

V -fold CV (VCV). An alternative to the OCV score is the VCV score. It consists
in splitting the dataset into V subsets of nearly equal size, each of them being
used alternatively as a test set while the others form the training set. Let x∗

[v](λ)
be the warp parameters obtained from the data with the v-th group left out, mv

the number of point correspondences in the v-th group and qv,k ↔ q′
v,k the k-th

correspondance of the v-th group. The VCV score EV CV
m is defined by:

EV CV
m (λ) =

V∑
v=1

mv

n

mv∑
k=1

1

mv

∥∥∥q′
v,k −W

(
qv,k;x∗

[v](λ)
)∥∥∥2. (5)

This score has been used in [2].

Photometric Error Criterion (PEC). In this criterion, the point correspondences
are used as the training set and the photometric information as the test set. Given
a regularization parameter λ and the corresponding warp parameters x∗(λ) es-
timated from the point correspondences, the PEC score EPEC

m is defined by:

EPEC
m (λ) = 1

B
∑
q∈B
‖S(q) − T (W (q;x∗(λ)))‖2, (6)

where B is the set of pixels in the region of interest, S is the source image and
T is the target image.
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2.2 Minimizing the Test Cost Function

The algorithm used to minimize the test cost function is often neglected in the
literature. Only a few articles mention the minimization algorithm they use,
which can be golden-section search, exhaustive search or downhill simplex [1,5].
We assume that other nonlinear optimization methods, like gradient descent,
may have been used. Each of these methods have one or both of the following
limitations: the region where to search the minimum is user-defined and the local
minimization does not guarantee that the global minimum is found.

3 CFS – Constant Flow Sampling

This section introduces our CFS method and algorithm. We first give general
points, then study how to find a constant average flow magnitude decrease δ of λ
and how to find an upper bound λinit on λ. We finally discuss some characteristics
of CFS.

3.1 General Points and Algorithm

Our CFS is meant to be used with any test cost function Em and method to
train the warp (or more generally the model) parameters. We thus assume that,
given some value of the regularization parameter λ, the corresponding warp
parameters x∗(λ) can be found by solving problem (1), and that the test cost
function is given. Our goal is here to solve problem (2) with a sampling strategy
over λ. The CFS algorithm is as follows:

Inputs: test cost function Em : R
+ → R, tolerance on the flow τ ∈ R

+

– Choose an upper bound λinit ∈ R
+ (see §3.3)

– Set λ← λinit and λ∗ ← λinit
– While λ > 0 do
• Choose the decrease δ ∈ R

+ such that the average flow magnitude be-
tween the warp with parameters x∗(λ) and x∗(λ− δ) equals τ (see §3.2)
• If Em(λ− δ) < Em(λ∗), Set λ∗ ← λ− δ
• Set λ← λ− δ

Outputs: regularization parameter λ∗, warp parameters x∗(λ∗)

3.2 Sampling at a Constant Flow Magnitude

Our algorithm samples λ from its upper bound λinit to 0. For each sample value
λ we thus have to compute the next value λ − δ such that the displacement of
the warp is constant. We now describe how to compute the flow magnitude at a
single point q ∈ Ω between the warps with parameters x∗(λ) and x∗(λ−δq). For
a decrease δq of the regularization parameter λ, the flow difference constraint
between the two parameter vectors is:

‖W(q,x∗(λ)) −W(q,x∗(λ− δq))‖ = τ,
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where we recall that τ ∈ R
+ is the specified tolerance on the flow difference

magnitude. We here make the assumption that the warp model being used is
linear in its parameter vector (but not necessarily in the point coordinates). This
is a common requirement, satisfied by most classical warps such as the Thin-
Plate Spline [11], the Free-Form Deformation [10] and others such as Moving
Least Squares [9]. The training cost function Ed(x) + λEr(x) of problem (1) can
thus be assumed to be of the form Ed(x) def= ‖Ax− b‖2 and Er(x) def= ‖Kx‖2.
Consequently, we obtain:

x∗(λ) =
(
A�A + λK�K

)−1
A�b.

We define aq ∈ R
p to be the lifted coordinates of point q ∈ Ω, such that

W(q,x) = a�
q x. The flow difference can thus be rewritten as:∥∥a�

q x∗(λ)− a�
q x∗(λ− δq)

∥∥ = τ.

This is a high order polynomial in δq. We use Taylor expansion of x∗ around λ
to get:

x∗(λ− δq) = x∗(λ) +
n=∞∑
n=1

1

n!

∂nx∗(λ)

∂λn
δn
q

= x∗(λ) +
n=∞∑
n=1

(
A�A + λK�K

)−1
((

K�K
) (

A�A + λK�K
)−1
)n

A�b δn
q .

An approximate solution is obtained by truncating the above expansion to first
order, leading to the following constraint on the flow magnitude difference:∥∥∥a�

q

(
A�A + λK�K

)−1 (
K�K

) (
A�A + λK�K

)−1
A�b δq

∥∥∥ = τ.

This allows us to obtain the following expression for δq as a function of the
current λ and flow magnitude tolerance τ :

δ̃q = τ∥∥∥a�
q

(
A�A + λK�K

)−1 (
K�K

) (
A�A + λK�K

)−1
A�b

∥∥∥ .
Note that the denominator represents the flow rate with respect to λ. It it of
course possible to truncate the Taylor expansion to a higher order. This would
lead to a polynomial root-finding problem in a single variable, δq, which can be
very easily solved numerically.

In practice, we evaluate the flow for a dense set of points B ⊂ Ω (we use every
pixels). Different strategies can be used to select δ. First, the minimum value over
all points can be used. This option is the safest by producing a large amount of
samples, but still guaranteeing convergence in a finite number of steps. Second,
the maximum value over all points can be used. This option will produce fewer
samples, and will trade accuracy of the solution for runtime. Third, the average
value over all points can be used: this option is a reasonable compromise between
accuracy and runtime. Using this third strategy the decrease δ will be:

δ = 1

size(B)

∑
q∈B

δ̃q.
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3.3 Finding an Upper Bound

Fig. 1. λinit is chosen so that δmin <
δ(λinit) < δmax

When the algorithm begins, λ
generally has a very large value,
corresponding to an asymptotic reg-
ularization. The corresponding rate
of displacement will thus be approxi-
mately zero, and will lead to δ 
 λ,
causing the algorithm to immediately
terminate. We thus have to compute
an upper bound λinit on λ such that
the rate of displacement is large enough to yield a suitable decrease δ in λ. To
do this we choose λinit such that δ(λinit) lies between two bounds: δmin and
δmax. This will ensure that both the rate of displacement of the warp and δ are
large enough. We proceed in two steps. First, we start from a high value λmax
for λ that we know to be in the asymptotic case (e.g. λmax = 1010). We then
iteratively decrease λ by dividing it by 10 and compute δ at each step. We stop
when δ is lower than δmax (e.g. δmax =

λ

2
). This gives a lower bound λlow for

λinit. Second, we check if δlow is greater than δmin (e.g. δmin = λ

3
). If this holds

we stop and set λinit ← λlow. If not, we take λhigh = 10λlow and run a simple
bisection search to find λinit such that δmin < δ(λinit) < δmax, as we can see in
figure 1.

3.4 Discussion

CFS has several advantages. First, it guarantees that the estimated λ∗ matches
the global minimum of Em provided that the global minimum is not too sharp
for the user defined tolerance τ on the warp-induced flow (e.g. τ = 1 pixel).
Second, it guarantees that the precision of λ∗ with respect to the true global
minimum corresponds to the tolerance τ . The trade-off between runtime (less
samples) and accuracy (more samples) can be easily specified by changing the
value of τ .

4 Experimental Results

4.1 Implementation

In our implementation we use a B-spline warp, also known as the FFD warp [10].
The domain Ω ⊂ R

2 of this warp is a rectangle and the warp’s shape is controlled
by a set of control points which form the warp’s parameters.

We present experimental results on two datasets extracted from laparoscopic
sequences, with manually-selected point correspondences. For both datasets we
tested the TTS and PEC cost functions using the same training set.
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4.2 Human Uterus

The first dataset shows a human uterus and has 35 point correspondences, as
can be seen in figure 2.

Fig. 2. The uterus image pair with 35 point correspondences

Figure 3 shows the photometric error obtained using PEC. We can see that
the photometric error function has several local minima, and that the part cor-
responding to ‘small’ values of λ (which is not visible on the linear scale) has
many sharp variations that cannot be handled by traditionnal nonlinear opti-
mization methods. Figure 3 also shows the test error obtained using TTS. We
found λ∗

PEC = 1.256×103 and λ∗
TTS = 0.968×103 and the corresponding train-

ing errors: EPEC
train = 3.787px and ETTS

train = 3.657px. The average flow difference
between the corresponding warps is 1.54 pixels.
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Fig. 3. PEC and TTS scores for the uterus dataset
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We can see in figure 4 the target points and the warped source points. The
difference we can observe is mainly due to the fact that the B-spline warp has
difficulties to deal with strong perspective effects like with this couple of images.
We could probably obtain better results by using a NURBS warp which has
been proved to model perspective better than the B-spline warp [4]. However,
the NURBS warp is not linear and would need CFS to be extended to handle
that case.

Fig. 4. The deformation grid of the warp, left: TTS criterion, right: PEC criterion,
dots: warped source points, crosses: target points, red: training set, black: test set

4.3 Pig Intestines

The second dataset shows pig intestines and has 54 correspondences, as we can
see in figure 5. We can see the test error and the photometric error obtained
with both tested methods in figure 6. In this particular case, the photometric
error seems to be smoother than with the uterus dataset.

Fig. 5. The intestines image pair with 54 point correspondences

We can see in figure 7 the target points and the warped source points which
are really close to each other. On this example we have λ∗

PEC = 0.186× 103 and
λ∗

TTS = 0.413× 103, with the corresponding training errors: EPEC
train = 0.3972px

and ETTS
train = 0.379px. The difference between these values can be explained

by the fact that the photometric error does not vary much near the optimum
(optimum: λ∗

PEC = 0.413× 103, EPEC
m = 13.02; next sample evaluated: λPEC =

0.141× 103, EPEC
m = 13.03).
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Fig. 6. TTS score (left) and PEC score (right) for the pig intestines dataset

Fig. 7. The deformation grid of the warp, left: TTS criterion, right: PEC criterion,
dots: warped source points, crosses: target points, red: training set, black: test set

5 Conclusion

We have presented the CFS (Constant Flow Sampling) method that allows one
to find the optimal regularization parameter λ∗ of a warp with respect to a given
test cost function. It proceeds by sampling the values of λ such that the flow of
the warp between two consecutive values is kept approximatively constant. CFS
guarantees that the global minimum is found within a user-defined tolerance,
under mild constraints on the test cost function. We have successfully tested
this method with the photometric error criterion and with the training/test
splitting, but it can also be used with any criterion such Ordinary-CV or V -fold
CV. A further step will be to implement our method for nonlinear warps, by
finding a way to approximate the flow of the warp with respect to λ.
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Abstract. For image registration to be applicable in a clinical setting,
it is important to know the degree of uncertainty in the returned point-
correspondences. In this paper, we propose a data-driven method that
allows one to visualize and quantify the registration uncertainty through
spatially adaptive confidence regions. The method applies to various
parametric deformation models and to any choice of the similarity cri-
terion. We adopt the B-spline model and the negative sum of squared
differences for concreteness. At the heart of the proposed method is a
novel shrinkage-based estimate of the distribution on deformation pa-
rameters. We present some empirical evaluations of the method in 2-D
using images of the lung and liver, and the method generalizes to 3-D.

1 Introduction

Image registration is the process of finding the spatial transformation that best
aligns the coordinates of an image pair. Its ability to combine physiological and
anatomical information has led to its adoption in a variety of clinical settings.
However, the registration process is complicated by several factors, such as the
variation in the appearance of the anatomy, measurement noises, deformation
model mismatch, local minima, etc. Thus, registration accuracy is limited in
practice, and the degree of uncertainty varies at different image regions. For
image registration to be used in clinical practice, it is important to understand
its associated uncertainty.

Unfortunately, evaluating the accuracy of a registration result is non-trivial,
mainly due to the scarcity of ground-truth data. For rigid-registration, there
have been studies where physical landmarks are used to perform error analysis
[3]. Statistical performance bounds for simple transformation models have been
presented under a Gaussian noise condition [11,13]. However, it is generally diffi-
cult or impractical to extend these methods to nonrigid registration, which limits
their applicability since many part of the human anatomy cannot be described
by a rigid model.

While characterizing the accuracy of a nonrigid registration algorithm is even
more challenging, there have been recent works addressing this issue. Christensen
et al. initiated a project which aims to allow researchers to perform comparative
evaluation of nonrigid registration algorithms on brain images [1]. Kybic used

B.M. Dawant et al. (Eds.): WBIR 2012, LNCS 7359, pp. 120–130, 2012.
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bootstrap resampling to perform multiple registrations on each bootstrap sam-
ple, and used the results to compute the statistics of the deformation parameter
[8]. In [6], Hub et al. proposed an algorithm and a heuristic measure of local un-
certainty to evaluate the fidelity of the registration result. Risholm et al. adopted
a Bayesian framework in [10], where they proposed a registration uncertainty
map based on the inter-quartile range (IQR) of the posterior distribution of the
deformation field. Simpson et al. also adopted the Bayesian paradigm in [12],
where they introduced a probabilistic model that allows inference to take place
on both the regularization level and the posterior of the deformation parame-
ters. The mean-field variational Bayesian method was used to approximate the
posterior of the deformation parameters, providing an efficient inference scheme.

We view the deformation as a random variable and propose a method that
estimates the distribution of the deformation parameters given an image pair
and registration algorithm. For illustration purpose, we use the cubic B-spline
deformation model and the negative sum of squared differences as the similarity
criterion, but the idea is applicable for other forms of parametric model (see [5]
for other possible choices) and intensity-based registration algorithms. The es-
timated distribution will allow us to simulate realizations of registration errors,
which can be used to learn spatial confidence regions. To the best of our knowl-
edge, none of the existing methods view the registration uncertainty through
spatial confidence regions represented in the pixel-domain. The confidence re-
gions can be used to create an interactive visual interface, which can be used to
assess the accuracy of the original registration result. A conceptual depiction of
this visual interface is shown in Fig. 1. When a user, such as a radiologist, selects
a pixel in the reference image, a confidence region appears around the estimated
corresponding pixel in the homologous image. If the prespecified confidence level
is, say γ = 0.95, then the actual corresponding point is located within the confi-
dence region with at least 95% probability. The magnitude and the orientation
of the confidence region offers an understanding of the geometrical fidelity of the
registration result at different spatial locations.

(a) (b) (c)

Fig. 1. Conceptual illustration of the proposed method. The marks in (a)-(b) are a few
point-correspondences estimated by registration. The confidence regions in (c) offer an
understanding of the possible registration error for these pixels. We expect the shape
of the confidence regions to reflect the local image structure, as demonstrated in (c).
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2 Method

For clarity, the idea is presented in a 2-D setting, but the method generalizes
directly to 3-D.

Nonrigid Registration and Deformation Model. When adopting a para-
metric deformation model, it is common to cast image registration as an opti-
mization problem over a real valued function Ψ , a similarity measure quantifying
the quality of the overall registration. Formally, this is written

argmax
θ

Ψ
(
fr(·), fh ◦ T (· ; θ)

)
, (1)

where fr, fh : R
2 → R are the reference and the homologous images respec-

tively, and T (· ; θ) : R
2 → R

2 is a transformation parametrized by θ. Letting
x = (x, y) denote a pixel location, a nonrigid transformation can be written
T (x; θ) = x + d(x; θ), where d(· ; θ) is the deformation. To model the deforma-
tion, we adopt the commonly used tensor product of the cubic B-spline basis
function β [7], where the deformation for each direction q ∈ {x, y} is described
independently by parameter coefficients {θq} as follows:

dq(x; θq) =
∑
i,j

θ(i,j)
q β

(
x

mx
− i

)
β

(
y

my
− j

)
. (2)

The scale of the deformation is controlled by mq, which is the knot spacing in
the q direction. If K knots are placed on the image, the total dimension of the
parameter θ = {θx, θy} is 2K since θx, θy ∈ R

K .

Spatial Confidence Regions. Given the image pair fr and fh, let Ωr ⊂ R
2

and Ωh ⊂ R
2 denote the regions of interest in the reference and homologous

image respectively. Also, let θ̂ be the deformation coefficients estimated from
registration (1). We will assume that the underlying ground-truth deformation
belongs to the adopted deformation class, with deformation parameter θ. Then,
the registration error e for pixel x ∈ Ωr is expressed as

e(x) =
(
ex(x), ey(x)

)
= T (x; θ̂)− T (x; θ) . (3)

We will view the true deformation θ as a random variable, which introduces a
distribution on e(x) for each x. The confidence region Φ(x) ⊆ Ωh is a set such
that Pr

(
e(x) ∈ Φ(x)

)
≥ γ, where γ ∈ [0, 1] is a prespecified confidence level. To

estimate the spatial confidence regions, we adopt the following two-step process.
First, we estimate the distribution of θ. We assume θ ∼ N (μθ, Σθ), so the

problem reduces to estimating μθ and Σθ. This is a challenging task because
there is only a single realization of θ, corresponding to the given reference and
homologous images, and this realization is not observed.

Second, given the estimates of μθ and Σθ, we can then simulate approximate
realizations of θ, and thereby simulate spatial errors e(x). From this it is straight-
forward to estimate Φ(x). However, sampling fromN (μ̂θ, Σ̂θ) is potentially com-
putationally intensive. The total dimension ofθ for the B-spline model is 2K in 2-D
and 3K in 3-D. For a high resolution CT data-set of image size 512 × 512 × 480
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with voxel dimensions 1× 1 × 1 mm3, B-spline knots placed every 5 mm leads to
a dimension on the order of millions. Sampling from a multivariate normal distri-
bution requires a matrix square root of Σθ, but this is clearly prohibitive in both
computational cost and memory storage. Therefore it is essential that the estimate
Σ̂θ have some structure that facilitates efficient sampling.

Estimation of Deformation Distribution. We use the registration result θ̂
as the estimate for μθ, and propose the following convex combination for Σθ :

Σ̂θ = (1− ρ)Σo + ρθ̂θ̂T . (4)

The first term Σo is a positive-definite matrix which is an a priori baseline
we impose on the covariance structure, and the second term is a rank-1 outer
product that serves as the data-driven component. The weighting between the
two terms is controlled by ρ ∈ [0, 1). Note that (4) has a form of a shrinkage
estimator reminiscent of the Ledoit-Wolfe type covariance estimate [9], but only
using the registration result θ̂.

For the baseline covariance Σo, we propose to use a covariance matrix which
is motivated from the autoregressive model. Let ΣAR ∈ R

K×K
++ denote the co-

variance of a first order 2-D autoregressive model, whose entries are given as

ΣAR(i, j) = r|x(i)−x(j)|
x r|y(i)−y(j)|

y , 1 ≤ i, j ≤ K . (5)
Here, |rx| < 1 and |ry | < 1 are parameters that control the smoothness between
neighboring knots, and x(i) = mod (i − 1, nx), y(i) = �(i− 1)/nx� are the
mappings from the lexicographic index i to its corresponding (x, y) coordinate,
assuming an (nx × ny) grid of knots. A key property of this dense matrix is
that its inverse, or the precision matrix ΘAR = Σ−1

AR
, is block-tridiagonal with

tridiagonal blocks. Specifically, ΘAR has an ny-by-ny block matrix structure with
each blocks of size (nx × nx), and only the main diagonal and the subdiagonal
blocks are non-zero. Furthermore, these non-zero blocks are tridiagonal with the
values of the non-zero entries known as a function of rx and ry.

Based onΣAR , we propose to use the following baseline covariance Σo ∈ R
2K×2K
++

having a 2-by-2 block matrix structure expressed by the Kronecker product:

Σo =
[

cxΣAR cxyΣAR

cxyΣAR cyΣAR

]
=
[
cx, cxy

cxy, cy

]
⊗ΣAR . (6)

The coefficients cx and cy assign the prior variance level on θx and θy, whereas
cxy assigns the prior cross-covariance level between θx and θy. The only restric-
tion on these values is (cxcy) > c2

xy, which ensures Σo is positive-definite. It is
important to note that the precision matrix Θo of this baseline covariance is
sparse, also having a 2-by-2 block matrix structure

Θo = Σ−1
o =

[
cx, cxy

cxy, cy

]−1

⊗Σ−1
AR

=
[
px, pxy

pxy, py

]
⊗ΘAR , (7)

where {px, py, pxy} are obtained by inverting the 2 × 2 coefficient matrix. The
sparsity structure of Θo can be interpreted intuitively under a Gaussian graphical
model framework. The conditional dependencies between knots are described
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Fig. 2. Illustration of the properties of the baseline covariance Σo. The val-
ues used are (nx, ny) = (50, 50), (rx, ry) = (0.95, 0.8), and {cx, cy , cxy} =
{1, 2, 0.5}. (a) The baseline covariance Σo, (b) the sparsity structure of Θo = Σ−1

o ,
(c)-(d) B-spline coefficients θx and θy obtained from sample θ = (θx, θy) ∼ N (0, Σo).

by the non-zero entries in the matrix, which are represented as edges in an
undirected graph. For our model, a knot θx(i, j) has 17 edges, 8 connected to
its 8-nearest neighbors and the other 9 connected to the corresponding θy(i, j)
knot and its 8-nearest neighbors. Fig. 2 provides an illustration of Σo and the
sparsity structure of its inverse Θo, along with an example realization of B-spline
coefficients θ = (θx, θy).

Error Simulations and Spatial Confidence Regions. Since the estimate
Σ̂θ (4) is a rank-1 updated form of the baseline Σo, we can exploit the sparsity
structure of Θo to efficiently draw realizations from N (θ̂, Σ̂θ) without explicitly
storing or computing a matrix square root for the dense matrix Σ̂θ. We only
need to store the sparse precision matrix Θo and compute its cholesky factor Lo,
which can be done in O(K) operations [4]. This allows the sampling procedure
to scale gracefully to 3-D.

Using such sampling procedure, we can now generate realizations of registra-
tion error e(x) as follows:

1. Sample θi ∼ N (μ̂θ , Σ̂θ).
2. Synthesize reference image f

(i)
r (x)← fh ◦ T (x; θi).

3. Register fh on to f
(i)
r to get estimate θ̂i.

4. Compute error ei(x) = T (x; θ̂i)− T (x; θi).

We assume that e(x) ∼ N
(
μe(x), Σe(x)

)
for all x. Then the spatial confidence

region associated with pixel x ∈ Ωr is defined by the ellipsoid

Φ(x) = {x′ :
(
x′ − μe(x)

)T
Σ−1

e (x)
(
x′ − μe(x)

)
< χ2

2(1 − γ)} , (8)

which is the 100γ% level set of the bivariate normal distribution. Under this
formulation, confidence region estimation becomes the problem of estimating
{μe(x), Σe(x)}, the mean and covariance of the registration error at pixel lo-
cation x. We estimate these with the sample mean and covariance based on
the simulated errors {ei(x)}. Algorithm 1 outlines the overall spatial confidence
region estimation process.
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Algorithm 1. Spatial Confidence Regions Generation
Input: fr , fh

Output: {μ̂e(x), Σ̂e(x)} for all x ∈ Ωr

θ̂ ← arg max
θ′

Ψ
(
fr(·),fh ◦ T (· ; θ′)

)
μ̂θ ← θ̂

Σ̂θ ← (1− ρ)Σo + ρθ̂θ̂T

for i = 1, · · · , N
sample θi ← N (μ̂θ , Σ̂θ)

generate f
(i)
r (x)← fh ◦ T (x;θi)

register θ̂i ← arg max
θ′

Ψ
(
f (i)

r (·), fh ◦ T (· ; θ′)
)

compute ei(x) = T (x; θ̂i)− T (x; θi)
end
μ̂e(x)← 1

N

∑N
i=1 ei(x)

Σ̂e(x)← 1
N

∑N
i=1

(
ei(x)− μ̂e(x)

)(
ei(x)− μ̂e(x)

)T
Note that since we are using θ̂ as the estimate for μθ, it is important for

the original registration to return a sensible result, as severe inaccuracy could
negatively impact the quality of the spatial confidence regions.

3 Experiments

We demonstrate an application of the method, and also present preliminary
experiments performed in 2-D. For illustration purpose, we used the negative sum
of squared differences as the similarity criterion, but other metrics such as mutual
information are also appropriate. To encourage the estimated deformation to be
topology-preserving, we included the penalty term introduced by Chun et al. [2]
into the cost function for all experiments.

Application. We first applied the proposed method to two coronal CT slices in
the lung region, shown in Fig. 3. Both images are size 256× 360, and the exhale-
frame served as the homologous image while the inhale-frame served as reference.
The notable motion in this data-set is the sliding of the diaphragm with respect
to the chest wall. Due to the opposing motion fields at this interface, registration
uncertainty is expected to be higher around this region. To model the deformation,
we used a knot spacing of (mx, my) = (3, 8), resulting in a parameter dimension of
θ ∈ R

7650. A tighter knot spacing was used for mx since a finer scale of deformation
was needed in the x-direction to model the sliding motion at the chest wall. Since
the degree of this slide is relatively small for this data-set, the registration result
shown in Fig. 3 looks reasonably accurate based on visual inspection.

Using θ̂ obtained from registering these images, we used the single-shot mean
and covariance estimate and the efficient sampling scheme to obtain 100 new
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realizations of deformations. For the baseline covariance Σo, we used values of
(rx, ry) = (0.9, 0.9) and {cx, cy, cxy} = {2, 4, 0.5}. A relatively high value for
cy was used since the magnitude of the overall deformation was higher in the y-
direction. Finally, ρ = 0.1 was used, as it was found to produce sensible deforma-
tion samples. One of the synthesized reference images is shown in Fig. 3. Following
Algorithm 1, we obtained a set of spatial confidence regions {Φ(x)} for all x in the
region of anatomical interest, using a confidence level of γ = 0.9. A few of these
are displayed in Fig. 3 (a)-(h), along with 100 simulated errors. It is important to
note how the shapes of these confidence regions reflect the local image structure.
The principal major axes of the ellipses are oriented along the edge, indicating
higher uncertainty for those directions. The confidence regions for (c) and (g) take
on isotropic shapes due to the absence of well-defined image structures. Finally,
notice how the confidence region for (e) is quite large, illustrating how difficult it
is to accurately register the sliding diaphragm at the chest wall.

a

b
c

d

e
f

g
h

a

b
c

d

e

f

g

h

Reference Image Homologous Image Registered Image Sampled Image
fr (x) fh (x) fh

(
T (x; θ̂)

)
fh

(
T (x; θi)

)

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 3. The top row shows the 2-D data-set used in the first experiment, along with the
registration result and an image synthesized using one of the sampled deformations. A
few of the confidence regions from x ∈ Ωr are shown in (a)-(h), with the red marks
representing 100 realizations of registration error. Note how the confidence regions
reflect the local image structure.

Experimental Result. To quantitatively evaluate our method, we manually
assigned μθ and Σθ for the cubic B-spline deformation-generating process. The
mean deformation μθ was designed to model the exhale to inhale motion in
the abdominal area around the liver region, simulated by a contracting mo-
tion field. Manually assigning a sensible ground-truth value for the covariance
Σθ is extremely difficult due to its high dimension and positive-definite con-
straint. Therefore, we took the shrinkage-based covariance model (4) as the
ground-truth, using values of (rx, ry) = (0.95, 0.95), {cx, cy, cxy} = {2, 3, 0.5},
and ρ = 0.1. These values imply that the covariance is smooth with moderate
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level of correlation in the x and y deformations. We sampled a single instance
of deformation θ from this ground-truth distribution, and used it to deform a
2D axial CT slice in the liver region, having image size 512 × 420. We labeled
the original image as the homologous and the deformed image as the reference.
This resulting image pair and their difference image are shown in Fig. 4. A knot
spacing of (mx, my) = (8, 8) was used to define the scale of the ground-truth
deformation, resulting in a parameter dimension of θ ∈ R

6656.

(a) (b) (c)

Fig. 4. The data-set used for validation: (a) the homologous image fh(x), (b) the
reference image fr(x) = fh

(
T (x; θ)

)
generated by a deformation coefficient sampled

from the ground-truth distribution θ ∼ N (μθ , Σθ), (c) the absolute difference image

Next, we generated three classes of spatial confidence regions for this image
pair, using confidence levels of γ = 0.9 and 0.95. The first confidence region
Φ1(x) corresponds to the case where a correct deformation model is used for
registration, and the parameter values for the shrinkage-based covariance esti-
mate Σ̂θ matches that of the ground truth. The second confidence region Φ2(x)
corresponds to the case where there is a mismatch in the deformation model.
Here, we used a fifth-order B-spline function during registration, with a knot
spacing of (mx, my) = (6, 6). In addition, we introduced some discrepancies in
the parameter values for Σ̂θ. Finally, the third confidence region Φ3(x) cor-
responds to the ideal case, and is constructed for the purpose of comparison.
Here, a correct deformation model is used for registration, and the deformations
used to train the spatial confidence regions were sampled from the ground-truth
N (μθ, Σθ) rather than the estimated distribution. The descriptions of these con-
fidence regions are summarized in Table 1. All confidence regions were generated
using N = 200 simulated errors.

To assess the quality of these spatial confidence regions, we evaluated their
coverage rates by sampling M = 500 additional deformations from the ground-
truth distribution N (μθ, Σθ). Coverage rate for a given pixel x is defined as the
percentage of registration errors that are confined within the confidence region
Φ(x), and is written mathematically as

1
M

M∑
i=1

� {ẽi(x) ∈ Φ(x)} , (9)

where �{·} is the indicator function, and ẽi(x) are registration errors generated
from deformations sampled from the ground-truth distribution. We computed
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Table 1. Spatial Confidence Regions Generated for Validation

Def. Basis Def. Scale Parameter values used for Σ̂θ

Conf. Reg. 1 Cubic mx = 8 ρ = 0.1, (rx, ry) = (0.95, 0.95)
Φ1(x) B-spline my = 8 {cx, cy , cxy} = {2, 3, 0.5}

Conf. Reg. 2 Fifth order mx = 6 ρ = 0.15, (rx, ry) = (0.9, 0.9)
Φ2(x) B-spline my = 6 {cx, cy , cxy} = {2, 2, 0}

Conf. Reg. 3 Cubic mx = 8 μ̂θ = μθ ,Σ̂θ = Σθ

Φ3(x) B-spline my = 8 (Oracle)

the coverage rate for the pixels that are located within the region of anatomy.
The resulting coverage rates are rendered as heatmaps and are displayed in Fig.
5, along with their corresponding histograms. It can observed that the coverage
rates for the first two confidence regions, Φ1(x) and Φ2(x), generally come close
to the prespecified confidence level γ, although some degree of discrepancy can
be observed at some image regions. The third confidence region Φ3(x) gave the
best result as expected; the coverage rate for all pixels comes very close to γ.
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Fig. 5. The coverage rates evaluated for the three classes of spatial confidence regions
presented in Table 1, displayed in the form of heatmap and histogram. Note that the
performances of Φ1(x) and Φ2(x) are fairly comparable to the ideal confidence region
Φ3(x), as the coverage rates for many of the pixels come close to the prespecified
confidence level γ.
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In summary, the performance of the spatial confidence regions Φ1(x) and
Φ2(x) turned out to be reasonably close, having results comparable to the ideal
case of Φ3(x). Although further validation studies are required to obtain a more
conclusive finding, this is an encouraging preliminary result.

4 Discussion and Conclusion

In this paper, we presented a new method to evaluate the accuracy of a registra-
tion algorithm using spatially adaptive confidence regions. Preliminary experi-
mental test results in 2-D suggest the confidence regions are effective based on
their coverage rates. However, it is important to note that the computational
cost of the proposed method is N times the original registration algorithm, since
we must register each of the sampled deformations. Depending on the user’s
choice, this N can be in the order of hundreds to even thousands, with higher
values likely to return more reliable confidence regions. We note that the process
is easily parallelizable. Furthermore, in application such as surgical planning and
radiation therapy, it may not be necessary to have spatial confidence regions for
every voxel in the image volume. Therefore, after completing the original full
3-D registration, we suggest to run the N registrations only within a subregion
where the accuracy of the initial registration must be known. This allows one to
obtain spatial confidence regions for these locations at a much more reasonable
computational expense.

In the future, we will perform more extensive validation studies in 3-D using
various similarity criteria and deformation models, and explore a way to quantify
the robustness of the method. Furthermore, other choices of a priori baseline
for the shrinkage-based covariance estimate will be investigated. Finally, we will
seek a way to incorporate more data into our model to allow a more sophisticated
parameter selection to take place.
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Abstract. We propose a methodology to register medical images of
carotid arteries from tracked freehand sweep B-Mode ultrasound (US) and
magnetic resonance imaging (MRI) acquisitions. Successful registration of
US and MR images will allow a multimodal analysis of atherosclerotic
plaque in the carotid artery. The main challenge is the difference in the po-
sitions of the patient’s neck during the examinations. While in MRI the
patient’s neck remains in a natural position, in US the neck is slightly bent
and rotated.Moreover, the image characteristics ofUSandMRIaround the
carotid artery are very different. Our technique uses the estimated center-
lines of the common, internal and external carotid arteries in each modal-
ity as landmarks for registration. For US, we used an algorithm based on a
rough lumen segmentation obtained by robust ellipse fitting to estimate the
lumen centerline. In MRI, we extract the centerline using a minimum cost
path approach in which the cost is defined by medialness and an intensity
based similarity term. The two centerlines are aligned by an iterative clos-
est point (ICP) algorithm, using rigid and thin-plate spline transformation
models. The resulting point correspondences are used as a soft constraint
in a subsequent intensity-based registration, optimizing a weighted sum of
mutual information between the US and MRI and the Euclidean distance
between corresponding points. Rigid and B-spline transformation models
were used in this stage. Experiments were performed on datasets from five
healthy volunteers. We compared different registration approaches, in or-
der to evaluate the necessity of each step, and to establish the optimum
algorithm configuration. For the validation, we used the Dice similarity in-
dex to measure the overlap between lumen segmentations in US and MRI.
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1 Introduction

Medical imaging studies of the carotid artery generally aim to observe the pres-
ence of atherosclerotic plaque and the effect on the geometry of the vessel lumen.
Both atherosclerotic plaques as well as luminal stenosis are related to cerebrovas-
cular diseases [1]. Various imaging modalities are used to analyze the carotid
vessel wall. Magnetic resonance imaging (MRI) has good soft-tissue contrast al-
lowing plaque composition analysis in 3D, but the resolution of the images is
often limited, especially in the slice direction. Computed tomography angiogra-
phy (CTA) visualizes the 3D lumen geometry with high resolution and clearly
shows calcifications, but other plaque components (lipids, fibrous tissue, hemor-
rhage) are hard to distinguish. Ultrasound (US) is less traumatic to the patient,
the equipment has a lower cost, it provides a high temporal resolution enabling
motion analysis to measure the distensibility of the artery and the images have
a higher in-plane resolution. The smaller pixel spacing of US permits accurate
measurements of the vessel wall thickness, and allows the observation of bubbles
in the vasa vasorum in contrast enhanced examinations, which can be used to
study neovascularization in the plaque [2]. However, the US images may present
speckle noise, artifacts and a lack of contrast in the direction perpendicular to
the beam direction.

In this work, we propose a methodology to register medical images of carotid
arteries from free-hand sweep B-Mode US and black-blood proton density
weighted (BB-PDw) MRI acquisitions. Co-registration of the US and MR im-
ages will facilitate multimodal analysis of atherosclerotic plaque. Because the
patient’s neck is in a bent position during the US scanning procedure, whereas
it is kept straight during MR scanning, a nonrigid transformation is required.
Since the US and MR images have rather different characteristics, we choose
for a combination of point-based and intensity-based algorithms, using geomet-
rical features that can be extracted reliably in each modality. We investigate the
added value of these geometrical features, compared with purely intensity-based
registration, in a quantitative evaluation experiment.

Registration of carotid 3D free-hand power Doppler US and Magnetic Reso-
nance Angiography (MRA) has previously been developed by Slomka et al. [3].
Their method is based on maximization of mutual information, using a rigid
transformation model. Nanayakkara et al. [4,5] perform the registration of MRI
and 3D US with a constrained non-rigid registration, using a ‘twisting and bend-
ing’ transformation model. The 3D US in their work is composed by a sequence
of images acquired with a probe moved by a motorized device. Registration of
brain vascular structures (not carotid though) from freehand US and MRA has
been presented by Reinertsen et al. [6]. The method is based on the alignment
of centerlines using the Iterative Closest Point (ICP) Algorithm [7]. Previous re-
search on the registration of free-hand US and MRI of other anatomical regions
includes the work by Penney et al., who performed registration on liver images
[8]. The US probe’s position was estimated with the use of an external optical
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device and the registration was based on a similarity measure calculated with
probabilistic maps generated from training data and features extracted from the
images.

Our technique uses the centerlines estimated in the common (CCA), internal
(ICA) and external (ECA) carotid arteries in each modality as guides for reg-
istration. The MR images provide information such as each slice’s 3D position,
thickness and distances between neighboring slices, allowing to properly organize
the slices in a volumetric representation. On the other hand, the freehand US
acquisition is of a 2D nature. In order to represent the US data in a volume, a
magnetic positioning device (Flock of Birds - FOB) was attached to the probe.
The US machine video output signal is correlated with the FOB data through
the publicly available Stradwin software. We applied robust existing algorithms
[9,10] to estimate the lumen centerlines in the US and MRI data. To obtain a
rough initial alignment, the bifurcation point, together with a set of points at
equidistant spacing along the centerline, and one point on the skin, are selected
in both modalities. These selected points are matched with a point based rigid
registration. After this initial registration, rigid and thin-plate spline ICP regis-
trations are performed using the open source GMMREG software [11]. Finally,
the resulting point correspondences are used as prior information in a mutual
information based registration, using the open source Elastix software [12].

2 Method

In this section we briefly explain the methods for lumen centerline extraction,
after which the registration procedure is described in detail.

2.1 Lumen Centerline Estimation

MRI Centerline. To calculate the carotid centerline in MRI, the algorithm of
Tang et al. [10] was used on the BB-PDw sequence. Whereas in [10] a multispec-
tral approach was proposed (using an additional phase-contrast MR sequence to
improve robustness), in this work we only used the BB-PDw image, which gave
visually satisfactory results.

The method has a pre-processing phase composed by three steps. First, the
N3 bias [13] correction is applied on BB-PDw to correct for intensity inhomo-
geneities. Second, both sequences are denoised with an edge enhancing diffusion
filter [14]. The centerline is calculated by a minimum cost path approach, with
user defined seed points in the vessel’s end points. The lumen intensity similar-
ity term compares the intensities to the distribution in a small neighbourhood
within the lumen around the seed points. The total cost function is defined by
the reciprocal of a multiplication of the two measures.

The algorithm was evaluated on 152 carotid arteries, and was successful in 148
cases [10], indicating that this centerline can be considered as a robust feature
for registration.
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US Centerline. To estimate a 3D centerline of the carotid arteries from 2D
transversal freehand US acquisitions, the approach described in [9] was imple-
mented. In this approach, the lumen centroid is identified in each 2D image, using
an algorithm inspired by Wang’s Spoke Ellipse algorithm [15]. The algorithm is
robust against missing edge information in parts of the carotid wall, due to the
lack of contrast in directions orthogonal to the US beam direction. A magnetic
tracking device called Flock of Birds (FOB) (Ascension Technology, Burlington,
VT, USA) was attached to the US probe, to register the displacements during the
acquisitions. To synchronize the sensor information with the images we used the
publicly available Stradwin software (http://mi.eng.cam.ac.uk/rwp/stradwin)
[16]. Using the position information, the 2D lumen centroids can be transformed
to 3D space.

The algorithm presented in [9] was evaluated on 19 carotids from 15 patients;
an average distance of 0.8mm to manual annotations was reported, suggesting
that this centerline can also be considered as a robust feature for registration.

Postprocessing of the Centerlines. The MRI algorithm is based on the min-
imum cost path between an initial point in the CCA and two other points, one
in the ICA and other in the ECA; this leads to one centerline connecting the
CCA point to the ICA point (line LI ), and one centerline connecting the CCA
point to the ECA point (line LE ). On the other hand, the US algorithm gen-
erates three centerlines; one connecting the CCA input point to the bifurcation
point, and two others connecting the bifurcation point to the input points in
the ECA and the ICA. The MRI centerlines are smoother due to the iterative
refinement step. In order to make the US centerline more similar to the MRI
counterpart, we connect the CCA to the ICA (LI ) and to the ECA (LE ), and
apply a Gaussian smoothing to both lines, with kernel σ� of 5 mm. Subsequently,
the MRI and US centerlines are resampled to a resolution of 0.1 mm. Finally,
the bifurcation point is automatically determined in both modalities as the point
where the Euclidean distance between the centerpoints in LI and LE becomes
less than 1 mm. The centerlines are cropped automatically such that the max-
imum distances before/after the bifurcation in the one modality equal those in
the other modality.

2.2 Registration Procedure

Let U(x) represent the reconstructed 3D US volume, M(x) the MRI volume,
{u} the set of points on the US centerline and {m} the set of points on the MRI
centerline. The aim of our registration procedure is to find a transformation
T (x) that transforms points in {u} to the MRI domain, and that can be used to
generate a warped MRI image M(T (x)), which is registered to U(x).

Centerlines Registration. Initially, eight points are extracted from each cen-
terline to perform a rough rigid registration. These points are: the bifurcation
point, a point on the skin of the neck in the same slice as the bifurcation (man-
ually selected), two points in the CCA, two points in the ICA and two points in
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the ECA. These last six points are at a Euclidean distance δ and δ/2 from their
corresponding bifurcation point. In our experiments we used δ = 10 mm. The
resulting transformation is called T0(x). An example of the aligned centerlines
is shown in Fig. 1a.

An ICP registration is performed on the point sets {u} and {m}, using T0(x)
as initial transformation. The ICP registration is done in two steps. First, a rigid
transformation model is used; the result of this stage is called T1(x). Second, a
nonrigid thin-plate spline model is employed to take into account the bending
of the patient’s neck during the US examination; the result of this stage is
denoted T2(x) and the complete transformation from US to MRI is obtained
by composition: T2(T1(T0(x))). We use the publicly available GMMREG [11]
implementation for both steps, using the TPS-RPM algorithm developed by
Chui&Rangarajan for the thin-plate spline registration [17]. Points at Δ = 1 mm
intervals sampled on the MRI centerline are used as thin-plate spline control
points. In the rigid registration for the scale parameters of Gaussian mixtures, we
used values of σ� of 0.5 and 0.1, from coarse to fine. In the non-rigid registration,
we used as input parameters: r = 0.97 (annealing rate, for the annealing schedule
of the energy minimization), and λ = 1 (regularization parameter). An example
of the MR and US centerlines after rigid and non-rigid registration is shown in
Fig. 1b and Fig. 1c, respectively.

(a) initial rigid registra-
tion

(b) rigid ICP registration (c) thin-plate spline ICP
registration.

Fig. 1. Examples of the registration of centerlines after each step, MRI centerline (red),
US centerline (green)

Intensity-Based registration. The centerline transformation is used as prior
knowledge in a conventional intensity-based registration framework. Image simi-
larity is measured by the mutual information (MI) [18,19]. The point correspon-
dence information is supplied as a soft constraint, i.e., by adding a penalty term
to the cost function to be minimized:

C(T ) = −MI(U, M ◦ T ) + ω
1
N

∑
u

||T (u)− ũ||2

with N the number of points in {u}, ω a user-defined weighting factor, and ũ =
T2(T1(T0(u))). The transformation T is composed of four sub-transformations,
T (x) = T4(T3(T1(T0(x)))), of which T0 and T1 are the rigid transformations from
previous stages, T3 is an additional rigid transformation that is optimized in the
current stage, and T4 is a nonrigid B-spline transformation that is optimized
subsequently. The thin-plate spline transformation is not directly incorporated
in T (x), since it is only meaningful for points on the centerline; it is taken into
account via the penalty term.
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The registration is implemented using the open source Elastix software [12].
A stochastic gradient descent optimization method [20], using 2000 number of
iterations is used to find T3 and T4 that minimize the cost function. A 3-level
hierarchical strategy is employed to avoid local minima: the amount of image
smoothing (Gaussian kernel standard deviation) and the isotropic control point
spacing of the B-spline transformation are gradually decreased (by factors of 2).
The spacing between control points at the finest level is a user-defined parameter,
β. To compute the mutual information, a 256× 256 joint histogram is estimated
using a Parzen windowing approach [21], based on 2000 image samples randomly
selected in every iteration [20]. Linear interpolation is used to evaluate the MR
image intensities at non-grid positions.

