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Abstract

The Emilia Romagna Region (RER) is probably one of the most landslide susceptible

regions of the world, with ~24 % of the mountain sector covered by landslide accumulations.

The regularly updated 1:10,000 Landslides Inventory Map (LIM), managed by the Regional

Geological Survey, counts more than 70,000 landslides. Nowadays most land-use planning is

based on LIM but this has several intrinsic shortcomings, mainly due to its scale and forecast

significativity. This paper presents the methods we used to compile a detailed susceptibility

map for the whole RER Apennines.

The triggering mechanism of the most common landslides phenomena in RER,

disregarding of the subsequent evolution, is characterized by a first movements that may

be described as “shallow phenomena” involving the upper part of the landslides (depletion

areas). For this reasons we developed a model for the areas “outside” the LIM mapped

landslides aimed to identify the triggering areas for future landslides. For this statistical

analysis we used Bivariate Logistic Regression methods. As our aim was to predict

triggering phenomena, we calibrated the model on the depletion areas, selected using a

semi-automatic GIS procedure. The resulting map can be used for LIM verification and

updating and adds it a forecast connotation useful for land use planning; nevertheless it has

to be used by experienced users, for this purpose the model advantage and shortcomings

will be discussed.

Keywords

Emilia Romagna Apennine � Landslide initiation � Susceptibility � Logistic regression

Introduction

Italy is probably one of the most landslide prone areas of the

world (landslides cover ~7 % of entire country) and the

Emilia Romagna Region (RER) is one of the most affected

regions in Italy (APAT 2007). Like many other Italian

regions, nowadays RER has a 1:10,000 Landslide Inventory

Map (LIM), which represents the fundamental state-of-the-

art knowledge of regional landslides. At present LIM counts

more then 70,000 landslide in an area of ~11,000 km2. It is

constantly updated by aerial photo analyses and new field

event reports, and it also contains information on historical

events (Glade 2001).

The LIM is an irreplaceable document for land use

planners, especially because in RER the majority of new

landslide events involve the reactivation of past movements.

Nonetheless, LIM has intrinsic predictive limitations. On the

issue of landslide spatial forecast at regional scale, in the past

several attempts have been made in RER to define landslide

susceptibility (Bertolini et al. 2002). These are outdated

products, however, because they are based on old LIM

versions, simple methodologies and usable for “situational

overview” (scale up to 1:25,000); they are currently
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insufficient for detailed (district to municipality) land use

planning. More detailed works have been carried out by

several authors but they are territorially restricted and meth-

odologically inhomogeneous so they can neither be merged

together, nor extrapolated to the neighbouring areas. With this

work we try to fill this gap in spatial prediction through

detailed analysis, which is extended to the whole region,

focused on the most common landslide type and able to

cover the whole RER Apennines. The homogeneous coverage

of the ~11,000 km2 and the analysis detail (usable up to

1:5,000 scale) make these maps a useful contribution to the

“local scale” land use planning processes and to hazard and

risk mitigation policies for the entire region.

Regional Setting

The Emilia Romagna Region (RER) straddles the northern

and central belt of Italy. About half of the >22,000 km2

of the region and in particular the southern part, is

characterized by hilly and mountainous areas, with altitudes

ranging from just tens of metres to 2,163 m a.s.l.

The geology differs significantly between the Emilia

Apennines (central and western side), and the Romagna

Apennines (eastern side): the former is almost completely

characterized by sedimentary (and mostly weak) rocks,

often formed by Cretaceous-Paleogenic structurally com-

plex clay and clay shale or tectonized alternances (flysch)

(Ligurian Units), surmounted by Eocene-Miocene marine

deposits (Epiligurian Units), while the latter is dominated

by the Oligo-Miocene Flysch deposits (Marly-Sandstone

Formation); both are delimited in their frontal side by

Plio-Pleistocene marine and transitional deposits (Fig. 1).

The RER Apennines mean Landslide Index (area covered

by landslides / total area) is ~24 % but in some municipalities

it reaches or exceeds 50 %. Most of the landslides are

characterized by slow to extremely slow movement, mainly

constituted by slides, earth-flows and complex landslides.

They rarely threaten human life directly but often affect

property, infrastructure, rivers and landscapes, causing severe

damages and high risk levels. The main predisposing factor is

the weakness of the bedrock and hillslopes materials, while

the main triggering factor is precipitation.

Amongst the predisposal factors, especially for small and

medium events, we must not underestimate the great impor-

tance of the area’s recent history: in recent centuries Man has

greatly modified the natural environment, first of all with

widespread timber harvesting and conversion to agriculture

and later with the construction of many villages, towns and

infrastructures. In the past few decades most of the farms and

fields have been abandoned and forests have reclaimed many

hill slopes, but the resident population has continued to grow

nonetheless: at 1/1/2007 the hilly and mountainous areas of

the RER had a population of 1,342,149 people, 31.78 % of

the whole RER, amounting to an increase of 5 % over

10 years, who are particularly concentrated in hills and

larger villages. Nowadays there are >145,000 buildings

and > 8,100 km of roads located directly on landslide

accumulations or in a meaningful bound but they are

certainly underestimated.

