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Preface

These proceedings contain the papers selected for presentation at the 10th
International Conference on Applied Cryptography and Network Security
(ACNS 2012), held during June 26–29, 2012, in Singapore. The conference was
organized by iTwin, sponsored by AdNovum, and supported by Infocomm De-
velopment Authority of Singapore (IDA).

In response to the call for papers, 192 papers from 38 countries were submitted
to the conference. These papers were evaluated on the basis of their significance,
novelty, technical quality, and practical impact. Reviewing was “double-blind”:
the identities of reviewers were not revealed to the authors of the papers and au-
thor identities were not revealed to the reviewers. The Program Committee meet-
ing was held electronically, yielding intensive discussion over a period of two weeks.
Of the papers submitted, 33 were selected for presentation at the conference and
inclusion in this Springer volume (LNCS 7341), giving an acceptance rate lower
than 18%.

Besides the technical program composed of the papers collated in the pro-
ceedings, the conference included a non-archival industrial track. The conference
was also featured with 3 keynote speeches, by Moti Yung (co-founder of ACNS)
entitled “Applied Cryptography and Network Security - 10 years in the past
and 10 years in the future”, by Peng Ning entitled “Cloud Computing Infras-
tructure Security”, and by Hongjun Wu entitled “JH in the NIST Hash Function
Competition”, respectively.

There is a long list of people who volunteered their time and energy to put
together the conference and who deserve special thanks. Thanks to the Pro-
gram Committee members and the external reviewers, for all their hard work in
the paper evaluation. Owing to the large number of submissions, the Program
Committee members were required to work hard in a short time frame, and we
are very thankful to them for the commitment they showed with their active
participation in the electronic discussion.

We are also very grateful to all those people whose work ensured a smooth
organization process: Xinyi Huang and Giovanni Livraga, Publicity Chairs, for
their work in ensuring the wide distribution of the call for papers and participa-
tion; Shen-Tat Goh, Organizing Chair, as well as Lux Anantharaman and Kal
Takru for taking care of the local organization and Ying Qiu for managing the
conference website and EasyChair system.

Last but certainly not least our thanks go to all the authors who submitted
papers and all the attendees. We hope you find the program is stimulating and
a source of inspiration for your future research and practical development.

April 2012 Feng Bao
Pierangela Samarati

Jianying Zhou
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Security Analysis of a Multi-factor
Authenticated Key Exchange Protocol

Feng Hao and Dylan Clarke

School of Computing Science
Newcastle University

{feng.hao,dylan.clarke}@ncl.ac.uk

Abstract. This paper shows several security weaknesses of a Multi-
Factor Authenticated Key Exchange (MK-AKE) protocol, proposed by
Pointcheval and Zimmer at ACNS’08. The Pointcheval-Zimmer scheme
was designed to combine three authentication factors in one system, in-
cluding a password, a secure token (that stores a private key) and biomet-
rics. In a formal model, Pointcheval and Zimmer formally proved that an
attacker had to break all three factors to win. However, the formal model
only considers the threat that an attacker may impersonate the client; it
however does not discuss what will happen if the attacker impersonates
the server. We fill the gap by analyzing the case of the server imperson-
ation, which is a realistic threat in practice. We assume that an attacker
has already compromised the password, and we then present two further
attacks: in the first attack, an attacker is able to steal a fresh biometric
sample from the victim without being noticed; in the second attack, he
can discover the victim’s private key based on the Chinese Remainder
theorem. Both attacks have been experimentally verified. In summary,
an attacker actually only needs to compromise a single password factor
in order to break the entire system. We also discuss the deficiencies in the
Pointcheval-Zimmer formal model and countermeasures to our attacks.

1 Introduction

Authenticated Key Exchange (AKE) is a fundamental security protocol for al-
most all secure communication systems. Depending on how the “authentication”
is defined, AKE schemes are generally divided into two categories: Password-
based Authenticated Key Exchange (PAKE) and PKI-based Authenticated Key
Exchange [7]. In the former case, the authentication is based on the knowledge
of a shared password, without requiring any Public Key Infrastructure (PKI). In
the latter case, each party possesses a unique pair of the public and private keys.
The authentication is based on the possession of the private key, which is usu-
ally stored in a tamper resistant device. A PKI is needed to securely distribute
authentic public keys to all users [18].

While the above two AKE categories correspond to something you know (i.e.,
a password) and something you have (i.e., a secure token that stores a private
key) respectively, there is a third authentication factor: namely, something you are

F. Bao, P. Samarati, and J. Zhou (Eds.): ACNS 2012, LNCS 7341, pp. 1–11, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 F. Hao and D. Clarke

(i.e., biometrics). Biometrics are an advanced authentication mechanism, which
works by measuring a person’s unique behavioral or physical characteristics [2].
The security of biometrics largely depends on whether a trusted path exists, which
ensures the biometric sample is freshly obtained from the live subject. Such a
trusted path can be realized, for example by enforcing supervision in a controlled
environment (e.g., airport). In an unsupervised environment, the securitywill have
to depend on the liveness detection features embedded with the biometric scan-
ning equipment [18]. Assuming a trusted path already in place, researchers have
made progress in designing biometrics-based AKE schemes [3, 5, 6].

So far all the above-mentioned AKE schemes are based on a single factor. In
recent years, Multi-Factor Authenticated Key Exchange (MF-AKE) has emerged
as an active research topic [10–14, 18–23]. The rationale is to improve single
factor based AKE by combining two or even more factors in one system. This is a
worthy goal, but extra caution should be taken. The past thirty years of research
in the area of authenticated key exchange has proved that it is incredibly difficult
to get even a single factor based AKE scheme right [4]. Designing a multi-factor
AKE protocol can only be harder.

Many MF-AKE protocols have been proposed – and subsequently broken. For
example, in 2010, Lee et al. proposed a two-factor AKE protocol that combines
a smartcard and a password [11]. But a year later, their protocol was found
insecure: the compromise of the smartcard factor breaks the entire scheme [21].
Xu et al. proposed a similar two-factor AKE protocol based on a smartcard and a
password with “formal security proofs” in [23]. Within a year, their protocol was
broken and a patched protocol was proposed in [19]. Yet the patched protocol
was shortly found insecure [20]. Li and Hwang proposed a different type of two-
factor AKE protocol, which consists of biometrics and a smart card [13]. In less
than a year, their scheme was broken [14]. These examples show that MK-AKE
is still a young field; more research is very much needed.

Recently at ACNS’08, Pointcheval and Zimmer proposed the first Multi-
Factor Authenticated Key Exchange protocol that combines all three factors
in one system: a password, a smartcard and biometrics [18]. Furthermore, the
authors defined a formal model and formally proved that an adversary had to
break all three factors in order to win. Unfortunately, we find their protocol
vulnerable, as we explain below.

2 Pointcheval-Zimmer Protocol

In this section, we will describe Pointcheval-Zimmer’s Multi-Factor Authenti-
cated Key Exchange scheme. We will follow the original notations in [18] as
closely as possible.

2.1 Notation

The client C owns a tuple tC = (W ′
C , skC = xC , pwdC) where W ′

C is a biometric,
skC a private key and pwdC a password. The iris code is used in [18] as a specific
example for biometrics.
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The server S holds a list of tuples for each client tS =< tS [C] >, where
tS [C] is a transformed-tuple of tC . More specifically, tS [C] contains the following
information about the client C:

– The client’s public key h = gxC .
– An encrypted copy of the iris-code template that was enrolled during regis-

tration. The template is denoted as WC = (Wi)i≤N , where Wi is the i-th bit
of WC and N is the number of bits of an iris code. The ciphertext is obtained
by using the El Gamal encryption algorithm; the result is (gri , hri · gWi)i,
where ri is a random element in Zq.

– The client’s password pwdC .

2.2 Description of Protocol

The protocol is based on a cyclic group with parameters (p, g, q). The p and q
are big prime numbers, and q | p − 1. Let Gq be a subgroup in Z

∗
p with prime

order q, and g be its generator. In addition, the protocol defines two random
elements in Gq, namely u and v. Figure 1 specifies how the protocol works. The
symbols used in the figure should be self-explanatory1.

Client Server

C : (W
′
c = (W

′
i )i, skC = xC, pwdC) S : ((gri , hrigWi )i, h = gxC , pwdC, C)C

1 b $
←Zq and B = gb, B∗ = B · vpwdC C, B∗−−−→ For 1 ≤ i ≤ N

2 r′i
$
←Zq and compute

3 gsi = gr′i · gri , hsigWi = hr′i · hri · gWi

4 For 1 ≤ i ≤ N S, (gsi )i, A∗←−−−−−−−−− a $
←Zq , A = ga, A∗ = A · upwdC

5 compute H(K′i) = α′i||β′i||k′i with:

6 KC = ( A∗
upwdC )b, Ki

C = (gsi )xC · gW ′i

7 K′i = S||C||(gsi)i||A∗||B∗||Ki
C||KC||pwdC||i (α′i)i−−−→ For 1 ≤ i ≤ N , H(Ki) = αi||βi||ki with:

8 KS = ( B∗
vpwdC )a, Ki

S = hsi · gWi

9 Ki = S||C||(gsi )i||A∗||B∗||Ki
S ||KS ||pwdC||i

10
11 If #{i : αi �= α′i} ≤ t

12 Then acc = 1, K = lsbk(||i:αi=α′i
ki)

13 If #{i : βi �= β′i} ≤ t (βi)i←−−− Else acc = 0, K $
←{0, 1}k, βi

$
←{0, 1}l

14 Then acc = 1, K′ = lsbk(||i:βi=β′i
k′i)

15 Else acc = 0, K′ $
← {0, 1}k

Fig. 1. Pointcheval-Zimmer protocol

In [18], the authors also suggest practical parameters for a real-world imple-
mentation. They assume an iris scan has N = 1024 bits. A value of t = 300
is defined as the threshold, so two iris codes with less than t disparate bits
1 The original specification in in [18] does not explicitly explain the meaning of lsb in

Line 12 and 14. We assume lsb refers to “least significant bits” and we interpret it as
a key derivation function that derives a session key from raw keying materials. This
ambiguity does not affect our security analysis however.
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(i.e., Hamming distance) are considered belonging to the same eye; otherwise,
they are regarded from different eyes. Furthermore, the authors use l to de-
note the bit lengths of α, α′, β, β′ (see line 5 and 7 in Figure 1). That is:
l = ||α′|| = ||β′|| = ||α|| = ||β||.

The value of l is critical to the correctness of the protocol. For small values of
l, say l = 1, then the protocol will be guaranteed to fail even between two honest
players. To ensure a successful honest execution of the protocol, the value l must
not be small. Pointcheval and Zimmer recommend l = 24, and they estimate
that with this parameter, the probability for a successful execution between two
honest players is 1 − 2 · t · 2−24 = 1 − 2−14.

Pointcheval and Zimmer also define a formal model to prove the security of
the protocol [18]. The model assumes the adversary is able to corrupt a client
C in the following ways: by compromising the password pwdC , by stealing the
private key skC , or by spoofing biometrics WC . Under this model, the authors
formally prove that an attacker has to compromise all three factors in order to
win. However, the formal model only considers the unilateral authentication from
the client to the server. In other words, it implicitly assumes the server is honest.
The authors of [18] acknowledge that “this can be seen as a strong limitation”,
but on the other hand, they argue “it is not in practice: if the password and
the secret keys are compromised, an adversary can easily play the role of the
server”. We find this justification weak and unclear; in particular, the authors
do not explicitly explain what will happen if the attacker is able to impersonate
the server to the client (e.g., in a man-in-the-middle attack). We fill the gap by
analyzing this threat in the following section.

3 Attacks

When the attacker is able to impersonate the server (which is a realistic threat
in practice), we show the Pointcheval-Zimmer protocol is insecure. First of all,
we assume that the attacker has compromised the client’s password (say by
phishing). Then, we show how the attacker is able to subsequently compromise
the other two factors: the biometrics and private key, hence breaking the entire
system.

3.1 Stealing Biometrics

First, we show how the compromise of the password factor will lead to the breach
of the biometrics factor. Figure 2 shows how the attack works. As shown in Line
2, the attacker selects random values for si and computes gsi accordingly. This
is a clear deviation from the original specification, because if the server had
honestly followed the specification in computing gsi = gr′i · gri , it will not have
knowledge of the exponent of gsi . But in this case, the server (attacker) knows
the exponent (which allows carrying out the subsequent attack). This deviation
is undetectable to the client.

One principle in designing robust security protocols is “never let yourself be
used as an oracle by your opponent” [1]. Unfortunately, in this case, the client has
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Client (Victim) Server (Attacker)

C : (W ′c = (W ′i )i, skC = xC, pwdC) M : (h = gxC , pwdC)

1 b $
←Zq and B = gb, B∗ = B · vpwdC C, B∗−−−→ For 1 ≤ i ≤ N

2 si
$
←Zq and compute gsi

3 For 1 ≤ i ≤ N S, (gsi )i, A∗←−−−−−−−−− a $
←Zq , A = ga, A∗ = A · upwdC

4 compute H(K′i) = α′i||β′i||k′i with:

5 KC = ( A∗
upwdC )b, Ki

C = (gsi )xC · gW ′i

6 K′i = S||C||(gsi)i||A∗||B∗||Ki
C||KC||pwdC||i (α′i)i−−−→

7 (βi)i←−−− ((βi)i, (ki)i, (W′′i )i)← SearchBiometrics((α′)i)

8 If #{i : βi �= β′i} ≤ t Compute K = lsbk(||iki)

9 Then acc = 1, K′ = lsbk(||i:βi=β′i
k′i)

10 Else acc = 0, K′ $
← {0, 1}k

Fig. 2. Attack 1: stealing fresh biometrics from the client without being detected

made itself an oracle to the attacker. After receiving the data from the attacker,
the client proceeds to compute values of (α′i)i and sends them over to the server.
Those values will allow the attacker to discover the biometric sample from the
user, as described in Algorithm 1.

The recovered sample from Algorithm 1 is high-quality biometric data. By
“high-quality”, we mean the recovered sample (W ′′

i )i is extremely close to the
client’s sample (W ′

i )i, which is freshly acquired in a favorable supervised condi-
tion. The exact difference between (W ′′

i )i and (W ′
i )i depends on the parameter l

(which is the bit length of α, α′, β, β′). If we take l = 24 as recommended in [18],
the probability of each bit in W ′′

i being correct (i.e., it equals the bit in Wi) is
p = 1 − 224. Hence, the probability of all N = 1024 bits in W ′′

i being correct is
pN = 99.994%. With an almost identical biometric sample, it is trivial for the at-
tacker to compute (βi)i so that he can successfully finish the rest of the protocol
(see Algorithm 1). In reality, having two identical biometric samples normally
suggests a replay attack, so the attacker may randomly corrupt some (up to t)
of the βi values to artificially make the biometric matching look “fuzzy”. The
same attack also applies to the three-party extension of Pointcheval-Zimmer’s
protocol, which was proposed in [15].

3.2 Disclosing Private Key

In the second attack, we show how the attacker is able to recover the client’s
private key, based on a compromised password and stolen biometrics (obtained
from the first attack).

The attack is possible because the client is not required to perform public
key validation on the data received from the server2 (Line 4-7 in Figure 1).
Many protocols omit the step of public key validation in order to increase the
protocol efficiency. But this is often done at the expense of security. One well-
known example is HMQV, which “provably” drops public key validation based on

2 In the three-party extension of the Pointcheval-Zimmer protocol [15], there is no
public key validation either. So the same attack applies.
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Algorithm 1. SearchBiometrics algorithm
Input: (α′

i)i

Output: (βi)i, (ki)i, (W ′′
i )i

1: for i = 1, . . . , N do
2: Compute H(K′

i) = α′
i||β′

i||k′
i with

3: KC = ( B∗
vpwdC )a, Ki

C = (gxC)si

4: K′
i = S||C||(gsi)i||A∗||B∗||Ki

C ||KC ||pwdC ||i
5: if αi = α′

i then
6: (W ′′

i )i = 0
7: (βi)i = β′

i

8: (ki)i = k′
i

9: else
10: (W ′′

i )i = 1
11: Recompute H(K′

i) = α′
i||β′

i||k′
i with

12: K′
i = S||C||(gsi)i||A∗||B∗||Ki

C · g||KC||pwdC||i
13: (βi)i = β′

i

14: (ki)i = k′
i

15: end if
16: end for

a formal model and security proofs [9]. However, Menenzes et al. subsequently
pointed out the flaws in the formal model and attacks on HMQV [17]. Their
paper highlights the importance of performing the public key validation. In [18],
Pointcheval and Zimmer defined a formal model and provided formal security
proofs for their MK-AKE protocol. However, the formal model in [18] implicitly
assumes the server is honest, which is not a valid assumption.

The attack works as follows. Instead of computing gsi as in the original proto-
col (Line 3 in Figure 1), the attacker selects small subgroup elements in Z

∗
p and

sends them to the client. We use Gs to denote a small subgroup of prime order
s. Let us take i = 1 as an example. Let b1 be a generator of Gs (i.e., an arbitrary
non-identity element). After receiving b1, the client proceeds to compute α′1 as
specified in the original protocol and sends it to the server. We know W1 = W ′

1

with a high probability (say 90%). For simplicity of illustration, we first assume
W1 = W ′

1. The attacker knows all the concatenated items in K ′i (Line 7 in Figure
1), except Ki

C . Based on W1 = W ′
1 and the fact that bxC

1 mod p falls within a
small range, the attacker can easily obtain the value of a1 = bxC

1 mod p by ex-
haustive search (i.e., against the value of α′). In the subsequent step, the attacker
can compute xC mod s – once again by exhaustive search (based on a1, b1 and
p). Since b1 is a generator in Gs, bxC

1 also falls within the same small subgroup.
Through exhaustive search, the attacker can obtain xC mod s. By repeating the
same procedure for different subgroups, the attacker can recover more secret bits
of the private key. Depending on the group setting, it is possible to recover a
full copy of the private key based on the Chinese Remainder theorem (e.g., see
a concrete implementation of the attack in Appendix A).
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In the above analysis, we have assumed W1 = W ′
1, but in reality the equality

only holds for a probability say 90%. This problem can be easily addressed by
exploiting the large amount of redundancies in an iris code. Instead of sending
one bi value, the attacker could send several bi values from the same small
subgroup Gs. For example, with 30 bi values, there will be on average 30×0.9 =
27 results that give the same xC mod s. This removes any uncertainty due to the
fuzzy nature of biometrics.

3.3 Combining Two Attacks

It is easy to combine the two attacks together. For that, we need to modify the
first attack slightly: after successfully stealing a biometric sample, the adversary
sends to the client random β′i values to trigger a “rejection”. Because the β′i values
are random, the matching at the client will fail. However, the failure will hardly
raise any suspicion from the client, as any biometric system has a non-zero false
rejection rate in the real-world operation3. Most likely, the user will be prompted
to try again (and be ready to be more cooperative with the iris photo-taking). In
the second attempt, the attacker will send small subgroup elements to discover
the user’s private key. Subsequently, the attacker will send correct β′ values to
trick the client into believing that the second attempt is successful.

Thus, with a stolen password, the attacker has successfully compromised the
user’s two other factors, hence breaking the entire system.

4 Discussion

Between the two attacks, the second attack might look more damaging, but it is
easier to fix. We can address it by adding public key validation in the protocol.
However, this will significantly decrease the computational efficiency of the orig-
inal protocol, as it normally takes a full exponentiation to verify if the received
public key is a valid element in the correct subgroup of Z

∗
p. Nonetheless, our at-

tack shows that this step is necessary (more explanation about the importance
of public key validation can be found in [17]).

The first attack indicates a more fundamental flaw with the protocol. The
question concerns the exact role of biometric authentication in the Pointcheval-
Zimmer protocol. Assume the attacker has compromised the password and the
private key, but he does not have user’s biometric data. What kind of security
assurance can the remaining biometrics factor provide? Almost none – based on
the following observations. First, the client cannot safeguard the biometrics. As
shown in Section 3.1, the protocol allows a remote attacker to steal the user’s
freshly obtained biometric sample without the user’s awareness at all. Second,
the encryption of biometrics at the server does not really preserve the privacy
of biometrics as claimed in [18]. The attacker will target the weaker part in
3 Even with two perfectly matching biometric samples, a false reject may still occur

in the Pointcheval-Zimmer scheme (due to the deficiency in the engineering design
of the protocol) with a probability 2−14 for l = 20 (see [18]).
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the system – the client – to steal a biometric sample in the plaintext. Third,
although by design biometric matching is done at the server, the result of the
matching cannot be securely sent back to the client. As demonstrated in Section
3.1, the attacker is able to arbitrarily manipulate the matching outcome. All
these suggest a fundamental problem with the protocol, which seems not easily
fixable with the current structural design of the protocol. More research on this
is much needed (e.g., some techniques in biometrics-based AKE [3,5, 6] may be
applicable to address this issue).

The above flaw was missed by the formal analysis in [18], because the authors
assume biometrics as “fully public”. Their justification is that the “the opposite
assumption is not reasonable in practice”, which refers to the treatment of bio-
metrics as “fully secret” in [3, 5, 6]. However, “biometric applications lie between
the extremes of secret data and fully public data” [8]. Indeed, it is possible to
steal users’ fingerprints that were left on the keyboard, or surreptitiously photo-
graph their irises using hidden cameras. But, samples stolen this way tend to be
of poor-quality [2]. Getting high-quality biometric samples usually requires user
cooperation and a favorable environment: e.g., proper posture, distance to the
camera and lighting etc. Stealing such samples without being detected by the
user is not easy. When designing biometrics-based protocols, it is prudent not to
rely on the secrecy of biometrics, but on the other hand, it is obviously a security
flaw to give away freshly acquired biometric samples to a remote attacker.

5 Conclusion

In this paper, we described two attacks on Pointcheval-Zimmer’s Multi-Factor Au-
thenticated Key Exchange (MF-AKE) protocol. In the first attack, we showed
how an attacker could make use of a stolen password to subsequently compromise
the biometrics factor without being detected. This violates the privacy of biomet-
ric data. In the second attack, we showed how an attacker could further discover
the user’s private key by exploiting the small subgroup confinements. This attack
breaches the presumed tamper-resistance of a secure token that stores the private
key. In summary, the attacker only needs to compromise a single password factor
in order to compromise the three-factor AKE protocol. These attacks are rooted
in the deficiency of Pointcheval-Zimmer’s formal security model, and highlight the
importance of making valid assumptions in the model.

Acknowledgement. We sincerely thank Pointcheval and Zimmer for quickly
and frankly acknowledging our attacks and the deficiencies in their formal model,
and also for confirming our suggested countermeasures.

Appendix A: An Implementation of Small Subgroup
Confinement Attack on Pointcheval-Zimmer’s Protocol

We provide implementation details about the second attack below. (We have
also experimentally verified the first attack, but since that implementation is
straightforward, we do not include the details in the paper.)
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Group Parameters

Let us assume a cyclic group Z
∗
p that has a subgroup of prime order q. Hence,

q | p − 1. Let g be a generator, gq mod p = 1. As a specific example, we define a
512-bit p, 160-bit q, 512-bit g with the following values (in the hex format).

p = f95b8b2f45b3016efb6ec51d342931aea4a5f4516d15c4ed2cf79e4d318 . . .
e28837989bedcbe4ce8693f68de6b72b1f74c8e109bc9155f5d2d65e9f6d . . .
091e7f79b

q = e80f99e4981ee1eac37d8f0bf707b2067f6fe8cf
g = 33c65b25ad4c47ac067083b7f2acf53ed3a053dbe508acbabe179029dad . . .

77a04c0953c1dbce02ce2f8cf5b030a36de7868b7434194816dbe7da920 . . .
13bc4696d

Note that this (artificial) example is for illustration only. In practice, the bit
lengths of p and q are normally much longer. In addition, we assume Z

∗
p has

several small subgroups of primer order si, so si | p− 1. The hex values of si are
given in Table 1. Except s1, all other si are 21-bit long.

Table 1. Orders of small subgroups of Z
∗
p

i 1 2 3 4 5 6 7 8 9
si 2 15a661 1182bb 12b357 1fa9e7 1f1c9f 1c58b7 16b6b3 1727c3

Small Subgroup Confinement Attack

To demonstrate how an adversary can recover the private key, we first define a
random 160-bit private key in the range of [0, q − 1]:

x = 538b2f452c20f9cd7e356455e2ae66e9924ddd5d

By exploiting the small subgroup confinement, the adversary can obtain ai =
bx
i mod p for each of the small subgroups with prime orders si. Furthermore, he

can obtain ci = xmod si through exhaustive search. Table 2 shows the results
of ai and ci for each of the small subgroups Gsi . On average, it takes about 68.5
seconds to find ci using exhaustive search, on a 2.93 GHz desktop PC with 4 GB
memory.

With the ci values, the private key can be recovered based on the Chinese
Remainder theorem [16]. For example, we could apply Gauss’s algorithm to solve
the simultaneous congruences problem as follows. Let n = s1 · s2 · s3 · s4 · s5 · s6 ·
s7 · s8 · s9. Then x =

∑
i ciNiMi mod n where Ni = n/si and Mi = N−1

i mod si.
In this specific example, n (169-bit) > q (160-bit), so we are able to recover the
full private key. It takes merely 1 millisecond to obtain the following result using
Gauss’s algorithm.

x′ = 538b2f452c20f9cd7e356455e2ae66e9924ddd5d modn

= 538b2f452c20f9cd7e356455e2ae66e9924ddd5d modq
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Table 2. Exhaustive search among the small subgroup confinements

i ai = bx
i mod p ci = x mod si Time for exh

search (ms)

1
f95b8b2f45b3016efb6ec51d342931aea4a5f4516d15c4ed2cf79e4d318e2883
7989bedcbe4ce8693f68de6b72b1f74c8e109bc9155f5d2d65e9f6d091e7f79a

1 0

2
791778359b242e573617fff6735703be986dd9a6271be8b413381f4211ffbc0cb
6cb2da17c880a115e223752cb431708c4a64d68cbd8109c7a2e31e434839682

122156 124854

3
133023e42630ff22b9f9fb3e6a1ceeddf2d7fc1014fcab33eeedc1af416951c2c9
099d8fef275408d1f82c7090cd72744a260685381a15cc8e58bdd052bb1928

517f1 31481

4
93358cdb4153463b93f0525d6819426b7b4c0fcb5905cf10db5f39eeea68a879
c8ad548cef72476671ff2805e1cbf8644f39f2d4fc71570522e4e89784a0a0aa

42cb2 25271

5
f517a5a96bd4a92af483727dd0c73c251ac159056ec5b2eea90854379ba8344
cc41e641d9e84ec319fd4ab545e038cba799972a2db93b2bf315fb62b08402cb

e0125 93050

6
e1895eb12f66645c2359ad6185d85fb02f39ddd3b2e80392c3f53ffc5ebcb23a9

81eb1d9cfd7a8eeea8a13e83af81a726280fcd7d545450fb6871786f9e2ebe6
15d34 7544

7
8dc566a29c84977ceb1e1a466321859fe3022f7ab3adae44ead9d8b7c2dc5461

b1ea9441b19425c13da5b7c998ea7fbe41aaea70177118b37438c5f36cad85d2
121427 121793

8
d73e16cf041ecd7c9c73d6414ad01b0ce85deaedbcf6834591f373091a51903

1cbb4aebe31fd56afab5750226584a762eaf7ffef0f5d7e2f940e27ea8d8b0d41
ef2c6 99664

9
dbdb75657da4a1e4312f17b7519eff2fe2c0b0b2fbe225482e3f78f73530c545a

3c8cd4d6fa0abd3f27058090cd1992263e72f16e47b7256f916d4a20201e5c0
10c700 112565
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Abstract. CAPTCHAs have become a ubiquitous security countermea-
sure to protect online web-services against automated attacks. However,
attackers have managed to successfully break many existing CAPTCHA
schemes. Animated CAPTCHA schemes have been proposed as a method
of producing CAPTCHAs that are more human usable and more secure.
The addition of the time dimension is supposed to increase the robust-
ness of animated CAPTCHAs. This paper investigates the robustness of
HelloCaptcha, an animated text-based CAPTCHA scheme with a total
of 84 different variations. In this paper, we show that simple techniques
can be used to extract important information from the animation frames
of an animated CAPTCHA. Our approach essentially reduces the ani-
mated CAPTCHA into a traditional single image CAPTCHA challenge.
Furthermore, the methods presented in this paper can be generalized to
break other animated CAPTCHAs.

Keywords: Animated CAPTCHA, character extraction, segmentation,
optical character recognition.

1 Introduction

A CAPTCHA (Completely Automated Public Turing test to tell Computers and
Humans Apart) is an automated challenge and response test to verify whether
or not an online transaction is being carried out by a human [13]. At present,
CAPTCHAs are used on many web-based services as a standard security mech-
anism for deterring automated attacks by bots or other malicious programs. Un-
fortunately, a large number of CAPTCHA schemes to date have been successfully
broken. Many researchers and practitioners alike have shown that various design
flaws can be exploited by automated programs to break these CAPTCHAs.

To increase the security strength and to confuse Optical Character Recog-
nition (OCR) programs, traditional text-based CAPTCHAs rely on techniques
like distorting the text and/or the overlaying of visual noise. However, this often
makes the resulting CAPTCHA difficult for humans to use. A good CAPTCHA
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F. Bao, P. Samarati, and J. Zhou (Eds.): ACNS 2012, LNCS 7341, pp. 12–29, 2012.
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scheme must be both secure and human usable. It is for this reason that
CAPTCHA developers have explored alternate paradigms in CAPTCHA design
in an attempt to designing more secure and usable CAPTCHAs.

Animated CAPTCHAs have been proposed as a means of overcoming the
limitations of traditional single image CAPTCHAs. One of the key principles
behind the design of animated CAPTCHA schemes is that the information re-
quired to solve the CAPTCHA is not contained within a single image. As such, a
human has to observe the animated CAPTCHA over its animation cycle in order
to gather appropriate information to correctly solve the CAPTCHA challenge.
This is assumed to be difficult for a computer because information is spread over
multiple images. In addition, noise and other impediments can be added to the
CAPTCHA challenge to deter automated attacks.

This paper addresses the question of whether animated CAPTCHAs really
provide more security. In particular, this paper describes methods of breaking
a representative animated text-based CAPTCHA scheme called HelloCaptcha
[12], which at the time of writing has a total of 84 different variations. The
results of this research show that we can successfully break all the variations of
this animated CAPTCHA scheme with a high success rate using simple methods
to extract information from the animation frames.

Our Contribution. In this paper we study the robustness of animated
CAPTCHAs by breaking a representative animated CAPTCHA scheme named
HelloCaptcha [12]. Our research shows that even though animated CAPTCHAs
spread important information over multiple animation frames, it is possible
to collect the relevant information from these frames in order to break the
CAPTCHA. We present our approach of extracting key information from the
animation frames and effectively reducing the animated CAPTCHA challenge
into a single image. It is likely that the methods presented in this paper can be
extended to break other animated CAPTCHA schemes. Our goal is to identify
flaws in the design of animated CAPTCHAs that make them easy to break, so
that future CAPTCHA schemes can be designed to avoid such pitfalls.

2 Related Work

2.1 Breaking CAPTCHAs

Over the year, many techniques have been proposed for breaking CAPTCHAs.
These automated CAPTCHA solving methods are often based on pattern recog-
nition, image processing, machine learning algorithms and so on. For example,
Mori and Malik [9] developed an approach to break the Gimpy and EZ-Gimpy
CAPTCHAs using object recognition techniques to identify words amidst back-
ground clutter. In their work, they presented a holistic approach of recognizing
entire words at once, rather than attempting to identify individual characters in
severe clutter. Li et al. [8] have also shown that image processing and pattern
recognition algorithms, such as k-means clustering, digital image in-painting,
character recognition based on cross-correlation, etc. have been successful in
breaking a variety of e-Banking CAPTCHAs.



14 V.D. Nguyen, Y.-W. Chow, and W. Susilo

In a systematic study regarding the strengths and weaknesses of text-based
CAPTCHAs, Bursztein et al. [3] observed that typical automated CAPTCHA
solving processes can be divided into five generic steps, namely, pre-processing,
segmentation, post-segmentation, recognition, and post-processing. While seg-
mentation, the separation of a sequence of characters into individual characters,
and recognition, the identification of those characters, are intuitive and generally
understood, the additional pre-processing and post-processing steps are also in-
cluded as part of a standard process. For example, pre-processing a CAPTCHA
image can remove background patterns or eliminate other impediments that
could interfere with segmentation, while a post-segmentation step can ‘clean up’
the segmentation output. After recognition, a post-processing step can used to
improve accuracy by, for example, applying spell checking to any CAPTCHA
that is based on actual dictionary words.

2.2 Segmentation Resistant

It is widely accepted that state of the art in text-based CAPTCHA design re-
quires that a robust CAPTCHA be segmentation resistant. This segmentation
resistant principle is based on the work by Chellapilla et al. [4] who have shown
that automated programs can recognize single characters even better than hu-
mans. As such, if a text-based CAPTCHA can be segmented into its constituting
characters, it is essentially broken.

This segmentation resistant principle required for robust CAPTCHA design,
led a research team at Microsoft to develop a CAPTCHA scheme that was meant
to be segmentation resistant. Unfortunately, it was shown that the Microsoft
CAPTCHA could in fact be segmented, and thus broken, by a low-cost attack
[15]. In addition, researchers have demonstrated the use of novel segmentation
techniques to break various other CAPTCHAs [14]. Nevertheless, the success of
these attacks does not negate the segmentation resistant principle in the design
of robust CAPTCHAs. However, relying on segmentation alone does not provide
reliable defense against automated attacks [3].

2.3 Animated CAPTCHAs

Animated CAPTCHAs have been proposed to overcome the limitations of tra-
ditional single image CAPTCHAs. Animated CAPTCHAs can be presented on
webpages by means of three main formats; as an animated GIF (Graphics Inter-
change Format) image, a flash video or via video streaming. To date, animated
CAPTCHA are not commonly used on websites yet. However, a number of ani-
mated CAPTCHA schemes have been proposed by the web community as well
as the research community.

Athanasopoulos and Antonatos [2] contend that their proposed CAPTCHA,
enhanced with animation technology, can resist sophisticated attacks better than
standard CAPTCHAs based on static images with distorted text. Cui et al. [6]
presented a sketch of an animated CAPTCHA approach based on moving letters
amid a noisy background. An animated CAPTCHA method based on the idea
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of presenting distorted text on the face of a deforming surface was proposed by
Fischer and Herfet [7]. Naumann et al. [10] suggest another animated CAPTCHA
technique based on visual phenomena. The idea behind their approach is that
by grouping different entities that move together, sketches or letters that are
superimposed over a noisy background of the same color become visible once
they are moving.

Chow and Susilo [5] devised an animated 3D CAPTCHA named AniCAP, that
was designed with the segmentation resistant principle in mind. Their approach
is based on motion parallax, the perception of depth through motion, where hu-
mans are supposed to distinguish the main characters located in the foreground
from the background characters. NuCaptcha is another animated CAPTCHA
designed to be segmentation resistant. The idea behind this CAPTCHA is that
characters are joined together, but when seen to be moving, the user’s mind sees
the different parts and fills in the blanks; the parts that are moving together
are grouped together, and user can clearly differentiate the letters. On the other
hand, computers do not have this advantage and see a smear of pixels [11].

3 The Targeted Animated CAPTCHA Scheme

To investigate the robustness of animated text-based CAPTCHA schemes, the
HelloCaptcha [12] was selected as a representative scheme. HelloCaptcha is an
animated CAPTCHA scheme that has been made freely available via a web ser-
vice with an easy to use embedding code. The developers of HelloCaptcha state
that their CAPTCHA schemes are more readable, more secure and nice. The an-
imation approach is intended to provide an additional time dimension in order
to increase its difficulty against automated attacks [12]. However, whilst being
usable and easy on the eyes, it is obvious that HelloCaptcha was not designed
with the segmentation resistant principle in mind. Our purpose is to investi-
gate whether this implementation of the time dimension alone really provides
additional security to animated CAPTCHAs.

One of the key reasons why HelloCaptcha was selected as a representative
animated CAPTCHA scheme for this study is because the developers have pro-
vided a variety of different variations to their scheme. At the time of writing,
the developers of HelloCaptcha have provided 12 broad categories of different
animated CAPTCHA schemes. Furthermore, each category has a number of dif-
ferent variations. In total, there are 84 different types, which have been grouped
into the 12 broad categories. We have not found any other developer whom have
provided a greater number of animated CAPTCHA types.

Please note that there too many HelloCaptcha variations to adequately de-
scribe in this paper. Thus, we encourage interested readers to visit the Hel-
loCaptcha website at http://hellocaptcha.com/ for further details and to view
the different animated CAPTCHAs for themselves. In general, each animated
CAPTCHA challenge provided by HelloCaptcha consists of a sequence of six
letters and/or digits presented in an animated GIF image with the dimensions
of 180×60 pixels. This paper will use the notation ‘Category/Type’ to denote a
specific HelloCaptcha type of a particular category .

http://hellocaptcha.com/
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4 Breaking HelloCaptcha

In general, our attack can be divided into 4 stages. An overview of these stages
is depicted in Fig. 1. At any time, only 1 of these 84 different types is randomly
selected and presented to the user. Therefore, the first stage to breaking the
CAPTCHA was to automate the process of identifying which of the 84 types
is the current type being presented. This phase was called the type distinction
stage. Upon successfully distinguishing the CAPTCHA type, the appropriate
technique was then selected to extract a single image containing all the separate
characters in the CAPTCHA challenge. The resulting image then underwent a
pre-processing stage to remove noise and to increase the legibility of the char-
acters. Subsequently, the final character recognition stage involves the image
being passed through an OCR program to solve the CAPTCHA by recognizing
the individual characters contained in the challenge.

4.1 Type Distinction

In order to automatically distinguish which of the 84 different types was currently
being presented, a number of factors were considered. These factors are described
as follows.

• Number of frames. Each HelloCaptcha challenge is displayed as an ani-
mated GIF that is constructed from a sequence of image frames. The total

Fig. 1. Overview of the stages used to break HelloCaptcha
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number of frames contained in the GIF file can be used to distinguish be-
tween some of the different types. For example, some HelloCaptcha types
always contain a fixed number of frames (e.g. the types named Noir Nois,
Autumn Ant and Col Noi of the Noisy Mosaic category are always fixed
at 25 frames), while the total number of frames for other types may vary
within a fixed range of frames (e.g. the number of frames in the Contour
and Redblue types of the TextFlood category vary between 65 to 76 frames).

• Maximum frame delay. Animated GIFs display successive frames after a
certain time duration, or frame delay time, which controls the speed of the
animation. In other words, the frame delay informs the playback application
how long to wait after displaying the current frame before it is to display
the next frame in the animation. This information can be obtained from the
GIF file and the maximum frame delay time can be used as a distinguishing
factor between the different HelloCaptcha types. For instance, all types in
the Swapper category consistently use a 100 ms frame delay whereas all type
in the Spring category consistently use a value of 4 ms.

• Number of blank frames. We define blank frames as frames that contain
only the background color. Some HelloCaptcha types always have a fixed
number of blank frames over the entire animation. As such, this value can
be used for type distinction. For example, there are always 17 blank frames
in the Smarties/Follower type whereas the Smarties/Negative type always
contains 7 blank frames.

• Background color. This is another value that is also very useful for type
distinction. Many types are displayed using specific background colors. As
an example, the background color used in the Search Light/Stille Natch type
is made up of the following RGB color values Red=6, Green=38, Blue=66.
The combination of these color values is unique in all the 84 types and it
helps to easily distinguish the Search Light/Stille Natch type from other
types. In practice, the background color can be ascertained by determining
the most used pixel color in the first animation frame.

These simple pieces of information can easily be obtained from an animated GIF
file. By using the different values of the number of frames, maximum frame de-
lay, number of blank frames and background color, all the different HelloCaptcha
types can be distinguished with a high degree of accuracy. Our experimental re-
sults show that we can accurately distinguish between the different types between
80%−100% of the time.

4.2 Single Image Extraction

One of the main security mechanisms provided by animated CAPTCHAs is
that the information required to solve the CAPTCHA challenge is spread over
multiple animation frames, unlike traditional CAPTCHAs where all information
has to be presented in a single image. The same applies to the HelloCaptcha
scheme, where the addition of this time dimension is intended to increase the
difficulty of automated attacks [12].
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In most animated CAPTCHAs, the challenge is obscured in individual frames
where text characters may only be partially visible, joined together, overlapped
with extra characters at random, and so on. While it is indeed impossible to solve
most animated CAPTCHAs using individual animation frames, we show that
it is possible to solve the CAPTCHA challenge by collecting information from
multiple animation frames. Our strategy is to extract relevant information from
the animation frames into a single image by using a set of simple techniques. We
demonstrate that once this information is extracted, the animated CAPTCHA
is in effect converted into a single image and the standard techniques used to
break traditional CAPTCHAs can easily be applied to this resulting image.

Extraction by Pixel Delay Map (PDM). This is the main method used
to extract relevant information to break HelloCaptcha. A total of 61 of the
84 HelloCaptcha types can be broken using this approach. For the purpose of
CAPTCHA usability, text characters required to solve the challenge in a text-
based CAPTCHA often needs to be emphasized somehow. This is because the
human brain needs to be able to distinguish and recognize the characters required
to solve the challenge.

In many HelloCaptcha types (e.g. Flitter/Colorful, H-Mover/Street, Search
Light/Cyber, etc.), in order to get the human user’s attention, the text charac-
ters required to solve the challenge are displayed at certain fixed locations for
longer periods of time compared to the noise elements and other peripheral com-
ponents. This allows us to build what we call a Pixel Delay Map (PDM) from
the animation frames. The PDM is an image resulting from the accumulation of
the total amount of time that a pixel gets displayed in a color that is different
from the background color. Given an animated CAPTCHA, AC, the following
is a depiction of the basic algorithm used to construct a PDM.

CalculatePDM(AC)

Initialize PDM(x,y) ← 0

begin

for i ← 1 to TotalFrames

for x ← 1 to TotalRows

for y ← 1 to TotalColumns

if Color(x,y) �= BackgroundColor then

PDM(x,y) ← PDM(x,y) + FrameDelay(i)

end

Fig. 2 shows examples of PDMs constructed from two different HelloCaptcha
types, namely the Flitter/Colorful and the H-Mover/Baller types respectively.
Fig. 2(a) and Fig. 2(b) depict six individual frames obtained at different times
during the animation, with time increasing from left to right. In the Flit-
ter/Colorful challenge that is shown in Fig. 2(a), small random colored squares
gradually assemble to form the characters for a period of time, then disassemble



Breaking an Animated CAPTCHA Scheme 19

(a) Example frames from a Flitter/Colorful CAPTCHA challenge.

(b) Example frames from a H-Mover/Baller CAPTCHA challenge.

(c) PDM for challenge in Fig. 2(a). (d) PDM for challenge in Fig. 2(b).

(e) Extracted from PDM in Fig. 2(c). (f) Extracted from PDM in Fig. 2(d).

Fig. 2. Examples of character extraction using the Pixel Delay Map (PDM) approach

as if blown apart. For the H-Mover/Baller challenge in Fig. 2(a), the charac-
ters gradually slide in from the right at random speeds, pause for a short while,
before sliding out from the left.

The resulting PDM images are shown in Fig. 2(c) and Fig. 2(d). The x-axis and
y-axis denote the pixel positions, whereas the different colors in the PDM image
illustrate the length of time in which the animated CAPTCHA’s pixels were
displayed in a color that was distinct from the background color. In particular,
a PDM pixel with a higher value means that the color at that pixel position
was different from the background color for a longer period of time compared to
PDM pixels with lower values.

The extracted binarized images that are shown in Fig. 2(e) and Fig. 2(f) were
obtained by simply thresholding the PDM image by 1

2 the highest PDM value
(i.e. 3500 ms). In other words, pixels in the PDM that had a value lower than
this threshold were set to white whereas pixels with a value higher than the
threshold were set to black. One can see that the CAPTCHA challenges in these
images can easily be solved.

In practice, the PDM technique is flexible and can be used in other ways.
For example, if the basic PDM approach was used for the Smarties/Smarties
type where the pixel times were accumulated over all the frames, the challenge
characters would significantly overlap and other techniques would have to be
used to separate the characters. In the Smarties/Smarties challenge, characters
gradually fade in and fade out, one by one from left to right. Some sample frames
depicting this are shown in Fig. 3(a). Fig. 3(b) in turn shows a PDM that was
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(a) Example frames from a Smarties/Smarties CAPTCHA challenge.

(b) Single PDM from all the frames.

(c) Three PDMs, each constructed from consecutive 1
6
of the frames.

(d) Separate characters from six PDMs.

Fig. 3. Example of multiple PDMs from different portions of the animated frames

constructed using all the animation frames, one can see that the characters are
joined together.

Nevertheless, in this situation we can construct six PDMs by splitting the
animation frames into six distinct frame sequences. This is because challenges
in HelloCaptcha always consist of six characters. In other words, a PDM is
constructed by taking frames 0 to 1

6 the total number of frames, another is
constructed from frames 1

6 to 2
6 the total number of frames, another from frames

2
6 to 3

6 the total number of frames, and so on. The first three PDMs resulting
from this approach are shown in Fig. 3(c). Consequently, the highest values from
all the six resulting PDMs can be extracted giving the six separate characters
that are depicted in Fig. 3(d).

For all the different HelloCaptcha types in the Text Flood and Mass Flood
categories, a PDM can be constructed from the first 1

3 rd of the animation frames.
This is because the relevant information to solve the challenge only appears
during the first 1

3 rd of the animation then disappears and is no longer displayed
again in the remaining frames.

Extraction by Catching Line (CL). The Spring/Jumpers HelloCaptcha type
is an example of a type where the Catching Line (CL) approach can be used to
extract a single image. In the Spring/Jumpers type, the characters constantly
move in a vertical direction. This is depicted in Fig. 4(a), where the characters
appear to ‘spring’ or ‘jump’ up and down. The security is based on the fact that
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(a) Example frames from a Spring/Jumpers CAPTCHA challenge.

(b) Example of the virtual CL and 3 ‘caught’ characters (in red).

(c) Character vertical moving areas. (d) ‘Caught’ characters.

Fig. 4. Example of character extraction using the Catching Line (CL) approach

during individual frames, the upper or lower parts of certain characters may
be hidden from view. However, the full characters appear when moving in the
central area of certain frames. The idea behind the CL approach is to ‘catch’ (get
an image of) full characters. This can easily be done by getting an image of the
full character the very first time the individual character ‘touches’ a virtual line
which is located at a position 1

10 th from the upper boundary of the animated
GIF, as portrayed in Fig. 4(b). Since all the characters only move in the vertical
direction and do not overlap, one can easily determine the image area to capture
based on the characters’ moving areas, as shown in Fig. 4(c). Fig. 4(d) shows an
example of an extracted image after catching all six characters.

Extraction by Color Selection (CS). Color can also be used to break a
CAPTCHA scheme. The Spring/Autumn Water HelloCaptcha type is an ex-
ample type where a Color Selection (CS) approach can be used to extract rel-
evant information into a single image. The Spring/Autumn Water animated
CAPTCHA challenge is composed of six moving characters on a white back-
ground, as depicted in Fig. 5(a). The characters move at random speeds and
directions so they often overlap one another or are only partially visible if partly
outside the image boundary. The color of each character is also random and they
typically have different colors in a challenge.

We simply use the distinct colors to extract individual character images from
a ‘good’ frame. A good frame is defined as one where the total number of pixels
which make up the character is at a maximum. In other words, because the
characters have distinct colors we can count the number of pixels of a particular
color contained in each frame. A frame where the maximum number of pixels for
a particular color is displayed, indicates that the character is not overlapped by
other characters nor is it partially outside the image boundary. Hence, we can
do this separately for the different colors, as shown in Fig. 5(b). The resulting
extracted image is shown in Fig. 5(c).
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(a) Example frames from a Spring/Autumn Water CAPTCHA challenge.

(b) Characters separated based on color.

(c) Extracted characters.

Fig. 5. Example of character extraction using the Color Selection (CS) approach

Extraction by Frame Selection (FS). Unlike the Spring/Autumn Water
type where each character has a different color, the Spring/Default type uses the
same color for all the characters. Therefore, to extract the characters a different
approach is required. In this Frame Selection (FS) method, the ‘best’ frame is
chosen as one that satisfies all, or at least two, of the following conditions:

1. The characters can fully be separated into six distinct regions. To find this
we use the Vertical Segmentation approach as described in Yan and Ahmad
[15], in which a histogram representing the total number of pixels per col-
umn is constructed and the columns containing the characters can easily be
identified.

2. None of the characters are in contact with the image boundaries. This con-
dition is fulfilled as long as the border pixels all contain the background
color.

3. Each character is made up of the maximum number of pixels. By counting
the total number of connected character pixels, the total number of pixels
that represents each of the six characters can be determined. The frame
in which all characters are made up of the maximum number of pixels is
selected.

An example of a sequence of frames from the Spring/Default type is provided
in Fig. 6(a). Fig. 6(b) shows a frame where all three conditions are satisfied. On
the other hand, Fig. 6(c) shows an example of a frame where only conditions 2
and 3 are met (condition 1 is not satisfied as the pixels of ‘E’ and ‘T’ overlap in
the vertical direction). Nevertheless, it can be seen that the characters can still
clearly be identified in that frame.

Extraction by Roller Selection (RS). The animation for all types in the
Roller category is such that each character rotates around its center, start-
ing from different rotation positions and rotating at different speeds. The
Roller/Rolling Clot type is an example that uses this character rotation ap-
proach, as can be seen in Fig. 7(a). As the rotation progresses, at times char-
acters may be connected or joined together. To obtain separate characters for
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(a) Example frames from a Spring/Default CAPTCHA challenge.

(b) All 3 conditions met. (c) 2 of 3 conditions met.

Fig. 6. Example of character extraction using the Frame Selection (FS) approach

(a) Example frames from a Roller/Rolling Clot CAPTCHA challenge.

(b) Extracted characters.

Fig. 7. Example of character extraction using the Roller Selection (RS) approach

these HelloCaptcha types, a Roller Selection (RS) method was used to extract
the characters. The RS approach was done as follows:

1. Perform flood-fill starting from the center pixel of each the six characters
(each character always rotates around its center). The flood-fill algorithm
will give us the connected pixels of the same color, hence, we can obtain six
individual characters.

2. Select the character when its highest pixel reaches its maximum height, as
shown in Fig. 7(a). This was done to reduce the character recognition training
set required by the OCR program, discussed later in section 4.4 below.

The end result is a set of six separate characters, at rotation angles that produce
their maximum heights. This is shown in Fig. 7(b).

4.3 Pre-processing and Character Recognition

The image extraction stage produces a single image with all the characters. This
image may contain noise and other impediments. Thus, to improve character
recognition, a pre-processing stage is conducted to clean up the image. Depend-
ing on the HelloCaptcha type, different pre-processing steps may be used. The
pre-processing methods that were used are described as follows.

• Noise removal. After using the PDM extraction method on types like
the Noisy Mosaic/Autumn Ant type. The binarized image may contain un-
wanted noise, as can be seen in Fig. 8(a). This can be removed by performing



24 V.D. Nguyen, Y.-W. Chow, and W. Susilo

(a) Before noise removal. (b) After noise removal.

Fig. 8. Example of noise removal from extraction image

(a) Before circle removal. (b) Background filled in. (c) With colors inverted.

Fig. 9. Example of circle removal from extraction image

flood-fill on the different pixel clusters in the image and only saving the large
areas. An example of the results can be seen in Fig. 8(b).

• Circle removal. In some types (e.g. Roller/Cirque de Couleur, H-
mover/Baller, Popup/Cirque), the characters are encapsulated within cir-
cles, as shown in Fig. 9(a). We simple flood-fill the background starting from
the image border, as depicted in Fig. 9(b) and invert the colors to obtain
the image shown in Fig. 9(c).

• Outline removal. A similar process must be done for types where the
outline of the characters are obtained, as shown in Fig. 10(a). The reason for
this is that the OCR program typically achieves lower accuracy for characters
displayed solely by their outlines. However, in these character outline cases
care must be taken for characters such as the letter ‘Q’, in Fig. 10(a), which
may contains a small internal white region. For these cases, we flood-fill the
white internal regions of the characters to get the connected pixels and only
save the large areas, resulting in the image shown in Fig. 10(b).

• Refine by filling. For certain types, the extracted image contains of char-
acters with unwanted ‘holes’. An example of this can be seen in Fig. 11(a).
To remove these holes, we first obtain the character bounds by flood-filling
the background (depicted in red in Fig. 11(b)), then flood-filling in the con-
nected pixels within the characters which are less than 5 pixels from the
character bounds (shown as green in Fig. 11(b)). This fills in the unwanted
‘holes’ whilst preserving the correct hollow regions for letters such as ‘D’ and
digit ‘8’ as can be seen in Fig. 11(c).

(a) Before outline removal. (b) Outlines removed.

Fig. 10. Example of removing the outlines surrounding the characters
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(a) Before filling. (b) Removing ‘holes’. (c) After filling.

Fig. 11. Example of refining the extracted image by filling in the unwanted holes

(a) Before shape removal. (b) Reference image. (c) After shape removal.

Fig. 12. Example of shape removal from the extracted image

• Shape removal. The Popup/Love type is an example of a HelloCaptcha
type where each character is encapsulated within a heart shape, as can be
seen in Fig. 12(a). To remove these shapes, we obtain a reference image con-
taining the shapes, shown in Fig. 12(b), and subtract this from the extracted
image. Fig. 12(c) shows the results with the shapes removed.

4.4 Character Recognition

After extracting the characters into a single image and cleaning up the image, the
result is an image with six separate and distinct characters. All that remains is to
perform character recognition. This is straightforward and can be done using any
good OCR program. For this, we used the ABBYY FineReader 11 Professional
Edition [1], which is one of the best OCR programs currently available on the
market.

For more accurate results, the ABBYY FineReader uses a machine learning
approach that can be trained from a training set of character samples. For some
HelloCaptcha types, e.g. all the types in the Flitter category and for the Search
Light/Grun Ninja type, we created a training set to be used in conjunction with
the ABBYY FineReaders’s existing embedded training database. For types such
as types in the Roller category and Swapper/3D, we only used our own training
set. Furthermore, for types that only used a selection of uppercase letters and
digits, these were defined as the input language for the OCR.

5 Results and Discussion

An experiment was performed to test the accuracy of our methods. A total
of 8,400 animated CAPTCHA samples were collected from the HelloCaptcha
website [12] (i.e. 100 samples for each of the 84 different types). Overall, our
approach achieves a high degree of accuracy. We can automatically distinguish
between the different HelloCaptcha types between 80%−100% of the time. Most
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types can correctly be distinguished 100% of the time. In addition, the accuracy
of breaking the different types (i.e. correctly recognizing all six characters in
the animated CAPTCHA challenges) ranges between 16%−100% of the time.
As stated in Bursztein et al. [3], a CAPTCHA scheme that can be broken more
that 1% of the time is essentially broken. Our experiment was conducted on
an Intel Core 2 Duo 3.33GHz PC and the average attack speed was around 4
seconds per challenge, which is well within the length of time that it would take
for a normal human to solve the challenge.

5.1 Method of Attack

The PDM method that was presented in section 4.2, was the most commonly
used approach to breaking HelloCaptcha. It was used to break 61 of the 84
different types. As CAPTCHAs have to be both usable and secure, designing
a robust CAPTCHA scheme is a nontrivial task. From a usability standpoint,
most CAPTCHAs are designed in a way where the important information is em-
phasized in order for the human brain to identify the main information required
to solve the CAPTCHA. In a number of animated CAPTCHAs, the important
information is emphasized by displaying it for longer periods of time. This is
a fundamental problem that can be exploited using the PDM method. If one
were to change the animated CAPTCHA design by displaying all information
for equal lengths of time, this may severely impact the usability of the animated
CAPTCHA, as no information really ‘stands out’ for a human user.

We observe that the PDM method can also be used to attack animated
CAPTCHAs other than HelloCaptcha. Similarly the CL approach can also be
used to break other animated CAPTCHA schemes which have properties whereby
characters only move in the vertical direction. Other methods such as the CS,
FS and RS methods, previously discussed in section 4.2, are possibly less general
and may only be effective against specific animated CAPTCHAs.

5.2 Security Issues

One of the primary security issues in HelloCaptcha is that it was not designed
with the segmentation resistant principle in mind. As such, individual charac-
ters can easily be extracted from the animation frames by exploiting a number
of key features. Other than the segmentation resistant principle, several other
security issues affect the overall robustness of a CAPTCHA scheme and should
be considered when designing animated CAPTCHAs. We highlight a number of
these issues in this section.

• Number of characters and positions. The PDM method is most effec-
tive for animated CAPTCHAs where the characters appear at fixed locations
against a moving background/foreground. This is because the characters are
displayed at relatively fixed locations for longer periods of time compared to
the constantly changing noise. Furthermore, HelloCaptcha challenges always
contain six characters which makes it predictable and easier to break. The is-
sues of fixed length CAPTCHA challenges that appear at fixed locations are
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(a) Frame 45. (b) Frame 82. (c) Combined image.

Fig. 13. Example where 2 halves of the challenge always appear in the specific frames

not unique to animated CAPTCHAs, it has previously been highlighted that
this is a design issue that affects the robustness of CAPTCHAs in general [15].

• The use of color. The use of color is another common issue that has to
be considered in the design CAPTCHAs, whether animated or otherwise.
The incorrect use of color can negatively affect the security of a CAPTCHA,
and may possible even affect the usability [16]. In a number of HelloCaptcha
types, color played a negative role in the security of the CAPTCHA as
important information could be obtained by identifying the different colors.

• The number of frames. The number of frames used in the animation is
an issue that is unique to animated CAPTCHAs. A fixed number of frames
can have a negative impact of the security of animated CAPTCHAs. In our
study, we used the number of frames as one of the factors to differentiate
between the various HelloCaptcha types. Furthermore, specific frames may
be used to obtain certain pieces of information. For example, by evaluating
1,000 samples of the H-mover/Default type, we observed that it always uses
a the total of 123 frames. In addition, frame number 45 always contains the
first three characters and frame number 82 always contains the last three
characters. This can be seen from the examples shown in Fig. 13(a) and Fig.
13(b) respectively. We can simply combine the first half of frame 45 with the
second half of frame 82 to form the image shown in Fig. 13(c). Therefore,
to improve the security of an animated CAPTCHA scheme, it is advisable
to use a variable number of frames with information randomly distributed
over the frames, even if this means increasing the complexity of generating
the animated CAPTCHAs.

• The frame delay. If care is not taken, the frame delay can also be exploited
to break animated CAPTCHAs. For example, in the Swapper/Default Hel-
loCaptcha type, the correct solution is contained in the frame which has the
longest delay time. Fig. 14(a) shows two frames with a frame delay time of 40
ms, note that the solution is only partially visible in these frames. However,
Fig. 14(b) shows the frame with a frame delay time of 200 ms. One can see
that the complete solution is clearly visible in this one frame. In such cases,
the addition of the time dimension is completely redundant.

• Method of delivery. Animated GIF files are effective on the Web when
used for small animation as such as animated CAPTCHAs because of its
low implementation cost and it works on most browsers without the need for
special plugin applications.However, it is also easy for attackers to download
animated GIF files to extract and analyze all the animation frames. It has
been argued that video streaming an animated CAPTCHA that is rendered
on the client’s browser is a more secure delivery mechanism [11].
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(a) Examples of two 40 ms frames. (b) A 200 ms frame.

Fig. 14. Example where frame delay time can be exploited

6 Conclusion

In this paper, we examined the robustness of an animated CAPTCHA scheme.
The addition of the time dimension is meant to increase its robustness against
automated attacks. However, this paper has demonstrated that if not designed
well, the addition of the time dimension does not make the animated CAPTCHA
more secure. We showed that simple but effective attacks can be used to break
animated CAPTCHAs by exploiting certain characteristics in the CAPTCHA
design. Our methods can successfully break all the different HelloCaptcha types
with a high success rate. It is likely that our approach can be extended to break
other animated CAPTCHA schemes.

References

1. ABBYY. ABBYY FineReader, http://finereader.abbyy.com/

2. Athanasopoulos, E., Antonatos, S.: Enhanced CAPTCHAs: Using Animation to
Tell Humans and Computers Apart. In: Leitold, H., Markatos, E.P. (eds.) CMS
2006. LNCS, vol. 4237, pp. 97–108. Springer, Heidelberg (2006)

3. Bursztein, E., Martin, M., Mitchell, J.C.: Text-based CAPTCHA Strengths and
Weaknesses. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) ACM Conference on
Computer and Communications Security, pp. 125–138. ACM (2011)

4. Chellapilla, K., Larson, K., Simard, P.Y., Czerwinski, M.: Designing Human
Friendly Human Interaction Proofs (HIPs). In: van der Veer, G.C., Gale, C. (eds.)
CHI, pp. 711–720. ACM (2005)

5. Chow, Y.-W., Susilo, W.: AniCAP: An Animated 3D CAPTCHA Scheme Based
on Motion Parallax. In: Lin, D., Tsudik, G., Wang, X. (eds.) CANS 2011. LNCS,
vol. 7092, pp. 255–271. Springer, Heidelberg (2011)

6. Cui, J.-S., Mei, J.-T., Zhang, W.-Z., Wang, X., Zhang, D.: A CAPTCHA Implemen-
tation Based on Moving Objects Recognition Problem. In: ICEE, pp. 1277–1280.
IEEE (2010)

7. Fischer, I., Herfet, T.: Visual CAPTCHAs for Document Authentication. In: 8th
IEEE International Workshop on Multimedia Signal Processing (MMSP 2006), pp.
471–474 (2006)

8. Li, S., Shah, S.A.H., Khan, M.A.U., Khayam, S.A., Sadeghi, A.-R., Schmitz, R.:
Breaking e-Banking CAPTCHAs. In: Proceedings of the 26th Annual Computer
Security Applications Conference, ACSAC 2010, pp. 171–180. ACM, New York
(2010)

9. Mori, G., Malik, J.: Recognizing Objects in Adversarial Clutter: Breaking a Visual
CAPTCHA. In: CVPR (1), pp. 134–144 (2003)

http://finereader.abbyy.com/


Breaking an Animated CAPTCHA Scheme 29

10. Naumann, A.B., Franke, T., Bauckhage, C.: Investigating CAPTCHAs Based
on Visual Phenomena. In: Gross, T., Gulliksen, J., Kotzé, P., Oestreicher, L.,
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Abstract. OTP (One Time Password) devices are highly deployed trust
enhancing (password entropy increasing) devices which are used to au-
thenticate a user with a second factor (a pseudorandom sequence of digits
produced by a device the user owns) and to cope with off-line phishing of
password information. Wireless connection adds usability to OTP pro-
tocols in an obvious way: instead of the person copying the information
between machines, the wireless (say, Bluetooth) mechanism can transfer
the value directly. Indeed, OTP devices implemented in a smartphone
and communicating with the browser over Bluetooth can act in usable
fashion (and this extension was implemented in our organization and
got very positive usability feedback). What we then noticed as a key
observation is that this mode of OTP wireless transfer has turned the
“man to machine” nature of the OTP tokens to a “(mobile) device to
machine (the browser on the computer)” method, so we can now employ
protocols between the two interacting computers. Thus, we asked what
can this new mode contribute to security (rather than to usability only)
and cope with increased set of attacks. Specifically, the question we are
dealing with is whether wireless OTP devices (i.e., smartphones) can be
hardened at a reasonable cost (i.e., without costly OTP infrastructural
changes, public-key infrastructure/ operations, and with small modifi-
cation to browsers) so as to be useful against one type of interesting
and currently growing and highly publicized Man in the Middle (MITM)
attacks. The work herein summarizes our study which is based on our
proposed new notion of Contextual OTP (XOTP for short), which ex-
ploits session contexts to break the symmetry between the “user-MITM”
and the “MITM-server” sessions.

1 Introduction

Users of Internet services are constantly under attack. For example, it is esti-
mated that between 300 to 600 million phishing ([10]) emails are sent every day
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all over the world ([27]). Many of these phishing attacks are targeting users’
accounts such as bank accounts and web services accounts (see the information
on the increasing threat of phishing and other crimeware, such as the 2010 2d
half report by the Anti-Phishing Working Group ([2]).

To mitigate such attacks and enhance security mechanisms in general, insti-
tutions from banks to universities alike, have required internal users to employ
two-factor authentication schemes using one time passwords (OTPs). Unfortu-
nately, phishers are adapting to the use of OTPs by using real-time man in the
middle (MITM) attacks (e.g. [4,24,25]) and recently attacks of this type have
intensified ([8]). In these attacks the phisher exploits the same phishing infras-
tructure as in offline attacks (so there is no need to build costly mechanisms
and therefore it is the next natural step for an attacker). The phisher then gets
the user’s name and password as well as the user’s current OTP over the web
and use them in real time to access the user’s account at the real server. Thus,
while the OTP may guarantee to the server that the user is involved, it does not
guarantee that the party it communicates with directly is indeed the user and
not an MITM attacker.

Another set of MITM attacks which has been on the rise, involves corruption
of “trusted” third parties, like Certification Authorities, obtaining faked cer-
tificates, and furthermore controlling and abusing the DNS infrastructure (the
most recent such attack being “Operation Black Tulip” which was applied after
compromising the Dutch DigiNotar CA [17] which went out of business). With
such an attack, the user may employ the correct server’s URL under HTTPS and
still communicate with the MITM attacker rather than the real server. These
attacks thus pose a real and significant threat to any transaction performed over
the Web, and in particular to users living under repressive regimes (where the
regime controls and manipulates the infrastructure). A very recent commercially
motivated case is the CA Trustwave which sold companies “man in the middle”
certificates(!!), so they can eavesdrop on their employees [15].

Our Goal: We aim at introducing a new notion, the XOTP, implementations of
which we piggyback on and augment the OTP mechanism when run over wireless
communication to mitigate MITM attacks. This demonstrates the added power
of combining wireless communication and hardware tokens. Our approach is to
minimally change the OTP mechanism/ function (and not change its infrastruc-
ture), which leads to elegant solutions, and, in turn, do not require much added
investment.

The schemes we propose and their extensions are based on the basic notion
that MITM type attacks can be mitigated by cryptographically entangling the
OTP with a mutually recognizable session context (where context can be a com-
bination of URL, server’s certificate value, session key, etc. which can be utilized
by the machines at both ends of the session), subject to this context being dif-
ferent when an attacker stands in the middle. Such a context can thus serve as
a new type of authentication factor, and we refer to it as a contextual factor
(since it represents the agreed-upon session’s context to both session’s parties);
the resulting OTP is denoted contextual OTP or XOTP.
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Ideally, the XOTP assures (1) correctness: When there is no attack, the
XOTP computed by the client will match the one computed by the server; (2)
mitigating real-time phishing: if a user is phished, the XOTP it computes
will reflect the context of the user’s session with the phisher, while the server
expects an XOTP based on the context of its session with the phisher which is
different.

Results:We first present the above notion in the abstract idealized setting in its
most simple form. We then instantiate it in protocols with various combinations
of actual contextual information available to web sessions with increasing degree
of complexity. This demonstrates how as the combination of contextual factors
gets stronger, more powerful attacks can be foiled: From the most common
attack which tricks the user into mistaking the phisher site with that of the
desired server, through an attacker that also controls the DNS infrastructure,
and up to an attacker that additionally holds a fake server certificate. We note
that in addition to breaching a CA as was done in the DigiNotar case, there are
other means for an attacker to get the server certificate. Examples include CA
issuance mistakes, CA colluding with the attacker (Trustwave) and CAs run by
governments. Beyond our primary MITM attacks, to some extent, contextual
factors even offer mitigation from simple forms of Cross Site Scripting (XSS)
attacks. We finally show that further extensions of the scheme to authenticate
transaction data further copes with malware and general XSS attacks.

Methodological Remarks: On a general methodological level, we note that
XOTP demonstrates the power of designing for the specific channels employed.
This enables solutions to problems that are typically unsolvable in an abstract
channel setting (i.e., MITM attacks) due to the specific channel setting and the
concrete technology advancements. We further note that while we define here
the notion of contextual factor to describe binding of strong keyed cryptographic
function at the OTP device to “an implicit context of the session/ transaction
agreed by both sides,” the general notion of binding variables representing the
“current setting” to the cryptographic primitives has been used before in many
cryptographic protocols, primarily to break symmetries. Perhaps password bind-
ing to the URL, presented in various works [28,7,22] is the closest application, but
this was done for a different reason: mainly to diversify the password (in order
to specialize the password to the URL and prevent password re-use across sites,
which is a major source of password leaks), and with different cryptographic
setting (key-less hashing techniques). Other such examples exists as well in two-
party authentication protocols, etc. We also note that exploiting smartphone
devices in order to cope with various phishing attacks has been suggested (e.g.,
[16,13]) but not as an extension of and on top of the OTP infrastructure, and
not against an MITM attacker which uses fake server’s certificates, and therefore
not as a minimal elegant extension of the existing mechanism. We cover related
work in more details in a special section.
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2 The Contextual Factor Protocol

2.1 The Setting

The basic login scenario is where a client C wishes to login securely to a server
S over session Sess by using her browser. The scenario is such that protocols
start with C providing to the server her claimed identity which is usually a user
name and a password. Since any protocol starts like this, assume (w.l.o.g.) that
S already knows the claimed name C of the client, and we only concern ourselves
with the one-time password part of the protocol.

We assume that the user is equipped with a smart device containing (i) an
application which implements the scheme; (ii) a secret key shared with the server
which is used by the application to compute a pseudorandom function used in
the scheme; and (iii) a communication capability between the browser and to the
smart device. The system would also require provisioning procedures, establish-
ing a new shared key and/or application (in case the key needs to be revoked,
the smart device is lost, etc). Additionally the system needs a browser extension.
We note that the system we suggest is generic and allows secure communication
with multiple parties. We hope that the browser extension will eventually be an
integral part of the browser; as such, the use of white-lists is not practical. Appli-
cation and key setup as well as update have been discussed in similar scenarios
before (e.g., [16,13]), and are already part of the OTP infrastructure; therefore
we will not discuss them further.

We start by designing a protocol which captures an abstract idealized notion
of the above scenario in which the user side is assumed to be a single entity and
factors of the right form are assumed to be available . This allows us to ignore
issues relating to secure flow of information within the client side (between the
user, smart device and browser) as well as issues and attacks relating to the
specific contextual factors used. We will deal with these issues later.

Suppose the client is being authenticated on session Sess (by the server or by
the MITM attacker masquerading as the server). We define some symbols to be
used:
− keyS,C is a secret key shared between S and C (in C’s device).
−ChalS,C Synchronized, non-secret, non-repeating challenge between server S
and client C (e.g., time and/or counter based challenge).
−PRF(key,data) a Pseudorandom Function (with truncation) algorithm ap-
plied to the given data using the given key. The result of the PRF is assumed to
be hard to guess, i.e., we make the standard assumption that the PRF output
is unpredictable. We assume that for any PRF input parameter that we employ
throughout and given access to the history of previous outputs (plausible history
of polynomial length) the probability of guessing the next output is bounded by
a small probability ε (which we will employ throughout).
−ID stands for user name, password, account number or any other identity-
related parameter or combination of such parameters. It may also be empty.
−Nonce Represents server and/or client nonce(s) which is part of data to the
PRF. It may also be empty.
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−”||” means concatenation (as an example of a one-to-one reversible binary
function).

2.2 The Current OTP Protocol

The following exchange denoted as the current OTP protocol, generalizes
many of the currently used OTP mechanisms.

– C computes OTP = PRF (keyS,C, ChalS,C ||ID||nonce) and sends it to S
(see remarks below).

– S verifies the received OTP by applying the same computation.

The Attack Considered: It is immediately obvious that a MITM attacker
who impersonates as the real server, gets the OTP and can forward it to the
real server, thus impersonating as the user.

2.3 The Contextual Factor Protocol

The goal of this section is to describe and motivate our notion and its simple
yet powerful properties by considering an abstract simplified setting of idealized
factors.

A contextual factor of a session Sess is a string denotedXFSess which satisfies
the following ”factor requirements:”

1. Recognition: Both sides of the session Sess recognize (the same) XFSess.
2. Uniqueness: For any two different sessions, Sess1 and Sess2, it holds that

XFSess1 �= XFSess2.

Protocol:

1. C computes
XOTP = PRF (keyS,C, ChalS,C ||ID||nonce||XFSess) and sends the com-
puted XOTP to S.

2. S verifies the received XOTP by applying the same computation.

Correctness: In, both, the current protocol and the contextual factor protocol
the challenge CHALS,C , the ID, the nonce and the contextual factor XFSess

(in the contextual-factor protocol) are known to both parties: The challenge
has been assumed to be synchronized, the ID can be inferred from the claimed
user name, the nonce if exists is sent over, and the contextual factor is assumed
to be known to both parties. Thus both sides apply the same deterministic
computation employing the shared key which obviously produce the same result.

Security: As already noted, the standard protocol is susceptible to a relay attack
by a MITM attacker P with probability 1.

On the other hand, in the contextual-factor protocol such relay attack will
be rejected with high probability: Denote the session between the client C and
the attacker P by Sess1 and the session between P and the server S by Sess2.
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Let H be the history of XOTP’s communications observed by P till these ses-
sions. Denote the XOTP sent to the attacker by the client by XOTP1 and the
XOTP expected by the server by XOTP2. P needs to compute XOTP2 based on
his current history H ||(XFSess1, XOTP1). However, because of the uniqueness
requirement, XFSess1 as well as all contextual factors in H are different than
XFSess2. Thus, by the PRF definition (following [12]), the probability of P to
successfully produce/ guess XOTP2 is bounded by ε.

Remarks:

(i) We do not require that the user be aware of the value of the contextual
factor.

(ii) Instead of modifying the OTP algorithm, it is also possible to entangle
the contextual factor with the resulting OTP by using an additional PRF
computation within the smart device.

(iii) In our realization of the protocol, we do not need to truncate and format
the PRF output, since user involvement is minimal.

(iv) When the user is involved (see discussion in Section 4.1) or if compatibility
demands this at the server side, the PRF result is further processed and
truncated. For example, from the 160-bit output of HMAC ([18]) which
is used in the HOTP algorithm ([20]) between 6-8 decimal digits are ex-
tracted. It is assumed that the result of such processing and truncating
gives a pseudorandom output, so that if one knows ChalS,C , ID and
the nonce, still calculating the response is hard (for an 8 digit pseudo-
random value response we can assume ε = c/108 for c being a constant
very close to 1 in case of complete synchronization between the parties or a
larger constant depending on the window of synchronization). The security
definitions of PRF allows the adversary to first observe a polynomial size
history of input output pairs, before guessing the value of a new input (in
fact, before being able to tell this value from a randomly chosen one), see,
e.g. [12].

(v) In HOTP the challenge is an 8-byte counter which is synchronized between
the client and server (so it does not need to be sent between them) and
no ID or nonce are involved. The standard mentions as possible extensions
adding to the challenge identity-based parameters (such as address and
PIN) or time. By adding ID and allowing ChalS,C to include both counter
and time, our OTP definition (and the way we defined ε) include such
extensions. We also allow using server and/or client nonce(s) (but in case
a nonce is indeed used it needs to be sent to the other side).

(vi) In case the ID includes the user’s password (or other secret information),
one may consider requiring that the user enter it into the smart device
rather than into the browser (as suggested in a similar context in, e.g., [13]).
Note, however, that this hurts usability and does not add much security as
the password can still be phished by clever wording on the browser.

Now that the idea has been motivated, the next two sections will demonstrate,
first, the various ways to implement XOTP from concrete contextual factors, and
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then the robustness of the XOTP notion and how it can be used in conjunction
with additional techniques (which are realizable on smartphones and are imple-
mentable as support and extensions of OTP software) to deal with extended set
of attackers exploiting typical weaknesses of web technologies.

3 Possible Contextual Factors

We present several candidates for a contextual factor and the protection each of
them gives against Man-In-The-Network (MITN) attacks, still relating to
the client as a single entity. Because none of the candidates for contextual fac-
tors fully satisfy the second factor requirement, i.e., uniqueness, we distinguish
between two types of MITN attacks (extending the discussion beyond the simpli-
fied real time attack considered above), according to the status of the contextual
factor.

– In a Different-XF attack, the contextual factor in the session between the
user and attacker is different than that in the session between the attacker
and server.

– In a Same-XF attack, the contextual factor in the session between the user
and attacker is identical to that in the session between the attacker and
server.

Different-XF attacks represent the majority of MITM attacks. For example,
when the contextual factor used is the URL (see below), the attack would be
of the Different-XF type whenever the URL used by the attacker is different
from that of the server - as is the case in most phishing attacks. As shown in
Section 2.3, attacks of the Different-XF type, will fail when using the contextual
factor protocol. We thus only consider the more advanced attacks - those of the
Same-XF type. We start by discussing the use of the URL as a contextual factor.
Although the URL turns out to be quite strong for dealing with several types
of attacks, other types require further protection, and the respective contextual
factors providing that protection will follow. Finally, we discuss the practically
of using client and server IP’s as contextual factors and mention some additional
possible factors.

3.1 URL

We first note that the URL satisfies the first factor requirement - recognition
- in the definition of a contextual factor (i.e., both sides to a session know the
URL). Requirement 2 - uniqueness - is not always satisfied, e.g., by the attacker
contaminating DNS entries so that the client uses the correct server’s URL but
is routed to the attacker.

Fortunately, such attacks will not work if the server requires its session with
the client to be secure (HTTPS), which secure protocols should indeed require!
The reason is that because in this case the browser uses the correct server’s URL,
it also uses the correct server’s certificate. Thus, assuming the MITM attacker
cannot break the server’s private key but with probability δ << ε, he is with high
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probability no more than an observer of encrypted traffic so such an attack will
indeed fail.

Because in virtually all implementations of a two-factor authentication scheme
the server requires secure session by SSL/TLS, it follows that using the URL as
a contextual factor in these server-certificate based sessions, fully mitigates both
attack types mentioned above.

Remarks:

(i) Observe that although the URL is the only factor used in the XOTP com-
putation, we implicitly use in this case, a contextual factor based on the
URL and the session key wrapping it inside. We denote this implicit factor
as a nested URL or in the general case a nested contextual factor.

(ii) It is important to note that insistence on a secure session would not help
when OTP is used rather than XOTP since when the OTP is used, the
MITM attacker will get the correct OTP from the user client (on a secure
or insecure session between the client and attacker), and relay that OTP
to the server on a secure session between the attacker and the server.

(iii) The URL is a good suggestion for a contextual factor since it is a built-in
factor in the infrastructure which is extremely versatile as it may encode
almost any additional information as may be required. For example, the
server may incorporate into the URL transaction data, messages to the
smart device, and more.

3.2 Server’s Certificate

As with the URL, when the server’s certificate is used as the contextual factor,
recognition is satisfied but uniqueness is not in general satisfied since an attacker
may present the server’s certificate as well as contaminate DNS entries. Also,
as with the URL, such attack won’t work if the server requires its session with
the client to be secure (HTTPS) because the scheme uses implicitly a nested
contextual factor (the SSL/TLS session key wraps the server’s certificate).

Additionally, using the server’s certificate as the contextual factor foils an
attack in which, in addition to contaminating DNS entries, the attacker uses a
fake certificate of the server (issued unwittingly by a “trusted CA”). This is so
since the real server expects the XOTP to be based on its own certificate rather
than on the faked one (the probability of the attacker getting an employable
faked certificate with the same public key as the original certificate, amounts to
breaking the original public key, which is a negligible probability event).

It is important to note that a browser extension implementing such a scheme
requires enforcing that the same certificate used to calculate the XOTP is also
used to setup the SSL/TLS connection used to transfer the XOTP to the server.
Without such an atomicity condition, an attack is possible where 1) the MITM
attacker uses the server’s real certificate on a first SSL/TLS connection to make
the browser extension calculate the XOTP and then 2) switches to a different
SSL/TLS connection using a fake server certificate, over which the XOTP would
be sent to the attacker.
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3.3 URL + Server’s Certificate

The server’s certificate can be used together with the URL which would allow
also the inclusion of transaction data. In general, combining several contextual
factors, gives the accumulative benefits of all the factors.

3.4 Session Key

Suppose any of the SSL/TLS session keys with the server (or a pseudo random
function of it) is available to be used as a contextual factor in addition to the
server’s certificate (and possibly also the URL). This is an alternative way to foil
the previous attack using a faked certificate because the XOTP created by the
browser extension and sent to the attacker (using one SSL/TLS connection) will
be different than the server expected XOTP for a second SSL/TLS connection
used by the attacker to the real server.

In addition to foiling the previous attacks, this foils an additional attack where
a malicious JavaScript attack on the page (see, e.g., [9]) steals the XOTP from
the page and sends it to a malicious attacker which can then serve as a client and
authenticate as the user. Such an attack is foiled because the server expects that
the XOTP be based also on that fresh session key but the session key between
the attacker and the server would be different (w.h.p). In Section 4.3 we show
how to deal with such an attack when session keys are not available to be used
as contextual factors. Note that using session key can somewhat increase failure
probability because a SSL/TLS connection can be restarted with a different
session key during the XOTP protocol for perfectly innocent reasons (violating
the atomicity requirement). However, since the duration of the protocol is small
we expect the increased failure risk to be small as well.

Note that we consider here XSS attacks on the authentication protocol and
not attacks on already authenticated sessions [11] (but we consider such attacks
later together with general malware attacks). Indeed, there may potentially be
other ways in which a malicious script may abuse the session.

3.5 IP

In some cases client IP or server IP address (or both) may serve as contextual
factors provided they can satisfy the first factor requirement of recognition.
Recognition of the same IP address on both sides may be complicated by the
fact that intermediary devices may be changing the IP address. The client IP
can be used only if it is known that it has not been modified (by e.g., proxies).
The server IP can usually be used, when it can be assured that the server knows
its own IP as seen by the client which may not be the case when IP anycast or
load balancers are used. Sometimes the whole IP address cannot be used but a
part of it can (e.g. high bits).

In practice, a server’s IP address is better to utilize since a server would
generally know if its IP address (or its high bits) is known to a client and only
then inclusion of the IP address in the XOTP calculation be requested of the
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client. Another alternative to using high bits, is to use server’s location as known
by mapping the server’s IP address to an approximate location.

We note that when IP may not be in exact agreement between the parties,
then it can be sent on the clear (like a nonce), to allow the other party to check
that the IP used is approximately the agreed upon value (e.g., shares the same
domain). This principle of sending values on the clear regarding parameters that
are approximately in agreement applies generally.

To examine Requirement 2 - uniqueness - as well as attacks on such a sys-
tem, let us assume that the Server IP is used as a contextual factor, and that
the server only supports HTTPS sessions (or uses different IPs between HTTP
and HTTPS sessions). First note that, as before, uniqueness is not satisfied in
general, since the MITM attacker may subvert the routing infrastructure. More-
over, it turns out that because the server’s IP address is not strongly correlated
with the server’s certificate, the MITM attacker can complete an attack against
such a system: The attacker presents the client with a wrong URL (he cannot
present the user with the correct server’s HTTPS URL since this would cause
the session to be secure). He also modifies DNS entries so that on client request,
the server’s IP would be returned (this is required, because the correct server’s
IP is associated with a server’s HTTPS URL). Additionally, because the correct
server’s IP is used, the attacker must also subverts the routing infrastructure
so that connections to the server’s IP would be routed to the attacker. Clearly
such an advanced resource-heavy MITM attack requires big efforts, and can be
mitigated by, e.g., using DNSSEC ([19]).

3.6 Other Factors

Time and location and other “physical factors” suggested for relay attack preven-
tion, can in principle (but generally not in practice) serve as contextual factors.
See also section 5.

4 System Setting Considerations and Extended Attacks

In this section we extend our discussion to include the actual client environ-
ment (Section 4.1 where we employ tools available in modern smartphones) and
consider additional attacks (Section 4.2 and Section 4.3). Finally the table in
Section 4.4 summarizes our results.

4.1 Secure Communication of the XOTP in the Client’s
Environment

Recall that the contextual factor protocol in Section 2.3 and its analysis as
well as the discussion of the URL as a contextual factor, both, assume that the
client is a single entity and thus ignore issues related to the flow of information
(specifically, the contextual factor and the XOTP) within the client environment.
In this section we propose a technological solution to these issues. We assume
throughout this section that the contextual factor is the URL and that the server



40 A. Ben-David et al.

requires that its authentication session with the client be secure (HTTPS). We
also assume that the attacker has no control over the client environment (i.e., no
XSS attack or other code breaches) and does not posses a fake server certificate
(which as mentioned in Section 3.2 requires the use of more advanced contextual
factors and further work by the browser extension). We discuss such attacks
further in Section 4.3.

As mentioned in Section 2.1, we utilize a generic browser extension (which
we hope to be eventually incorporated into the browser itself). The extension
communicates with the smart device through Bluetooth (or any other secure
channel). The extension adds itself into a page that contains a specific string
(such as a field named ”XOTP”) waiting for a predefined event (clicking a pre-
defined button added by the extension, clicking an XOTP field, submitting the
page, etc.). When the event occurs, the extension sends the page URL to the
smart device and copies the received XOTP into a specified field in the page.
The extension can either submit the page or let the user (or code on the page)
to submit it later.

In case of a Different-XF attack this XOTP would be sent to the attacker (and
be exposed to the attacker’s code) but, as argued before, it would be different
from the value expected by the server in its session with the attacker. Because the
attacker has no control over the user environment, he cannot trick the browser
to request XOTP computation of a contextual factor of his choice. In the case of
a Same-XF attack or simply a session with the genuine server, the page comes
from the server and we assume that it is safe. (We ignore attacks which just spoil
the XOTP computation since they only provide denial of service which a MITM
attacker, given its location in the middle, can easily achieve by other means.)

We note that communication between the smartphone device and the browser
(rather than a manual typing) neutralizes a (real-time) shoulder surfer attacks
as well [23].

Below we discuss other methods for communicating the contextual factor and
XOTP in the user environment that do not rely on direct communication between
the browser and device. However, these methods involve the user and are thus
vulnerable to direct phishing (social engineering) attacks on the user: In the
Manual method the browser generates a (short) hash of the URL (so the XOTP
would be based on the hash of the URL rather than on the URL itself), the user
types it into the device, and then types the result back to the browser. With the
QR-code method the browser displays a QR-code of the URL, the user scans
it with the smart device, and types the result into the browser (this is similar
to [14]).

Even without considering the user’s last action of typing the XOTP to the
browser, both the Manual and QR-code methods are much more susceptible to
an attacker’s Different-XF attack than the communication channel method since
the user involvement is increased: Denote by URLPS the URL in the attacker’s
session with the server and by URLPU the URL in the attacker’s session with
the user client. The attacker may trick the user into initiating the authentication
procedure on the user’s session with the attacker. In the case of the Manual
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method the attacker could then display the hash of URLPS (instead of the hash
of URLPU) and in the case of the QR-code method, the attacker can display
the QR-code of URLPS (instead of the QR-code of URLPU ). In both cases the
XOTP that would be sent to the attacker allows him to then masquerade as the
user. Thus, if these methods are employed, careful user guidelines are needed
to bind the URL used and the page responded to in a clever way. Moreover,
usability of both methods above (in particular of the Manual one) is inferior
to that of using Bluetooth. On the other hand, Bluetooth requires a one-time
pairing procedure between the user’s machine and the smart device.

Reliable Communication Requirement: We note that the communication
between the device and the computer has to be active which in modern com-
puters is the case. In case there are communication problems another access
method may apply, such as an OTP by SMS or by calling a help desk (where
the parties are now aware they are exposed to potential MITM attack in that
specific session). Note that similar issues can occur with legacy OTP devices.
Such issues are sometimes handled by password reset type mechanisms (which
we mention in Section 4.3 below).

4.2 Routing to a Different User Registered Website

A user is typically registered with multiple web sites and each may have its
servers expecting an XOTP protocol to be satisfied before entrance is granted.
It is always possible for a MITM attacker to switch a client’s connection from
one intended ’user-registered web site’ to another simply by sending a redirect
message or by acting as a MITM actually relaying all messages back and forth
between the client and the server. However, this is not too damaging because
the SSL connection would be extended from the client to the server and the
MITM attacker would not be able to eavesdrop or effectively intervene in the
communication. Secondly, the client should eventually realize that it is at a wrong
web site and log off. In fact, such an attack is no different than an accident where
the user logs into one web site and only afterwords realizing that she really meant
to log in to another.

4.3 Additional Types of Extended Attacks

We consider two more types of attacks which are MITM-variants: (1) Man-
In-The-Browser (MITB) in which the attacker has installed malware on the
user’s machine, and (2) a separate case of Man-In-The-Device (MITD) in
which the attacker has malware in the user’s smart device.

We start by describing extensions to the protocol. In Section 3.4 we have shown
that using a session key with the server as the contextual factor prevents an
XOTP stolen from the page and sent to the attacker by malicious JavaScript
code, from being used to authenticate as the user (due to a fresh key being
generated in each session). If, however, a session key with the server is not
available (or the failure rate as discussed in Section 3.4 is too high), we can use
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instead a session key established between the server and the phone. Note that this
variant of the protocol also solves the situation of SSL re-binding attacks [29].

More generally, we describe below two extensions to the protocol, noting that
the session key between the server and phone can be taken from the result of the
two-way authentication described first (which is an efficient way of implementing
this; we are fully aware that other two party protocols can be employed):

– Two-way authentication: The contextual factor protocol allows the server
to authenticate the client but does not prevent MITM attack in the strong
sense. It only ensures that no matter what information was obtained by
the attacker, this information cannot be used to masquerade the user to
the (specific) server. When a smart device is used, it is easy to extend the
scheme and authenticate the server as well (by a flow that carries a new
returned-XOTP from the server to the device). The smart device could then
warn the user if the server has not been authenticated within a very short
period of time following client authentication.

– Direct communication channel with the server: The smart device (having,
in fact, a general computer capability) may communicate directly with the
server. For example, when using the URL as a contextual factor, the device
may access the server directly via a second URL which is a default variation
on the original URL used by the browser. We may cryptographically secure
the original URL (using, e.g., PRF of the URL with the shared key) to ensure
that the smart device only visits genuine server sites. Using this channel,
(secured) transaction data or other information may be sent to the device
without involving the browser. Note that the contextual factor must be
delivered to the smart device from the user’s machine and not from
the server as it needs to represent the session in which the user client takes
part.

Man-In-The-Browser (MITB) attacks:

– MITB keyloggers:When using Bluetooth, the scheme withstands the pop-
ular MITB keyloggers as the XOTP is not typed by the user.

– General MITB: The scheme as described does not protect against a gen-
eral attacker that totally controls the browser or the machine since a MITB
could eavesdrop or insert messages in the SSL session or issue requests. Fur-
ther, an XSS attack post initial authentication can have this nature as well
[11]. Because the scheme can additionally reflect context, it can, in addition
to user initial authentication, provide transaction authentication by in-
corporating transaction data into the computation of the XOTP, and use
this data for authentication of transaction steps (even user initial authenti-
cation can be handled as a random transaction, btw). The interaction will
require a few XOTP computations by the device and the server to assure
transaction safety; from the user point of view, she will have to check the
display on the device and approve the transaction. For example, when trans-
ferring money between accounts, the account numbers and amounts involved
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can be part of the data which is also integrated into the XOTP computa-
tion (in the right order and tagged with the field name to avoid “shuffling
of information attack”). The flow of a transaction can go as following: (1)
transaction data with initial XOTP should be sent to the server, and then
(2) this information should be sent from the server to the device with server
returned-XOTP (the XOTP is computed differently than the initial XOTP
and the sending is encrypted end-to-end between the server and the device),
(3) it should then be displayed on the device for user confirmation, then
after confirmation (4) an additional final XOTP (computed differently than
the other two above) is computed and sent to the server, closing the loop on
(and effectively committing to) the transaction.

Man-In-The-Device (MITD) Attacks: The attacker can get access to the
long term shared key between the device and the server and thus can create
any XOTP it desires. Even without access to the long term key, the attacker
can request an XOTP for any URL of its choice. However, the attacker will
still not be able to complete the protocol without knowing the other factor (i.e.,
the secret password). Such an attack demonstrates that having a strong second
factor does not diminish the importance of using also a strong first factor (i.e.,
choosing a password wisely). The principle of compartmentalizing the various
factors is important whenever possible (it also prevents a spurious device from
acting on its own) and is advocated here (this principle was not always kept
and was given up for other advantages in various places, e.g., [13]; we believe it
is important to keep it and our approach of minimalistic extension of the OTP
leads to keeping this in a natural way).

Extended System Context: Finally we note that “user sign on” is a procedure
within a larger system. In that system several authentication mechanisms may
co-exist, and obviously the system can only be as strong as the weakest among
them. Thus, our goal in designing the system should be that regardless of which
information is “phished” and over which mechanism, the attacker will fail. In
particular, it is important to verify that “password reset mechanisms” do
not undermine the primary authentication scheme, namely that we insist on
extra factors even in the reset of passwords procedure, and that we replace
authentication devices in a highly secure fashion as well.

4.4 Summary of Results: Real-Time Impersonation and More

The following table summarizes our results. For each attack type (in increasing
severity), we give the contextual factor that can be used to mitigate the attack
and the technology required on the smart device for implementing it. The term
impersonation below refers to a MITM attack (because the attacker impersonates
as the server). It may be carried out by the attacker using a different URL
than that of the server (first case) or the same URL (all other impersonation
cases).
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Attack type Factor checked by server Technology

Impersonation
(different URL)

URL Smart device

Impers. (same URL) +
DNS poisoning

URL + HTTPS As above

Impers. + DNS poisoning +
Fake cert

URL + HTTPS +
Server’s cert

As above

Impers. + DNS poisoning +
Fake cert + Simple XSS

URL + HTTPS +
Server’s cert + Session key

As above

Malware

URL + HTTPS +
Transaction data + User
confirmation on device to
server

Smart device
with input ca-
pabilities and
display

5 Related Work

Although the conceptualization of the term ”contextual factor” and its use as
suggested in this paper is to the best of our knowledge novel, there is prior work
that uses notions of similar flavor (i.e., cryptographic entanglement). Generally
speaking, in authentication methods some binding of challenges and history to
the response are common place and may be considered the motivation for our
notion. Specifically in SSL/TLS [21] a connection is established based on a server
certificate whose name must match (part of) the host name. In fact, an excellent
way to mitigate many attacks would be to use SSL/TLS two-way authentication
rather than just server authentication. However, client-side certificates are hardly
ever used in consumer client-server authentication, and in any case cannot be
used when the user logs in from an unknown computer (such as an Internet
cafe). In this respect, see [16] (discussed below) which suggests to use PKI with
client-side certificates on the user’s mobile device. It should be noted that such
a scheme is susceptible to an attack using a fake server certificate.

Preventing relay attacks: It was shown [3] that relay attacks on physical ob-
jects cannot be solved based solely on game theoretic techniques, and a solution
was given based on measuring time. Recently, [26] suggested the use of unreliable
channels to prevent relay attacks and observed that by measuring time [3] in fact
uses time as such an unreleasable channel (other new channels presented are ab-
stract ideas based on physical objects with no electronic realization). Although
these results (and others such as [1]) concern physical objects and we are only
interested in entity authentication in which cryptography can solve the problem
(e.g., two-way SSL/TLS authentication), these works are relevant in the sense
that they consider relay attacks as we do and the unreliable channel solutions
they suggest are physical factors which are contextual in nature. We note that
using time and location as contextual factors requires very refined method of
measurement (not commonly available over the web).

Next we note that other mechanisms in past works bear some (at least super-
ficial) similarity to our techniques.
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(1) Smart mobiles: [16] and [13] each suggested an authentication scheme
based on a smart mobile phone (or other smart device), though they cannot
be considered as a minimal enhancement to OTP. In [13] the phone keeps the
server’s public key and uses it to encrypt the user name and password which
the user types into the phone (instead of into the her computer). The encrypted
password acts like an OTP. The scheme is susceptible to a MITM attack (it was
designed against off line phishing): in case of such an attack, the protocol will
end with a secure (SSL/TLS) session between the server and phisher, as well
as between the phisher and the browser. Thus, security of further transactions
relies on authenticating each transaction by using the session key established
between the server and the mobile phone. Moreover, as mentioned above, the
system is susceptible to the phisher tricking the user (e.g., to type her password
into the browser). [16] basically implements an SSL/TLS two-way authentica-
tion protocol with a client certificate stored in the mobile phone. Because it
relies on the SSL/TLS protocol it is susceptible to a MITM attack using a fake
server certificate as we mentioned above. Additionally, a server in this case needs
to remember clients’ public keys or to employ the costly PKI operations (like
probing revocation lists, or probing online certificate status servers), whereas an
OTP based approach only implies a symmetric key per user, which in fact can
be derived from a single long term stored master key and the user ID.

(2) URL-based hashed passwords: Entangling of the URL with the OTPmech-
anism (which is one of our basic contextual factors) resembles the way several
publications entangled the URL with the user password (or other user data),
though the earlier goals were completely different. In [6] and [5] this entan-
gling is used to allow pseudonymous (anonymous, but still personalized) web
browsing, as well as anti-spam, whereas in [28], [7] and [22], this entangling pro-
vides (among other things) a unique password per URL to prevent the usage
of the same password everywhere (which is an important different concern than
the ones in this work). The entanglement in these cases is by non-keyed crypto-
graphic hashing (while we augment the OTP pseudorandom keyed function) and
the entanglement does not prevent off-line dictionary based password cracking
by an eavesdropper, say.

We note again, in light of the earlier works, that none has attempted the fol-
lowing experiment: move OTP to use wireless channel and seek minimal addition
to the mechanism (essentially function code change) to cope with as many as
possible rising threats. This approach forced us to consider the various changes
to the OTP function incrementally, and to consider the change against the exact
threat this hardening mitigates.

6 Concluding Remarks

OTP has been known to be superior to password-only login since it adds entropy
to the login procedure, which is well understood by now. Here the principle of
“added entropy” of the OTP devices is followed by a new principle of “added
context” (i.e. a cryptographic computation does not only add entropy but is also
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capable of binding the factor to a specific context). The principle is strong enough
to foil many MITM attacks (though, the scheme is not intended, all by itself, to
stop all attacks defined in the very broad sense and combine rogue infrastructure,
social engineering and so on). Indeed, we demonstrated how attackers with si-
multaneous control over numerous mechanisms and mounting quite sophisticated
attacks, can be frustrated by the scheme when implemented correctly and with
the right available wireless tools (while minimally enhancing the mechanism).
For example, attacks like DNS contamination and tricking a CA to produce a
faked cert, while attempting to employ the stateless nature of the SSL/TLS
can nevertheless be dealt with, employing careful design and careful choice of
context. This demonstrated the fact that with modern wireless tools, the secu-
rity, practicality, and usability of the XOTP/ OTP tools can be substantially
improved without much added cost, showing how added wireless channels can
contribute much more than the obviously recognized user convenience aspect.
More generally, we believe that the idea of adding contextual information to
cryptographic computations can enhance the security of other protocols among
devices and machines, especially in the emerging world of computing where users
simultaneously operate numerous gadgets and devices.
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Abstract. Public key infrastructures (PKIs) are proposed to provide
various security services. Some security services such as confidentiality,
require key escrow in certain scenarios; while some others such as non-
repudiation, prohibit key escrow. Moreover, these two conflicting require-
ments can coexist for one user. The common solution in which each user
has two certificates and an escrow authority backups all escrowed pri-
vate keys for users, faces the problems of efficiency and scalability. In this
paper, a novel key management infrastructure called RIKE is proposed
to integrate the inherent key escrow of identity-based encryption (IBE)
into PKIs. In RIKE, a user’s PKI certificate also serves as a revocable
identity to derive the user’s IBE public key, and the revocation of its IBE
key pair is achieved by the certificate revocation of PKIs. Therefore, the
certificate binds the user with two key pairs, one of which is escrowed
and the other is not. RIKE is an effective certificate-based solution and
highly compatible with traditional PKIs.

Keywords: Certificate, identity-based encryption, key escrow, key man-
agement, public key infrastructure, revocation.

1 Introduction

Public key infrastructures (PKIs) are proposed to publish public keys. In PKIs,
the public key of a user1 is bound to its identity in a certificate, signed by a
certification authority (CA). After querying and validating a certificate, every-
body can use the contained public key for authentication, confidentiality, data
integrity and non-repudiation.

Key escrow is required or prohibited in different security services, even for
one user. On one hand, if a key pair is used for data encryption and decryption,
key escrow is usually needed. A typical example is that, in a corporation, the
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Science Foundation of China grant 70890084/G021102, 61003273 and 61003274, and
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1 In this paper, “user” may refer to a person, a device, an application process or any
equivalent entity.
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backups of all employees’ private keys are stored in a trusted party, called the es-
crow authority (EA) or the key management center (KMC); so the corporation
can decrypt all encrypted data in case the employee’s private key is unavail-
able. On the other hand, if the key pair is used to sign and verify messages for
non-repudiation, key escrow is usually prohibited. For example, key escrow is
forbidden or unrecommended in the digital signatures laws and the guidelines of
several countries and organizations [3,11,16,17].

To satisfy the conflicting requirements of key escrow, a common solution is
to let each user hold two key pairs and accordingly two PKI certificates. The
key pair and the certificate used for non-repudiation, don’t support key escrow;
while the others do. An instruction (called the key usage extension) is embedded
in each certificate to indicate the purpose of the key pair [13]. In this two-
certificate solution, every user generates its own key pair for non-repudiation and
the EA generates the user’s key pair for other purposes. The two public keys are
contained separately in two certificates. As a result, more resources are needed
to sign, publish and revoke certificates. Moreover, the EA faces the problem of
scalability: as new key pairs are generated to replace expired certificates and
new users join the system, the task of maintaining the great amount of escrowed
private keys becomes very heavy.

Identity-based encryption (IBE) is a special type of public key algorithms,
with the feature of inherent key escrow. In IBE, a trusted private key generator
(PKG) initializes a secret master key and publishes the corresponding pubic pa-
rameters. A user’s public key can be calculated from its identity (and the pubic
parameters) by other users. Thus, certificates are not needed. When receiving
messages encrypted by its public key (or its identity), the user asks the PKG to
generate the private key corresponding to its identity. As for key recovery, the
PKG only needs to hold and protect the secret master key, to regenerate private
keys for all identities (or users). However, key revocation (when a private key is
compromised) is a problem in IBE, since the public key are bound to identities
automatically and users are not willing to change their identities. One the con-
trary, there are various certificate revocation mechanisms in PKIs, applicable to
different scenarios.

The above observation that IBE and PKIs have complementary advantages
gives us the motivation to integrate IBE and PKIs. In this paper, we propose
RIKE, using Revocable Identities of IBE to support Key Escrow in PKIs. RIKE
doesn’t invent any new public key algorithm; instead, it is an innovative key
management infrastructure assembling the advantages of both these two cryp-
tosystems. Each RIKE user has one certificate and the public key in it is only
used for the security services prohibiting (or not requiring) key escrow. The
other security services requiring key escrow, are achieved through IBE; however,
the IBE public key is derived from the user’s certificate, not from its real iden-
tity. Compared with traditional PKIs, RIKE provides security services with the
conflicting requirements of key escrow, while each user has only one certificate.
Moreover, supporting key escrow in RIKE is much easier than that in PKIs, due
to the inherent key escrow of IBE.
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RIKE also solves the key revocation problem of IBE, by utilizing the certifi-
cate revocation mechanisms of PKIs. Unlike deriving the public key from the
receiver’s unchangeable identity in IBE, the RIKE user derives the IBE pub-
lic key from the receiver’s certificate after validating that certificate (including
checking its revocation status). If the receiver’s IBE private key is compromised,
the CA will revoke its certificate and then the corresponding IBE public key
shall not be used. If a new certificate is issued, a new IBE key pair is available
automatically while the receiver’s identity keeps constant. Therefore, in RIKE,
a certificate works as a “revocable identity”.

Another advantage of RIKE is the high compatibility with PKIs. RIKE is
implemented on the prevailing X.509-based PKIs, with new-designed certificate
extensions (see Section 4). So the existing PKIs can be smoothly transferred to
RIKE. If some users receive a certificate contained such extensions and do not
understand the extensions or support IBE, they just ignore these extensions and
process it as a common X.509 PKI certificate.

This paper is organized as follows. Section 2 surveys the related work. Section
3 presents the detailed architecture and the analysis of RIKE. Section 4 discusses
how to implement RIKE using X.509 PKI certificates. Finally, Section 5 draws
the conclusion.

2 Related Work

How to perfectly support key escrow in PKIs is still an open problem. The
common and prevailing approach is to store the backup of a user’s private key
in a centralized component [15,32]. This solution is compatible with traditional
PKIs, but lacks of scalability because more and more private keys are stored
as the number of users increases and certificates expire. Self-escrow PKIs (SE-
PKIs) are proposed [9,31] to embed the public part of trapdoor information
when users generate private keys. The key recovery agent (KRA), holding the
secret part of trapdoor information, can recover users’ private keys. However,
the specifically-designed public key algorithms are not supported by most users
and then obstruct the adoption of SE-PKIs. In this work, we try to provide a
solution supporting efficient key escrow and compatible with traditional PKIs.

The concept of IBE originally proposed by Shamir [33]. Boneh et al. [7] and
Cocks [12] invented secure IBE algorithms, in which an arbitrary bit-string can
be used as a public key. Hierarchical IBE [20,21] is designed to reduce the work-
load of the centralized PKG. All these algorithms have two basic features: (a) a
user’s identity known by others are used as the user’s public key, so the certifi-
cate is eliminated; and (b) IBE inherently supports key escrow because all users’
private keys are generated by PKGs and can be recovered by PKGs.

The inherent key escrow is usually considered as a drawback of IBE in many
scenarios, because of the risk that the users’ private keys may be disclosed or
maliciously used by the PKG. [18,23] proposed to generate the private keys by
distributed PKGs, so that the keys are still secure when the PKGs are par-
tially compromised. Alternatively, the privilege of PKGs can be constrained. In
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certificate-based encryption (CBE) [19], a user’s non-escrowed secret key and a
certificate from its CA are both needed to decrypt messages; and [34] designed a
CBE-based proxy cryptosystem with revocable proxies. In certificateless public
key cryptography (CL-PKC) [2], the private key is generated by a user and a key
generating center (KGC) cooperatively. However, the feature of key escrow can
be leveraged in the scenarios where key escrow is necessary, and the inherence
makes the key-escrow design of RIKE concise and efficient.

The inherent binding of identities and public keys becomes a problem in IBE
when the user’s public key needs to be revoked (e.g., the private key is com-
promised), because identities are usually expected to remain constant. To deal
with the revocation problem, the user’s identity and a period of validity can be
combined together to derive its public key [7]. Once the period expires, the key
pair becomes invalid automatically; however, if the private key is compromised
during the period, the key pair can not be revoked in this way. So, the period
of validity shall be very short for high security, and the PKG shall generate
and users shall apply for private keys very frequently. Another approach is the
security mediator (SEM) architecture [5,6,26], in which an online SEM keeps a
partition of each user’s private key and every decryption operation requires the
SEM’s help. Revocation is achieved as long as the SEM stops helping the user to
decrypt messages. But an always-online SEM service faces more risks, so more
expensive protections are needed in practical deployment.