3 Experiments and Results

US and MR images were acquired in five healthy volunteers. For the US exam-
inations the iU22 Philips machine was used along with the Philips L9-3 probe
with a depth of 3cm. For the MRI examination a GE Medical System Signa
Excite 1.5 Tesla machine was used. The voxel size in MRI is 0.5× 0.5× 0.9 mm3.
The 3D reconstructed US datasets generated by the Stradwin software have a
voxel size of 0.16 × 0.16× 0.16 mm3. The datasets from volunteers A, B and C
are from the left carotid; D and E are from the right carotid.

For validation of the registration method, semi-automated MRI lumen seg-
mentations [22] were extracted for each MRI dataset. These segmentations were
transformed using the output transformations calculated in the registrations. In
the US dataset, the lumen was segmented manually. The Dice index [23] was
used to compute the overlap between the lumen segmentations. A mask was ap-
plied such that differences in the length of the segmentation along the arteries
do not affect the overlap measure.

We evaluated the registration procedure in seven different configurations: ICP-
based rigid (T = T1 ◦ T0), intensity-based rigid (T = T3 ◦ T1 ◦ T0), the complete
method with four different values for β (referred to as B-spline β mm), and the
complete method with β = 32 mm and ω = 0 (named B-spline 32 mm*). In the
last configuration, the centerline information is largely ignored, and the method
boils down to a standard intensity-based nonrigid registration; the centerlines
are only used to obtain an initial rigid transformation. The values for β that
were tested are 8, 16, 24, and 32 mm.

The results are reported in Table 1. It can be seen that the intensity-based
rigid approach is as good as or better than the ICP-based rigid registration
in all cases. It must be noted though that the intensity-based rigid registra-
tion is largely based on the result of the ICP-based rigid method. Our second
observation is that the method with ω = 0 fails in all cases, even though its ini-
tial rigid transformation (namely, ICP-rigid) is reasonable, which suggests that
the centerline prior is essential to keep the intensity-based registration ‘well-
behaved’. Based on the average Dice index, the complete method with B-spline
control point spacing of 32 mm performs the best. With smaller values of β the
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Table 1. Overlap between the carotid lumen segmentations after various registration
procedures, for volunteers A, B, C, D, and E

Description Settings A B C D E Average
ICP rigid T = T1 ◦ T0 0.76 0.54 0.68 0.68 0.67 0.67
Intensity rigid T = T3 ◦ T1 ◦ T0, ω = 1 0.77 0.56 0.68 0.74 0.73 0.69
B-spline 8mm T = T4 ◦ T3 ◦ T1 ◦ T0, ω = 1, β = 8 0.70 0.56 0.38 0.76 0.72 0.62
B-spline 16mm T = T4 ◦ T3 ◦ T1 ◦ T0, ω = 1, β = 16 0.77 0.54 0.40 0.79 0.77 0.65
B-spline 24mm T = T4 ◦ T3 ◦ T1 ◦ T0, ω = 1, β = 24 0.77 0.54 0.64 0.78 0.75 0.69
B-spline 32mm T = T4 ◦ T3 ◦ T1 ◦ T0, ω = 1, β = 32 0.77 0.54 0.72 0.77 0.74 0.71
B-spline 32mm* T = T4 ◦ T3 ◦ T1 ◦ T0, ω = 0, β = 32 0.00 0.00 0.00 0.25 0.00 0.05

performance drops, which suggests that the transformation has too many de-
grees of freedom, given the large differences in image characteristics between US
and MRI. Figure 2 shows volume renderings of the lumen segmentations after
B-spline 32 mm registration.

volunteer A volunteer B volunteer C volunteer D volunteer E

Fig. 2. Isosurfaces of the lumen segmentations after B-spline registration (β = 32mm).
Green: US segmentation; red: transformed MRI segmentation; blue: US centerline.

4 Conclusion and Discussion

A method for the alignment of freehand US and MRI scans of the carotid
artery was proposed and evaluated. The method starts by robust semi-automated
extraction of lumen centerlines in both modalities, followed by a point-based reg-
istration and a subsequent intensity-based registration. Initial results on five vol-
unteers’ data sets show the beneficial effect of the use of centerlines as landmarks.
The use of the mutual information metric as a single metric led to complete mis-
alignments. In Fig. 3 it is possible to observe the large difference between the
US and MR image characteristics., which apparently lead to misinterpretations
when using only the mutual information. There might be a difference between
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Fig. 3. US slice(left) and MRI slice (right) after registration. Volunteer A, after B-
spline 32 mm registration. The areas delineated by the red line represent the MRI
segmentation after the transformation. The areas in green represent the US manual
segmentation.

the covered area in the segmentations in US and MRI. According to Underhill
et al. [24], the media-adventia boundary is not clearly identifiable in MRI. Due
to the inclusion of the adventitia in MRI the wall areas are larger than in US.

Figure 2 suggests there is still room for improvement. Given the disappointing
performance of mutual information when used on its own, the development of
a dedicated intensity similarity measure seems necessary. The approach by [8]
that was proposed for liver registration could be a good starting point in order
to define a customized probability map from both images in order to improve the
similarity measure. Another possibility would be to use complete lumen segmen-
tations (instead of only the centerlines) as features. Robust lumen segmentation
in US is a challenge though, because of the missing edge information at bound-
aries parallel to the US beam direction, the high noise level, and the presence of
shadowing artifacts behind calcified plaque.

In the current setup, the US scanning still requires an external magnetic
sensor to allow 3D reconstruction. An approach that directly performs a 2D-3D
registration, simulating US slices from the MRI data could remove the need for
a tracking device.

The MRI and US scans have very different image characteristics, and the
tissue is deformed due to bending of the neck and compression of the skin during
the US examination. These conditions make the registration a difficult task.
Our approach that combines the carotids centerlines and the images intensities
resulted in an average Dice similarity index of 0.71 in the best configuration.
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Abstract. In this paper, for the first time, we present a systematic framework to 
register intravascular ultrasound (IVUS) images with histology correspondences. 
We deployed intermediate representations of images, generating segmentation 
masks corresponding to lumen and media-adventitia borders for both histology 
and IVUS images, incorporated into a non-rigid registration framework using 
discrete multi-labeling and approximate curvature penalty for smoothness 
regularization. The resulting deformation field was then applied to the original 
histology image to transfer it to IVUS coordinate system. Finally, the results were 
quantified on 14 cross sections of interest.  The main contribution of this work is 
that the registered results could be used for systematic labeling of tissues, which 
ultimately will lead to reliable construction of training dataset for feature 
extraction and supervised classification of atherosclerotic tissues. 

Keywords: Intravascular Ultrasound (IVUS), Atherosclerosis, Histology, 
Registration.  

1 Introduction 

The importance of atherosclerotic disease in coronary artery has been a subject of 
study for many researchers in the past decade. In brief, the aim is to understand 
progression of such a chronic disease, detect plaques at risks (vulnerable plaques [1]), 
and treat them selectively to prevent mortality and immobility. In general, the ultimate 
goal is to provide interventional cardiologists with reliable clinical tools so they can 
identify these plaques, make decisions confidently, choose the most appropriate drugs 
or implant devices (i.e. stent), and stabilize them during catheterization procedures 
with minimal risk. This has motivated researchers to employ intravascular ultrasound 
(IVUS) technology, in addition to angiogram that is routinely used, because it provides 
real-time cross-sectional images of arterial wall structures with useful information 
about tissues microstructures. Hence, different IVUS-derived atherosclerotic tissue 
characterization algorithms have been developed [2]. 

The key steps in designing supervised plaque classification algorithm is labeling 
and construction of a reliable training dataset. Traditionally, histopathologists 
manually label the most visually recognizable homogenous regions for each tissue on  
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Fig. 1. Tissue cage fixture (left), in vitro experiment set-up (right). (Developed by Jennifer 
Lisauskas at InfrareDx (Burlington, MA)) 

histology images and they are somewhat require to be transformed onto IVUS 
grayscale images prior to feature extraction (i.e. spectral or textural). Most of existing 
radiofrequency (RF)- or textural-based atherosclerotic tissue characterization 
algorithms have not described how this crucial step has been taken into account [3-5].  
In fact, the challenge has been implicitly pointed in [6,7]. Authors in [7] deployed an 
intuitive registration methodology and visually annotated IVUS images. To the best 
of our knowledge, Nair et al. [8] was the only group who claimed to register IVUS 
and histology images through the thin plate spline (TPS) deformation technique [9], 
however, neither qualitative nor quantitative results was provided.  

In this paper, we present a systematic method to register and superimpose IVUS 
and histology images via a non-rigid registration framework. The proposed approach 
would ensure the accuracy of labeling process, enhance the reliability of training 
dataset, increase the consistency among extracted features, and ultimately improve 
atherosclerotic tissue classification results. The quantification of classification results 
is out of scope of this paper and the main focus is registration process.  

2 Data Collection and Histology Preparation Methodologies  

The IVUS-histology matching problem is challenging due to: 1) presence of 
curvatures in coronary arteries especially in the left circumflex (LCX); 2) 
misalignment between IVUS imaging plane and slicing plane of microtome, and 3) 
shrinkage of arteries after formaldehyde fixation. Therefore, a precise data collection 
method is necessary to obtain the most accurate IVUS-histology dataset. At 
Infraredx® (Burlington, MA), researchers developed a systematic in vitro acquisition 
protocol to collect IVUS data from coronary arteries using single-element 40 MHz 
transducer. In this methodology, the arteries were dissected from cadaver hearts (24 
hours postmortem), placed in tissue cage fixture and attached to a circulating fluid 
flow system, Figure 1.  Average length of the arterial segments attached to the fluid 
system could be up to 50mm.  The arterial segments were perfused with saline at 
body temperature (37oC) and pulsatile flow (60 bpm, 135mL/min) at physiologic  
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Fig. 2. Example of deformable registration process. Image a) IVUS, b) histology, c) 
segmentation of IVUS, d) segmentation of histology, e) deformation field from histology to 
IVUS, f) deformation applied to histology, g) visual overlap of deformed histology to IVUS. 

pressure (80-120 mmHg). Then, an IVUS catheter was advanced on a 0.014” guide 
wire and a complete automatic pullback was taken from distal to proximal side. The 
acquired data was then saved onto an external hard disk.   

After imaging, the arteries were pressure fixed with 10% buffered formaldehyde 
followed by decalcification. The histology blocks were prepared for every 2mm 
(corresponding to 120 frames of the IVUS pullback) using the sidebars. All blocks 
were embedded in paraffin and sectioned for histological staining. Two 5µm thick 
histologic cross sections were stained with hematoxilin and eosin (H&E) and Russell-
Movat Pentachrome.  

The main advantage of this methodology is the fact that the orientation of artery is 
not changed throughout the whole procedure. Therefore, more reliable IVUS-
histology pairs could be obtained and the number of cross sections of interest (CSIs) 
per vessel is significantly increased (average of 25 regions).  

3 Non-rigid Registration Framework through MRF Discrete 
Multi-labeling 

The registration between IUVS, IIVUS (Figure 2(a)), and histology, Ihist (Figure 2(b)), 

images is performed through minimization of a matching function ℑ  that expresses 
underlying non-rigid deformation, T , along with regularization R  as follows: 

T̂ = argmin
T

ℑ IIVUS , Ihist oT( )+ λR T( )
 

(1)
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where λ controls the effects of regularization term. The non-rigid transformation 

T = x + D x( )comprises the deformation field D and can be estimated through 

Markov random field (MRF) framework and forming images as discrete objects 

represented in graph g = V ,C( )as described in [10]. The goal is to find deformation 

field through minimization of a discrete labeling of a first-order MRF function fMRF

that is formed as sum of unary ψ li( )and pairwise ψ li , l j( )potentials as: 

 

fMRF l( )= ψ li( )
i∈g
 + ψ li ,l j( )

j∈Ni


i∈g
 (2)

 
where li  is the label assigned to node i  and Ni ⊂ g defines the neighborhood 

system of the graph. The discretized search space allows associating displacement 

d li to each label l  so one can encode the matching and regularizations terms in Eq. 
(1) by unary and pairwise terms, respectively, in an iterative process as follows: 
 

ψ i li( )= I IVUS x i( )− Ihist x i + D t −1 x i( )+ d li( ) (3)

 (4)

 
The main advantage of this technique is that it can be implemented in an efficient 
fashion by introducing a transformation model through sparse set of M control points 
in combination with interpolation strategy (ex. cubic B-spline) [10] and define the 
dense displacement field as: 
 

D x( )= ηi x( )di
i=1

M

 (5)

 
where ηi is a weighting function, determining the contribution of control point 

displacement di to the displacement of histology image point x . Now, the unary and 
pairwise terms can be reformulated as follows: 
 

ψ i li( )= I IVUS xi( )− Ihist xi + Dt −1 xi( )+ dli( )
x∈Ωi

 (6)

(7)

where Ωi is local image patch centered at i -th control point. Ultimately, the MRF 
objective function in Eq. (2) can be written as: 

ψ ij li ,l j( )= λ Dt −1 xi( )+ d li( )− Dt −1 x j( )+ dl j( )

ψ ij li ,l j( )= λ di
t −1 + dli( )− d j

t −1 + dl j( )
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                    (a)                                               (b)                                            (c) 

Fig. 3. IVUS grayscale image (a), corresponding histology image (b), and resulting deformed 
histology image imposed on IVUS frame (c) 

 

(8)

 
This registration methodology supports any similarity measure and can be 
incorporated with wide range of smoothing penalty functions. Consequently, we 
performed intensity-based registration on an intermediate representation of both IVUS 
and histology images, which were binary segmentation of stenosis regions in both  
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modalities, as shown in Figure 2. The segmentation of lumen [11] and media-
adventitia (MA) [12] borders in IVUS images could be performed automatically with 
manual refinement. We retrieved the same borders in histology images via the robust 
and supervised semi-automatic random walks [13] segmentation approach.  

Subsequently, the extracted binary masks were registered as described above. In 
order to compensate for the difference between resolutions, the IVUS image was 
upsampled to match the histology resolution. This was simply done by detecting the 
bounding box of the IVUS segmentation, dotted-box in Figure 2 (c), and resizing the 
content of the bounding-box with cubic interpolation to match the histology image of 
higher resolution. The availability of different penalty functions in was an essential 
criterion for choosing this framework. More specifically, the lack of image structure 
and information inside the binary mask region would result in unrealistic 
deformations without proper regularization. In our approach we utilized the 
approximate curvature penalty for regularization of the deformation field [10]. 

4 Results and Quantification  

We applied our algorithm on 14 pairs of IVUS-histology images. For each cross 
section of interest (CSI), the RF signals were stored in a matrix of 2048x256 (number 
of digitized samples x A-lines) and the IVUS grayscale image of size 512x512 was 
constructed after envelope detection, compression, decimation, and interpolation in 
axial and lateral directions, respectively. On the other hand, the sizes of histology 
images were varied since a histopathologist cropped the plaques using rectangles of 
different sizes.   

Figure 3 demonstrates two distinct IVUS grayscale images along with their 
histology image correspondences and the final superimposed results after registration. 
The results are of particular interest since the shrinkage of artery, because of 
formaldehyde fixation, is well compensated by proposed registration framework. As 
we can see, the lumen and MA borders in both IVUS and histology images are 
perfectly aligned, Figure 4. The Dice similarity that measures the overlapping among 
areas enclosed by borders was 96.21±0.63 (≥95.26%). We also measured the line 
distances including Hausdorff and mean distance errors among delineated borders in 
IVUS and histology, after transformation, and found them to be 2.73±0.51 (≤3.6 
pixels) and 0.65±0.05 (0.76 pixels), respectively. This confirmed the reliability of 
registration framework as well as the robustness of designed experimental set-up, 
obtaining the most reliable IVUS-histology matched database.  

Existing supervised classification algorithms extract features and construct training 
datasets by looking at histology images and labeling tissues on IVUS images. In this 
method, the registration process is performed visually. However, finding the most 
homogenous region in histology image that represent a singular tissue type and 
therefore corresponding region in IVUS image is a very tedious and challenging task 
if not impossible. To validate the accuracy and reliability of such approach, we asked 
the histopathologist to identify the most recognizable regions, mainly consist of 
calcified regions, in both IVUS and histology images. The reason was the fact that 
calcified tissues are very well exhibited in histology images and there is an apparent  
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Fig. 4. Lumen and MA borders traced on IVUS images (yellow) and resulting borders drawn 
on corresponding histology images after registration (red) 

 

Fig. 5. Labeled tissues on three distinct IVUS images by the histopathologist (yellow) and 
resulting corresponding labeled tissues on histology images after registration (red) 

shadowing behind arc of calcified plaques in IVUS images due to severe attenuation 
of IVUS signals. Figure 5 shows resulting manual labeled tissues driven from 
histology images after registration imposed along with corresponding labels on IVUS 
grayscale frames. We quantified the results using abovementioned similarity metrics 
and found Dice, Hausdorff, and mean distance errors as 54.86±13.41 (≥41.14%), 
35.33±21.36 (≤86.56 pixels). As it is observed, the quantitative and qualitative results 
indicate that the precision of manual/visual labeling is not adequately high as it is 
expected. The main reason could be the ambiguity in segmentation of tissues in the 
IVUS image due to shadowing and lack of sufficient contrast or resolution. From 
atherosclerotic tissue classification point of view, this may result in inconsistency 
among extracted features and hamper the reliability of training dataset [7].  

5 Discussion and Conclusion  

In this paper, for the first time, we presented a registration framework for IVUS and 
histology images and provided quantitative as well as qualitative results. We observed 
that traditional manual/visual atherosclerotic tissue labeling, usually employed for 
classification, would lead to improper results. Therefore, a systematic robust registration 
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is a must for atherosclerotic plaque characterization where tissues exhibit highly 
stringent characteristics. Although the current registration framework may not be seen 
novel, its application certainly is. Nevertheless, further improvement is needed.  

The data collection and histology preparation methodologies helped considerably, 
achieving good registered IVUS-histology results. To further improve the registration 
results, additional regularization is required for the internal plaque deformations to 
preserve as much textural information as possible so a histolpathologist can toggle 
between images and then confidently label tissues on superimposed histo-IVUS 
images, Figure 3(c). As an alternative, a biomechanical model of the histology is 
advantageous in order to restrict possible deformations similar to what proposed for 
modeling brain-shift [14]. However, to the best of our knowledge, a mapping from 
histology image intensities to biomechanical is not available and seems elusive to 
acquire.  
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Abstract. This paper presents an approach to fast image registration
through probabilistic pixel sampling. We propose a practical scheme to
leverage the benefits of two state-of-the-art pixel sampling approaches:
gradient magnitude based pixel sampling and uniformly random sam-
pling. Our framework involves learning the optimal balance between the
two sampling schemes off-line during training, based on a small training
dataset, using particle swarm optimization. We then test the proposed
sampling approach on 3D rigid registration against two state-of-the-art
approaches based on the popular, publicly available, Vanderbilt RIRE
dataset. Our results indicate that the proposed sampling approach yields
much faster, accurate and robust registration results when compared
against the state-of-the-art.

Keywords: image registration, pixel selection, sampling.

1 Introduction

Image registration is one of the critical problems in the field of medical imag-
ing. It transcends wide range of applications from image-guided interventions
to building anatomical atlases from patient data. Typically, the evaluation of
the similarity measure and its derivatives are required to perform the optimiza-
tion over transformation parameters. However, performing these computations
based on all the available image pixels can be prohibitively costly. The expense
is mainly due to the large number of pixel intensity values involved in the cal-
culations. Time-sensitive applications, like image guided intervention, generally
benefit from techniques to speed up direct image registration by utilizing only a
subset of available pixels during registration. In these contexts, several percent
of accuracy decrease could be tolerated and traded for preservation of robust-
ness and significant decrease in registration time. However, significant speedups
attained via aggressive reduction in the number of selected pixels (less than 1%
of the total number of pixels) often result in deterioration of robustness (increase
in failure rate) and relatively rapid increase of registration error.

Many pixel sampling schemes have been suggested in the literature. Uniformly
random pixel selection (URS), in which a random subset of all pixels sampled

B.M. Dawant et al. (Eds.): WBIR 2012, LNCS 7359, pp. 150–159, 2012.
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with uniform probabilities is used to drive the optimization, gained popularity
due to its simplicity and robustness [9,13]. Other techniques strived to improve
registration accuracy by optimizing the pixel selection process. The deterministic
pixel selection strategy [10] consists in calculating a selection criterion for each
pixel (e.g. based on Jacobian of the cost function [4]) and comparing it to the
threshold. The subset of pixels whose selection criterion values transcend a pre-
defined threshold are used for registration. This led to a clustering phenomenon,
as pointed out by Dallaert and Collins [4], who attempted to overcome this
effect and proposed a probabilistic pixel selection strategy that uniformly sam-
ples from subset of pixels having top twenty percent values of selection criterion
pixels. Brooks and Arbel [2] extend the approach of Dellaert and Collins [4] by
proposing an information theoretic selection criterion and by addressing the issue
of Jacobian scale inherent to the gradient descent type optimization algorithms.
Benhimane et al. [1] proposed a criterion to speed up the convergence of the
optimization by selecting only the pixels that closely verify the approximation
made by the optimization. Sabuncu and Ramadge used information theoretical
approach to demonstrate the fact that the pixel sampling scheme should em-
phasize pixels with high spatial gradient magnitude [11]. Here the moving image
is probabilistically subsampled using non-uniform grid generated based on the
probabilities proportional to the gradient magnitude. This approach allows to
diversify and spread subsampled pixels while still giving attention to image de-
tails. This approach alleviates the effects of selected pixel clustering inherent
to deterministic pixel selection strategy discussed e.g. by Reeves and Hezar [10]
while still allowing to focus on the more useful pixels. Finally, curvlet based
sampling, recently proposed by Freiman et al. [6] tested on Vanderbilt RIRE
dataset [5] revealed approximately the same level of accuracy as the gradient
subsampling approach [11].

Exploring the method of Sabuncu and Ramadge, one notices that the strategy
works well for relatively large pixel sampling rates (1 to 10%). However, as the
number of selected pixels decreases, it tends to concentrate exclusively on pixels
with the highest gradient magnitude, which limits its exploratory capability
and leads to deterioration of robustness and accuracy. The uniformly random
sampling strategy, on the other hand, has very good exploratory behaviour as any
pixel has equal probability to be used in the similarity metric calculations. At the
same time, the uniformly random sampling lacks attention to image structural
details that often aid in achieving easier and more accurate registration results.
Thus the URS often provides better robustness, but fails to produce the same
accuracy levels as the gradient magnitude based approach.

In this paper, we propose to combine the virtues of the two techniques to ob-
tain faster and more robust image registration. We introduce a new multi-scale
sampling scheme, whereby the sampling probabilities are based on the convex
combination of the uniformly random sampling probabilities [9,13] and the gra-
dient based sampling probabilities [11]. We further propose to learn the value
of the convex combination parameter off-line by optimizing the empirical tar-
get registration error obtained from a small training dataset via particle swarm
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optimization [7]. Our approach effectively serves to improve the performance of
one of the best existing state-of-the-art sampling methods and achieve the great-
est reduction in the number of pixels used for the evaluation of the similarity
metric under the constraint of preserving the accuracy and robustness at reason-
able levels. We test the proposed approach on the Vanderbilt RIRE dataset [5].
Our results indicate that the proposed approach allows to significantly reduce
the number of pixels used in the evaluation of the similarity metric and hence
accelerate the registration procedure while improving robustness and preserving
accuracy of the gradient based sampling technique.

2 Problem Statement

The direct image registration problem can be formulated for the reference I(x)
and the moving J(Tθ(x)) images defined by their pixel intensity values Ii, Ji :
X → I, i = 1 . . .N seen as mappings from the coordinate space X ⊆ R

d to the
intensity space I ⊆ R, where d is the dimensionality of coordinate space and
N is the number of pixels (here we assume, without loss of generality, that the
number of pixels in the images is equal). The problem is solved by finding the
parameters θ ∈ Θ of the warp Tθ : X → X that maximize the similarity metric
DN : IN×2 → R that maps N intensity values of the reference and N intensity
values of the moving images into a number characterizing the degree of similarity
between these images for a given value of the warp parameters:

θopt = argmax
θ∈Θ

DN [I(x), J(Tθ(x))]. (1)

Widely used similarity metrics are mutual information [13] and normalized mu-
tual information (NMI) [12]. The pixel selection process can be viewed as the
approximate solution using the calculation of the similarity metric based on only
M pixels of each of the images:

θopt = argmax
θ∈Θ

DM [I(x), J(Tθ(x))], (2)

Since this solution is based onM < N pixels it is less computationally expensive.
As was indicated in Section 1, the deterioration of robustness and accuracy of the
existing pixel subsampling methods, and gradient based sampling in particular,
is a major problem when the number of pixels used to calculate the similarity
metric is small, M � N . At the same time, the small sampling rate condition
M/N � 1 ensures that significant computational gain results from the pixel
selection. In this paper we strive to solve the problem of robustness and accuracy
deterioration for small M . To this end, we propose the approach to combine the
uniformly random sampling with the gradient based sampling within the multi-
scale framework that we discuss in detail in the next section.

3 Proposed Algorithm

Sabuncu and Ramadge used information theoretical approach to demonstrate the
fact that the pixel sampling scheme should emphasize pixels with high spatial
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gradient magnitude [11]. Based on this observation they proposed the sampling
strategy where pixel i is sampled with the probability qi = α‖∇Ji‖2, where
‖∇Ji‖2 is the magnitude of spatial intensity gradient of pixel i and α is the nor-
malization factor that determines the average number of subsampled pixels. The
URS sampling approach attaches equal sampling probability to each pixel. The
gradient magnitude based sampling puts more emphasis on the image gradient
details that provide for more accurate registration. However, this often reduces
registration robustness by reducing image exploration. URS explores images well
via extensive uniform sampling, but lack of attention to image details reduces
its accuracy.

We propose to combine the positive properties of the two techniques just de-
scribed and to obtain a better multi-scale sampling scheme designed for fast
image registration. In our algorithm we combine the probabilities of the gradi-
ent magnitude based sampling approach and the URS approach such that the
sampling probability of the proposed algorithm is the convex combination of
the probabilities defined by the two corresponding component approaches. The
optimal value of the convex combination parameter is learned off-line by opti-
mizing the empirical target registration error (ETRE) obtained from a training
dataset. In the remainder of this section we describe the details of the proposed
algorithm.

Assume that there are R resolution levels in the registration scheme, r is the
resolution level number and Nr is the number of pixels at level r. Assume that
r = 1 corresponds to the highest resolution level (original images) and hence
N1 = N . Denote qr = [qr1 , . . . , q

r
Nr

] the vector of sampling probabilities for the
gradient magnitude sampling method at level r and assume that the normal-
ization factor αr at this level is chosen so that the average number of pixels
equals Mr. Similarly, for the URS method the vector of sampling probabilities is
ur = [Mr/Nr, . . . ,Mr/Nr] resulting in the average number of pixels sampled be-
ing equal to Mr. The vector of sampling probabilities for the proposed approach,
rr, is the convex combination of the two previously defined vectors:

rr = (1− βr)qr + βrur, (3)

where βr ∈ [0, 1] is the mixing parameter. Greater values of βr emphasize the
exploration brought about by the URS and lower values of this parameter empha-
size prominent image features that could facilitate more accurate registration. In
a general situation we expect that at every level r and for every pixel sampling
rate Mr/Nr there is an optimal value of βr that compromises image exploration
and exploitation of prominent image features.

It is hard (if at all possible) to analytically formulate and solve the prob-
lem of optimizing βr based on statistical models of the images. At the same
time, if a small, but representative training dataset is available for the registra-
tion problem at hand, the value of this parameter could be learned empirically
off-line. The learned value of this parameter could then be used upon each sub-
sequent application of the proposed algorithm. The proposed algorithm could be
retrained whenever there is a need to solve a new registration problem with sig-
nificantly different image specifics. This is not an unreasonable assumption since
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in the application domain the specifics of particular registration problem often
affect e.g. the choice of similarity metric, optimization strategy and interpola-
tion scheme. This implies that at least some training information in the form
of the small set of exemplar image pairs from the problem-specific modalities
using certain acquisition and post-processing protocols must always be available
to the registration algorithm designer to guide the algorithm development.

Based on the assumption that we have a training data set and the gold stan-
dard registration parameters for the image pairs in this dataset we formulate the
empirical learning criterion Qr(βr). We define the ETRE as the average over V
image pairs in the training dataset and U Monte-Carlo trials:

Qr(βr) =
1

V

1

U

V∑
v=1

U∑
u=1

‖Xv − X̂r
u,v(β

r)‖22. (4)

Here Xv is the set of transformed coordinates obtained using gold standard reg-
istration parameters for image pair v and X̂r

u,v(β
r) is the set of transformed

coordinates for image pair v and Monte-Carlo trial u found using the empirical
estimate of the registration parameters obtained via the optimization of the sim-
ilarity metric at resolution scale r using the proposed pixel sampling algorithm
with a given value of mixing parameter βr. As the pixel sampling algorithm is
randomized, some degree of Monte-Carlo averaging could be beneficial if V is
relatively small (3 . . . 5 images). Thus we repeat the registration procedure for
the same candidate value βr , level r and image pair v U times and calculate
X̂r

u,v(β
r) based on the new registration parameter estimate each time.

We propose to learn the value of βr by minimizing the ETRE Qr(βr):

β̂r = arg min
βr∈[0;1]

Qr(βr). (5)

The function Qr(·) is generally extremely irregular and non-smooth, because
of the possible registration failures and because of complex dependence of the
ETRE on the value of βr. At the same time, the domain of this function is well
defined and restricted. Thus any optimizer capable of performing global or quasi-
global search on a restricted interval using only the objective function values will
suffice to solve this problem. We propose to use the particle swarm optimization
(PSO) [7] in order to find β̂r . Our algorithm proceeds by finding β̂R, the value
of the mixing parameter for the scale with the lowest resolution using PSO.
The multi-scale registration algorithm proceeds from the lowest resolution level
to the highest resolution level sequentially utilizing the registration parameters
obtained at the lower resolution level as an initialization for the current resolution
level. Our learning algorithm thus uses the identified value of β̂R to find the
estimate of the registration parameters at resolution level R. Then the optimal
value β̂R−1 for the next higher-resolution level is found using the registration
parameters identified at level R as initialization. This procedure iterates until the
values of mixing parameter for all resolution levels R,R− 1, . . . , 1 are identified.
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4 Experiments with the RIRE Vanderbilt Dataset

4.1 Dataset Description

To test the proposed algorithm we made use of the real clinical data available
in RIRE Vanderbilt dataset [5]. The performance of algorithms was evaluated
by registering 3D volumes corresponding to CT images to geometrically cor-
rected MR images. MR image set included images acquired using T1, T2 and
PD acquisition protocols. The total number of different image pairs used was
19. Those pairs were taken from patients 001, 002, 003, 004, 005, 006, 007 for
which geometrically corrected images are available. Patients 003 and 006 did
not have geometrically corrected PD and MR-T1 images respectively. Accord-
ing to the data exchange protocol established by the RIRE Vanderbilt project,
registration results obtained via algorithms under the test were uploaded to the
RIRE Vanderbilt web-site. Algorithm evaluation results were calculated by the
RIRE Vanderbilt remote computer using the gold standard transformation not
available to us and published on their web-site in the form of tables containing
registration errors calculated over 6 to 10 volumes of interest (VOIs) for each
image pair. For patient 000 geometrically corrected MR-T1, MR-T2, MR-PD
images and corresponding CT image are available along with the set of trans-
formed coordinates obtained using gold standard registration parameters. Three
image pairs from patient 000 were used to learn the values of mixing parameters
according to the algorithm described in Section 3.

4.2 Experimental Setup

All images were first resampled to a common 1mm grid using bicubic interpola-
tion. We used 4-scale registration based on the low-pass filtered and downsam-
pled image pyramid. Resolution level number four had grid spacing 4 mm along
each axis and resolution level number one had grid spacing 1mm along each axis.
The estimate of the registration parameters obtained at a lower resolution level
was used as a starting point for the registration at the next higher resolution
level; level 4 had all its parameters initialized to zero values. We concentrated
on recovering 6 rigid registration parameters (3 translations and 3 rotations)
using the NMI similarity metric [12]. Histogram for the evaluation of the sim-
ilarity metric was calculated using the partial volume approach with Hanning
windowed sinc kernel function [8]. Similarity metric was optimized using the
trust region Gauss-Newton approach [3]. We implemented the most calculation
intensive part of the code (calculation of the cost function and its derivatives)
in C and benchmarked the algorithms within the MATLAB environment.

We evaluated the performance of following pixel sampling approaches. The
uniformly random sampling (URS) technique consists of randomly selecting
pixels with equal probabilities at every iteration [13]. At a given resolution
level r all pixels have equal probability of being selected, M/Nr if M < Nr

and 1 if M ≥ Nr; the average number of selected pixels is thus equal to M
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Fig. 1. Pixel selection masks generated using different approaches at the highest
resolution level for sampling rate 0.5%. (FIRST ROW) URS; (SECOND ROW)
GMS; (THIRD ROW) proposed approach with learned value of the mixing parameter

β̂1 = 0.2. First column axial slice, second column sagittal slice, third column coronal
slice. All images are obtained using ITK-SNAP [14].

at each resolution level. Note that we used equal number of selected pixels
for all resolution scales. Gradient magnitude sampling (GMS), a slight mod-
ification of gradient based subsampling originally proposed by Subuncu and
Ramadge [11], consists in calculating spatial gradient magnitude ‖∇Ji‖2 =√
(∂Ji/∂xi)2 + (∂Ji/∂yi)2 + (∂Ji/∂zi)2 and sampling pixels at every optimiza-

tion iteration according to the probabilities proportional to it, where the pro-
portionality coefficient is chosen so that the average number of pixels selected
at every resolution scale is equal to M . Proposed method described in Sec-
tion 3 (Proposed) consists of mixing the probabilities obtained from URS
and GMS methods and learning the value of the mixing parameter using the
training dataset constructed from image pairs of patient 000. We evaluate these
three algorithms for the following values of pixel sampling rates (given in %):
M/N ∈ {0.02, 0.04, 0.065, 0.1, 0.5, 1} (sampling rate is calculated with respect to
the image size at the highest resolution level, N).

4.3 Results

Figure 1 shows the examples of pixel selection masks generated using tested
approaches at the highest resolution level for pixel sampling rate 0.5%. It is
obvious that the samples generated with the URS approach are extremely spread,
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Fig. 2. Failure rate for different pixel sampling mechanisms: gradient magnitude sam-
pling (GMS), uniformly random sampling (URS), Proposed. Note that the proposed
approach consistently outperforms in terms of robustness.

whereas the samples generated with the GMS approach are overly concentrated
along the gradient magnitude structures present in the image. The proposed
approach produces samples that balance those two extremities.

Figure 2 shows registration failure rate for the following set of pixel sampling
rates (in %): {0.02, 0.04, 0.065, 0.1, 0.5, 1}. We define a failure as any case with
error exceeding 10mm in any of the VOIs. We can see that the proposed approach
consistently outperforms other approaches in terms of robustness.

Figure 3 shows the trimmed mean target registration error (mTRE). We com-
pute the trimmed mTRE as the mTRE of the successful (non-failed) cases. The
mTRE is minimal for the proposed approach compared to other methods. The
proposed approach retains high level of accuracy and robustness even with low
pixel sampling rates. This allows to significantly reduce computational time in
a practical system without exploding the failure rate or reducing accuracy.

Such results support our conjecture that balancing image exploration induced
by URS and the exploitation of the prominent image features induced by GMS
using a small problem specific training dataset can significantly improve and
accelerate the performance of the registration algorithm. Overall, the proposed
technique at 0.1% pixel sampling rate is better than other techniques at 1%
pixel sampling rate, simultaneously maintaining zero failure rate and 1.15 mm
accuracy. Thus on average our approach can use 10 times less pixels for registra-
tion, achieve 0 failure rate and improve accuracy over the other two techniques.
This is significant improvement over both alternative methods and it allows to
reduce the time from 210 seconds per registration for 1% pixel sampling rate to
32 seconds per registration for 0.1% pixel sampling rate in our implementation.
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Fig. 3. Trimmed average registration error for different pixel sampling mechanisms:
gradient magnitude sampling (GMS), uniformly random sampling (URS), Proposed.
Note that the proposed approach consistently outperforms in terms of accuracy.

5 Conclusions and Discussion

In this paper we presented a novel approach to pixel sampling for faster and
more accurate registration. Our approach mixes the uniformly random sampling
probabilities with those obtained using the gradient magnitude based sampling
approach. The mixing parameter that balances image exploration induced by
uniform probabilities and the exploitation of image features via gradient mag-
nitude based sampling is learned off-line from a small training dataset. Our
experiments with the Vanderbilt RIRE dataset demonstrate that the proposed
approach works much faster and produces much more accurate and robust reg-
istration results. We conjecture that the concept of mixing the sampling prob-
abilities can be further generalized to obtain even better results. In this case
rather than mixing only two sampling methods we could mix three, four or more
methods and learn the optimal problem specific mixing coefficients using a small
training dataset and a suitable mixing parameter optimization scheme. Explor-
ing this venue based on the experiments with Vanderbilt RIRE dataset and other
available datasets as well as testing it on non-rigid registration problems to study
the generalizability of the proposed approach seems to be an attractive venue
for future research.
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Abstract. The performances of information-theoretic multi-modality
image registration methods crucially depend on the model representing
the joint density function of the co-occurring image intensities and on the
implementation of the entropy estimator. We proposed an entropy esti-
mator for image registration based on quad-tree (QT) that is essentially
an entropic graph entropy estimator, but can be adapted to work as a
plug-in entropy estimator. This duality was achieved by incorporating
the Hilbert kernel density estimator. Results of 3-D rigid-body registra-
tion of multi-modal brain volumes indicate that the proposed methods
achieve similar accuracies as the registration method based on minimal
spanning tree (MST), but have a higher success rate and a higher capture
range. Although the MST and QT have similar computational complex-
ities, the QT-based methods had about 50% shorter registration times.

Keywords: brain image registration, multi-modality, entropic graph,
Rényi entropy, Hilbert kernel, minimal spanning tree, quad-tree.

1 Introduction

Multi-modality imaging is a commonplace in medical studies and image-based
diagnosis and follow-up of patients. Imaging modalities that are typically used
to observe structural and/or functional information include computed tomog-
raphy (CT) and magnetic resonance imaging (MRI), positron emission tomog-
raphy (PET) and ultrasound (US). Applications that employ multiple modali-
ties are automated image analysis, information fusion and correlation detection,
biomarker extraction, image-based prediction, etc. A critical requirement in these
applications is that the multi-modal images are in good spatial alignment, which
can be achieved through image registration.

Registering medical images presents a challenging problem, especially due to
the high variety of the physical imaging modalities. The multi-modality medical
images undergoing registration frequently exhibit highly nonlinear relationships
between the co-occurring image intensities. A common approach to registering
such multi-modality images is to evaluate the statistical dependency between
the co-occurring image intensities using information-theoretic criteria. The sta-
tistical dependency is represented by a joint density function (JDF) of the co-
occurring image intensities and quantified by the information-theoretic criteria,

B.M. Dawant et al. (Eds.): WBIR 2012, LNCS 7359, pp. 160–169, 2012.
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which in general represent a measure of divergence of the observed JDF from
the JDF that would be obtained if the co-occurring image intensities were in-
dependent [11]. The representation model of the JDF of the co-occurring image
intensities plays a central role and typically defines the class of estimators for
the information-theoretic criteria [5,14,4,6]. Among all the information-theoretic
criteria, mutual information has been studied and applied most extensively [10].
The critical component of mutual information, and the related f -information
criteria [11], is the approach to estimating the entropy of the observed JDF.
Hence, the choice of the model representing the JDF and the particular imple-
mentation of the entropy estimator crucially define the overall performances of
the image registration method [10].

A common approach to representing the JDF is to compute the histogram
of the co-occurring intensities or to apply the Parzen kernel density method [13].
Such explicit representations of the JDF lead to the so-called plug-in entropy
estimators, which have been used extensively for multi-modal image registration
[14,5,10]. Some approaches use the implicit JDF representation, given by the par-
titioning of the scatter space of the co-occurring image intensities to derive the
entropy estimators. Miller [6] used the Voronoi tessellation for the m-spacings es-
timator. Recently, Kybic and Vnučko [3] proposed to use an all nearest-neighbor
(NN) Kozachenko-Leonenko entropy estimator. To solve the all-NN problem
they evaluated several scatter space partitioning algorithms such as k-d trees,
balanced box decomposition trees and locality sensitive hashing. Approaches
based on entropic graphs [4,7,12] apply a minimal spanning tree (MST), which
connects by a shortest overall path all the co-occurring image intensities that
span the JDF. The length of the MST is a consistent estimator of the α-Rényi
entropy [4]. Neemuchwala et al. [8] used a k-NN based entropic graph to esti-
mate several different α-entropy measures. Each of the mentioned methods has
at least one of the drawbacks: 1) lacks an efficient descent optimization method
[14,5,8], 2) has high computational complexity, i.e. the all-NN problem [3], or 3)
is sensitive to bad initialization [4,7,12].

In this paper, we propose a quad-tree (QT) based entropy estimator for image
registration that is essentially an entropic graph entropy estimator [4,12], but
can be adapted with minor modifications to work as a plug-in entropy estimator
[14]. This duality was achieved by incorporating the Hilbert kernel density esti-
mator [1,9]. A two 3-D rigid-body registration experiments were performed with
multi-modal brain volumes to test the proposed QT-based registration methods
and to compare them to the MST-based registration method [12]. The results
indicate that the QT-based methods achieve similar registration accuracy as the
MST-method, but have a higher success rate and a higher capture range, i.e. in
the case of bad initialization the QT-based registration methods have a higher
chance of convergence. Although the MST and the QT have similar computa-
tional complexities, the QT-based registration methods had about 50% shorter
registration times.
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2 Image Registration Methodology

Let ui = u(xi) and vi = v(T (xi)) be the intensities of the reference and the
floating image, respectively, where T (x) : Rn → R

n is a spatial transformation,
n is the dimensionality of the images and xi ∈ Ω are lexicographically ordered
spatial coordinates for i = 1, . . . , N in the overlapping spatial domain Ω of the
two images. Commonly, the spatial transformation T (x) is a function of some pa-
rameters θ, i.e. T (x) = f(x, θ) and the floating image intensities are dependent
on θ, noted as vθi . Co-occurring intensity pairs in Ω can be compactly denoted

as zi = [ui, v
θ
i ]

T. The task now is to find the optimal parameters θ̂ that opti-
mize a criterion C(θ), which measures the degree of correspondence between the
intensities ui and vθi . One such criteria that measures the statistical dependence
between pixel pairs zi is the joint entropy (or related mutual information [14]).
The image registration problem can thus be formulated as:

θ̂ = argminθ Ĥ(zθ) , (1)

where θ̂ are the optimal parameters with respect to (w.r.t.) the estimate of
the joint entropy Ĥ(zθ). There are different ways to estimate the entropy, the

most popular being the plug-in entropy estimate Ĥ(z) = −
∑N

i=1 p̂(zi) log p̂(zi),
which require an explicit model representing the JDF, i.e. p̂(zi). Alternatively,
an estimate of the entropy can be obtained by using entropic graphs.

2.1 Entropy Estimation Using Entropic Graphs

Entropic graphs refer to minimal graphs (e.g. MST, NN) on the i.i.d. samples
zi that define the JDF. Given a set Z = {zi; i, . . . , N} in R

d, let G = (E,Z)
be a graph with edge set E and vertex set Z. Edge e = (zi, zj) ∈ E has length
‖e‖ = ‖zi − zj‖, where ‖ · ‖ is the L2 norm. For a graph G and γ ∈ R, let
Wγ =

∑
e∈E ‖e‖γ . For a fixed G(Z), the minimal graph is defined as:

G∗(Z) = argminG∈G(Z) Wγ(G) (2)

and W ∗
γ is the corresponding minimal graph weight. Ma et al.[4] have shown

that the following quantity leads to an asymptotically unbiased estimate of the
α-Rényi entropy:

Ĥα =
1

1− α
log
(
β
W ∗

γ

Nα

)
, (3)

where α ∈ (0, 1) and β is a constant. Hence, by minimizing the minimal graph
weight W ∗

γ , the entropy estimate is effectively minimized, thereby solving the
registration problem in (1).