Materials and Methods

In this chapter we present the LIM data and the typical

landslide processes that we deal with; these are the back-

ground for the conceptual framework delineation. We’ll then

present the identification and/or creation of the data we’ll

further use in the statistical analysis.

Landslides Inventory Map

Over three decades, RER’s Geological Survey (SGSS) has

progressively developed an historical LIM which, derived

originally from detailed (1:5,000–1:10,000) field surveys in

‘80 and ’90, has been updated with periodical and extensive

correction, integration and validation by further field check

and multi-temporal aerial photo interpretation. The LIM

used in this work dates back to 2006 and counts 70,037

landslide polygons, classified according to type of move-

ment and state of activity. In this map approximately 54.7 %

of the landslides (corresponding to ~28 % of the total land-

slide area) are classified as active1 and the remaining 45.3 %

as dormant; landslides classified as stabilized are negligible.

LIM is one of the main product used by the land use

planners due to the Apennine singularity: >80 % of the

landslides events with area >5,000 m2 see a total or partial

reactivation of a mapped landslide; but the landslides inven-

tory map has also several shortcomings:

1. Mapping subjectivity, unavoidable in every individual

survey and intellectual work, can be reduced but not

eliminated;

2. It’s lacking in small landslides, especially dormant, due

to the difficult reconnaissance and their progressively

masking, especially in cultivated slopes;

3. It doesn’t give any information about the “out of land-

slide” areas;

4. It represent a “snapshot” of the moment then:

1 The State of activity definition doesn’t correspond to that used by

Varnes (1978), WP/WLI (1993) or Cruden and Varnes (1996), but

assume as active a landslide that has shown activity in the last ~30

years.
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• It’s subject to a pretty fast ageing (mainly regarding

the activity state), then it requires a constant updating;

• It doesn’t contain forecast information and doesn’t

provide suggestions on the future landslides evolution.

For these reasons, purely LIM-based land-use planning is

still too “risky” and a forecast contribution is generally desir-

able. Actually, across most of the RER territory, planning is

still based on the landslide activity state classification, a

characteristic very difficult to assess objectively and subject

to suddenly changes that can lead to contradictions like that

shown in the example of Fig. 2.

As land use planning in RER underestimates this kind of

behaviour, the resulting planning maps overestimate the

hazard in recently activated areas and underestimate the

risk in many dormant landslides areas. For this reason we

believe land-use planning, at every scale, should approach

this issue with a less observational and more forecast-

oriented approach. Our issue has been to produce a map

with the following requirements: (1) coverage of the whole

Emilia Romagna Apennines (~11,000 km2); (2) high

detailed resolution, such as can be used up to scale

1:5,000; (3) focused on forecasting the most frequent type

of landslide; (4) ability to predict both the areas most prone

to landslides outside of mapped landslides and to evaluate

the mapped landslide reactivation likelihood; (5) ability to

evolve towards relative hazard and specific risk assessment.

Type of Landslide Movement

In RER, most phenomena can be classified as earth-slides,

earth-flows and complex landslide. Their triggering phase

usually involves the retrogression of pre-existing depletion

areas (originating past movements) and the onset of a small

first slide movement (Figs. 3 and 4[1]).

The subsequent phase, through an “undrained loading”

mechanism (Hutchinson and Bhandari 1971; Hutchinson

1988), sees the partial or total reactivation of the landslide

accumulation which is the result of previous reactivations

(Figs. 3 and 4[2, 3]).

We should note that even big landslide accumulations can

be reactivated by a small retrogression movement (Fig. 3),

so it is very important to try to locate even small potential

sources of such movements.

Most of the landslides present this kind of evolution and

can thus be treated in the same way as regards forecasting

their triggering phase, so these are the type of landslides

selected and used for the statistical model.

Analysis Methods

Many different methods for assessing landslide susceptibility

have been proposed and compared in literature (Carrara 1983;

Hutchinson 1995; Aleotti and Chowdury 1999; Chung and

Fabbri 1999; Guzzetti et al. 1999; Crosta et al. 2001; Wang

et al. 2005; Chung 2006; van Westen et al. 2006). Among

these, physically-based and statistical models are the most

widely used (e.g., Guzzetti et al. 1999; Dai et al. 2002). The

former require detailed geotechnical and hydro-geological

data to reproduce the physical processes (white-box models),

whereas the latter rely only on comparison with past

landslides (black-box models), and are more suitable for

modelling susceptibility to landslides in large areas where

such knowledge is lacking (Van Den Eeckhaut et al. 2006).

Due to the vastness and heterogeneity of the study area,

Fig. 1 Structural-Geological

Map of the Emilia Romagna

Apennines (from Cerrina Feroni

et al. 2002)
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we chose the latter method and, in particular, a multivariate

regression method.

