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Abstract. Given a reference signal a, we analytically solve for the crit-
ical points that maximize/minimize the Structural Similarity function
S(x, a) while restricting ourselves to points x that lie on an L2 sphere
centered at a with fixed radius R. To do this, we employ the method
of Lagrange multipliers and show that at least four (and as many as
six) critical points exist, deriving the conditions that guarantee their
existence.

1 Introduction

The original motivation for this problem came from a paper by Wang and Si-
moncelli [4] proposing a method of comparing two computational models M1

and M2 of a perceptually discernable quantity. First synthesize data that max-
imizes/minimizes M1 while holding M2 constant. Then reverse the roles and
repeat. Subjective testing is then performed on these simulated data sets to
determine which model is better.

The two image quality models examined in [4] were mean squared error (MSE)
and the structural similarity (SSIM) index [2]. By holding MSE constant and
varying SSIM, one is essentially travelling over an L2 sphere of constant radius
R and centered at a reference image I, searching for (critical) points at which
the SSIM index between the image I ′ on the sphere and the image I at the
center is maximized/minimized. Computationally, this can be performed using
constrained gradient ascent/descent, as was done in [4]. (Expressions for the
weighted SSIM indices (using local image patches) and their derivatives are
presented in [4].)

The visual variation of images over such an L2 sphere is illustrated very con-
vincingly in the collection of Einstein images that appears in a paper by Wang
and Bovik [3]. In this collection, the 8 bit-per-pixel Einstein test image is shown
along with a number of distorted versions – some obtained by adding noise, some
by blurring and some by shifting. The important fact is that the mean-squared
error (MSE) of these distorted images – hence their L2 distance from the original
test image – is roughly the same. Visually, however, some images appear much
closer to the undistorted image than others. This presentation illustrates very
well the fact that MSE, an L2-based distance, although convenient to employ,
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is not a good measure of visual quality. Indeed, the authors show in this figure
that the SSIM index (and some variations) can assess the visual quality of the
distorted images on the sphere: Images that are visually closer have higher SSIM
values.

These studies lead naturally to the mathematical question of the maximum
and minimum SSIM values – call them Smax and Smin, respectively – on an L2

sphere of radius R. One would expect that these extreme values will depend on
R and, most probably, the variance of the reference image I at the center of
the sphere. Unfortunately, a mathematical analysis of the problem in [4], which
involves SSIM indices computed with local, hence overlapping, image patches
(i.e., sliding windows), is intractable. Here we consider the following simplified
version of the original problem which admits analytic solutions and gives insight
into the general problem:

Given a point a = (a1, · · · , aN) ∈ R
N , let SR(a) denote the L2 sphere of radius

R centered at a, i.e.,

SR(a) = {x ∈ R
N | ‖x− a‖2 = R}. (1)

Find and classify the critical points of the SSIM function,

S(x, a) =
4x̄āsxa

(x̄2 + ā2)(s2x + s2a)
, (2)

on SR(a). Here,

x̄ =
1

N

N∑

k=1

xk, sxa =
1

N − 1

N∑

k=1

(xk − x̄)(ak − ā), (3)

and the formula for s2x = sxx follows.

Those familiar with SSIM will notice that we have set the so-called SSIM stability
constants to zero, simplifying the form of the SSIM function and making possible
an analytic solution of the problem.

A solution of this problem using Lagrange multipliers is outlined in the next
section. (Complete details are to be found in [1].) In the final section, some
examples of the absolute maximum and minimum SSIM values along with their
associated images are presented.

2 The Solution

The Lagrangian function associated with this problem is given by

L(x) = S(x, a) + λg(x), (4)

where

g(x) =

N∑

k=1

(xk − ak)
2 −R2 (5)
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represents the constraint and λ denotes the Lagrange multiplier. As usual, we
impose the stationary constraints, ∂L

∂xp
= 0, 1 ≤ p ≤ N . The necessary partial

derivatives are as follows (they will be useful again later),

∂S

∂xp
=

4ā

N(x̄2 + ā2)2(s2x + s2a)
2

[
sxa(s

2
x + s2a)(ā

2 − x̄2) (6)

+
N

N − 1
x̄(x̄2 + ā2)(s2x + s2a)(ap − ā)− 2N

N − 1
x̄sxa(x̄

2 + ā2)(xp − x̄)

]
.