The entropic graph is a special case of the plug-in entropy estimator. Let
A(G) represent the adjacency matrix of G, in which (ij)-th entry A(G)(i, j) is
the number of edges joining vertex i and j. For a family of minimal graphs,
assume there exists a matrix L such that L(G) + L(G)T = A(G) and each row
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of L(G) has at most one non-zero entry equal to one. Then, the minimal graph
weight is expressed as [12]:

W ∗
γ (G) =

1

2

N∑
i=1

N∑
j=1

‖zi − zj‖γA(G∗)(i, j)

N∑
i=1

( N∑
j=1

‖zi − zj‖βL(G∗)(i, j)
)γ/β

.

(4)

Let γ = d(1− α), then using (4) in the log-argument of (3) yields:

β
W ∗

γ (G)

Nα
=

N∑
i=1

p̂(zi;G
∗)α−1 , (5)

where p̂(zi;G
∗) is a ”graph-based” density estimate defined as:

p̂(zi;G
∗) =

β1/(α−1)

N

N∑
j=1

‖zi − zj‖−dL(G∗)(i, j) . (6)

By combining (5) and (3) one obtains the sample mean, plug-in approximation
for the α-Rényi entropy, which becomes equal to the Shannon entropy estimate
as α → 1; i.e. Ĥ = Ei(log p̂(zi)) as proposed by Viola [14].

2.2 Plug-in Entropy Estimator Using Hilbert Kernel Density

For the plug-in entropy estimator we will employ the Hilbert kernel density
proposed by Devroye and Krzyżak [1], defined as:

p̂(z) =
1

Vd N logN

N∑
j=1

‖z − zj‖−d , (7)

where Vd is the volume of the unit ball in R
d. The Hilbert kernel density estimate

in (7) is weakly consistent at almost all z, that is, p̂(z) → p(z) in probability at
almost all z [1]. Note that (7) is similar to (6) up to the choice of the neighboring
samples defined by matrix L and the constant factors. By defining L(G∗)(i, j)
in (6) as the harmonic number we obtain exactly the Hilbert kernel density esti-
mate, hence (7) is a harmonically weighted nearest-neighbor density estimate [1].

2.3 Quad-tree Based Entropy Estimator

The computational complexity of using (7) in (5) is of O(N2). To break the
O(N2) complexity, we apply the quad-tree (QT) [3]. The idea is to group together
increasingly large groups of zj at increasingly large intensity differences from each
zi. In this way, interactions between zi and the groups of zj can be efficiently
approximated in O(N logN).



164 Ž. Špiclin, B. Likar, and F. Pernuš

QT is constructed by iteratively subdividing the bounding box of all zi into 2d

equal sub-cells up to depth level L. Let lB be the length of cell B in QT and diB
the difference between the cell’s center-of-mass ẑB to zi. If lB/d

θ
iB ≤ φ, where

φ is a fixed accuracy threshold, then we simplify
∑N

j=1 ‖zi − zj‖ ∼ N‖zi − ẑB‖.
For lB/diB > φ, the current cell B is resolved into its 2d subcells, which are then
recursively examined one by one. Hence, sums in (7) can be computed fast, while
the consistency of the QT-based entropy estimator relies on the consistency of
the Hilbert kernel density estimate [1] and on the consistency of the sample
mean, plug-in entropy estimator [14].

2.4 Gradient Descent Optimization

Registering images requires a minimization strategy for discussed entropy esti-
mators. We will use a simple gradient descent optimization strategy, i.e. θ̂k+1 =
θ̂k + λ ĝ(Z), where ĝ(Z) represents the derivative of (5). According to Sabuncu
and Ramadge [12], we can compute the derivative of the graph-theoretic entropy
estimator as:

g(Z) = −C
∑
i

∑
j �=i

p̂α−2
i ‖zi − zj‖−d−2 (zi − zj)∇θv

θ
i , (8)

or the derivative of the plug-in entropy estimator as:

g(Z) = −C
∑
i

∑
j �=i

[
p̂α−2
i + p̂α−2

j

]
‖zi − zj‖−d−2 (zi − zj)∇θ(v

θ
i − vθj ) , (9)

where p̂ θ
i =

∑
k �=i ‖zi − zk‖−d. The QT is employed to obtain the estimates

ĝ(Z) ∼ g(Z), i.e. the expressions for derivatives in (8) and (9).

3 Image Registration Experiments

Performance tests were carried out for the task of 3-D rigid-body registration
of brain volumes using 1) simulated MR volumes from the BrainWeb project
[2] and 2) the training set of the Retrospective Image Registration Evaluation
(RIRE) project [15]. The simulated MR images (T1-, T2 and PD-weighted)
from the BrainWeb project [2] had a volume of 181 × 217 × 181 voxels and
isotropic 1 mm spatial resolution, noise level of 3% relative to the brightest
tissue and a 20% intensity non-uniformity. The RIRE training set consisted of
a CT, PET and three PD-, T1- and T2-weighted MR brain volumes that were
registered by a supplied gold standard registration, rescaled and zero padded
to 80 × 80 × 32 lattice so as to obtain without any upsampling the isotropic 4
mm spatial resolution of all volumes. To test the registration methods, each pair
of volumes was initially displaced using randomly generated initial registration
parameters relative to the gold standard position.

The initial displacements were generated in terms of mean target registration
error (mTRE), computed as mTRE= 1/|ΩB|

∑
i∈ΩB

‖xi − Tinit(xi)‖. ΩB repre-
sents the set of voxels in the intracranium cavity that were used as targets. For
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the BrainWeb dataset Tinit was generated by combining random translations
(range [-70,70] pixels) and rotations (range [-35,35] degrees), such that initial
mTRE was in the range of [0, 80] pixels, with 20 displacements per each 4 pixels
subinterval. For the RIRE dataset the random translations (range [-20,20] pixels)
and rotations (range [-10,10] degrees) were generated such that the initial mTRE
was in the range of [0, 20] pixels, with 20 displacements per each 1 pixel subin-
terval. Hence, altogether 400 hundred initial displacements were generated for
each image pair. The estimated final transformations Tfinal were then compared
against the gold standard transformations to compute the final mTRE.

Registration was considered successful if the final mTRE was lower than 2
pixels. Three evaluation criteria were defined: 1) registration accuracy (ACC) as
the average of mTRE of only the successful registrations, 2) success rate (SR) as
the percentage of successful registrations and 3) capture range (CR) as the first
mTRE subinterval, in which more than one of the 20 corresponding registrations
failed. This setting corresponds to a 95% confidence level for the CR estimate.

The proposed QT-based entropy estimator was tested in two different settings.
In the first setting, dubbed the QTG registration method, the gradient of the
QT-based entropy estimator was computed as (8), which mimics the gradient of
the MST-based [12] or other entropic graph entropy estimators [8]. In the second
setting, dubbed the QTP registration method, the gradient was computed as (8),
which mimics the plug-in entropy estimators of Viola [14].

Image pairs were registered in a multiresolution setting, running consecutively
from lower to higher image resolution. For the BrainWeb image pairs, the res-
olutions scales were 1 : 8, 1 : 4, 1 : 2 and 1 : 1, while for the smaller RIRE
volumes the resolution scales were 1 : 2 and 1 : 1. The QT-based methods were
run by setting L = 10 and φ = 1 and the MST-based method was initialized
with γ = 1.9 and α = 0.5. All the methods used a stochastic sampling scheme,
in which only 1% of the co-occuring intensity samples at each resolution were
used to estimate the entropy gradient. The entropy gradient was used in a fixed
step gradient descent optimization with a maximum of 1000 iterations.

3.1 Results

For all registration trials on the BrainWeb dataset, the distribution of final
mTRE w.r.t. the initial mTRE is shown on Fig. 1 for each of the image pairs
and for each of the tested methods. For the RIRE dataset, the joint distributions
for all image pairs are shown in Fig 2, i.e. only w.r.t. each of the tested meth-
ods due to space limitations. The three evaluation criteria, obtained by running
400 registration trials per each image pair are shown in Table 1 and Table 2
for the BrainWeb and the RIRE dataset, respectively. On the two tested image
datasets, the MST- and QT-based methods achieved similar registration accu-
racy (ACC). Comparing the ACC between the BrainWeb and RIRE datasets,
however, indicates that due to relatively low resolution the RIRE images might
not be representative for studying the ACC. Nevertheless, the ACC of all tested
methods could be improved by using a higher order (cubic instead of linear) in-
terpolation method and by increasing the number of iterations. The latter might
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Fig. 1. Distributions of the final mTRE with respect to the initial mTRE shown for
the BrainWeb image pairs and for the three tested methods

also require simultaneous regularization of the gradient step size to suppress the
oscillatory effects of the stochastic sampling on the estimated entropy gradient.

The key advantage of the QT-based methods is observed in a much higher
success rate (SR) and capture range (CR) compared to the MST-based registra-
tion method. For the MST, the overall SR (CR) were 89.0% (48.0 pixels) for the
BrainWeb and 93.1% (14.8 pixels) for the RIRE datasets, respectively. For the
QTG, that mimics the entropic graph entropy estimator, the respective values
were 97.0% (62.7 pixels) for the BrainWeb and 95.6% (15.5 pixels) for the RIRE
datasets. For the QTP, that mimics the plug-in entropy estimator, the respective
values were the consistently the highest at 98.0% (69.3 pixels) for the BrainWeb
and 96.6% (17.0 pixels) for the RIRE datasets. The advantageous convergence
properties of the QTP method over both the QTG and the MST methods can
also be clearly observed from the mTRE distributions in Figs. 1, 2, especially
for the PD-T2 image pair in Fig. 1.

The proposed QT-based registration methods, i.e. the QTG and QTP meth-
ods, run significantly faster than the MST-based method. The box-whisker dia-
grams in Fig. 3 depicts the recorded registration times for each dataset and for
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Fig. 2. Joint distributions of all 10 RIRE image pairs of the final mTRE with respect
to the initial mTRE for the three tested methods

Fig. 3. Registration times for the BrainWeb dataset (left) and RIRE dataset (right)
recorded for 1200 and for 4000 registration trials per each method, respectively

each tested registration method. Roughly, the QT-based methods require 50%
less time to register a pair of 3-D volumes. The observed speedup can be at-
tributed to the heuristic, and thus fast, subdivision scheme of the QT entropy
estimator. For the BrainWeb dataset, the average registration times were 4.0,
1.7 and 1.8 seconds for the MST, QTG and QTP methods, respectively. For the
RIRE dataset the respective average registration times were 0.7, 0.4 and 0.4 sec-
onds. Due to smaller initial image resolution, the registration times were much
shorter on the RIRE compared to the BrainWeb dataset.

Table 1. Results for the BrainWeb dataset obtained by running the MST, and the
proposed QTG and QTP methods in 400 registration trials per each image pair. The
best result for each image pair and each evaluation criteria is marked in bold.

Image
pair

ACC [pixels] SR [%] CR [pixels]

MST QTG QTP MST QTG QTP MST QTG QTP

PD-T1 0.15 0.17 0.15 90 96 95 44 60 60

PD-T2 0.14 0.14 0.14 80 95 100 32 48 80

T1-T2 0.15 0.13 0.14 97 100 99 68 80 68

Mean 0.14 0.15 0.15 89.0 97.0 98.0 48.0 62.7 69.3
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Table 2. Results for the RIRE dataset obtained by running the MST, and the proposed
QTG and QTP methods in 400 registration trials per each image pair. The best result
for each image pair and each evaluation criteria is marked in bold.

Image
pair

ACC [pixels] SR [%] CR [pixels]

MST QTG QTP MST QTG QTP MST QTG QTP

CT-PET 0.89 0.94 0.95 87 93 89 13 14 14

CT-PD 0.73 0.67 0.67 100 100 100 20 20 20

CT-T1 0.48 0.49 0.52 97 99 99 11 20 17

CT-T2 0.99 1.46 1.09 100 98 100 20 10 20

PET-PD 1.22 1.31 1.33 82 91 91 12 12 14

PET-T1 1.07 1.11 1.10 79 89 93 10 15 13

PET-T2 1.55 1.37 1.33 89 94 97 12 14 18

PD-T1 0.57 0.55 0.47 100 100 100 20 20 20

PD-T2 1.07 1.16 0.87 99 99 99 12 16 16

T1-T2 0.95 0.85 0.86 98 96 98 18 14 18

Mean 0.94 0.98 0.91 93.1 95.6 96.6 14.8 15.5 17.0

4 Discussion

Performances of the information-theoretic multi-modality image registration me-
thods crucially depend on the representation model of the JDF and on the
implementation of the entropy estimator. We proposed an entropy estimator for
image registration based on quad-tree (QT) that is essentially an entropic graph
entropy estimator, but was also adapted to work as a plug-in entropy estimator
by incorporating the Hilbert kernel density estimator. Results of 3-D rigid-body
registration of multi-modal brain volumes indicate that the proposed QT-based
methods achieve similar registration accuracies as the MST-based method, but
have a consistently higher success rate (SR) and a higher capture range (CR).

Low capture range or the sensitivity to bad initialization is known to be one of
the major drawbacks of the MST-based method [12]. This can be attributed to
the fact that the MST takes into account only two edges connecting the vertex
or sample zi in the MST, while the QT-based methods consider all N samples
(zj) and approximate their contribution by grouping the distant samples. The
grouping of zj is controlled by the cell acceptance threshold φ and by the maximal
tree depth L. Both of these parameters affect the level of approximation and the
performance gains. In general, setting φ < 1.5 and L ≥ 8 should yield a good
approximation of ĝ(Z). For φ = 1 and L = 10, the QT-based methods were
more robust in terms of SR and CR, while they also required 50% less time
than the MST-based method to register a pair of 3-D volumes. Although the
MST and QT have similar computational complexities, the significant speedups
achieved by the QT-based methods can be attributed to the heuristic, and thus
fast, subdivision scheme of the QT entropy estimator.
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In conclusion, to speedup and, especially, to robustify the MST-based method
the QT-based methods present an attractive alternative approach. Furthermore,
the QT-based methods provide a direct link between the entropic graph and
plug-in entropy estimators, the only differences being 1) the weighting of the
sample contributions to the joint entropy and 2) the inclusion (exclusion) of the
mutual dependence of the density (graph) defining samples and the joint entropy
defining samples on the parameters of the spatial transformation.
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Abstract. This paper presents a method for normalization of diffusion
tensor images (DTI) to a fixed DTI template, a pre-processing step to
improve the performance of full tensor based registration methods. The
proposed method maps the individual tensors of the subject image in
to the template space based on matching the cumulative distribution
function and the fractional anisotrophy values. The method aims to de-
termine a more accurate deformation field from any full tensor regis-
tration method by applying the registration algorithm on the normal-
ized DTI rather than the original DTI. The deformation field applied to
the original tensor images are compared to the deformed image without
normalization for 11 different cases of mapping seven subjects (neonate
through 2 years) to two different atlases. The method shows an improve-
ment in DTI registration based on comparing the normalized fractional
anisotropy values of major fiber tracts in the brain.

Keywords: Tensor Normalization, DTI Registration, DTITK.

1 Introduction

Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) tech-
nique that enables the measurement of restricted diffusion of water molecules in
tissue to produce neural tract images. This technique has become increasingly
important for studies of anatomical and functional connectivity of the brain re-
gions. DTI is now extensively used to study the fiber architecture in the living
human brain via DTI tractography. This technique has proven especially valu-
able in clinical studies of white matter (WM) integrity in the developing brain
for diseases, such as metachromatic leukodystrophy (MLD), cerebral palsy and
Krabbe. In this paper, the tensor normalization method is tested on a particular
white matter demyelinating disease called Krabbe [1].

Krabbe disease (also called globoid cell leukodystrophy) is a rare, often fatal
genetic disorder of the nervous system caused by a deficiency of an enzyme called
galactocerebrosidase, which aids in the breakdown and removal of galactolipids
found in myelin. Previous studies show that patients with infantile Krabbe dis-
ease have lower fractional anisotropy (FA) across the corpus callosum and along
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the DTI fiber bundle of internal capsules (IC) when compared with healthy age-
matched controls [1]. Based on the above findings, atlas based fiber tract analysis
is used for analyzing DTI of Krabbe subjects [2]. There are considerable anatom-
ical variations between the Krabbe subjects and the atlas and hence for accurate
analysis of white matter fiber tracts it is crucial to establish a registration based
voxel-wise correspondence between a normal control neonate DTI atlas and the
Krabbe subjects. To achieve this needed registration accuracy, the research pre-
sented in this paper provides a method to improve the state-of-the-art approach
to individually register DTI images into the atlas space.

The registration of diffusion tensor images is particularly challenging when
compared to registering scalar images as DTI data is multi-dimensional and the
tensor orientations after image transformations must remain consistent with the
anatomy. Prior to the development of full tensor based registration methods,
DTI registration was performed with traditional image registration algorithms
on scalar images derived from the DTI[3]. These methods discard the orienta-
tion component of the data and thus DTI registration algorithms that directly
use higher order information of DTIs, such as the corresponding principal eigen-
vectors [4] and the full tensor information [5] are now preferred. In our recent
publication [6], the performance of scalar and full tensor registration algorithms
are compared for Krabbe neonates. In comparison to the commonly available
regsitration packages, the full tensor based DTI-TK [5] method showed the most
accurate registration performance. DTI-TK is a non-parametric, diffeomorphic
deformable image registration that incrementally estimates its displacement field
using a tensor-based registration formulation. It is designed to take advantage
of similarity measures comparing whole tensors via explicit optimization of ten-
sor reorientation. Hence, in this paper the method is tested with the DTI-TK
registration tool.

Normalization of DTIs is challenging as the data is multidimensional and in-
cludes considering the shape of the tensors along with tensor properties such as
FA. Methods to improve DTI registration have been proposed by determining
the correspondence between tensors using Gabor filters [7]. For normalization,
the full tensor registration methods like DTI-TK [5] uses the ADC profile in-
formation. The F-TIMER [4] method uses the local statistical information of
underlying fiber orientations along with the edge strength of the FA and the
ADC maps for normalization. In both methods, the normalization is specific to
the methods developed and may not always result in good normalization if there
are considerable differences in local tensor appearance between the case and the
template, for example, in the mapping of a neonate to a 2 year template. In
this paper, our aim is to develop a general tensor normalization step that can
be incorporated in the analysis pipeline as a prior step to any full tensor based
registration algorithms.

For DTI derived scalar image registration methods, a simple histogram nor-
malization of the subject to the template improves the performance of regis-
tration considerably [8]. Motivated by these approaches, this paper presents a
normalization method for full tensor registration methods that normalizes the 3
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dimensional Eigenvalues of each tensor while maintaining similar FA values. The
deformation fields are computed using the full tensor registration methods on
the normalized DTI images, and the fields are applied on the original DTIs. The
performance with and without normalization are compared based on normalized
FA values of major fiber tracts of the brain.

2 Method

For scalar image registrations based on sum of squared differences, histogram
based intensity normalization is commonly used prior to registration to improve
the registration accuracy. Similarly for DTI derived scalar images such as FA im-
ages, histogram based intensity normalization is used to determine an improved
deformation field. This normalization is achieved by computing the histograms
of the subject Isub and the template Itemp scalar image. From the histograms,
the cumulative distribution functions (cdfs) of the two images Csub and Ctemp

are determined. For each image intensity ni, an intensity level no, for which
Csub(ni) = Ctemp(no) is computed; this is the result of histogram matching
function M(ni) = no. The histogram matching function applied on each voxel
of the subject image gives the normalized FA images. In this paper, we extend
this idea of scalar intensity normalization 3D tensors in DTI.

Diffusion tensor MRI characterizes the diffusion of water molecules by mea-
suring the apparent diffusion tensor in each voxel of an MRI volume. The method
assumes that water molecules move according to a simple anisotropic diffusion
process so that the displacement x of a water molecule over a fixed time t is
modeled as a random variable that follows the multivariate normal distribution
p with the mean at the origin and covariance 2tD, where D is the diffusion ten-
sor, a symmetric and positive-definite 3-by-3 matrix. The Eigenvalues λ1, λ2, λ3

of D are used to determine the standard DTI properties like mean diffusivity
(MD) and FA defined by:

MD = (λ1 + λ2 + λ3)/3;FA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2

λ2
1 + λ2

2 + λ2
3

(1)

Our proposed method, works in this three dimensional Eigenvalue space by first
determining the cdf planes. The standard cdf equation for three values λ1, λ2, λ3

is defined by the equation:

Cin(λ1a, λ2a, λ3a) = p((0 ≤ λ1 ≤ λ1a), (0 ≤ λ2 ≤ λ2a), (0 ≤ λ3 ≤ λ3a)) (2)

In the 3D space, the summation cdf volume based on this equation is a rectangu-
lar box. Our aim in this paper is to nomalize two DTI volumes while maintaining
a similar cumulative distribution function and also to maintain a similar distribu-
tion of mean diffusivity. To achieve this aim, we propose to modify this equation
to have constant cdf planes rather than constant cdf rectangular volumes. The
modified 3-D cdf equation is defined as:
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Fig. 1. Constant cdf planes - iso-MD planes defined in the subject and atlas eigen value
space

Cin(λ1in, λ2in, λ3in) = p((λ1 + λ2 + λ3 ≤ 3MDi)) (3)

whereMDi = (λ1in+λ2in+λ3in)/3. The summation volume is bound by a plane
which has the same cdf values as shown in Fig. 2. The input cdf is a function
of MD. Since these planes have constant MD values for all points (λ1, λ2, λ3)
lying on the plane, in further discussion we refer to these constant cdf planes as
iso-MD planes. Ji-Hee et. al. [9] presents a similar argument and result for color
normalization in the r, g, b space.

The proposed method is discussed below step-by-step and is shown in Fig. 3.
Based on the above proposed idea of constant cdf planes, the first step of the
algorithm is to define iso-MD planes in the subject and the atlas eigen value
space with fixed intervals ′δ′, a concept similar to defining histogram bins. The
value of ′δ′ is selected based on the Eigenvalues of tensors of the subject and
the atlas. The following steps are repeated for each tensor of the subject. Each
subject tensor (for discussion consider tensor at particular location (x, y, z)) is
mapped to the closest iso-MD plane. The atlas iso-MD plane with the closest cdf
value to the selected subject iso-MD plane is determined based on the equation
Cout(MDout) = Cin(λ1x1,y1,z1, λ2x1,y1,z1, λ3x1,y1,z1). This equation ensures a
uniform cumulative distribution function between the normalized subject tensors
and the atlas tensors. In fact, any selection of positive λ1, λ2, λ3 value lying on
this atlas iso-MD plane will lead to a uniform cdf. Let us refer to the set of
points on the atlas iso-MD plane ′i′ as λ1i,MD, λ2i,MD, λ3i,MD, the subscript
’MD’ indicating that all the points on this plane have constant MD. The next
step is to find the particular λ1, λ2, λ3 value on the iso-MD plane that best
normalizes the subject case to the atlas space. For this, we need to determine
the atlas normalized FA value for the tensor. This is achieved by applying a
standard 2D histogram matching of the subject FA scalar image to the atlas FA
scalar image as discussed below.
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Fig. 2. Mapping from the subject eigen space to the template eigen space

The filter used to implement the standard 2D histogram matching normalizes
the grayscale values of a source image (subject FA image in our case) based on
the grayscale values of a reference image (atlas FA image in our case). This filter
from Insight Toolkit1 uses a histogram matching technique where the histograms
of the two images are matched only at a specified number of quantile values. As
a result of this histogram matching, each subject tensor has a corresponding
atlas intensity normalized FA value. Let us denote the intensity normalized FA
value for the location (x, y, z) as FANormV aluex,y,z . In our algorithm, after
determining the matched iso-MD plane in the atlas space for each subject tensor,
we determine the FA values of all the (λ1, λ2, λ3)s on this plane based on the
equation 1. The (λ1, λ2, λ3)s with the most similar FA value to the tensor’s
intensity normalized FA value FANormV aluex,y,z are selected.

argmin(FAi − FANormV aluex,y,z) (4)

Substituting equation 1 in the above equation and computing the arg mini-
mum leads to a set of points on the plane. These set of points represented as
(λ1i,MD,FA, λ2i,MD,FA, λ3i,MD,FA) (

′i′ indicating the points on the selected iso-
MD plane and ′MD′ and ′FA′ represent that these points satisfy the condition
of closest MD and FA) form an ellipse on the iso-MD plane (Fig. 2). The final
step in our method is to determine the point pmin from these set of points that
satisfies the condition (λ1 > λ2 > λ3) and has the minimum Euclidean distance
to the original tensor.

pmin = argmin((λ1x,y,z − λ1i,MD,FA)
2+

(λ2x,y,z − λ2i,MD,FA)
2 + (λ3x,y,z − λ3i,MD,FA)

2)0.5
(5)

This minimum Euclidean distance ensures that the normalized tensor has the
most similar shape to the original tensor. Hence, this algorithm computes the

1 www.itk.org

www.itk.org
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Fig. 3. Block diagram showing all the steps in the normalization algorithm

normalized tensor with the most similar tensor shape that satisfies the conditions
of same cdf and closest normalized FA values. The normalized DTI volume is
determined by computing the normalized tensor for each tensor of the subject
based on the above steps. For clarity, the block diagram Fig. 3 illustrates all the
steps.

3 Experiments

Subjects: The tensor normalization method is tested on Krabbe subjects in the
age 10 days to 2 years. These subjects are registered to a neonate atlas (built from
377 age-matched neonate controls) and a 1-2 year atlas (from 283 controls age 1 to
2 year). Both atlases are built using a scalar, unbiased diffeomorphic atlas build-
ing method based on a nonlinear high-dimensional fluid deformation method [3].
Details of image acquisition of the controls and Krabbe can be found in [10].

Setup: Four Krabbe neonates are registered to a neonate atlas using the DTITK
algorithm with and without the proposed normalization method. To test the ro-
bustness of the normalization wherein there are large anatomical variations be-
tween the subject and the atlas, we registered the same four neonates to a 1-2 year
atlas (as there are considerable differences from a neonate to a 1-2 year brain).
Three additional 1 to 2 year old Krabbe subjects are registered to the 1-2year at-
las using the DTITK algorithm. An affine registration is implemented as a pre-
processing step prior to DTITK registration. For all the Krabbe subjects, the DTI
volumes are normalized using our proposed method and the DTITK deformation
field for mapping the normalized subjects to the atlas is determined. The field is
applied to the original (not normalized) DTI and the results are compared.
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Tract-based Analysis: In this paper, we prove the performance of the method
for atlas based registration methods. Since this is an application based method-
ology, we focus our evaluation on FA profiles of tract based analysis. The clini-
cians use the statistics of the FA profiles for their Krabbe subject evaluation. We
evaluate the registration with and without normalization via fiber tractography
based FA profiles [2] for four fiber tracts - corticospinal internal capsule tracts
(left and right), genu and splenium. These tracts have been previously manu-
ally extracted from the different atlases. The FA profiles represent the average
FA values across the individual streamlines along the tract[2]. Since the tracts
under consideration are the prominent high intensity tracts, a higher FA profile
indicates a better registration. The comparison is performed between the FA
profiles of the four tracts obtained from: 1. Registration of the original DTI to
the atlas using DTITK algorithm and obtaining the registered DTI volume in
the same space as the atlas. The fiber tracts are extracted from the registered
DTI volumes using the previously defined atlas tracts and the transformation
field. Using a prior definition of a tract origin plane, which defines a curvilin-
ear re-parameterization of the tracts, corresponding average tract property FA
profiles are extracted from each individual fiber tract. 2. The original DTI is
normalized using the proposed method. The normalized DTI is registered to the
atlas and the deformation field is determined. This deformation field is applied
to the original DTI to obtain the atlas registered DTI volume. The fiber tracts
are extracted in the similar method as above. 3. A region of interest (ROI) in
the tract that is under study is defined by a trained expert for the original DTI
of each subject. The FA volume is used as a reference volume to trace the ROI.
From the ROI, the fiber tracts are seeded using the tool Slicer3 2. The fiber
tracts are cleaned to remove crossing fibers and the FA profiles are determined
of these tracts using an in-house tool called FiberViewer 3.

Evaluation: The FA profiles from manual tractography (MeanFAmt) are con-
sidered as the ground truth and compared to the FA profiles of the fiber tracts
extracted from the registered original and normalized DTI (MeanFAorig/norm).
The mean absolute point-wise difference (MAD) normalized by the mean FA of
the ground truth is used as the evaluation error metric:

E =
MeanFAorig/norm −MeanFAmt

MeanFAmt
(6)

4 Results and Discussions

For the four fiber tracts, the tensor normalization resulted in FA profiles with
higher values as compared to the profiles without normalization. In Table 1, we
show the percentage error in registration of the major fiber tracts with and with-
out normalization. Compared to the ground truth an average percentage decrease
in error of 5 to 10% is observed. For example, for the Genu tract (Neonate3),

2 www.slicer.org
3 www.na-mic.org

www.slicer.org
www.na-mic.org
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Internal Capsule Left

Internal Capsule Right

Genu

Splenium

Enorm = 16.8%
Eno_norm = 24.2%

Enorm = 6.9%
Eno_norm = 25.1%

Enorm = 16.6%
Eno_norm = 26.3%

Enorm = 14.7%
Eno_norm = 20.3%

Fig. 4. Comparison of FA profiles for the four tracts. (x-axis:FA values; y-axis: points
along the fiber tracts) For each tract - manual (highest FA), with normalization (mid-
dle) and without normalization (lowest FA).

normalization resulted in a 7% error as compared to 25% error without nor-
malization i.e. an improvement in average FA values from 0.32 to 0.4 (18%
improvement). The challenge of registration of Krabbe cases to a normal atlas
has been discussed earlier, and a 2 to 18% improvement is substantial. Even
in cases of poor registration (eg. left internal capsule Neonate1 mapped in 1-2
year atlas), the normalization improves the registration considerably (11%). The
selected tracts are the tracts with the highest FA intensities and thus higher FA
values indicate better mapping of the subject into the atlas template i.e. better
registration. We observe a higher improvement in registration in the corpus col-
losum tracts compared to the cortico-spinal tracts. This is likely due to a higher
reduction in registration errors that are normally seen in the central bends of
the genu and splenium tracts without normalization (see splenium tract in Fig.
4. It is important to note that manual tractography, though performed to the
best of our ability by a trained expert, is akin to manual segmentation and is
subject to variability. Due to this factor, point-wise comparison and higher vari-
ability towards the ends of the tracts, the % error values in Table 1 appear high.
Important to this evaluation is the percentage decrease in error rather than the
absolute % error.

In most cases, the shape of the FA profile with normalization appears simi-
lar to the profile without normalization but with higher values. But in certain
cases (splenium profile of Fig. 4), the shape of the FA profile from normalization
appears more similar to the ground truth, again indicating an improvement in
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Table 1. Table showing the E% for 11 cases (7 subjects) and average % error reduction

registration along the entire tract. This method can be easily introduced as
a pre-processing step in most analysis pipelines. On a typical workstation, the
normalization takes less than 5 minutes. The code is open source and the binaries
can be downloaded as a part of the “dtiprocess” package 4.

5 Conclusions

Based on the evaluation criteria, the proposed tensor normalization method
considerably improves the registration of the subjects into the atlas template.
Even for white matter demylinating diseases like Krabbe, where registration is
a very crucial step for analysis, this method gives a significant improvement in

4 www.nitrc.com

www.nitrc.com
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the registration accuracy. This method can be very easily introduced as a pre-
processing step prior to registration in any analysis pipeline. The normalized DTI
is only used for generating the registration diffeomorphic field, and this generated
field is applied to the original DTI and hence no properties of the original DTI
are altered in this pre-processing step. Our future work will be focused on testing
this method on other tensor registration methods like MedINRIA and also on
atlas building methods.
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Abstract. Registration and delineation of anatomical features in MRI of the hu-
man brain play an important role in the investigation of brain development and
disease. Accurate, automatic and computationally efficient cortical surface regis-
tration and delineation of surface-based landmarks, including regions of interest
(ROIs) and sulcal curves (sulci), remain challenging problems due to substantial
variation in the shapes of these features across populations. We present a method
that performs a fast and accurate registration, labeling and sulcal delineation of
brain images. The new method presented in this paper uses a multiresolution, cur-
vature based approach to perform a registration of a subject brain surface model
to a delineated atlas surface model; the atlas ROIs and sulcal curves are then
mapped to the subject brain surface. A geodesic curvature flow on the cortical
surface is then used to refine the locations of the sulcal curves sulci and label
boundaries further, such that they follow the true sulcal fundi more closely. The
flow is formulated using a level set based method on the cortical surface, which
represents the curves as zero level sets. We also incorporate a curvature based
weighting that drives the curves to the bottoms of the sulcal valleys in the cortical
folds. Finally, we validate our new approach by comparing sets of automatically
delineated sulcal curves it produced to corresponding sets of manually delineated
sulcal curves. Our results indicate that the proposed method is able to find these
landmarks accurately.

1 Introduction

Human cerebral cortex is often modeled as a highly convoluted sheet of gray matter.
Inter- and intra-subject comparison involving anatomical changes over time or differ-
ences between populations requires the spatial alignment of the cortical surfaces, such
that they have a common coordinate system that is anatomically meaningful. Sulcal
curves are fissures in the cortical surface and are commonly used as surrogates for the
cytoarchitectural boundaries in the brain. Therefore, there is also great interest in direct
analysis of the geometry of these curves for studies of disease propagation, symmetry,
development and group differences (e.g. [10,8]). Labels of cortical regions of interest
(ROIs) or sulcal curves that are often required for these studies and can be produced
using manual [13] or automatic delineation [15,17]. Manual delineation is often per-
formed using an interactive software tools [13]. This, however, can be a tedious and

� This work was supported by grants NIH-NIBIB P41 EB015922 / P41 RR 013642 and NIH-
NINDS R01 NS074980.
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subjective task that also requires substantial knowledge of neuroanatomy and is there-
fore confounded by intra- and inter-rater variability. This variability is reduced to some
extent using rigorous definitions of a sulcal tracing protocol and extensive training as
described in [9,13].

An alternative approach to this problem is to use automatic surface registration to
align surface curvature or sulcal depth [2]. Sulcal curves can be delineated on a ref-
erence atlas brain surface, which is then aligned with the subject brain surface using
automated registration. The sulci from the atlas are then transferred to the subject using
the point correspondence defined by the surface mapping. While this approach can find
the sulcal location approximately, there is often substantial residual error [9]. This is
because automatic methods align the whole surface using curvature and do not focus
specifically on the sulcal locations and label boundaries, which are sometimes biased
by the reference atlas chosen. Also, the variability of the atlas and subject folds can be
reflected in the misalignment of sulcal curves, thus the transferred sulcal curves may
not lie at the valleys of the subject surfaces. A local refinement of the curves represent-
ing sulci and label boundaries can alleviate this problem. This paper describes a fast
and accurate surface registration and curve refinement method based on 2D flat map-
ping and geodesic curvature flow on surfaces where the sulcal curves are represented as
curvature weighted geodesics. The surface registration method presented here extends
the surface registration method presented in [4] that required manually traced sulcal in-
puts. The cortical labels from the atlas cortex surface model are then transferred to the
subject cortex surface model using the point correspondence. The local refinement of
this registration is performed by using geodesic curvature flow of the label boundaries
as described for parametric surfaces in [14]. Here, we use a level set based formula-
tion similar to [19,6] and apply it to the label boundary refinement and sulcal detection
problem. The curve evolution is defined in terms of evolution of a zero level set. The
flow is discretized in the surface geometry using a finite element method.

2 Materials and Methods

We assume as input, an atlas brain surface mesh with manually delineated surface labels
as well as sulcal landmarks and a subject brain surface mesh. The goal is to perform
atlas to subject cortical surface registration and transfer cortical labels and delineated
sulci from atlas surface to the subject surface. First, we briefly describe an automated
curvature based registration approach that performs alignment of the atlas surface and
the subject surface. The cortical labels and sulci from the atlas surface are then trans-
ferred to the subject surface.

2.1 Cortical Surface Registration

We developed a single subject anatomical atlas brain based on a T1-weighted MRI from
which we generated inner cortical and pial surfaces using our BrainSuite software [12].
These surfaces were labeled with anatomical structures (35x2 ROIs) and sulcal curves
(26x2) that were delineated manually by an expert neuroanatomist (Fig 1). We apply a
surface-based registration method that establishes one-to-one correspondence between
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Fig. 1. Rendering of the brain atlas cortical surface used in this work. The gyri have been labeled
manually and are coded with different colors on the surface. Manually traced sulcal curves are
also shown.

the atlas surface A and the subject surface S . The method for surface registration has
three stages: (i) for subject and atlas, we generate a smoothed representation of the
subject and atlas surfaces and then perform a L2 energy based 3D matching, (ii) for
each subject, we parameterize the surface of each cortical hemisphere to a unit square
(iii) find a vector field with respect to this parameterization which aligns curvature of
the surfaces and the 3D aligned coordinates from step (i).

Fig. 2. (Top) Mid-cortical surface iteratively inflated by mean curvature flow to generate a mul-
tiresolution representation of the cortical surface. (Bottom) Initial 3D alignment of the cortex,
first by using deformation field of AIR and later by L2 energy minimization.

First, the multiresolution representation of curvature, as shown in Fig. 2, is gener-
ated using an iterative smoothing of the cortical surface and computation of the mean
curvature at each iteration. The smoothing is performed by mean curvature flow [16].
Additionally, we also use the computed mean curvature as a feature for surface match-
ing in the subsequent steps. The reason for using the mean curvature is that it represents
the sulcal fundi with negative values and gyral crowns with positive values, therefore
its alignment leads to accurate alignment of the cortex.
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Next, we perform a coarse alignment of these smooth surfaces in 3D. For this pur-
pose, we first apply a 5th order polynomial warping field to the subject and atlas sur-
faces; this field is computed using AIR [18] as part of BrainSuite’s extraction sequence.
This is followed by an L2 surface registration procedure described in [5] as shown in
Fig. 2. We chose initial alignment of the cortex based on the 5th degree polynomial
initialization which is followed by L2 surface registration. This rough alignment is fast
because it is surface based and is performed in 3D rather than in the flat space. Ad-
ditionally at this point our goal is compute an alignment of the major lobes and these
are better defined by their 3D locations rather than local features such as curvature.
Curvature registration in flat space then refines this alignment.

Fig. 3. p-harmonic mapping of the cortex generated by p-harmonic energy minimization. The
corpus callosum denoted by the blue boundary is mapped to the boundary of the square. After
the energy minimization the cortical hemisphere maps to the inside of the square.

The subject and atlas surfaces are mapped to the unit square using p-harmonic map-
pings as described in [4]. The p-harmonic maps generate a one-to-one correspondence
between a unit square and the cortical surfaces such that the inter-hemispherical fissure
dividing the left and right hemisphere maps to the boundary of the unit square as a
uniform speed curve. The cumulative curvature maps generated in the previous step are
then transferred to the unit squares using the point correspondence established by the p-
harmonic maps. To perform the curvature based alignment, we model the brain surface
as an elastic sheet and solve the associated linear elastic equilibrium equation using the
Finite Element Method (FEM) as described in [4]. The alignment of the curvature maps
is then performed by minimizing a cost function with elastic energy as a regularizing
penalty. This reparameterizes the cortical hemisphere surfaces and establishes a one-
to-one point correspondence between subject and atlas surfaces. For every point s in
the unit square space, let CA (s) and CS (s) denote the cumulative mean curvature val-
ues at s for atlas and subject, respectively. Also, X(s) = [x(s),y(s),z(s)]T denotes the 3D



184 A.A. Joshi, D.W. Shattuck, and R.M. Leahy

vertex coordinates of the surface at the mapped point s; XA and XS denotes aligned
atlas and subject surfaces 3D coordinates described in the previous paragraph. Let E
denotes elastic energy regularizer computed on the surface mesh. Then we find a defor-
mation field φ that minimizes the cost function:

C(φ) = E(φ(s))+ σ1‖CA (φ(s))−CS (s)‖2 + σ2‖XA (φ(s))−XS (s)‖2. (1)

The parameters σ1 = .5, σ2 = .1 were chosen empirically. The cost function mini-
mizes the weighted sum of a curvature matching penalty and a 3D coordinate matching
penalty, regularized by an elastic energy [4]. The optimization of the cost is performed
by applying the L-BFGS optimization scheme [7]. The flat maps corresponding to the
subject, atlas and warped subject are shown in Fig. 4.

After performing the atlas to subject registration, the sulcal curves and cortical labels
from the atlas are transferred to the cortical surface (Fig. 5).

Fig. 4. Flat maps produced by the automatic surface registration sequence. Shown are the
atlas, subject, and warped subject flatmaps, shaded according to curvature (bright=positive;
dark=negative); and the atlas-color flatmap colored according to anatomical ROI labels.

Fig. 5. Lateral views of the left and right hemispheres of an automatically labeled subject cortical
surface. The labels from the atlas surface were transferred to the subject’s surface by using the
correspondence established by registration.
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2.2 Geodesic Curvature Flow on Surfaces

The second major step in our method performs local refinement of the transferred sulcal
curves and label boundaries using a geodesic curvature flow [6,19] so that these bound-
aries conform to sulcal fundi as represented by the curvature minima. In this section,
we discuss the refinement of these sulcal curves, but note that the label boundaries are
refined in a similar manner. The numerical implementation and FEM formulation of
this method is described in detail in [3]; we describe it here briefly but omit the details.
By using the point correspondence established by the registration, the sulcal curves on
the atlas are transferred to the subject surface; we refer to these as the RT curves. The
RT curves are typically in the correct sulcal valley, but are not precisely at their desired
locations at the bottoms of these valleys. It has been noted that the sulci propagated by
automatic registration generally lie withing 3cm of the true sulcal valleys [9]. Therefore,
to reduce the computational burden, we calculate a surface patch around the sulcus of
interest using front propagation for 3cm (Fig. 6).

Fig. 6. (a) Initial sulcal curve and signed distance function; (b) curvature weighting function f
shown as color-coded overlay on the surface patch around that sulcus

The geodesic curvature flow is performed over this surface patch around the sulcus
of interest using a level set formulation. The approach presented here is based on [6],
but in our case we add curvature weighting when computing minimizing geodesics.
Assume M is a general 2D manifold representing the surface patch embedded in R

3

and let Γ be the sulcal curve on the surface. Let the curve Γ be represented by the zero
level set of a function φ : M → R, i.e., Γ = {s : φ(s) = 0}. Suppose that c : M → R

is the curvature of the surface M . It has been noted that for sulcal tracing, a sigmoid
function of the curvature works well as a weighting function on the paths for sulcal
tracing [13]. Therefore, we define f (s) = 1

1+e−2c(s) as the curvature based weights on
the surfaces and seek to minimize the weighted length of Γ given by
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E(Γ ) =
ˆ

Γ :φ=0
f dS (2)

where integration is computed over the surface at the curve points. Following [6,14,19],
the Euler-Lagrange equations for the energy functional minimization of E(Γ ) yield{

−div
(

f ∇φ
|∇φ |

)
= 0

∂φ
∂−→n |∂M = 0,

(3)

where ∂M is the boundary of M and −→n is the intrinsic outward normal of ∂M . A
gradient descent flow of the equation [1] is given by:⎧⎪⎪⎨⎪⎪⎩

∂φ
∂ t = |∇φ |div

(
f ∇φ
|∇φ |

)
∂φ
∂−→n |∂M = 0

φ(0) = φ0

(4)

where we choose φ0 to be a signed distance function from the initial sulcal curve. The
boundary condition is discretized using standard finite element approaches (see [11]
and [3] for details). This system of equations is solved using a preconditioned conjugate
gradient method with a Jacobi preconditioner.

We implemented the algorithm in Matlab. We choose Δ t = .5 and the number of iter-
ations Niter = 20. The algorithm takes approximately 1.5 hours per subject hemisphere
for the refinement of all sulci and boundary labels on a 4 core Intel i7 computer. The
final refined curves and label boundaries were extracted by finding the zero level set of
the function φ after 20 iterations.

To refine the label boundaries between two adjacent ROIs, we first extract the surface
patch corresponding to the two label surfaces. The level set function is then initialized
using the signed distance function such that the zero level set corresponds to the ROI
boundary. The geodesic curvature flow procedure described above is then applied to
refine this boundary.