On the contrary, a public key (or a certificate) in PKIs is used only after
its revocation status is checked. Lots of approaches are proposed to revoke PKI
certificates, such as certificate revocation lists (CRLs) [13], redirect CRLs [1],
the online certificate status protocol (OCSP) [29], NOVOMODO [27], certificate
revocation trees (CRTs) [25] and authenticated dictionaries [30]. These revoca-
tion mechanisms have advantages in different environments, and all can be used
in RIKE to revoke certificates. More detailed comparisons and evaluations of
revocation mechanisms can be found in [22,28].

Some schemes are proposed to provide benefits similar to IBE, focusing on the
compatibility and interoperability issues. In the RSA-based schemes [14,24], a
user can encrypt messages to another user by its identity (without a certificate);
or, the identity-to-key binding is implemented by online query [10]. Key escrow
is not considered in these schemes. Our solution applies IBE to support key
escrow in PKIs, keeping the complete compatibility with PKI certificates. For
those users that do not support IBE algorithms, they can still use a certificates
with the RIKE-parameter extension as a common PKI certificate.

3 RIKE: Supporting Key Escrow in PKIs

In this section, we firstly describes the background of PKIs and IBE, and the
basic architecture of RIKE. Then, we extend this basic architecture to work
with hierarchical PKIs and cross certification. Finally, we present the features
of RIKE and the comparison with other schemes.
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3.1 Background

PKIs are built based on traditional public key algorithm. A CA signs certificates,
each of which binds a user’s identity and its public key. Trusting the CA, a user
verifies the CA’s signature on a certificate and obtains another’s identity and
public key. Then, these certified information is used for various security services.

The notations and conceptions about PKIs are listed as follows. The super-
script P indicates the key pairs in PKIs (to distinguish with those key pairs in
IBE, for which the superscript I is used).

– IDU , IDCA: the identities of a user U and the CA, respectively.
– PKP : a public key of traditional public key algorithms.
– SKP : a private key of traditional public key algorithms.
– Cert(U [, e]) = SignSKP

CA
(IDCA, IDU |PKP [, e]): the certificate signed by

the CA, binding IDU and PKP , with an optional extension e. The CA and
U are called the issuer and the subject of Cert(U [, e]), respectively.

IBE is a special type of public key algorithms, where a public key is derived from
the user’s identity. A PKG firstly generates a master key and public parameters.
The public parameters are publicly known, then a user can calculate another’s
public key based on its identity and the public parameters. Only the PKG can
calculate the corresponding private key by the secret master key. The notations
and conceptions about IBE are listed as follows:

– PM : the public parameters generated by the PKG.
– MK: the PKG’s master key.
– PKI(IDU ) = GenPK(IDU , PM): the public key derived from the identity

of U and PM . It can be calculated by any user.
– SKI(IDU ) = GenSK(IDU ,MK): the private key generated by the PKG

for U . Only the PKG can calculate it.

3.2 Basic RIKE

The basic idea of RIKE is to use (the hash value of) a user’s PKI certificate as its
identity to generate the IBE public key, used for the security services requiring
key escrow. Then, each RIKE user has two key pairs but only one certificate.
The basic architecture of RIKE is composed of a CA and an arbitrary num-
ber of users. The component responsible for signing certificates and generating
escrowed private keys in RIKE, is still called the CA, to emphasizing its high
compatibility with PKIs. Different from that in PKIs, the CA in RIKE owns a
PKG agent, holding the IBE master key and generating escrowed private keys
for users. Nevertheless, when RIKE is deployed, the PKG agent and the CA can
be managed by two departments or implemented in one system.

We can easily implement the basic RIKE as follows, and H(·) is a collision-free
hash function.

Initialization. The CA generates (PKP
CA, SK

P
CA) and (PM,MK), and signs a

self-signed certificate Cert(CA,PM)=SignSKP
CA

(IDCA, IDCA|PKP
CA,PM).
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Then, the certificate is delivered to all users in out-of-band means, as it is
done in traditional PKIs; while SKP

CA and MK are known only to the CA.
PM is embedded in the CA’s certificate as an extension. See Section 4 for
more details about the extension.

Certificate and Key Application. A user U generates (PKP
U , SKP

U ), and
then applies Cert(U) = SignSKP

CA
(IDCA, IDU |PKP

CA) and SKI
U =

SKI(H(Cert(U))) from the CA. Cert(U) is published publicly by the CA,
and the user keeps SKP

U and SKI
U secret. (PKP

U , SKP
U ) is called the non-

escrowed key pair of U , and (PKI
U , SK

I
U) is called the escrowed key pair of

U , where PKI
U = PKI(H(Cert(U))).

Signing and Verification. U signs a message by SKP
U . Everybody can query

and validate Cert(U) to obtain PKP
U , and verify the signed message. Here,

the validation of Cert(U) includes checking the period of validity, the CA’s
signature on it, and its revocation status, as it does in PKIs.

Encryption and Decryption. Another user that wants to send encrypted
data to U , firstly queries and validates Cert(U), and calculates PKI

U based
on Cert(U) and PM extracted from the CA’s certificate. Then, data are en-
crypted by PKI

U and sent to U . When receiving encrypted data, U decrypts
them by SKI

U .

3.3 Certificate Renewal and Revocation in Basic RIKE

Before using either the public key in a certificate or the IBE public key derived
from it, a user shall check the CA’s signature, the certificate’s period of validity
and its revocation status. All certificate revocation mechanisms in PKIs can be
used in RIKE. If the certificate expires or is revoked, the two public key shall
not be used any more. The two key pairs may change or not after certificate
renewal and revocation.

A user’s certificate can be renewed when it expires. In the new certificate, the
period of validity is updated, so the escrowed key pair changes automatically. But
the non-escrowed key pair contained in the certificate will be either regenerated
or kept unchanged (if it is still considered as secure).

A user’s certificate is revoked and a new one with valid information is usually
signed, when (a) the information in the certificate becomes invalid (e.g., its
affiliation changes), or (b) the non-escrowed key pair or the escrowed key pair is
(suspected to be) compromised.

– If a certificate is revoked due to the invalid information, the user’s non-
escrowed key pair may keep unchanged in the new certificate, but the es-
crowed key pair derived from the new certificate becomes different.

– If the certificate is revoked due to the compromise of the non-escrowed key
pair, both the two key pairs will change even if the escrowed key pair is not
compromised.

– If the certificate is revoked due to the compromise of the escrowed key pair,
the user’s non-escrowed key pair may keep unchanged in the new certificate
(but at least one bit in the certificate shall be modified, e.g., the period of
validity, so the escrowed key pair will change).
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In summary, the non-escrowed key pair does not change unless it needs to change,
while the escrowed key pair always changes once the certificate is replaced by a
new one. But the sender who uses another user’s IBE public key doesn’t need to
know whether the key pair has changed or not, it only validates the recipient’s
certificate (just as what they do in traditional PKIs) and derives the IBE public
key from it. There is no extra burden for RIKE users to deal with certificate
renewal and revocation.

3.4 Hierarchical RIKE

PKIs are usually built hierarchically [13], as a user applies its certificate from
another user. For example, a CA (called the root CA in hierarchical PKIs) gen-
erates the self-signed certificate, and signs certificates for the 2nd-level users,
some of which sign certificates for other users. The user that signs certificates
for others, is also called a subordinate CA. In this paper, we call it a user or a CA
alternatively according to the context. This structure can be easily extended to
support more levels, where each user applies for a certificate from an upper-level
user or the root CA.

The following new notations are used in a hierarchical PKI:

– Uj,k: the kth jth-level user.
– Cert(Uj,k) = SignSKP

U
j−1,k′

(IDIsr, IDUj,k
|PKP

Uj,k
): the certificate of Uj,k

signed by Isr, which is another user Uj−1,k′ or the root CA (when j = 2).

In order to validate Cert(Uj,k), a vector of certificates (called the certificate

chain) are needed:
−−→
Cert(Uj,k) = (Cert(U2,k2 ), · · · , Cert(Uj−1,kj−1 ), Cert(Uj,k)),

where the issuer of each certificate is the subject of the preceding one and
Cert(U2,k2) is signed by the root CA. Every user has been already configured
with the root CA’s self-signed certificate and uses it to validate Cert(U2,k2), and
then repeatedly uses a validated certificate to validate the next one in the vector
until Cert(Uj,k) is validated.

The hierarchical structure brings benefits. The root CA’s workload is dis-
tributed among lower-level CAs, and users can apply for certificates locally. The
root CA serves only a few users (or CAs) and then works off-line in most time to
reduce attack risks. If a lower-level CA is compromised, only a limited number
of users are impacted.

To build RIKE on hierarchical PKIs, we need to find a compatible way to man-
age IBE key pairs (or escrowed key pairs). Two intuitive and simple approaches
are listed as follows:

– Only the root CA owns the PKG agent, which generates the escrowed private
keys for all users. The IBE public parameters are embedded only in the root
CA’s self-signed certificate. Or,

– Each CA owns its PKG agent, which generates the escrowed private keys for
its users only. Then, each CA’s certificate contains the IBE public parameters
of its own PKG agent.
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However, neither of these simple approaches works well. In the first approach,
the root CA takes the workload of generating escrowed private keys for all users,
which violates the intentions of hierarchical PKIs. In the second one, an upper-
level PKG agent cannot recover the private keys generated by the lower-level
PKG agents, while sometimes centralized key escrow is needed.

We propose to build RIKE by combining hierarchical PKIs and hierarchical
IBE [20,21]. Hierarchical IBE works as follows. For example, a PKG (called
the root PKG) generates its master key and the public key parameters, and
generates IBE private keys for the 2nd-level users, some of which generate IBE
private keys for other users. The user that generates IBE private keys for others is
called a subordinated PKG. In this paper, we call it a user or a PKG alternatively
according to the context. The structure can be easily extended to support more
levels, where each user applies its IBE private key from an upper-level user or the
root PKG. Note that all users’ private keys are generated by the secret master
key directly or indirectly, so the root PKG can recover any user’s private key.

In hierarchical IBE, each user’s public key is derived from its identity chain,
and the following new notations are introduced:

– IDUj,k
: the identity of the kth jth-level user Uj,k; particularly, the root PKG

can be denoted as U1,1 and its identity is null.

–
−→
IDUj,k

= (
−→
ID�, IDUj,k

): the identity chain of Uj,k, where
−→
ID� is (a) the

identity chain of another user Uj−1,k′ if Uj,k applies its IBE private key from
Uj−1,k′ , or (b) null if Uj,k applies it from the root PKG (i.e, the root PKG’s
identity chain is also null).

Thus, the identity chain of IDUj,k
is (IDU2,k2

, · · · , IDUj−1,kj−1
, IDUj,k

), and its

private key is generated by Uj−1,kj−1 as follows:

– PKI(−→IDUj,k
) = GenPK((IDU2,k2

, · · · , IDUj−1,kj−1
, IDUj,k

), PM): the pub-

lic key of Uj,k derived from
−→
IDUj,k

and PM .

– SKI(−→IDUj,k
) = GenSK(IDUj,k

, SKI(−→IDUj−1,kj−1
)): the private key of Uj,k

generated by Uj−1,kj−1 . Note that SKI(−→IDU1,1) = MK is the root PKG’s
master key.

Finally, hierarchical RIKE is built on hierarchical PKIs, where each CA owns
its PKG agent and these PKG agents work as the PKGs of hierarchical IBE.
Only the root PKG agent publishes the IBE public parameters in the root CA’s
self-signed certificate (See Section 4 for details). With the same IBE public pa-
rameters, the hash values of a user’s certificate chain are used to generate its
IBE public key. Here, we firstly define H(

−−→
Cert(Uj,k)) =

(H(Cert(U2,k2 )), · · · , H(Cert(Uj−1,kj−1 )), H(Cert(Uj,k))).

– The root CA generates (PKP
CA, SK

P
CA) and (PM,MK), and signs a self-

signed certificate Cert(CA,PM) = SignSKP
CA

(IDCA, IDCA|PKP
CA, PM).

– A 2nd-level user U2,k generates (PKP
U2,k

, SKP
U2,k

), and applies Cert(U2,k) =

SignSKP
CA

(IDCA, IDU2,k
|PKP

U2,k
) and SKI

U2,k
= SKI(H(

−−→
Cert(U2,k))) from
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the root CA. (PKP
U2,k

, SKP
U2,k

) is the non-escrowed key pair of U2,k, and

(PKI
U2,k

, SKI
U2,k

) is the escrowed key pair of U2,k, where

PKI
U2,k

= PKI(H(
−−→
Cert(U2,k))).

– A 3rd-level user U3,k generates (PKP
U3,k

, SKP
U3,k

), and applies Cert(U3,k) =

SignSKP
U
2,k′

(IDU2,k′ , IDU3,k
|PKP

U3,k
) and SKI

U3,k
= SKI(H(

−−→
Cert(U3,k)))

from a 2nd-level user U2,k′ .
– Any user can follow the process above to generate its non-escrowed key pair

and apply its certificate and escrowed key pair.

Hierarchical RIKE has both the features of distributed workload and centralized
key escrow. Hierarchical RIKE distributes the workload among subordinate PKG
agents of all levels. Each subordinate PKG agent is responsible for generating
the escrowed private keys of only the users directly subordinated to it. At the
same time, hierarchical RIKE gives the root PKG agent the ability to recover the
escrowed key pairs of all users. Given a user’s certificate chain, its IBE private
key can be regenerated by the root PKG agent’s master key.

3.5 Hierarchical RIKE with Cross Certification

Theoretically, one hierarchical PKI (and then hierarchical RIKE) with one root
CA can serve all users in the world. However, there are lots of root CAs with
different self-signed certificates in the real world. Usually, a user is configured
with a certificate trust list (CTL), a limited set of self-signed certificates. Users
apply for certificates from different root CAs (directly or indirectly) and have

different CTLs. Thus, if a user U receives
−−→
Cert(U ′) which is signed by a root

CA not in the CTL of U , it cannot validate Cert(U ′) and communicate with
U ′ securely. Note that self-signed certificates shall be delivered in out-of-band
means and be configured carefully, so a user doesn’t change its CTL rashly.

Cross certification [13] helps a user validate certificates signed by a root CA
not in its CTL. As shown in Figure 1, Cert(U ′) is signed by RootCA2 (indi-
rectly), while the CTL of U contains the self-signed certificate of RootCA1 only.
To help U validate Cert(U ′), RootCA1 signs a cross certificate CrsCert(CA′) =

RootCA2

CA'

U' CA''

RootCA1

CA

U

CA or User

Certificate

Cross Certificate

Fig. 1. Cross Certification and Cross Certificate
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SignSKP
RootCA1

(IDRootCA1 , IDCA′ |PKP
CA′), so U can validate Cert(U ′) using the

certificate chain (CrsCert(CA′), Cert(U ′)).
A cross certificate is the same as a common certificate signed to a CA, except

that the subject of the cross certificate is a CA which (a) already has a valid
certificate and (b) has signed certificates for users. On receiving a certificate, a
user cannot distinguish whether it is a cross certificate or not. Moreover, the
subject (or the issuer) of a cross certificate may be a root or non-root CA, and
cross certification may be bidirectional or not. For example, in Figure 1, CA′

may also sign a cross certificate for RootCA1 or not.
When cross certificates are issued, a user will have multiple certificate chains.

For example, in Figure 1, U ′ has two certificate chains (Cert(CA′), Cert(U ′))
and (CrsCert(CA′), Cert(U ′)): one is validated by Cert(RootCA2) and the
other is done by Cert(RootCA1).

The coexisting multiple certificate chains lead to two problems, if the method
in Section 3.4 is directly used to derive a user’s IBE public key. Firstly, different
certificate chains result in different escrowed key pairs, all users (and CAs) sub-
ordinated to the subject of the cross certificate have to apply new IBE private
keys after each cross certification happens. Secondly, given a user, some of its
private keys are escrowed in PKI components managed by other organizations.
The consequence is that the user’s own organization can not recover those pri-
vate keys. For example, in Figure 1, the private key that decrypts the encrypted
data sent from U to U ′ will be escrowed only in the PKG agent of RootCA1.
Note that U ′ is a user of RootCA2, but RootCA2 can not recover this private
key.

The solution is to always derive user’s IBE public key from the same certificate
chain. We choose the one in which there is no cross certificate and name it
the primary certificate chain of a user. The user’s escrowed private key is only
generated based on the primary certificate chain.

To achieve this aim, the cross certificate carries the information of (a) the
IBE public parameters of the root CA (or the PKG agent) in the subject’s
primary certificate chain and (b) the primary certificate chain of the subject
(i.e., the hash values of certificates from the 2nd-level CA to the certificated
subject, called the ID-prefix in this paper). The above information is embedded
in the cross certificate2 as an extension called the RIKE-parameter extension
(see Section 4 for details). The verifier can use the above information to derive
the same IBE public key as that from the primary certificate chain.

For example, in Figure 1, (Cert(CA′), Cert(U ′)) is the primary certificate
chain of U ′, and the cross certificate CrsCert(CA′) contains the IBE public

parameters of RootCA2 and the ID-prefix of CA′ (i.e., H(
−−→
Cert(CA′))). So the

IBE public key of U ′ is always derived from (H(Cert(CA′)), H(Cert(U ′))) and
PMRootCA2, even if U validates the certificate chain (CrsCert(CA′), Cert(U ′))
of U ′ by Cert(RootCA1), because H(

−−→
Cert(CA′)) and PMRootCA2 are embedded

in CrsCert(CA′) as a certificate extension.

2 In RIKE, before a CA signs a cross certificate to another CA, it needs to query the
primary certificate chain of the subject CA, to obtain the information.
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In particular, Algorithm 1 is used to derive the IBE public key of U ′, when a
verifier U receives a certificate chain

−−→
Cert(U ′) different from the primary certifi-

cate chain of U ′. U can reassemble (the hash values of) the primary certificate

chain of U ′, when validating
−−→
Cert(U ′). During this process, if Certi is a cross

certificate (containing the IBE public parameters PM and the ID-prefix), the
IBE public parameters used by the verifier is substituted by PM and the ID-
prefix is used to reassemble the identity chain of U ′. Note that the algorithm
works even when there are multiple cross certificates in

−−→
Cert(U ′).

Algorithm 1. The Derivation of IBE Public Key

Input: The certificate chain of U ′, −−→Cert(U ′) = (Cert2, Cert3, · · · , Certj);
The self-signed certificate in the CTL of U , Cert1;

Output: The IBE public key of U ′, PKI
U′ ;

PM = PMField(RikeParamExt(Cert1));
// PM is set to the IBE public parameters in Cert1.−→
ID = null;
IsrCert = Cert1;
for (i = 2; i ≤ j; i++) do

if V erify(IsrCert,Certi) then
// Certi is verified by IsrCert.
if e = RikeParamExt(Certi) then

// Certi contains a RIKE parameter extension e.
PM = PMField(e); // PM is set to the IBE public parameters in Certi.−→
ID = IDPrefixF ield(e); //

−→
ID is set to the ID-prefix in Certi.

else
// No RIKE parameter extension in Certi.−→
ID = AppendID(

−→
ID,Hash(Certi));

end if
IsrCert = Certi; // To verify the next certificate.

else
return null;

end if
end for
return PKI

U′ = GenPK(
−→
ID, PM);

In Section 3.4, to guarantee the root CA (or the PKG agent) can recover all
users’ private keys, we required that the IBE public key parameters are only
embedded in the root CA’s self-signed certificate. However, with the RIKE-
parameter extension in cross certificates, the IBE public key parameters may
actually be obtained from a non-self-signed cross certificate. A new risk appears
that some subordinate CA may maliciously embed different IBE public param-
eters when signing certificates for users. Note that a verifier cannot distinguish
such certificates from a cross certificate. Thus, the root PKG agent can not re-
cover the users’ IBE private keys and the centralized key escrow is undermined.
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Another certificate extension called the RIKE-parameter-lock extension, is
proposed to avoid the above risk. Once this extension is set in a certificate, the
subject CA and all its (directly and indirectly) subordinated CAs shall not issue
a certificate with different IBE public parameters; otherwise, such a certificate
is considered as invalid. Of course, those CAs are deprived of the privilege to
issue cross certificates. It is reasonable, because the potentially malicious CAs
should not be granted this privilege.

3.6 Certificate Renewal and Revocation in Hierarchical RIKE

In hierarchical RIKE, certificate renewal and revocation are somehow more com-
plicated than those in basic RIKE. If the renewed (or revoked) certificate is held
by a bottom-level user, the cases are the same as in basic RIKE discussed in
Section 3.3.

However, if the renewed (or revoked) certificate is held by a CA, the two key
pairs of the CA may change (as discussed in Section 3.3) and then impact the
users subordinated to the CA. If the non-escrowed key pair of the CA (i.e., the
key pair to sign and verify certificates) is changed, the CA needs to revoke all
certificates it signed before. It is the same as in hierarchical PKIs, so we do not
discuss this case here. The escrowed key pair of the CA may change, when the
CA’s certificate is renewed or revoked. Three cases are analyzed as follows:

Case 1. The renewed (or revoked) certificate is not a cross certificate, and nei-
ther the CA nor its (directly and indirectly) subordinate CAs hold cross cer-
tificates. The subordinate CAs’ primary certificate chains changes because
the CA’s certificate changes. So all their escrowed key pairs are changed.

Case 2. The renewed (or revoked) certificate is not a cross certificate, but the
CA or its (directly or indirectly) subordinate CA holds a cross certificate. In
addition to all these CAs’ escrowed key pairs are changed as in Case 1, the
cross certificate shall be revoked and a new cross certificate shall be signed,
because the ID-prefix in it needs to be updated.

Case 3. The renewed (or revoked) certificate is a cross certificate signed to the
CA. Since the CA’s is primary certificate chain doesn’t depend on any cross
certificate, its escrowed key pair is kept unchanged. So the escrowed keys of
its subordinate CAs are also kept unchanged.

3.7 Features of RIKE

In RIKE, each user holds two key pairs but only one certificate: the non-escrowed
key pair (PKP

U , SKP
U ) is used in security services (e.g., non-repudiation) where

key escrow is prohibited, and the escrowed key pair (PKI
U , SK

I
U ) is used in secu-

rity services (e.g., confidentiality) where key escrow is required. We summarize
the features of RIKE as follows.

Inherent Key Escrow. RIKE carries forward the inherent-key-escrow feature
of IBE, in which all users’ private keys are generated by the PKG with the
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secret master key. Therefore, unlike the EA in PKIs that stores all users’s
private keys, the CA (or the PKG agent) in RIKE only stores the secret
master key itself and avoids the problem of scalability when the user amount
becomes enormous.

Effective Certificate-Based Solution. RIKE extends traditional PKIs by cre-
atively leveraging the PKI certificates as revocable identities to support both
key escrow and non-repudiation without coming into conflict. For each user,
PKP

U and PKI
U are published together in one certificate. These two public

keys’ integrity and validity are guaranteed simultaneously by validating this
certificate. In this way, RIKE does not bring extra communications and val-
idations to obtain PKI

U . Therefore, RIKE is an effective solution, especially
in the environments where resources are limited.

Compatibility with Traditional PKIs. RIKE is completely compatible with
all policies and procedures in traditional PKIs to create, manage, distribute,
use, store and revoke certificates. As a result, for the security services with-
out key escrow, RIKE and PKIs work with thorough interoperability. The
transfer from a traditional PKI to RIKE is very simple and straightforward:
the root CA (or the PKG agent) generates (PM,MK) and signs a new self-
signed certificate containing the essential extensions (details in Section 4),
and then generates escrowed key pairs for users and subordinate CAs.

Revocable Identities. Although RIKE borrows the key generation mechanism
of IBE, RIKE does not suffer from the key revocation problem as IBE does.
The reason is that PKI

U is not derived from the user’s real identity, but from
the user’s PKI certificate. When the certificate has been revoked and replaced
by a new one, PKI

U will change automatically. Therefore, the revocation of
the escrowed key pair is implemented easily by certificate revocation, for
which there are already abundant approaches. In this way, RIKE supports
the “revocable identity” of the user (not the real identity, but the “identity”
in the perspective of IBE).

Algorithm-Independency. RIKE combines the advantages of PKIs and IBE
and does not pose any additional requirements on the cryptographic algo-
rithms. Any algorithm applicable in traditional PKIs and IBE can be used
in RIKE for signature and encryption, respectively. In a word, RIKE is an
algorithm-independent framework and the algorithms can be adaptively cho-
sen in different implementations.

3.8 Comparisons with other Schemes

RIKE vs. PKI. The most straightforward way to satisfy the conflicting key
escrow requirements in PKIs is to use two key pairs and two certificates in
parallel. One of the two key pairs is generated and escrowed by the EA, and
can be recovered by it when needed. A key usage extension is embedded in each
certificate to indicate the key pair’s purpose.

We compare RIKE with PKIs in three aspects as follows, showing that RIKE
is more efficient than PKIs in both client-side and server-side. Firstly, to satisfy
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the conflicting key escrow requirements, almost all the components in PKIs need
to be scaled up. The CA shall have the ability to sign twice as many certificates
as before. Resources of certificate distribution and revocation shall also increase
twofold. In contrast, RIKE supports two key pairs implicitly in only one certifi-
cate. Almost no extra resource pressure is applied on PKI components and no
additional certificate distribution is needed.

Secondly, in PKIs, both the two certificates of each user shall be obtained
by (or transmitted to) other users. So the communication cost doubles, which
impedes this solution in bandwidth-limited applications. In RIKE, no additional
certificates of users are needed by encrypted-message senders.

Finally, the EA in PKIs needs to appropriately store all users’ escrowed keys
in a well-protected repository. In practise, besides currently valid keys, the EA
also needs to store all historical keys (out-of-date keys and revoked ones), which
are still useful to decrypt the old ciphertexts created when those keys were
valid. As time goes on, more and more historical keys will be accumulated.
Furthermore, all these private keys should be well protected with confidentiality.
In RIKE, the PKG agent only stores the IBE master key in stead of all users’
private keys. Whenever a specific private key shall be recovered, the PKG agent
regenerates it by the IBE master key and the corresponding certificate chain.
Since all the current and historical certificates are stored in plaintext, only one
secret master key needs to protect, which is much simpler and more trustworthy
than protecting a huge and accumulating set of private keys.

RIKE vs. SE-PKI. SE-PKIs enable PKIs to recover the private keys of all
users. All the users’ private keys are escrowed by the KRA which is independent
from the CA. The KRA generates its own key pair (the private key SKKRA and
the pubic key PKKRA) and provides PKKRA as a parameter for users to gener-
ate their key pairs. In this way, a trapdoor is placed in the user key generation
process. The user’s private key can be calculated by the KRA with SKKRA, so
key escrow is achieved without storing and managing all users’ private keys.

However, SE-PKIs also have limitations where RIKE has advantages. SE-
PKIs escrow all users’ private keys without differentiation, so it can not solve
the conflict between key escrow and non-repudiation requirements. If SE-PKIs
are adopted in traditional PKIs, each user still needs to apply for and hold two
certificates. But each RIKE user only holds one certificate. Moreover, in a system
with a huge amount of users, the centralized KRA in SE-PKIs undergoes a heavy
workload, whereas the distributed PKGs in hierarchical RIKE (or hierarchical
IBE) share the workload.

SE-PKIs depend on specially-designed algorithms, and the key generation
and encryption algorithms are not compatible with the current widely-adopted
PKIs’. On the contrary, RIKE is an algorithm-independent framework and could
be smoothly transferred from the existing PKI systems.

Therefore, compared with SE-PKIs, RIKE is more suitable for large-scale
cases and more compatible with legacy PKI systems.
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RIKE vs. IBE As described above, the key idea of RIKE is the integration
of PKIs and IBE by using the PKI certificate (actually, its hash value) as the
“identity” in IBE. IBE provides the good feature that the sender can obtain the
recipient’s public key from the recipient’s identity (an arbitrary bit-string, e.g.
name or email address), without an online lookup. RIKE inherits this feature.
So the sender obtains the recipient’s escrowed public key from the recipient’s
PKI certificate, eliminating the additional certificate to carry it.

The major obstacle for IBE to become a fully-blown public key cryptosystem
is its lack of key revocation mechanism which is necessary in practice. In IBE,
the key pair is hard to revoke, because the public key is one-to-one bound with
a user’s identity and changing identity brings unacceptable inconvenience to the
user. In contrast, RIKE supports key revocation without changing the user’s
identity. By leveraging the revocation mechanism of PKIs, RIKE converts PKI
certificates into revocable identities.

Strictly speaking, RIKE borrows the IBE’s spirit of using an arbitrary bit-
string as a public key, and uses a PKI user’s certificate as its identity. Email
address is usually accepted as an IBE identity, because it is already commonly
held and easy for human to remember and input. When RIKE is deployed for cur-
rent PKI users, they have already held others’ certificates and these certificates
are used as IBE public keys automatically by the client applications. Therefore,
although the revocable identity of RIKE is much longer than the identity of IBE,
its usability is not reduced.

4 X.509-Based RIKE

In this section, we discuss how to use X.509 PKI certificates to implement RIKE,
by defining two new certificate extensions, namely, the RIKE-parameter exten-
sion and the RIKE-parameter-lock extension.

The descriptions in ASN.1 syntax are as follows.

-- The RIKE-parameter extension

RIKEParameters ::= SEQUENCE {

ibeAlgorithm OBJECT IDENTIFIER,

ibePublicParameterData OCTET STRING,

hashAlgorithm OBJECT IDENTIFIER,

idPrefix IDPrefix OPTIONAL }

IDPrefix ::= SEQUENCE SIZE (1..MAX) OF OCTET STRING

-- The RIKE-parameter-lock extension

RIKEParamLock ::= BOOLEAN

The RIKE-parameter extension RIKEParameters can be used in two kinds of
certificates: self-signed certificates and cross certificates. The first three fields
are mandatory. The field ibeAlgorithm and the filed ibePublicParameterData

describe the IBE algorithm and its detailed public parameters, and the structure
of ibePublicParameterData depends on which algorithm is used [4,8]. The
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field hashAlgorithm specifies the hash function to convert a certificate into
a revocable identity. The field idPrefix, which is a sequence of hash values
corresponding to the certificates in the subject’s primary certificate chain, only
exists in cross certificates.

The RIKE-parameter-lock extension RIKEParamLock is a boolean value to
indicate whether the RIKE parameters are locked or not. When this extension
is set to true in a certificate, any other certificate following the certificate in a
certificate chain, is considered invalid if it has the RIKE-parameter extension
(with different RIKE parameters).

With the above extensions, a PKI can be transferred to RIKE simply and
smoothly. In particular, to deploy hierarchical RIKE, the root PKG agent gen-
erates (PM,MK) and signs a new self-signed certificate with a RIKE-parameter
extension. After updating this certificate in their CTLs, all the users supporting
IBE algorithms can encrypt messages by the recipients’ IBE public keys derived
from their existing PKI certificates.

5 Conclusions

In this paper, we integrate PKIs and IBE into a novel key management scheme
called RIKE, which leverages revocable identities to support key escrow in PKIs.
As an innovative key management infrastructure, RIKE satisfies the conflicting
requirements of key escrow, and reduces the cost of managing key pairs and
certificates. Each RIKE user holds two key pairs, one of which is escrowed and
the other is non-escrowed, with only one certificate. This efficient scheme assem-
bles the advantages of both the two cryptosystems and compatibly works with
hierarchical PKIs.
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Abstract. Software-based disk encryption techniques store necessary
keys in main memory and are therefore vulnerable to DMA and cold boot
attacks which can acquire keys from RAM. Recent research results have
shown operating system dependent ways to overcome these attacks. For
example, the TRESOR project patches Linux to store AES keys solely
on the microprocessor. We present TreVisor, the first software-based and
OS-independent solution for full disk encryption that is resistant to main
memory attacks. It builds upon BitVisor, a thin virtual machine monitor
which implements various security features. Roughly speaking, TreVisor
adds the encryption facilities of TRESOR to BitVisor, i. e., we move
TRESOR one layer below the operating system into the hypervisor such
that secure disk encryption runs transparently for the guest OS. We have
tested its compatibility with both Linux and Windows and show positive
security and performance results.

1 Introduction

Why Disk Encryption Matters. Disk encryption is an increasingly popu-
lar method to protect sensitive data against physical loss and theft of nomadic
computer systems. According to a Ponemon survey from 2010 [24], the majority
of U. S. enterprises has an overall strategy for data protection from which full disk
encryption (FDE) is the fastest growing favorite (59%). Also the U. S. govern-
ment recommends agencies to encrypt all data on mobile devices to compensate
the lack of physical security outside their agency location [15].

However, widespread FDE solutions under Windows, such as BitLocker [17]
and TrueCrypt [30], do not protect data effectively in all scenarios where an
adversary has physical access to the computer.

Attacks against Disk Encryption. Since public weaknesses in common cryp-
tographic primitives like AES are unknown, practical attacks against FDE often
target the key management. Weak passphrases give rise to efficiently guessable
keys, a fact that has been exploited by law enforcement authorities for many
years. If strong passphrases are used, however, retrieving the cryptographic key
can be circumvented by accessing the encrypted data through system subversion.
Trojans and system level rootkits are usually sufficient to circumvent any kind
of FDE and hard to prevent in general.
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c© Springer-Verlag Berlin Heidelberg 2012



TreVisor 67

But even if the user is not tricked into installing malicious software, physical
access alone can be sufficient for system subversion. The master boot record
(MBR) of an encrypted hard disk must necessarily be left unencrypted in
software-based solutions for bootstrapping purposes. As a consequence, software
keyloggers can always be placed in the master boot record of the disk. Such
attacks have been called evil maid attacks [14] and typically require access to
the target machine twice, once before, and once after the victim has entered the
password.

However, evil maid attacks are based on system infiltration and are therefore
not always applicable for lawful actions. Instead, physical memory access can
be used to break FDE in many cases since widespread FDE products, including
BitLocker and TrueCrypt, hold the encryption key in main memory. These at-
tacks require access to the machine while it is running or suspended to RAM, a
common scenario in the lawful seizure of evidence.

Historically, the first successful attacks on main memory used direct mem-
ory access (DMA). DMA allows devices to bypass the operating system (OS)
and to access physical memory directly for performance reasons. Attacks ex-
ploiting this feature first came up in 2005 when an Apple Macintosh’s system
space was compromised by plugging in a malicious iPod via Firewire [3]. Later,
similar attacks were used to unlock Windows Vista [21] and Windows 7 [4] even
though BitLocker was active. Other interfaces, including PC Card [8,11], PCI
Express [5], and Thunderbolt [25], are believed to have the same security issues
as Firewire.

Another way to access main memory is to exploit the remanence effect of
DRAM, i. e., the fact that RAM contents fade away gradually over time. Due
to the remanence effect, encryption keys can be restored, e. g., after rebooting
the system with a malicious USB flash drive. This type of attack became known
as cold boot [10] in 2008. Cold boot attacks are generic and pose a threat to
all current software-based FDE technologies, including Microsoft’s BitLocker,
Apple Macintosh’s FileVault and Linux’ dm-crypt.

Threat Model Windows Linux OS-Independent

Memory System BitLocker/ dm-crypt/ TRESOR/
Attack Status TrueCrypt TrueCrypt LoopAmnesia BitVisor TreVisor

off or S4
cold boot run/locked X X X

S3 X X X

off or S4
DMA run/locked X X X

S3 X X

Fig. 1. Categories of our threat model. S3 and S4 stands for “suspended to RAM” and
“disk”, respectively. Vulnerable scenarios are marked with X.
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Threat Model. Since it is impossible to protect FDE against system subver-
sion by malware, we delegate this threat to the malware detection community and
concentrate on memory attacks that rely on physical access. Such attacks can be
classified according to the state of the system when an adversary gained access:
(1) switched off or suspended to disk, (2) running but locked, and (3) suspended
to RAM.

The resultant threat categories as well as countermeasures and vulnerable
scenarios are depicted in Fig. 1. If a laptop was lost or got stolen, it was hopefully
switched off or suspended to disk. In this category, all common FDE solutions
protect the data on disk successfully. If the system was running (but the screen
was locked1), widespread FDE systems for Windows and Linux are vulnerable to
both cold boot and DMA attacks. The same holds for the third category: most
machines that are suspended to RAM by the time an adversary gains access are
vulnerable today.

Countermeasures. The current technological responses to cold boot attacks at-
tempt to keep the key inside the CPU rather than in RAM: AESSE [18] stores the
key inside SSE registers, TRESOR [19] inside debug registers, LoopAmnesia [23]
inside MSRs, and FrozenCache [16] inside CPU caches. Besides AES keys, asym-
metric keys are considered in the literature [22]. All of those systems treat registers
and caches inside the CPU as more secure against attacks than RAM. As long as
nobody finds a practical way to read out CPU contents, e. g., by injecting malicious
code onto the bus, those systems are in fact more secure than conventional disk
encryption systems. Unfortunately, these countermeasures require deep changes
within the operating system. This is why all mentioned projects [18,19,23,16] are
written for Linux and are not applicable to Windows.

The idea of keeping keys outside of RAM protects against DMA attacks on
suspended machines, too, because in TRESOR and LoopAmnesia the key is
irretrievably lost during suspend-to-RAM when the CPU is switched off. How-
ever, these solutions do not protect against DMA attacks on running machines,
because DMA attacks generally allow to compromise the system space and con-
sequently to read out key storage registers by executing code with ring 0 privi-
leges. Currently, Intel’s VT-d [1] technology can fully protect against such DMA
attacks. Intel VT-d comprises an I/O Memory Mapping Unit (IOMMU) that
enables address remapping for DMA data transfers. Just like traditional MMUs
that translate virtual to physical addresses, the IOMMU translates device-visible
addresses into physical ones. Hence, certain memory locations, e. g., the system
space, can effectively be protected. However, Intel VT-d was introduced as vir-
tualization technology and Windows 7 does not use it to protect against DMA
attacks.

On the contrary, there exist hypervisor-based systems that do. BitVisor [28],
for example, is a thin virtual machine monitor (VMM) which implements vari-
ous security functionalities for a single guest, meaning that it exploits virtualiza-
tion technology to enhance security and not to run multiple systems in parallel.

1 If the screen was not locked but a privileged user was logged in, an adversary can
access data trivially.
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Among others, BitVisor supports full disk encryption and activates the IOMMU
to enforce DMA security. But it does not protect against cold boot attacks.

Overall, we are not aware of any solution in the literature that (1) is operating
system independent, and (2) secure against all threats listed in Fig. 1. Of course,
another valid countermeasure is to revert to purely hardware-based FDE systems
such as Intel’s SSD 320 Series [13]. Since the key is held within the hard disk
and cannot be read out, such approaches withstand attacks on main memory.
But software-based solutions enjoy many advantages like reduced costs, vendor
independence, configurability, and versatility; this is why we focus on software-
based solutions in the remainder of this paper.

Contributions. In this paper, we present TreVisor. TreVisor is a software-based
solution to FDE that is designed to be

– practically secure against the threats from Fig. 1 (i. e., cold boot and DMA),
– cryptographically secure by supporting the ciphers AES-128, -192, and -256,
– transparent to the operating system by using virtualization technology, and
– fast, in particular through Intel’s new AES instruction set [9].

To this end, TreVisor unites two working projects (TRESOR [19] and BitVi-
sor [28]) resulting in a free and robust FDE system that can be used by both
Windows and Linux users. To the best of our knowledge, no other system exists
that meets all these requirements.

We believe that integrating TRESOR’s encryption routine into a hypervi-
sor is a promising way for future FDE solutions, because using virtualization
technology for disk encryption has several advantages:

– Hypervisors are isolated from the OS; even root users and local privilege
escalations [2] cannot harm the encryption process or retrieve the key.

– All OSs are equally supported; it is possible to access the same encrypted
partitions simultaneously from Windows and Linux.

– Hypervisors are small; the risk to have serious programming errors shrinks
with the size of code.

– Building up a full disk encryption system is easy; only the hypervisor must
be present unencrypted.

– DMA threats can centrally be counteracted by VT-d/IOMMU settings.

Altogether, TreVisor brings many of the advantages known from hardware-based
FDE, such like resistance against memory attacks and transparency, into a
software-based solution. As we show in this paper, TreVisor can achieve all these
goals with a performance penalty of about one-third compared to unencrypted
disks, which we find acceptable.

However, TreVisor requires both Intel’s new AES instruction set (AES-NI)
and support for VT-x/VT-d, which is currently available only with Intel Core i5
and Core i7 processors.



70 T. Müller, B. Taubmann, and F.C. Freiling

Outline. The remainder of our paper is structured as follows: first we give back-
ground information about TRESOR and BitVisor in Sect. 2. Then we introduce
the implementation of TreVisor from a technical point of view in Sect. 3, fol-
lowed by an evaluation regarding compatibility (Sect. 4), performance (Sect. 5),
and, most notably, security (Sect. 6). Finally, we conclude in Sect. 7.

2 Background

We now briefly give the necessary background on TRESOR (Sect. 2.1) and BitVi-
sor (Sect. 2.2). Readers familiar with these projects can safely skip this section.

2.1 TRESOR

TRESOR [19] runs encryption securely outside RAM; it is a Linux kernel patch
for the x64 architecture designed to run AES resistant against cold boot attacks.
TRESOR avoids RAM usage completely and runs the key management as well
as the AES algorithm entirely on the microprocessor. To that end, some registers
of the x64 architecture must permanently be used as cryptographic key storage
and are not applicable for their intended purpose. The four breakpoint registers
dr0 to dr3 have been chosen for that because they are (1) only accessible with
ring 0 privileges, (2) large enough to store an AES-256 key, and (3) seldom used
by end-users. Indeed, hardware breakpoints cannot be set by userland debuggers
like GDB anymore. But given the fact that only developers and reverse engineers
need to set breakpoints (and software breakpoints can still be set), the absence
of these registers on end-user systems is acceptable as compared with the gain
in security.

Other registers, like the SSE and general purpose registers (GPR), are used
temporarily inside atomic sections, too. Before leaving the atomic section, these
registers are reset to null and hence, they are safe to be swapped out to RAM
during context switching. Only debug registers are not safe to be swapped out
by context switching and cannot be used by other threads.

To overcome future cryptanalysis based on memory residues, TRESOR fol-
lows a strict security policy: no intermediate state of AES is ever going to RAM,
meaning that nothing but the output block is written back to RAM after the
input block has been read. Thereto, TRESOR’s atomic sections encompass en-
cryption (resp. decryption) of entire AES blocks.

AES uses a key schedule with 10-14 round keys based on the secret key. This
key schedule is computed once and then stored inside RAM by all conventional
AES implementations for performance reasons. But in TRESOR, the debug
registers are fully occupied with the AES key itself and round keys cannot be
stored permanently. Therefore, TRESOR uses a so called on-the-fly key schedule,
meaning that each round key is re-computed inside the atomic section of each
block. This contains a potential performance drawback; we get back on this in
Sect. 5.

Despite this drawback, or because of it, TRESOR accelerates its AES com-
putations by Intel’s new AES instruction set (AES-NI) that implements AES
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efficiently in hardware. It is currently available to Intel Core i7 processors, most
Core i5 and will be available to many upcoming x86 CPU, including AMD pro-
cessors.

To sum up, TRESOR is a cold boot resistant implementation of AES, pri-
marily designed for hard disk encryption. It is currently restricted to CPUs of
the Core-i series, and so is TreVisor.

2.2 BitVisor

Traditional VMMs like Xen and VMware require numerous components to pro-
vide virtual hardware devices that can be shared among parallel guests. To the
contrary, BitVisor [28] is a thin hypervisor architecture based on Intel VT-x (and
AMD-V) which is designed to enforce I/O device security of single VMs. It is
OS-independent, meaning that the VM can run unmodified versions of Windows,
Linux, or any other x86 operating system.

BitVisor minimizes the overhead introduced by virtualization, leading to a
so called parapass-through architecture: hardware is directly passed through to
the guest except for a few administrated devices. Thereby, the need for most
device drivers is eliminated inside the VMM and the guest OS handles devices
directly. The exceptional case are devices which must explicitly be administrated
in order to enforce security functionalities. In our disk encryption scenario, these
are primarily hard disks. Thereto, BitVisor comes with its own set of parapass-
through drivers for (S)ATA disks; these drivers know the specification of the
target device and can handle intercepted I/O accesses correctly without fully
virtualizing them. Extracted data, such as the sectors of a hard disk, can be
manipulated by the VMM, e. g., for encryption and decryption.

In order to prevent attacks from malicious I/O devices against the memory
region of the hypervisor, external DMA accesses are restricted by the IOMMU.
From the operating system’s point of view, I/O devices still have access to the
system space. But since the disk encryption routine runs with ring -1 privileges,
BitVisor’s IOMMU settings guarantee resistance against read- and writeable
DMA attacks.

Using the IOMMU to restrict direct memory access, no parapass-through
drivers are required. For example, DMA attacks based on Firewire are success-
fully defeated while parapass-through drivers for Firewire can be excluded.

To sum up, BitVisor is a secure lightweight hypervisor which, by running only
a single VM, eliminates the need for most components that are required to share
system resources among VMs.

3 Design and Implementation

The use cases of TreVisor are mobile single-user systems, i. e., laptops, because
these get frequently lost and stolen at public places like airports while running or
being suspended, and left unattended in hotel rooms. In other words, TreVisor
is designed to protect systems that are especially exposed to attacks based on
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physical access. Additionally, TreVisor should be available for Windows users,
or, even better, be operating system independent.

The requirement to be OS-independent quickly brings hypervisor-based solu-
tions into mind. A first idea is to move a solution like TRESOR [19] or LoopAm-
nesia [23] into a Linux-based hypervisor like Xen or VMware and to runWindows
on top of that. Such a design would have had the advantage that TRESOR, which
is a Linux kernel patch, could have been applied to the setup directly. However,
we generally consider such a design as bad because running a second, full operat-
ing system introduces significant overhead. Instead, TreVisor is implemented as
a thin hypervisor for single guests, meaning that no resource must be virtualized
or shared among VMs, drastically facilitating the VMM implementation. Only
hard disk accesses are intercepted in order to encrypt and decrypt them securely
with TRESOR. Everything else, like the keyboard, mouse, printer, video, and
sound card, is passed through to the guest without intervention.

In a nutshell, TreVisor is implemented as a patch for BitVisor and introduces
the OS-independent parts of TRESOR to it. That is, to enforce security mea-
sures, TreVisor exploits hardware capabilities of modern Intel CPUs that are
otherwise hardly used by end-users. Usually, end-user systems do neither utilize
the debugging registers nor do they make use of the VT-d/IOMMU technology.
TreVisor activates these, otherwise mostly idle, components to protect against
cold boot and DMA attacks.

To sum up, TreVisor aims to be a disk encryption solution that prevents
information leakages through main memory attacks while being transparent to
the OS and to the end-user. Thereto it combines two technologies: BitVisor taken
by itself is not resistant against cold boot attacks, and TRESOR does neither
support Windows nor does it defeat DMA attacks on running machines.

In the following sections we describe technical challenges we faced when inte-
grating TRESOR’s encryption routines into the BitVisor code.

Key Storage Registers. TRESOR employs the debug registers dr0 to dr3 as
cryptographic key storage, because those are (1) only accessible from ring 0, (2)
large enough to store AES-256 keys, and (3) seldom used by end-users. While
point two and three remain valid inside hypervisors, point one does not because
we need to protect the key against ring 0 (the guest’s kernel space) rather than
ring 3 (the userland). In other words, in TreVisor we need a set of registers that
is only accessible with ring -1 privileges.

As such a set of registers does not exist, we have to stay with the debug
registers. Luckily, virtualization allows us to define sensitive events that lead
the processor to switch context from the guest into the hypervisor, e. g., on
executing privileged instructions or on accessing certain registers. Using VM
execution control [12], we can effectively hide the debug registers from ring 0,
i. e., from the guest OS, as follows:

– cpuid is an instruction that provides information about present CPU fea-
tures. We hook into cpuid and forge its result by negating the DE (debugging
extension) feature.
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– cr4 is an x86 control register that contains a flag to enable/disable de-
bugging. We intercept cr4 write accesses and deny all attempts to enable
debugging.

– “MOV-DR exiting” is a virtualization control which causes the VM to exit
on every mov instruction to or from debug registers. We enable this feature
to ultimately prevent the guest from reading or overwriting the key.

All these measures cause unconditional VM exits and bring the hypervisor into
action. The first measure is required to inform the OS about missing debugging
capabilities. Since we generally disallow debugging in the second measure, an OS
might react unexpectedly (e. g., crash) if it assumes debugging is present. The
third measure is required to deny any read and write access to debug registers.
Of course, a well programmed OS would never try to access a debug register
if the CPUID negates its presence, but we want to be on the safe side for two
reasons:

First, the OS (or any device driver) might be erroneous and write to debug
registers despite their alleged absence. This immediately leads to data corruption
on the encrypted hard disk because the key gets falsified. Second, an adversary
who compromises the guest’s system space could easily retrieve the secret key.

Summarizing, we used virtualization techniques to effectively change the priv-
ilege level of the debug registers from 0 to -1.

Key Management. As pointed out in the last section, we can get exclusive con-
trol over debug registers inside the hypervisor. We now take this exclusive access
for granted and examine how to securely read the key from a user prompt into
those registers. Due to numerous encryption features, BitVisor already comes
with some kind of key management. Unfortunately, this key management is in-
adequate for our purpose as it stores passwords and keys in RAM (where they
are vulnerable to cold boot attacks). Thus, we have to replace BitVisor’s key
management with a more secure one. To this end, we display a TreVisor specific
password prompt at boot time.

The password is transformed into a 256-bit key by multiple SHA-256 iterations
and then copied into the debug registers. We make sure that all residues of both
the password and the key are erased from RAM thoroughly. Therefore we do
not send the password or key into untrusted libraries; instead we use a custom
implementation of the SHA-256 algorithm.

To support multicore CPUs, we have to write the secret key into the debug
registers of all CPUs because we cannot assume that the TreVisor code is always
executed on CPU0. To the contrary, hypervisor code is generally executed on
the CPU which led to the VM-exit. And since process migration is a costly task,
we distribute the secret key among all cores.

Writing the secret key into different cores turned out to be more complicated
than we expected. The problem actually is that BitVisor itself does not fully
initialize the APs (application processors) but runs on the BSP (boot strap pro-
cessor) until the OS boots. In other words, BitVisor leaves it to the guest OS
to set up remaining cores. As a solution we hook into the first inter-processor
interrupt (IPI) of each CPU; IPIs are used by the OS to signal events between



74 T. Müller, B. Taubmann, and F.C. Freiling

processors. TreVisor intercepts the start-up signals in order to initialize the de-
bug registers with keybits before they may be used for encryption. When a guest
OS does not activate all cores, the key will only be present in those that have
been activated.

The mechanism we implemented requires that the keybits are temporarily
copied from the BSP into RAM and then further into the APs. Unfortunately,
it is impossible to copy data between processors directly. That is, our solution
might not be absolutely secure against cold boot attacks for the time of initial-
izing a new CPU. But all OSs that we are aware of initialize CPU cores during
boot-up or never and thus, we consider the risk as negligible.

Disk Encryption. TreVisor supports disk encryption with AES-128, AES-
192, and AES-256. During startup, we always copy 256 keybits into the debug
registers; if AES-128 or AES-192 are used, superfluous bits are just ignored.

In order to encrypt the disk, we have to hook into the guest’s HDD activi-
ties. Fortunately, BitVisor already provides most of the necessary functionality,
including parapass-through drivers for ATA and USB disks. To put it simply,
we only have to replace the standard AES routines in BitVisor by TRESOR. To
this end, we add TRESOR to an internal crypto API and activate it within the
configuration.

Comparable to context switches inside an OS, hypervisors must switch the
context between the guest and itself. Thereto Intel VT-x supports virtual ma-
chine control structures (VMCS) to hold guest states. These structures encom-
pass all necessary registers, e. g., the GPRs and potentially the SSE and debug
registers, too. On multicore systems, each processor has its own guest context.

Since TRESOR uses GPR and SSE registers, we have to run disk encryp-
tion routines inside a critical section where interrupts and context switches are
disabled. Only by running TRESOR atomically, we can guarantee that no inter-
mediate state of AES or the key schedule is ever going to the VMCS structures in
RAM. Before leaving the atomic section, we zero-fill the GPR and SSE registers
so that they are safe to be swapped out.

Additionally we have to take care of the SSE task switch bit (TS) and make
sure that we save/restore the guest’s SSE state before/after encrypting a disk
block. The SSE registers are quite large (4 kilobits in total) and since a hypervisor
usually does not use them, they are not saved by default for performance reasons.

Suspend to RAM. Lastly, we spent considerable effort to support ACPI sus-
pend modes in TreVisor. Since the CPU is switched off during suspend modes, we
have to re-read the key upon wakeup. Normally, all CPU registers are backed up
in RAM during suspend modes, but in TreVisor the debug registers are naturally
prevented from being stored inside RAM.

The ACPI mode S3 (suspend-to-RAM) is basically supported by BitVisor
since release 1.2 (October 2011). We consider S3 as an important feature for
mobile users as it speeds up the boot process and reduces power consumption. It
just enhances the usefulness of mobile environments. Above that, it is especially
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important to the cold boot scenario since the key of conventional FDE systems
is not lost during S3.

Therefore we want to support S3 in TreVisor, and “all” we have to do is to
re-read the key upon wakeup. This may sound easy, but in practice, video cards
continuously fail to get re-initialized after S3 and the screen stays blank (until
we return to the OS which re-initializes the video card smoothly thanks to the
parapass-through architecture). We ended up with a workaround where the user
must re-enter the password “blind” and thus, we must consider S3 support in
TreVisor still as work in progress.

4 Compatibility

We analyzed TreVisor regarding its compatibility with userland programs, op-
erating systems, encrypted partitions and hardware components.

Userland Programs. Generally, userland programs are supported unless they
use one of the hardware components which are occupied by TreVisor; these
are VT-x/VT-d and the debugging extensions. Although the TRESOR encryp-
tion routines additionally use multimedia (SSE) and general purpose registers,
other programs are fully supported, including office and internet applications,
3D games, simulations, and more.

Debuggers are not fully supported. In particular hardware breakpoints cannot
be set as we have verified with GDB in Linux and OllyDBG in Windows. Al-
though the running debugger does not crash, setting a hardware breakpoint has
just no effect (since TreVisor effectively prevents overwriting the debug regis-
ters). However, setting software breakpoints works fine and software breakpoints
are the default breakpoints in most debuggers.

Virtualization software like VirtualBox and VMware is not fully supported
either. Again, these programs do not crash but they run less efficiently as they
cannot make use of Intel’s VT-x (it is already used by TreVisor). The problem
could be solved in the future because nested VT-x is generally possible when
supported by the lowest hypervisor.

Operating Systems. One of the most important advantages of TreVisor com-
pared to TRESOR is its capability to run an unmodified version of basically
every x86 OS, including Windows 7, Linux, BSD variants, and more. We have
verified this for the most important OSs, in particular for the 32- and 64-bit
variants of Windows and Linux.

During development, the Windows operating system and its device drivers
caused somehow more trouble than Linux. For example, booting up the 64-
bit variant of Windows 7 fails with a blue screen when the CPUID negates
debugging extensions. The problem can magically be solved by not changing the
return value of CPUID but still disabling the debugging extensions (which is in
fact a wrong configuration).
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Encrypted Partitions. TreVisor supports full AES, including the 128-, 192-,
and 256-bit variant; other ciphers are not supported.

Indeed, TreVisor allows to encrypt several partitions, but all of those must be
encrypted with the same secret key because no space is left to store additional
keys in debug registers. A possible solution to this problem is to store a keyring
in RAM that is encrypted with a master key. As a downside, this solution induces
a significant performance drawback because the key has to be decrypted before
scrambling a block. Hence, and since TreVisor is primarily designed for single-
user systems, we decided against it.

Partitions that are encrypted with TreVisor can be used by both Windows
and Linux. Using partitions that were encrypted with another disk encryption
software is not possible (at least not without re-encryption).

Hardware Components. Since we utilize recent Intel technologies, we had
to write TreVisor close to the hardware and consequently, there are incompat-
ibilities with many existing systems. It is almost impossible to support older
CPUs because hardware virtualization simplifies the implementation of hyper-
visors considerably.

From current Intel CPUs, only the Core i5 and i7 series are compatible with
TreVisor as these are the only 64-bit CPUs that support VT-x/VT-d as well
as the AES instructions. We have tested TreVisor successfully with both, the i5
and i7. Most notably, CPU frequency scaling features can, unfortunately, not be
used from within the guest at the time of this writing.

As mentioned above, we are also aware of problems with some video cards
and ACPI wakeup. After TreVisor resumes from suspend-to-RAM, users must
re-enter the password “blind” because the password prompt regularly fails to
get displayed.

Tu sum up, guaranteeing the support of a wide range of commercial hardware
components, including CPUs, video cards, and ACPI, is a difficult task. In this
sense, TreVisor must be seen as an academic prototype, not as a market-ready
product.

5 Performance

We now present TreVisor disk encryption benchmarks. We have evaluated the
performance of TreVisor on two different systems: Windows 7 (64-bit) and
Ubuntu Linux (64-bit, kernel 3.0). On both systems our tests revealed practi-
cal benchmark data; the performance drawback compared to unencrypted disks,
and compared to disks encrypted with AES-NI, is about one-third.

Table 1 illustrates the encryption and decryption speed of TreVisor in mega-
bytes per seconds. We list the encryption speed of all three TRESOR variants
(TRESOR-128, -192, and -256) and compared TRESOR-256 with reference val-
ues of plain disk access (No-VMM), BitVisor without encryption (No-Crypto),
BitVisor with our own, memory-based AES-NI implementation (AES-NI/256),
and BitVisor with its default, OpenSSL-based AES variant (StdAES/256).
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Table 1. Basic throughput data (a) of TreVisor in MB/s. The penalty of the reference
values (b) is in comparison to the throughput of TRESOR-256.

TRESOR-128 TRESOR-192 TRESOR-256

Linux/write 59.3 54.4 56.0
Linux/read 38.8 36.3 32.5
Windows 43.4 39.4 35.3

(a)

No-VMM No-Crypto AES-NI/256 StdAES/256

Linux/write 60.7 7.74% 59.9 6.51% 59.2 5.41% 57.6 2.78%
Linux/read 63.7 48.98% 63.2 48.58% 62.9 48.33% 37.8 14.02%
Windows 54.1 34.75% 53.9 34.51% 53.4 33.90% 41.4 14.73%

(b)

Under Linux, we evaluated the encryption speed (write to an encrypted par-
tition) as well as the decryption speed (read from an encrypted partition) with
the dd utility. To minimize the effect of disk caching, we copied large files (10
gigabytes) that do not fit into RAM and averaged over several test runs. Under
Windows we used the PC analysis software SiSoft Sandra 2011 to create com-
bined disk benchmarks (read and write). It remains unclear how the values are
determined by SiSoft Sandra in detail and thus, the inferior throughput com-
pared to Linux does not necessarily mean that hard disks under Windows work
slower.

We took the disk speed of BitVisor without encryption (No-Crypto) into ac-
count to investigate the performance drawback that arises from hooking into disk
writes without modifying them. As shown by Table 1, this effect is minor. Addi-
tionally we added our own, memory-based implementation of AES to BitVisor
(AES-NI/256), because the default implementation of BitVisor does not utilize
the AES instruction set. To investigate the exact performance drawback caused
by TRESOR’s on-the-fly key schedule, we patched TRESOR’s encryption rou-
tine to store all round keys persistently in RAM. We were surprised by the
outstanding acceleration attributed to AES-NI; the difference between AES-NI
and no encryption is nominal.

As shown in Table 1, the performance drawback of TRESOR-256 compared to
standard AES-256 is only about 3% for writing but about 14% for reading. This
effect stems from the on-the-fly key schedule: decryption round keys are derived
from encryption round keys by an additional, costly operation (namely aesimc,
inverse mix columns). As the key schedule must be recomputed for each input
block, this extra operation becomes noticeable. In comparison with plain (not
encrypted) disks the effect intensifies and the performance decreases to almost
50% for decryption/reading. Writing, on the other hand, is not affected by the
extra operation and the performance decrease compared to all reference values
is below 10%.
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In summary, TreVisor can practically be employed without a noteable per-
formance drawback for encryption, but with a performance drawback of up to
50% for decryption. However, compared to the gain in security, we consider this
performance loss as acceptable. Furthermore, we want to point to the combined
read/write benchmarks under Windows, revealing a decrease of about one-third
on average. Lastly, we want to note that the decrease relative to traditional,
non AES-NI implementations is below 15%; and those systems were practically
deployed for many years until AES-NI CPUs came up recently.

6 Security

First we show that TreVisor is, above all, secure against cold boot attacks and
DMA attacks. Furthermore it can be configured in a way that is mostly se-
cure against evil maid attacks. Last we discuss timing attacks and attacks by
privileged users.

Cold Boot Attacks. The major development object of TreVisor is to offer
Windows users the opportunity to encrypt their hard disks resistant to cold boot
attacks. All existent, software-based FDE systems for Windows store necessary
keys in RAM. As shown by a recent study about the practicalness of cold boot
attacks [6], this problem must be taken seriously.

To defeat cold boot attacks we consistently treat RAM as insecure and adopted
TRESOR’s techniques to hold keys in CPU registers. But the correctness of
TRESOR does not necessarily imply the correctness of TreVisor.We have to show
that no programming error slipped into our implementation that, for example,
leads the debug registers to be written out into RAM during context switching.

To prove resistance against cold boot attacks we analyzed the RAM of a
TreVisor system in order to show that (1) debug registers are never swapped
out into VMCS structures, and (2) GPR and SSE registers are not swapped out
inside critical sections. The most comfortable way to analyze the memory of a
TreVisor system is to run TreVisor itself inside a VM and examine its memory
from outside. Unfortunately, nested VT-x does not work in current virtualization
software; either it is not supported at all, or, as in VMware (4.0.2), it is officially
supported but still causes TreVisor to crash.

Hence, we had to examine memory via cold boot attacks. We booted a mini
OS from USB as well as over network (PXE) and dumped everything that was
left in memory. Additionally we used BitVisor’s debug console to examine the
entire main memory at runtime and patched TreVisor to go through the crucial
VMCS structures. Last but not least, we implemented log messages on access to
debug registers.

Instead of using aeskeyfind [10], which is based on the AES key schedule
that is not stored in TreVisor at all, we had advantage over real attackers by
searching for known keybits. Despite this advantage, we were not able to find
any match of the key that exceeds three bytes, a finding which can be explained
by chance alone. On the other hand, when we explicitly wrote keybits into RAM,
we were able to recover them.
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Summarizing, we were not able to recover keybits, the key schedule or any
part of them despite strenuous efforts.

DMA Attacks. Read-only DMA attacks are prevented by TreVisor as ex-
plained in the previous section – since the TreVisor key never enters RAM,
it cannot be retrieved by reading from RAM. However, writeable DMA attacks
may still be harmful because they can compromise the system space and execute
privileged code, e. g., code that displays the debug registers.

Writeable DMA attacks can only be circumvented by restricting the memory
space that is available to DMA capable I/O ports like Firewire. Such restrictions
can effectively be implemented via the IOMMU of Intel’s VT-d technology.

Normally, hypervisors use the IOMMU to protect themselves from access of
untrusted guest OSs. However, the same mechanism can be used to improve secu-
rity against DMA attacks, and so does BitVisor. BitVisor verifies that addresses,
which are specified by guest DMA descriptors, do not point into hypervisor re-
gions.

It should be mentioned that BitVisor protects only its own memory regions;
the system space of the guest is not protected and still vulnerable to DMA
attacks. But since the disk encryption logic of TreVisor resides in the hypervisor,
the key cannot be accessed from the guest.

Summarizing, BitVisor implements an effective approach to protect its mem-
ory space against malicious I/O devices and hence, TreVisor is secure against
DMA attacks.

Evil Maid Attacks. As a matter of fact, software-based FDE systems do not
enforce full disk encryption due to bootstrapping reasons. At least the MBR and
a small decryption routine must be stored unencrypted in order to launch the
remaining system. This weakness affects most existent FDE solutions, including
TrueCrypt, and allows for so called evil maid attacks: unencrypted MBRs can be
infiltrated with bootkits (which, for example, may have keylogging functionality).

To overcome such attacks, we successfully tested a configuration of TreVisor
that enables true FDE, meaning that the master boot record of the disk must
not be left unencrypted. For this reason we store both the bootloader and the
hypervisor onto an external USB flash drive which is required to be plugged in
during boot time. (Additionally, reconfiguring the BIOS should be protected by
a password.)

Although this countermeasure thwarts the most evident MBR attacks, it is
not perfect. First, the USB device must be handled like a physical key, meaning
that loss of the device threatens the protection mechanism. Second, only the
integrity of the bootloader can be verified, not the integrity of the BIOS (e. g.,
BIOS kits [26]). Therefore, we are working on the support of trusted platform
modules in future versions of TreVisor as it would be both more convenient and
more secure. BitLocker, for example, already supports such a TPM configuration.

Timing Attacks. We want to mention briefly that TRESOR is resistant to
another kind of side channel attacks – timing and cache-based attacks [20].
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However, this is not special because all disk encryption systems which build
upon Intel’s AES-NI, including BitLocker and TrueCrypt, are resistant to timing
attacks. Intel itself states that, beyond improving performance, the AES instruc-
tion set provides security benefits by running in data-independent time [27].

Privileged User Attacks. In TreVisor, an adversary who could gain root or
administrator privileges cannot compromise the key. Of course, such an adver-
sary is mostly able to read out the disk, but the encryption key itself cannot be
accessed. This again is an improvement compared to BitLocker and TrueCrypt
where the key resides in system space – always available to attacks by the super-
user. In TreVisor the key does not reside in system space but ring -1 privileges
are required to access it. TreVisor does not grant access from the untrusted guest
OS and hence, it is impossible for an adversary to read the key without breaking
out of the VM.

Preventing such VM escapes was one of the design goals of BitVisor. The
authors argue that BitVisor comprises only about 20 KLOC (kilo lines of code)
which is quite small compared to other VMMs. Reduced code size effectively
increases the reliability of a hypervisor as it reduces the risk of serious program-
ming errors. For example, local privilege escalations for the Linux kernel appear
regularly (e. g., CVE-2009-2692, CVE-2010-3081, and CVE 2012-0056 [2]). Thus,
even when using TRESOR, which is a Linux kernel patch, the secret key cannot
effectively be protected against local attacks because once a user compromised
system space, the key can easily be retrieved. In contrast, a TreVisor user would
additionally have to break out of the VM – which is at least a further obstacle.

7 Conclusions and Future Work

In this paper we described TreVisor, a disk encryption scheme that is primar-
ily designed to resist main memory attacks. Our proposal goes along with a
prototype implementation that runs reliably in practice but allows for many
improvements in future work, too.

Conclusions. Software based disk encryption solutions like BitLocker and True-
Crypt are designed to preserve confidentiality and integrity in the case of physical
loss. But in many practical cases they do not fulfill these requirements as it has
been shown by several known attacks: cold boot, DMA, and evil maid attacks.

Hence, there is practical need for a disk encryption solution that finally inte-
grates countermeasures to all these threats [7]. TreVisor, which claims to be such
a solution, has several advantages as compared with conventional disk encryption
software:

– As only a hypervisor must be present unencrypted, truly full disk encryption
can easily be enforced. For example, the small hypervisor can be stored on
external bootable devices, improving protection against evil maid attacks.

– As VT-x technology is utilized to run below the operating system, TreVisor
encrypts transparently for the OS. That is, TreVisor permits, for example,
Linux and Windows to access the same encrypted partition simultaneously.
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– As it is based on TRESOR and VT-d/IOMMU technology, TreVisor secures
against attacks on main memory, namely cold boot and DMA attacks.

We believe that exploiting otherwise hardly used components, i. e., the debug
registers and VT-x/VT-d, is a reasonable way to deploy more secure disk en-
cryption in mobile end-user systems.

To conclude, TreVisor substantially increases the security of disk encryption
systems. It is the first system which is secure against known main memory at-
tacks, in particular against cold boot and DMA attacks. Before TreVisor, coun-
termeasures against these attacks were spread over small, academic projects and
serious disk encryption systems still do not implement them.

Future Work. We believe that utilizing virtualization technology in order to en-
force OS-independent disk encryption is the most promising software-alternative
to compete with hardware-FDE, which becomes increasingly popular. At the
time of this writing, however, TreVisor can only be treated as a prototype of
what could be done in future. To be deployable on the mass market, many is-
sues have to be solved, mainly regarding usability and compatibility:

– Easy installation, particularly for Windows users. Currently, TreVisor must
be compiled under Linux and manually be started from within GRUB before
booting the OS.

– User-friendly suspend-to-RAM support. At the moment, suspend-to-RAM
must be considered as “experimental” since TreVisor fails to display a visual
password prompt.

– CPU frequency scaling from within the guest. This is especially important
to save battery life of notebooks.

Above that, we are continuously working on further security improvements, pri-
marily on the integration of trusted platform modules into the boot process.
Proving the integrity of boot components by means of the TPM would be a
secure and convenient add-on to TreVisor in the future.

Acknowledgments. We would like to thank Richard Mäckl, Johannes Stüttgen,
and Stefan Vömel as well as the anonymous reviewers for reading a prior version
of this paper and giving us valuable suggestions for improving it.

Availability. TreVisor is free software which is published under the GPL v2 [29].
Its source code is publicly available at www1.cs.fau.de/trevisor
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Abstract. In this work, we look at authenticated encryption schemes
from a new perspective. As opposed to analyzing the security of different
methods of constructing authenticated encryption schemes, we investi-
gate the effect of the method used to construct an authenticated en-
cryption scheme on the performance of the construction. We show that,
by performing the authentication operation before the encryption op-
eration, the security requirements on the authentication operation can
be relaxed, leading to more efficient constructions, without affecting the
security of the overall construction.

Keywords: Universal hash-function families, pseudorandom permuta-
tions, authenticated encryption, provable security.

1 Introduction

There are three different methods to generically compose an authenticated en-
cryption scheme by combining an encryption algorithm with a MAC algorithm:
Encrypt-and-MAC (E&M), Encrypt-then-MAC (EtM), or MAC-then-Encrypt
(MtE). Although significant efforts have been devoted to analyzing the security
implications of different generic compositions (see, e.g., [10,29]), little effort has
been devoted to the study of the performance implications of different generic
compositions [2]. Of particular interest to this work is the performance aspect of
generic compositions when the encryption algorithm is block cipher based and
the MAC algorithm is universal hash-function family based. (We focus on such
constructions since block ciphers are the recommended building block for secure
encryption [25] and since universal hash families based MACs are the fastest
method for message authentication [39].)

In a typical EtM composition, the plaintext is broken into blocks. Each block
is processed with a block cipher, resulting in a ciphertext block. The result-
ing ciphertext blocks are then authenticated using a MAC based on a universal
hash-function family (in the Carter-Wegman style [15]). One of the most recent
authenticated encryption schemes is the Carter-Wegman Counter (CWC) block
cipher mode of authenticated encryption proposed by Kohno et al. in [27]. (The

� A more complete version of this paper can be found in [3].
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National Institute of Standards and Technology (NIST) has adopted the CWC
mode of operation in the standardized Galois/Counter Mode (GCM) of authen-
ticated encryption [17].) The CWC mode of operation gives high-performance
authenticated encryption by combining the counter mode of encryption with a
Wegman-Carter universal hash-function family for authentication.

The OKH Solution. In this work, we investigate the performance implications
of the order in which the two operations, encryption and authentication, are
performed. We describe the Odd Key Hashing (OKH) mode of authenticated
encryption. The OKH mode is motivated by the CWC mode of authenticated
encryption proposed by Kohno et al. [27]. However, unlike the CWC and the
GCM schemes, the order of encrypt-then-authenticate is reversed in the OKH
mode. That is, as opposed to applying the hashing operation on the ciphertext,
it is applied on the plaintext, before block cipher encryption. The main result
of this study is to show that, while the hash family used to construct a MAC in
the EtM composition must be universal, this need not be the case in the MtE
composition.1 The performance implication of this result is that, since the hash
family need not be universal, it can be computed faster than the fastest universal
hash family in the cryptographic literature. The theoretical significance of this
result is that relaxing the security requirements on the MAC algorithm does not
affect the provable security of the overall authenticated encryption composition.

Background and Related Work. The notion of authenticated encryption was
introduced independently by Katz and Yung in [26], and by Bellare and Rogaway
in [11]. Since then, many authenticated encryption schemes have been proposed,
such as, RPC of Katz and Yung [26], XECB of Gligor and Donescu [20], IAPM
of Jutla [24], OCB of Rogaway et al. [37], EAX of Bellare et al. [12], and CWC of
Kohno et al. [27]. Alomair and Poovendran showed that one can utilize the E&M
composition to eliminate redundant computations in the MAC algorithm in order
to come up with more efficient generic constructions [5, 6]. Stream cipher based
authenticated encryption primitives have appeared in [19, 40]. However, these
stream cipher based proposals have been analyzed and shown to be vulnerable
to attacks [31, 33, 34, 41].

The use of universal hash-function families to construct MAC algorithms is
due to Carter and Wegman [15]. Compared to block cipher based MACs, such
as [9,16], and cryptographic hash function based MACs, such as [7,35], universal
hashing based MACs lead to faster message authentication [14, 21, 28, 36]. The
speed of a universal hash family based MAC relies mainly on the speed of the
used universal hash family. The security of MACs based on universal hashing
has been extensively studied. In [22], key recovery attacks against universal hash
functions was introduced. In [4], it was shown that the security of universal
hashing based on integer arithmetic is proportional to the smallest prime factor
of the used modulus.

1 Although the same result can be shown for the E&M composition, we restrict our
discussion to the MtE composition for brevity.
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There has been a significant effort for the design of fast universal hash fami-
lies. In [28], Krawczyk introduced the cryptographic CRC which hashes in about
6 cycles/byte, as shown by Shoup in [38]. In [36], Rogaway proposed the bucket
hashing which was the first hash family explicitly targeted for fast software
implementation; it runs in about 1.5 − 2.5 cycles/byte [14]. In [23], Johansson
described bucket hashing with smaller key size. In [21], Halevi and Krawczyk pro-
posed the MMH family, which hashes at about 1.2− 3 cycles/byte. In [18], Etzel
et al. proposed the square hash, an MMH-variant that can be more efficient than
MMH in certain settings [14]. In [13], Bernstein proposed floating-point arith-
metic based hash function that achieves a peak speed of 2.4 cycles/byte. In [1],
Afanassiev et al. described an application of hashing based on polynomial eval-
uation over finite fields. In [32], Nevelsteen and Preneel study the performance
of several universal hash functions proposed for MACs. The speed champion of
universal hash functions directed for software implementation is the NH family
of Black et al. proposed in [14]. The NH family is an extension to the MMH
family of [21]. The speed improvement comes from eliminating the non-trivial
modular reduction required by the MMH family. The novelty of NH family is
that it uses arithmetic modulo powers of two, i.e., “computations that comput-
ers like to do [14].” The NH family hashes at about 0.34 cycles/byte for 2−32

probability of message collision.

Organization. In Section 2, we give some preliminaries. In Section 3, we de-
scribe the OK hash family. In Section 4, we describe the construction of the
proposed OKH authenticated encryption scheme. In Section 5, we state and
prove the authenticity and privacy theorems of the proposed scheme. In Section
6, we summarize the basic ideas behind the proposed mode of operation and
provide performance comparisons. In Section 7, we conclude the paper.

2 Notations and Preliminaries

2.1 Notations

- If s is a binary string, |s| denotes the length of s in bits.
- For a positive integer β, {0, 1}β denotes a binary string of length β-bits, and
{0, 1}∗ denotes a binary string of arbitrary length.

- If b is a bit and β is a positive integer, we denote by bβ the concatenation of
b with itself β times.

- For a non-empty set H, we denote by h
$← H the selection of a member of

H uniformly at random and assigning it to h.
- If x and n are positive integers so that 0 ≤ x < 2n, we denote by tostr(x, n)
the binary representation of x as an n-bit string (in a big-endian format).

- If s is a binary string, we denote by toint(s) the unsigned integer represen-
tation of s (in a big-endian format).

- If s is a binary string and � is a positive integer, we denote by setlen(s, �)
the truncation of s into its � most significant bits. If |s| < �, then setlen(s, �)
denotes the �-bit long string s||0�−|s|.
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2.2 Universal Hash-Function Families

A family of hash functions H is specified by a finite set of keys K. Each key k ∈ K
defines a member of the family Hk ∈ H. As opposed to thinking of H as a set
of functions from D to R, it can be viewed as a single function H : K×D → R,

whose first argument is usually written as a subscript. A random element h
$← H

is determined by selecting a k
$← K uniformly at random and setting h ← Hk.

There are many classes of universal hash families, depending on their probability
of message collision, we give below a formal definition of one class of universal
hash families called ε-almost universal.

Definition 1. Let H = {h : D → R} be a family of hash functions and let ε ≥ 0
be a real number. H is said to be ε-almost universal, denoted ε-AU, if for all

distinct M,M ′ ∈ D, we have that Prh←H
[
h(M) = h(M ′)

]
≤ ε. H is said to be

ε-almost universal on equal-length strings if for all distinct, equal-length strings

M,M ′ ∈ D, we have that Prh←H
[
h(M) = h(M ′)

]
≤ ε.

2.3 Block Ciphers

A block cipher mapping �-bit strings to �-bit strings is a family of permutations,
F , specified by a finite set of keys, Ke. Each key K ∈ Ke defines a member of
the family FK ∈ F . As opposed to thinking of F as a set of functions mapping
elements from {0, 1}� to elements in {0, 1}�, it can be viewed as a single function
F : Ke×{0, 1}� → {0, 1}�, whose first argument is usually written as a subscript.

A random element f
$← F is determined by selecting a K

$← Ke uniformly at
random and setting f ← FK .

As in [27], we adopt the notion of security for block ciphers introduced in [30]
and adopted for the concrete setting in [8]. Let F : {0, 1}L × {0, 1}� → {0, 1}�,
where L is the key length and � is the block size of the block cipher, be a block
cipher and let Perm(�) denote the set of all permutations on {0, 1}�. Let A be
an adversary with access to an oracle and that returns a bit. Then,

AdvprpF (A) = Pr
[
f

$← F : Af(·) = 1
]
− Pr

[
π

$← Perm(�) : Aπ(·) = 1
]

(1)

denotes the prp-advantage of A in distinguishing a random instance of F from
a random permutation. Intuitively, we say that F is a secure prp, or a secure
block cipher, if the prp-advantages of all adversaries using reasonable resources
is small.

A block cipher is said to be strong pseudorandom permutation (sprp) if it is
indistinguishable from a random permutation even if the adversary is given an
oracle access to the inverse function. Then,

AdvsprpF (A) = Pr
[
f

$← F : Af(·),f−1(·) = 1
]

− Pr
[
π

$← Perm(�) : Aπ(·),π−1(·) = 1
]

(2)
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denotes the sprp-advantage of A in distinguishing a random instance of F from
a random permutation. Modern block ciphers, such as AES, are believed to be
secure sprps.

2.4 Authenticated Encryption Schemes

The authenticated encryption model that we use is similar to the one in [27,37].
A nonce-using, symmetric authenticated encryption scheme AE = (K,SE ,VD)
consists of three algorithms: the key generation algorithm (K), the signed en-
cryption algorithm (SE), and the verified decryption algorithm (VD). AE is
defined over some key space KeySp, some nonce space NonceSp = {0, 1}nl, for a
positive integer nl, and some message space MsgSp = {0, 1}∗. We require that
membership in MsgSp can be efficiently tested and that if M,M ′ are two strings
such that M ∈ MsgSp and |M | = |M ′|, then M ′ ∈ MsgSp.

The randomized key generation algorithm K returns a key K ∈ KeySp. The
deterministic signed encryption algorithm SE takes as input a key K ∈ KeySp,
a nonce N ∈ NonceSp, and a payload message M ∈ MsgSp, and returns a
ciphertext σ ∈ {0, 1}∗. The deterministic verified decryption algorithm VD takes
as input a key K ∈ KeySp, a nonce N ∈ NonceSp, a string σ ∈ {0, 1}∗, and
outputs a message M ∈ MsgSp or the special symbol INVALID on error. We ask
for the basic validity requirement that if σ = SEK(N,M) then it must be the
case that VDK(N, σ) = M .

2.5 Adversarial Model

We adopt the standard adversarial model used in authenticated encryption
schemes. The adversary is given oracle access to the signed encryption algo-
rithm SEK(N,M). The adversary can call the SE oracle on nonce-message pairs
(N,M) of her choice and observing the outputs. After calling the SE oracle for q
times, the adversary attempts a forgery by calling the verified decryption algo-
rithm VDK(N, σ) for an (N, σ) pair of her choice. Note that the adversary does
not see the secret key K. If the verified decryption oracle returns the INVALID
symbol, the adversary is considered unsuccessful; otherwise, the forgery attempt
is said to be successful.

A standard assumption in authenticated encryption schemes is that the ad-
versary is nonce-respecting. An adversary is said to be nonce-respecting if she
never repeats a nonce. That is, after calling the signed encryption oracle on
(N,M), the adversary never asks its oracle a query (N,M ′), regardless of the
oracle responses. We emphasize, however, that the nonce used in the forgery
attempt may coincide with a nonce used in one of the adversary’s queries.

2.6 Properties of Odd Integers

We state here two lemmas about odd integers in the finite integer ring Z2n that
will be used for the rest of the paper.
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Lemma 1. For any nonzero integers α and β in Z2n , 2
n divides αβ only if both

α and β are even integers. Formally, the following one-way implication must
hold:

αβ ≡ 0 mod 2n ⇒ α ≡ β ≡ 0 mod 2. (3)

Lemma 2. Let X1 be the random variable representing the experiment of draw-
ing a number x1 from the set of integers

{
0, 1, · · · , 2n−1

}
uniformly at random.

Then, for any odd integer k ∈ Z2n , the random variable Y1 = k ·X1 mod 2n is
uniformly distributed over the set

{
0, 1, · · · , 2n − 1

}
.

Lemmas 1 and 2, along with the fact that there is a one-to-one correspondence
between n-bit strings and the integer ring Z2n , will be used to establish the
results of this paper. The proofs of the two lemmas can be found in [3].

3 The Odd Key Hash Family

In this section, we give a description of the OK hash family that will be used
in the construction of our OKH authenticated encryption. Fix an integer n ≥ 1
(the “block size”) and an integer b ≥ 1 (the “number of blocks”). We define the
family of functions OK[n, b] as follows. The domain is D = {0, 1}n ∪ {0, 1}2n ∪
· · ·∪{0, 1}bn and the range is R = {0, 1}n. Each function in OK[n, b] is defined by
the b-tuple K = (k1, · · · , kb), where ki ∈ Z

∗
2n for i = 1, · · · , b. A random function

in OK[n, b] is given by drawing the ki’s at random from the multiplicative group
Z

∗
2n . The function determined by K is written as OKK(·).
For an input message M ∈ D, view M as a sequence of n-bit blocks, i.e.,

M = m1 · · ·m�, where � ≤ b, and write each block in its unsigned integer repre-
sentation in Z2n (in a big-endian format). Then, the compressed image of M is
given by

OKK(M) =

�∑
i=1

kimi mod 2n. (4)

When the values of n and b are known, we will write OK instead of OK[n, b] to
simplify the notations.

4 Description of the OKH Authenticated Encryption

As mentioned earlier, the key idea allowing for more efficient authentication over
the CWC mode of operation is advancing the hashing phase to be applied on the
plaintext instead of the ciphertext. The mode of operation used for encryption
is similar to the counter mode (CTR) but with the the requirement that the
plaintext is to be processed by the block cipher, as illustrated in Figure 1.

As in previous authenticated encryption schemes, we require the block cipher
BC to be a strong pseudorandom permutation. Let BC: {0, 1}kl × {0, 1}bs →
{0, 1}bs be the used block cipher, where kl and bs are the key length and block
size of the block cipher, respectively. The authenticated encryption using BC for
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Fig. 1. The used mode of encryption to construct the OKH authenticated encryption.
Note that the nonce-counter concatenation is XORed with the key, not the plaintext
block. Therefore, given a nonce-respecting adversary, the encryption key of each block
is different than all other blocks of the same message and different than all other blocks
of different messages due to the use of nonce-counter concatenation. This observation
is critical for the security of the proposed scheme.

encryption and the OK family for hashing, OKH = (K,SE ,VD), is defined as
follows. The message spaces are

MsgSp =
{
M ∈ {0, 1}∗ : |M | ≤ MaxLen

}
, (5)

KeySp =
{
(Ke,Kh) ∈ {0, 1}kl × {0, 1}MaxLen

}
, (6)

NonceSp =
{
N ∈ {0, 1}∗ : |N | ≤ kl− log2 MaxLen

}
, (7)

where MaxLen is the message maximum length. The size of the counter, CtrLen,
in the mode of operation of Figure 1 is at least log2 MaxLen. The concatenation
of the nonce and the counter is of length kl-bits.

Informally speaking, the authentication tag is computed by dividing the plain-
text message into blocks of n-bit long, hash it according to equation (4) using
a member of the OK family, and encrypt the resulting n-bit hashed image (as
shown in the MAC algorithm below). The size of the hashing images, n, is less
than or equal to the block cipher size, bs. The encryption part is done the natural
way (as shown in the E algorithm below).

Remark 1. There are two important points to note about the OK family. First,
the OK family is defined over the domain D only. This issue, however, can be
easily solved with an appropriate padding (e.g. with zeros as we do in this pa-
per). Second, and more important, as in universal hash families, the OK family
as described in Section 3 can only be used to authenticate equal-length messages.
For example, a message block consisting of all zeros will not contribute to the
value of the hashed image. Hence, it is easy to come up with two distinct mes-
sages that collide and, eventually, achieve a successful forgery. However, there
are known techniques to make the hash function applicable to arbitrary-length
messages. For instance, in [14] the authors proposed appending the length of
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Fig. 2. Pseudocodes of the key generation (K), signed encryption (SE), and verified
decryption (VD) algorithms

the message at the end. In our case, it suffices to append the bit ‘1’ at the end
of the message since this will guarantee that changing the message length will
change the hashed image in an unpredictable manner depending on the hashing
key corresponding to the last message block.

Another important remark is related to the message length. For a message
that is longer than MaxLen, it is treated as multiple chunks of length MaxLen or
less and the corresponding tags are concatenated; that is, arbitrary long messages
can be authenticated using the same fixed-length hashing key (this is actually
the case for any universal hashing based MAC, not just the proposed one [14]). In
typical settings, however, one need not worry about such messages since MaxLen
is often sufficiently long. For instance, typical AES key-lengths are 128, 192, or
256. Assuming the shortest key-length of kl = 128 bits, and setting |N | = 88
and CtrLen = 40 as can be found in [27], MaxLen can be more than Tera bits
long, while one is often dealing with much shorter messages (about third of the
messages on the backbone of the Internet, for instance, are only 43 bytes [37]).
For the rest of the paper, we will assume messages of length MaxLen or less for
simplicity.

The OKH’s key generation (K), signed encryption (SE), and verified decryp-
tion (VD) algorithms are defined as in Figure 2. The rest of the algorithms
(KeyGenOK, E ,D,MAC,OK-HASH) are defined in Figure 3. Algorithm KeyGenOK
handles the generation of the key that defines the used member of the OK hashing
family. Algorithms E and D handle the encryption and decryption correspond-
ing to the mode of operation depicted in Figure 1. Algorithm MAC handles the
generation of authentication tags, which calls algorithm OK-HASH to compress
the message.

5 Theorem Statements

In this section, we give the main security statements of the proposed scheme,
formal security proofs can be found in the full version [3].

5.1 Security of Authentication

Fix an authenticated encryption scheme OKH = (K,SE ,VD) and run an adver-
sary A with an oracle SEK(·, ·) for some key K. The adversary A
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Fig. 3. Pseudocodes of the KeyGenOK, E , D, MAC, OK-HASH

successfully forges in this run if A is nonce-respecting, A outputs a pair (N, σ)
where VDK(N, σ) �= INVALID, and A made no earlier query (N,M) which re-

sulted in the response σ. Let AdvauthOKH[BC,OK](A) = Pr
[
K

$← K : ASEK(·,·) forges
]

be the adversary’s advantage of successful forgery against the scheme OKH that
uses BC as a block cipher for encryption and the OK family for hashing.

We give here information-theoretic bounds on the authenticity of the scheme
of Section 4 assuming the use of a true random permutation, Perm(�), for en-
cryption.

Theorem 1. Fix an OK[n, b] hash family and let Perm(�) : {0, 1}� → {0, 1}�
be a true random permutation and let tl be the desired tag length. Let A be a
nonce-respecting adversary that asks q queries and then makes its forgery attempt
against the OKH of Section 4. Then, A’s advantage of successful forgery is
bounded by

AdvauthOKH[Perm(�),OK[n,b]]
(A) ≤ 2−n + 2−tl.

It is standard to pass a complexity-theoretic analog of Theorem 1, but in
doing this one will need access to a BC−1 oracle in order to verify a forgery
attempt, which translates into needing the strong pseudorandom permutation
assumption. One gets the following. Fix an OK[n, b] hash family and a block
cipher BC : K × {0, 1}� → {0, 1}�. Let A be a nonce-respecting adversary that
asks q queries totaling at most λ bits of payload and then makes its forgery
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attempt. Then, there is an adversary B attacking the block cipher in which

AdvauthOKH[BC,OK](A) ≤ AdvsprpBC (B) + 2−n + 2−tl.

Furthermore, adversary B takes the same time adversary A takes and makes at
most λ/�+ q oracle queries.

Before we proceed with the security analysis, we give the intuition behind the
choices of the OK hash family and the mode of encryption in Figure 1. First,
observe that the OK family is not a universal hash family. To see this, let the OK
family be defined over the ring Z2n . Let M = m1||m2 be a message of two n-bit
blocks (for the rest of the paper, we overloadmi to denote both the n-bit binary
string of the ith message block and its integer representation as an element of
Z2n in a big-endian format; the distinction between the two representations will
be omitted as long as it is clear from the context). Consider now the message
M ′ = m′

1||m′
2 = m1 + 2n−1||m2 + 2n−1 �= M . Then,

k1m
′
1 + k2m

′
2 = k1

(
m1 + 2n−1

)
+ k2

(
m2 + 2n−1

)
≡ k1m1 + k2m2 mod 2n, (8)

where equation (8) holds since both k1 and k2 are odd integers by design.

Remark 2. Equation (8) implies that the OK family, unlike universal hash fami-
lies, cannot be used to construct standard MACs since forgers can easily find two
colliding messages. However, one key idea of the proposed OKH is that finding
two messages that collide does not translate into a successful forgery (since the
adversary must also predict the correct ciphertext corresponding to the colliding
messages). The other key idea behind the design of OKH is that the effect of
modifying an observed ciphertext block will result in modifying its corresponding
plaintext block randomly (assuming the block cipher is a strong pseudorandom
permutation). For that, the following lemma addresses the adversary’s chances
of causing a collision in the hashing phase by modifying the ciphertext.

Lemma 3. Let C �= C′ be any two distinct ciphertexts and let M �= M ′ be
the plaintext messages corresponding to C and C′, respectively. Then, assuming

the use of a random permutation for block encryption, Prh←OK[n,b]

[
h(M) =

h(M ′)
]
≤ 2−n.

Proof. Let ci and c′i denote the ith blocks of C and C′, respectively. Similarly,
let mi and m′

i denote the ith blocks of M and M ′, respectively. Since M �= M ′,
they must be different in at least one block. Assume M and M ′ differ in a single
block only. Without loss of generality, let m′

1 = m1 + ε �= m1 and the rest of the
blocks are the same. Then, since k1 is an odd integer, by Lemma 1, k1 · ε �≡ 0

mod 2n and the probability Prh←OK[n,b]

[
h(M) = h(M ′)

]
= 0.

Assume now that M and M ′ differ by more than one block. Write m′
i =

mi + εi �= mi for each block i in which the two messages differ. Since a random
permutation is used for encryption, even if c′i differs with ci by a known constant,
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εi will be a random element of Z2n (for any user with no knowledge of the

encryption key). Therefore, by Lemma 2, Prh←OK[n,b]

[
h(M) = h(M ′)

]
= 2−n

and the lemma follows. 
�

Remark 3. Lemma 3 illustrates the significance of restricting the hashing keys
to the set of odd integers. To see this, let the keys be drawn from Z2n as opposed
to Z∗

2n . Assume that ki, for some i, happened to be equal to 2n−1. Then, using
the fact that the used block cipher can be modeled as a strong pseudorandom
permutation, any modification of the ith ciphertext block will go undetected
with a probability 1/2 (this is because ε · 2n−1 is congruent to zero modulo
2n for any even ε). In general, if ki is equal to 2n−�, for any positive integer
� < n, then any modification of the ith ciphertext block will go undetected with
a probability 1/2�.

With Remark 2 and Lemma 3 in mind, one can proceed with the formal proof
of Theorem 1, which can be found in [3].

5.2 Security of Encryption

In this section, we show that the privacy of the proposed scheme is provably
secure assuming the used block cipher is a secure pseudorandom permutation.
Consider an adversary A who has one of two types of oracles: a real encryption
oracle and a fake encryption oracle. The real encryption oracle EK(·, ·) takes

as input a pair (N,M) and returns a ciphertext C
$← EK(N,M). Assume that

the length of the ciphertext depends only on the length of the plaintext, that is,
|C| = l(|M |). The fake encryption oracle, $(·, ·), takes as input a pair (N,M) and

returns a random string C
$← {0, 1}l(|M|). Given adversary A and authenticated

encryption scheme OKH = (K,SE ,VD), define

AdvprivOKH[BC,OK](A) = Pr
[
K

$← K : ASEK(·,·) = 1
]
− Pr

[
A$(·,·) = 1

]
to be A’s advantage of breaking the privacy of the authenticated encryption
scheme using BC as a block cipher and OK for hashing. That is, as in previous
authenticated encryption proposals (e.g., [27, 37]), the strong model of distin-
guishing the ciphertext from a random string is used to model the privacy of
encryption.

Theorem 2. Let OKH[BC;OK] be the authenticated encryption scheme de-
scribed in Section 4 using the OK hash family for compression and the block
cipher BC for encryption. Then given a nonce-respecting adversary, A, against
OKH[BC;OK], one can construct an adversary B against BC such that

AdvprivOKH[BC;OK](A) ≤ AdvprpBC (B). (9)

Furthermore, the experiment for B takes the same time as the experiment for A
and, if A makes at most q oracle queries totaling at most μ bits of payload data,
then B makes at most μ/�+ q oracle queries.
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Table 1. Performance comparison of the MMH hash family of Halevi and Krawczyk
[21], the polynomial-evaluation (POLY) hash family of Bernstein [13], the NH hash
family of Black et al. [14], and the proposed OK family.

MMH family POLY family NH family OK family

Collision probability 2−30 2−96 2−64 2−64

Hashed image (bits) 32 128 128 64

Speed (cycles/byte) 1.2 2.4 0.84 0.27

Theorem 2 states that, if BC is a secure pseudorandom permutation, then the
proposed authenticated encryption scheme provides data privacy; the formal
proof can be found in [3].

6 Design and Performance Discussions

In this section, we discuss the main design ideas behind the proposed OKH
scheme and compare its performance to other authentication codes in the cryp-
tographic literature.

First, note that there is a one-to-one correspondence between the set of n-bit
sequences and the integer ring Z2n . Hence, the integer ring Z2n is the natural
choice when performing arithmetic on binary sequences. From a computational-
efficiency point of view, the integer ring Z2n has an advantage over other finite
integer rings in that modular reduction can simply be realized by truncating
what is beyond the nth bit (no nontrivial modular reduction is required). From
a mathematical point of view, the integer ring Z2n possesses the unique property
that an element a ∈ Z2n is invertible if and only if it is an odd integer. That
is, the multiplicative group Z∗

2n consists of all odd integers less than 2n, and
nothing else. Consequently, for a random number ε drawn uniformly from Z2n

and an odd key k, the value of ε ·k mod 2n is uniformly distributed over Z2n (by
Lemma 2). This fact, along with the fact that block ciphers can be realized as
strong pseudorandom permutations, are the main principles behind the design
of the OKH authenticated encryption composition. That is, by advancing the
hashing phase to be applied to the plaintext, before block cipher encryption,
and restricting the hashing keys to the set of odd integers, one can show that a
successful forgery by causing a collision in the hashing phase can occur with a
negligible probability (by Theorem 1).

In the literature, without advancing the hashing phase to be performed before
block cipher encryption, the objective of guaranteeing that a forgery attempt by
causing a collision in the hashing phase can succeed with a negligible probability
has been achieved by restricting the hash function to be universal. Intuitively,
removing such a restriction on the hash function should only increase its speed.

In what follows, we give a detailed performance comparison between the OK
family and the NH family of Black et al. [14], the fastest universal hash family
in the cryptographic literature for software implementations. Comparison with
other known hash families is summarized in Table 1. As before, let M be a
message to be authenticated and write M as a sequence of n-bit strings; i.e.,
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M = m1|| · · · ||m�, where |mi| = n. Similarly, let the key K = k1|| · · · ||k� be the
hashing key. Let NHK be a random member of the NH family determined by the
key K. Then, the compressed image of M is computed as

NHK(M) =

�/2∑
i=1

(
(k2i−1 +m2i−1 mod 2n)

· (k2i +m2i mod 2n)
)

mod 22n. (10)

On the other hand, the hash image of M as computed by the OK family is

OKK(M) =
�∑

i=1

ki ·mi mod 2n. (11)

That is, when the block size is n, the OK computations are performed over Z2n

while the NH computations are performed over the larger integer ring Z22n .
To give a numerical example, let n = 64 bits. Then, the OK family requires

64-bit computations while the NH family requires 128-bit computations. When
using a 64-bit machine, this implies that NH computations must be split over two
registers, while OK computations are performed using a single register. Splitting
operations over two registers can slow down the speed by about 63%. More
importantly, in standard compilers, there is no integer data type of size 128-bit.
Therefore, to multiply two 64-bit integers, one needs to split each integer into
two 32-bit parts and multiply with appropriate shifts. Using a 64-bit machine
with 3.00GHz Intel(R) Xeon(TM) CPU running on UNIX operating system, the
NH family runs at 0.87 cycles/byte while the OK family runs at 0.27 cycles/byte
(All codes are written in C).

7 Conclusion

In this paper, we proposed the OKH authenticated encryption scheme. By ad-
vancing the hashing phase before block cipher encryption, we showed how a
hashing function that is not universal can be used without affecting security of
authentication. Since the hash function does not have to be universal, it can be
computed faster than universal hash function in the literature of cryptography.
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Abstract. We motivate and describe a mode of operation HEM (resp.,
THEM) that turns a n-bit blockcipher into a variable-input-length cipher
(resp., tweakable cipher) that acts on strings of [n..2n − 1] bits. Both
HEM and THEM are simple and intuitive and use only two blockcipher
calls, while prior work at least takes three. We prove them secure in the
sense of strong PRP and tweakable strong PRP, assuming the underlying
blockcipher is a strong PRP.

Keywords: ciphers, tweakable ciphers, deterministic encryption, enci-
phering scheme, symmetric encryption, universal hash function.

1 Introduction

Designing modes of operation from a blockcipher (e.g., AES) is one of the central
tasks in shared-key cryptography. They allow the repeated use of a blockcipher
to achieve confidentiality or authentication for variable-input-length (VIL) mes-
sages. Many confidentiality applications like disk-sector encryption require that
the encryption be length-preserving. The requirement entails the usage of ci-
phers [19]. A cipher is a family of keyed length-preserving permutations. Such
a primitive is also called an enciphering scheme, or deterministic encryption.
The conventional security notions for a cipher are “pseudorandom permuta-
tion” (PRP) and “strong pseudorandom permutation” (SPRP) [17]. Tweakable
cipher [18] is an extension of conventional cipher which takes a “tweak” (or
“associated data”, that does not have to be encrypted) as an additional in-
put. Correspondingly, the security notions are “tweakable PRP” and “tweakable
SPRP”.

Compared to many other cryptographic primitives like signatures, MACs,
and encryption schemes, it is not easy to build a VIL cipher from a fixed-input-
length (FIL) cipher (e.g., blockcipher), where techniques such as “padding” and
“tainting” fail to work. Indeed, to this end, a very large number of wide blocksize
ciphers [1, 3, 4, 6, 10–13, 27, 28] are proposed (though not all of them can handle
settings where the messages need not be a multiple of n bits).

This work mainly considers a special case of this problem—on how to turn a
blockcipher of size n into a VIL cipher and a VIL tweakable cipher with the mes-
sage space

⋃2n−1
i=n {0, 1}i, which basically “doubles” the domain of a blockcipher

in the VIL sense. First, this length-doubling problem is of historical interest.
Luby and Rackoff’s Feistel construction [17] can be viewed as the first attempt
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to double the domain of a cipher for fixed-input-length (FIL) messages, while
our work deals with the problem in the VIL setting and aims to improve its effi-
ciency. Besides its theoretical value, it is particularly applicable to many useful
settings. For instance, short headers in the Internet are usually of the targeted
lengths that we study. If messages to be encrypted are of such short lengths,
one should be careful about the cipher used since otherwise it can influence
the efficiency by percentage. And, perhaps more importantly, length-doubling ci-
phers are useful tools to build high-level protocols. In particular, Rogaway and
Zhang show how to turn such a VIL length-doubling tweakable cipher into an
arbitrary-length-input online cipher [24]. Last, length-doubling cipher seems to
be the “right” method of dealing with the incomplete final block for IEEE P1619
standard [21]. This standard is applicable to cases like disk-sector encryption,
which cannot afford the extra hardware or latency required by a two-pass wide
blocksize encryption mode. Current standard XTS-AES makes use of ciphertext
stealing [19] to handle the issue. Though P1619 does not provide a formal def-
inition for security property (which is somewhat unfortunate), an intuitive one
may be that each block should be enciphered by an independent SPRP (indexed
by a tweak), and the “long” final block (i.e., the second last complete block and
the partial final block) should be enciphered by an independent length-doubling
tweakable SPRP secure in the VIL setting.1 It is easy to verify that ciphertext
stealing construction described in [21] and its possible variants (see, e.g., [25])
do not satisfy such a definition of security even in the PRP sense.2 We believe
that it is necessary to reconsider the problem and find efficient alternatives.

On the other hand, the above-mentioned general wide blocksize ciphers, if be-
ing restricted to our targeted domain, do not give very efficient length-doubling
schemes. For instance, EME2 cipher of Halevi [10] uses five blockcipher calls to
achieve a VIL length-doubling tweakable SPRP. It takes at least four blockci-
pher calls to use unbalanced Feistel networks [26]. The currently best solution
is obtained from the XLS construction by Ristenpart and Rogaway [23] which
essentially uses three blockcipher calls and little extra work. In fact, none of
them are designed specifically for the length-doubling problem—a problem that
we aim to address in this paper.

Our method. At the heart of our motivation is how to construct efficient VIL
(tweakable) ciphers using only two blockcipher calls. The question itself has
both theoretical and practical interest. The blockcipher implementation is still
the most expensive one in most of the platforms. Trimming one blockcipher call
would be highly likely to result in a considerable improvement in efficiency.3 But
this goal is not as easy as it looks. (From a purely theoretical view—without con-
sidering efficiency, the problem can be well solved with good provable-security.)

1 Another possible definition is to ask the last block to be “short”, but this will not
give a tight security reduction for very short messages.

2 We note that Liskov and Minematsu [16] provide a “proof” to justify the security of
ciphertext stealing in XTS-AES. However, one can barely argue anything from such
a proof since there is no security notion.

3 Other examples of this kind include [9, 15].
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We extend the idea of Naor and Reingold [20] to construct an efficient VIL
length-doubling cipher and tweakable cipher. The overhead for the VIL cipher
construction is about two blockcipher calls and two AXU hash function calls and
little additional work. We name the VIL cipher construction “HEM” to indicate
that we use hash function, blockcipher encryption, and mixing function [23] as
components.

We begin by describing a mode FHEM (fixed-length HEM) for a fixed length
n+s where n is the blocksize and s ∈ [1..n−1]. The mode is depicted in Figure 1.
Given an input M of length n + s, it first parses M as M1 and M2 such that
|M1| = n and |M2| = s. The algorithm takes four “rounds”. The first and last
rounds use AXU hash functions, and the second and third rounds use regular
blockciphers. The overall structure can be viewed as following the framework of
Feistel networks, but is neither exactly like Feistel nor unbalanced Feistel net-
works. The input and output of the hash function are both simply from {0, 1}n.
This is crucial for our construction—the efficiency of the hash functions usually
decreases rapidly if the input size gets larger, while the security would lose if
the output size gets smaller. Furthermore, we use a third tool, a mixing func-
tion [23], to “fix” the consequence of not exactly following the four rounds Feis-
tel. This makes our construction a little less elegant but does not essentially
hurt efficiency. Besides, different from Naor-Reingold construction, the security
assumption needed for the underlying blockcipher is SPRP rather than PRP.
Moreover, the round two and three functions must be permutations. Clearly,
these two requirements are insignificant to the implementation since one usually
chooses to use AES anyway.

It may still seem hard to make a VIL cipher, since intuitively it needs an
AXU hash function for VIL messages. We circumvent the problem by applying
the same AXU hash function (with an independent key) to the length of M2.
See Figure 3 for our construction. We stress that we can pre-compute all values
for the additional hash functions since there are only n of them where n is the
underlying blocksize (e.g., 128). Concretely, the additional operations needed
compared to FHEM are just two xors. Thus, we can practically make the VIL
cipher from the FIL construction with “no” extra work. We comment that this
basically uses an idea similar to that used in [22] yet in a more efficient way.

We go on to present two constructions of VIL length-doubling tweakable ci-
phers. One of them gets better provable security, while the other is more concise.

To instantiate the modes, we can use many ready solutions for AXU hash
functions. One notable construction is the GF(2n) multiply. The efficiency of
AXU hash functions may vary due to software and hardware support and other
factors, and thus we do not give a specific recommendation. For the mixing
function, we recommend using the more efficient one in [23] that takes only three
xors and a single one-bit circular rotation. Another immediate consequence of
our results is that any progress in the area of AXU hash functions will result in
improved VIL length-doubling (tweakable) ciphers.

Further related work. Luby and Rackoff [17] showed the classical result
that four rounds of Feistel suffice to construct a length-doubling SPRP in the



Length-Doubling Ciphers and Tweakable Ciphers 103

FIL sense. Naor and Reingold [20] revisited four rounds Feistel construction and
showed that the first and fourth layer blockciphers can be well replaced with two
pairwise independent permutations. (In particular, they showed that a weaker al-
most XOR universal (AXU) hash function is sufficient.) This change improves the
efficiency and enables a simpler proof. Patel, Ramzan, and Sundaram [22] con-

structed a VIL cipher achieving SPRP security for a larger domain
⋃

i≥2n {0, 1}
i
,

by combining unbalanced Feistel networks [26] and pairwise independent permu-
tations. It is not clear how to extend their idea to design even a FIL cipher for
our target domain, say, a cipher of length 3n/2, with a tight reduction. Cook,
Yung, and Keromytis [5] designed “from scratch” the elastic blockcipher to solve
the same length-doubling problem. Their construction is not designed from the
perspective of provably secure mode of operation. The XLS mode of operation
by Ristenpart and Rogaway [23] in essence solved a more general problem that
turns a m-bit-size cipher and a n-bit-size cipher to a cipher that acts on strings
of [m..m+n−1] bits. Goldenberg et al. addressed the question on how to directly
incorporate a tweak on Luby-Rackoff blockciphers [7].

Discussion. Intel released AES-New Instructions (AES-NI) [8], starting from
Westmere, in order to more efficiently implement AES. The gap about the ef-
ficiency between a well-chosen and carefully-implemented AXU hash function
and AES becomes less obvious. However, this change only appears for the re-
cent Intel and AMD architectures. For other platforms, especially for specified
hardware-based ones, our scheme outperforms other schemes notably.