The Lagrangian stationarity constraints yield the equations

4ā

N(x̄2 + ā2)2(s2x + s2a)2

[
sxa(s

2
x + s2a)(ā

2 − x̄2) +
N

N − 1
x̄(x̄2 + ā2)(s2x + s2a)(ap − ā)

− 2N

N − 1
x̄sxa(x̄

2 + ā2)(xp − x̄)

]
+ 2λ(xp − ap) = 0, 1 ≤ p ≤ N. (7)

Summing up both sides of (7) for 1 ≤ p ≤ N , yields the following equality,

4ā

(x̄2 + ā2)2(s2x + s2a)
2
sxa(s

2
x + s2a)(ā

2 − x̄2) + 2Nλ(x̄− ā) = 0. (8)

Clearly, this equation is satisfied if x̄ = ā but we must also examine the case
x̄ �= ā.

Case 1: x̄ = ā

After some simplification and manipulation, the equations in (7) become

1

(N − 1)(s2x + s2a)
2

[
(s2x + s2a)(ap − xp) +(s2x + s2a − 2sxa)(xp − ā)

]

+ λ(xp − ap) = 0, 1 ≤ p ≤ N. (9)

It is easy to show that

s2x + s2a − 2sxa =
R2

N − 1
. (10)

Substituting this result into (9) yields a set of equations for 1 ≤ p ≤ N which,
after a little algebra, become

[
1

(N − 1)(s2x + s2a)
− λ

]
(ap − xp) = − R2

(N − 1)(s2x + s2a)
2
(xp − ā). (11)

If xp = ā for any p ∈ {1, 2, · · · , N}, then there are two possibilities:

A. xp = ap, implying that ap = ā. Note that the equations xp = ap cannot be
true for all p ∈ {1, 2, · · · , N} since this would imply that x = a, violating the
condition that x ∈ SR(a).
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B. At the extremum, the Lagrange multiplier λ satisfies the equation,

λ =
1

(N − 1)(s2x + s2a)
. (12)

Sub-case B: If Eqn. (12) holds, then, from Eqn. (11), xp = ā for all 1 ≤ p ≤ N .
But this implies that

N∑

k=1

(xk − ak)
2 =

N∑

k=1

(ak − ā)2 = (N − 1)s2a, (13)

which is not necessarily equal to R2. In fact, s2a and R can be chosen indepen-
dently. Hence x does not necessarily lie on SR(a), which violates the constraint.

Sub-case A: Rearrange the equations in (11) for those values of p such that
ap �= xp and call this set of p-values P1:

(N − 1)(s2x + s2a)
2

R2

[
1

(N − 1)(s2x + s2a)
− λ

]
=

xp − ā

xp − ap
, p ∈ P1. (14)

For each pair (a,R), the LHS of (14) is a constant at each extremum, independent
of p. Denote this constant as

β = β(a,R) =
xp − ā

xp − ap
, p ∈ P1. (15)

It is now useful to examine the consequences of (15), noting that

xp − ā = β(xp − ap), 1 ≤ p ≤ N, (16)

since for p /∈ P1, both sides of the equation are zero. First,

N∑

k=1

(xk − ā)2 = β2R2 =⇒ s2x =
1

N − 1
β2R2, (17)

The final result follows from x̄ = ā. Now assume β �= 0. This is reasonable, since
not all of the xp are equal to ā. Then we can write

2sxa =
1

N − 1
β2R2 − 1

N − 1
R2 + s2a. (18)

If β = 1 then from (16), ap = ā and so s2a = 0. Substituting Eqns. (18) and (17)
into (2) yields the trivial result S(x, a) = 0. If β �= 1 then, from Eqn. (10),

sxa =
β

β − 1
s2a. (19)

Returning to the structural similarity function in Eq. (2) and employing the
results obtained so far, including x̄ = ā, we find that

S(x, a) =
βs2a

βs2a +
β−1
2

R2

N−1

. (20)
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The combination of Eqs. (18) and (19) produces a cubic equation in β with roots
β = −1 and

β = 1± sa
R

√
(N − 1). (21)

It remains to find the values of S(x, a) that correspond to each value of β.
Substituting β = −1 into Eqn. (16) and rearranging yields the point

x =
1

2
(a− ā1), (22)

where 1 denotes the N -vector (1, 1, · · · , 1). Since this point does not lie on the
sphere SR(a), the root β = −1 is rejected.

The other two roots in (21) yield the structural similarity values

S1,2 =
a± c

a± c+ b
, (23)

where

a = s2a, b =
R2

2(N − 1)
, c = sa

R√
N − 1

. (24)

Since a, b, c > 0, it follows from simple algebra that S1 > S2.
Since the values of β corresponding to the extrema have been identified, the

points x ∈ R
N at which each of the extrema occur can be computed from Eqn.