3 Results

To evaluate the performance of our method, we performed a validation study on a set
of 6 subject brains. We used the ICBM Single Subject Template as our atlas ( http://
www.loni.ucla.edu/Atlases/Atlas_Detail.jsp?atlas_id=5 ). The BrainSuite
software [12] was applied to extract cortical surface meshes from the subject and atlas
MRI data. BrainSuite includes a multistage cortical modeling sequence. First, the brain
is extracted from the surrounding skull and scalp tissues using a combination of edge
detection and mathematical morphology. Next, the intensities of the MRI are corrected
for shading artifacts. Each voxel in the corrected image is then labeled according to
tissue type using a statistical classifier. A standard atlas with associated structure labels
is aligned to the subject volume, providing a label for cerebellum, cerebrum, brain-
stem, and subcortical regions. These labels are combined with the tissue classification

http://www.loni.ucla.edu/Atlases/Atlas_Detail.jsp?atlas_id=5
http://www.loni.ucla.edu/Atlases/Atlas_Detail.jsp?atlas_id=5
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to identify the cerebral white matter automatically, to fill the ventricular spaces, and to
remove the brainstem and cerebellum. This produces a volume whose boundary surface
represents the outer white-matter surface of the cerebral cortex. Prior to tessellation,
topological defects are identified and removed automatically from the binary volume
using a graph based approach. An isosurface algorithm is then applied to the topologi-
cally corrected white matter volume, yielding a genus zero surface. This surface is then
expanded to identify the pial surface, i.e., the boundary between grey matter and CSF.
The inner cortical and pial surfaces are then split into left and right hemispheres based
on the registered atlas labels.

We delineated sulcal curves using BrainSuite’s interactive delineation tools [13] fol-
lowing a sulcal protocol with 26 sulcal curves [9]. These sulci are consistently seen
in normal brains and are distributed throughout the entire cortical surface. A thorough
description of the sulcal curves with instructions on how to trace them is available
on the web site (http://neuroimage.usc.edu/CurveProtocol.html). The pro-
tocol specifies methods for identifying the 26 sulci by making consistent decisions in
delineation in case of ambiguity in the brain anatomy. We traced the curves on the
midcortical surface because it provides better access to the depth of the sulci than
the pial surface, and the valleys of the sulci are more convex than they are on the
white matter surface, thus allowing more stable tracing of the curves. The same pro-
cedure was repeated on the single subject atlas. Next, we performed the subject to at-
las registration as described in Sec. 2.1 and transferred the curves of the atlas to the
subject brains. The transferred curves were refined using the geodesic curvature flow
as discussed in Sec 2.2. The evolution of one sulcal curve in shown in Fig. 7(online
link:http://sipi.usc.edu/~ajoshi/GCF_Sulci.html).

Fig. 7. Evolution of the sulcal curve by geodesic curvature flow for different iterations. The cur-
vature weighting function f is shown as color-coded overlay

To compare the alignment of transferred curves, as well as the refined curves, we
mapped the 26 protocol curves from all subjects to the target surface. We then quantified
their accuracy using their variance on the subject surface, which is estimated as follows.
We use a distance measure based on the Hausdorff distance metric:

http://neuroimage.usc.edu/CurveProtocol.html
 http://sipi.usc.edu/~ajoshi/GCF_Sulci.html
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d(Di,D j) = 0.5
1
N ∑

p∈Di

min
p∈Di
|p−q|2 + 0.5

1
N ∑

p∈Dj

min
q∈Dj
|p−q|2

where d(Di,D j) is the distance between the curves Di and D j. This distance is computed
between subject’s manual curve and RT curve, as well as manual curve and GCF curve.

The results for some of the prominent sulci are presented in Table 1. It can be seen
that the sulcal error is reduced substantially after geodesic curvature flow. This improve-
ment is most pronounced in the sulci that are clearly defined by curvature extrema and
shortest length paths on the cortex such as central sulcus and superior frontal sulcus.

Table 1. Sulcal errors measured by Hausdorff distance metric. The table shows mean error for
N=6.

manual vs transferred curves (mm) manual vs refined curves (mm)
Cent. sulcus 1.9 1.4

Sup. Front. sulcus 2.9 1.9
Calc. sulcus 2.6 2.0

Sup. Temp. sulcus 3.9 3.4
Avg over all 26 sulci 3.6 2.9

4 Conclusion

This paper presents a method for accurate and automatic cortical registration and delin-
eation of sulcal curves on human brain cortex. The 2D mapping, level set approach and
FEM formulations enabled us to perform surface registration and geodesic curvature
flow on the surface in a computationally efficient manner. A more extensive evaluation
is planned. The software with source code will be made available online in the near
future.
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Abstract. Dynamic Contrast Enhanced Magnetic Resonance Imaging
(DCE-MRI) of the kidney provides important information for the diag-
nosis of renal dysfunction. To this end, a time series of image volumes
is acquired after injection of a contrast agent. The interpretation and
pharmacokinetic analysis of the time series data is highly sensitive to
motion artifacts. Registration of these data is a challenging task as con-
trast uptake adds new image features and gives rise to intensity changes
over time within the kidneys.

This paper presents a new registration pipeline for a time series of
3D DCE-MRI. The pipeline combines state-of-art modules such as a
weighted and robust least squares type distance measure, a regularization
that is based on hyperelasticity and thus ensures diffeomorphic transfor-
mations and enables the incorporation of local rigidity constraints on
the kidneys. We provide results that indicate the necessity of these con-
straints and illustrate the superiority of the proposed pipeline as com-
pared to other approaches.

Keywords: DCE-MRI, Motion Correction, Constrained Image Regis-
tration, Local Rigidity, Hyperelastic Registration.

1 Introduction

Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) of the
kidney provides in vivo information about the Glomerular Filtration Rate (GFR).
The GFR is an important measure of renal function and useful in the diagnosis
of chronic kidney diseases. To this end, a small dose of contrast agent, gadolin-
ium, is administered and a time series of three dimensional images is acquired.
Although the images are partly acquired during breath hold the time series can
be affected by inconsistencies between the respiratory phases at the instance of
recording. Even small displacements can affect the voxelwise pharmacokinetic
analysis yielding incorrect estimates of the GFR [8] and thus limit the usability
of DCE-MRI. In particular, when looking at the update rate in the cortex of the
kidneys, this is an important issue.
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Registration of DCE-MRI time series is a challenging task since intensity
changes in the region of interest take place due to uptake of bolus, but also from
geometrical changes due to inconsistent breath hold, free breathing after breath
hold, patient movements and physiological pulsations. New features may appear
during wash in and disappear during the wash out phase, which can mislead
unimodal distance measures.

DCE-MRI registration is an important challenge and has thus drawn much
attention. Melbourne et al. [7] proposed a nonlinear registration scheme based
on repeated registrations of the data to a reference time series generated by
a Principal Component Analysis (PCA). The reference volumes preserve long
term contrast uptake but show less motion. Their approach is based on the as-
sumption that the displacements between acquisitions is periodically or random.
Alternatively the impact of intensity variations on nonlinear registration schemes
can be suppressed by multi-modal distance measures such as mutual information
[13,14] or normalized gradient fields [4,6]. Under the assumption that uptake of
contrast agent is limited to the kidneys the registration problem is essentially
uni-modal in large parts of the image. This assumption is also supported by
our analysis of the results for kidney data from Haukeland University Hospi-
tal, Bergen, Norway. Another option to gain robustness against uptake-induced
intensity modulations is to limit the flexibility of the transformation model. A
direct comparison between nonlinear and rigid transformation models on the en-
tire image and limited to rectangular regions around the kidneys was performed
in [11]. The results suggest that rigidity is useful to describe the motion of the
kidneys, however, improper to model the overall respiratory motion [11].

In this paper, we propose a novel nonlinear registration pipeline with local
rigidity constraints on the kidneys [12,5]. Thereby we ensure that the relevant
contrast variations related to blood clearance are preserved in the registered
time series. Further the robustness of the registration against intensity changes
related to contrast uptake is improved. Our comparison with an unconstrained
approach demonstrates the improvement that can be gained by integrating the
local rigidity constraints. In contrast to [11], a globally smooth and nonlinear
transformation is estimated and the registration is driven by a very robust uni
modal distance measure. Smooth transitions between the constrained and un-
constrained regions are provided by a novel hyperelastic regularizer [2]. This
remarkable regularizer prohibits tissue folding and thus it is guaranteed to com-
pute a diffeomorphic transformation independent of the choice of regularization
parameters.

First promising results on clinical data are presented and suggest that local
rigidity is a useful option to reduce the degradation of DCE-MRI due to motion
artifacts.

2 Locally Rigid Registration Scheme

Given a time series of three dimensional images I1, ..., IT on a domainΩ ⊂ R3 our
goal is to eliminate the motion between the individual time points. To this end, we
aim to register all image volumes to an assigned reference image – in the following
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R := I1. For ease of presentation, we limit the description to one subproblem, i.e.
the registration of one arbitrary time frame T ∈ {I2, ..., IT } to R.

Since displacements due to respiratory motion on the entire thorax are non-
linear, we choose a non-parametric model for the mapping y : Ω → R3 [9].

In our application difficulties arise due to uptake related intensity variations
within the kidneys. The goal is to preserve this essential piece of information, but
nevertheless eliminate the displacement between the frames in the time series.
As our analysis of the data indicates, the DCE-MRI registration problem is
essentially unimodal outside the kidney regions. Therefore we choose a simple
and robust weighted SSD distance measure

D(T ,R) :=
1

2

∫
Ω

(T (x)−R(x))2 v(x) dx. (1)

The weighting function v : Ω → R+ is used to reduce the influence of regions
with varying signal intensities, see Sec. 3 for details.

2.1 Locally Rigid Image Registration

To avoid misregistrations due to uptake induced contrast variations we aim to
limit the flexibility of the transformation within the kidneys by adding rigidity
constraints as motivated by [11].

Our notation and implementation follows [5]. Let M1,M2 ⊂ Ω denote the
regions of the kidneys in the reference image R. The idea is to restrict the
nonlinear transformation y to be locally rigid on M1 and M2. This motivates
the formulation of the constrained registration problem [5]

min
y,w

1

2

∫
Ω

(T (y(x))−R)2 | det∇y(x)| v(x) dx + S[y] (2)

subject to y(x) = Q(x)f(wi) ∀x ∈ Mi, i = 1, 2.

Note the appearance of | det∇y(x)| due to a change of the coordinate system and
the transformation rule; see [5] for details. As for the constraints, Q(x) describes
a model for a linear transformation, w1 and w2 are the six parameters of the
rigid transformations for the two kidney regions and f is the embedding of the
rigid space into the space of affine linear transformations; see [5] for details. The
regularization S is discussed in the next subsection.

2.2 Hyperelastic Regularization

To allow for large transformations and to enforce invertibility we choose a hy-
perelastic regularizer [2]

Shyper(y) = αlS length(y) + αaSarea(y) + αvSvolume(y). (3)

This regularizer controls the changes in length, area and volume induced by
the transformation y. Due to the growth behavior and since infinite energy is
required to annihilate a volume element, Shyper guarantees the invertibility of
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(a) time point 1 (0 sec) (b) time point 7 (≈15 sec) (c) time point 12 (≈46 sec)

Fig. 1. Illustration of the motion problem in DCE-MRI. We exemplarily visualize
three time points in coronal views. The semi automatic segmentation of the kidney
obtained for the first image volume is represented by a white contour in (a) – (c). The
appearance of new structures due to uptake of the contrast agent can for example be
seen by comparing (a) to (b). The motion problem due to free breathing is observable
for instance by comparing a) to (c).

the transformation even for large displacements and thus enforces diffeomor-
phic transformations. Moreover, the transformation field is very smooth and the
hyperelastic regularizer is therefore especially attractive in combination with
rigidity constraints to control volume changes in the neighborhood of the kidney
cortices.

2.3 Numerical Implementation

The constrained registration algorithm is implemented using the publicly avail-
able toolbox FAIR in Matlab [9]. Important routines such as image interpolation,
distance measures and hyperelastic regularizer are re-used. The problem is at-
tacked in a multi-level strategy on a coarse-to-fine hierarchy of discretizations.
Each discrete optimization problem is solved using a Newton-SQP optimizer [10].
The linear system is solved using a preconditioned minimum residual method [1]
where the preconditioner is a slightly modified version of [3].

2.4 Test Data

A 1.5 Tesla MR-scanner (Avanto, Siemens) is used to acquire DCE-MRI data
from a healthy volunteer. A breath-hold T1-weighted 3D single Gradient Re-
call Echo (GRE) pulse sequence was used to acquire signal-intensity time curves
after administration of a small dose (2 ml) of gadolinium contrast media intra-
venously. The acquisition parameters for the examination was: Slice-thickness
3 mm, Repetition Time 3.3, Echo Time 1.79, Flip Angle 9, Acquisition Matrix
256× 128, Parallel factor 2, Time resolution is 2.5 sec in the breath hold phase
(first 11 time frames) and 30 sec in the free breathing phase. The voxel size is
1.48× 1.48× 3 mm.

The kidney segmentation in the first image volume R = I1 that was delivered
with the data was obtained using a semi-automatic segmentation using temporal
curve information [6]. A training mask for each desired phase was given initially
by the user, representative for the tissue classes to be found. Thus, a large set of
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(a) initial data (b) motion corrected

Fig. 2. 3D Motion correction results are visualized exemplarily for one coronal slice.
The slice is shown at the first and last time point before (a) and after locally rigid
registration (b). The time course is visualized by two planes. It is apparent, that the
proposed scheme reduces motion artifacts as can be observed for example in the end
of the breath hold at timepoint 11.

T -dimensional tissue vectors were obtained, where T is the number of time points.
The algorithmuses theMahalanobis distance between such temporal curve shapes
to classify each voxel in spacewithKNNnearest-neighbor classification.Eachvoxel
is assigned to the most abundant class within theK nearest neighbors in the train-
ing set. After classification, the voxel is assigned to the training set, and the algo-
rithm runs iteratively until no voxels are changing class.

3 Results

We apply the proposed registration pipeline to the clinical data set consisting
of 20 DCE-MRI image volumes. The template images I2, .., I20 are sequentially
registered to the reference image I1 by solving the constrained registration prob-
lem (2). The distance measure (1) is weighted with arbitrarily chosen factors
v(x) = 0.05 within the kidneys and v(x) = 1 elsewhere. For all 3D registration
problems we use hand-picked regularization parameters, αl = 300, αa = 30, αv =
300, see (3).

The average reduction of the weighted distance measure D (1) over all 19
registration problems is 48%. For all transformations the Jacobian determinant
det∇y is in the interval [0.43, 1.49] and hence, as guaranteed by our regulariza-
tion scheme, all mappings are diffeomorphic.
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(a) template I7 (b) reference I1 (c) D(I7, I1) = 100%

(d) ylr - locally rigid (e) det(∇ylr) ∈ [0.67, 1.35] (f) D(I1(ylr), I1) = 61.2%

(g) yu - unconstrained (h) det(∇yu) ∈ [0.64, 1.82] (i) D(I7(yu), I1) = 65.6%

Fig. 3. Results of the 3D registration of the time points with most extreme variations
in contrast uptake (I1 and I7) are visualized in one coronal slice. The template image
I7 (a) is registered to the reference image I1 (b). The solutions of the registration with
and without local rigidity constraints, ylr and yu, are visualized in (d) and (g). Both
transformations are smooth and diffeomorphic indicated by the Jacobian determinants
being positive and finite (e) and (h). However, (h) also shows volumetric changes in the
kidney regions which can be avoided using the constrained approach (e). A comparable
reduction of the distance is achieved by both transformations, compare the absolute
weighted distance images with identical colormap (c),(f) and (i).

Fig. 2 illustrates the considerable reduction of motion artifacts due to in-
consistencies between the respiratory phases and free breathing as well as the
improvement that can be gained using the proposed pipeline. The impact of the
registration pipeline is illustrated exemplarily for one coronal slice. The time
courses before and after locally rigid registration are visualized by two orthogo-
nal planes in time dimension.

We exemplarily show more detailed results of the 3D registration for the im-
ages with the most extreme variations in contrast uptake (I1 and I7) in Fig. 3.
We also demonstrate the importance of local rigidity constrains for this appli-
cation by comparing the constrained with an unconstrained approach. In the
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Fig. 4. 3D Results of Principal Component Analysis before (top row) and after reg-
istration (bottom row) are visualized exemplarily for one coronal slice. Projections of
both datasets onto their first three principal components are shown. Artifacts due to
inconsistent breath hold and free breathing manifest in all three projections of the ini-
tial data as shadows in the spleen, liver and kidney regions. The proposed correction
scheme considerably reduced these artifacts, which manifests in reduced motion blur
of the principal components. Note the considerable reduction of artifacts by the pro-
posed registration approach as can be observed by reduced motion blur in the principal
components.

unconstrained setting the regularization of volumetric changes are reduced by
setting αv = 0.01. In both scenarios a comparable reduction in the difference im-
ages is achieved and essentially all structure outside the kidney regions vanishes,
supporting our assumption that the registration problem is uni-modal outside
the kidneys. Both transformations are very smooth and due to the hyperelastic
regularizer also diffeomorphic. However, as to be expected the unconstrained
registration introduces volumetric changes inside the kidneys to compensate the
different uptake levels while the constrained scheme does not. Note that the un-
derlying image differences relate to contrast uptake and not to tissue distortion.
Hence the results of the constrained approach are superior.

As another indicator of the effectiveness of our method, we perform a Princi-
pal Component Analysis (PCA) of the time series before and after registration;
see [7]. To this end, we remove the mean of each time point on the finest dis-
cretization level, compute the covariance matrices and their eigenvectors and
eigenvalues. The projections onto the three principal components are shown in
Fig. 4. The reduction of motion artifacts can be seen by comparing the respective
projections. Before correction the first principal component is motion-blurred
and contours of the spleen, liver and kidneys are shaded. Inconsistent respira-
tory phases and problems due to free breathing also manifest in the second and
third principal component. After registration the first principal component is less
blurred and the remaining projections describe the long term uptake behavior
within the kidneys.
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4 Discussion and Outlook

We present a novel image registration pipeline for Dynamic Contrast Enhanced
MRI (DCE-MRI) of kidneys. The new pipeline combines a robust, weighted
least squares based distance measure, a hyperelastic regularizer, and local rigid-
ity constraints. The basic idea is to partition the domain into regions of primarily
pharmacokinetic activities and remainder. In active regions tissue deformations
are restricted to be locally rigid and thus uptake-induced intensity changes that
are essential for pharmacokinetic analysis are preserved. The emphasis of the
weighted distance measure is on the remainder, where the registration problem
is approximately uni-modal. First promising results indicate that our pipeline
considerably reduces motion artifacts related to inconsistencies between respira-
tory phases at the instance of recording and free breathing.

It is well known that unconstrained registration approaches may lead to in-
correct changes of volume in kidneys. Synthetically generated reference images
sharing the long term uptake behavior have been used to resolve this issue [7].
However, the synthesis is based on certain assumptions on the motion such
as periodicity which can be questionable in acquisitions with breath hold and
free breathing phases. We present experiments demonstrating that our new con-
strained approach is capable to register kidney DCE-MRI without making as-
sumptions on the underlying motion.

Similar to [11] our findings suggest that local rigidity within the kidneys is
a useful assumption to eliminate motion artifacts in DCE-MRI data related to
respiration. Instead of computing separate rigid registrations of both kidneys as
in [11], our scheme uses only one global transformation. Even though only the
kidneys are of interest for the analysis of renal function, our experiments indicate
that adjacent anatomical structures provide additional and useful information.

Our approach focuses on eliminating motion artifacts due to inconsistencies
between respiratory phases at the instance of recording and free breathing. Fur-
ther reasons for displacement between time frames such as physiological pulsations
are not addressed. Obviously, our scheme is only indented for DCE-MRI of tissue
where the local rigidity assumption holds. For DCE-MRI of tissue with severe non-
rigid displacements our scheme may only serve as a rigid pre-registration step.

At present, the proposed scheme requires an initial segmentation of the kid-
neys in one reference image. In our case a semi automatic segmentation of the
first time point was already provided with the data. In future work we will also
investigate the integration of automatic kidney segmentations into our frame-
work. We are positive that our scheme is robust against segmentation errors
since the powerful hyperelastic regularization [2] gives a very smooth transition
from the constrained to the unconstrained region.
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Åsmund Kjørstad for his segmentations of the kidneys.



198 L. Ruthotto, E. Hodneland, and J. Modersitzki

References

1. Barrett, R.: Templates for the solution of linear systems. building blocks for iter-
ative methods. Society for Industrial Mathematics (1994)

2. Burger, M., Modersitzki, J., Ruthotto, L.: A hyperelastic regularization energy for
image registration. SIAM Journal on Scientific Computing (in revision) (2012)
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Abstract. Quantitative motion analysis from cardiac imaging is an im-
portant yet challenging problem. Most of the existing cardiac motion
estimation methods ignore the fact that the myocardium is a fibrous
structure with elastic anisotropy. We propose a novel method in which
an anisotropic regularization energy is used to favor the motion consis-
tency with the myofiber orientation. The myofiber direction comes from
a diffusion tensor image and it is mapped to the end-diastole frame by
using nonrigid registration. We implement the method based on a dif-
feomorphic motion estimation framework in which a spatiotemporally
smooth velocity field is estimated by optimization of a variational en-
ergy. We validate the proposed method by using cine magnetic resonance
imaging (MRI) datasets and echocardiography of an open-chest pig with
sonomicrometry. We compare the proposed method with a temporal dif-
feomorphic free form deformation method without consideration of my-
ofiber orientation. Experiments results show that the proposed motion
estimation method has higher accuracy.

Keywords: Diffeomorphic registration, nonrigid registration, motion
estimation, myofiber orientation.

1 Introduction

Cardiovascular disease is the number one cause of casualties in the western world.
Quantitative analysis of deformation and motion from cardiac image sequences
has become an important research tool because of its invasiveness [1]. However
cardiac motion estimation is still a challenging problem because the spatial and
temporal resolution of the images are still less than desirable and the complexity
of the cardiac motion makes the problem more difficult.

Standard motion estimation method using nonrigid registration pairwisely
have been proposed in [2, 3]. Various constraints have been used to make the
motion estimation to be more physically plausible. Deformation models with
temporal smoothness constraints have been used in [4, 5]. Properties such as par-
ticle trajectory smoothness, transformation symmetry and temporal transitivity
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have also been used to constrain motion estimation [6–8]. Diffeomorphic regis-
tration has been proposed to estimate the transformation as end point of an
evolution process constrained by a transport equation so that it is inherently
smooth, invertible and one-to-one mapping [9, 10]. It has been extended to solve
motion estimation problem in [11, 12]. Myocardium incompressibility has been
used as a biological tissue constraint together with elastic models to improve the
motion estimation [12–14]. However, all of the above physical constraints are
added on the deformable solids which are isotropically elastic and it is inconsis-
tent with the fact that the myocardium is anisotropically elastic.

In fact, the motion of heart such as twist and contraction is closely related to
the anisotropic structure of the myocardium. The myofiber is distributed in a he-
lix structure in the myocardium and the contraction and relaxation are primar-
ily across and along the myofiber orientations. From apical view the apex rotates
counterclockwise and the base rotates clockwise during contraction, and reverses
in the relaxation phase [15]. Consideration of the myofiber orientation can help de-
crease the ambiguity of the myocardium deformation which is not clearly visible
in the image modalities such as MRI and echocardiography. Myofiber orientation
has been used to analyze the strain in cardiacmechanics studies [16, 17], and it has
been used to improve the biomechanical model performance [18]. However, few ar-
ticles consider the myofiber orientation in motion estimation. Papademetris et al.
[19] used a finite element model (FEM) in which the myofiber orientation in each
element is predetermined by fitting the model with the myofiber angle measure-
ments. The FEM nodes displacement between frames is estimated by minimizing
a weighted sum of a feature distance function and a strain energy function. The
strain tensor is defined by an anisotropic elastic model in which the stiffness factor
along the myofiber orientation is a multiple of those across myofiber. However, in
this method the feature points from the segmented myocardium are needed. We
propose a novel intensity-based motion estimation method with myofiber orienta-
tion considered. The myofiber orientation information comes from a diffusion ten-
sor image (DTI). For tracking, the intensity image of DTI is first aligned with the
first frame of the sequence by using a nonrigid registration and the tensors are reori-
ented into the reference image. An anisotropic regularization is used in the motion
estimation which makes the motion to be smooth along and across the myofiber.
The method is implemented with a diffeomorphic motion estimation framework
which has the advantage of one-to-one, smooth and invertible.

2 Method

2.1 Diffeomorphic Motion Estimation

We start with the diffeomorphic registration problem between the reference
image I0 and target image I1. We define a flow φ(x, t), t ∈ [0, 1],x ∈Ω ⊂R3

with its smooth velocity field v(x, t) by using the differential equation of dφ
dt =

v(φ(x, t), t),φ(x, 0) = x. It has been proven in [20] that if v(x, t) is smooth with
a differential operator L in a Sobolev space V , the transformation φ(x, t) defines
a group of diffeomorphisms with t varying from 0 to 1. The diffeomorphic image
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registration is stated as a variational problem to find an optimal velocity field
v̂(x, t) which minimizes an energy functional consisting of a weighted sum of a
summed squared difference (SSD) between I0(x) and the unwarped target image
I1(φ(x, 1)) and a distance metric between transformations φ(x, 0) and φ(x, 1):

v̂ = arg inf
v∈V

λ

∫ 1

0

||v(x, t)||2V dt+

∫
Ω

(I0(x)− I1(φ0,1(x)))
2dx, (1)

with λ being the weighting to balance two metrics.
The Euler Lagrange equation of the variational functional in Eqn.(1) is derived

in Beg et al ’s work [9]. The optimal velocity field can be obtained by solving
the partial differential equation (PDE). However, the approach is expensive.
We here adopt a parameterized approach to find the optimal velocity field [21].
The velocity field is discretized with a series of 3D B-spline function at time
tk(k = 0, 1, ...Nf , tk = kΔt,Δt = 1/Nf). The B-spline function at time point
tk is defined as v(x, tk) =

∑
ci;kβ(x − xi), with ci;k being the B-spline control

vectors located on a uniform grid of xi at tk, β(x − xi) being the 3D B-spline
kernel function which is the tensor product of the 1-D B-spline functions. The
transformation φ(x, t) can be expressed as the forward Euler integral of velocity
field by assuming that the velocity is piecewise constant within a time step. The
transformation φ0,tk is related with φ0,tk−1

by:

φ0,tk
= φ0,tk−1

+ v(φ0,tk−1
, tk−1)Δt = (Id+ vk−1Δt) ◦ φ0,tk−1

, (2)

with Id the identity transformation and vtk = v(x, tk) the velocity field at tk.
The transformation φ0,1 is represented by:

φ0,1 = φ0,tNf
= (Id+ vNf−1Δt) ◦ ... ◦ (Id+ v0Δt) ◦ (x), (3)

it is parameterized with a series of 3D B-spline parameters ck(k = 0, 1, ..., Nf−1).
For the motion estimation problem, the spatiotemporal transformation is de-

fined by a diffeomorphism flow φ(x, t), t∈ [0, Ns],x∈Ω with Ns + 1 being the
number of frames. The flow is parameterized with a velocity field v(x, t) which
minimizes a variational energy in form of:

v̂ = arg inf
v∈V

λ

∫ Ns

0

||v(x, t)||2V dt+

Ns∑
n=1

ESSD(In−1(φ0,n−1), In(φ0,n)), (4)

withESSD(In−1(φ0,n−1), In(φ0,n)) being the SSDmetric of two consecutive frames
unwarped to the reference frame I0 respectively. The use of consecutive frames to
evaluate similarity metric instead of the reference frame to following frame is be-
cause the consecutive frames usually have higher correlation than faraway
frames [23]. Since φ0,n = φn−1,n ◦φ0,n−1, the SSD metric between the unwarped
image In−1(φ0,n−1) and In(φ0,n) is equal to that between images In−1(x) and
In(φn−1,n), with φn−1,n being the transformation from (n − 1)th frame to nth
frame. Then the velocity field optimizes the variational energy which consists of a
regularization term and the sum of SSD metrics between the consecutive frames:

v̂ = arg inf
v∈V

λ

∫ Ns

0

||v(x, t)||2V dt+

n=Ns∑
n=1

ESSD(In−1(x), In(φn−1,n)). (5)
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By this definition, the SSD energy terms are only related to the velocity field
within the consecutive frames instead of global velocity field evaluation, then the
derivative of the SSD energy with respect to the velocity field can be evaluated as
what is done in the two image registration. But the regularization term requires
the velocity field at all time points to be optimized simultaneously.

We use an adaptive scheme to select the value of Nf , the number of time
steps used between two consecutive frames. It is initialized as two. The B-spline
parameters during optimization is checked at each iteration to make sure that
the transformation between each two time points, that is Id+ vkΔt, is a diffeo-
morphism [22]. If the condition is broken due to large deformation between two
frames, the number of Nf will be doubled to tolerate larger deformation while
keeping the transformation between time points to be diffeomorphic.

2.2 Fiber Orientation and Diffusion Tensor Image

Diffusion tensor imaging is an MRI method which measures the water molecules
diffusion process along any tissue directions. In each voxel, a diffusion tensor is a
3×3 symmetrical positive definite matrix is estimated. In cardiac DTI, assuming
any tensor D is decomposed into the eigenvectors and eigenvalues of qi and
di (with d1 ≥ d2 ≥ d3), then eigenvectors qi, (i = 1, 2, 3) correspond with the
direction of myofiber, the direction perpendicular to the myofiber in the laminar
sheet and the direction perpendicular to the laminar sheet respectively.

In order to map the myofiber orientation of the DTI atlas to the subject in
sequences, a diffeomorphic registration need to be done from the first frame of
the sequence (usually the end-diastole) to the anatomical image of the DTI. Since
the anatomical image and the myofiber orientations are aligned inherently, we
can transform the eigenvectors to the first frame by using the estimated nonrigid
transformation. The myofiber direction for each following frame is then estimated
by reorientation it using the estimated transformation from the first frame to
the following frame. Tensor reorientation method we used is the finite strain
algorithm since it preserves the geometrical features [24].

2.3 Anisotropic Regularization

In order to assure the φ(x, t) to be diffeomorphic, we need to define v(x, t) to be
spatiotemporally smooth under a differential operator L. The linear operator we

choose is: L(v) =
3∑

i=1

di∇2(vqi) + wt
dv
dt , with ∇2(·) being a Laplacian operator

and wt a constant weight. With qi and di are eigenvectors and eigenvalues which
can be calculated from DTI images. The first term calculate the Laplacian of the
velocity field projected along the myofiber direction and across fiber. It makes
the velocity field spatially more smooth along the fiber orientation than cross
the fiber since d1 is the largest value and the diffusion effect along this direction
is the most salient. This is consistent with the fact that the cross-fiber thickening
strain is larger than the fiber strain. The second term keeps the particle velocity
temporally smooth. When di = 1 and qi are the unit vectors, this term becomes
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an isotropic regularization. The overall effect of this term is to keep the velocity
field spatiotemporally smooth.

In the discrete time form of velocity field, the time integral of the norm in V
space of Eqn.(6) will be approximated by:

Ereg =

Nt−1∑
k=0

∑
x

3∑
i=1

(di∇2vkqi)
2 + wt

Nt∑
k=1

∑
x

|vk(x+ vk−1Δt)− vk−1|2, (6)

with Nt = Ns×Nf being the number of time points used for the discrete velocity
field. We denote the two terms with Esr and Etr respectively.

2.4 Optimization

We use a steepest descent method to optimize the parameterized function. The
derivative of the total energy with respect to the B-spline parameters are cal-
culated analytically. The derivative of the similarity metric with respect to the
B-spline parameters ci;k′ , ((k − 1) ∗Nf ≤ k′ < k ∗Nf ) is:

∂ESSD

∂ci;k′
= (Ik(φk−1,k)− Ik−1)∇Ik(φk−1,k)

∂φk−1,k

∂ci;k′
, (7)

and for other value of k′ the gradient is zero.
For the derivative of the spatial and temporal regularization energies with

respect to the mth component of ci;k, we have:

∂Esr

∂ci,m;k
=

∑
x∈Ω′

β
′′
m(x− xi)

3∑
i=1

d2i qmvkqi, (8)

with Ω′ being the local support of the B-spline kernel function, and β
′′
m(·) being

the second derivative of the B-spline function with respect to mth component.
Considering that the displacement between two time step is small, we have:

∂Etr

∂ci,m;k
≈ wt

∑
x∈Ω′

(2 ∗ vi,m;k − vi,m;k−1 − vi,m;k+1)β(x− xi). (9)

3 Dataset and Experiment

We use the cine MRI sequences to validate the proposed method. The datasets we
used are from the cardiac atlas project [25]. In the first experiment, four normal
subject image sequences are selected to validate the motion estimation method.
Typical frame size is 256× 256× 10 with voxel size of 1mm× 1mm× 8mm and
the frame number is 20. The contours of the endocardium and epicardium in the
end-diastole (ED) and end-systole (ES) phases are manually labeled by experts
with the temporal consistency of the boundary enforced. The two ED contours
are then transformed into the ES frame by using the estimated transformation.
The mean and standard deviation (STD) of the contour distance errors are
evaluated. It is defined as the average of shortest distance for the points in the
first contour to those in the second contour.

In the second experiment, we evaluate the accuracy by using the landmarks
extracted from the tagged MRI sequences. Four normal human subjects are used
in this experiment. For each subjects, one mid short axis slice of grid tagged MRI
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are acquired. The crossing of grid tagging in myocardium in ED and ES frames
are labeled by experts and they are used as landmarks to evaluate the motion
estimation method. The landmarks in the ED phase are then transformed to the
ES image space and the target registration error (TRE) with the ES landmarks
are evaluated. The short axis slices of the ED and ES of one subject and the
corresponding tagged MRI with labeled landmarks are shown in fig.(1).

Fig. 1. Short axis slices of one subject and the tagged MRI slice with landmarks labeled
with green crossing

In the third experiment, an open-chest pig heart sequence with normal con-
dition is acquired with a Philips IE33 system. There are 26 frames and each
frame is resampled into size of 137× 96× 124 with voxel size 0.5mm3. For vali-
dation, we implanted six sonomicrometers in the myocardium. Sonomicrometry
provides the ground truth distances between each pair of the crystals varying
with time and they are compare with the algorithm-derived point pair distances.
The sonomicrometers position are illustrated in fig.(2) together with the three
orthogonal views of ED frame.

Fig. 2. The sonomicrometer location on the myocardium and the axial and sagittal
views of the ED frame of the pig dataset

We compare the proposed method with a temporal diffeomorphic free-form
deformation (TDFFD) method. In the TDFFD method no myofiber orientation
is used while in the proposed method an anisotropic regularization term along
and across myofiber is considered. The DTI is chosen as a public available statis-
tical canine atlas 1. The three orthogonal views of the anatomical MRI and the
primary eigenvector direction are shown in Fig.(3). The similarity of the myofiber
orientation between mammals makes the canine atlas a proper approximation of
myofiber orientations for human and pig tests.
1 http://www-sop.inria.fr/asclepios/data/heart/index.php

http://www-sop.inria.fr/asclepios/data/heart/index.php
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Fig. 3. The DTI canine atlas. The top row shows the three orthogonal view of the
anatomical MRI. The bottom row shows the the primary eigenvector projected into
the three central orthogonal planes.

4 Results

We use a series of 3D B-spline transformations with grid spacing of 10 in each
spatial dimension for the velocity field. The values of λ and wt are set to be 0.1
and 0.005. For a 3D sequence of 20 frames with frame size of 111× 91× 73 the
computing time is about 70 minutes.

Fig. 4. From left to right, the first plot shows the nonrigid transformed myofiber direc-
tion. The second and third plots show the transformed epicardium and endocardium
contours of ED (red) and those of ES(green).

We show the result of the first experiment in fig.(4). From left to right, the first
image shows the nonrigid deformed myofiber orientation projected in the axial
slice of the ED frame. The second and third plots show the transformed ED en-
docardium and epicardium contours (in red) together with ES contours (in green)
by using the TDFFD method and the proposed method. We can see that both
transformed ED contours are closer to the ES contours in the proposed method.
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We show the mean and STD of contour distance errors in fig.(5). The first two
plots show the contour distance errors of the endocardium and epicardium in api-
cal, mid and basal slices of the first subject. The third plot shows the averaged
contour distance errors in the endocardium of all the subjects.
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Fig. 5. The average contour distance error between the transformed ED contours and
the ES contours. The first two plots show the distance errors of endocardium and
epicardium in apical, mid and basal slices. The third plot shows the average errors of
the endocardium of the four subjects.

The results of the tagged MRI experiment are shown in fig.(6). From left to
right, the first two images shows the transformed ED landmarks (in red) with the
ES landmarks (in green) in the TDFFD method and the proposed method. We
can see the transformed ED landmarks are closer to ES landmark in the proposed
method. The error bars show the average and STD of the TREs between the
landmarks in all four subjects tests. We can see the proposed method has smaller
mean and STD of TRE in all the four tests.
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Fig. 6. Results of the tagged MRI tests. From left to right, the first two plots show
the transformed ED landmarks (red) and the ES landmarks (green) in TDFFD and the
proposed method. The error bar shows the mean and STD of the TRE between
the landmarks in the two methods.

In the in-vivo open-chest pig test, we compare the performance of the two
algorithms by computing the correlations between the time varying functions
of algorithm-derived pair-wise distances and those of sonomicrometry, and the
results are shown in table.1. We can clearly see the improvement of our proposed
method.
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Table 1. The correlations between the estimated pair-wise distances and those from
the sonomicrometry, with TDFFD method (numbers to the left) and the proposed
method (numbers to the right). Numbers 1-6 index the six sonomicrometry markers.

1 2 3 4 5 6

1 1.0/1.0 0.875/0.910 0.784/0.836 0.861/0.888 0.912/0.941 0.915/0.943

2 0.875/0.910 1.0/1.0 0.766/0.794 0.965/0.983 0.789/0.807 0.879/0.902

3 0.784/0.836 0.766/0.794 1.0/1.0 0.952/0.975 0.867/0.899 0.947/0.975

4 0.861/0.883 0.965/0.983 0.952/0.975 1.0/1.0 0.895/0.899 0.897/0.919

5 0.912/0.941 0.789/0.807 0.867/0.899 0.895/0.899 1.0/1.0 0.784/0.828

6 0.915/0.943 0.879/0.902 0.947/0.975 0.897/0.919 0.784/0.828 1.0/1.0

5 Conclusion

We propose a diffeomorphic motion estimation method with anisotropic regular-
ization of the velocity field. The anisotropic regularization is conducted primarily
along the myofiber direction. We validate the proposed method with cine MRI
and echocardiography with sonomicrometry. Experiments results show that the
transformations estimated with the proposed method are more accurate and
consistent with the ground truth. Currently, only canine DTI atlas is public
available. In the future, we will use human DTI atlas image to improve the
myofiber orientation accuracy and the motion estimation results.
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Abstract. Cross-subject image registration is the building block for
many cardiac studies. In the literature, it is often handled by voxel-
wise registration methods. However, studies are lacking to show which
methods are more accurate and stable in this context. Aiming at answer-
ing this question, this paper evaluates 12 popular registration methods
and validates a recently developed method DRAMMS [16] in the context
of cross-subject cardiac registration. Our dataset consists of short-axis
end-diastole cardiac MR images from 24 subjects, in which non-cardiac
structures are removed. Each registration method was applied to all 552
image pairs. Registration accuracy is approximated by Jaccard overlap
between deformed expert annotation of source image and the correspond-
ing expert annotation of target image. This accuracy surrogate is further
correlated with deformation aggressiveness, which is reflected by mini-
mum, maximum and range of Jacobian determinants. Our study shows
that DRAMMS [16] scores high in accuracy and well balances accuracy
and aggressiveness in this dataset, followed by ANTs [13], MI-FFD [14],
Demons [15], and ART [12]. Our findings in cross-subject cardiac regis-
trations echo those findings in brain image registrations [7].

Keywords: Image Registration, Validation, Evaluation, Cardiac MRI.

1 Introduction

Cross-subject image registration rests in the core of many cardiac studies. Exam-
ples include atlas construction [3], atlas-based segmentation [4], and morphologic
study to understand disease patterns [5].

In literature, cross-subject cardiac image registration is often handled by
voxel-wise registration methods [6]. Voxel-wise registration methods rely on im-
age information only, and do not require anatomic information or human inter-
vention. Therefore, they can be applied to various organs including the heart [6].
Some basic question remains, however: 1) which voxel-wise registration methods
are more accurate and more stable in cross-subject cardiac registration context;
2) whether those more accurate methods in cardiac registration coincide with
those in brain image registrations (e.g., as found in [7]). The answers to these
questions are not immediately clear, largely because the heart is usually imaged
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with lower resolution, lower signal-to-noise ratio (SNR), more severe moving
artifacts, and has a very different shape than the brain.

Towards answering these questions, this paper evaluates 12 commonly-used
and publically-available registration methods and validates a recently developed
method DRAMMS [16] in the context of cross-subject cardiac registrations. We
have collected short-axis end-diastole magnetic resonance (MR) images of 24
subjects. By permuting source and target images, this dataset results in 552
possible pair-wise registrations for each of those 12 registration methods. The
large number of experiments (perhaps largest to date in cardiac context) is the
first feature of this study. The second feature of this study is the compre-
hensive evaluation criteria. Unlike other evaluation studies (e.g. [7]) that only
measure accuracy, we measure both accuracy and aggressiveness of deformations,
and visualize their relationship in a joint plot. A deformation is considered more
“aggressive” if it leads to self-foldings at more locations, and if it takes greater
expansions/shrinkages to capture cross-individual variations. Aggressiveness and
accuracy are usually a pair of trade-off. Higher accuracy often comes from in-
creased aggressiveness in deformation. On the other hand, too aggressive defor-
mation will undesirably break topology. An ideal method should achieve high
accuracy while accurately preserving topology. Measuring both accuracy and ag-
gressiveness will help reveal which methods better balance the two. The third
feature of this study is that, instead of using only one set of parameters, we
have examined two parameter settings for the four more accurate methods – one
more aggressive and one smoother version. This is important, because different
cardiac studies will have different requirements on aggressiveness levels of defor-
mation. It also helps reveal which methods achieve consistently high accuracy
when aggressiveness levels change.

In the rest of the paper, we present evaluation protocol in Section 2 and
evaluation results in Section 3. We discuss and conclude the paper in Section 4.

2 Evaluation Protocol

This section describes our evaluation protocol. It contains three parts: descrip-
tion of dataset (Section 2.1), brief review of registration methods included in
this study (Section 2.2), and description of evaluation criteria (Section 2.3).

2.1 Dataset for Evaluation

We now describe the dataset and pre-processings. Three-dimensional short-axis
cardiac MR images of 24 subjects are collected at end-diastole phase. The image
dimension is 120×120×12 and voxel size is 1.25×1.25×8.0mm3. Common pre-
processing steps include respiratory motion correction [19] and N3-based bias
field correction [20]. Non-cardiac structures are removed by a semi-automatic
process. In this process, the heart is first automatically outlined by a public
software “Segment” [18]. Then, a cardiovascular expert refined the separation
of cardiac and non-cardiac structures. Removal of non-cardiac structures is sim-
ilar to skull-stripping in brain image registrations. The purpose is to remove
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Fig. 1. Images (a) and expert-annotation of structures (b) for some 10 typical sub-
jects from the dataset used in this study. Subjects in the first row in (a) are healthy
controls and in the second row are with tetralogy-of-fallot (TOF) defect. In the expert
annotation, white, orange and blue regions are LV, RV and myocardium, respectively.

unnecessary challenges, especially when different images may contain different
non-cardiac structures due to different fields of view. Each cardiac image is fur-
ther annotated by the same cardiologist into three structures – left ventricle
(LV), right ventricle (RV) and myocardium. Some typical intensity images and
expert-annotation images are shown in Fig. 1. We note that, except for removing
non-cardiac structures, those expert annotations of LV/RV/myocardium are in
no means used as any part of the registration process. They are only used to
evaluate registration accuracy.

This dataset represents the common challenges in cardiac registrations – lower
resolution, lower SNR, more severe moving artifacts and quite different shape
from the brain. Besides, 11 out of 24 subjects have tetralogy-of-fallot (TOF) de-
fect, hence having irregular ventricle shapes largely different from the remaining
13 normal subjects (Fig. 1).

2.2 Registration Methods to Be Evaluated

A total of 12 widely-used and publically-available methods are included in this
study (Table 1). We note that they are only a small fraction of the vast number
of registration methods developed in the community. The pool can be always
expanded in the future to include other widely-acknowledged methods. In gen-
eral, we chose those 12 methods because of the wide variety they represent.
That is, they have different similarity measures, different deformation models
and different optimization strategies, which are the most important components
for registration algorithms (see Table 1). Out of those 12 registration meth-
ods, 9 methods were included in a recent brain registration evaluation study [7].