Our results also answer an interesting question regarding how to construct
efficient length-doubling (tweakable) ciphers in the VIL sense using only two
blockcipher calls, which may be a more important contribution. In fact, the
problems studied in our work can be understood from a broader perspective: How
do we achieve an efficient VIL cipher for messages with the domain

⋃
i≥n {0, 1}

i

using the least blockcipher calls? Of course, this question only makes sense if
there exists a lower bound for the number of blockcipher calls for an efficient
construction. We conjecture on this informal question that it needs at least �i/n
blockcipher calls.

2 Preliminaries

Notation. A string is a member of {0, 1}∗. If A,B ∈ {0, 1}∗ then A ‖B or AB
denotes their concatenation. If X is a string then |X | denotes its length. The
empty string is denoted ε. Throughout this work, we fix a number n called the
blocksize.

Ciphers, blockciphers and tweakable ciphers. A map f : X → X for
X ⊆ {0, 1}∗ is a length-preserving function if |f(x)| = |x| for all x ∈ {0, 1}∗.
It is a length-preserving permutation if it is also a permutation. A cipher is a
map E : K ×M → M where K is a nonempty set, M ⊆ {0, 1}∗ is a nonempty
set, and EK = E(K, ·) is a length-preserving permutation for all K ∈ K. The
set K is called the key space and M is called the message space. If E : K ×
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M → M is a cipher then its inverse is the cipher E−1: K ×M → M defined
by E−1(K,Y ) = E−1

K (Y ) being the unique point X such that EK(X) = Y . A
blockcipher is a map E: K× {0, 1}n → {0, 1}n where K is a finite nonempty set
and EK(·) = E(K, ·) is a permutation on {0, 1}n for every K ∈ K. Equivalently,
a blockcipher is a cipher with message space M = {0, 1}n. A tweakable cipher

is a map Ẽ : K × T × M → M where K is a finite nonempty set and T is a
nonempty set (the tweak space) and M is a nonempty set (the message space)

and ẼT
K(·) = Ẽ(K,T, ·) is a permutation on M for every K ∈ K, T ∈ T .

Let Perm(n) be the set of all permutations on n bits, Perm(M) be the set of all
length-preserving permutations on the finite set M⊆ {0, 1}∗, and Perm(T ,M)
be the set of all functions π: T ×M → M where πT (·) = π(T, ·) is a permu-
tation for each T ∈ T . We may regard Perm(n), Perm(M), and Perm(T ,M)
as blockciphers, ciphers, and tweakable ciphers, respectively; they are the ideal
blockcipher on n bits, the ideal cipher on M, and the ideal tweakable cipher
on message space M and tweak space T . When an adversary A is run with an
oracle O we let AO ⇒ 1 denote the event that A outputs 1. Define the ±prp
(i.e., SPRP) and ±p̃rp (i.e., tweakable SPRP) advantage of A against E, E or Ẽ
by:

Adv±prp
E (A) = Pr[K

$←K : AEK ,E−1
K ⇒ 1 ]−Pr[π

$← Perm(n) : Aπ,π−1 ⇒ 1 ]

Adv±prp
E (A) = Pr[K

$←K : AEK ,E−1
K ⇒ 1 ]−Pr[π

$← Perm(M) : Aπ,π−1 ⇒ 1 ]

Adv±p̃rp

Ẽ (A) = Pr[K
$←K: AẼK , Ẽ−1

K ⇒1 ]−Pr[π
$← Perm(T ,M): Aπ, π−1⇒1 ]

Almost XOR universal hash function. We recall the definition of ε-almost
XOR universal (ε-AXU) hash function [14]. A hash function H : K×X → {0, 1}n
is called ε-AXU, if for all distinct X,X ′ ∈ X and all C ∈ {0, 1}n, we have

that Pr[K
$←K : HK(X)⊕HK(X ′) = C] ≤ ε. There are many efficient AXU

hash functions candidates. For concreteness, we review one such function for
X = {0, 1}n—multiplication in Galois Field GF(2n) (i.e., HK(X) = K · X
where K,X ∈ {0, 1}n), which achieves 2−n for ε—the minimum value one can
hope for. Assume that a, b are strings of {0, 1}n where a = an−1 · · · a1a0 and
b = bn−1 · · · b1b0. The Galois Field addition is defined as their bitwise xor. To
multiply a, b ∈ GF(2n), write them as polynomials a(x) = an−1x

n−1 + · · · +
a1x + a0 and b(x) = bn−1x

n−1 + · · ·+ b1x + b0, compute c(x) = a(x) · b(x) mod
p(x) where p(x) is a fixed irreducible polynomial over GF(2n), and then return
the binary representation of c(x) as output. For the AXU hash function input
string X ∈ {0, 1}∗ and |X | < n, we let pad(X) be the string X ||0n−|X|. (Namely,
the minimal number of zero-bits are padded on the right such that pad(X) is a
complete block.) Note that for example pad(Y ) = pad(Y ||0) for some string Y
where |Y | < n. This all zero padding method can be applied to other AXU hash
functions.

Mixing Function. We review the definition of the mixing function formally
defined and studied by Ristenpart and Rogaway [23]. We define a mixing func-

tion mix: S2 → S2 (S ⊇
⋃n−1

i=1 {0, 1}i) such that mixL(·, ·) and mixR(·, ·) are the
left projection and right projection of mix function. Ideally, we want such a
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primitive to have the property of a multipermutation: namely, for any A ∈ S,
mixL(A, ·), mixL(·, A), mixR(A, ·), and mixR(·, A) are all permutations. Like the
construction in [23], a relaxed notion of mixing function can work almost as
well for our schemes. We say that mix is an ε(s)-good mixing function, if for
all s such that {0, 1}s ∈ S and all A,B,C ∈ {0, 1}s, we have both mixL(A, ·)
and mixR(·, B) are permutations, and Pr[R

$←{0, 1}s : C = mixL(R,B) ] and

Pr[R
$←{0, 1}s : C = mixR(A,R) ] are both less than ε(s). In their work, two

efficient mixing functions are given. The more efficient one with ε(s) = 21−s

only takes three xors and a one-bit circular rotation.

3 A Fix-Input-Length Cipher

In this section, we provide a cipher for a fixed length n+s where n is the blocksize
and s ∈ [1..n− 1]. In other words, the cipher we shall describe is secure against
adversaries who are only allowed to ask queries of length n+s. The construction
only works in the FIL setting, but it serves as the basis for constructing VIL
(tweakable) ciphers.

Let E: K1 × {0, 1}n → {0, 1}n be a blockcipher and let H : K2 × {0, 1}n →
{0, 1}n be a 2−n-AXU hash function family. Define an ε(s)-good mixing function

mix: S2 → S2 where S ⊇
⋃n−1

i=1 {0, 1}i. We define a cipher E = FHEM[H,E,mix]
with key space K2

1 × K2
2. See Figure 1 for the construction. We claim that this

cipher is ±prp-secure for fixed-input-length n+ s.
The intuition of the proof is as follows. Like the Naor-Reingold construction,

by using AXU-hash function, for any two different messages M i and M j of
the same length, the probability that M i

3 and M j
3 “collide” is negligible. After

applying a random function, the output M4||M5 is now uniformly distributed.
This perfectly hides the complete block M1, but the partial block M2 remains
unprotected. A mixing function is used to force the output of M5||M2 to inherit
the distribution of M5. An independent random function is then employed to
further hide part of the mixing function output. The overall construction should
be made “symmetrizing” in order to achieve strong PRP security. Also note
that unlike Naor-Reingold and subsequent work, our constructions (i.e., one in
this section and the following extensions) ask the underlying blockcipher to be
reversible and the complexity assumption for it is SPRP.

The following theorem establishes the security of FHEM.

Theorem 1. Let E = FHEM[H,Perm(n),mix] with message space {0, 1}n+s
.

If A asks at most q queries then Adv±prp
E (A) ≤ 1.5 q2/2n + 0.5 q2 ε(s)

2n−s +
0.5 q2/2n+s, and if we use a mixing function with ε(s) = 21−s then we have
that Adv±prp

E (A)≤3 q2/2n.

Proof. We assume without loss of generality that A is deterministic and makes q
queries from {0, 1}n+s

. We further assume that it does not ask “pointless” queries:
it never repeats an encipher query, never repeats a decipher query, never asks a
decipher query of a value that it earlier received from an encipher query, and never
makes an encipher query of a value that it earlier received from a decipher query.
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 M2 M1

 M2 M3

EK2

 M2 M4

mix

 M5

 C2 M4  C5

 C2 C3

EK3

 C2 C1

HK1

HK4

00 algorithm EK(M) where K = K1||K2||K3||K4

01 if |M | �= n+ s then return ⊥
02 M1||M2 ← M where |M1| = n and |M2| = s
03 M3 ← M1 ⊕HK1(pad(M2))
04 M4||M5 ← EK2(M3) where |M4| = n− s and |M5| = s
05 C5||C2 ← mix(M5||M2) where |C5| = |C2| = s
06 C3 ← EK3(M4||C5)
07 C1 ← C3 ⊕HK4(pad(C2))
08 C ← C1||C2

09 return C

Fig. 1. Mode FHEM. Each input M is parsed as a complete block M1 and a partial
block M2. We should pad M2 to a complete block before applying the AXU hash
function. Similar operations should be carried out for the deciphering algorithm.

We use the code-based games [2] in Figure 2. Variable bad is initialized to
false. A functions π is initialized to everywhere undefined. Its current domain and
range are denoted domain(π) and range(π), while their complements relative to
{0, 1}n are denoted codomain(π) and corange(π).

We begin with game G1, which precisely describes the FHEM construction
with the ideal blockcipher π1 and π2. Game G6 always outputs random val-
ues, simulating a pair of random functions. Let p denote the probability that A
outputs 1 in the game simulating a random permutation and its inverse. The dif-
ference between p and Pr[GA

6 ⇒ 1 ] is at most 0.5 q2/2n+s, due to the PRP/PRF
switching lemma. We must bound Pr[GA

1 ⇒ 1 ]− Pr[GA
6 ⇒ 1 ].
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100 procedure E(M)
101 j ← j + 1; Mj ←M

102 Mj
1 ||Mj

2 ←Mj

103 Mj
3 ←Mj

1 ⊕HK1 (pad(Mj
2 ))

104 Mj
4 ||Mj

5 ← π1(M
j
3 )

105 Cj
5 ||Cj

2 ← mix(Mj
5 ||Mj

2 )

106 Cj
3 ← π2(M

j
4 ||Cj

5)

107 Cj
1 ← Cj

3 ⊕HK4 (pad(Cj
2))

108 Cj ← Cj
1 ||Cj

2
109 return Cj

150 procedure D(C)
151 j ← j + 1; Cj ← C

152 Cj
1 ||Cj

2 ← Cj

153 Cj
3 ← Cj

1 ⊕HK1 (pad(Cj
2))

154 Mj
4 ||Cj

5 ← π−1
2 (Cj

3)

155 Mj
5 ||Mj

2 ← mix(Cj
5 ||Cj

2)

156 Mj
3 ← π−1

1 (Mj
4 ||Mj

5 )

157 Mj
1 ←Mj

3 ⊕HK1 (pad(Mj
2 ))

158 Mj ←Mj
1 ||Mj

2
159 return Mj Game G1

200 procedure E(M)
201 j ← j + 1; Mj ←M

202 Mj
1 ||Mj

2 ←Mj

203 Mj
3 ←Mj

1 ⊕HK1 (pad(Mj
2 ))

204 if Mj
3 �∈ domain(π1) then

205 Y1
$← {0, 1}n

206 if Y1 ∈ range(π1) then

207 bad ← true;
[

Y1
$← corange(π1)

]

208 π1(M
j
3 )← Y1

209 Mj
4 ||Mj

5 ← π1(M
j
3 )

210 Cj
5 ||Cj

2 ← mix(Mj
5 ||Mj

2 )

211 if Mj
4 ||Cj

5 �∈ domain(π2) then

212 Y2
$← {0, 1}n

213 if Y2 ∈ range(π2) then

214 bad ← true;
[

Y2
$← corange(π2)

]

215 π2(M
j
4 ||Cj

5)← Y2

216 Cj
3 ← π2(M

j
4 ||Cj

5)

217 Cj
1 ← Cj

3 ⊕HK4 (pad(Cj
2))

218 Cj ← Cj
1 ||Cj

2
219 return Cj

250 procedure D(C)
251 j ← j + 1; Cj ← C

252 Cj
1 ||Cj

2 ← Cj

253 Cj
3 ← Cj

1 ⊕HK4 (pad(Cj
2))

254 if Cj
3 �∈ range(π2) then

255 X2
$← {0, 1}n

256 if X2 ∈ domain(π2) then

257 bad ← true;
[

X2
$← codomain(π2)

]

258 π−1
2 (Cj

3)← X2

259 Mj
4 ||Cj

5 ← π−1
2 (Cj

3)

260 Mj
5 ||Mj

2 ← mix(Cj
5 ||Cj

2);

261 if Mj
4 ||Mj

5 �∈ range(π1) then

262 X1
$← {0, 1}n

263 if X1 ∈ domain(π1) then

264 bad ← true;
[

X1
$← codomain(π1)

]

265 π−1
1 (Mj

4 ||Mj
5 )← X1

266 Mj
3 ← π−1

1 (Mj
4 ||Mj

5 )

267 Mj
1 ←Mj

3 ⊕HK1 (pad(Mj
2 ))

268 Mj ←Mj
1 ||Mj

2

[
Game G2

]

269 return Mj Game G3

400 procedure E(M)
401 j ← j + 1; Mj ←M

402 Mj
1 ||Mj

2 ←Mj

403 Mj
3 ←Mj

1 ⊕HK1 (pad(Mj
2 ))

404 Y1
$← {0, 1}n

405 if Mj
3 ∈ domain(π1) then

406 bad ← true;
[

Y1 ← π1(M
j
3 )

]
else

407 π1(M
j
3 )← Y1

408 Mj
4 ||Mj

5 ← π1(M
j
3 )

409 Cj
5 ||Cj

2 ← mix(Mj
5 ||Mj

2 )

410 Y2
$← {0, 1}n

411 if Mj
4 ||Cj

5 ∈ domain(π2) then

412 bad ← true;
[

Y2 ← π2(M
j
4 ||Cj

5)
]

else

413 π2(M
j
4 ||Cj

5)← Y2

414 Cj
3 ← π2(M

j
4 ||Cj

5)

415 Cj
1 ← Cj

3 ⊕HK4 (pad(Cj
2))

416 Cj ← Cj
1 ||Cj

2
417 return Cj

450 procedure D(C)
451 j ← j + 1; Cj ← C

452 Cj
1 ||Cj

2 ← Cj

453 Cj
3 ← Cj

1 ⊕HK4 (pad(Cj
2))

454 X2
$← {0, 1}n

455 if Cj
3 ∈ range(π2) then

456 bad ← true;
[

X2 ← π−1
2 (Cj

3)
]

else

457 π−1
2 (Cj

3)← X2

458 Mj
4 ||Cj

5 ← π−1
2 (Cj

3)

459 Mj
5 ||Mj

2 ← mix(Cj
5 ||Cj

2)

460 X1
$← {0, 1}n

461 if Mj
4 ||Mj

5 ∈ range(π1) then

462 bad ← true;
[

X1 ← π−1
1 (Mj

4 ||Cj
5)

]
else

463 π−1
1 (Mj

4 ||Cj
5)← X1

464 Mj
3 ← π−1

1 (Mj
4 ||Mj

5 )

465 Mj
1 ←Mj

3 ⊕HK1 (pad(Mj
2 ))

466 Mj ←Mj
1 ||Mj

2

[
Game G4

]

467 return Mj Game G5

600 procedure E(M)

601 j ← j + 1; Mj ←M

602 Cj $← {0, 1}n+s; return Cj

610 procedure Finalize

611 Mj
1 ||Mj

2 ←Mj

612 Cj
1 ||Cj

2 ← Cj

613 Mj
3 ←Mj

1 ⊕HK1 (pad(Mj
2 ))

614 Mj
4

$← {0, 1}n−s

615 Mj
5 ← mix−1

R (Cj
2 ||Mj

2 )

616 Cj
5 ← mixL(M

j
5 ||Mj

2 )

617 Cj
3 ← Cj

1 ⊕HK4 (pad(Cj
2))

620 bad ← (Mj
3 = Mi

3) or

621 (Mj
4 ||Cj

5 = Mi
4||Ci

5), for some i < j

650 procedure D(C) Game G6

651 j ← j + 1; Cj ← C

652 Mj $← {0, 1}n+s; return Mj

660 procedure Finalize

661 Cj
1 ||Cj

2 ← Cj

662 Mj
1 ||Mj

2 ←Mj

663 Cj
3 ← Cj

1 ⊕HK4 (pad(Cj
2))

664 Mj
4

$← {0, 1}n−s

665 Cj
5 ← mix−1

R (Mj
2 ||Cj

2)

666 Mj
5 ← mixL(C

j
5 ||Cj

2)

667 Mj
3 ←Mj

1 ⊕HK1 (pad(Mj
2 ))

670 bad ← (Cj
3 = Ci

3) or

671 (Mj
4 ||Mj

5 = Mi
4||Mi

5), for some i < j

Fig. 2. Games used in the proof of Theorem 1. Game G2 includes the brack-
eted statements while game G3 does not. Similarly, game G4 includes the bracketed
statements while game G5 does not. In game G6, encipher and decipher queries are
answered by random values.
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Game G2 rewrites G1 using lazy sampling [2] and these two games are ad-
versarially indistinguishable. The probability that bad gets set to true in G3

is bounded by the PRP/PRF switching lemma; Pr[GA
2 ⇒ 1 ] − Pr[GA

3 ⇒ 1 ] ≤
2 × 0.5 q2/2n. Game G4 makes several trivial modifications compared to G3;
they are adversarially indistinguishable. Pr[GA

4 ⇒ 1 ] − Pr[GA
5 ⇒ 1 ] is at most

the probability that A manages to set bad in game G5. Game G6 simply changes
the order of many random choices; it is adversarially indistinguishable from game
G5. In game G6, the encipher and decipher queries are answered by random val-
ues over {0, 1}n+s. It remains to bound the probability that bad gets set to
true in this game.

In game G6, we let mix−1
R (·, B) denote the inverse of mixR(·, B). We first

analyze the circumstance where the j-th query is an encipher query. If the j-
th and i-th queries M j and M i are both encipher queries and i < j, then
M j �= M i since encipher queries are not repeated. If M j

2 �= M i
2 then pad(M j

2 ) �=
pad(M i

2). By the definition of AXU hash function the probability that M j
1 ⊕

HK1(pad(M
j
2 )) = M i

1 ⊕HK1(pad(M
i
2)) is at most 2−n. Otherwise, we have that

M j
2 = M i

2 and M j
1 �= M i

1, and the probability that M j
1 ⊕ HK1(pad(M

j
2 )) =

M i
1 ⊕HK1(pad(M

i
2)) is zero. Thus we have that the probability that M j

3 = M i
3

is at most 2−n. If the j-th query is an encipher query and the i-th query is a
decipher query, then we still have M j �= M i because A never makes an encipher
query of a value that it earlier received from a decipher query. Similarly, in this
case, the probability that M j

3 = M i
3 is at most 2−n.

On the other hand, we claim that the probability that M j
4 ||C

j
5 = M i

4||Ci
5 (for

some i < j) is at most ε(s)
2n−s . This can be justified as follows. First, M j

4 is freshly

chosen at random and thus the probability that M j
4 = M i

4 is 2s−n. Second, by

M j
5 = mix−1

R (Cj
2 ||M

j
2 ), we have that M j

5 is uniformly distributed since Cj
2 is

independently chosen at random. By the definition of ε(s)-good mixing function
and by Cj

5 = mixL(M
j
5 ||M

j
2 ), we have that the probability that Cj

5 = Ci
5 is at

most ε(s). Therefore, the probability thatM j
4 ||C

j
5 equals M i

4||Ci
5 (for some i < j)

is at most ε(s)
2n−s .

The same probability results hold for the case where the j-th query is a
decipher query with a proof symmetric to the above one. Since there are at most
q2/2 possible collisions at both Line 620/670 and Line 621/671, the probability

that A manages to set bad in this game is at most 0.5 q2/2n + 0.5 q2 ε(s)
2n−s . This

completes the proof of the claim.

It is easy to pass from the information-theoretic setting to complexity-theoretic
one.

Insecurity of FHEM against VIL adversaries. FHEM is designed against
FIL adversaries. It is not a PRP secure cipher with respect to VIL attacks. A
simple attack is illustrated as follows. The adversary simply makes two encipher
queries 0n+1 and 0n+2, and gets two replies from the oracle C1||C2 and C′

1||C′
2

where |C1| = |C′
1| = n. If C1 = C′

1, the adversary returns 1; otherwise, it returns
0. If the adversary is given a FHEM oracle, one can check that the probability
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 M2 M1

 M2 M3

EK2

 M2 M4

mix

 M5

 C2 M4  C5

 C2 C3

EK3

 C2 C1

HK1

HK4

HK5|M2|

10 algorithm EK(M) where K = K1||K2||K3||K4||K5

11 if M �∈
⋃2n−1

i=n+1 {0, 1}
i then return ⊥

12 M1||M2 ← M where |M1| = n and |M2| = s
13 M3 ← M1 ⊕HK1(pad(M2))
14 M4||M5 ← EK2(M3 ⊕HK5(pad(|M2|))) where |M4| = n− s and |M5| = s
15 C5||C2 ← mix(M5||M2) where |C5| = |C2| = s
16 C3 ← EK3(M4||C5)⊕HK5(pad(|M2|))
17 C1 ← C3 ⊕HK4(pad(C2))
18 C ← C1||C2

19 return C

Fig. 3. Mode HEM. The input for the AXU hash functions HK1 , HK4 , and HK5

should be all padded to a complete block. In particular, the first log n bits of input for
HK5 is the length encoding of the partial block M2, while the remaining are n− log n
zero-bits.

that C1 = C′
1 is quite high; otherwise, it is about 2−n. Such an adversary can

thus attack the PRP security of FHEM.

4 A Length-Doubling VIL Cipher

We now show how to make a VIL cipher based on the FIL one in the above
section. The basic idea is to replace the AXU hash function with a length re-
lated AXU hash function. Namely, we want a primitive that enjoys the AXU
hash function property even for variable length input. We do not design such a
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primitive from scratch. Instead, this can be achieved by applying the same AXU
hash function (with an independently and uniformly chosen key) to the length
of incomplete block of the input.

Let E: K1 × {0, 1}n → {0, 1}n be a blockcipher and let H : K2 × {0, 1}n →
{0, 1}n be a 2−n-AXU hash function family. Letmix: S2 → S2 (S ⊇

⋃n−1
i=1 {0, 1}i)

be an ε(s)-good mixing function. From these building blocks we define a ci-
pher E = HEM[H,E,mix] with key space K2

1 × K3
2 and message space M =⋃2n−1

i=n+1 {0, 1}
i
. See Figure 3. The construction is ±prp-secure for VIL adver-

saries. The AXU-hash function HK5 can be replaced with a blockcipher EK5

and the security remains.
We emphasize that the AXU hash function HK5 taking as input the length

of incomplete block can be precomputed. It only needs n (typically, 128) invo-
cations of hash function calls (or blockcipher calls). This thus yields a highly
efficient implementation of HEM with a few preprocessed operations and a little
additional storage.

To make this cipher also secure for queries of length n, one can choose an inde-
pendent blockcipher to encipher all n-bit messages. The complexity assumption
used is SPRP. We give the security analysis for the scheme with message space⋃2n−1

i=n+1 {0, 1}
i
, using AXU hash function HK5 .

Theorem 2. Let E = HEM[H,Perm(n),mix]. If A asks at most q queries then

Adv±prp
E (A) ≤ 2 q2/2n + 0.5 q2 ε(s)

2n−s , and if we use a 21−s-good mixing function

then we have that Adv±prp
E (A) ≤ 3 q2/2n.

Proof. The proof follows an analogous line to the one of Theorem 1. We begin
with game G1, which precisely describes the HEM construction with the ideal
blockcipher π1 and π2. Game G6 simulates a pair of random functions. We
let p′ denote the probability that A outputs 1 in the game simulating a random
permutation and its inverse. The difference between p′ and Pr[GA

6 ⇒ 1 ] is at
most 0.5 q2/2n, again due to the PRP/PRF switching lemma. We have to bound
Pr[GA

1 ⇒ 1 ]− Pr[GA
6 ⇒ 1 ].

Game G2 modifies G1 using lazy sampling and they are adversarially indis-
tinguishable. By the PRP/PRF switching lemma, Pr[GA

2 ⇒ 1 ]−Pr[GA
3 ⇒ 1 ] ≤

2× 0.5 q2/2n. Game G4 and G3 are easily seen to be adversarially indistinguish-
able. Pr[GA

4 ⇒ 1 ]−Pr[GA
5 ⇒ 1 ] is at most the probability that A can set bad in

game G5. We delay the calculation of the probability in an adversarially indis-
tinguishable game G6 where the encipher and decipher queries are answered by
random values from

⋃2n−1
i=n+1 {0, 1}

i
.

It remains to bound the probability that A can set bad in game G6. We only
give the analysis for the circumstance where the j-th query is an encipher query.
(The case where j-th query is a decipher query is symmetric.)

Consider the j-th and i-th queries M j and M i (where i < j). We have that
M j �= M i since encipher queries are not repeated andA never makes an encipher
query of a value that it earlier received from a decipher query. We have several
cases to consider:
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100 procedure E(M)

101 j ← j + 1; Mj ←M

102 Mj
1 ||Mj

2 ←Mj

103 Mj
3 ←Mj

1 ⊕HK1 (pad(|Mj
2 |))

104 Mj
4 ||Mj

5 ← π1(M
j
3 ⊕HK5 (pad|Mj

2 |))
105 Cj

5 ||Cj
2 ← mix(Mj

5 ||Mj
2 )

106 Cj
3 ← π2(M

j
4 ||Cj

5)⊕HK5 (pad(|Mj
2 |))

107 Cj
1 ← Cj

3 ⊕HK4 (pad(Cj
2))

108 Cj ← Cj
1 ||Cj

2
109 return Cj

150 procedure D(C)

151 j ← j + 1; Cj ← C

152 Cj
1 ||Cj

2 ← Cj

153 Cj
3 ← Cj

1 ⊕HK1 (pad(Cj
2))

154 Mj
4 ||Cj

5 ← π−1
2 (Cj

3 ⊕HK5 (pad(|Cj
2 |)))

155 Mj
5 ||Mj

2 ← mix(Cj
5 ||Cj

2)

156 Mj
3 ← π−1

1 (Mj
4 ||Mj

5 )⊕HK5 (pad(|Cj
2 |))

157 Mj
1 ←Mj

3 ⊕HK1 (pad(Mj
2 ))

158 Mj ←Mj
1 ||Mj

2
159 return Mj Game G1

200 procedure E(M)
201 j ← j + 1; Mj ←M

202 Mj
1 ||Mj

2 ←Mj

203 Mj
3 ←Mj

1 ⊕HK1 (pad(Mj
2 ))

204 if Mj
3⊕HK5 (pad(|Mj

2 |)) �∈domain(π1) then

205 Y1
$← {0, 1}n

206 if Y1 ∈ range(π1) then

207 bad ← true;
[

Y1
$← corange(π1)

]

208 π1(M
j
3 ⊕HK5 (pad(|Mj

2 |)))← Y1

209 Mj
4 ||Mj

5 ← π1(M
j
3 ⊕HK5 (pad(|Mj

2 |)))
210 Cj

5 ||Cj
2 ← mix(Mj

5 ||Mj
2 )

211 if Mj
4 ||Cj

5 �∈ domain(π2) then

212 Y2
$← {0, 1}n

213 if Y2 ∈ range(π2) then

214 bad ← true;
[

Y2
$← corange(π2)

]

215 π2(M
j
4 ||Cj

5)← Y2

216 Cj
3 ← π2(M

j
4 ||Cj

5)⊕HK5 (pad(|Mj
2 |))

217 Cj
1 ← Cj

3 ⊕HK4 (pad(Cj
2))

218 Cj ← Cj
1 ||Cj

2
219 return Cj

250 procedure D(C)
251 j ← j + 1; Cj ← C

252 Cj
1 ||Cj

2 ← Cj

253 Cj
3 ← Cj

1 ⊕HK4 (pad(Cj
2))

254 if Cj
3⊕HK5 (pad(|Cj

2 |)) �∈range(π2) then

255 X2
$← {0, 1}n

256 if X2 ∈ domain(π2) then

257 bad ← true;
[

X2
$← codomain(π2)

]

258 π−1
2 (Cj

3 ⊕HK5 (pad(|Cj
2 |)))← X2

259 Mj
4 ||Cj

5 ← π−1
2 (Cj

3 ⊕HK5 (pad(|Cj
2 |)))

260 Mj
5 ||Mj

2 ← mix(Cj
5 ||Cj

2)

261 if Mj
4 ||Mj

5 �∈ range(π1) then

262 X1
$← {0, 1}n

263 if X1 ∈ domain(π1) then

264 bad ← true;
[

X1
$← codomain(π1)

]

265 π−1
1 (Mj

4 ||Mj
5 )← X1

266 Mj
3 ← π−1

1 (Mj
4 ||Mj

5 )⊕HK5 (pad(|Cj
2 |))

267 Mj
1 ←Mj

3 ⊕HK1 (pad(Mj
2 ))

268 Mj ←Mj
1 ||Mj

2

[
Game G2

]

269 return Mj Game G3

400 procedure E(M)

401 j ← j + 1; Mj ←M

402 Mj
1 ||Mj

2 ←Mj

403 Mj
3 ←Mj

1 ⊕HK1 (pad(Mj
2 ))

404 Y1
$← {0, 1}n

405 if Mj
3⊕HK5(pad(|Mj

2 |))∈domain(π1) then
406 bad ← true;

407
[

Y1 ← π1(M
j
3 ⊕HK5 (pad(|Mj

2 |)))
]

else

408 π1(M
j
3 ⊕HK5 (pad(|Mj

2 |)))← Y1

409 Mj
4 ||Mj

5 ← π1(M
j
3 )

410 Cj
5 ||Cj

2 ← mix(Mj
5 ||Mj

2 )

411 Y2
$← {0, 1}n

412 if Mj
4 ||Cj

5 ∈ domain(π2) then

413 bad ← true;
[

Y2 ← π2(M
j
4 ||Cj

5)
]

else

414 π2(M
j
4 ||Cj

5)← Y2

415 Cj
3 ← π2(M

j
4 ||Cj

5)⊕HK5 (pad(|Mj
2 |))

416 Cj
1 ← Cj

3 ⊕HK4 (pad(Cj
2))

417 Cj ← Cj
1 ||Cj

2
418 return Cj

450 procedure D(C)

451 j ← j + 1; Cj ← C

452 Cj
1 ||Cj

2 ← Cj

453 Cj
3 ← Cj

1 ⊕HK4 (pad(Cj
2))

454 X2
$← {0, 1}n

455 if Cj
3⊕HK5(pad(|Cj

2 |))∈range(π2) then
456 bad ← true;

457
[

X2 ← π−1
2 (Cj

3 ⊕HK5 (pad(|Cj
2 |)))

]
else

458 π−1
2 (Cj

3 ⊕HK5 (pad(|Cj
2 |)))← X2

459 Mj
4 ||Cj

5 ← π−1
2 (Cj

3)

460 Mj
5 ||Mj

2 ← mix(Cj
5 ||Cj

2)

461 X1
$← {0, 1}n

462 if Mj
4 ||Mj

5 ∈ range(π1) then

463 bad ← true;
[

X1 ← π−1
1 (Mj

4 ||Mj
5 )

]
else

464 π−1
1 (Mj

4 ||Mj
5 )← X1

465 Mj
3 ← π−1

1 (Mj
4 ||Mj

5 )⊕HK5 (pad(|Cj
2 |))

466 Mj
1 ←Mj

3 ⊕HK1 (pad(Mj
2 ))

467 Mj ←Mj
1 ||Mj

2

[
Game G4

]

468 return Mj Game G5

600 procedure E(M)
601 j ← j + 1; Mj ←M

602 Cj $← {0, 1}n+s; return Cj

610 procedure Finalize

611 Mj
1 ||Mj

2 ←Mj

612 Cj
1 ||Cj

2 ← Cj

613 Xj←Mj
1⊕HK1(pad(Mj

2 ))⊕HK5(pad(|Mj
2 |))

614 Mj
4

$← {0, 1}n−s

615 Mj
5 ← mix−1

R (Cj
2 ||Mj

2 )

616 Cj
5 ← mixL(M

j
5 ||Mj

2 )

617 Cj
3←Cj

1⊕HK4(pad(Cj
2))⊕HK5(pad(|Mj

2 |))
620 bad ← (Xj = Xi) or

621 (Mj
4 ||Cj

5 = Mi
4||Ci

5), for some i < j

650 procedure D(C) Game G6

651 j ← j + 1; Cj ← C

652 Mj $← {0, 1}n+s; return Mj

660 procedure Finalize

661 Cj
1 ||Cj

2 ← Cj

662 Mj
1 ||Mj

2 ←Mj

663 Yj←Cj
1⊕HK4(pad(Cj

2))⊕HK5(pad(|Cj
2 |))

664 Mj
4

$← {0, 1}n−s

665 Cj
5 ← mix−1

R (Mj
2 ||Cj

2)

666 Mj
5 ← mixL(C

j
5 ||Cj

2)

667 Mj
3←Mj

1⊕HK1(pad(Mj
2 ))⊕HK5(pad(|Cj

2 |))
670 bad ← (Y j = Y i) or

671 (Mj
4 ||Mj

5 = Mi
4||Mi

5), for some i < j

Fig. 4. Games used in the proof of Theorem 2. In game G6, encipher and decipher
queries are answered by random values.
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If |M j
2 | �= |M i

2| then by the definition of AXU hash function (for HK5)

the probability that M j
1 ⊕ HK1(pad(M

j
2 )) ⊕ HK5(pad(|M

j
2 |)) = M i

1 ⊕
HK1(pad(M

i
2))⊕HK5(pad(|M i

2|)) is at most 2−n. In other words, we have
that Pr[Xj = X i ] ≤ 2−n.

If |M j
2 | = |M i

2| and M j
2 �= M i

2 then again by the definition of AXU hash
functions (for HK1) we have Pr[Xj = X i ] ≤ 2−n.

If |M j
2 | = |M i

2| and |M j
2 | = |M i

2| then we immediately have that M j
1 �= M i

1.
The probability that Xj equals X i is zero.

In any case, we have Pr[Xj = X i ] ≤ 2−n.

We now bound the probability that M j
4 ||C

j
5 = M i

4||Ci
5 (for some i < j). M j

4 is

freshly chosen at random, and the probability that M j
4 = M i

4 is 2s−n. Moreover,

we have M j
5 = mix−1

R (Cj
2 ||M

j
2 ), and thus M j

5 is uniformly distributed since Cj
2

is independently chosen at random. We also have Cj
5 = mixL(M

j
5 ||M

j
2 ); by the

definition of mixing function we have that the probability that Cj
5 = Ci

5 is at

most ε(s). The probability that M j
4 ||C

j
5 = M i

4||Ci
5 (for some i < j) is at most

ε(s)
2n−s .

There are at most q2/2 pairs of possible collisions at both Line 620/670 and
Line 621/671, the probability that A manages to set bad in this game is at most

0.5 q2/2n + 0.5 q2 ε(s)
2n−s . The theorem now follows.

It is straightforward to pass from the information-theoretic setting to complexity-
theoretic one. For completeness, we show it as follows.

Corollary 1. Let E be a blockcipher, let H be a 2−n-AXU hash function family,
and let mix be an ε(s)-good mixing function. Let E = HEM[H,E,mix] and let A
be an adversary that asks at most q queries. Then there exist adversaries B and

C such that Adv±prp
E (A) ≤ Adv±prp

E (B) +Adv±prp
E (C) + 2 q2/2n + 0.5 q2 ε(s)

2n−s

for any s ∈ [n− 1]. Specifically, if we use a mixing function with ε = 21−s then
we have Adv±prp

E (A) ≤ Adv±prp
E (B) +Adv±prp

E (C) + 3 q2/2n.

5 Length-Doubling VIL Tweakable Ciphers

In this section, we present a VIL tweakable cipher over
⋃2n−1

i=n+1 {0, 1}
i
with tweak

space {0, 1}n. It is easy to modify the scheme to support larger tweak space. We
also give a variant with a slightly more succinct structure.

Let E: K1 × {0, 1}n → {0, 1}n be a blockcipher and let H : K2 × {0, 1}n →
{0, 1}n be a 2−n-AXU hash function family. Letmix: S2 → S2 (S ⊇

⋃n−1
i=1 {0, 1}i)

be an ε(s)-good mixing function. Define from the above primitives a VIL

tweakable cipher Ẽ = THEM[H,E,mix] with key space K2
1 × K4

2 and tweak

space T = {0, 1}n and message space M =
⋃2n−1

i=n+1 {0, 1}
i
. See Figure 5. The

construction is ±p̃rp-secure for VIL adversaries. To extend the domain of THEM
to include {0, 1}n, we can choose an independent tweakable blockcipher to en-
cipher the n-bit messages. The following theorem establishes the security of
THEM.
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 M2 M1

 M2 M3

EK2

 M2 M4

mix

 M5

 C2 M4  C5

 C2 C3

EK3

 C2 C1

HK1

HK4

HK5 HK6  T|M2|

20 algorithm ẼT
K(M) where K = K1||K2||K3||K4||K5||K6

21 if M �∈
⋃2n−1

i=n+1 {0, 1}
i then return ⊥

22 M1||M2 ← M where |M1| = n and |M2| = s
23 M3 ← M1 ⊕HK1(pad(M2))
24 M4||M5←EK2(M3⊕HK5(pad(|M2|))⊕HK6(T )) where |M4|=n−s, |M5|=s
25 C5||C2 ← mix(M5||M2) where |C5| = |C2| = s
26 C3 ← EK3(M4||C5)⊕HK5(pad|M2|)⊕HK6(T )
27 C1 ← C3 ⊕HK4(pad(C2))
28 C ← C1||C2

29 return C

Fig. 5. Mode THEM. Compared to HEM mode, FHEM takes an additional tweak T
as input. For simplicity, we can assume that the tweak space is {0, 1}n. Of course, it is
trivial to handle larger tweak space by selecting an AXU hash function that supports
longer input.

Theorem 3. Let Ẽ = THEM[H,Perm(n),mix]. If A asks at most q queries then

Adv±p̃rp

Ẽ (A) ≤ 2 q2/2n + 0.5 q2 ε(s)
2n−s , and if we use a 21−s-good mixing function

then we have that Adv±p̃rp

Ẽ (A) ≤ 3 q2/2n.

The proof of the above theorem largely resembles the previous ones, and is thus
omitted.

An Alternative Design–Tweak Stealing. A more compact variant using
the idea of “tweak stealing” is depicted in Figure 6. This algorithm causes a small
decrease in tweak space to {0, 1}n−logn

(if we insist using a AXU hash function
from {0, 1}n to {0, 1}n for the tweak input), and leads to a slight security loss.
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 M2 M1

 M2 M3

EK2

 M2 M4

mix

 M5

 C2 M4  C5

 C2 C3

EK3

 C2 C1

HK1

HK4

HK5 T|||M2|

30 algorithm ẼT
K(M) where K = K1||K2||K3||K4||K5

31 if M �∈
⋃2n−1

i=n+1 {0, 1}
i then return ⊥

32 M1||M2 ← M where |M1| = n and |M2| = s
33 M3 ← M1 ⊕HK1(pad(M2))
34 M4||M5 ← EK2(M3 ⊕HK5(T |M2|)) where |M4| = n− s and |M5| = s
35 C5||C2 ← mix(M5||M2) where |C5| = |C2| = s
36 C3 ← EK3(M4||C5)⊕HK5(T |M2|)
37 C1 ← C3 ⊕HK4(pad(C2))
38 C ← C1||C2

39 return C

Fig. 6. An Alternative Mode—“Tweak Stealing”. This mode is specified to sup-
port tweak space T = {0, 1}n−log n. The input for AXU hash function HK5 is a tweak
T ∈ T concatenating log n bits encoding of the length of partial input M2.

However, this does not necessarily restrict its usage. For instance, it suffices for
constructing arbitrary-input-length online ciphers [24]: the stolen tweak does not
impair the encipher and decipher algorithms. We comment that in spite of its
structural simplicity, the variant does not seem to give a notable improvement
of efficiency if we consider pre-computation.
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Abstract. In this paper, we give an extension of the concept of higher-
order integral, which can make us design better higher-order integral dis-
tinguishers for some block ciphers (structures). Using the new extension,
we present a unified algorithm of searching for the best possible higher-
order integral distinguishers for block ciphers.We adopt the inside-out ap-
proach, trying to predict the behavior of a set of carefully chosen data, not
only along encryption direction, but also along decryption direction. Ap-
plying the unified algorithm, we search for the best possible higher-order
integral distinguishers of Gen-SMS4 structure, Gen-Fourcell structure and
Present. For Gen-SMS4 structure and Present, the best higher-order in-
tegral distinguishers given by our algorithm are better than the best re-
sults known so far. For Gen-Fourcell structure, the best higher-order inte-
gral distinguishers given by our algorithm are the same as the best results
known so far. We expect that the inside-out method is helpful to under-
stand higher-order integral of block ciphers better, and the unified algo-
rithm presented in this paper can be used as a tool for efficiently evaluating
the security of a block cipher against integral cryptanalysis.

Keywords: block cipher, integral cryptanalysis, higher-order integral,
integral distinguisher, generalized Feistel structure, Present.

1 Introduction

Integral cryptanalysis [15] is originally proposed by L.R.Knudsen and D.Wagner
as a dedicated attack against Square block cipher [8], so is firstly known as
“Square attack”. Afterwards, the original idea used in Square attack has been
extended and given different names, including saturation attack [18], collision
attack [12], multiset attack [5] and integral cryptanalysis [15].

Integral cryptanalysis is of particular significance for its applicability to AES.
AES is designed to be resistant to differential cryptanalysis and linear
cryptanalysis, and very successful in this aspect, only 6-round AES can be
resistant to differential cryptanalysis and linear cryptanalysis. However, 6-round
AES can be broken using integral cryptanalysis, only with 6 ·232 chosen plaintexts
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and 244 time [11]. Up to now, integral cryptanalysis is one of the most effective
attacks for round-reduced AES [11,12] and round-reduced IDEA block cipher [4].

Integral cryptanalysis is a chosen-plaintext attack, which considers the prop-
agation of sums of many values. The goal of an attacker is to derive information
about the secret key using integral distinguishers. Assume a block cipher has n
data subblocks, each data subblock has a length of m bits. When mounting an
integral attack, the attacker typically chooses one or several specific subblocks,
assume he chooses d subblocks. Then, the attacker chooses 2d×m plaintexts,
which take on all possible values in the d subblocks, and have constant values in
the other subblocks. The attacker considers these 2d×m chosen plaintexts at a
time, trying to predict the properties in some subblock(s) after a certain number
of encryption rounds. Customarily, the following four properties are considered:

(1)Constant: The state of a subblock is called “constant” if every data in this
subblock has the same constant value.

(2)Active: The state of a subblock is called “active” either if the data in this
subblock are all different and have constant values in the other subblocks, or if
the data can be divided into some pairwise disjoint subsets and the following
condition holds for each subset: the data in this subblock are all different and
have constant values in the other subblocks.

(3)Balanced: The state of a subblock is called “balanced” if the XOR of all
values is zero.

(4)Unkown: The state of a subblock is called “unknown” if no information is
known.

We collectively call the above four states as integral states. Notice that some of
the properties are implied by others. For example, a constant or active state is
automatically balanced.

The security of a block cipher against integral cryptanalysis depends on sev-
eral factors, including the length of integral distinguishers, specific input/output
forms, the strength of one-round encryption/decryption. Among them, the de-
sign of integral distinguishers is the most important. In spite of a long time study
of integral cryptanalysis on block ciphers, integral distinguishers have often been
designed based on ad hoc approaches and the experience of cryptanalysts. There
is no common method of designing integral distinguishers so far.

In this paper, we give an extension of the concept of higher-order integral.
Furthermore, based on the new extension, we present an efficient unified algo-
rithm to the design of higher-order integral distinguishers using the method of
symbol calculation. The main ideas and contributions are as follows:

• The actual value of a constant state has no influence on the attack, thus all
constant states can be denoted as a single letter “C”; A balanced state is usually
a sum of some active states. Hence, the state of any subblock can be expressed
either as “C”, or a sum of some active states and some unknown states. Note that
an unknown state is a sum of 0 active state and 1 unknown state. Compared with
the customary description, the above expression is more accurate, thus makes
the information kept as undamaged as possible.
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• Traditionally, integral distinguishers are designed from top to bottom, an
attacker tries to predict the behavior of a set of carefully chosen plaintexts
after a certain number of encryption rounds. By contrast, we adopt the inside-
out approach, trying to predict the behavior of a set of carefully intermediate
data, not only after a certain number of encryption rounds, but also after a
certain number of decryption rounds. Consequently, we make an extension of
the concept of higher-order integral, which can make us design more effective
integral distinguishers for some block ciphers (structures).

• Using the matrix method introduced in [13, 14], we propose an efficient
unified algorithm of designing the best possible integral distinguishers for block
ciphers (structures). The algorithm can be applied widely, not only for byte-
oriented block ciphers and some generalized Feistel structures such as AES,
Camellia [2], Gen-SMS4 structure [3] and Gen-Fourcell structure [7], but also
for bit-oriented block ciphers such as Noekeon [9], Serpent [1] and Present [6].
For Camellia, Gen-SMS4, Noekeon, Serpent and Present, the best integral dis-
tinguishers given by our algorithm are better than the best results known so far.
For AES and Gen-Fourcell, the best integral distinguishers given by our algo-
rithm are the same as the best results known so far. Hence, we believe that the
unified algorithm presented in this paper can be used as a tool for efficiently
evaluating the security of block ciphers against integral cryptanalysis.

Due to the length limitation of this paper, we only use Gen-SMS4 structure,
Gen-Fourcell structure and Present as 3 typical examples. More examples will
be presented in the extended paper.

The focus of this paper is the construction of integral distinguishers for block
ciphers. How to design an attack algorithm using these integral distinguishers is
out of the scope of this paper, and we leave it for further work.

2 Preliminaries

Throughout this paper, we always assume that: (1) A block cipher structure
S has n data subblocks; (2) The round functions F of S are all bijective; (3)
The operation to connect a subblock with another one is ⊕, thus the sum in
integral cryptanalysis considered in this paper is referred to as “⊕”. Although
some block ciphers do not satisfy all the above conditions, e.g., IDEA and RC6,
yet we believe that the similar idea can also be applied, with some modifications.

2.1 Higher-Order Integral

The concept of higher-order integral is proposed by L.R.Knudsen and D.Wagner
[15]. Consider a set of 2m elements (representing a set of plaintexts), which differ
only in one particular subblock, such that each of the 2m possible values for this
particular subblock occurs exactly once, the sum over the elements of this set
is called a first-order integral. Consider next a set of 2d×m elements, which
differ in d subblocks, such that each of the 2d×m possible values for the d-tuple
of values from these subblocks occurs exactly once, the sum of this set is called
a dth-order integral, and integral for short. A dth-order integral is called a
higher-order integral when d ≥ 2.
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Consider a set
−
S = S1 ∪ · · · ∪ Ss composed of s sets, where each Si forms an

integral. Then, clearly, if one can determine the sum of the elements of Si for

each i, then one can also determine the sum of all elements in
−
S. This fact is the

key point for understanding higher-order integral.

2.2 Matrix Characterization of a Block Cipher Structure

Modern block ciphers are designed by iterating a round function certain times.
The following gives a matrix characterization of one round of a block cipher.

Definition 1. [14] (Encryption/Decryption Characteristic Matrix) For
a block cipher structure S, let (X0, X1, · · · , Xn−1) and (Y0, Y1, · · · , Yn−1) re-
spectively denote the input and output of one-round encryption, then the n× n
encryption/decryption characteristic matrix are defined as follows:
(1)Encryption characteristic matrix En×n: If Yj = Xi⊕R, where R is some
value 1, the (i, j) entry of E is set to 1; If Yj is nonlinearly affected by Xi, the
(i, j) entry of E is set to 2; If Yj is not affected by Xi, the (i, j) entry of E is set
to 0.
(2)Decryption characteristic matrix Dn×n: If Xj = Yi⊕T , where T is some
value, the (i, j) entry of D is set to 1; If Xj is nonlinearly affected by F (Yi), the
(i, j) entry of D is set to 2; If Xj is not affected by Yi, the (i, j) entry of D is
set to 0.

In Definition 1, each entry of the encryption/decryption characteristic matrix
has only one of the three values: 0, 1, or 2. For byte-oriented block ciphers, such
as AES and Camellia, the length of a subblock is chosen to be 8 bits; For bit-
oriented block ciphers, such as Noekeon, Serpent and Present, the length of a
subblock is chosen to be 1 bit. For some block ciphers, one characteristic matrix
is sufficient to describe one-round encryption (decryption); While for some other
block ciphers, it needs a composition of two characteristic matrices, i.e., firstly
the first matrix E1 (D1), then the second matrix E2 (D2). In the following, we
can see that most popular block ciphers can be represented by one characteristic
matrix or a composition of two characteristic matrices.

3 A Unified Approach for the Design of Integral
Distinguishers

3.1 A New Representation of the 4 kinds of Integral States

The following observations are very important to our new representation:
(1) For a constant subblock state, it is sufficient to know that it is a constant

state, and ignoring its exact value. Thus, we can label all constant subblock
states with a single letter “C”.

1 Note that it is a formal expression, R can either be independent of Xi, or have a
nonlinear relation with Xi.
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(2) Generally, a balanced subblock state is produced by an XOR sum of some
active states. Thus, we can express a balanced subblock state as

⊕
i∈IA

Ai, where

Ai denotes an active subblock state, IA is the index set, note that the constant
monomial is ignored. Compared with a single letter “B”, it is more accurate to
label a balanced state as an XOR sum of some active states.

(3) For an unknown subblock state, we can express it as (
⊕
i∈IA

Ai) ⊕ (
⊕
j∈I?

?j),

where Ai denotes an active state, ?j denotes an unknown state, IA and I? is
the index set respectively, I? is not empty, similarly the constant monomial is
ignored. Compared with a single letter “?”, such an expression is more accurate.

Example 1. Assume a block cipher has 2 subblocks, the state is (?0, ?0⊕A0) at
some point, where ?0 denotes an unknown state, A0 an active state. Considering
XOR sum of the values in the two subblocks, we can get that ?0⊕(?0⊕A0) = A0.
However, if we just express the state as (?, ?), we can get nothing. �

Based on the above 3 observations, an integral state is not limited to the 4 types:
constant, active, balanced or unknown. An integral state may have much more
types, it can be either “C”, or an XOR sum of some active states and some
unknown states. The following gives a formal description.

Definition 2. (Integral Form in Subblock)For a given set of plaintexts or
intermediate data blocks, fixing a subblock, define integral form in the subblock
as

<< A.set, A.maxs >,< U.set, U.maxs >>

where A.set is a set consisting of some active subblock states, U.set is a set
consisting of some unknown subblock states. A.maxs is defined as the maximum
subscript in A.set plus 1 (i.e., let h be the maximum subscript among all the
elements of A.set, then A.maxs ≡ h + 1), especially ∅.maxs ≡ 0 for an empty
set ∅. Similarly, U.maxs is defined.

Notice that A.maxs (U.maxs) is necessary in Definition 2 for the expression of
a newly-produced active (unknown) subblock state.

Example 2. (Integral form in sublock) For a constant subblock state, its in-
tegral form is << ∅, 0 >,< ∅, 0 >>; For an active subblock state A0, its integral
form is << {A0}, 1 >,< ∅, 0 >>; For an integral subblock state A0⊕A2⊕?1⊕?5,
its integral form is << {A0, A2}, 3 >,< {?1, ?5}, 6 >>. �

On the other hand, let << A.set, A.maxs >,< U.set, U.maxs >> denote an
integral form in subblock, define Unionset ≡ A.set ∪ U.set, where “∪” is the
operation of set union, then the integral state in this subblock is just the XOR
sum of all elements in Unionset, we will use this representation together with
integral form in subblock defined in Definition 2 interchangeably in the following.

Assume a block cipher has n data subblocks, naturally, we can define integral
form in block.
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Definition 3. (Integral Form in Block) For a given set of plaintexts or
intermediate data blocks, define its integral form as (α0, α1, · · · , αn−1), where αi

is the integral form in subblock corresponding to the i-th subblock, 0 ≤ i ≤ n− 1.

We will simply write “integral form” instead of “integral form in (sub)block”,
when the context is clear.

3.2 Rules for Applying Encryption/Decryption Characteristic
Matrix to An Integral Form in Block

For a given set of plaintexts or intermediate data blocks, we can determine its
integral form in block. Next, we need to define rules to calculate the integral
form after one-round encryption/decryption. In the following, we only focus on
encryption process, since decryption process can be treated similarly.

Firstly, we define an operator “�” between two integral forms in subblock,
this operator is something like adding mod 2.

Definition 4. Let μ and ν be two integral forms in subblock, let

μ =<< (A.set)μ, (A.maxs)μ >,< (U.set)μ, (U.maxs)μ >>,
ν =<< (A.set)ν , (A.maxs)ν >,< (U.set)ν , (U.maxs)ν >>

Define ω = μ � ν =<< (A.set)ω (A.maxs)ω >,< (U.set)ω, (U.maxs)ω >>,
thereinto,

(A.set)ω ≡ ((A.set)μ \ (A.set)ν) ∪ ((A.set)ν \ (A.set)μ),
(U.set)ω ≡ ((U.set)μ \ (U.set)ν) ∪ ((U.set)ν \ (U.set)μ),
(A.maxs)ω ≡ Maxsubscript((A.set)ω) + 1,
(U.maxs)ω ≡ Maxsubscript((U.set)ω) + 1

where “\” is the operation of set minus, “∪” is the operation of set union, and
Maxsubscript(X) function returns the maximum subscript in X.

Example 3. Here is an example of set minus “\”. Let (A.set)μ = {A0, A1, A3}
and (A.set)ν = {A1, A2, A4}. Then, (A.set)μ \ (A.set)ν = {A0, A3}, (A.set)ν \
(A.set)μ = {A2, A4}. �

Now, we are ready to present the rules.

Definition 5. Let En×n = [eij ]n×n be the encryption characteristic matrix of a
block cipher. For a given set of plaintexts or intermediate data blocks, let α =
(α0, α1, · · · , αn−1) be its integral form. Let γ = En×n(α) = (γ0, γ1, · · · , γn−1) be
the integral form of the outputs after one-round encryption, then γi is defined as

γi =
n
�

j=1
eij(αj), where eij(αj) means applying the transformation eij to αj.

The entry eij has 3 possible values, 0, 1, or 2. Thereinto, 0 is the zero trans-
formation, which transforms any integral form x to << ∅, 0 >,< ∅, 0 >>; 1 is
the identical transformation, which transforms any integral form x to x ; 2 is a
bijective transformation, which transforms a constant state to a constant state,
an active state to a new active state, and any other state to a new unknown
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Table 1. Rules for Applying 0, 1, 2 to an Integral Form in Subblock–Along Encryption
Direction

Trans. input output

0 x << ∅, 0 >,< ∅, 0 >>

1 x x

2 C C

Ai AemaxsA+1

otherwise UemaxsU+1

state. Table 1 summarizes the above rules, where emaxsA (emaxsU) denotes
the maximum subscript of all active(unknown) states brought forth so far, along
encryption direction.

Example 4. The structure of SMS4 [3] is a kind of 4-branch generalized Feis-
tel structure (denoted as Gen-SMS4), one round encryption of Gen-SMS4 is
described as follows:

Y0 = X1, Y1 = X2, Y2 = X3, Y3 = X0 ⊕ F (X1 ⊕X2 ⊕X3)

It needs two characteristic matrices to describe one-round encryption (decryp-
tion) of Gen-SMS4, i.e., firstly the first matrix E1GenSMS4 (D1GenSMS4), then
the second matrix E2GenSMS4 (D2GenSMS4). The uppermost row is the 0-th
row, the leftmost column is the 0-th column. The encryption and decryption
characteristic matrices of Gen-SMS4 are as follows:

E1GenSMS4 =

⎛⎜⎜⎝
0, 1, 1, 1
1, 0, 0, 0
0, 1, 0, 0
0, 0, 1, 0

⎞⎟⎟⎠ , E2GenSMS4 =

⎛⎜⎜⎝
0, 0, 1, 0
0, 0, 0, 1
1, 0, 1, 1
2, 1, 0, 0

⎞⎟⎟⎠

D1GenSMS4 =

⎛⎜⎜⎝
1, 1, 1, 0
0, 1, 1, 0
1, 0, 1, 0
0, 0, 0, 1

⎞⎟⎟⎠ , D2GenSMS4 =

⎛⎜⎜⎝
2, 0, 0, 1
1, 1, 0, 0
1, 0, 1, 0
1, 1, 1, 0

⎞⎟⎟⎠
Assume an attacker chooses a set of 2m data, which has the form of {(c0, x⊕

c1, x ⊕ c2, x ⊕ c3)}, where x takes on all the 2m possible values, c0, c1, c2 and
c3 are 4 constants. The integral form of the data set is α0 = (C,A0, A0, A0).
Applying E1GenSMS4 to α0, using Def. 5 and the rules in Table 1, we can get:⎛⎜⎜⎝

0, 1, 1, 1
1, 0, 0, 0
0, 1, 0, 0
0, 0, 1, 0

⎞⎟⎟⎠
⎛⎜⎜⎝

C
A0

A0

A0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
A0

C
A0

A0

⎞⎟⎟⎠
Next, applying E2GenSMS4 to (A0, C,A0, A0), we can get:
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0, 0, 1, 0
0, 0, 0, 1
1, 0, 1, 1
2, 1, 0, 0

⎞⎟⎟⎠
⎛⎜⎜⎝

A0

C
A0

A0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
A0

A0

A0

A1

⎞⎟⎟⎠
Hence the integral form of the outputs after one-round encryption is α1 =
(A0, A0, A0, A1).

Along the encryption direction, let αi = (αi
0, α

i
1, · · · , αi

n−1) denote the integral
form of the outputs after i-round encryption, i = 1, 2, · · · . Let β0 = α0, along the
decryption direction, let βj = (βj

0, β
j
1, · · · , β

j
n−1) denote the integral form of the

outputs after j-round decryption. Similarly, we can calculate αi for i = 2, 3, · · · ,
and βj for j = 1, 2, 3, · · · . Table 2 presents the results.

Table 2. An Example of Gen-SMS4: Application of Def. 5 and Rules in Table 1

χ χ0 χ1 χ2 χ3

β5 A(0, 2) A1 A0 A0

β4 A1 A0 A0 A0

β3 A0 A0 A0 C

β2 A0 A0 C A0

β1 A0 C A0 A0

α0 = β0 C A0 A0 A0

α1 A0 A0 A0 A1

α2 A0 A0 A1 A(0, 2)

α3 A0 A1 A(0, 2) A0⊕?0

α4 A1 A(0, 2) A0⊕?0 A0⊕?1

α5 A(0, 2) A0⊕?0 A0⊕?1 A1⊕?2

χk : integral form in the k-th subblock of αi or βj , k = 0, · · · , n− 1;
A(i, j, · · · , k) : a simplified expression for Ai ⊕Aj ⊕ · · · ⊕Ak;
?(i, j, · · · , k) : a simplified expression for ?i⊕?j ⊕ · · ·⊕?k.

In fact, Table 2 presents a 10-round integral distinguisher for Gen-SMS4, we will
give more explainations in the following sections. �

3.3 Finishing Conditions for Calculus and an Extension of
Higher-Order Integral

For a given set of plaintexts or intermediate data blocks, Def. 5 and Table 1
show that we can calculate the integral form of the outputs after one-round
encryption. Decryption process can be treated similarly. Theoretically, such a
process can be iterated for arbitrary number of rounds, either along encryption
direction, or along decryption direction. However, we must give some restrictions
to terminate the process for deriving useful integral distinguishers.
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Finishing Condition along Encryption Direction. Let (α0, α1, · · · , αn−1)
be an integral form in block. If there exists a subset I∗ ⊆ {0, 1, · · · , n− 1}, such
that the U.set of �

i∈I∗
αi is empty, that means, �

i∈I∗
αi is either a constant state or

an XOR sum of some active states. In either case, the attacker can derive useful
information from the corresponding set of data.

On the other hand, if the U.set of �
i∈I

αi is non-empty for every subset I ⊆
{0, 1, · · · , n − 1}, then the attacker can derive nothing from the corresponding
set of data. The following gives a formal definition.

Definition 6. (Integral-Nothing)An integral form in block (α0, α1, · · · , αn−1)
is called integral-nothing, if the U.set of �

i∈I
αi is non-empty for every subset

I ⊆ {0, 1, · · · , n− 1}.

If an integral form is integral-nothing, the attacker can derive nothing from
the corresponding set of data. Hence, along encryption direction, when the in-
tegral form becomes integral-nothing, the attacker should terminate the process.

Example 5. This example comes from a 18-round integral distinguisher of Gen-
Fourcell structure, see Table 3 for more details.

We have α15 = (α15
0 , α15

1 , α15
2 , α15

3 ) = (A(0, 1)⊕?(0, 2), A(0, 1, 2)⊕?(0, 1, 2, 3),
A(2, 3)⊕?(1, 3, 4), A(3, 4)⊕?4). Every component of α15 has unkown ingredients,
but we have α15

0 � α15
1 � α15

2 � α15
3 = A4, thus α

15 is not integral-nothing.
Applying the encryption matrices of Gen-Fourcell to α15, we get α16 = (α16

0 ,
α16
1 , α16

2 , α16
3 ) = (A(0, 1, 2)⊕?(0, 1, 2, 3), A(2, 3)⊕?(1, 3, 4), A(3, 4)⊕?4, A(0, 1, 4)

⊕?(0, 2, 5)), we can verify that α16 is integral-nothing. �

Finishing Condition along Decryption Direction and an Extension of
Higher-Order Integral. The finishing condition is different along decryption
direction.

In the original definition [15] (also refer to section 2.1), dth-order integral is
related to a set of 2d×m elements, which differ only in d subblocks. However, we
argue that the linear relations among different subblocks should be taken into
account. In the following, we give an extension of higher-order integral, a dth-
order integral is related to 2d×m elements, but they can differ in d∗ subblocks
where d∗ ≥ d. To do this, we should firstly define “integral order of an integral
form”, which takes the linear relations among different subblocks into account.

Definition 7. (Integral Order of an Integral Form)Given a set of plaintexts
or intermediate data blocks, let β = (β0, β1, · · · , βn−1) be its integral form, and let

βi =<< (A.set)i, (A.maxs)i >,< (U.set)i, (U.maxs)i >>

for i = 0, 1, · · · , n− 1. Let dmaxsA (respectively dmaxsU) denote the maximum
subscript among all active (respectively unknown) states brought forth so far
along decryption direction (If no unknown state is brought forth, then dmaxsU ≡
−1), note that they are irrelevant with the process along encryption direction.
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Denote w ≡ (dmaxsA+1)+(dmaxsU+1), construct a n×w matrix Gn×w = (gij)
as follows: Each element gij is firstly initialized as 0, 0 ≤ i ≤ n−1, 0 ≤ j ≤ w−1.
Next, if Aj ∈ (A.set)i, then gij is modified to 1, for j = 0, 1, · · · , dmaxsA; If
Uj ∈ (U.set)i, then gi(j+dmaxsA+1) is modified to 1, for j = 0, 1, · · · , dmaxsU .
Notice that the i-th row is completely determined by βi(i = 0, 1, · · · , n− 1), and
the first (dmaxsA + 1) columns are corresponding to the active ingredients, the
last (dmaxsU + 1) columns corresponding to the unknown ingredients. Define
the integral order of β as d = rank(Gn×w), here rank(Gn×w) is the rank of
Gn×w, where G is regarded as a matrix over GF (2).

Integral cryptanalysis is a kind of chosen-plaintext attack, the attacker can
choose a priori a set of plaintexts and obtain the corresponding ciphertexts.
For a successful attack, the amount of the chosen plaintexts must be less than
2l, where l (= n×m) is the block length. An integral form with an integral order
d is corresponding to 2d×m data (accordingly, corresponding to 2d×m plaintexts),
hence d must satisfy that d ≤ n− 1. Therefore, when the integral order d of the
integral form satisfies that d = n after some decryption rounds (since there are n
subblocks in total, integral order can not be larger than n), the attacker should
terminate the process.

Along decryption direction, let dj denote the integral order of the integral
form of the outputs after j-round decryption, j = 1, 2, · · · . Due to diffusion of
the block cipher (structure) along decryption direction, dj will increase or keep
unchanged as j increases. Hence, there must exist a unique t which satisfies that
dt ≤ n− 1 and dt+1 = n. That means, the attacker should terminate the process
after (t+1) rounds along decryption direction. We call dt the integral order of the
corresponding integral distinguisher, and the distinguisher is called a dtth-order
integral distinguisher. The following gives a formal description.

Definition 8. (Integral Order of an Integral Distinguisher) Let Dis be
an integral distinguisher, which is constructed by the above inside-out approach.
Let dj denote the integral order of the integral form of the outputs after j-round
decryption, then there must exist a unique integer t satisfying dt ≤ n − 1 and
dt+1 = n. dt is called the integral order of Dis, and Dis is called a dtth-order
integral distinguisher.

Example 6. Considering the integral distinguisher of Gen-SMS4 in Table 2.
We have β5 = (A0 ⊕A2, A1, A0, A0), the corresponding matrix Gβ5 is :

Gβ5 =

⎛⎜⎜⎝
1, 0, 1
0, 1, 0
1, 0, 0
1, 0, 0

⎞⎟⎟⎠
The rank of Gβ5 is 3, thus the integral order of β5 is 3.
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Applying the composition of D1GenSMS4 and D2GenSMS4 to β5, we get β6 =
(A0⊕?0, A0 ⊕A2, A1, A0), the corresponding matrix Gβ6 is :

Gβ6 =

⎛⎜⎜⎝
1, 0, 0, 1
1, 0, 1, 0
0, 1, 0, 0
1, 0, 0, 0

⎞⎟⎟⎠
The first 3 columns of Gβ6 are corresponding to active ingredients, and the

last column to unknown ingredients. The rank of Gβ6 is 4, i.e., the integral order
of β6 is 4, which is equal to the number of subblocks. Hence, the attacker should
terminate the process aftre 6-round decryption along decryption direction. The
integral order of this distinguisher is equal to the integral order of β5, i.e., 3. �
In Section 4, we will see that better higher-order integral distinguishers can be
constructed using our new extension of higher-order integral, including Gen-
SMS4 structure and Present.

Let Dis be an integral distinguisher for a block cipher (structure), which is
constructed according to the rules and finishing conditions in Section 3.1-3.3.
Assume Dis has w rounds along encryption direction, t rounds along decryption
direction, let βj denote the integral form of the outputs after j-round decryption
along decryption direction, and let dj denote the integral order of βj . Now, we
present some details about the part of Dis along decryption direction. We will
see that Dis is indeed a (w + t)-round integral distinguisher.

Note the following facts:
(1.) Firstly, considering the outputs after (j+1)-round decryption. The attacker
can choose dj+1 independent subblocks, which take on all possible values (cor-
responding to 2dj+1×m data); For each of the other (n − dj+1) subblocks, the
state is either constant, or the value in this subblock can be linearly determined
by the values in the chosen dj+1 subblocks. Thus, the attacker chooses a set of
2dj+1×m data blocks, this set is denoted as Ωj+1.
(2.) Secondly, considering the set of the 1-round encryption outputs of all of the
elements of Ωj+1, we will get a new set of 2dj+1×m data blocks, which is denoted
as Ωj . Since βj+1 and βj are correlated by the decryption characteristic matrices
and the calculus rules, also Ωj+1 and Ωj are correlated by the one-round encryp-
tion function, the 2dj+1×m elements of Ωj can be separated into dj+1/di groups,
which satisfy the following condition: each group has 2dj×m elements with an
integral form of βj , thus each group is corresponding to a (w+ j)-round integral
distinguisher. Hence, if the sum of the outputs after (w + j)-round decryption
is zero (corresponding to 2dj×m data blocks), then the sum of the outputs after
(w+j+1)-round decryption is also zero (corresponding to 2dj+1×m data blocks),
since the XOR of many zeros is also zero.
(3.) For Dis, the w-round part along encryption direction can be regarded as
a traditional integral distinguisher. Then, exucute one-round decryption, and
applying the above induction to j = 0, we get a (w + 1)-round integral dis-
tinguisher. The induction can be applied iteratively along decryption direction
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for j = 0, 1, · · · , t − 1, totally t times. Finally, we get a (w + t)-round integral
distinguisher, that is to say, Dis is indeed a (w+ t)-round integral distinguisher.

Example 7. Considering the integral distinguisher of Gen-SMS4 in Table 2.
We have that β5 = (A0 ⊕ A2, A1, A0, A0) and β4 = (A1, A0, A0, A0). Based
on β5, the attacker chooses a set of 23×m elements, which has the form of
(u0 ⊕ c0, u1 ⊕ c1, u2 ⊕ c2, u2 ⊕ c3), for each possible (u0, u1, u2) ∈ (GF (2m))3,
and c0, c1, c2 and c3 arem-bit constants. For simplicity, let c0 = c1 = c2 = c3 = 0.
Then, applying the encryption characteristic matrices to β5, we can get that the
set of the 23×m outputs after one-round encryption (this set is denoted by Ω)
have the form of (u1, u2, u2, u0⊕F (u1⊕ c4)), where c4 is a new constant (which
depends on the key). In the following, we will show that the 23×m elements of
Ω can be divided into 2m groups, each group has 22×m elements, satisfying that
the integral form of each group is equal to β4.

Let const denote am-bit constant, let u0 = u2⊕F (u1⊕c4)⊕const, then we get
a subset of 22×m elements of Ω, which have the form of (u1, u2, u2, u2 ⊕ const),
for each possible (u1, u2) ∈ (GF (2m))2, we use Groupconst to denote this group.
It is easy to see that the integral form of Groupconst is equal to β4. There are
2m possible values of const, thus there are 2m disjoint groups, and the union of
these 2m groups will cover every element of Ω. �

If an integral distinguisher has an integral order dt, then it is corresponding to
2dt×m plaintexts. Hence, the integral order of an integral distinguisher reflects
the amount of data blocks needed by this integral distinguisher.

3.4 A Unified Algorithm of Constructing Integral Distinguishers

Based on the results of Section 3.1-3.3, we are now ready to present a unified
algorithm of constructing integral distinguishers for block ciphers.

For a block cipher (structure), let {En×n}/{Dn×n} denote its encryption/de
-cryption characteristic matrices. Choose a set of data blocks, let α0 =
(α0, α1, · · · ,
αn−1) denote its integral form. Along encryption direction, let αi = (αi

0, α
i
1, · · · ,

αi
n−1) denote the integral form of the outputs after i-round encryption, i =

1, 2, · · · . Let β0 = α0, along decryption direction, let βj = (βj
0 , β

j
1, · · · , β

j
n−1) de-

note the integral form of the outputs after j-round decryption, and let dj denote
the integral order of βj , j = 1, 2, · · · .

In integral cryptanalysis, an attacker is usually intended to derive the longest
distinguishers. In the following, we present an algorithm to calculate the length
of the longest possible integral distinguishers.

Once we get the length of the longest possible integral distinguishers using
Algorithm 1, we can backtrack to derive the corresponding distinguishers. Note
that there are usually many longest integral distinguishers using Algorithm 1.

In Algorithm 1, Step 2 needs to enumerate all the cases of α0. For some
block ciphers (structures), it is impossible to enumerate all the cases due to
the computing limitation. We will discuss the selection of initial integral forms
α0(= β0) for different block ciphers(structures) in Section 4.4.
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——————————————————————————————————–
Algorithm 1. Compute the Length of the Longest Possible Integral Distinguishers

Input: Encryption characteristic matrices {En×n}, decryption characteristic ma-
trices {Dn×n}.
Output: The length of the longest possible integral distinguishers, denoted by
r, and r is initialized to be 0.

Step1. For a chosen integral form α0 = β0, do the following:
(1) Find the largest integer s such that αs+1 is integral-nothing and αs is

not integral-nothing.
(2) Find the largest integer t such that dt+1 = n and dt < n.
(3) Calculate h = s+ t, then h is the length of the longest integral

distinguisher corresponding to α0. If h > r, let r ← h.
Step2. Repeat Step 1 until all the cases of α0 are enumerated.
Step3. Output r.
——————————————————————————————————–

4 Experimental Results – Application to Gen-SMS4,
Gen-Fourcell and Present

In this section, we present experimental results of applying Algorithm 1 to Gen-
SMS4 structure [3], Gen-Fourcell structure [7] and Present [6].

Assume the round subkey is XORed with the state, and the sum in integral
cryptanalysis considered is XOR sum. Thus, subkey addition has no effect on the
design of integral distinguishers, we will omit it. For a given block cipher (struc-
ture), there are usually many longest possible integral distinguishers applying Al-
gorithm 1. Although some are the same or equivalent, we will not tell them apart.

In the following, let χk denote the integral form in the k-th subblock of αi (or
βj), where i = 0, 1, · · · , j = 0, 1, · · · and k = 0, · · · , n− 1.

4.1 Gen-SMS4

Using Algorithm 1, we found 256 10-round integral distinguishers. Table 2
presents one: 5 rounds along encryption direction, and 5 rounds along decryption
direction. From β5, it is a 3rd-order integral distinguisher; The attacker chooses
a set of 23×m elements, which has the form of (u0 ⊕ c0, u1 ⊕ c1, u2 ⊕ c2, u2 ⊕ c3),
for each possible (u0, u1, u2) ∈ (GF (2m))3, and c0, c1, c2 and c3 are m-bit con-
stants. Then, considering the outputs after 10-round encryption. From α5

0 =
A(0, 2), we can get that the XOR sum of all the 23×m values in the 0th subblock
(corresponding to χ0) is zero. A 8-round integral distinguisher of Gen-SMS4 is
given in [17], the 10-round distinguisher in Table 2 truncated from the 3rd round
to the 10th round is equivalent to the 8-round distinguisher in [17].

4.2 Gen-Fourcell

The structure of Fourcell [7] is also a kind of 4-branch generalized Feistel struc-
ture (denoted as Gen-Fourcell), one round of Gen-Fourcell is described as follows:
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Table 3. A 18-round Integral Distinguisher for Gen-Fourcell

χ χ0 χ1 χ2 χ3

β3 ?0 A2 A1 C

β2 A2 A1 C C

β1 A1 C C C

α0 = β0 C C C A0

α1 C C A0 A0

α2 C A0 A0 C

α3 A0 A0 C C

α4 A0 C C A(0, 1)

α5 C C A(0, 1) A(0, 1, 2)

α6 C A(0, 1) A(0, 1, 2) A2

α7 A(0, 1) A(0, 1, 2) A2 C

α8 A(0, 1, 2) A2 C A(0, 1)⊕?0

α9 A2 C A(0, 1)⊕?0 A(0, 1, 2)⊕?(0, 1)

α10 C A(0, 1)⊕?0 A(0, 1, 2)⊕?(0, 1) A(2, 3)⊕?1

α11 A(0, 1)⊕?0 A(0, 1, 2)⊕?(0, 1) A(2, 3)⊕?1 A3

α12 A(0, 1, 2)⊕?(0, 1) A(2, 3)⊕?1 A3 A(0, 1)⊕?(0, 2)

α13 A(2, 3)⊕?1 A3 A(0, 1)⊕?(0, 2) A(0, 1, 2)⊕?(0, 1, 2, 3)

α14 A3 A(0, 1)⊕?(0, 2) A(0, 1, 2)⊕?(0, 1, 2, 3) A(2, 3)⊕?(1, 3, 4)

α15 A(0, 1)⊕?(0, 2) A(0, 1, 2)⊕?(0, 1, 2, 3) A(2, 3)⊕?(1, 3, 4) A(3, 4)⊕?4

Y0 = X1, Y1 = X2, Y2 = X3, Y3 = F (X0)⊕X1 ⊕X2 ⊕X3

The encryption and decryption characteristic matrices of Gen-Fourcell are as
follows:

EGenFourcell =

⎛⎜⎜⎝
0, 1, 0, 0
0, 0, 1, 0
0, 0, 0, 1
2, 1, 1, 1

⎞⎟⎟⎠

D1GenFourcell =

⎛⎜⎜⎝
1, 1, 1, 1
0, 1, 1, 1
1, 0, 1, 1
1, 1, 0, 1

⎞⎟⎟⎠ , D2GenFourcell =

⎛⎜⎜⎝
2, 0, 0, 0
1, 1, 0, 0
1, 0, 1, 0
1, 0, 0, 1

⎞⎟⎟⎠
Note: the uppermost row is the 0-th row, the leftmost column is the 0-th column.
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Using Algorithm 1, we found 56 18-round integral distinguishers. Ta-
ble 3 presents one: 15 rounds along encryption direction, and 3 rounds
along decryption direction. From β3, it is a 3rd-order integral distin-
guisher; The attacker chooses a set of 23×m elements, which has the form
of (u0 ⊕ c0, u1 ⊕ c1, u2 ⊕ c2, c3), for each possible (u0, u1, u2) ∈ (GF (2m))3,
c0, c1, c2 and c3 are m-bit constants. Then, considering the outputs af-
ter 18-round encryption. Based on α15, considering α15

0 � α15
1 � α15

2 � α15
3 ,

we have (A(0, 1)⊕?(0, 2)) � (A(0, 1, 2)⊕?(0, 1, 2, 3)) � (A(2, 3)⊕?(1, 3, 4)) �
(A(3, 4)⊕?4) = A4. Hence the XOR sum of all the 23×m values of the XOR
sum of the 4 subblocks is zero. In [16], a 18-round integral distinguisher of Gen-
Fourcell is given. The distinguisher in Table 3 is equivalent to that in [16].

4.3 Present

Present [6] is a SP-network block cipher, the block length is 64. Since it is bit-
oriented, we will treat a bit as a data subblock, then 64 subblocks in total, i.e.,
m = 1 and n = 64. Figure 1 gives the bit indexing of a 64-bit data block.

One round of Present [6] is described as Y = Theta ◦ Gamma(X), where
Gamma is the S-box layer, and Theta is a linear transformation. Gamma oper-
ates independently on 16 4-tuple of bits, the first S-box takes bits 0-3 as input,
the next S-box takes bits 4-7 as input, and so on. Let ai denote the i-th bit of
a, i = 0, 1, · · · , 63, then Theta(ai) = aj , where j = 16× (imod 4)+ �i/4�, �x� is
the integer portion of x.

Present uses a 4 × 4 S-box. Let x = x3x2x1x0, where xi is the i-th bit of x,
i = 0, 1, 2, 3. Let (Δx → Δy) denote a differential with input difference Δx and
output differenceΔy. For the S-box of Present, there are 3 truncated differentials
with probability 1:

(1001 → ∗ ∗ ∗0), (0001→ ∗ ∗ ∗1), (1000→ ∗ ∗ ∗1)
where “∗” denotes an unknown bit.

For Present, the size of the characteristic matrices is 64 × 64. It is imprac-
tical to use Definition 6 as the finishing condition along encryption direction.
However, Present is a SP-network cipher, the outputs of different S-boxes can
be regarded as being independent. Thus, Definition 6 can be revised as follows,
without any effect on the design of the best possible integral distinguishers for
SP-network block ciphers.

Definition 6’ (Integral-Nothing for SP-network Ciphers). For a
SP-network block cipher (structure), an integral form (α0, α1, · · · , αn−1) is
integral-nothing, if the U.set of αi is non-empty for every i ∈ {0, 1, · · · , n− 1}.

Fig. 1. 4×16 Bit Indexing of a 64-bit Data Block
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A0

A0

Ai ?i

Fig. 2. The 5-round integral distinguisher for Present (In the initial integral form, we
label A0 both in bit 0 and bit 3, which means that the two bits are linearly dependent,
the integral order of the integral form is 1, instead of 2

Using Algorithm 1, we found many 5-round integral distinguishers of Present.
Figure 2 illustrates one of the best, which uses ProbSbox(1001 → ∗ ∗ ∗0) = 1, 3
rounds along encryption direction, and 2 rounds along decryption direction. It is
a 32th-order integral distinguisher. The attacker chooses a set of 232 plaintexts,
which have constant values in the following 32 bits: 0-15 and 48-63, while taking
all possible values in the other 32 bits. Then, considering the outputs after 5-
round encryption, the XOR sum of all the 232 values in each of the following 16
bits is zero: 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56 and 60. Note
that this distinguisher uses the new extension concept of higher-order integral,
the initial integral form has an integral order of 1, while it is related to 2 bits.

In [20], a 3-round integral distinguisher of Present is given, which has an inte-
gral order of 4. The distinguisher in Figure 2 is a 5-round integral distinguisher,
furthermore, the truncated 3-round distinguisher of the last 3 rounds has an
integral order of 2. Thus, our distinguisher (as illustrated in Figure 2) is more
better than that in [20].

4.4 Selection of Initial Integral Forms

Let (χ0, χ1, χ2, · · · , χn−1) denote an initial integral form in block.
For Gen-Fourcell and Gen-SMS4, χi can be any element or an XOR combi-

nation of the elements in the set {C,A0, A1, A2}, which have 24 possibilities for
each subblock. There are 4 subblocks, thus 216 − 1 possibilities in total. In our
experiments, we have tried them exhaustively.

For Present, the integral order of an initial integral form can be 1, 2, · · · , 63, it
is impractical to search for each case. However, Present is a SP-network cipher,



Extending Higher-Order Integral: An Efficient Unified Algorithm 133

and the diffusion layer is very simple. Our experiments also show that the smaller
the integral order of an initial integral form, the better the integral distinguishers.
Hence, we only considered 1st-order initial integral forms.

5 Discussion and Conclusion

Our work in this paper is originally inspired by the work of J.Kim et al [13, 14]. In
[13, 14], the authors proposed a general tool for finding impossible differentials of
block cipher structures using matrix method and meet-in-the-middle approach,
and applied their tool to some block ciphers (structures). They also pointed
out that the matrix method can be converted into a tool for the Square attack.
However, they only considered the 1st-order integral, not considering higher-
order integral. In [19], Y.Y.Luo et al. greatly improved the results of [13, 14].

In this paper, we adopted inside-out approach to construct integral distin-
guishers for block ciphers, and extended the concept of higher-order integral by
considering the linear relations among different subblocks. Furthermore, we pre-
sented an efficient unified algorithm to the design of the longest possible integral
distinguishers for block ciphers. We applied the algorithm to many block ciphers
(structures), the experiments showed: For Gen-SMS4 structure and Present, the
best integral distinguishers given by our algorithm are better than the best re-
sults known so far; For Gen-Fourcell structure, the best integral distinguishers
given by our algorithm are the same as the best results known so far.

To sum up, we believe that the inside-out method for designing integral dis-
tinguishers and the new extension of higher-order integral are helpful to better
understand integral cryptanalysis of block ciphers. Also, the unified algorithm in
this paper can be useful as a tool for efficiently evaluating the security of block
ciphers against integral cryptanalysis.
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Abstract. We investigate three security enhancement transformations,
based on the well known OR-proof technique, in identity-based identifi-
cation (IBI) protocols and show a required condition of the underlying
IBI protocols. The transformations can convert an IBI protocol, which
satisfies a property similar to the Σ-protocol and is secure against im-
personation under passive attacks, to one secure against impersonation
under concurrent attacks in both adaptive and weak selective identity
attack models. In addition, we argue that enhancing the security in the
static identity attack model with two of the transformations seem to be
difficult; however, we prove that the other can convert an IBI protocol,
which satisfies another property, in the model.

Keywords: identity-based identification, OR-proof, impersonation un-
der concurrent attacks.

1 Introduction

Identification is an important research topic in cryptography and is formulated
as a protocol between a prover and a verifier, where the prover wants to prove
his/her identity to the verifier. In normal settings, the verifier needs to know the
identity and public-key of the prover. The security of identification protocols is
defined through an experiment with an adversary who acts as a verifier to gather
much knowledge in the learning phase and then acts as a prover to impersonate
an entity in the challenge phase. We say that the protocol is secure when the
probability that the adversary succeeds in the impersonation is negligible.

A strong security model of identification protocols has been established as
security against impersonation under concurrent attacks (imp-ca model) [2].
Roughly speaking, an adversary is allowed to concurrently access entities who
can prove their identities, even in the challenge phase. On the other hand, in
the security model against impersonation under passive attacks (called imp-pa
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model) [2], an adversary is only allowed to eavesdrop on identification commu-
nications in the learning phase.1

Identification using public-keys (i.e., identification in the public key infrastruc-
ture (PKI)model) is called standard identification (SI), andmany investigations on
SI protocols have been done. On the other hand, after the proposal of identity-base
cryptography [10], identification in the identity-base setting, called identity-base
identification (IBI), has also been investigated. In an IBI protocol, the existence of
a key generation center (KGC) is assumed as in other identity-based cryptographic
schemes.TheKGCpublishesamasterpublickey,generatesasecretkeycorrespond-
ing to the identity of an entity, and gives the secret key to the entity. Thus, IBI has
three phases: Setup, Extract, and Identification. In this setting, the verifier
needs to know the master public key and the identity of the prover only.

The first security formulation for IBI was given by Kurosawa and Heng [7].
They also proposed the first generic construction of IBI protocols from digital
signature schemes. The construction generates an imp-pa secure IBI protocol
from a digital signature scheme existentially unforgeable against chosen message
attacks (euf-cma secure) and its Σ-protocol [5] for signature possession. Bellare,
Namprempre, and Neven provided formal security definitions of IBI protocols,
the imp-pa security and the imp-ca security [1].2

For IBI protocols, we have three types of attack models regarding the selec-
tion of identities. One is called security against impersonation under adaptive
identity attacks (imp-atk security) [1,9], the second one is called security against
impersonation under static identity attacks (stat-id-imp-atk security) [9], and the
third one is called security against impersonation under weak selective identity
attacks (wsid-imp-atk security) [11], where atk denotes a type of attack such that
atk ∈ {pa, ca}. The wsid-imp-atk security implies a weak version of the imp-atk se-
curity such that an adversary in the wsid-imp-atk security declares the identities
of all entities to be in queries or challenged only at the beginning of the learn-
ing phase, and the stat-id-imp-atk security implies a weak version of the imp-atk
security such that an adversary in the stat-id-imp-atk security requests secret
keys of identities only at the beginning of the learning phase. Throughout this
paper, we denote security against impersonation under adaptive identity attacks
as adapt-id-imp-atk security (not imp-atk). Note that the wsid-imp-atk security is
weaker than the stat-id-imp-atk security since a stat-id-imp-atk adversary can be
constructed from a wsid-imp-atk adversary (see Appendix A).

Security Enhancement Transformations of Identity-Based Identifica-
tion. It is well known that the OR-proof technique [6] enhances the security
of SI protocols from the imp-pa security to the imp-ca security. Thus, we ex-
pect that the OR-proof technique can be applied to IBI protocols to enhance
1 There is another security model against impersonation under active attacks called

imp-aa model [2]. An adversary in the model is allowed to sequentially access entities
who can prove their identities; thus, it is stronger than the imp-pa model but weaker
than the imp-ca model. Throughout this paper, we do not consider this security
model since the imp-ca model is the strongest among them.

2 Note that the imp-aa security model is also defined in [1].
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security. However, to the best of our knowledge, no formal description of the
OR-proof technique for IBI protocols has been provided. In addition, since the
security notions for IBI protocols, differing in how and when an adversary de-
clares the target identity, have been presented in various ways, as shown in the
above [11,1,9], it is not clear how (and how much) the OR-proof technique can
enhance the security of IBI protocols.

We formulate three types of security enhancement transformations based on
the OR-proof technique for IBI protocols, dual-identity (DI), master-identity
(MI), and double-parameter (DP).

In an IBI protocol by the DI transformation, an entity with an identity id is
given a secret key corresponding to either imaginary identity (id , 0) or (id , 1)
for the underlying IBI protocol, and shows his/her identity by proving that the
imaginary identity is either (id , 0) or (id , 1). It is easy to have a variant of DI
transformation where each entity of id is given both secret keys corresponding to
imaginary identities (id , 0) and (id , 1), and shows that his/her imaginary identity
is (id , 0) or (id , 1) with either secret key. We call this double-key variant DIdk.
Single-key DI is called DIsk if necessary to distinguish with DIdk.

In an IBI protocol by the MI transformation, an entity with an identity id is
simply given a secret key corresponding to the identity id for the underlying IBI
protocol, and the entity of the identity id proves that his/her identity is either
id or an (imaginary) master identity.

In an IBI protocol by the DP transformation, an entity of an identity id is given
a secret key corresponding to the identity id based on either of two master public
keys in the underlying IBI protocol, and proves that his/her identity is id under
either master public key. It is easy to havea variant of the DP transformationwhere
an entity of an identity id is given two secret keys based on both master public keys,
and shows that his/her identity is id either based on either master public key. This
variant is used to construct an adapt-id-imp-ca secure IBI protocol proposed by
Kurosawa and Heng [8]. We call this double-key variant DPdk. Single-key DP is
called DPsk if necessary to distinguish with DPdk.

Our Contributions. We introduce two properties of IBI protocols similar to
Σ-protocols [5] in the proof-of-knowledge protocols, called Σ+-type and Σ∗-
type, and show that the DI, MI, and DP transformations require underlying
IBI protocols to have either property. Many existing IBI protocols satisfy these
properties. For example, all IBI protocols produced by the generic constructions
in [7,11] are Σ+-type, and a large proportion of them seem to be Σ∗-type.

Next, we formally prove that both DI and MI transformations can convert an
adapt-id-imp-pa secure Σ+-type IBI protocol to an adapt-id-imp-ca secure one,
and we show that they can also convert a wsid-imp-pa secure Σ+-type IBI proto-
col to a wsid-imp-ca secure one. In addition, we show that the DP transformation
can convert an adapt-id-imp-pa (resp. stat-id-imp-pa and wsid-imp-pa) secure Σ∗-
type IBI protocol to an adapt-id-imp-ca (resp. stat-id-imp-ca and wsid-imp-ca)
secure one.

We argue that it seem to be difficult to enhance passive security of IBI protocol
with the DI and MI transformations in the static identity attack model. In
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addition, we discuss that the DI, MI, and DP transformations can be applied to
identification protocols in the hierarchical identity setting.

Organization. We gives a definition of identity-based identification and related
notions in Section 2. The security enhancement transformations are provided
in Section 3. An additional security discussion and security relations are given
in Appendix.

2 Definitions

In this section, we define identity-based identification (IBI) protocols and intro-
duce a property similar to Σ-protocols [5].

Identity-Based Identification. We adopt the definition of IBI protocols in [1].
Let IBI = (SetUp, KG, P, V) be an IBI protocol, where SetUp is the master-key-
generation algorithm that on input 1κ outputs mpk and msk , KG is the user-
key-generation algorithm that on input (msk , id) outputs sk id , P is the prover
algorithm that, taking inputs mpk , id and sk id , interacts with V, and V is the
verifier algorithm that, taking inputs mpk and id , interacts with P and finally
outputs dec ∈ {accept , reject}.

We describe the formal definitions of the security of IBI based on the following
experiment Expadapt-id-imp-atk

IBI,I (κ) between a challenger and an impersonator I =
(CV, CP), where atk denotes a type of attack such that atk ∈ {pa, ca}.
Experiment Expadapt-id-imp-atk

IBI,I (κ):
Setup Phase: The challenger obtains (mpk ,msk)← SetUp(1κ) and initial-

izes HU , CU , TU , PS ← ∅, where HU , CU , and TU denote the sets
of honest users, corrupted users, and target users, respectively, and PS
denotes the set of provers’ sessions. The impersonator CV is given the
security parameter 1κ and the master public key mpk .

Learning Phase: CV can query the oracles Init, Corr, and Conv when
atk = pa, and also to Prov when atk = ca. Note that id �∈ HU \ TU
means that id is a target user, corrupted user, or non-initiated user.
– The oracle Init receives input id . If id ∈ HU ∪ CU ∪ TU , then it

returns ⊥. Otherwise, it obtains sk id ← KG(msk , id), adds id to HU ,
and provides CV with id .

– The oracle Corr receives input id . If id �∈ HU \TU , then it returns
⊥. Otherwise, it adds id to CU , deletes id in HU , and returns sk id

to CV.
– The oracle Conv receives input id . If id �∈ HU , then it returns ⊥.

Otherwise it returns a transcript of a transaction between the prover
with identity id and a verifier.

– (only when atk = ca) The oracle Prov receives inputs id , s, and Min .
If id �∈ HU \ TU , then it returns ⊥. If (id , s) �∈ PS , then it adds
(id , s) to PS , picks a random coin ρ, and sets a state of the prover
stP[(id , s)] ← (mpk , sk id , ρ). Next, it obtains (Mout , stP[(id , s)]) ←
P(Min , stP[(id , s)]). Finally, it returns Mout .
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Challenge Phase: CV outputs a target identity id∗ and state informa-
tion stCP. If id∗ is not in HU , then the challenger outputs reject and
halts. Otherwise, the challenger sets TU ← {id∗}, and gives stCP to
CP. CP can query Init, Corr, and Conv, (and Prov when atk = ca)
as in the learning phase. Finally, the challenger obtains (tr , dec) ←
Run[CP(stCP)Init,Corr,Conv(,Prov) ↔ V(mpk , id∗)] and outputs dec.

In these experiments, the adversary is allowed to obtain a secret key of an adap-
tively chosen identity and a transcript of a transaction between the prover of an
adaptively chosen identity and a verifier. In the case of atk = ca, it is allowed to
adaptively and concurrently access entities who can prove their identities.

Definition 2.1. Let IBI = (SetUp, KG, P, V) be an IBI protocol and I = (CV,
CP) an impersonator. Let κ be a security parameter. The advantage of I in
attacking IBI is defined as

Advadapt-id-imp-atk
IBI,I (κ) := Pr

[
Expadapt-id-imp-atk

IBI,I (κ) = accept
]
.

We say that IBI is secure against impersonation under adaptive identity and
concurrent attacks (adapt-id-imp-ca secure) if Advadapt-id-imp-ca

IBI,I (κ) is negligible
for every polynomial-time I and is secure against impersonation under adaptive
identity and passive attacks (adapt-id-imp-pa secure) if Advadapt-id-imp-pa

IBI,I (κ) is
negligible for every polynomial-time I.
According to [9] and [11], we describe two other security definitions, which are
weaker than the adapt-id-imp-atk security, of IBI based on the following exper-
iments, Expstat-id-imp-atk

IBI,I (κ) and Expwsid-imp-atk
IBI,I (κ) (atk ∈ {pa, ca}), between a

challenger and an impersonator I = (CV, CP).

Experiment Expstat-id-imp-atk
IBI,I (κ):

Setup Phase: At the beginning of this phase, CV on input 1κ issues a
single corrupt query (id1, . . ., id t) to the challenger before receiving the
master public key. The challenger is given the security parameter 1κ,
obtains (mpk , msk) ← SetUp(1κ), and computes sk idi

← KG(msk , id i)
(1 ≤ i ≤ t). It sets CU ← {id1, id2, . . ., id t} then returns (sk id1 , . . .,
sk idt

) to CV. The challenger initializes HU , TU , PS ← ∅. CV is given
the master public key mpk .

Learning and Challenge Phases: The learning and challenge phases are
defined the same as those in experiment Expadapt-id-imp-atk

IBI,I (κ), except that
impersonator I is not allowed additional queries to Corr during these
phases.

Experiment Expwsid-imp-atk
IBI,I (κ):

Setup Phase: At the beginning of this phase, CV on input 1κ issues a single
initialization query (id1, . . ., id t) to the challenger before receiving the
master public key. The challenger is given the security parameter 1κ

and obtains (mpk ,msk) ← SetUp(1κ). It sets HU ← {id1, id2, . . . , id t}
and provides CV with (id1, . . . , id t). The challenger initializes CU , TU ,
PS ← ∅. CV is given the master public key mpk .
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Learning and Challenge Phases: The learning and challenge phases are
defined the same as those in experiment Expadapt-id-imp-atk

IBI,I (κ), except that
I is not allowed additional queries to the Init oracle during these phases.

In the stat-id-imp-atk experiment, the adversary has to choose all identities that
it wants to corrupt at the beginning of the experiment. After that, it is allowed to
access oracles except for Corr. In the wsid-imp-atk experiment, the adversary
has to select all identities that it wants to initialize at the beginning of the
experiment. Then, it is allowed to send queries of only the identities chosen at
the beginning,

Let IBI = (SetUp, KG, P, V) be an IBI protocol and I = (CV, CP) an im-
personator. Let κ be a security parameter. The advantages of I in attacking
IBI are defined as Advstat-id-imp-atk

IBI,I (κ) := Pr
[

Expstat-id-imp-atk
IBI,I (κ) = accept

]
and

Advwsid-imp-atk
IBI,I (κ) := Pr

[
Expwsid-imp-atk

IBI,I (κ) = accept
]
. We say that IBI is se-

cure against impersonation under static (resp. weak selective) identity and con-
current attacks (stat-id-imp-ca (resp. wsid-imp-ca) secure) if Advstat-id-imp-ca

IBI,I (κ)
(resp. Advwsid-imp-ca

IBI,I (κ)) is negligible for every polynomial-time I and is secure
against impersonation under static (resp. weak selective) identity and passive
attacks (stat-id-imp-pa (resp. wsid-imp-ca) secure) if Advstat-id-imp-pa

IBI,I (κ) (resp.
Advwsid-imp-pa

IBI,I (κ)) is negligible for every polynomial-time I.
The relations between the security notions are given in Appendix A.

Σ+- and Σ∗-type IBI Protocols. We define two analogues of Σ-protocols [5]
in the context of IBI protocols. Let IBI = (SetUp, KG, P, V) be an identity-based
identification protocol.

Suppose that P and V interact by using four probabilistic polynomial time
algorithms (Σibi-com, Σibi-ch, Σibi-res, Σibi-vrfy) as follows:

P→ V: P computes (a, st)← Σibi-com(mpk , id , sk id ) and sends a to V.
V→ P: V computes c← Σibi-ch(mpk , id) and sends c to P.
P→ V: P computes z ← Σibi-res(mpk , id , sk id , a, c, st) and sends z to V.
V: V computes dec ← Σibi-vrfy(mpk , id , a, c, z) and outputs dec ∈ {accept ,reject}.
We call these types of three-move IBI protocols canonical [2]. We also call an IBI
protocol IBI Σ+-type if it is canonical and satisfies the following three properties:
special zero-knowledge, special soundness, and special challenge:

Special Zero-knowledge: We can obtain an accepting transcript from a chal-
lenge c, mpk , and id . That is, there is a probabilistic polynomial time algorithm
Σibi-sim that takes on input mpk , id and c such that c ← Σibi-ch(mpk , id), and
outputs (a, z) such that accept = Σibi-vrfy(mpk , id , a, c, z). The distribution of
transcripts generated by Σibi-ch and Σibi-sim is indistinguishable from those of
real transcripts.

Special Soundness: We can compute the user secret key sk id for an identity
id from mpk , id , and two accepting transcripts (a, c, z) and (a, c′, z′) such that
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c �= c′. That it, there is a probabilistic polynomial time algorithm Σibi-ext that
takes as input mpk , id , and two transcripts (a, c, z) and (a, c′, z′) satisfying
accept = Σibi-vrfy(mpk , id , a, c, z) = Σibi-vrfy(mpk , id , a, c′, z′) and c �= c′, and
outputs sk id .

Special Challenge: Σibi-ch depends only on mpk , not on (mpk , id), and the
output c is uniformly distributed over a commutative group G. In addition, the
group operation + is computable in polynomial time. G is determined only by
mpk , not by (mpk , id). That it, there is a probabilistic polynomial time algorithm
Σ+

ibi-ch such that it takes as input mpk (without id) and outputs c, and c is
uniformly distributed over G.

We call an IBI protocol IBI Σ∗-type if the special challenge property is replaced
with the following property:

Strongly Special Challenge: Σibi-ch depends only on 1κ, not on mpk , and
the output c is uniformly distributed over G. In addition, + is computable in
polynomial time. G is determined only by 1κ, not by mpk . That it, there is a
probabilistic polynomial time algorithm Σ∗ibi-ch such that it takes as input 1κ

(not mpk) and outputs c, and c is uniformly distributed over G.
For example, all IBI protocols by the generic constructions in [7] and [11] are

Σ+-type. The Chin-Heng-Goi IBI protocol [3] and the protocols in [8] can be
seen as Σ∗-type.

3 Security Enhancement Transformations

Let IBI′ = (SetUp′, KG′, P′, V′) be a Σ+-type (Σ∗-type) IBI protocol in which
(P′, V′) use four probabilistic polynomial time algorithms Σibi-com, Σ+

ibi-ch (Σ∗ibi-ch),
Σibi-res, and Σibi-vrfy and have the special zero-knowledge property with a prob-
abilistic polynomial time algorithm Σibi-sim and the special soundness with a
probabilistic polynomial time algorithm Σibi-ext.

3.1 Dual-Identity Transformation

We show a security enhancement transformation based on the OR-proof, applica-
ble to the Σ+-type IBI protocol. We call this transformation DI transformation.

We describe an IBI protocol IBI = (SetUp, KG, P, V) produced by applying the
DI transformation to IBI′ in Fig. 1.

Due to the special challenge property, c is an element in G determined by
mpk ′, so are c0 and c1 since c = c0 + c1 and the operation + is defined in G.
Then, c0 and c1 are possible challenges under mpk ′.

It is easy to have a variant of the DI transformation, the DIdk transformation
such that each entity is given both secret keys of identities (id , 0) and (id , 1), and
the entity shows that it has either the secret key of (id , 0) or (id , 1). However,
this variant requires double sized secret keys for each user.
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Setup
SetUp(1κ)

(mpk′, msk ′)← SetUp′(1κ)
output (mpk , msk) = (mpk ′, msk ′)

Extract
KG(msk, id)
msk = msk′

bid ← {0, 1}
sk ′(id,bid ) ← KG′(msk′, (id , bid ))

output skid = (sk ′(id,bid ), bid )

Identification
P(mpk , id , skid ) V(mpk , id)

mpk = mpk ′ mpk = mpk′

skid = (sk ′(id,bid ), bid )

(abid
, st)← Σibi-com(mpk′, (id, bid ), sk ′(id,bid ))

cb̄id
← Σ+

ibi-ch(mpk ′)
(ab̄id

, zb̄id
)← Σibi-sim(mpk ′, (id , b̄id ), cb̄id

) (a0, a1)

−→ c← Σ+
ibi-ch(mpk ′)

c
cbid

= c− cb̄id
←−

zbid
← Σibi-res(mpk′, (id, bid ),

sk ′(id,bid ), abid
, cbid

, st) (c0, z0, z1)

−→ c1 = c− c0
dec0 ← Σibi-vrfy(mpk ′, (id , 0), a0, c0, z0)
dec1 ← Σibi-vrfy(mpk ′, (id , 1), a1, c1, z1)
output accept if dec0 = dec1 = accept;

otherwise, output reject

Fig. 1. DI Transformation

3.2 Master-Identity Transformation

We show another security enhancement transformation based on the OR-proof,
applicable to the Σ+-type IBI protocol. We call this transformation MI trans-
formation.

We describe an IBI protocol IBI = (SetUp, KG, P, V) produced by applying the
MI transformation to IBI′ in Fig. 2.

Due to the special challenge property, c is an element in G determined by
mpk ′ so are c0 and c1 since c = c0 + c1 and the operation + is defined in G.
Then, c0 and c1 are possible challenges under mpk ′.

Here, idmaster is randomly chosen from the set of identities, but does not
coincide with any identities of real entities. It is clear that an adversary should
not be allowed to obtain the secret key of idmaster . In the construction of KG,
KG(msk , id) outputs ⊥ if id = idmaster . This means that the space of all possible
identities of entities does not include idmaster .

Note that the secret key size in the MI transformation is one bit smaller than
that in the DI one.

3.3 Double-Parameter Transformation

We show the other security enhancement transformation based on the OR-proof,
applicable to the Σ∗-type IBI protocol. We call this transformation DP trans-
formation.
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Setup
SetUp(1κ)

(mpk′, msk ′)← SetUp′(1κ)
choose a master identity idmaster

output (mpk , msk) = ((mpk′, idmaster), msk ′)
Extract

KG(msk, id)
output ⊥ if id = idmaster

msk = msk′

sk ′id ← KG′(msk′, id)
output sk id = sk ′id

Identification
P(mpk, id, sk id ) V(mpk , id)

mpk = (mpk′, idmaster ) mpk = (mpk ′, idmaster)
skid = sk ′id

(a0, st)← Σibi-com(mpk ′, id , sk ′id )

c1 ← Σ+
ibi-ch(mpk′)

(a1, z1)← Σibi-sim(mpk′, idmaster , c1) (a0, a1)

−→ c← Σ+
ibi-ch(mpk ′)

c
c0 = c− c1 ←−

z0 ← Σibi-res(mpk ′, id , sk ′id , a0, c0, st) (c0, z0, z1)
−→ c1 = c− c0

dec0 ← Σibi-vrfy(mpk′, id , a0, c0, z0)
dec1 ← Σibi-vrfy(mpk′, idmaster , a1, c1, z1)
output accept if dec0 = dec1 = accepts;

otherwise, output reject

Fig. 2. MI Transformation

We describe an IBI protocol IBI = (SetUp, KG, P, V) produced by applying the
DI transformation to IBI′ in Fig. 3.

Due to the strongly special challenge property, c is an element in G determined
only by 1κ so are c0 and c1 since c = c0 + c1 and the operation + is defined in
G. Then, c0 and c1 are possible challenges under mpk ′0 and mpk ′1, respectively.

It is easy to have a variant of the DP transformation such that each entity
is given both secret keys based on mpk ′0 and mpk ′1, and the entity shows that
it has either a secret key in mpk ′0 or mpk ′1. This variant is used to construct
the adapt-id-imp-ca secure IBI protocol developed by Kurosawa and Heng [8].
However, the variant requires double sized secret keys for each user.

Although the DP transformation requires two master public keys and is less
efficient than the DI and MI transformations, the transformation can enhance
the security of a Σ∗-type IBI protocol even in the static identity attack model
(also see Section 3.5).

3.4 Security of DI, MI and DP Transformations

We formally prove that the DI, MI and DP transformations can convert an
adapt-id-imp-pa secure IBI protocol to an adapt-id-imp-ca secure one.

