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Abstract. In this paper we propose a classification method that generalizes the
k-nearest neighbor (k-NN) rule in a maximum a posteriori (MAP) approach, us-
ing an additional characterization of the datasets. That characterization consists
of a high order dissimilarity called dissimilarity increment; this dissimilarity mea-
sure uses information from three points at a time, unlike typical distances which
are pairwise measures. In practice, in this model, the likelihood of a point not
only depends of its direct k neighbors, but also of the nearest neighbor of each
one of its k neighbors. Experimental results show that the proposed classifier out-
performs more traditional and simple classifiers like Naive Bayes and k-nearest
neighbor classifiers. This improved performance is especially noticeable relative
to k-NN when k is poorly chosen.

Keywords: classification, dissimilarity increments, maximum a posteriori,
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1 Introduction

Pattern recognition is an important area of engineering, with applications in fields such
as biology, marketing, computer vision, and remote sensing. It is a broad field with
fuzzy boundaries; generally, one can say that it involves the automatic detection of
interesting structures in sets of data, with little or no intervention from human experts.

In classification, one has access to a set of objects which have already been labeled
(by human experts or by some other means) and the goal is to use that knowledge to la-
bel new data objects. Formally, the goal is to assign an object from the test set, x, to one
of M classes c1, . . . , cM [2,6]. There are numerous ways to do this assignment, either
assuming probabilistic models for the data, or based on dissimilarities computed be-
tween target objects and a representative training set. The k nearest neighbors algorithm
(k-NN) is a very popular algorithm in the latter class, which assigns the new object to
a class determined by the most frequent class among its k closest objects within the
training set. Other popular approaches include Naive Bayes, neural networks, support
vector machines (SVMs) and Parzen windows, among many others [2,5,7].

In a Bayesian approach, the classification consists in computing conditional proba-
bilities, the a posteriori probabilities, p(ci|x), i = 1, . . . ,M , for an unknown pattern,
x, and assign that pattern to the class with the highest conditional probability value.
This decision rule is known as Maximum A Posteriori (MAP) [2,5,7].
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In this paper we focus on the MAP approach and the k-NN density estimation. We
develop an algorithm that takes into account the k nearest neighbors of a pattern and
also a high-order dissimilarity measure, called dissimilarity increment, which uses in-
formation from three points at a time. The use of this measure is motivated by the fact
that a pattern may be misclassified by k-NN if the classes are close or overlapped.

This paper is organized as follows: Section 2 starts with a brief presentation of
the dissimilarity increments distribution (DID) and formulates the proposed algorithm,
MAP-kDID, which is a maximum a posteriori approach that uses k-NN and the DID to
obtain the likelihood probability. We present, in Section 3, the performance of the pro-
posed algorithm for real datasets from UCI Machine Learning Repository, in compari-
son with other traditional classification algorithms. Conclusions are drawn in Section 4.

2 The Algorithm MAP-kDID

2.1 Dissimilarity Increments Distribution

Let X be a set of patterns, and (xi,xj ,xk) a triplet of nearest neighbors belonging to
X , where xj is the nearest neighbor of xi and xk is the nearest neighbor of xj , different
from xi. The dissimilarity increment (DI) [4] between these patterns is defined as

dinc(xi,xj ,xk) = |d(xi,xj)− d(xj ,xk)| . (1)

Here, d(·, ·) is some pairwise dissimilarity measure or distance. The measure dinc con-
tains information different from a distance: the latter is a pairwise measure, while the
former is a measure for a triplet of points; it is thus a measure of higher-order dissimi-
larity of the data.

In [1] the DIs distribution (DID) was derived for a vectorial feature space, using the
Euclidean distance as the pairwise dissimilarity measure, and under the hypothesis of
Gaussian distribution of the data. This distribution was written as a function of the mean
value of the DIs, λ. The mathematical expression of the DID is given by
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where erfc(·) is the complementary error function, and β = 2−√
2. We present in Fig-

ure 1 an example of the fit of the DID to a histogram of increments. Those increments
were computed using the Euclidean distance in a Gaussian dataset with 1000 samples
in 5 dimensions.

In this paper, we will use feature vector representations (all the experiments per-
formed here use this representation) and the notation from the previous paragraphs.

2.2 MAP-kDID

Let {xi, ci, Si}Ni=1 denote the labeled dataset, where xi is a feature vector in R
D rep-

resenting an object, ci is the corresponding class label, and Si = {wi1 , . . . , wiMr
} is
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Fig. 1. Scaled histogram of increments and fit dissimilarity increments distribution for a Gaussian
dataset

the set of increments yielded by all the triplets of nearest neighbors points containing
xi. We assume that each class ci has a single statistical model for the increments, with
an associated parameter λi. We present an illustrative example of this labeled dataset in
Figure 2.

We design a maximum a posteriori (MAP) classifier that combines the k-nearest
neighbor (k-NN) density estimator and the information given by the increments, as-
suming that xi and Si are conditionally independent given cj . Therefore, p(xi, Si|cj) =
p(xi|cj)p(Si|cj).

Thus, the class-conditional density of the vector xi, according to the k-NN density
estimator is given by

p(xi|cj) =
Ncj

kV
, (3)

with k the number of neighbors, Ncj the number of points of class cj among the k
nearest neighbors of xi, and V is the volume of a neighborhood of xi containing its k
nearest neighbors [7]. The class-conditional density of the set of increments associated
with xi is given by

p(Si|cj) = 1

Mr

Mr∑
n=1

p(win |cj), (4)

where Mr is the number of increments of the set Si, win is the n-th increment of that
set, and p(win |cj) = p(win |λj) is the DID given by equation (2).

