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Abstract. In the field of biomedical image analysis, motion tracking and
segmentation algorithms are important tools for time-resolved analysis
of cell characteristics, events, and tracking. There are many algorithms in
everyday use. Nevertheless, most of them is not properly validated as the
ground truth (GT), which is a very important tool for the verification of
image processing algorithms, is not naturally available. Many algorithms
in this field of study are, therefore, validated only manually by an human
expert. This is usually difficult, cumbersome and time consuming task,
especially when single 3D image or even 3D image sequence is considered.

In this paper, we have proposed a technique that generates time-lapse
sequences of fully 3D synthetic image datasets. It includes generating
shape, structure, and also motion of selected biological objects. The cor-
responding GT data is generated as well. The technique is focused on the
generation of synthetic objects at various scales. Such datasets can be
then processed by selected segmentation or motion tracking algorithms.
The results can be compared with the GT and the quality of the applied
algorithm can be measured.

Keywords: simulation, optical flow, 3D image sequences, fluorescence
optical microscopy.

1 Introduction

The present biomedical research increasingly relies on automated processing and
analysis of large amount of numerical or image data, which are nowadays com-
monly produced by the vast majority of acquisition devices. These devices typ-
ically degrade the raw data to some extent. In optical microscopy, for example,
the data are blurred by the optical system and, subsequently, affected by various
types of noise during the use of digital camera. Two fundamental tasks in this
area are image segmentation and motion tracking. The former is typical for the
manipulation with static images while the latter manages time-lapse sequences.
The task of segmentation is to split the image into several disjoint regions, of-
ten reduced to identifying foreground and background ones. The task of motion
tracking is focused on tracking of some of these regions. This allows for the de-
scription of events and changes in the characteristics of studied objects over a
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period of time. In both cases, the acquired raw image data are processed and we
obtain some results. The question is whether these results are correct or not. If
the ground truth (GT) image data were available, we could compare the outputs
of the examined algorithm with the given GT and, consequently, we could val-
idate the quality of the algorithm. In optical microscopy, the issue is that cells
and their components cannot be simply observed with the naked eye, simply
without any acquisition device, just like it is in the macroscopic world. There-
fore, the original unaffected image, which is essentially the GT, is impossible to
obtain. Clearly, one may ask a human expert to annotate her existing images in
order to turn them into a GT dataset. But this is very tedious and unreliable,
especially in the 3D case. Another particularly popular solution is to make use
of simulator, which is a framework for generating pseudo-real GT datasets.

As presented in [27] each simulator can be clearly split into three principal
phases: (I) digital phantom object generation, (II) simulation of signal transmis-
sion, and (III) simulation of signal detection and image formation. In the first
phase (I) the model that fits the observed data is chosen. The model can be
either static [11,9,24,26] or dynamic in time [5,8,32,20,23]. It is noteworthy, that
these models do not exactly model the simulated reality. That is why one more
likely meets the term phantoms instead of models. The second phase (II) covers
the period during which a signal is transmitted through the environment. One
of the most typical environment characteristics is the impulse response of the
system, often called the point spread function (PSF), which causes blur of the
transmitted image data. It can be either a real (empirically measured) PSF [27]
or simply Gaussian kernel [9,16,14,24]. Some authors even presume, that the PSF
is spatially variant [11]. The last phase (III) corresponds to the detection of the
signal with the device sensors and its conversion to the digital representation.

At this point we should emphasize the fact that shortening the time-lapse
sequence into just one frame reduces the whole task into the generation of one
static synthetic image. Therefore, we can understand the generation of static
synthetic image data as a subtask of the generation of time-lapse sequences.

In the rest of this section we will make a brief survey of the most common
simulators in both aspects – static as well as dynamic. In addition, we will group
them according to the scale of generated objects.