The conceptual model for all statistical models is that “the

past (and present) landslide locations are the key to the future”

(Carrara et al. 1995; Zêzere 2002). More specifically,

locations susceptible to landslides will be selected because

of their similarity in environmental characteristics to those of

landslides already mapped in the study area. This basic

assumption is one of the greatest limitations because climatic

conditions or land use may change, hence the past is not

strictly an indicator for the future. Chung and Fabbri

(2003b) found some other weak points in statistical modelling

practices that can be summarized as follows: (1) Simplifica-

tion of inputs and categorization of continuous data layers

cause the loss of much of the original significance of the data;

(2) Assumptions in predictive models are unavoidable but

rarely they are discussed in detail by the authors; (3) In any

prediction, the methods used to make prediction are of no

scientific value unless the validity of the prediction results is

measured. In the follows we describe how we tried to over-

come these problems.

Conceptual Framework

The conceptual model of every statistical methodology is

approximately the same (Carrara et al. 1995; Guzzetti et al.

1999; Van Den Eeckhaut et al. 2006): (1) Identification

Fig. 2 A classic landslide

temporal behaviour (modified

from Leroueil et al. 1996). The

image shows that in a quite long

reactivation period perspective, a

landslide mapped as dormant may

be more hazardous than one

classified as active

Fig. 3 An example of “undrained loading” reactivation: the

Spazzavento Landslide (Bologna Province) of January 2002: the shal-

low earth-flow (red boundary) triggered a dormant landslide of ~20 m

thickness (orange boundary)

Inclinometric curve

RiverInstability-retrogression

New earth/mudflow

Dormant landslide

A (active)

2

1

3

Partial reactivation

A (deactivated)
B (active)

Total reactivation

Fig. 4 Schema of the “undrained loading” reactivation mechanism

(from Bertolini e Pizziolo 2008). A retrogression of the depletion

area, involving a relatively low amount of material, may partially or

totally reactivate a dormant landslide with a volume of 2–3 order

magnitude higher then the first reactivation movement
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of unstable zones in the study area; (2) Mapping of environ-

mental factors which are supposed to be correlated with

slope instability; (3) Estimation of the relative contribution

of these factors in generating slope-failures; (4) Application

of the model and classification of every land unit into

domains of different susceptibility levels.

Despite this homogeneity, the results of different

frameworks (not just statistical procedures), may differ

greatly. According to several authors (van Den Eeckhaut

et al. 2009; Rossi et al. 2010; Suzen and Doyuran 2003),

backed up by our own tests (section “Multivariate Versus

Monovariate Approach”), differences between various statis-

tical methods do not lead to particularly substantial

differences in the final map; the real differences come from

other matters, namely: (a) the type, amount and quality of the

input data; (b) the conceptual framework: model assumptions

and construction.

Since the statistical models rely on the assumption that

the past is the key of the future (black-box model), the

amount and quality of past data bear the greatest importance.

Literature abounds with works that discuss statistical

questions but show models calibrated on just a few tens or,

at best, few hundreds of landslides. Statistical models

require “statistical stability”, especially when using categor-

ical (dummy) variables; that is why an appropriately large

and high quality dataset is the most important starting point.

As to conceptual framework, in literature two different

approaches are used to identify “unstable areas”: the first

specifies landslide accumulation as instability evidence

(Carrara et al. 1990; Cardinali et al. 2002; Ayalew and

Yamagishi 2005; Lee et al. 2008; Wang et al. 2007); the

second uses the depletion areas as unstable zones (Suzen and

Doyuran 2003; Van Den Eeckhaut et al. 2006). The two

approaches are substantially different: the former focuses

on products, the latter on processes. Considering that every

statistical regression will find the conditions more likely

similar to those used in the calibration phase, even with

the same original dataset, the results of the two approaches

will differ greatly: the model calibrated on landslide

accumulations will likely find other “existing” landslide

accumulations while the model calibrated on depletion

areas is focused to highlight conditions that can lead to new

landslide phenomena. In the study area context we believe

the first approach to be quite useless because, aside from

being landforms, “landslides” are, first and foremost, a pro-

cess (landsliding) and landslide accumulations are merely the

final result of a process generated elsewhere. Furthermore, if

the landslide inventory map on which the model is based is

presumed to be essentially complete, it is virtually useless to

try to find many other landslide bodies, especially in the

absence of any connection between shapes and processes.

Land Unit

Since we wanted to use the depletion zones as unstable

areas, and the former are usually much smaller than the

produced accumulation, despite the wide area to model

(~11,000 km2), we had to use a high detail land unit for

statistical analysis: the 10 � 10 m cells of the DEM derived

from the 1:5,000 Regional Technical Maps (CTR), in turn

derived from the 1973–1976 1:13,000 aerial photographs.

A wider unit (like elementary slopes, UCU – Unique Condi-

tion Unit, etc.), could not locate small but important local

morphologies; we must indeed bear in mind that many

morphometric parameters derived from DEM use a kernel

of 3 � 3 cells, so the 10 � 10 m DEM is generally repre-

sentative of the morphology in a 30 � 30 m area.

Choice of Regression Model

When one decide to approach the landsliding forecast using a

statistical approach, he/she wants to solve the following

problem: he/she knows the sites where the landslide exists

(and where not) and wants to determine why the phenomenon

could be found just in those locations and not elsewhere.