Proposition 3.1. The DI transformation converts an adapt-id-imp-pa secure
Σ+-type IBI protocol into an adapt-id-imp-ca secure one.
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Setup
SetUp(1κ)

(mpk′0, msk′0)← SetUp′(1κ)
(mpk′1, msk′1)← SetUp′(1κ)

output (mpk, msk) = ((1κ, mpk ′0, mpk ′1), (msk ′0, msk ′1))
Extract

KG(msk, id)
msk = (msk ′0, msk′1)

bid ← {0, 1}
sk ′(id,bid ) ← KG′(msk ′bid

, id)

output skid = (sk ′(id,bid ), bid )

Identification
P(mpk , id , skid ) V(mpk , id)

mpk = (1κ, mpk ′0, mpk ′1) mpk = (1κ, mpk ′0, mpk ′1)
skid = (sk ′(id,bid ), bid )

(abid
, st)← Σibi-com(mpk′bid

, id , sk ′(id,bid ))

cb̄id
← Σ∗ibi-ch(1

κ)

(ab̄id
, zb̄id

)← Σibi-sim(mpk ′̄
bid

, id , cb̄id
) (a0, a1)

−→ c← Σ∗ibi-ch(1
κ)

c
cbid

= c− cb̄id
←−

zbid
← Σibi-res(mpk′bid

, id ,

sk ′(id,bid ), abid
, cbid

, st) (c0, z0, z1)

−→ c1 = c− c0
dec0 ← Σibi-vrfy(mpk ′0, id , a0, c0, z0)
dec1 ← Σibi-vrfy(mpk ′1, id , a1, c1, z1)
output accept if dec0 = dec1 = accepts;

otherwise, output reject

Fig. 3. DP Transformation

Proof. We prove this by contradiction, i.e., we show that if there exists an
adapt-id-imp-ca attacker I = (CV, CP) for the resulting IBI protocol IBI, then we
can construct an adapt-id-imp-pa adversary I′ = (CV′, CP′) for the underlying
IBI protocol IBI′.

Reduction from adapt-id-imp-ca to adapt-id-imp-pa:
Setup Phase: The adapt-id-imp-pa adversary CV′ is given the security pa-

rameter 1κ and the master public key mpk ′.
Learning Phase: CV′ initializes HU , CU , TU , PS , SK ← ∅, where SK

denotes the set of secret keys, and gives the security parameter 1κ and the
master public key mpk to the adapt-id-imp-ca impersonator CV, where
mpk = mpk ′. CV′ simulates the oracles for CV as follows:
– (Simulation of Init) CV′ receives a query id : If id ∈ HU ∪ CU ∪

TU , then CV′ returns ⊥ to CV. Otherwise, CV′ sends (id , 0) and
(id , 1) to the external Init oracle, generates bid ← {0, 1}, sends
(id , bid ) the external Corr oracle to obtain sk ′(id ,bid ), adds id and
(id , bid , sk ′(id,bid )) to HU and SK , respectively, and provides CV with
id .

– (Simulation of Corr) CV′ receives a query id : If id �∈ HU \TU , then
CV′ returns ⊥ to CV. Otherwise, CV′ adds id to CU , deletes id in
HU , retrieves (id , bid , sk ′(id ,bid )) from SK , sets sk id = (sk ′(id ,bid ), bid),
and returns sk id to CV.
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– (Simulation of Conv) CV′ receives a query id : If id �∈ HU , then CV′

returns ⊥ to CV. Otherwise, CV′ sends (id , 0) and (id , 1) to the ex-
ternal Conv oracle to obtain (a0, c0, z0) and (a1, c1, z1), respectively,
and returns ((a0, a1), c, (c0, z0, z1)) to CV where c = c0 + c1.

– (Simulation of Prov) CV′ receives a query (id , s, Min): If id �∈ HU \
TU , then CV′ returns ⊥ to CV. If (id , s) �∈ PS , then CV′ adds (id , s)
to PS , selects a random coin ρ, retrieves (id , bid , sk ′(id,bid )) from SK ,
and sets a state of the prover stP[(id , s)] ← (mpk , sk id , ρ), where
sk id = (sk ′(id ,bid ), bid). Next, CV′ computes Mout depending on Min :
If Min is a null string (i.e., CV′ is requested to generate the first mes-
sage), CV′ sends (id , b̄id ) to the external Conv oracle to obtain (ab̄id

,
cb̄id

, zb̄id
), runs (abid

, st) ← Σibi-com(mpk ′, (id , bid), sk ′(id,bid )), sets
Mout = (a0, a1), and adds (st , cb̄id

, zb̄id
) to stP[(id , s)]. If Min is c (i.e.,

CV′ is requested to generate the last message), CV′ computes cbid
=

c− cb̄id
, runs zbid

← Σibi-res(mpk ′, (id , bid ), sk ′(id ,bid ), abid
, cbid

, st), and
sets Mout = (c0, z0, z1). Finally, CV′ returns Mout .

CV can query the oracles Init, Corr, Conv, and Prov, as shown above.
Then, CV outputs a target identity id∗ and state information stCP. If
id∗ is not in HU , then CV′ outputs reject and halts. Otherwise, CV′

sets TU ← {id∗}, and gives stCP to CP. At some point, CV′ obtains
(tr , dec) ← Run[CP(stCP)Init,Corr,Conv,Prov ↔ V(mpk , id∗)] acting as
V, where tr = ((a0, a1), c, (c0, z0, z1)). Then, CV′ reruns CP to obtain
(tr ′, dec′) ← Run[CP(stCP)Init,Corr,Conv,Prov ↔ V(mpk , id∗)], where
tr ′ = ((a0, a1), c′, (c′0, z

′
0, z
′
1)). The special soundness property of IBI′ im-

plies that sk (id∗,b) (b = 0 or 1) can be computed from tr and tr ′. CV′ fi-
nally outputs a target identity (id∗, b̄id∗) and state information (sk ′(id∗,b),
id∗, mpk ′) to the challenger.

Challenge Phase: After the challenger returns (sk ′(id∗,b), id∗, mpk ′) to
CP′, CP′ acts as P′ with the extracted secret key sk ′(id∗,b) to impersonate
(id∗, b̄id∗).

In the simulation of the Conv oracle, CV′ generates two queries from the received
query, sends the two queries to the external Conv oracles, and constructs an
answer from two replies from the Conv oracle. For Prov queries, CV′ uses the
secret key obtained in the Init oracle simulation, and simulates the Prov oracle.

It is clear that I ′ succeeds in impersonating (id∗, b̄id∗) if b coincides with b̄id∗ .
Since the resulting IBI protocol is witness indistinguishable [6] and I ′ has the
secret key of either (id , 0) or (id , 1), the Prov oracle simulation by I′ can be
perfect. Thus, we have Advadapt-id-imp-pa

IBI,I′ (κ) ≥ 1
2 (Advadapt-id-imp-ca

IBI,I (κ)− 1
|G| )

2 since
the underlying IBI protocol is canonical and the Reset Lemma [2] is applicable,
where G is a commutative group over which the output challenge is uniformly
distributed.

Note that two transcripts, (((a0, a1), c, (c0, z0, z1)), ((a0, a1), c′, (c′0, z
′
0, z
′
1))),

where c �= c′, implies either ((a0, c0, z0), (a0, c
′
0, z
′
0)) where c0 �= c′0 or ((a1, c1, z1),

(a1, c
′
1, z
′
1)) where c1 �= c′1.
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A detailed probability analysis is given in the final version of this paper. �
Proposition 3.2. The MI transformation converts an adapt-id-imp-pa secure
Σ+-type IBI protocol into an adapt-id-imp-ca secure one.

Due to page limitation, we only show an outline of the proof.
We assume two types of impersonators and show that there exist reductions

from each impersonator to I ′. We let Imaster be an impersonator from which
I ′ derives the secret key corresponding to idmaster , and Iuser be the other im-
personator from which I′ derives a secret key of a user. In the reduction from
Imaster , I ′ can perfectly simulate the Prov oracle by obtaining secret keys of
users from the external Corr oracle. Thus, I ′ can extract a secret key of idmaster

from Imaster (by using the Reset Lemma), and can impersonate idmaster . In the
reduction from Iuser , I ′ can perfectly simulate the Prov oracle with a secret
key of idmaster obtained from the external Corr oracle, and extract a secret key
of the target identity id∗ from Iuser (by using the Reset Lemma). Thus, it can
impersonate id∗.

A full proof will be given in the final version of this paper.

Proposition 3.3. The DP transformation converts an adapt-id-imp-pa secure
Σ∗-type IBI protocol into an adapt-id-imp-ca secure one.

Due to page limitation, we only show an outline of the proof.
After I ′ receives mpk ′ from the challenger, I ′ internally generates another

key pair (mpk ′∗,msk ′∗). I ′ can perfectly simulate all oracles since I ′ obtains the
secret keys of all users with this msk ′∗. Thus, I ′ can extract from I a secret key
of the target identity id∗ either for mpk ′ or mpk ′∗ (by using the Reset Lemma).
If I ′ obtains secret key for id∗ in mpk ′, I ′ can impersonate id∗ in mpk ′.

A full proof will be given in the final version of this paper.

Similarly to the above propositions, the security enhancement transformations
can be applied to wsid-imp-pa secure IBI protocols. Thus, the following theorems
hold.

Theorem 3.1. The DI transformation converts a wsid-imp-pa secure Σ+-type
IBI protocol into a wsid-imp-ca secure one.

We describe an outline of the proof.
In the Setup phase, the adversary who breaks the wsid-imp-ca security issues

(id1, . . . , id t) to the challenger. Then, the adversary who breaks the wsid-imp-pa
security issues ((id1, 0), (id1, 1), . . . , (id t, 0), (id t, 1)) to the external challenger.
After receiving mpk ′, the wsid-imp-pa adversary sends (id i, bi) to the external
Corr where bi is a random bit (1 ≤ i ≤ t), and receives the keys sk (idi,bi).
The wsid-imp-pa adversary simulates the oracles the same as in the proof of
Proposition 3.1.

A full proof will be given in the final version of this paper.

Theorem 3.2. The MI transformation converts a wsid-imp-pa secure Σ+-type
IBI protocol into a wsid-imp-ca secure one.
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Theorem 3.3. The DP transformation converts a wsid-imp-pa secure Σ∗-type
IBI protocol into a wsid-imp-ca secure one.

The strategy of proving Theorem 3.2 (resp. Theorem 3.3) is the same as
Proposition 3.2 (resp. Proposition 3.3) and Theorem 3.1. Full proofs will
be given in the final version of this paper.

On the other hand, the DP transformation can enhance passive security to a
concurrent one also in the static identity attack model.

Theorem 3.4. The DP transformation converts a stat-id-imp-pa secure Σ∗-type
IBI protocol into a stat-id-imp-ca secure one.

Due to page limitation, we only show an outline of the proof.
For a single Corr query on (id1, . . . , id t) from the adversary, I, who breaks

the stat-id-imp-ca security, the adversary, I′, who breaks the stat-id-imp-pa secu-
rity makes a single external Corr call (id1, . . . , id t), obtains (sk ′id1

, . . . , sk ′idt
),

and is given the master public key mpk ′. I ′ randomly selects b∗ ← {0, 1}, sets
mpk ′̄b∗ = mpk ′ and sk (idi,b̄∗) = sk ′idi

(1 ≤ i ≤ t), runs (mpk ′b∗ ,msk ′b∗) ←
SetUp′(1κ) and sk (idi,b∗) ← KG′(msk ′b∗ , id i) (1 ≤ i ≤ t), randomly selects
bidi ← {0, 1} (1 ≤ i ≤ t), sets mpk = (1κ,mpk ′0,mpk ′1), and provides I with
(sk (id1,bid ), . . . , sk (idt,bid )) and the master public key mpk . I ′ can perfectly sim-
ulate all oracles since I ′ obtains the secret keys of all users with msk b∗ . Thus,
I ′ can extract from I a secret key of the target identity id∗ either for mpk ′ or
msk ′b∗ (by using the Reset Lemma). If I ′ obtains a secret key for id∗ in mpk ′,
I ′ can impersonate id∗ in mpk ′.

A full proof will be given in the final version of this paper.

3.5 Discussions

While the DP transformation can convert a stat-id-imp-pa secure Σ∗-type IBI
protocol to a stat-id-imp-ca secure one, the DI and MI transformations seem not
to be able to do so. In the DP transformation, two master public keys in the
underlying IBI protocol, mpk ′0 and mpk ′1, compose a master public key in the
resulting IBI protocol, and the secret key of each entity in the resulting IBI
protocol is computed with either the master secret keys, msk ′0 or msk ′1, in the
underlying IBI protocol. Even in the stat-id-imp-atk security model, since the
simulator has a master secret key msk ′b∗ for the master public key mpk ′b∗ , it can
generate a secret key for any entity and then simulate the Prov oracle.

On the other hand, we consider the DI and MI transformations. In the DI
transformation, the master public key in the resulting IBI protocol is set with
the master public key in the underlying IBI protocol, mpk ′, and a secret key of
an entity corresponding to identity id in the resulting IBI protocol is a secret key
corresponding to either identity, (id , 0) or (id , 1), in the underlying IBI protocol.
The secret key is computed with the master secret key, msk ′, corresponding to
mpk ′. Since the simulator does not have msk ′ in the proof for the stat-id-imp-atk
security, it can not obtain secret keys for identities queried to the Prov oracle
and fail to simulate it.
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Table 1. Applicability of Transformations

adapt-id stat-id wsid

DIsk � �
DIdk � �
MI � �

DPsk � � �
DPdk � � �

In the MI transformation, the master public and secret keys and the secret
keys of entities in the resulting IBI protocol are the same as those in the un-
derlying IBI protocol. In the proof for the stat-id-imp-atk security, the simulator
might obtain the secret key for the master identity, idmaster , at the Setup phase
and simulate the Conv oracle. In the challenge phase, however, if the secret
key extracted from transcripts coincides with the key for idmaster , the simulator
would not obtain the non-trivial secret key and the impersonation would fail.

Next, we consider identification protocols in the hierarchical identity setting,
called hierarchical identity-based identification (HIBI) [4], and discuss the possi-
bility for converting passively secure HIBI protocols to concurrently secure ones.

Since each intermediate KGC is given both secret keys based on the two
independent master public keys in the DPdk transformation, it can issue two
corresponding secret keys for child KGCs or users. Thus, the DPdk transforma-
tion can convert an adapt-id-imp-pa secure HIBI protocol into an adapt-id-imp-ca
secure one.

In the DIdk transformation, the OR-proof can be accomplished when we adopt
(0, id1, id2, . . . , id �) and (1, id1, id2, . . . , id �) as two imaginary identities corre-
sponding to an identity (id1, . . . , id �) (� ≥ 1). The DIdk transformation can
convert an adapt-id-imp-pa secure HIBI protocol into an adapt-id-imp-ca secure
one.

It is clear that the MI transformation can convert an adapt-id-imp-pa secure
HIBI protocol into an adapt-id-imp-ca secure one since each entity is assigned
the secret key as usual and proves his/her identity by showing the possession of
his/her own key or the secret key for idmaster . Note that we need a restriction
in which the adversary is not allowed to make Corr queries whose prefixes are
idmaster .

3.6 Comparisons

In the previous subsections, we saw that the DI and MI transformations are ap-
plicable to the Σ+-type IBI protocol, while the DP transformation is applicable
to Σ∗-type. In this section, we compare the IBI protocols produced with these
transformations.

Table 2 compares computational costs, where | · | denotes the computational
cost of the algorithm. Here, |SetUp′|, |KG′|, |P′| and |V′| are the computational
costs of the underlying IBI protocol. Thus, |P′| and |V′| can be expressed as
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Table 2. Computational Cost

|SetUp| |KG| |P| |V|
DIsk |SetUp′| |KG′| + |b| |P′| + |Σibi-ch| + |Σibi-sim| |V′| + |Σibi-vrfy|
DIdk |SetUp′| 2|KG′| |P′| + |Σibi-ch| + |Σibi-sim| + |b| |V′| + |Σibi-vrfy|
MI |SetUp′| |KG′| + |id| |P′| + |Σibi-ch| + |Σibi-sim| |V′| + |Σibi-vrfy|

DPsk 2|SetUp′| |KG′| + |b| |P′| + |Σibi-ch| + |Σibi-sim| |V′| + |Σibi-vrfy|
DPdk 2|SetUp′| 2|KG′| |P′| + |Σibi-ch| + |Σibi-sim| + |b| |V′| + |Σibi-vrfy|
IBI′ |SetUp′| |KG′| |P′| |V′|
|b| and |id| are the costs for selecting one bit and idmaster , respectively.

|Σibi-com| + |Σibi-res| and |Σibi-ch| + |Σibi-vrfy|, respectively. Note that Σibi-com is
Σ+

ibi-com or Σ∗ibi-com depending on the type.
The DP transformation requires double computational costs in the Setup

phase, and the double-key variants (DIdk and DPdk) require double computa-
tional costs in the Extract phase. In all transformation, the computational
costs of Σibi-ch and Σibi-sim are required for a prover, and that of Σibi-vrfy for
a verifier. We may ignore |b| and |id| since they are comparably smaller than
others.

If a transcript of a transaction of the underlying IBI protocol has the form
(a, c, z), in all transformations that of the resulting protocol has the form ((a0, a1),
c, (c0, z0, z1)). Therefore, the communication costs for all transformations are the
same, and they require additional elements (|a|+ |z|+ |c|) for a prover than the
underlying IBI protocol. The communication costs for a verifier of the resulting
IBI protocol are the same with that of the underlying one. Here, | · | denotes the
bit length of the variable.

Table 3. Key Size

|mpk | |msk | |sk |
DIsk |mpk ′| |msk ′| |sk ′| + 1
DIdk |mpk ′| |msk ′| 2|sk ′|
MI |mpk ′| + |id | |msk ′| |sk ′|

DPsk 2|mpk ′| + κ 2|msk ′| |sk ′| + 1
DPdk 2|mpk ′| + κ 2|msk ′| 2|sk ′|
IBI′ |mpk ′| |msk ′| |sk ′|
κ is the security parameter.

Table 3 compares key sizes. The DP transformation requires double sized
master public and secret keys in addition to the security parameter, and the
double-key variants (DIdk and DPdk) requires double sized user secret key. The
DIsk and DPsk transformations require one more bit for the user secret key.

4 Conclusion

We introduced two properties of IBI protocols, Σ+-type and Σ∗-type, simi-
lar to Σ-protocols. We then proved that both DI and MI transformation can
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convert an adapt-id-imp-pa (and wsid-imp-pa) secure Σ+-type IBI protocol to
an adapt-id-imp-ca (and wsid-imp-ca) secure one, respectively. We also showed
that the DP transformation can convert an adapt-id-imp-pa, stat-id-imp-pa, and
wsid-imp-pa secure Σ∗-type IBI protocol to an adapt-id-imp-ca, stat-id-imp-ca,
and wsid-imp-ca secure one, respectively.

Converting an IBI protocol in the static identity attack model seems to be
difficult with the DI and MI transformations. The DI and MI transformations
require only a single master public key, while the DP transformation requires
two. Now we give an open problem related to the number of master public keys.
Open problem: Determine whether an OR-proof security enhancement trans-
formation exists, based on a single master public key, that converts stat-id-imp-pa
IBI protocol to stat-id-imp-ca one.
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A Relations between Security Notions

A.1 Relation between x-id-imp-pa Security and x-id-imp-ca Security

If an adversary who breaks the x-id-imp-pa security exists, then it immediately
implies that an adversary who breaks the x-id-imp-ca security exists, where x
denotes a type of attack such that x ∈ {ws, stat, adapt}. Thus, the x-id-imp-ca
security implies the x-id-imp-pa security.

A.2 Relation between stat-id-imp-atk Security and adapt-id-imp-atk
Security

If an adversary who breaks the stat-id-imp-atk security exists, then it imme-
diately implies that an adversary who breaks the adapt-id-imp-atk security ex-
ists, where atk denotes a type of attack such that atk ∈ {pa, aa, ca}. Thus, the
adapt-id-imp-atk security implies the stat-id-imp-atk security.

There is a gap between the stat-id-imp-atk and adapt-id-imp-atk security. As-
sume that there is a stat-id-imp-atk secure IBI protocol. We modify it to an IBI
protocol such that the master public key contains a special identity, and the
user-key-generation algorithm outputs an additional identity and a correspond-
ing secret key together with a secret key of the special identity if that key is
required. Then, the resulting IBI protocol is still stat-id-imp-atk secure but not
adapt-id-imp-atk secure.

A.3 Relation between wsid-imp-atk Security and stat-id-imp-atk
Security

Assume that an adversary who breaks the wsid-imp-atk security exists. Then, we
can construct an adversary who breaks the stat-id-imp-atk security, where atk
denotes a type of attack such that atk ∈ {pa, aa, ca}.

The wsid-imp-atk adversary initially issues a single Init query that consists of
identities, which only are allowed to be used in queries during the wsid-imp-atk
experiment. The stat-id-imp-atk adversary randomly selects a target identity
among them, and makes a single external Corr query that consists of all iden-
tities but the target identity, to obtain their secret keys. When the wsid-imp-atk
adversary makes a Corr query on an identity, the stat-id-imp-atk adversary has
already obtained it by the initial Corr query. At the end, if the wsid-imp-atk
adversary succeeds in impersonating the target identity, the stat-id-imp-atk ad-
versary can also impersonate the target identity by using the messages output by
the wsid-imp-atk adversary exactly as they are. Thus, the stat-id-imp-atk security
implies the wsid-imp-atk security. Note that the success probability decreases in
proportion to a fraction of users issued in the initial Init query.

There is a gap between the wsid-imp-atk and stat-id-imp-atk security. Assume
that there is a wsid-imp-atk secure IBI protocol. We modify it to an IBI protocol
such that the master public key contains an additional identity and a corre-
sponding secret key. Then, the resulting IBI protocol is still wsid-imp-atk secure
but not stat-id-imp-atk secure.
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A.4 Relations among Security Notions

Fig. 4 summarizes the relations among the security notions for IBI protocols.

wsid-imp-ca ⇐ stat-id-imp-ca ⇐ adapt-id-imp-ca
⇓ ⇓ ⇓

wsid-imp-pa ⇐ stat-id-imp-pa ⇐ adapt-id-imp-pa

Fig. 4. Diagram of Security Notions

The symbol ⇒ indicates “imply”, and A ⇒ B means that if an IBI protocol
is A secure, then the protocol is B secure.
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Abstract. In this paper, we introduce a general paradigm called
identity-based extractable hash proof system (IB-EHPS), which is an
extension of extractable hash proof system (EHPS) proposed by Wee
(CRYPTO ’10). We show how to construct identity-based encryption
(IBE) scheme from IB-EHPS in a simple and modular fashion. Our con-
struction provides a generic method of building and interpreting CCA-
secure IBE schemes based on computational assumptions. As instantia-
tions, we realize IB-EHPS from the bilinear Diffie-Hellman assumption
and the modified bilinear Diffie-Hellman assumption, respectively.

1 Introduction

Security against adaptive chosen-ciphertext attack (CCA-security) [27] is now ac-
cepted as the standard security notion for public-key encryption (PKE) schemes
as well as identity-based encryption (IBE) schemes. In contrast to security
against adaptive chosen-plaintext attack (CPA-security) [25], CCA-security cap-
tures the immunity against an active adversary who is given access to a decryp-
tion oracle that allows it to obtain the decryptions of ciphertexts of its choice.

On the other hand, in most cases related to cryptography, decisional assump-
tions form a much stronger class of assumptions than the corresponding search
(computational) assumptions1. As such, cryptosystems based on search problems
are generally preferred to those based on decisional assumptions. From now on,
we will use the term computational and search interchangeablely.

Up to now, only a handful of IBE schemes [11,14,19] have been proven to be
CCA-secure from computational assumptions in the standard model. Besides,
there seems no overarching concept explaining these constructions. Inspired by
the notion of extractable hash proof system [31] in the public key setting, we
introduce a new notion named identity-based extractable hash proof system and
show how to construct CCA-secure IBE schemes from it.
� Corresponding author.
1 Unless the decisional assumption can be proved equivalent to its computational
counterpart, as it is the case with cryptosystems based on the problem of “leaning
with error” (LWE) [26].
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1.1 Background

The concept of identity-based encryption (IBE) was introduced by Shamir [28]
in 1984. Boneh and Franklin [6] proposed the first practical IBE scheme whose
security is based on the computational bilinear Diffie-Hellman (CBDH) assump-
tion. Cocks [12] described another IBE scheme based on the decisional quadratic
residues (DQR) assumption modulo a composite. Both of them are proven secure
under the random oracle model [2]. However, a proof in the random oracle model
can only serve as a heuristic argument and possibly lead to insecure schemes
in the standard model. This posed an interesting problem of constructing IBE
schemes in the standard model.

First, Canetti, Halevi, and Katz [8] made the breakthrough by giving a solu-
tion in the standard model, but under a weaker notion named “selective-identity”
where the attacker must declare the target identity id∗ before seeing the public
parameters. Boneh and Boyen [4] then provided two efficient selective-identity
CPA-secure IBE schemes known as BB1-IBE and BB2-IBE. The former is based
on the decisional bilinear Diffie-Hellman (DBDH) assumption while the latter
is based the decisional q-BDHI assumption. Subsequently, Waters [29] proposed
an efficient and adaptive-identity CPA-secure IBE scheme (Waters-IBE) in the
standard model which is also based on the DBDH assumption by employing Wa-
ters hash in place of Boneh-Boyen hash used in BB1-IBE. One drawback is that
it suffers from large public parameter size. Gentry [15] proposed an IBE scheme
(Gentry-IBE) which enjoys short public parameters and tight security reduction.
Although Gentry-IBE achieves adaptive-identity CCA-security in the standard
model, it did so at the cost of relying a non-standard and non-static assumption
called the decisional q-ABHDE assumption. Waters [30] then introduced dual
system encryption methodology and proposed an adaptive-identity CPA-secure
IBE scheme based on the DBDH assumption and the decisional linear (DLIN)
assumption in the standard model. Recently, Gentry et al. [16] proposed an IBE
scheme based on the LWE assumption in the random oracle model. Cash et
al. [9] and Agrawal et al. [1] showed how to construct IBE schemes based on the
LWE assumption in the standard model.

As previously stated, CCA-security is the de facto level of security required
for IBE schemes used in practice. Unfortunately, constructing CCA-secure IBE
scheme without resorting to random oracle heuristic turns out to be difficult.
Boneh, Canetti, Halevi, and Katz [5] proposed a generic transformation (known
as the BCHK transformation) from any CPA-secure 2-level HIBE scheme to a
CCA-secure IBE scheme, which is the only generic approach known for con-
structing efficient CCA-secure IBE in the standard model.

1.2 Motivation

As we have already mentioned, a decisional assumption is generally stronger than
its computational counterpart. From both theoretical and practical perspective,
it is more desirable to reduce the security of cryptographic schemes to com-
putational assumptions. Considering an IBE scheme obtained from the BCHK
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transformation, its CCA-security relies on the CPA-security of the underlying
2-level HIBE scheme and the security of one-time signature or MAC. Hence its
assumption cannot be directly counted as computational or decisional assump-
tion. However, the indistinguishability against CPA-attack is of decisional flavor,
thus it is arguably closer to decisional assumptions.

Haralambiev et al. [19] proposed several efficient PKE schemes in the standard
model. They also sketched that one of their PKE schemes can be extended to a
BB1-style identity-based key encapsulation mechanism (IB-KEM). Galindo [14]
gave an IB-KEM from the PKE scheme due to Hanaoka and Kurosawa [18]. Chen
et al. [11] proposed another BB1-style IB-KEM. All the above IB-KEMs are
proven to be selective-identity CCA-secure based on the CBDH assumption in
the standard model. All of them fall outside of the BCHK [5] methodology. While
the IB-KEMs due to [19] and [11] are similar, it seems that the IB-KEM [14] relies
on different techniques to achieve CCA-security. So far, there is no overarching
framework explaining these constructions.

Recently, several CCA-secure PKE schemes from various computational as-
sumptions emerged, such as [10, 18–20]. Inspired in part by hash proof sys-
tem (HPS) [13], Wee [31] introduced the notion of extractable hash proof sys-
tem (EHPS) and showed how to derive efficient CCA-secure PKE via EHPS.
Roughly speaking, EHPS resembles hash proof system (HPS) [13] in that both
of them are essentially a special kind of non-interactive zero-knowledge proof,
except that EHPS replaces the soundness requirement with a proof of knowl-
edge property [27]. The framework of EHPS does not only encompass a series of
CCA-secure PKE schemes [21,22] based on decisional assumptions, but also can
explain a series of CCA-secure PKE schemes [19, 20] based on computational
assumptions in a unified way, which is the most appealing advantage of EHPS.

Although the realm of IBE and PKE are inherently different, the techniques
are sometimes interchangeable. Motivated by the above discussion, we find the
following intriguing question:

Does there exist a general framework for the construction of identity-based en-
cryption from computational assumptions in the standard model?

1.3 Our Contributions

EHPSs and their benefits are confined to the realm of public-key setting. In this
paper we bring them to the identity-based setting, defining identity-based ex-
tractable hash proof system (IB-EHPS). Using IB-EHPS, we obtain new insights
into the construction of CCA-secure IBE schemes. In particular, we show that
this notion unifies many seemingly unrelated IBE constructions under a single
framework. We summarize our main contributions as follows.

Identity-Based Extractable Hash Proof Systems. We introduce the notion
of IB-EHPS by tailoring EHPS to the identity-based setting. We show that IB-
EHPS instantly yields adaptive-identity CPA-secure IBE. However, the basic IB-
EHPS is too generic to encompass more applications. To resolve this problem,
we further propose the notion of all-but-one (ABO) IB-EHPS, which can in turn
be used to construct adaptive-identity CCA-secure IBE.
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Practical CCA-secure IBE from IB-EHPS. We present two ABO IB-
EHPSs from the CBDH assumption and the modified CBDH assumption, re-
spectively. As a result, we obtain two efficient adaptive-identity CCA-secure
IBE schemes based on computational assumptions in the standard model.

2 Preliminaries

2.1 Definitions

For a positive integer n, we use [n] to denote the set [n] = {1, . . . , n}. For a finite

set X , we use x
R←− X to denote that x is sampled from X uniformly at ran-

dom. The main security parameter through this paper is κ, and all algorithms
are implicitly given κ as input. We use standard asymptotic notation O and o
to denote the growth of functions. Let poly(κ) denote an unspecified function
f(κ) = O(κc) for some constant c. Let negl(κ) denote an unspecified function
f(κ) such that f = o(κ−c) for every constant c. We say that a probability is
overwhelming if it is 1 − negl(κ). A probabilistic polynomial-time (PPT) algo-
rithm is a randomized algorithm that runs in time poly(κ). If A is a randomized
algorithm, we write z ← A(x1, . . . , xn; r) to indicate that A outputs z on inputs
(x1, . . . , xn) and random coins r. We will omit r and write z ← A(x1, . . . , xn)
when it is not necessary to make explicit the randomness A uses. We assume
that an algorithm returns ⊥ if any of its inputs is ⊥.

2.2 Identity-Based Key Encapsulation Mechanisms

Instead of providing the full functionality of an IBE scheme, in many applications
it is sufficient to allow sender and receiver to agree on a common random session
key. This can be accomplished by identity-based key encapsulation mechanism
(IB-KEM) as formalized in [3]. Considering there are many practical reasons to
prefer an IB-KEM over an IBE scheme, we define IBE schemes as IB-KEM in
this paper. An IB-KEM consists of four PPT algorithms as follows:

– Setup(κ): takes as input a security parameter κ, outputs the master public
key mpk and the master secret key msk. mpk will be used as an implicit
input by all other algorithms KeyGen, Encap, Decap. Let I, C, and K be the
identity space, ciphertext space, and the key space (for DEM), respectively.

– KeyGen(msk, id): takes as input msk and an identity id ∈ I, outputs a
private key sk of id.

– Encap(id): takes as input an identity id ∈ I, outputs a ciphertext c ∈ C and
a DEM key k ∈ K.

– Decap(sk, c): takes as input a private key sk of identity id and a ciphertext c,
outputs a DEM key k ∈ K or an distinguished symbol ⊥ (which is not in K)
indicating that c is not consistent under id. Here we say that a ciphertext
is consistent or well-formed or valid if it can be “honestly generated” by
the encryption algorithm. For a PKE or IBE scheme, if anyone can do the
“consistency check”, we say that it is public verifiable. Otherwise, we say
that it is private verifiable.
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We refer to [23] for formal security definition of IB-KEM. For correctness, we
require that for any (mpk,msk) ← Setup(κ), any (c, k) ← Encap(id), and any
sk ← KeyGen(msk, id), we have Pr[Decap(sk, c) = k] = 1.

2.3 Bilinear Diffie-Hellman Assumption

Let (p,G,GT , e) ← GroupGen(1κ), where GroupGen(·) is a bilinear groups param-
eters generator [7]. Let g be a random generator of G. Define bdh(A,B,C) := T ,
where A = ga, B = gb, C = gc, and T = e(g, g)abc. The computational bilin-
ear Diffie-Hellman (CBDH) problem is computing bdh(A,B,C) given random
A,B,C ∈ G. The CBDH assumption asserts that the CBDH problem is hard,
that is, Pr[A(A,B,C) = bdh(A,B,C)] ≤ negl(κ) for all PPT algorithms A.

In the bilinear setting, the Goldreich-Levin theorem [17] gives us the following
lemma for a Goldreich-Levin hardcore predicate fgl : GT × {0, 1}u → {0, 1}.

Lemma 2.1 Let A,B,C
R←− G, R

R←− {0, 1}u, K = fgl(bdh(A,B,C), R), and

U
R←− {0, 1}. Suppose there exists a PPT algorithm B distinguishing the dis-

tributions Δbdh = (g,A,B,C,K,R) and Δrand = (g,A,B,C, U,R) with non-
negligible advantage. Then there exists a PPT algorithm solving the CBDH prob-
lem with non-negligible correct probability.

The modified computational bilinear Diffie-Hellman (mCBDH) problem [24] is

similar to the CBDH problem except that an additional point B′ = gb
2

is given.
We can prove a similar lemma regarding mCBDH problem as Lemma 2.1.

2.4 Binary Relations for Search Problems

A search problem S = (Sκ)κ≥0 is a collection of distributions. For every value
of κ ≥ 0, an instance of Sκ specifies two finite, non-empty sets X and W ,
public parameter PP, and a binary relation Rpp ∈ X × W . A search prob-
lem also provides two algorithms, namely SampS and SampR. SampS takes
as input a security parameter κ, and outputs an instance of Sκ. We write
(X,W,PP,Rpp) ← SampS(κ; SP), where SP is the random coins used in SampS.
SampR takes as input PP, and outputs a tuple (x,w) belong to Rpp. We write
(x,w) ← SampR(PP; r), where r is the random coins used in SampR. Note that
PP is often assumed to be an implicit input and it is useful to make the random
coins explicitly in SampR algorithm, thus we often write SampR(r) henceforth
whenever the context is clear. Different to the requirement in EHPS [31], we do
not require that Rpp can be efficiently verifiable in IB-EHPS.

Intuitively, the relation Rpp corresponds to a hard search problem, that is,
given a random element x ∈ X , it is hard to find w ∈ W such (x,w) ∈ Rpp.
More formally, we say that a binary relation Rpp is one-way if:

– with overwhelming probability over PP, for any x ∈ X , there exists at most
one w ∈ W such that (x,w) ∈ Rpp (we say that w is a witness for x); and

– there is an efficiently computable function F from W to {0, 1}l for some
positive integer l such that given x, F(w) is pseudo-random over {0, 1}l
where (x,w) ← SampR(PP).
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For relations where computing w given x is hard on average, we may derive a
function GL with a one-bit output via the Goldreich-Levin hardcore predicate
fgl. Note that GL is an instantiation of the above function F.

Bilinear Diffie-Hellman Relation. Let (p,G,GT , e) ← GroupGen(κ). The
public parameter PP is given by (g, ga, gb) for a random g ∈ G and random

a, b
R←− Zp

2. We consider the bilinear Diffie-Hellman relation over G×GT :

Rbdh
pp =

{
(x,w) ∈ G×GT : w = e(g, x)ab

}
The associated SampR picks r

R←− Zp and outputs (gr, e(ga, gb)r). Lemma 2.1
shows that we may extract a single hardcore bit from w using GL(w) for relation
Rbdh
pp . The modified BDH relation Rmbdh

pp can be defined analogously.

2.5 General Hashing

Let X , I, and Y be finite, non-empty sets. Let H = (Hmpk)mpk∈MPK be a
collection of functions indexed by MPK, so that for every mpk ∈ MPK, Hmpk

is a function from I ×X into Y . We call H = (H,MPK, I,X, Y ) a hash family.

3 Identity-Based Extractable Hash Proofs

An IB-EHPSP for S associating with each instance (X,W,PP,Rpp) ← SampS(κ)
of Sκ and an identity space I and a hash family H = (H,MPK, I,X, Y ), is a
tuple of algorithms (SetupExt, SetupHash, KeyGen, KeyGen∗, Pub, Priv, Ext).
Loosely speaking, an IB-EHPS can behave in one of two modes, namely the
extraction mode and the hashing mode. We will rely on the extraction mode for
the normal functionality of the resulting IBE scheme, and on the hashing mode
for the proof of security.

Extraction Mode

– SetupExt(PP, SP): takes as input (PP, SP), outputs the master public key
mpk and the master secret key msk.

– Pub(mpk, id, r): takes as input mpk, an identity id ∈ I and random coins r,
outputs y ∈ Y such that y = Hmpk(id, x) where (x,w) ← SampR(r). This is
the public evaluation algorithm.

– KeyGen(msk, id): takes as input msk and an identity id ∈ I, outputs a
private key sk for id.

– Ext(sk, x, y): takes as input a private key sk of identity id ∈ I, x ∈ X and
y ∈ Y , outputs w ∈ W .

For the correctness of extraction mode, we require that for any (mpk,msk) ←
SetupExt(PP, SP) and any id ∈ I and any sk ← KeyGen(msk, id), we have y =
Hmpk(id, x) =⇒ (x,Ext(sk, x, y)) ∈ Rpp.

2 We assume PP also includes p and the descriptions of (e,G,GT ).
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Hashing Mode

– SetupHash(PP): takes PP as input, outputs the master public key mpk and
the master secret key msk∗. msk∗ implicitly splits the whole identity space I
into two orthogonal subspaces I1 and I2, namely I = I1∪I2 and I1∩I2 = Ø.

– Priv(msk∗, id, x): takes as input msk∗ and an identity id ∈ I, if id ∈ I2
outputs y ∈ Y , else outputs ⊥. This is the private evaluation algorithm.

– KeyGen∗(msk∗, id): takes as input msk∗ and an identity id ∈ I, if id ∈ I1
outputs a private key sk for id, else outputs ⊥.

For the correctness of hashing mode, we require that for any (mpk,msk) ←
SetupHash(PP) and any id ∈ I2, we have Priv(msk∗, id, x) = Hmpk(id, x).

Indistinguishability. We require the first output (mpk) of SetupExt(PP, SP)
and SetupHash(PP) are statistically indistinguishable. For anympk and any iden-
tity id ∈ I1, we require the output of KeyGen(msk, id) and KeyGen∗(msk∗, id)
are statistically indistinguishable.
Well Partition. We now set a property that is sufficient for the existence
of an efficient transformation that we will use to obtain CPA-secure IB-KEM.
Intuitively, this property guarantees that no PPT adversary can distinguish the
CPA-security games simulated by operating IB-EHPS in extraction mode and
hashing mode with non-negligible probability. We formally define this property
via the following game played between a PPT adversary A and a challenger CH.

Given PP and SP, CH picks b
R←− {0, 1}, and plays Sub-Game b with A.

Sub-Game 0. CH interacts with A by operating IB-EHPS in extraction mode.
Setup: CH generates (mpk,msk) ← SetupExt(PP, SP) and gives mpk to A. CH
also samples (x∗, w∗) ← SampR(r∗) and records them for latter use.
Phase 1 - Private key queries: When A submits an private key query 〈id〉,
CH responds with KeyGen(msk, id).
Phase Middle: When A submits an identity id∗ ∈ I on the condition that
id∗ did not appear in any private key query in Phase 1, CH obtains y∗ =

Hmpk(id
∗, x∗) by evaluating Pub(mpk, id∗, r∗), then sets k∗0 = F(w∗) and k∗1

R←−
{0, 1}l. CH picks a random bit β ∈ {0, 1} and returns (x∗, y∗, k∗β) to A.
Phase 2 - Private key queries: Same as Phase 1 except that the private key
query 〈id∗〉 is not allowed.

Sub-Game 1. CH interacts with A by operating IB-EHPS in hashing mode.
Setup: CH generates (mpk,msk∗) ← SetupHash(PP) and gives mpk to A. CH
also samples (x∗, w∗) ← SampR(r∗) and records them for latter use.
Phase 1 - Private key queries: When A submits a private key query 〈id〉,
CH responds with KeyGen(msk∗, id).
Phase Middle: When A submits an identity id∗ ∈ I on the condition that
id∗ did not appear in any private key query in Phase 1, CH computes y∗ =

Hmpk(id, x
∗) via Priv(msk∗, id∗, x∗), and sets k∗0 = F(w∗) and k∗1

R←− {0, 1}l. CH
picks a random bit β ∈ {0, 1} and returns (x∗, y∗, k∗β) to A.
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Phase 2 - Private key queries: Same as Phase 1 except that the private key
query 〈id∗〉 is not allowed.

At the end of the game, A outputs its guess b′ for b and wins the game if b = b′.
Let Pr[A wins] be the probability that A wins the game, where the probability
space is over the random coins consumed by CH. Let δ be a real number in [0, 1].
It is straightforward to see that if Pr[A wins] ≤ 1− 1

2δ, then the probability that
the A’s view in Sub-Game 1 is identical to Sub-Game 0 is at least δ. Let Qe be the
number of private key queries. We say such an IB-EHPS is (Qe, δ)-well-partition.

All-But-One Identity-Based Extractable Hash Proofs. For our applica-
tions, it is convenient to work with a richer abstraction. More precisely, an ABO
IB-EHPS is a tuple of algorithms (SetupExt, SetupABO, Pub, Priv, Verify, Verify∗,
KeyGen, KeyGen∗, Ext, Ext∗).

Extraction Mode

– The algorithms SetupExt, Pub, and KeyGen related to the extraction mode
are identical to that in IB-EHPS.

– Verify(id, sk, x, y): takes as input an identity id ∈ I, a private key sk for id,
x ∈ X and y ∈ Y , if y = Hmpk(id, x) returns 1, else returns 0. Particularly,
when sk is not necessary, we say Hmpk is public verifiable.

– Ext(sk, x, y): takes as input a private key sk for identity id ∈ I, x ∈ X and
y ∈ Y , if Verify(id, sk, x, y) = 1 then outputs w ∈ W , else outputs ⊥.

For the correctness of extraction mode, we require that for any (mpk,msk) ←
SetupExt(PP, SP), any id ∈ I and any sk ← KeyGen(msk, id), we have:

y = Hmpk(id, x) =⇒ (x,Ext(sk, x, y)) ∈ Rpp (1)

ABO Hashing Mode

– SetupABO(PP, x∗): similar to SetupHash(PP) in IB-EHPS except taking an
extra input x∗ ∈ X .

– KeyGen∗(msk∗, id): same as KeyGen∗ in IB-EHPS.
– Priv(msk∗, id, x): takes as input msk∗, id ∈ I, and x ∈ X , if id ∈ I2 and

x = x∗ outputs y ∈ Y , else outputs ⊥.
– Verify∗(id,msk∗, x, y): takes as input an identity id ∈ I, msk∗, x ∈ X and

y ∈ Y , if y = Hmpk(id, x) returns 1 else returns 0. When Hmpk is public
verifiable, msk∗ is not necessary.

– Ext∗(msk∗, x, y): takes as input msk∗, x ∈ X , and y ∈ Y , if x �= x∗ and
Verify∗(id,msk∗, x, y) = 1 then outputs w ∈ W , else outputs ⊥.

For the correctness of ABO hashing mode, we require for any x∗ ∈ X and any
(mpk,msk∗) ← SetupABO(SP, x∗) and any id ∈ I2, we have Priv(msk∗, id, x∗) =
Hmpk(id, x

∗), and for any id ∈ I if x �= x∗ we have:

y = Hmpk(id, x) =⇒ (x,Ext∗(msk∗, x, y)) ∈ Rpp (2)
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Indistinguishability. We require that the similar indistinguishable proper-
ties hold as that for IB-EHPS, namely for any x∗ ∈ X the first output of
SetupExt(PP, SP) and SetupHash(PP, x∗) are statistically indistinguishable. For
anympk and any identity id ∈ I1, we require that the output of KeyGen(msk, id)
and KeyGen∗(msk∗, id) are statistically indistinguishable.
Well Partition. This property for ABO IB-EHPS is defined analogously as
that for IB-EHPS. We formally defined it via the following game played between
a PPT adversary A and a challenger CH.

Given PP and SP, CH picks b
R←− {0, 1}, and plays Sub-Game b with A.

Sub-Game 0. CH interacts with A by operating ABO IB-EHPS in extraction
mode.
Setup: Same as Sub-Game 0 in IB-EHPS.
Phase 1 - Private key queries: Same as Sub-Game 0 in IB-EHPS.
Phase 1 - Decapsulation queries: When A submits a query 〈id, x, y〉, if
x = x∗, CH directly returns ⊥. Otherwise CH responds with F(Ext(sk, x, y)).
Phase Middle: Same as Sub-Game 0 in IB-EHPS.
Phase 2 - Private key queries: Same as Sub-Game 0 in IB-EHPS.
Phase 2 - Decapsulation queries: When A submits a query 〈id, x, y〉, CH
computes sk ← KeyGen(msk, id) and responds with F(Ext(sk, x, y)). The query
〈id∗, x∗, y∗〉 is not allowed.

Sub-Game 1. CH interacts withA by operating ABO IB-EHPS in ABO hashing
mode.
Setup: CH generates (mpk,msk∗) ← SetupABO(PP, x∗) and gives mpk to A.
CH also samples (x∗, w∗) ← SampR(r∗) and records it for latter use.
Phase 1 - Private key queries: Same as Sub-Game 1 in IB-EHPS.
Phase 1 - Decapsulation queries: When A submits a query 〈id, x, y〉, if
x = x∗, CH returns⊥. Otherwise if id ∈ I1, CH extracts sk = KeyGen∗(msk∗, id)
and responds with F(Ext(sk, x, y)), else responds with F(Ext∗(msk∗, x, y)).
Phase Middle: Same as Sub-Game 1 in IB-EHPS.
Phase 2 - Private key queries: Same as Sub-Game 1 in IB-EHPS.
Phase 2 - Decapsulation queries: When A submits a query 〈id, x, y〉, if id ∈
I1, CH computes sk = KeyGen∗(msk∗, id) and responds with F(Ext(sk, x, y)),
else responds with F(Ext∗(msk∗, x, y)). The extraction query 〈id∗, x∗, y∗〉 is not
allowed.

At the end of the game, A outputs its guess b′ for b and wins the game if b = b′.
Similar to the analysis we have done before, if Pr[A wins] ≤ 1 − 1

2δ, then the
probability that theA’s view in Sub-Game 1 is identical to Sub-Game 0 is at least
δ. Let Qe and Qd be the number of private key queries and extraction queries,
respectively. We say such an ABO IB-EHPS is (Qe, Qd, δ)-well-partition.

In ABO IB-EHPS, property (1) for the extraction mode ensures the functionality
of the resulting IB-KEM while the property (2) for the ABO hashing mode
ensures the correctness of simulation. The crux to achieve CCA-security is to
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make sure that the decryption oracle does not help the adversary to distinguish
w∗ from random; in other words, the output of the decryption algorithm should
contain no knowledge of w∗ related to x∗ when the input ciphertext (x∗, y) is not
consistent. In line of this, to yield CCA-secure IBE, the ABO IB-EHPS should
also have the following two properties:

y �= Hmpk(id, x) =⇒ (x,Ext(sk, x, y)) /∈ Rpp (3)

y �= Hmpk(id, x) =⇒ (x,Ext∗(msk∗, x, y)) /∈ Rpp (4)

We achieve properties (3) and (4) by equipping the ABO IB-EHPS with al-
gorithms Verify and Verify∗ which can determine if y = Hmpk(id, x), and algo-
rithms Ext and Ext∗ returns a distinguished symbol ⊥ when y �= Hmpk(id, x). We
note that it is also possible to achieve properties (3) and (4) without requiring
algorithms Verify and Verify∗ available. The trick is for certain relation R we
may re-design algorithms Ext and Ext∗ smartly using the “implicit rejection”
idea [21, 24], namely for y �= Hmpk(id, x), Ext(sk, x, y) and Ext∗(msk∗, x, y) re-
turns a random value w ∈ W which is independent of x. Thus the properties (3)
and (4) will hold with overwhelming probability.

Combining properties (3) and (4) with (1) and (2), the ABO IB-EHPS in fact
has the following stronger properties: y = Hmpk(id, x) ⇐⇒ (x,Ext(sk, x, y)) ∈
Rpp for the extraction mode and y = Hmpk(id, x) ⇐⇒ (x,Ext(msk∗, x, y)) ∈ Rpp

for the ABO mode (when x �= x∗), which is reminiscent of ABO EHPS [31]. The
key difference is that [31] achieves properties (3) and (4) by requiring the relation
Rpp can be efficiently verifiable, which may make it too stringent to cover many
known CCA-secure IBE schemes, such as [11, 19, 23].

3.1 Relation to Extractable Hash Proof System

IB-EHPS is the corresponding notion of EHPS in the IBE setting. However, we
stress that the extension is not straightforward for the following main differences.

1. The (ABO) hashing mode for (ABO) IB-EHPS is defined in partitioning style.
More precisely, the setup algorithm generates (mpk,msk∗) and implicitly splits
the whole identity space I into two orthogonal subspaces, — 1) I1: identities for
which KeyGen∗ can generate private keys; and 2) I2: identities for which Priv
can evaluate the hash value. We note that (ABO) IB-EHPS inherently relies on
the partitioning strategy. Suppose that there is an identity id belongs to the
intersection of I1 and I2, then given (PP, x) one can compute the corresponding
w such that (x,w) ∈ Rpp by itself as follows: first computes y = Hmpk(id, x) via
Priv(msk∗, id, x), then obtains a private key sk of id via KeyGen(msk∗, id) and
uses it to extract w via Ext(sk, x, y). This contradicts the one-wayness of Rpp.
This feature of IB-EHPS makes it particularly well-suited to yield IBE schemes
whose provable security follows the partitioning strategy [15, 30].
2. In ABO EHPS, the ABO hashing mode is defined with respect to a tag t∗,
which in turn is the hash value of x∗ for some target collision resistant (TCR)
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hash function. Hence the correctness of the ABO hashing mode is related to
the TCR hash function. In our case, we define the ABO hashing mode directly
with respect to x∗. We do so out of two reasons. One is that for an abstract
paradigm it is more preferable to minimize the dependence on other primitives,
while the other is that the proof for the transformation from IB-EHPS to CCA-
secure IBE would be rather clean and simple. Nevertheless, TCR hash function
turns out to be a useful tool when instantiating EHPS/IB-EHPS from concrete
number-theoretic assumptions.

4 Generic Constructions from Identity-Based Extractable
Hash Proofs

In this section, we present the generic constructions of IBE from (ABO) IB-
EHPS. As a warm up, we first show the transformation from IB-EHPS to
adaptive-identity CPA-secure IBE, then the transformation from ABO IB-EHPS
to adaptive-identity CCA-secure IBE. Before going into details, we first give an
intuitive explanation of the constructions from IB-EHPS to IBE with respect
to the underlying relation. Suppose that the binary relation of an IB-EHPS is
Rpp and (x,w) is a tuple that belongs to Rpp. The overall construction is: first
encrypt (or commit to) a fresh DEM key (the corresponding witness is w) which
is in turn used to encrypt the actual message, and then provide an identity-based
extractable hash proof y = Hmpk(id, x) (which is also zero-knowledge) of the key.
The ciphertext is of the form (x, y). In fact, such an approach was used implicitly
in the PKE schemes based on computational assumptions and its connection to
the Rackoff-Simon paradigm [27] was made explicit in [31]. Here we make its link
to the underlying relation R clear. It is useful to note the distinguished feature
in the construction from IB-EHPS to IBE that the value w (used to compute
the session key) is uniquely determined by PP and the random coins used by
SampR. This explains why IB-EHPS cannot encompass the IBE schemes whose
session keys are related to the identity, e.g. Boneh-Franklin IBE [7].

4.1 IND-ID-CPA Secure IBE

Starting from an IB-EHPS (SetupExt, SetupHash, Pub, Priv, Ext, KeyGen,
KeyGen∗) associating with a one-way relation instance (X,W,PP,Rpp) and a
hash family H = (H,MPK, I,X, Y ), we construct an IB-KEM as follows:

– Setup(κ): same as SetupExt(PP) in IB-EHPS.
– KeyGen(msk, id): same as KeyGen(msk, id) in IB-EHPS.
– Encap(id): samples (x,w) ← SampR(r), computes y = Pub(mpk, id, r), and

returns a ciphertext c = (x, y) and a DEM key k = F(w),
– Decap(sk, c): parses c as (x, y), and returns F(Ext(sk, x, y)).

The functionality of the above IB-KEM follows readily from the correctness of
the extraction mode. For the security, we have the following theorem whose proof
appears in the full version of this paper.
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Theorem 4.1 If Rpp is a one-way relation and the IB-EHPS is (Qe, δ)-well-
partition, then the above IB-KEM is IND-ID-CPA secure as long as δ is non-
negligible.

4.2 IND-ID-CCA Secure IBE

Starting from an ABO IB-EHPS (SetupExt, SetupABO, Pub, Priv, Verify, Verify∗,
Ext, Ext∗, KeyGen, KeyGen∗) for a one-way relation instance (X,W,PP,Rpp) and
a hash family H = (H,MPK, I,X, Y ), we construct an IB-KEM as follows:

– Setup(κ): same as SetupExt(PP, SP) in ABO IB-EHPS.
– KeyGen(msk, id): same as KeyGen(msk, id) in ABO IB-EHPS.
– Encap(id): samples (x,w) ← SampR(r), computes y = Pub(mpk, id, r), and

returns a ciphertext c = (x, y) and a associated DEM key k = F(w).
– Decap(sk, c): parses c as (x, y), and returns F(Ext(sk, x, y)).

The functionality of the above IB-KEM follows readily from the correctness of
the extraction mode. For the security, we have the following theorem.

Theorem 4.2 If Rpp is a one-way relation and the ABO IB-EHPS is
(Qe, Qd, δ)-well-partition, then the above IB-KEM is IND-ID-CCA secure as long
as δ is non-negligible.

Proof. To establish the IND-ID-CCA security based on the one-wayness of rela-
tion Rpp, we proceed via a sequence of games. Let A be the event that A wins
in Game CCA, and Ai be the event that A wins in Game i.

Game CCA. Given PP and SP, CH plays with A in the following game.
Setup: CH generates (mpk,msk) → SetupExt(PP, SP) and gives mpk to A.
Phase 1 - Private key queries: When A submits a private key query 〈id〉,
CH responds with KeyGen(msk, id).
Phase 1 - Decapsulation queries: When A submits a decapsulation query
〈id, c = (x, y)〉, CH extracts sk = KeyGen(msk, id) and responds with
Ext(sk, x, y).
Challenge: When A submits a target identity id∗ such that id∗ did not appear
in any private key query in Phase 1, CH samples (x∗, w∗) ← SampR(r∗) and
computes y∗ = Hmpk(id

∗, x∗) via Pub(mpk, id∗, r∗), then sets k∗0 = F(w∗) and

k∗1
R←− {0, 1}l. CH picks β

R←− {0, 1} and returns (x∗, y∗, k∗β) to A as the challenge.
Phase 2 - Private key queries: Same as in Phase 1 except that the query
〈id∗〉 is not allowed.
Phase 2 - Decapsulation queries: Same as in Phase 1 except that the query
〈id∗, x∗, y∗〉 is not allowed.
Guess: A outputs its guess β′ for β and wins if β′ = β.

A’s view in Game CCA is identical to the standard IND-ID-CCA game, thus

Pr[A] = 1/2 + AdvCCA
A (κ) (5)
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Game 0. Given PP and PP, CH plays with A in the following game.
Setup: Same as in Sub-Game 0 for ABO IB-EHPS.
Phase 1 - Private key queries: Same as in Sub-Game 0 for ABO IB-EHPS.
Phase 1 - Decapsulation queries: Same as in Sub-Game 0 for ABO IB-EHPS.
Challenge. Same as the Phase Middle in Sub-Game 0 for ABO IB-EHPS.
Phase 2 - Private key queries: Same as in Sub-Game 0 for ABO IB-EHPS.
Phase 2 - Decapsulation queries: Same as in Sub-Game 0 for ABO IB-EHPS.
Guess: A outputs its guess β′ for β and wins if β = β′.

Observe thatA’s view in Game 0 is essentially the same as in Sub-Game 0. There
are two differences between Game 0 and Game CCA: 1) in Game 0 the challenger
samples (x∗, w∗) at the setup phase while in Game CCA the challenger samples
(x∗, w∗) at the challenge phase. It is easy to see that this difference is invisible
in A’s view. 2) in Game 0 the challenger will return ⊥ when encountering a
decapsulation query with x = x∗ in Phase 1. We conclude that A’s view in
Game 0 is identical to Game CCA if the event that in Phase 1 A submits a
decapsulation query with x = x∗ does not happen, whose probability is at most
Qd/|X |. Thus we have |Pr[A0]− Pr[A]| ≤ Qd/|X |. Since Qd = poly(κ), we have
that Qd/|X | = negl(κ) and hence Pr[A0] ≈ Pr[A]. We claim that AdvCCA

A =
negl(κ) based on the one-wayness of Rpp. Suppose that there exists an algorithm
A whose advantage against the CCA-security of IB-KEM is not negligible in
κ, then we can construct an adversary B breaking the pseudo-randomness of F,
which is sufficient to prove CCA-security under the one-wayness of Rpp.

Game 1. B receives a challenge instance (PP, x∗, k∗), where x∗ is picked from the
tuple (x∗, w∗) ∈ Rpp generated by SampR(r∗) and k∗ is either F(w∗) or randomly

picked from {0, 1}l. B is asked to determine k∗ = F(w∗) or k∗ R←− {0, 1}l. B plays
with A in the following game.
Setup: B operates as CH does in Sub-Game 1 for ABO IB-EHPS except that
B skips the sampling step.
Phase 1 - Private key queries: B operates as CH does in Sub-Game 1 for
ABO IB-EHPS.
Phase 1 - Decapsulation queries: B operates as CH processes the decapsu-
lation queries in Sub-Game 1 for ABO IB-EHPS.
Challenge: When A submits a target identity id∗ on the condition that id∗ did
not appear in any private key query in Phase 1, B computes y∗ = Hmpk(id

∗, x∗)
via Priv(msk∗, id∗, x∗), then instead of creating the challenge by explicitly gen-
erating a random bit β, it sends (x∗, y∗, k∗) to A as the challenge.
Phase 2 - Private key queries: B operates as CH does in Sub-Game 1 for
ABO IB-EHPS.
Phase 2 - Decapsulation queries: B operates as CH processes the decapsu-
lation queries in Sub-Game 1 for ABO IB-EHPS.
Guess: A outputs its guess β′ for β and B forwards β′ to its own challenger.

Observe that A’s view in Game 1 is essentially the same as Sub-Game 1. Since
the underlying ABO IB-EHPS is (Qe, Qd, δ)-well-partition, then we conclude
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that B can break the pseudo-randomness of F with advantage:

AdvB = |(1 − δ)/2 + δ · Pr[A0]− 1/2| = δ · |Pr[A0]− 1/2| ≈ δ · AdvCCA
A

If δ is non-negligible, then the above IB-KEM is IND-ID-CCA secure based on
the one-wayness of Rpp. This proves the theorem. 
�

5 Instantiations of IB-EHPS

ABO IB-EHPS for the BDH Relation

We first run SampS(κ) to generate an instance (X,W,PP,Rpp) of the BDH re-
lation defined in Section 2.4, where X = G, W = GT , PP = (g, ga, gb). G and G
are two groups of prime order p and equipped with bilinear map e : G×G → GT ,
and g is a random generator of G. The random coins SP consumed by SampS
consists of (a, b) ∈ Z2

p and the randomness used to pick g. For the choice of
H = (H,MPK, I,X, Y ), let MPK = G5+n for some integer n, I = {0, 1}n,
Y = G2. We write u for a n-length vector (u1, . . . , un) hereafter. We also need a
TCR hash function TCR from G to Zp. For mpk = (g, g′1, g1, g2, u0, u) ∈ MPK,
we define:

Hmpk(id, x) = (y1, y2) := ((gt1g
′
1)

r , F (id)r)

Here x = gr, t = TCR(x), and F (id) = u0

∏n
i=1 u

idi

i (idi denotes the i-th bit of
identity id) is known as Waters-hash.

Extraction Mode

– SetupExt(PP, SP): sets g = g, g1 = ga, g2 = gb (from PP), picks g′1, u0
R←− G,

u
R←− Gn, and returns mpk = (g, g′1, g1, g2, u0, u), msk = a (from SP).

– Pub(mpk, id, r): returns (y1, y2) = ((gt1g
′
1)

r, F (id)r) where t = TCR(gr).

– KeyGen(msk, id): picks s
R←− Zp, and returns sk = (ga2F (id)s, gs).

– Verify(id, sk, x, y): parses y as (y1, y2), computes t = TCR(x), if e(x, gt1g
′
1) =

e(g, y1) and e(x, F (id)) = e(g, y2) returns 1, else returns 0.
– Ext(sk, x, y): parses sk as (sk1, sk2) and y as (y1, y2), if Verify(id, sk, x, y) = 1

then returns e(x, sk1)/e(y2, sk2), else returns ⊥.

The correctness of extraction follows from the following simple calculation:

y = ((gt1g
′
1)

r, F (I)r) = Hmpk(I, u) =⇒ e(x, ga2F (I)s)/e(y2, g
s) = e(g1, g2)

r

ABO Hashing Mode

– SetupABO(PP, x∗): sets g = g, g1 = ga, g2 = gb (from PP), picks d
R←−

Zp, computes t∗ = TCR(x∗), sets g′1 = g−t∗
1 gd; sets m = 2(Qe + Qd), and

chooses k
R←− [n + 1]; picks α′ R←− Zm, α

R←− Zn
m, β′ R←− Zp, β

R←− Zn
p ,

sets u0 = gp−km+α′
2 gβ

′
and ui = gαi

2 gβi for 1 ≤ i ≤ n; returns mpk =
(g, g′1, g1, g2, u0, u),msk∗ = (t∗, d, α′, α, β′, β). For ease of narration we define
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two functions, namely J(id) = (p −mk) + α′ +
∑

αiidi and K(id) = β′ +∑
βiidi. Hence F (id) is essentially of the form g

J(id)
2 gK(id). The structure

of mpk implicitly splits the whole identity space I into I1 and I2. For an
identity id ∈ I, if J(id) �= p it belongs to I1, otherwise it belongs to I2.

– Priv(msk∗, id, x): if id ∈ I2 and x = x∗ returns (y1, y2) = ((x∗)d, (x∗)K(id)),
else returns ⊥.

– Verify∗(id,msk∗, x, y): same as Verify.

– KeyGen∗(msk∗, id): if id /∈ I1 returns ⊥, else picks s
R←− Zp and returns

sk = (sk1, sk2) =

(
g

−K(id)
J(id)

1 F (id)s, g
−1

J(id)

1 gs
)

– Ext∗(msk∗, x, y): parses y as (y1, y2), if Verify
∗(id,msk∗, x, y) = 1 and t �= t∗

then returns e((y1/x
d)1/(t−t∗), g2) where t = TCR(x), else returns ⊥.

The correctness of ABO hashing mode follows from the following two facts:

1. If id ∈ I2 and x = x∗, we have Priv(msk∗, id, x∗) = ((x∗)d, (x∗)K(id)) =
((gd)r

∗
, (gK(id))r

∗
) = ((gt

∗
1 g′1)

r∗ , F (id)r
∗
) = Hmpk(id, x

∗).
2. If x �= x∗, then ((gt1g

′
1)

r , F (id)r) = Hmpk(id, x) =⇒ e((y1/x
d)1/(t−t∗), g2) =

e(g1, g2)
r), where t = TCR(x). The property of TCR ensures that t = t∗

holds with overwhelming probability when x = x∗.

The indistinguishability is established from the following two facts:

1. The distribution of mpk in both modes are identical.
2. For any mpk and any identity id ∈ I1, the output of KeyGen(msk, id) and

KeyGen∗(msk∗, id) are statistically indistinguishable. To see this, let s̃ =
s− a/J(id), we have

sk1 = g
−K(id)
J(id)

1 F (id)s = g
−K(id)
J(id)

1 (g
J(id)
2 gK(id))s = ga2F (id)s−

a
J(id) = ga2F (id)s̃

sk2 = g
−1

J(id)

1 gs = gs−
a

J(id) = gs̃

Since s is uniform in Zp, then s̃ is also uniform in Zp. Thereby the distribution
of KeyGen(msk, id) and KeyGen∗(msk∗, id) are identical.

Follow the same analysis in [23], the above IB-EHPS is (Qe, Qd, δ)-well-partition,
where δ ≥ 1

8(n+1)(Qe+Qd)
. Applying the transformation in Section 4.2 to this

ABO IB-EHPS, we obtain an IB-KEM (see Fig. 1), which can be viewed as a
variant of the IB-KEM in [23]. Combining theorem 4.2, we conclude that this
IB-KEM is IND-ID-CCA secure based the CBDH assumption.

ABO IB-EHPS for the mBDH Relation

Based on the modified bilinear Diffie-Hellman relation Rmbdh
pp , we can create an

ABO IB-EHPS whose Ext and Ext∗ algorithms implement the “implicitly rejec-
tion” idea. Applying the transformation from Section 4.2 to the ABO IB-EHPS,
we obtain a CCA-secure IB-KEM based on the mBDH assumption (see Fig. 2),
which is a variant of the IB-KEM in [24].
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Setup(κ): Extract(msk, I)

g, g′1, g2, u0
R←− G, u

R←− Gn; a
R←− Zp s

R←− Zp

F (id) = u0

∏n
i=1 u

idi
i sk = (ga2F (id)s, gs)

mpk = (g, g1 = ga, g′1, g2, u0, u); msk = a return sk
return (mpk,msk)

Encap(id) Decap(sk, c)

r
R←− Zp, x ← gr parse sk as (sk1, sk2), c as (x, y1, y2)

t ← TCR(x) t = TCR(x)
y1 = (gt1g

′
1)

r, y2 = F (id)r If e(x, gt1g
′
1) �= e(g, y1) or

k ← GL(e(g1, g2)
r) e(x,F (id)) �= e(g, y2), then return ⊥

return c = (x, y1, y2) else return GL(e(x, sk1)/e(y2, sk2))

Fig. 1. An IND-ID-CCA secure IB-KEM based on BDH (variant of [23])

Setup(κ): Extract(msk, I)

g, g2, u0
R←− G, u

R←− Gn; a
R←− Zp s

R←− Zp

F (id) = u0

∏n
i=1 u

idi
i sk = (ga2F (id)s, g−s, gs2)

mpk = (g, g1 = ga, g2, u0, u); msk = a return sk
return (mpk,msk)

Encap(id) Decap(sk, c)

r
R←− Zp, x ← gr, t ← TCR(x) parse sk as (sk1, sk2, sk3), c as (x, y)

y = (F (id)gt2)
r, k ← GL(e(g1, g2)

r) t = TCR(x)
return c = (x, y) return GL(e(x, sk1 · skt

3) · e(y, sk2))

Fig. 2. An IND-ID-CCA secure IB-KEM based on mBDH (variant of [24])

6 Extension

We also put forward the notion of dual ABO IB-EHPS, which can be viewed as
a special case of ABO IB-EHPS whose I2 contains a single point id∗. The term
“dual ABO” reflects that the algorithm Priv returns Hmpk(id, x) only on the point
that id = id∗ and x = x∗. The dual ABO IB-EHPS turns out to be a useful
paradigm for constructing selective-identity CCA-secure IB-KEM. In particular,
the instantiation of dual ABO IB-EHPS from the BDH relation serves as a
clarification of all the known selective-identity CCA-secure IB-KEMs [11,14,19]
based on the CBDH assumption. Due to space limit, we include this part in the
full version of this paper.
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Abstract. In this paper, we present new attacks on the redactable sig-
nature scheme introduced by Kundu and Bertino at VLDB ’08. This
extends the work done by Brzuska et al. at ACNS ’10 and Samelin et
al. at ISPEC ’12. The attacks address unforgeability, transparency and
privacy. Based on the ideas of Kundu and Bertino, we introduce a new
provably secure construction. The corresponding security model is more
flexible than the one introduced by Brzuska et al. Moreover, we have
implemented the schemes introduced by Brzuska et al. and Kundu and
Bertino. The practical evaluation shows that schemes with a quadratic
complexity become unuseable very fast.

1 Introduction

A redactable signature scheme (RSS) allows a third party, we name sanitizer, to
redact contents of a signed document m = m[1]|| . . . ||m[n] to generate a sani-
tized version of the document, which signature is still valid. This action can be
performed without involvement of the original signer and without knowing any
private keys. In more detail, a RSS allows to replace a block m[i] ∈ m with ∅.
Thus, a redaction leaves a blinded document m′, where m′ = m \m[i]. Still, a
third party is able to verify that all received blocks and their ordering are authen-
tic. Kundu and Bertino were the first to apply this paradigm to tree-structured
data [12]. In this paper, we present new attacks on the scheme introduced by
Kundu and Bertino [12]. This extends the work done by Brzuska et al. [5] and
Samelin et al. [20]. We introduce a provably secure scheme based on Kundu
and Bertino’s initial idea. We have implemented the first version of Kundu and
Bertino’s scheme [12] and the secure scheme by Brzuska et al. [5] and provide
a detailed performance analysis. Our construction’s performance is comparable
to the one introduced in [12] by Kundu and Bertino: the runtime and storage
complexity is in O(n), if one uses a RSS for lists, that is also in O(n) for both
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metrics. The used RSS must protect the order among its elements. As an exam-
ple, the scheme introduced in [19] achieves this. Other existing provably secure
schemes for trees have a runtime and storage complexity of O(n2) [5].

State of the Art. The term RSS was coined in 2002 by Johnson et al. in [10]. In
the same year, Steinfeld and Bull introduced the same concept as “Content Ex-
traction Signatures” [21]. Since then, RSSs have been extended to tree-structured
data [5,12,13] and to arbitrary graphs [15]. Samelin et al. introduced the concept
of independently redactable structure in [20].

A related concept are Sanitizable Signature Schemes (SSS), introduced by
Ateniese et al. in [3]. In a SSS, the sanitizer does not delete blocks, but can
modify m[i] into an arbitrary string m[i]′ ∈ {0, 1}∗ [6]. It is possible to restrict
sanitizers in SSSs to certain values. This is a well-known field; refer to [7,11]
for related work. Approaches to merge SSSs and tree-structured data have also
been published, e.g., in [18]. Pöhls et al. show in [18] that RSSs for lists are
not suitable for tree-structured documents in certain scenarios. We only discuss
RSSs in this paper.

Brzuska et al. defined and formalized a set of desired properties for redactable
tree-structured documents in [5]. Kundu and Bertino showed in [13], that non-
private RSS can be attacked using “side-channel” information, i.e., if the position
of a redacted block is visible, one may be able to reconstruct some information.
They name these type of vulnerability “inference attacks” [13]. Consider the
following example clarifying this statement: in a tree-based patient record of
a hospital, which has exactly two wards, i.e., cancer and surgery, a sub-tree
represents the treatments in each ward. If a patient has been treated in both
wards, and one subtree has been removed, an adversary sees ∅. It can deduce that
the patient has been treated in both wards, using the knowledge that two wards
exist and the information about the structure of the patient record. This impacts
on privacy and is not acceptable in certain scenarios. The scheme introduced
in [12] by Kundu and Bertino was originally proposed to address these problems.
However, two attacks on this scheme have been published already: one attacking
transparency and privacy [5] and one attacking structural integrity [20].

Our Contribution. The scheme introduced in [12] by Kundu and Bertino
has some very useful properties. In particular, it has a low runtime and storage
complexity, i.e., both are O(n), where n is the number of vertices in a tree T =
(V,E). This makes their scheme the fastest one known to the authors for both
metrics. Other provably secure and transparent schemes proposed, e.g., [5], have
a complexity of O(n2), are only useable for lists [8,20], or are only able to quote
substrings [2]. However, the scheme introduced in [2] fulfills a very strong privacy
notation, i.e., strong context-hiding. This notation prohibits even the signer from
deciding if two quotes have been derived from the same source. Our goal is a
secure scheme not limited to quoting for trees. The worst-case approximation of
the scheme introduced by Brzuska et al. in [5] depends on the branching factor,
which in the case of a tree with height 1, is O(n), where n is the number of
leafs. As the branching factor is not a constant factor anymore, the growth will
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be quadratic in n. All other current schemes in O(n), e.g., the ones introduced
in [9] or [13], are susceptible to the attack on privacy introduced by Brzuska
et al.’s for the scheme by Kundu and Bertino in [5]. This is due to fact that
appending ordered random numbers cannot be sufficient to hide redactions [5].
We use the ideas ofKundu and Bertino [12,13] to derive a new construction which
is provably secure and does not inherit their flaws. We contribute by adding new
attacks, breaking unforgeability, transparency and privacy. We derive a provably
secure construction based on their ideas. Moreover, we have implemented the
schemes by Brzuska et al. [5] and the scheme introduced in [12] and show that
schemes with a quadratic runtime complexity become unuseable very fast.

Outline of the Paper. The rest of the paper is structured as follows. In Sect. 2,
we extend the existing definitions required to understand the schemes presented.
We will shortly restate the scheme by Kundu and Bertino [12], along with the
new attack vectors. Our new scheme is presented in Sect. 3. We extend the
new scheme to add additional useful properties, as proposed in [17] and [20], in
Sect. 4. We present our implementations along with the corresponding perfor-
mance analysis in Sect. 5. Finally, Sect. 6 concludes our work. All formal proofs
can be found in the appendices.

2 Preliminaries, the Scheme by Kundu and Bertino and
the Extended Security Model

We start this section by defining the algorithms of an RSS in general. Our nota-
tion is inspired by Brzuska et al. [5], but extended to allow redaction of non-leafs.
The redaction of non-leafs is allowed in the schemes by Kundu and Bertino and
offers more flexibility [12,13]. However, securely allowing this flexibility requires
a more sophistacted approach. A thorough discussion is given in Sect. 2.3.

Definition 1 (Redactable Signature Scheme). A RSS for trees RSST con-
sists of four PPT algorithms: RSST := (KeyGen,TSign,TVerify,TShare).
KeyGen. The key generation algorithm (sk, pk) ← KeyGen(1λ) outputs a key

pair consisting of the private key sk and the public key pk: (sk, pk) ←
KeyGen(1λ), on input of a security parameter λ.

TSign. The signing algorithm TSign(sk, T, r, i) takes as input the secret key sk,
the tree T , a flag r ∈ {0, 1} indicating, if the root is allowed to be redacted,
and a flag i = {0, 1} which indicates, if non-leafs can be redacted. We de-
fine that a 1 indicates that the corresponding action is allowed. It outputs a
signature σT over the tree T : (T, σT ) ← TSign(sk, T, r, i)

TVerify. The algorithm TVerify(T, pk, σT ) takes as input a tree T , a public key
pk and the signature σT . It outputs a bit d ∈ {0, 1}, which indicates, if σT is a
valid (d = 1) signature on T under the public key pk: d ← TVerify(T, pk, σT )

TShare. The algorithm TShare(T, pk, σT ,N ) takes as input a tree T , a public
key pk and signature σT , as well as a set of nodes N ⊆ T to redact. It
returns a new tree T ′ ← mod(T,N ), along with a new signature σ′

T resp.
⊥ on error, where mod is the function modifying the tree T w.r.t. N , i.e.,
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T ′ = T \ N . Hence, TShare outputs (T ′, σ′
T ) ← TShare(T, pk, σT ,N ), resp.

⊥ on error. We do not consider, if and how the edges between the nodes are
treated, if a redaction takes place. This is the concern of an instantiation of
a RSST . In particular, it depends on the concrete use case, if non-leafs are
allowed to be redacted. We want to leave this choice to the signer.

All algorithms must fulfill the usual correctness requirements. In particular, all
genuinely signed trees and trees created from them by TShare must verify. This
also implies that TShare always outputs a valid tree. How to actually ensure this
and what a valid tree in terms of the signature is, depends on the algorithms
and use cases. Note, if any result of the algorithms given is not a tree, the result
is treated as ⊥. We state the extended security model next.

The Extended Security Model. Brzuska et al. introduced and formalized
some security properties in [5]. Their model was the first rigid approach. It is
restrictive by allowing the cutting of leafs of the tree only. We extend their model,
since the extended functionality of non-leaf redaction requires an adjustment.
We denote the transitive closure of T , w.r.t. TShare, as span	(T ), following [8]

and [20]. b
$← {0, 1} denotes that b is a random bit, drawn from a uniform

distribution. The following security properties have been derived from [5]. As in
the original model, the following definitions cater only for the information an
adversary can derive from the signature. If obvious redactions took place, that
are detectable or reversible using side-channel information, it may be trivial to
decide whether something has been redacted.

1. Unforgeability: No one should be able to compute a valid signature on a tree
T ∗ verifying under pk outside span	(T ), without access to the corresponding
secret key sk. This is analogous to the standard unforgeability requirement
for signature schemes, as already noted in [5]. A scheme RSST is unforge-
able, iff for any efficient (PPT) adversary A, the probability that the game
depicted in Fig. 1 returns 1, is negligible (as a function of λ). In this game,
the adversary has access to a signing oracle.

2. Privacy: No one should be able to gain any knowledge about the unmod-
ified tree from a redacted version without having access to the original.
This is similar to the standard indistinguishability notation for encryption
schemes [5]. We say that a scheme RSST is private, iff for any efficient
(PPT) adversary A, the probability that the game shown in Fig. 3 returns
1, is negligibly close to 1

2 (as a function of λ). In this game, the adversary
has to figure out, which input has been used by the LoR-Oracle.

3. Transparency: A third party should not be able to decide whether a signature
σT of a tree T has been created from scratch or through TShare. In other
words, a party who receives a signed tree T cannot tell whether he received a
freshly signed tree or a tree which has potentially been modified [5]. We say
that a scheme RSST is transparent, iff for any efficient (PPT) adversary A,
the probability that the game shown in Fig. 2 returns 1, is negligibly close
to 1

2 (as a function of λ). In this game, the adversary has to figure out, if
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Experiment UnforgeabilityRSSTA (λ)
(pk, sk) ← KeyGen(1λ)

(T ∗, σ∗
T ) ← ATSign(sk,... )(pk)

let i = 1, 2, . . . , q index the queries
to the signing oracle

return 1 iff
TVerify(T ∗, pk, σ∗

T ) = 1 and
∀i : 0 < i ≤ q, T ∗ /∈ span�(Ti)

Fig. 1. Game for Unforgeability

Experiment TransparencyRSSTA (λ)
(pk, sk) ← KeyGen(1λ)

b
$← {0, 1}

d ← ATSign(sk,·),Adapt/Sign(...,sk,b)(pk)
where oracle Adapt/Sign for input T,N :

if N � T , return ⊥
if b = 0: (T, σT ) ← TSign(sk, T, r, i),

(T ′, σ′
T ) ← TShare(T, pk, σT ,N )

if b = 1: T ′ ← mod(T,N )
(T ′, σ′

T ) ← TSign(sk, T ′, r, i),
return (T ′, σ′

T ).
return 1 iff b = d

Fig. 2. Game for Transparency

Experiment PrivacyRSSTA (λ)

(pk, sk) ← KeyGen(1λ)

b
$← {0, 1}

d ← ATSign(sk,·),LoRAdapt(...,sk,b)(pk)
return 1 iff b = d

Fig. 3. Game for Privacy

LoRAdapt(Tj,0,Nj,0, Tj,1,Nj,1, r, i, sk, b)
if mod(Tj,0,Nj,0) �= mod(Tj,1,Nj,1) return ⊥
(Tj , σTj ) ← TSign(sk, Tj,b, r, i)
(T ′

j , σ
′
Tj
) ← TShare(Tj,b, pk, σTj,b ,Nj,b)

return (T ′
j,b, σ

′
T,b)

Fig. 4. LoRAdapt Oracle for Privacy

the signature has been created through TSign or TShare. This encapsulated
by the Adapt/Sign-Oracle.

Implications and Seperations. The implications given by Brzuska et al. in [5]
and [6] do not change: transparency =⇒ privacy, privacy � transparency, and
unforgeability is independent. To avoid duplicate work, we omit the proofs, as
only minor adjustments are required.

2.1 Aggregate Signatures and Bilinear Pairings

Aggregate signatures (AGG) have been introduced by Boneh et al. in [4]. The
basic idea is as follows: given � signatures, i.e., {σi | 0 < i ≤ �}, a AGG constructs
one compressed signature σc which contains all signatures σi. This allows verify-
ing all given signatures σi by verifying σc. To construct such a scheme, let G1 be
a cyclic multiplicative group with prime order q, generated by g, i.e., G1 = 〈g〉.
Further, let GT denote a cyclic multiplicative group with the same prime order
q. Let ê : G1 × G1 → GT , where GT = 〈ê(g, g)〉, be a bilinear map such that:
1. Bilinearity: ∀u, v ∈ G1 : ∀a, b ∈ Z/qZ : ê(ua, vb) = ê(u, v)ab

2. Non-degeneracy: ∃u, v ∈ G1 : ê(u, v) �= 1
3. Computability: There is an efficient algorithm Abimap that calculates the

mapping ê for all u, v ∈ G1

Definition 2 (The BGLS-Scheme). The AGG by Boneh et al. [4] (BGLS-
Scheme) with public aggregation consists of five efficient algorithms. We will only
use one public key, Q, which allows a performance improvement, while making
sure that just one signing key is used. Next, we define:

AGG := (AKeyGen,ASign,AVerf,AAgg,AAggVerf)
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AKeyGen. The algorithm KeyGen outputs the public and private key of the

signer, i.e., (pk, sk). sk
$← Z/qZ denote the signer’s private key. Addi-

tionally, let Hk : {0, 1}∗ → G1 be an ordinary cryptographic hash-function
from the family HK , modeled as a random oracle, and set Q ← gsk, where
〈g〉 = G1. Set the public parameters and key pk ← (g,Q,G1,GT ,Hk, ê).

ASign. The algorithm ASign outputs the signature σi on input of the secret key
sk and a single string mi ∈ {0, 1}∗: σi ← (Hk(mi))

sk.

AVerf. To verify a signature σi, check, if the following equation holds: ê(σi, g)
?
=

ê(Hk(mi), Q).
AAgg. To aggregate � signatures σi into an aggregated signature σc, the aggre-

gator computes σc ←
∏


i=1 σi, denoted as AAgg(pk,S), where S is the set of
� signatures signed using the same public parameters contained in pk. AAgg
can be used by untrusted parties and without knowing the private key.

AAggVerf. To verify an aggregated signature σc, check whether ê(σ, g)
?
=∏


i=1 ê(Hk(mi), Q) holds, on input of σc, pk and a list of all signed mi.

To improve efficiency, the right side can be rewritten as ê(
∏


i=1Hk(mi), Q),
due to the use of only one public key. We denote the algorithm as d ←
AAggVerf(pk, σ, {mi}0<i≤
).

The usual correctness requirements must hold, which have been formally proven
in [4]. Moreover, we require the expected security properties to hold, i.e., unforge-
ability under chosen message attacks (UNF-CMA) and the k-element extraction
assumption. The proofs and formal definitions can also be found in [4].

2.2 The Scheme by Kundu and Bertino

In this section, we shortly restate the scheme by Kundu and Bertino [12]. Af-
terwards, we describe the attacks. We use the following notations: n denotes the
number of nodes (i.e., |V |); a node i is denoted as ni; ci denotes the label or
content of ni. A family of cryptographic hash-functions is denoted as HS , where
S denotes the key space of the hash function family. The following algorithm
is the original one introduced in [12]. In their scheme, the input flags r and i
are both fixed to 1. This indicates, that both, root and non-leaf node redaction,
is always allowed. If nodes have to be ordered, we assume that the ordering
algorithm used is known to every party involved, e.g., pre-order traversal. “||”
denotes a concatenation which is uniquely reversible.

Construction 1 (The Kundu-Scheme.) The scheme by Kundu
and Bertino KS consists of four efficient algorithms. In particular
KS := (KeyGen,TSign,TVerify,TShare).
KeyGen. The key generation algorithm (sk, pk) ← KeyGen(1λ) outputs

a key pair of an aggregate signature scheme. It outputs (sk, pk) ←
AGG.AKeyGen(1λ)

TSign. The signing algorithm (T, σT ) ← TSign(sk, T, r, i) takes the secret key
sk and the tree T . The flags r and i are defined to be 1. To sign the tree,
perform the following steps:
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1. Choose a cryptographic hash-function Hs ∈ HS
2. Get the pre-order traversal numbers of each node ni ∈ T , denoted li
3. Get the post-order traversal numbers of each node ni ∈ T , denoted ri
4. Apply the randomizing, but order-preserving function θ to both lists of

traversal numbers, using some distribution Δ. The randomized counter-
parts is denoted as lri resp. rri . How to calculate this randomization step
is not important; the required order-preserving behaviour is enough to
undermine transparency and privacy (See Sect. 2.3)

5. Let ρi := (lri , r
r
i ). Set GT ← Hs(ρ1||c1|| . . . ||ρn||cn)

6. For 1 < i ≤ n, compute σi ← AGG.ASign(sk,Hs(GT ||ρi||ci))
7. Compress all resulting signatures σi into a compressed signature σc, i.e.,

σc ← AGG.AAgg(pk, {σi}0<i≤n).
8. Output (T, σT ), where σT = (pk, σc, GT , s, {(σi, ρi)}0<i≤n)

TVerify. The algorithm TVerify(T, pk, σT ) takes as input the received tree T , a
public key pk and the received signature σT . It outputs a bit d ∈ {0, 1}, which
indicates, if the received σT is a valid and correct signature on T under the
public key pk. It performs the following steps to do so:
1. Compute d ← AGG.AAggVerf(pk, σc, {Hs(GT ||ρi||ci)}0<i≤n).

If d = 0, output 0, else continue
2. Check, if each node is positioned correctly using both traversal numbers

derived from ρi. If the positions are correct, output 1, else output 0

TShare. The algorithm TShare(T, pk, σT ,N ) takes as input a tree T , a public
key pk and the tree’s signature σT , as well as a subset N ⊆ T of nodes
1. Check the validity of σT using TVerify
2. Set T ′ ← T \ N , and also remove the edge(s). If non-leaf nodes are

subject to redaction, implicit edges are introduced: the redacted node is
skipped in terms of the edge. See Sect. 2.4 for more details

3. Compute σ′
c ← AGG.AAgg(pk, {σi}0<i≤n′), where n′ = |V ′|. Note, we

have rearranged the indices to account for the redaction
4. Output (T ′, σ′

T ), where σ′
T = (pk, σ′

c, GT , s, {(σi, ρi)}0<i≤n′)

2.3 Attacks on Kundu ’s Transparency and Privacy

Transparency and privacy can actually be attacked in many ways. We go through
all known attacks. Some attacks can just be mounted on special revisions of the
schemes byKundu and Bertino. We state this for each attack. To have a complete
list of attacks against the new scheme is shown to be resilient against, we restate
all attacks known yet.

Randomized Traversal Numbers. Kundu and Bertino propose three ways
to randomize the traversal numbers: [13]
1. Sorted Random Numbers: Generate |V | random numbers and sort them.
2. Order-Preserving Encryption: Apply an order-preserving encryption

scheme, e.g. [1], to the traversal numbers.
3. Addition of Random Numbers: Assign the numbers to the nodes by

taking the previous traversal number and adding a random offset.
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The following attack has been discovered by Brzuska et al. in [5]: Consider
a tree with three nodes, i.e., the tree as depicted in Fig. 5. The algorithm θ
outputs a tuple (rl, rr, r0) ← θ(T,Δ) on input of the depicted tree T in Fig. 5
and a distribution Δ. Assume that Δ is the uniform distribution and let μ =
E(rl) be the expected random number associated to nr. Furthermore, assume
that Pr[rl = μ] = 0 for a sufficiently large space. Hence, the probabilities are
Pr[rl < μ] = Pr[rl > μ] = 0.5. Therefore, we obtain Pr[rr > μ] ≥ 0.75, since rr is
the largest random number and for rr < μ, both rl and r0 must be smaller than μ.
Transparency can then be broken for the sample tree depicted in Fig. 5 as follows:
transparency has been defined as a game where the adversary must guess a bit
b. The game either returns a signature just containing n0 and nr or a signature
which represents the whole tree where nl has been cut off [5]. To win the game,
the adversary just outputs 1, if rr ≤ μ and 0 otherwise. Note: Pr[rr > μ] ≥ 0.75
for a sanitized tree, while for a freshly signed one the probability changes: Pr[rr >
μ] = 0.5. Hence, b can be guessed with a non-negligible probability. Therefore,
the scheme by Kundu and Bertino is neither transparent [5] nor private, since the
leaked information allows to make statements about the original message. This
attack works for other distributions as well, while it is required that the adversary
knows the distribution Δ, which can be derived from the signing algorithm.

Leaking Structural Signature GT . In the original paper [12], Kundu and
Bertino introduce an additional digest which they name “structural signature”,
denoted as GT . This “signature” is calculated as GT ← Hs(ρ1||c1|| . . . ||ρn||cn).
It is part of the calculation of each σi, i.e., σi ← AGG.ASign(sk, GT ||ρi||ci).
Obviously, to check the signature σT , GT needs to be available to the verifier.
The verifier can calculate a digestG′

T on input of the tree T ′. In particular,G′
T ←

Hs(ρ1||c1|| . . . ||ρn′ ||cn′), where n′ = |V ′|. Afterwards, the following equation is

checked: G′
T

?
= GT . Following our definitions, this also destroys privacy. This

problem has partially been circumvented in [13] by salting GT ; in particular the
signer calculates: GT ← Hs(ω||ρ1||c1|| . . . ||ρn||cn), where ω is a nonce. However,
this choice requires thatHs is modeled as a random oracle to ensure privacy [13].
In the revision introduced in [16], no structural signature is present, thus not
inheriting this problem. However, omitting the tag renders that revision of the
scheme forgeable, as we see next.
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2.4 Attacks on Kundu ’s Unforgeability and Structural Integrity

Besides the attacks on transparency and privacy, unforgeability can be attacked
as well. In this section, two attacks are given. The first is adapted from [20]. The
second attack is new.

Level Promotion. We shortly restate the observation which has recently been
discovered by Samelin et al. in [20]. They show how to alter the semantic meaning
of tree T by removing nodes which are not leafs. They name non-leafs “inter-
mediate nodes”. We adapt their nomenclature. Removing intermediate nodes
allows introducing new implicit edges in certain scenarios. A sample tree, where
this is possible, is depicted in Fig. 6. For this tree the traversal numbers are
(1, 2, 3) (pre-order) resp. (3, 2, 1) (post-order). The randomization step can be
omitted due to the order-preserving behaviour. If n1 gets redacted, the traver-
sal numbers of the remaining nodes are (1, 3) (pre-order) resp (3, 1), which, in
terms of the signature, is valid. In particular, a sanitizer can introduce an edge
en0,n2 /∈ E which has not been signed by the signer. Strictly speaking, this de-
stroys structural integrity, and therefore has a negative impact on unforgeability.
Furthermore, this attack is possible in all versions of the schemes by Kundu and
Bertino [12,13,16]. One might argue, that it depends on the definition of in-
tegrity, if this behavior can be considered as an attack. However, we think that
such powerful possibilities must be under the sole control of the signer to avoid
unwanted side-effects. This is in accordance with [20]. Our secured scheme allows
such a level-promotion, but only after the signer explicitly allowed this behaviour
during generation of the signature. Note, additionally the attack from [20] is also
applicable, if one is able to redact parent nodes to allow distributing subtrees
of a given tree. In our example, this would be the tree T ′ = ({n1, n2}, {e1,2}).
Obviously, this also leads to the same problem. This has not been mentioned
in [20]. One may argue that intermediate node redaction lacks application sce-
narios. This is not true. Consider the following example: a tree’s structure is
implicitly describing the hierarchy within a company. Allowing to remove inter-
mediate nodes now permits only to remove the department head. This leaves
a list of employees. Without intermediate node redaction, this is not possible.
Hence, there exist use cases, where removing leafs only is not sufficient.

Match-and-Mix Attacks. In the older revisions of the schemes by Kundu
and Bertino, i.e., as proposed in [12,13], each node nGT

x is bound to the tree
TGT due to the structural signature GT , which is part of each signature. Hence,
a node nGT

x cannot be merged into another tree TG′
T , which nodes nG′

T have
been signed with a different tag G′

T . However, in the newest revision [16],
this tag is not present anymore. It is just aggregated onto the signature, but
does not bind nodes to the tag, since it is not part of the signature generation
of each node. In particular, σi ← AGG.ASign(sk, GT ||ρi||ci), where GT := ∅.
Hence, an adversary A can merge nodes of different trees into a new tree TA,
which contains nodes originally signed for TG′

T and TGT . As an example, we
show how the tree TA, as depicted in Fig. 7, can be constructed. W.l.o.g. let
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ρ
n
GT
0

= (1, 3), ρ
n
GT
1

= (2, 2) be the nodes of tree TGT and ρ
n
G′

T
x

= (3, 1) be the

only node of TG′
T . The adversary A has access to each of the individual sig-

natures σn0 , σn1 , σnx and the “blinding signatures” σωT and σω′
T
.1 Hence,

the adversary can construct a signature σA on the tree TA by
calculating σA ← AGG.AAgg(pk, {σn0 , σn1 , σnx , σωT }) resp. σ′

A ←
AGG.AAgg(pk, {σn0 , σn1 , σnx , σω′

T
}), where TA consists of all three nodes

mentioned. Running TVerify(TA, pk, σA) outputs the bit 1. As a result, the
attacker has successfully forged a signature for TA. This new attack can be
applied as soon as two trees are signed with the same private key. Hence, the
newest revision of the scheme by Kundu and Bertino is forgeable. Again, the
older revisions do not have this problem, as every node nGT

x is bound to the
tree TGT due to GT , which is unique for each tree signed. We conclude, that all
revisions, i.e. [12,13,16], are not secure in our model.

3 Our New Secure Construction

We present a construction based on Kundu and Bertino’s ideas, but without
inheriting the previously mentioned weaknesses. We use a transparent and un-
forgeable RSS for standard linear documents, which is denoted as Π in this
section. In particular, let Π = (KeyGen, Sign,Redact,Verify) be a secure RSS for
lists. Moreover, we require transparency, privacy and unforgeability. Please refer
to [5,8,20] for the formal definitions. The existing secure schemes have a runtime
of O(n2) or O(n · log(n)) resp. [2], whereas the latter just allows quoting of sub-
strings, hence not suitable for arbitrary redactions. Their scheme fulfills a strong
privacy notation, strong context-hiding. We are aware of the fact that Kundu
et al. introduced a new scheme in [14]. However, their new scheme also has a
worst case complexity of O(n2), only allows to remove leafs and therefore offers
no advantage to the one introduced in [5] by Brzuska et al. Additionally, [14]
relies on a different idea, based on signing binary relations, similar to [5,8,20].
Hence, we see their scheme as a completely new construction not related to the
original idea. Our scheme makes use of a RSS for lists. Utilizing a RSS in O(n),
our new scheme is considerably faster than the existing ones. Such a RSS has
been proposed by Pöhls et al. in [19].

Sketch of Our Secure Construction. We first sketch our construction to
increase readability of the algorithmic descriptions. The basic idea is to use
the fact that a tree is uniquely determined by its pre- and postorder traversal
numbers. However, as Brzuska et al. show in [5], ordering random numbers leads
to insecure schemes. Hence, we need to find a way to sign the ordering of the
traversal numbers without explicitly ordering them. We achieve this by using a
secure transparent RSS, which protects the order of the signed parts. We use
this order preserving RSS to sign two lists. Each list contains |V | uniformly
distributed random nonces, which are pairwise unique. We use one list for pre-
and another one for post-order traversal numbers. We annotate a node ni with

1 An adversary can always build an inverse of all signatures received.
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the nonce at the positions in the lists corresponding to the node’s traversal
numbers. The ordering of each list secured by signing it with the RSS. Note, the
nonces in the lists are not ordered. When a node ni is redacted, the two nonces
used to annotate ni are removed from the respective list using the RSS, while
leaving each list of remaining nonces still uniformly distributed. Additionally, the
signer can decide, if a redaction of the root or redaction of intermediate nodes
is allowed, as the signer annotates the nodes accordingly. This keeps the signer
in control, while giving more flexibility. This must be done by annotating nodes
accordingly. We cannot use the content of the nodes in the lists, as they may
not be unique, making the reconstruction ambiguous and therefore forgeable.

Construction 2 (The New Flexible Construction.) We give an algorith-
mic explanation of our scheme. The security proofs can be found in the appen-
dices, but from the algorithmic description the new scheme’s resilience against
the mentioned attacks are visible. The aggregate signature is used to improve
the performance of the verification process and to achieve consecutive redaction
control, as we show in Sect. 4.1.

KeyGen. The key generation algorithm outputs two key pairs: (1) A key
pair for an aggregate signature scheme AGG, i.e., (skAGG , pkAGG) ←
AGG.AKeyGen(1λ). (2) A key pair for Π, i.e., (skΠ , pkΠ) ← Π.KeyGen(1λ).
Output (sk, pk) = ((skΠ , skAGG), (pkΠ , pkAGG))

TSign. The signing algorithm (T, σT ) ← TSign(sk, T, r, i) takes all secret keys,
the tree T to sign and the flags r and i. To sign T , perform:
1. Generate two lists, L and M, each containing n = |V | pairwise distinct

uniformly distributed random numbers ∈ {0, 1}λ. The elements of the
list are addressed by an index, i.e., Li

2. Let i be the index of a pre-order traversal ci ← Li||ci
3. Let j be the index of a post-order traveral. Set ci ← Mj||ci
4. Choose a random tag τ

$← {0, 1}λ, which must be unique for each tree T
5. If r = 0, set τ ← τ ||noroot and annotate the root: cr ← cr||theroot, while

all for all other nodes: ci ← ci||nottheroot. Otherwise, set τ ← τ ||root and
annote all nodes: ci ← ci||nottheroot. Sign τ : στ ← AGG.ASign(skAGG , τ)

6. Draw a nonce d, d
$← {0, 1}λ. For each node ni: if i = 0, set ci ←

(ci||d+depth(ni)), otherwise ci ← (ci||−1). The function depth : V → N
returns the distance from the root to the given node ni ∈ T

7. For each node ni sign ci||τ : σi ← AGG.ASign(skAGG , ci||τ)
8. Compress all resulting signatures into the aggregate signature σc, along

with the signature of τ , i.e., σc ← AGG.AAgg(pkAGG , στ ∪ {σi}0<i≤n)
9. Sign L using Π, i.e., (L, σL) ← Π.Sign(skΠ ,L)

10. Sign M using Π, i.e., (M, σM) ← Π.Sign(skΠ ,M)
11. Output (T, σT ), where σT = (σc, (σi)0<i≤n, στ ,L,M, σL, σM,

pkAGG , pkΠ , τ)

TVerify. Verifying the signature is similar to generating the signature.
1. Check the validity of σL/L and σM/M using Π.Verify
2. For each node ni ∈ T , parse ci as (mi, li, ei, ai, di)
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3. Traverse T via pre-order: ∀ni ∈ T , check if Li = li. If not, abort and
return 0

4. Traverse T via pre-order: ∀nj ∈ T , check if Mj = mj. If not, abort and
return 0

5. Compute v ← AGG.AAggVerf(pk, σT , {τ} ∪ {mi||li||ei||di||ai||τ}0<i≤n).
If v = 0, abort and return 0

6. Let r denote the root of the tree T . If dr �= −1, check for all nodes
ni ∈ T \ r, if depth(parent(ni) = di − 1), where parent : V → V returns
the only parent of a given node ni. If not, abort and return 0

7. Parse τ as (τ, h). If h = noroot, check, if the received root’s annotion ra
equals “theroot”. If so, return 1, otherwise return 0

TShare. The algorithm TShare(T, pk, σT ,N ) takes as input the tree T , all public
keys pk and the signature σT , as well as a set of nodes N ⊆ T .
1. Remove nodes by setting T ′ ← T \ N
2. If intermediate nodes have been redacted, adjust the edges of the inter-

mediate nodes’ successors. In particular, for each node ni ∈ T ′ \ r not
having a parent, introduce the edge ei,j, where nj is the closest ancestor
node not redacted. If the result is not a tree, return ⊥

3. For each ni ∈ N , adjust both lists of nonces: σ′
L ← Π.Redact(pkΠ ,L, i),

where i is the pre-order number of ni. And σ′
M ← Π.Redact(pkΠ ,M, j),

where j is the post-order number of ni

4. Set σ′
c ← AGG.AAgg(pkAGG , στ ∪ {σi}0<i≤n′})

5. Construct (T ′, σ′
T ), where σ′

T = (σ′
c, (σi)0<i≤n′ , στ ,L′,M′, σ′

L, σ
′
M,

pkAGG , pkΠ , τ)
6. Verify σT : If TVerify(T

′, pk, σ′
T ) outputs 0, abort and return ⊥

7. Output (T ′, σ′
T )

3.1 Security

Theorem 1 (The Construction is Secure). Our construction is secure, if
the used RSS is transparent and unforgeable, while the used AGG is unforgeable.

Proof. Relegated to App. A.

3.2 Complexity Analysis

For signing our scheme requires O(n) steps. Each step “involves” each node
ni ∈ T four times: we assign two random values and we generate two digests.
Afterwards, all digests are compressed using AGG, while L and M are signed
using a order preserving secure RSS Π . We assume that drawing nonces is in
O(λ) and therefore constant. The steps performed byΠ are not considered in this
approximation, as they depend on the actual RSS used, which can be exchanged.
Verification “involves” each node in two operations to calculate the digest. Hence,
verification is also in O(n). However, to verify the random values, Π.Verify is
called twice. This is also the case during redaction: we simply delete the nodes,
while redacting the random values from L and M involves two invocations of
Π again. Hence, the asymptotic runtime depends on Π , while being at least in
O(n).
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4 Modifications to Our Scheme

4.1 Consecutive Redaction Control

To prohibit redaction of several nodes, the ideas introduced in [17] by Miyazaki
et al. can be applied. Depending on the AGG used, it is possible to remove a
signature from the compressed one. In particular, the BGLS -Scheme [4] allows
such calculations due to its group-theoretic structure. Hence, to prohibit redac-
tion, the signatures for these nodes are not delivered to the sanitizer. στ is not
given to the sanitizer by the signer in the first place. Additional proofs and a
more detailed discussion can be found in [17] and [20].

4.2 Restricting to Sanitizers and Accountability

All proposed schemes allow everybody to redact nodes. To limit redaction to
explicitly denoted sanitizers the signature σT is extended to hold an additional
value d. Let d ← SIGN(sk, τ ||CH(〈T 〉)), where 〈T 〉 is a suitable binary repre-
sentation of the signed tree T and CH is a chameleon hash. The values required
for CH need to be delivered with σT . Hence, only sanitizers who possess the se-
cret for CH can alter T without invalidating the signature. This can be enriched
further to achieve sanitizer and signer accountability [6]: CH could be replaced
with a tag-based chameleon-hash CHTAG, i.e., the construction of Brzuska et
al. [6].

5 Implementations and Performance Analysis

We have implemented the scheme by Kundu and Bertino in the original ver-
sion [12] and the scheme by Brzuska et al. [5]. We did not implement our scheme,
since it only differs by a constant factor from the scheme by Kundu and Bertino
in the original version [12], i.e., the underlying RSS Π . The source code used
for this evaluation will be made available on request. The tests were performed
on a Lenovo Thinkpad T61 with an Intel T8300 Dual Core @2.40 Ghz and
4 GiB of RAM. We ran Ubuntu Version 10.04 LTS (64 Bit) and Java version
1.6.0 26-b03. We used 2048-Bit RSA-Keys. The trees signed are n-ary bal-
anced ones with height h. Tab. 1 and 2 show the results for high trees with a
low branching factors. Tab. 3 and 4 show the results for flat trees with a high
branching factor. This gives a good impression for different use cases and allows
determine the specific pros and cons of the schemes.

As shown in the Tables 1-4, all schemes have a comparable runtime for small
trees. For binary and ternary trees of increasing depth the scheme by Brzuska
et al. suffers from the quadratic runtime and becomes unusable, denoted by
“-slow-”, very fast. Measuring was aborted, if the runtime was greater than
20 minutes. We conclude, that a linear complexity is required to yield useable
schemes, as waiting a few minutes to generate σT is not acceptable, even if
signatures are normally more often verified than generated.
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Table 1. Brzuska et al.: Low Branching Factor
n; Median Runtime in ms

Generate σT Verify σT

�
��n
h

10 50 100 10 50 100

2 721 14,319 55,625 24 525 1,910

3 6,856 -slow- -slow- 241 -slow- -slow-

Table 2. Kundu and Bertino: Low Branch-
ing Factor n; Median Runtime in ms

Generate σT Verify σT

�
��n
h

10 50 100 10 50 100

2 544 2,247 5,293 5 8 10

3 4,319 106,694 369,854 8 165 319

Table 3. Brzuska et al.: High Branching
Factor n; Median Runtime in ms

Generate σT Verify σT

�
��n
h

2 3 4 2 3 4

5 605 2,804 9,607 19 95 333

10 17,195 666,530 -slow- 614 18,838 -slow-

Table 4. Kundu and Bertino: High branching
factor n; Median Runtime in ms

Generate σT Verify σT

�
��n
h

2 3 4 2 3 4

5 1,657 5,065 14,132 4 12 22

10 44,756 1,228,738 -slow- 111 864 -slow-

6 Conclusion and Open Questions

After several new attacks presented in this paper, the scheme by Kundu and
Bertino has been found to be insecure with respect to all RSS security properties.
Building on the fact that removing an element from a uniformly distributed list
of random numbers preserves their distribution and a secure order preserving
transparent RSS, the new construction given in this paper can reuse the idea
of Kundu and Bertino that a node’s position in a tree is specifiable only by his
post- and pre-order traversal numbers. Moreover, our scheme is the first which
allows that the signer can decide, if it is allowed to redact parent or intermediate
nodes. The new construction is secure against the existing attacks against the
scheme by Kundu and Bertino as given by Brzuska et al. [5] and Samelin et
al. in [20], as well as the two new attacks described in this paper. The paper
offers formal proofs of the new construction’s security. While all existing secure
schemes have a runtime overhead of O(n2), our new construction has only an
overhead of O(n), if the underlying order-preserving RSS is in O(n), i.e., [19].
The work demonstrates that the underlying idea of using traversal numbers
to transparently redact nodes combined with a order-preserving RSS can be
facilitated to build a simplistic and enhanceable redactable scheme, which is
provably secure in terms of transparency, privacy and unforgeability, while being
highly efficient and very flexible.
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19. Pöhls, H.C., Samelin, K., Posegga, J., de Meer, H.: Length-hiding redactable signa-
tures from one-way accumulators in O(n) (mip-1201). Technical report, University
of Passau (April 2012)



186 K. Samelin et al.
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A Proofs

Theorem 2 (The Construction is Transparent). Our construction is trans-
parent and therefore also private [5].

