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Abstract

Aiming at better understanding the processes involved in perched water tables onset and in

their development, the case of a soil slope characterised by gradually decreasing hydraulic

conductivity at saturation with depth was numerically investigated. Different anisotropy

factors and steepness values were accounted for. The problem was led to a dimensionless

form on the basis of the Buckingham p-theorem. Coherently with a theoretical solution of

the 2D sloping case, the simulations evidenced (a) non-monotonic transverse profiles of the

pressure head within the perched water, (b) slightly lower infiltration thresholds for perched

water onset and for soil waterlogging, with respect to the 1D case. If the slope is long

enough, an almost uniform flux can be observed in a branch of its central part.
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Introduction

The formation of perched water tables in the upper soil

layers, during an infiltration process at low infiltration rate,

is an important shallow-landslide triggering mechanism. In

fact, when the soil approaches the saturation of the upper

layers, the apparent cohesion reduces and, when the satura-

tion is reached, also the effective strengths reduce. Soil

failures can therefore be triggered not only by a positive

pore pressure, but also by the presence of soil layers close to

saturated conditions (e.g. van Asch et al. 2009). An accurate

description of the subsurface soil-water dynamics, also

accounting for the effect of the unhomogeneities of the soil

hydraulic properties, can therefore lead to important infor-

mation on soil safety. In this paper we will focus on the

effect of the layering of the hydraulic conductivity at

saturation on the soil-water dynamics. As a consequence of

the genetic layering, in fact, the conductivity at saturation

tends to decrease across the upper soil horizons, being higher

in the A horizons, rich in macropores, and – due to

intrasolum leakage – lower in the B ones (Kirkby 1969).

On mountains, where strong erosive processes act and the

mass movement is a key soil forming factor, the soil

horizonation cannot fully develop and a smooth decrease

of the conductivity at saturation typically occurs in the

upper soil layers. Two limit cases can then describe the

soil characteristics below the upper soil layers: one can

find either an impervious bedrock, or a highly permeable

layer of regolith or fractured and fissured rock. During our

field measurement campaigns in two Alpine catchments, a

gradual decrease, on average, was observed for the vertical

conductivity at saturation through the upper soil layers

(Barontini et al. 2005). Consistent with literature data (e.g.

Beven 1984), the pattern was found to be reasonably

approximated by an exponential decay. By means of an

analytical solution of the 1D Richards equation in a layered

soil, Barontini et al. (2007) proved that, during an imbibition

at constant water content at the soil surface, a gradual

decrease of the hydraulic conductivity can lead to
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non-monotonic profiles of water content. The profiles show a

peak which onsets at the soil surface. It is then enveloped as

the position of the maximum moves downward and its mag-

nitude increases. Therefore, after some time since the begin-

ning of the imbibition, a subsurface layer is characterized by

a closer to saturation water content than the surface one. As

the soil saturation is reached at one point, there a perched

water table is expected to onset.

With the aim of better understanding these phenomena

the case of infiltration at constant rate in a 2D sloping soil

layer of finite thickness, with exponentially decreasing

hydraulic conductivity at saturation with depth, was numeri-

cally investigated by means of Hydrus-2D/3D (Simunek

et al. 1999) and the results are here presented. In order to

extend the validity of the analyses to different soils and to

guide further investigations, the problem was led to a dimen-

sionless form based on an application of the Buckingham

p-theorem and the results were compared with theoretical

ones for the 1D (Barontini and Ranzi 2010) and 2D case

(Barontini et al. 2011). Since a description of the pressure

field in case of a perched water table formation is provided,

the obtained results can contribute to better define the hydro-

logical loads of hillslope stability analyses, particularly in

the framework of the undefined-length slope. After a theo-

retical recall, the adopted dimensionless approach is

presented. Then the set up of the numerical simulations

and the results are introduced and discussed.

Theory

Perched Water Tables Formation and Properties

In a classical work, Zaslavsky (1964) stated that, in case of a

horizontal pervious soil with conductivity Ks,1 laying on an

impervious one with conductivity Ks,2 < Ks,1, the condition

for a perched water table to onset in the upper layer is that

the Darcian flux downward q, due to infiltration from the soil

surface, is q > Ks,2. When a steady condition is reached in

this case, the flux in the upper soil layer takes place in the

direction of the increasing tensiometer-pressure potential,

whose maximum is reached at the bottom of the saturated

layer, at the interface with the impervious horizon. In a

sharply layered soil, therefore, a perched water will onset

within a layer (the layer 1 in the example) due to external

causes, viz the conductivity reduction at the interface

between the layer 1 and the underlying layer 2.