212 Y. Ou et al.

In addition, we have included three registration methods that were not included
in that brain study [7]. Those three methods are: Demons [15] (a widely-used,
ITK-based, public and fast software), DRAMMS [16] (our method that matches
images by voxel-wise texture attributes instead of intensities), and DROP [17]
(a novel discrete optimization strategy that is fast and accurate).

To encourage objectivity in evaluation, we need to take special care of param-
eters for different methods. In some previous evaluation studies [7,8], parameters
are provided by authors of each method. However, this is not without problem.
One issue is the lack of comparability in their aggressiveness levels, and hence
possible unfairness to those methods that generate smoother deformations. Ac-
tually, almost all methods can score higher accuracy at more aggressive deforma-
tions. Ideally, we should require similar aggressiveness level for all methods, and
then compare their accuracies. A second issue is the lack of information about
sensitivity of accuracy with regard to parameter changes. With only one set of
best parameters, it is hard to tell sensitivity.

To cope with those two issues and to promote objectivity, we set parame-
ters by the following two rules. To settle the first issue, we tune parameters
not just for best accuracy, but for best accuracy at similar aggressiveness level.
Specifically, we start from parameters in a method’s user manual or past pa-
pers. In each iteration, we keep other methods’ parameters fixed, and slightly
adjust one method’s parameters until its deformations are at similar level with
most other methods (few or no self-foldings, similar min, max and range of Ja-
cobian determinants). We iterate on every method until they all converge to
similar aggressiveness level. This provides common ground for more objectively
evaluating their accuracies. To settle the second issue, we provide two sets of
parameters, instead of only one most accurate set, for the four most accurate
methods. One aggressive set for generally higher accuracy but increased risk of
self-folding; and one smooth set for generally smoother deformation but lower

Table 1. Registration methods to be evaluated in this paper (diff.–diffeomorphism;
MI – mutual information; NMI – normalized MI; SSD – sum of squared difference;
SAD – sum of absolute difference; MSD – mean squared difference; CC – correlation
coefficient; NCC – normalized CC)

Method Deformation Model Similarity Regularization

flirt [9] affine SSD/(N)MI/CC –
fnirt [10] cubic B-spline SSD bending energy
AIR [11] 5th polynomial MSD by polynomial
ANTs [13] symmetric diff. CC Gaussian smoothing
ART [12] homeomorphism NCC Gaussian smoothing

CC-FFD [14] cubic B-spline CC bending energy
MI-FFD [14] cubic B-spline MI bending energy
SSD-FFD [14] cubic B-spline SSD bending energy
DROP [17] cubic B-spline SAD bending energy
Demons [15] optical flow SSD Gaussian smoothing

Diff. Demons [15] diff. optical flow SSD Gaussian smoothing
DRAMMS [16] cubic B-spline SSD of attributes bending energy
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accuracy. This reveals consistency of accuracy as parameters change. All param-
eters used in this paper can be found at http://www.seas.upenn.edu/ ouya/

documents/research/Ou12 WBIR Supplementary.pdf.
To avoid bias in template selection, we have considered all possible images

as source and target in registration. This results in a total of 552 (= 24 × 23)
possible pair-wise registrations for each registration method.

2.3 Evaluation Criteria

This sub-section presents the criteria for evaluating both deformation accuracy
and aggressiveness. Specifically, accuracy is implied by Jaccard Overlap between
deformed expert-annotation of source image and the expert-annotation of target
image. We measure overlaps in 3 regions: LV, RV, and myocardium. Larger
overlap often indicates greater spatial alignment between subjects [7,21].

A deformation is considered more “aggressive” if it has self-foldings at more lo-
cations, and if it takes greater expansions/shrinkages to capture cross-individual
variability. In measuring deformation aggressiveness, we have used Jacobian de-
terminants. Jacobian determinant measures voxel-wise volumetric change ratio.
It is > 1 for expansion, between 0 and 1 for shrinkage and < 0 if self-folding
occurs. In particular, we measure 4 Jacobian-based metrics: 1) the number of
deformations having negative Jacobian determinants; 2) the percentage of voxels
having negative Jacobian determinants; 3) minimum and 4) maximum Jacobian
determinants in a deformation. Finally, we use one metric, the range of Jacobian
determinants (=maxJac-minJac), to quantify deformation aggressiveness.

For fairness, we used a standard ITK calculator to compute Jacobians of
deformation. This requires converting deformation files from different software
into a standard ITK-compatible MetaImage format. We carefully checked to
assure the conversion reproduces the same exact warped images.

3 Results and Observations

We now present evaluation results (accuracy, aggressiveness, and their correla-
tion) in this section. Observations follow each set of results. Average computa-
tional time of each method is listed in Appendix of this paper.

3.1 Deformation Accuracy Indicated by Jaccard Overlap is shown in
Fig. 2 for myocardium, LV and RV. Several observations can be made:

a) in general, voxel-wise registration methods evaluated in this paper have
obtained 0.6-0.9 Jaccard (roughly 0.75-0.95 Dice) overlap in left and right ven-
tricles, and 0.4-0.7 Jaccard (roughly 0.55-0.85 Dice) overlap in myocardium.

b) DRAMMS scores highest Jaccard overlap in all three structures in this
dataset – average 0.85 Jaccard (0.9 Dice) in LV and RV, 0.7 Jaccard (0.8 Dice)
in myocardium. The margin is bigger in myocardium regions. A plausible ex-
planation is that DRAMMS uses texture attributes other than solely intensity
information to define similarity at each voxel.

http://www.seas.upenn.edu/~ouya/documents/research/Ou12_WBIR_Supplementary.pdf
http://www.seas.upenn.edu/~ouya/documents/research/Ou12_WBIR_Supplementary.pdf
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Fig. 2. Box-and-Whisker plots: accuracy indicated by Jaccard overlap in 3 expert-
annotated structures. From top to bottom, results for myocardium, LV and RV regions.
Letter “A” stands for aggressive version and “S” for smooth version of a method.

c) ANTs, MI-FFD, Demons, and ART also obtained high overlaps in this
cardiac dataset. This echoes findings in brain registration evaluation study [7].

d) Methods using intensity differences (SSD) as similarity metric have reason-
able Jaccard overlap on average. However, they have larger variations, and suffer
in difficult cases. This shows that SSD metric is less likely to consistently capture
large anatomical variations. One solution is to combine intensity difference with
deformation mechanism of more degrees of freedom (like in ART and Demons).
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Fig. 3. Jacobian-based metrics to indicate deformation aggressiveness. Upper left:
number of deformations (out of all 552) that have negative Jacobian determinants;
Upper right: box-and-whisker plot of percentage of voxels having negative Jacobian
determinants in a deformation; Lower row: min (left) and max (right) Jacobian deter-
minants.

A perhaps better solution is to replace it with more robust similarity metric,
such as correlation (like in ANTs), mutual information (like in MI-FFD), or
attribute-based similarity (like in DRAMMS).

3.2 Deformation Aggressiveness is indicated by the four sets of results
shown in Fig. 3. From left to right, top to bottom, they are: number of defor-
mations with negative Jacobian determinants; percent of voxels having negative
Jacobian determinants; minimum and maximum Jacobian determinants in de-
formations. We observe the following from those results:

a) From the top row in Fig. 3, fnirt is the only non-rigid registration method
that guarantees diffeomorphism in this dataset. Diffeomorphism means no ex-
istence of negative Jacobian determinants (i.e. no self-folding) in deformations.
It is a nice property that preserves topology and one-to-one forward and back-
ward correspondences. fnirt guarantees diffeomorphism by directly checking and
removing negativity in Jacobian map. However, this is at the cost of overlap-
indicated registration accuracy, as reflected in Fig. 2. Actually, whether cross-
subject deformation is a diffeomorphism is an unknown matter, especially when
there are large anatomic variations.

b) DRAMMS(A), ANTs(A), MI-FFD, Demons and ART(A) scored higher
overlap in Fig. 2. Interestingly, results in lower row of Fig. 3 show they have quite
different deformation styles. In particular, DRAMMS(A), ANTs(A) andMI-FFD
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have greater maximum Jacobian determinants, trying to capture individual vari-
ability with larger expansions. Demons and ART(A) have more negative mini-
mum Jacobian determinants, trying to capture individual variability with more
self-foldings in deformations.

3.3 Correlation between Accuracy and Aggressiveness Surrogates is
depicted in Fig. 4. Here y-axis is the mean Jaccard overlap over all 3 structures
and all 552 registrations, indicating overall accuracy of a registration method. X-
axis is the mean range of Jacobian determinants (=mean(maxJacobianDet-
minJacobianDet)) over all 552 registrations, indicating aggressiveness of amethod.
Three observations can be made from this figure:

a) Methods score higher overlap at more aggressive deformations.
b) An ideal registration method should obtain highest possible overlap while

preserving diffeomorphism. Combining Fig. 4 with upper left part of Fig. 3,
DRAMMS(S), the smooth version of DRAMMS, obtained second highest overlap
and preserved diffeomorphism in almost all but 3% (17/552) deformations.

c) In Fig. 4, we used dashed lines to connect the smooth and aggressive ver-
sions of four top-ranking methods. As a result, we observe that DRAMMS is
general high in accuracy. More importantly, it has greater increase when go-
ing from smooth to aggressive version. It therefore offers wider range of choices
for varying needs. That is, the aggressive version, DRAMMS(A), seems a good
choice for single-/multi-atlas-based segmentation, where overlap is the focus. The
smoother version, DRAMMS(S), is perhaps a better choice for finding common
disease pattern in a population, where the key is to maximum possibly remove
global difference and meanwhile preserve disease-induced individual variability.

Fig. 4. Correlation between accuracy and aggressiveness surrogates. Letter “A” stands
for aggressive and “S” for smooth versions for some methods.
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4 Discussion

This paper evaluates 12 voxel-wise registration methods within the context of
cross-subject cardiac registrations in a dataset of 24 subjects. Results show that
those top-ranking registration methods – DRAMMS, ANTs, MI-FFD, Demons,
ART – obtained average Jaccard overlap of 0.7-0.9 (i.e. Dice of 0.82-0.95) in left
and right ventricles, and 0.5-0.7 (i.e., Dice of 0.66-0.82) in myocardium. In the
following, we will discuss those important aspects of the paper.

Objectivity is a critical issue. In our study, it is encouraged by looking at
accuracies when most methods are at similar aggressiveness levels. Deformation
accuracy and aggressiveness are often a pair of trade-off. Reporting both and
correlating them are a more comprehensive set of criteria than purely accuracy
criterion. Their results (Figs. 2,3) and their correlation (Fig. 4) show that the
smooth version of DRAMMS achieves best balance – high overlap and maximum
preservation of diffeomorphism. ANTs, MI-FFD, Demons and ART also perform
well in this cardiac dataset. This echoes findings in brain registration study [7].

On the note of similarity metrics, intensity difference is less stable than corre-
lation (like in ANTs), mutual-information (like in MI-FFD) or attribute-based
similarity (like in DRAMMS). On transformation models, different behaviors are
observed. Transformation models behind DRAMMS, ANTs and MI-FFD tend to
capture individual variability by larger deformation expansions and less severe
self-foldings. Models behind Demons and ART tend to behave reversely.

One surprising observation is regarding diffeomorphism. fnirt is the only one
that guarantees diffeomorphism in this dataset, as it directly checks and removes
negative Jacobian determinants. Non-diffeomorphism occurs for many methods,
although some were theoretically designed diffeomorphic. Numerical issues might
be one reason. Or, perhaps the process of deforming subjects with large anatom-
ical variability itself is not completely diffeomorphic in nature.

Future work includes additional validations that consist of additional regis-
tration methods, cardiac datasets, and accuracy surrogates like surface distance.
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Appendix: Computational Time

Fig. 5. Average computation time to register a pair of cardiac images in our dataset
(120 × 120 × 12voxels, 1.25 × 1.25 × 8.0mm3/voxel). Blue bars are times in Linux
centOS-5 Operating System, Xeon 2.80GHz CPU, 48GB memory. Green bars are times
in Windows 7 Operating System, Intel i7 2.93GHz CPU, 4GB memory.



Fast Explicit Diffusion for Registration

with Direction-Dependent Regularization

Alexander Schmidt-Richberg, Jan Ehrhardt, René Werner, and Heinz Handels
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Abstract. The accurate estimation of respiratory lung motion by non-
linear registration is currently an important topic of research and re-
quired for many applications in pulmonary image analysis, e.g. for
radiotherapy treatment planning.

A special challenge for lung registration is the sliding motion between
visceral an parietal pleurae during breathing, which causes discontinuities
in the motion field. It has been shown that accounting for this physiolog-
ical aspect by modeling the sliding motion using a direction-dependent
regularization approach can significantly improve registration results.
While the potential of such physiology-based regularization methods has
been demonstrated in several publications, so far only simple explicit
solution schemes were applied due to the computational complexity.

In this paper, a numerical solution of the direction-dependent reg-
ularization based on Fast Explicit Diffusion (FED) is presented. The
approach is tested for motion estimation on 23 thoracic CT images and
a significant improvement over the classic explicit solution is shown.

1 Introduction

Many clinical procedures and applications require a precise quantification of
the anatomical motion of organs, for example to reduce motion-induced errors
in treatment planning and intervention. Motion estimation is most commonly
done by non-linear registration of two or more 3D images, each representing
the anatomy at a different point of time. However, registration is challenging
when two organs slide along each other causing discontinuous motion. Applied
regularization schemes usually aim at avoiding such discontinuities, which entails
incorrect registration results at the object boundaries. In particular, this problem
arises for the estimation of lung motion where visceral and parietal pleurae slide
along each other during the respiratory cycle.

Focusing on this application, many publications show that accounting for
sliding motion can significantly improve registration accuracy and plausibility of
the estimated motion fields [2,6,8,9,11]. In a straight-forward manner, this can
be done by constraining the registration to the inside of the organ using binary
lung masks [6,14]. Since this does neither model the exact physiological process
nor allow a motion estimation on the whole image domain, many approaches
for directly incorporating sliding motion in the regularization approach have

B.M. Dawant et al. (Eds.): WBIR 2012, LNCS 7359, pp. 220–228, 2012.
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recently been presented. Nagel and Enkelmann [7] first proposed an image-driven
regularizer for smoothing fields along strong edges but not across them. Based on
a Helmholtz-Hodge decomposition of the motion field, Ruan et al. [10] propose to
penalize only small shear values caused by noise. In Schmidt-Richberg et al. [11],
a direction-dependent regularization (DDR) is formulated by splitting motion
vectors at the object border (i.e. the area in which sliding motion potentially
occurs) into normal- and tangential-directed motion and smoothing only the
normal-directed part across the boundary. This idea was later adopted in other
works, for example in Pace et al. [8] to formulate the problem as an anisotropic
diffusion or in Delmon et al. [2] for a spline-based regularization. Risser et al. [9]
applied a direction-dependent regularization within a diffeomorphic registration
framework. While these approaches show very promising results, they usually
suffer from the fact that simple explicit solution schemes with severe restrictions
to the time step size are utilized. Advanced, for example semi-implicit schemes
like Additive Operator Splitting (AOS) cannot be easily applied because they
require solving large and non-trivial linear systems of equations. However, a
Fast Explicit Diffusion (FED) scheme was recently presented by Grewenig et al.
[4], in which cycles of explicit solution steps with varying step sizes lead to faster
convergence and potentially better results.

In this work, we apply a FED solution scheme to registration with direction-
dependent regularization and show its potential for improving both computation
time and registration accuracy.

2 Methods

Let R, T : Ω �→ R be two 3D images (i.e. time frames) of a 4D data set, called
reference image R(x) and template image T (x) with the image domain Ω ⊂ R

3

and x = (x, y, z)T ∈ Ω. Registration can be formulated as the task of finding a
“plausible” displacement field u : Ω �→ R that transforms the template image
to the domain of the reference image by minimizing the energy functional

J [u] := D[R, T ; u] + αS[u] . (1)

Here, D is a distance measure quantifying the (dis-)similarity between reference
and transformed template image. The plausibility of the motion field is controlled
by the regularizer S with weighting parameter α, which smooths the field and
thereby avoids discontinuities like gaps or foldings. A common choice is the
diffusion regularization

SDiff [u] :=
1
2

3∑
l=1

∫
Ω

‖∇ul(x)‖2 dx , (2)

where ul is the l-th component of u. This regularization can be expressed by the
evolution equation

∂tu = Δu . (3)
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+

+

Fig. 1. In the center image the motion field along the border of the lung is visualized.
This is not smooth according to a diffusion regularization. By decoupling u⊥ and u‖

we can demand the field to be smooth only in normal direction (right) [11].

However, a homogeneous smoothing contradicts physiology in the case of sliding
objects and results in incorrect motion fields. This problem is addressed by
direction-dependent regularization (DDR).

In the following section, DDR is briefly introduced. Its numerical stabil-
ity in comparison to (anisotropic) diffusion its examined in section 2.2. Then,
an overview of Fast Explicit Diffusion is given and it is applied to DDR in
section 2.3.

2.1 Registration with Directional-Dependent Regularization

Registration with direction-dependent regularization was proposed in [11]. It is
based on the common diffusion regularization and requires a segmentation of
the object Γ ⊂ Ω that is supposed to slide along its surrounding tissue. The
basic idea is to restrict regularization along the organ surface to the inside of the
object (and simultaneously, the background) while maintaining smooth motion
across the surface to avoid gaps or folding. This idea is illustrated in Fig. 1.

Let n(x) be the normal vector on the segmentation at a point x ∈ Ω. Without
limiting the generality, we calculate it by n = ∇φ/‖∇φ‖ with φ denoting the
distance transformation of the segmentation. We proceed by splitting the motion
field in two parts: the normal-directed part u⊥(x) = 〈u(x), n(x)〉n(x) on the
one hand and the tangential-directed part u‖(x) = u(x)−〈u(x), n(x)〉n(x) on
the other hand. According to the assumptions, comprehensive (i.e. inter-object)
smoothing is performed only in normal direction while object and background are
smoothed separately in tangential direction. Assuming ∇n to be small, equation
(2) can then be reformulated to

SDiff [u] :=
1
2

3∑
l=1

(∫
Ω

‖∇u⊥
l ‖2dx +

∫
Γ

‖∇u
‖
l ‖2 dx +

∫
Ω/Γ

‖∇u
‖
l ‖2 dx

)
. (4)

In this continuous formulation, equations (2) and (4) are equivalent but differ-
ences will occur in the discretization introducing Neumann boundary conditions.

In a second step, a weighting between the proposed regularization (4) and the
common diffusive term (2) is included to restrict the calculation of the direction-
dependent term to the region close to the object boundaries. This is mainly done



Fast Explicit Diffusion for Registration 223

because normals are only known in this region but it also entails a computational
benefit. We use a continuous weighting function δ, which approximates the Dirac
delta function and is 1 at the boundary of Γ and 0 elsewhere. This leads to the
final energy term

SDDR[u] :=
1
2

3∑
l=1

( ∫
Ω

δ ‖∇u⊥
l ‖2 + (1− δ) ‖∇ul‖2 dx

+
∫

Γ

δ ‖∇u
‖
l ‖2 dx +

∫
Ω/Γ

δ ‖∇u
‖
l ‖2 dx

)
. (5)

Minimizing this energy leads to the diffusion equation

∂tu = ∇δ∇u⊥ + ∇(1 − δ)∇u + ∇δ∇u‖ , (6)

where ∇ implies that the gradient is calculated using Neumann boundary con-
ditions at the borders of Γ .

2.2 Explicit Solution Schemes and Numerical Stability

To analyze the impact of using direction-dependent regularization on the nu-
merical properties of the solution scheme, a stable step size τmax is derived in
the following.

For simplification, a discretized version of the one-dimensional the diffusion
equation (3) is regarded:

Uk+1 = (I + τA) Uk (7)

This formulation can be adapted to the d-dimensional case by defining A :=∑d
l=1 Al, where Al corresponds to the derivatives along the lth coordinate axis

and U := (UT
x , UT

y , UT
z )T is a vector holding all entries of the displacement field

component-wise.
The scheme (7) is stable if all Eigenvalues of the matrix (I + τA) lie in the

interval [−1, 1]. Therefore, the maximal eigenvalue λmax of the matrix A is esti-
mated in the following and a step size τ ≤ τmax chosen such that this condition
is satisfied.

Diffusion. First, the standard diffusion equation (3) is regarded. The matrix
A = AΔ = (aij) is a discretization of the Laplace operator and writes

aij =

⎧⎪⎨⎪⎩
1
h2 j ∈ {i− 1, i + 1},
− 2

h2 j = i,

0 else
.

Following the Gershgorin circle theorem, all eigenvalues λi of a square matrix
M = (mij) lie in discs with the radius ri :=

∑
j 
=i mij and the center ci := mii

[4]. Therefore, we find for the matrix A that λmax ∈ [ci − ri, ci + ri] = [− 4
h2 , 0].

Accordingly, a step size τmax = h2

2 has to be chosen to maintain numerical
stability.
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Anisotropic Diffusion. Before regarding the direction-dependent regulariza-
tion, the anisotropic diffusion equation ∂tu = ∇δ∇u with a diffusivity map δ is
considered [13]. The matrix A = Aδ = (aδ

ij) then holds the entries

aδ
ij =

⎧⎪⎨⎪⎩
δi+δj

2h2 j ∈ {i− 1, i + 1},
− δi−1+2δi+δi+1

2h2 j = i,

0 else
,

leading to ci = −ri = − δi−1+2δi+δi+1
2h2 . Since δ ∈ [0, 1], the step size τmax = h2

2 is
still applicable to maintain numerical stability.

Direction-Dependent Regularization. For the direction-dependent regular-
ization (6) the matrix A = A� can be written as

A�U = AδU⊥ + A1−δU + ĀδU‖

= AδNU + A1−δU + Āδ(I −N)U
=
(
AδN + A1−δ + Āδ(I −N)

)
U (8)

with

N :=

⎛⎝Nxx NxyNxz

Nxy NyyNyz

Nxz NyzNzz

⎞
⎠ ,

and Nxy being diagonal matrices holding the product nxny in the main diagonal.
The matrix Āδ resembles Aδ but features Neumann boundary conditions at the
object borders. If these matrices were equal (i.e. if there is no sliding object in the
image domain), the first and third term in (8) would sum up to the anisotropic
diffusion matrix Aδ and together with the second term, A� would be equal
to AΔ.

After some calculations, we find in agreement with the previous observations
that for rows without voxels corresponding to an object boundary λi ∈ [− 4

h2 , 0]
still holds. However, for rows featuring Neumann boundary conditions and again
assuming ∇n to be small, we get ci = − 2

h2 − (1− n2
xd

)(aδ
i,i−1 − aδ

i,i+1) and ri =
2
h2 +(1−n2

xd
)(aδ

i,i−1−aδ
i,i+1) with xd ∈ {x, y, z}. We know that (1−n2

xd
) ∈ [0, 1]

and it will be small in most places because the normal is orthogonal to the
object boundary. While also (aδ

i,i−1 − aδ
i,i+1) ∈ [−1, 1] is evident, the value can

be computed exactly depending on the image spacing and the parameters of the
function δ. A worst-case estimation leads to a stable step size τmax = h2

2+h2 .

2.3 Fast Explicit Diffusion

Solving the registration problem with direction-dependent regularization using
an explicit scheme allows a simple implementation but requires a small step size,
which entails slow convergence and the risk of getting stuck in a local minimum.
However, advanced semi-implicit schemes like AOS demand for an inversion of
the matrix A�, which is not trivial [13].
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Target Diffusion / Explicit Diffusion / FED

Reference DDR / Explicit DDR / FED

20 mm

0 mm

10 mm

Motion
Magnitude

Fig. 2. Visualization of the motion magnitudes of the registration results for the dif-
ferent approaches. Sliding motion with DDR regularization is visible along the lung
boundaries. Explicit and FED schemes are very similar but FED features larger dis-
placements in some regions – presumably because local minima are bypassed during
iterations with large step sizes.

Grewenig et al. recently proposed Fast Explicit Diffusion (FED) schemes for
solving diffusion problems [4]. The main idea is to perform cycles of n explicit
1-D diffusion steps with varying step sizes

τi =
τmax

2 cos2
(
π 2i+1

4n+2

)
to approximate a box filtering. Since box filtering is always stable, FED cycles
are also stable even though individual steps violate the stability conditions.

Instead of approximating a box filter by simple diffusion steps, the approach
can be adapted for arbitrary diffusion problems taking the maximal step size
τmax as derived in section 2.2 into account.

3 Results

Evaluation aims at comparing on the one hand diffusion (2) and direction-
dependent regularization (5) and on the other hand explicit and FED schemes.
The algorithms are tested on images of multiple data sets of which some are
publicly accessible. The following thoracic CT images are considered for the
estimation of respiratory lung motion:

– WashU: 12 thoracic 4D CT data sets, acquired by Low et al. [5] and recon-
structed as described in [3].
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– DIR-Lab: 10 publicly available 4D CT data sets hosted by DIR-Lab, Uni-
versity of Texas, US [1].

– POPI: The Point-validated Pixel-based Breathing Thorax Model, hosted by
the Léon Bérard Cancer Center & CREATIS lab, Lyon, France [12].

The spatial resolution is between 0.97×0.97×1.5 mm and 1.16×1.16×2.5 mm.
For evaluation, accuracy is quantified as target registration error (TRE), i.e.

the mean distance between manually defined landmarks in reference and tem-
plate image after registration. Further, the maximal error was regarded for each
patient to quantify the worst alignment. For the DIR-Lab and POPI data, the
landmarks provided by the hosts were used (300 and 80 landmarks, respectively).

Registration was performed with end inhalation as reference and exhalation
as template image. As detailed in [11], Normalized SSD (NSSD) forces are ap-
plied for optimal registration of regions with low contrast. Moreover, a multi
level strategy with 4 resolution levels is used to improve the results as well as
computational efficiency. Due to the heterogeneous image pool, registration with
a fixed number of iterations is not applicable. Instead, computation is automat-
ically stopped if the MSD between reference and transformed template image
is not improved in the course of 10 iterations. Additionally, to avoid long run
time on the finest level, a straight line is fitted on the MSD values of the 20
most recent iterations and registration is halted if its slope is below a certain
threshold (t = 0.001). The number n of iterations per FED cycle is set to 5, but
the method is very robust to this value.

For the explicit scheme step size and regularization weight were optimized
empirically (τ = 0.01, α = 0.25). Although this step size is slightly larger than
τmax and therefore bears the risk of numerical instability, it provides the best
results in practice and is therefore considered for comparison. For FED, τi are
computed based on τmax as derived in section 2.2.

The results are visualized in Fig. 2 and quantified in Table 1. For all image
sets, registration with direction-dependent regularization yields better results
than the common diffusion approach. This improvement is statistically signifi-
cant in 17 of 23 cases (paired t-test on the landmark distances of each patient,
significance level p ≤ 0.05). These numbers show that it is of eminent importance
for lung registration to take motion physiology into account.

Comparing the solution schemes, FED yields considerably better results than
the simple explicit scheme with fixed step sizes. All together, the combination
DDR with FED results in the most accurate registration.

Contrary to the expectations, registration with FED takes longer than with
the explicit scheme (explicit: between approx. 2 and 25 minutes; FED: between
3 and 90 minutes). This is due to the automatic stop criterion: using the explicit
scheme, registration stops after considerably less iterations than with FED be-
cause the MSD no longer decreases – presumably because a registration gets
stuck in a local minimum. Using FED, however, minima can be bypassed dur-
ing iterations with large step sizes. The increased number of iterations also ex-
plains the vast improvement of the DDR/FED approach over DDR with explicit
solution.
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Table 1. Results for the comparison of diffusion and direction-dependent regularizer
as well as explicit, FED and AOS solution schemes. The best results are shown in bold
font. For the WashU and DIR-Lab data, the average over 12 and 10 data sets is given.

Dataset Regul.
Before Reg. Explicit FED
Mean Max Mean Max Mean Max

Execution of all iterations until convergence

WashU
Diffusion

6.59 ± 4.49 19.63
1.80± 1.84 9.63 1.74± 1.86 10.10

DDR 1.48± 1.28 7.12 1.31± 0.95 5.51

DIR-Lab
Diffusion

8.46 ± 5.48 22.25
3.02± 2.79 15.53 2.91± 2.88 15.70

DDR 2.22± 1.89 10.90 1.55± 1.11 8.29

POPI
Diffusion

7.15 ± 13.0 20.00
1.27± 1.02 5.64 1.21± 0.98 6.15

DDR 1.14± 0.55 4.62 1.02± 0.29 3.45

Execution for 10 (DIR-Lab, POPI) or 15 (WashU) minutes

WashU
Diffusion

6.59 ± 4.49 19.63
1.84± 1.86 9.60 1.79± 1.87 9.86

DDR 1.60± 1.33 7.03 1.53± 1.15 6.45

DIR-Lab
Diffusion

8.46 ± 5.48 22.25
3.08± 2.75 15.40 2.98± 2.75 15.48

DDR 2.49± 1.99 11.43 2.28± 1.73 10.61

POPI
Diffusion

7.15 ± 13.0 20.00
1.27± 1.02 5.64 1.22± 0.99 6.24

DDR 1.14± 0.55 4.62 1.02± 0.29 3.32

To avoid this bias, a second run is performed for each registration in which the
computation is stopped after a maximal run time, such that a similar number
of iterations is performed with the explicit as with the FED scheme (complete
FED cycles are maintained). To cope with the different sizes, time was set to
10 (DIR-Lab, POPI) and 15 (WashU) minutes on an Intel Xeon machine with
2.67 GHz. However, it should be mentioned that one iteration with DDR takes
approximately 35% longer than with diffusion regularization, resulting in consid-
erably less iterations. The results are shown on the bottom of Table 1. Due to its
faster convergence, FED is still superior to the explicit scheme. The DDR/FED
approach still performs best but the improvement is less prominent than with
all iterations since computation is stopped before full convergence.

4 Discussion and Conclusion

The goal of this work was to examine the potential of Fast Explicit Diffusion
schemes for solving registration with direction-dependent regularization for the
estimation of sliding organ motion. Registration was tested on 23 inhale/exhale
CT scan pairs, of which 11 are publicly accessible. The results show that FED
provides faster convergence per iteration than the explicit solution scheme. More-
over, it features considerably better accuracy since local minima are bypassed
in iterations with a large step size. Using an automatic stop criterion, this can
result in an effectively longer computation time.
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In summary, the experiments demonstrate the capability of improving medical
registration algorithms using Fast Explicit Diffusion.
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Abstract. To monitor tumor response to neoadjuvant chemotherapy, investiga-
tors have begun to employ quantitative physiological parameters available from 
dynamic contrast enhanced MRI (DCE-MRI). However, most studies track the 
changes in these parameters obtained from the tumor region of interest (ROI) or 
histograms, thereby discarding all spatial information on tumor heterogeneity. 
In this study, we applied a nonrigid registration to longitudinal DCE-MRI data 
and performed a voxel-by-voxel analysis to examine the ability of early changes 
in parameters at the voxel level to separate pathologic complete responders 
(pCR) from non-responders (NR). Twenty-two patients were examined using 
DCE-MRI pre-, post one cycle, and at the conclusion of all neoadjuvant chemo-
therapy. The fast exchange regime model (FXR) was applied to both the origi-
nal and registered DCE-MRI data to estimate tumor-related parameters. The  
results indicate that compared with the ROI analysis, the voxel-based analysis 
after longitudinal registration may improve the ability of DCE-MRI to separate 
complete responders from non-responders after one cycle of therapy when us-
ing the FXR model (p = 0.02). 

Keywords: Longitudinal registration, DCE-MRI, breast cancer. 

1 Introduction 

Early investigations in monitoring tumor response to neoadjuvant chemotherapy  
focused on semi-quantitative analyses based on changes in morphology and/or ana-
tomical measures [1-7].  More recently, investigators have begun to employ the quan-
titative physiological parameters available from dynamic contrast enhanced MRI  
(DCE-MRI). For example, Ah-See et al [8] acquired DCE-MRI data on thirty-seven 
patients with primary breast cancer. Through calculating the changes in seven kinetic 
parameters, they reported the that change in the volume transfer constant (Ktrans)  
was the best predictor of pathologic nonresponse. In performing their analysis, the 



230 X. Li et al. 

investigators tracked the changes in parameters obtained from tumor ROI or histo-
gram data. While this approach is the current standard, it does discard all spatial in-
formation on tumor heterogeneity. Li et al presented [9] and validated [10] a method 
for the registration of breast MR images obtained at different time points throughout 
the course of neoadjuvant chemotherapy. In this study, we applied the approach to 
longitudinal pharmacokinetic parameters estimated by the fast exchange regime mod-
el (FXR) and performed a voxel-by-voxel analysis to examine the ability of early 
changes in parameters at the voxel level to separate pathologic complete responders 
(pCR) from non-responders (NR). The FXR model assumes that tissue is not homo-
geneous and water exchange between the vascular, extravascular intracellular space, 
and the extravascular extracellular spaces are not sufficiently fast. To the best of our 
knowledge, it is the first work to report the ability of the FXR model to predict breast 
cancer response and demonstrate the influence of tumor heterogeneity on the analysis 
of treatment response. 

2 Patients and Methods 

2.1 MRI Data Acquisition 

Twenty-two patients with Stage II/III breast cancer were enrolled in an IRB-approved 
clinical trial where serial breast MRI scans were acquired pre-therapy (t1) and after 
one cycle (t2), and at the completion of neoadjuvant chemotherapy (t3). Imaging was 
performed on a 3.0 T Achieva MR scanner (Philips Healthcare, Best, The Nether-
lands). The DCE-MRI acquisition employed a 3D spoiled gradient echo sequence 
with TR\TE\α =7.9ms\1.3ms\20o. The acquisition matrix was 192×192×20 over a 
sagittal (22 cm)2 field of view with a slice thickness of 5 mm. Each 20-slice set was 
collected in 16.5 seconds at 25 time points and 0.1 mmol/kg of Magnevist was in-
jected at 2 mL s-1 after the third dynamic scan. Responders (n=11) were defined as 
those patients who had a pathologic complete response at time of surgery. Non  
responders (n=11) were defined as patients with residual invasive cancer at the  
primary tumor site.  

2.2 Data Registration 

The purpose of the registration in this study is to align DCE-MRI data acquired at 
three time points: pre-, post-one cycle, post-all cycles of neoadjuvant chemotherapy. 
Since the DCE-MRI data at each imaging session consists of 25 dynamic scans, we 
apply the registration to the average of the post-contrast DCE-MRI data (i.e., the av-
erage of the 4th – 25th scans; this is done to increase the SNR of the data to yield a 
more accurate registration). First, the average DCE data pre- and post-one cycle of 
therapy are aligned to the data at the conclusion of all therapy by a rigid body regis-
tration algorithm [11], which searches the optimal rotation and translation parameters 
through maximizing the normalized mutual information (NMI). A nonrigid registra-
tion method [9] is then applied to refine the registration. This method extends the 



 Early DCE-MRI Changes after Longitudinal Registration 231 

adaptive bases algorithm (ABA) [12] through incorporating an additional term de-
signed to preserve the tumor volume during the registration process. The reason the 
tumor volume must be preserved is that compressing or expanding the tumor during 
the registration process could provide results that are misleading in regard to assess-
ing biological changes in the tumor (e.g., disease progression or response) that occur 
between imaging sessions. 

Both the ABA and the extended ABA algorithm with a tumor volume conserving 
constraint employ NMI as the similarity measure, and the deformation field is mod-
eled by a linear combination of radial basis functions. To constrain the tumor volume, 
we compute the Jacobian determinant over the tumor regions in the MR images: 

 ( )( )con T
T

f log J x dxα=  ,  (1) 

where ( )TJ x  is the Jacobian determinant on the tumor area and α is the parameter to 

control the weight of this constraint term, which is set to 0.15 – 0.3 based on empiri-
cal evidence. Hence the cost function is composed of the negative NMI term and the 
tumor volume constraint term: 

 ( )( )cost T
T

f NMI log J x dxα= − +  ,  (2) 

Through minimizing Eq. (2), the algorithm can optimally register the normal tissues 
while simultaneously minimizing tumor distortion. The generated transformation is 
applied to each dynamic scan to obtain the registered DCE-MRI data. 

2.3 Data Analysis 

The fast exchange regime model (FXR) is applied to both the original and serially 
registered DCE-MRI data to estimate the volume transfer constant (Ktrans, related to 
tumor perfusion and permeability), efflux rate constant (kep), extravascular  
extracellular volume fraction (ve), and the average intracellular water lifetime of a 
water molecule (τi).  

In order to perform quantitative DCE-MRI, the arterial input function (AIF) must 
be measured. Individual AIFs are detected by a semi-automatic AIF tracking algo-
rithm, the details of which can be found in reference [13]. Here we use a population-
averaged AIF which is calculated through averaging fifty individual AIFs. 

For each patient at each time point, a conservative ROI is manually drawn around 
the contrast enhanced tumor region; that is, the ROI encompasses the entire tumor as 
well as surrounding healthy appearing tissue. Given this set of voxels, eleven subsets 
of enhancing tumor voxels are constructed on the basis of their averaged post-contrast 
signal intensity increase over the average of the three pre-contrast time points. Each 
subset is defined for different percent enhancement thresholds ranging from 10% to 
110% in 10% increments. This allows us to establish an optimal “cut-off” point for 
selecting enhancing voxels to include in the analysis. 



232 X. Li et al. 

To evaluate the effectiveness of the longitudinal registration algorithm, both ROI 
and voxel-based analyses are performed. The ROI analysis is based on the unregis-
tered DCE-MRI data and three parameters are computed: the change of mean, me-
dian, and mean of the top 15% parameters. The voxel analysis is performed on the 
registered data and the same parameters are calculated on voxels showing an increase 
in the parameter from t1 to t2. A Wilcoxon rank sum test is then used to determine if 
there is a significant difference between the pCR and NR groups. 

3 Results 

Figure 1 shows the registered DCE-MRI data at three time points with the corres-
ponding Ktrans maps superimposed; the top row shows a representative patient achiev-
ing a pCR, while the bottom row is a NR. 

 

Fig. 1. The registered DCE-MRI data at three time points (columns) with the corresponding 
Ktrans superimposed; the top row shows a patient with pCR, while the bottom row is a NR. 

Figure 2 shows the p values obtained by both the ROI and voxel-based analyses at 
different enhancement thresholds. Before registration, only two ROI analyses are 
significant (the median Ktrans when the 20% and 30% enhancement rates used as the 
cut-off) at the p < 0.05 level (indicated by the solid black line in the figure). However, 
after the longitudinal registration, p values are significant when the enhancement rates 
ranging from the 20% to 70% are used, indicating the parameters estimated by the 
FXR model with registration can distinguish the differences between two groups.  
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Table 1 lists the p values of three ways of summarizing different pharmacokinetic 
parameters by the ROI and voxel-based analyses. The results indicate that the  
registration makes the change in mean Ktrans move from a not significant (p = 0.12 in 
the ROI analysis) to a significant difference (p = 0.02 in the voxel analysis). Similar 
conclusions can be made for the change in mean of the top 15% of Ktrans and kep. The 
other parameters studied in this effort, ve and τi, do not yield significant results in 
either analysis. 

 

Fig. 2. The p values of ktrans obtained by both the ROI and voxel-based analyses at different 
enhancement thresholds. Most p values in the voxel-based analysis are significant (< 0.05) 
when the enhancement rates ranging from the 20% to 70% are used, compared with two signif-
icant p values in the ROI analysis, indicating the longitudinal registration may improve the 
ability of DCE-MRI data to predict treatment response. 

Table 1. The table lists the p values of three ways of summarizing different pharmacokinetic 
parameters by the ROI and voxel-based analyses. The results after the voxel-based analysis, in 
general, lead to smaller p values, indicating the longitudinal registration may improve the 
ability of DCE-MRI data to separate pCR from NR patients. 

 Ktrans kep ve τi 
Analysis ROI Voxel ROI Voxel ROI Voxel ROI Voxel 

∆mean 0.12 0.02 0.04 0.04 0.12 0.39 0.69 0.26 

∆median 0.02 0.03 0.08 0.06 0.17 0.15 0.51 0.13 

∆mean of 
top15% 

0.15 0.02 0.07 0.04 0.74 0.13 0.51 0.13 
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4 Conclusions 

A nonrigid registration algorithm has been employed to retain the spatial information 
in DCE-MRI parameter maps obtained before and after neoadjuvant chemotherapy, 
thereby enabling a voxel-based analysis to be performed to predict response. The 
quantitative analysis demonstrates that Ktrans and kep can separate pCR from non-
responding patients after the parameters are aligned by this algorithm. Although ve 
and τi cannot lead to any significant results, the p values trend to smaller values after 
registration. The results indicate that the voxel-based analysis after longitudinal regis-
tration may improve the ability of DCE-MRI to separate pCR from non-responders 
after one cycle of therapy when using the FXR model. 

There are a number of limitations in the study. First, the population AIF was used 
to estimate the physiological parameters from DCE-MRI data. In practice, it is diffi-
cult to obtain a reliable AIF from each patient at each time point. Li et al.’s study [13] 
indicates that Ktrans and vp show a good agreement between the population AIF and 
individual AIF. Thus, the population AIF in this study may not be the main concern, 
although future work should investigate the role of individual AIFs in predicting 
treatment response. The temporal resolution of 16 s used in this study is also an 
important limitation. It is not optimal for AIF characterization; rather it represents a 
balance between temporal and spatial resolution and field of view coverage so we can 
perform longitudinal registration. A final limitation is that the number of patients is 
modest and we are currently working to expand the data set to explore the ability of 
the voxel-based analysis to predict treatment response. 
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Abstract. Intensity-driven image registration does not always produce satisfac-
tory pointwise correspondences in regions of low soft-tissue contrast characteris-
tic of pelvic computed tomography (CT) imaging. Additional information such as
manually segmented organ surfaces can be combined with intensity information
to improve registration. However, this approach is sensitive to non-negligible sur-
face segmentation errors (delineation errors) due to the relative poor soft-tissue
contrast supported by CT. This paper presents an image registration algorithm
that mitigates the impact of delineation errors by weighting each surface element
by its segmentation uncertainty. This weighting ensures that portions of the sur-
face that are specified accurately are used to guide the registration while portions
of the surface that are uncertain are ignored. In our proof-of-principle valida-
tion, Monte Carlo simulations based on simple 3D phantoms demonstrate the
strengths and weaknesses of the proposed method. These experiments show that
registration performance can be improved using surface uncertainty in certain
circumstances but not in others. Results are presented for situations when inten-
sity only registration performs best, when intensity plus equally weighted surface
registration performs best, and when intensity plus uncertainty weighted surface
registration performs best. The algorithm has been applied to register CBCT and
FBCT prostate images where the uncertainty of the prostate surface segmentation
was estimated using contours drawn by five experts.

1 Introduction

Deformable image registration is needed for mapping organ segmentations from the
planning fan-beam CT (FBCT) onto daily cone-beam CT (CBCT) images for adaptive
replanning and for cumulative dose reconstruction in which individual fraction dose
distributions are deformably mapped onto a single reference imaging study. Ideally,
this problem would be solved by an intensity-driven registration algorithm that takes
CBCT and FBCT images as input and returns the correspondence function. However
due to the low contrast of soft tissue in CT imaging, the boundaries of the prostate
and other organs are often difficult to distinguish from neighboring organs and tissue.
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Therefore pure intensity-based volumetric registration often cannot obtain sufficiently
accurate results especially in the pelvis. One approach to improving registration accu-
racy is to manually segment organ boundaries on both source and target image sets
and utilize them, in the form of binary masks, as landmarks to guide the otherwise
ill-conditioned intensity-based registration process [1, 3]. Another approach [4, 5, 8] is
to register the source and target surfaces first and then using the obtained transforma-
tion as the initial condition or extra constraint in volume registration. To date, these
methods ignore the uncertainty of manual segmentations due to contouring variability
among different observers, known formally as interobserver delineation error [13]. For
the prostate gland boundary, previous studies have shown that such errors vary dramat-
ically (from 1-4 mm) with location on the prostate surface and adjacent organs at risk
(OARs) [9]. Although the landmark uncertainty in the context of landmark-only regis-
tration have been studied [10,14], the combination of surface and volume registration in
the presence of boundary uncertainty has not been actively studied. As such this work
proposes a registration algorithm that combines intensity and surface information using
a probabilistic model to account for the surface segmentation error.