Proof. L, M, the public keys pkAGG and pkΠ and the tag τ do not leak any
information about the tree T . The lists L and M contain uniformly distributed
random numbers. Even on redaction of a tree node, we only remove elements
from a uniformly distributed list of randoms, which still results in a uniformly
distributed list of randoms. If the tree is annotated with d, nothing can be
derived either, since d is chosen from a uniform distribution and the tree grows
at most linearly in |V |. Hence, we only need to show that σL/M and σc together
imply transparency. A successful attack on transparency would show that either
Π and/or the aggregate signature scheme AGG is not transparent. To avoid
duplicate work, we relegate the reader to [17] and [20], where the proofs for
transparency of σc can be found. For σL/M, we show how an adversary would also
break the transparency of the underlying RSS Π : Assume an efficient adversary
Atra which wins the transparency game of our scheme. Using Atra we construct
another adversary Btra to break the transparency of Π in the following way:
For any calls to OTSign resp. OAdapt/Sign, Btra genuinely returns the answers of
its own oracle. Eventually, Atra outputs its guess b∗. b∗ is then outputted by
Atra as its own guess. We now need to argue that, due to the fact that AGG
is information-theoretically transparent, Btra’s probability of success equals the
one of Atra. Only Π could have leaked this information, as the lists contain just
uniformly distributed nonces and redactions of elements in that list again lead
to a uniformly distributed list. Hence, Btra wins with the same probability as
Atra.

Theorem 3 (The Construction is Unforgeable). Our construction is un-
forgeable.

Proof. We assume that no tag-collisions occur, winning the unforgeability game
in a trivial manner. Note, that we do not need an induction over the tree, as
we transform it into two lists, which are uniquely determined. Let the algorithm
winning the unforgeability game be denoted as A. Our scheme’s security relies
upon the security of AGG and Π . Given the game in Fig. 1, we can derive that
a forgery must fall in at least one of the following cases:



On Structural Signatures for Tree Data Structures 187

Case 1: A value protected by σc has never been signed by the oracle
Case 2: The value protected by σc has been signed, but T ∗ �⊆ span	(T ). In
other words: The tree T ∗ protected by σT is not in the transitive closure of
any tree for which a signature was queried. This case has to be divided as
well:

Case 2a: T /∈ span	(T
∗)

Case 2b: T ∈ span	(T
∗)

We can construct an adversary B, which breaks the unforgeability of the BGLS-
Scheme, if an adversary A with a non-negligible advantage ε exists, winning
our unforgeability game. To do so, B uses A as a black box. For every sig-
nature query A requests, B forwards the queries to its signing oracle OTSign

and genuinely returns the answers to A. Eventually, A outputs (T ∗, σ∗
T ), where

T ∗ = (σ∗
c , {σi}0<i≤n∗ , σ∗

τ ,L∗,M∗, σ∗
L, σ

∗
M, pk∗AGG , pkΠ , τ∗). Given the transcript

of the simulation, B checks, if the outputted tuple is a trivial “forgery”, i.e.,
just an allowed redaction. If so, B aborts the simulation. If B does not abort,
we have to consider the following constellations: If σ∗

c contains messages never
signed, B outputs (σ∗

c ) along with forged strings, which can easily be extracted.
If T /∈ span	(T ∗), we have to consider two cases: (1) the values protected by σL
resp. σM have been altered or (2) the strings protected by σT were modified. In
either case, this allows to break the unforgeability of either Π or AGG. The cor-
responding forgeries can easily be extracted. If T ∈ span	(T ∗), both Π and AGG
must have been forged, since new elements are now contained in the aggregate
or the RSS. As before, the forgeries can be extracted given the transcript.
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Abstract. In this paper, we propose a new cryptographic primitive
called inner-product lossy trapdoor function (IPLTDF). We give a for-
mal definition, and a concrete construction from lattices. We then show
this primitive is useful to obtain efficient chosen-plaintext secure inner-
product encryption (IPE) schemes. The resulting IPE scheme has almost
the same public key size for multi-bit encryption compared with a recent
IPE scheme proposed by Agrawal, Freeman and Vaikuntanathan [2] for
single-bit encryption. Unfortunately, our IPE scheme only supports at-
tribute vectors with logarithmic length. On the positive side, our basic
IPE scheme can be extended to achieve chosen-ciphertext (CCA) secu-
rity. As far as we are aware, this is the first CCA-secure IPE scheme
based on lattices.

Keywords: inner-product encryption, inner-product lossy trapdoor func-
tions, lattices.

1 Introduction

In a traditional public key encryption system, data encrypted under a public
key can only be decrypted by an receiver with the corresponding secret key.
Inspired by a seminal work by Sahai and Waters [29], researchers have focused
on more fine-grained encryption schemes, which led to the notion of functional
encryption [13]. In a functional encryption, dedicated secret keys allow users to
learn functions of encrypted data. Functional encryption is a broad framework
and has many concrete expressions, among which, predicate encryption (PE) [19]
is an important one. In a PE system, the secret key skf corresponding to a
predicate f can be used to decrypt a ciphertext associated with attribute I if
and only if f(I) = 1. A useful set of predicates for PE is called inner-product
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predicates. In an inner-product encryption (IPE) system, an attribute of inner-
product predicates is expressed as vector x and predicate fv is associated with
vector v, where fv(x) = 1 iff 〈x,v〉 = 0.

Katz, Sahai, and Waters defined the notion of predicate encryption and gave
the first construction of IPE. However, their construction was based on com-
plicated assumptions. Subsequently, Okamoto and Takashima [23] showed how
to construct hierarchical IPE schemes. All the previous constructions are secure
under selective adversaries until [20]. Lewko et al. [20] gave the first adaptively
secure IPE scheme, which was further improved in [24,25]. All the above con-
structions made use of bilinear pairings. Very recently, Agrawal, Freeman and
Vaikuntanathan [2] proposed the first IPE scheme under the worst-case lattice
assumption.

In this work, we seek for a different way to construct IPE. We introduce a new
primitive called inner-product lossy trapdoor functions (IPLTDFs). We define and
construct IPLTDFs. Thanks to its lossiness, we can easily obtain IPE schemes from
IPLTDFs via hardcore bits.

In a high level, for chosen public parameters pp and master secret key, an
inner-product trapdoor function (IPTDF) F associated with any attribute vector
x is an injective, deterministic map Fpp,x which can be inverted given a secret
key derivable from a predicate vector v via the master secret key if and only if
〈x,v〉 = 0. Suppose there is an another algorithm that generates “fake” public
parameters pp∗, such that, for an adversary-specified challenge attribute vector
x∗, Fpp∗,x∗ is no longer injective but has image much smaller than its domain.
Moreover, given public parameters, one should not be able to tell whether it is
real or fake. Importantly, as in inner-product encryption, this must hold even
when the adversary may obtain, via a key-derivation oracle, an inversion key
for predicates v with 〈v,x∗〉 �= 0. As with IPE, security may be selective (the
adversary must specify x∗ before seeing pp) or adaptive (no such restriction). In
this paper, we only consider the selective security.

In order to build secure IPTDFs, an intuitive idea is to apply the matrix-
based framework of [27] and encrypt each matrix entry with an IPE scheme.
For already complicated IPE schemes this method brings us more complicated
analysis. Alternatively, we derive one-way IPTDFs by applying the ideas from
[2], and then show how to make it lossy which is non-trivial. Our solution shows
that secure inner-product lossy trapdoor function (IPLTDF) can be achieved in
principle, which was not clear prior to our work.

1.1 Our Contributions

In this work, we define the notion of inner-product lossy trapdoor functions,
and we give a concrete construction of IPTDF based on lattices. However, to
make the scheme correct and lossy simultaneously, our IPTDF only supports
attribute vectors with logarithmic length. we then use it to construct a chosen-
plaintext secure IPE scheme for multi-bit encryption based on lattices with public
key size almost the same as the scheme presented by Agrawal, Freeman, and
Vaikuntanathan [2] for single-bit encryption. Unfortunately, in order to invert
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correctly, we have to append the attribute vector after the function value of
our IPTDFs, which limits our IPE scheme only achieves payload hiding security.
We leave it as a future work to construct IPTDFs whose attribute information is
hidden in the function value using our methodology.

As an interesting observation, we note that the information of the lossy at-
tribute actually is hidden in the public parameters of the lossy IPTDFs. This
property is also satisfied in identity-based trapdoor functions (IBTDFs). I.e., the
public parameters of lossy IBTDFs hide the information of the lossy identity.
Under the framework presented by Peikert and Waters [27], we obtain the first
chosen-ciphertext secure IPE from lattices. As a by-product, we also observe that
lossy IBTDFs are actually All-But-One (ABO) trapdoor functions [27]. Combine
our IPTDF and the concrete construction of lossy IBTDF in [7] from lattices. We
get a chosen-ciphertext secure IPE scheme with public size almost twice as our
chosen-plaintext secure IPE scheme.

1.2 Related Works

Many encryption schemes of different types can be included in the framework of
inner-product encryption. Identity-based encryption (IBE) [30,10,11] and hidden-
vector encryption (HVE) [14] can be viewed as a special case of inner-product
predicates encryption with equality-test predicates. Attribute-based encryption
(ABE) [29,18,8] where policies are given by CNF or DNF can be implemented by
inner-product encryption.

Inner-product encryption was introduced by Katz, Sahai, and Waters [19],
however, their scheme only achieves selective security without delegatability (see
[23]). Okamoto and Takashima [23] introduced a notion called dual pairing vector
spaces (DPVS) and proposed a hierarchical IPE scheme based on DPVS, but
again, only selective security is proven. To achieve adaptive security, Lewko et
al. [20] adapted the dual system encryption methodology [31], and obtained the
first adaptively secure IPE and hierarchical IPE schemes. Later, Okamoto and
Takashima [24,25] proposed adaptively secure IPE and hierarchical IPE schemes
under simpler assumptions. All these previous constructions use bilinear pairings
except a recent scheme proposed by Agrawal, Freeman and Vaikuntanathan [2],
which is the first IPE scheme under the worst-case lattice assumption. We note
that the scheme in [2] seems difficult to be improved into a hierarchical IPE
scheme.

The notion of lossy trapdoor functions (LTDFs) was first explicitly presented in
[27]. A trapdoor function F specifies, for each public key pk, an injective, deter-
ministic map Fpk that can be inverted given an associated trapdoor. There is an
algorithm that generates a “fake” public key pk∗ indistinguishable from the real
one, such that Fpk∗ has image much smaller than its domain. Peikert and Waters
[27] call such a trapdoor function lossy. LTDFs was shown to be a powerful tool.
Peikert and Waters [27] showed that LTDFs provided very natural constructions
of many cryptographic primitives, including chosen-ciphertext secure public key
encryptions, pseudo-random generators, collision-resistant hash functions, and
oblivious transfer. Besides the original work of Peikert and Waters, Many other
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applications of LTDFs were discovered, these include deterministic public key en-
cryption [9], hedged public key encryption [5] and selective-opening secure public
key encryption [6].

Another notion related to inner-product trapdoor function is identity-based
trapdoor functions (IBTDFs) [7], which can be viewed as an identity-based version
of LTDFs. In an IBTDF, each encryption function is associated with an identity
and anyone has the secret key corresponding to the same identity can invert.
Bellare et al. gave two constructions of IBTDFs and described two applications
of IBTDFs in [7]: deterministic identity-based encryption schemes and hedged
identity-based encryption schemes. Actually, IBTDFs can be viewed as a special
case of our IPTDFs. More specifically, when we use the 2-dimensional attribute
vector x = (id,−1) and predicate vector v = (1, id′) in our IPTDFs, this is exactly
the case of IBTDFs, since 〈x,v〉 = 0 if and only if id = id′.

2 Notations

If x is a string, |x| denotes its length. If S is a set, |S| denotes its size. If S is
a set then s ← S denotes the operation of picking an element s of S uniformly
at random. We write z ← AO(x) to indicate that A is an algorithm with input
x and access to oracle O and output z. We say a function f(n) is negligible if
f(n) < 1/nc for any c > 0 and all sufficiently large n, denoted as negl(n). Let
X and Y be two random variables over set S. The statistic distance between X
and Y is defined as Δ(X,Y ) = 1

2

∑
s∈S

∣∣Pr[X = s]−Pr[Y = s]
∣∣. We say X and

Y are statistically indistinguishable if Δ(X,Y ) is negligible.
We use bold capital letters (e.g. A) to denote matrices, and use In to denote

the identity matrix with dimension n. We use bold lowercase letters (e.g. x)
to denote vectors. At denotes the transpose of the matrix A. When we say a
matrix defined over Zq has full rank, we mean that it has full rank modulo q.
If A1 is an n ×m matrix and A2 is an n × m′ matrix, then [A1|A2] denotes
the n× (m+m′) matrix formed by concatenating A1 and A2. If x1 is a length
m vector and x2 is a length m′ vector, then we let [x1|x2] denote the length
m +m′ vector formed by concatenating x1 and x2. When doing matrix-vector
multiplication, we always view vectors as column vectors.

3 Inner-Product Lossy Trapdoor Functions

In this section, we define the notion of inner-product trapdoor functions. In inner-
product trapdoor functions, each function value is associated with an attribute
x and each secret key skf corresponds to an inner-product predicate f . A user
with skf can invert the function value if and only if f(x) = 1. An inner-product
trapdoor function consists of four algorithms (IPTDF.Pg, IPTDF.Kg, IPTDF.Ev,
IPTDF.Inv) associated with input space InSp, output space OutSp, a class of
inner-product predicate functions F, and a set of attributes Σ.

IPTDF.Pg(λ) takes as input a security parameter λ. It returns public parameters
PP and a master secret key msk.
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IPTDF.Kg(PP, f,msk) takes as input public parameters PP , a predicate f ∈ F,
and a master secret key msk. It returns an inversion key skf for f .

IPTDF.Ev(PP,x, ·) which is an injective function, takes as input public param-
eters PP , an attribute x ∈ Σ, and a value in InSp. It returns a function
value in OutSp.

IPTDF.Inv(PP, skf , ·) takes as input public parameters PP , a secret key skf
for f , and a function value in OutSp. It returns a value in InSp.

For correctness, we require that ∀(PP,msk) ← IPTDF.Pg(λ), ∀f ∈ F, ∀skf ←
IPTDF.Kg(PP, f,msk) and ∀x ∈ Σ, if Cx ← IPTDF.Ev(PP,x,m), where m ∈
InSp,

- If f(x) = 1 then IPTDF.Inv(PP, skf , Cx) = m.
- If f(x) = 0 then IPTDF.Inv(PP, skf , Cx) = ⊥ with all but negligible prob-
ability.

An inner-product trapdoor function is associated with a sibling. An �-lossy
sibling L-IPTDF=(L-IPTDF.Pg, L-IPTDF.Kg, L-IPTDF.Ev, L-IPTDF.Inv) differs
from IPTDF in the following sense:

1. L-IPTDF.Pg(λ,x∗) takes as input a security parameter λ and an attribute
x∗. It returns public parameters PP and a master secret key msk. We call
x∗ a lossy attribute.

2. L-IPTDF.Kg(PP, f,msk) takes as input public parameters PP , a predicate
f , and a master secret key msk. It returns an inversion key skf for all f
with the requirement that f(x∗) = 0.

3. For any x �= x∗, L-IPTDF.Ev(PP,x, ·) computes an injective function over
InSp, and L-IPTDF.Inv(PP, skf , ·) computes its inversion if f(x) = 1. Ad-

ditionally, L-IPTDF.Ev(PP,x∗, ·) computes a function such that |OutSp|
|InSp| ≤ 2
.

We say IPTDF is �-lossy with sibling L-IPTDF, if for any probabilistic
polynomial-time (PPT) adversary A, the advantage of the following game is
negligible.

Experiment ExpsAtt-lossy
IPTDF,L-IPTDF,A(λ)

x∗ ← A(λ);
b ← {0, 1}, if b = 0, (PP0,msk0) ← IPTDF.Pg(λ);
if b = 1, (PP1,msk1) ← L-IPTDF.Pg(λ,x∗);
b′ ← AO(b,·)(PPb);
if b = b′ return 1, otherwise 0.

Where oracle O(b, f) returns skf ← L-IPTDF.Kg(PP1, f,msk1) when b = 1, and
returns skf ← IPTDF.Kg(PP0, f, msk0) when b = 0 with the restriction that A
is not allowed to query f such that f(x∗) = 1. We define the advantage of A in
the above experiment as

AdvsAtt-lossy
IPTDF,L-IPTDF,A(λ) =

∣∣∣Pr[ExpsAtt-lossy
IPTDF,L-IPTDF,A(λ) = 1]− 1

2

∣∣∣.
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3.1 Lossy Attribute Hiding

We observe that the sibling L-IPTDF enjoys an interesting property. We call it
lossy attribute hiding property. Informally, the public parameters of the L-IPTDF
generated from any distinct lossy attributes are indistinguishable, even given
access to obtain the inversion key of predicates that the lossy attributes do not
satisfy. For any PPT adversary A associated with the following game:

Experiment ExpsAtt-lah
L-IPTDF,A(λ)

x0,x1 ← A(λ);
b ← {0, 1}, (PPb,mskb) ← L-IPTDF.Pg(λ,xb);

b′ ← AO(b,·)(PPb);
if b = b′ return 1, otherwise 0.

Where oracle O(b, f) returns skf ← L-IPTDF.Kg(PPb, f,mskb) with the restric-
tion that A is not allowed to query f such that f(x0) = 1 or f(x1) = 1. We
define the advantage of A in the above experiment as

AdvsAtt-lah
L-IPTDF,A(λ) =

∣∣∣Pr[ExpsAtt-lah
L-IPTDF,A(λ) = 1]− 1

2

∣∣∣.
We say L-IPTDF is lossy attribute hiding, if for any PPT adversary A, the

above advantage is negligible.
Next, we show that the lossiness of inner-product trapdoor functions implies

the lossy attribute hiding property of the corresponding sibling functions.

Lemma 1. Let IPTDF be an inner-product trapdoor function, and L-IPTDF be
its sibling. If IPTDF is �-lossy, then L-IPTDF is lossy attribute hiding.

Proof. Considering the lossy attribute hiding game that the challenger gener-
ates the public parameters and master key under b = 0, we denote this game
as Game0. Since IPTDF is �-lossy and L-IPTDF is its sibling, no PPT adversary
can tell differences with non-negligible probability if the public parameters and
master key are changed from IPTDF.Pg(λ), as long as the adversary do not query
f with f(x0) = 1. Analogously, we denote the lossy attribute hiding game as
Game1 when the challenger generates the public parameters and master key un-
der b = 1. No PPT adversary can tell differences with non-negligible probability
if the public parameters and master key are changed from IPTDF.Pg(λ), as long
as the adversary do not query f with f(x1) = 1. We then conclude that no PPT
adversary can distinguish the public parameters between Game0 and Game1
with non-negligible probability, with restriction that the adversary do not query
f such that f(x0) = 1 or f(x1) = 1. This completes the proof. 
�

Remark. We can similarly define the lossy identity hiding property of lossy
IBTDFs. This means that the information of the identity will be hidden in the
public parameters of lossy IBTDFs. Analogously, the lossiness of IBTDF implies
the lossy identity hiding property.
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4 Inner-Product Trapdoor Functions from Lattices

Background. A full-rank m-dimensional integer lattice Λ ⊆ Zm is a discrete
additive subgroup whose linear span is Rm. Every lattice is generated as the
Z-linear combination of some basis of linearly independent vectors i.e.,Λ =
{
∑m

i=1 zibi : zi ∈ Z}. In this work we deal exclusively with “q-ary” lattices,
where for simplicity we always take q =poly(n) to be prime. For a matrix
A ∈ Zn×m

q , define the integer lattice

Λ⊥(A) = {z ∈ Zm : Az = 0 mod q}.

Let S = {s1, ..., sk} be a set of vectors in Rm. We use S̃ = {s̃1, ..., s̃k} to denote
the Gram-Schmidt orthogonalization of the vectors s1, ..., sk. We use ‖S‖ to
denote the length of the longest vector in S. For a real-valued matrix R, we let
s1(R) denote the largest singular value of R, i.e. s1(R)=max‖u‖=1‖Ru‖.

Let Λ be a discrete subset of Zm. For any vector c ∈ Rm and any positive
parameter σ ∈ R>0, let ρσ,c(x) = exp(−π‖x− c‖2/σ2) be the Gaussian func-
tion on Rm with center c and parameter σ. Let ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x) be the

discrete integral of ρσ,c over Λ, and let DΛ,σ,c be the discrete Gaussian distribu-
tion over Λ with center c and parameter σ. Specifically, for all y ∈ Λ, we have

DΛ,σ,c(y) =
ρσ,c(y)
ρσ,c(Λ) . For notional convenience, ρσ,0 and DΛ,σ,0 are abbreviated

as ρσ and DΛ,σ, respectively.
Security of our construction reduces to the learning with errors (LWE) prob-

lem, a classic hard problem on lattices defined by Regev [28]. The (decisional)
learning with errors problem in dimension n with error rate α ∈ (0, 1), stated
in matrix form, is: given an input (A,b) where A ∈ Zn×m

q for any m=poly(n)
is uniformly random and b ∈ Zm

q is either of the form b = [Im|At]x mod q for

x ← Dm+n
Z,αq , or is uniformly random (and independent of A), distinguish which is

the case, with non-negligible advantage.1 By standard hybrid argument, replac-

ing x with a matrix X ∈ Z(m+n)×ω
q (ω = poly(n)) whose each column sampled

independently from Dm+n
Z,αq , and replacing b with either B = [Im|At]X mod q

or uniformly random B of the same dimension, yields an equivalent problem (up
to a ω factor in the adversary’s advantage). It is known that when αq ≥ 2

√
n,

this decisional problem is at least as hard as approximating several problems on
n-dimensional lattices in the worst-case to within Õ(n/α) factors with a quan-
tum computer [28] or on a classical computer for a subset of these problems [26].
We give some useful facts for our construction.

Lemma 2 ([22]). Let Λ be an n-dimensional lattice, let T be a basis for Λ, and

suppose σ ≥ ‖T̃‖ · ω(
√
logn). Then for any c ∈ Rn we have

Pr[‖x− c‖ > σ
√
n : x ← DΛ,σ,c] ≤ negl(n).

1 This is actually the “normal form” of the LWE problem, which is equivalent to the
one from [28] in which the portion of x that is multiplied by At is uniformly random
in Zn

q . The equivalence is shown in [4].
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Lemma 3 ([17,21]). For prime q and integer b ≥ 2. Let m ≥ n logb q+ω(logn).
For A ← Zn×m

q and R ← Dm×m
Z,b·ω(

√
logn)

. Then (A,AR) is statistically close to

uniform in Zn×m
q × Zn×m

q .

Lemma 4 ([3,21]). Let q, n,m, b be positive integers with b ≥ 2 and m ≥
6n logb q. There is a probabilistic polynomial-time algorithm TrapGen(q, n,m, b)
that outputs a pair (A,T) ∈ Zn×m

q × Zm×m such that A is statistically close to

uniform in Zn×m
q and T is a basis for Λ⊥(A), satisfying ‖T̃‖ ≤ O(b ·

√
n logb q).

Lemma 5 ([17,21]). Let A ∈ Zn×m
q be full-rank. Given A and any basis T ∈

Zm×m of Λ⊥(A), one can efficiently recover x = [x1|x2] ∈ Zm+n
q from [Im|At] ·

[x1|x2] mod q = Atx2 + x1 mod q, as long as ‖x1‖ ≤ q/(2‖T̃‖).

Lemma 6 ([1,16]). Let q > 2,m > n, A,B ∈ Zn×m
q , TA be a basis of Λ⊥(A),

and σ ≥ ‖T̃A‖ · ω(
√
logm). There exists an efficient randomized algorithm

SampleLeft that, takes as inputs A,B,TA, σ, and outputs a basis S of Λ⊥(U)

for U = [A|B] with ‖S̃‖ ≤ σ ·
√
2m whose distribution depends on U, σ.

Lemma 7 ([1]). Let q > 2,m > n, A,B ∈ Zn×m
q , B be full-rank, R ∈ Zm×m,

TB be a basis of Λ⊥(B), and σ ≥ ‖T̃B‖ · s1(R) · ω(
√
logm). There exists an ef-

ficient randomized algorithm SampleRight that, takes as inputs A,B,TB,R, σ,

and outputs a basis S of Λ⊥(U) for U = [A|AR+B] with ‖S̃‖ ≤ σ ·
√
2m whose

distribution depends on U, σ.

4.1 An Inner-Product Trapdoor Function from Lattices

In this subsection, we present a concrete inner-product trapdoor function from
lattices. In our construction, each inversion key will be associated with a pred-
icate vector a = (a1, ..., a
) ∈ Z


q for some fixed � ≥ 2 and each function value

will be associated with an attribute vector b = (b1, ..., b
) ∈ Z

q. Inversion should

succeed if and only if 〈a,b〉 = 0 mod q. Hence the predicate associated with the
inversion key is defined as fa(b) = 1 if 〈a,b〉 = 0 mod q, and fa(b) = 0 other-
wise. We note that we have to append the attribute vector b after the function
value in order to invert it. This restriction limits our IPTDF only enables payload
hiding IPE scheme (see Sec. 5), however, this will not harm the lossy attribute
hiding property of lossy IPTDFs, since the public parameters will still hide the
information of the lossy attribute.

Let c > 1 be an positive integer to be determined later. Let n = λ be a security
parameter and � be the length of predicate and attribute vectors. Let q = poly(n)
be a prime, b = b(n, �) ≥ 2 be an integer, n̂ = cn, and m = Θ(n̂ logb q). Let
r = r(n, �) ≥ 2 be an integer and define k = �logr q�. Define Dβ = {0, 1, ..., β−1}
and Dγ similarly for some positive integers β ≥ γ to be determined later. Let
σ, α be positive real Gaussian parameters. Our inner-product trapdoor function

has domain InSp=D
(
(k+1)+1)m+n
β ×Dn̂−n

γ .

IPTDF.Pg(n, �) takes as input a security parameter n and a parameter �, denot-
ing the length of predicate and attribute vectors,
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1. Use the algorithm of Lemma 4 to generate a (nearly uniform)A ∈ Zn̂×m
q ,

together with a basis TA for lattice Λ⊥(A) such that ‖T̃A‖ = O(b ·√
n̂ logb q).

2. Choose � · (k+1) uniformly random matrices Ai,j ∈ Zn̂×m
q for 1 ≤ i ≤ �

and 0 ≤ j ≤ k. Choose a uniformly random matrix B ∈ Zn̂×m
q .

Output PP = (A,B, {Ai,j}1≤i≤
,0≤j≤k) and msk = TA.

IPTDF.Kg(PP, a,msk) takes as input public parameters PP , a predicate vector
a = (a1, ..., a
) ∈ Z


q, and a master secret key msk,
1. For i = 1, ..., �, write the r-ary decomposition of ai ∈ Zq as

ai =

k∑
j=0

ai,j · rj , where ai,j ∈ [0, ..., r − 1].

2. Define the matrix Ua = [A|

∑

i=1

k∑
j=0

ai,jAi,j ].

3. Use the SampleLeft algorithm in Lemma 6 to generate a basis Sa of

Λ⊥(Ua) with ‖S̃a‖ ≤ σ
√
2m.

Output the inversion key ska = Sa.

IPTDF.Ev(PP,b,m) takes as input a public parameters PP , an attribute vec-
tor b = (b1, ..., b
) ∈ Z


q , and a message m = [x0|x1,0|...|xi,j |...|x
,k|x] ∈
D

(
(k+1)+1)m+n
β ×Dn̂−n

γ , where x0,xi,j ∈ Dm
β for 1 ≤ i ≤ �, 0 ≤ j ≤ k, and

x ∈ Dn
β ×Dn̂−n

γ ,
1. Define the matrix

Fb = [A|A1,0 + r0b1B| · · · |Ai,j + rjbiB| · · · |A
,k + rkb
B].

2. Compute Cb = [I(
(k+1)+1)m|Ft
b] ·m mod q.

Output Cb together with the attribute vector b.

IPTDF.Inv(PP, ska, (Cb,b)) takes as input public parameters PP , an inversion
key ska for predicate a, and a function value (Cb,b) for attribute vector b,
1. Parse Cb into c0, ci,j for 1 ≤ i ≤ �, 0 ≤ j ≤ k, where c0 = Atx + x0,

ci,j = (Ai,j + rjbiB)tx+ xi,j .

2. Compute c̃=

∑

i=1

k∑
j=0

ai,jci,j =

∑

i=1

k∑
j=0

ai,jA
t
i,jx+〈a,b〉Btx+


∑
i=1

k∑
j=0

ai,jxi,j .

3. Note that [c0|c̃] = [A|

∑

i=1

k∑
j=0

ai,jAi,j + 〈a,b〉B]tx+ [x0|

∑

i=1

k∑
j=0

ai,jxi,j ].

If 〈a,b〉 = 0 mod q, use ska and the inversion algorithm of Lemma 5 to

compute [x̃|x] from [c0|c̃], where x̃ = [x0|

∑

i=1

k∑
j=0

ai,jxi,j ]. Then recover

all xi,j from ci,j by using x and the attribute vector b. Finally, It outputs
m if 〈a,b〉 = 0 mod q.
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We now describe the sibling L-IPTDF. The evaluation and inversion algo-
rithms are those in IPTDF. We give the parameter generation and inversion key
generation algorithms of L-IPTDF as follows.

L-IPTDF.Pg(n, �,b∗) takes as input a security parameter n, a parameter � de-
noting the length of predicate and attribute vectors, and an attribute vector
b∗ = (b∗1, ..., b

∗

 ) ∈ Z


q,

1. Use the algorithm of Lemma 4 to generate a (nearly uniform) B ∈ Zn̂×m
q ,

together with a basis TB for lattice Λ⊥(B) such that ‖T̃B‖ = O(b ·√
n̂ logb q).

2. Choose a uniformly random matrix Ā ∈ Zn×m
q , and E ← D(m+n)×(n̂−n)

Z,αq

where αq = Θ(
√
n), and pairwise independent Ri,j ← Dm×m

Z,b·ω(
√
logn)

for

1 ≤ i ≤ �, 0 ≤ j ≤ k.

3. Set At =
[
Āt

∣∣∣[Im|Āt] · E mod q
]
, and let Ai,j = ARi,j − rjb∗iB for

1 ≤ i ≤ �, 0 ≤ j ≤ k.

Output PP = (A,B, {Ai,j}1≤i≤
,0≤j≤k) andmsk=(TB, {Ri,j}1≤i≤
,0≤j≤k).

L-IPTDF.Kg(PP, f,msk) takes as input public parameters PP , a master secret
key msk, and a predicate vector a = (a1, ..., a
) ∈ Z


q,

1. Define the matrix

Ua = [A|

∑

i=1

k∑
j=0

ai,jAi,j ] = [A|A(


∑
i=1

k∑
j=0

ai,jRi,j)− 〈a,b∗〉B].

2. If 〈a,b∗〉 �= 0 mod q, use the SampleRight algorithm in Lemma 7 to

generate a basis Sa of Λ⊥(Ua) with ‖S̃a‖ ≤ σ
√
2m, else abort.

4.2 Correctness

We now show that for certain parameter choices, the inversion algrithms of IPTDF
and L-IPTDF work correctly with overwhelming probability, and the evaluation
of L-IPTDF.Ev(PP,b∗, ·) is lossy.

Lemma 8. Suppose the parameters γ, β, b satisfy

γc−1 ≥ 2Ω((
(k+1)+1)m/n), and γ·Ω̃(bm
√
n) ≤ β ≤ q

2
√
2σm((r − 1)�(k + 1) + 1)

.

We have:

1. If 〈a,b〉 = 0 mod q, then with overwhelming probability IPTDF.Inv invert
correctly, and L-IPTDF.Inv invert correctly with b �= b∗.

2. L-IPTDF.Ev(PP,b∗, ·) is a lossy function with lossiness Ω((�(k+1)+ 1)m).
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Proof. During the second step of IPTDF.Inv(PP,Sa, (Cb,b)), we compute c̃,
which is equal to

c̃ =

∑

i=1

k∑
j=0

ai,jci,j =

∑

i=1

k∑
j=0

ai,jA
t
i,jx+ 〈a,b〉Btx+


∑
i=1

k∑
j=0

ai,jxi,j .

If 〈a,b〉 = 0 mod q, then the middle term disappears, leaving c̃ =

∑

i=1

k∑
j=0

ai,jA
t
i,jx+


∑
i=1

k∑
j=0

ai,jxi,j . It follows that

[c0|c̃] = [A|

∑

i=1

k∑
j=0

ai,jAi,j ]
t · x+ x̃ = [I2m|Ut

a] · [x̃|x] mod q,

where x̃ = [x0|

∑

i=1

k∑
j=0

ai,jxi,j ]. Since Sa is a basis of Λ⊥(Ua), according to

Lemma 5, if ‖x̃‖ ≤ q/(2‖S̃a‖), one can recover [x̃|x] by using Sa. From the ci,j ,
the attribute vector b and x, one can obtain xi,j for 1 ≤ i ≤ �, 0 ≤ j ≤ k. By

Lemma 6 and 7 we have ‖S̃a‖ ≤ σ
√
2m with overwhelming probability. Since

m ∈ D
(
(k+1)+1)m+n
β ×Dn̂−n

γ , and ai,j ∈ {0, ..., r− 1}, by the triangle inequality,
we have

‖x̃‖ ≤ ‖x0‖+ ‖

∑

i=1

k∑
j=0

ai,jxi,j‖ ≤ β
√
m+ (r − 1)�(k + 1)β

√
m

= (1 + (r − 1)�(k + 1))β
√
m.

For β as in the lemma statement, β ≤ q

2
√
2σm((r−1)
(k+1)+1)

is sufficient to recover

m, as desired.

In the third step of L-IPTDF.Pg, At =
[
Āt

∣∣∣[Im|Āt] · E mod q
]
and Ai,j =

ARi,j − rjb∗iB for 1 ≤ i ≤ �, 0 ≤ j ≤ k, then in L-IPTDF.Ev(PP,b∗,m), we
compute

Fb∗ = [A|A1,0 + r0b∗1B| · · · |Ai,j + rjb∗iB| · · · |A
,k + rkb∗
B]

= [A|AR1,0| · · · |ARi,j | · · · |AR
,k] = A[Im|R1,0| · · · |Ri,j | · · · |R
,k].

Let R = [Im|R1,0| · · · |Ri,j| · · · |R
,k], therefore,

Ft
b∗ = Rt ·

[
Āt

∣∣∣[Im|Āt] · E
]
=
[
(ĀR)

t
∣∣∣[Rt|(ĀR)

t
] · E

]
=
[
(ĀR)

t
∣∣∣[I(
(k+1)+1)m|(ĀR)

t
]

[
Rt 0
0 In

]
· E

]
=
[
(ĀR)

t
∣∣∣[I(
(k+1)+1)m|(ĀR)

t
] · E′

]
,

where, E′ =
[
Rt 0
0 In

]
E. Note that

s1(E
′) ≤ s1(R

t)s1(E) ≤ Õ(b
√
m) · O(

√
mn) ≤ Õ(bm

√
n).
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We have the following,

Cb∗ = [I(
(k+1)+1)m|Ft
b∗ ] ·m

= [I(
(k+1)+1)m|(ĀR)
t
] · ([I(
(k+1)+1)m+n|E′] ·m) mod q.

Therefore, it suffices to bound the number of possible values of the form

[I(
(k+1)+1)m+n|E′] ·m mod q.

Define Nd(s) to be the number of integer points in an d-dimensional ball of
radius s. For r ≥

√
d, from the volume of the ball and Stirling’s approxima-

tion, we have Nd(s) = O(s/
√
d)d. Therefore, the number of possible values

of [I(
(k+1)+1)m+n|E′] ·m is at most N(
(k+1)+1)m+n(‖[I(
(k+1)+1)m+n|E′] ·m‖).
Since m = [x0|x1,0|...|xi,j |...|x
,k|x] ∈ D

(
(k+1)+1)m+n
β ×Dn̂−n

γ , we have

‖[I(
(k+1)+1)m+n|E′] ·m‖ ≤ β ·
√
(�(k + 1) + 1)m+ n+ s1(E

′) · γ
√
n̂− n

≤
√
(�(k + 1) + 1)m+ n · (β + γ · s1(E′)).

Therefore, the number of possible values of [I(
(k+1)+1)m+n|E′] · m is at most

O(β + γ · s1(E′))(
(k+1)+1)m+n. For lossiness, observe that the base-2 logarithm
of the domain size of L-IPTDF.Ev(PP,b∗, ·) is

((�(k + 1) + 1)m+ n) log β + (c− 1)n log γ.

Whereas by the above, and for β ≥ γ · s1(E′), the base-2 logarithm of the image
size of L-IPTDF.Ev(PP,b∗, ·) is at most

((�(k + 1) + 1)m+ n) log(O(β + γ · s1(E′)))

≤ ((�(k + 1) + 1)m+ n) log β +O((�(k + 1) + 1)m).

Let γc−1 ≥ 2Ω((
(k+1)+1)m/n), and for sufficient large constant in Ω(·), the two
quantities above differ by at least Ω((�(k + 1) + 1)m) as desired. 
�

4.3 Security

In this subsection, we show that the inner-product function described above is
Ω((�(k + 1) + 1)m)-lossy under selective attribute attacker.

Theorem 1. Suppose β, γ as in Lemma 8. If decisional LWE problem is infea-
sible with error rate α, then IPTDF described above is Ω((�(k + 1) + 1)m)-lossy
with sibling L-IPTDF described above, under selective attribute adversaries.

Proof. We define a series of games (Game0,...,Game3) where in Game0, an adver-
sary A is against IPTDF, that is, the public parameter generation, key generation
algorithms are from IPTDF. While in Game3, A is against L-IPTDF, that is, the
parameter generation, key generation algorithms are from L-IPTDF. We show
that the adversary’s views in the first game and the last game are indistinguish-
able.
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Game0: A submits a challenge attribute vector b∗ = (b∗1, ..., b
∗

) before setup.

The challenger uses the algorithm of Lemma 4 to obtain (A,TA) ∈ Zn̂×m
q ×

Zm×m, and chooses uniformly random matrices B,Ai,j ∈ Zn̂×m
q for 1 ≤ i ≤

�, 0 ≤ j ≤ k. The challenger gives (A,B,{Ai,j}1≤i≤
,0≤j≤k) to A, and keeps
TA as the master secret key. When A queries an inversion key for a pred-
icate vector a with 〈a,b∗〉 �= 0 mod q, the challenger uses TA to respond
an inversion key Sa by invoking algorithm SampleLeft from Lemma 6, the
distribution of Sa depends on Ua and σ .

Game1: This game is identical to Game0 except that, the challenger changes
the way to generateAi,j for 1 ≤ i ≤ �, 0 ≤ j ≤ k. Instead, the challenger first
chooses pairwise independent Ri,j ∈ Dm×m

Z,b·ω(
√
logn)

for 1 ≤ i ≤ �, 0 ≤ j ≤ k.

Let Ai,j = ARi,j − rjb∗iB.

Game2: This game is identical to Game1 except that the challenger changes the
way to generate the master secret key and respond the key-extraction query.
Instead, the challenger uses the algorithm of Lemma 4 to obtain (B,TB),
and chooses A ← Zn̂×m

q uniformly at random. When A queries an inversion
key for a predicate vector a with 〈a,b∗〉 �= 0 mod q, the challenger uses TB

and Ri,j for 1 ≤ i ≤ �, 0 ≤ j ≤ k to respond an inversion key Sa by invoking
algorithm SampleRight from Lemma 7, the distribution of Sa depends on
Ua and σ.

Game3: This game is identical to Game2 except that the challenger changes
the way to generate A. Instead, the challenger chooses a uniformly random

matrix Ā ∈ Zn×m
q , and E ← D(m+n)×(n̂−n)

Z,αq where αq = Θ(
√
n). Set At =[

Āt
∣∣∣[Im|Āt] ·E mod q

]
.

It’s obvious that Game0 is the IPTDF security definition and Game3 is the
L-IPTDF security definition. We now show that the adversary’s views between
the adjacent games are indistinguishable.

The only difference of Game0 of Game1 is the way Ai,j generated. In Game1,
A is uniform, therefore A,AR1,0, ...,AR
,k is statistically close to a uniform
string of the same size by Lemma 3, and so is A,AR1,0 − r0b∗1B, ...,AR
,k −
rkb∗
B. Thus, the adversary’s views between Game0 and Game1 are statistically
indistinguishable.

The differences of Game1 and Game2 are the way A,B generated and the
way to answer key-extraction queries. By Lemma 4, the distributions of A,B
in Game1 and Game2 are statistically close. Therefore, the distributions of
Ua in Game1 and Game2 are statistically close. In Game2, note that Ua =

[A|A(

∑

i=1

k∑
j=0

ai,jRi,j) − 〈a,b∗〉B], it can invoke the algorithm SampleRight by

Lemma 7 as long as 〈a,b∗〉 �= 0 mod q. By Lemma 6 and Lemma 7, for suf-
ficiently large σ, the distribution of Sa in Game1 and Game2 are statistically
close.
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Apparently, matrix A in Game2 and Game3 is computational indistinguish-
able if the decisional LWE problem is infeasible. Summarize the above discus-
sions, we complete the proof 
�

4.4 Parameter Selection

We can extract from the above description the parameters required for correct-
ness and security of the system. By Lemma 8 we require

γc−1 ≥ 2Ω((
(k+1)+1)m/n), and γ·Ω̃(bm
√
n) ≤ β ≤ q

2
√
2σm((r − 1)�(k + 1) + 1)

.

For security, we require αq = Θ(
√
n). The constants c and γ depend on the rela-

tionship of �,m, and n. We need γc−1 ≥ 2Ω((
(k+1)+1)m/n). In order to generateA
with a trapdoor, we havem = Θ(n̂ logb q), so we need γ>qΘ((
(k+1)+1)/ log b)·c/c−1.
For any desired constant C > 1 and � = O(log n), we can choose constants
k > 1, c > 1 and choose b = Θ(n) such that γ ≤ q1/C . The additional con-
straints imposed by our security reduction are as follows. From the description

of IPTDF.Pg, we have ‖T̃A‖ = O(b
√

n̂ logb q) by Lemma 4, in order to respond
the key-extraction queries by SampleLeft, σ subjects to the requirement that

σ ≥ ‖T̃A‖ · ω(
√
logm) = O(b

√
n̂ logb q) · ω(

√
logm).

From the description of L-IPTDF.Pg, we have ‖T̃B‖ = O(b
√

n̂ logb q) by Lemma
4, in order to respond the key-extraction queries by SampleRight, σ subjects to
the requirement that

σ ≥ ‖T̃B‖ · s1(

∑

i=1

k∑
j=0

ai,jRi,j) · ω(
√
logm).

Since Ri,j are chosen from Dm×m
Z,bω(

√
logn)

, and ai,j ∈ {0, ..., r − 1}, it follows that

s1(

∑

i=1

k∑
j=0

ai,jRi,j) ≤ Õ((r − 1)�(k + 1) · b
√
m) with overwhelming probability.

We see that it suffices to choose

σ ≥ O(b
√
n̂ logb q) · Õ((r − 1)�(k + 1)b

√
m) · ω(

√
logm).

To satisfy the more stringent of the above two conditions, we set σ = Θ(r�kn3.5).
For correctness and lossiness, it suffices to take

q1/C · Ω̃(bm
√
n) ≤ β ≤ q/(2

√
2σm(r − 1)(�(k + 1) + 1)).

In order to satisfy all the constraints, it is sufficient to set r = q1/C
′
for some

constant C′ > 1 (therefore k = C′ is a constant), and sufficiently large q such
that

q1−1/C−2/C′
≥ Ω̃(m2n5�2k2) = Ω̃(n7�2k2).
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The following selection of parameters satisfies all of these constrains. For a given
� = O(log n) and constant C,C′, set

m = 20cn, β = n3+δ, γ = nδ,
σ = �r�kn3.5, α = (n7+δ�2k2)−1, q = the prime nearest to �n7.5+δ�2k2,

where nδ = �q1/C+2/C′, and constant c is set as in the analysis, and b = n.
Observe that the above setting of parameters satisfies all the constrains, the
security of the scheme can be based on the hardness of approximating SIVP

and GapSvp to within a factor of Õ(n/α) = Õ(n8+δ�2k2) in the worst case by
quantum algorithms.

5 Applications

In this section, we describe some applications of our IPTDF. These applications
include chosen-plaintext secure IPE schemes and chosen-ciphertext secure IPE

scheme. Katz, Sahai, and Waters [19] introduce two basic security notions of
IPE: payload hiding and attribute hiding. Payload hiding guarantees that no
efficient adversary can obtain any information about the encrypted message,
but allows information about attributes to be revealed. Attribute hiding is a
stronger notion which guarantees in addition that no efficient adversary can
obtain any information about the attribute associated with a ciphertext.

Chosen-Plaintext Secure Inner-Product Encryption. A straightforward
application of IPTDF is for inner-product encryption (IPE). By the lossiness of
IPTDFs, it is easy for us to obtain a payload hiding IPE scheme (via hardcore bits)
under selectively chosen-plaintext adversaries. However, as mentioned in Sec. 4.1
we have to append the attribute vector after the function value, therefore, anyone
can learn the information of the attribute from the function value. In this case
we can not achieve attribute hiding IPE schemes using our IPTDF, we leave it as
a future work to construct IPTDFs whose attribute information is hidden in the
function value.

Due to its lossiness, our IPTDF together with a pairwise independent hash
function h imply an IPE scheme for multi-bit messages (with length O(�n)).
The ciphertext of the IPE scheme consists of c = (IPTDF.Ev(PP,b, x), h(x) ⊕
m), where x is randomly chosen from the domain of IPTDF and h, and m is
the message. Our concrete construction of IPTDF is inspired by [2], then the
efficiency of our IPE scheme is almost the same as the one in [2] except that our
scheme can encrypt multi-bit messages simultaneously. However, our scheme
only supports attribute vectors with logarithmic length, while the scheme in [2]
supports attribute vectors with polynomial length.

Chosen-Ciphertext Secure Inner-Product Encryption. Peikert and Wa-
ters [27] gave a framework to construct chosen-ciphertext secure public key
encryption schemes from lossy trapdoor functions. Our inner-product lossy trap-
door function also works in this framework. Following the framework in [27], to
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obtain a payload hiding IPE scheme under selectively chosen-ciphertext adver-
saries, one can combine an IPTDF and an All-But-One (ABO) [27] trapdoor func-
tion with a strongly unforgeable one-time signature. The ciphertext of the IPE

scheme consists of c = (vk, IPTDF.Ev(PP,b, x), ABO-TDF.Ev(vk, x), h(x)⊕m,σ),
where x is randomly chosen from the domain of IPTDF and ABO-TDF, h is a pair-
wise independent hash function, m is the message, and σ is the one-time signa-
ture of IPTDF.Ev(PP,b, x), ABO-TDF.Ev(vk, x), and h(x)⊕m under the signing
key associated to vk.

In order to base the resulting IPE scheme on lattices, we need to provide an
ABO trapdoor function based on lattices.2 We have two ways to address this
problem. The first one is to use the original lattice based ABO trapdoor function
presented in [27]. However, this construction brings large public key size. We
prefer to the second one, and as a by-product, we give a generic construction for
ABO trapdoor functions. We observe that the lossy sibling of IBTDF is actually
an ABO lossy trapdoor function if we view an identity as a branch. The lossy
identity hiding property is exactly the hidden branch property of ABO trapdoor
functions (even the adversary can access an oracle to obtain other inversion
keys). Bellare et al. presented a “direct” construction of IBTDF from lattices.
Use this ABO trapdoor function and our IPTDF scheme, we obtain the first
chosen-ciphertext secure IPE scheme based on lattices.

Note that a generic method to construct chosen-ciphertext secure IPE scheme
is the CHK/BK [15,12] transform. The CHK/BK transform transforms a 2-level
chosen-plaintext secure hierarchical IPE scheme into chosen-ciphertext secure
IPE scheme. However, the only lattice based IPE scheme in [2] seems difficult to
be extended into a hierarchical IPE scheme. Therefore, it seems difficult to obtain
a chosen-ciphertext secure IPE scheme from the scheme in [2] using CHK/BK
transform.
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Abstract. We extend the work of Bellare, Boldyreva and Staddon on the system-
atic analysis of randomness reuse to construct multi-recipient encryption schemes
to the case where randomness is reused across different cryptographic primitives.
We find that through the additional binding introduced through randomness reuse,
one can actually obtain a security amplification with respect to the standard black-
box compositions, and achieve a stronger level of security. We introduce stronger
notions of security for encryption and signatures, where challenge messages can
depend in a restricted way on the random coins used in encryption, and show that
two variants of the KEM/DEM paradigm give rise to encryption schemes that
meet this enhanced notion of security. We obtain the most efficient signcryption
scheme to date that is secure against insider attackers without random oracles.

Keywords: Signcryption, Insider Security, Randomness Reuse.

1 Introduction

Signcryption is a cryptographic primitive that aims to simultaneously provide the guar-
antees of public-key encryption and signature schemes [17], i.e., confidentiality, in-
tegrity, authentication and possibly non-repudiation, whilst offering efficiency gains.
One trivial way to obtain the signcryption functionality—if one is not interested in sav-
ing computational power or bandwidth—is to use a black-box combination of the two
primitives. This approach was systematically studied by An, Dodis and Rabin [2], by
looking at Encrypt-then-Sign (EtS), Sign-then-Encrypt (StE) and Encrypt-and-Sign
(EaS) compositions. The former two constructions are natural sequential composi-
tions of the two primitives, whereas EaS is a parallel composition using a commitment
scheme to enforce the necessary binding. A well-known, albeit surprising, result in [2]
is that the interaction between the signature and encryption primitives can work against
the security of the composition, making it impossible to achieve the strongest levels of
security, even when the underlying encryption and signature schemes are themselves
strongly secure. For example, in an StE construction an attacker knowing the secret
key of the receiver is always able to forge valid signcryptions simply by decrypting
and re-encrypting the contents of a legitimately generated ciphertext, regardless of the
security guarantees provided by the underlying signature scheme: this translates into a
trivial break of unforgeability against insider attackers in the signcryption setting.
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One general approach to obtaining efficiency gains in cryptography is to reuse ran-
domness across instantiations of various cryptographic algorithms. This technique can
allow for significant savings in processing load and bandwidth, as partial results (and
even ciphertext elements) can be shared between multiple instances of cryptographic
algorithms. For this reason, randomness reuse is frequently used in the context of batch
encryption operations where (possibly different) messages are encrypted to multiple
recipients, as recognized by Kurosawa [11] in the construction of multi-recipient en-
cryption schemes. Furthermore, randomness reuse is also used as an optimization tech-
nique, in an ad-hoc way, in the construction of signcryption schemes [17,16]. Neverthe-
less, this avenue must be pursued with caution, since randomness reuse may, of course,
hinder the security of the resulting cryptographic schemes.

Bellare et al. [3], building on the work of Kurosawa [11], systematically study the
problem of reusing randomness in multi-recipient encryption. The authors consider the
particular case of constructing such schemes by running multiple instances of a public-
key encryption (PKE) scheme, whilst sharing randomness across them. An interesting
result in this work is a general method for identifying PKE schemes that are secure
when used in this scenario. Schemes which satisfy the so-called reproducibility test
permit establishing the security for multiple recipients with randomness reuse through
a variant of the hybrid argument.

OUR CONTRIBUTIONS. In this paper we extend the work of Bellare et al. [3] to the case
where randomness is reused across different cryptographic primitives, and analyze the
security of signcryption schemes constructed by composing encryption and signature
schemes under randomness reuse. More in detail, our contributions are the following:

– We define a compatibility notion that establishes classes of signature and encryption
schemes that can be composed under randomness reuse to obtain correct signcryp-
tion schemes. We then identify security properties that are sufficient for the EtS and
StE compositions with randomness reuse to result in secure signcryption schemes.
In particular, we introduce the notion of randomness-dependent security for both
signatures and encryption schemes. Intuitively, security must be preserved when
the messages chosen by attackers are allowed to depend (in a restricted way) on the
implicit randomness input to the underlying cryptographic algorithms. We believe
these security notions may be of independent interest in the study of the role of ran-
domness in cryptographic security and, particularly, in the generic analysis of ran-
domness reuse optimizations for scenarios where multiple (possibly heterogenous)
cryptographic operations are carried out in a batch procedure (e.g., optimizing the
overall performance of a server continuously carrying out key agreement, signature
and encryption operations).

– We find that through the additional binding that is established via the reuse of ran-
domness, it is possible to achieve full insider security. Our results hold in the dy-
namic multi-user setting, although in some cases we require adversaries to register
the full key pairs of all users created for the attack. This is usually called the reg-
istered key model [13] and it captures natural restrictions in many PKI settings.
This is a security amplification with respect to the equivalent compositions without
randomness reuse, in which it is not possible to achieve this level of security, even
starting from underlying schemes providing the same security guarantees we
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require for our results. In other words, our results depend in an essential way on
reusing randomness, and it is not the case that a standard composition of randomness-
dependent secure signature and encryption schemes trivially yields a comparable
result. In this respect, our work generalizes independent work in the same direction
presented in [13], and that we contextualize in Section 2.

– We identify a set of simple and natural properties of KEMs and DEMs that suf-
fice to ensure that PKE schemes constructed from both variants of the KEM/DEM
composition paradigm proposed in [9,10] fall within our framework. As a particular
case, when the Kurosawa–Desmedt [12] encryption scheme is composed with the
Boneh–Boyen signature scheme [6] in the StE construction, we obtain the most
efficient signcryption scheme to be proven insider secure in the standard model.
One caveat is that our results hold only in the registered key model. In compensa-
tion, our scheme offers non-repudiation, inherited from the StE construction, and
a combination of computational and communication (bandwidth) efficiency that
outperforms previous solutions.

STRUCTURE OF THE PAPER. In the next section we review the related work in more
detail (a more extensive discussion can be found in the full version of the paper). Then,
in Section 3 we settle notation by introducing the standard syntax, correctness and se-
curity definitions for signature, encryption and signcryption schemes. In Section 4 we
describe the properties that are sufficient for the EtS and StE compositions to yield se-
cure signcryption schemes under randomness reuse, and prove the corresponding com-
position theorems. Finally, in Section 5 we describe the potential instantiations of our
framework and compare our scheme with existing results.

2 Related Work
Matsuda et al. [13] and Chiba et al. [8] systematically study the construction of sign-
cryption schemes using compositions of standard cryptographic primitives, aiming to
obtain levels of efficiency and security that are comparable to the best concrete schemes
in the literature via generic constructions. Independently of our work, Matsuda et al. [13]
show how to perform compositions of tag-based KEMs and signature schemes to obtain
efficiency gains in an StE-like construction via randomness reuse. They also describe
a series of schemes that can be used to instantiate these constructions. The resulting
compositions are efficient and achieve full insider security, with the caveat that strong
unforgeability can only be proven in a slightly weaker model, where the adversary must
register the secret keys for the public keys it chooses to query to the signcryption oracle.
Our results have the same limitation.

The main differences between our work and the approach in [13] are the follow-
ing. Our results are more general in that they consider the composition of encryption
schemes and signature schemes under randomness reuse, rather than lower level prim-
itives. On one hand, this sets our results as natural extensions to the work by An et
al. [2] on signature and encryption compositions, and also of the work of Bellare et
al. [3], allowing us to establish a connection between the two results. On the other
hand, our results capture the ones included in [13] on randomness reuse for the con-
struction of signcryption schemes as particular cases, and cover a broader class of con-
structions. More precisely, our compatibility framework and security results apply to



On the Joint Security of Signature and Encryption Schemes 209

general encryption schemes, rather than those specifically constructed from tag-based
KEMs. This allows us to capture not only schemes constructed using a specific flavor
of tag-KEMs [13], but also encryption schemes constructed from other known variants
of the KEM/DEM paradigm [9,10], and even schemes that do not follow this paradigm.

Chiba et al. [8] propose the first fully secure signcryption schemes in the standard
model by using a variant of the StE construction that relies on a chosen-ciphertext-
secure tag-based KEM, a chosen-ciphertext-secure DEM that has a “one-to-one” prop-
erty, and a strongly unforgeable signature scheme. Such schemes are less efficient than
the one we propose, but are proven secure without the key registration requirement.

3 Preliminaries

NOTATION. We write a ← b to denote the algorithmic action of assigning the value
of b to the variable a. We use ⊥/∈ {0, 1}� to denote special failure symbol. If S is a
set, we write a ←$ S for sampling a from S uniformly at random. If A is a probabilis-
tic algorithm we write a ←$ A(i1, i2, . . . , in) for the action of running A on inputs
i1, i2, . . . , in with random coins, and assigning the result to a. Sometimes we run A on
specific coins r and write a ← A(i1, i2, . . . , in; r).

GAMES. In this paper we use the code-based game-playing language [4]. Each game
has an Initialize and a Finalize procedure. It also has specifications of procedures to
respond to an adversary’s various queries. A game is run with an adversaryA as follows.
First Initialize runs and its outputs are passed to A. ThenA runs and its oracle queries
are answered by the procedures of the game. When A terminates, its output is passed to
Finalize which returns the outcome of the game. In each game, we restrict attention to
legitimate adversaries, which is defined specifically for each game. We use lists as data
structures to keep relevant state in the games. The empty list is represented by square
brackets [ ]. We denote by List ← a : List the action of appending element a to the head
of a list List.

PUBLIC-KEY ENCRYPTION. A public-key encryption scheme E = (EGen,Enc,Dec) is
specified by three polynomial-time algorithms (in the length of their inputs) associated
with a message space M and a randomness space R.

– EGen(1λ) is the probabilistic key-generation algorithm, taking as input the security
parameter and returning a secret key sk and a public key pk.

– Enc(m, pk; r) is the probabilistic encryption algorithm. On input a message m ∈
M, a public key pk, and possibly some random coins r ∈ R, this algorithm outputs
a ciphertext c.

– Dec(c, sk) is the deterministic decryption algorithm. On input of a ciphertext c and
a key sk, this algorithm outputs a message m or failure symbol ⊥.

The correctness of a public-key encryption scheme requires that for any λ ∈ N, any
(sk, pk) ←$ EGen(1λ), any m ∈ M, and any random coins r ∈ R, we have that
Dec(Enc(m, pk; r), sk) = m.

The standard notion of security for a public-key encryption scheme considered here
is indistinguishability under chosen-ciphertext attacks (IND-CCA). We refer the inter-
ested reader to the full version of the paper for a formal definition.
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DIGITAL SIGNATURE. A signature scheme S = (SGen, Sign,Verify) is specified by
three polynomial-time algorithms with a randomness space R and a message space M.

– SGen(1λ) is the probabilistic key-generation algorithm which takes as input the
security parameter and returns a secret key sk and a public key pk.

– Sign(m, sk; r) is the probabilistic signature generation algorithm. On input a mes-
sage m, a secret key sk, and possibly some random coins r ∈ R, this algorithm
outputs a signature σ.

– Verify(m, σ, pk) is the deterministic signature verification algorithm. On input of
a signature σ, a message m and a public key pk, this algorithm outputs a boolean
value T or F.

The correctness of a signature scheme requires that for any λ ∈ N, anym ∈ {0, 1}�, any
(sk, pk) ←$ SGen(1λ), and any r ∈ R, we have that Verify(Sign(m, sk; r),m, pk) = T.

The standard notion of security for a digital signature scheme considered in this
paper is strong existential unforgeability under chosen-message attacks (sUF-CMA).
We refer the interested reader to the full version of the paper for a formal definition.

SIGNCRYPTION. A signcryption scheme SC = (Gen, Signcrypt,Unsigncrypt) is spec-
ified by three polynomial-time algorithms associated with a message space M and a
randomness space R.

– Gen(1λ) is the probabilistic key-generation algorithm which takes as input the se-
curity parameter and returns a secret key sk and a matching public key pk. Unless
one wishes to signcrypt a message to oneself, two key pairs are required to sign-
crypt and unsigncrypt.

– Signcrypt(m, skS , pkR; r) is the probabilistic signcryption algorithm. On input a
message m ∈ M, the sender’s secret key skS , the receiver’s public key pkR, and
possibly some random coins r ∈ R, this algorithm outputs a signcryption c.

– Unsigncrypt(c, pkS , skR) is the deterministic unsigncryption algorithm. On input a
signcryption c, the sender’s public key pkS , and the receiver’s secret key skR, this
algorithm outputs a message m or failure symbol ⊥.

The correctness of a signcryption scheme requires that for any m ∈ M, any λ ∈ N, any
(skS , pkS) ←$ Gen(1λ), any (skR, pkR) ←$ Gen(1λ), and any random coins r ∈ R,
we have Unsigncrypt(Signcrypt(m, skS , pkR; r), pkS , skR) = m. We consider here the
strong notion of confidentiality, introduced by [16], in which the adversary is allowed
to choose without restrictions pkS to query to the Unsigncrypt oracle. The adver-
sary may also choose the challenge key pair (skS , pkS), but the key pair is required
to be valid. Analogously to IND-CCA for encryption, LoR oracle can only be called
once. We refer to this model as dynamic multi-user indistinguishability against insider
chosen-ciphertext attacks (IND-iCCA).

Definition 1. A signcryption scheme is IND-iCCA secure if, for every legitimate PPT
adversary A, the following definition of advantage is negligible in λ

AdvIND-iCCA
SC,A (λ) := 2 · Pr[IND-iCCASC,A(1λ) ⇒ T]− 1 ,

where game IND-iCCASC,A described in Figure 1.
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procedure Initialize(1λ):

(skR, pkR) ←$ Gen(1λ)
b ←$ {0, 1}
List ← [ ]
Return (pkR)

procedure Finalize(b′):
Return (b = b′)

procedure LoR(m0,m1, (skS , pkS)):
c ←$ Signcrypt(mb, skS , pkR)
List ← (c, pkS) : List
Return c

procedure Unsigncrypt(c, pkS):
m ← Unsigncrypt(c, pkS , skR)
Return m

Fig. 1. Game IND-iCCA for a signcryption SC = (Gen, Signcrypt,Unsigncrypt). An adversary
A is legitimate if: 1) it calls LoR once, with m0,m1 ∈ M and |m0| = |m1|, and a valid key
pair (skS, pkS); and 2) it does not query Unsigncrypt with (c, pkS) ∈ List.

We also define dynamic multi-user strong existential unforgeability against insider cho-
sen message attacks for authenticity, but in a slightly weaker model that obliges the
adversary to register a key pair (skR, pkR) before querying the Signcrypt oracle or
Finalize with pkR. For this purpose, a Key-Reg oracle is also available. This model
is called sUF-iCMA, for short.

Definition 2. A signcryption scheme is sUF-iCMA secure if, for every legitimate PPT
adversary A, the following definition of advantage is negligible in λ

AdvsUF-iCMA
SC,A (λ) := Pr[sUF-iCMASC,A(1λ) ⇒ T] ,

where game sUF-iCMASC,A described in Figure 2.

procedure Initialize(1λ):

(skS , pkS) ←$ Gen(1λ)
List ← [ ]
List′ ← [ ]
Return pkS

procedure Signcrypt(m, pkR):
If (�, pkR) ∈ List′

c ←$ Signcrypt(m, skS , pkR)
List ← (c, pkR) : List
Return c

Else Return ⊥

procedure Key-Reg(sk, pk):
If isValid(sk, pk)

List′ ← (sk, pk) : List′

Return T
Else Return F

procedure Finalize(c, pkR):
If (c, pkR) ∈ List Return F
If (skR, pkR) ∈ List′

m ← Unsigncrypt(c, pkS , skR)
If m �=⊥ Return T

Return F

Fig. 2. Game sUF-iCMA for a signcryption SC = (Gen,Signcrypt,Unsigncrypt)

REMARK. We assume one can confirm the validity of a key pair using an efficient algo-
rithm isValid, which is usually the case for practical schemes. Under this assumption,
one could omit the key pair validity restriction in the adversary legitimacy definition
in the IND-iCCA security model, and require the signcryption algorithm to internally
check for sender key pair validity. This does not apply to the key registration oracle in
the unforgeability game, as this is conditioning the adversary to provide valid key pairs
for the receivers (note that this check cannot be done internally by the signcryption al-
gorithm). However, one could remove the validity check restriction in Finalize, and
require that the unsigncryption algorithm does check for receiver key pair validity.
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4 Compositions with Randomness Reuse

In this section we look at black-box compositions of signature and encryption under ran-
domness reuse. We describe properties that are sufficient for the encrypt-then-sign and
sign-then-encrypt constructions with shared randomness to yield secure signcryption
schemes, and prove the corresponding composition theorems. Our proposed framework
gives rise to signcryption schemes that attain full insider security in dynamic multi-user
models. We defer a discussion on instantiability to Section 5.

4.1 Composition-Enabling Properties

PARTITIONED SCHEMES, COMPATIBILITY, AND CONDITIONAL INJECTIVITY. The no-
tion of joint signature and encryption in the public-key setting with randomness reuse
implies that the signature and encryption algorithms share the same randomness space.
In order to clarify the concept and simplify the security proofs, we will restrict our
attention to partitioned schemes [7]. Furthermore, to enable composition under ran-
domness reuse, we also require the signature and encryption schemes to be compatible.
We formalize these notions next.

Definition 3 (Partitioned schemes). We say a signature scheme is partitioned, if its
signature space is composed of pairs (σ,R), where the signature generation algorithm
calculates R independently of the input message and keys. More precisely, we require
that experiment IndepS in Figure 3 returns T with probability 1 for all messages m0

and m1 in the appropriate space. Similarly, an encryption scheme is partitioned, if its
ciphertext space is composed of pairs (c,R) and experiment IndepE in Figure 3 returns
T with probability 1 for all messages m0 and m1 in the appropriate space.

Definition 4 (Compatibility). A signature scheme S and an encryption scheme E are
compatible if they are partitioned, share the same random space R, and the experiment
Compatibility in Figure 3 returns T with probability 1 for any messages m0 and m1

in the appropriate spaces.

test IndepS(m0,m1):

(sk0, pk0) ←$ SGen(1λ)
(sk1, pk1) ←$ SGen(1λ)
r ←$ R
(σ0,R0) ← Sign(m0, sk0; r)
(σ1,R1) ← Sign(m1, sk1; r)
Return (R0 = R1)

test IndepE(m0,m1):

(sk0, pk0) ←$ EGen(1λ)
(sk1, pk1) ←$ EGen(1λ)
r ←$ R
(c0,R0) ← Enc(m0, pk0; r)
(c1,R1) ← Enc(m1, pk1; r)
Return (R0 = R1)

test CompatibilityS,E(m0,m1):

(sk0, pk0) ←$ SGen(1λ)

(sk1, pk1) ←$ EGen(1λ)
r ←$ R
(σ,R0) ← Sign(m0, sk0; r)
(c, R1) ← Enc(m1, pk1; r)
Return (R0 = R1)

Fig. 3. Partitioning and compatibility tests for a partitioned signature S = (SGen,Sign,Verify),
and a partitioned public-key encryption E = (EGen,Enc,Dec)

Finally, we also require the following injectivity properties in partitioned schemes,
which essentially state that, once the randomness dependent component R is fixed, and
for any fixed key pair, the signature generation and encryption algorithms become in-
jective mappings from the message space onto the signature and ciphertext spaces, re-
spectively. We observe that these properties can be relaxed to computational hardness
assumptions, and all our results still go through.
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Definition 5 (Conditional injectivity). We say a partitioned signature scheme is con-
ditionally injective if for all key pairs (sk, pk), all messages m and signatures (σ,R) in
the appropriate spaces, it holds that:

Sign(m, sk) = (σ,R) ∧ σ �= σ′ ⇒ Verify(m, (σ′,R), pk) = F.

We say a partitioned encryption scheme is conditionally injective if for all key pairs
(sk, pk), messages m and ciphertexts (c,R) in the appropriate spaces, it holds that:

Enc(m, pk) = (c,R) ∧ c �= c′ ⇒ Dec((c′,R), sk) �= m.

REPRODUCIBILITY. Following the approach of Bellare et al. [3], we introduce new
notions of reproducibility that allow identifying encryption and signature schemes for
which it is possible to prove that randomness reuse does not hurt the security of com-
positions.

Definition 6 (Reproducibility). We say that a signature scheme is reproducible if there
exists a deterministic polynomial-time reproduction algorithm RepS (resp. RepE ) tak-
ing a message, a secret key, and a value R such that experiment RepS (resp. RepE ) in
Figure 4 returns T with overwhelming probability for all messages m in the appropriate
space.

test RepS(m):

(sk, pk) ←$ SGen(1λ)
r ←$ R
(σ,R) ← Sign(m, sk; r)
σ′ ←$ RepS(m, sk,R)
Return (σ = σ′)

test RepE (m):

(sk, pk) ←$ EGen(1λ)
r ←$ R
(c,R) ← Enc(m, pk; r)
c′ ←$ RepE (m, sk,R)
Return (c = c′)

Fig. 4. Reproducibility test for a partitioned signature S = (SGen,Sign,Verify) with repro-
ducibility algorithm RepS , and a partitioned public-key encryption E = (EGen,Enc,Dec) with
reproducibility algorithm RepE

Intuitively, the schemes are reproducible if it is possible to reconstruct a valid signa-
ture (resp. ciphertext) without having explicit access to the random coins, but instead
having access to the secret key. We note that this property seems natural for encryption
schemes, where knowledge of the secret key may “compensate” for the lack of knowl-
edge of the implicit randomness. As for signature schemes, this property may seem
less natural, as the reproducibility algorithm should be able to produce valid signatures,
while having access to apparently less information than the signature generation algo-
rithm itself. However, one can easily see that if R = r, then a signature scheme is triv-
ially reproducible. Furthermore, Matsuda et al. [13] present various (standard model)
signature schemes that, not having this characteristic, are shown to be reproducible. We
note that our formalization defines reproducibility as a property of a single scheme, and
not as a property of a pair of schemes. We see this as an important definitional choice
in ensuring that our framework can be extended to reason about randomness reuse be-
tween other cryptographic primitives.
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4.2 Security under Randomness-Dependent Attacks

We introduce two new attack models, one for encryption and one for digital signatures.
In a nutshell, these models allow messages queried by the adversaries to the relevant
oracles to depend on the randomness component R, so this is provided to the adversary
in advance. These models are specific for partitioned schemes and aimed at proving se-
curity under randomness reuse. We defer considerations on the feasibility of achieving
this level of security to the following section.

SECURITY OF ENCRYPTION UNDER RANDOMNESS-DEPENDENT ATTACKS. We de-
fine a new security model for encryption, which we call “indistinguishability under
randomness-dependent chosen-ciphertext attacks” (IND-RDA). This new model is sim-
ilar to IND-CCA except that the adversary receives the R component for the challenge
in the beginning of the game. To capture this notion of security, rather than partitioning
the encryption algorithm, we simply encrypt the fixed all-zeros message at the begin-
ning of the game, in order to obtain a pair (r,R). Note that, since R is guaranteed not to
depend on the message, we have that reusing r to produce the challenge ciphertext will
yield a consistent security game definition.

Definition 7. A public-key encryption scheme is IND-RDA secure if, for every legiti-
mate PPT adversary A, the following definition of advantage is negligible in λ

AdvIND-RDA
E,A (λ) := 2 · Pr[IND-RDAE,A(1λ) ⇒ T]− 1 ,

where game IND-RDAE,A described in Figure 5.

procedure Initialize(1λ):
b ←$ {0, 1}
List ← [ ]

(sk, pk) ←$ EGen(1λ)
r ←$ R
(c, R) ← Enc(0, pk; r)
Return (pk,R)

procedure LoR(m0,m1):
(c,R) ← Enc(mb, pk; r)
List ← (c, R) : List
Return (c,R)

procedure Dec(c, R):
m ← Dec((c, R), sk)
Return m

procedure Finalize(b′):
Return (b = b′)

Fig. 5. Game IND-RDA for a partitioned public-key encryption E = (EGen,Enc,Dec). An ad-
versary A is legitimate if: 1) it calls LoR once, with m0,m1 ∈ M and |m0| = |m1|; and 2) it
never calls Dec on (c,R) ∈ List.

SECURITY OF SIGNATURES UNDER RANDOMNESS-DEPENDENT ATTACKS. We also
introduce a new security notion for partitioned signature schemes, which we call “strong
unforgeability under randomness-dependent chosen message attacks” (sUF-RDA). This
new model is similar to sUF-CMA, with the caveat that calls to the Sign oracle are done
in two steps. On a first interaction, the adversary obtains the randomness component
for the signature scheme, and in the next step it provides the message on which the full
signature is generated.

Definition 8. A digital signature scheme is sUF-RDA secure if, for every legitimate
PPT adversary A, the following definition of advantage is negligible in λ

AdvsUF-RDA
S,A (λ) := Pr[sUF-RDAS,A(1λ) ⇒ T] ,

where game sUF-RDAS,A described in Figure 6.
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procedure Initialize(1λ):

(sk, pk) ←$ SGen(1λ)
List ← [ ]
flag ← F
Return (pkS)

procedure Sign(m):
If flag = T

(σ,R) ← Sign(m, sk; r)
List ← (m, (σ,R)) : List
flag ← F
Return (σ,R)

Else
r ←$ R
(σ,R) ← Sign(0, sk; r)
flag ← T
Return (⊥,R)

procedure Finalize(m, (σ,R)):
If (m, (σ,R)) /∈ List ∧ Verify(m, (σ,R), pk)

Return T
Else Return F

Fig. 6. Game sUF-RDA for a partitioned signature S = (SGen,Sign,Verify)

It is clear that the security notion IND-RDA implies IND-CCA, and that sUF-RDA im-
plies sUF-CMA. On the other hand, it is easy to find counterexamples showing that
IND-CCA does not imply IND-RDA, nor does sUF-CMA imply sUF-RDA: simply con-
struct a scheme based on an encryption/signature algorithm that returns the secret key
when the input message is a fixed function of (e.g., equal to) the randomness com-
ponent. We note that such counterexamples can be constructed even if the underly-
ing schemes are reproducible, which shows reproducibility is not sufficient to imply
randomness-dependent security.

4.3 Secure Compositions under Randomness Reuse

Let a digital signatureS and a public-key encryption E be two compatible schemes, with
randomness space R. Our first construction, denoted EtS and described in Figure 7,
produces a signcryption scheme from E and S in an encrypt-then-sign composition
with randomness reuse. Conversely, in the StE construction, E and S are used in a
sign-then-encrypt composition as shown in Figure 8, also with randomness reuse. We
observe that we adopt the strategy proposed by An et al. [2] to achieve security in the
multi-user model, by always including the receiver’s public key in the signed data, and
always including the sender’s public key in the encrypted payload, so that it can be
checked for consistency upon decryption1.

Gen(1λ):

(sk1, pk1) ←$ SGen(1λ)
(sk2, pk2) ←$ EGen(1λ)
(sk, pk) ← ((sk1, sk2), (pk1, pk2))
Return (sk, pk)

Signcrypt(m, skS , pkS , pkR):
(sk1, sk2) ← skS
(pk1, pk2) ← pkR
r ←$ R
(c,R) ← Enc((m, pkS), pk2; r)
(σ,R) ← Sign((c, R, pkR), sk1; r)
ĉ ← (c, σ,R)
Return ĉ

Unsigncrypt(ĉ, pkS , skR, pkR):
(pk1, pk2) ← pkS
(sk1, sk2) ← skR
(c, σ,R) ← ĉ
(m, pk′S) ← Dec((c, R), sk2)
If Verify((c,R, pkR), (σ,R), pk1) ∧

pkS = pk′S Return m
Return ⊥

Fig. 7. EtS construction with randomness reuse

The following theorems state the security guarantees provided by these constructions.
The proofs can be found in the full version of this paper.

1 The overhead of encrypting the public key can be greatly reduced by encrypting its image
under a collision-resistant hash function, or using an efficient tag-based PKE as proposed
in [13].
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Gen(1λ):

(sk1, pk1) ←$ SGen(1λ)

(sk2, pk2) ←$ EGen(1λ)
(sk, pk) ← ((sk1, sk2), (pk1, pk2))
Return (sk, pk)

Signcrypt(m, skS , pkS , pkR):
(sk1, sk2) ← skS
(pk1, pk2) ← pkR
r ←$ R
(σ,R) ← Sign((m, pkR), sk1; r)
Return Enc((m, σ, pkS), pk2; r)

Unsigncrypt(ĉ, pkS , skR, pkR):
(pk1, pk2) ← pkS
(sk1, sk2) ← skR
(c, R) ← ĉ
(m, σ, pk′S) ← Dec((c,R), sk2)
If pkS = pk′S ∧

Verify(m, (σ,R), pk1)
Return m

Else Return ⊥

Fig. 8. StE construction with randomness reuse

Theorem 1 (Security of the EtS construction). Suppose signature scheme S and en-
cryption scheme E are compatible and that S is conditionally injective. Then the fol-
lowing hold:
1) If E is reproducible and S is sUF-RDA secure, then the resulting EtS construction is
sUF-iCMA secure.
2) If S is reproducible and E is IND-CCA secure, then the resulting EtS construction is
IND-iCCA secure.

Theorem 2 (Security of the StE construction). Suppose signature scheme S and en-
cryption scheme E are compatible and that E is conditionally injective. Then the fol-
lowing hold:
1) If S is reproducible and E is IND-RDA secure, then the resulting StE construction is
IND-iCCA secure.
2) If E is reproducible, and S is sUF-CMA secure, then the resulting StE construction
is sUF-iCMA secure.

We note that we obtain chosen-ciphertext security and strong unforgeability, both against
insider attackers, even though this could not be achieved simultaneously by plain se-
quential composition without randomness reuse. The intuition behind the proofs of both
theorems is the following. All proofs require simulating challenge signcryptions with
shared randomness across encryption and signatures, and such signcryptions must em-
bed a challenge from a signature or encryption security game. If one tried to reduce
directly to the standard notions of security for signature and encryption, this proof strat-
egy would fail, as one needs to commit to challenge messages before having access to
the randomness associated with the challenge. For example, this means that one would
not be able to request a signature on a ciphertext which shares the same randomness,
as this randomness is totally hidden from us. The randomness-dependent attack models
fix this problem by allowing adversaries to have access to the randomness components
R in challenge encryptions and signatures before committing to a challenge message.
Having access to R, one can simulate signatures and encryptions using the reproducibil-
ity properties of the schemes. For example, when proving that the StE construction is
IND-iCCA secure by reducing to the IND-RDA property of the encryption scheme, one
constructs the challenge signcryption as follows. When the adversary provides two chal-
lenge messages (m0,m1), one first obtains R and then uses the reproducibility property
of S to simulate signatures σ0 and σ1 on the challenge messages. One then queries the
LoR oracle on the resulting message/signature pairs (m0||σ0,m1||σ1). The challenge
will then be guaranteed to be correctly simulated with randomness reuse. We note that
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key registration is required for the unforgeability proofs, as the secret keys required to
run the reproducibility algorithms must be provided by the adversary. This is not an
issue in the chosen-ciphertext security proofs, since the sender’s secret key must al-
ways be provided to the LoR oracle (i.e., this is the case even in the standard dynamic
multi-user model for signcryption).

REMARK. The proofs of the theorems actually establish a slightly stronger result than
that stated in the theorems. Indeed, the results would still go through if the randomness-
dependent security models are modified in line with the weaker notions of generalized
chosen-ciphertext security [2] and existential unforgeability. We have chosen not to
include the details in the presentation for the sake of clarity.

REMARK. Our constructions aim to minimize the overhead of the resulting signcryp-
tion scheme. For this reason, StE construction does not include the full signature inside
the ciphertext — notice that R is not included inside the ciphertext. We remark that by
including the full signature we could relax the security requirements of the signature to
weak unforgeability, whilst still achieving strong unforgeability for the resulting com-
posed signcryption scheme. This security amplification is accomplished by combining
the extra binding provided by the randomness sharing with the conditional injectivity
of the algorithms.

REMARK. The combination of randomness-dependent security and reproducibility for
encryption schemes may be of independent interest in the design of multi-recipient
encryption schemes with randomness reuse. Indeed, it is straightforward to show that
for schemes displaying both properties the techniques proposed by Bellare et al. [3] can
be adapted to prove security under a stronger model than that originally adopted. Recall
that in [3] the adversary can place parallel challenge queries of n message pairs to the
challenge oracle, and this will return n ciphertexts under n different public keys. The
returned ciphertexts share the same encryption randomness. Applying our techniques,
one can give extra power to the adversary in that it need not be restricted to making
parallel challenge queries, but may choose challenge messages adaptively after seeing
ciphertexts that share the same randomness. Note that security can even be proven in an
analogue of the key registration model, in which the adversary can choose some keys
maliciously.

5 Instantiating the Constructions

5.1 Security under Randomness-Dependent Attacks

One interesting aspect of our results is the requirement for a stronger security guarantee
from the underlying signature and encryption components, in order to obtain security
under randomness reuse. Concretely, this translates into the randomness-dependent at-
tack models we have introduced in the previous section and raises the obvious question
of how likely it is that off-the-shelf public-key encryption or signature schemes meet
this level of security. Although we have no positive results for signature schemes in
the standard model, we will show in this section that the class of encryption schemes
achieving randomness-dependent security is potentially large, simply by looking at
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KEM/DEM paradigms for constructing PKEs. In fact, the Kurosawa–Desmedt [12]
appears as a notably efficient example that falls within our general framework. This
observation allows to go beyond the efficiency levels both in terms of computational
load and bandwidth of the previously most efficient standard model constructions.

RDA-SECURE SIGNATURE SCHEMES. For signature schemes, and restricting our at-
tention to constructions whose security does not rely on random oracles, we found that
current signature schemes do not meet this level of security. The typical problem, which
occurs for example in the Boneh–Boyen signature scheme, is that the security proof
critically relies on the ability to postpone the release of the randomness-dependent sig-
nature component until after the adversary has provided the message to be signed. This
is a possible explanation for the lack of EtS-like constructions with randomness reuse
in the standard model. If we admit random oracles, then one can consider any determin-
istic signature scheme, and randomness reuse no longer makes much sense as an op-
timization. Luckily, a RDA-secure signature is only required for the EtS construction.
We therefore concentrate our attention on StE compositions, where the randomness-
dependent security requirement applies only to the underlying encryption scheme.

RDA-SECURE ENCRYPTION FROM THE KEM/DEM PARADIGM. The first formaliza-
tion of a KEM/DEM composition theorem was presented by Cramer and Shoup in their
seminal paper on chosen-ciphertext-secure public-key encryption [9]. To simplify our
discussion, we will restrict our attention to KEMs where the ciphertext is public-key
independent, i.e., where the user-specific components of the public key passed to en-
capsulation are not used to calculate the ciphertext c, but only in the calculation of the
secret key2 k. We observe that PKE constructed from KEM/DEM schemes such as the
ones we consider are naturally partitioned, and that the KEM ciphertext can be seen as
the R component of the PKE ciphertext.

The KEM/DEM composition theorem in [9] roughly goes as follows. One performs
a single game hop, modifying the IND-CCA game so that, rather than using the secret
key output by the KEM in the challenge ciphertext generation, one uses a random secret
key as input to the DEM. The definition of the decryption oracle is also modified con-
sistently with this change. The transition between the two games can then be reduced
to the KEM security assumption. The adversary’s advantage in the second game can
finally be reduced to the security of the DEM, as the secret key being used for data
encapsulation is totally unrelated to that output by the KEM.

The same proof strategy can easily be adapted to show that KEM/DEM composition
yields a RDA-secure PKE. To see this, observe that the KEM adversary constructed in
the proof outlined above is able to obtain the challenge ciphertext (i.e., the R component
in the PKE ciphertext) right at the beginning of the game, independently of the PKE ad-
versary’s actions. Furthermore, the DEM attacker constructed in the final step of the
proof can generate the KEM ciphertext for the challenge right at the beginning. We can
therefore conclude that the KEM/DEM construction initially proposed by Cramer and
Shoup achieves randomness dependent chosen-ciphertext security without any modifi-

2 Such schemes are common, and include those originally proposed by Cramer and Shoup [9].
Our results could be generalized to schemes that do not meet this constraint, by introducing a
notion of partitioned KEM schemes.
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cation. This result shows how our framework generalizes the results published in [13],
in which the authors define reproducibility over KEMs, and then prove security of a
signcryption scheme constructed from a KEM, a DEM and a signature scheme, in a
StE construction with randomness reuse across the KEM and the signature schemes.

REMARK. The authors in [13] actually present their results based on a notion of a tag-
based KEM that allows them to bind the sender’s public key to the KEM ciphertext,
rather than encrypting it together with the payload, but the KEM/DEM composition
theorem they rely on does not take advantage of this binding and is a particular case
of the one we describe above. Indeed, it is interesting that the tag-KEM/DEM compo-
sition paradigm proposed in [1] does not immediately yield RDA-secure schemes. The
problem here is that the tag-KEM ciphertext can only be obtained after the tag has been
defined, and this depends on the encrypted message in the hybrid construction of [1].

RDA-SECURE ENCRYPTION FROM WEAKENED KEY ENCAPSULATION. Hofheinz and
Kiltz [10] propose an alternative KEM/DEM composition framework in which the se-
curity of the KEM can be weakened, as long as the DEM scheme satisfies a stronger
notion of security known as one-time authenticated encryption. Such schemes can be
constructed using the encrypt-then-mac approach, but no length-preserving solutions
exist [10]. Interestingly this hybrid encryption paradigm preserves the independence be-
tween KEM and DEM components that allowed our extension to randomness-dependent
attacks to go through. Indeed, the proof for the composition theorem in [10] follows a
similar structure as that described above. This means that restricting our attention to
(weak) KEM schemes where ciphertexts are public key independent, we immediately
obtain partitioned and randomness-dependent chosen-ciphertext secure PKEs that can
be used to instantiate our signcryption constructions. Notably, the weak KEM that is
used in the very efficient Kurosawa–Desmedt encryption scheme [12] has this property.

5.2 Compatibility, Reproducibility, and Conditional Injectivity

Matsuda et al. [13] presented an extensive description of schemes that meet compati-
bility, reproducibility and conditional injectivity properties as required by the generic
constructions using a tag-based KEM, a signature and a DEM with randomness reuse.
Although the presentation is slightly different, all the schemes used to instantiate their
constructions can be used to instantiate our own. However, the Boneh–Boyen signa-
ture scheme [6] was not considered by [13] as a candidate for signcryption schemes
constructed under randomness reuse. We present a modified version of this signature
scheme in the following subsection that displays the necessary properties, which en-
ables us to use it in the instantiation of our construction. Additionally, the KEM/DEM
compositions we have described above, when using a public-key independent KEM and
a deterministic DEM which is one-to-one over the messages, also give suitable encryp-
tion schemes for instantiation.

5.3 An Efficient Instantiation

In this section we present a concrete instantiation of our results that, to the best of our
knowledge, is the most efficient signcryption providing full insider security without
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random oracles. The scheme instantiates our StE construction with randomness reuse
with the Kurosawa–Desmedt encryption scheme [12] and the Boneh–Boyen signature
scheme [6]. On the negative side, the scheme’s strong unforgeability is only proven un-
der the key registration restriction. On the other hand, the scheme offers non-repudiation
for free, which is inherited from the StE construction: the receiver obtains a valid sig-
nature on the recovered message.

THE KUROSAWA–DESMEDT ENCRYPTION SCHEME. We recall the encryption scheme
in [12]. Here, G is a cyclic group of prime order q in which the DDH assumption holds,
and g1, g2 ∈ G are two random distinct generators. Also, SKE is a one-time authen-
ticated symmetric-key encryption scheme. As referred in the previous section, SKE
cannot be assumed to be length-preserving, so we will assume a minimum overhead
of size |MAC|, corresponding to a MAC tag. The scheme also requires two hash func-
tions H1 : G → {0, 1}k and H2 : G x G → Zq , where the former must be a secure
key-derivation function (i.e., entropy smoothing), and the latter must be target collision
resistant. We have shown in the previous section that the Kurosawa–Desmedt encryp-
tion scheme is partitioned, that it is randomness-dependent chosen-ciphertext-secure
and that, when instantiated with a deterministic and one-to-one DEM it is conditionally
injective.

To be used in our constructions, we further require the scheme to be reproducible.
It is straightforward to show that the scheme satisfies this property. Given a ciphertext
(c,R) under an arbitrary public key, a secret key sk and a message m, the reproducibility
algorithm produces a randomness reusing encryption of m as follows. It first takes the
R = (R1,R2) and calculates a secret key k precisely as this is done in the decryption
algorithm using sk. It then encrypts the m under the DEM using k to obtain the required
ciphertext (c,R).

algorithm Gen:
w ←$ Zq, x ←$ Zq

y ←$ Zq, z ←$ Zq

a ← gw
1 gx

2 , b ← gy
1 g

z
2

sk ← (w,x, y, z)

pk ← (a, b)

Return (sk, pk)

algorithm Enc(m, pk):
(a, b) ← pk

r ←$ Zq

R1 ← gr
1,R2 ← gr

2

s ← H2(R1,R2)

K ← H1(a
rbsr)

c ← SKE.Enc(K,m)

R ← (R1,R2)

Return (c, R)

algorithm Dec((c, R), sk):
(w, x, y, z) ← sk

(R1, R2) ← R

s ← H2(R1,R2)

K ← H1(R
w+ys
1 · Rx+zs

2 )

m ← SKE.Dec(K, c)

Return m

Fig. 9. The Kurosawa–Desmedt encryption scheme [12]

THE BONEH–BOYEN SIGNATURE SCHEME. The Boneh–Boyen signature scheme [6]
is strongly unforgeable in the standard model. It relies on bilinear groups, and so we
briefly recall this notion below.

Definition 9. A bilinear group description Γ is a tuple (p,G1,G2,GT , e, g3, g4) where
G1, G2 and GT are groups of order p with efficiently computable group laws; g3 and g4
are generators of G1 and G2, respectively; and e is a bilinear pairing e : G1 x G2 →
GT satisfying the usual properties of bilinearity and non-degeneracy.

We present the signature scheme of [6] in Figure 10. Observe that we slightly mod-
ified the signature and verification algorithms to make the scheme compatible with
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Kurosawa–Desmedt encryption [12], i.e., so that signatures present the same R com-
ponent. Intuitively, we replace the randomness generation operation in the signature
algorithm so that, rather than sampling s directly, we obtain it from the R component
in a Kurosawa–Desmedt ciphertext. We therefore consider a group G of order q as
described by the Kurosawa–Desmedt encryption scheme, with two distinct generators
g1, g2 ∈ G.

We require an encoding function Map that takes a random element in group G onto
an element in the randomness space of the Boneh–Boyen signature scheme.3 This en-
coding function is fed with the first element in the Kurosawa–Desmedt R component
gr1. The second element gr2 is simply included as part of the signed message; we use
the standard approach of extending the Boneh–Boyen signature scheme to messages
of arbitrary length, introducing a collision-resistant hash function H : {0, 1}� → Zp.
We note that the apparent loss in efficiency in the signature scheme disappears when
one uses this version of the scheme in our StE construction. Also note that the sig-
nature scheme is reproducible. The reproduction algorithm proceeds identically to the
signature algorithm, except it skips the steps where r ←$ Zq and R are computed.

algorithm Gen:
x ←$ Zp, y ←$ Zp

u ← gx
4 , v ← gy

4

z ← e(g3, g4)

sk ← (x, y)

pk ← (u, v, z)

Return (sk, pk)

algorithm Sign(m, sk):
(x, y) ← sk

r ←$ Zq

R1 ← gr
1,R2 ← gr

2

s ← Map(R1)

h ← H(m,R2)

a ← 1/(x + h + ys) mod p

σ ← ga
3

R ← (R1,R2)

Return (σ,R)

algorithm Verify(m, (σ,R), pk):
(u, v, z) ← pk

(R1,R2) ← R

h ← H(m, R2)

s ← Map(R1)

If e(σ, u · gh
4 · vs) = z

Return T

Else Return F

Fig. 10. The Boneh–Boyen signature scheme [6] modified to be compatible with the Kurosawa–
Desmedt encryption scheme

We now discuss the security of the modified Boneh–Boyen signature scheme. It is
straightforward to show that this scheme remains strongly unforgeable provided that
the DDH problem is hard in group G and that Map is a one-to-one and efficiently
invertible mapping from G to Zp (the inversion algorithm is only used in the proof
of security). A closer look at the proof reveals that even weaker properties on Map
suffice. Indeed, the function only needs to be injective, efficiently invertible, and map
G to a sufficiently large fraction of Zp elements. To meet these requirements, we may
instantiate G as the group of points on an elliptic curve, where the DDH problem is
assumed to be hard. Standard point compression techniques [5] allow us to instantiate
Map with an injective encoding whose image corresponds to a sufficiently large fraction
of Zp values. More precisely, for carefully chosen elliptic curves, there exist injective
and efficiently invertible mappings from curve points into bit strings of length l, where
l is approximately the logarithm of the order of the group. Such encodings will have the
property we require when p is chosen to be sufficiently close to 2l.

3 As in the original scheme, in the unlikely event that s = −(x + h)/y, we simply sample a
new randomness. We omit this in Figure 10 for readability.
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The security proof of the modified Boneh–Boyen signature scheme can be found in
the full version of this paper. Intuitively, to reduce the security of the modified scheme
to the original version, one simulates signature queries by repeatedly querying the sig-
nature oracle, until one obtains a signature where the randomness value can be inverted
back into G. Furthermore, a valid forgery on the modified scheme will still constitute a
valid forgery on the original scheme.

COMPARISON. We present in Table 1 a comparison of our StE construction with ran-
domness reuse, when instantiated with the Kurosawa–Desmedt encryption scheme and
the Boneh–Boyen signature scheme, with previous signcryption constructions in var-
ious relevant parameters. We consider only signcryption schemes offering full insider
security in dynamic multi-user models, and not relying on random oracles. We present
results for the 80-bit security level. In addition to efficiency considerations, we also
present the underlying computational assumptions, whether key registration is required,
and whether the scheme offers non-repudiation by providing receiver’s with valid sig-
natures on the recovered messages.

For computational efficiency, we compare the number of exponentiations, multi-
exponentiations, and pairing computations (in this order), both in the signcryption and
unsigncryption operations. Clearly the new scheme matches the previously computa-
tionally more efficient solution from [14]. We also include the size of the random coins
required for the signcryption operation. Here, our scheme displays a saving of 50% over
previous solutions, due to the randomness reuse optimization. Finally, in terms of over-
head (i.e., the difference between ciphertext length and message length), our scheme
compares favorably with other solutions. The 160-bit overhead with respect to the so-
lutions in [8,13] can be explained by including a digest of the sender’s public key in the
payload, which must be calculated using a collision-resistant hash function. This might
be avoided by considering a tag-based variant of the encryption scheme as in [8,13],
although we have not considered this possibility.

Table 1. Comparison with signcryption schemes in the literature. We consider [14,15] also in-
stantiated with the BB signature scheme. We take |G| = |Zp| = |H| = 160 and |MAC| = 80
bits.

Scheme Assumptions Key Reg. Non-Rep. Computations Randomness Overhead
sc. usc. (bits) (bits)

[8] DBDH, q-SDH No Yes [4, 0, 0] [1, 1, 2] 320 640
[8] DBDH, q-SDH No Yes [3, 1, 0] [1, 1, 2] 320 720
[13] DBDH, co-CDH Yes Yes [4, 1, 0] [1, 1, 3] 320 640
[16] DBDH, q-SDH Yes No [3, 2, 0] [3, 1, 4] 480 800
[14] DDH, q-SDH No No [3, 1, 0] [0, 2, 1] 320 720
[15] DDH, q-SDH No No [4, 1, 0] [1, 2, 1] 320 800
New scheme DDH, q-SDH Yes Yes [3, 1, 0] [0, 2, 1] 160 720
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Abstract. Cryptographic accumulators are well-known to be useful in
many situations. However, the most efficient accumulator (the RSA ac-
cumulator) it is not secure against a certificate authority who has herself
selected the RSA modulus n. We generalize previous work and define
the root accumulator in modules over Euclidean rings. We prove that
the root accumulator is secure under two different pairs of assumptions
on the module family and on the used hash function. Finally, we propose
a new instantiation of the root accumulator, based on class groups of
imaginary quadratic order, that combines the best properties of previ-
ous solutions. It has short (non)membership proofs like the RSA accu-
mulator, and at the same time it is secure against a malicious certificate
authority. Up to this point, this seems to be the only unique applica-
tion of class groups of imaginary quadratic orders, and we hope that this
paper will motivate more research on cryptography in the said groups.

Keywords: Class groups of imaginary quadratic order, cryptographic
accumulators, Euclidean rings.

1 Introduction

Cryptographic accumulators have been proven to be extremely useful in the
public-key infrastructure, anonymous credential systems and many other appli-
cations. Briefly, in a cryptographic accumulator, for any document set S, a server
can compute a short digest Dig(S), such that for any candidate document m one
can find a succinct (non)membership proof Proof(m,S) of m (not) belonging to
S. The digest Dig(S) is published, and everybody can obtain it in an authenti-
cated manner. Finally, different clients use the verification algorithm Ver. It is
required that Ver(m,Dig(S),Proof(m,S)) = Member if m ∈ S, and (in some of
the papers like [5,6,23]) Ver(m,Dig(S),Proof(m,S)) = NotMember if m �∈ S. Ac-
cumulators are required to be collision-resistant, that is, it should be difficult to
construct a triple (m,S, p), such that m �∈ S but Ver(m,Dig(S), p) = Member [1].

One can construct collision-resistant accumulators (with nonmembership
proofs) based on hash-trees, see [5,6]. However, hash-tree based solutions have
relatively long — logarithmic in |S| — (non)membership proofs. The more suc-
cinct RSA accumulator was introduced in [2], further studied in [1,25,26,11], and
proven to be collision-resistant in [1]. Further accumulators have been proposed
in say [24,10].
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Unfortunately, one cannot rely on the accumulating party (say, the certificate
authority) to honestly generate the value Dig(S).1 In particular, she could pub-
lish d (not necessarily knowing the corresponding S) such that she can later gen-
erate both membership and nonmembership proofs for some selected elementsm.
To tackle this situation, Buldas, Laud and Lipmaa [5,6] required accumulators
to be undeniable in the next sense: it should be infeasible to generate a tuple
(m, d, p, p), such that Ver(m, d, p) = Member but Ver(m, d, p) = NotMember.
(The same security requirement — under different names — has been indepen-
dently reinvented in say [9].) Thus, in the case of certificate management, when
a client sees a certificate m, digest d and (say) a proof p that m was revoked,
she can be certain that there does not exist a contradictory proof p that m was
not revoked. Buldas, Laud and Lipmaa also constructed a concrete undeniable
accumulator based on hashed search trees. (They called it an undeniable attester
since it is not based on the RSA accumulator.) Because their solution is based
on hashed search trees, it is trapdoorless and thus secure against a malicious
server. Unfortunately, there the (non)membership proofs p have length that is
logarithmic in the size of S.

For a long time, it was not known how to construct short nonmembership
proofs for the RSA accumulators. Only in 2007, Li, Li and Xue [23] showed how
to do that. In their modification to the RSA accumulator, a membership proof
consists of one group element and a nonmembership proof consists of one group
element and one exponent. Unfortunately, in the case of the RSA accumula-
tor, the server can generate the RSA modulus n herself, and thus knowing the
factorization of n she can efficiently break the accumulator. That means that
the Li-Li-Xue construction is only secure in the trusted setup model where n
is generated by a trusted third party who does not disclose its factorization to
the server. Sander [25] tried to eliminate the trapdoor in the RSA accumulator
but his construction, while trapdoorless, is very inefficient. Moreover, from the
perspective of a client who just started to use the accumulator, it still does not
guarantee that the server does not know the trapdoor. Our goal is to get rid
of the trusted setup assumption, and to achieve efficiency that is comparable to
that of the RSA accumulator.

Our Contributions. We first substantially generalize the RSA accumulator
as modified by Li, Li and Xue. The generalized root accumulator works in RD,
which is a family of modules D over Euclidean rings R, and uses a hash function
(family) H . This generalization serves two different purposes. First, by gener-
alizing the algebraic setting to the widest one, it may become possible in the
future to find other more efficient instantiations of the primitive. (Even if at this

1 The original motivation of this line of research is digital time stamping, where the
digest over answers to time-stamping queries is computed by the time-stamping
authority [17,7,8]. Cryptographic methods are precisely in place to counter the case
where the authority may be malicious. In particular, a malicious time-stamping
authority can clearly compute a spurious value of Dig(S). See [5] for more discussion
and motivation.
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moment, the only known instantiations consist of Abelian groups D and R = Z,
with the module operation ◦ : R × D → D defined as α ◦ x := xα.) Second, the
construction of the root accumulator depends crucially on the existence of the
Extended Euclidean Algorithm in the underlying ring. In addition, most of the
security reductions of this paper make an explicit use of the Extended Euclidean
Algorithm. Thus, we think it is methodologically useful to explicitly point out
that the Extend Euclidean Algorithm algorithm must exist in the underlying
algebraic structure, and must be efficient. While modules over rings have been
used in cryptography before, see [16], we are unaware of any previous use of
modules over Euclidean rings in cryptography. Thus, this generalization may be
a contribution by itself.

Before proving the security of the root accumulator, we must define the corre-
sponding security notions and underlying security assumptions. The first techni-
cal difficulty (and novelty) there is that because we want the accumulator to be
secure without trusted setup, the security definitions will become more involved.
In particular, an accumulator must have a public key divided into two parts, one
of which (say, the RSA modulus n) is generated by using a public randomness
known by the adversary, and another one (say, a generator of a large subgroup
in Z∗

n) can be chosen by using a non-public randomness. Because it was the trap-
door in n that we were worried about, this division is fine for our purposes. (We
leave it as an interesting open question to solve the second part in an account-
able way.) Similarly, when defining the security assumptions, we must consider
the case where the adversary knows the randomness that is used when choosing
the module (again, in the case of the RSA accumulator this corresponds to the
adversary knowing the factorization of n) where the root accumulator will be
run.

Then, we show that the root accumulator is both collision-resistant and
undeniable if either (a) RD is a strong prime root module family and H is a
prime-valued injective function [1], or (b) RD is a strong divisible root module
family [13] and H is a division-intractable function family [15]. (Corresponding
security definitions are given later in the paper.)

Based on those results, we show that if factorization is hard in the Euclidean
ring, then the security of the root accumulator—given that H is prime-valued
injective—is based on a presumably weaker assumption than the strong root
assumption (e.g., the security of the RSA accumulator is based on a presumably
weaker assumption than the strong RSA assumption). We also show that the
strong divisible root assumption is equivalent to the strong root assumption
(which is known to be secure in the generic group model [14]), given that the
module satisfies another seemingly unrelated small root assumption. (The latter
is related but generalizes significantly the small root assumption of [13].)

As a concrete instantiation, we propose to use class groups of imaginary
quadratic orders with a large discriminant Δ where −Δ is a prime [4]. Many
previous cryptographic schemes are based on the strong root assumption in such
groups. Importantly, Δ can be chosen by a malicious adversary with only neg-
ligibly changing her probability of breaking the root accumulator. While the
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applicability of class groups of imaginary quadratic order has been studied quite
extensively in the cryptographic literature (see [3,18] for an overview), one has
been mostly interested in such groups because they are one of the very few group
families known (in addition to say multiplicative groups of residue rings and (hy-
per)elliptic curve groups) that are suitable for cryptographic use. We show that
there is a natural cryptographic problem—construction of secure accumulators
without trusted setup—for which class groups of imaginary quadratic order are
the only known suitable group family. We hope that this will generate additional
interest in cryptography based on such groups.

Basic Notation. We assume that Member, NotMember and Error are special
symbols. k denotes the security parameter. The working time of all algorithms
and the security of all primitives is measured as a function of the security param-
eter k. negl(k) denotes an arbitrary negligible function in k, poly(k) denotes an
arbitrary polynomial function in k. PPT means probabilistic polynomial time.
We note that in the context of this paper, the adversary can always be non-
uniform; however, our reductions themselves are all uniform. If S is a set, then
x ← S denotes random sampling, and x ← S(ω) denotes random sampling while
using ω as the random tape. If A is an algorithm, then x ← A(y) denotes random
sampling of the output of A, given input y.

2 Collision-Resistant and Undeniable Accumulators

First, we will state the syntax of accumulators that allow nonmembership proofs
as in [5,6,23]. (In [5,6], an accumulator with nonmembership proofs was called
an attester.) Informally, an accumulator is a mechanism that for each candidate
element m and a set S produces a succinct (non)membership proof that attests
to the fact that m ∈ S or m �∈ S. Based on m, the short digest of S and the
corresponding proof (and without access to any other information), one can later
verify whether m ∈ S or not.

Definition 1 (Accumulator). Let M, D and P be three sets (the message
set, the digest set and the proof set correspondingly). A quadruple Acc =
(Gen,Proof,Dig,Ver) of PPT algorithms is a (strong) accumulator, if it satisfies
the next conditions:

Generating algorithm Gen(1k) outputs a public key pk.
Membership algorithm Proofpk(m,S): If m ∈ M and S ⊆ M, then it outputs

a membership proof p ∈ P, otherwise it outputs Error.
Digest algorithm Digpk(S): If S ⊆ M then it outputs a digest d ∈ D, other-

wise it outputs Error.
Verification algorithm Verpk(m, d, p): If m ∈ M, d ∈ D and p ∈ P then it

outputs either Member or NotMember, otherwise it outputs Error.

An accumulator must satisfy the next correctness property: for valid pk ∈
Gen(1k), m ∈ M and S ⊆ M, Verpk(m,Digpk(S),Proofpk(m,S)) outputs Member
if m ∈ S, and NotMember if m �∈ S. 
�
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Note that because all algorithms work in probabilistic polynomial time, it is
always implicitly required that |S| = poly(k).

Definition 2 (Security in Trusted Setup Model). Let Acc =
(Gen,Proof,Dig,Ver) be an accumulator. Acc is collision-resistant [1] (in the
trusted setup model) if

Pr

[
pk ← Gen(1k), (m,S, p) ← A(pk) :

m �∈ S ∧ Verpk(m,Digpk(S), p) = Member

]
= negl(k)

for any PPT adversary A. Acc is undeniable [5,6,23] (in the trusted setup model)
if

Pr

[
pk ← Gen(1k), (m, d, p, p) ← A(pk) :

Verpk(m, d, p) = Member ∧ Verpk(m, d, p) = NotMember

]
= negl(k)

for any PPT adversary A.

Proofs p and p are contradictory if for some m and d, Verpk(m, d, p) = Member
and Verpk(m, d, p) = NotMember.

It was proven in [1] that the RSA accumulator [2] is collision-resistant (in
the trusted setup model). However, in several potential usage scenarios of ac-
cumulators, the trusted setup assumption is really inappropriate. For example,
imagine the setting (similar to digital time stamping [17,7], where cryptographic
methods are introduced precisely to obtain security against a corrupt authority)
where a certificate authority periodically revokes certificates. Instead of period-
ically publishing certificate revocation lists, she publishes their short digests. To
every client who wants to check whether or not some particular certificate was
revoked during that period, she also sends a succinct (non)membership proof
with respect to this revocation list. If the accumulator is undeniable (without
any trusted setup), the client can be certain that nobody else has a contradictory
proof.

In the case of the RSA accumulator, the certificate authority may know the
factorization n = PQ of the RSA modulus n. (The same attack is also valid in
other scenarios, obviously.) Even when using threshold methods to generate n,
there is always a coalition of parties who know P and Q. In striking contrast
with many other cryptographic applications, here we cannot assume that the
client herself participated in the generation of n, since she might have not been
using the services of this certificate authority at the that time. See [5,6] for more
motivation and [25] for an early paper on trapdoorless RSA accumulator.