Barontini and Ranzi (2010) recently showed that in a

horizontal and gradually layered soil, with decreasing

hydraulic conductivity at saturation with depth Ks(x*),

being x* the vertical coordinate positive downward, a

perched water table can onset also due to internal causes

to the soil layer. Let us consider, in fact, a soil layer with

finite thickness xf* characterized by monotonically decreas-

ing Ks(x*):

Ks x
�ð Þ ¼ Ks;of x�ð Þ; (1)

in which Ks,o is the conductivity at saturation at the soil

surface x* ¼ 0 and f(x*) is a monotonically decreasing

function such that f(0) ¼ 1. Let us assume besides that the

underlying soil layer is characterized by higher conductivity

Ks,2 > Ks(xf*) and it is not able to exercise any retention.

For the sake of continuity of the total hydraulic head F ¼ �

� x*, the tensiometer-pressure potential � of the soil at xf*

should be null. We recall that the tensiometer-pressure

potential is defined as � ¼ c, i.e. the matric potential, if it

is non-positive, while � ¼ h, i.e. the pressure potential, if it

is positive. A perched water table onsets if at xf*, being

� ¼ 0, the gradient of � is negative, i.e.:

d�

dx�

����
x�
f

<0: (2)

The infiltration threshold if above which a perched water

table onsets in the upper layer is given by:

if ¼ Ks x�f
� �

; (3)

i.e. the value of Ks(xf*) is the upper boundary for the infiltra-

tion rate in order not to onset a perched water table. At if, in

fact, the downward flux in xf*, expressed by the Darcy law, is
sustained by a purely gravitational gradient. With the same

hypotheses the infiltration rate i* leading the soil layer to

waterlogging is given by the value of the equivalent hydrau-

lic conductivity at saturation over the interval [0, xf], i.e.:

i� ¼ K
0;x�f½ �
s;eq � Ks;o

x�fR x�
f

0
dx0
f x0ð Þ

: (4)

As the perched water table is bounded by two surfaces at

� ¼ 0, it is also characterized by a maximum of � inside, in

the position x*max such that:

i ¼ Ks x�max

� �
; if<ibi� : (5)

The corresponding �max ¼ hmax is directly given by an

integration of the Darcy law within the saturated layer:
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hmax ¼ � x�f � x�max

� �
þ
ðx�f
x�max

i

Kx x0ð Þ dx
0: (6)

Let us consider now a finite thickness soil layer laying on

a hillslope, tilted of an angle b with the horizontal as

represented in Fig. 1. Let x* be the transverse coordinate,

such that x* ¼ 0 at the soil surface and x* is positive

as entering within the soil. Conversely let x be a vertical

coordinate, with same origin as x*, positive downward.

From Fig. 1 one gets that:

x� ¼ x cos b: (7)

Let the soil conductivity be eventually anisotropic, with

principal directions x* and y*. The ratio r between the lateral
and transverse conductivity at saturation is usually higher

than 1. Now let i be the rainfall component normal to the soil

surface. With the same condition at the lower boundary, i.e.

� (xf*) ¼ 0, but accounting for the 2D domain, a perched

water is now considered to onset if:

@�

@x�

����
x�
f

<0: (8)

Consistent conditions at the lateral boundary at the

domain are a no flux entering the domain at the upstream

boundary, as for the presence of a watershed, and a seepage

condition at the downstream boundary.

Barontini et al. (2011) showed that, under the hypothesis

of undefined length of the slope, the infiltration threshold for

condition (8) to hold is given by:

if bð Þ ¼ Ks x�f
� �

cos b; (9)

which is less than the case of horizontal soil given by (3).