2 Method

We call our method Surface Uncertainty Penalized Image Registration (SUPIR). As
illustrated in Fig. 1, SUPIR consists of two components: modeling the 3D positional
boundary uncertainty from training dataset (Box 1, purple) and registering images with
this surface uncertainty penalty (Box 2, green).

Box 1 shows how the a priori boundary position uncertainty is modeled. We start by
collecting training FBCT and CBCT pelvic images. For each image, multiple experts
segment the structure of interest (the prostate in this paper) individually and save them
as 3D triangulated meshes. These meshes are then mapped into a spherical coordinate
system and aligned with each other so that the interoperator discrepancies between any
pair of experts can be quantified as a function of location in the spherical coordinate
system. The segmentation error or boundary location uncertainty as a function of lo-
cation on prostate surface in a FBCT image is modeled via the principal component
analysis (PCA). PCA segmentation uncertainty model is constructed for CBCT image
set as well.

In addition to the boundary-location PCA models, SUPIR requires both template and
target images along with the corresponding segmented organ surfaces. Box 2 shows how
the surface-uncertainty information is used to constrain volume registration solution
space. It is assumed that the images to be registered each have a surface segmentation
provided to help guide the registration. It is also assumed that the surface segmenta-
tion is an instance of a random process described by the underlying boundary location
uncertainty model. That is, we assume that deviations of the supplied expert surface
segmentation from the true surface are consistent with the boundary uncertainty model
constructed from the training data. After the template and target surfaces are aligned
with the training surfaces in the spherical coordinate system, the boundary uncertainty
information is mapped to them. Finally, the images are registered by jointly minimizing
the intensity and surface differences while taking into account the boundary uncertainty
penalty.
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Fig. 1. Algorithm flowchart of SUPIR. Box 1 summarizes the steps to model the a priori bound-
ary uncertainty. Box 2 summarizes the steps to use the surface uncertainty information to assist
volume registration.

2.1 Volume and Surface Registration with Boundary Location Uncertainty

Denote the FBCT and CBCT images by If : Ω �→ R and Ic : Ω �→ R, respectively,
where Ω = [0, 1]3 is the image domain. Let X : S2 �→ Ω and Y : S2 �→ Ω denote
the parameterized embeddings of the prostate surfaces in the FBCT and CBCT, respec-
tively, where S2 is the unit sphere. The image registration problem can be cast as a
search for the transformation h : Ω �→ Ω that minimizes the cost function

CTotal(h) = αCImage(h) + ρCSurface(h) + λ CSmooth(h) (1)

where CImage is the similarity cost between the FBCT and CBCT images, CSurface is the
similarity cost between the prostate surfaces, and CSmooth is regularization cost that
penalizes transformations that are not smooth. The weighting constants α, ρ and λ
control the relative influence or priority of each of the individual cost functions.

For computational purposes, the transformation h is parameterized using a B-spline
basis [11]. Let ci = [cx(xi), cy(xi), cz(xi)]

T be the coefficients of the i-th control point
xi on the spline lattice G along each direction. h(x) = x +

∑
i∈G ciB

(3)(x − xi),
where B(3)(x) = B(3)(x)B(3)(y)B(3)(z) is a separable convolution kernel. B(3)(x) is
the uniform cubic B-spline basis function.

Since FBCT and CBCT are two different imaging modalities, Cimage in Eq. 1 is given
by the negative mutual information (MI) [12] between two images. MI indicates the
amount of information that two image share. It is assumed that good correspondence is
achieved when MI is maximized. In this paper Cimage is defined as
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CMI = −
∑
i

∑
j

p(i, j) log
p(i, j)

pI1◦h(i)pI2(j)
(2)

where p(i, j) is the joint intensity distribution of transformed template image I1 ◦h and
target image I2; pI1◦h(i) and pI2(j) are their marginal distributions, respectively. The
histogram bins of I1 ◦ h and I2 are indexed by i and j.

A commonly used Laplacian smoothness constraint is used to regularize the space
of possible transforms:

CSmooth =
1

2

∫ 3∑
i=1

(
∂ui(x)

∂xi
)2 dx (3)

where u(x) is the displacement vector field (DVF) and is related to the transformation
h by h(x) = x+ u(x).

The surface similarity metric used in Eq. 1 is defined as

CSurface =

∫ 2π

0

∫ π

0

1

ω(u, v)
‖h(Y (u, v))−X(φ(u, v))‖ sin v dudv (4)

where φ(u, v) defines the pointwise correspondence between surfaces Y (u, v) and
X(u, v) and ω(u, v) is the uncertainty metric that is proportional to the segmentation er-
ror at (u, v). Details of how the uncertainty function ω(u, v) is estimated are discussed
in Sec. 2.3.

2.2 Surface Registration

The correspondence between two surfaces needs to be established before the com-
putation of ω(u, v) or CSurface. In case of two closed surfaces, X(u, v) and Y (u, v),
a common method is to conformally map each surface to a unit sphere and re-
sample this spherical parametric domain to the necessary resolution. Then the two
surfaces are aligned in this spherical space via the re-parameterization φ(u, v) which
optimizes the correspondence between X(u, v) and Y (u, v) to give X(u, v) ∼
Y (φ(u, v)), where ∼ means ”corresponds to” [2]. This work follows the same idea
but uses a recently proposed parameterization-invariant approach which guarantees
‖Q(Y (u, v))−Q(X(u, v))‖ = ‖Q(Y (γ(u, v)))−Q(X(γ(u, v)))‖ when aligning sur-
faces where γ is a diffeomorphic transformation and Q is a novel representation of the
given surfaces. We refer readers to [6] for more details.

2.3 Surface Uncertainty Model

The uncertainty of the boundary location is modeled using a principal component anal-
ysis (PCA) [7] of segmentations drawn of the same object by multiple experts. Let
Xi(u, v) and Yi(u, v), i = 1 to n, denote the manually segmented prostate surfaces
traced on FBCT and CBCT images, respectively, by the i-th expert. Each randomly
sampled FBCT prostate surface, X(u, v), can be represented as
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X(u, v) = X̄(u, v) +

n∑
i=1

Biβi(u, v) (5)

where X̄(u, v) is the mean prostate surface, Bi is a random variable with normal distri-
bution Bi ∼ N(0, σ2

i ), σ
2
i is the i-th eigenvalue of the covariance matrix, and βi(u, v)

is the corresponding vector-valued eigenfunction, representing the i-th variation mode.
Similarly, Y (u, v) can be represented as

Y (u, v) = Ȳ (u, v) +

n∑
i=1

Ciψi(u, v) (6)

where Ȳ (u, v) is the mean shape of CBCT prostate, Ci ∼ N (0, ε2i ), and ψi(u, v) is the
corresponding variation mode.

ω(u, v) is required to have the following property. In regions where the experts
closely agree and therefore are confident about the boundary location, the uncertainty is
low and 1

ω(u,v) is large suggesting that more surface matching weight should be given
to these regions to guide registration. Whereas, at regions of large interoperator dis-
crepancies, indicating lack of expert consensus on boundary location, the uncertainty
is high and 1

ω(u,v) is small indicating less surface matching weight should be given. To
simplify the computation we define

ω(u, v) = tr(Cov (X(u, v))) + tr(Cov (Y (u, v))) (7)

At each point (u0, v0), the trace of the covariance Cov (X(u0, v0)) is derived as

tr(Cov (X(u0, v0))) = tr(E {[X(u0, v0)− X̄(u0, v0)][X(u0, v0)− X̄(u0, v0)]
T})

= tr(E {[
n∑

i=1

Biβi(u0, v0)][
n∑

i=1

Biβi(u0, v0)]
T})

=
3∑

k=1

n∑
i=1

n∑
j=1

E {BiBj}βik(u0, v0)βjk(u0, v0)

=

3∑
k=1

n∑
i=1

σ2
i β

2
ik(u0, v0)

where i has the same meaning in Eq. 5 and k represents the k-th direction among x, y
and z axises. Similarly, tr(Cov (Y (u0, v0))) =

∑3
k=1

∑n
i=1 ε

2
iψ

2
ik(u0, v0).

3 Experiment and Result

3.1 Phantom Experiment

Monte Carlo simulation and simple 3D phantoms were used to investigate how the
intensity and surface similarity costs affect the registration result. To this end, the fol-
lowing five registration algorithms derived from Eq. 1 were studied.
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1. Intensity-only registration (SSD): α = 1, ρ = 0 and λ = 0.05.
2. Equally-weighted surface-driven only registration (EWS): α = 0, ρ = 5, λ = 0.05

and ω(u, v) = 1.
3. Uncertainty-weighted surface-driven only registration (UWS): α = 0, ρ = 20,

λ = 0.05 and ω(u, v) defined by Eq. 7.
4. Equally-weighted surface-penalized intensity-driven image registration (ESPIR):

α = 1, ρ = 5, λ = 0.05 and ω(u, v) = 1.
5. Surface uncertainty-penalized image registration (SUPIR): α = 1, ρ = 20, λ =

0.05 and ω(u, v) defined by Eq. 7.

Note that ρ was set to 20 in the UWS and SUPIR methods while it was set to 5 in the
EWS and ESPIR methods so that the total weight along the surface was similar.

As shown in Fig. 2, each phantom data set consists of a constant intensity 3D general
ellipsoid shape centered in the image domain. It is assumed that there is an object of
interest in the center of the ellipsoid to be registered that cannot be seen in the intensity
image. Since the object of interest cannot be seen, we assume that we are given a surface
segmentation of the object via some other means to aid in the registration. The figure
of merit for a good registration is that the true object of interest in the template and
target images are aligned. It is further assumed that surfaces that were provided have
segmentation errors associated with them. The surface segmentation error is modeled
probabilistically by a mean shape plus a spatially varying error term. To simplify the
analysis, we will assume that one of the surfaces has no segmentation error and the other
surface is a random sample from our uncertainty model. The registration experiments are
repeated using 50 random surfaces to find the average performance of each algorithm.

The surface of interest is defined by Yp(u, v) = (a cosu sin v, a sinu sin v, b cos v)
where u ∈ [0, 2π] and v ∈ [0, π]. Initially we set a = b = 24 mm to create a
prostate-size sphere Ypm(u, v) as the mean surface. Then a Gaussian random variable
N (0, σ2), σ = 4 mm is added to a and 50 random surfaces Ypi(u, v) are sampled,
where σ = 4 mm simulates the real case in Sec. 3.2. In this simplified experiment,
there is only one variation mode in the phantom surfaces where the largest variance
happens along the equator and the least at the poles. Also note that these parametric
surfaces require no alignment between each other so their boundary uncertainty can be
directly computed as Sec. 2.3.

All phantom surfaces are positioned at the center of a 128 × 128 × 128 mm3 co-
ordinate system (see Fig. 2, where the blue contours are the sampled surfaces, the red
ones are the true surfaces). Two phantom intensity images are created as one horizontal
rasterized ellipsoid S(x) with a = 56, b = 40 mm centered at (64, 64, 64), and one
vertical rasterized ellipsoid T (x) with a = 40, b = 56 mm centered at (64, 64, 64).
These two images serve as the context intensity profile around the phantom surfaces.

Three phantom experiments were performed to study how the intensity and uncer-
tainty weighted surface cost functions interact. In the first experiment, the true template
and target surfaces of the object of interest were aligned before any registration but the
shapes of the ellipsoids differed. This experiment was designed to study how matching
the image intensity with imperfect knowledge of the surface position would affect the
pre-aligned objects of interest. The second and third experiments are similar to the first
except the shapes of the objects of interest in the template and target images differed.
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Three 3D template surfaces X1(u, v), X2(u, v), X3(u, v) (red contours in the top
row of Fig. 2 were chosen to simulate three different template surface configurations.
We jointly registered T (x) to S(x) and each Ypi(u, v) to X1(u, v), X2(u, v), X3(u, v)
using the five aforementioned methods, giving rise to a family of DVFs, one for each
randomly sampled observer contour.

The registration performance of the five algorithms was measured using the relative
overlap (RO) and surface dissimilarity (SD) between the deformed true target surface
and the template surface. Here, the RO was quantified as the Dice coefficient and the
SD is defined as Eq. 4 with ω(u, v) = 1. The statistical results are reported in Table. 1
and displayed graphically in the bottom of Fig. 2.
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Fig. 2. Digital phantom geometry and registration evaluation results. The top two rows show
cross-sections of the 3D phantoms constructed by revolving ellipses about the vertical axis of
symmetry. The red contours denote the true boundaries while the blue contours illustrate for
individual observer contours sampled from the normal ellipsoid diameter probability density dis-
tribution (only 4 of 50 are shown).
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Table 1. Results of Monte Carlo stimulation with five algorithms on phantoms

Experiment1 Experiment2 Experiment3

ROM ROS SDM SDS ROM ROS SDM SDS ROM ROS SDM SDS

NOREG 0.874 0.118 1.476 1.304 0.704 0.079 4.120 1.204 0.738 0.103 3.771 1.423
SSD 0.724 0.000 3.899 0.000 1.000 0.000 0.000 0.000 0.888 0.000 1.065 0.000
EWS 0.900 0.083 1.208 1.039 0.859 0.081 1.471 1.001 0.862 0.112 1.339 1.188
UWS 0.923 0.066 0.935 0.820 0.856 0.067 1.561 0.850 0.868 0.098 1.326 1.097

ESPIR 0.864 0.047 1.592 0.586 0.923 0.065 0.815 0.642 0.878 0.091 1.125 0.838
SUPIR 0.823 0.037 2.081 0.432 0.951 0.039 0.550 0.384 0.888 0.075 1.013 0.672

ROM: Relative overlap mean, ROS: Relative overlap std.dev. SDM: Surface dissimilarity mean, SDS: Surface dissimilarity
std.dev., the bold font indicates the best result under the corresponding metric

3.2 Prostate Cancer Case Study

We investigated how incorporating surface uncertainty into the registration process af-
fects the FBCT-to-CBCT registration of a typical prostate patient. The prostate surface
was segmented in the FBCT and CBCT by 5 experienced radiation oncology staff using
a commercially available treatment planning system (Pinnacle version 8.1, Philips Med-
ical Systems, Milpitas, CA). Contouring of FBCT and CBCT images was performed
independently on each modality according to a detailed contouring protocol that pro-
vided instructions on the choice of window level and anatomical guidance on defining
the surface. The 3D prostate surfaces were smoothed to remove high frequency noise
resulting from surface reconstruction. The FBCT and CBCT images were aligned via
a global affine transformation that minimized a mutual information dissimilarity cost.
This transformation was applied to the associated surfaces which serve as the FBCT
and CBCT training surfaces Xi(u, v) and Yi(u, v), i = 1 to 5.

The correspondences among the training surfaces were established using the method
described in [7]. The boundary variances of the training surfaces were computed as
described in Sec. 2.3 and illustrated in Fig. 3. In this case, the largest uncertainty regions
are near the prostate apex and at the interface between the prostate base and the bladder
base.

The protrusion of the surface at the base of the prostate derived from the CBCT
is not representative of the “true” surface because it is missing in the FBCT surface
and it is a region where the experts did not agree. Therefore we chose the surface cost
defined in Eq. 4 to evaluate the registration results. Additionally, we assume that the
local contraction and expansion of prostate is small which implies the Jacobian should
be approximately one in the prostate.

The FBCT and CBCT images were registered with the corresponding average sur-
faces using intensity-only registration (SSD), ESPIR and SUPIR. Before the registration
the surface cost was 0.172, and after the registration the surface costs were 0.134, 0.043
and 0.044 for the three algorithms, respectively. It was observed that Jacobian of the
SUPIR transformation was closer to unity than that of the ESPIR.



244 C. Zhang et al.

A B C
F

B
C

T
C

B
C

T

Fig. 3. The top and bottom rows illustrate the patient’s FBCT and CBCT images respectively: A.
The original gray-scale image, B. The same image overlaid by five prostate contours delineated
by five experts marked as different colors, C. the interobserver variances about the mean surface
(top: [2.02, 57.97] mm2, bottom: [3.18, 86.00] mm2)

4 Discussion and Conclusion

In contrast to traditional registration methods in which the template and target surfaces
(or other features) are assumed as ground truth, our method takes segmentation er-
ror into account. In the case of bladder/prostate CT imaging, slice-by-slice 2D manual
contouring is highly time-consuming and has limited accuracy. Any single observer’s
delineation may have large deviations over part of the pelvic organ surface. Therefore
registration with a statistical model that accounts for surface segmentation errors may
provide improved registration performance in clinical treatment.

Aiming to reduce the impact of delineation error on non-rigid registration of multi-
modality pelvic image sets, this paper presented a non-rigid image registration frame-
work that incorporates the intensity and surface segmentation error. Proof-of-principle
experiments were presented for 3D idealized digital phantoms and one real patient case.
By comparing the results with registration algorithms without considering the surface
segmentation error, our method has shown the potentials under specific scope of appli-
cability.
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Abstract. We present a system for marking, tracking and visually aug-
menting a deformable surgical site by the robust automatic detection of
natural landmarks (image features) in laparoscopic surgery. In our sys-
tem, the surgeon first selects a frame containing an organ of interest,
and this is used by our system both to detect every instance of the organ
in a laparoscopic video feed, and to recover the nonrigid deformations.
The system then augments the video with customizable visual informa-
tion such as the location of hidden or weakly visible structures (cysts,
vessels, etc), or planned incision points, acquired from pre-operative or
intra-operative data. Frame-rate organ detection is performed via a novel
procedure that matches the current frame to the reference frame. Because
laparoscopic images are known to be extremely difficult to match, we
propose to use Shape-from-Shading and conformal flattening to cancel
out much of the variation in appearance due to perspective foreshorten-
ing, and we then apply robust matching to the flattened surfaces. Ex-
periments show robust tracking and detection results on a laparoscopic
procedure with the uterus as target organ. As our system detects the
organ in every frame, it is not impaired by target loss, contrary to most
previous methods.

Keywords: tracking, detection, laparoscopy, conformal mapping, de-
formable surface.

1 Introduction

In laparoscopic surgery, one of the difficulties for surgeons is to correctly identify
the surgical site, such as the location of hidden structures and planned incision
points, in the camera’s image. This is especially significant in tumor resection,
when the tumor is occluded behind tissue. To resolve this, surgeons and radi-
ologists currently use pre-operative data such as Magnetic Resonance Imaging
(MRI), Computed Tomography (CT) or Ultrasound (US) images to help locate
the target structure in the image.

� This research has been supported by Prof. Richard Hartley’s Chair of Excellence
grant from Région Auvergne, France.
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It is estimated that there are 1,300 to 2,700 wrong-site surgeries annually in
the United States [12]. Similar problems may arise in laparoscopy because it
can be difficult for the surgeons to find the target site correctly, mainly due to
disorientation and the difficulty of mentally matching the laparoscopic view with
the pre-operative images. Solving the medical imaging problem of automatically
overlaying laparoscopic images with surgical target locations is an open, yet
highly important research goal. Not only would the solution benefit surgeons,
but also patients in reducing the likelihood of surgical errors and complications.

We present a new system to mark and track the surgical site in laparoscopic
images. The surgical site is first marked by the surgeon in the 2D input images
and in the reconstructed 3D surface video at an early stage of the laparoscopy.
Then, our system automatically detects the location of the surgical site during
surgery, and overlays the laparoscopic frames and reconstructed 3D surface video
with visual information. Detecting the location of the surgical site requires robust
feature matching and registration methods on nonrigid deformable surfaces. For
this feature matching and tracking, a new approach using Shape-from-Shading
(SfS) and conformal mapping is proposed and two robust methods are intro-
duced for mapping a polygon boundary of the uterus in the reference image into
the other frames by estimating a similarity transformation. Also, augmentation
of the laparoscopic video using affine Moving Least Squares (affine-MLS) is pro-
posed. We carried out experiments on in-vivo laparoscopic images captured by
a Karl Storz laparoscopy system. Our method shows robust feature matching,
tracking and augmentation results in laparoscopy.

Steps of Our Proposed System. Our proposed system takes steps such as
marking and tracking surgical sites, then augmenting the surgical target. First,
surgeons and radiologists examine pre-operative data such as MRI, CT and US
images and determine the surgical site. However, the surgical site is only known
in this pre-operative data in this stage. When a laparoscope is placed into a
patient’s body, surgeons and radiologists can see the surgical target and identify
the exact location of the surgical site by referring to the pre-operative data.
This identified location needs to be maintained during the surgery and it is
our primary outcome to detect it at runtime. To locate and track the identified
location of the target surgical site, a surgeon pauses a streaming video from
the laparoscopy system, and draws a polygon around the surgical target, for
instance, an ellipse surrounding a uterus. The 3D surface of the surgical target
reconstructed by our system is then viewed by the surgeon in order to locate
the surgical site in 3D. Next, the surgeon marks the surgical site on the 3D
surface, for instance, a 3D arrow, which is stored in our system for tracking
in the following frames. At this stage, anatomical landmarks can be used to
register the pre-operative data to the reference laparoscopic image. This process
of pausing and editing for augmentation in a laparoscopic image can be repeated
by the surgeon as many times as needed during the surgical procedure. From
this minor interaction by surgeons in the first image, our system computes the
positions of the surgical target in the rest of the images and displays the surgical
sites along with visual information such as boundaries of organs and 3D arrows in
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the 2D image or 3D view. As the system remembers the location of the surgical
sites and allows surgeons to find them quickly, surgeons are now free to view
monitor and check a patient’s database then easily continue the surgery without
referring to, or re-examining the pre-operative data to repeatedly identify the
surgical site.

Surgical Site Tracking in Laparoscopic Images. Feature matching is a
necessary first step, however, it is not straightforward as the target organ is
often deformable and many state-of-the-art feature-matching algorithms [8] in
computer vision are designed only for rigid objects. Our motivation comes from
the assumption that it is possible to map a reconstructed 3D shape into another
representation in a space which can be easier for feature matching. For map-
ping to another space, a conformal mapping is applied to the known 3D shape.
Conformal mapping is a popular method in computer graphics [6] as it can be
used to assign a texture onto a surface. This conformal mapping flattens out the
3D shape onto a plane while preserving angles locally. This is a nice property,
as given two conformally mapped flattened surfaces they should be related by
a local similarity transformation. In other words, two neighbouring points on
a flattened mesh can be transformed to two corresponding points on another
flattened mesh by a scale, rotation and translation. (Note that the similarity
transformation is valid only locally but not globally.) Therefore, feature match-
ing is done on the flattened images instead of the original input images, and we
used Pizarro and Bartoli’s feature matching algorithm [10] to incorporate the
local similarity, which is based on the SIFT [7] descriptor.

Once a set of matching points and the initial position of the organ are given,
tracking becomes a problem of finding the approximation by a global similarity
transformation. We assume that a set of local similarity transformations can be
approximated by a global similarity transformation, which means the deforma-
tion on the surface changes only a small part of the shape of the surface. Also,
the positions of the surgical targets tracked and overlaid on the original image
are obtained by using affine Moving Least Squares [11].

2 Related Work

Mountney et al. [8] evaluated various feature descriptors on Minimally Invasive
Surgery (MIS) images and showed many feature descriptors do not work well.
Although they provide an approach to selecting the best method among their
evaluated algorithms and a Bayesian fusion method to increase accuracy and per-
formance, it is preferable to have a single algorithm to find matches instead of
running various feature descriptors since computing various feature descriptors
for Bayesian fusion consumes most of the computation time for a practical MIS
application. Su et al. [14] used augmented reality for stereo-laparoscopic images,
however, this is limited to a rigid surface and stereo camera based laparoscopy is
required to recover the 3D structure of the surface. Schaefer et al. [11] introduced
affine-MLS for image deformation. They showed that a proper deformation can be
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estimated from given key points on the surface mesh by a similarity transforma-
tion. Augmented Reality (AR) has been used in neurosurgery, otolaryngology and
maxillofacial surgery [13]. Nicolau et al. claim that AR systems applied to MIS can
increase the surgeon’s intra-operative vision by providing virtual transparency of
the patient, but they also emphasized that AR systems are not robust enough since
deformation of organs and human movement make registration difficult [9].

3 Proposed Method

The general framework of our system is shown in Fig 1. Given a laparoscopic
image I0 as a reference frame, an image point p0 is a projection of a 3D point
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Fig. 1. System Overview. Three columns showing (a) Pre-operative Data, (b) The
Reference Frame and (c) The Current Frame. In a manual-preprocessing phase, regis-
tration is achieved interactively between (a) and (b). Then any surgical target planned
from (a), for instance regions of interest or planned incision paths to be visualised in the
laparoscopic images, can be transformed onto (b) via the interactive registration. The
second phase involves tracking the surgical target, transferring the target location and
augmenting visual information in subsequent laparoscopic images. The correspondence
between (b) and (c) is achieved automatically using our robust matching method. This
results in a set of robust feature matches. Determining the positions of the targets in
(c) can then be achieved by mapping their locations in (b) to (c) via feature-based
warping. Points p0 and p1 in two laparoscopic images I0 and I1 are back-projected by
Φ to the surfaces S0 and S1 as 3D points q0 and q1, respectively. These 3D points are
mapped to points r0 and r1 on planar surfaces F0 and F1 by a conformal mapping Ω.
Blue dotted lines indicate the boundary of the uterus, which is determined by surgeons
and radiologists from pre-operative data such as MRI, CT or US in the reference image
I0. The boundary and marked point in the reference frame I0 are tracked to the next
frame I1 automatically. Our goal for augmentation is thus to determine and visualise
the bounding region in I1, by performing image matching between F0 and F1.
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q0 on the surface S0. This projection can be represented by Φ−1. Therefore, the
3D point q0 is q0 = Φ0(p0). It can be mapped to a point r0 on a flat surface
F0 by a conformal mapping Ω0. As a result, r0 = Ω0(q0) = Ω0(Φ0(p0)). Given
another frame image I1 and a point p1, in a similar way we may obtain the point
r1 on a planar surface F1 as r1 = Ω1(q1) = Ω1(Φ1(p1)). Assuming that image
pixel points p0 and p1 are a corresponding match, then the points r0 and r1 on
the flat surfaces should be a pair of matching points in local isotropy. In other
words, r0 and r1 are related by a similarity transformation locally. This is a key
motivation that constructs our system for tracking by detection in laparoscopic
images. Surgeons and radiologists use pre-operative data such as MRI, CT or
US to locate the uterus and surgical site. Then the position of the surgical site
is marked on the reference image I0 and 3D mesh surface S0. Afterwards our
system will detect and track the marked position of the uterus and surgical site
in every laparoscopic image frame.

Shape Reconstruction and Conformal Mapping. Given an image, the 3D
shape of the surface can be obtained from a monocular camera by the Shape-
from-Shading (SfS) technique as summarized in [15]. In this paper, we use a
real-time perspective SfS algorithm with a known light source calibration, de-
scribed in [1]. In the computer graphics community, there have been many studies
on surface manipulation and parametrization based on conformal mapping for
texture mapping [6,4]. It is also used for 3D surface classification in computer
vision [3]. With the assumption that SfS gives a correct shape reconstruction
for the surface, a conformal mapping of the 3D reconstructed surface preserves
angles on the flattened surface. Therefore, given two laparoscopic images and an
surface shape estimated by SfS, two flattened surfaces are obtained by conformal
mapping. They are related by local similarity transformations.

Feature Matching and Outlier Removal. For every incoming video frame,
we estimate the 3D surface S1 using the same SfS method as for S0, and flatten
it to give us image F1. We then detect features in F1 using SIFT, to give a
query feature set G1. We then perform robust, nonrigid matching between G0

and G1 using Pizarro and Bartoli’s feature matching algorithm [10]. It works by
matching features using descriptor similarity, and determines a high-probability
inlier set based on spatial agreement with respect to local warp models. However,
it is not completely outlier-free. We suppose that the boundary warp of the organ
between F0 and F1 can be coarsely approximated by a similarity transform. This
contrasts with the transformation of the boundary from image I0 and I1, which,
since these images comprise viewpoint changes, are likely to be more complex
than a similarity transform. We have tested two robust similarity transformation
estimation methods based on Horn’s absolute orientation [5]. The first is to
use matched features with RANSAC (Random Sample Consensus) [2] and the
second is to optimise a robust pseudo-huber norm cost function. Both methods
allow us to detect outliers (based on their matches conflicting with the similarity
transform) which are then removed (we use a prediction error threshold). Once
the boundary of the organ is estimated in F1 its shape in I1 is estimated as
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follows: first the vertices of the boundary in F1 are mapped into 3D space on S1

by barycentric interpolation. Then, they are projected onto I1 using the camera’s
projection function Φ to give the boundary of the organ in I1.

Surgical Target Mapping. Finally, we determine the positions of the surgical
targets in I1 as follows. First, we transform the inlier matches from F1 to I1. We
then use affine-MLS [11] to smoothly warp the target positions located on I0 to
I1, driven by the feature correspondences. This involves a single free parameter,
the affine-MLS bandwidth, which we have set to σ = 150 pixels in all of our tests.
Once in position, the locations of the surgical targets are marked and presented
to the surgeon, overlaid on top of the original input frame.

4 Experiments

We have carried out experiments on an image sequence in which a uterus is
to be cut by a surgeon in order to remove a myoma (uterine fibroid) inside
the uterus. As the myoma is not visible, surgeons and radiologists examine pre-
operative data such as MRI and CT to determine the location of the surgical
site, which will be the point of first-cut. An image sequence is captured by a
Karl Storz laparoscopy system and the size of image is 1048× 576 pixels at 25
FPS. The number of captured frames is 2661 (1 min and 46 seconds). Samples
of the image sequence are shown in Fig 2-(Top Row). From the input images,
our SfS algorithm estimates the shape of the uterus as shown in Fig 2-(Middle
Row).

Then, conformal mapping is applied to the shape to obtain a flattened image
at each frame as shown in Fig 2-(Bottom Row). These flattened images are
used for finding feature matches. These matches are used to estimate a global
similarity transformation for mapping the polygon boundary of the uterus at
the reference frame to the following image frames as shown in Fig 3.

Assuming that the surgeon selects frame 489 as a reference image, a polygon
is drawn by the surgeon around the boundary of the uterus. The polygon is then
transfered to other images when the video is resumed by the surgeon. Several
frames of this result are shown in Fig 4 and Fig 5.

In Fig 6, the incision path and surgical site are shown as 3D arrows and a
green curve, which are aligned on the surface of the uterus and augmented over
all frames. The 3D arrows are orthogonal to the surface of the uterus recovered
from SfS. Therefore, they provide useful information for surgeons to decide the
orientation of the blade to enter the uterus. In this experiment, we used an open
arc in Fig 6-(Bottom-right) as our planned incision path This was manually
marked by burning on the surface of the uterus, then overlaid in each subsequent
view in the sequence by mapping using the correspondence via affine-MLS [11].
A selection of augmented frames from the sequence is shown in Fig 6. A video
result is available at http://youtu.be/LiZKmcV_fRg. With our system, this
redundant burn mark is no longer necessary.

http://youtu.be/LiZKmcV_fRg
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Fig. 2. Samplesof input images, 3Dsurface reconstructionandconformalmap-
ping. (Top Row) Frames number 489, 630, 733 and 790 (Left to Right). At frame 489, the
uterus (an ellipsoid-like shape) is completely visible and it is a best candidate as a ref-
erence frame. At frame 630, the uterus is occluded by a surgical tool and it is deformed
when pressed. At frame 733, only a half of the uterus is visible. At frame 790, the image is
blurred by fast motion of the camera. (Middle Row) 3D surface shape from SfS at frame
480, 630, 730 and 790. (Bottom Row) Flattened image by conformal mapping of the 3D
shape at frame 480, 630, 730 and 790.

Fig. 3. Feature matching and tracking between flattened images. (Top-left) In
frames 489 and 490, a total of 179 matches are found and the cyan polygon in reference
frame 489 is mapped to a yellow polygon in the next frame 490. (Top-right) Matches
and tracking between frame 489 and 630. In total 22 matches are found. (Bottom-left)
11 matches are found between frame 489 and 733. (Bottom-right) Tracking failed as no
matches are found between frame 489 and 790.
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Fig. 4. Frames with uterus tracking. (Top-Left) Reference frame 489 with a green
polygon drawn on the boundary of the uterus. (Top-Right) At frame 630, tracking
of the uterus is shown as a green polygon. (Bottom-Left) At frame 730, tracking is
still successful for the half visible uterus. (Bottom-Right) At frame 799, tracking fails
because of blurring in the image.

Fig. 5. Tracking the uterus. Results of tracking a uterus from laparoscopic images
are shown. The boundary of the tracked uterus is indicated as a green polygon and a
message (target lost) is given when the system is searching for the uterus at the current
frame. Note that our system fails to track the uterus at frame 740, however tracking
resumes and finds the uterus successfully at frames 890 and 1,040.
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Fig. 6. 3D augmentation in laparoscopy. (Top row and bottom first two columns)
These are sample images of 3D augmentation in laparoscopic images. A red (left) 3D ar-
row indicates the incision point, A yellow (right) 3D arrow shows the ending point, and
a green curve shows the surgical site for the surgeon’s first-cut. Our system augments
this 3D visual information by tracking the uterus over all frames. (Bottom-right) At
frame 2173, a surgeon made a burn mark on the surface of the uterus. This is not neces-
sary in our system. The video is available at the link: http://youtu.be/hvzE9VIAjPI.

5 Conclusion

In this paper, we presented a new method for tracking and augmenting surgical
targets in laparoscopic images. The system allows surgeons to mark the surgi-
cal site using pre-operative data in laparoscopic images. Our method utilizes
Shape-from-Shading to recover the 3D shape of the surface, and the 3D shape is
flattened by a conformal mapping which preserves angles on the surface. Feature
matching is carried out on the flattened images and a global similarity trans-
formation is applied to obtain a mapped boundary of the surgical target and
outliers are removed. The surgical target registration by an affine Moving Least
Squares warp made the surgical target can be localized in a laparoscopic image.
Real experiments conducted on a uterus in laparoscopic images show robust
tracking of the uterus and consistent surgical target augmentation. The method
obviates the necessity to mark the surgical site physically on the organ surface
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Abstract. We propose a meta-algorithm for registration improvement
by combining deformable image registrations (MetaReg). It is inspired
by a well-established method from machine learning, the combination
of classifiers. MetaReg consists of two main components: (1) A strategy
for composing an improved registration by combining deformation fields
from different registration algorithms. (2) A method for regularization
of deformation fields post registration (UnfoldReg). In order to compare
and combine different registrations, MetaReg utilizes a landmark-based
classifier for assessment of local registration quality. We present prelim-
inary results of MetaReg, evaluated on five CT pulmonary breathhold
inspiration and expiration scan pairs, employing a set of three regis-
tration algorithms (NiftyReg, Demons, Elastix). MetaReg generated for
each scan pair a registration that is better than any registration obtained
by each registration algorithm separately. On average, 10% improvement
is achieved, with a reduction of 30% of regions with misalignments larger
than 5mm, compared to the best single registration algorithm.

Keywords: Deformable image registration, meta-algorithm, combina-
tion, pattern recognition.

1 Introduction

Accurate registration of medical images is key to medical image analysis. Re-
cently an evaluation study on pulmonary intra-patient CT registration has eval-
uated and ranked state-of-the-art registration algorithms on a common data
set [11]. Although many of those algorithms achieve excellent results on aver-
age, e.g. for the currently top five ranked algorithms average landmark reg-
istration errors are no more than 0.83mm, no single algorithm outperforms
all others on every scan pair and every region within the images. (cp. em-
pire10.isi.uu.nl/mainResults: category rankings on average and per scan pair).

In this paper we propose a meta-algorithm for deformable image registra-
tion (MetaReg) that composes an improved registration by combining locally
superior regions from different registrations. In order to compare different reg-
istrations, MetaReg utilizes a landmark-based classifier for assessment of local
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registration quality. Based on this assessment, deformation fields are partitioned
and quality categories are assigned to each partition. Next, a voting scheme is
applied to compose an improved registration by selecting superior partitions of
the deformation fields generated by different registration algorithms. Finally,
UnfoldReg is applied, primarily to unfold regions where different deformation
field partitions are joined.

Deformable Image Registration. Registration of a moving image IM (x) :
ΩM ⊂ R

D �→ R to a fixed image IF (x) : ΩF ⊂ R
D �→ R, both of dimension D, is

the problem of finding a displacement u(x) that makes IM (x+ u(x)) spatially
aligned to IF (x). We define the obtained transformation field T(x) = x+ u(x)
and the registered image IR(x) = IM (x) ◦ T(x). The optimal transformation
is found by optimizing a distance or similarity measure, such as the normal-
ized mutual information (NMI). If the underlying transformation model allows
local deformations, i.e. nonlinear fields T(x), then we call it deformable image
registration (DIR).

2 Materials

The MetaReg algorithm has several input components: image data, registration
algorithms and a method to locally assess registration quality. These components
are considered interchangeable (i.e. can be replaced by other choices) and they
are therefore described here.

2.1 Image Data

Five patients (male, ages 51-75yrs) were chosen randomly from a lung cancer
screening database, each with a breathhold inspiration and a breathhold expi-
ration CT scan, made in the same session. The inspiration scan was created
using a low-dose protocol (30mAs) whereas the expiration scan was ultra-low-
dose (20mAs), both with a slice spacing of 0.70 mm and pixel spacing between
0.63mm and 0.77mm.

2.2 Registration Algorithms

To compose an improved registration result by combining the best outcomes of
various methods, registrations by several methods are required. We have cho-
sen the following three registration algorithms for this study, because they per-
formed well in EMPIRE10 [11], are publicly available, and have very different
approaches. Other methods can of course be included.

NiftyReg [7] contains a global and local registration algorithm. The global
registration is based on a block-matching technique and the local registration
is based on a B-Spline deformation model. The objective function is composed
of the normalized mutual information as a metric and optionally, the bending
energy and the squared Jacobian determinant as penalty terms.
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Elastix [4] is a toolbox that consists of algorithms for image registration.
We employed in our experiments an affine and a nonrigid B-Spline registration
algorithm along with a normalized correlation criterion as similarity measure
and a parameter-free stochastic gradient optimizer.

Demons [15] is a non-parametric registration algorithm that can be seen as an
optimization procedure on the entire space of displacement fields. We employed
in our experiments a diffeomorphic version of demons along with a second-order
minimization technique to optimize a normalized intensity similarity measure.

2.3 Local Registration Quality Assessment

We employ an extended version of the method for automatic detection of reg-
istration errors described in [8]. The method is based on supervised learning
of local alignment patterns, which are captured by statistical image features at
automatically detected landmarks.

For supervised learning a training database S is established. It combines in-
formation from three datasets: a) reference landmark matchings, b) reference
image registrations, and c) statistical image features. The set of reference land-
mark matchings consists of landmarks lF on the fixed image IF and their corre-
sponding location lM in the moving image IM . Landmarks lF are automatically
detected whereas landmarks lM are matched manually. The landmark detection
method is based on [5]. This method proved reliable in covering the anatomy
of lungs in CT images. Landmarks are automatically detected in the lung re-
gion based on their distinctiveness, i.e. the dissimilarity to their surrounding
region. The detection method is regulated to produce an even distribution of
landmarks throughout the lungs. The generated landmarks are typically located
at vessel bifurcations. The set of reference image registrations consists of several
transformation fields T obtained by different automatic registration algorithms.
Typically, an affine registration, and a coarse and fine level deformable regis-
tration is suitable to obtain a reference of local alignment variations, of both,
correctly and wrongly aligned image structures. The set of statistical image fea-
tures (FS) contains for each landmark lF corresponding feature values that are
computed based on nine different image feature types. Gaussian, correlation,
and entropy features are calculated from the intensity images (IF and IR), and
deformation features are computed on the transformation field (T).

Based on the database S, a classifier cascade is trained to classify local align-
ment patterns into three quality categories: correct (CA), poor (PA), and wrong
alignment (WA). The quality categories are based on the landmark registration
error (LRE), i.e. the amount of misalignment between a registered landmark po-
sitionT(lF ) and the corresponding reference matching lM , which is defined as fol-
lows: CA

.
= {LRE ≤ 2 mm}, PA .

= {2 < LRE < 5 mm}, WA
.
= {LRE ≥ 5 mm}.

To automatically classify a previously unseen registration, first a set of lP
landmarks is automatically detected on IF . Second, image features are extracted
according to FS for each landmark lP . Finally, the trained classifier is employed
to predict for each landmark sample one of the above defined quality categories.
That way, an assessment of local image registration quality is obtained. In the
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following we refer to the entity of this supervised Registration Error Detection
method by RED.

3 Methods

A graphical overview of MetaReg is given in Figure 1. It visualizes from top to
bottom the main computing steps of the MetaReg algorithm, from the input of
a set of transformations from different registration algorithms to the output of a
combined registration. In the following we first briefly formulate the basic idea
of MetaReg and then explain step by step the stages illustrated in Figure 1.

Given a set of registration algorithms ψ1, ψ2, . . . , ψN and their corresponding
deformation fields u1,u2, . . . ,uN for a particular scan pair sp = {IF , IM}, we
aim to find a combination Ψ :=

∑N
n=1 anun(x) such that Ψ outperforms any sin-

gle ψn. an denotes the weight coefficient with which un is combined. That means
we aim to exploit the locally different behavior of base registration algorithms
ψn to improve the accuracy and the reliability of the combined registration al-
gorithm, MetaReg. The weight coefficients an are determined by assessment of
the local registration quality of each deformation field un. For this assessment
we utilize the RED system described in Section 2.3.

3.1 RED Partitioning

RED obtains automatically local estimates of registration quality by comparing
local alignment patterns between the fixed image IF and the registered mov-
ing image IR at landmarks lP . Next we perform a Voronoi decomposition of
the deformation field un based on the landmarks lP . That is, un is partitioned
into regions such that the partition si contains all those points of un that are
closer to landmark li than to any other landmark lj. We calculate the Voronoi
decomposition based on the distance of the landmarks lP in the fixed image IF
employing an algorithm that approximates the Euclidean distance with voxel
accuracy [2,1]. This Voronoi decomposition serves as a dense and closed esti-
mate of registration quality assessment, i.e. every voxel of the ROI is assigned a
quality category: CA,PA or WA. We define unREDp as the registration quality
at partition sp generated by base registration algorithm ψn.

3.2 Voting

A voting scheme is needed to select for each partition spthe best performing
registration algorithm(s) φn. We select the partition sp of un by assigning the
weight coefficient an(x) = 1, ∀x : x ∈ sp(x). All weight coefficients are initialized
with an = 0.

We opt for following voting strategy: Compare all registrations un for the
partition sp and select the registration ui which registration quality uiREDp is
superior to all other unREDp. If there is more than one registration un with
uiREDp, then select all those un.
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3.3 Combining

In the above voting scheme we determined weight coefficients an for all un. We are
now able to generate the combined registration Ψ =

∑N
n=1 anun(x)/

∑N
n=1 an,

where the division by
∑N

n=1 an results in averaged deformation field vectors at
those voxelsxwith ties in the vote. Although the domain ofΨ is completely defined
for each x ∈ IF , we further aim to obtain a bijective mapping Ψ . By imposing this
property it can be ensured that the established Ψ contains no physical impossible
mappings.

3.4 UnfoldReg

We developed a method (UnfoldReg) for unfolding deformation fields post reg-
istration. UnfoldReg is based on an algorithm for scattered data approximation
that uses a multi-resolution uniform B-spline approximation scheme [14,5]. We
refer to [14] for details of this algorithm.

In UnfoldReg we employ this algorithm for scattered data approximation as
reconstruction algorithm. We compute the Jacobian map JM(x) = |J(T(x))| (J
denotes the Jacobian matrix) for Ψ(x), and construct a confidence map CM(x),
where we assign CM(x) = 0, ∀x : JM(x) ≤ 0. Further we expand these folding
areas by applying a morphological dilation with a spherical kernel of radius 3 vox-
els. The confidence map CM(x) is then used along with deformation field Ψ(x)
as input for the approximation algorithm. All voxels x of Ψ(x) with CM(x) = 0
are disregarded, and a reconstruction of the entire Ψ(x) is obtained based on
the remaining data. We use a linear B-Spline kernel function along with a multi-
resolution scheme of 7 spatial resolutions. The reconstructed deformation field is
again analyzed and processed as described above. This procedure is performed
in an iterative scheme until all foldings are removed. Further, we monitor the un-
folding progress and if foldings could not be removed in a consecutive iteration,
then these folding voxels are dilated by an increased radius, thereby giving more
space to unfold the deformation field. Foldings of large magnitude require more
space to unfold than smaller ones. The iterative scheme evolves the deforma-
tion field gradually into a folding-free approximation of the original deformation
field. In addition we assign staged confidence values (0.1,0.2,0.5,0.75) at voxels
where two partitions from different registrations were joined (voting borders).
Compare Figure 1 (n) (o).

