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Abstract. Clustering is a classical tool in image analysis, with wide ap-
plications. Yet, most of its algorithmic solutions include a considerable
amount of stochasticity, e.g. due to different initialisations. Here, we in-
troduce a clustering method rooted on self organizing maps, that exploits
the maps’ intrinsic variability, to produce reliable clustering. Although
only a subset of the data is consistently clustered, we show that this set
is trustworthy, and can be used for posterior classification.

1 Introduction

Data clustering is widely used in statistical data analysis. Its applications include
data mining, image analysis and bio-informatics. Clustering means partitioning
the data into different groups, clusters, so that in each group similarity can be
found, whereas differences exist across clusters. This shared similarity is typically
measured by some defined distance.

Clustering methods are typically based either on competitive learning [1], or
statistical model identification [9]. In competitive learning based clustering, first
the parameters are adjusted through learning. After this step, the network is
ready for generalisation. A common example of competitive learning is k-means,
where the objective is to find cluster centres and assign the data to the nearest
cluster centre. In the case of k-means, the learning occurs by minimizing the
squared distances inside each cluster.

Statistical modeling methods assume that a mixture of underlying probability
distributions generates the data. Parameter estimation can then be performed,
e.g. through maximisation of the log-likelihood function. An advantage of using
a statistical model is that the choice of the clustering criterion is less arbitrary
than in competitive learning and the approach includes rigorous statistical tests.
Yet, the definition of the used model is not always easy to set.

On most methods, noise often renders the identification of the true clusters
difficult. Furthermore, the algorithms may approach the solution via different
paths, depending on the algorithm’s initial conditions. To solve this problem, one
can run the algorithm multiple times, making sure that the starting conditions
differ in each run. Then, using a measure of intra-cluster variance, the best
clustering result can be identified.
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Another approach is to use the different results of each clustering run, to-
gether with their variability [13]. We propose a clustering method based on an
analysis of consistency in self-organizing maps (SOM,[6]). Such analysis is par-
ticularly relevant for an algorithm such as SOM, with its intrinsic stochastic
nature and dependence on the initialisations. Because of its ease of use, as well
as ability to efficiently map high-dimensional data into a 2D lattice, SOM has
been widely used in many applications, with over 10.000 published papers ([7]).
In our approach, several maps are built, and the clustering consistency assessed
to produce a set of overall reliable clusters.

2 Methods

Self-organising Maps

SOM may be formally described as a non-linear, ordered, smooth mapping
of high-dimensional input data manifolds onto the elements of a regular, low-
dimensional array. It performs a lattice projection that preserves similarity in-
formation in the input space, through competitive learning with an Hebbian
learning rule [8]. After training, the result is a topographic map representing the
input patterns. In this map, similar input patterns are represented by neurons
that are close in the SOM space.

To produce quantitative descriptions of data properties, interesting groups
of map units, i.e. clusters must be identified among the local minima of the
SOM [11].

With different random initialisations, the SOM representations of the data
may vary. Therefore, data points sharing the same cluster in a given run of SOM
may be projected to different clusters in another. We define as consistent clusters
those comprising elements that are grouped together in a large number of runs.

To better illustrate this concept, we show three possible runs using toy-data
in Fig. 1. On the leftmost example, the numbered circles are all in the same
cluster. In the other two cases, circle 3 appears in different clusters from the other
two. Consistency in clustering membership, such as 1 and 2, is indicative of a
good class estimation. Circle 3 has too much variability in its clustering grouping
to represent the same class. Note that these changes in clustering assignments
are typical for different runs of stochastic algorithms.

In our experiments, we trained one hundred SOMs, using the SOM Tool-
box [2]. The algorithm was run in batch mode, with random initialisations for
each run. To further increase the variability in the clustering conditions, the
dimensions of the maps were also changed in every run.

Consistent Clusters

To analyze the consistency of the various clusters, one may use a variety of
distance measures, and subsequently join redundant clusters [12]. We used two
such measures, one based on the elements included in each cluster, and another
on the value distributions of the elements belonging to different clusters.
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Fig. 1. Clustering results for three different SOM initialisations, using toy data. The
circles represent different data points, while the dashed lines define the clusters. Circles
1 and 2 always appear together for different SOM runs, representing one same class.
Circle 3 won’t be picked to represent any class due to the variability of its clustering.