This is due to the fact that the gravitational gradient sustain-

ing the flux transversely to the soil layer is less effective as

the slope increases. Therefore, the maximum infiltration,

which can be sustained without gaining any negative pres-

sure gradient at the lower soil interface, will be reduced

accordingly. In the case of the soil of Fig. 1, one can also

get the infiltration rate leading to waterlogging by means of

the following equation:

i� bð Þ ¼ K
0;x�f½ �
s;eq cos bð Þ; (10)

which substitutes (4). The authors proved also that the posi-

tion x*max, of the maximum pressure head within the

perched water table, given by (5) does not depend, at fixed

thickness of the perched water table, on the soil slope b . The

value of the maximum h at waterlogging is given, from

(6), by:

hmax bð Þ ¼ hmax cos b: (11)

In the investigated case the conductivity at saturation was

assumed to exponentially decrease with depth with a scale of

exponential decrease L. Equation 1 takes the form:

Ks x
�ð Þ ¼ Ks;oe

�x�
L : (12)

If referred to x, (12) takes the form:

KsðxÞ ¼ Ks;oe
� x

L0 ; L0 ¼ L
cos b : (13)

Equations 12 and 13 allow to determine the numerical values

given by (3, 4, 5 and 6) and (9, 10 and 11) for a horizontal

and a sloping soil, respectively.

Dimensionless Approach

According to Corey et al. (1965) the firsts to describe the

displacement of immiscible fluids in a porous medium by

means of a dimensionless approach were Leverett and

Coauthors in their 1942 paper (Leverett et al. 1942). Since

then various approaches were attempted in this direction,

both at the microscale, typically in view of petrologic

applications, and at a continuum scale, for hydraulic and

hydrological applications. A dimensionless approach can

prove to be very powerful both in order to design hydraulic

models and in order to lead the parameters choices for

numerical applications. One of the key aspects of a dimen-

sionless approach to the flow of immiscible fluids in a porous

medium is the capability of properly representing, in

dynamically coherent dimensionless form, the interfacial

pressure of the fluids, viz the capillary curve in the case of

Fig. 1 Sketch of the investigated soil domain with details on the

boundary conditions
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the water flow in a granular porous medium. Leverett et al.

(1942) suggested that, if expressed in a particular dimen-

sionless form, the capillary curves of unconsolidated sands

coalesce on a single curve, the so called j function. In the

case, instead, of an organic soil, for which the relationship

between the water content and its energetic state should

account also for the effect of the organic matter content,

the coalescence of the retention relationship on the same

curve is much more difficult. Corey et al. (1965) therefore

stated that a model of flow in an unsaturated soil will be

effective only if the soil-water constitutive laws have the

same structure and the same values for some parameters.

In this work we propose a parameters choice, based on an

application of the Buckingham p-theorem in the framework

of a continuum approach, in order to describe the effect of

the soil anisotropy and steepness on the following steady

properties of the perched water tables: (a) the infiltration

threshold for a perched water table to onset, (b) the infiltra-

tion rate to lead the soil to waterlogging, (c) the position and

magnitude of the maximum positive pressure head at

waterlogging. Even if the problem is characterized by a

transition from unsaturated to saturated soil, the proposed

dimensionless approach is focused on steady and saturated

flow conditions, which are not sensitively affected by the

soil-water retention relationship. The obtained results can be

therefore reliable also for different soils with different soil-

water constitutive laws.

Considering the case of a steady infiltration in an expo-

nentially Ks-decreasing soil, inferiorly bounded by a surface

at c(xf*) ¼ c(xf) ¼ 0 and for defined initial conditions, we

can write, for any generic state property S of the soil, the

formal dependency:

S ¼ f ðf; ys; yr;c1;m; n; ‘;Ks;o; L
0; r; xf ; yv; b; iÞ: (14)

In (14), besides the parameters already introduced, f, ys,
yr [�] are respectively the porosity, the volumetric water

content at saturation, and the volumetric residual water

content; c1 [L], m [�], n [�] are the parameters of the

soil-water retention relationship described by van

Genuchten’s function, with the usual constraint that m ¼ 1

� 1/n; is the relative-conductivity function parameter,

according to Mualem’s framework; yv is the horizontal pro-

jection of the slope length.

Before analysing (14) three important remarks need to be

added. Firstly, as a continuum approach was chosen, the

dependency on the water mechanical properties, viz its den-

sity, its dynamic viscosity and its capillary tension at the

air–water interface, are not explicitly represented but they

are implicitly accounted for in the definition of the hydraulic

conductivity at saturation and of the soil–water retention

relationship parameters. Then, focusing on the description of

the soil–water dynamics, it is not needed to explicit any

dependency of S on soil mechanical properties, e.g. the soil

particle density, its cohesion or its angle of internal friction.

Finally as the unique mass force involved in the problem is

the gravitational field, it is not explicitly represented in the

formulation but it is implicitly included in the definition of the

hydraulic conductivity at saturation.