1.1 State of the Art

From Macromolecules to Microspheres. Regarding the simplest point-like
objects such as FISH spots, Grigoryan et al. [9] proposed a simulation toolbox
for generating large sets of spots. Each spot was represented by a sphere ran-
domly placed in 3D space. Two individual spheres were allowed to overlap, but
only under specific conditions. Manders et al. [16] also addressed the issue of
virtual spot generation. They verified a novel region-growing segmentation al-
gorithm over a large set of Gaussian-like 3D objects arranged in a grid. Later
Svoboda et al. [26] focused on the generation of microspheres. We would like
to point out that not only spherical-like objects (spots, microspheres) can be
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simulated at this scale-space. Gene structures were modelled in [3] using the
wormlike chain model [10].

In the field of particle-image velocimetry a tool generating standard images
was introduced by Okamoto et al. [19] and used, for example, for the validation
of algorithms tracking the movement of specific positions of DNA molecules [17].

From Single Nucleus to Cell Populations. Concerning cell-like objects,
the vast majority of algorithms responsible for the generation of phantoms uses
the simple geometric shapes, such as circles and ellipses in 2D and spheres and
ellipsoids in 3D space. To check the quality of the new cell nuclei segmentation
algorithm, Lockett et al. [13] generated a set of artificial spatial objects in the
shape of curved spheres, ellipsoids, discs, bananas, satellite discs, and dumbbells.
In [11] and [15] more complex simulators, that could produce large cell popula-
tions, have been designed. However, these toolboxes were designed for 2D images
only. Svoboda et al. [26] extended this model to manipulate fully 3D phantom
of cell nuclei, but with a limited number of generated objects. The progress
was reached in [27] which enabled the generation of large sets of spots and cell
populations. Later this approach was extended by incorporating the creation of
complex phantoms of human colon tissues [25].

Graner et al. [8] focused on time-lapse generation of large cell populations.
They adopted the statistical large-Q Potts model to simulate the reorganization
of uniformly distributed cell-like objects to guarantee the natural shape and dis-
tribution of the cells. The individual cells were, however, characterized by the
shape only, their internal structure was omitted. The generation of synthetic
time-lapse sequences was further developed by Dufour et al. [5]. In their work,
they focused on both the validation of cell segmentation as well as cell track-
ing algorithms. They generated phantoms of several touching 3D cells in order
to validate the ability of the segmentation algorithms to distinguish between
individual cells. The phantoms were then overlaid with blurred additive gaus-
sian noise to mimic intracellular structures and their images further processed
to simulate passing through optical and acquisition systems. To test the motion
tracking, they positioned the phantoms on trajectories they had generated in
advance. It is, however, not clear how they guaranteed the continuity of the in-
ternal cell structures in the neighbouring frames. Similar concept was adopted
by Gerencser et al. [7] who simulated movement of mitochondria to learn and
improve performance of their optical flow method, which they used for study of
mitochondrial motility in real images afterwards. They generated 2D image se-
quences in which mitochondria affected by photon shot noise and signal-to-noise
ratio adjustments were moving with a constant speed. Respective parameters
were varied between sequences. They modelled mitochondria either as spheres
or as elongated cylinders capped with half spheres on both ends.

Unlike the majority of authors who tried to describe the cell shape and struc-
ture analytically Zhao et al. [34] designed an algorithm for generating the whole
2D cell, including the nucleus, proteins, and cell membrane, using machine learn-
ing from real data. The machine learning approach was also adopted in work by
Xiong et al. [33].
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Organs. Macroscopic objects like the kidneys, heart, brain, muscles, or blood
vessels are examples of objects that are relatively easy to model as their shape
and behavior are well understood. The problem is to choose the model that fits
observed data to the greatest extent possible. Generation of the static models
has already been studied extensively when creating the reference phantom image
for the brain [29,21,2]. When handling these types of image data, no movement is
expected. Completely different object types represent the heart or blood vessels,
where activity is studied and kinetic models [6,22,20,1,28,18] are needed.