Once one understand which are the main predisposal factors

and how each of them influence the phenomenon, he/she

wants to apply this “new knowledge” to outguess the

locations where the same phenomena are most likely to

occur again. This is the ideal field of application of Binomial

Logistic Regression (LogR) which, in this context, can be

used to predict the probability that a phenomenon will occur

at an unsampled location.

In landslide forecasting, LogR has become popular quite

recently (e.g., Carrara et al. 1995; Atkinson and Massari

1998; Begueria and Lorente 1999; Gorsevski et al. 2000;

Lee and Min 2001; Dai and Lee 2002; Dai and Lee 2003;

Ohlmacher and Davis 2003; Vanacker et al. 2003; Ayalew

and Yamagishi 2005; Lee 2005; Akgün and Fikri 2007; Van

Den Eeckhaut et al. 2006; Wang et al. 2007; Bai et al. 2008a,

b; Rossi et al. 2010), because of its many advantage.

Like all other statistical regression methods, logistic

regression requires the independent variables to be statisti-

cally independent (Hosmer and Lemeshow 1989). Apart

from this, its requirements are much less restrictive than

other statistical models (like Discriminant Analysis or

OLS), regarding the independent (predictor) variables

characteristics: (a) they may be either numerical or categori-

cal (in this case represented by dummy variables); (b) they

need not be normally distributed; (c) it does not assume

homoscedasticity.
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Chung and Fabbri (2003a) highlighted that discretization

procedures may lead to the loss of significativity of

variables. Furthermore the analysis results may appreciably

vary according to different class subdivisions. The possibil-

ity in LogR of using both categorical and continuous

variables, avoids the necessity of converting continuous

variables into discrete (categorical) maps.

A further great advantage of LogR is also that predicted

values can be directly interpreted as probability because they

are constrained to fall into an interval between 0 and 1.

Goodness-of-fit tests such as the likelihood ratio test are

available as indicators of model appropriateness.

In LogR landslide presence/absence will be the dichoto-

mous dependent variable (Y): 1 ¼ presence; 0 ¼ absence of

landslide. Its presence will be influenced by the existence, in

the same location, of (Xi) independent variables (where

i ¼ 1, 2, . . ... n, are the different predictor variables). The

role of the LogR model is to quantify the influence of the Xi

variables in order to: (1) evaluate the relative contribution of

each variable in helping us understand the process; (2)

combine all the influences to obtain the odds of every other

area unit to be a landslide prone area.

Logistic regression applies “maximum likelihood estima-

tion” method, after transforming the dependent into a “logit

variable” (the natural log of the odds of the dependent

occurring or not – (2)). In this way, logistic regression

estimates the odds of a certain event occurring. Note that

logistic regression calculates changes in the log odds of the

dependent, not changes in the dependent itself as OLS

(Ordinary Least Square) regression does. The logistic

response function can be written as:

PðY¼1Þ ¼ P̂ ¼ 1

1þ e�z
(1)

where P is the probability of occurrence of a landslide

(Y ¼ 1). The (1) can be linearized with the Logit transfor-

mation to obtain the Log odds:

z ¼ Log
P̂

1� P̂
� � (2)

where (z) is linearly related with the independent variables:

z ¼ b0 þ b1X1 þ b2X2 þ ::::þ bnXn (3)

Where b0 is the model intercept and the bi are the coefficients
for the independent variables Xi (i ¼ 1, 2, . . . n) estimated by

maximum likelihood.

As z varies between �1 and + 1, the probability varies

from 0 to 1 on an S-shaped curve (Suzen and Doyuran 2003).

Identification of Unstable Areas

Since the RER LIM derives from the geological map, it only

maps landslide accumulations, not their depletion areas.

Furthermore, many landslides have a multi-lobed shape,

characterized by several branches merging into a single

accumulation “GIS-polygon” but each one with its own dis-

tinct depletion zone. Mapping all the depletion areas of the

>70,000 landslides by aerial photo-interpretation would have

been a useful but enormous effort which was not feasible at

the time. To solve this issue in the SGSS we wrote a series of

GIS procedures (language Avenue for ArcView 3.x) that

allowed us to obtain the higher elevation point of each branch

of each landslide polygon (Fig. 5). These points usually fall

within the depletion area, so the cells corresponding to each

of these points have been assumed to be statistically repre-

sentative of the correspondent landslide initiation conditions.

This procedure gave us further advantages:

1. The possibility to obtain a great number of unstable

points in a relatively objective way;

2. The capability to don’t lose information and to take the

most advantage from the landslide inventory map (if we

simply used only the upper point for each landslide poly-

gon we’d have lost many useful information).

After an appropriate semiautomatic cleaning of misplaced

points, we got 112,050 unstable points that became the 1’s

(presence of landslides) in the logistic regression model.

Identification of Stable Points

Despite its popularity, logistic regression may cause some

problems if the total area affected by landslides is much

≈ 200 m

Fig. 5 Identification of unstable areas (blue dots) on the LIM polygons
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smaller than the total study area. Indeed LogR sharply

underestimates probabilities if the number of 1’s (presence)

in the population is dozens to thousands of times smaller

than the number of 0’s (absence), (King and Zeng 2001).