In (14) there are on the whole 14 parameters which can

be roughly grouped as in the followings. The parameters f,
ys, yr, c1, m, n, , Ks,o (8 parameters) describe the soil–water

constitutive laws. Among these, the porosity f does not

play here an important role as the control role on the soil

capacity of storing water is played by the effective porosity

ys � yr; f will be therefore neglected in the further analy-

sis. Moreover Mualem’s parameter is usually set at 0.5. Its

dependency in the dimensional analysis will be neglected

as well. The characterising parameters of the soil-water

constitutive laws are therefore reduced to the 6 parameters

of the van Genuchten-Mualem framework. L0 and r

(2 parameters) describe the conductivity unhomogeneity

and anisotropy (L0 being introduced in [13]); xf, yv, b
(3 parameters) describe the problem geometry. Finally i,

only 1 parameter, describes the boundary conditions as the

other boundary conditions are structural for the problem

and will not be explicitly introduced in the dimensional

analysis. By a dimensional point of view the parameters

can be grouped into three groups. f, ys, yr, m, n, , r, b
(8 parameters) are dimensionless and are presented in

their basic form, i.e. they have not been normalized yet;

c1, L0, xf, yv (4 parameters) are lengths [L]; Ks,o, i (2

parameters) are velocities [LT�1].

As observed e.g. by Corey et al. (1965, p.7), the effective

soil porosity ys � yr characterises the non-steady soil

dynamics. Here, as steady conditions are focused on, it is

dropped from the dimensional analysis. Moreover as it

appears from (5, 9, 10 and 11), which hold for a sloping

soil, also the other parameters characterizing the unsaturated

soil flow, i.e.m, n, and c1, do not explicitly emerge from the

theoretical framework. This fact is mainly due to the focus

on properties of saturated conditions flow. Therefore also

these parameters are dropped from the dimensional analysis.

Equation 14 is rewritten as:

S ¼ f ðKs;o; L
0; r; xf ; yv; b; iÞ: (15)

According to the Buckingham p-theorem, only two

dimensional scales are required in this case to fully express

the problem in a dimensionless form. The set of dimensional

variables we propose is given by a scaling-length Ls ¼ xf
and a scaling-velocityUs ¼ Ks,o. In dimensionless form, and

with the usual symbol p for the dimensionless variables, (15)

is rewritten as:
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pS ¼ FðpL0 ; py; pi; r; bÞ: (16)

The effect of pi, r, b on the formation, the thickness and the

maximum pressure head of a perched water table will be

explored. The theoretical values previously presented are

rewritten in dimensionless form. One gets for if :

pif ¼ e
� 1

p
L0 cos b; (17)

and for i*:

pi� ¼ 1

pL0 e
1

p
L0 � 1

� � cos b: (18)

Numerical Experiments

The numerical experiments were designed in order to simu-

late a steady process at constant infiltration rate by means of

the software Hydrus-2D/3D, which numerically solves the

Richards equation. The dimensions of the mesh are given in

Fig. 1. In order to represent a gradually decreasing conduc-

tivity with depth, the 0.5 m-thick soil layer was subdivided

into five layers of 0.1 m, each of them with uniform conduc-

tivity at saturation, equivalent to that of the gradually vary-

ing layer over the same thickness (e.g. Barontini et al. 2007).

Ks,o was assumed to be 8.14E-04 m/s and L0 ¼ 0.19 m. A

coupled van Genuchten-Mualem constitutive laws model

applied to describe the unsaturated soil-water properties.

c1 ¼ 0.16 m, m ¼ 0.34, n ¼ 1.51, measured for a sand,

were chosen as retention curve parameters. As initial

conditions were required in order to perform the simulations,

aiming at defining steady and almost uniform conditions

along the slope, a 12 h preliminary simulation at low infil-

tration rate (1.4E-06 m/s) was performed. The obtained

initial conditions are represented in Fig. 2. Referring to

(16) two dimensionless parameters were fixed (pL0 ¼ 0.38,

py ¼ 20); the maximum value of pi was chosen bigger than

pi*, enough to observe waterlogging; r was chosen equal to

1, 5, 10, and b spanning from 5� to 30� each 5�.