(15). For the β value corresponding to each case, we can solve for xp (details
omitted) and find that the condition x̄ = ā is satisfied. In vector format, the
extremum point is given by

x = a± R

sa
√
N − 1

a′, (25)

where a′ = a− ā1 denotes the zero-mean component of a. In fact,

x = a±Râ′, (26)

where â′ is the unit vector in the direction of the zero-mean component a′. (This
follows from ‖â′‖ = sa

√
N − 1.) Thus, x ∈ SR(a).

Case 2: x̄ �= ā

Returning to Eqn. (8), if x̄ �= ā, then the factor x̄ − ā may be divided out to
obtain the result

λ =
2āsxa(x̄+ ā)

N(x̄2 + ā2)2(s2x + s2a)
. (27)

Substituting this result into Eqn. (7) and rearranging yields the equation

(xp − x̄)σxa

[
(σ2

x + σ2
a)(ā+ x̄)− 2N

N − 1
x̄(x̄2 + ā2)

]

+(ap − ā)(σ2
x + σ2

a)

[
N

N − 1
x̄(x̄2 + ā2)− σxa(x̄+ ā)

]
= 0. (28)
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As in Case 1, rearrange the equations in (28) for those values of p such that
ap �= ā and call this set of p-values P2. An analysis similar to that of Case 1
then shows that the following ratio is constant at each extremum:

α = α(a,R) =
xp − x̄

ap − ā
, p ∈ P2. (29)

The consequences of this relation will again be examined, noting that

xp − x̄ = α(ap − ā), 1 ≤ p ≤ N, (30)

since for p /∈ P2, both sides of the equation are zero. First, squaring both sides
and summing over 1 ≤ p ≤ N yields s2x = α2s2a. Furthermore, from the definition
of sxa it is found that sxa = αs2a.

In order to determine acceptable values for α, we return to Eqn. (6) which
gives the components of the gradient vector ∇S. At a stationary point x, it is
necessary that ∇S(x) be a constant multiple of the outward normal vector n̂ to
the sphere SR at x, given by

n̂ =
1

R
(x1 − a1, x2 − a2, · · · , xN − aN ) =

1

R
(x − a). (31)

Now substitute the above results into Eqn. (6) to yield

∂S

∂xp
=

4ā

N(x̄2 + ā2)2(s2x + s2a)
2

[
αs4a(1 + α2)(ā2 − x̄2)

+
N

N − 1
x̄(x̄2 + ā2)(1− α2)(ap − ā)

]
. (32)

In general, the only way that the gradient vector ∇S can be a multiple of the
normal vector n̂ is when the final term in Eqn. (32) vanishes, i.e., when α = ±1.

Sub-case 1: α = 1. In this case, Eqn. (30) can be written as

xp − ap = x̄− ā. (33)

Furthermore, since x must lie on the sphere SR(a), squaring both sides of (33)
and summing over 1 ≤ p ≤ N yields

N∑

p=1

(xp − ap)
2 = R2 = N(x̄− ā)2. (34)

This implies that

x̄ = ā± R√
N

. (35)

Substitution of this into Eqn. (33) yields the two critical points,

x1a,1b = a± R√
N

(1, 1, · · · , 1) = a±R1̂, (36)



The SSIM Ball Problem 75

where 1̂ is the unit vector in the direction 1 = (1, 1, · · · , 1). In other words, the
vector x− a is perpendicular to the plane x̄ = ā.

Here it is worthwhile to comment that the critical points x in Eq. (36) repre-
sent constant greyscale shifts of the reference image a.

The values of S(x, a) at the critical points x1a and x1b are found to be

S1a,1b(x, a) =
2ā

(
ā± R√

N

)

2ā
(
ā± R√

N

)
+ R2

N

. (37)

Sub-case 2: α = −1. In this case, Eqn. (30) becomes

xp − x̄ = ā− ap. (38)

Rewrite the above equation as

xp − ap = (x̄− ā) + 2(ā− ap). (39)

Now square both sides and sum over the index 1 ≤ p ≤ N :

R2 =

N∑

p=1

(xp − ap)
2 = · · · = N(x̄− ā)2 + 4(N − 1)s2a. (40)

A slight rearrangement yields

x̄ = ā± 1√
N

√
R2 − 4(N − 1)s2a (41)

This result is feasible provided R and N are chosen so that

Δ = R2 − 4(N − 1)s2a ≥ 0. (42)

When Δ ≥ 0, substitution of (41) into (38) yields the following critical points,

x−1a,−1b = 2ā1− a±
√
Δ1̂. (43)

with corresponding values of S(x, a) given by

S−1a = −
2ā

(
ā+

√
Δ
N

)