4 Experiments

This section describes the application of the proposed MetaReg algorithm on
a set of five pulmonary CT breath-hold inspiration-expiration scan pairs. The
RED classifier was trained on this data. Each scan pair was registered with three
different registration algorithms (NiftyReg, Demons and Elastix). MetaReg was
then applied to the five scan pairs using the three resulting transformations and
the trained RED classifier.



On Combining Algorithms for Deformable Image Registration 261

(a) NiftyReg (b) Demons (c) Elastix

(d) NiftyReg (e) Demons (f) Elastix

(g) NiftyReg (h) Demons (i) Elastix

(j) Combined IR with voting bor-
ders overlay

(k) Combined IR with voting
borders and RED Voronoi over-
lay

(l) Combined IR with voting bor-
ders overlay and foldings marked
in bright red color

(m) log Jacobian map after combin-
ing; before UnfoldReg

(n) Initialization of UnfoldReg:
disregarded voting border voxels
(blank), confidence map overlay

(o) UnfoldReg after 4 iterations:
confidence map overlay, foldings
marked in bright red color

(p) IF (expiration scan) (q) Combined IR with RED
Voronoi color overlay

(r) log Jacobian map after unfolding;
9 iterations of UnfoldReg

Fig. 1. Visualization of the main steps of the MetaReg shown exemplarily at transverse
plane views of scan pair 5. RED color overlay: green, yellow and red color denote correct,
poor and wrong alignment, respectively. Voting shows masks where black color marks
selected regions.
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4.1 Training and Application of RED

The main principle of the employed method for registration quality assessment
is described in Section 2.3.

Training of RED. For training of the RED system we require a dataset of:
reference landmark matchings and reference image registrations.

Reference landmark matchings are based on the landmark detection method
described in Section 2.3. For each scan pair a set of 100 reference landmarks lF is
automatically defined on the fixed image IF (expiration scan), and then matched
with the corresponding points lM in the moving image (inspiration scan). All
landmark correspondences were manually established by the first author using
the publicly available landmark matching tool described in [10].

Reference image registrations are required to establish a pool of alignment
samples for the training of the classifier. We acquire for each scan pair an affine
registration, and a coarse and a fine level deformable registration. We used the
NiftyReg package to obtain these reference registrations, however, Demons or
Elastix could be used as well.

Training of RED classifier. Once both datasets (reference landmark match-
ings and reference image registrations) are established, the RED system can be
trained. We performed leave-one-scanpair-out cross-validation. This means, the
learning dataset S is split into k mutually exclusive subsets Sk, k ∈ 1, .., 5 so that
Sk contains landmark related data of scan pair spk exclusively. The RED classifier
achieves on these scan pairs an overall classification accuracy of about 78%.

Application of RED. We maintain the above described cross-validation set-up
when applying the RED classifier in MetaReg. A separate set of lP landmarks
is automatically detected on IF . RED predictions on lP of scan pair spk are
based on a training dataset S \ Sk, including landmark related data from all
scan pairs but spk. Landmarks lP are acquired by the same landmark detection
method (described above) as lF landmarks. However, to obtain a spatially dense
prediction of registration quality, we sampled around 500 landmarks (the exact
number varies per scan pair, depending on image noise and the occurrence of
emphysema). We found that lF is practically disjunct to lP . This is due to an
increased sampling density for detecting landmarks lP , along with the selection
scheme of the automatic landmark detection [10]. Over all scan pairs, the aver-
aged mean distance of lF landmarks to nearest lP landmarks is 6.8mm, with only
in scan pairs 4 and 5 one identical landmark position. The averaged maximum
distance is 12.9mm.

4.2 Configuration and Application of DIR Algorithms

For all three registrations algorithms employed in our experiments, a specific
parametrization and registration set-up had been investigated and published
in the context of an pulmonary intra-patient CT registration workshop [11].
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Table 1. NiftyReg. Evaluated based on (a) reference data, and (b) RED predictions.

(a) Reference Evaluation

scan LRE fold- over-
pair min max mean std >5 >10 >20 ing lap

1 0.00 15.58 1.61 1.81 4 1 0 0 0
2 0.00 21.27 1.97 3.09 10 3 1 0 0
3 0.00 15.17 1.53 2.20 7 2 0 0 0
4 0.00 16.20 2.60 2.89 10 4 0 0 0
5 0.00 34.19 3.93 6.91 17 11 6 0 0

avg 0.00 20.48 2.33 3.38 48 21 7 0 0

(b) RED

scan prediction #
pair CA PA WA LMs

1 296 79 71 446
2 452 41 41 534
3 388 60 94 542
4 166 124 76 366
5 373 49 70 492

Sum 1675 353 352 2380
% 70 15 15 —

Table 2. Demons. Evaluated based on (a) reference data, and (b) RED predictions.

(a) Reference Evaluation

scan LRE fold- over-
pair min max mean std >5 >10 >20 ing lap

1 0.00 11.39 1.76 1.93 6 2 0 0 0
2 0.00 22.09 2.07 3.56 9 5 1 0 0
3 0.00 15.75 1.50 1.96 3 1 0 0 0
4 0.00 15.44 2.50 2.66 13 3 0 0 0
5 0.00 14.38 1.88 2.57 9 3 0 0 0

avg 0.00 15.81 1.94 2.53 40 14 1 0 0

(b) RED

scan prediction #
pair CA PA WA LMs

1 258 105 83 446
2 428 60 46 534
3 405 58 79 542
4 181 100 85 366
5 364 75 53 492

Sum 1636 398 346 2380
% 69 17 14 —

Table 3. Elastix. Evaluated based on (a) reference data, and (b) RED predictions.

(a) Reference Evaluation

scan LRE fold- over-
pair min max mean std >5 >10 >20 ing lap

1 0.00 18.51 2.12 2.80 8 3 0 0 7
2 0.00 19.52 2.33 2.82 10 2 0 4486 761
3 0.00 12.84 1.55 2.06 5 1 0 8 3196
4 0.00 16.74 2.33 2.39 7 1 0 0 825
5 0.00 19.85 2.26 3.24 13 5 0 50 1

avg 0.00 17.49 2.12 2.66 43 13 0 909 958

(b) RED

scan prediction #
pair CA PA WA LMs

1 215 151 81 446
2 328 123 83 534
3 318 95 129 542
4 156 136 75 366
5 319 88 85 492

Sum 1335 593 452 2380
% 56 25 19 —

These configuration settings were empirically established and were shown to
perform particularly well on this data. We therefore refer in the following to
these publications for a detailed description.

NiftyReg. We employed the NiftyReg registration package (version 1.3) for our
experiments, and used the particular registration set-up and parametrization
proposed in [6].

Elastix. We employed elastix (version 4.3) for our experiments, and used the
particular registration set-up and parametrization proposed in [13].
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Table 4. Combined Registrations. Evaluated based on (a) reference data, and (b) RED
predictions.

(a) Reference Evaluation

scan LRE fold- over-
pair min max mean std >5 >10 >20 ing lap

1 0.00 12.62 1.59 1.78 4 2 0 0 0
2 0.00 21.54 1.83 3.25 7 4 1 0 0
3 0.00 13.47 1.30 1.78 3 1 0 0 0
4 0.00 14.77 2.12 2.15 7 1 0 0 0
5 0.00 20.41 1.89 2.97 8 4 1 0 0

avg 0.00 16.56 1.75 2.39 29 12 2 0 0

(b) RED

scan prediction #
pair CA PA WA LMs

1 318 76 52 446
2 470 34 30 534
3 428 44 70 542
4 239 85 42 366
5 434 31 27 492

Sum 1889 270 221 2380
% 80 11 9 —

Demons. We employed the diffeomorphic demons for our experiments, and
used the particular registration set-up and parametrization proposed in [9].

5 Evaluation and Results

We evaluated the MetaReg algorithm using the reference landmark set lF and
the landmarks lP . On lF we compute the landmark registration error (LRE). To
assess the number of larger misalignments, we list the number of landmarks with
misalignment larger than 5mm,10mm and 20mm. For comparison the quality
predictions made by RED on lP are shown in the accompanying tables.

In addition to the landmark-based measures, which primarily evaluate the
alignment accuracy of the interior of the lungs, we also compute a boundary
measure to assess the registration accuracy at the lung boundaries. For the
boundary evaluation we count the number of overlapping voxels, based on the
following overlap measure: |MFROI − (MFROI ◦ T)| ⊗ SE, where ⊗ denotes a
morphological dilation operator and SE is its structuring element with spher-
ical radius of 2 voxels. That way we allow two voxels tolerance to both inside
and outside the ROI to account for possible inaccuracies of the lung segmenta-
tions [12]. Further, the number of foldings is listed, that is the number of voxels
within the lung mask for which |J(T)| ≤ 0 (J denotes the Jacobian matrix).
Note, that classification bias in RED is avoided by the use of a rotation training
set (leave-one-scanpair-out). And DIR bias towards lF landmarks is avoided by
using separate landmark sets lP . Moreover, the employed DIR algorithms do not
involve any landmark matching, optimization is purely intensity-based.

6 Conclusion

MetaReg generated for each scan pair a registration that is better than any regis-
tration obtained by each registration algorithm separately. On average, 10% im-
provement is achieved compared to best single registration algorithm (Demons).
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More significantly, registrations combined by MetaReg contain about 30% fewer
regions with misalignments larger than 5mm, compared to the best single regis-
tration algorithm.
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Abstract. Publicly available scientific resources help establish evaluation stan-
dards, provide a platform for teaching and may improve reproducibility. Version
4 of the Insight ToolKit ( ITK4 ) seeks to establish new standards in publicly
available image registration methodology. In this work, we provide an overview
and preliminary evaluation of the revised toolkit against registration based on the
previous major ITK version (3.20). Furthermore, we propose a nomenclature that
may be used to discuss registration frameworks via schematic representations. In
total, the ITK4 contribution is intended as a structure to support reproducible re-
search practices, will provide a more extensive foundation against which to evalu-
ate new work in image registration and also enable application level programmers
a broad suite of tools on which to build.

1 Introduction

As image registration methods mature—and their capabilities become more widely
recognized—the number of applications increase [20,22,21,16,5,6,3,19,15,13,8,17]. Con-
sequently, image registration transitioned from being a field of active research, and few
applied results, to a field where the main focus is translational. Image registration is now
used to derive quantitative biomarkers from images [11], plays a major role in business
models and clinical products (especially in radiation oncology) [6], has led to numerous
new findings in studies of brain and behavior (e.g. [4]) and is a critical component in ap-
plications in pathology, microscopy, surgical planning and more [21,16,9,5,6,19,13,17].
Despite the increasing relevance of image registration across application domains, there
are relatively few reference algorithm implementations available to the community.

One source of benchmark methodology is the Insight ToolKit (ITK) [24,1], which
marked a significant contribution to medical image processing when it first emerged
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over 10 years ago. Since that time, ITK has become a standard-bearer for image pro-
cessing algorithms and, in particular, for image registration methods. In a review of ITK
user interests, image registration was cited as the most important contribution of ITK
(personal communication). Numerous papers use ITK algorithms as standard references
for implementations of Demons registration and mutual information-based affine or B-
Spline registration [22,21,9,5,6]. Multiple toolkits extend ITK registration methods in
unique ways. Elastix provides very fast and accurate B-Spline registration [14,17]. The
diffeomorphic demons is a fast/efficient approximation to a diffeomorphic mapping
[23]. ANTs provides both flexibility and high average performance [2]. The Brains-
Fit algorithm is integrated into slicer for user-guided registration [13]. Each of these
toolkits has both strengths and weaknesses [14,17] and was enabled by an ITK core.

The Insight ToolKit began a major refactoring effort in 2010. The refactoring aimed
to both simplify and extend the techniques available in version 3.x with methods and
ideas from a new set of prior work [12,7,20,16,19,2]. To make this technology more
accessible, ITK4 unifies the dense registration framework (displacement field, diffeo-
morphisms) with the low-dimensional (B-Spline, Affine, rigid) framework by introduc-
ing composite transforms, deformation field transforms and specializations that allowed
these to be optimized efficiently. A sub-goal set for ITK4 was to simplify parameter set-
ting by adding helper methods that use well-known principles of image registration to
automatically scale transform components and set optimization parameters. ITK4 trans-
forms are also newly applicable to objects such as vectors and tensors and will take into
account covariant geometry if necessary. Finally, ITK4 reconfigures the registration
framework to use multi-threading in as many locations as possible. The revised regis-
tration framework within ITK is more thoroughly integrated across transform models,
is thread-safe and provides broader functionality than in prior releases.

The remainder of the document will provide an overview of the new framework via
the context of a potential general nomenclature. We also establish performance bench-
marks for the current ITK4 registration. Finally, we discuss future developments in the
framework.

2 Nomenclature

The nomenclature below designates an image registration algorithm pictorially. This
nomenclature is intended to be a descriptive, but also technically consistent, system for
visually representing algorithms and applications of registration. Ideally, any standard
algorithm can be written in the nomenclature below.

A physical point: x ∈ Ω where Ω is the domain, usually of an image.
An image: I : Ωd → R

n where n is the number of components per pixel and d is
dimensionality. A second image is J .

Domain map: φ : ΩI → ΩJ where → may be replaced with any mapping symbol
below.

Affine mapping: ↔ a low-dimensional invertible transformation: affine, rigid, trans-
lation, etc.

Affine mapping: → designates the direction an affine mapping is applied.
Deformation field: � deformation field mapping J to I . May not be invertible.
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Spline-based mapping: �
b e.g. B-Spline field mapping J to I .

Diffeomorphic mapping: � these maps should have an accurate inverse that is com-
puted in the algorithm or can be computed from the results.

Composite mapping: φ = φ1(φ2(x)) is defined by �→ where φ2 is of type �.
Not invertible: � indicates a mapping that is not invertible.
Image warping: For example, → J represents applying affine transform → on image

J . → J = J(A(x)).
Similarity measure: ≈

s or ≈s indicates the metric s that compares images.

We would then write a standard Demons registration application that maps one image,
J , into the space of I (presumably a template) as:

I �→ J which symbolizes I ≈ J(A(φ(x))),

with A an affine mapping and φ a generic deformation. The notation means that the
algorithm first optimizes an affine mapping, →, between J and I . This is followed
by a deformation in the second stage,�, from → J to I . In terms of transformation
composition, we would write �→ J = Jw(x) = J(φAffine(φDemons(x))) where Jw
is the result of warping J to I . The φ are the specific functions corresponding to the
schematic arrows. Note, also, that the tail of the arrow indicates the transform’s do-
main. The arrowhead indicates its range. Finally, we denote the similarity metric as ≈
which indicates a sum of squared differences (the default similarity metric). ITK4 sup-
ports metrics such as mutual information, ≈

mi, or cross-correlation, ≈
cc. We will use this

nomenclature to write schematics for registration applications in the following sections.

3 Overview of the Unified Framework

The key ideas for ITK4 registration are:

1. Registration maps can be applied or optimized through the itkCompositeTransform
which chains transforms together as in Figure 1.

2. Each ITK4 transform has either global support (affine transform) or local (or com-
pact) support (a displacement field transform). If any map in a composite transform
has global support then the composite transform has global support.

3. ITK4 metrics are applicable to both types of transforms and may optimize over
dense or sparse samples from Ω. Metrics may be multi-channel (e.g. for registering
RGB or tensor images).

4. The optimization framework is multi-threaded and memory efficient to allow high-
dimensional transformations to be optimized quickly on multi-core systems.

5. The ITK4 optimization framework comes with parameter setting tools that auto-
matically select parameter scales and learning rates for gradient-based optimization
schemes. These parameter setting tools use physical units to help provide the user
with intuition on the meaning of parameters.

Below we will discuss (1) gradient-based optimization within the framework, (2) tech-
niques to estimate optimization parameters for arbitrary metric and transformation com-
binations and (3) a generalized diffeomorphic matching approach.
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J(A(φ(x)))

b.imga.img JI

J(A(x))

(a) (b)

(d) (c)

I → JI �→ J

x 
y 
z

Fig. 1. Define x in ΩI and z in ΩJ as the same material point but existing in different domains.
The point y is in a domain that is intermediate between ΩI and ΩJ . The standard approach
in the ITKv4 registration framework is to map image J (b) to image I (a) by first identifying
the linear transformation, →, between the images, shown in (c). Second, we remove the shape
(diffeomorphic) differences (d). Consequently, we have a composite mapping, computed via the
mutual information similarity metric, that identifies I(x) ≈mi J(A(φ(x))) = JAffine(y) = J(z).
The image JAffine(y) represents J after application of the affine transformation A i.e. J(A(x)).

3.1 Optimization Framework

The general ITK4 optimization criterion is summarized as:

Find mapping φ(x, p) ∈ T such that M(I, J, φ(x, p)) is minimized. (1)

While, for functional mappings, this formulation is not strictly correct, the practical
implementation of even high-dimensional continuous transformations involves param-
eterization. The space T restricts the possible transformations over which to optimize
the mapping φ. The arguments to φ are its parameters, p, and the spatial position, x.
Note that, in ITK4 , the image I may also contain a mapping, although it is not directly
optimized in most cases. As will be seen later in the document, this mapping may also
be used within large deformation metrics.

The similarity metric, M , is perhaps the most critical component in image regis-
tration. Denote a parameter set as p = (p1, p2 . . . pn). The metric (or comparison
function between images) is then defined by M(I, J, φ(x, p)). For instance, M =
‖I(x) − J(φ(x, p))‖2 i.e. the sum of squared differences (SSD) metric. Its gradient
with respect to parameter pi is (using the chain rule),

Mpi =
∂M

∂pi
=

∂M

∂J

∂J(φ(x, p))

∂φ

∂φ

∂pi

T

|x . (2)

This equation provides the metric gradient specified for sum of squared differences
(at point x) but similar forms arise for the correlation and mutual information [10].
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Both are implemented in ITK4 for transformations with local and global support. The
∂J(φ(x,p))

∂φ term is the gradient of J at φ(x) and ∂φ
∂pi

is the Jacobian of the transformation
taken with respect to its parameter. The transform φ(x, p) may be an affine map i.e.
φ(x, p) = Ax + t where A is a matrix and t a translation. Alternatively, it may be a
displacement field where φ(x, p) = x + u(x) and u is a vector field. In ITK4 , both
types of maps are interchangeable and may be used in a composite transform to compute
registrations that map to a template via a schematic such as I ≈→ J , I ≈

mi
�
b → J ,

I ≈
cc �→ J or, mixing similarity metrics, I ≈cc�≈mi→ Ji.
The most commonly used optimization algorithm for image registration is gradient

descent, or some variant. In the above framework, the gradient descent takes on the
form of

φ(pnew, x) = φ(pold + λ [
∂M

∂p1
, · · · , ∂M

∂pn
], x),

where λ is the overall learning rate and the brackets hold the vector of parameter up-
dates. Note that, as in previous versions of ITK, a naive application of gradient descent
will not produce a smooth change of parameters for transformations with mixed param-
eter types. For instance, a change Δ to parameter pi will produce a different magnitude
of impact on φ if pi is a translation rather than a rotation. Thus, we develop an es-
timation framework that sets “parameter scales” (in ITK parlance) which, essentially,
customize the learning rate for each parameter. The update to φ via its gradient may
also include other steps (such as Gaussian smoothing) that project the updated trans-
form back to space T . Multi-threading is achieved in the gradient computation, trans-
formation update step and (if used) the regularization by dividing the parameter set into
computational units that correspond to contiguous sub-regions of the image domain.

3.2 Parameter Scale Estimation

We choose to estimate parameter scales by analyzing the result of a small parame-
ter update on the change in the magnitude of physical space deformation induced by
the transformation. The impact from a unit change of parameter pi may be defined in
multiple ways, such as the maximum shift of voxels or the average norm of transform
Jacobians [12].

Denote the unscaled gradient descent update to p as � p. The goal is to rescale � p
to q = s· � p, where s is a diagonal matrix diag(s1, s2 . . . sn), such that a unit change
of qi will have the same impact on deformation for each parameter i = 1...n. As an
example, we want ‖φ(x, pnew) − φ(x, pold)‖ = constant regardless of which of the i
parameters is updated by the unit change. The unit is an epsilon value, e.g. 1.e-3.

Rewrite [∂M∂p1
, · · · , ∂M

∂pn
] as ∂M

∂J
∂J(φ(x,p))

∂φ [ ∂φ
∂p1

, · · · , ∂φ
∂pn

]. To determine the relative
scale effects of each parameter, pi, we can factor out the constant terms on the outside
of the bracket. Then the modified gradient descent step becomes diag(s)∂φ∂p . We identify
the values of diag(s) by explicitly computing the values of ‖φ(x, pnew) − φ(x, pold)‖
with respect to an ε change. A critical variable, practically, is which x to choose for
evaluation of ‖φ(x, pnew) − φ(x, pold)‖. The corners of the image domain work well
for affine transformations. In contrast, local regions of small radius (approximately 5)
work well for transformations with local support. Additional work is needed to verify
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Fig. 2. An ITK diffeomorphic mapping of the type I � J . The “C” and 1/2 “C” example
illustrate the large deformations that may be achieved with time varying velocity fields. In this
case, the moving (deforming) image is the 1/2 “C”. The right panels illustrate the deformed grid
for the transformation of the “C” to 1/2 “C” (middle right) and its inverse mapping (far right)
which takes the 1/2 “C” to the reference space. The unit time interval is discretized into 15
segments in order to compute this mapping. 15*5 integration steps were used in the Runge-Kutta
ode integration over the velocity field. A two core MacBook Air computed this registration in
110 seconds. The images each were of size 150× 150.

optimal parameters for this new ITK4 feature. However, a preliminary evaluation is
performed in the results section. The new parameter scale estimation effectively reduces
the number of parameters that the user must tune from k+1 (λ plus the scales for each
parameter type where there are k types) to only 1, the learning rate.

The learning rate, itself, may not be intuitive for a user to set. The difficulty—across
problem sets—is that a good learning rate for one problem may result in a different
amount of change per iteration in another problem. Furthermore, the discrete image
gradient may become invalid beyond one voxel. Thus, it is good practice to limit a de-
formation step to one voxel spacing [12]. We therefore provide the users the ability to
specify the learning rate in terms of the maximum physical space change per iteration.
As with the parameter scale estimation, the domain over which this maximum change is
estimated impacts the outcome and similar practices are recommended for both cases.
This feature is especially useful for allowing one to tune gradient descent parameters
without being concerned about which similarity metric is being used. That is, it effec-
tively rescales the term λ∂M/∂p to have a consistent effect, for a given λ, regardless
of the metric choice.

3.3 Diffeomorphic Mapping with Arbitrary Metrics

Beg proposed the Large Deformation Diffeomorphic Metric Mapping (LDDMM) algo-
rithm [16] which minimizes the sum of squared differences criterion between two im-
ages. LDDMM parameterizes a diffeomorphism through a time varying velocity field
that is integrated through an ode. In ITK4 , we implement an alternative to LDDMM
that also uses a time varying field and an ode but minimizes the following objective
function:

E(v) = M(I, J, φ1,0) + w

∫ 1

0

‖Lvt‖2dt . (3)

This is an instance of equation 1 where w is a scalar weight and φ1,0 is a standard inte-
gration of the time-varying velocity field vt which is regularized by linear operator L.
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ITK4 uses Gaussian smoothing which is the Green’s kernel for generalized Tikhonov
regularization [18]. This objective is readily optimized using an approach that is simi-
lar to that proposed by Beg. Generalization of the LDDMM gradient for other metrics
basically follows [10] with a few adjustments to accomodate diffeomorphic mapping.
Figure 2 shows an ITK result on a standard example for large deformation registration.
We will evaluate this diffeomorphic mapping, along with parameter estimation, in the
following section.

4 Evaluation

We first investigate the ability of our automated parameter estimation to facilitate pa-
rameter tuning across metrics. We then compare ITK4 with an open-source ITK3

registration application. In the future, the latest evaluation numbers will be available
at: ITKv4 latest evaluation results.

Parameter Estimation across Metrics. ITK4 provides similarity metrics that may be
applied for both deformable and affine registration. In a previous section, we provided
a parameter estimation strategy that is applicable to both deformable and affine trans-
formations with arbitrary metrics. Denote images I , J , K , where the latter two are
“moving” images, and K is an intensity-inverted version of J . We then evaluate the
following schema,

I ≈�→ J, I ≈cc�→ K, I ≈mi�→ K

where, for each schematic, we use the corresponding metric for both affine and diffeo-
morphic mapping. Furthermore, we keep the same parameters for each registration by
exploiting parameter scale estimators. Figure 3 shows the candidate images for this test.

As shown in figure 3, very similar results are achieved for each schematic without
additional parameter tuning. To determine this quantitatively, we perform registration
for each schematic and then compare the Dice overlap of a ground-truth three-tissue
segmentation. For each result, we have the Dice overlap of dark tissue (cerebrospinal
fluid, CSF), medium intensity tissue (gray matter) and bright tissue (white matter). For
the mean squares metric, we have: 0.588, 0.816 and 0.90; for CC, we have: 0.624,
0.786, 0.882; for MI, we have: 0.645, 0.779, 0.858. Mutual information does best for
the CSF while mean squares does best for other tissues. CC performs in the mid-range
for all classes of tissue. Thus, a single set of tuned parameters provides a reasonable
result for an affine plus diffeomorphic mapping across three different metrics. While
improvement might be gained by further tuning for each metric, this result shows that
our parameter estimation method achieves the goal of reducing user burden.

Comparison against ITK3. We compare the ITK4 registration against an ITK3 reg-
istration suite BrainsFit (nitrc.org multimodereg). We present preliminary, encouraging
evaluation results for this approach to gradient descent with both affine and deformable
registration in Figure 4. The dataset consists of ten elderly and demented subjects with
manual labels of brain parenchyma. Of importance is that the ventricles are not included
in the parenchyma. Large deformation is required to match ventricles and, as such,
this evaluation provides some insight into the benefit of the new ITK4 diffeomorphic
matching.

https://github.com/stnava/ITKv4Documentation/tree/wbir2012
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SSD CC MI

I J K

Fig. 3. Three references images, I (left), J (middle top), and K (right top), are used to illustrate
the robustness of our parameter scale estimation for setting consistent parameters across both
metrics and transform types. K is the negation of J and is used to test the correlation and mutual
information registrations. We optimized, by hand, the step-length parameters for one metric (the
sum of squared differences) for both the affine and deformable case. Thus, two parameters had to
be optimized. We then applied these same parameters to register I and K via both correlation and
mutual information. The resulting registrations (bottom row) were all of similar quality. Further,
the same metric is used for both affine and diffeomorphic mapping by exploiting the general
optimization process given in equation 1.

5 Discussion and Future Work

ITK is a community built and maintained toolkit and is a public resource for repro-
ducible methods. The updated ITK4 registration framework provides a novel set of
user-friendly parameter setting tools and benchmark implementations of both standard
and advanced algorithms. Robustness with respect to parameter settings has long been
a goal of image registration and ITK4 takes valuable steps toward the direction of au-
tomated parameter selection. By the time of the workshop, we intend to have a more
extensive series of benchmark performance studies completed on standard datasets and
hope that presentation of this work will provide a valuable foundation for future work.
The number of possible applications exceeds what can possibly be evaluated via the
ITK core. Community involvement is needed in order to increase the number of possi-
ble registration applications and metric / transform / optimizer / data combinations that
have been evaluated. At the same time, documentation, usability and examples must be
provided by the development team in order to improve user involvement. Future work
will enhance the depth and breadth of this documentation as well as seek to optimize
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Fig. 4. We compare an ITKv4 composite schema as I ≈cc�≈mi→ Ji for mapping a set of
{Ji} images to a template I to a v3 schema: I ≈mi�b≈mi→ Ji. We use this schematic in a
registration-based segmentation of multiple brain structures in an elderly population as a bench-
mark for algorithm performance, similar to [14]. Example large-deformation results from the
dataset are at right. The largest improvement in performance is within hippocampus, where a
13% improvement in v4 is gained. Overlap improvement from v3 to v4, quantified via paired
t-test, is significant. The example pair of images will be included in v4 for regression testing.

the current implementations for speed and memory. With this effort, the user commu-
nity will be capable of efficiently implementing novel applications and even algorithms
based on the ITK4 framework.
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Abstract. The registrations of functions and images is a widely-studied problem
that has seen a variety of solutions in the recent years. Most of these solutions
are based on objective functions that fail to satisfy two most basic and desired
properties in registration: (1) invariance under identical warping: since the reg-
istration between two images is unchanged under identical domain warping, the
cost function evaluating registrations should also remain unchanged; (2) inverse
consistency: the optimal registration of image A to B should be the same as that
of image B to A. We present a novel registration approach that uses the L2 norm,
between certain vector fields derived from images, as an objective function for
registering images. This framework satisfies symmetry and invariance properties.
We demonstrate this framework using examples from different types of images
and compare performances with some recent methods.

1 Introduction

The problem of image registration is one of the most widely studied problems in medi-
cal image analysis. Given a set of observed images, the goal is to register points across
the domains of these images. This problem has many names: registration, matching,
correspondence, re-parameterization, warping, deformation, etc but the basic problem
is essentially the same – which pixel/voxel on an image matches which pixel/voxel on
the other image. Although this problem has been studied for almost two decades, there
continue to be some fundamental limitations in the popular solutions that make them
suboptimal, difficult to evaluate and limited in scope.

To explain this issue consider images on a domain D taking the form f � D � R
n. A

pairwise registration between any two images f1, f2 is defined as finding a mapping γ,
typically a diffeomorphism from D to itself, such that f1(s) and f2(γ(s)) are optimally
matched to each other (under a chosen criterion) for all s � D. Registration problems are
commonly posed as variational problems, with the most common form of an objective
function being

�
D

� f1(s) − f2 � γ(s)�2ds + λR(γ), γ � Γ , (1)

where �ċ� is the Euclidean norm,R is a regularization penalty on γ commonly involving
its first or second derivatives, Γ is a set of diffeomorphisms, and λ is a positive constant.
Several variations of this objective function have also been used, where the first term

B.M. Dawant et al. (Eds.): WBIR 2012, LNCS 7359, pp. 276–285, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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is replaced by mutual information [12], minimum description length [5], etc., and/or
the second term is replaced by the length of a geodesic in the warping space (as in the
LDDMM approach [3]). Another idea is to impose regularization externally using a
Gaussian smoothing (diffeomorphic demons [11]) of images. Some methods optimize
the objective function over a proper subset Γ0 ⊂ Γ (e.g. the set of volume-preserving
diffeos ), some on Γ, and some on larger group Γb that containsΓ (e.g. the one including
non-diffeomorphic mappings also).

Although the numerical techniques for optimization in Eqn. 1 have become quite
mature over the last ten years, these objective functions themselves have several funda-
mental shortcomings. We start with an important question: What should be the proper-
ties of an objective function for use in registering images? The answer to this question
is difficult since we may desire different results in different contexts. In fact, one can ar-
gue that we may never have a “perfect” objective function that matches human intuition
and vision. Still there is a basic set of properties that seems essential in a registration
framework; some of them have been discussed previously in [4,9] and others. In the
following let L( f1, f2 � γ) denote the objective function for matching f1 and f2 by opti-
mizing over γ (here γ is assumed to be applied to f2). The most important property that
we need in L is invariance to identical warping, defined as follows. For any f1, f2 � F ,
and γ � Γ, this invariance implies that L( f1, f2) = L( f1 � γ, f2 � γ). In case L is a proper
metric, then this property is nothing but action of Γ on F , where the action is given
by ( f , γ) � f � γ, by isometries. Also, assuming that Γ is a group, this property im-
plies that L( f1, f2 � γ) = L( f1 � γ−1, f2). Note that some papers that do not use the full
group Γ but some finite-dimensional subset (e.g. spline-based warping functions) will
not satisfy this property.

Why is this property important? Consider the two functions f1 and f2 shown in the
left panel of Fig. 1. Even though the two functions are different, their peaks and valleys
are nicely aligned. The middle panel shows an example of warping function γ and the
right panel shows the warped versions f1 � γ and f2 � γ. It is interesting to note that the
peaks and valleys in the warped functions are still aligned. Furthermore, the full corre-
spondence between the two functions is unchanged despite the warping. In fact, one can
show that an identical warping of any two functions keeps their registration unchanged
and, hence, any good objective function must have this invariance to identical warping.

There is another important property that is termed inverse consistency ([4,2]). This
property implies that the optimal registration between two functions remains the same
even if they are treated in the reverse order. That is, if γ� � arg minγ�Γ L( f1, f2 � γ),
then γ�−1

� arg minγ�Γ L( f2, f1 � γ). It can be shown that if we have invariance to iden-
tical warping and an additional symmetry condition (L( f1, f2) = L( f2, f1)), then we
have inverse consistency. The symmetry condition is usually satisfied by most objective
functions but the invariance condition is the one that many of them fail to meet. Without
the invariance to identical warping, we will not have inverse consistency in general. So,
once again that the property turns out to be paramount in registration.

We note that many of the popular objective functions ([10,12,5,11,3,9]) do not satisfy
these two basic properties.

There is an additional property of interest. A majority of post-matching analyses
compare registered images, and apply statistical techniques such as PCA for model-
ing and analysis. The question is: What should be the metric for this post-registration
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� fi − f j� = 0.7566 γ � fi � γ − f j � γ� = 0.6263

Fig. 1. An identical deformation of domains preserves the registration of functions

analyses? In many current systems, one performs registration using an objective func-
tion and then chooses a separate metric to perform analysis. Ideally, one would like
a framework so that it can align, compare, average, and model multiple images in a
unified framework that leads to efficient algorithms and consistent estimators. The ob-
jective function presented in this paper not only satisfies the invariance and the inverse
consistency properties listed above but also forms an extrinsic metric on the quotient
space for image comparison. Therefore, we have called our framework a metric-based
method for registration and comparison of images.

2 Proposed Framework

In this section we lay out the framework for joint image registration and comparison
under an objective function which induces an extrinsic distance. This method applies
to mathematical objects whose range space has dimension at least as much as that of
their domain, for f � D � R

n, where n 
 m,m = dim(D). In case of 2D images, this
means that pixels have at least two coordinates which is the case for colored images, or
multimodal images. To register gray-scale images, we have a way to get away from this
constraint, which will be discussed in Chap. 4.

Let F = � f � D � R
n
� f � C�(D), � f � = 1 and Γ = �γ � D � D �γ � Diff(D),

where � ċ � denotes the standard L2 norm and Diff(D) is the diffeomorphism group
on D. The action of Γ on F is defined as follows.

Definition 1. For an f � F , define the right action F � Γ � F by ( f , γ) = f � γ.

Note that for any two f1, f2 � F , and a γ � Γ, we usually have � f1− f2� � � f1 �γ− f2 �γ�
and invariance consition is not satisfied. Thus, we do not work with the images directly.
Instead, we will use a novel mathematical representation of images, called a q-map, that
has been motivated by recent work in shape analysis of surfaces [7]. Here we adapt it
for analyzing images.

Definition 2. For an f � F , define a mapping Q � F � L
2 such that Q( f )(s) =

�

a(s) f (s),∀s � D where a(s) is the multiplication factor of f at s given by �J f (s)�area.

For any n � m matrix A (n 
 m), �A�area is defined as �A�area =

�

�B:B is m � m submatrix of A �B�
2

and where �B� denotes determinant of B.

For any f � F , we will refer to q = Q( f ) as its q-map. Assuming the original set of
images to be smooth, the set of all q-maps is a subset of L2. The corresponding action
of Γ on L2 is given as follows.
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Definition 3. Define the right action L2
� Γ � L

2 by (q, γ) =
�

Jγ(q � γ), where Jγ
denotes the Jacobian of γ.

Note that, for an image f , Q( f � γ) = (Q( f ), γ). We define [q] = �(q, γ)�γ � Γ to
be the set (or an orbit) of all warpings of a q-map. Since all elements of [q] can be
obtained using warpings of the same image (and then forming the q-map), we deem
them equivalent from the perspective of registration. One would like a registration cost
function that equals zero when evaluated on any two elements of an orbit. Let L2

�Γ be
the (quotient) set of all such orbits. The most important property of this mathematical
representation is the following.

Proposition 1. The re-parametrization group Γ acts on L2 by isometries under the L2

norm, i.e. ∀q1,q2 � L
2,∀γ � Γ, �(q1, γ) − (q2, γ)� = �q1 − q2�.

Upon a close inspection, this proposition is exactly the same as the property of invari-
ance to identical warping in Sect. 1. In view of this isometry, the L2 norm between the
q-maps is a proper measure of the registration between any two images since it remains
the same if the registration is unchanged. This leads to a quantity that will serve as both
the registration objective function and an extrinsic distance between registered images.

Definition 4. Define an objective function between any two images f1 and f2, repre-
sented by their q-maps q1 and q2, as L( f1, f2;γ) � �q1 − (q2, γ)�.

The registration is then solved by minimizing the objective function:

γ� = arg inf
γ�Γ

L( f1, f2;γ) . (2)

The objective function L introduced as above satisfies the properties of invariance to
identical warping and inverse consistency. Therefore, we are able to compare images
with the value of objective function at the optimal γ, which gives a solution to regis-
tering two images. We point out that there are some unresolved mathematical issues
concerning to existence of a unique global solution for γ�, especially its existence in-
side Γ rather than being on its boundary. We leave this for a future discussion and focus
on a numerical approach that estimates γ�.

3 Implementation

3.1 Gradient Method for Optimization Over Γ

The optimization problem over Γ stated in Eqn. 2 forms the crux of our registration
framework and we will use a gradient descent method to solve it. Since Γ is a group,
we use the gradient to solve for the incremental warping γ, on top of the previous
cumulative warping γ0, as follows. (In this way the required gradient is an element of
Tγid(Γ) and one needs to understand only that space.) We define a cost function with
respect to γ as E [γ] = �q1 − φ(γ)�

2, where q̃2 = (q2, γ0) and φ � Γ � [q2] is defined
to be φ(γ) = (q̃2, γ). Given a unit vector b � Tγid(Γ), the directional derivative of E
at γid in the direction of b is �q1 − φ(γid), φ�(b)�b, where φ� is the differential of φ at
γid. It has an explicit form which is the same as that derived for parameterized surfaces
in [7]. In order to compute the gradient of E and to update γ0 we need to specify an
orthonormal basis for Tγid(Γ).
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3.2 Basis on Tγid(Γ)

In this paper, we investigate registration of 2D images with domain as D = [0,1]2 but
the framework applied to other domains as well. In this case Γ contains all bound-
ary preserving diffeomorphisms on [0,1]2. The tangent space of Γ at identity γid is
Tγid(Γ) = �b � [0,1]2

� [0,1]2
� b is a smooth tangent vector field on [0,1]2

�.
We begin by constructing an orthonormal basis for L2

([0,1],R) and then extend it to
the 2D case. It is known that B1D

L2 = �
�

2 sin(2πnt)�n �= 1���
�

2 cos(2πnt)�n �= 1��
�1 forms an orthonormal basis for L2

([0,1],R) under the L2 metric.
We seek an orthonormal basis for L2

([0,1],R) under the Palais metric due to some
nice properties of this Riemannian metric ([8]). The Palais metric is defined as � f ,g� =
f (0)g(0) + �

1
0 f ′(t)g′(t)dt for f ,g � L

2
([0,1],R). Under this metric an orthonormal

basis of L2
([0,1],R) can be defined as B1D

Pal = �
sin(2πnt)
�

2πn
�n �= 1 �� cos(2πnt)−1

�
2πn

�n �= 1 �

�t��1. It is important to note that the set B̃1D
Pal = �

sin(2πnt)
�

2πn
�n �= 1 �� cos(2πnt)−1

�
2πn

�n �= 1 

provides an orthonormal basis of functions that vanish at t � �0,1. The subspace of
functions that vanish at t � �0,1 has codimension two (due to the two imposed con-
ditions). This means that in order to define a full orthonormal basis of L2

([0,1],R),
we must add two additional elements that give linearly independent pairs of values at
t � �0,1. We will refer to the additional elements as B̊1D

Pal.
We will use Cartesian product of B̊1D

Pal (with elements b̊) and B̃
1D
Pal (with elements b̃)

to construct an orthonormal basis for [0,1]2. First, consider two parameters u � [0,1]
and v � [0,1] that define the domain [0,1]2. Begin by constructing an orthonormal
basis for functions on [0,1]2 that vanish at the boundaries using all possible products
of elements of B̃1D

Pal: B̃
2D
Pal = �b̃i(u)b̃ j(v),0�i, j�1

� �0, b̃i(u)b̃ j(v)�i, j�1
. In addition, we

need basis elements that are tangential to the boundaries. These can be formed using
the additional basis elements B̊1D

Pal. Define this set as: B̊2D
Pal = �b̃i(u)b̊ j(v),0�i�1; j=1,2

�

�0, b̊i(u)b̃ j(v)�i=1,2; j�1
. Then, the union B

2D
Pal = B̃

2D
Pal � B̊

2D
Pal provides a basis for Tγid(Γ)

under the Palais metric given by the inner product:

! f ,g" = � f (0,0),g(0,0)�Rn + � � �∇ f (u, v),∇g(u, v)�R2ndudv .

4 Experimental Results

In this section, we will present some experimental results for grayscale images and
multimodal images to demonstrate the use of the framework introduced in this paper.
However, in case of grayscale images, with n = 1, our method does not apply directly
since the dimension of range is less than the dimension of the domain. Instead, we ap-
ply it on gradient images g formed using g = ∇ f � [0,1]2

� R
2 and ∇ f = ( fu, fv)

for (u, v) � [0,1]2. Image gradients are a type of edge measure and are often used in
their own right as robust spatial features for image registration. We will use the gradi-
ent field as a feature to establish optimal registrations and compute distances between
gray-scale images. In other words, we register and compare two images by register-
ing their gradient images. One can obtain the original image from a gradient image
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using PDEs [1]. (Note that this idea of using gradients to form vector-valued images
will apply to volume images also, although we will restrict ourselves to 2D images for
simplicity of presentation.) In order to register two images, we can use the registered
gradients and get back to images ([1]). However, this approach may lead to changes in
image intensities by applying diffeomorphisms. An alternative is to consider gradients
as an image feature and directly use the optimal γ to register the images. This is the
method applied in this paper. We will compare our method to the diffeomorphic demons
method ([6]).

4.1 Synthetic Data

As a test to evaluate the framework we proposed, we first use it to register synthetic
grayscale image pairs. The images f1 and f2 are registered twice by first taking f1 as
the template image and estimating γ21 that optimally deforms f2. Similarly, f2 is used
as the template to get γ12. We show the two converged energies, �(q1, γ12) − q2� and
�q1 − (q2, γ21)�, associated with the the optimal γ12 and γ21 to verify the symmetry.

Experiment 1
�q1 − q2� = 2.6064, �q1 − (q2, γ21)� = 0.0441, �(q1, γ12) − q2� = 0.0427

f1 f2 � γ21 γ12 γ−1
21 γ12 � γ21 �J1�

 

 

0.8

1

1.2

1.4

f2 f1 � γ12 γ21 γ−1
12 γ21 � γ12 �J2�

 

 

0.8

1

1.2

1.4

Experiment 2
�q1 − q2� = 1.9924, �q1 − (q2, γ21)� = 1.2038, �(q1, γ12) − q2� = 1.2038

f1 f2 � γ21 γ12 γ−1
21 γ12 � γ21 �J1�

 

 

0.9

0.95

1

1.05

1.1

1.15

f2 f1 � γ12 γ21 γ−1
12 γ21 � γ12 �J2�

 

 

0.9

0.95

1

1.05

1.1

1.15

Fig. 2. Results of registration: synthetic images
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The cumulative diffeomorphisms γ21 � γ12 and γ12 � γ21 are also used to demonstrate
the symmetry of the proposed metric. In our method, γ12 and γ21 are expected to be
inverses of each other.

The results for registering two datasets are shown in Fig. 2. We show the original
images f1 and f2 with the warped images f2 �γ21 and f1 �γ12, that match with f1 and f2,
respectively. The diffeomorphisms, γ12 and γ21 learnt to register the images are also pre-
sented. By composing them in different orders, we expect the resulting diffeomorphisms
to be the identity map. In order to better visualize that the composed diffeomorphisms
are close to identity, their Jacobian maps are also given. If the compositions are the
exact identity map, the Jacobian images should be constant images with value 1. We
observe that the composed diffeomorphisms γ21 �γ12 and γ12 �γ21 are close to the iden-
tity map. Although there are cases when γ12 and γ21 are not exact inverses of each other,
the resulting distances are still approximately symmetric. Possible explanations include
errors due to numerical interpolation of grids or γ� being a local solution instead of a
global minimizer.