We classify new patterns according to the maximum a posteriori (MAP) rule, defined
by

xi ∈ cj : j = argmax
l

p(cl|xi, Si). (5)

According to the Bayes rule we can write

p(cj |xi, Si) =
p(xi, Si|cj)p(cj)∑
m p(xi, Si|cm)p(cm)

=
Ncjp(Si|cj)p(cj)∑

m Ncmp(Si|cm)p(cm)
. (6)

Note that this expression does not depend on k or V . We used as a prior class probability,
p(cj), the percentage of points of the training set belonging to class cj . Each pattern is
assigned the label which maximizes the posterior probability.
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Fig. 2. Illustrative example of a labeled dataset, {xi, ci, Si}Ni=1, exploring dissimilarity incre-
ments. This dataset is composed by two classes, with a statistical model λi for each class rep-
resented in the histograms. Also, we present an example of a dissimilarity increments set, Si, in
the zoomed area in the bottom. The zoom-in is centered around a point xi from the test data. In
this example, there are 5 increments containing xi, each represented with two arrows of the same
color. The direction of the arrow indicates the result of the search of triplets of nearest neighbors
points. Si thus has Mr = 5 increments. The red points are the training points involved in the
computation of xi’s increments.

3 Experimental Results and Discussion

To test the performance of the proposed method we used 12 real-world datasets from
the UCI Machine Learning Repository1. See Table 1 for a summarized description of
each dataset.

1 http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml
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Table 1. Real-world datasets with the corresponding number of samples, number of features and
number of classes

Data # samples # features # classes
Breast-cancer 683 9 2
Crabs 200 5 2
Iris 150 4 3
Pima 768 8 2
Wdbc 569 14 2
Ionosphere 351 10 2
Austra 690 15 2
German 1000 24 2
Heart 270 9 2
Liver 345 6 2
Auto-mpg 398 6 2
Uci-Segmentation 2310 10 7

We compared the proposed algorithm (MAP-kDID) with k-NN, 1-NN, Naive Bayes
and maximum a posteriori classifier assuming a Gaussian Mixture Model (MAP-GMM).
We generated 100 versions of each dataset by randomly permuting its elements. On each
of these permuted datasets, the first 10% of samples are kept for testing, with the remain-
ing used to train the classifiers. Figures 3 and 4 present the average error rate on those
100 permutations along with standard deviation.

For k-NN and MAP-kDID we need to set the value of k. Thus, we performed two
types of experiments: in the first one, we fixed k to be 5 (see Figure 3); on the other
experiments, we run these two algorithms with k ∈ {3, 5, 9, 11, 15, 19} and the best
k was chosen by the best average error rate of each algorithm (see Figure 4). Also,
for the MAP-GMM algorithm we trained the parameters using the Gaussian Mixture
Decomposition proposed in [3]. We performed 20 runs of this algorithm and chose the
best parameters using the intrinsic criterion, which is a minimum description length.

In Figure 3, MAP-5DID is better than 5-NN in most datasets. Moreover, MAP-5DID
is better than or equally good as all the other algorithms in all the datasets. In particular,
MAP-5NN performs very well on the German, Ionosphere, Pima, and Breast Cancer
datasets. On the other hand, its performance is similar to that of other algorithms in
datasets such as Iris or UCI-Segmentation; in fact, on those datasets, all algorithms
yield very similar error rates.

If k for MAP-kDID and k-NN is chosen according to the smallest error rate, as in
Figure 4, we notice that MAP-kDID is slightly better than k-NN. k-NN (recall that
k ∈ {3, 5, 9, 11, 15, 19}) has improved error rates compared to 5-NN, especially in
the Breast Cancer, Pima, Ionosphere and German datasets. Also, in the Austra dataset,
Naive Bayes is slightly better than all the other classifiers; finally, 1-NN is, in most of the
datasets, the worst classifier. In the Iris and Auto-mpg datasets, MAP-kDID is slightly
better than the other classifiers, and has improved when compared to MAP-5DID.

The main conclusion from these results is that the use of the DID significantly
improves the results of k-NN when k is fixed. The use of the high-order dissimilar-
ity helps to mitigate the loss of performance from wrong choices of k, as shown by the
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Fig. 3. Average and standard deviations of the error rate over 100 permutations of the datasets
for the proposed algorithm (MAP-kDID, with k = 5), k-Nearest Neighbor (k-NN, with k = 5),
Gaussian Mixture Models (MAP-GMM), 1-Nearest Neighbor (1-NN) and Naive Bayes classifier
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Fig. 4. Average and standard deviations of the error rate over 100 permutations of the datasets for
the proposed algorithm (MAP-kDID), k-Nearest Neighbor (k-NN), Gaussian Mixture Models
(MAP-GMM), 1-Nearest Neighbor (1-NN) and Naive Bayes classifier. MAP-kDID and k-NN
were run for k ∈ {3, 5, 9, 11, 15, 19} and the best value was chosen by the best average error
rate of each method.
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significant difference between MAP-5DID and 5-NN in Figure 3. If one knows the true
value of k, or can estimate it as we did in Figure 4, the improvement is less noticeable.

4 Conclusions

We proposed a new Bayesian classifier, MAP-kDID, which is a maximum a posteriori
decision rule using the k-Nearest Neighbor (k-NN) density estimation and the distribu-
tion of a high order dissimilarity, called dissimilarity increments.

Experimental results show that the use of the dissimilarity increments distribution
(DID) improves the performance of k-NN, and that MAP-kDID is equally good as or
better than other classifiers. In particular, the use of the DID improves the performance
of k-NN in cases where k is unknown or poorly chosen.
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