We will now define security in the case without trusted setup. The RSA accu-
mulator is not secure without trusted setup, because even a semi-honest party
who generates n can later cheat (e.g., by revealing its prime factors after being
adaptively corrupted). We tackle this problem by introducing a new Setup algo-
rithm (that generates the algebraic structure we are working in), and requiring
that the adversary must have access to the random tape ω of Setup. On the other
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hand, Gen’s random tape must remain hidden. (In the case of RSA accumulator,
the latter corresponds to the part that is used while generating a generator of
some large subgroup of Z∗

n.) We thus naturally augment the definition of accu-
mulators with the Setup algorithm, and assume that all other algorithms get the
output of Setup as one of the inputs.

Definition 3 (Security without Trusted Setup). Let Acc =
(Setup,Gen,Proof,Dig,Ver) be an accumulator. Acc is collision-resistant
(without trusted setup) if

Pr
ω

⎡⎢⎣ parm ← Setup(1k, ω), pk ← Gen(1k, parm),

(m,S, p) ← A(ω, parm, pk) :

m �∈ S ∧ Verpk,pk(m,Digparm,pk(S), p) = Member

⎤⎥⎦ = negl(k)

for any PPT adversary A. Acc is an undeniable accumulator (without trusted
setup) if

Pr
ω

⎡⎢⎢⎢⎣
parm ← Setup(1k, ω), pk ← Gen(1k, parm),

(m, d, p, p) ← A(ω, parm, pk) :

(Verparm,pk(m, d, p) = Member)∧
(Verparm,pk(m, d, p) = NotMember)

⎤⎥⎥⎥⎦ = negl(k)

for any PPT adversary A.

Note that this is somewhat similar to security definitions in the common refer-
ence string model, where parm is honestly chosen, and the adversary (usually a
simulator) can choose parm herself together with a corresponding trapdoor ω.
In fact, one can consider a stronger requirement, where ω is not only known to
the adversary but actually chosen by her. However, in this case in all subsequent
security assumptions one would have to assume that the assumptions hold even
if the adversary can choose the underlying module. Unfortunately, no module
families are known where such security assumptions would hold. On the posi-
tive side, checking that pk is generated correctly is more plausible than checking
that the trapdoor information ω is not known to the adversary. For example, pk
can be generated by using verifiable randomness published in newspapers or the
NIST beacon (http://www.nist.gov/itl/csd/ct/nist_beacon.cfm).

3 Module-Based Cryptography

Many public-key primitives are based on groups. We generalize the group-based
setting to the module-based one. For this we generalize several well-known no-
tions and introduce a few new ones. In the next section, we propose an accu-
mulator that is based on a module over a Euclidean ring. Within this paper, all
rings are commutative.

http://www.nist.gov/itl/csd/ct/nist_beacon.cfm
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Algebraic Background and Definitions. A (left) R-module over the ring
R consists of an Abelian group (D,+) and an operation R × D → D (that
we denote by α ◦ g), such that for all α, β ∈ R and x, y ∈ D, we have (a)
α◦(x+y) = α◦x+α◦y, (b) (α+β)◦x = α◦x+β ◦x, (c) (α ·β)◦x = α◦(β ◦x),
and (d) 1 ◦ x = x.

A commutative ring R with identity is called an integral domain if for all
α, β ∈ R, αβ = 0 implies α = 0 or β = 0. A ring R is Euclidean if it is an
integral domain and there exists a function deg : R → Z+, called the Euclidean
degree, such that (a) if α, β ∈ R with αβ �= 0 and α �= 0, then deg(α) ≤ deg(αβ)
and (b) if α, β ∈ R then there exist γ, δ ∈ R such that α = γβ + δ with
either δ = 0, or δ �= 0 and deg(δ) < deg(β). Every Euclidean ring possesses
a multiplicative identity. An element α of R which is neither 0 nor 1 is called
irreducible if there are no non-1 elements β and γ with α = β · γ. Define Irr(R)
to be the set of irreducible elements of R.

Some examples of Euclidean rings R are Z with deg(α) := |α|, Z[i] (the ring of
Gaussian integers) with deg(α) := |α|2, K[X ] for arbitrary field K with deg(α)
being the degree of polynomial α when α �= 0, the ideals of polynomial ring
Zp[X ] (that are modules over Zp[X ]), and arbitrary field K where deg(α) := 1
when α �= 0. An example of a non-commutative Euclidean ring is the polynomial
ring P [x] over a skew field (division ring) P . In all such cases one can talk about
the irreducible elements of R.

Intractable Problems in Modules. Because we want the accumulator to be
secure without trusted setup, it must also be the case that in the underlying
security assumptions the adversary can see the coins used while selecting the
concrete module.

Definition 4 (Security Assumptions without Trusted Setup). Let RD =
((Ri)Di

) be a family of modules with i ∈ I and an efficient deterministic al-
gorithm Setup(1k, ω) that picks some i ∈ I. We assume that A is a stateful
algorithm.

1. RD is a discrete logarithm module family if for every PPT adversary A,

Pr
ω
[RD ← Setup(1k, ω), (x, y) ← D, α ← A(x, y, ω) : α ◦ y = x] = negl(k) .

2. RD is an order module family if for every PPT adversary A,

Pr
ω
[RD ← Setup(1k, ω), x ← D, y ← A(x, ω) : ord(x) = y] = negl(k) .

3. RD is a root module if for every PPT adversary A,

Pr
ω
[RD ← Setup(1k, ω), x ← D, α ← R, y ← A(x, α, ω) : α◦y = x] = negl(k) .

4. RD is a strong prime root module if for every PPT adversary A,

Pr
ω

[
RD ← Setup(1k, ω), x ← D, (y, α) ← A(x, ω) :

(α ◦ y = x) ∧ (α ∈ Irr(R))

]
= negl(k) .
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Setup Algorithm Setup(1k, ω):
Generate random i ← I according to ω. Let parm ← i.

Generating Algorithm Gen(1k, parm):
Generate random g ← Di. Publish pk ← g.

Digest Algorithm Digparm,pk(S):
1. If i �∈ I or g �∈ Di, then return Error.
2. If S �⊆ Mi, then output Error.
3. Otherwise, output (

∏
s∈S H(s)) ◦ g.

(Non)Membership Proof Algorithm Proofparm,pk(m,S):
1. If i �∈ I or g �∈ Di, then return Error.
2. If m �∈ Mi or S �⊆ Mi, then return Error.
3. If m ∈ S then define Proofpk(m,S) := (

∏
s∈S\{m} H(s)) ◦ g.

4. Otherwise, let δ ←
∏

s∈S H(s) ∈ Ri. Because Ri is Euclidean and
gcd(H(m), δ) = 1, there exist α, β ∈ Ri, such that α ·H(m) + β · δ = 1.
Let Proofpk(m,S) := (α ◦ g, β).

Verification Verparm,pk(m, d, p):
1. If i �∈ I or g �∈ Di, then return Error.
2. If m �∈ Mi or d �∈ Di, then return Error.
3. If p ∈ Di, then check whether H(m) ◦ p = d.

If it is, then return Member, else return Error.
4. Otherwise, if p = (q, β) ∈ Di ×Ri, then check whether H(m) ◦ q+β ◦ d = g.

If it is, then return NotMember, else return Error.
5. Otherwise, return Error.

Fig. 1. Root accumulator for (RD, H)

5. RD is a strong root module if

Pr
ω

[
RD ← Setup(1k, ω), x ← D, (y, α) ← A(x, ω) :

(α ◦ y = x) ∧ (α �= 1)

]
= negl(k)

for every PPT adversary A.
6. RD is a strong divisible root module if

Pr
ω

[
RD ← Setup(1k, ω), x ← D, (y, α, β) ← A(x, ω) :

((αβ) ◦ y = β ◦ x) ∧ (α �= 1)

]
= negl(k)

for every PPT adversary A.

In the trusted setup model, one does not require security in the case A knows ω,
and thus A may be able to break the assumption by obtaining access to it.

The strong prime root and (to certain extent) the strong divisible root assump-
tion are novel, while others are generalizations of well-known assumptions. The
assumptions are ordered starting from the “weakest” one, see Sect. 6. For exam-
ple, if one can solve the discrete logarithm problem in RD then one also clearly
solve the order problem.
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The cryptographically familiar example of modules is RD with α ◦ x := xα

for x ∈ D and α ∈ R = Z. The order assumption for groups is well known—for
the RSA group, it is also called the RSA assumption. That RSA groups are
strong root groups was postulated in [1] (the corresponding assumption being
called the strong RSA assumption). Damg̊ard and Fujisaki [13] enlisted some
candidate strong divisible root groups. Note that in the case of RSA groups the
assumptions can only hold in the trusted setup model.

4 Accumulator with Prime-Valued Injective Functions

In this section, we propose the root accumulator for R-modules that generalizes
previous work of [23] that considered only the setting of RSA groups, and prime
inputs m.

Setting. For some set M and Euclidean ring R, function f : D → R is a prime-
valued injective function if it is an injective function D → Irr(R). We will not
propose new prime-valued injective functions, see [1,15] for some existing designs.
Let RD = (Ri)Di

for i ∈ I, where Di is an Abelian group and Ri is a Euclidean
ring. Let H be a prime-valued injective function H : Mi → Ri. Here, I depends
on k and H depends on i. The root accumulator is depicted by Fig. 1.

Security Proofs.

Theorem 1. The root accumulator satisfies the correctness property.

Proof. Assume all participants are honest. Thus i ∈ I, g ∈ Di, m ∈ Mi and
d = Digpk(S) ∈ Di. We need to show that if m ∈ S then Verpk(m, d, p) =
Member, and if m �∈ S then Verpk(m, d, p) = NotMember. First, if m ∈ S then
p = (

∏
s∈S\{m} H(s)) ◦ g. Thus,

H(m) ◦ p = H(m) ◦ ((
∏

s∈S\{m}
H(s)) ◦ g) = (

∏
s∈S

H(s)) ◦ g = d .

Second, if m �∈ S then p = (q, β) ∈ Di×Ri, with q = α◦g and α ·H(m)+β ·δ = 1
for some α. But then

H(m) ◦ q + β ◦ d = (α ·H(m)) ◦ g + (β · δ) ◦ g = 1 ◦ g = g ,

since δ =
∏

s∈S H(s) and d = δ ◦ g. 
�

The next two proofs show that in some sense, collision-resistancy and undeni-
ability of the root accumulator are equivalent, though their reductions to the
same underlying problem have different costs. In general, it seems to be difficult
to prove that every undeniable accumulator is collision-resistant, because in the
case of undeniability the adversary has to return a (possibly fake) digest, while
in the case of the collision-resistancy, the adversary has to return a set which
may not be easily computable from the fake digest. Moreover, clearly not every
collision-resistant accumulator is undeniable; see [5,6] for discussions.
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Theorem 2 (Sufficient Conditions (with Prime-Valued Injective Func-
tions)). Let H be a prime-valued injective function. (1) If RD is a strong prime
root module family, then the root accumulator is collision-resistant. (2) If RD is
a strong prime root module family, then the strong root accumulator is undeni-
able.

Proof. (1) Construct a machine B to break the strong prime root assumption
using as the oracle an adversary A that breaks the collision-resistancy of the
root accumulator.

1. B obtains i ← Setup(1k, ω), and random ω.
2. B obtains his challenge x ← Di.
3. B queries (m,S, p) ← A(x, ω).
4. B sets δ ←

∏
s∈S H(s), d ← δ ◦ x. B finds a pair (α, β), such that α ·

H(m) + β · δ = 1.
5. B returns (α ◦ x+ β ◦ p,H(m)).

Since m �∈ S and H is prime-valued injective, thus gcd(H(m), δ) = 1. Because
Ri is a Euclidean ring, (α, β) can be found efficiently by using the Extended
Euclidean Algorithm. Then

H(m) ◦ (α ◦ x+ β ◦ p) =(α ·H(m)) ◦ x+ (β ·H(m)) ◦ p
=(α ·H(m)) ◦ x+ (β · δ) ◦ x
=(α ·H(m) + β · δ) ◦ x = x .

Clearly if A is successful then B is successful. B’s running time is dominated
by the running time of A and by the time it takes to execute the Extended
Euclidean algorithm (and thus, Ri has to be Euclidean).

(2) Construct a machine B to break the strong root assumption using as the
oracle an adversary A that breaks the undeniability of the root accumulator.

1. B obtains i ← Setup(1k, ω), and random ω.
2. B obtains his challenge x ← Di. B sets pk = (i, x).
3. B queries (m, d, p, p) ← A(pk, ω), where p = (q, α).
4. B returns (q + α ◦ p,H(m)).

If A is successful, then H(m) ◦ p = d and H(m) ◦ q + α ◦ d = x. Thus,

H(m) ◦ (q + α ◦ p) = H(m) ◦ q + (α ·H(m)) ◦ p = x .

Therefore, B breaks the strong root problem with the same probability that A
breaks the undeniability of the root accumulator, in time that is dominated by
A’s running time. (For this reduction to go through, Ri does not have to be
Euclidean.) 
�

5 Accumulator with Division-Intractable Function Family

One of the drawbacks of the root accumulator (as described in the previous
section) is that prime-valued injective functions (see [1] for some examples) may
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be inefficient. In this section, we consider a variation of the root accumulator that
works with potentially more efficient division-intractable functions [15]. However,
due to that, it is based on a (probably) stricter assumption on RD.

Division-intractable functions. Let I be an index set. As always, let RD be
an R-module over Euclidean ring R. A hash function family H = {Hi} with
H : Mi → Ri for every Hi ∈ Hi is a division-intractable function family [15] if

Pr

⎡⎢⎣Hi ← Hi, (m,S) ← A(Hi) :

(S ⊆ Di) ∧ (m ∈ Di \ S) ∧ (H(m) |
∏
s∈S

H(s))

⎤⎥⎦ = negl(k)

for any PPT adversaryA. Clearly, every prime-valued collision-resistant function
is a division-intractable function family by itself. Division-intractable function
families can be more efficient than prime-valued injective functions, see [15] for
some constructions.

One can instantiate the root accumulator with a division-intractable function
family, by letting the hash function H ← H to be a part of the public key pk.
One also has to modify the definition of the non-membership proof. Namely, if
m �∈ S, Proof works as follows:

– Let δ ←
∏

s∈S H(s). For γ ← gcd(H(m), δ), find α, β ∈ Ri, such that
α ·H(m) + β · δ = γ. Let Proofpk(m,S) := (α ◦ g, β, γ).

Analogously, verification of non-membership is modified as follows:

– If p = (q, β, γ) ∈ Di ×Ri ×Ri, then check whether H(m) ◦ q+ β ◦ d = γ ◦ g,
γ | H(m), and γ �= H(m). If it is, then return NotMember, else return Error.

(Note that γ �= H(m) because H is division-intractable.)

Theorem 3 (Sufficient Conditions (with Division-Intractable Function
Families).). Let H be a division-intractable function family. Let RD be a family
of modules over Euclidean rings. (1) If RD is a strong divisible root module
family, then the root accumulator is collision-resistant. (2) If RD is a strong
divisible root module family, then the root accumulator is undeniable.

Proof. (1) Construct a machine B that breaks either the strong divisible root
assumption of RD or the division-intractability of H using as an oracle an ad-
versary A who can break the collision-resistancy of the root accumulator.

1. B obtains i ← Setup(1k, ω), and random ω.
2. B obtains his challenge x ← Di, and H ← H.
3. B sets pk ← (i, x,H).
4. B queries (m,S, p) ← A(pk, ω).
5. B sets δ ←

∏
s∈S H(s).

6. B sets β∗ ← gcd(H(m), δ), α∗ ← H(m)/β∗. If α∗ = 1, then B aborts.
7. By using the Extended Euclidean Algorithm, B computes γ and γ′, such

that γ ·H(m) + γ′ · δ = β∗.
8. B returns (γ ◦ x+ γ′ ◦ p, α∗, β∗).
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Clearly,

(α∗ · β∗) ◦ (γ ◦ x+ γ′ ◦ p) =H(m) ◦ (γ ◦ x+ γ′ ◦ p)
=(γ ·H(m)) ◦ x+ (γ′ ·H(m)) ◦ p
=(γ ·H(m)) ◦ x+ (γ′ · δ) ◦ x = β∗ ◦ x .

Thus, if A is successful and B does not abort, then B is successful. But if B
aborts, then β∗ = H(m) and thus B has broken the division-intractability of H.

(2) Construct a machine B that breaks either the strong divisible root as-
sumption of RD or the division-intractability of H using as oracle an adversary
A who can break the undeniability of the root accumulator.

1. B obtains i ← Setup(1k, ω), and random ω.
2. B obtains his challenge x ← Di, and H ← H.
3. B sets pk ← (i, x,H).
4. B queries (m, d, p, p) ← A(pk, ω), where p = (q, β, γ).
5. B sets α∗ ← H(m)/γ. If α∗ = 1, then B aborts.
6. B returns (q + β ◦ p, α∗, γ).

If A is successful, then H(m)◦p = d and H(m)◦ q+β ◦d = γ ◦g for γ | H(m)
and γ �= H(m). Thus,

(α∗γ) ◦ (q + β ◦ p) = H(m) ◦ q + (βH(m)) ◦ p = H(m) ◦ q + β ◦ d = γ ◦ g .

Thus, if A is successful and B does not abort, then B is successful in breaking
the strong divisible root assumption. But if B aborts, then B has broken the
division-intractability of H. 
�

Now, we show that independently of the properties of RD, the family H must be
division-intractable.

Lemma 1. If the root accumulator is collision-resistant, then H is division-
intractable.

Proof (Sketch.). By contradiction: assume an adversary finds a pair (m,S), m �∈
S, such that

∏
s∈S H(s) = α ·H(m), for some α ∈ Ri. Now,

d = (
∏
s∈S)

H(s) ◦ g = (α ·H(m)) ◦ g = H(m) ◦ (α ◦ g) = H(m) ◦ p

with p = α ◦ g, and therefore the adversary has broken the accumulator. 
�

6 Relations between New Assumptions

Clearly, if RD is a strong root module family, then it is also a strong prime
root module family. (If it is difficult to find (y, α) such that α ◦ y = x, then
it is also difficult to find (y, α) with α irreducible, such that α ◦ y = x.) The
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opposite holds only if factorization is easy in the Euclidean ring. Moreover, if
RD is a strong prime root module family, then it is clearly a root module family.
Thus, the strong prime root assumption is in its strength somewhere between
the root assumption and the strong root assumption. Because we showed that
root accumulator with prime-valued injective function H is secure if and only if
the underlying module module is strong root module family, we get

Theorem 4. Let H be a prime-valued injective function. If factorization is dif-
ficult in the underlying Euclidean ring, then the security of root accumulator is
based on a security assumption that is weaker than the strong root assumption.

(In particular, the security of RSA accumulator can be based on an assumption
that is weaker than the strong RSA assumption.)

Clearly, if RD is a strong divisible root family, then RD is also a strong
root module family. (To break the strong divisible root assumption, just return
(g, α, 1), where (g, α) was returned by an adversary who breaks the strong root
assumption.) To show that the proposed strong divisible root assumption in this
special case is not too strong, we reduce its security to the strong root assumption
conditionally to the small root assumption that generalizes an earlier assumption
of the same name by Damg̊ard and Fujisaki [13]. (In their paper, it was assumed
that β = 2.) See [13] for discussion.

Theorem 5. Let RD be defined as always. Let the next two assumptions hold:
(a) RD is a strong root module family, (b) For any i ∈ I, it is intractable to
find elements g ∈ Di such that α ◦ g = 0 for some α with non-minimal non-zero
degree deg(α), but β ◦ g �= 0 for some deg(β) < deg(α) (we call this a small root
assumption). Then RD is a strong divisible root module family.

Proof. Assume that adversary A breaks the strong divisible root assumption.
Construct a machine B that breaks one of the two premises as follows.

1. B obtains i ← Setup(1k, ω) and ω.
2. B gets his challenge x ← D of the strong root problem game.
3. B obtains (y, α, β) ← A(x, ω).
4. B returns (y, α).

Assume that A is successful. Then (α · β) ◦ y = β ◦ x and α �= 1. If β = 1
then we are done. Otherwise, denote w ← α ◦ y − x. If w = 0 then we are done.
Otherwise,

β ◦ w = β ◦ (α ◦ y)− β ◦ x = (α · β) ◦ y − β ◦ x = β ◦ x− β ◦ x = 0 .

Choose some β′ ∈ R with deg(β′) < deg(β). By the small root assumption, also
β′ ◦w = 0. Thus, by application of the Euclidean algorithm, α = x · β′ + q such
that deg(q) < deg(β′). By the choice of β′,

α ◦w = x ◦ (β′ ◦ w) + q ◦ w = q ◦ w .

By the small root assumption, w = 0 and thus α ◦ y = x. 
�
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7 Example Instantiations

7.1 RSA Accumulator

In the RSA accumulator, as modified by [1,26], the public parameters contain
n = PQ that is a product of two safe primes, and Dn = Z∗

n, Rn with α ◦ g := gα

(mod n). If the factorization of n is known to a collusion of parties (say, generated
by a malicious server or in a threshold manner by several parties who are all
later corrupted), they can jointly compute membership proofs of any element

m by defining p ← Dign,g(S)
H(m)−1 (mod φ(n)) (mod n). Therefore, the RSA

accumulator is not collision-resistant without trusted setup.

7.2 Root Accumulator in Class Groups of IQ Order

Class Group Preliminaries. Let Δ be a negative integer such that Δ ≡ 0, 1

(mod 4). The ring OΔ = Z + Δ+
√
Δ

2 · Z is an imaginary quadratic order of

discriminant Δ. Its field of fractions is Q(
√
Δ). The discriminant Δ is funda-

mental if Δ is square-free if Δ ≡ 1 (mod 4) or Δ/4 is square-free if Δ ≡ 0
(mod 4). The ring OΔ is a maximal order if Δ is fundamental. The fractional
ideals of OΔ are of form q(aZ + (b +

√
Δ)/2Z) with q ∈ Q, a ∈ Z+, b ∈ Z and

4a | (b2−Δ). Therefore, a fractional ideal can be represented by a triple (q, a, b).
An ideal (q, a, b) is integral if q = 1; an integral ideal can be represented by a
pair (a, b). Two fractional ideals a, b ⊆ OΔ are equivalent if for some nonzero
α ∈ Q(

√
Δ), a = αb. The set of equivalence classes forms an Abelian group

under ideal multiplication; this group is called the class group and denoted by
Cl(Δ). The class group is always finite, its order is called the class number and
denoted by h(Δ) := |Cl(Δ)|.

For an integral ideal there exists a c ∈ Z+, such that Δ = b2 − 4ac. An ideal
is called reduced if (a) gcd(a, b, c) = 1, (b) −a < b ≤ a ≤ c and (c) b ≥ 0 if a = c.
Every equivalence class contains exactly one reduced ideal. Thus, every element
of Cl(Δ) can be represented by a reduced ideal of OΔ, and checking equality of
two ideal classes means comparing the representatives. The neutral element of
Cl(Δ) is represented by (1, Δ (mod 2)). The inverse of the ideal class represented
by (a, b) is the ideal class represented by (a,−b). The group operation in Cl(Δ) is
ideal multiplication followed by reduction; a group operation requires O(log2 |Δ|)
bit-operations. If (a, b) is reduced then a ≤

√
|Δ|/3. For more information on

computations in class groups see [12, Chapter 5] or [3]; for algorithms see [21,3].

Class Groups and Cryptography. Class groups were first proposed for use in
cryptography by Buchmann and Williams [4]. The class number is not efficiently
computable if Δ is fundamental, but the even part of h(Δ) can be efficiently
computed if the prime factorization of Δ is known. All problems of Def. 4 can be
instantiated to the class groups, and the known efficient algorithms for tackling
the discrete logarithm, order, and root problem are tightly connected [3].

General number fields sieve [22], the best currently known factorization algo-

rithm, runs in time Ln[1/3,
3

√
64
9 ]. The best currently known algorithm (MPQS)
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for the root problem in maximal orders runs in time LΔ[1/2, 1 + o(1)] [21].
Even this time is only empirically suggested, the best rigorous algorithm for
computing the discrete logarithm runs in time LΔ[

1
2 ,

3
4

√
2 + o(1)] assuming the

Extended Riemann Hypothesis [27]. On the other hand, if OΔ is non-maximal
then the discrete logarithm problem in Cl(Δ) can be reduced to the discrete log-
arithm problem in multiplicative groups of finite fields [20]. On the other hand,
a (p − 1)-like algorithm can compute the class number efficiently, given that
h(Δ) is smooth [19]. Hamdy and Möller estimate the probability that a h(Δ) is
B-smooth for randomly chosen k-bit Δ, and conclude that if k-bit discriminants
are large enough to guarantee security against the MPQS algorithm, then the
probability to find a sufficiently smooth h(Δ) by choosing k-bit Δ’s randomly
and applying the (p − 1)-like algorithm to them, is negligible. Their heuristic,
that we also follow, is that the same holds true even when |Δ| is chosen to be a
k-bit random prime.

In general, we rely on the next properties of the class groups:

– If −Δ is a random k-bit prime, for large k, then computing the roots in the
class group Cl(Δ) as well as the order of a random element from Cl(Δ) is
assumed to be intractable. In particular, the length of the discriminant Δ is
reasonable: to achieve the same security as with k = 1536 in the RSA case,
it seems to be sufficient to take k ≈ 1000 [19].

– if −Δ is prime and Δ is fundamental, then with high probability 0.9775
the class group Cl(Δ) of imaginary quadratic order is cyclic. Moreover, then
h(Δ) is odd.

Root Accumulator in Class Groups of Imaginary Quadratic Order.
Let us now concentrate on the case where Ri = Z, and Di is a class group of
imaginary quadratic order, with α ◦ x := xα in Di.

In the setup phase, for class groups, choose a random negative k-bit prime
fundamental discriminant Δ, that is, let −Δ be a random k-bit prime with
Δ ≡ 1 mod 4. For a k-bit prime i, let Di := Cl(−i). Note that for a random
k-bit negative Δ, h(Δ) is not smooth [19], and it was also conjectured in [19]
that this also holds when Δ is a random negative k-bit prime.

Another assumption that we make (but that is common to all previous papers
on class group-based cryptography) is that with probability 1−negl(k), a random
element of Cl(Δ) is a generator of some sufficiently large subgroup of Cl(Δ).

Word of Caution. While the (weaker) root assumption is a well known as-
sumption in class groups, we are not aware of any a priori use of the strong
root assumption in class groups except [13]. Since also [13] did not analyze the
strong root assumption but only used it, we must warn that this assumption
is yet almost unstudied in the class groups. However, we hope that the current
paper provides new incentive to study strong root assumption (and related as-
sumptions) in class groups. A disproof of such assumptions would constitute a
major result by itself.
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Abstract. Differential fault analysis (DFA) has already been applied
to attack many block ciphers with the help of inducing some faults at
the last few rounds of block ciphers. Currently, a general countermeasure
against DFA is to protect the last few rounds of block ciphers by means
of redundancy. In this paper, we present a new fault attack on block
ciphers called linear fault analysis (LFA), in which linear characteristics
for some consecutive rounds of a block cipher will be utilized instead of
exploiting differential distributions of S-Boxes within the block cipher
in DFA. Basically, the new approach can handle the case that faults are
induced several rounds earlier compared to DFA, thus leading to a threat
to the protected implementations (against DFA) of block ciphers. For the
purpose of illustration, we mount an effective attack on SERPENT by
adopting LFA and achieve a good cryptanalytic result on SERPENT.
We hope that our work enriches the picture on the applicability of fault
attacks to block ciphers and could be beneficial to the security evaluation
of block ciphers.

Keywords: Differential Fault Analysis, Linear Fault Analysis, Block
Ciphers, SERPENT.

1 Introduction

In recent years, side channel attacks [1] have become important and efficient
cryptanalytic tools in analyzing various cryptographic devices. These attacks
exploit easily accessible information such as power consumption, running time,
input-output behavior under malfunctions, and so on, and then evaluate such
leaked information with the help of statistical methods. To some extent, side
channel attacks are often more powerful than classical approaches such as dif-
ferential cryptanalysis [2], linear cryptanalysis [3], related-key cryptanalysis [4],
integral cryptanalysis [5], algebraic attack [6], and so on.

� This work has been supported by National Natural Science Foundation of China
(No. 61073150 and No. 61003278), the Opening Project of Shanghai Key Labo-
ratory of Integrate Administration Technologies for Information Security, and the
Fundamental Research Funds for the Central Universities.

F. Bao, P. Samarati, and J. Zhou (Eds.): ACNS 2012, LNCS 7341, pp. 241–256, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



242 Z. Liu et al.

As one of side channel attacks, fault analysis is a class of implementation
attacks that disturb cryptographic computations so as to recover secret keys.
To speak specifically, when an encryption is executed under faulty condition, an
error occurs at some intermediate state, which results in a faulty output. The
faulty output is then used as leaked information to help retrieve secret key. Since
the fault analysis was first introduced in 1997 by Boneh et al [7], various methods
of fault analysis have been proposed and studied. Among them, differential fault
analysis(DFA) [8] can be regarded as the most effective cryptanalytic method
against block ciphers. In fact, DFA derives information about the secret key
of a block cipher by using differences between correct and faulty ciphertexts.
Generally, an attacker gets faulty ciphertexts by giving external impact on a
device with voltage variation, glitch, laser, etc [9]. To date, much research work
has been devoted to DFA on a variety of block ciphers such as DES [8,10], AES
[11,12,13,14,15,16,17,18], IDEA [19], CLEFIA [20], SMS4 and MacGuffin [21],
ARIA [22] and Camellia [23]. Such work demonstrates the vulnerability of block
ciphers towards DFA and the subsequent need of including countermeasures in
embedded implementations of block ciphers. Moreover, some extensions to DFA
have been presented in [24,25,26] in order to make fault attack more efficient.

As a matter of fact, most of DFA techniques target the last few rounds of a
block cipher, i.e., faults will be triggered at the last few rounds of the cipher so as
to induce information leakage. Consequently, the general countermeasure against
DFA is to protect the last few rounds of the cipher by means of redundancy.
However, the implementation of the countermeasure against DFA is more costly
and less efficient along with the number of protected rounds increasing, thus for
a block cipher, the practical implementations used to thwart DFA will cover as
less protected rounds as possible.

In this paper, we propose a new fault attack on block ciphers called linear
fault analysis (LFA), in which linear characteristics for some consecutive rounds
of a block cipher will be utilized instead of exploiting differential distributions of
S-Boxes within the block cipher in DFA. Generally, the new approach can deal
with the case that faults are injected several rounds earlier compared to DFA as
long as suitable linear approximations exist. Thus based on our new method, one
may mount an effective attack on a block cipher even if the cipher has already
been protected against DFA. Furthermore, in order to demonstrate the validity
of LFA, we apply it to analyze the block cipher SERPENT which is a candidate
of Advanced Encryption Standard and rated just behind the AES Rijndael. To
the best of our knowledge, there isn’t any known DFA attack on SERPENT
which can be done by inducing faults at the round earlier than the penultimate
round of the cipher, as a result, the countermeasure against DFA on SERPENT
can be implemented by protecting the last two rounds of the cipher. However,
we present an effective attack on the protected implementation of SERPENT
by means of LFA. As a new extension of fault attack, LFA may be beneficial to
the security evaluation of block ciphers.

The rest of the paper is organized as follows. Section 2 introduces the nota-
tions used throughout this paper and shows the possibility and rationality of



Linear Fault Analysis of Block Ciphers 243

fault injection briefly. Section 3 presents our new fault attack on block ciphers,
that is, linear fault analysis. Section 4 applies our novel approach to mount
an effective attack on the DFA-proof implementation of SERPENT. Finally,
Section 5 summarizes the paper.

2 Preliminaries

The following notations are used throughout the paper.

– ⊕ denotes bitwise exclusive OR (XOR).
– · denotes bitwise inner product.
– |x| denotes the absolute value of a real number x.
– ◦ denotes the composition operation.
– #S denotes the cardinality of a set S.
– 0x denotes the hexadecimal notation.

2.1 Fault Injection

In practice, many block ciphers have been implemented in cryptographic devices
such as smart cards and RFID tags. Generally, we can assume that a crypto-
graphic device with fixed secret key is under the control of the attacker who could
use the device to encrypt (or decrypt) arbitrary plaintexts (or ciphertexts). Ac-
cordingly, the attacker is able to deliberately interfere the normal operation of
the device with electromagnetic perturbations, voltage variations, clock glitches
and lasers so as to induce faults [9].

With the development of fault injection techniques, many fault models have
been established, among which single bit error model and single byte error
model are the most well-studied and applicable. Actually, in order to trigger
single bit error or single byte error at certain intermediate state within the en-
cryption/decryption process of a block cipher, laser technique could be adopted
since a laser with certain energy and wavelength could interfere fixed parts of
the memory/registers without damaging them, resulting in single bit error or
single byte error at some internal state accurately [27].

3 Linear Fault Analysis

We now present a new fault attack on block ciphers called linear fault analysis
(LFA), in which linear characteristics for some consecutive rounds of a block
cipher will be utilized instead of exploiting differential distributions of S-Boxes
within the block cipher in DFA.

3.1 Fault Model and Assumption

Our attack is applicable in the single bit error model as well as single byte error
model. To speak specifically, for a given block cipher, the attacker has the capa-
bility to choose plaintexts to encrypt, and during the encryption process, he can



244 Z. Liu et al.

repeatedly induce single bit error or single byte error at the input of some cer-
tain round of the block cipher so as to obtain the corresponding right and faulty
ciphertexts. Note that the values and positions (within the impacted round) of
the faults injected by the attacker are unknown and randomly distributed.

3.2 Principle of Linear Fault Analysis

In the following we will demonstrate the principle of linear fault analysis (LFA)
under the condition of single bit error model. Firstly, we will introduce the def-
inition of linearly active input set with respect to a linear approximation and
give a claim related to linear fault analysis.

Definition 1. Let E1 be a block cipher and ΓP · P ⊕ ΓC · C = ΓK · K (also
denoted as ΓP → ΓC) be a linear approximation for E1. Let SΓP→ΓC be a set
consisting of all bits of P involving in the item ΓP ·P . Then SΓP→ΓC is denoted
as the linearly active input set with respect to the linear characteristic ΓP → ΓC .

Claim 1. Let E be a block cipher and decompose the cipher into E = E1 ◦E0,
where E0 represents the first part of the cipher and E1 represents the last part.
Let ΓP · P ⊕ ΓC ·C = ΓK ·K be a linear approximation for E1 with probability
1/2 + ε and SΓP→ΓC be the linearly active input set with respect to the linear
characteristic ΓP → ΓC . Suppose that an attacker has the ability to induce sin-
gle bit error at the input of E1 repeatedly and the error bits don’t belong to the
set SΓP→ΓC , then an effective distinguisher ΓC · C1 ⊕ ΓC ·C2 = 0 for the cipher
E with probability 1/2 + 2ε2 can be derived by the attacker.

Next we will show the reasonability of Claim 1 in detail. First of all, we find
that the effect of injecting single bit error at the input of E1 repeatedly with
error bits not in the set SΓP→ΓC , is somewhat like constructing a particular
differential-linear distinguisher that is composed of a special truncated differ-
ential characteristic unknown input difference → ∇ for E0 with probability 1
and a linear characteristic ΓP → ΓC for E1 with probability 1/2 + ε such that
∇ · ΓP = 0. For any pair consisting of a right ciphertext C1 under E and the
corresponding faulty ciphertext C2 derived under the above condition, we have
that both

ΓP ·E−1
1 (C1)⊕ ΓC · C1 = ΓK ·K

and
ΓP ·E−1

1 (C2)⊕ ΓC · C2 = ΓK ·K
hold with probability 1/2+ε. Assume that these two equations are uncorrelated,
and take into account the condition that the error bit induced at the input of
E1 is not in the set SΓP→ΓC , we immediately obtain that

ΓC · C1 ⊕ ΓC · C2 = 0

holds with probability

(1/2 + ε)2 + (1/2− ε)2 = 1/2 + 2ε2.



Linear Fault Analysis of Block Ciphers 245

Thus the distinguisher by checking the parity of ΓC · C1 ⊕ ΓC · C2 can be uti-
lized to distinguish the cipher E from a random permutation since for such a
ciphertext pair (C1, C2), the equation ΓC · C1 ⊕ ΓC · C2 = 0 holds with prob-
ability 1/2 for a random permutation. �

Based on the result given in the above Claim as well as the Algorithm 2 proposed
in [3], we can mount a key recovery attack on E′ = E2 ◦E = E2 ◦E1 ◦E0 (where
E2 represents the last round of the cipher E′) by guessing part of the last round
subkey of E′. The general attack procedure can be described as follows:

Step 1. Given the linear characteristic ΓP → ΓC for E1, collect N pairs of
ciphertexts, each pair consisting of a right ciphertext Ci

1 under E′ and the corre-
sponding faulty ciphertext Ci

2 derived by injecting single bit error at any position
of the input of E1, where 1 ≤ i ≤ N .

Step 2. Let Kg denote the bits of the last round subkey which are related
to the item ΓC · E−1

2 (Ci
j), i.e., ΓC · E−1

2 (Ci
j) can be obtained by performing

a partial decryption of the ciphertext Ci
j with the guessed value of Kg, where

1 ≤ i ≤ N, 1 ≤ j ≤ 2. Then for each possible value of Kg, do the following:
(1). Initialize a counter TKg firstly.
(2). For each ciphertext pair (Ci

1, C
i
2), implement the partial decryptions of Ci

1

and Ci
2 respectively and compute the parity of ΓC · E−1

2 (Ci
1) ⊕ ΓC · E−1

2 (Ci
2).

If the parity is 0, increase the relevant counter TKg by 1, and decrease by 1
otherwise.
(3). Store the value of Kg as well as the value of the corresponding |TKg |.

Step 3. For all possible values of Kg, compare the stored values and take the
value ofKg as the correct key information if the value of the corresponding |TKg |
is maximal.
Note that in the above key recovery attack, the single bit error can be triggered
at any position of the input of E1. Here we want to discuss the rationality of
the key recovery attack. On the one hand, if the guessed value of Kg is correct,
then for any ciphertext pair (Ci

1, C
i
2) in which Ci

2 is derived by inducing single
bit error at the input of E1 such that the error bit is not in the set SΓP→ΓC ,
the equation ΓC ·E−1

2 (Ci
1)⊕ΓC ·E−1

2 (Ci
2) = 0 holds with probability 1/2+ 2ε2,

and for any ciphertext pair (Ci
1, C

i
2) where C

i
2 is obtained by injecting single bit

error at the input of E1 such that the error bit belongs to the set SΓP→ΓC , the
equation ΓC · E−1

2 (Ci
1) ⊕ ΓC · E−1

2 (Ci
2) = 1 holds with probability 1/2 + 2ε2.

Thus in the case that the guessed value of Kg is correct, we can estimate |TKg |
by

|TKg | ≈ N × |1− 2×#SΓP→ΓC/n| × 4ε2,

where n is the block size of the cipher E′, and #SΓP→ΓC is not equal to n/2. On
the other hand, if the guessed value of Kg is wrong, according to the Wrong-Key
Randomization Hypothesis given in [28], it’s assumed that the wrong guess ofKg

results in a random-looking parity of ΓC ·E−1
2 (Ci

1)⊕ΓC ·E−1
2 (Ci

2). Consequently,
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the value of |TKg | approximates to 0 in this case. So it is feasible to distinguish
the correct value of Kg from all wrong guesses of Kg by applying the above key
recovery attack if given sufficient ciphertext pairs (Ci

1, C
i
2), where Ci

2 is gained
by triggering single bit error at any position of the input of E1. Following the
technique introduced in [3], the number of ciphertext pairs required in our key
recovery attack can be estimated as

cN × 1

|1− 2×#SΓP→ΓC/n|
× 1

4ε4
,

where the coefficient cN , which is closely related to the number of guessed subkey
bits and the desired success rate of our attack, can be measured by using the
approach given in [29].

Furthermore, if an adversary has the capability to induce single bit error at the
input of E1 repeatedly as well as the ability to get several linear characteristics
Γ i
P → Γ i

C (1 ≤ i ≤ m) for E1, where the calculations of Γ i
C · E−1

2 and Γ j
C · E−1

2

(i �= j) influence different bits of the last round subkey of E′, then the adversary
can mount the above key recovery attack m times so as to recover more bits of
the last round subkey (note that ciphertext pairs could be multiplexed partially
or entirely among these attacks). After the adversary derives enough bits of the
last round subkey, he can guess the left unknown bits of the subkey by means
of exhaustive search if needed, and then the last round of E′ can be stripped.
Repeat the above procedure until the adversary can recover the secret key of the
cipher E′.

Regarding the linear fault analysis under the condition of single byte error
model, similar result can be derived by the same means as above.

4 A Key Recovery Attack on SERPENT by Using LFA

In order to illustrate the effectiveness of LFA, we mount a key recovery attack
on the block cipher SERPENT by using LFA in this section. Since there isn’t
any known DFA attack on SERPENT which can be done by inducing faults at
the round earlier than the penultimate round of the cipher so far, the general
countermeasure against DFA on SERPENT could be implemented by protecting
the last two rounds of the cipher if taking into account the cost and efficiency
of the implementation. However, our effective attack shows that LFA could be
a threat to the protected implementation of SERPENT.

4.1 A Brief Description of SERPENT

The SERPENT block cipher was proposed by Anderson et al in 1998 [30]. As a
candidate of Advanced Encryption Standard, it was rated just behind the AES
Rijndael. SERPENT has a classical SPN structure with 32 rounds and 128-bit
block size. It accepts keys of 128, 192 and 256 bits and consists of the following
operations:
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• an initial permutation IP;
• 32 rounds, each consisting of a key mixing operation, a passage through

32 S-boxes and a linear transformation (except the last round, where the linear
transformation is replaced by an additional key mixing operation);

• a final permutation FP.
In our description we adopt the notations of [30] in the bitsliced version. The

intermediate value just before the round i (i.e., the (i+ 1)-th round) is denoted
by Bi (a 128-bit value), where 0 ≤ i ≤ 31. Each Bi is composed of four 32-bit
words X0, X1, X2 and X3, where bit j of Xk is the bit 4j + k of the 128-bit
value Bi (0 ≤ j ≤ 31, 0 ≤ k ≤ 3). The four bits, bit j of X3, X2, X1 and X0,
consist of the nibble j (i.e., the (j + 1)-th nibble), with the bit from X3 as the
most significant bit.

SERPENT uses 8 distinct 4-bit to 4-bit S-boxes Si (0 ≤ i ≤ 7) successively
along the rounds and consequently, each S-box is used in exactly four different
rounds (i.e., S0 is used in round 0, S1 is used in round 1, . . ., after S7 is used in
round 7, S0 will be adopted again in round 8, then S1 in round 9, and so on).

As for each round function Ri (0 ≤ i ≤ 31), a single S-box will be used 32
times in parallel. For instance, R0 uses 32 copies of S0, and the (j + 1)-th copy
of S0 takes the nibble j as the input and then outputs the value according to
the S-box, where 0 ≤ j ≤ 31.

The cipher can be formally described as follows:
• B0 ← P ,
• Bi+1 ← Ri(Bi) 0 ≤ i ≤ 31,
• C ← B32,

where P , C denote plaintext and ciphertext respectively, and round function Ri

can be expressed as below:
Ri(X) = LT (Ŝi(X ⊕Ki)) i = 0, . . . , 30,
Ri(X) = Ŝi(X ⊕Ki)⊕K32 i = 31,

where Ŝi denotes the application of the S-box S(i mod 8) 32 times in parallel, LT
denotes the linear transformation, and Ki denotes the subkey of round i (note
that both K31 and K32 are the subkeys of round 31). Please refer to [30] for
detailed information about the 8 S-boxes, the linear transformation and the key
schedule algorithm.

4.2 Attacking SERPENT

We now present a key recovery attack on SERPENT under the condition of
single bit error model, and a similar attack can be mounted on SERPENT for
the case of single byte error model. Firstly, we construct twelve 2-round linear
characteristics Γ i

P → Γ i
C (1 ≤ i ≤ 12) for the rounds from round 29 to round 30

of SERPENT, and assume that single bit error can be injected at the input of
the round 29 repeatedly and randomly, then by applying the method given in
Section 3 twelve times, 128 bits of K32 can be retrieved from the attack.

In order to describe the linear characteristics adopted in our attack, 32 hex-
adecimal digits will be used to denote the masks corresponding to 32 nibbles
respectively, where the (j + 1)-th hexadecimal digit (numbered from right to
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left) corresponds to the nibble j, 0 ≤ j ≤ 31. Please refer to Appendix for the
depiction of the twelve 2-round linear characteristics used in our attack.

According to the approach given in Section 3, we could derive twelve distin-
guishers for the 31 rounds from round 0 to round 30 of SERPENT as below:

Γ i
C · SERPENT−1

lr (C1)⊕ Γ i
C · SERPENT−1

lr (C2) = 0, 1 ≤ i ≤ 12, (1)

where SERPENT−1
lr means the inverse of the last round of SERPENT, C1 is a

right ciphertext under SERPENT and C2 is the corresponding faulty ciphertext
obtained by inducing single bit error at the input of the round 29 of SERPENT.
Moreover, for the case 1 ≤ i ≤ 9, the i-th equation in (1) holds with probability
1/2+2−9, and for the case 10 ≤ i ≤ 12, the i-th equation in (1) holds with prob-
ability 1/2 + 2−7. Thus a key recovery attack can be mounted on SERPENT
based on the above twelve distinguishers. Following gives the detailed descrip-
tion of the attack in three phases.

Phase 1. For the i-th (1 ≤ i ≤ 3) distinguisher given in equations (1), do
the following:

Step 1. Collect Ni pairs of ciphertexts, each pair consisting of the right cipher-
text C1 under SERPENT and the corresponding faulty ciphertext Cj

2 (1 ≤ j ≤
Ni) derived by randomly injecting single bit error at the input of the round 29
of SERPENT.

Step 2. Let Kg denote the 8 bits of K32 which are relevant to the two ac-
tive nibbles (i.e., S-boxes) influenced by the distinguisher. Initialize 28 counters
{Tl}0≤l≤28−1 (the size of each counter could be set to �logNi

2  bits), where Tl

corresponds to l which represents the possible value of the 8 bits of Cj
2 entering

the above two active nibbles. For each faulty ciphertext Cj
2 , increase the counter

Tl by 1 if the corresponding 8-bit value of the Cj
2 is equal to l. Then for each

possible value of Kg, do the following:

(a). Initialize a counter TKg with the counter size being �logNi
2  bits and

implement the partial decryption of C1.
(b). For each value of l, decrypt the above two active nibbles and then calculate

the parity in terms of the distinguisher. If the parity is 0, increase the counter
TKg by the value of Tl, and decrease by the value of Tl otherwise.

(c). Store the value of Kg as well as the value of the corresponding |TKg |.
Step 3. For all possible values of Kg, compare the stored values and take the
value ofKg as the correct key information if the value of the corresponding |TKg |
is maximal.

Thus the 24 bits of K32 related to the nibbles 20, 21, 22, 25, 26 and 27 could
be recovered in this phase.

Phase 2. For the i-th (4 ≤ i ≤ 6) distinguisher given in equations (1), the
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attack steps are the same as those in Phase 1 except the step 2 which is de-
scribed as below.

Step 2. Let Kg denote the 12 bits of K32 which are relevant to the three ac-
tive nibbles (i.e., S-boxes) impacted by the distinguisher. Initialize 212 counters
{Tl}0≤l≤212−1 (the size of each counter could be set to �logNi

2  bits), where Tl

corresponds to l which represents the possible value of the 12 bits of Cj
2 enter-

ing the above three active nibbles. For each faulty ciphertext Cj
2 , increase the

counter Tl by 1 if the corresponding 12-bit value of the Cj
2 is equal to l. Then

for each possible value of Kg, do the following:

(a). Initialize a counter TKg with the counter size being �logNi
2  bits and

implement the partial decryption of C1.
(b). For each value of l, decrypt the above three active nibbles and then

calculate the parity in terms of the distinguisher. If the parity is 0, increase the
counter TKg by the value of Tl, and decrease by the value of Tl otherwise.

(c). Store the value of Kg as well as the value of the corresponding |TKg |.
Accordingly, the 36 bits of K32 corresponding to the nibbles 0, 1, 2, 3, 4, 5,

10, 11 and 12 could be obtained in this phase.

Phase 3. After the above 60 bits of K32 have been retrieved, we can mount
attacks on SERPENT sequentially in terms of the 7th, 8th, 9th, 10th, 11th and
12th distinguishers given in equations (1), and these attacks are similar to that
in Phase 1. Finally we can get all the 128 bits of K32.

After that, we rewrite the encryption algorithm of SERPENT in an equivalent
way by swapping the order of the linear transformation in round 30 and the key
mixing operation (with K31) in round 31, then for the modified cipher, the part
after the XOR operation with LT−1(K31) can be stripped. Furthermore, we
mount an attack on the reduced-round cipher similarly to the above and recover
the 128 bits of K31. Thus following the key schedule algorithm of SERPENT,
we can derive the secret key from K31 and K32.

For the attack in terms of the i-th (1 ≤ i ≤ 12) distinguisher given in equations
(1), the necessary number of ciphertext pairs, each pair consisting of a right
ciphertext under SERPENT and the corresponding faulty ciphertext derived by
triggering single bit error at the input of the round 29 of SERPENT randomly,
could be estimated as

cNi ×
1

1− 2× 6/128
× 1

(2−9)2
, 1 ≤ i ≤ 9,

or

cNi ×
1

1− 2× 3/128
× 1

(2−7)2
, 10 ≤ i ≤ 12,

where the coefficient cNi is closely related to the number of guessed subkey bits
and the desired success rate of the attack. Thus for the attack corresponding to
the i-th distinguisher, according to the Theorem 2 proposed in [29], 24× 32

29×218 ≈
222.14 and 23.8 × 64

61 × 214 ≈ 217.87 ciphertext pairs are needed in the cases
1 ≤ i ≤ 9 and 10 ≤ i ≤ 12 respectively so as to achieve a high success probability
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of 1 approximately. Note that the ciphertext pairs could be multiplexed in our
key recovery attack on SERPENT, consequently, the data complexity of our
attack with success probability of about 1 can be estimated as 2×222.14 = 223.14

ciphertext pairs or 223.14 faulty ciphertexts (taking the attack for recoveringK31

into account as well).
The time complexity of our attack is dominated mainly by the decryptions of

the active nibbles in the attack based on the 7th distinguisher of equations (1).
As a result, the time complexity of our attack is around 2×222.14×216× 6

32×32 ≈
231.73 SERPENT encryptions (taking the attack for retrieving K31 into account
as well).

The memory complexity of our attack is primarily owing to storing the value
of |TKg | in the attack based on the 7th distinguisher of equations (1) as well as
keeping the required faulty ciphertexts. Considering the fact that the attacks for
obtaining K32 and K31 are implemented sequentially, the memory complexity of
our attack can be approximated as (23× 216 + 128× 222.14)/8 ≈ 226.14 bytes.

4.3 Experiments and Results

We use a PC with i3 M380 processor(2.53 GHz) and 4G DDR memory to do the
experiments of our key recovery attack on SERPENT. The software platform
of the experiments is Visual C++, and fault inductions are simulated in this
platform. Under this condition we implement 100 experiments of our attack on
SERPENT with randomly generated secret keys.

The main procedure of each experiment is as follows. At first, a correct cipher-
text is obtained by encrypting a given plaintext under SERPENT with a secret
key. Secondly, we trigger single bit error at the input of round 29 of SERPENT
randomly and repeatedly to derive 222.14 faulty ciphertexts and then retrieve
the 128 bits of K32 by the means presented in Section 4.2. After that, we inject
single bit error at the input of round 28 of SERPENT randomly and repeatedly
to generate 222.14 faulty ciphertexts and then obtain the 128 bits of K31 by the
means similar to the above. Finally, the secret key is recovered from K32 and
K31 with the help of the key schedule algorithm of SERPENT.

Among all the 100 experiments, there are 92 experiments such that the recov-
ered secret keys are equal to the corresponding correct ones. Consequently, our
experimental results match the theoretical analysis given in Section 4.2 well.

5 Conclusion

In this paper, we have proposed a new fault attack on block ciphers called linear
fault analysis (LFA), in which linear characteristics for some consecutive rounds
of a block cipher will be utilized instead of exploiting differential distributions of
S-Boxes within the block cipher in DFA. Generally, our new approach can deal
with the case that faults are triggered several rounds earlier compared to DFA
as long as suitable linear approximations exist, as a result, one may mount an
effective attack on a block cipher by applying LFA even if the cipher has already
been protected against DFA.



Linear Fault Analysis of Block Ciphers 251

In order to demonstrate the validity of LFA, we have applied it to analyze the
block cipher SERPENT. Basically, the countermeasure against DFA on SER-
PENT can be implemented by protecting the last two rounds of the cipher since
there isn’t any known DFA attack on SERPENT so far which can be done by
inducing faults at the round earlier than the penultimate round of the cipher.
However, with the help of LFA, we have presented an effective attack on the
protected implementation of SERPENT. Although the attack has a data com-
plexity which seems impractical for real cryptographic devices, it does show that
LFA could be a potential threat to the protected implementations (against DFA)
of block ciphers. Moreover, it is expected that further results could be derived
by applying linear hulls and non-linear approximations in LFA.

Finally, the implementation of redundancy (a simple and widely used coun-
termeasure against fault attack) is more costly and less efficient along with the
number of protected rounds increasing, thus for a block cipher, the number of
protected rounds must be chosen very carefully in order to prevent security flaws
as well as keep the corresponding implementation economical and efficient. We
hope that our work could be helpful in determining this number.
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Appendix: The Linear Characteristics Used in Section 4.2

The 2-round linear characteristic (Γ 1
P → Γ 1

C) with p = 1/2 + 2−5

Γ 1
P = 0x00E0000000000000000000000000000E

↓ S5 Pr = 1/2 + 2−3

0x00400000000000000000000000000008
↓ LT

0x00000000000000000000000080000000
↓ S6 Pr = 1/2 + 2−3

0x00000000000000000000000010000000
↓ LT

0x00000010000A00000000000000000000 = Γ 1
C ,

The 2-round linear characteristic (Γ 2
P → Γ 2

C) with p = 1/2 + 2−5

Γ 2
P = 0x0E0000000000000000000000000000E0

↓ S5 Pr = 1/2 + 2−3

0x04000000000000000000000000000080
↓ LT

0x00000000000000000000000800000000
↓ S6 Pr = 1/2 + 2−3

0x00000000000000000000000100000000
↓ LT

0x0000010000A000000000000000000000 = Γ 2
C ,

The 2-round linear characteristic (Γ 3
P → Γ 3

C) with p = 1/2 + 2−5

Γ 3
P = 0xE0000000000000000000000000000E00

↓ S5 Pr = 1/2 + 2−3

0x40000000000000000000000000000800
↓ LT

0x00000000000000000000008000000000
↓ S6 Pr = 1/2 + 2−3

0x00000000000000000000001000000000
↓ LT

0x000010000A0000000000000000000000 = Γ 3
C ,
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The 2-round linear characteristic (Γ 4
P → Γ 4

C) with p = 1/2− 2−5

Γ 4
P = 0x00E0000000000000000000000000000E

↓ S5 Pr = 1/2 + 2−3

0x00400000000000000000000000000008
↓ LT

0x00000000000000000000000080000000
↓ S6 Pr = 1/2− 2−3

0x00000000000000000000000040000000
↓ LT

0x00000000000000000000080000002004 = Γ 4
C ,

The 2-round linear characteristic (Γ 5
P → Γ 5

C) with p = 1/2− 2−5

Γ 5
P = 0x0E0000000000000000000000000000E0

↓ S5 Pr = 1/2 + 2−3

0x04000000000000000000000000000080
↓ LT

0x00000000000000000000000800000000
↓ S6 Pr = 1/2− 2−3

0x00000000000000000000000400000000
↓ LT

0x00000000000000000000800000020040 = Γ 5
C ,

The 2-round linear characteristic (Γ 6
P → Γ 6

C) with p = 1/2− 2−5

Γ 6
P = 0xE0000000000000000000000000000E00

↓ S5 Pr = 1/2 + 2−3

0x40000000000000000000000000000800
↓ LT

0x00000000000000000000008000000000
↓ S6 Pr = 1/2− 2−3

0x00000000000000000000004000000000
↓ LT

0x00000000000000000008000000200400 = Γ 6
C ,
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The 2-round linear characteristic (Γ 7
P → Γ 7

C) with p = 1/2 + 2−5

Γ 7
P = 0x00E0000000000000000000000000000E

↓ S5 Pr = 1/2 + 2−3

0x00400000000000000000000000000008
↓ LT

0x00000000000000000000000080000000
↓ S6 Pr = 1/2 + 2−3

0x00000000000000000000000080000000
↓ LT

0x004000000000000008000010800A0002 = Γ 7
C ,

The 2-round linear characteristic (Γ 8
P → Γ 8

C) with p = 1/2 + 2−5

Γ 8
P = 0x0E0000000000000000000000000000E0

↓ S5 Pr = 1/2 + 2−3

0x04000000000000000000000000000080
↓ LT

0x00000000000000000000000800000000
↓ S6 Pr = 1/2 + 2−3

0x00000000000000000000000800000000
↓ LT

0x04000000000000008000010800A00020 = Γ 8
C ,

The 2-round linear characteristic (Γ 9
P → Γ 9

C) with p = 1/2 + 2−5

Γ 9
P = 0xE0000000000000000000000000000E00

↓ S5 Pr = 1/2 + 2−3

0x40000000000000000000000000000800
↓ LT

0x00000000000000000000008000000000
↓ S6 Pr = 1/2 + 2−3

0x00000000000000000000008000000000
↓ LT

0x4000000000000008000010800A000200 = Γ 9
C ,
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The 2-round linear characteristic (Γ 10
P → Γ 10

C ) with p = 1/2 + 2−4

Γ 10
P = 0x0000000000000000000000000000000E

↓ S5 Pr = 1/2− 2−2

0x00000000000000000000000000000004
↓ LT

0x00000040000000000000000000008000
↓ S6 Pr = 1/2− 2−3

0x000000D000000000000000000000B000
↓ LT

0x000810800A30060A400018010A12A002 = Γ 10
C ,

The 2-round linear characteristic (Γ 11
P → Γ 11

C ) with p = 1/2 + 2−4

Γ 11
P = 0x000000000000000000000000000000E0

↓ S5 Pr = 1/2− 2−2

0x00000000000000000000000000000040
↓ LT

0x00000400000000000000000000080000
↓ S6 Pr = 1/2− 2−3

0x00000D000000000000000000000B0000
↓ LT

0x00810800A30060A400018010A12A0020 = Γ 11
C ,

The 2-round linear characteristic (Γ 12
P → Γ 12

C ) with p = 1/2 + 2−4

Γ 12
P = 0x00000000000000000000000000000E00

↓ S5 Pr = 1/2− 2−2

0x00000000000000000000000000000400
↓ LT

0x00004000000000000000000000800000
↓ S6 Pr = 1/2− 2−3

0x0000D000000000000000000000B00000
↓ LT

0x0810800A30060A400018010A12A00200 = Γ 12
C .
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Abstract. HyRAL is a blockcipher whose block size is 128 bits, and it
supports the key lengths of 128, 129, . . . , 256 bits. The cipher was pro-
posed for the CRYPTREC project, and previous analyses did not identify
any security weaknesses. In this paper, we consider the longest key ver-
sion, 256-bit key HyRAL, and present the analysis in terms of equivalent
keys. First, we show that there are 251.0 equivalent keys (or 250.0 pairs of
equivalent keys). Next, we propose an algorithm that derives an instance
of equivalent keys with the expected time complexity of 248.8 encryptions
and a limited amount of memory. Finally, we implement the proposed
algorithm and fully verify its correctness by showing several instances of
equivalent keys.
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1 Introduction

HyRAL is a blockcipher whose block size is 128 bits, and it supports the key
lengths of 128, 129, . . . , 256 bits [6,7,8]. The overall structure of HyRAL is the
Generalized Feistel Structure with four branches, and 128-bit key HyRAL con-
sists of 24 rounds, and 129-, 130-, . . . , 256-bit key HyRAL consist of 32 rounds.
The CRYPTREC project, running in Japan, is maintaining the e-Government
recommended ciphers list, which was first established in 2003, and the list is
planned to be revised in 2013 [3]. A call for algorithms was announced in 2009,
and HyRAL is one of the proposed algorithms for the call [6]. The security of
HyRAL against various attacks has been evaluated. The security against differ-
ential attacks [2] and linear attacks [15,16] is analyzed in [6,9,24], impossible dif-
ferential attacks [1] is analyzed in [17,18], saturation attacks [5] and higher order
differential attacks [13,14] is analyzed in [19,20,21,22,23,25,26], and boomerang
attacks is analyzed in [10]. [27] also presents security analyses against various
attacks, and so far, no security weaknesses have been identified. Therefore, iden-
tifying a security weakness of this cipher is of interest from a cryptanalytic view
point.

For a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n of k-bit keys and an n-bit
block, two distinct keys K,K ′ ∈ {0, 1}k that satisfy EK(M) = EK′(M) for all
M ∈ {0, 1}n are called equivalent keys [12]. In this paper, out of the 129 key
lengths supported in the specification of HyRAL, we consider the longest key

F. Bao, P. Samarati, and J. Zhou (Eds.): ACNS 2012, LNCS 7341, pp. 257–274, 2012.
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version, 256-bit key HyRAL, and present the analysis in terms of equivalent
keys. We show the following three results.

– First, we show that there are 251.0 equivalent keys (or 250.0 pairs of equivalent
keys).

– Next, we propose an algorithm that derives an instance of equivalent keys
with the expected time complexity of 248.8 encryptions and a limited amount
of memory.

– Finally, we implement the proposed algorithm and fully verify its correctness
by showing several instances of equivalent keys.

The first result is obtained by an analysis of the differential characteristic of
the particular component in the cipher called the Key Generation Algorithm,
which we write KGA. KGA is used twice in the cipher, and their outputs are
xor’ed to generate round keys. We show that, for KGA, there exist differential
characteristics of probability higher than 2−128, and hence the output differences
collide with probability higher than 2−256. Equivalent keys are obtained as the
result of this internal collision. In general, the existence of equivalent keys directly
implies the theoretical cryptanalysis of the cipher, as the time complexity of the
brute-force attack becomes less than the time complexity implied by its key
length.

The second result is the main technical contribution of this paper. We de-
velop an algorithm to generate the input of KGA that follows the differential
characteristic. The core of the algorithm is to derive the input of KGA that sat-
isfies conditions on the 64-bit intermediate variables. More precisely, it inverts
the 5 round Generalized Feistel Structure that has a feed forward at the input
of the 5th round, where there are conditions that the xor of three 32-bit input
variables of the 5th round is fixed to some constant, and that the xor of three
32-bit output variables of the 5th round is also fixed to some constant.

We obtain the third result by making use of a supercomputer system. It is well
known that obtaining concrete instances of equivalent keys implies that we obtain
collisions on the Davies-Meyer compression function based on the blockcipher.
It is also easy to obtain collisions on the Merkle-Damg̊ard hash function based
on the compression function. Therefore, the existence of equivalent keys limits
the use of the cipher in the widely deployed hash function mode.

With respect to the status of HyRAL in the CRYPTREC project, we note that
the results of this paper were reported to the project [11], and it was announced
in June 2011 that, based on the results, HyRAL did not proceed to the second
round evaluation process [4].

2 Specification of HyRAL

We first define notation used throughout this paper. For an integer n ≥ 0,
{0, 1}n is the set of n-bit strings. For two bit strings X and Y of the same
length, X ⊕ Y is their xor. For integers n,m ≥ 0 and a bit string X ∈ {0, 1}nm,
(X [1], . . . , X [m])

n← X is the partitioning operation into n-bit strings, i.e.,
X [1], . . . , X [m] are unique n-bit strings such that (X [1], . . . , X [m]) = X .
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Fig. 1. The overall structure of 256-bit key HyRAL

Outline of 256-Bit Key HyRAL. HyRAL is a blockcipher whose block size is 128
bits, and it supports the key lengths of 128, 129, . . . , 256 bits. This paper deals
with the 256-bit key version only, and the specifications of other key lengths are
in [6,7,8].

The overall structure of 256-bit key HyRAL is shown in Fig. 1. The inputs
are a key K ∈ {0, 1}256 and a plaintext M ∈ {0, 1}128, and the output is a
ciphertext C ∈ {0, 1}128. 256-bit key HyRAL consists of the Key Generation
Algorithm (KGA), the Key Assignment Algorithm (KAA), and the Data Pro-
cessing Algorithm (DPA). KGA is used twice by changing the internal constants,
and they are respectively denoted KGA1 and KGA2. For given K ∈ {0, 1}256
and M ∈ {0, 1}128, the encryption proceeds as follows.

1. Let (OK1, OK2)
128← K. That is, let OK1 be the most significant 128 bits of

K, and OK2 be the least significant 128 bits.
2. We then run KGA1 and KGA2 with OK1 and OK2, respectively, to generate

(Y4, Y5, Y6, Y7) ← KGA1(OK1) and (Z4, Z5, Z6, Z7) ← KGA2(OK2), where
Yi, Zi ∈ {0, 1}128.

3. Let (KM1,KM3,KM2,KM4) ← (Y4⊕Z4, Y5⊕Z5, Y6⊕Z6, Y7⊕Z7), where
KMi ∈ {0, 1}128. We write (KM1,KM3,KM2,KM4) = KM .

4. Next, we run KAA with KM to generate (RK1, . . . , RK9, IK1, . . . , IK6) ←
KAA(KM), where RKi, IKi ∈ {0, 1}128.

5. Finally, we run DPA with (RK1, . . . , RK9, IK1, . . . , IK6) and the plaintext
M to generate the ciphertext C ← DPA(RK1, . . . , RK9, IK1, . . . , IK6,M),
and then C is returned.

In KAA, (KM1,KM3,KM2,KM4) are first parsed into 32-bit strings, and then
(RK1, . . . , RK9, IK1, . . . , IK6) are generated by taking their linear
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Fig. 2. KGA1 and KGA2

combinations. The overall structure of DPA is the 32 round Generalized Feistel
Structure with four branches. Further details of KAA and DPA are not neces-
sary in order to present the results of this paper, and their specifications can be
found in [6,7,8].

The Key Generation Algorithms KGA1 and KGA2. KGA1 and KGA2 are shown
in Fig. 2. For the input OK1 ∈ {0, 1}128, KGA1 outputs (Y4, Y5, Y6, Y7) ∈
{0, 1}512. Similarly, KGA2 takes OK2 ∈ {0, 1}128 and outputs (Z4, Z5, Z6, Z7) ∈
{0, 1}512. KGA1 and KGA2 internally use G1 and G2 functions, which are key-
less permutations over {0, 1}128. KGA1 and KGA2 differ only in the internally
used constants. The following 128-bit constants, CST1 and CST2, are used in
KGA1 and KGA2, respectively, where the prefix 0x indicates that the value is
in the hexadecimal form.{

CST1 = 0xf9251a2365cd3c2e8066cbbbfe316b7b

CST2 = 0x5de28625656b71ff9ffb1e12eef127f5

G1 and G2 Functions. G1 and G2 functions are shown in Fig. 3.

G1 and G2 functions take (X
(1)
1 , X

(1)
2 , X

(1)
3 , X

(1)
4 ) ∈ {0, 1}128 as the input,

and output (X
(5)
1 , X

(5)
2 , X

(5)
3 , X

(5)
4 ) ∈ {0, 1}128. They consist of four rounds of

the Generalized Feistel Structure with four branches. G1 function internally uses
f1, f2, f3, and f4 functions, and G2 function internally uses f5, f6, f7, and f8
functions.

f1, . . . , f8 Functions. f1, . . . , f8 functions are keyless permutations over {0, 1}32.
They take a 32-bit string as the input and generate a 32-bit string as the output.
The structure of fi function is the SP-network, and a detailed specification is
presented in Appendix A.
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Fig. 3. G1 function (left) and G2 function (right)

3 Existence of Equivalent Keys

Overall Strategy. We make use of the differential cryptanalysis of Biham and
Shamir [2] to show the existence of equivalent keys.

Let (OK1, OK2) ∈ {0, 1}256 be the key. Let ΔOK1 be the input difference for
KGA1 and (ΔY4,ΔY5,ΔY6,ΔY7) be the corresponding output difference. Simi-
larly, let ΔOK2 and (ΔZ4,ΔZ5,ΔZ6,ΔZ7) be the input and output differences
of KGA2, respectively. We have

(ΔY4,ΔY5,ΔY6,ΔY7) = KGA1(OK1)⊕KGA1(OK1 ⊕ΔOK1) (1)

and

(ΔZ4,ΔZ5,ΔZ6,ΔZ7) = KGA2(OK2)⊕KGA2(OK2 ⊕ΔOK2). (2)

If the two output differences collide and

(ΔY4,ΔY5,ΔY6,ΔY7) = (ΔZ4,ΔZ5,ΔZ6,ΔZ7) (3)

holds, we see that the differences are canceled by the xor operation and the input
difference (ΔKM1,ΔKM3,ΔKM2,ΔKM4) of KAA becomes null. Therefore, if
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(3) holds, we have the following equivalent keys.

(K,K ′) =

⎧⎪⎪⎨⎪⎪⎩
((OK1, OK2), (OK1 ⊕ΔOK1, OK2 ⊕ΔOK2))
((OK1 ⊕ΔOK1, OK2 ⊕ΔOK2), (OK1, OK2))
((OK1 ⊕ΔOK1, OK2), (OK1, OK2 ⊕ΔOK2))
((OK1, OK2 ⊕ΔOK2), (OK1 ⊕ΔOK1, OK2))

(4)

In this paper, these are counted as four equivalent keys (or two pairs of equivalent
keys).

Since KGA1 and KGA2 are the same algorithms except for the internally
used constants, we may regard them identically as long as we consider their
differential characteristics. In what follows, let KGA ∈ {KGA1,KGA2} be the
Key Generation Algorithm. We next analyze the differential characteristic of
KGA.

Differential Characteristic of KGA. We regard one round of G1 and G2 functions
as one round of KGA. Then KGA is a function that consists of 20 rounds in total.
For r = 1, 2, . . . , 20, we write f

(r)
i for fi function used in the r-th round.

Let ΔOK ∈ {0, 1}128 be the input difference of KGA and (ΔY4,ΔY5,ΔY6,
ΔY7) ∈ {0, 1}512 be the corresponding output difference.

For r = 1, 2, . . . , 20, let ΔX(r) = (ΔX
(r)
1 ,ΔX

(r)
2 ,ΔX

(r)
3 ,ΔX

(r)
4 ) ∈ {0, 1}128

be the input difference of the r-th round, and ΔZ(r) = (ΔZ
(r)
1 ,ΔZ

(r)
2 ,ΔZ

(r)
3 ,

ΔZ
(r)
4 ) ∈ {0, 1}128 be its output difference. A differential characteristic is a tuple

((ΔX(1),ΔZ(1)), . . . , (ΔX(20),ΔZ(20)))

of the input and output differences of each round, that satisfies the follow-
ing conditions: First, it corresponds with the input and output differences of
KGA, and hence we have ΔX(1) = ΔOK, ΔZ(8) = ΔY4, ΔZ(12) = ΔY5,
ΔZ(16) = ΔY6, and ΔZ(20) = ΔY7. Second, for r = 1, 2, . . . , 20, we have

(ΔX
(r)
2 ,ΔX

(r)
3 ,ΔX

(r)
4 ) = (ΔZ

(r)
1 ,ΔZ

(r)
2 ,ΔZ

(r)
3 ). Third, for r ∈ {4, 8, 12, 16},

we have ΔX(r+1) = ΔZ(r) ⊕ΔOK, and for r ∈ {1, 2, . . . , 19} \ {4, 8, 12, 16}, we
have ΔX(r+1) = ΔZ(r).

For a differential characteristic ((ΔX(1),ΔZ(1)), . . . , (ΔX(20),ΔZ(20))), its
probability is defined as

DCPKGA((ΔX(1),ΔZ(1)), . . . , (ΔX(20)ΔZ(20))) =
∏

1≤r≤20

DPf
(r)
i (ΔI

(r)
i ,ΔO

(r)
i ),

where ΔI
(r)
i = ΔX

(r)
2 ⊕ΔX

(r)
3 ⊕ΔX

(r)
4 is the input difference of f

(r)
i , ΔO

(r)
i =

ΔX
(r)
1 ⊕ΔZ

(r)
4 is the corresponding output difference, and the differential prob-

ability DPfi(ΔIi,ΔOi) of fi function for the input difference ΔIi and the output
difference ΔOi is defined as

DPfi(ΔIi,ΔOi) =
#{I | fi(I)⊕ fi(I ⊕ΔIi) = ΔOi}

232
.



Cryptanalysis of 256-Bit Key HyRAL via Equivalent Keys 263

For a given differential characteristic, we say that fi function is active if its input
difference is non-zero. In KGA, there are 20 fi functions and hence the maximum
number of active fi functions is 20. In the following lemma, we show that there
exists a differential characteristic with only four active fi functions.

Lemma 1. For KGA, there exists a differential characteristic with four active
fi functions.

Proof. Let δ ∈ {0, 1}32 be any non-zero bit string. Let ΔOK = (δ, δ, δ, δ) be
the input difference of KGA, and (ΔY4,ΔY5,ΔY6,ΔY7) be the output differ-
ence, where ΔY4 = (δ, δ, 0, 0), ΔY5 = (0, 0, 0, δ), ΔY6 = (δ, δ, δ, δ), and ΔY7 =
(0, 0, 0, 0). Consider the differential characteristic given in Table 1, which is also
shown in Fig. 4. Then one can verify that there are four active fi functions,

which are f
(1)
1 , f

(6)
7 , f

(11)
3 , and f

(16)
5 . 
�

We see that the input and output differences of active fi functions in the dif-
ferential characteristic of Lemma 1 are both δ. Under the condition that both the
input and output differences are the same, we have counted the number of active
fi functions for the 15 non-zero input differences, which are (0, 0, 0, δ), (0, 0, δ, 0),
(0, 0, δ, δ), . . . , (δ, δ, δ, δ). The results are summarized in Table 2.

From the table, we see that the number of active fi functions of Lemma 1 is
the minimum among the 15 differential characteristics.

Differential Probability of fi Function. For fi function, let DPfi(δ) be the prob-
ability that both the input and output differences of fi function are δ, i.e.,

DPfi(δ) = DPfi(δ, δ) =
#{I | fi(I)⊕ fi(I ⊕ δ) = δ}

232
.

The probability of the differential characteristic in Lemma 1 depends only on δ,
and we write the probability as DCPKGA(δ), which is given as

DCPKGA(δ) = DPf1(δ)×DPf3(δ)×DPf5(δ)×DPf7(δ).

We present the following lemma with respect to DCPKGA(δ).

Lemma 2. There exists non-zero δ ∈ {0, 1}32 such that DCPKGA(δ) > 2−128.

Proof. For all the (232− 1) possible values 0x00000001, . . . , 0xffffffff of non-
zero δ ∈ {0, 1}32, we computed the value of DCPKGA(δ). The results are sum-
marized in Table 3. From the table, we see that there exist 89938 values of δ
such that DCPKGA(δ) > 2−128. 
�

We note that, for δ = 0xd7d7d0d7, we have

DPf1(δ) = 2−25,DPf3(δ) = 2−26,DPf5(δ) = 2−26, and DPf7(δ) = 2−26. (5)
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Table 1. The differential characteristic
and active fi functions of Lemma 1

r
Input diff. Output diff. Active

ΔX(r) ΔZ(r) fi function

1 (δ, δ, δ, δ) (δ, δ, δ, 0) f1
2 (δ, δ, δ, 0) (δ, δ, 0, δ)
3 (δ, δ, 0, δ) (δ, 0, δ, δ)
4 (δ, 0, δ, δ) (0, δ, δ, δ)
5 (δ, 0, 0, 0) (0, 0, 0, δ)
6 (0, 0, 0, δ) (0, 0, δ, δ) f7
7 (0, 0, δ, δ) (0, δ, δ, 0)
8 (0, δ, δ, 0) (δ, δ, 0, 0)
9 (0, 0, δ, δ) (0, δ, δ, 0)
10 (0, δ, δ, 0) (δ, δ, 0, 0)
11 (δ, δ, 0, 0) (δ, 0, 0, 0) f3
12 (δ, 0, 0, 0) (0, 0, 0, δ)
13 (δ, δ, δ, 0) (δ, δ, 0, δ)
14 (δ, δ, 0, δ) (δ, 0, δ, δ)
15 (δ, 0, δ, δ) (0, δ, δ, δ)
16 (0, δ, δ, δ) (δ, δ, δ, δ) f5
17 (0, 0, 0, 0) (0, 0, 0, 0)
18 (0, 0, 0, 0) (0, 0, 0, 0)
19 (0, 0, 0, 0) (0, 0, 0, 0)
20 (0, 0, 0, 0) (0, 0, 0, 0)

Table 2. The number of active fi func-
tions for a given input difference

Input diff.
Number

ΔOK

(0, 0, 0, δ) 9
(0, 0, δ, 0) 9
(0, 0, δ, δ) 10
(0, δ, 0, 0) 9
(0, δ, 0, δ) 10
(0, δ, δ, 0) 10
(0, δ, δ, δ) 7
(δ, 0, 0, 0) 9

Input diff.
Number

ΔOK

(δ, 0, 0, δ) 10
(δ, 0, δ, 0) 10
(δ, 0, δ, δ) 7
(δ, δ, 0, 0) 10
(δ, δ, 0, δ) 7
(δ, δ, δ, 0) 7
(δ, δ, δ, δ) 4

Table 3. Examples of δ that satisfies
DCPKGA(δ) > 2−128 and the number of
such δ

DCPKGA(δ) Example of δ Number

2−103 0xd7d7d0d7 1
2−104 0xc5c5d254 1
2−105 0x4e4ec554 1
2−106 0x3c3cf4ff 8
2−107 0x6161f9d9 1
2−108 0x054d9797 34
2−109 0x0101019a 157
2−110 0x0159591a 1579
2−111 0x0101e818 7685
2−112 0x01010520 80471

Existence of Equivalent Keys. We are now ready to present our main result of
this section. Fix any δ such that DCPKGA(δ) > 2−128. For randomly chosen
OK1 ∈ {0, 1}128, (1) is satisfied for{

ΔOK1 = (δ, δ, δ, δ),
ΔY4 = (δ, δ, 0, 0),ΔY5 = (0, 0, 0, δ),ΔY6 = (δ, δ, δ, δ),ΔY7 = (0, 0, 0, 0)

(6)

with at least a probability of DCPKGA(δ). This implies that at least 2128 ×
DCPKGA(δ) values of OK1 ∈ {0, 1}128 satisfy (1). Similarly, at least 2128 ×
DCPKGA(δ) values of OK2 ∈ {0, 1}128 satisfy (2) for{

ΔOK2 = (δ, δ, δ, δ),
ΔZ4 = (δ, δ, 0, 0),ΔZ5 = (0, 0, 0, δ),ΔZ6 = (δ, δ, δ, δ),ΔZ7 = (0, 0, 0, 0).

(7)

If we fix a value of (OK1, OK2) ∈ {0, 1}256 that satisfies (1), (6), (2), and (7),
we see that (3) is also satisfied, and hence we obtain four equivalent keys (or two
pairs of equivalent keys) of (4). From Table 3 and by eliminating the duplications,
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the number of equivalent keys can be derived as

4× (250 × 1 + 248 × 1 + 246 × 1 + 244 × 8 + · · ·+ 232 × 80471)

4
≥ 251.0,

and the number of pairs is the half of 251.0, which is 250.0.
From the discussions above, we obtain the following theorem.

Theorem 1. In 256-bit key HyRAL, there exist 251.0 equivalent keys (or 250.0

pairs of equivalent keys).

4 Derivation of Equivalent Keys

From the result of the previous section, we know that there are 251.0 equivalent
keys in 256-bit key HyRAL. In this section, we consider the problem of deriving
a concrete instance of equivalent keys.

4.1 Equivalent Key Derivation Algorithm

As in the previous section, let KGA ∈ {KGA1,KGA2}. Recall that one round
of G1 and G2 functions are regarded as one round of KGA, and hence KGA is a
function that consists of 20 rounds in total. Let OK ∈ {OK1, OK2} be the input

of KGA, and let (K1,K2,K3,K4)
32← OK ∈ {0, 1}128 be its partition into 32-bit

strings. Similarly, let CST ∈ {CST1,CST2} be the constant used in KGA, and

let (C1, C2, C3, C4)
32← CST ∈ {0, 1}128 be its partition into 32-bit strings. KGA

is the function that consists of 20 rounds in total, and we write the input and

output strings of f
(r)
i as I

(r)
i ∈ {0, 1}32 and O

(r)
i ∈ {0, 1}32, respectively, where

r = 1, 2, . . . , 20 and f
(r)
i is fi function used in the r-th round. Figure 5 shows

the first 8 rounds of KGA.
We consider the case of δ = 0xd7d7d0d7. For i ∈ {1, 3, 5, 7}, let Ii be a list

of Ii ∈ {0, 1}32 that satisfies fi(Ii) ⊕ fi(Ii ⊕ δ) = δ. From (5), I1 consists of
128 elements, and each of I3, I5, and I7 consists of 64 elements, and we may
thus write down the lists as I1 = {I1[0], . . . , I1[127]}, I3 = {I3[0], . . . , I3[63]},
I5 = {I5[0], . . . , I5[63]}, and I7 = {I7[0], . . . , I7[63]}.

Now if we can derive (K1,K2,K3,K4) that satisfies

I
(1)
1 ∈ I1, I(6)7 ∈ I7, I(11)3 ∈ I3, and I

(16)
5 ∈ I5,

then this implies that we have derived OK that satisfies (1) and (6), or (2)
and (7).

It is easy to obtain (K1,K2,K3,K4) that satisfies one of the four conditions,

I
(1)
1 ∈ I1, since this is simply (K1,K2,K3,K4) such thatK2⊕C2⊕K3⊕C3⊕K4⊕
C4 ∈ I1. In the following lemma, we show that one can derive (K1,K2,K3,K4)
that satisfies two of the four conditions, namely, one can derive (K1,K2,K3,K4)

such that both I
(1)
1 ∈ I1 and I

(6)
7 ∈ I7 are satisfied.
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Fig. 5. The first 8 rounds of KGA

Lemma 3. For arbitrarily fixed K̃1, I
(1)
1 , I

(5)
8 , and I

(6)
7 , where K̃1 = K1 ⊕K3,

the corresponding value of (K1,K2,K3,K4) can be derived.

Proof. Since I
(1)
1 and I

(5)
8 are fixed, O

(1)
1 = f1(I

(1)
1 ) and O

(5)
8 = f8(I

(5)
8 ) are also

fixed. To simplify the notation, let C̃1, . . . , C̃5 be the fixed constants defined as

C̃1 = C1⊕C3⊕C4⊕O
(1)
1 , C̃2 = C1⊕C3⊕I

(1)
1 ⊕O

(1)
1 , C̃3 = C1⊕C4⊕I

(1)
1 ⊕O

(1)
1 ,

C̃4 = C2⊕C3⊕C4, and C̃5 = C1⊕C2⊕O
(1)
1 ⊕I

(6)
7 . We also let K̃2 = K1⊕K3⊕K4

and K̃3 = K1 ⊕K4.
First, I

(1)
1 has to satisfy I

(1)
1 = K2 ⊕ C2 ⊕ K3 ⊕ C3 ⊕ K4 ⊕ C4, which is

equivalent to

K2 = I
(1)
1 ⊕ C2 ⊕K3 ⊕ C3 ⊕K4 ⊕ C4. (8)
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Next, since I
(2)
2 = K̃2 ⊕ C̃1, we have

O
(2)
2 = f2(K̃2 ⊕ C̃1). (9)

Similarly, since I
(3)
3 can be written as I

(3)
3 = K̃1 ⊕ C̃2 ⊕ O

(2)
2 by using (8), we

obtain

O
(3)
3 = f3(K̃1 ⊕ C̃2 ⊕O

(2)
2 ). (10)

Besides, since I
(4)
4 can be written as I

(4)
4 = K̃3 ⊕ C̃3 ⊕O

(2)
2 ⊕O

(3)
3 by using (8),

we obtain

O
(4)
4 = f4(K̃3 ⊕ C̃3 ⊕O

(2)
2 ⊕O

(3)
3 ). (11)

Now since the input of the 5th round is (C1⊕O
(1)
1 , C2⊕O

(2)
2 , C3⊕O

(3)
3 , C4⊕O

(4)
4 )

and I
(5)
8 is fixed,

I
(5)
8 = C̃4 ⊕O

(2)
2 ⊕O

(3)
3 ⊕O

(4)
4 (12)

has to be satisfied. Furthermore, since I
(6)
7 is fixed, I

(6)
7 = C1⊕C3⊕C4⊕O

(1)
1 ⊕

O
(3)
3 ⊕O

(4)
4 ⊕O

(5)
8 needs to be satisfied, which is equivalent to

C̃5 ⊕O
(2)
2 ⊕ I

(5)
8 = O

(5)
8 (13)

by using (12).

At this point, since C̃5, I
(5)
8 , and O

(5)
8 are all fixed, O

(2)
2 that satisfies (13)

is uniquely determined. As we have now fixed O
(2)
2 , K̃2 that satisfies (9) is also

uniquely determined, which is K̃2 = f−1
2 (O

(2)
2 )⊕ C̃1. We also see that since O

(2)
2

is now fixed and K̃1 is a fixed constant, O
(3)
3 that satisfies (10) is now uniquely

fixed. Upon fixing both O
(2)
2 and O

(3)
3 , we obtain unique O

(4)
4 that satisfies (12),

and for these fixed O
(2)
2 , O

(3)
3 , and O

(4)
4 , we obtain the corresponding K̃3, which

is K̃3 = f−1
4 (O

(4)
4 )⊕ C̃3 ⊕O

(2)
2 ⊕O

(3)
3 .

Finally, we obtain (K1,K2,K3,K4) as (K1,K2,K3,K4) ← (K̃1⊕K̃2⊕K̃3, K̃1⊕
K̃3 ⊕ I

(1)
1 ⊕ C̃4, K̃2 ⊕ K̃3, K̃1 ⊕ K̃2). 
�

We are now ready to present the basic version of our equivalent key derivation
algorithm based on Lemma 3.

1. Fix arbitrarily I
(1)
1 and I

(6)
7 that satisfy I

(1)
1 ∈ I1 and I

(6)
7 ∈ I7.

2. Fix arbitrarily I
(5)
8 and K̃1.

3. Derive (K1,K2,K3,K4) by using Lemma 3.

4. Compute I
(11)
3 from (K1,K2,K3,K4) by following the specification of 256-

bit key HyRAL, and proceed to Step 5 if I
(11)
3 ∈ I3 is satisfied. Otherwise

return to Step 2.
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5. Compute I
(16)
5 from (K1,K2,K3,K4) by following the specification of 256-bit

key HyRAL, and output (K1,K2,K3,K4) and halt if I
(16)
5 ∈ I5 is satisfied.

Otherwise return to Step 2.

If we assume that I
(11)
3 and I

(16)
5 are independently and uniformly distributed

random strings over {0, 1}32, then the probability that both I
(11)
3 ∈ I3 and

I
(16)
5 ∈ I5 are satisfied is (64/232)2 = 2−52, since there are 64 elements in each of
I3 and I5. Therefore, we may expect that the algorithm returns (K1,K2,K3,K4)

after trying 252 values of (I
(5)
8 , K̃1).

4.2 Time Complexity of the Algorithm

In the basic algorithm presented in Sect. 4.1, the test I
(11)
3 ∈ I3 is executed for

252 different values of (I
(5)
8 , K̃1). This test of I

(11)
3 ∈ I3 is the main cost in the

time complexity of the algorithm, and the following lemma can be used in the
actual implementation.

Lemma 4. For arbitrarily fixed K̃1, I
(1)
1 , O

(1)
1 , I

(5)
8 , I

(6)
7 , and O

(6)
7 , the corre-

sponding value of I
(11)
3 can be derived by seven computations of fi functions.

Proof. I
(11)
3 can be derived by the following steps.

1. O
(5)
8 ← f8(I

(5)
8 )

2. O
(2)
2 ← C̃5 ⊕ I

(5)
8 ⊕O

(5)
8

3. K̃2 ← f−1
2 (O

(2)
2 )⊕ C̃1

4. O
(3)
3 ← f3(K̃1 ⊕ C̃2 ⊕O

(2)
2 )

5. O
(4)
4 ← C̃4 ⊕ I

(5)
8 ⊕O

(2)
2 ⊕O

(3)
3

6. O
(7)
6 ← f6(C1 ⊕ C2 ⊕ C4 ⊕O

(1)
1 ⊕O

(2)
2 ⊕O

(4)
4 ⊕O

(5)
8 ⊕O

(6)
7 )

7. O
(8)
5 ← f5(C1 ⊕ C2 ⊕ C3 ⊕O

(1)
1 ⊕O

(2)
2 ⊕O

(3)
3 ⊕O

(5)
8 ⊕O

(6)
7 ⊕O

(7)
6 )

8. O
(9)
1 ← f1(I

(1)
1 ⊕O

(2)
2 ⊕O

(3)
3 ⊕O

(4)
4 ⊕O

(6)
7 ⊕O

(7)
6 ⊕O

(8)
5 )

9. O
(10)
2 ← f2(K̃2 ⊕ C̃1 ⊕O

(3)
3 ⊕O

(4)
4 ⊕O

(5)
8 ⊕O

(7)
6 ⊕O

(8)
5 ⊕O

(9)
1 )

10. I
(11)
3 ← K̃1⊕C1⊕C3⊕I

(1)
1 ⊕O

(1)
1 ⊕O

(2)
2 ⊕O

(4)
4 ⊕O

(5)
8 ⊕O

(6)
7 ⊕O

(8)
5 ⊕O

(9)
1 ⊕O

(10)
2

We see that the above steps run with seven computations of fi functions. 
�
In the proof of Lemma 4, one can run Steps 1, 2, and 3 without using K̃1.

Therefore, one possible implementation is to search 252 values of (I
(5)
8 , K̃1) by

searching 220 values of I
(5)
8 , and for each value of I

(5)
8 , we first run Steps 1, 2,

and 3 and then search all the 232 possible values of K̃1. Then the main cost of
running the algorithm becomes 5 × 252 computations of fi functions assuming
that 226 computations of fi functions can be ignored.

In order to derive both OK1 and OK2, we need to run the algorithm twice
by changing the constant (C1, C2, C3, C4), and hence the time complexity of the
algorithm is 10 × 252 computations of fi functions, which amount to running
248.8 encryption functions as there are 96 fi functions in the encryption function
of 256-bit key HyRAL. We note that the memory requirement of the algorithm
is small.
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Table 4. Summary of the implementation. The “Cores” column indicates the number
of cores used in running the program

System
Queue

Cores Search range of I
(5)
8

Number of
Running time

name (I
(5)
8 , K̃1)

OK1 HX600
h1024 1024 0x00000000, . . . , 0x0000ffff 248 8h 48min 56s
h1024 1024 0x00010000, . . . , 0x0001ffff 248 8h 28min 4s

OK2

FX1
f1024 1024 0x00000000, . . . , 0x0003ffff 250 50h 36min 2s
f512 512 0x00040000, . . . , 0x0007ffff 250 92h 24min 15s

HX600

h256 256 0x00080000, . . . , 0x0009ffff 249 67h 42min 47s
h256 256 0x000a0000, . . . , 0x000bffff 249 67h 29min 1s
h256 256 0x000c0000, . . . , 0x000dffff 249 67h 34min 55s
h256 256 0x000e0000, . . . , 0x000fffff 249 67h 29min 57s

5 Deriving Equivalent Keys

We have implemented our algorithm in Sect. 4.2 on a supercomputer system.
The systems we used are the server systems called HX600 and FX1. HX600 has
96 nodes, which are equivalent to 384 CPUs or 1536 cores, it has a total of
6TB of memory, and the CPU is AMD Opteron 8380 (4 cores, 2.5GHz). FX1
has 768 nodes, which are equivalent to 768 CPUs or 3072 cores, it has 24TB of
memory, and CPU is SPARC64 VII (4 cores, 2.52GHz). We used C language for
the implementation of the algorithm, and MPI library for the message passing
library for the parallel process execution.

The values of δ, I
(1)
1 , and I

(6)
7 that were used in the implementation are

δ = 0xd7d7d0d7, I
(1)
1 = 0x17170c17, and I

(6)
7 = 0x1717292b. For deriving

OK1, we searched 217 values of I
(5)
8 , and for each value of I

(5)
8 , we searched

all the 232 possible values of K̃1. The program was divided into two programs

by halving the search range of I
(5)
8 , and a total of 249 values of (I

(5)
8 , K̃1) were

tested. For deriving OK2, we searched 220 values of I
(5)
8 , and for each value of

I
(5)
8 , we searched all the 232 possible values of K̃1. The program was divided

into six programs depending on the range of I
(5)
8 , and a total of 252 values of

(I
(5)
8 , K̃1) were tested. The summary of the implementation is in Table 4.
As a result, we have successfully derived one value of OK1 and three values

of OK2. The values, together with the corresponding values of I
(5)
8 and K̃1, are

in Table 5.

Table 5. Results of running the algorithm in Sect. 4.2

OK1 0x2fd918837136d461f4bc99938907dd0b (I
(5)
8 = 0x00014b73, K̃1 = 0xdb658110)

OK2

0xa20ed0f467141b2a3b038abb5f61d59e (I
(5)
8 = 0x0005b394, K̃1 = 0x990d5a4f)

0xe3a1902aa60b6c3582a9131527d43b2f (I
(5)
8 = 0x000f8a7f, K̃1 = 0x6108833f)

0x3218a5b25828a0b7d2122283894cc63b (I
(5)
8 = 0x000f9953, K̃1 = 0xe00a8731)
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For δ = 0xd7d7d0d7, ΔOK1 = ΔOK2 = (δ, δ, δ, δ), and OK1 and OK2 in
Table 5, (K,K ′) in (4) are all equivalent keys, which can be verified by the
reference code available in [6].

6 Discussions

The existence of equivalent keys generally implies that the cipher is theoretically
cryptanalyzed, as the time complexity of the brute-force attack becomes less
than the time complexity implied by its key length. As there are 250.0 pairs
of equivalent keys in 256-bit key HyRAL, the search space of the brute-force
attack is reduced from 2256 to 2256 − 250.0. Although the fraction of equivalent
keys, 251.0, compared to 2256 is small, as a practical implication of identifying
equivalent keys, in the rest of this section, we discuss well known observations
that one can obtain collisions on the Davies-Meyer compression function based
on 256-bit key HyRAL, and on the Merkle-Damg̊ard hash function based on the
compression function.

The Davies-Meyer Compression Function. Let E : {0, 1}k × {0, 1}n → {0, 1}n
be a blockcipher with k-bit keys and an n-bit block. The Davies-Meyer com-
pression function h : {0, 1}n+k → {0, 1}n, one of the standard constructions of
a compression function, is defined as h(H,M) = EM (H)⊕H .

Let E be 256-bit key HyRAL. If we let (M,M ′) be one of the equivalent
keys (K,K ′) in (4), then for any H ∈ {0, 1}128, we have h(H,M) = h(H,M ′).
Therefore, for each equivalent keys (K,K ′) in (4), one can generate 2128 different
collisions ((H,M), (H,M ′)) on h.

The Merkle-Damg̊ard Hash Function. Let h : {0, 1}n+k → {0, 1}n be a com-
pression function. The Merkle-Damg̊ard hash function H : {0, 1}∗ → {0, 1}n
is the construction of a hash function from h, and is defined as follows. Let
H0 ∈ {0, 1}n be a fixed initial value. For an input string M ∈ {0, 1}∗, let
M̃ ∈ {0, 1}mn be the padded string in a standard and appropriate way, and
let (M1,M2, . . . ,Mm)

n← M̃ be its partition into n-bit strings. The hash value
H(M) is Hm ∈ {0, 1}n, where Hi ← h(Hi−1,Mi) for i = 1, 2, . . . ,m.

Let E be 256-bit key HyRAL, h be the Davies-Meyer compression function
based on E, and H be the Merkle-Damg̊ard hash function based on h. Let
M,M ′ ∈ {K,K ′}m be bit strings such that M �= M ′, where (K,K ′) is any
equivalent keys in (4). Assume that the standard padding is used, e.g., appending
a bit “1” and then bits “0” followed by the encoding of the length of the input,
then we have H(M) = H(M ′) and hence we obtain a collision on H.

For example, for m = 3, (M,M ′) = ((K,K,K), (K ′,K ′,K ′)), ((K,K,K ′),
(K ′,K ′,K)), ((K,K ′,K), (K ′,K,K ′)), and ((K,K ′,K ′), (K ′,K,K)) all satisfy
H(M) = H(M ′). Similarly, when M and M ′ are m blocks in length, we obtain
2m−1 different collisions.
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7 Summary

We presented the analysis of 256-bit key HyRAL in terms of equivalent keys. We
showed that there are 250.0 pairs of equivalent keys, leading to the theoretical
cryptanalysis of the cipher as a blockcipher with 256-bit keys. We also developed
the algorithm to derive an instance of equivalent keys, and demonstrated that we
were able to derive concrete instances with the current computing environment.
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A Details of f1, . . . , f8 Functions

We present the details of the specification of f1, . . . , f8 functions that were omit-
ted from Sect. 2.

f1, . . . , f8 functions are permutations over {0, 1}32. For a given input I =
(x1, x2, x3, x4) ∈ {0, 1}32, fi function generates the output as follows.

1. Let (x1, x2, x3, x4) ← Ti(x1, x2, x3, x4).
2. Let (x1, x2, x3, x4) ← (S(x1), S(x2), S(x3), S(x4)).
3. Compute (o1, o2, o3, o4) by⎛⎜⎜⎝

o1
o2
o3
o4

⎞⎟⎟⎠←

⎛⎜⎜⎝
0x03 0x03 0x02 0x01

0x01 0x02 0x02 0x02

0x07 0x03 0x01 0x02

0x07 0x04 0x05 0x03

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
x1

x2

x3

x4

⎞⎟⎟⎠⊕

⎛⎜⎜⎝
0x11

0x22

0x44

0x88

⎞⎟⎟⎠ ,

where the arithmetic is over GF(28) defined by the irreducible polynomial
p(x) = x8 + x4 + x3 + x+ 1.

4. The output is O = (o1, o2, o3, o4).

Ti function is defined in Table 6. The S-box S is the composition of an affine
mapping over GF(2) and the inversion over GF(28). Table 7 shows the input
and output of the S-box. The values are in hexadecimal form. The input x is
regarded as two hexadecimal digits, and if the first digit is i and the last is j,
then the output is a value written in the i-th row and j-th column. For example,
S(0x12) = 0x06.

Table 6. Ti function

i Ti(x1, x2, x3, x4)

1 (x1, x2, x3, x4)
2 (x2, x3, x4, x1)
3 (x3, x4, x1, x2)
4 (x4, x1, x2, x3)
5 (x4, x3, x2, x1)
6 (x3, x2, x1, x4)
7 (x2, x1, x4, x3)
8 (x1, x4, x3, x2)

Table 7. S-box S

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 5e d3 af 36 43 a6 49 33 93 3b 21 91 df 47 f4

1 b6 70 06 d0 81 82 fa a1 10 b5 3c ba 97 85 b7 79

2 ed 5c ca 05 87 bf 24 4c 51 ec 17 61 22 f0 3e 18

3 a7 64 13 ab e9 09 25 54 2d 31 69 f5 37 67 fe 1d

4 0b 28 a3 2f e4 0f d4 da 1b fc e6 ac 53 04 27 a9

5 94 8b d5 c4 90 6b f8 9d c5 db ea e2 ae 63 07 7a

6 5b 23 34 38 03 8c 46 68 cd 1a 1c 41 7d a0 9c dd

7 08 4e e3 d7 1e b3 50 5d c6 0e ad cf d6 eb 0d b1

8 fb 7c c3 2e 65 48 b8 8f ce e7 62 d2 12 4a c8 26

9 a5 8e 3d 76 86 57 bc bd 11 75 71 78 1f ef e0 0c

a de 6a 6d 32 84 72 8a d8 f9 dc 9a 89 9f 88 14 2a

b 9b 9e d9 95 b9 a4 02 f7 96 73 56 be 7f 80 7e 83

c 00 01 f6 8d 7b d1 52 cb b0 e1 c7 e5 29 c0 4f e8

d 58 3f cc fd ee b2 40 ff 99 2b 5f 60 aa 4b b4 74

e 2c 45 6c 92 66 42 39 f3 77 bb 19 59 20 6f 35 f2

f c1 0a 15 98 a2 c2 44 30 55 4d c9 a8 5a f1 6e 3a
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Abstract. This paper presents differential-based distinguishers against
ISO standard hash functions RIPEMD-128 and RIPEMD-160. Second-
order differential paths are constructed on reduced steps of their com-
pression functions. These lead to 4-sum attacks on 47 steps (out of 64
steps) of RIPEMD-128 and 40 steps (out of 80 steps) of RIPEMD-160.
Then new properties called a (partial) 2-dimension sum and q-multi-
second-order collision are considered. The partial 2-dimension sum is
generated on 48 steps of RIPEMD-128 and 42 steps of RIPEMD-160,
with a complexity of 235 and 236, respectively. Theoretically, 2-dimension
sums are generated faster than the brute force attack up to 52 steps of
RIPEMD-128 and 51 steps of RIPEMD-160, with a complexity of 2101

and 2158, respectively. The attacks on RIPEMD-128 can also be regarded
as q-multi-second-order collision attacks. The practical attacks are im-
plemented and generated examples are presented. We stress that our
results do not impact to the security of full RIPEMD-128 and RIPEMD-
160 hash functions.

Keywords: RIPEMD-128, RIPEMD-160, double-branch structure,
2-dimension sum, q-multi-second-order collision.

1 Introduction

Hash functions are taking important roles in various aspects of the cryptography.
Since the collision resistance of MD5 and SHA-1 were broken byWang et al. [1,2],
cryptographers have looked for stronger hash function designs. While various
new designs are discussed in the SHA-3 competition [3], some of existing hash
functions seem to have much higher security than the MD4-family. Evaluating
such hash functions are useful especially if they are standardized internationally.

RIPEMD-128 and RIPEMD-160 [4] are hash functions standardized by ISO
[5]. RIPEMD-160 is also included in the recommended ciphers list of the Cryp-
tography Research and Evaluation Committees (CRYPTREC) set up by the
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Japanese Government [6]. RIPEMD-160 is standardized in the SSL protocol
[7], and is included in the OpenSSL Cryptography and SSL/TLS Toolkit [8].
RIPEMD-128 and RIPEMD-160 are implemented in various cryptographic li-
braries. For example, BouncyCastle [9], FlexiProvider [10], and GNU Crypto [11]
for JAVA, and Crypto++ [12] for C++. The use of RIPEMD-128 and RIPEMD-
160 in HMAC is explained in RFC [13,14].

RIPEMD-128 and -160 adopt the narrow-pipe Merkle-Damg̊ard structure.
Their compression functions adopt the double-branch structure, which takes
a previous chaining variable Hi−1 and a message block Mi−1 as input and
computes two compression functions CFL(Hi−1,Mi−1) and CFR(Hi−1,Mi−1).
The output Hi is computed by merging Hi−1, CFL(Hi−1,Mi−1), and
CFR(Hi−1,Mi−1). Due to the double size of the internal state and the diffi-
culties of controlling the two functions simultaneously, only a few results were
published before. Note that, in order to prevent the recent meet-in-the-middle
preimage attacks [15,16,17], some hash functions adopt a structure, which ap-
plies the feed-forward function several times, e.g. ARIRANG [18]. Ohtahara et
al. pointed out that such a structure can be viewed as the double-branch struc-
ture [19]. Hence, analyzing the double-branch structure is useful even for the
future hash function design.

RIPEMD-128 produces 128-bit digests and its compression function consists
of 4 rounds, 64 steps. RIPEMD-160 produces 160-bit digests and its compression
function consists of 5 rounds, 80 steps. Mendel et al. investigated the differen-
tial property of the compression functions of RIPEMD-128 and -160 [20]. They
applied the linear approximation and showed low Hamming weight differential
paths up to 3 rounds (48 steps) for RIPEMD-128 and up to some intermediate
step in the third round (steps 33 – 48) for RIPEMD-160. Although [20] is use-
ful to obtain some intuition for collision attacks, a lot of work is necessary to
complete the attacks. The complexity and even the possibility of the attacks are
unclear. Other previous results are the ones by Ohtahara et al. [21] and Wang et
al. [22], which investigated preimage attacks. [21] showed that the first 33 steps
of RIPEMD-128 and the first 31 steps of RIPEMD-160 can be attacked while
[22] showed that intermediate 36 steps of RIPEMD-128 can be attacked.

In this paper, boomerang type differential properties are discussed. The
boomerang attack was first proposed by Wagner for analyzing block-ciphers
[23]. It divides the function E(·) into two subparts E0 and E1 such that
E(·) = E1 ◦ E0(·). Let the probabilities of differential paths for E0 and E1 be p
and q, respectively. The boomerang attack exploits the fact that a second order
differential property with a probability p2q2 exists for the entire function E.
Aumasson et al. [24] applied the boomerang attack to the internal cipher of the
hash function Skein. However, the goal of the attack is still recovering the secret
key. After that Birukov et al. [25] and Lamberger and Mendel [26] independently
applied this property on the compression function so as to mount distinguish-
ers. Then, Sasaki [27] showed a straight-forward application of the framework of
[25,26] to the MD4-family (using the single-branch structure) consisting of up
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to 5 rounds. With the straight-forward technique by [27], it is unclear how to
attack the single-branch structure consisting of more than 5 rounds.

Our Contributions

This paper presents differential distinguishers against the compression functions
of RIPEMD-128 and RIPEMD-160. The results are summarized in Table 1.

Our first target is the 4-sum property. Then, new differential property called a
2-dimension sum and a q-multi-second-order collision are considered. Note that
the partial 4-sum and partial 2-dimension sum can be introduced naturally.

Then, differential paths are constructed on reduced RIPEMD-128 and -160
compression functions. The differential path construction is based on the frame-
work of the boomerang distinguisher by [25,26]. Our strategy is regarding CFL

as the first part of the boomerang attack (E0) and CFR as the second part (E1),
hence the entire function (E) is viewed as the single-branch structure with 8 and
10 rounds for RIPEMD-128 and -160, respectively. This simplifies the differential
path construction because the differential paths for CFL and CFR can be ana-
lyzed almost independently. However, because the straight-forward application
of the framework to the MD4-family [27] can only work up to 5 rounds, several
improvements are necessary to extend the number of attacked rounds.

On RIPEMD-128, we use the local collision to construct differential paths.
This leads to a long differential path satisfied with a high probability. As a
result, 4-sums and partial 2-dimension sums are generated with a practical com-
plexity up to 47 and 48 steps, respectively. In addition, 2-dimension sums are
theoretically generated faster than the brute force attack up to 52 steps.

On RIPEMD-160, the local collision involves more message words than
RIPEMD-128, and thus using the local collision is inefficient. Instead, we show an
interesting non-linear differential property of RIPEMD-160 which can avoid the
quick propagation of the difference. As a result, 4-sums and partial 2-dimension
sums are generated with a practical complexity up to 38 and 40 steps, respec-
tively. In addition, 2-dimension sums are theoretically generated faster than the
brute force attack up to 43 steps. If the attack target starts from the second
round, the numbers of attacked steps become 40, 42, and 51 for 4-sums, partial
2-dimension sums, and theoretical 2-dimension sums.