4.2 Image Registration

Next, we test our method on images of hand written numbers and 2D MR images of
the brain. The digit image data is used to demonstrate the performance of image regis-
tration. Figure 3 shows examples of matching three images for identical and different
digit(s). Each row contains the results for a single experiment. The original images to be
registered are shown in columns (a) and (d). The registration results obtained using our
method are presented in columns (b) and (e). Columns (c) and (f) are the corresponding
warped images using the demons method. For the experiments in Fig. 3, our registration
results are at least as good as those from the demons. For many of the experiemnts, our
method outperforms the other.

Ours Demons Ours Demons
(a) f1 (b) f2 � γ21 (c) f2 � γ21 (d) f2 (e) f1 � γ12 (f) f1 � γ12

Fig. 3. Three experiments for registering digits. Each row represents an experiment
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Experiment 1

Experiment 2

Fig. 4. Results for registering brain images. Column (a) contains two given images. The registered
images from our method and diffeomorphic demons are shown in columns (b) and (c), respec-
tively. Column (d) gives the image differences after registration using our method and column (e)
contains the image differences after registration using Demons.

Fig. 5. Results for registering brain images from two modalities. First two columns contain given
images, with the first row from T1 and the second from T2. The registered images are shown in
the third column. The last two columns give the image differences before and after registration.
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We also present two examples of brain MRI registration in Fig. 4. In each of the two
experiments, we show the original images, our warped images, and the image differ-
ences before and after registration to illustrate our method. At the same time, the reg-
istered images from using the demons are used for comparison. For these experiments,
our method provides a decent registration for the ventricular part and the boundary of
the brain; most lobes remain approximately the same. The demons does not provide
as good of a registration with respect to the ventricles and/or the boundaries. It also
sometimes generates mistakes near the lobes.

Figure 5 shows an example of registering a pair of brain images from two modalities.
Under our framework, the two modalities are registered simultaneously using the same
deformation.

4.3 Image Classification

The framework introduced in this paper defined a proper distance on the space of
q-maps of images. These distances can be used for pattern analysis of images, using
clustering or classification. The dataset used for classification purpose contains images
of digits from 0 through 9 and each digit has ten images. The distance matrices for L2

without warping, our method and demons are shown in Fig. 6 from (a) to (c). The L2

distance is automatically symmetric. We observe that the distance matrix is not symmet-
ric for demons. Our distance matrix is approximately symmetric. The boxplots in Fig.
6 (d) are used to assess the amount of asymmetry for the distance matrices. The boxes
represent the absolute values for all entries in $D − D

′

$ �D. These are the relative differ-
ences between diagonal entries and are supposed to be zero for a symmetric matrix. Our
method provides differences closer to zero and therefore more symmetric compared to
the demons method. As mentioned previously, the differences being not exactly zero
may be due to computational issues such as local minima. The leave-one-out nearest-
neighbor (LOO-NN) method is utilized to classify the digits based on distance matrices.
The classification rates are shown in Fig. 6.

0

0.2

0.4

0.6

0.8

1

1 2

(a) L2, 76% (b) Demons, 79% (c) Ours, 95% (d)

Fig. 6. Classification results

5 Discussion

We proposed a unified framework to register and compare images jointly. Our distance
provides a symmetric metric between image gradients and thus a good measure of reg-
istration without ambiguity. The forward and backward matching diffeomorphisms are
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inverses of each other when global solutions are reached. With this framework, our
method gives better results for registration, comparison and classification of images
compared to the demons method. Future work will involve studying mathematical prop-
erties such as injectivity of the Q map.

Acknowledgement. This research is supported in part by the Office of Naval Research
under N00014-09-1-0664 and in part by the National Science Foundation under Grant
DMS-0915003.
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Abstract. Non-rigid mutual information (MI) based image registration is prone
to converge to local optima due to Parzen or histogram based density estima-
tion used in conjunction with estimation of a high dimensional deformation field.
We describe an approach for non-rigid registration that uses the log-likelihood of
the target image given the deformed template as a similarity metric, wherein the
distribution is modeled using a Gaussian mixture model (GMM). Using GMMs
reduces the density estimation step to that of estimating the parameters of the
GMM, thus being more computationally efficient and requiring fewer number of
samples for accurate estimation. We compare the performance of our approach
(GMM-Cond) with that of MI with Parzen density estimation (Parzen-MI), on
inter-subject and inter-modality (CT to MR) mouse images. Mouse image regis-
tration is challenging because of the presence of a rigid skeleton within non-rigid
soft tissue, and due to major shape and posture variability in inter-subject regis-
tration. The results show that GMM-Cond has higher registration accuracy than
Parzen-MI in terms of sum of squared difference in intensity and dice coefficients
of overall and skeletal overlap. The GMM-Cond approach is a general approach
that can be considered a semi-parametric approximation to MI based registration,
and can be used an alternative to MI for high dimensional non-rigid registration.

1 Introduction

Longitudinal and inter-subject imaging studies are often performed to study changes in
anatomy and function in a subject over a period of time, or across populations. Non-
rigid registration is required to normalize anatomical changes such as posture variability
in longitudinal studies or anatomical variability across populations in inter-subject stud-
ies. Several non-rigid registration algorithms have been developed, a review of which
can be found in [7].

Mutual information (MI) measures the amount of information shared between two
random variables and can be used as a similarity metric in image registration. It has been
successfully applied to multi-modality rigid registration [21] and some approaches to
non-rigid registration using MI have also been proposed in [5], [15]. However, MI is a
non-convex function of the registration parameters and the registration could converge
to an inaccurate local optimum. The problem of converging to local optima is exacer-
bated in the non-rigid registration case because of the increased dimensionality of the

� Work done while at University of Southern California.
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c© Springer-Verlag Berlin Heidelberg 2012
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deformation field compared to the rigid case. Additionally, MI between the reference
image (target) and the image to be registered (template) is a function of the joint den-
sity of their intensities, which is unknown. Typically a non-parametric approach such
as Parzen windowing is used to estimate the entire joint density from the images [14].
This approach requires appropriate choice of the Parzen window width, which is usu-
ally taken as a design parameter and kept fixed over the entire sample. This has the
drawback that for long-tailed distributions the density estimate tends to be noisy at the
tails, and increasing the window width to deal with this might lead to oversmoothing
the details in the distribution [4]. The former scenario would result in a cost function
that has more local optima, while the latter could lead to inaccurate registration results.
The non-parametric approach also requires a large number of samples to accurately
estimate the distribution.

Maximizing MI is closely related to maximizing the joint probability of the target
and template images, or the conditional probability of the target given the template
image [6], [8], [13]. An interpretation of MI as a special case of maximum likelihood
estimation is given in [13]. In [6] a maximum a posteriori (MAP) framework for non-
rigid registration is used wherein a Parzen-like conditional density estimate is computed
and used as the likelihood term. In [23] multinomial joint intensity distributions were
used in a MAP framework for registration and a relationship with joint entropy was
derived for the uniformative prior case. In [8] a registered training set was used to model
the joint intensity distribution using Parzen density estimation and Gaussian mixture
models (GMMs), and the estimated distribution was used to perform rigid registration
of a test set. Approximating the joint density using multiple Gaussians was described
in [18] as an approach to increasing the robustness of a joint entropy based regularizer
for limited angle transmission tomography image reconstruction.

In this paper we describe an approach for non-rigid registration that uses the log-
likelihood of the target image given the deformed template as a similarity metric for
non-rigid registration, wherein the distribution is modeled using a GMM. Gaussian dis-
tributions are commonly used in image segmentation to represent the distribution of
intensities corresponding to a particular tissue type in MR or CT images [2], [12],[16].
In [2], [12] a unified MAP framework was described for brain segmentation, artifact
correction, and non-linear registration with spatial prior maps obtained from a proba-
bilistic atlas. We focus on registration and use GMMs to model the joint intensity distri-
bution of the two MR/CT images to be registered, since their distributions are typically
characterized by localized blobs. Using GMMs reduces the density estimation step to
that of estimating the parameters of the GMM, which consist of the mean, covariance,
and weight of each Gaussian. For images that have a few distinct regions of intensity
such as mouse CT images, the number of parameters to be estimated is small and can
be robustly estimated from fewer samples compared to the non-parametric approach.
Our approach of using the log-likelihood of the target given the template in conjunction
with a GMM can be viewed as a semi-parametric alternative to MI based registration
when dealing with the high dimensional non-rigid registration case.

We compare the performance of our conditional likelihood metric with GMM param-
eterization, with that of MI with non-parametric density estimation. We will henceforth
refer to these methods as the GMM-Cond and the Parzen-MI methods respectively.
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We evaluate these methods using mouse CT and MR images. Registration of mice and
other small animals is challenging because of the presence of rigid skeleton within
non-rigid soft tissue. Additionally, inter-subject whole body mouse images may have
considerable shape and postural differences. Registration approaches specific to small
animal registration were described in [3], [10], [11], [17], [19], and [22]. Specifically,
in [17] and [22] MI was used as a similarity metric for intra-modality mouse CT reg-
istration. We evaluate the GMM-Cond approach on inter-modality, inter-subject mouse
registration.

2 Methods and Results

Let the target and template images be I1 and I2, and their intensity at position x be
i1(x) and i2(x) respectively. Let the transformation that maps the template to the target
be T (x) = x−u(x), where u is the displacement field. The deformed template is then
represented by Iu2 , whose intensities are given by i2(x−u(x)). We define the similarity
metric Du(I1, I2) between the target and deformed template as the log likelihood of the
target given the deformed template. Assuming that the voxel intensities in I1 and I2 are
independent identically distributed random variables with joint density p(i1, i2), the
similarity metric is given by,

Du(I1, I2) = log p(I1|Iu2 ) =
∑
x

log
p(i1(x), i2(x− u(x)))

p(i2(x− u(x)))
. (1)

We assume a Gaussian mixture model for the joint density p(i1, i2). Let the number
of components of the Gaussian mixture model be K , the mixing proportions be πk,
and g(i1, i2|mk, Σk) be a Gaussian with mean mk and covariance Σk, where k =
1, 2, · · · ,K . Let the unknown deterministic GMM parameters for each component k
be represented as θk = (πk,mk, Σk), and let Θ = [θ1, θ2, · · · , θK ] be the vector of all
unknown parameters. Then, the joint density is given by

p(i1, i2|Θ) =

K∑
k=1

πkg(i1, i2|mk, Σk), (2)

where πk > 0 and
∑K

k=1 πk = 1.
We use the Laplacian of the displacement field as a regularizing term to penalize

deformations that are not smooth. We parameterize the displacement field using the dis-
crete cosine transform (DCT) basis. The DCT bases are eigenfunctions of the discrete
Laplacian, so using the DCT representation of the displacement field in conjunction
with Laplacian regularization simplifies the regularization term to a diagonal matrix
[1]. Let βi(x), i = 1, 2, · · · , Nb, represent the DCT coefficients that parameterize the
deformation field and let γi, i = 1, 2, · · · , Nb be the corresponding eigen values of the
discrete Laplacian matrix L. Then the norm ||Lu(x)||2 =

∑Nb

i=1 γi
2βi

2. The objective
function is then given by,

max
u,Θ

∑
x

log p(i1(x)|i2(x− u(x)), Θ) − μ

Nb∑
i=1

γi
2βi

2, (3)
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where μ is a hyperparameter that controls the weight on the regularizing term.
To simplify the problem, we replace the combined optimization with respect to the

deformation field and GMM parameters with an iterative two step procedure. Here,
the GMM parameters are first estimated from the target and deformed template images
through maximum likelihood estimation, and the deformation field is then computed
given the estimated GMM parameters. The two step optimization is given by

Θ̂(ûm) = argmax
Θ

∑
x

log p(i1(x), i2(x− ûm(x))|Θ) (4)

ûm+1 = argmax
u

∑
x

log p(i1(x)|i2(x− u(x)), Θ̂(ûm))− μ

Nb∑
i=1

γi
2βi

2, (5)

where ûm represents the estimated deformation field at overall optimization iteration
m. The estimation of GMM parameters is described in the next section. The estimation
of the deformation field in Equation 5 given the GMM parameters is performed using
conjugate gradient (CG) optimization with Armijo line search.

2.1 Estimation of Parameters of Gaussian Mixture Model

The maximum likelihood estimate of the GMM parameters Θ̂ in Equation 4 can be
obtained by the expectation maximization (EM) algorithm [9]. Let the data sample at
voxel j corresponding to the position xj be Su

j = [i1(xj), i2(xj − u(xj))]
T , where

j = 1, 2, · · · , N , and N is the number of voxels in each image. The component of the
GMM from which Sj arises is taken as the hidden variable in the EM algorithm. The
EM update equations are given in Equations 6 - 9.

τ ijk =
πi
kg(S

u
j ,m

i
k(u), Σ

i
k(u))∑K

h=1 π
i
h(u)g(S

u
j ,m

i
h(u), Σ

i
h(u))

(6)

πi+1
k (u) =

1

N

N∑
j=1

τ ijk (7)

mi+1
k (u) =

∑N
j=1 τ

i
jkS

u
j∑N

j=1 τ
i
jk

(8)

Σi+1
k (u) =

∑N
j=1 τ

i
jk(S

u
j −mi+1

k (u))(Su
j −mi+1

k (u))T∑N
j=1 τ

i
jk

, (9)

where πi
k(u),m

i
k(u), and Σi

k(u) are the GMM parameter estimates at EM iteration
i and deformation field u. The objective function to be optimized in Equation 4 is a
non-convex function of Θ, so a good initial estimate is needed to converge to a global
optimum. We use the k-nearest neighbors algorithm [14] to identify cluster centers in
the joint histogram of the target and template images, and the number of samples that
fall into a particular cluster. The cluster centers and the proportion of samples in a
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cluster relative to the total number of samples were used as the initializations m0
k and

p0k respectively, and Σ0
k was assumed to be identity for all k. The number of clusters was

chosen to visually match the initial histogram of the two images. Assuming a reasonable
initial global alignment, the number of clusters was then kept constant throughout the
registration process.

Figure 1 shows the GMM estimate of the joint pdf of intensities of the target and
template images shown in Figure 2 (a) and (b). The joint histogram of the intensities of
these two images is shown in Figure 1 (a), and the pdf estimated using GMM is shown
in Figure 1 (b) with the component means overlaid. The number of components was
chosen to be K = 7 to match the joint histogram.

Fig. 1. Estimation of joint pdf of images in Fig. 2 (a) and (b) : (a) Joint histogram of images, (b)
GMM estimate (the component means shown with ’x’ marks)

2.2 Relation to Mutual Information

Let the random variables corresponding to the intensities of I1 and Iu2 be ζ1 and ζ2
respectively. Mutual information between ζ1 and ζ2 is defined as ,

D(ζ1, ζ2) =

∫
p(z1, z2) log

p(z1, z2)

p(z1)(z2)
dz1dz2 = E(log

p(z1, z2)

p(z1)p(z2)
). (10)

MI between two random variables can be interpreted as the reduction in uncertainty of
one random variable given the other. Using MI as a similarity metric for registration
aims to find a deformation that makes the joint density of the target and deformed
template images maximally clustered, thus implying that the uncertainty of one image
given the other is minimized [21].

An alternative formulation can be obtained by approximating the expectation in
Equation 10 by a sample mean where the intensity at each voxel in the target and de-
formed template images constitutes the random sample. Hence we get

D̂(ζ1, ζ2) =
1

N

∑
x

log
p(i1(x), i2(x − u(x)))

p(i1(x))p(i2(x− u(x)))

=
1

N

∑
x

log
p(i1(x), i2(x− u(x)))

p(i2(x− u(x)))
− 1

N

∑
x

log p(i1(x)). (11)
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Since the target is fixed and independent of u(x), dropping the terms containing the
marginal density p(i1), we get the approximate MI based similarity metric as

D̂(ζ1, ζ2) =
1

N

∑
x

log
p(i1(x), i2(x− u(x)))

p(i2(x− u(x)))
. (12)

Thus, computing the deformation field that maximizes mutual information is approxi-
mately equivalent to maximizing the conditional density of the target given the template
image as defined in Equation 1. In [13] a similar relationship between maximum likeli-
hood and conditional entropy was derived. The pdf p(i1, i2) in Equation 12 is unknown,
and needs to be estimated. The pdf can be estimated using a non-parametric approach
such as Parzen windowing or a GMM based approach can be taken to parametrize the
pdf and estimate those parameters.

The Parzen window estimate of a pdf at random variable values z1, z2 is defined by
[14]

p(z1, z2) =
1

N

N∑
j=1

g(
z1 − i1(j)

σ
)g(

z2 − iu2 (j)

σ
), (13)

where g( z2σ ) is a Gaussian window of width σ, which is usually taken as a design pa-
rameter. Note that this can be considered as a Gaussian mixture model with as many
Gaussians as the number of samples (K = N ), with mean given by the sample mk =

[i1(k), i
u
2 (k)]

T , fixed standard deviation Σk =

[
σ2 0
0 σ2

]
, and equal weighting proba-

bilities πk = 1
N . However, we expect the GMM-Cond approach to have two advantages

over the Parzen-MI approach

1. The density estimation requires estimation of 6K GMM parameters that can be
robustly estimated from the given images for small K . In contrast, the Parzen-MI
approach computes the entire Nbin×Nbin pdf from the samples, where Nbin is the
number of bins at which the pdf is computed

2. Estimation of the displacement field may be more robust to trapping in local minima
because of the much lower dimensionality with which the joint density is parame-
terized.

We expect to gain computationally as well as in robustness from this reduction in di-
mensionality of the problem. However, if the joint density does not fit a GMM, the
number of mixture components might be large, approaching a Parzen window estimate.

2.3 Results

We perform validation studies of our method using multi-modality (CT and MR) inter-
subject mouse images. Mouse CT images typically consist of mainly soft tissue versus
bone contrast, and can be assumed to follow a GMM. Though mouse MR images have
a larger number of intensity levels than the CT, the number of components required
in the GMM is not prohibitively large. We consider two mice that were imaged using
both MR and CT (referred to as MR1 and CT1, MR2 and CT2) and two other mice
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that were imaged using only CT (referred to as CT3 and CT4). This gives 6 possi-
ble inter-modality, inter-subject registrations (CT1-MR2, CT3-MR2, CT4-MR2, CT2-
MR1,CT3-MR1, CT4-MR1). The MR images were obtained on a Biospec 7T system
at a resolution of 0.23 × 0.17 × 0.50 mm. The CT images corresponding to the MR
were acquired on a Siemens Inveon system and the others were obtained from a mi-
croCT system, at a resolution of 0.2 × 0.2 × 0.2 mm. We first perform a 12 parameter
affine registration of the CT images to the MR image using the AIR software [20]. We
downsampled the MR and affinely registered CT images to size 128× 128× 64 to re-
duce computation. The downsampled MR and affinely registered CT images were then
used as the target and template images respectively for non rigid registration. We com-
pare our semi-parametric GMM-Cond approach to non-parametric Parzen-MI approach
in the context of high-dimensional non-rigid registration, rather than comparing to ex-
isting registration algorithms that address mouse registration with application specific
constraints such as skeletal rigidity. The goal is to evaluate GMM-Cond as a general
framework for non-rigid inter-modality registration in small animal studies.

Fig. 2. Multi-modality inter-subject registration: Coronal view of (a) target MR image with out-
line of body and lungs, (b) template CT image affinely registered to MR, (c) Parzen-MI registered
image, and (d) GMM-Cond registered image. Images (b)-(d) are shown with target body and lung
outlines

For both methods, we used 15 × 15 × 15 DCT bases to represent the displacement
field. We choose the weight μ on the regularizing term such that the determinant of
the Jacobian of the displacement field is positive. For the Parzen-MI registration we
followed a hierarchical approach, first aligning the images that were smoothed with a
Gaussian of width 3 voxels, and used the displacement field thus obtained to initialize
the registration of the original images. We observed that directly aligning the original
images causes the algorithm to reach an inaccurate local minimum in a few iterations. A
Parzen window width of σ = 5 was used to compute the distribution at every iteration.
For the GMM-Cond approach, we used 5 overall iterations between the density estima-
tion and deformation field estimation. Each displacement field estimation involved 50



Non-rigid Image Registration Using Gaussian Mixture Models 293

iterations of the CG algorithm. Coronal view of the registered images for one dataset
along with the target and template images are shown in Figure 2. We used K = 7
components in the GMM for this dataset. The outline of the body and lungs of the tar-
get image was overlaid in green on all the images. We applied the displacement field
resulting from both registration algorithms to the higher resolution images for display
purposes. We quantify the performance of the registration through three measures:

1. Overall overlap: The target and template images can be segmented into mouse and
background regions. The overall overlap of the target and deformed template can
then be measured by computing the dice coefficients of the region labeled as mouse
in the two images.

2. Overlap of skeleton: The skeleton can be segmented in the target and template
images by thresholding. The dice coefficients of the skeleton in the target and de-
formed template images give a measure of overlap in the skeleton.

3. Mean squared difference (MSD) between intensities: The target MR image has a
corresponding CT image acquired with it. The normalized mean squared differ-
ence between intensities of the CT corresponding to the target, and the deformed
template images gives a measure of registration accuracy.

The average and standard deviation values of the three measures for the 6 inter-subject
CT to MR registrations are given in Table 1.

It can be seen from the images and the outline overlay that the GMM-Cond method
shows better overall shape and lung alignment compared to the MI-Parzen and AIR
methods. On average, the GMM-Cond method has higher dice coefficients for the skele-
ton as well as overall shape, and lower normalized MSD between intensities than the
MI-Parzen and AIR registration methods, indicating better alignment. It is promising
that the GMM-Cond shows improved performance for the inter-subject, multi-modality
registration considered, since these images have considerable difference in intensities,
overall shape, and skeletal structure.

Table 1. Quantitative measures of overlap

Mean ± SD of dice coefficients for overall overlap
Affine Parzen-MI GMM-Cond

0.84 ± 0.03 0.87 ± 0.04 0.91 ± 0.03
Mean ± SD of dice coefficients for overlap of skeleton
0.24 ± 0.07 0.31 ± 0.07 0.34 ± 0.04
Mean ± SD of squared difference between intensities

0.56 ± 0.07 0.50 ± 0.07 0.44 ± 0.11

3 Discussion

We used the conditional density of the target given the deformed template as a simi-
larity metric for non-rigid registration, wherein the conditional density is modeled as
a Gaussian mixture model. A DCT representation of the deformation field was used in
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conjunction with a Laplacian regularizing term to reduce computation. We compared
the performance of our approach with that of Parzen-MI based approach using multi-
modality MR/CT mouse images.

The GMM-Cond approach showed higher registration accuracy than the Parzen-MI
approach in terms of dice coefficients and mean squared difference between intensities
of the target and registered images. The GMM parametrization is not only computa-
tionally more efficient than the Parzen method, but also improves performance by re-
ducing the overall dimensionality of the estimation problem, and through more robust
and accurate density estimation. Additionally, the only design parameter that needs to
be chosen is the number of clusters in the GMM, which can be obtained from the initial
joint histogram.

The performance of the GMM-Cond method is promising as it performs better than
the Parzen MI approach for multi-modality whole body images with postural variations.
This indicates that this is a robust approach that can potentially be applied to multi-
modality non-rigid registration problems. It can be used as an alternative to MI based
registration when dealing with high dimensional deformation fields. The GMM-Cond
approach can be viewed as a general framework that can be used in conjunction with
other models for the deformation field, and with additional constraints specific to the
application (e.g., rigidity constraints for the skeleton in mouse images). It should be
noted however, that if the joint density of the images does not follow a GMM, a large
number of clusters would be required to fit the data, thus increasing the number of
parameters to be estimated and might not perform better than Parzen-MI in that case.
We expect this approach to be particularly useful in applications where the images have
a few distinct regions of intensity such as mouse CT images.
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Abstract. Correlative microscopy is a methodology combining the
functionality of light microscopy with the high resolution of electron
microscopy and other microscopy technologies for the same biological
specimen. In this paper, we propose an image registration method for
correlative microscopy, which is challenging due to the distinct appear-
ance of biological structures when imaged with different modalities. Our
method is based on image analogies and allows to transform images of
a given modality into the appearance-space of another modality. Hence,
the registration between two different types of microscopy images can
be transformed to a mono-modality image registration. We use a sparse
representation model to obtain image analogies. The method makes use
of representative corresponding image training patches of two different
imaging modalities to learn a dictionary capturing appearance relations.
We test our approach on backscattered electron (BSE) Scanning Elec-
tron Microscopy (SEM)/confocal and Transmission Electron Microscopy
(TEM)/confocal images and show improvements over direct registration
using a mutual-information similarity measure to account for differences
in image appearance.

1 Introduction

Correlative microscopy integrates different microscopy technologies including
conventional light-, confocal- and electron transmission microscopy [1] for the
improved examination of biological specimens. E.g., fluorescent markers can be
used to highlight regions of interest combined with an electron-microscopy im-
age to provide high-resolution structural information of the regions. To allow
such joint analysis requires the registration of multi-modal microscopy images.
This is a challenging problem due to (large) appearance differences between
the image modalities. Fig. 1 shows an example of correlative microscopy for a
confocal/TEM image pair.

A solution for registration for correlative microscopy is to perform landmark-
based alignment, which can be greatly simplified by adding fiducial markers [2].
Fiducial markers cannot easily be added to some specimen, hence an alternative
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image-based method is needed. This can be accomplished in some cases by ap-
propriate image filtering. This filtering is designed to only preserve information
which is indicative of the desired transformation, to suppress spurious image
information, or to use knowledge about the image formation process to convert
an image from one modality to another. E.g., multichannel microscopy images of
cells can be registered by registering their cell segmentations [3]. However, such
image-based approaches are highly application-specific and difficult to devise for
the non-expert.

(a) Confocal image (b) Boxed region (c) TEM Image

Fig. 1. Example of Correlative Microscopy. The goal is to align (b) to (c).

In this paper we therefore propose a method inspired by early work on texture
synthesis in computer graphics using image analogies [4]. Here, the objective is
to transform the appearance of one image to the appearance of another image
(for example transforming an expressionistic into an impressionistic painting).
The transformation rule is learned based on example image pairs. For image
registration this amounts to providing a set of (manually) aligned images of the
two modalities to be registered from which an appearance transformation rule
can be learned. A multi-modal registration problem can then be converted into
a mono-modal one. The learned transformation rule is still highly application-
specific, however it only requires manual alignment of sets of training images
which can easily be accomplished by a non-expert in image registration.

Arguably, transforming image appearance is not necessary if using an image
similarity measure which is invariant to the observed appearance differences. In
medical imaging, mutual information (MI) [5] is the similarity measure of choice
for multi-modal image registration.We show for two correlativemicroscopy exam-
ple problems thatMI registration is indeed beneficial, but that registration results
can be improved by combining MI with an image analogies approach. To obtain a
methodwith better generalizability than standard image analogies [4] we devise an
image-analogies method using ideas from sparse coding [6], where corresponding
image-patches are represented by a learned basis (a dictionary). Dictionary ele-
ments capture correspondences between image patches from different modalities
and therefore allow to transform one modality to another modality.

This paper is organized as follows: Sec. 2 describes the image analogies method
with sparse coding and our numerical solutions approach. Image registration
results are shown and discussed in Sec. 3. The paper concludes with a summary
of results and an outlook on future work in Sec. 4.
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2 Image Analogies

The objective for image analogies [4] is to create an image B′ from an image
B with a similar relation in appearance as a training image set (A,A′). Fig. 2
shows an image analogies example. The standard image analogies algorithm [4]
achieves the mapping between B and B′ by looking up best-matching patches for
each image location between A and B which then imply the patch appearance
for B′ from the corresponding patch A′ (A and A′ are assumed to be aligned).
These best patches are smoothly combined to generate the overall output image
B′. To avoid costly lookups and to obtain a more generalizable model with
noise-reducing properties we propose a sparse coding image analogies approach.

A: training TEM A′: training confocal B: input TEM B′: output confocal

Fig. 2. Result of Image Analogy: Based on a training set (A,A′) an input image B
can be transformed to B′ which mimics A′ in appearance

2.1 Sparse Representation Model

Sparse representation is a technique to reconstruct a signal as a linear combi-
nation of a few basis signals from a typically over-complete dictionary. A dic-
tionary is a collection of basis signals. The number of dictionary elements in an
over-complete dictionary exceeds the dimension of the signal space (here the di-
mension of an image patch). Suppose a dictionary D is pre-defined. To sparsely
represent a signal x the following optimization problem is solved [7]:

α̂ = argmin
α

‖ α ‖0, s.t. ‖ x−Dα ‖2≤ ε, (1)

where α is a sparse vector that explains x as a linear combination of columns in
dictionary D with error ε and ‖ · ‖0 indicates the number of non-zero elements
in the vector α. Solving (1) is an NP-hard problem. One possible solution of this
problem is based on a relaxation that replaces ‖ · ‖0 by ‖ · ‖1, where ‖ · ‖1 is
the L1 norm of a vector, resulting in the optimization problem [7],

α̂ = argmin
α

‖ α ‖1, s.t. ‖ x−Dα ‖2≤ ε. (2)

The equivalent Lagrangian form of (2) is

α̂ = argmin
α

λ ‖ α ‖1 + ‖ x−Dα ‖22, (3)
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which is a convex optimization problem that can be solved efficiently [6, 8]. We
adapt this formulation for our sparse coding image analogy method and learn
the dictionary D directly from aligned sets of training images.

2.2 Image Analogies with Sparse Representation Model

For image registration of correlative microscopy images, given two training im-
ages A and A′ from different modalities, we can transform image B to the other
modality by synthesizing B′. Consider the sparse, dictionary-based image de-
noising/reconstruction, u, given by minimizing

E(u, {αi}) = γ

∫
1

2
(Lu−f)2dx+

1

N

( N∑
i=1

1

2
‖ Riu−Dαi ‖2V +λ ‖ αi ‖1

)
, (4)

where f is the given (potentially noisy) image, D is the dictionary, {αi} are the
patch coefficients, Ri selects the i-th patch from the image reconstruction u, γ,
λ > 0 are balancing constants, L is a linear operator (e.g., describing a convolu-
tion), and the norm is defined as ‖ x ‖2v= xTV x, where V > 0 is positive definite.
Unlike most work in sparse coding, we are not computing alphas independently
per patch first, and then average the result [7]. Instead we jointly optimize for
the coefficients and the reconstructed/denoised image. Formulation (4) can be
extended to image analogies by minimizing

E(u(1), u(2),{αi}) = γ

∫
1

2
(L(1)u(1) − f (1))2 +

1

2
(L(2)u(2) − f (2))2dx

+
1

N

( N∑
i=1

1

2
‖ Ri

(
u(1)

u(2)

)
−
(
D(1)

D(2)

)
αi ‖2V +λ ‖ αi ‖1

)
,

(5)

where we have a set of two images {f (1), f (2)}, their reconstructions {u(1), u(2)}
and corresponding dictionaries {D(1), D(2)}. Note that there is only one set of
coefficients αi per patch, which indirectly relates the two reconstructions. This
is similar to estimating a super-resolution image from a low-resolution one [7].

Patch-based (non-sparse) denoising has also been proposed for the denoising
of fluorescence microscopy images [9]. A conceptually similar approach using
sparse coding and image patch transfer has been proposed to relate different
magnetic resonance images in [10]. However, this approach does not address
dictionary learning or spatial consistency considered in the sparse coding stage.
Our approach addresses both and learns the dictionaries D(1) and D(2) jointly.

2.3 Sparse Coding

Assuming that the two dictionaries {D(1), D(2)} are given, the objective is to
minimize (5). However, unlike for image denoising, when computing image analo-
gies only one of the images, f (1), is given and we are seeking a reconstruction of
both, a denoised version of u(1) and f (1) as well as the corresponding analogous
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denoised image u(2) (without the knowledge of f (2)). Hence, for sparse coding
(5) simplifies to

E(u(1), u(2), {αi}) = γ

∫
1

2
(L(1)u(1) − f (1))2dx

+
1

N
(

N∑
i=1

1

2
‖ Ri

(
u(1)

u(2)

)
−
(
D(1)

D(2)

)
αi ‖2V +λ ‖ αi ‖1),

(6)

which is a denoising of f (1) inducing a denoised reconstruction of the sought for
image u(2). The problem is convex (for given D(i)) which allows to compute a
globally optimal solution. Sec. 2.6 describes our numerical solution approach.

2.4 Dictionary Learning

Given sets of training patches {p(1)i , p
(2)
i } We want to estimate the dictionaries

themselves as well as the coefficients {αi} for the sparse coding. The problem
is non-convex (bilinear in D and αi). The standard solution approach [7] is
alternating minimization, i.e., solving for αi keeping {D(1), D(2)} fixed and vice
versa. Two cases need to be distinguished: (i) L locally invertible and (ii) L not
locally-invertible (e.g., due to convolution).

We only consider local dictionary learning here with L and V set to identities1.
We assume that the training patches {p(1), p(2)} = {f (1), f (2)} are unrelated,
non-overlapping patches. Then the dictionary learning problem decouples from
the image reconstruction and requires minimization of

Ed(D, {αi}) =
N∑
i=1

1

2
‖
(
f
(1)
i

f
(2)
i

)
−
(
D(1)

D(2)

)
αi ‖2 +λ ‖ αi ‖1

=

N∑
i=1

1

2
‖ fi −Dαi ‖2 +λ ‖ αi ‖1 .

(7)

The image analogy dictionary learning problem is identical to the one for image
denoising. The only difference is a change in dimension for the dictionary and
the patches (which are stacked up for the corresponding image sets).

2.5 Numerical Solution

Sparse Coding. We use the simultaneous-direction method of multipliers
(SDMM) [8,11] which allows us to simplify the optimization problem, by breaking
it into easier subparts. To apply SDMM, we write the image analogy problem as

1 Our approach can also be applied to L which are locally not invertible. However,
this complicates the dictionary learning.
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E =

:=f
(1)
D (v(1))︷ ︸︸ ︷

γ1
2

‖ v(1) − f (1) ‖22 +

:=f
(2)
D (v(2))︷ ︸︸ ︷

γ2
2

‖ v(2) − f (2) ‖22

+
1

N

( N∑
i=1

:=f
(p)
i

⎛
⎜⎝

⎛
⎜⎝v

(1)
i

v
(2)
i

⎞
⎟⎠,

⎛
⎜⎝w

(1)
i

w
(2)
i

⎞
⎟⎠

⎞
⎟⎠or f̄

(p)
i

⎛
⎜⎝w

(1)
i

w
(2)
i

⎞
⎟⎠︷ ︸︸ ︷

1

2
‖
(
v
(1)
i

v
(2)
i

)
−
(
w

(1)
i

w
(2)
i

)
‖2V +

:=f
(s)
i (qi)︷ ︸︸ ︷

λ ‖ qi ‖1
)
+

:fα(q)︷ ︸︸ ︷
γα
2

‖ q ‖22,

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v(1) = L(1)u(1)

v(2) = L(2)u(2)

v
(1)
i = Riu

(1)

v
(2)
i = Riu

(2)

and

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w(1) = D(1)α

w(2) = D(2)α

qi = Wiαi

q = Wα

,

(8)

where we introduced separate copies of the transformed image reconstructions
u(1) and u(2) as well as of the patch coefficients and α denotes the stacked up
coefficients of all patches (which allows imposing spatial coherence onto the αi

through W if desired). Following [11] we can use SDMM to solve (8).
For the dictionary-based sparse coding we have three sets of transformed vari-
ables, u(1), u(2) and the α copies. The images may even be of different dimen-
sionalities (for example when dealing with a color and a gray-scale image). In
our implementation of SDMM, we use L(1) = L(2) = I and Wi = W = I.

Dictionary Learning.We use a dictionary based approach and hence need to be
able to learn a suitable dictionary from the data. We use alternating optimization.

Assuming that the coefficients αi and the measured patches {p(1)i , p
(2)
i } are given,

we compute the current best least-squares solution for the dictionary as

D = (

N∑
i=1

piα
T
i )(

N∑
i=1

αiα
T
i )

−1. (9)

The optimization with respect to the αi terms follows (for each patch inde-
pendently) the SDMM algorithm. Since the local dictionary learning approach
assumes that patches to learn the dictionary from are given, the only terms re-

maining from Eq. (8) are, f̄
(p)
i and f

(s)
i . Hence the problem completely decouples

with respect to the coefficients αi and we obtain

E =
1

N

(
N∑
i=1

f̄
(p)
i

(
w

(1)
i

w
(2)
i

)
+ f

(s)
i (qi)

)
,

s.t. w
(1)
i = D(1)αi, w

(2)
i = D(2)αi, qi = αi.

(10)

Sparse Coding. Sparse coding follows the same numerical solution approaches
for dictionary learning. However, since the dictionaries are known at the sparse
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coding stage, no alternating optimization is necessary and we can simply solve
for u(1) and u(2) using SDMM. The difference is that for sparse coding for image

analogies the measurement of the second image f (2) is unknown. Hence, f
(2)
D (v(2))

is absent from the optimization and the reconstructed u(2) is the prediction.

3 Results

We (i) reconstruct the “missing” analogous image and (ii) consistently denoise
the image to be registered with. We consider affine registration in our experi-
ments, but the method is applicable to other transformation models. The key is
that training image pairs represent expected appearance variations well.

3.1 Data

We use four pairs of 2D correlative SEM/confocal images containing 100 nm
gold fiducials. The confocal image is the same in the four datasets and the SEM
images are from the same area as the confocal image but for different views and
magnifications. We also have six pairs of TEM/confocal images of mouse brains
with resolutions 582.24 pixels per μm and 7.588 pixels per μm respectively.

3.2 Registration of SEM/Confocal Images (with Fiducials)

Pre-processing. The confocal image is denoised by the sparse representation-
based denoising method [7]. We use a landmark based registration on the fiducials
to get the gold standard alignment result.

Image Analogies (IA) Results. We applied the standard image analogies
method and our method. We trained the dictionaries using a leave-one-out
method. In both image analogy methods we use 10 × 10 patches, and in our
proposed method we randomly sample 20000 patches and learn 800 dictionary
elements in the dictionary learning phase. We choose γ = 0.2 and λ = 1 in (6).
In Fig. 3, both IA methods can reconstruct the confocal image very well but our
proposed method preserves more structure than the standard IA method.

Image Registration Results. We resampled the estimated confocal images
with up to ±600 nm(15 pixels) in translation in the x and y directions (at steps
of 1 pixel) and ±15◦ in rotation (at steps of 1 degree) with respect to the gold
standard alignment. Then we registered the resampled estimated confocal images
to the corresponding original confocal images. Tab. 1 summarizes the registration
results over all these experiments. Our method outperforms the standard image
analogy method as well as a direct use of mutual information on the original
images in terms of registration accuracy. Both image analogy methods achieve
subpixel accuracy.
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(a) SEM Image (b) Confocal Image (c) Standard IA (d) Proposed IA

Fig. 3. Results of estimating a confocal (b) from an SEM image (a) using the standard
image analogy (c) and our proposed sparse image analogy method (d)

Table 1. Registration errors on translation and rotation( translation tx and ty are in
nm, pixel size is 40nm; rotation r is in degree; RMS =

√
t2x + t2y)

case r stdr tx ty RMS stdRMS

1
Our method 0.171 0.191 14.687 28.451 33.5482 6.4561
Standard IA 0.134 0.252 15.26 27.677 32.6751 8.4876

Original SEM/confocal 0.401 0.157 30.584 85.708 94.2085 8.0601

2
Our method 0.165 0.258 15.537 26.462 30.6862 6.5831
Standard IA 0.268 0.212 14.756 28.238 32.0217 6.8241

Original SEM/confocal 0.557 0.530 56.392 70.312 90.5242 6.2284

3
Our method 0.246 0.537 19.924 80.512 83.7206 7.1757
Standard IA 0.368 0.511 20.548 79.821 84.7861 6.8433

Original SEM/confocal 0.368 0.372 33.452 109.054 114.469378 9.3514

4
Our method 0.226 0.583 17.069 19.024 26.3190 6.3156
Standard IA 0.232 0.640 13.954 25.35 29.9319 6.2327

Original SEM/confocal 1.27 0.776 46.278 58.724 75.3439 5.4435

3.3 Registration of TEM/Confocal Images (without Fiducials)

Pre-Processing. We extracted the corresponding region of the confocal image
and resample both confocal and TEM images to an intermediate resolution. The
final resolution is 14.52 pixels per μm, and the image size is about 200 × 200
pixels. The datasets are already roughly registered based on manually labeled
landmarks with a similarity transformation model.

Image Analogies Results.We tested the standard image analogy method and
our proposed sparse method. For both image analogy methods we use 15 × 15
patches, and for our method we randomly sample 20000 patches and learn 900
dictionary elements in the dictionary learning phase. We choose γ = 0.01 and
λ = 1 in (6). The image analogies results in Fig. 4 show that our proposed method
preserves more local structure than the standard image analogy method.
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(a) TEM image (b) Confocal image (c) Standard IA (d) Proposed IA

Fig. 4. Result of estimating the confocal image (b) from the TEM image (a) for the
standard image analogy method (c) and the proposed sparse image analogy method
(d) which shows better preservation of structure

Table 2. Image Registration Results (in μm, pixel size is 0.069 μm)

Our method Standard IA Original TEM/Confocal Landmark

case MAE STD MAE STD MAE STD MAE STD

1
SSD 0.3174 0.2698 0.3119 0.2622 0.3353 0.2519 0.2705 0.1835
MI 0.3146 0.2657 0.3036 0.2601 0.5161 0.2270

2
SSD 0.3912 0.1642 0.3767 0.2160 2.5420 1.6877 0.3091 0.1594
MI 0.4473 0.1869 0.4747 0.3567 0.4140 0.1780

3
SSD 0.4381 0.2291 1.8940 1.0447 0.4063 0.2318 0.3636 0.1746
MI 0.3864 0.2649 0.4761 0.2008 0.4078 0.2608

4
SSD 0.4451 0.2194 0.4416 0.2215 0.4671 0.2484 0.3823 0.2049
MI 0.4554 0.2298 0.4250 0.2408 0.4740 0.2374

5
SSD 0.3271 0.2505 1.2724 0.6734 0.7204 0.3899 0.2898 0.2008
MI 0.3843 0.2346 0.4175 0.2429 0.4030 0.2519

6
SSD 0.7832 0.5575 0.7169 0.4975 2.2080 1.4228 0.3643 0.1435
MI 0.7259 0.4809 1.2772 0.4285 0.7183 0.4430

Image Registration Results. We manually determined 10 ∼ 15 correspond-
ing landmark pairs on each dataset to establish a gold standard for registration.
The same type and magnitude of shifts and rotations as for the SEM experiment
are applied. The image registration results based on both image analogies meth-
ods are compared to the landmark based image registration results using mean
absolute errors (MAE) and standard deviations (STD) of the absolute errors
on all the corresponding landmarks. We use both SSD and mutual information
(MI) as similarity measure. The registration results are displayed in Tab. 2. The
landmark based image registration result is the best result achievable given the
affine transformation model. We show the results for both image analogy meth-
ods as well as using the original TEM/confocal image pairs2. Tab. 2 shows that
the MI based image registration results are similar among the three methods and
also close to the landmark based registration results (best registration results).

2 We inverted the grayscale values of original TEM image for SSD based image regis-
tration of original TEM/confocal images.
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For SSD based image registration, our proposed method is more robust than
the other two methods for the current datasets, for example, using the standard
image analogies method results in large MAE values in case 3 and case 4 while
using the original TEM/confocal images for registration results in large MAE
values in case 2 and case 6. While our method does not currently give the best
results for all the cases available to us, it appears to be the most consistent with
results close to the best among all the methods investigated for all cases.

4 Conclusion

We developed a multi-modal registration method for correlative microscopy.
The method is based on image analogies with a sparse representation model.
It estimates the transformation from one modality to another based on training
datasets of two different modalities. Our image registration results suggest that
the sparse image analogy method can improve registration accuracy.

Our future work includes additional validation on a larger number of datasets
from different modalities. Our goal is also to estimate the local quality of the
image analogy result. This quality estimate could then be used to weight the
registration similarity metrics to focus on regions of high confidence. We will also
apply our sparse image analogy method to 3D images, which is straightforward.
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