According to the same authors, the number of non-landslide

points should be from equal to five times greater than the

number of landslide points. In actual fact in our map, the

number of triggering points identified as described in section

“Identification of Unstable Areas”, is three orders of magni-

tude lower than the total number of cells of the area. To

overcome such a problem, the strategy is to randomly sample

on the map a numerical suitable set of “probably stable

points”. The reason of the random sample is to ensure a

distribution of points statistically proportional to the overall

presence of each value for each variable, thus to significantly

compare the relative presence for landslide and non-

landslide points. For this issue, prior to seed random stable

points on the map, we had to find the portion of slopes most

likely stable through progressive exclusion of non suitable

areas. We proceeded as follows: (1) identification of the limit

between the Po valley and intravallive plains and the

hillslopes, based on geological and morphological

evaluations; (2) from the remaining hillslopes, exclusion of

some “probably unstable areas”; such areas were set, by

experience, as a 30 m buffer around the mapped landslides;

in this way we have probably excluded most landslide deple-

tion areas and those areas surrounding the accumulations,

often affected by stress detension and retrogression instabil-

ity phenomena.

At the end of this cleaning operation, we randomly sam-

pled about 140,000 “probably stable points” which will be

the “0’s” of the LogR model, each of which has been

associated with the corresponding set of independent vari-

able values.

Independent Variables

The general consensus is that any independent variable must

be: (1) operational (having a certain degree of affinity with

the dependent variable); (2) complete (be fairly represented

all over the study area); (3) non-uniform (varying spatially);

(4) measurable (can be expressed by any of the different

types of measuring scales); (5) non-redundant (its effect

should not account for double consequences in the final

result) (Ayalew and Yamagishi 2005). Variables prepara-

tion/generation is therefore an important phase of the

modelling process, which has to strike a balance between

significativity and spatialization feasibility.

Independent variables maps may be classified in several

ways according to their origin as: i. field survey based, ii.

DEM based and iii. Remote Sensing based, or according to

the data type as: continuous or categorical. Field survey

based maps are very time and money consuming ones but

they are often fundamental for a landslide model (e.g. geo-

logical maps and its derivates). Remote Sensing Based maps

are recently on the increase but in landslide models are not

widely adopted yet. Finally in the last decade, DEM and

digital terrain analysis provided a great contribution to mor-

phometry and hydrology applications and nowadays dozens

of variables may be generated from DEM quickly and cost-

effectively (Moore et al. 1991; Gallant and Wilson 2000).

In this work we decided to use two field based derived

variable maps (lithotechnical and land use maps), and to test

a series of DEM-derived continuous maps.

Lithotechnical Map
Based on RER Geological Map (scale 1:10,000), a

lithotechnical map was elaborated following these steps: (1)

conversion of the >500 geological units into lithological

units; (2) GIS-intersection of the lithology with the geo-

structural paleo-domain (which strongly influences the dia-

genesis degree and the structural characteristic of the rock

mass); (3) further amalgamation of the still many classes to

achieve the more suitable number of 16 lithotechnical classes.

Land-Use Map
The wide use of land-use maps in almost every susceptibility

analysis witnesses the importance always given to this

parameter. Notwithstanding we agree with those authors

that recognized problems in the use of land use maps as

predictor variables when applied to landslide susceptibility

models (Van Den Eeckhaut et al. 2006). Indeed many

ancient or dormant landslides last activated decades or

centuries years ago, when the land use (and climate) was

very different from the current day. In the RER Apennines,

in the last few centuries there has been widespread timber

harvesting and agricultural development, more recently

followed by a progressive and important abandonment of

farming. In these conditions land use tends to be more a

dependent variable rather than a causal one and it must be

used with awareness. Trying to overcome its limitation, in

this work we used the oldest release of the Land Use Map

(24 classes), derived by 1976 aerial photo, in order to better

represent the pre-landslide condition, at least for recent

landslides.

DEM-Derived Maps
Starting from the 10x10m DEM we computed about 30

parameters. For several parameters, we also used different

software and algorithms. With ArcGIS® we used the unique

standard methods, based on the algorithm of ESRI,

“Neighbourhood Method” (Srinivasan and Engel 1991), for

basic geomorphometry and “D8” (O’Callaghan and Mark

1984) for basic hydrology. To test more advanced

algorithms, we used the software SAGA-GIS (Conrad
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2006) and algorithms like that of Zevenbergen and Thorne

(1987) for basic geomorphometry and “D1” (Tarboton

1997), for basic hydrology.

Despite of the large number of geo-morphometric

parameters (Gallant and Wilson 2000), in literature we

didn’t find one able to describe the small scale terrain

undulations (hummocky) that characterize areas like land-

slide accumulations, colluviums deposits, etc., affected by

high tension stress/strain and, in general, recognisable as

very landslide prone areas in field surveys.

To highlight this distinguishing morphology we had to

devise a new parameter, conceptually similar to the Topo-

graphic Position Index (TPI) and Slope Position Index (SlPI)

(Weiss 2001; Jenness 2006), which we called: Local Rough-

ness Index (LRI) (Fig. 6).

Preliminary Analysis of the Independents

At each point, 1’s and 0’s of the dataset, the corresponding

value of all the variables (continuous and categorical), was

extracted, producing the database for model calibration;

then, each parameter was subject to several preliminary

analyses to decide whether or not it should be included in

the multivariate model.