Paper Outline. In Sect. 2, differential properties are discussed. In Sect. 3,
the specification of RIPEMD-128 and -160 are explained. In Sect. 4, attacks on
RIPEMD-128 are explained. In Sect. 5, attacks on RIPEMD-160 are explained.
Finally, the paper is concluded in Sect. 6.

2 Differential Properties to Be Distinguished

We summarize differential properties discussed in previous papers, which are
4-sums and second-order collisions, and introduce new properties called 2-
dimension sums and q-multi-second-order collision.
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Table 1. Attacks on the compression functions. “2D-sum” and “q-multi-2nd”denote
2-dimension sum and q-multi-second-order collision respectively.

Target #Steps Property Information Generic Complexity Reference
Theoretic Bound Attack

RIPEMD-128 33 preimage 2128 2128 2119 [21]
(total 64 steps) 36† preimage 2128 2128 2123 [22]

45 4-sum 232 242 227 Ours
47 4-sum 232 242 239 Ours
48 q-multi-2nd 255 for q = 17 - 253 Ours
52 q-multi-2nd 2108 for q = 53 - 2107 Ours

RIPEMD-160 31 preimage 2160 2160 2148 [21]
(total 80 steps) 38 4-sum 240 253 242 Ours

40 partial 2D sum 264 264 242 Ours
43 2D sum 2160 2160 2151 Ours
40‡ 4-sum 240 253 236 Ours
42‡ partial 2D sum 264 264 236 Ours
51‡ 2D sum 2160 2160 2158 Ours

†: The attacked steps start from an intermediate step.
‡: The attacked steps start from the second round.

2.1 Previously Discussed Properties

4-sum is a set of 4 different inputs (I0, I1, I2, I3) where the sum of the correspond-
ing outputs is 0, namely CF(I0)⊕CF(I1)⊕CF(I2)⊕CF(I3) = 0. If the function
is ideal, finding 4-sums requires at least 2n/4 queries for n-bit output. There-
fore, if the 4-sum is obtained faster than 2n/4 computations, CF is regarded as
non-ideal. Apart from the information theoretic bound (2n/4), the current best
generic attack to find 4-sums is a generalized birthday attack [28], which re-
quires 2n/3 computations and 2n/3 memory. Hence, if 4-sums are generated with
a complexity between 2n/4 and 2n/3, CF is said to be weak because the same
property cannot be detected on other functions with the current knowledge.

The second-order collision [29,26] is a special form, in other words, a subset
of the 4-sum. It can be viewed as limiting the form of input values on the 4-sum
property. [29,26] defined the derivative at a point α for a function f as

Δ(α)f(y) = f(y + α)− f(y).

Then, the second-order derivative1 at (α, β) is defined as

Δ(α,β)f(y) = Δ(β)(Δ(α)f(y))

= f(y + α+ β)− f(y + β)− f(y + α) + f(y).

The second-order collision attack is finding (α, β, y) such that Δ(α,β)f(y) = 0.

Previous work [29,26] showed that the information theoretic bound is 3 · 2n/3

1 In [29,26], the n-th order derivative is discussed rather than the specific case n = 2.
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because the problem is essentially finding three parameters α, β, y with an n-bit
relation. On the other hand, the current best generic attack requires 2n/2.

2.2 2-Dimension Sums and Suitability for Double-Branch Structure

Similarly to the framework of the rebound attack [30], which limits the input
and output differences before making any query, we introduce a new differential
property, which we call 2-dimension sums. The 2-dimension sum is a special
form, in other words, a subset of the second-order collision. We further introduce
limitations to the form of input values on the second-order collision. The problem
is changed to find a value y such that Δ(α,β)f(y) = 0 for two pre-specified values
α and β. The 2-dimension sum is different from the second-order collision only
in the sense that α and β are pre-specified. The information theoretic bound
for the 2-dimension sum is 2n because the problem is essentially finding an
n-bit value satisfying an n-bit condition. A generic attack for this problem is
also 2n computations; choose the value of y and check that the corresponding
CF(y)⊕ CF(y ⊕ α)⊕ CF(y ⊕ β)⊕ CF(y ⊕ α⊕ β) is 0.

The 2-dimension sum is particularly useful to attack the double-branch struc-
ture. The attacker can construct a pseudo-near-collision path for CFL with set-
ting input chaining variable difference to α. Then, a pseudo-near-collision path
for CFR is independently constructed with setting other difference β. If the prod-
uct of the probability of each path (after the message modification) is higher
than 2−n/2, the 2-dimension sum can be generated faster than 2n by using
the boomerang attack approach [25,26]. Different from the original RIPEMD,
RIPEMD-128 and -160 adopt very different functions as CFL and CFR. There-
fore, the independence of the path construction for CFL and CFR greatly helps
the attacker. More detailed discussion is given in Sect. 4, and 5.

Note that the partial 2-dimension sum is naturally introduced, where CF(y)⊕
CF(y⊕α)⊕CF(y⊕ β)⊕CF(y⊕α⊕ β) becomes 0 only for the specified partial
bits, say d bits. In this case, the complexity of the generic attack is 2d and thus
a valid distinguisher must find it faster than 2d computations.

2.3 q-Multi-second-order Collision

By following the framework of the q-multicollision [31], we introduce a notion
of a q-multi-second-order collision on a function f : {0, 1}X → {0, 1}Y , which
is a set of two non-zero differences and q distinct inputs {Δ,∇, x1, x2, · · · , xq}
satisfying

f(x1)− f(x1 +Δ) + f(x1 +Δ+∇)− f(x1 +∇) = 0,

· · ·
f(xq)− f(xq +Δ) + f(xq +Δ+∇)− f(xq +∇) = 0.

Information-Theoretic Bound. Let an adversary make k distinct queries
x1, . . . xk to a random function. For any specified Δ and ∇, k distinct queries
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at most contribute to k quartets as below; (x1, x1 + Δ,x1 + ∇, x1 + Δ +
∇), . . . , (xk, xk +Δ,xk +∇, xk +Δ +∇). So the number of q-tuple quartets is(
k
q

)
for any specified Δ and ∇. There are less than 22X values for (Δ,∇). Thus

in total the number of q-tuple quartets satisfying the form is at most 22X ·
(
k
q

)
.

One such q-tuple has a probability 2−q×Y . We get the following inequality.

22X ·
(
k

q

)
≥ 2qY ,

k(k − 1) · · · (k − (q − 1))

q!
≥ 2qY−2X ,

k > q
√
q! · 2Y− 2X

q . (1)

2.4 Remarks for the Motivation of Studying Weak Properties

Some may say that studying weak non-ideal properties such as the partial 2-
dimension sum is meaningless. In fact, compared to the collision, the impact
of finding weak differential properties are very limited. However, the security
of symmetric primitives is usually evaluated and get trusted by demonstrating
many cryptanalytic attempts. Therefore, we believe that not only investigating
the standard properties but also extending the number of steps as much as
possible with any non-ideal property is useful to understand the state-of-the-art
about the security. Especially, such an activity is important for RIPEMD-128
and RIPEMD-160 because they are standardized and implemented in various
environments but only a few cryptanalyses were presented so far. This paper is
not claiming that weak distinguishers working for more steps are better than
standard attack scenarios with a smaller number of attacked steps. Considering
various approaches leads to better understanding and may be useful in future.

3 Specifications

RIPEMD-128/-160 were proposed by Dobbertin et al. [4] as stronger hash func-
tions than RIPEMD [32]. They take a message of arbitrary length as input and
produce 128-bit and 160-bit hash digests, respectively. Because our attack target
is the compression function, we omit the description of the domain extension.

3.1 RIPEMD-128

The compression function of RIPEMD-128 takes a 128-bit chaining variable
Hi−1 and a 512-bit message block Mi−1 as input and outputs a 128-bit chaining
variable Hi. Mi is divided into sixteen 32-bit message words m0,m1, . . . ,m15.
Let pLj be a 128-bit chaining variable and aLj , b

L
j , c

L
j and dLj be 32-bit variables

satisfying pLj = aLj ‖bLj ‖cLj ‖dLj , where 0 ≤ j ≤ 64. Similarly, pRj and aRj , b
R
j , c

R
j , d

R
j

are defined. The computation for CFL is as follows.

pL0 ← Hi−1, pLj+1 ← SFL
j (p

L
j ,mπL(j)) for j = 0, 1, . . . , 63,
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Table 2. Boolean functions, message expansions, and rotation numbers

fx(X, Y, Z)

x = 0, . . . , 15 X ⊕ Y ⊕ Z
x = 16, . . . , 31 (X ∧ Y ) ∨ (¬X ∧ Z)
x = 32, . . . , 47 (X ∨ ¬Y ) ⊕ Z
x = 48, . . . , 63 (X ∧ Z) ∨ (Y ∧ ¬Z)
x = 64, . . . , 79 X ⊕ (Y ∨ ¬Z)

πL(j) πR(j)

j = 0, . . . , 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12
j = 16, . . . , 31 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2
j = 32, . . . , 47 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13
j = 48, . . . , 63 1 9 11 10 0 8 12 4 13 3 7 15 14 5 6 2 8 6 4 1 3 11 15 0 5 12 2 13 9 7 10 14
j = 64, . . . , 79 4 0 5 9 7 12 2 10 14 1 3 8 11 6 15 13 12 15 10 4 1 5 8 7 6 2 13 14 0 3 9 11

Table 3. Computations for the Output of the Compression Function

RIPEMD-128 RIPEMD-160

H
(a)
i H

(b)
i−1 + cL64 + dR

64 H
(b)
i−1 + cL80 + dR

80

H
(b)
i H

(c)
i−1 + dL

64 + aR
64 H

(c)
i−1 + dL

80 + eR80
H

(c)
i H

(d)
i−1 + aL

64 + bR64 H
(d)
i−1 + eL80 + aR

80

H
(d)
i H

(a)
i−1 + bL64 + cR64 H

(e)
i−1 + aL

80 + bR80
H

(e)
i − H

(a)
i−1 + bL80 + cR80

where SFL
j is a step function for CFL and performs the following computation.

aLj+1 ← dLj , bLj+1 ← (aLj + fj(b
L
j , c

L
j , d

L
j ) +mπL(j) + kLj ) ≪ sLj ,

cLj+1 ← bLj , dLj+1 ← cLj ,

where ‘+’ represents the addition on modulo 232, ‘≪ s’ represents left cyclic
shift by s bits, fx is a Boolean function, πL(j) is the message expansion, and
kLj is a constant. CFR is similarly described. The values of sRj , π

R(j), kRj are

different and f63−j is used in step j. Details of fx, π
L(j), πR(j) are in Table 2.

Finally, the output Hi = H
(a)
i ‖H(b)

i ‖H(c)
i ‖H(d)

i is computed as shown in Table 3.

3.2 RIPEMD-160

The compression function of RIPEMD-160 is almost the same as the one for
RIPEMD-128. The chaining variable size is 160 bits, and thus 160-bit interme-
diate states are represented by five 32-bit variables, e.g. pLj = aLj ‖bLj ‖cLj ‖dLj ‖eLj .
The step functions SFL and SFR are iteratively computed 80 times (0 ≤ j ≤ 79).
The details of the computation of SFL are as follows.

aLj+1 ← eLj , bLj+1 ← ((aLj + fj(b
L
j , c

L
j , d

L
j ) +mπL(j) + kLj ) ≪ sLj ) + eLj ,

cLj+1 ← bLj , dLj+1 ← cLj ≪ 10, eLj+1 ← dLj .

Most of the parameters are shared with RIPEMD-128. The details are de-
scribed in Table 2. In the computations of SFR, the Boolean function in step
j is f79−j(b

R
j , c

R
j , d

R
j ). The other computations are similarly specified as SFL.

Finally, the output chaining variable Hi is computed as shown in Table 3.
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Δ

Δ
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’
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Δ

Δ’

Left Branch:         
Δ-differential-path

Right Branch:   
-differential-path

Δ

Fig. 1. Our Attack Strategy on RIPEMD-128 and -160

4 Attacks on RIPEMD-128

We construct differential distinguishers against compression function of RIPEMD-
128. Hereafter, we compute the difference in modular subtraction because the
main operation of RIPEMD-128/-160 is the modular addition. The message dif-
ferences, differential path, and sufficient conditions against RIPEMD-128 are
shown in Tables 4, 5 and 6 respectively.

4.1 Overall Strategy

A graphical description of our strategy is given in Fig. 1. First, we construct a Δ-

differential-path Δ
ΔM

−−→ Δ′ in the left branch, and a ∇-differential-path ∇ ∇M

−−→
∇′ in the right branch. Then we try to search for an input of the compression
function (H,M) such that (H,M), (H +Δ,M +ΔM ), (H +∇,M +∇M ), and
(M +Δ+∇, H +ΔM +∇M ) satisfy the following conditions.

– The difference propagations between (H,M) and (H + Δ,M + ΔM ) and
between (H + ∇,M + ∇M ) and (H + ∇ + Δ,M + ∇M + ΔM ) follow Δ-
differential-path in the left branch.

– The difference propagations between (H,M) and (H + ∇,M + ∇M ) and
between (H + Δ,M + ΔM ) and (H + Δ + ∇,M + ΔM + ∇M ) follow ∇-
differential-path in the right branch.

For such a (H,M), we obtain the relationship; CF(H,M)+CF(H+Δ+∇,M+
ΔM +∇M ) − CF(H +Δ,M +ΔM ) − CF(H +∇,M +∇M ) = 0, where CF is
the compression function of RIPEMD-128.

Note that the terminology “4-sum” is somehow strange to discuss the above
modular subtraction. However, the terminology “second-order collision” usually
considers the limitation of the inputs, and discusses essentially different proper-
ties. Hence, to avoid the confusion, we use “4-sum” for the above property.

4.2 Constructing Δ-Differential-Path

We should keep the differential path as simple as possible in order to maximize
its probability. One natural approach is to restrict the difference propagations.
Particularly, we expect that f functions do not produce new differences.
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Table 4. Differential path construction for 3-round RIPEMD-128

round πL(j) πR(j)
1 0© 1 2 3 4 5 6© 7 8 9 10 11 12 13 14 15 5 14 7 0 9 2 11 4 13 6© 15 8 1 10 3 12

Δ MM ← Δ constant MM ←
2 7 4 13 1 10 6© 15 3 12 0© 9 5 2 14 11 8 6© 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2

constant ← LC → constant ∇ constant
3 3 10 14 4 9 15 8 1 2 7 0© 6© 13 11 5 12 15 5 1 3 7 14 6© 9 11 8 12 2 10 0 4 13

constant Δ Δ → constant ∇ →

The f functions of the first and the third rounds in the left branch have weak
absorption property. By weak absorption property, we mean that a bit difference
is produced by f with the probability 1 if a (particular) input variable has a
difference at that bit. So we must make the Δ-differential-path short in these
two rounds. In order to achieve it, we generate a local collision in the second
round of the left branch, and pick a message difference ΔM which appears at a
very beginning step in the first round and at a very late step in the third round.
Such a strategy maximizes the probability of the whole differential path. Finally
we choose the message difference ΔM as below

Δm0 = −210; and Δm6 = 231.

Δ is determined backwards according to the differential path in the first round.

Δa0 = 28; Δb0 = 0; Δc0 = 231 + 216; and Δd0 = 231 + 216.

Δ′ changes with the number of the attacked steps. Moreover, we do not specify
Δ′ according to amplified probability using multiple outside differential paths.

Remarks on Multiple Differential Path. At step 44 of Δ-differential-path,
a difference of ∗25 is produced by the f function. For this difference, we do not
limit the sign for each pair, but we need the condition that the signs are identical
between two pairs. Hence, the probability to satisfy this condition is 2−1 rather
than 2−2. We also set 2 similar conditions at steps 46 and 47.

4.3 Constructing ∇-Differential-Path

The f function of the second round in the right branch has weak absorption
property. So we must make ∇-differential-path short in the second round of the
right branch. At the same time, the f function in the first round of the right
branch has strong absorption property. By strong absorption property, we mean
that no bit difference is produced by f by setting conditions if only one input
variant has a difference on that bit. So we decide to generate a relatively long
but simple sub-path in the first round, which should be ended by the message
difference in the second round. We should pick a message difference which ap-
pears at a very beginning step in the second round and at a very late step in
the third round. The whole differential path consists of 2 sub-paths: a long path
going through the whole first round and ending at a beginning step in the second
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round; and a short path at the late steps in the third round. Finally we choose
the message difference ∇M and corresponding ∇ as below

∇m6 = −230; ∇a0 = 220; ∇b0 = 0; ∇c0 = 0; and ∇d0 = 26.

4.4 Searching for (H,M)

Firstly, we search for (H,M)s which satisfy the differential path for the first 17
steps in both branches. The complexity of finding such (H,M)s, i.e. the com-
plexity for satisfying the first 17 steps can be ignored by applying the message
modification technique (e.g. [1,2]) and optimizing the computation order. More
precisely, the message modification is a technique to efficiently satisfy all con-
ditions in the first round. It exploits the property that each step in the first
round is computed with a message word which is not fixed yet. For example, to
satisfy the conditions of the variable bj+1 in the first round, you can iterate the
computation in step j many times by only changing the value of mπ(j) without
influencing the previous steps. Hence, by satisfying the conditions step by step,
the complexity is greatly reduced. Moreover, modifying the message word m12

never impacts to the sufficient conditions in the first round. This is because m12

is used in late steps of the first round in both branches (See Table. 4). Thus,
once we obtain an (H,M) satisfying the differential path up to step 17, we can
generate up to 232 valid (H,M) by modifying m12. As a summary, the complex-
ity for satisfying the differential path for the first 17 steps is (approximately)
2−32 times of the complexity of satisfying the whole differential path, and thus
can be ignored.

For the remaining steps (after step 17), we simply satisfy the path in the
brute-force manner. Hence, the entire attack complexity only depends on the
number of conditions after step 17.

4.5 Complexity Evaluation and Experiments

Besides counting the number of conditions in Δ- and ∇-differential-paths after
step 17, we also experimentally verify the amplified probability for outside paths.

Attack on 45 steps. There are 9 and 7 conditions in theΔ- and∇-differential-
paths, respectively. Each condition must be satisfied in two pairs and thus its
probability is 2−2. However, 1 condition in the Δ-path is the one discussed
in the remarks in Sect. 4.2, which satisfied with probability 2−1. Overall, the
complexity is 231(=2(8+7)+1). We then experimentally check the amplified
probability, and the final complexity is 227. This implies that 45 steps of the
compression function is non-ideal with respect to the 4-sum property.

Attack on 46 and 47 steps. We experimentally checked the amplified prob-
ability, and the final complexities on 46 and 47 steps are 234 and 239 respec-
tively. With respect to the 4-sum property, our attack on 47 steps is faster
than the current best generic attack [28].
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Table 5. Differential Paths for 2-Dimension Sums on 3-Round RIPEMD-128

∗ means that the +/−sign of difference is not specified. ΔbLj is 0 for all index j which
are not listed below. Similarly ΔbRj is 0 for all index j which are not listed below.

Path for CFL Path for CFR

ΔaL
0 = 28; ΔbL0 = 0; ΔaR

0 = 220; ΔbR0 = 0;

ΔcL0 = ∗231 + 216; ΔcR0 = 0; ΔdR0 = 26;
ΔdL0 = ∗231 + 216;

Step j ΔbLj Step j ΔbRj
2 ∗231 1 228

3 ∗231 2 215

22 28 5 29

43 −221 6 230

44 ∗25 9 216

46 ∗226 13 230

47 −228 ∗ 212 39 −24

48 ∗210 43 −29

47 −216

Attack on 48 steps. The complexity to satisfy the path is 248. We then in-
troduce q-multi-second-order collisions. Generating them by following the
path requires q · 248. When q = 17, the complexity is less than 253. On
the other hand, from Eq.(1), the generic case requires more than 17

√
17! ·

2128−
2(512+128)

17 ≈ 255.55. Hence, our attack is faster than the generic case.

Attack on 52 steps. ∇-differential-path in the fourth round of the right branch
becomes very complicated because the f function does not have the ab-
sorption property. Thus we only verified the amplified probability in the
fourth round. As a result, the complexity to obtain a 4-sum is 2101. We then
consider the q-multi-second-order collision for q = 53. Our attack requires
53 · 2101 < 2107, while the generic case in Eq.(1) requires 2108.21.

The attack was implemented on single PC. The generated 46-step 2-dimension
sum, which is 3-round (48-step) partial 2-dimension sum, is shown in Table. 8.

Table 6. Sufficient Conditions of Attacks on 3-Round RIPEMD-128

Left Branch Right Branch

cL0,16 = 0; dL
0,16 = 0; bL1,16 = bL0,16; bR0,6 = cR0,6; b

R
0,28 = 1; bR0,15 = 0; cR0,28 = 0;

no carry in bL2 ; no carry in bL3 ; dR
0,6 = 0; bR1,28 = 0, bR1,15 = 1; bR2,15 = 0

bL22,8 = 0; cL22,8 = dL
22,8; b

L
24,8 = 0; bL25,8 = 1 bR3,9 = 0; bR4,15 = bR3,15; b

R
4,30 = 0; bR4,9 = 1;

bL43,21 = 1; bL43,5 = 0; dL
43,21 = 0; bL44,21 = 1; bR5,9 = 0; bR5,30 = 1; b6,30 = 0; bR7,9 = bR6,9;

bL45,26 = 0; bL45,5 = 1; bL46,28 = 0, bL46,12 = 0; bR7,16 = 0; bR8,30 = bR7,30; b
R
8,16 = 1; bR9,16 = 0;

no carry in bL46; b
L
47,28 = 1; bL47,26 = 1; bR11,16 = bR10,16; b

R
12,30 = 0; bR13,30 = 0;

no carry in bL47; no carry in bL48; bR15,30 = bR14,30; b
R
39,4 = 1; bR40,4 = 0;

(H,M) and (H + ∇,M + ∇M ): cR39,4 = dR
39,4; b

R
41,4 = 1; bR42,9 = bR41,9; b

R
43,9 = 1;

share same bit values on bL44,5 , b
L
46,26, b

L
47,12 ; b

R
44,9 = 0; bR45,9 = 0; bR46,16 = bR45,16 ; b

R
47,16 = 1;
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5 Attacks on RIPEMD-160

Two attacks are presented on RIPEMD-160; in the first scenario, the attack
target is starting from the first round and in the second scenario, the attack
target is starting from the second round.

In the first scenario, the f functions of both branches do not have the absorp-
tion property in the first and third rounds. This makes the efficient differential
path construction hard. On the other hand, in the second scenario, the absorp-
tion property is available in both branches in the first and third rounds. The
differential path is more efficient than the first scenario, and the number of
attacked steps is beyond 3 rounds (up to 52 steps).

5.1 Overall Strategy and Relatively Slow Differential Propagation

Different from RIPEMD-128, using the local-collision to construct the path is not
efficient in RIPEMD-160. For RIPEMD-128, the local-collision is formed only
with differences in 2 message words. However, in RIPEMD-160, we need the
difference in 3 message-words due to the direct addition from chaining variable
ej . Hence, we stop using the local-collision. Instead, we insert the difference only
into 1 message word that appears in a late step of the second round, and just
propagate it to the third round as much as possible. The problem is that the
differential propagation in RIPEMD-160 seems much quicker than RIPEMD-128
due to the direct addition from chaining variable ej , and thus not so many steps
can be attacked. However, we explain an useful property of RIPEMD-160 where
we can limit the impact of the differential propagation. In fact, this is the main
reason why we can attack more than 3 rounds in the second scenario.

Cancelling Differences between ej and fj+1. Assume that, in some step,
there is no difference in chaining variables and a message difference is inserted.
If the difference is not propagated through f in the following 3 steps, only chain-
ing variable e has the difference. This situation is illustrated in Fig. 2. Let j
be the step index of this chaining variable and (Δaj , Δbj , Δcj , Δdj , Δej) =
(0, 0, 0, 0,+2n). In step j, ej is directly added to compute bj+1, thus the dif-
ference +2n is always propagated to bj+1. As shown in Fig. 2, Δej and Δbj+1

can cancel each other in step j + 1 through fj+1.
Assume that the difference 2n in bj+1 does not cause the carry, and thus only

n-th bit has the difference. In step j+1, if the difference in the n-th bit of bj+1 is
output from fj+1, moreover if its sign is opposite (−2n), the cancellation occurs.

In the attack starting from the first round, we utilize this property in the third
round where fx(X,Y, Z) is (X ∨¬Y )⊕Z in both branches. Y = 1 and Z = 1 are
the conditions for this event. On the other hand, in the attack starting from the
second round, fx(X,Y, Z) in the left branch is (X ∧ Z) ∨ (Y ∧ ¬Z). Then, the
sign of Δfj+1 cannot be opposite of Δej , and we need a different strategy. In
step j, we make a carry in bj+1 as shown in Fig. 3. Therefore, n-th bit position
changes in the opposite direction as Δej . Finally, in step j + 1, by propagating
the difference in the n-th bit and by absorbing the difference in the (n + 1)-th
bit, the cancellation occurs.
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mπ( j )

kj
<<<s(j) <<<10

aj bj cj dj ej

+2n [any]

fj

aj+1 bj+1 cj+1 dj+1 ej+1
+2n [any] +2n [+n]

mπ( j+1 )

kj+1

0000

0

<<<s(j+1) <<<10

fj+1

aj+2 bj+2 cj+2 dj+2 ej+2
+2n

[+n]

-2n [-n]

difference 
cancellation

Fig. 2. Difference cancellation between ej
and fj+1. The sign of Δfj+1 must be op-
posite of Δej . Information in ‘[ ]’ is the bit-
wise difference. ‘[any]’ represents that the
bitwise difference is irrelevant.

mπ( j )

kj
<<<s(j) <<<10

aj bj cj dj ej

fj

aj+1 bj+1 cj+1 dj+1 ej+1
+2n [+(n+1), -n]

mπ( j+1 )

kj+1

0000

0

<<<s(j+1) <<<10

fj+1

aj+2 bj+2 cj+2 dj+2 ej+2

-2n [-n]

difference 
cancellation

+2n

[+(n+1), -n]

+2n [any]

+2n [any]

Fig. 3. Difference cancellation with con-
sidering the carry effect for the case that
the sign of Δfj+1 is always the same as
Δej

Table 7. Differential path construction for the first 3-rounds of RIPEMD-160

round πL(j) πR(j)
1 0 1 2© 3 4 5 6 7 8 9 10 11 12 13 14 15 5 14 7 0 9 2© 11 4 13 6 15 8 1 10 3 12

← Δ constant MM ← ∇ constant
2 7 4 13 1 10 6 15 3 12 0 9 5 2© 14 11 8 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2©

constant Δ → constant ∇
3 3 10 14 4 9 15 8 1 2© 7 0 6 13 11 5 12 15 5 1 3 7 14 6 9 11 8 12 2© 10 0 4 13

→ Δ → ∇

5.2 Scenario 1: Attack from the First Round

The message differences for the attack from the first round is shown in Table 7.
We need to insert both of the Δ-difference and ∇-difference in the 10th bit of
m2. To avoid the contradiction of two paths, the differences and the values of
m2 must be carefully chosen. We choose the following message differences;

Δm2 = m2
2 −m1

2 = m4
2 −m3

2 = +210,∇m2 = m3
2 −m1

2 = m4
2 −m2

2 = −210. (2)

To achieve this, we first choose m1
2 and then compute m2

2 ← m1
2 + 210 and

m3
2 ← m1

2 − 210. m4
2 should be m1

2 + 210 − 210 and thus identical with m1
2.

Hence, the attack only requires 3 messages m1
2,m

2
2,m

3
2 rather than the standard

message quartet. The differential paths and sufficient conditions are shown in
Tables 10 and 11.

For the differential path in Table 10, the first round of CFL and CFR can be
guaranteed with the message modification in negligible time. Hence, the attack
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cost only depends on the differential path from the second round. As a result, we
can generate 4-sums up to 38 steps with 242 computations. Because 242 < 2160/3,
the attack runs faster than the generic 4-sum attack. This can be regarded as
partial 2-dimension sums up to 40 steps because the newly computed values in

the last 2 steps are not used to compute two output chaining variables H
(b)
i−1 and

H
(c)
i−1. The attack was implemented on a PC. The generated 38-step 4-sum (or

40-step partial 2-dimension sum) is shown in Table 9 in Appendix. Theoretically,
2-dimension sums can be generated up to 43 steps with 2151 computations.

5.3 Scenario 2: Attack from the Second Round

The overall strategy is the same as the first scenario. The details of the attack
such as the message difference, differential path, and sufficient conditions are
optimized for this scenario. Different from the first scenario, the f functions in
the third round (round 4) have the absorption property. Hence, the differential
propagation can be controlled more efficiently and this enables us to attack more
rounds. Due to the limited space, we only show the message differences and how
to propagate them in Table 12. The complexity to generate 4-sums up to 40
steps is 236 computations, which is faster than the generic 4-sum attack using
the generalized birthday attack. A 40-step 2-dimension sum, which can also be
regarded as 42-step partial 2-dimension sum, was generated in our experiment.
Due to the limited space, the generated data is omitted.

6 Concluding Remarks

We presented distinguishers against compression functions of RIPEMD-128 and
-160. Differential paths were constructed by regarding CFL as the first part and
CFR as the second part. This enabled us to analyze CFL and CFR independently.
On RIPEMD-128, the local collision was applied to construct differential paths.
Partial 2-dimension sums were generated for 48 steps. Theoretically, the attack
works up to 52 steps. On RIPEMD-160, the difference cancelation between Δej
and Δfj+1 was exploited. Partial 2-dimension sums were generated up to 40
steps. Theoretically, the attack works up to 43 steps. If the attack starts from
the second round, more rounds can be attacked. We stress that our results do not
impact to the security of full RIPEMD-128 and RIPEMD-160 hash functions.
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A Data for Experiments and Attacks on RIPEMD-160

Table 8. 4-sum on 46-steps and partial 2-dimension sum on 48-steps of RIPEMD-128

H1
i 0x400268ec; 0x159b2e00 0x 6a66026; 0x268c3594;

M1
i 0x7b69e00f; 0x7a1da89e; 0xb6760e61; 0x222860d3; 0x20d0343c; 0x36333ccb; 0x44a67388; 0x9034d3f9;

0x19810c83; 0x9cba7f1e; 0x43aa3459; 0xe8987de1; 0xf48cfeb0; 0x36b56404; 0xca71b589; 0x4e4956b3;

46-Step H1
i+1 0x8e492929; 0x34c37860; 0x085981da; 0x3a28780d;

3-Round H1
i+1 0xf57d1452; 0x00cc6f47; 0x9c7fe2e0; 0x5cdae22d;

H2
i 0x400269ec; 0x159b2e00; 0x86a76026; 0xa68d3594;

M2
i 0x7b69df0f; 0x7a1da89e; 0xb6760e61; 0x222860d3; 0x20d0343c; 0x36333ccb; 0xc4a67388; 0x9034d3f9;

0x19810c83; 0x9cba7f1e; 0x43aa3459; 0xe8987de1; 0xf48cfeb0; 0x36b56404; 0xca71b589; 0x4e4956b3;

46-Step H2
i+1 0x4b37a7fb; 0xe0a9ebf0; 0x09e98a18; 0x17b730cd;

3-Round H2
i+1 0x672c3692; 0x5e5c2707; 0xe9e5bbda; 0xc6e4b82a;

H3
i 0x401268ec; 0x159b2e00; 0x06a66026; 0x268c35d4;

M3
i 0x7b69e00f; 0x7a1da89e; 0xb6760e61; 0x222860d3; 0x20d0343c; 0x36333ccb; 0x04a67388; 0x9034d3f9;

0x19810c83; 0x9cba7f1e; 0x43aa3459; 0xe8987de1; 0xf48cfeb0; 0x36b56404; 0xca71b589; 0x4e4956b3;

46-Step H3
i+1 0xd2ae4d5e; 0x5b495822; 0x13ac118a; 0x9c22aa6a;

3-Round H3
i+1 0x5955db12; 0x62b6a1a4; 0xe0a50755; 0xa0eb49c4;

H4
i 0x401269ec; 0x159b2e00; 0x86a76026; 0xa68d35d4;

M4
i 0x7b69df0f; 0x7a1da89e; 0xb6760e61; 0x222860d3; 0x20d0343c; 0x36333ccb; 0x84a67388; 0x9034d3f9;

0x19810c83; 0x9cba7f1e; 0x43aa3459; 0xe8987de1; 0xf48cfeb0; 0x36b56404; 0xca71b589; 0x4e4956b3;

46-Step H3
i+1 0x8f9ccc30; 0x072fcbb2; 0x153c19c8; 0x79b1632a;

3-Round H3
i+1 0xcb04f456; 0xc0465964; 0x2e0ae04f; 0x0afb77c2;

46-Step 4-sum 0x00000000; 0x00000000; 0x00000000; 0x00000000;

3-Round 4-Sum 0xfffff704; 0x00000000; 0x00000000; 0x00065801;

Table 9. 38-step 4-sum and 40-step partial 2D sum on RIPEMD-160 from 1st round

H1
i 0x4144c3a7; 0x8a965cea; 0x647e4d03; 0x04e7a03c; 0x18814c3e;

M1
i 0x15f04e2b; 0xb2c328cd; 0x8eea7e12; 0xa1d55a25; 0xbff66c59; 0x399570f1; 0x997d1fd4; 0xea8f403e;

0xab607923; 0x712bc2a1; 0x32c11766; 0xafaf4bfe; 0x7297f9d4; 0xe2c4573f; 0x96dc27dc; 0x566d9d73;

38 Steps H1
i+1 0x33d3fb92; 0x753e7a17; 0x50fb34b1; 0x1874be98; 0x48de951c;

H2
i 0x4146bfa7; 0x8a965cea; 0x647e4d03; 0x04e7a43c; 0x08814c3e;

M2
i 0x15f04e2b; 0xb2c328cd; 0x8eea7a12; 0xa1d55a25; 0xbff66c59; 0x399570f1; 0x997d1fd4; 0xea8f403e;

0xab607923; 0x712bc2a1; 0x32c11766; 0xafaf4bfe; 0x7297f9d4; 0xe2c4573f; 0x96dc27dc; 0x566d9d73;

38 Steps H2
i+1 0x07e43a48; 0x1482c47c; 0x473df79e; 0xefed372c; 0x55037e85;

H3
i 0x404cc5a7; 0x8a9e5cea; 0x647e4c03; 0x04e7a23c; 0x18814c3e;

M3
i 0x15f04e2b; 0xb2c328cd; 0x8eea8212; 0xa1d55a25; 0xbff66c59; 0x399570f1; 0x997d1fd4; 0xea8f403e;

0xab607923; 0x712bc2a1; 0x32c11766; 0xafaf4bfe; 0x7297f9d4; 0xe2c4573f; 0x96dc27dc; 0x566d9d73;

38 Steps H3
i+1 0xad046562; 0x61c2166a; 0x9d7dc2b3; 0x901e2f34; 0x12d8aa5c;

H4
i 0x404ec1a7; 0x8a9e5cea; 0x647e4c03; 0x04e7a63c; 0x08814c3e;

M4
i 0x15f04e2b; 0xb2c328cd; 0x8eea7e12; 0xa1d55a25; 0xbff66c59; 0x399570f1; 0x997d1fd4; 0xea8f403e;

0xab607923; 0x712bc2a1; 0x32c11766; 0xafaf4bfe; 0x7297f9d4; 0xe2c4573f; 0x96dc27dc; 0x566d9d73;

38 Steps H3
i+1 0x8114a418; 0x010660cf; 0x93c085a0; 0x6796a7c8; 0x1efd93c5;

38 Steps 4-sum 0x00000000; 0x00000000; 0x00000000; 0x00000000; 0x00000000;

40 Steps 4-Sum noisy data noisy data 0x00000000; 0x00000000; noisy data
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Table 10. Differential paths for 2D sums on RIPEMD-160 in the first scenario

Path for CFL Path for CFR

ΔaL
0 = 217 − 210; ΔbL0 = 0; ΔaR

0 = −224 + 219 + 29; ΔbR0 = 219;

ΔcL0 = 0; ΔdL0 = 210; ΔeL0 = −228; ΔcR0 = −28; ΔdR0 = 29; ΔeR0 = 0;

Step j ΔbLj Step j ΔbRj
29 −221 1 −20

33 −231 32 221

36 −216 35 −214

39 27 36 +231

40 −226 − 22 38 230

41 −226 + 219 39 −224 − 215

42 −225 40 29

43 225 41 −220

42 215 + 28 + 26

43 −225 − 224 − 22

Table 11. Sufficient conditions on RIPEMD-160 in the first scenario

Left Branch Right Branch

bL0,10 = cL0,10; no carry in dL
0 and eL0 ; bR0,9 = 0; cR0,19 = 1; dR

0,8 = 0;

no carry in bL29; b
L
28,21 = bL27,21; b

L
30,21 = 0; no carry in bR0 , cR0 and dR

0 ;

bL31,31 = 1; no carry in bL33; b
L
32,31 = 1; bR0,0 = 0; bR0,18 = 1; cR0,9 = 1; cR0,22 = 1;

bL34,31 = 1; bL35,31 ∨ ¬bL34,31 = 1; bL35,16 = 0; bR0,22 = 0; bR1,29 = 1; bR2,10 = 1;

no carry in bL36 and bL37; no carry in bR32; b
R
31,21 = 0; bR33,21 = 1;

bL37,16 = 1; bL36,9 = 1; bL35,9 = 1; bR34,31 ∨ ¬bR33,31 = 1; no carry in bR35;

bL38,9 = 1; bL38,26 ∨ ¬bL37,26 = 1; bL38,7 = 0; bR34,14 = 0; no carry in bR36; b
R
34,14 = 0;

no carry in bL39; b
L
39,19 ∨ ¬bL38,19 = 1; bL40,7 = 1; no carry in bR36; b

R
36,14 = 1; bR35,31 = 0;

no carry in bL40; b
L
39,26 = 1; bL39,2 = 0; bR37,31 = 1; bR37,24 ∨ ¬bR36,24 = 1; no carry in bR38;

bL38,26 = 1; no carry in bL41; b
L
41,26 = 1; bR37,30 = 0, bR38,9 ∨ ¬bR37,9 = 1; no carry in bR39; b

R
39,30 = 1;

bL41,2 = 1; bL40,26 = 0; bL40,24 = 1; bR38,24 = 1; bR38,15 = 0; bR37,24 = 1; bR40,24 = 1

bL39,24 = 1; bL41,17 ∨ ¬bL40,17 = 1; no carry in bL42; no carry in bR40; b
R
40,15 = 1; bR39,9 = 1; bR38,9 = 1;

bL42,24 = 1; bL42,19 = 1; bL42,4 = 0; bR40,8 ∨ ¬bR39,8 = 1; no carry in bR41; b
R
41,9 = 1;

bL41,25 = 0; bL41,4 = 1; bL42,12 ∨ ¬bL41,12 = 1; bR40,20 = 0; bR41,25 ∨ ¬bR40,25 = 1; bR41,2 ∨ ¬bR40,2 = 1;

no carry in bR42; b
R
42,20 = 1; bR41,15 = 0; bR41,8 = 1;

bR42,19 ∨ ¬bR41,19 = 1;

Table 12. Differential path construction for the intermediate 3-rounds of RIPEMD-160

round πL(j) πR(j)

2 7 4 13 1 10 6 15 3 12© 0 9 5 2 14 11 8 6 11 3 7 0 13© 5 10 14 15 8 12 4 9 1 2
MM ← Δ constant MM ← ∇ constant

3 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12© 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13©
constant Δ constant ∇

4 1 9 11 10 0 8 12© 4 13 3 7 15 14 5 6 2 8 6 4 1 3 11 15 0 5 12 2 13© 9 7 10 14
→ Δ → ∇
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Abstract. The Zero-Value Point (ZVP) attack, one of side channel at-
tacks, is very powerful to recover the secret information of elliptic curve
cyrptosystem (ECC) on memory constraint devices by monitoring their
power consumptions. In the ZVP attack, the zero-value registers are used
in point addition and doubling formula of ECC to resist randomiza-
tions. Hence, the countermeasures against the differential power analysis
(DPA), like Coron’s and Joye-Tymen’s randomization, do not work for
the ZVP attack. The Kummer surface is a variety associated to the Jaco-
bian of a genus 2 curve with a map. The pseudo-group structure on the
Kummer surface defines a scalar multiplication, which is more efficient
than that in HECC and comparable to ECC, especially in constraint en-
vironments. We inspect the pseudo-addition and doubling formula of the
Kummer surface and show how to find zero-value registers. Our analysis
shows that the scalar multiplication on the Kummer surface suffers from
the ZVP attack, hence all Kummer-based cryptosystems are inevitable
to the ZVP attack.

Keywords: Zero-value point attack, Kummer-based cryptosystem,
Differential power analysis, Scalar multiplication.

1 Introduction

Elliptic Curve cryptosystem involves only a short key, and is more preferable to
other public key variants for cryptographic applications in memory-constraint
device. The concept of Hyperelliptic Curve Cryptosystem (HECC) was proposed
by Koblitz [18] as a generalization of ECC. In a HECC, the jacobian of a hyperel-
liptic curve defined over a finite field is used to fulfil the discrete-logarithm-based
cryptographic algorithms and protocols. Hyperelliptic curves have richer alge-
braic structures and are based on a smaller field than elliptic curves to achieve
the same level of security. In cryptographic applications, scalar multiplications
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are essential and their computations decide the efficiency of the ECC or HECC
cryptosystem.

Cantor’s pioneering work [4] gave an algorithm to do scalar multiplications for
hyperelliptic curves. In the early 1990s, Flynn [11] gave an explicit description
of the Jacobian of a genus 2 hyperelliptic curve and suggested a more efficient
arithmetic on scalar multiplications.

As for any hyperelliptic curves C of genus 2, there exists a map J(C) → K
sending two opposite points of the Jacobian (except for the 2-torsion points)
to a point of the Kummer surface K. The map is not a group-homomorphism,
hence the Kummer surface is not structured as a group. However, the map does
transform the group structure of the Jocobian to a pseudo-group structure on
the Kummer surface. Fast formula for the arithmetic on the Kummer surface
was developed with the theory of Theta functions and optimized in [12,14].
Using Montgomery ladder, it is enough for the pseudo-group structure to define
scalar multiplications on the Kummer surface. This makes possible the Kummer-
based cryptosystems. For example, Smart et al. [28] proposed a Diffie-Hellman
protocol implemented on Kummer surface in 1999. It was shown in [12] that the
discrete logarithm problem on Kummer sufaces is polynomial time equivalent
to the discrete logarithm in the Jocobian of the hyperelliptic curve of genus
2. Fast arithmetic on the Kummer surface was also developed, which is much
more efficient than that in ECC or HECC, especially in constraint environment.
Therefore, many works have been devoted to fast arithmetic on the Kummer
surface [7,8,12,14].

1.1 Side Channel Attacks and Zero-Value Point (ZVP) Attack
on Scalar Multiplication

Due to the short key size and fast arithmetics, ECC, HECC and Kummer-Based
Cryptosystems are especially adaptable to low-cost and memory-limited cryp-
tographic devices like smartcards. However, cryptographic hardware operations
can be an easy target to power analysis by Side Channel Attacks [19,20]. The Side
Channel Attacks analyze the instantaneous power consumption of a device to
derive the secret information stored in it. Over the years, power analysis evolves
from the timing attack, the Simple Power Analysis (SPA), to the Differential
Power Analysis (DPA) and Zero-Value Point attack (ZVP), etc.

ECC, HECC and Kummer-Based Cryptosystems generally base their security
on the Discrete-Logarithm related assumptions on some additive (pseudo) group,
and scalar multiplications are the main computation involved.

In [5], Coron showed how SPA and DPA work on scalar multiplications in
ECC. Let d be the secret, and P be a point on ECC, the scalar multiplication dP
needs to compute the addition of two different points and the doubling of a point.
In the “double and addition” algorithm for dP , each bit of d determines whether
both of doubling and addition or only doubling involved, and this causes different
power consumption. Simple Power Analysis (SPA) just uses this difference to
determine every bit of d.
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There are many countermeasures to avoid SPA, like Coron’s “double-and-
add-always” method [5] and “Montgomery” method [24], “Hesse” type [27,17]
or “Jacobi” type [21] of computing doubling and addition in a unified formula.
But all the anti-SPA methods do not prevent the Differential Power Analysis
(DPA), a much more powerful analysis.

To avoid the DPA, the proposals are to use randomized projective homoge-
neous coordinates [5] or Jacobian coordinates [21], to work in a random isomor-
phism of the elliptic curve, or to work in random field isomorphism [16].

In 2003, Goubin observed that randomization does not work very well for
some special points[13]. Goubin [13] analyzed two kinds of special points, namely
(x, 0) and (0, y), on elliptic curves. Points (x, 0) and (0, y) are expressed as
(X : 0 : Z) and (0 : Y : Z) in Jacobian coordinates. Randomization of the
Jocobian coordinates results in points (r2X : 0 : rZ) and (0 : r3Y : rZ) for
some random integer r �= 0. One of the coordinate remains to be zero after the
randomization. Power analysis then takes advantage of those special points to
derive the secret scalar d. However, Smart showed that Goubin’s power-analysis
attack for elliptic curves can be easily avoided [26].

Akishita et al. [3] extended Goubin’s attack with the so-called “Zero-Value
Point” (ZVP) attacks. The ZVP attack is not limited to zero-coordinate points
like (x, 0) or (0, y). It collects those points Q such that the computation of the
scalar multiplication dQ leads to 0 in the intermediate computation of the dou-
bling or addition formulas. Lots of elliptic curves, including the SECG random
curves over prime fields, suffer from the ZVP attack. It seems that the ZVP at-
tack is one of the most powerful attack up to now. In [3], Akishita et al. showed
the conditions that the zero-value points exist in elliptic curve, and the ZVP
attack suggests a new security criteria for secure implementation of ECC. [10]
gave a survey on known side-channel attacks and countermeasures for ECC.

As for HECC, the power analysis works in the same principle, and the only
difference is that scalar multiplication dP works in divisor class groups of hy-
perelliptic curves, instead of the additive group of points on ECC. Avanzi [1]
generalized Goubin’s attacks to divisor class groups of hyperelliptic curves, and
provided a generalization of the countermeasures.

As far as we know, there is no research work on power analysis of Kummer-
based cryptosystems up to now. We will fulfill the analysis of Kummer-based
cryptosystems in this paper. Although the Kummer Surface is constructed from
hyperelliptic curves with g = 2, the ZVP attack on Kummer-based cryptosys-
tems is much different from the ZVP attack on HECC. As we will show in this
paper, there are more special points which can be taken advantage of by ZVP
attacks on a Kummer surface, compared to its corresponding hyperelliptic curve,
and it is also much more difficult to resist ZVP attacks on a Kummer surface.

1.2 Our Contributions

In this paper, we study how to find special points on a Kummer surface, i.e.,
those points result in zero-value register during the computation of scalar mul-
tiplications. We also provide how to use those zero-value points to implement
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ZVP attacks on Kummer-based cryptosystem. Finally we show that there are
no efficient ways to avoid the ZVP attacks on Kummer surfaces, and propose
countermeasures against the ZVP attacks.

Organization. The rest of this paper is organized as follows. In section 2, we
review scalar multiplication on a Kummer surface. In section 3, we focus on
analyzing what are special points of a Kummer surface, and estimate the number
of special points. In section 4, we describe how to carry out the zero-value point
attacks on Kummer surface. In section 5, we give the countermeasures against
this attacks. Section 6 concludes the paper.

2 Scalar Multiplication on the Kummer Surface

In this section, we will recall the pseudo-addition and doubling algorithm and
the Montgomery scalar multiplication on the Kummer surface. The Kummer
surface is defined as follows. Let

C : y2 + h(x)y = f(x) (1)

be a curve of genus 2 defined over a field F , where deg(f) ≤ 6 and deg(h) ≤ 3. Let
J be the Jacobian variety of C. Then a hypersurface K in P3 can be associated
to the Jacobian variety J . The associated hypersurface K is called the Kummer
surface. If the characteristic of F is not 2, i.e., char(F ) �= 2, the curve C of genus
2 has a reduced form

C : y2 = f(x). (2)

Cassels and Flynn [6] constructed the Kummer surface associated to the Jacobian
variety J of curve C : y2 = f(x). If char(F ) = 2, the general form Eq.(1) can be
reduced to the case deg(h) = 2. Duquesne [9] considered how to construct the
Kummer surface for this case. Gaudry [12] and Lubicz [14] proposed formulas
for the arithmetic of Kummer surfaces based on the theory of algebraic theta
functions. Müller [25] developed the general expressions of the Kummer surface
for the more general form Eq.(1), which applies to any char(F ).

Given a genus 2 curve C, the Kummer surface is obtained by a map J(C) →
K, which maps two opposite points of the Jacobian of a genus 2 curve into one
point in K. The quotient of J by the negation map results in the variety K, i.e.,
the Kummer surface. However, the map is not a group homomorphism, and the
Kummer surface does not have a group structure. But the map endows a pseudo-
group structure on the Kummer surface, over which a scalar multiplication can be
defined with the help of a so-called Montgomery ladder. The scalar multiplication
on the Kummer surface associated to a genus 2 curve can be used to design genus
2 cryptosystems. Due to the map J(C) → K, the discrete logarithm problem
on the Kummer surfaces can be proved to be polynomial time equivalent to the
discrete logarithm problem in the corresponding Jacobian [28].

If char(F ) �= 2, there exists a fast formulae for the scalar multiplication on the
Kummer surface associated to a genus 2 curve C using a Montgomery ladder.
This make Kummer-based cryptosystems more efficient than hyperelliptic curve
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cryptosystems, especially in some hardware configurations, like smart cards. Let
a genus 2 curve C be given by

C : y2 = x5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0.

Suppose P1 = (x, y) and P2 = (u, v) are affine points on curve C. According to
[6], a projective embedding of the Kummer surface is given by

k1 = 1, k2 = x+ u, k3 = xu, k4 =
F0(x, u)− 2yv

(x− u)2
,

where

F0(x, u) = (x+ u)xu+ 2f4(xu)
2 + f3(x+ u)xu+ 2f2(xu) + f1(x + u) + 2f0.

The functions k1, k2, k3, k4 satisfy the quartic equation

K(k1, k2, k3, k4) = K2(k1, k2, k3)k
2
4 +K1(k1, k2, k3)k4 +K0(k1, k2, k3) = 0,

where

K2(k1, k2, k3) = k22 − 4k1k3,

K1(k1, k2, k3) = −2k2k
2
3 − 4k1k

2
3f4 − 2k1k2k3f3 − 4k21k3f2 − 2k21k2f1 − 4k31f0,

K0(k1, k2, k3) = k43 − 2k1k
3
3f3 − 4k1k2k

2
3f2 − 4k1k

2
2k3f1 − 4k1k

3
2f0

+k21k
2
3f

2
3 − 4k21k

2
3f2f4 + 2k21k

2
3f1 − 4k21k2k3f1f4 + 4k21k2k3f0

−4k21k
2
2f0f4 − 2k31k3f1f3 − 4k31k2f0f3 + k41f

2
1 − 4k41f0f2.

The points of the Kummer surface are of form (k1 : k2 : k3 : k4). Given two
points A and B on the Kummer surface, we can compute A + B if and only
if we know A − B firstly. Smart et al. [28] was the first one who proposed to
compute scalar multiplication using Montgomery ladder on the Kummer surface.
Montgomery ladder can be used to compute the scalar multiplication, because
A−B is unchanged at every step of the Montgomery ladder. Duquesne proposed
the pseudo-addition and doubling algorithms for char(F ) �= 2 on the Kummer
surface in [7] and [2, chapter 14]. Recently, Lin et al. [22] pointed out some minor
errors in the algorithms and revised them. Below we recall the revised algorithms
in [22].

Let Fq be a field of characteristic p �= 2, 3 and let C/Fq be a curve of genus 2.
Let KC denote the Kummer surface of C. Assume that the difference A− B is
known and the third coordinate of A−B on the Kummer surface is 1 (remember
we are in P3(Fq)) where A = (k1 : k2 : k3 : k4) and B = (l1 : l2 : l3 : l4) are two
points on the Kummer surface KC . Then the Kummer surface coordinates for
A+B are as follows:

k1(A+B) = ϕ11(A,B),

k2(A+B) = 2(ϕ12(A,B)− k1(A+B)k2(A−B)),

k3(A+B) = k1(A−B)ϕ33(A,B),

k4(A+B) = 2(ϕ14(A,B)− k1(A+B)k4(A−B)),
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where
ϕ11(A,B) = ((k4l1 − k1l4) + (k2l3 − k3l2))

2;

ϕ12(A,B) = ((k2l3 − k3l2) + (k1l4 − k4l1))(f3(k1l3 − k3l1) + (k2l4 − k4l2))

+2(k1l3 − k3l1)(f2(k1l3 − k3l1) + (k1l2 − k2l1)− (k3l4 − k4l3))

+2f4(k1l4 − k4l1)(k2l3 − k3l2),

ϕ33(A,B) = ((k3l4 − k4l3) + (k1l2 − k2l1))
2,

ϕ14(A,B) = ((k1 + k3)(l1 − l3) + k1l3 − k3l1)(f3((k1l4 + k4l1)− (k2l3 + k3l2))

+2((k1l2 + k2l1)− (k3l4 + k4l3)) + 2f4(k1l1 − k3l3))

+2f2(k1l4 − k2l3)(k4l1 − k3l2)

+((k2 + k4)(l2 − l4) + k2l4 − k4l2)((k2l3 + k3l2)− (k1l4 + k4l1)).

Let A = (k1 : k2 : k3 : k4) , then the Kummer coordinates for 2A = (δ1 : δ2 : δ3 :
δ4) are given by

δ1 = 2ϕ14(A,A), δ2 = 2ϕ24(A,A), δ3 = 2ϕ34(A,A), δ4 = ϕ44(A,A),

where

ϕ14(A,A) = 2(k21 − k23)(f3(k1k4 − k2k3) + 2(k1k2 − k3k4)

+f4(k
2
1 − k23)) + 2(k1k4 − k2k3)(k

2
4 − k22 + f2(k1k4 − k2k3)),

ϕ24(A,A) = (k2
1 + k2

3)(8k1k3 − f3(k
2
1 + k2

3)) + 2(k2
2 + k2

4)(k
2
3 + k2

1 + k2k4 + f3k1k3)

+k1k3((f
3
3 − 8f3 + 8f2

2 + 8f2
4 − 4f2f3f4)k1k3

+(7− f2
3 + 8f2f4)k2k4 + 8f2(k3k4 + k1k2) + 8f4(k2k3 + k1k4))

+k2k4(4f2(k1k4 + k2k3) + 4f4(k1k2 + k3k4) + f3(k2k4 + 4(k2
1 + k2

3))),

ϕ34(A,A) = 2(k21 − k23)(f3(k1k2 − k3k4) + f2(k
2
1 − k23) + 2(k1k4 − k2k3))

+2(k1k2 − k3k4)(k
2
2 − k24 + f4(k1k2 − k3k4)) + k1k2(k

2
1 − k22),

ϕ44(A,A) = (k21 + k23)((f
2
3 − 4f2f4 − 2)(k21 + k23)− 8f2(k3k4 + k1k2)

−8f4(k1k4 + k2k3)− 4f3k1k3 − 12k2k4 + (k22 + k24)(k
2
2 + k24 − 2f3(k

2
1 + k23))

+k1k3(8f2(k2k3 + k1k4) + 8f4(k1k2 + k3k4) + (16 + 8f2f4 − 2f2
3 )k1k3)

+2K2k4(2f3k1k3 − k2k4).
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In Algorithm 1, we show how to use Montgomery ladder to compute scalar
multiplication on the Kummer surface. At each step, the algorithm performs
one addition and one doubling, which makes this method resistant to Simple
Power Attacks.

Algorithm 1. Montgomery scalar multiplication algorithm for Kummer surface

Input: A point D on the Kummer surface and d = (dn−1, · · · , d1, d0)2.
Output: dD.

1. (A,B) ← ((0, 0, 0, 1), D);
2. for i = n− 1 down to 0 do
3. If di = 0, (A,B) ← (2A,A+B);
4. If di = 1, (A,B) ← (A+B, 2B);
5. end for
6. return A.

3 Special Points on Kummer Surface

In this section, we will find some special points of Kummer surface with respect
to different pseudo-addition and doubling algorithms. We will also estimate the
number of those special points. Special points will serve the zero-value attack in
the next section.

In [3], the proposed ZVP attack utilizes the auxiliary register to take zero-
values and reduces the computation overhead in ECC. Those points, which re-
sults in zeros in the auxiliary registers, are called Zero-Value points of ECC.
Similarly, we can also define those special points on Kummer surface, which
results in a reduction of computation overhead, as zero-value points.

As pointed earlier, scalar multiplications on Kummer surface involve the
Montgomery adder, and different implementations of pseudo-addition and dou-
bling cooperating with the Montgomery adder result in different Montgomery
scalar multiplication algorithms. We will first analyze Duquesne’s pseudo-
addition and doubling formula [7,22] for the characteristic p > 3, and show
how to find special points and evaluate the number of special points. Then we
will apply our analysis on Gaudry’s algorithm of pseudo-addition and doubling
formula [12] which use Theta function, and other algorithms of pseudo-addition
and doubling formula [8,14] for Characteristic 2.

3.1 The Possible Special Points for Duquesne’s Pseudo-addition
and Doubling Formula

The special points can occur on the computation of the pseudo-addition or the
doubling. Now we analyze Duquesne’s pseudo-addition and doubling formula
[7,22] for the characteristic p > 3 as follows.
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Theorem 1. Let Fq be a field of characteristic p �= 2, 3 and let C/Fq be a curve
of genus 2. Let K be a Kummer surface of C and (k1 : k2 : k3 : k4) a point
on K. The point (k1 : k2 : k3 : k4) is a special point for Montgomery scalar
multiplication algorithm, which is instantiated with Duquesne’s pseudo-addition
and doubling formula [7,22], on the Kummer surface, if either of the following
conditions are satisfied (ord(K) denotes the order of K)

1. ki = 0, i ∈ {1, 2, 3, 4};
2. k1 = ±k3 mod ord(K).

Proof.
Kummer-based cryptosystems make use of Montgomery ladder (see algorithm
1), so both of pseudo-addition and doubling are needed per bit of the expo-
nentiation. The cost of scalar multiplication algorithm is 59M + 12S according
to [22], where M denotes field multiplication and S squaring. Here we assume
M = S, then the total cost is 71M (We assume that f2

2 , f
2
3 , f

2
4 , f2f4, f2f3f4 were

precomputed. We also assume that before computing pseudo-addition and dou-
ble, we first precompute {kilj}i,j=1,...,4 and {kikj}i,j=1,...,4 ). We examine the
conditions listed in the theorem.

Case k1 = 0. The intermediate values related to k1 in the doubling formulas
are as follows:

k21 , k1k2, k1k3, k1k4, f3k1k3, k1k2(k
2
1 − k22),

k1k3((f
2
3 − 8f3 + 8f2

2 + 8f2
4 − 4f2f3f4)k1k3 + (7− f2

3 + 8f2f4)k2k4
+8f2(k3k4 + k1k2) + 8f4(k2k3 + k1k4)),
k1k3(8f2(k2k3 + k1k4) + 8f4(k1k2 + k3k4) + (16 + 8f2f4 − 2f2

3 )k1k3).

The intermediate values related to k1 in the pseudo-addition formulas are
k1l1, k1l2, k1l3, k1l4.
When k1 = 0, the cost of doubling formulas can save 9M + 1S, whereas the
cost of addition formulas save 4M . Therefore, the total cost reduces to 57M
(let M = S) per bit of the Montgomery ladder.

Case k3 = 0. It is the same as k1 = 0, for k1 and k3 are symmetric in the
Montgomery ladder.

Case k2 = 0. The intermediate values related to k2 in the doubling formulas
are:

k22 , k1k2, k2k3, k2k4, (7− f2
3 + 8f2f4)k2k4,

k2k4(4f2(k1k4 + k2k3) + 4f4(k1k2 + k3k4) + f3(k2k4 + 4(k21 + k23))),
k1k2(k

2
1 − k22), 2k2k4(2f3k1k3 − k2k4).

The intermediate values related to k2 in the pseudo-addition formulas are
k2l1, k2l3, k2l4.
It saves 7M +1S in the doubling formulas in case of k2 = 0, whereas it saves
3M in the addition formulas.

Case k4 = 0. It is the same as k2 = 0, for k2 and k4 are also symmetric in the
formulas.
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Case k1 = ±k3 mod ord(K). In this case, k21−k23 = 0. The intermediate values
relating to k21 − k23 are as following.

2(k21 − k23)(f3(k1k4 − k2k3) + 2(k1k2 − k3k4) + f4(k
2
1 − k23)),

2(k21 − k23)(f3(k1k2 − k3k4) + f2(k
2
1 − k23) + 2(k1k4 − k2k3)).

Therefore, it saves 4M in the doubling formulas while it remains the same
in the addition formulas.

We summarize the results in the following table.

Table 1. The cost of pseudo-addition and doubling in 4 cases

standard k1 = 0 k2 = 0 k1 = ±k3
or k3 = 0 or k4 = 0

pseudo-addition 31M 27M 28M 31M

doubling 40M 30M 32M 36M

total 71M 57M 60M 67M

3.2 The Number of Special Points for Duquesne’s Formula

Now we classify zero-value points on Kummer surface into two types, and esti-
mate the number of points of each type.

type 1 special points: those points satisfying ki = 0, i ∈ {1, 2, 3, 4};
type 2 special points: those points satisfying k1 = ±k3 mod ord(K).

Theorem 2. Let C : y2 = f(x) be a genus 2 curve over a finite field Fq and κ
be the map from the Jacobian of C into Kummer surface K. Then the number
of type 1 special points on this Kummer surface is about 4q.

Proof. We only consider the imaginary hyperelliptic curves of form

f(x) = x5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0.

Then the points (k1 : k2 : k3 : k4) on the Kummer surface satisfy the following
function

K(k1, k2, k3, k4) = K2(k1, k2, k3)k
2
4 +K1(k1, k2, k3)k4 +K0(k1, k2, k3) = 0.

Now we estimate the number of special points. In the case of k1 = 0, the number
of special points are equal to the number of solutions of equationK(0, k2, k3, k4)=
0 in affine case, where

K2(0, k2, k3) = k22 , K1(0, k2, k3) = −2k2k
2
3 , K0(0, k2, k3) = k43 .

That is
k43 − 2k2k4k

2
3 + k22k

2
4 = 0, ⇒ k23 = k2k4.
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Because k2, k3, k4 ∈ Fq, it is easy to see the number of solutions to the equation
k23 = k2k4 is about q2. Therefore, there are about q special points for the case
of k1 = 0 (Note that the points of Kummer surface are in the projective space
P3(Fq)).

We can estimate the number of special points when ki = 0, i ∈ {2, 3, 4} in the
same way. Therefore, the total number of special points on Kummer surface is
about 4q. 
�

Theorem 3. Let C : y2 = f(x) be a genus 2 curve over a finite field Fq and κ
be the map from the Jacobian of C into Kummer surface K. Then the number
of type 2 special points on this Kummer surface is about 2q.

Proof. Let (k1 : k2 : k3 : k4) be a point on the Kummer surface. Now we
consider the type 2 special point , i.e., k1 = ±k3. Since we consider the point
in P3(Fq), we assume k1 = 1, then k3 = 1 or k3 = −1 as well.

The point (1, k2, 1, k4) satisfy the quartic equation

K(1, k2, 1, k4) = K2(1, k2, 1)k
2
4 +K1(1, k2, 1)k4 +K0(1, k2, 1) = 0,

where

K2(1, k2, 1) = k22 − 4,

K1(1, k2, 1) = −2k2(1 + f1 + f3)− 4(f0 + f2 + f4),

K0(1, k2, 1) = (1− 2f3 + f2
3 + 2f1 + f2

1 − 4f2f4 − 2f1f3 − 4f0f2)

+k2(−4f2 − 4f1f4 + 4f0 − 4f0f3)− 4k22(f0f4 + f1)− 4k32f0.

Let A1 = 1+ f1 + f3, A2 = f0 + f2 + f4, A3 = 1− 2f3 + f2
3 +2f1 + f2

1 − 4f2f4−
2f1f3 − 4f0f2, A4 = −4f2 − 4f1f4 + 4f0 − 4f0f3, A5 = f0f4 + f1, A6 = f0, then
k2 and k4 satisfy the following equation

(k22 − 4)k24 − (2A1k2 + 4A2)k4 − 4A6k
3
2 − 4A5k

2
2 +A4k2 +A3 = 0.

The number of solutions to the above equation is about q. In this proof, we have
assumed k1 = 1 which is the first coordinate of the point. So the point denotes
its equivalence class. The case of k3 = −1 can be estimated in the same way.
Therefore, there are about 2q special points for type 2. 
�

In total, there are about 6q special points for ZVP, whereas the number of
points on a Kummer surface are about q2 in a finite field Fq. Thus the special
points account for 6/q of the total points.

In the following, we will give a simple example to show that there are about
6q points that have zero values during the computation of scalar multiplication
on the Kummer surface. The data in Table 2 was computed via the Magma
computer algebra system [23].

Example 1. Consider a hyperelliptic curve y2 = x5 + x3 + x + 4 over F11. The
order of the Jacobian is 107. The corresponding Kummer surface is:

x4
1 + 6x3

1x2 + 9x3
1x3 + 6x3

1x4 + 5x2
1x2x3 + 9x2

1x2x4 + 3x2
1x

2
3 + 6x1x

3
2

+7x1x
2
2x3 + 9x1x2x3x4 + 9x1x

3
3 + 7x1x3x

2
4 + x2

2x
2
4 + 9x2x

2
3x4 + x4

3.
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Choose a random point P = (1 : 1 : 8 : 7) on Kummer surface with order 107.
The result of the scalar multiplication iP are listed in Table 2.

Table 2. iP , i = 1, · · · , 107

2P, 105P (1 : 1 : 2 : 9) 28P, 79P (0 : 1 : 7 : 5)
3P, 104P (1 : 2 : 9 : 6) 29P, 78P (1 : 7 : 8 : 3)
4P, 103P (1 : 8 : 8 : 7) 30P, 77P (1 : 7 : 0 : 6)
5P, 102P (1 : 0 : 8 : 1) 31P, 76P (0 : 1 : 6 : 3)
6P, 101P (1 : 4 : 7 : 2) 32P, 75P (1 : 5 : 0 : 0)
7P, 100P (1 : 9 : 10 : 4) 33P, 74P (1 : 8 : 10 : 3)
8P, 99P (1 : 3 : 6 : 2) 34P, 73P (1 : 1 : 1 : 10)
9P, 98P (1 : 0 : 0 : 9) 35P, 72P (1 : 0 : 3 : 9)
10P, 97P (1 : 3 : 10 : 4) 36P, 71P (1 : 6 : 3 : 8)
11P, 96P (0 : 1 : 10 : 1) 37P, 70P (1 : 4 : 6 : 9)
12P, 95P (1 : 5 : 7 : 7) 38P, 69P (1 : 10 : 0 : 3)
13P, 94P (1 : 3 : 3 : 6) 39P, 68P (1 : 6 : 4 : 0)
14P, 93P (1 : 4 : 8 : 8) 40P, 67P (1 : 3 : 9 : 9)
15P, 92P (1 : 4 : 6 : 1) 41P, 66P (1 : 6 : 1 : 2)
16P, 91P (1 : 4 : 9 : 2) 42P, 65P (1 : 5 : 5 : 10)
17P, 90P (1 : 6 : 4 : 9) 43P, 64P (1 : 1 : 6 : 8)
18P, 89P (1 : 6 : 0 : 10) 44P, 63P (1 : 5 : 1 : 5)
19P, 88P (1 : 9 : 2 : 9) 45P, 62P (1 : 1 : 3 : 1)
20P, 87P (1 : 5 : 5 : 9) 46P, 61P (1 : 10 : 4 : 1)
21P, 86P (1 : 7 : 0 : 0) 47P, 60P (1 : 10 : 0 : 0)
22P, 85P (1 : 9 : 1 : 9) 48P, 59P (1 : 2 : 9 : 0)
23P, 84P (1 : 5 : 0 : 5) 49P, 58P (0 : 1 : 0 : 0)
24P, 83P (1 : 10 : 1 : 1) 50P, 57P (1 : 0 : 8 : 4)
25P, 82P (1 : 6 : 7 : 10) 51P, 56P (1 : 3 : 5 : 8)
26P, 81P (0 : 1 : 5 : 3) 52P, 55P (1 : 10 : 3 : 10)
27P, 80P (1 : 6 : 0 : 3) 53P, 54P (1 : 1 : 2 : 4)
P, 106P (1 : 1 : 8 : 7) 107P (0 : 0 : 0 : 1)

We can see there are 27 special points except (0 : 0 : 0 : 1) in Table 2, which
constitute for 51% of the total (107-1)/2=53 Kummer points.

3.3 Special Points due to other Pseudo-addition and Doubling
Formula

The special points vary with different implementations of pseudo-addition and
doubling. Other variant algorithms for pseudo-addition and doubling on Kum-
mer surface are Gaudry’s algorithm [12] using Theta function, Duquesne’s al-
gorithm [8] and GL’s algorithm [14] which works for characteristic 2. Similarly,
we can exploit special points for these algorithms. We summarize the results in
the following theorems, and we omit the proofs since they are similar to that of
Theorem 1.
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Possible special points with Gaudry’s algorithm [12]

Theorem 4. Let K be a Kummer surface and (k1 : k2 : k3 : k4) be a point
over K. The point (k1 : k2 : k3 : k4) is a special point for Montgomery scalar
multiplication algorithm, which is instantiated with Gaudry’s pseudo-addition
and doubling formula [12], on the Kummer surface, if either of the following
conditions is satisfied

1. k1 = k2 and k3 = k4;
2. k1 = k3 and k2 = k4;
3. k2 = k3 = k4.

Possible special points with Duquesne’s Algorithm [8]

Theorem 5. Let Fq be a field of characteristic p = 2 and let C/Fq be a curve
of genus 2. Let K be a Kummer surface of C and (k1 : k2 : k3 : k4) be a point
over K. The point (k1 : k2 : k3 : k4) is a special point for Montgomery scalar
multiplication algorithm, which is instantiated with Duquesne’s pseudo-addition
and doubling formula [8] for characteristic p = 2, if there exists an i ∈ {1, 2, 3, 4}
such that ki = 0.

Possible special points with GL’s Algorithm [14]

Theorem 6. Let Fq be a field of characteristic p = 2 and K be a Kummer
surface. Let (k1 : k2 : k3 : k4) be a point over K. The point (k1 : k2 : k3 : k4) is
a special point for Montgomery scalar multiplication algorithm, which is instan-
tiated with GL’s pseudo-addition and doubling formula [14] for characteristic
p = 2, if either one of the following conditions is satisfied

1. ki = 0, i ∈ {1, 2, 3, 4};
2. k1 = k2 and k3 = k4;
3. k1 = k4 and k2 = k3;
4. k1 = k3 and k2 = k4.

4 Zero-Value Point Attacks on Kummer Surface

According to Table 1, the special points of type I and II lead to some loss of
computational overhead, compared with common points on the Kummer surface.
How to make use of this property to exploit the secret scalar is just a kind of
Zero-Value-Point (ZVP) attack. The special points on the Kummer space may
not all have zeros in some coordinates, but the special points play the same role
as the zero-value points in the ZVP attack in [3]. Hence those special points can
be regarded as the generalized zero-value points. Here we show some general idea
how the ZVP attack exploits the computational difference of the special points
to reveal the secret scalar d..

Let d = (dn−1, dn−2, . . . , d0)2 be the secret scalar. Suppose that it is free to
compute dQ for any point Q on the Kummer surface. The ZVP attack will reveal
the secret scalar bit by bit by adaptively choosing the base point Q. Suppose
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that the n − j − 1 most significant bits (dn−1, dn−2, · · · , dj+1)2 are known, the
ZVP attack will guess the n−j-th bit dj due to the fact that the zero-value point
will result in different computational overhead of pseudo-addition and doubling
depending on dj = 0 or dj = 1.

The previous zero-value point attacks(e.g., [2, Chapter 29].) applied to
Montgomery ladder scalar multiplication over ECC or HECC. However, things
are different on the Kummer surface. As will show in the next subsection, when
a special point happens (type 1 or type 2), the doubling formulas will results
in a heavier computational loss than the pseudo-addition formulas.

4.1 General Zero-Value Point Attacks on Kummer Surface

In the Montgomery scalar multiplication algorithm of computing dP in section
3, both a pseudo-addition and a doubling are involved in each loop. If the current
bit di = 0, (A,B) is updated by (2A,A + B); if di = 1, (A,B) is updated by
(A+B, 2B). Note that B = A+ P always holds in each loop.

If both A and B are common (not special) points then the computation in
each loop will be 71M . However, things are different when A or B is a special
point, as shown in Table 3 and 4.

Table 3. Computational loss when A = (k1 : k2 : k3 : k4) is a special point and
B = (l1 : l2 : l3 : l4) is a normal point

when k1 = 0 when k2 = 0 when k1 = ±k3
or k3 = 0 or k4 = 0

di = 0 Computational loss of (2A,A+B) 14M 10M 4M
Ratio of loss 14/71 = 19.7% 10/71 = 14.1% 4/71 = 5.6%

di = 1 Computational loss of (A+B, 2B) 4M 3M 0
Ratio of loss 4/71 = 5.6% 3/71 = 4.2% 0%

When A is a special point, it may lead to a significant loss of computational
overhead for di = 0, but slight loss for di = 1. On the other hand, when B is
a special point, it may lead to a significant loss of computational overhead for
di = 1, but slight loss for di = 0. This phenomenon helps us to design a ZVP
attack to guess the value of bit di.

Assume that the n − j − 1 most significant bits (dn−1, dn−2, · · · , dj+1)2
of scalar d are known. Now we want to determine the value of the j-th bit

dj ∈ {0, 1}. If we have a correct guess of dj , then A =

(
n−1∑
i=j

di2
i−j

)
P and B =(

n−1∑
i=j

di2
i−j + 1

)
P after n − j loops in the Montgomery scalar multiplication

algorithm. If we choose the base point P such that A =

(
n−1∑
i=j

di2
i−j

)
P or B =
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Table 4. Computational loss when A = (k1 : k2 : k3 : k4) is a normal point and
B = (l1 : l2 : l3 : l4) is a special point

when l1 = 0 when l2 = 0 when l1 = ±l3
or l3 = 0 or l4 = 0

di = 0 Computational loss of (2A,A+B) 4M 3M 0
Ratio of loss 4/71 = 5.6% 3/71 = 4.2% 0%

di = 1 Computational loss of (A+B, 2B) 14M 10M 4M
Ratio of loss 14/71 = 19.7% 10/71 = 14.1% 4/71 = 5.6%

(
n−1∑
i=j

di2
i−j + 1

)
P is a special value, the power consumption will be different

from the normal consumption during the n− j + 1-th loop.
On the other hand, if the guess of dj is not correct, then the power con-

sumption will be as normal as usual during the n− j + 1-th loop.
Let H be a set of elements including the type 1 and type 2 special points.

The next algorithm shows how to implement the attack in detail.

Algorithm 2. Zero-value point attack on Kummer surface

Input: H , (dn−1, dn−2, · · · , dj+1)2;
Output: dj ;

0) Guess dj = 0;
1) for l = 1 to m

2) Choose an element Pl ∈ H . Compute k =
n−1∑
i=j

di2
i−j and compute point

P ′
l = k−1Pl. Check that

(k − dj + dj)P
′
l not in H,

where dj = (dj + 1) mod 2, otherwise choose another value for Pl ∈ H .
3) Compute Cl = dP ′

l and record the power consumption of Cl as Tl;
4) end for;

5) Compute the average power consumption T = 1
m

m∑
l=1

Tl;

1′) for l = 1 to m

2′) Choose an element Ql ∈ H . Compute k =
n−1∑
i=j

di2
i−j +1 and compute point

Q′
l = k−1Ql. Check that

(k − dj + dj)Q
′
l not in H,

where dj = (dj + 1) mod 2, otherwise choose another value for Ql ∈ H .
3′) Compute C′

l = dQ′
l and record the power consumption of C′

l as T
′
l ;
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4′) end for;

5′) Compute the average power consumption T ′ = 1
m

m∑
l=1

T ′
l ;

6) If either T or T ′ is smaller than the normal average power consumption,
output dj = 0; otherwise output dj = 1.

Note: When the guess of dj is correct, Algorithm 2 also suggests a guess of dj−1

according to Table 3 and 4. If the power consumption of T is much less than
that of T ′, then dj−1 = 0; if the power consumption of T ′ is much less than that
of T , then dj−1 = 1.

4.2 A Variant of Zero-Value Point Attack on Kummer Surface

We observed that there is a big different power consumption between the pseudo-
addition and doubling formulas when a special point happens. We can exploit
this difference to get a simplified attack.

Given the n− j− 1 most significant bits (dn−1, dn−2, · · · , dj+1)2 of scalar d,

we haveA =

(
n−1∑

i=j+1

di2
i−j−1

)
P and B =

(
n−1∑

i=j+1

di2
i−j−1 + 1

)
P after n−j−1

loops in the Montgomery scalar multiplication algorithm. If we choose the base

point P such that A =

(
n−1∑
i=j

di2
i−j

)
P , the power consumption of dj = 0 will

be much less than that of dj = 1 in the (n− j)-th loop.
Let H be a set of elements including the type 1 and type 2 spe-

cial points and d = (dn−1, · · · , d1, d0). Suppose that the most significant bits
dn−1, dn−2, · · · , dj+1 of the secret scalar d are known and now we want to dis-
cover the next bit dj .

Algorithm 3. New ZVP attack on Kummer surface

Input: H , (dn−1, dn−2, · · · , dj+1)2;
Output: dj ;

1) for l = 1 to m

2) Choose an element Pl ∈ H and compute k =
n−1∑

i=j+1

di2
i−j−1 and P ′

l = k−1Pl.

Check that
(k + 1)P ′

l not in H,

3) Compute Cl = dP ′
l and record the power analysis of Cl as Tl;

4) end for;

5) Compute the average power analysis T = 1
m

m∑
l=1

Tl;

6) If T is much less than normal, then output dj = 0, otherwise output dj = 1.
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5 Countermeasures Against Zero-Value Point Attacks

Smart showed the method to avoid the ZVP attack on ECC in [26]. In 2004,
Avanzi [1] generalized the ZVP attack to HECC and also provided the coun-
termeasures, consisting of scalar randomization and message blinding. Below we
will show the principles of those countermeasures and why scalar randomization
does not work for the ZVP attack on Kummer-based cryptosystems.

Denote D as a point on a Kummer surface and d a secret scalar. In the
following, the order of the Kummer surface is assumed to be known.

Message Blinding Method: To compute dD, we compute an additional scalar
multiplication S = dB first, where B is a random point of large order. Then, the
scalar multiplication dD is computed as

dD = d(D +B)− S.

The above blinding process works well for ECC and HECC, it doesn’t work on
the Kummer surface. The reason is that the computation of d(D+B) needs the
information of D −B and the computation of d(D +B)− S needs the value of
d(D +B) + S beforehand. Generally it is impossible to get the value of D − B
or d(D + B) + S. Therefore, the message blinding method won’t work on the
Kummer surface.

Scalar Blinding Method: The idea of scalar blinding method is to change the
representation of the scalar. Given the order of the Kummer surface K, denoted
by ord(K), it is easy to see that dD = (d + i ∗ ord(K))D holds for any integer
i. Set d′ = d+ r · ord(K) with r a random integer, then dD = d′D.

The additional computation caused by the scalar blinding depends on the
bit length of r. To resist the zero-value point attacks, r should be big enough,
yet not too big (for example, r ≈ 220).

It seems that the scalar blinding method is the only one to resist the zero-
value point attack on the Kummer surface.

6 Conclusion

In this paper, we proposed zero-value point attacks on the Kummer-based cryp-
tosystem. We found some special points on Kummer surface and estimated the
number of those special points on Kummer surface. We showed that there are as
many as 6q special points on a Kummer surface associated with a hyperelliptic
curve of genus 2, compared to about q ZVPs on the corresponding hyperel-
liptic curve over Fq. On the other hand, most of the countermeasures against
ZVP attacks on HECC do not work for Kummer surfaces, which makes ZVP
attacks a more powerful side-channel attacks for Kummer-based cryptosystems.
We pointed out that the only possible countermeasure to avoid ZVP attacks is
to blind random scalars to scalar multiplications.



Zero-Value Point Attacks on Kummer-Based Cryptosystem 309

References

1. Avanzi, R.M.: Aspects of Hyperelliptic Curves over Large Prime Fields in Soft-
ware Implementations. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS,
vol. 3156, pp. 148–162. Springer, Heidelberg (2004)

2. Avanzi, R., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren,
F.: Handbook of elliptic and hyperelliptic curve cryptography. CRC Press, Boca
Raton (2005)

3. Akishita, T., Takagi, T.: Zero-Value Point Attacks on Elliptic Curve Cryptosystem.
In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 218–233. Springer,
Heidelberg (2003)

4. Cantor, D.G.: Computing on the Jacobin of a hyperelliptic curve. Math. Comp. 48,
95–101 (1987)

5. Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve
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Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 118–125. Springer, Heidelberg
(2001)

28. Smart, N., Siksek, S.: A fast Diffie-Hellman protocol in genus 2. J. of Cryptology 12,
67–73 (1999)

http://magma.maths.usyd.edu.au/magma/


PICARO – A Block Cipher Allowing Efficient

Higher-Order Side-Channel Resistance

Gilles Piret1, Thomas Roche2, and Claude Carlet3

1 Oberthur Technologies, 71-73, rue des Hautes Pâtures, 92726 Nanterre, France
g.piret@oberthur.com

2 ANSSI, 51, Bd de la Tour-Maubourg, 75700 Paris 07 SP, France
thomas.roche@ssi.gouv.fr

3 LAGA, Universities of Paris 8 and Paris 13, CNRS
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Abstract. Many papers deal with the problem of constructing an ef-
ficient masking scheme for existing block ciphers. We take the reverse
approach: that is, given a proven masking scheme (Rivain and Prouff,
CHES 2010) we design a block cipher that fits well the masking con-
straints. The difficulty of implementing efficient masking for a block ci-
pher comes mainly from the S-boxes. Therefore the choice of an adequate
S-box is the first and most critical step of our work. The S-box we selected
is non-bijective; we discuss the resulting design and security problems.
A complete design of the cipher is given, as well as some implementation
results.

1 Introduction

In a side-channel attack (SCA for short), the attacker observes — at runtime
— the execution environment (timing, power, electromagnetic radiation, etc.) of
a secret-dependent operation. From this observation, the attacker might either
be able to identify (part of) the secret (the attack is then called Simple Side-
Channel Analysis, SSCA) or get noisy information about internal states of the
cryptographic operation. In the latter case, when the accessed internal values are
a simple combination of a known variable and (part of) the secret, the attacker
will recover the secret from a statistical treatment of multiple cryptographic op-
eration execution, the attack is then called Differential Side-Channel Analysis
(DSCA for short). DSCA fits particularly well block ciphers which build their
security from piling-up simple and cryptographically weak operations. By access-
ing internal states, the attack bypasses the cipher strength. Since the seminal
work of Kocher et al. [27], DSCA (and its numerous variants and extensions) are
a constant threat against embedded devices that implement cryptographic prim-
itives. The development of DSCA countermeasures is a dynamic and challenging
research domain where the ultimate goal is to find the good trade-off between
security and performances. Many countermeasures focus on noise addition tech-
niques, which should increase the attack complexity. For instance, inserting ran-
dom delays during the cipher execution is a common practice in order to render
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difficult finding the manipulation of secret-dependent variables inside multiple
side-channel traces. This kind of countermeasures indeed increases the classical
DSCA attack complexity and it can be done with relatively small overhead on
the algorithm complexity (see for instance [14]). However these countermeasures
cannot be proven robust, i.e. an optimal attacker would be able to recognize and
suppress the random delays. This is actually what claim Durvaux et al. in a very
recent paper [17], where Hidden Markov Chain inference techniques are used
to point out dummy operations from real ones, discarding almost perfectly the
countermeasure proposed in [14]. In fact, the only known countermeasure that
possesses security proofs is the so-called Masking Schemes where the cipher’s
secret-dependent internal values are randomized from one execution to another
(e.g. [12,21]). However, such countermeasures usually induce a high performance
overhead, making their implementation difficult if not impracticable in small em-
bedded devices. Many works have been dedicated to building a masking scheme
with low cost that fits the existing block ciphers (mainly DES and AES). In the
present paper we will take the problem the other way around: we will study a
proven masking scheme and propose a new construction of block cipher that fits
well the masking constraints. Hence, we come up with the design of a cipher that
ensures resistance to conventional cryptanalysis methods, with special care for
the S-boxes (that are used to introduce non-linearity in the cipher design, and
are usually the most challenging part to implement when a masking scheme is
used) in order to lower the performance overhead of masking.

The paper is organised as follows: In the next section, the basics about mask-
ing techniques are recalled and Rivain and Prouff’s Boolean masking scheme [43]
is described; our block cipher construction will follow the design criteria derived
from this scheme. In Section 3, we propose a new S-box having a good trade-off
between efficiency, conventional security and masking efficiency. The main limi-
tation of the new S-box is its non-bijectiveness but the use of a Feistel network
allows us to build a full block cipher from the S-box. We exhibit in Section 4
a devastating attack on Feistel schemes if no special care is taken on the diffu-
sion layer of the round function. In connection with this attack, various specific
cryptanalysis techniques of Feistel networks are recalled in Section 5. The full
round function is described in Section 6. Finally, in Section 7, a complete design
specification of a full block cipher is proposed as well as a performance analysis
compared to the AES block cipher.

2 Preliminaries on Higher-Order Masking Schemes

As recalled in introduction, a Differential Side-Channel Attack compiles leaked
information from side-channel observations of internal states of a block cipher
in order to recover some knowledge about the secret key. The strength of DSCA
comes from the statistical treatments of the leaked information that makes the
attack particularly robust to noise (from measurement setup, concurrent oper-
ations, etc. . . ). Many improvements have been proposed on the original Differ-
ential Power Analysis introduced by Kocher et al. in 1999 [27]. Among them
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the Correlation Power Analysis [9] and the Mutual Information Analysis [20]
propose different statistical treatments to enhance the attack complexity with
respect to the noise and leakage model. Another notable extension of DSCA
is the so-called Higher-Order DSCA (HO-DSCA for short), already mentioned
in [27], that upgrades the attacker model: in a dth-order DSCA attack, it is able
to observe d different internal variables in a single cipher execution.

Countermeasures by masking are certainly the most studied countermeasures
against (HO-) DSCA because of their security proofs. However, the performance
overhead due to a masking scheme that thwarts HO-DSCA is such that they
are hardly used in practice. Our goal here is to point out the operations that
make a masking scheme costly and propose a block cipher that avoids as much
as possible such operations. To this end we will focus on a recent (HO-)Masking
scheme introduced by Rivain and Prouff [43].

2.1 Masking Schemes

A dth-order masking scheme is a countermeasure at the algorithmic level that
thwarts dth-order DSCA; the idea is to randomize the data processed by the
symmetric cipher such that there exists no set of d processed data that together
depend on the secret. A proof of security on a masking scheme ensures that this
property holds, in addition, the data complexity of a HO-DSCA attack increases
exponentially with its order, assuming the presence of noise (as showed by Chary
et al. [12]), which always exists in practice. All together, with a high enough
order with respect to the noise level, these properties make the masking approach
the only sound countermeasure against DSCA.

Several 1st-order masking schemes have been proposed (e.g. [8, 34, 37]) and
some specific 2nd-order masking schemes [42, 45] but until recently very few
schemes could be extended to any order d. The first provable dth-order masking
scheme was proposed by Ishai et al. in 2003 [23]; the construction has been
extended in 2010 by Rivain and Prouff [43]. This work was followed by two new
propositions [25, 39] for which our own work would apply just the same as for
Rivain and Prouff’s construction. A third publication by Genelle et al. [19]
was also proposed in 2011; it is dedicated to very specific non-linear functions
(power functions) which would not leave enough room for us in the research of
new S-boxes.

2.2 Rivain-Prouff’s Scheme

Let us consider an intermediate variable V ∈ GF (2n) of the targeted block ci-
pher, the variable V is called sensitive if its value depends on a secret key K and
on a known variable (e.g. the plaintext P ), for instance V = K⊕P . The manip-
ulation of a sensitive variable should be avoided due to DSCA attacks, therefore,
in a dth-order Boolean Masking Scheme (as Rivain and Prouff’s scheme), its ma-
nipulation is replaced by the manipulation of d+ 1 shares (V0, V1, · · · , Vd) such
that

V = V0 ⊕ V1 ⊕ · · · ⊕ Vd . (1)
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A dth-order Masking scheme is an algorithm that modifies the cipher sub-
functions in order to only manipulate such sharing of sensitive variables (ideally
without ever re-constructing the sensitive variables or decreasing the sharing
order).

In [43], the authors propose such an algorithm for each atomic operation:
affine functions (v &→ Af (v)), addition ((v, w) &→ v ⊕ w) and multiplication
((v, w) &→ v × w).

Remark 1. Any function can be decomposed in a sequence of such atomic opera-
tions, which gives a great genericity to the masking scheme (this approach is clas-
sic in Secure Multi-Party Computations, a research area that is very close to our
problem and on which most of the dth-order masking scheme are based [23,39]).
The drawback is that those atomic functions shall be executed explicitly (pre-
computed tables, commonly used to evaluate S-boxes are not an option).

Affine functions and additions over shared variables can be applied straight-
forwardly, the masking overhead will solely correspond to d times the original
operation complexity. In the case of multiplication, when it is not linear over
GF (2n), the masking scheme is more expensive: it costs (d + 1)2 field multipli-
cations, 2d(d+ 1) XORs and the generation of d(d + 1)/2 random n-bit values.
In a block cipher like the AES, each of the 160 S-box computations needs at the
least 4 such multiplications in GF (28), making the cost of the masking scheme
mostly carried by the non-linear multiplications.

This study leads naturally to the following constraints that an S-box should
satisfy in order to be efficiently masked: the S-box should have a simple expres-
sion as a polynomial and minimum number of non-linear field multiplications in
this form.

3 Research of a ”Good” S-Box

S-boxes are non-linear functions from GF(2)n to GF(2)m where n andm are pos-
itive integers. We also use the terminology (n,m)-functions. The vector spaces
GF(2)n and GF(2)m can be endowed with the structure of field. This gives, when
m divides n (and in particular when m = n), the possibility of designing S-boxes
as polynomial functions over finite fields.

3.1 Design Constraints

S-boxes must allow resistance to several logical attacks. The three main attacks
to be withstood are the linear attack [32], the differential attack [3] and the higher
order differential attack [26]. An attack which is not yet efficient but represents
some threat for the design of future block ciphers is the algebraic attack [13].
Designing an S-box, which is fastly implementable, allows high resistance to the
first three attacks and would not be potentially weak against a future efficient
version of the fourth one is a difficult challenge. Historically, the S-boxes of the
DES have been found by clever random computer search. This was possible
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thanks to the relatively small size of these (6, 4)-functions. The S-box of the
AES was too big for that; it has been the result of a theoretical work by K.
Nyberg [36] on the so-called inverse function GF (2n) → GF (2n) : x &→ x−1.
This function has very good properties: it is a permutation (which is necessary
for using it as an S-box in an SPN and is quite useful for a Feistel cipher as we
shall see below), it achieves the highest known nonlinearity when n is even (in
the case of AES n = 8; it is common to choose n as a power of 2 because it makes
software implementation easier), and has very high resistance to the differential
attack and to the higher order differential attack. It happens that, since 1993,
no other function in a number of variables equal to a power of 2 and gathering
these properties could be found (see a survey in [10]). Note however that the
inverse function is almost the worst possible against the algebraic attack.

The criteria listed above are those that an S-box should satisfy in black box
cryptography. We need to add the requirements derived for side-channel resis-
tance (see Section 2) and the practical design constraints:

1. Higher-OrderMasking against HO-SCA attacks implementable without slow-
ing down the cryptosystem too much (reducing the overhead leads to min-
imizing the number of non-linear multiplications, see Section 2, and is also
related to Constraint 2).

2. Efficiency (i.e. reduce the number of instructions and allow the operations
to be performed in small fields).

3. Function in 8 variables (the number of variables must be large enough for
allowing good resistance to the three main known logical attacks; the choice
of 8 helps satisfying Constraint 2 and allows compatibility with standard
block size).

We describe now in more details the function’s criteria. Given an (n, n)-function
in the form:

f : X →
2n−1∑
i=0

aiX
i, ai ∈ GF (2n) (2)

its important parameters are:

– Non-linearity: nl(f) = 2n−1 − 1

2
max
a,b�=0

∣∣∣∣∣∑
X

(−1)b·f(X)+a·X
∣∣∣∣∣, where a ·X is an

inner product in GF (2n); in practice, a ·X = tr(aX) where tr is the trace

function tr(a) = a+ a2 + a2
2

+ . . .+ a2
n−1

.
To thwart linear cryptanalysis [32], the nonlinearity must be close to the
best known nonlinearity of vectorial functions in even numbers of variables:
2n−1 − 2n/2 (that is 112 for n = 8).

– Differentiality: δ = max
a �=0,b

(#{X | f(a+X) + f(X) = b}).
Because of the differential cryptanalysis [4], it should be 2 (then the function
is called Almost Perfect Nonlinear APN [35]) or 4 (then the function is called
differentially 4-uniform [35]), or at most 6.
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– Algebraic degree: d = maxi (ω2(i) | ai �= 0), where ω2(i) is the Hamming
weight of the binary expansion of i.
Because of the higher differential attack [26], it should be at least 3 and
preferably at least 4.

– Graph algebraic Immunity: equals the minimal algebraic degree of a nonzero
Boolean function vanishing on the graph Gf = {(X, f(X)); X ∈ GF (2n)}
of the function (that is, the minimal algebraic degree of an annihilator of
the graph); this parameter is not related to an efficient attack yet, but 1 is
definitely too small and 2, as in the case of the inverse function, is risky.

– Minimum number of non-linear multiplications.

The evaluation of f : X →
∑2n−1

i=0 aiX
i involves a number, say k, of non-

linear multiplications (by opposition to linear transformations such as, in
characteristic 2, an exponentiation by a power of 2, i.e. a monomial of de-
gree a power of 2). Higher Order masking schemes like the one proposed by
Rivain and Prouff [43] slow down significantly the S-box implementation, the
overhead being directly related to the number of non-linear multiplications.

3.2 Bijective vs Non-Bijective S-Box

Considering two comparable functions (with respect to their execution efficiency
as well as the above mentioned criteria), a bijective S-box is much more in-
teresting than a non bijective one, because in the latter case we have to solve
the problem of making the cipher invertible anyway. Moreover we will see in
Section 4 that a non-bijective S-box induces security flaws.

However, it is a matter of fact that the research of good (meaning efficient
and cryptographically strong) non-linear functions is much harder when only
considering bijective functions, especially in an number of variables that is a
power of two, where the inverse function is considered the only good candidate.

The selected function is a non-bijective function, specially efficient in the
number of operations necessary for evaluating it and involving only operations
in a small Galois Field (of 16 elements), operations that can then be tabulated
on standard platforms.

3.3 S-Box Description

A possible S-box candidate is proposed in [11]. It is not expressed as a polynomial
of the form (2), but as the concatenation of two bivariate polynomials whose
variables live in GF (2n/2):

f : GF(2n/2)2 → GF(2n/2)2 : (x, y) &→ (xy, (x3 + ω)(y3 + ω′)), (3)

where xy is the product of x and y in the field GF (2n/2). This S-box has the
desired properties when n/2 is even and ω, ω′ and ω

ω′ belong to GF (2n/2) \
{x3, x ∈ GF (2n/2)}. In particular, for n = 8, we have:
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– δ = 4.
– nl = 94.
– algebraic degree: 4.
– number of non-linear multiplications: 4 in GF (24).

S-box Instantiation. To represent elements in GF(24) we chose to work in
field representation GF(2)[x]/P (x) with P (X) = X4 + X3 + 1. Moreover we
need to make a choice in the family of S-boxes described above, that is to choose
ω and ω′. We took ω = 02x, ω

′ = 04x (in hexadecimal notation).

3.4 Masked S-Box Cost Evaluation

As explained in Section 2, Rivain and Prouff’s higher order masking scheme [43]
uses a sequence of field multiplications and additions to compute the masked
S-box. It can be easily checked that one needs at most 2 additions, 2 square op-
erations and 4 multiplications in GF (24) to evaluate our S-box. By comparison,

the AES S-box is computed with 3 raisings to some power 2i (i.e. X2i) and 4
multiplications in GF (28) (see [43]).

The cost of the higher order masking scheme is linear in the masking order for
additions and linear operations (like ”X2i” operations in fields of characteristic
2) whereas it is quadratic for non-linear multiplications. Hence the overhead in
the number of operations to evaluate a masked AES S-box and our S-box seems
at first glance quite the same. Table 1 details the number of operations in GF (24)
that are needed to evaluate our S-box.

Table 1. Number of Operations

# additions # squarings # multiplications # random values
(4-bit)

Unmasked 2 2 4 0

dth-order masked (8d+ 2)(d+ 1) 2(d+ 1) 4(d+ 1)2 2d(d+ 1)

In practice, the field size will play an important role in the runtime as a field
operation cost is directly dependent on the field size. Decreasing the field size to
24 allows to tabulate the field multiplication in a lookup table with much less
memory, which makes it possible even when it is very constrained (contrary to the
case of GF (28)). As a matter of fact, using tower field methods, the evaluation of
higher-order masked AES’s S-box in GF (24) by Kim et al. [25] has been shown
to be faster (for masking order 2 and 3) than the original evaluation in GF (28)
(from [43]), even though the number of non-linear multiplications turned to 5 in
GF (24).
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4 From the S-Box to the Cipher

4.1 Using a Feistel Network with SP-Type Round Function

The non-bijectivity of the S-box we selected requires us to use an adequate
structure, in order to make the cipher invertible. A well-known way to use non-
bijective round functions to build a block cipher is to use a Feistel network.
Therefore we could think of embedding our S-box in an SP-Type F -function
as considered in many papers ( [46–48] and several others), and using this F -
function as the round function of a Feistel network.

An SP-type F-function F : GF(2)n ×GF(2)n → GF(2)n is defined as follows.

Definition 1. Let m the number of S-boxes in a round, and t the size of the
S-box, with mt = n. Consider γ, θ : GF(2)n → GF(2)n with

– γ the function generated by concatenating m S-boxes.
– θ a linear diffusion layer.

Then an SP-type F-function F is defined as F (x, k) = θ(γ(x⊕ k)).

One round of a Feistel network with round function F : GF(2)n → GF(2)n is
defined as

Ψ(F ) : GF(2)2n → GF(2)2n : 〈L,R〉 → 〈R,L⊕ F (R)〉 (4)

Then

Definition 2. An SP-type R-round Feistel Network is the composition

©R
i=1Ψ(F (., ki)) (5)

where F is an SP-type F-function and the ki’s are round keys derived from the
master key K by a key schedule algorithm.

4.2 Why It Is Not a Good Idea

This approach is actually not applicable as such with our S-box S, as it lends
itself to a little-known but devastating attack.

Consider a, b ∈ GF(28) such that S(a) = S(b) (two such inputs al-
ways exist as S is not injective). Let us denote Δ = a ⊕ b. Consider two
plaintexts P = 〈L,R〉 = 〈(l1, . . . , lm), (r1, . . . , rm)〉 and P ′ = 〈L,R′〉 =
〈(l1, . . . , lm), (r′1, . . . , r′m)〉 (li, ri, r′i ∈ GF(28)) such that

P ⊕ P ′ = 〈(0, . . . , 0), (Δ, 0, . . . , 0)〉. (6)

Assuming the first round key k1 = (k11 , ..., k
1
m) is uniformly distributed, with

probability at least1 2/28 we have

F (R, k1) = F (R′, k1) (7)

1 It is greater than that if ∃c(a �= c �= b) such that S(c) = S(c⊕Δ).
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As a matter of fact, the inputs R ⊕ k1 and R′ ⊕ k1 to the S-box layer differ in
their first byte only. Thus (7) is satisfied when S(r1 ⊕ k11) = S(r′1 ⊕ k11). This
equality is satisfied if r1 ⊕ k11 = a or r1 ⊕ k11 = b.

Attack Complexity. Let us consider a SP-type Feistel Network with R rounds
and a block size of n bits. The round function’s S-Box (S) is non-injective
and we denote by DP0 its maximum 0-output differential probability: DP0 =
maxa �=0(#{x s.t. S(x⊕a)⊕S(x) = 0})/2m, where m is the size of the S-box in-
put (the best case scenario from the security point of view is when DP0 = 2/2m,
this is the case for our S-box). The differential attack we study here assumes that
the attacker chooses pairs of plaintexts P, P ′ such that the input difference at
the beginning of the first round function is null everywhere except on the input
of a single S-box where the difference is equal to Δ = argmaxa �=0(#{x s.t. S(x⊕
a)⊕ S(x) = 0}).

The differential characteristic over R rounds considered in this attack is such
that the round function’s input differential for even rounds (resp. odd rounds) is
equal to 〈(0, . . . , 0), (Δ, 0, . . . , 0)〉 (resp. null). Assuming that the round keys are
independent and uniformly distributed (i.e. the classical Markov Cipher assump-
tion), it is easy to evaluate the probability of such a differential characteristic Ω:

Pr[Ω] = (DP0)
R/2 . (8)

Given the differential characteristic probability it is well known (see for instance
[29]) that the differential cryptanalysis data complexity can be approximated by

C =
2

Pr[Ω]
. (9)

Hence, in order to get an attack complexity higher than exhaustive search, we
would need to assure that Pr[Ω] ≤ 1

2n−1 . Considering the best non-injective S-

box for m = 8 (DP0 = 2−7) and n = 128 this means that (2−7)R/2 ≤ 2−127,
therefore the number of rounds R should be greater than 36.

4.3 Linear Counterpart to the Previous Attack

Several results show that some duality exists between linear and differential
attacks [33]. Therefore it is not surprising that a linear attack exists that is as
powerful as the differential attack we exposed in the previous section.

This attack is based on the following theorem (see for instance [30]).

Theorem 1. A Boolean transformation F is invertible if and only if every out-
put parity (i.e. every component function λ · F ) is a balanced binary Boolean
function of input bits.

Applying this theorem to our S-box S we obtain

Corollary 1. There exists a linear mask λ ∈ GF(2)8 such that, for x random
and uniformly distributed, λ · S(x) = 0 is satisfied with probability p = 1/2 + ε
where the bias, denoted by ε, is not null.
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Let us denote by Li = (li1, . . . , l
i
m) the left part and by Ri = (ri1, . . . , r

i
m) the

right part of the input to round i + 1, and by Y i = (yi1, . . . , y
i
m) the output of

the ith F -function. Then if we use mask λ to approximate the first S-box (only)
of first round, we have a linear characteristic on 2 rounds of the form

λ · l01 = λ · l21 with probability 1/2 + ε (10)

As a matter of fact, we have: λ · y11 = 0 ⇔ λ · l01 ⊕ λ · r11 = 0 ⇔ λ · l01 ⊕ λ · l21 = 0.
This characteristic is iterative. Therefore R rounds can be approximated with

probability 1/2 + 2R/2−1εR/2. It is well known (see for instance [32]) that the
linear cryptanalysis data complexity, given a characteristic of bias ε, is given by
C = 1

2(ε)2 . Assuming that the bias associated to λ is 2−8/2 (the smallest known

non-zero bias for an 8-bit S-box), 42 rounds are required to have an attack
complexity above 2127 for the whole cipher. Moreover, in the case of our S-box,
the maximal bias ε (over all output linear maps λ) is equal to 22

28 which leads to
R ≥ 126

7−log(22) > 49.

5 Comparison of Specific Attacks on Feistel Ciphers with
Non-bijective Round Function

We have seen that the use of non-bijective functions introduces vulnerabilities in
the design of a Feistel cipher. Some of these vulnerabilities can be found in the
literature. We divide them in three categories: The differential cryptanalysis [3]
and its linear counterpart (this corresponds to the attack described in Section 4),
Rijmen et al. ’s non-surjective attack [41] and the Davies and Murphy attack [2,
16, 28].

5.1 Non-injective Round Functions

The first attack described in Section 4 can be seen as a particular case of dif-
ferential cryptanalysis. We already mentioned that the initial paper of Biham
and Shamir on differential cryptanalysis [3] already proposed a similar differ-
ential characteristic construction for the DES cipher, but is not the best for
the DES because of its expansion function. Another example is the McGuffin
cipher proposed by Schneier and Blaze [7] that did not have a similar expansion
transformation and was then completely exposed against such strong differential
cryptanalysis. Rijmen et al. described the attack in [40].

5.2 Non-surjective and Unbalanced Round Function

Rijmen et al. propose in [41] an attack on Feistel schemes assuming that the
round function is non-surjective and extend their attack when the round function
is simply unbalanced. The linear attack presented in Section 4 is based on the
fact that the S-box is unbalanced (Theorem 1 and then Corollary 1). This attack
corresponds exactly to the Rijmen and Preneel attack where only linear masks
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of the round output bits are considered. Moreover, the SP-Network structure of
the round function allows us (similarly to the differential version) to consider a
single S-box instead of the full round function (as in [41]). This property conceals
the strength of the attack; thus an expansion transformation is needed to ensure
that more than a unique S-box per 2 successive rounds is involved in the linear
characteristic. This will lower the linear (resp. differential) characteristic bias
and then increase the attack’s data complexity (see Section 7.1).

Before that, it is important to note that introducing an expansion step before
the round key mixing step and the S-box evaluation may open a new vulnerability
in the scheme: the Davies and Murphy attack.

5.3 Unbalanced Round Functions with Key Dependent Output
Distribution

Davies and Murphy proposed in [16] an attack on Feistel schemes assuming that
the round functions are unbalanced and the output distribution is dependent on
some key bits. This seminal paper was followed by many others, among them a
first improvement by Biham and Biryukov [2] and then a second improvement
proposed by Kunz-Jacques and Muller [28]. In the latter article, a parallel is
drawn between Davis and Murphy attack and the linear cryptanalysis; more-
over, the initial attack is optimized by the use of a distinguisher that evaluates
divergence between univariate distributions (through linear projections) instead
of divergence between multivariate distributions.

The use of an expansion step induces the S-box output distribution to be
somewhat dependent on the secret key. In [28], Kunz-Jacques and Muller exhibit
the tight relation between Davies and Murphy attack and linear cryptanalysis.
As a matter of fact, in the case of DES, they could show that the classical Davies
and Murphy attack would not be more efficient than a restriction of it where
only linear combinations of the round outputs are considered. This restricted
Davies and Murphy attack falls into linear cryptanalysis and then is naturally
bounded by the linear cryptanalysis complexity bound found for the DES.

6 Expansion and Compression Function

The attacks we described in Section 4 exploit the fact that it is possible to choose
(pairs of) plaintexts such that one S-box only is active in the first round (and
that this property can be propagated to the following odd rounds). If we deny
this possibility to the attacker, we thwart these attacks.

Using linear codes to ensure good diffusion in block ciphers is a well-known
idea (see [15], and many other works). We show how to use them slightly dif-
ferently from what is usually done in order to render impossible the attacks
discussed in Section 4 and Section 5.