As an example of the results, in Fig. 3 the pressure

potential field of a 15� sloping soil with anisotropy factor

r ¼ 5 is represented for i*. As it can be seen an area of

positive pressure head, up to a pressure potential of 0.15 m,

is observed in the central part of the mesh. This area is above

and below bounded by surfaces at null or negative matric

potential c and, even if there is a long central branch at

almost uniform characteristics, upstream and downstream

boundary effects are observed. The length of the branches

affected by boundary effects increases as the anisotropy

factor increases, so that at r ¼ 10 it was not recognizable,

for the investigated slope, a central branch with uniform-

flow pattern. On the other hand, at r ¼ 1, i.e. in the absence

of anisotropy, the central branch with almost uniform pres-

sure distribution is much longer and there the hypothesis of

uniform flow is realistic.

Discussion

In Figs. 4 and 5 the steady profiles of c and h in the middle

section of the mesh are plotted, as a function of b and at

r ¼ 5, for the two limit cases of infiltration rate if and i*. In

the unsaturated range a flow takes place in the direction of

the increasing c. The c-profiles are weakly sensitive to b
and close to saturation, thus playing an important role for the

soil stability. At the bottom an almost vertical slope of the

profile is observed. The corresponding dimensionless if(b)
given by (17) are represented in Fig. 6. It can be seen that

if(b) is less than that estimated for the case of b ¼ 0�,
coherently with the theory. It is moreover well interpreted

by the theoretical model both for the magnitude and for the

independence on the soil anisotropy.

In Fig. 5 the pressure profiles at waterlogging are

represented for the same case at r ¼ 5. The non-monotonic

patterns of h are observed. Moreover the maximum of h is

reached almost in the same position for all the curves,

accordingly with the theoretical analyses, and it is quite

sensitive at b, since it decreases as b increases. The

corresponding dimensionless i*(b) given by (18) are

represented in Fig. 6 and compared with the theoretical 1D

and 2D estimate. Also in this case i*(b) is less than that

Fig. 2 Initial conditions of the flow domain after 12 h infiltration at

low infiltration rate, b ¼ 15�, r ¼ 5 Fig. 3 Steady state conditions after 6 h simulation with soil at

waterlogging, b ¼ 15�, r ¼ 5
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estimated for the case of b ¼ 0� and it is sensitive to the soil
slope. The agreement with theoretical values is worse than

for if(b) as the anisotropy factor r increases. This behavior is
attributed to the fact that, at increasing r the branch, where

an almost uniform flux takes place, reduces and the bound-

ary effects gain importance.

The maximum pressure head ph,max ¼ hmax//xf is

represented in Fig. 7 depending on b and r and compared

with theoretical 1D and 2D estimates (the latter is reported as

quasi-1D in the Figure). It is not sensitively dependent on r

and the agreement between the 2D theoretical and numerical

results is fair.

Conclusions

The conditions for perched water table formation and for

waterlogging were numerically investigated for a sloping

soil layer characterized by exponentially decreasing con-

ductivity with depth. The numerical results were

Fig. 4 Tensiometer-pressure profiles in the middle section of the flow

domain, in steady conditions, at i ¼ if

Fig. 5 Pressure profiles in the middle section of the flow domain, in

steady conditions, at i ¼ i*

Fig. 6 Dimensionless infiltration rates pif ¼ if/Ks,o and pi* ¼ i*/Ks,o

as a function of the slope b and of the anisotropy factor r, compared

with the corresponding estimates for the 1D case (dashed black lines)
and for the 2D case (dashed red lines)

Fig. 7 Dimensionless maximum pressure head ph,max ¼ hmax/xf in the
middle section at waterlogging infiltration rate as a function of the slope

b and of the anisotropy factor r, compared with the corresponding

estimates for the 1D case (dashed black line) and for the 2D case

(“quasi-1D”, dashed red line)
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compared with theoretical analyses. In order to lead the

numerical experiments and to define a methodology to

generalize the results, a preliminary dimensional analysis

was performed. The vertical soil depth xf and the

upper soil hydraulic conductivity at saturation Ks,o were

proposed as a set of independent variables in order to

transform the problem in dimensionless form. Five

dimensionless groups, including the anisotropy coeffi-

cient r and the soil slope b, were addressed to describe

the steady properties of the perched water table. The

numerical results and the theoretical 2D analyses

provided by Barontini et al. (2011) were found to be in

good agreement for the infiltration rate at the perched

water table onset, for the maximum pressure head at

waterlogging, and for the infiltration rate at waterlogging

for low values of the anisotropy factor. The agreement is

worse as the anisotropy factor increases because the

uniform flow hypotheses underlying to the theoretical

framework require longer slopes in order to properly

apply.
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