1.2 Contribution of This Paper

In this paper, we present a novel technique that offers the generation of static
images as well as time-lapse image sequences. Both are fully 3D fluorescence
microscopy image data ranging from images of microspheres up to images of tis-
sues accompanied always with GT information. The GT consists of segmentation
mask for every image in the sequence and optical flow field for every consecutive
pair. Such datasets of static images are, for example, advantageous for perfor-
mance and comparison studies of segmentation methods. The sequences, on the
other hand, are suitable for evaluations of tracking methods. The following sec-
tion explains the methodology. Then, the application of the proposed technique
is presented.

2 Method

2.1 Generation of Static Images

As it has been already mentioned in the first section, each simulator can be split
into three consecutive stages: (I) phantom generation, (II) signal transmission,
and (III) signal detection and image formation. The first stage can be generally
characterized as a collection of particular image processing algorithms that to-
gether give rise to an image of a particular phantom. The process is randomized
to allow for variability, that is, to allow for obtaining different images of the same
simulated object. Clearly, the selection of the algorithms is strongly dependent
on the phantom and, for this reason, thorough description of this stage is beyond
the scope of this paper. We rather encourage the reader to the more appropriate
resources [11,27,25].

The second and the third stages simulate the signal transmitting system and
the signal detector, which is in our case an optical fluorescence microscope with
a CCD camera. Similarly to Malm et al. [15], the main task of the second stage
is to compute convolution with the PSF, which is well-known to be the most
dominant source of aberration. This function describes an image of a single
point signal as it is transmitted through the microscope. We use an empirically
measured one [27]. Besides, we incorporate uneven illumination.

In the last stage we simulate the image formation in the CCD camera, which
is typically mounted on modern optical fluorescence microscopes. In particular,
we generate the readout noise, the dark charge noise and the photon shot noise.
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Fig. 1. Scheme of the proposed simulation toolbox. It consists of three subsequent
phases depicted vertically. In the first phase, the digital phantom and mask is created.
The static phantom, denoted with index (0), may be set in motion to obtain a time-
lapse sequence, eventually. The second phase imitates the optical system while the last
phase simulates the virtual scanning device (here CCD camera). Only the phantom
images are subjected to these two phases. The output of this scheme is either single
synthetic image with its mask or time-lapse sequence of synthetic images with their
masks and flow fields.

2.2 Generation of Image Sequences

In order to generate time-lapse sequence two engines are employed: phantom
generator and sequence generator. The phantom generator (see Section 2.1) is
executed only once to create the initial phantom with its binary mask. After-
wards, the phantom is iteratively transformed with sequence generator. Each
execution of sequence generator produces the transformed phantom and cor-
responding binary mask. Moreover, a flow field describing the transformation
process is obtained as well. Finally, each phantom in the time-lapse sequence
is individually processed in the stages II and III in order to complete the final
time-lapse sequence of synthetic image datasets. Refer to Fig. 1 for overview of
the proposed technique.

The transformation in sequence generator is achieved by warping the given
phantom image according to an artificially generated flow field [12] that mimics
the observed movements. Namely, we utilize the backward (image) transforma-
tion [12] and piece-wise smooth flow fields [30,4]. Basically, a flow field assigns
3D “shift” vector to every pixel of the image according to which the pixel is
“moved” into the next generated image.

The smoothness is important to avoid artifacts during the warping [31]. Also
such flow fields may be concatenated [30] so that we may actually obtain any
image in the sequence directly from the single phantom image created at the be-
ginning of the simulation. As a result, time-lapse continuity of shape and struc-
ture in the generated images is preserved (see Fig. 2). Moreover, the phantom
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(a) t=1 (b) t=6 (c) t=13 (d) t=22 (e) t=31

Fig. 2. Sample images with GT from an artificially generated time-lapse observation of
a nucleus of HL60 cell. In top row, only the middle xy-slice of the 3D image is shown.
The whole sequence consisted of 30 images from which only 5, in which capabilities
of the proposed technique are clearly exhibited, are shown. We additionally overlaid
images with the white grid, which is stationary, and with the crosses, which are fol-
lowing movement of the nucleus, to facilitate observation of the present movements.
The associated GT masks and GT flow fields are shown in the middle and bottom
rows, respectively. The vectors are enhanced for clarity. Colour-encoded flow fields are
shown underneath the vectors. Note that the nucleus included two nucleoli that move
independently. Their movements are best observed with the patches present in the GT
flow fields, which also outline their positions.