Two different kinds of preliminary analysis were

performed on the “candidate” predictor variables: (1) a col-

linearity matrix analysis between each combination of two

variables and (2) a univariate test of association of each

independent with the dependent, through a Bayesian

analysis.

Independents Correlation
As with other statistical regression methods, logistic regres-

sion is sensitive to collinearity among the independent

variables (Hosmer and Lemeshow 1989). Many of the

independents, even if appreciably correlated with the depen-

dent, should not be used at the same time in a multivariate

model. Violating this conditional independence (CI) can

severely bias the simulated maps by over- or under-

estimating landslide probabilities (Thierya et al. 2007).

Thus we tested collinearity among all the variables and

decided to exclude those with R2 �0.5 and use wisely

those with 0.3 < R2 <0.5.

Bayesian Test of Association
A bivariate test of association through the application of the

Bayes theorem has been performed between the occurrence

of each independent candidate and that of landslides (1’s)

and non landslide (0’s) points. The Bayes Theorem is

expressed by (4).

P FjXið Þ ¼ P XijFð Þ � PðFÞ
P Xið Þ (4)

where: P(F( | Xi) is the “conditional probability” or

“posterior probability”, of occurrence of a landslide F,

once given the presence of the analysed independent Xi

and is constrained between 0 and 1. P(Xi | F) is the condi-

tional probability of Xi given F, also called “plausibility

function”; P(F) is the “prior probability”, in the sense that

it does not take into account any information about Xi; P(Xi)
is the “marginal probability” of Xi and acts as a normalizing

constant. The application of (4) leads to graphics like those

of Fig. 7. Figure 7 shows that landslide probability does not

change significantly with variations in Aspect, whereas an

increase in Slope generates a rapid increase in probability,

reaching a maximum for about 20�, tending to lower, stabi-

lize and rise again for high slope values (even if it shows an

unstable behaviour).

Based on these observations, we can say, for instance, that

Slope is an important causal factor and must be used in the

LogR model while Aspect contribution is negligible and

may be discarded. Graphs like Fig. 7 have been prepared

for all variables, taken singularly or in “interference” with

lithotechnic; the latter because we presumed the influence of

many parameters varies depending on lithotechnical classes

and disregarding this issuemay lead to an excessive smoothing

of the effect of the factors themselves. Figure 8 shows that

this is an effective problem and should be considered in the

final model.

Fig. 6 Comparison between the “Local Roughness Index” (LRI) Map

(yellow to brown raster pixels) and the LIM (polygons with cross

hatch). It’s noticeable the good agreement between the DEM-derived

parameter and the Landslide Inventory Map

442 M. Generali and M. Pizziolo



Logistic Regression Models (Calibration and
Validation)

Like every statistical models, landslide prediction models

have no scientific value unless the validity of the results is

measured (Chung et al. 2002; Chung and Fabbri 2003a,

2005). Given that the “wait and see” validation is not feasi-

ble, as is usually done we randomly subdivided the dataset:

80 % of the dataset points were used for calibration and the

remaining 20 % for validation. The apportionment of 80/20

has been chosen to maintain a good amount of data for the

calibration phase, still leaving enough data for a comprehen-

sible validation.

To test the “goodness of fit” of the model to the calibra-

tion data, we used the �2 Log Likelihood (�2LL) while to

validate the model prediction performance we used the ROC

(Receiver Operating Characteristic) (Swets 1988). ROC

curves plot the proportion of false positives against the true

positives at each level of the criterion and are an easy

numerical and visual approach which compares a Boolean

map of “reality” (presence or absence of landslides), with the

probability map. The ROC area is the integral of the curve: a

value of 0.5 corresponds to a random prediction while 1

equals a perfect model. The closer the result is to 1, the

better the prediction performance we obtain.

Even with the same dataset (dependent and independents

variables) and the same statistic method (LogR), the results

can still be different, depending on the way the variables are

combined together. Based on issues discussed before, we

chose to test first of all single variable models, then multi-

variate models, increasing the number of the variables inde-

pendently onset in the regression, and lastly, complex

models with “interference” between variables, such as

lithotechnic and slope (Fig. 8); this way we further guide

the model, trying to get the best performance from the model

itself. Table 1 shows the increase of performance of the

different models calibrated on all landslides (irrespective

of the activity state), starting from the easiest to the more

complex ones.

The last model, that gave us the best prediction perfor-

mance (0.78), comprises 2 categorical (Lithotechnic and

Land-use) and eight continuous DEM derived variables

[Elevation, Slope2, Convergence Index Aspect (CI), Topo-

graphic Position Index (TPI), Local Roughness Index (LRI),

Topographic Wetness Index (TWI)3 , annual mean Solar

Radiation (SR) and Drainage Density (DD)], and has the

following formulation:
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Fig. 7 Frequency distributions of 1’s, 0’s and total points and the

“posterior landslide probability” calculated with (4). The graphs show

the different effects of two independents variable on the conditional

probability (or relative landslide probability), to have a landslide vary-

ing the value of the variable themselves

2We used the Zevenbergen and Thorne (1987) algorithm that performs

better then others on sharp slope changes.
3 For the flow accumulation we used the D1 algorithm (Tarboton

1997), that performs much better then D8 to identify the accumula-

tion/dispersion of water flow along the hillslopes.
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Logit P̂
� �¼Z

¼b0þ
XX

bijXi �LITjþ
XX

bijXi �USEj (5)

where Xi are the continuous variables, LITj are the

lithotechnical classes, USEj are the land-use classes and

the b are the parameters given by the LogR model for the

best calibration fitting; in particular b0 is the model intercept

and bij are the regression parameters given to the variables

combination.