The first measure is defined as
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where c represents a cluster with N elements and {i,j} represent cluster indices;
cnl , for l = i, j, is 1 if element n belongs to cluster l, and 0 otherwise. N is the
total number of data elements. ∧ and ∨ are the AND and OR logic operators,
respectively.

We joined clusters that exceeded a heuristically selected threshold of d1ij >
0.8. This value does not depend on the dataset, and its purpose is to remove
redundant clusters.

After this first merging analysis, we proceed to a second stage of grouping. In
this stage, the clusters are compared using their data distribution:
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√
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2, (2)
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X represents the values of the elements belonging to gl.
During this second stage, clusters with d2ij > .9 are merged. This value was

heuristically selected to allow for some variability, which accounts for noise and
other artefacts in the observed data. A higher value would increase the number
of clusters obtained, while a smaller value would group together clusters that
might represent different classes.

The two aforementioned measures can not be combined into one due to their
different points of application. The first deals with element-cluster assignments,
whereas the second uses distribution information.
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Fig. 2. Two data-sets used for experimental illustrations of the proposed method. Only
one height is shown for both data, although the experiments were done for the full brain
volume.

3 Experiments

Simulated Data

Synthetic data from the BrainWeb database [3,4] was used to test the behaviour
of the clustering algorithm in different settings, see Fig. 2(a). It comprised a
normal phantom with labels for cerebrospinal fluid (CSF), grey matter (GM) and
white matter (WM). The image slices, with 1mm of thickness, were generated
from 3 different sequences (T2, PD and T1). The images were available with and
without magnetic field inhomogeneity. Different levels of noise (0/1/3/5/9% of
the maximum image intensity) were used for each homogeneity condition.

The ground truth for the simulated data was readily available from the
BrainWeb database, see Fig. 3(a). This allowed for a thorough evaluation of
the clustering results, although this information was not used for clustering.

For clarity, only the visual results for the BrainWeb set with no inhomogeneity
and 5% noise level are shown in Fig. 3(b). All other results can be found in the
summarizing tables.

The SOM map dimensions changed in every run according to a bi-dimensional
normal distribution with a mean of 20 and a variance of 2.

The consistent results shown in Fig. 3(b) correspond to around 60% of the
total amount of voxels present in the images, with minimal erroneously classified
voxels (less than 2%), see Table. 1. Table. 2 gives a discriminated percentage of
how many voxels are correctly identified, for each tissue, when compared to the
ground truth. Consistent voxels for CSF and WM are usually more than 80% of
the total number of voxels of that tissue. The addition of inhomogeneity and/or
noise typically results in a concomitant decrease in the number of voxels found,
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especially in the case of GM and WM. This effect is not so evident in CSF since
this class is located mainly in areas not affected by inhomogeneity and has a
high intensity uniformity.

(a)

(b)

Fig. 3. Results for the segmentation using the simulated data, 5% noise level and no
inhomogeneity. The first row shows the ground truth. The clusters found are shown in
the second row. The classes are CSF, GM and WM, from left to right respectively.

Table 1. Percentage of true positives of the consistent clustering for the simulated
data-set with different levels of noise, and presence of a 20% inhomogeneity field

Noise % 0 1 3 5 9

Inhomogeneity no yes no yes no yes no yes no yes

CSF 100% 99% 99% 99% 97% 96% 97% 98% 98% 97%

GM 100% 100% 100% 100% 100% 100% 98% 98% 96% 96%

WM 100% 100% 100% 100% 99% 99% 99% 99% 98% 90%

Grand Challenge Data

We also tested our approach on real data, from the Grand Challenge II [10],
illustrated in Fig. 2(b). The images used were acquired with a 3T Siemens scan-
ner (scan parameters: axial plane, FOV 250mm, matrix 512x512, slice thickness:
5mm, interslice gap 0.5mm) and included FLAIR, T2 and T1 sequences. Several
foci of lesion can be clearly seen in the FLAIR sequence, as its brightest voxels,
near the ventricles and inside the white matter. We only show results for the
multiple sclerosis (MS) lesion class, since this is the only one with segmentation
ground truth, defined by 2 different expert raters.
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Table 2. Total number of ground truth voxels in parenthesis, and percentage of those
found to be consistent in the same conditions as in Table. 1