2ā
(
ā+

√
Δ
N

)
+ Δ

N

, S−1b = −
2ā

(
ā−

√
Δ
N

)

2ā
(
ā−

√
Δ
N

)
+ Δ

N

. (44)

The quantities S1a, S1b, S−1a, and S−1b have the same form that was encountered
in the x̄ = ā case. The same analysis shows that

S1a > S1b and S−1b > S−1a if ā > 0,

S1a < S1b and S−1b < S−1a if ā < 0. (45)

Once again, the extremum points x(1) and x(2) in Eq. (43) represent constant
greyscale shifts of the reference image a.
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3 Conclusions and Some Illustrative Results

Let us summarize our findings below, introducing appropriate notation to differ-
entiate between the two cases. The following critical points and corresponding
values of S(x, a) were identified:

Case 1: x̄ = ā

S
(1)
β =

s2a + sa
R√
N−1

s2a + sa
R√
N−1

+ R2

2(N−1)

at x = a+Râ′

S
(2)
β =

s2a − sa
R√
N−1

s2a − sa
R√
N−1

+ R2

2(N−1)

at x = a−Râ′ (46)

Case 2: x̄ �= ā

S(1)
α =

ā
(
ā+ R√

N

)

ā
(
ā+ R√

N

)
+ R2

2N

at x = a+R1̂

S(2)
α =

ā
(
ā− R√

N

)

ā
(
ā− R√

N

)
+ R2

2N

at x = a−R1̂.

S(3)
α = −

ā
(
ā+

√
Δ
N

)

ā
(
ā+

√
Δ
N

)
+ Δ

2N

at x = 2ā1− a+
√
Δ1̂,

S(4)
α = −

ā
(
ā−

√
Δ
N

)

ā
(
ā−

√
Δ
N

)
+ Δ

2N

at x = 2ā1− a−
√
Δ1̂. (47)

The last two critical points exist provided Δ = R2 − 4(N − 1)s2a ≥ 0. All ex-
tremum points for Case 2 represent constant greyscale shifts of the reference
image a.

These formulas have been verified numerically. It would be desirable to derive a
condition that guarantees whether the global extrema for S(x, a) occur on or off
the plane x̄ = ā. Indeed, numerical results show that global maxima and minima
may be obtained both on and off the plane. Unfortunately, actually classifying
and comparing these critical points seems quite complicated, if indeed possible.

However, we have shown that S
(1)
β > S

(2)
β . It is also true that

S(1)
α > S(2)

α and S(4)
α > S(3)

α if ā > 0, and

S(1)
α < S(2)

α and S(4)
α < S(3)

α if ā < 0. (48)

Only the first set of relations holds for images with positive greyscale values.
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(a) Best: SSIM = 0.9408 (b) Best: SSIM = 0.9121

(c) Original: SSIM = 1 (d) Original: SSIM = 1

(e) Worst: SSIM = -0.8466 (f) Worst: SSIM = -0.7783

Fig. 1. Best and worst 8 × 8-pixel block approximations to Lena and Peppers while
each is constrained on an L2 sphere of radius 300
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We now present the results of some calculations involving the 512× 512 pixel,
8 bit-per-pixel, Lena and Peppers test images. A local block-based approach has
been taken. Let Bi denote an image subblock, considered as an N -vector. For
each Bi, the best and worst approximations to Bi, according to SSIM, while
being constrained on an L2 sphere of radius R centered at Bi were computed.
(This was done by evaluating all critical points and selecting the maximum and
minimum values.) In the following calculations, 8 × 8 non-overlapping image
subblocks were used and the radius R = 300. Fig. 1 shows the results of these
experiments. The SSIM values reported in the figure are the averages of the
(64× 64 = 4096) non-overlapping block SSIM values.

It was found that the best approximations on the L2 sphere almost always

occur off the plane x̄ = ā and correspond to the SSIM value S
(1)
α , implying a

constant greyscale shift given by Eq. (36). On the other hand, the worst approx-
imations are usually obtained on the plane x̄ = ā. In fact, of all the eight test
images used, Peppers was the only image where a best approximation occurred
on the plane x̄ = ā (note the dark black blocks in the shadows).

These findings are rather counterintuitive and represent, in our opinion, one
of the most important contributions of this paper. One might think that the
means of blocks need to be matched in order to optimize the SSIM. The above
results show that, in fact, this is not the case – the decrease in SSIM caused
by mismatched means can be overcompensated by an increase in the correlation
term to produce a net increase in SSIM.
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