The term “susceptibility” by definition is time-

independent (Guzzetti et al. 1999), so that a susceptibility

map would foresee the landslide prone areas at “indefinite

time”. With this assumption, a landslide susceptibility map

should be calibrated on all LIM landslides, regardless of

their last activation or present activity state. Unfortunately,

using all landslides may produce several “side effects”:

1. The land-use “independent” variable on ancient landslides

is probably more a landslide dependent variable than one

affecting them (section “. Land-Use Map”);

2. Morphology can slowly evolve due to weathering, ero-

sion, etc. and the depletion area morphology of an ancient

landslide may be totally remodelled, especially in a terri-

tory like RER Apennines which, over the last few

centuries, has undergone important human changes;

3. Reconnaissance of old and ancient landslides may be

difficult, so landslide mapping may be much less accurate

than for recent or active landslides.

Each of these issues can negatively influence susceptibil-

ity map reliability. To overcome all of these problems,

we might consider calibrating the model only on landslides

mapped as active; this way we can:

1. Be more confident about the reliability of the independent

variables significance;

2. We further introduce a sort of “temporal information”

which, even if it does not lead to a really definable

“hazard map”, it gives some more useful information

at a time scale compatible with long term land-use

planning.

After the modelling described above, we tested the

model of (5) only on the 38,178 active landslides and the

ROC area lunged up from 0.78 to 0.85. Figure 9 shows

that the red line represents much better results: it says that,

at a certain level of territory stated as unstable (specific-

ity), the model can locate many more landslide areas

(sensitivity); in opposite, to predict a certain amount of

landslides (Y), it produces fewer “false alarms”(X). For

this performance and for the advantages described above,

we decided to adopt this latter model as the final suscepti-

bility model.
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Fig. 8 These graphs are similar to those right of Fig. 7 but branched

for different lithology (Flysch formations with different Arenitic/Pelitic

ratio). We can note how the effect of slope on instability varies

significantly on different lithotechnical classes and suggest the use of

a multivariate model with “interference” between variables
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Figure 10 shows the differences in the susceptibility

frequency distributions calculated for points “outside

landslide boundaries” (0’s) and “landslide points” (1’s).

We can note a significant difference between the two

groups, nevertheless there are many 0’s with high and

1’s with low susceptibility. The former is probably

because either they are not recognized as landslides or

simply have a high level of landslide susceptibility; the

latter are more difficult to explain but the reasons may be

as follows:

1. They belong to old landslides, probably stabilized or with

the original morphology strongly modified;

2. The triggering phase has been affected by local factors

not accounted for in the model (like human interference,

structural issues, etc.);

3. Because for LIM cartography limits and automation of

the points selection, they wrongly fall within stable

areas.

Figure 11 breaks down the 1’s distribution of Fig. 13 into

active and dormant landslide points. Here we can appreciate

the greatest significance of active points with respect to the

dormant ones (we must, in any case, bear in mind that the

model has been calibrated only on active landslides, so this

result for dormant landslides was to be expected).

Table 1 Index of the models tested and relative improvement in fit (decrease in � 2LL) and prediction performance (ROC area)

Dependent variables �2LL ROC area

Costant 312137.35 0.500

Slope 310447.42 0.574 Single variable

Convergence index aspect 307924.03 0.610

Topographic wetness index 310215.97 0.534

Drainage density 311982.11 0.495

Solar radiation 312024.55 0.505

Local roughness index 310295.37 0.562

Topographic position index 312044.96 0.515

Lithomap 292630.20 0.659

Land cover 300084.88 0.635

Climate 305367.60 0.593

Slope position index 307445.30 0.554

Slope

add lithomap

285515.60 0.691 Two summed variables

Convergence index aspect 288682.80 0.681

Topographic wetness index 289122.20 0.673

Drainage density 292629.30 0.662

Solar radiation 292605.20 0.659

Local roughness index 288889.30 0.678

Land use 285285.50 0.688

Slope

interference

with lithomap

281285.02 0.703 Two variables with interference

Convergence index aspect 307533.01 0.612

Topographic wetness index 292501.79 0.663

Drainage density 294854.76 0.656

Solar radiation 293446.81 0.657

Local roughness index 302688.37 0.609

Topographic position index 309827.62 0.554

Sum of all the factors stand alone 268332.60 0.747 Complex models

Sum of all the factors stand alone + all the factors with interference with

lithomap

260578.34 0.763

Sum of all the factors with interference with lithomap + all the factors with

interference with land use

253929.30 0.780
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Multivariate Versus Monovariate Approach

We compared the LogR method with a monovariate

approach: the Frequency Ratio model. In this last, every

independent variable is categorized and the frequency of

observed unstable points is evaluated for each class of each

regressor. The final susceptivity index (SI) is obtained by

summing the frequency of the regressors values (divided by

the variables number).