image is warped exactly once, which reduces the amount of warping artifacts to
the least possible extent. Note that the 3D shift vectors may be real allowing for
warping at sub-pixel accuracy. In fact, we use this concept in two independent
layers, that is, two phantom images and two smooth flow fields, that are put to
move individually and that ar merged together in the end to produce resulting
image of the sequence (see Fig. 2). A significantly different movement of, for
example, some intracellular compartment compared to the movement of the rest
of the cell can be simulated in this way.

We simulate full 3D rotation and translation with the generated flow fields
in our implementation of the method. We also incorporate linear stretching of
a rectangular 3D volume by defining flow vector at every of the 8 vertices of
the volume. The rest of the flow field is linearly interpolated from these vectors.
Such flow field is capable of producing effects such as magnification, shrinking,
shearing, etc. In fact, we combine these to simulate real movement. Targeting at
evaluation of tracking methods, this concept accommodate both the registration-
based and optical flow-based tracking methods. The generated GT can be used
not only to verify the result of tracking, that is, the tracks of given objects, but
also to verify intermediate results of the methods. For instance, we may encode
image transformation (translation, affine, etc.) into the flow field and verify
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Fig. 3. Initial static synthetically generated image with one HL-60 nucleus inside. This
3D figure consists of three individual images: the top-left image contains a selected xy-
slice, the top-right image corresponds to a selected yz-slice, and the bottom one depicts
a selected xz-slice. Three mutually orthogonal slice planes are shown with ticks.

whether the registration method in question recovered correct parameters of the
transformation. Results of optical flow computing methods can be compared
directly.

Last but not least, we remind that the whole process works in 3D image space.
This is, however, an improvement over the traditional methods [31], to the best
of our knowledge, for producing optical flow datasets with GT as these are based
on different assumptions; for example, specular reflectance of observed objects
or perspective projection of 3D world to 2D imaging plane [31].

3 Application

We have implemented the proposed technique. For the purpose of the presen-
tation of the results, we have selected to generate time-lapse observation of a
nucleus of HL60 cell line. However, the technique is not limited to this cell line
only. Adaptation of the technique to different object type and size is only a
matter of changing its parameters, in contrast to changing its design. Sample
cross-section of a generated 3D image showing nucleus of a HL60 cell is depicted
in Fig. 3. This image was set in motion. For the illustration of the generated
sequence refer to Fig. 2. A video made from the sequence of generated images
can be downloaded from our Information System1. The plausibility of generated
nucleus was examined in our previous work [27]. We have also previously demon-
strated [30,31] that the generating image sequences based on warping of still the
same image according to piece-wise smooth flow fields does not introduce un-
expected artifacts, additional noise or other unwanted distortion to the image
content. In other words, we have managed to generate long image sequences of
constant visual quality. In this particular test, the parameters of the movements

1 http://is.muni.cz/www/4203/HL60demo.avi
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were set based on our observation and experience. They were varying in time
to mimic, sort of, shivering of the nucleus. In addition, we simulated dominant
translational and rotational movement of it.

4 Conclusion

We presented a novel simulation technique. It is capable of generating static im-
ages as well as time-lapse image sequences of fully 3D fluorescence microscopy
image data accompanied with ground truth. Here, the ground truth is repre-
sented by binary image masks and flow fields to aid the evaluation of segmenta-
tion and tracking methods, respectively. The flow fields were used to repetitively
transform the initial image in order to obtain the final image sequence. The im-
portant property of the proposed technique is that it preserves time-lapse con-
tinuity of shape and structure in the generated images and reduces the amount
of image distortion to the least possible extent. Currently, our implementation
can simulate the time-lapse images showing motion of objects of various sizes,
for example, individual GFP probes, HL60 cell line nuclei, granulocytes or cell
clusters.
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