Noise % 0 1 3 5 9

Inhomogeneity no yes no yes no yes no yes no yes

CSF (154110) 93% 91% 92% 92% 95% 95% 80% 72% 83% 70%

GM (483145) 61% 15% 48% 30% 30% 20% 53% 61% 45% 72%

WM (493222) 86% 83% 84% 63% 84% 84% 58% 56% 57% 47%

Segmentation results for the Grand Challenge dataset are displayed in Fig. 4.
One should note that there is a clear difference between the number of lesion
voxels and that of other tissues. Such difference is likely to affect the clustering
performance of SOM.

(a) (b) (c)

(d) (e)

Fig. 4. Clustering found for MS lesion in the Grand Challenge data. Figures 4(a)
and 4(c) correspond to the ground truth, as rated by two different annotators. Figure
4(b) shows the original FLAIR image. Figure 4(d) shows the result of our consistent
clustering, while Fig. 4(e) represents the refined clustering obtained from the estimate
shown in Fig. 4(d).

The process of annotating real structural MR images is often subjective. Com-
paring the sub-figures (a) and (c) in Fig. 4, corresponding to two independent
expert annotators, it is clear that both diverge in what they consider to be le-
sion. If one defines as total ground truth all voxels identified by both annotators
(0.6% out of 3188536 total voxels), the lesion selection shown in Fig. 4(a) missed
33%, while that of Fig. 4(c) missed 53%. Applying our method to the data,
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see Fig. 4(d), the number of true positives only reached 9%. Many voxels that
have similar intensity to lesion were considered lesion by the method.

As noted earlier, the number of lesion voxels is very small, rendering the
clustering process difficult. To circumvent such limitation, we refined our study
by applying a second time the proposed method, now only applied to our first
estimate. This procedure, displayed in Fig. 4(e), resulted in missing only 44% of
the lesion, which is in line with the annotators’ mismatches.

4 Discussion

Our method aims at contributing to the robustness and consistency of self-
organizing maps. It allows to obtain reliable clusters in the data, with high
internal similarity.

To show the relevance of a consistency study, we can compare the results of
one run with the ones from the consistent runs. For the simulated data with
5% noise case and no inhomogeneity, a typical result of one SOM is 64/84/78%
of true positives for CSF, GM and WM respectively, with 5% misclassification.
Our methodology improves both the misclassification and the number of true
positives found.

The method can also be applied to other stochastic clustering algorithms,
such as k-means. Using the aforementioned data, a typical k-means result is
64/84/96% of true positives for CSF, GM and WM respectively, with more than
10% erroneously clustered voxels. Using consistent k-means the misclassification
is reduced to less than 1%, while the number of true positives stays the same.
These results are better than those of a single run, but worse than the ones
obtained with consistent SOMs.

Although promising, as observed from the results shown in this article, not
all data points can be clustered. Therefore a subsequent classification method
can be used to extend the results to the whole dataset. This classification can
then use the clusters found through our method as reliable labels. One particular
example, using the same simulated data set, can be found in [5].

When using our method in unbalanced data, like the Grand Challenge dataset,
the clusters obtained are not as reliable. Clustering relies on clear differences
between groups of data. If this distance is not significant, and the number of
available sample of one of those classes is clearly insufficient to represent it,
clustering will suffer. When compensating for this, by using a smaller number
of voxels, the method performs remarkably well. In the Grand Challenge data,
the results obtained in this smaller set are comparable with the ones from the
annotators. Even the topographic locations and intensity values of the voxels
detected are in line with the voxels selected manually.

We have observed in own experiments that small clustering errors can still
be compensated during classification, if a sufficient amount of consistent labels
exist.
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5. Gonçalves, N., Nikkilä, J., Vigário, R.: Partial Clustering for Tissue Segmentation
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