The comparison shows that considering simpler combi-

nation of independent variables, the monovariate approach is

even better than the multivariate one, but increasing the

complexity (adding more regressors and interactions), the

gain of the multivariate approach is higher (Fig. 12).

Results

Combining in ArcGIS the coefficients obtained by LogR

with the (5) and performing the inverse transformation of

(1), we obtained the map of P which represents the

“landsliding susceptibility” of the whole RER Apennine

(Fig. 13). The pixel value ranges from 0 to 1 and can be

considered as the probability for each cell to be the source of

a landslide.

Fig. 9 ROC curves. – the green line represents a random forecast (only

the intercept is included in the model – area ¼ 0.5). The blue line

represents the performance of the model calibrated on all landslides

(0.78) while the red one the model calibrated only on active landslides

(0.85)

Fig. 10 Comparison between the frequency distributions of susceptibility calculated by the model of (5) for 0’s (green – mean ¼ 0.37) and 1’s

without distinction between active and dormant landslides (orange – mean ¼ 0.61)
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The resolution in the above image of Fig. 13 doesn’t do

justice to the product detail but shows the overall area and the

lithological guided pattern of susceptibility (compare Figs. 1

and 13). Below there are two subsequent enlargements. In the

lower right enlargement the LIM has been overlaid in order to

compare the details of the resultant map with the depletion

areas of the mapped landslides and their tendency to retro-

gressive and widening evolutions; note how, in the same

lithotechnical class, susceptibility varies rapidly and greatly,

concentrating on medium and steep slopes and slightly con-

cave areas. Interpreting the map, in any case, it is crucial to

bear in mind that it aims to identify the triggering areas and

not the further evolution (runout) of displaced material; for

this reason the “green areas” on mapped landslides, particu-

larly if morphologically depressed, must not be presumed to

be “stable areas” but areas less prone to be affected by a local

landslide activation.

Discussion and Conclusions

RER Apennine is affected by a huge number of landslides

which results in a mean landslide index of ~24 %. The

absence of a susceptibility map covering the entire RER

area with a high detail level and the heterogeneity of the

area, led us to develop and apply a statistical method based

on the singularity of the territory.

In this work we have tried to emphasize how the appro-

priateness of modellization relies not so much on statistical

method choice, as on:

1. The amount and quality of the LIM input data;

2. The appropriateness of preliminary choices, that can be

called the “conceptual framework”, to fit the specificity of

the target landslide.

In particular, we aimed to predict the areas more likely to

generate new landslide events or actual landslide backward

Fig. 11 Comparison of the

frequency distribution of

susceptibility calculated

by the last model for dormant

(blue – mean ¼ 0.50) and active

(red – mean ¼ 0.68) landslides

Fig. 12 Comparison of model performance: LogR (green bars) verus
Frequency Ratio (blue bars) models
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evolution. With the used approach it’s been possible to focus

the modellization on the starting processes (landsliding),

correlated with the triggering area conditions, instead of on

the effects (landslides accumulations). We believe that this

approach is generally preferable and the result is in any case

helpful in identifying the landslides (usually small), not

reported in the LIM or improving it’s polygons quality

(Fig. 13).

Despite of the detailed scale of the input map that it

requires, by means of the 10 � 10 m DEM we can develop

high resolution maps for detailed field applications;

furthermore, unlike a small scale product, which does not

allow zooming in for further detail, such a detailed map can

be generalized in many ways to be used for smaller scale

applications.

On the other hand, as every other kind of model, unavoid-

able assumptions and simplifications lead to shortcomings

and limitations that should be always highlighted by

modellers and properly understood by final users. Table 2

briefly summarizes the main assumptions and simplifications

of our choices and the shortcomings which each of these

produces.

Fig. 13 Susceptibility map of the whole RER Apennine (above:

28,650 � 14,459 10 � 10 m cell map – 113,840,217 actually calcu-

lated – mean susceptibility ¼ 0.41; s ¼ 0.25). The histogram shows

the frequency distribution of the susceptibility all over the area. Below

two progressive enlargements of the resulting map. On the lower right
the susceptibility map with the LIM overlaid (black striped hatch
polygons)
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Some of the issues depicted in Table 2 can be overcome

with different (but potentially complementary) approaches

and modellizations. It’ll be nonetheless easy in a GIS envi-

ronment to develop different models for different landslide

specificity and overlay or merge someway the different

results. For instance a further development and application

of the presented model we’ve worked on to overcome the

lack of landslide evolution forecast (runoff area), partially

uses the output of the presented model to predict the mapped

landslides reactivation likelihood.

The mapped landslide reactivation likelihood model will

be published in a further paper.

Joining a detailed and updated LIM with the forecast

information given by these kind of models (even if black

box type), may results in a virtuous growing of knowledge

and, hopefully, a better land use planning.
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