– Let (a1, . . . , a8) ∈ GF(28)8 be the input of the round function. We encode
it with a linear code of dimension 8 and length 8 + � over GF(28), before
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performing the key addition and the S-boxes layer. That is, if G is the gen-
erator matrix of such [8 + �, 8] code, we compute

(b1, . . . , b8+
) = (a1, . . . , a8) ·G (11)

We call this computation the expansion layer E. If d is the minimal distance
of the code, it is trivial that the minimal number of active S-boxes is d. In
order to maximize it, we use a MDS code [8 + �, 8, � + 1]. An easy way to
construct such code is to use a shortened Reed-Solomon code.

– After E comes a key addition layer, which will use 8(8+ �) key bits, and the
non-linear layer that consists in 8 + � S-boxes in parallel.

– Finally the state must be compressed from 8 + � to 8 bytes. Note that the
expansion layer only defeats the differential attack we exposed in Section 4.2,
not the linear one described in Section 4.3. Therefore the linear compression
layer C must ensure that every non-zero linear mask approximating the
output of the S-box layer has as many active S-boxes as possible. If we denote
by H the compression matrix and we write (d1, . . . , d8) = (c1, . . . , c8+
) ·
H , a linear approximation of the output of the round can be written as
(β1, . . . , β8) · (d1, . . . , d8)T = (β1, . . . , β8) · HT · (c1, . . . , c8+
)

T . We define
(β′

1, . . . , β
′
8+
) as the linear mask at the output of the S-boxes corresponding

to (β1, . . . , β8). Thus we have (β′
1, . . . , β

′
8+
) = (β1, . . . , β8) ·HT . In order to

maximize the number of active S-boxes, we must choose HT such as to lower
bound the byte Hamming weight of (β′

1, . . . , β
′
8+
). The best choice HT for

this purpose is again to choose HT as the generator matrix of an MDS code.
We decide to take HT = G.

We choose � = 6, which offers a good compromise between the number of rounds
and the computational cost of one round. We built the matrix G such as to make
its implementation efficient. More precisely, we tried to minimize the number of
non-zero coefficients, to use a small number of different coefficients, and to use
coefficients with a small Hamming weight

The resulting matrix G is as follows. Its elements belong to the Galois field
GF(28) defined as GF(2)[X ]/(1 +X2 +X3 +X4 +X8).

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01 00 00 00 00 00 00 00 01 01 0A 01 09 0C
00 01 00 00 00 00 00 00 05 01 01 0A 01 09
00 00 01 00 00 00 00 00 06 05 01 01 0A 01
00 00 00 01 00 00 00 00 0C 06 05 01 01 0A
00 00 00 00 01 00 00 00 09 0C 06 05 01 01
00 00 00 00 00 01 00 00 01 09 0C 06 05 01
00 00 00 00 00 00 01 00 0A 01 09 0C 06 05
00 00 00 00 00 00 00 01 01 0A 01 09 0C 06

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(12)

7 Full Description of the Block Cipher

One round of the block cipher is pictured in Figure 1. In the next section we
analyze the number of rounds required to achieve good security.
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Fig. 1. One round of the cipher

7.1 Evaluation of the Number of Rounds

Differential Cryptanalysis As our S-box is differentially 4-uniform, the proba-
bility of any non-trivial 1-round characteristic is at most (4/28)7. Therefore a
differential characteristic over 2t rounds has probability at most (4/28)7t. In or-
der to upper bound the probability of any differential characteristic by 2−127, at
least 2t = 127

3·7 ) 6 rounds are necessary.

Linear Cryptanalysis Our S-box has non-linearity nl = 94; hence, the bias of
its best linear approximation is 128−94

256 . Over one round the bias of any non-
trivial linear characteristic is at most 1/2 · (34/128)7, and over 2t rounds it is
1/2 · (34/128)7t. As the data complexity of linear cryptanalysis is C = 1

2ε2 , we
must have

1

2 · (1/2 · ( 34
128 )

7t)2
≥ 2128 (13)

which gives a lower bound of 2t = 127
7(7−log2(34))

= 9.5 rounds in order to ensure

an attack complexity at least 2128.
A security margin must be added to take linear hull effects into account, and

to deal with nR- (i.e. key guess) attacks. It is why we decided to use 12 rounds.

7.2 The Key Schedule

We have to derive 12 round keys k1, . . . , k12 of 112 bits each2 from one 128-bit
master key K. We want our scheme to resist known attacks on a key schedule
algorithm, in particular related-key attacks [1, 24] and slide attacks [5, 6]. A
detailed security analysis of the key schedule will be published in an extended
version of this paper, available on the ePrint (http://eprint.iacr.org/).

The key schedule must also be easy to implement; one very desirable property
is the ability to derive round keys on-the-fly in both encryption and decryption

2 112 bits are required because of the use of the expansion layer.

http://eprint.iacr.org/


324 G. Piret, T. Roche, and C. Carlet

mode (which is possible for DES, but not for AES). It is our belief that design-
ing highly complicated non-linear key schedules is not mandatory to have good
security. It is why we restrict ourselves to rotations, bitwise additions and bit
selection in the design of the key schedule.

Round Key Derivation in Encryption Mode. The round keys are extracted
from an extended key (κ1, κ2, ..., κ12) by a simple bit selection. The κi’s are 128-
bit long and computed as follows:⎧⎪⎨⎪⎩

κ1 = K

κi = T (K) ≫ Θ(i) for i = 2, 4, 6, 8, 10, 12

κi = K ≫ Θ(i) for i = 3, 5, 7, 9, 11

(14)

where ≫ j is the right-rotation of j bits, and Θ is given by the following table:

i 2 3 4 5 6 7 8 9 10 11 12
Θ(i) 1 16 17 32 33 85 86 101 102 117 118

Regarding T , it is defined as follows. Let us writeK = (K(1),K(2),K(3),K(4)),
where K(i) ∈ GF(2)32. Then⎛⎜⎜⎝

T (K)(1)

T (K)(2)

T (K)(3)

T (K)(4)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
K(1)

K(2)

K(3)

K(4)

⎞⎟⎟⎠ (15)

We note that T is involutive. Therefore it is easy to derive κi+1 from κi by
applying T followed by a rotation of a given number of bits. We describe such
iterative computation as{

κ1 = K

κi = T (κi−1) ≫ θ(i) pour i = 2...12
(16)

where θ is

i 2 3 4 5 6 7 8 9 10 11 12
θ(i) 1 15 1 15 1 52 1 15 1 15 1

The round key ki is obtained from κi by extracting the 112 leftmost bits of
κi: if κi = (κi

1, . . . , κ
i
16) (κ

i
j ∈ GF(28)), then ki = (κi

1, . . . , κ
i
14).

Round Key Derivation in Decryption Mode. Given K, the extended key
for decryption κ′1 . . . κ′12 is computed as{

κ′1 = T (K) ≪ 10

κ′i = T (κ′i−1) ≪ θ′(i) for i = 2...12
(17)

where ≪ j is the left-rotation of j bits, and θ′ is given by the following table:
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i 2 3 4 5 6 7 8 9 10 11 12
θ′(i) 1 15 1 15 1 52 1 15 1 15 1

We remark that once k′1 = T (K) ≪ 10 is computed, the sequences of round
keys in encryption and decryption mode, respectively, only differ by the di-
rection of the rotations (right for encryption, left for decryption). Again, k′i

(i ∈ {1, . . . , 12}) is computed from κ′i (i ∈ {1, . . . , 12}) by considering the 112
leftmost bits.

7.3 Performance Analysis

Our block cipher3 has been implemented (not by the authors, see acknowledg-
ments) on a smart card based on an 8-bit micro-controller, with 4 different mask-
ing levels: without masking, and with maskings of order 1, 2, and 3. This imple-
mentation has been compared with state-to-the-art implementations of (masked)
AES on the same platform. The results are given in Table 2.

Table 2. Implementation results of AES and our algorithm using different masking
orders

Number of Kcycles: ciphering

Version AES Our algorithm

Unprotected 2 26

Masked order 1 129 94

Masked order 2 271 160

Masked order 3 470 253

We remark that AES in its non-masked version is definitely much faster than
the non-masked version of our algorithm. However once we consider masked ver-
sions, our algorithm takes the lead, and the difference between both algorithms
increases with the order of the masking.

8 Conclusion

This article illustrates how pertinent it is to have side-channel resistance in
mind when building a block cipher. To thwart higher order side-channel attacks
we focus on the use of masking schemes, of which the complexity is mainly
impacted by the cost of S-box implementation. We emphasize on a new criteria
for the design of S-boxes and present a construction that shows a good trade-off

3 To be precise, we need to mention that the block cipher implemented is a preliminary
version, which differs from the cipher we described in the compression layer (which
was also a [14, 8]-MDS code but different from the one used in the expansion step).
We believe that this difference in the block cipher design will not significantly change
the performance results given here.
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between efficiency and security. The non-bijectivity of the S-box requires us to
use a Feistel Network. We point out a weakness in the straightforward use of
Feistel Networks when the S-boxes are non-bijective. We propose to circumvent
it by the use of MDS codes to build optimal expansion and compression layers.
As an achievement of our work, a new block cipher is fully specified.
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Abstract. Detecting collisions in the power consumption of a modern
cryptographic engine is usually difficult due to small leakages and possi-
ble countermeasures. Wide collisions offer a much stronger leakage that
significantly facilitates their detection. This is the first time wide colli-
sions are exploited in a power analysis attack. In this work we introduce
a collision detection method based on the detection of characteristic out-
liers. Detection results are compared to optimized subspace-based tem-
plates. We show that the outlier detection method, while not requiring a
template building phase, is almost as effective in detecting collisions as
the template-based approach.

1 Motivation

After several years of their exploration, side channel attacks remain a threat
to embedded cryptographic implementations. Especially various power analysis
attacks have been developed [8,9,10] and improved [1,7,12], as have countermea-
sures against them [11]. Power based collision attacks [13] are mostly disregarded
because detection of collisions is usually more sensitive to noise and countermea-
sures than most other DPA attacks. However, the AES-specific wide collisions
as described in [4] offer a huge advantage. Instead of trying to detect a single
collision of a byte during an SubBytes operation of the AES algorithm, wide col-
lisions result in a colliding column for a whole round in addition to two SubBytes
byte collisions in the prior and anterior rounds. Hence, such collisions are much
easier to detect due to increased leakage. This work is the first one to present
results of applying wide collisions using power analysis.

Related Work. In 2004, Schramm et al. mounted the first collision attack
on AES, pointing out the important fact that the collision attack significantly
reduces the attack complexity by combining the analytical and side channel
approach [13]. Bogdanov in 2007 [2] generalized the concept of internal colli-
sions and improved the attack under the assumption that byte collisions are
detectable. In the following year two multiple-differential methods – binary and
ternary voting— were raised for collision detection in [6] and multiple-differential
collision attacks MDCA were proposed in [3]. A differential cache-collision tim-
ing attack on AES was mounted on an ARM microprocessor in 2010 in [4]. This
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is a chosen plaintext attack based on the occurrence of wide collisions and its
algebraic properties.

Another important approach, the template based attack, was firstly intro-
duced in [8] in 2002. Archambeau et al. in 2006 [1] suggested a principal subspace-
based template attack which overcomes the problem of selection of important
points and specification of the minimal distance between points. Recently Bog-
danov et al. [5] combined collision attack with divide-and-conquer attacks as
DPA and template attack to further reduce the computational complexity.

Our Contribution. In this paper we propose a new practical method – the
outlier method – for detecting wide collisions in AES with a high success prob-
ability. It is for the situation where the creation of templates is impossible. It
has no requirement on any prior knowledge concerning the leakage model, but it
requires knowledge of leaking time instances in the power traces. The attack is
based on the assumption that two traces are more likely to form a wide collision
pair if they are far away from the mean trace of all the measurements and, at
the same time close to each other. The results of the outlier method attack are
compared to the detection rates of the PCA based template attack proposed
in [1]. The strength of the template-based approach lies in that the principal
components are not computed from all the traces as a whole, but instead from
the 256 bin average traces — each of which is the mean trace of a bin that
has been trained. The idea is to magnify of Inter-Bins Variation through PCA.
We extend this idea to an iterative PCA algorithm to make further separation
amongst those bins that are still close to each other in a previous iteration.

The organization of this paper is as follows. In Section 2 we review the collision
attacks, wide collisions and template attack. In Section 3 we describe the per-
formed attacks. Section 3.1 gives a detailed description of the outlier method. In
Section 3.2 the concepts of Inter-Bins Variation and Inner-Bin Variation are in-
troduced. Sections 3.3 and 3.4 introduce the PCA based template attack followed
by further improvements through repeated applications of PCA. In Section 4 we
analyze the influencing factors for the outlier method and compare the results
for the template based collision detection in conditions of reduced templates in
the time domain, full templates in the time domain and the principal subspace.

2 Background

The following gives an overview on collision attacks in general and describes the
properties of wide collisions. Furthermore, the template attack is introduced.

2.1 Collision Attack

In general, an internal collision in a cryptographic primitive occurs if some spe-
cific target function φ produces the same output value y for two different inputs
x1, x2, that is, φ (x1) = y = φ (x2). Internal collisions in AES were defined by
[13] and generalized by [2]. Collisions occur in the output of the MixColumns
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transformation in each round function of AES, which takes two different plain-
texts (or internal states) as input and outputs the same byte value. For example,
an internal collision at byte 0 in round 1 occurs for two plaintexts P, Q, where
P = (pij), Q = (qij), i, j = {0, 1, 2, 3} if

02 · p′
00 ⊕ 03 · p′

10 ⊕ 01 · p′
20 ⊕ 01 · p′

30 = 02 · q′
00 ⊕ 03 · q′

10 ⊕ 01 · q′
20 ⊕ 01 · q′

30

where all the p′
ij , q′

ij refer to the byte values of the internal state before the
MixColumns operation. Since each p′

i0 = S (kii ⊕ pii) and q′
i0 = S (kii ⊕ qii), the

above equation contains information about a part of the key. The idea of side
channel collision attack on AES is therefore to detect internal collisions from
the side channel leakages and then to reduce the number of possible subkey
candidates by making use of the above equations, as described in [13] and [2].
One of the main challenges is to get reliable detection of such collisions.

2.2 Wide Collisions

Wide collisions for AES are defined in [4]. They are a special case of internal col-
lisions in the following way. Specific plaintexts are chosen to satisfy the condition
that the bytes off the diagonal are pairwisely equal i.e. pij = qij for all i �= j.
After such chosen plaintexts entering the encryption engine, one can track the
byte of an internal collision occurring at the first round MixColumns. After the
ShiftRows operation of the next round, the entire column where this collision
byte was shifted to will collide. Therefore 4 more internal byte collisions can be
observed after the second round MixColumns.

Consequently, this gives rise to one byte collision in Round 2 SubBytes and
four additional byte collisions in Round 3 SubBytes, resulting in a total of five
byte collisions. This phenomenon is referred to as wide collision. For example, if
two plaintexts collide at byte 0 after Round 1 MixColumns (p′

00 = q′
00), they will

continue to collide in Round 2 SubBytes (S (k′
00 ⊕ p′

00) = S (k′
00 ⊕ q′

00)). After
ShiftRows, all the four bytes in the Column 0 are pairwisely equal and thus we
get four additional collisions after Round 2 MixColumns (p′′

i0 = q′′
i0, i = 0, 1, 2, 3),

which will remain colliding in Round 3 SubBytes (S (k′′
i0 ⊕ p′′

i0) = S (k′′
i0 ⊕ q′′

i0)).
The wide collision attack is described as a three stage algorithm [4]: an online

stage where side channel leakage is measured for the chosen plaintexts, a collision
detection stage which returns several pairs of plaintexts which most likely give
wide collisions, and finally a key recovery stage. It is mentioned that every 4
wide collisions for each of the diagonally chosen plaintexts sufficiently reduce the
subkey space with a remaining uncertainty of 28. Hence, a total of 16 correctly
detected collisions reduces the number of remaining key candidates to 232, which
can be exhaustively searched on an average PC within minutes.

2.3 Template Attack

Template attack is a powerful side channel attack.In [8] power traces are char-
acterized with a multivariate Gaussian distribution model. The attack assumes
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that each individual trace follows a multivariate normal distribution with the
center and covariance that are identical to the ones of the correct bin. In other
words, traces of the same bin form a Gaussian distribution. Therefore each bin
can be characterized by a template (m, C), where m refers to the mean trace
and the C is the covariance matrix.

A template attack consists of template building phase and template matching
phase. In the building phase, one characterizes the device with a set of templates
(mi, Ci), each of which is created for one bin of traces. In the matching phase
each analyzed trace x is matched to the template that it most likely belongs
to. That is, it outputs the template which gives the highest probability density
computed by

P r (x; (mi, Ci)) =
exp

(
− 1

2 (x − mi)T C−1
i (x − mi)

)
√

(2π)N det (Ci)

where N is the length of mi, the number of points in the mean trace. This is
called the full template matching.

A simplified approach is referred as the reduced template matching in which
the dependency amongst different data points are disregarded. That is, for each
template the covariance matrix is replaced with the identity matrix so that the
computation of the probability density is simplified as

P r (x; mi) =
exp

(
− 1

2 (x − mi)T (x − mi)
)

√
(2π)N

Such reduced model is equivalent to computing the Euclidean distance between
each analyzed trace x and the bin average traces mi of the templates. It deter-
mines as the correct matching the template mj that is nearest to the analyzed
trace x, i.e. ‖ x − mj ‖≤‖ x − mi ‖ , for all i.

3 Practical Collision Attacks

In classical collision attacks, bins are formed in the way that certain bytes of
the intermediate state of the cipher collide to the same value. When the same
value is processed by certain operations (e.g. MixColumns, SubBytes in AES)
of the cryptographic primitive, the pattern of the power consumption of these
operations should be highly similar. Consequently, all possible 256 values of a
given byte give rise to 256 bins, hence 256 different patterns for each colliding
byte position. In a wide collision scenario, traces of each bin provide at least
5 internal byte collisions, spanning from MixColumns in round one up to Sub-
Bytes in round three of an AES execution. This results in a highly similar power
consumption over a relatively long time period, especially for serial implemen-
tations. Hence, detecting wide collisions should be much easier than detecting
simple collisions.
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Conventionally, leaking points of the power traces refer to a subset of sam-
plings of measurement or its transformation which represents the characteristics
of the pattern of the power traces. Locating these points usually requires knowl-
edge of the implementation and leakage properties of the platform or profiling.
As an example, the two plots in Figure 1 show a single trace (the upper plot)
over the region from round one MixColumns to round three SubBytes and a
differential trace (the lower plot) calculated as the absolute value of difference
between an average of traces of bin 7 and the average of all traces obtained. It
can be seen from this figure that peaks, which indicate the location of promising
leaking points, are spread out all over this region.

2000 4000 6000 8000 10000 12000 14000
0

100

200

300
Partial Trace: from Round 1 MixColumns to Round 3 SubBytes
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Fig. 1. Important Point Distributions

Another observation of leakages in the wide collision attack is that the po-
sitions of peaks are not invariant with respect to all wide collision bins. Some
bins share one or more positions of leakages, while no pair of two different bins
follows an identical pattern. Figure 2 gives an intuitive idea of the distribution
of leakages for some bins.

Hence, picking only a single point from all important points for the purpose
of collision detection is rather risky because only few bins leak at this point.
In other words, if the closeness of two traces at one fixed point is the only
criterion for wide collision detection, the detection can only succeed in rare
cases because power traces of other bins that do not leak locally at this point
are dominantly influenced by noise. Such traces make it difficult for a correct
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Fig. 2. Important Points for different Bins

collision detection, since, while randomly scattered, they are far more numerous
than colliding traces.

We distinguish two different kinds of multiple-point-based approaches: One
builds on a template-based detection, the other does not require templates. When
generating templates is not possible, we propose an outlier method which as-
sumes that a pair of traces forms a collision in the case they are close to each
other and simultaneously far away from the average of all traces. As a compar-
ison, we show that wide collisions can easily be detected using templates. The
challenge in this case is to discover the characteristics of each pattern and to
correctly recognize each individual power trace from all the patterns with high
probability.

Furthermore, we introduce the concepts of Inner-Bin-Variation and Inter-
Bins-Variation as two parameters determining the effect of collision detection.
We propose methods with the application of Principal Component Analysis
(PCA) and iterative PCA so that the idea of maximizing Inter-Bins-Variation
is realized.

3.1 Outlier Method

Generally, the outlier method assumes that two traces in the outlier region – with
distance sufficiently far away from the average of all traces – are more likely to
form a collision pair if additionally they are sufficiently close to each other. It
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includes one distance function dist (x, y) that gives a distance metric between
two trace representatives x and y. It also includes two distance parameters R
and r, where R is the outlier lower bound ratio determining if one trace is inside
the outlier region, and r is the mutual distance upper bound ratio determining
if two traces are close by enough. Both R and r should be a number between 0
and 1. The procedure of the outlier method as follows:

Step 1: Use
(
x(1), ..., x(D)) as the representation of D traces collected in the

online stage and compute the average x̄ of all trace representation x(i) at
this point by x̄ =

∑
x(i)/D

Step 2: Compute the distances vector d =
(
d(1), ..., d(D)) where each entry

d(i) = dist
(
x̄, x(i)) is the distance between the trace x(i) and the average

trace x̄. Find the maximum element of the vector d by maxd = max (d).
Step 3: Find the set A of outliers by

A =
{

x(i) | d(i) ≥ R · maxd
}

It is a collection of trace representations with distance of no less than R·maxd
from the average trace x̄. Figure 3 gives an example of the location of the
outlier region.

Step 4: Find the list of pairwise distance

B =
{

dij = dist
(

x(i), x(j)
)

where x(i), x(j) ∈ A, i �= j
}

Note that if there are n outliers in set A, then the set B contains distances
of n (n − 1) /2 pairs of traces.

Step 5: Find the set C by

C =
{(

x(i), x(j)
)

| dij ≤ r · maxd , x(i), x(j) ∈ A
}

This is a filteration from the set B of those pairs with mutual distance greater
than r ·maxd. The set C is the output of the outlier method containing pairs
of traces that are promising candidates for collisions.

Please note that in general the distance function dist (·) is a combination of
all components. In practice, one could use a Euclidean distance for the dist
function, viewing the trace representatives as elements in a finite dimensional
vector space and assuming that components are independent from one another
and each component contributes equally to the resulting distance.

Pros and Cons. The existence of leaking points is a necessary prerequisite
for the wide collision detection. The points depend on the target device and
implementation and should be chosen wisely by the attacker. Usually, either
prior knowledge about the implementation or a profiling phase is needed. For
detecting significant leakage points, SPA or DPA methods can be applied.
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Fig. 3. outlier detection step 3

Choice of the parameters R and r is subjective. In practice, decreasing R while
increasing r will eventually result in more non-colliding pairs that are detected
as collisions. On the other side, decreasing r and increasing R will eventually
increase to the set of detected collisions that does not contain enough pairs for
key recovery.

The Euclidean distance is a convenient metric, since it is a straightforward
combination of the influence of each leaking point. However, it is often weaker
than a template attack on the same points. Using Euclidean distance makes two
additional non-justified assumptions: that the points leak independently of one
another and that they contribute equally to the output distance. For improved
detection results, it can be replaced by some function g (·) such that the influence
of different points can be more accurately reflected.

3.2 Inter-Bins Variation and Inner-Bin Variation

One way of selecting significant leakage points for collision detection is described
in [5] and [6]. Both publications describe the maxmin function for selecting the
most informative point of power traces and computing characteristics from traces
at this point. Specific speaking, they first find for each fixed time point the lowest
signal difference between all pairs of traces. They then find the time point that
gives rise to the biggest one among all the lowest signal differences and consider
that point to be the best choice. The logic of this method is that the lowest
signal difference determines the level of difficulty of trace separtion at each time
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point. The larger such lowest signal difference, the easier the separation of traces.
However, this method makes use of a single point of the power trace, while
ignoring all other remaining points. It yields for the attack a strong reliance
on the single point that has been selected, which still suffers the risk of being
influenced by the signal noise for each individual collision detection.

In contrast to single point selection, we propose an improved method. First,
one should only include the leaking part of the power traces, i.e. the targeted
round. For example, in wide collision attack, we only analyze the region starting
from round 1 MixColumns to round 3 SubBytes. In this situation, two parame-
ters – inter-bins variation (ITV) and inner-bin variation (INV) – determine the
ease and probability of correct collision detection.

ITV describes the variation of the characteristics of the averaged traces mi

of each bin value. It is computed as a Euclidean distance as

ITV =
√∑

i

(mi − m̄)2

where m̄ =
∑

mi/256 is the mean trace of all the bin average traces. An in-
creased ITV indicates an easier separation of the bins and more accurate pattern
matching of each individual trace. Notice that the computation of ITV can also
be applied to any representation of the traces. We refer the notion of maximizing
ITV as computing the maximal ITV amongst all representations of the traces.
Maximizing the ITV is therefore desired for the successful collision detection.

INV describes the variation of the characteristics of each individual trace x(i)
j

from that of the averaged trace mi = avgj

(
x(i)

j

)
of a particular bin Bi. That is

INV (i) =
√∑

j

(
x(i)

j − mi

)2

INV can similarly be applied to any representation of the traces and we refer
minimizing INV as computing the minimal of INV amongst all representations
of the traces. Note that INV is a tuple of 256 entries, corresponding to the inner-
bin variation of 256 bins, and minimizing one entry does not imply small values
for the rest of entries. Hence, although minimizing INV is desired, it might not
be practically feasible.

One should note that the existence of the bin average traces does not neces-
sarily guarantee the feasibility of its computation. In fact, only if one can build
up templates for the 256 bins, one can also obtain a raw representation of the
average traces of bins. Since each representation gives a computational result for
the ITV, the adversary would profit from a representation that maximizes the
ITV.

In our experience, we realize the magnification of ITV through finding the
representation of the average traces in the principal subspace, which are detailed
in 3.3 and 3.4.
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3.3 Template-Based Collision Detection

In cases where creating templates is possible, the attacker can build a template
for each bin of collision in the time domain, as detailed in [11] and described in
Section 2.3. Point selection can be automated by using principal component anal-
ysis (PCA) [1]. Template-based collision detection can achieve good detection
rates, as shown in Section 4.2. PCA is a three step algorithm:

1. Finding the mean vector x̄ and the centered data matrix X′ = (x′
1, ..., x′

D)T

of all the raw data record X = (x1, ..., xD)T , where x′
i = xi − x̄;

2. Computing the covariance matrix S = 1
D (X′)T (X′) and its d eigenvectors

(v1, ..., vd) corresponding to the largest d eigenvalues (λ1, ..., λd) of S;
3. Projecting X into the subspace spanned by the d eigenvectors (also called

components) Y = X (v1, ..., vd).

PCA performs an orthogonal projection into a subspace called principal sub-
space. The projection maximizes the variance of the data. Hence, a point selec-
tion with minimal information loss becomes possible.

Constructing templates in principal subspace is only one additional step to the
build-up of the templates in the time domain. That is, the raw traces need to be
projected into the principal subspace before the construction of templates. For
this step, the principal components could be obtained in two ways: from all the
raw traces X, or from the bin average matrix M = (m0, ..., m255)T, consisting
bin average traces mi of bin Bi where mi = avg {xj | xj ∈ Bi}. The consequence
of applying PCA for the first choice is the maximization of the variance amongst
individual traces and for the second approach amongst bin average traces. It
is clear that the second method —computing principal components from bin
averages— is desired because it achieves the goal of maximizing the ITV. Af-
ter getting the projected traces in the principal subspace, the regular template
building — the computation of bin averages and bin covariance — is performed
as discussed in Section 2.3.

Finally, in the template matching phase, each analyzed trace is firstly pro-
jected onto principal components, then matched to the closest template through
the evaluation of the probability densities. Every two different analyzed traces
that are matched to the same template form a collision pair.

3.4 Template-Based Collision Detection Using Iterative PCA

A further improvement can be achieved by repeatedly conducting PCA. This
gives rise to an iterative algorithm using projection. That is, in the template
building phase, if two bins are too close or overlapping after the first PCA
projection, one can repeat PCA projection (for which the computation of com-
ponents only involves the average traces of that two bins) to further separate
those two bins. The algorithm is given as follows:

Step 1: Use M(1) = {m0, ..., m255} to compute the first set of principal com-
ponents V(1) = (v1, ..., vr) and the projection of each trace P(1) = X · V(1).
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Step 2: Partition the 256 bins into C
(1)
α and C

(1)
β where bins from C

(1)
α can be

clearly separated from other bins, while bins from C
(1)
β are still clustered with

some other bins. That is, if bin Bi ∈ C
(1)
β , then there exists bin Bj ∈ C

(1)
β

such that traces of bin Bi are not separable from traces in Bj .
Step 3: If C

(1)
β is not empty, compute the set M(2) which consists of the averages

of projected traces of non-separable bins in C
(1)
β

M(2) =
{

mi = avgj {pj | pj ∈ Bi} | Bi ∈ C
(1)
β

}

Then based on M(2), compute a second set of principal components V(2) and
obtain another set of projected traces P(2) = P(1) · V(2) from the previously
projected ones.

Step 4: Repeat steps 2 and 3 until after k iterations C
(k)
β is empty so that all

bins are sufficiently separated.

4 Experimental Results
All experiments have been performed on a smart card featuring an 8-bit micro-
controller based software implementation of AES. The measurements have been
performed using a Tektronix digital sampling oscilloscope with an 8 bit A/D
converter. The sampling rate of 50MS/s provides about 12 sampling points per
clock cycle.

We first evaluate the detection rate of the outlier method. We explore the
impact on the detection rate of several parameters: the number of promising
leaking points, the choices of the outlier lower bound ratio R and the mutual
distance upper bound ratio r, as well as the number of traces being investigated.
Detection results are shown in Tables 1 through 3. The first column contains
the analyzed influencing factor. The second column is the average size of set
A, i.e. the average number of the outliers, as described in Section 3.1. Again,
if n traces were in the outlier region, n (n − 1) /2 pairs are further analyzed by
computing pairwise closeness. The third column shows the size of the set C, i.e.
the average number of output pairs of promising collisions. The next column
counts the number of correctly detected collisions, that is the detected pairs
which actually form wide collisions. The last column is the ratio between the
third and the fourth column, i.e. the ratio of correctly detected collisions.

For comparison we apply template-based collision detection in three differ-
ent scenarios, (1) reduced templates in the time domain, (2) full template in
time domain and (3) full template in the principal subspaces. Figure 4 shows
how many traces per bin are necessary for training good templates and further
indicates the asymptotic recognition rate for the three cases for our platform.

4.1 Results for the Outlier Method

We apply the outlier method as detailed in Section 3.1 to detect wide collision
from the power traces. In our experiment, we define the distance function with
the norm ‖ · ‖1. That is,
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dist (x, y) =‖ x−y ‖1=
∑

i

|xi − yi|

gives the distance from trace x = (x1, ..., xt) to y = (y1, ..., yt). In our experi-
ments we use 3000 traces and fix the parameter R to 0.9 and r to 0.3. We locate
between 1 to 8 promising leaking points to analyze the influence of the com-
bination of leaking points. Table 1 confirms that using multiple points results
in a better collision detection rate comparing to the case of locating only one
important point per power trace.

Table 1. Collision Detection: Single point vs. multiple points

number of
leaking points

number of
outliers

number of
detected pairs

number of
correct detection

average rate of
correct detection

1 19.6 127.7 21.9 23.0%
4 30.6 46.3 33.4 71.1%
6 110.7 126.3 105.4 86.2%
8 81.7 88.1 82.3 93.7%

Next, we explore different choices of the parameter pair (R, r) to analyze the
effect on the collision detection rate. As explained in the algorithm in Section
3.1, R is the parameter determining which traces are in the region of “outliers”
(the set A), sufficiently far away from the center of all traces. The larger R is,
the fewer traces are considered as outliers. On the other hand r is the parameter
that determines if two outliers are close enough to each other. The smaller r
is, the fewer pairs of traces are detected as collisions, namely the smaller the
cardinality of the set C . Our experiments use 3000 traces (the same as above)
and fix 6 locations of promising leaking points. They confirm that the stricter
the choice of (R, r), i.e. the larger choice of R and the smaller choice of r, the
more accurate the detection is, as shown in Table 2. As a last analysis of the

Table 2. Collision Detection: Choices of R and r

choice of
(R, r)

number of
outliers

number of
detected pairs

number of
correct detection

average rate of
correct detection

(0.7, 0.2) 382.1 807 551 68.4%
(0.8, 0.2) 110.7 126.3 105.4 86.2%
(0.9, 0.2) 19.9 8.3 7.7 89.6%
(0.9, 0.3) 19.9 16.1 12.9 81.3%
(0.9, 0.4) 19.9 22.9 13.9 60.8%

outlier method, we explore the relationship between the successful detection
and the number of traces being used in the experiment. In this experiment, 6
leaking points are fixed, the parameter R is set to 0.8 and r is 0.2. It is found
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that increasing the number of traces yields the increase in the number of outlier
traces and the number of pairs being detected, meanwhile the detection rate
does not significantly increase, as shown in Table 3.

Table 3. Collision Detection: Impact of number of traces used

number of
traces

number of
outliers

number of
detected pairs

number of
correct detection

average rate of
correct detection

1000 37.1 13.4 12.1 93.6%
3000 81.7 88.1 82.3 93.7%
5000 118.7 217.1 200.1 93.7%
7000 127.3 277 256.9 94.3%

4.2 Results for Template-Based Detection

In the preceding outlier method, it is assumed that one can locate several leaking
points and these points are independent of each other and contribute equally to
the computation of distance function. The same assumptions hold if a reduced
template attack is mounted in the time domain. But if a full template attack
is applied, these assumptions do not need to be fulfilled. If the templates are
built in the time domain, one only needs to locate good leaking points. While
templates built in principal subspaces, as described in Section 3.3, even locating
leaking points is no longer necessary. This is because the attacker can make use
of all the region of power traces that corresponds to wide collisions operations.
Our experiment compares the method using reduced template and the full tem-
plate to see how the dependency amongst leaking points helps with assigning an
analyzed trace to its collision bin. We also compare the recognition rate between
templates in the time domain and in the principal subspace through which we
can verify that magnifying ITV enhances the recognition rate.

Our experiments use 8 leaking points in the time domain. The counterpart
in PCA is 8 principal components that correspond to the 8 largest eigenvalues
computed as specified in Section 3.4. We use 2560 to 5632 traces to build up
templates so that each template makes use of 10 to 22 traces. We test 1000
traces to match to the templates and interpret #(correct recognition)/1000 as
the recognition rate. From Figure 4 we can draw the following conclusions:

1. Using reduced templates in the time domain gives very stable recognition
rate for a wide range of the number of used training traces for the templates.
The asymptotic rate is at approx. 0.8. This is lower than the result for
the two full models when sufficient training traces are provided. Therefore,
the assumption of independence of leaking points cannot provide a strong
collision distinguisher.

2. Full templates with PCA gain better recognition results comparing to the full
templates in the time domain. Full templates in principal subspace gain close
to 0.95 recognition rate given more than 20 training traces per bin. While
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Fig. 4. Templates in the time domain and in the principal subspace

full model in the time domain achieves only around 0.8 to 0.85. This confirms
the contribution of PCA for maximizing ITV in terms of recognition.

3. Full models have stricter requirements on the number of training traces. In
particular, if the attacker chooses n leaking points in the time domain or n
principal components in the principal subspace, then the number of training
traces per bin cannot be less than n, otherwise a singular covariance matrix
C is an unavoidable result and this makes the computation of probability
density infeasible. Even when the least number of training traces is satisfied,
the computation of the covariance matrix can still be remarkably impacted
by the noise in the side channel. That is why the recognition rate for both
of the full templates is low when fewer than 14 traces per bin are used.

5 Conclusion

This paper presents the first wide collision based power analysis attack. One
major finding is the outlier collision detection method. It shows that power traces
that are close to each other in the outlier region have a highly increased chance of
forming a collision pair. It is a strong method for detecting wide collisions. Unlike
template attacks, it does not require extensive profiling. However, it is shown that
template-based approaches are a great method for detecting collisions if template
building is possible. Different ways of building collision-detecting templates are
compared. Using PCA for finding independent strong leaking points seems to be
better than hand-picking points in the time domain. However, sufficiently many
measurements for each bin must be available during template building.
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Abstract. In Secure Message Transmission (SMT) problem, a sender S
is connected to a receiver R through N node disjoint bidirectional paths
in the network, t of which are controlled by an adversary with unlimited
computational power. S wants to send a message m to R in a reliable and
private way. It is proved that SMT is possible if and only if N ≥ 2t+1. In
Reliable Message Transmission (RMT) problem, the network setting is
the same and the goal is to provide reliability for communication, only. In
this paper we focus on 1-round δ-RMT and (0, δ)-SMT where the chance
of protocol failure (receiver cannot decode the sent message) is at most
δ, and in the case of SMT, privacy is perfect.

We propose a new approach to the construction of 1-round δ-RMT and
(0, δ)-SMT for all connectivities N ≥ 2t + 1, using list decodable codes
and message authentication codes. Our concrete constructions use folded
Reed-Solomon codes and multireceiver message authentication codes.
The protocols have optimal transmission rates and provide the highest
reliability among all known comparable protocols. Important advantages
of these constructions are, (i) they can be adapted to all connectivities,
and (ii) have simple and direct security (privacy and reliability) proofs
using properties of the underlying codes, and δ can be calculated from
parameters of the underlying codes.

We discuss our results in relation to previous work in this area and
propose directions for future research.

1 Introduction

In a Secure Message Transmission (SMT) system a sender is connected to a
receiver through N wires, t of which are controlled by the adversary. Wires are
abstractions of bidirectional node disjoint paths in a network. The adversary’s
control of a wire is by taking complete control of a node or a link on the path,
allowing them to stop, inject or change arbitrarily, the messages that are sent
on the path. The goal of the system is to provide reliability and privacy for the
transmitted messages against an adversary with unlimited computational power
without assuming any prior shared key between the sender and the receiver. In
Perfectly Secure Message Transmission (PSMT) systems, the adversary will not
learn anything about the message, and the receiver always correctly receives the
sent message. SMT protocols can have one or more rounds and their communi-
cation efficiency for a given number of rounds is measured by the transmission
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rate which is the total number of communicated bits per one message bit. Pro-
tocols with the lowest rate for a given number of rounds, are called optimal. The
initial motivation for this model was to simulate secure links between nodes in
a distributed setting (e.g., multi-party computation [1,2]), where there are no
direct secure links between nodes but there are multiple paths that connects the
two nodes. In recent years, however, the protocols, and in particular 1-round
SMT protocols, have found other applications including key agreement and key
strengthening in wireless sensor networks (e.g., [22]).

It has been shown [3] that 1-round PSMT is possible if and only if N = 3t+1.
To increase the number of corrupted wires that can be tolerated by the protocol
without increasing the number of rounds, one may sacrifice some reliability. A
1-round (0, δ)-SMT protocol provides perfect privacy and bounds probability
of error in receiving the message by δ. These protocols can be constructed for
N ≥ 2t+ 1.

A related scenario, known as Reliable Message Transmission (RMT), is when
the only requirement is the reliability of communication assuming the same net-
work and adversary model (N wires, t of which are controlled by the adversary)
as the SMT problem. A trivial protocol for reliable transmission when N ≥ 2t+1
is by sending the message on all the wires and using majority voting at the re-
ceiver to recover the correct message. This will correctly recover the message as
only t ≤ N−1

2 wires are corrupted. However the transmission rate of this protocol
is N , which grows linearly with N (similar to repetition codes) and so the goal
of δ-RMT protocols is to achieve optimal transmission rate (which is constant
for 1-round when N = 2t+K, where K ≥ 1 is a constant).

In this paper we consider 1-round δ-RMT and 1-round (0, δ)-SMT protocols.
Towards a systematic construction of 1-round δ-RMT and (0, δ)-SMT.
All existing optimal 1-round (0, δ)-SMT protocols use complex combinations

of secret sharing and authentication systems for message encoding, together
with elaborate secret reconstruction and verification algorithms to construct a
decoding algorithm for the SMT. A disadvantage of these complex and clever
constructions is the difficulty of verifying their properties. It was shown [12] that
the proofs of security of the 1-round (0, δ)-SMT protocol in [18] were not correct.

A limitation of these constructions in practice is that a protocol is designed for
a specific type of connectivity (for example, N = 2t+ 1, or N = 2t+K,K > 1,
or N = (2 + c)t, c > 1

t ), and when used in a setting with different types of
connectivity, the optimality of the protocol cannot be guaranteed. This means
that for optimality guarantee, one may need to implement multiple protocols in
cases that the connectivity is not known beforehand. Similar observations can
be made for optimal 1-round δ-RMT with N ≥ 2t + 1. The only construction
with optimal rate is given in [16]. The construction uses a complex combination
of secret sharing for encoding and an elaborate verification for the decoding.

In contrast to the above constructions, there is a simple and elegant construc-
tion of an optimal 1-round PSMT [7] for N = 3t + 1, that uses Reed-Solomon
(RS) code. The encoding and decoding in this construction are encoding and
decoding of RS-codes. The construction also works for higher connectivity of
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the form, N = 3t + K,K > 1, and sends K messages instead of one. For this
construction the receiver only has to implement the decoder of an RS-code which
has many well-known implementations. For less connectivity, 2t+ 1 ≤ N ≤ 3t,
1-round PSMT is not possible. However, it is an open question if it is possible to
have simple and modular constructions for δ-RMT and (0, δ)-SMT using known
primitives such as RS-codes.

Our Contributions

A general construction of a 1-round δ-RMT. We give a general construction of
a 1-round δ-RMT for N ≥ 2t + 1 from two components: a list decodable code
and a Message Authentication Code (MAC). In a (ρ, L)-list decodable code (LD
code) of length n, the number of codewords within distance ρn of any received
word is at most L.

The basic idea of the construction is as follows. An information block IS is
first appended with a tag generated by a symmetric key authentication mecha-
nism, to form a message mS , which is then encoded using the LD code, and each
component is sent over a wire. LD code allows correction of up to t adversarial
errors and so the decoder will obtain a list of L closest codewords to the received
word. The key for the authentication mechanism will be generated by the sender
and sent along the wires to the receiver and so parts that are sent over the cor-
rupted wires, will be corrupted. The authentication information together with
the key information will allow the receiver to use the corresponding verification
mechanism to recognize the correct codeword in the decoded list. The authenti-
cation mechanism must ensure that despite partly corrupted keys, the receiver
will output the correct codeword. We describe our approach and prove a general
theorem that proves reliability of the construction, with a value of δ that can be
calculated from the parameters of the underlying components.

We then give a concrete construction when N = 2t + 1 using a Folded RS-
code and a new multireceiver MAC that we propose. The result is an optimal
δ-RMT with the smallest δ (highest reliability) among all known optimal δ-RMT
protocols.

The drawback of this construction is that the receiver algorithm in RMT is
exponential. For higher connectivities of the form N = (2+c)t, c > 1

t however, we
will have an optimal δ-RMT with efficient (polynomial) receiver algorithm. The
main challenge in this construction is choosing the authentication mechanism
and its parameters, as well as parameters of FRS-code to achieve the required
performance. We give details of these selections for N = 2t+ 1, and for higher
connectivities we omit the details because of space. (We will provide details for
SMT when N = (2+c)t, c > 1

t , which gives a good idea of challenges of designing
δ-RMT for these connectivities.)

Constructing 1-round (0, δ)-SMT from FRS-codes. Although it is possible to give
a general construction of (0, δ)-SMT using an approach similar to δ-RMT, for
clarity of results and because of space limitations we limit ourselves to concrete
constructions. We first describe a construction for a 1-round (0, δ)-SMT for N =
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2t+1 using FRS-codes and a multireceiver MAC, and then extend the result to
the case where N = (2 + c)t, c > 1

t . For N = 2t+K,K > 1, a similar approach
can be used resulting in an optimal 1-round (0, δ)-SMT.

The construction of 1-round PSMT for N = 3t + 1 [7] uses an RS-code to
encode the message, and the receiver algorithm uses unique decoding algorithm
of RS-codes. For connectivity 2t + 1 ≤ N ≤ 3t, the minimum distance of the
RS-code will be t+ 1 ≤ d ≤ 2t, and so unique decoding for t adversarial errors
is not possible.

We use list decoding to correct errors beyond unique error correcting radius of
the code, and use an authentication mechanism to recognize the sent codeword.
There are however two major challenges:

(i) In SMT the sender and the receiver do not share a secret key and so the key
for the authentication mechanism (based on MACs) must be delivered to the
receiver over the wires, some of which are corrupted.
(ii) For N = 2t+1, and code dimension k = t+1 which is dictated by the perfect
privacy requirement, the code rate is R = k/N = t+1

2t+1 and so the percentage of

errors that needs to be corrected is ρ = t
2t+1 = 1− R, which is the information

theoretic list decoding capacity of the code. Codes that can achieve this capacity
and have efficient decoders need special construction.

An important property of the resulting (0, δ)-SMT protocols is that they have
the lowest δ and so the highest reliability among all known optimal 1-round
(0, δ)-SMT protocols with comparable connectivity (for protocols that output
correct messages, or Fail.) Our proposed constructions of multireceiver MACs
provide optimal and near optimal (different by a factor of 2) forgery probabilities
and are of independent interest.

Advantages of the Approach

A general construction for 1-round δ-RMT. LD codes and multireceiver MACs
are both well-established primitives with numerous efficient constructions. The
advantage of a general construction using these two primitives as building blocks,
is that one can choose appropriate constructions for a given setting. Moreover,
advances in LD codes and MACs can result in better construction for δ-RMT
systems. The instantiation of the LD code with FRS-code is directly adaptable
(with revised message structure and code parameters) to (0, δ)-SMT. This means
that the main building block of the receiver will stay the same in both cases and
development of more efficient decoding for FRS-codes will translate into more
efficient receiver algorithms for SMT.

1-round (0, δ)-SMT and RS-codes. FRS-codes are in fact RS-codes with blocks of
symbols interpreted as elements of a larger field. The construction of (0, δ)-SMT
from FRS-codes provides an elegant and systematic construction for 1-round
(0, δ)-SMT for all connectivities (N ≥ 2t+ 1) using RS-codes.

The decoding algorithm is the same for RMT and SMT and in all cases consists
of a two step algorithm: list decoding of the FRS-code, and a message verification
algorithm based on the MAC for every element of the list. The proof of privacy
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is based on the properties of the FRS-codes and are intuitive. The proof of
reliability (calculation of δ) is also intuitive with concrete values depending on
the parameters of the FRS-codes and the MAC.

A unified approach to 1-round δ-RMT and (0, δ)-SMT. The above shows a unified
approach for the construction of these two primitives, reliable communication
without or with privacy, for all connectivities N ≥ 2t+ 1. This means that the
sender and receiver can use a modular construction in which the module with
the higher complexity, which is the list decoding module, is implemented once
and its parameters are adjusted depending on the required properties (reliability
only, or both reliability and privacy) and the choice of the MAC determined by
the given N and t.

δ-RMTs are similar to error correcting codes with protection against adversar-
ial errors with the difference that adversary’s view is limited to the t corrupted
wires. In error correcting codes with protection against adversarial channels,
the adversary can see the whole codeword before choosing the error pattern. In
δ-RMT the adversary only sees the positions that it corrupts.

Related Work

Srinathan et al. designed an efficient and optimal 1-round δ-RMT protocol [16].
This protocol uses a complex combination of secret sharing by the sender and
elaborate verification of the received information by the receiver to determine
the correct message block. There are two optimal and efficient 1-round (0, δ)-
SMT protocols for N = 2t + 1 [13,21]. The protocol in [13] is based on the 1-
round δ-RMT protocol of [16] and has similar complexity. Moreover, to achieve
the optimal transmission rate for higher connectivity, this protocol can not be
directly used as the encrypted message blocks are broadcasted. The protocol of
[21] suffers from the same problem as that of [13].

On the other hand, for N = (2 + c)t, c > 1
t , there are two optimal and

efficient 1-round (0, δ)-SMT protocols [21,19]. The protocol of [19] uses two
SMT protocols in two levels. The first SMT protocol for the lowest connectivity
is used many times on different subsets of the wires. The second protocol which
works for higher connectivity is applied to virtual wires obtained from the actual
physical wires. The shortcoming of this protocol is that to achieve optimal rate,
the sender needs to send a very large information block (of size at least N3 field
elements). The protocol in [21] also uses multiple secret sharings in a clever way
which results in a lower δ than that of [13].

2 Background and Primitives

In SMT problem, there is an incomplete network, that connects a sender S to a
receiverR. The sender and the receiver are connected byN vertex-disjoint paths,
also known as wires or channels. The network is undirected and communication
on the wires is synchronous and bidirectional. Both S and R are honest. The
goal is to enable S to send a message m, drawn from a message space M with a
probability distribution Pr(m), to R such that R receives the message correctly
and privately.
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In a message transmission protocol, the sender S chooses m from a message
space M with a probability distribution Pr(m), and uses a protocol with one
or more rounds, to send the message to the receiver. In each protocol round,
S or R, constructs a protocol message that is sent over the wires to the other
party. A protocol message is received by the recipient of the round, possibly in
a corrupted form, before the next round starts. At the end of the protocol, the
receiver outputs a message m′, or outputs a Fail.

We consider only 1-round protocols. The adversary A has unlimited compu-
tational power and can corrupt and control a subset of wires: the adversary can
eavesdrop, block or modify the communication over the corrupted wires. A can
corrupt at most t out of the N wires and the corrupted wires are unknown to S
and R.

Denote by VA(MS , rA) the random variable that denotes the view of the
adversary A when attacking the protocol assuming the sender has chosen MS
and rA is the random coins of the adversary. Let the statistical distance of
two random variables X,Y defined over a set U be defined as, Δ(X,Y ) =
1
2

∑
u∈U |Pr[X = u]− Pr[Y = u]|.

Definition 1. A message transmission protocol between S and R is an (ε, δ)-
Secure Message Transmission ((ε, δ)-SMT) protocol if the following two condi-
tions are satisfied:

– Privacy: For every two messages m0,m1 ∈M and every r ∈ {0, 1}∗ used by
the adversary,

Δ(VA(m0, r), VA(m1, r)) ≤ ε, where the probability is over the randomness
of S and R.

– Reliability: R outputs the message m with probability ≥ 1− δ, and Fail with
probability ≤ δ. That is, the receiver never outputs an incorrect message and,
Pr[Receiver outputs Fail] ≤ δ.

This is the definition of reliability used by Kurosawa et. al. [12]. The original
definition of reliability in [8] however assumes that the receiver always outputs a
message m′ and δ-reliability is, Pr[m′ �= m] ≤ δ. Kurosawa et al. require that the
receiver be sure that the received message is correct. When ε = 0, the protocol
is said to achieve perfect privacy, and when δ = 0, the protocol is said to achieve
perfect reliability. A δ-Reliable Message Transmission (δ-RMT) protocol is a
protocol between S and R in the same network setting, and only requiring the
reliability of transmission.

It was shown [8] that (0, δ)-SMT is possible if and only if N ≥ 2t + 1 and
1-round PSMT is possible if and only if N ≥ 3t+1 [3]. 1-round δ-RMT protocols
exist if and only if N ≥ 2t+ 1 [8].

Communication efficiency of RMT and SMT protocols is in terms of the
number of rounds, and transmission rate. The number of rounds of an SMT
protocol is the number of interactions between S and R. Transmission rate of
RMT and SMT protocols is the ratio of the total communication to the length
of the message: that is the communication cost of sending one bit.
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Lower bounds on transmission rates of 1-round δ-RMT and 1-round (0, δ)-
SMT protocols are Ω( N

N−t ) [14] and Ω( N
N−2t ) [13], respectively. Protocols whose

transmission rate asymptotically match the associated lower bounds are called
optimal. For 1-round δ-RMT with N = 2t + 1, the lower bound on the trans-
mission rate is Ω(1). For 1-round (0, δ)-SMT protocols with N = 2t + 1 and
N = (2 + c)t, c > 1

t , optimal protocols must have transmission rates O(N) and
O(1), respectively.

Computation efficiency of RMT and SMT protocol is the amount of compu-
tation performed by S and R throughout the protocol. A protocol that needs
exponential (in N) computation for S and R, is called inefficient. Efficient pro-
tocols need polynomial (in N) computation.

2.1 Folded Reed-Solomon Codes

A (k, n) linear error correcting code over Fq is a subspace of dimension k of
the n dimensional vector space over Fq. The information rate of a linear error
correcting code is, R = k

n . A decoder takes a corrupted word and determines the
most likely codeword that was sent. In unique decoding, the closest (Hamming
distance) codeword to the received one is found. In list decoding, a list of code-
words within a radius from the received word is found. For a constant ρ, let ρn
denotes the number of errors that can be corrected by the decoder.

Definition 2. A code C with the encoding function LD : Fq
k → Fq

n is (ρ, L)-
list decodable (LD) if the number of codewords within distance ρn of any received
word is at most L. That is for every word y ∈ Fq

n, there are at most L codewords
at distance ρn (where ρ is the relative distance) or less from y.

The list decoding capacity ρcap(R) of a code with rate R is the information
theoretic limit of list decodability and is given by ρcap(R) = 1 − R = 2ρU (R),
where ρU (R) = (1−R)/2, is the unique decoding radius of the code. It is shown
[6] that for sufficiently large alphabet size ρcap(R) can reach 1−R−ε. So for any
code rate, list decoding can potentially correct twice as many errors as unique
decoding [10].

To achieve this potential however, one needs special constructions that guaran-
tee that the list size is bounded by L. Efficient list decoding algorithms are poly-
nomial time. Folded Reed-Solomon codes (FRS-codes), proposed by Guruswami
et al. [10], is a special type of RS-codes that corrects up to a fraction ρ = 1−R−ε
of errors, for any rate R and arbitrary ε > 0 using a polynomial time list de-
coding algorithm. The list size, however for some parameter choices of the code,
becomes exponential.

Description of Folded Reed-Solomon Codes. FRS encoding and decoding
are defined using an RS-code of length n and dimension k over a finite field
Fq, using two parameters, u, the folding parameter and s, which determines the
(s + 1)-variate interpolation used in the decoding. Let u be an integer, called
the folding parameter, such that n in divisible by u. n is chosen as the largest
integer that is less than q = |Fq| and is divisible by u.
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Let γ be a generator of Fq
∗, the multiplicative group of the field Fq. A

codeword (f(1), f(γ), f(γ2), · · · , f(γn−1)) of RS[n, k] is the evaluation of a
polynomial f(x), of degree at most k − 1 over Fq, at the (ordered) points
1, γ, γ2, · · · , γn−1.

Definition 3. The u-folded FRS-code is a code with block length N = n/u over
Fq

u. The encoding of a message, represented by a polynomial f(x) of degree at
most k − 1 over Fq, is obtained as u-tuples, (f(γju), f(γju+1), · · · ,
f(γju+u−1)), for 0 ≤ j < N . In other words, a codeword of the u-folded RS-
code is in one-to-one correspondence with codewords of the RS-code C, and is
obtained by grouping consecutive u−tuples of components of C.⎡⎢⎢⎢⎣

f(1) f(γu) · · · f(γu(N−1))
f(γ) f(γu+1) · · · f(γu(N−1)+1)
...

...
. . .

...
f(γu−1) f(γ2u−1) · · · f(γuN−1)

⎤⎥⎥⎥⎦
Decoding u-folded RS-code uses (s + 1)-variate interpolation followed by a list
pruning step. In the full version of the paper [20], we give an outline of the
original decoding algorithm.

Linear-algebraic list decoding. In [9] a variant decoding for FRS-code is given in
which the interpolation uses polynomial Q(X,Y1, · · · , Ys) where degree of Yi is
1. This variant has a simpler exposition and allows a simpler way of choosing
the code parameter, s and u. However it can correct less errors. By appropriate
choice of s and u, the code can reach 1 − R − ε radius and so asymptotically
is optimal. Lemma 1 below, given in [9], gives the condition that needs to be
satisfied by the two parameters and the number of errors to be corrected.

Lemma 1. In linear-algebraic list decoding, for every integer u and s, the linear
interpolation FRS decoding algorithm successfully list decodes to a radius N −T
as long as the agreement parameter T satisfies:

T ≥ N(
1

s+ 1
+

s

s+ 1

uR

u− s+ 1
).

T is the number of correct positions. The algorithm outputs a list of size at most
|Fq|s−1 = qs−1 codewords.

2.2 Multireceiver Message Authentication Codes

A one-time MAC in information-theoretic setting, is a shared key cryptographic
primitive, defined by two functions: a MAC function that takes a messagem ∈M
and the shared key kMAC ∈ K and outputs a tag MAC(m, kMAC), which is
appended to the message, and a verification function, V ((m′, x′), kMAC), which
outputs 1 if (m′, x′) is a valid pair for the key kMAC , and 0, otherwise. The
following definition is for security of one-time MAC.
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Definition 4. A one-time MAC, MAC : qlmsg × qlkey → qltag has forgery prob-
ability γ if the best success chance of a computationally unbounded adversary
with access to a message and tag pair (m,x), x = MAC(m, kMAC), to construct
a different pair (m′, x′) where m �= m′, and V ((m′, x′), kMAC) = 1 is at most γ,
where the probability is taken over all keys.

Multireceiver authentication codes [5] allow a sender to efficiently send a message
to a group of N receivers such that each receiver can individually verify the
message, using his individual shared key ki with the sender. The sender is honest
but upto t receivers can be corrupted and attempt to forge a message to be
acceptable by an uncorrupted receiver. In a (t + 1, N)-multireceiver message
authentication system, there are N receivers and at most t receivers can be
corrupted.

Definition 5. A one-time (t + 1, N)-multireceiver authentication code (multi-
receiver MAC) with N receivers and kMAC = (kS , k1, ..., kN ), is γ-secure if the
best success chance of any colluding set of receivers (size at most t) with access to
a message and tag pair, (m,x, x = MAC(m, kS)) in forging a different message,
tag pair (m′, x′), where m �= m′, and Vi((m

′, x′), ki) = 1, is at most γ, and the
probability is over all unknown keys.

2.3 New Constructions for Multireceiver MAC

The basic construction of (t + 1, N)-multireceiver MACs is for authenticating
a single message. To authenticate a block of messages one can use a one-time
multireceiver MAC multiple times, or for more efficiency, use separately designed
multireceiver MAC for message blocks. In the following, we give two new con-
structions for (t+1, N)-multireceiver MACs for message blocks that are used in
the RMT and SMT constructions of this work. Construction 1 is a generalization
of [5] for d > 1 messages. Construction 2 is built over a brand new MAC.

Construction 1.
Let m = (m1, · · · ,md), where mi ∈ Fq

s′ , i = 1, ..., d, be the message block.

– Key distribution: A Trusted Initializer does the following: (i) randomly gen-
erates d + 1 polynomials P1(z), P2(z), · · · , Pd+1(z), each of degree at most

t, over Fq
s′ ; chooses N random distinct elements z1, z2, · · · , zN , where zi ∈

Fq
s′ , i = 1, ..., N ; makes z1, z2, · · · , zN public, assigns zi to receiver i and pri-

vately sends ki = (P1(zi), P2(zi), · · · , Pd+1(zi)) to receiver i, for 1 ≤ i ≤ N
and to the sender.

– Constructing authenticated messages: The sender computes the authentica-
tion tag as:

A(z) = P1(z)m1 + P2(z)m2 + · · ·+ Pd(z)md + Pd+1(z).

The authenticated messages consist of the message block and the tag poly-
nomial, ((m1,m2, · · · ,md), A(z)).

– Verification: Receiver i accepts (m1,m2, · · · ,md, A(z)) if and only if A(zi) =
P1(zi)m1 + P2(zi)m2 + · · ·+ Pd(zi)md + Pd+1(zi) mod qs

′
.
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The above construction is a (t+ 1, N)-multireceiver MAC for authentication

of a block of size d. The size of the tag is t + 1 elements of Fq
s′ and so only

depends on the collusion size (rather than the total number of receivers).
The following Theorem is proved in the full version of the paper [20].

Theorem 1. For construction 1, the forgery probability is bounded as γ ≤ q−s′ .

Construction 2.
This multireceiver MAC is built on a new one-time MAC which has message

block size
(
t+2
2

)
− 1 (each block element from Fq

s′) and has forgery probability
bounded by 2

qs′ .

– Key distribution: Same as Construction 1, with d = t.
– Constructing authenticated messages: For m = (m1,m2, ...,m(t+2

2 )−1), the

sender computes,

A(z) = m1P1(z) + · · ·+mtPt(z) +mt+1P1(z)
2 + · · ·+m2tPt(z)

2

+ m2t+1P1(z)P2(z) + · · ·+m(t+2
2 )−1Pt−1(z)Pt(z) + Pt+1(z).

– Verification: Receiver i accepts (m1,m2, · · · ,m(t+2
2 )−1, A(z)) if and only if

A(zi) = m1P1(zi) + · · ·+mtPt(zi) +mt+1P1(zi)
2 + · · ·

+ m(t+2
2 )−1Pt−1(zi)Pt(zi) + Pt+1(zi).

Here mi ∈ Fq
s′ , and P1(z), P2(z), · · · , Pt+1(z) are polynomials of degree at

most t over Fq
s′ . The MAC function is a linear sum (coefficients being the

message block) of all products of at most two polynomials from the set,
{P1(z), P2(z), · · · , Pt(z)}. Finally Pt+1(z) is used to mask the result. The fi-

nal MAC value is a polynomial over Fq
s′ . The size of the message block (over

Fq
s′) that is authenticated by the MAC, is

(
t+2
2

)
− 1.

Theorem 2. For construction 2, the forgery probability is bounded as γ ≤ 2q−s′ .

The proof outline is provided in the full version of the paper [20].

3 Construction of 1-Round δ-RMT for N ≥ 2t + 1

Construction 3: A general construction of 1-round δ-RMT. The protocol
requires a (ρ, L) LD code of dimension k and length N over Fq, with ρ = t

N and

list size L, and a (t + 1, N)-multireceiver MAC with message space Fq
k′
, k′ =

k − ltag < k, and forgery probability ε. Here ltag is the length of tag in terms of

Fq
s′ elements.

– Sender Algorithm:
1) Securely generates keys (kS , k1, ..., kN ) for a multireceiver MAC and as-
signs the key ki to the ith wire, Wi.
2) Constructs the message block mS ,mS ∈ Fq

k to be sent to the receiver
as,
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mS = (IS ,MAC(IS , kS)). (1)

The sender constructs the codeword cS of the LD code by encoding mS as
cS = LD(mS). The sender sends the ith component of the codeword cS , and
ki through wire Wi. kS is kept by the sender.

– Receiver Algorithm:
1) Parses the received (corrupted) N -vector; separates the key ki from the
ith component (possibly corrupted) of the received word for i = 1, · · · , N ;
constructs the corrupted codeword and uses LD decoding algorithm to obtain
a list (of size L) of codewords that are at distances at most ρ = t

N from the
received word. The list will always include the correct codeword.
2) To identify the sent codeword, the receiver (i) parses each codeword in
the list into a message, tag pair (m̂i, t̂i), i = 1, · · · , L; (ii) for each mes-
sage m̂i, uses all keys kj , j = 1, ..., N , and checks the verification equations
Vj(m̂i, kj) = t̂i. The message is accepted if at least t+1 verification equations
are passed; otherwise the codeword is rejected.
The decoding algorithm of the SMT succeeds if there is a unique codeword
that is accepted by the verification algorithm above. Otherwise, the receiver
outputs a Fail.

Theorem 3. The above construction is a 1-round δ-RMT protocol for N =

2t+ 1, with δ = 1− (L− 1)ε and transmission rate N(1+|ki|)
k−ltag

.
The proof is omitted due to lack of space.

3.1 An Optimal δ-RMT

In the following we give an instantiation of the general construction above using
(i) an FRS-code for the LD code, and (ii) Construction 2 for multireceiver MAC.
The multireceiver MAC allows authentication of a message block of size ∼ t2

field elements requiring ∼ t field element for encoding of mS as, to be sent on
each wire, resulting in optimal transmission rate.

Selecting Parameters of the FRS-code. Let N = 2t+ 1 for the RMT. We
consider a u-folded RS-code of length N with length n = Nu for the underlying
RS-code. Using the message format in (1) and using a block of size (

(
t+2
2

)
− 1)

of elements of Fq
s′ for information block we will have the required dimension

for the code as,

k = |mS | = (

(
t+ 2

2

)
− 1)s′ + ts′ + s′ =

s′(t2 + 5t+ 2)

2
. (2)

For a code of length N = 2t+1 and dimension k as (2), we must choose folding
parameter u, number of decoding variable s, and the finite field sizes s′ and q, to
ensure that decoding succeeds for linear-algebraic decoding (outlined in Section
2.1) for radius ρ = t/N (t errors in the FRS-code). That is, the inequality 3
below, is satisfied.

t+ 1 ≥ N(
1

s+ 1
+

s

s+ 1

uR

u− s+ 1
). (3)
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Let 0 < σ < 1 and set s = N
σ − 1. Furthermore, choose s′ =

⌊
2u(t+1−2σ)
t2+5t+2

⌋
, and

u > s2 − 1. the following shows that with these choices of parameters inequality
(3) is satisfied. We have,

t+ 1 > t+ 1− σ = σ + (t+ 1− 2σ)
(a)
= σ +

s′(t2 + 5t+ 2)

2u

(b)
= σ +

k

u
(4)

where (a) is because of the choice of s′ and (b) is because of of the value of k
in (2). Note that because s ≥ 1, we have 1

u > s
s+1

1
u−s+1 and so, (4) gives the

following:

t+ 1 > σ +
k

u
> σ +

s

s+ 1

k

u− s+ 1
= N(

1

s+ 1
+

s

s+ 1

uR

u− s+ 1
)

Finally we can choose q to be the smallest prime that is bigger than the codeword
length n = Nu.

The Protocol. The construction uses (i) an FRS-code with parameters u and
s obtained above and (ii) Construction 2 of the multireceiver MAC in Section
2.3. The final protocol is as follows.

– Sender Algorithm:
1. Uses the key generation algorithm of Construction 2 and obtains for wire
Wi, i = 1, ..., N , the associated key,

ki = (P1(zi), P2(zi), · · · , Pt+1(zi)).

The tag for the information part IS = (m0,m1, · · · ,m((t+2
2 )−1)),mi ∈ Fq

s′ :

A(z) = m1P1(z) + · · ·+mtPt(z) +mt+1P1(z)
2 + · · ·+m2tPt(z)

2

+ m2t+1P1(z)P2(z) + · · ·+m(t+2
2 )−1Pt−1(z)Pt(z) + Pt+1(z).

2. The message mS is of the form (1), mS = (m0,m1, · · · ,m((t+2
2 )−1), A(z)).

The dimension of the FRS-code is (
(
t+2
2

)
− 1)s′ + ts′ + s′ over Fq, where

s′ =
⌊
2u(t+1−2σ)
t2+5t+2

⌋
.

3. The sender encodes the message to a codeword cS using the FRS encoding
algorithm. Wire j, 1 ≤ j ≤ 2t + 1, transmits the jth component of cS and
kj .

– Receiver Algorithm: Uses the two step decoding of Construction 3 for
FRS-code as the LD code, and Construction 2 as the multireceiver MAC.
The algorithm outputs the correct message or Fail.

Theorem 4. The above construction is a δ-RMT with δ = 2(t+1)

qs′−s+1 , which is

equal to N+1
qs′−s , when N = 2t+ 1. The transmission rate is constant.

The proof is given in the full version of the paper [20].

Comparison with Related Work

For N = 2t + 1, this protocol has δ = N+1
q . The value of δ for the only other

known optimal 1-round δ-RMT protocol [13], is N2(N−1)
q (q ≥ N2(N−1)

δ ). The
field size required in our construction is Nu.
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Table 1 compares our protocol with the protocol in [13]. For simplicity of
comparison we have used s′ = s, resulting in δ = t+1

q . The comparison shows
that for all connectivities the proposed protocol has a much higher reliability. The
field size although asymptotically is larger (N4 andN3, respectively) for concrete
values (for example N < 1000, and δ < 10−3) could be smaller or comparable.
Decoder efficiency for higher connectivities is the same. For N = 2t+1, however,
our protocol has exponential cost.

Table 1. Comparison of 1-round δ-RMT protocols for different connectivities which
never outputs an incorrect message; here Comp. refers to computation complexity,
Poly. refers to polynomial (in N), Exp. refers to exponential (in N), and Fq is the field

Author Comp. N = 2t+ 1 Comp. N = (2 + c)t q δ Optimality

[13] Poly. Poly. ≥≈ N3

δ
≤≈ N3

q
Yes

This Work Exp. Poly. ≥ Nu ≤ 2(t+1)
q

≈ N+1
q

Yes

4 1-Round (0, δ)-SMT

To use the approach of Construction 3 for (0, δ)-SMT, one needs to ensure that
the view of the adversary does not leak any information about the information
block IS . Using FRS-code for LD code allows us to achieve this goal by choosing
the dimension of the code to be at least t + 1. Code parameters need to be
chosen such that decoding up to ρ = t

N is achievable. For N = 2t + 1 given
in Section 4.1, this requires the FRS-code to achieve the list decoding capacity.
The construction for N = (2+ c)t, c > 1

t , given in Section 4.2, uses Construction
2 for multireceiver MAC to allow easier calculation of code parameters while
maintaining optimal asymptotic performance. Same approach can also be used
for connectivity N = 2t + K, where K > 1 is a constant. Details are omitted
because of space.

In all cases, decoding is the two step Receiver Algorithm of Construction 3.

4.1 A Construction for 1-Round (0, δ)-SMT for N = 2t + 1

The construction uses the approach of Construction 3, but with a different mes-
sage structure to guarantee perfect privacy.

Message Structure. The message mS consists of three parts: (i) infor-

mation part IS = (m0,m1, · · · ,mσu−1),mi ∈ Fq
s′ ; (ii) ut random elements

(a1, a2, · · · , aut), ai ∈ Fq that are used to ensure privacy that the ut cap-
tured components do not reveal anything about IS ; (iii) MAC(X, kS) where
X = (m0,m1, · · · ,mσu−1, a1, ..., as′d−σu).

That is,

mS = (m0,m1, · · · ,mσu−1, a1, a2, · · · , aut,MAC(X, kS)).
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Here σ is a positive constant. To have optimal rate, the information block size
must be a constant fraction of u. Using Construction 1, this size is s′d, where d is
message length for the MAC. To find s′, the information block (IS) and the first
s′d−σu elements ai are used to form d blocks of size s′, where d =

⌈
σu
s′
⌉
. Each

s′ block is interpreted as an element of Fq
s′ and MAC calculations are performed

over Fq
s′ . The ut random elements appended to IS will ensure perfect privacy.

The MAC is only computed on X . The total length of mS to be encoded
by the FRS-code is ut + σu + s′(t + 1) were σ < 1 is a constant. The key ki
for wire i consists of d + 1 elements P1(zi), P2(zi), · · · , Pd+1(zi) over Fq

s′ . The
multireceiver MAC value for X is:

MAC(X, kS) = A(z) = P1(z)x1 + P2(z)x2 + · · ·+ Pd(z)xd + Pd+1(z).

The codeword of the FRS-code that is constructed formS , will haveN compo-
nents, each an element of Fq

u. The adversary’s view will contain only t elements
of Fq

u and will be independent from IS .

Parameters of the FRS-code. The u-folded RS-code will haveN = 2t+1, n =
Nu, and k = ut + σu + ts′ + s′. We must choose u, s, and the field size q, to
ensure that decoding succeeds for linear-algebraic decoding (outlined in Section
2.1) up to radius ρ = t/N .

According to Lemma 1,

t+ 1 ≥ N(
1

s+ 1
+

s

s+ 1

uR

u− s+ 1
).

We set the parameter s = (N/σ) − 1, u > s2 − 1, and s′ =
⌊
u(1−3σ)

t+1

⌋
, where

0 < σ < 1
3 is a positive constant. By using these values of σ, u, s′, one can verify

that the inequality is satisfied. Finally we can choose q to be the smallest prime
that is bigger than the codeword length n = Nu.

Construction 4: (0, δ)-SMT Protocol for N = 2t+ 1.

– Sender Algorithm:
1. Uses the key generation of Construction 1 and obtains for wire Wi, i =
1, ..., N , the associated key,

ki = (P1(zi), P2(zi), · · · , Pd+1(zi)).

2. Constructs mS : Forms IS = (m0,m1, · · · ,mσu−1),mi ∈ Fq
s′ and calcu-

lates the tag,

A(z) = x1P1(z) + x2P2(z) + · · ·+ xdPd(z) + Pd+1(z),

for d and s′ chosen as above. Here X = (m0, ...,mσu−1, a1, ..., as′d−σu). mS
is of the form (1) given by, (m0,m1, · · · ,mσu−1, a1, a2, · · · , aut, A(z)).
3. Constructs cS and message transcript: The sender encodes the message
to a codeword cS using the FRS encoding algorithm. Wire j, 1 ≤ j ≤ 2t+1,
transmits the jth component of cS and kj .

– Receiver Algorithm: Uses the decoding algorithm of Construction 3.
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Theorem 5. The SMT protocol described above is a (0, δ)-SMT for N = 2t+1,
with δ = t+1

qs′−s+1 .

The proof is omitted due to lack of space, but is given in the full version of the
paper [20].

Transmission rate: The transmission rate is uN+(s′d+s′)N
σu = O(N) and it is

optimal for 1-round (0, δ)-SMT for N = 2t+ 1.
Computation complexity: The list size is at most qs−1. Each element of the list
must be verified and so the complexity of SMT decoding algorithm is O(qN ) (as
s = O(N)).

Comparison with Related Work. Table 2 compares the protocol with 1-
round (0, δ)-SMT protocols that have the property that the output is either
the correct message or Fail. For simplicity of comparison we have used s′ = s,
resulting in δ = t+1

q = N+1
2q , when N = 2t + 1. The table shows that δ for

this construction is the lowest. The minimum field size however is larger and
decoding is computationally inefficient. In Section 4.2 we show that both these
shortcomings can be removed for higher connectivities.

Table 2. Comparison of 1-round (0, δ)-SMT protocols for N = 2t + 1; here Comp.
refers to computation complexity, Poly. refers to polynomial (in N), Exp. refers to
exponential (in N) and Fq is the field. The protocols never output incorrect message.
Here b is a constant and λ is the probability that the cheater wins in a secret sharing
scheme with a cheater.

Author Comp. q δ Optimality

[12] Exp. > N ≤ (
(

N
t+1

)
− 1)λ ≈ N (N+1)/2λ Yes

[17] Poly. ≥ 2N3

δ
≤ N3

q
Yes

[4] Poly. ≥ bt(t+ 1) ≈ N2 ≤ t(t+1)
q

≈ N2

q
No

[21] Poly. ≥ bt(t+ 1) ≈ N2 ≤ t(t+1)
q

≈ N2

q
Yes

This Work Exp. ≥ Nu ≈ N4 ≤ t+1
q

≈ N+1
2q

Yes

4.2 1-Round (0, δ)-SMT for N = 2t + ct, c > 1/t

Let N = 2t + ct, c > 1
t . We use the same approach as Construction 4, using

Construction 2 for multireceiver MAC and choose parameters of the FRS-code
and multireceiver MAC such that the SMT construction has optimal rate and
efficient computation. The message mS has the format of (1) and can be writ-
ten as (m0,m1, · · · ,m((t+2

2 )−1), a1, a2, · · · , aut,MAC(X, kS)), where X = IS =

(m0,m1, · · · ,m((t+2
2 )−1)) is the information block. The MAC function is over

Fq
s, where s is the parameter of FRS decoding (instead of Fq

s′ for N = 2t+1).
The tag value is:
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A(z) = m1P1(z) + · · ·+mtPt(z) +mt+1P1(z)
2 + · · ·+m2tPt(z)

2

+ m2t+1P1(z)P2(z) + · · ·+m(t+2
2 )−1Pt−1(z)Pt(z) + Pt+1(z),

where mi ∈ Fq
s and polynomials P1(z), P2(z), · · · , Pt+1(z) are over Fq

s and
have degree t.

Parameters s, u, and q are chosen to allow the receiver to decode up to t
errors. The number of correct wires t+ ct must satisfy,

t+ ct ≥ N(
1

s+ 1
+

s

s+ 1

uR

u− s+ 1
).

For a constant c0, let u = c0t. We show that list decoding upto ρ = t
N is possible

for a constant value of s = s0 when t > 7c0+2s0+1, and the value of c satisfies
c > s0

c0
+ 1

s0
. The details are in the full version of the paper [20]. Table 4.2 below

gives example values for s0 and c, and the size of the resulting list. The complete
protocol is given below.

Table 3. Values of c and the list size for different values of s0

s0 list size c

s0 = 1 q0 c ≈ 1
c0

+ 1

s0 = 2 q c ≈ 2
c0

+ 1/2

s0 = 3 q2 c ≈ 3
c0

+ 1/3

SMT Protocol for N = (2 + c)t, c > 1
t .

– Sender Algorithm:
1. Uses the key generation of Construction 2 and obtains for wire Wi, i =
1, ..., N , the associated key,

ki = (P1(zi), P2(zi), · · · , Pt+1(zi)).

2. The message mS is,

mS = (m0,m1, · · · ,m((t+2
2 )−1), a1, a2, ..., aut, A(z)),

where the tag for the information block IS = (m0,m1, · · · ,m((t+2
2 )−1)),mi ∈

Fq
s0 is,

A(z) = m1P1(z) + · · ·+mtPt(z) +mt+1P1(z)
2 + · · ·+m2tPt(z)

2

+ m2t+1P1(z)P2(z) + · · ·+m(t+2
2 )−1Pt−1(z)Pt(z) + Pt+1(z).

3. The FRS-code is over Fq
u and has dimension k = ut + (

(
t+2
2

)
− 1)s0 +

ts0 + s0. The sender encodes the message to a codeword cS using the FRS
encoding algorithm. Wire j, 1 ≤ j ≤ 2t+ ct, transmits the jth component of
cS and kj .

– Receiver Algorithm:
Uses the SMT decoding algorithm of Construction 3.
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Theorem 6. The protocol above is a 1-round (0, δ)-SMT for N = (2+c)t, c > 1
t

with optimal transmission rate, and has efficient (polynomial time) decoding. The

value of δ is given by 2(t+1)
q and is the smallest among all known protocols with

the same connectivity.

The proof outline is given in the full version of the paper [20].

Comparison with Related Work

There has been two other optimal (transmission rate) and efficient (computation)
1-round (0, δ)-SMT protocols for higher connectivity (N = (2 + c)t, c > 1

t )
[19,21]. The protocol presented in Section 4.2 has the least δ. The comparison
of these protocols is outlined in Table 4.

Table 4. Comparison of 1-round (0, δ)-SMT protocols for N = (2 + c)t, c > 1
t
;

here Comp. refers to computation complexity, Poly. refers to polynomial (in N), Exp.
refers to exponential (in N) and Fq is the field. Here ν is a parameter used in wire-
virtualization which refers to the number of physical wires in each virtual wire.

References Comp. δ Optimality Outputs Incorrect Message

[19] Poly. ≤ Nν t(t+1)
q

≈ Nν+2

q
Yes Yes 1

[21] Poly. ≤ t(t+1)
q

≈ N2

q
Yes No

This Work Poly. ≤ 2(t+1)
q

≈ N
q

Yes No

5 Concluding Remarks

We showed a novel general approach to the construction of 1-round δ-RMT and
(0, δ)-SMT protocols using LD codes and MACs. The approach has a number of
advantages, (i) it is general, unifies construction of 1-round δ-RMT and (0, δ)-
SMT protocols, and is applicable to all connectivities including N = 2t+K,K ≥
1, where K is a constant, (ii) relies on well-studied mathematical objects (list
decodable codes and MACs) and so allow a wide range of instantiations; this also
allows direct translation of advances in those areas into better constructions for
1-round δ-RMT and (0, δ)-SMT, and finally (iii) resulting in proofs of security
(privacy and reliability) to be intuitive and easily verifiable. Instantiation of
this general approach, using FRS-codes and our proposed multireceiver MACs
result in constructions that have optimal transmission rates and the smallest δ,
when N = 2t + 1 and N = (2 + c)t, c > 1

t . For N = 2t + 1 the protocol is not
computationally efficient for our instantiations. It is an interesting open problem
if this general construction can be instantiated to achieve efficient and optimal
construction for N = 2t + 1. Another interesting open question is whether δ
can be further lowered while maintaining optimality. Another open problem is
establishing lower bound on δ and constructing protocols that can achieve the

1 The authors in [19] mention that their protocol can be modified to output only
correct message block by using a different sub-protocol.
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bound. We note that 1-round δ-RMT, can be seen as error correcting code in the
traditional setting where channel corruption is adversarial and adversary has a
limited view of the codeword (only t component).
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Abstract. Regular expression (RegEx) matching has been widely used
in various networking and security applications. Despite much effort on
this important problem, it remains a fundamentally difficult problem.
DFA-based solutions can achieve high throughput, but require too much
memory to be executed in high speed SRAM. NFA-based solutions re-
quire small memory, but are too slow. In this paper, we propose Regex-
Filter, a prefiltering approach. The basic idea is to generate the RegEx
print of RegEx set and use it to prefilter out most unmatched items.
There are two key technical challenges: the generation of RegEx print
and the matching process of RegEx print. The generation of RegEx is
tricky as we need to tradeoff between two conflicting goals: filtering ef-
fectiveness, which means that we want the RegEx print to filter out as
many unmatched items as possible, and matching speed, which means
that we want the matching speed of the RegEx print as high as possible.
To address the first challenge, we propose some measurement tools for
RegEx complexity and filtering effectiveness, and use it to guide the gen-
eration of RegEx print. To address the second challenge, we propose a
fast RegEx print matching solution using Ternary Content Addressable
Memory. We implemented our approach and conducted experiments on
real world data sets. Our experimental results show that RegexFilter can
speedup the potential throughput of RegEx matching by 21.5 times and
20.3 times for RegEx sets of Snort and L7-Filter systems, at the cost of
less than 0.2 Mb TCAM chip.

Keywords: regular expression, prefilter, RegEx print, TCAM.

1 Introduction

Regular expressions (RegExes) have been widely used in a variety of network and
security applications, such as anti-virus scanners [1], network intrusion detection
and prevention systems [2], firewalls, traffic classification and monitoring [3]. In
intrusion detection and prevention systems, RegExes are used to specify attack
signatures. In traffic classification and monitoring, RegExes are used to spec-
ify the signature of application protocols, thus allowing the classification and
monitoring of network traffic based on application protocols. The widespread
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usage is because of the expressive power, simplicity and flexibility of RegExes in
specifying signatures.

The RegEx matching problem can be defined as follows: given a set R of
RegExes, at run time, for each incoming item i (e.g., packets), we want to get
RegEx set O(R, i) whose members are all matched by the item. RegEx matching,
as the core operation of many applications, needs to be done at high speed with
small memory. However, despite much work that has been done, this remains a
fundamentally difficult problem. As a set of RegExes can be formally represented
as a Deterministic Finite Automata (DFA) or Nondeterministic Finite Automata
(NFA), prior RegEx matching solutions often fall into two categories: DFA-based
and NFA-based. First, DFA-based solutions may achieve high speed because at
any time there is only one active state, but may require too much memory.
For applications running on networking devices such as intrusion detection and
prevention systems and application firewalls, RegEx matching needs to be done
in high speed SRAM, which has small capacity in terms of a few megabytes.
Second, NFA-based solutions require small memory, but cannot achieve high
speed because at any time there may be many active states [4].

In this paper, we propose RegexFilter, a prefiltering approach to RegEx
matching for network security systems. Given a RegEx set R, we want to con-
struct another RegEx set R′ so that any unmatched item of R′ is also an un-
matched item of R. An unmatched item of a RegEx set is an item that does
not match any RegEx in the set. Moreover, we want the matching efficiency of
R′ to be much higher than that of R; thus, we can use R′ as a prefilter proce-
dure of R: Given an item i, we first match it against R′ and get set O(R′, i), if
O(R′, i) is empty, then it for sure does not match any member in R and therefore
we can skip this item safely; otherwise O(R′, i) is not empty, then we continue
to match it against T (R,O(R′, i)), where O(R, i) ⊆ T (R,O(R′, i)) ⊆ R, and
T (R,O(R′, i)) can be obtained reversely from O(R′, i). Because most items are
unmatched items for network security systems [5] and the matching cost of R′

is much less than that of R, the overall throughput of this prefiltering approach
is much higher than directly matching against R. We call R′ the RegEx print of
R. According to the main idea, RegexFilter divides the RegEx matching process
into two stages: filtering stage and verifying stage. The filtering stage performs
high-speed RegEx print matching on each arriving item. If one RegEx print is
matched, the corresponding RegEx will be checked in the verifying stage.

There are two main technical challenges to implementing RegexFilter. The
first challenge is the construction of the RegEx print for a given RegEx set. On
one hand, we want the RegEx print to filter out as many unmatched items as
possible. On the other hand, we want the matching efficiency of the RegEx print
to be as high as possible. These two goals are unfortunately conflicting. With
the RegEx print being the original RegEx set, the RegEx print can filter out all
unmatched items, but the matching efficiency is the lowest. With the RegEx print
being empty, the matching efficiency of zero cost is the highest, but it cannot
filter out any unmatched item. We need to carefully tradeoff between these two
conflicting goals. The second challenge is the matching of items against RegEx
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prints. We want this process to be as fast as possible to achieve high overall
RegEx matching throughput.

To address the first challenge, we first propose a method to generate all possi-
ble RegEx prints for each RegEx in the given RegEx set. Second, we propose an
estimation method to quantitatively measure the filtering effectiveness and com-
plexity of RegEx prints. Third, we reduce the problem of selecting the RegEx
prints with high filtering effectiveness and low complexity among all candidate
RegEx prints of a RegEx to the classical 0-1 knapsack problem. In this paper, we
use dynamic programming to choose RegEx prints among all candidates with the
goal of maximizing filtering effectiveness while keep the complexity of a RegEx
print less than a predefined threshold.

To address the second challenge, we propose a Ternary Content Addressable
Memory (TCAM) based solution for RegEx print matching. As larger TCAMs
have lower lookup frequency, require more power, generate more heat, and also
have high hardware cost, we want to minimize the TCAM space required to
encode the RegEx print DFA. Unfortunately, as minimizing TCAM space is NP-
hard, we propose a heuristic method that uses the Quine-McCluskey algorithm
to reduce TCAM space.

We make three key contributions in this paper. First, we propose an efficient
method to generate RegEx prints. In particular, we propose some measurement
tools for RegEx complexity and filtering effectiveness, and then use the tools to
guide the generation of RegEx print. Second, we propose an efficient method of
implementing RegEx print matching based on TCAMs. Third, we implemented
our approach and conducted experiments on real-world RegEx sets and traffic
traces. Our experimental results show that RegexFilter can speedup the through-
put of RegEx matching by 21.5 times and 20.3 times for RegEx sets of Snort
and L7-Filter systems, at the cost of less than 0.2 Mb TCAM chip.

The rest of the paper is organized as follows. We review related work in Sec-
tion 2. In Sections 3 and 4 we explain the generation of RegEx prints and the
implementation of high-speed RegEx print matching in TCAM for RegexFil-
ter respectively. In Section 5, we present experimental results. Finally, We give
conclusions and future work in Section 6.

2 Related Work

As DFA is the preferred representation of RegEx matching, recent work has
focused on reducing the huge memory usage of DFA-based RegEx match-
ing [4,6,7,8,9,10,11]. However, they achieve memory reduction only for signa-
ture sets of simple or specific RegExes. None of them can achieve high-speed
RegEx matching for real-world signature sets that contain thousands of complex
RegExes. However, these solutions are orthogonal to our work as they focus on
improving RegEx matching in our verifying stage. Meiners et al. [12] propose a
well-designed TCAM-based RegEx matching solution that introduces three novel
techniques to reduce TCAM space and improve matching speed. The solution
cannot work on real-world signature sets directly as the composite DFAs are too
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big to be encoded in a TCAM chip. However, it can be used in our RegEx print
matching as the RegEx print DFA is small enough even for real-world RegEx
sets. In fact, we design a more effective solution, that goes a step further and
tackles the prefix problem in [12].

Several string-based prefiltering techniques have been developed to improve
the performance of RegEx matching [5,13,14,15,16]. To the best of our knowl-
edge, the most outstanding one is sigMatch [5]. The sigMatch technique organizes
a signature set into a (processor) cache-efficient q-gram index structure, called
the sigTree. For a given signature set, sigMatch requires that each signature
has at least one string of length b to construct its sigTree. For these signatures
that do not satisfy the requirement, sigMatch rewrites them into multiple sig-
natures that have at least one string of length b in enumerating idea. Then,
for each signature, sigMatch picks exactly one discriminative substring (without
any meta-characters of RegExes) of length b + β as its fingerprint. The first b
bytes of the substring map the signature to a sigTree node, and the next β bytes
following the b bytes in the substring are used to hash into the Bloom Filter at
that node using a “set” of hash functions. Linked lists are used in sigTree nodes
for short signatures that do not have a substring of length b+ β.

These string-based prefiltering techniques have three major drawbacks.
First, they suffer from the problem of member set explosion when they
are applied to RegExes with character subclasses. An example is RegEx
^[a-z][a-z0-9]{5,15} that matches user ID starting with an English alphabet
followed by some alphanumeric characters.

These techniques have to enumerate all possible strings represented by the
RegEx, the size of which is more than 2616. Obviously this step is time-consuming
and impracticable. Second, the fingerprints generated by these techniques are
strings, which do not include the positioning of RegExes. For example anchor ^
in the above RegEx, which indicates that successful matchings must start from
the beginning position of items. This inability leads to the problem that they may
have poor filtering effectiveness. Third, there needs to be one Bloom Filter for
each possible length of fingerprints [17]. The hardware cost can be prohibitive
if fingerprints have a large number of distinct lengths. RegexFilter addresses
these problems by generating short RegExes as fingerprints for each original
RegEx without enumerating its all possible strings, and performing RegEx print
matching with DFA representation in TCAM.

Ficara et al. [18] propose the first RegEx-based prefiltering solution that uses
sampling technique to accelerate RegEx matching. The main idea is to sample a
byte every θ bytes over packet payloads (θ is the sampling period). The sampled
payloads are then used to match with a proper sampled DFA constructed from
sampled RegExes. The method can process normal packets θ times faster at the
cost of false-positive alarms. However, sampling RegExes correctly sometimes
is very hard. Moreover, the sampled DFA may still experience state explosion .
For example, RegEx |ab.1024cd— is sampled into two RegExes |a.512c— and
|b.512d— given sampling period θ = 2, the sampled DFA constructed from the
two sampled RegExes has billions of states.

^[a-z][a-z0-9]{5,15}
^
|
|
|
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3 RegEx Print Generation

For a given RegEx, we first present a method to find all of its possible RegEx
prints in this section, and then we introduce an algorithm to selectively generate
good RegEx prints that satisfy our goal.

3.1 RegEx Print

Before presenting our work, we give some definitions to be used first. A RegEx
r is a string over symbol set Σ ∪ {ε, |, ·, ∗, (, )}, which is recursively defined as
the empty character ε; a character α ∈ Σ; and (r1), r1 · r2, r1|r2, and r1

∗, where
r1 and r2 are RegExes. It represents a set of strings without enumerating them
explicitly over alphabet Σ, which is defined recursively on the structure of r as
follows:

– if r=ε, S(r)={ε}, the empty string
– if r=α (α ∈ Σ), S(r)={α}, a single string of one character
– if r=(r1), S(r)=S(r1)
– if r=r1 ·r2, S(r)=S(r1) ·S(r2), where S(r1) ·S(r2) is the set of strings w such

that w=w1w2, with w1 ∈ S(r1) and w2 ∈ S(r2). The operator ‘·’ represents
the classical concatenation of strings

– if r=r1|r2, S(r)=S(r1)∪S(r2), the union of the two sets. The operator ‘|’ is
called union operator.

– if r=r1
∗, S(r)=S(r1)

∗=
⋃∞

i=0 S(r1)
i, where S0={ε} and Si=S · Si−1 for any

string set S. That is, the result is the set of strings formed by a concatenation
of zero or more strings represented by r1. The operator ‘∗’ is called star
operator.

In order to construct an automata (NFA or DFA) for RegExes, most of the
constructions use a binary tree representation as an intermediate form. The
leaves of the tree are labeled with the characters of alphabet Σ or the symbol
ε, and the internal nodes are labeled with the operators. The nodes that are
labeled with ‘|’ or ‘·’ have two children, while nodes labeled with ‘∗’ have only
one child. Prior work describe how to parse a RegEx to obtain its parse tree
recursively, in fact this conversion is reversible. Given a parse tree, its original
RegEx can be obtained recursively just like the parsing process. In our work, we
perform the generation of RegEx prints over the parse-tree representation for a
given RegEx.

Definition 1. Given a RegEx r, its Expression Size, denoted by ES(r), is the
number of strings represented by r, namely ES(r) = |S(r)|.

For the given RegEx r, how to calculate its ES value is an open question. One
simple method is to enumerate all the strings represented by r according to
the definition, and then count the size. However, it is very inefficient as men-
tioned above. In this paper, we propose a novel method that can calculate ES(r)
approximately, as shown in the following recursive way:
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– if r=ε, ES(r) = 1
– if r=α (α ∈ Σ), ES(r) = 1
– if r=(r1), ES(r) = ES(r1)
– if r=r1 · r2, ES(r) = ES(r1)× ES(r2) (We can infer that ES(r) = ES(r1)n if

r=r1{n})
– if r=r1|r2, ES(r) = ES(r1) + ES(r2)
– if r=r1

∗, ES(r) =
∑∞

t=0 ES(r1)
t = ∞ (ES(r1) is an integer no less than 1)

The easiest cases are single characters and ε. For operators ‘·’, ‘|’ and ‘∗’, the
equations do not hold strictly, because there may be the same strings among all
the combinations. For example, RegEx a(b|ε)(b|ε)c represents a set of strings
{ac, abc, abbc} (because of ε · r = r · ε = r), its real expression size should be
3. According to our calculating method, we get ES(a(b|ε)(b|ε)c) = ES(a) ×
ES(b|ε)×ES(b|ε)×ES(c) = 1×2×2×1 = 4. Fortunately, our method produces
approximate ES values that are very close to the real values.

Similarly, we define the Expression Size of a RegEx set R = {r1, · · · , rn},
denoted by ES(R), as the number of strings represented by r1| · · · |rn. We can
infer that ES(R) =

∑n
i=1 ES(ri) according to our calculating method of ES.

Obviously, a RegEx set has larger or equal ES value than any of its RegEx
prints. Meanwhile, a RegEx set has higher complexity than any of its RegEx
prints, where the complexity is regarded as state size for DFA-based matching
solutions in this paper. Inspired by the insight, we argue that ES can be used
as a measurement tool to compare the complexity even for two totally different
RegEx sets. This speculation is reasonable intuitively: a RegEx set with larger ES
value represents more strings, and more strings consume more states when con-
structing Aho-Corasick complete automata (a special DFA for string matching).
A persuasive example is a string signature, such as r1=ACNS, and a RegEx signa-
ture that contains constrained repetitions of wildcards, such as r2=|AC.10NS—.
After calculating we know ES(r1) = 1 and ES(r2) = 25610, meanwhile the DFA
of r1 has 5 states and the DFA of r2 has more than one thousand states. An
important application of our ES tool is that it can be used to deal with state
explosion pertinently by combining with previous work [11,10,19,9]. Because we
can locate the accurate positions that will lead to state explosion quantitatively
by calculating ES, while previous work solve the problem qualitatively and em-
pirically.

A signature with better filtering effectiveness is matched with a lower prob-
ability. A string, which is a RegEx too, only represents itself. Moreover, the
length of a string is fixed. It is easy to prove that the matching probability of a
string is inverse to the size of alphabet Σ to the power of its length over random
inputs of infinite length. Some prefiltering work tend to generate longer strings
as fingerprints because they will be matched much less frequently than shorter
ones. However, it is hard to measure the matching probability of a RegEx, be-
cause a RegEx usually represents many strings of different lengths. Motivated
by the insight that shorter strings have much higher matching probability, we
speculate that the matching probability of a RegEx mainly depends on its Min-
imum Expression Length and its Shortest Expression Size, which are defined as
follows.

ACNS
|
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Definition 2. Given a RegEx r, the Minimum Expression Length of r, denoted
by L(r), is the number of characters in s, where s is the shortest string in set
S(r).

Unlike in the calculation of ES value, the same strings in S(r) do not change
L value for the given RegEx r. Thus, we can calculate L(r) accurately in the
following recursive way:

– if r=ε, L(r) = 0
– if r=α (α ∈ Σ), L(r) = 1
– if r=(r1), L(r) = L(r1)
– if r=r1 · r2, L(r) = L(r1) + L(r2)
– if r=r1|r2, L(r) = min(L(r1),L(r2))
– if r=r1

∗, L(r) = 0

Definition 3. Given a RegEx r, the Shortest Expression Size of r, denoted by
SES(r), is the number of strings of length L(r) in set S(r).

Similar to the calculation of ES, we can calculate SES approximately with the
following method:

– if r=ε, SES(r) = 1
– if r=α (α ∈ Σ), SES(r) = 1
– if r=(r1), SES(r) = SES(r1)
– if r=r1 · r2, SES(r) = SES(r1)× SES(r2)
– if r=r1|r2 :

• if L(r1) is bigger than L(r2), SES(r) = SES(r2)
• if L(r1) is smaller than L(r2), SES(r) = SES(r1)
• if L(r1) equals to L(r2), SES(r) = SES(r1) + SES(r2)

– if r=r1
∗, SES(r) = 1

Definition 4. The matching probability of a RegEx r, denoted by MP(r), is de-
fined as the ratio of SES(r) to SCS(r), where SCS(r) represents the total number
of strings of length L(r) over alphabet Σ.

Definition 5. A RegEx r is dividable if and only if it can be rewritten into the
form of r1 · r2, where r1 and r2 are RegExes, and S(r1) �= {ε}, S(r2) �= {ε}.
RegEx r is atomic if it is not dividable.

Lemma 1. Given a RegEx r = r1 · · · rn, where rt is atomic (1 ≤ t ≤ n). We
abbreviate RegEx r of this type as r = r[1,n] later. Then 1) r[i,j] (1 ≤ i ≤ j ≤ n)

is a RegEx print of r; 2) RegEx r has at most n(n+1)
2 RegEx prints.

Proof. 1) First, r[i,j] is obviously a RegEx. Second, it is a fingerprint, because
any input T matched by r will be matched by r[i,j]: T must contains one string
s in set S(r), while s is the concatenation of a string in set S(r[1,i−1]), a string
in set S(r[i,j]) and a string in set S(r[j+1,n]).

2) Since 1) is right, the proof of 2) is simple and trivial.
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3.2 RegEx Print Generation Algorithm

For a RegEx set R, we want to generate a set of RegEx prints that produces
a DFA with as few states as possible and prefilters as many items as possible.
However, comparing among all possible RegEx print sets is high-cost. In this
section, we present a novel algorithm that can achieve the goal with low cost by
pruning uncompetitive RegEx print sets. Our algorithm involves three stages:
selecting stage, refining stage and deciding stage, which are described below.

Selecting Stage. As compiling the RegEx print set into a composite DFA within
limited memory is a hard requirement, we try to limit the DFA state size, at the
time we want to bypass the time-consuming process of DFA construction. The
main idea is to select those RegEx prints whose ES values are no more than a
predefined expression size threshold β for each RegEx. Detailedly speaking, for
a given dividable RegEx r[1,n], RegEx print r[i,j] is selected in this stage if it
satisfies the following conditions: 1) ES(r[i,j]) ≤ β; 2) ES(r[s,t]) > β for s ≤ i
and t > j, or s < i and t ≥ j. We can easily prove that r[i,j] is also a RegEx
print of r[s,t].

Before describing our algorithm, we introduce a theorem first.

Theorem 1. For any dividable RegEx r = r1 · r2, where r1, r2 are RegExes, the
following two conditions hold: 1) ES(r) ≥ ES(r1), meanwhile MP(r) ≤ MP(r1).

Proof. According to the above calculation methods, we know that ES value is
not less than one meanwhile MP value is not more than one for any RegEx. Thus
ES(r2) ≥ 1, MP(r2) ≤ 1. Then we can infer that: 1) ES(r) = ES(r1)×ES(r2) ≥
ES(r1), moreover ES(r) = ES(r1) only when r2 represents the string set {ε}
or {α} ({α ∈ Σ}); 2) MP(r) = SES(r)

|Σ|L(r) = SES(r1)×SES(r2)

|Σ|L(r1)+L(r2) = MP(r1) ×MP(r2) ≤
MP(r1), moreover MP(r) = MP(r1) only when the shortest expressing string set
of r2 is its shortest complete string set.

Theorem 1 accords with our intuition: a RegEx requires more resource but has
better filtering effectiveness than any of its RegEx print. Our algorithm works re-
cursively in post-order traversal from the root node of the parse tree of r[1,n] to se-
lect RegEx prints. Figure 1 shows the selecting process of RegEx “a[bc]d.[bc]”
that has five atoms. Given β = 256, we begin the selecting stage from the first
atom in step 1, curr pointer keeps moving to the next atom if ES value of the
RegEx print between begin pointer and curr pointer is less than or equal to β.
When curr pointer arrives at the fourth atom “.”, condition 1 does not hold,
thus RegEx print a[bc]d is selected. Because we can infer that ES value of any
RegEx print that contains “a[bc]d.” is longer than 256 according to Theorem
1, we begin step 2 from the second atom. Although RegEx print [bc]d satisfies
the two conditions at the same time, it is included in the already selected RegEx
print “a[bc]d”. According to Theorem 1 we know that a[bc]d has higher MP
value than [bc]d, thus [bc]d is not selected. Step 3, 4 and 5 follow the same
idea to select RegEx prints.

For RegEx r[1,n], the ES value of a atom, supposing ri, may be larger than β.
Obviously, any RegEx print containing ri will not be selected. However, these

a[bc]d.[bc]
.
a[bc]d
a[bc]d.
[bc]d
a[bc]d
a[bc]d
[bc]d
[bc]d
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1 2 2 512
a [bc] d . [bc]

a[bc]d is selected
step1 [ ] [ ]

begin curr

2 2 512
[bc]d is not selectedt 2 a [bc] d . [bc]

begin curr

1 256 512

[bc]d is not selectedstep2

1 256 512
a [bc] d . [bc]

begin curr

d. is selectedstep3

256 512
a [bc] d . [bc]

begin curr

. is not selectedstep4

2
a [bc] d . [bc]

begin curr

[bc] is selectedstep5

begin curr

Fig. 1. Selecting RegEx prints for RegEx a[bc]d.[bc] with β = 256. In each step
atoms in blue indicate that they are covered by already selected RegEx prints, the
next selected RegEx print must contain at least one atom that is not in blue.

RegEx prints may have low MP value while all the remaining RegEx prints have
high MP value. To address this problem, we rewrite r into multiple RegExes
until no atom has ES value larger than β or no atom is in the form of the union
of RegExes. For instance, given β = 256, RegEx r =(tele|phone|AC.*NS)[^a]

has only one RegEx print [^a] whose MP value is close to 1. We can rewrite it
into two RegExes: r1 =(tele|phone)[^a], r2 =AC.*NS[^a], then we can select
RegEx prints with the same ES value and lowerMP value for rewritten RegExes.

Refining Stage. In this stage, we refine the RegEx prints selected in the last
stage in the following steps. Step 1, for each selected RegEx prints, the first
atom (the last atom) whose MP value equals 1 should be removed repeatedly.
For the example in Figure 1, the wildcard in “d.” introduces very limited fil-
tering effectiveness by requiring one random symbol after “d”. However it will
introduce much state in the RegEx print DFA. Thus, we need to remove the
wildcard. RegEx prints of the example become a[bc]d, d and [bc] now. Step
2, these RegEx prints, whose atoms are included by other RegEx prints, should
be deleted according to Theorem 1. For the above example, RegEx print d has
only one atom that is included by RegEx print a[bc]d. We should delete RegEx
print d because it is meaningless: at any time RegEx a[bc]d is matched means
d must be matched. One thing to notice that, RegEx print [bc] should not be
deleted if allowing one RegEx has more than one RegEx print (see in deciding
stage). Because its atoms are not included by a[bc]d. Step 3, RegEx prints
with positioning (or anchors) should be kept as many as possible. Because po-
sitioning add the limitation that these RegEx prints must be matched at the
special positions of items. As a result, they will not be matched frequently even
for these RegEx prints with highMP value. In our implementation, we regard the

(tele|phone|AC.*NS)[^a]
[^a]
(tele|phone)[^a]
AC.*NS[^a]
d.
d
a[bc]d
d
[bc]
d
a[bc]d
d
a[bc]d
d
[bc]
a[bc]d
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filtering effectiveness of ^ as a normal character to decrease MP value while not
increase ES value.

Deciding Stage. In this stage, we decide the final RegEx print for each RegEx
by limiting itsMP value no larger than a predefined matching probability thresh-
old η. Given a RegEx r = r[1,n], assuming it has k RegEx prints (p1, · · · , pk)
left after refining stage: if MP value of one RegEx print is smaller than η, we
removing the first atom (or the last atom) repeatedly in the RegEx print to
make its MP value larger than η, at the same time close to η as much as possi-
ble; if MP value of any one RegEx print is larger than η, then we use multiple
RegEx prints together for RegEx r to reduce the number of items that need to
be verified. Because if a RegEx has multiple RegEx prints, only when an item is
matched by these RegEx prints sequentially (the order depends on the position
of the first atom of these RegEx prints), the item will be verified. For RegEx
prints a[bc]d and [bc] in Figure 1, the former one matched does not imply
that the latter one must be matched in sequential matching order. One vivid
data item is abdea. How to choose the final RegEx prints is an open problem
at present. We want the sum of ES value of these final RegEx prints is smaller
than or equal to β and the product of MP value of these final RegEx prints is
as large as possible. Obviously this is a typical 0-1 knapsack problem. In this
paper, we achieve the goal using the classical dynamic programming solution for
0-1 knapsack problem.

4 Regex Print Matching

As the RegEx print set in RegexFilter can be compiled into a composite DFA
within limited memory, prior TCAM-based DFA matching solutions can be used
here directly for high-speed RegEx print matching. TCAM is a special type
of memory which takes input of data as key to look-up address. It has the
following three capacities: i) ternary states encoding: 0’s, 1’s, and *’s where
*’s stand for either 0 or 1, enabling one TCAM entry to encode multiple DFA
transitions; ii) parallel content lookup, enabling TCAM to complete lookups in
a single operation no matter the number of occupied TCAM entries; iii) first-
match semantic, making TCAM to return the index of the first address for the
content that the key matches.

Meiners et al. [12] propose a well-designed TCAM-based RegEx matching
solution, which uses three novel techniques to reduce TCAM space and im-
prove RegEx matching speed: transition sharing, table consolidation, and vari-
able striding. The main idea is to encode multiple DFA transitions into a TCAM
entry by the help of TCAM capacities. However, the character bundling algo-
rithm used to encode transitions inside each state in the work is designed for
TCAM-based packet classification applications, which produce prefix TCAM en-
tries: the predicate of each entry is a prefix bit string (e.g., 01**) where no 0
and 1 behind *. In fact, a ternary TCAM entry allows * to appear at any posi-
tions (e.g., 0**1), which means it misses the opportunity of encoding transitions
created by non-prefix entries.

^
a[bc]d
[bc]
abdea
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TCAM SRAM

Curr State Input Sym Dest State

S0

01*00111 S2

01*00**1 S1

01*00*1* S1

01*001** S1

******** S0

TCAM SRAM

Curr State Input Sym Dest State

S0

01*00111 S2

*****000 S0

01*00*** S1

******** S0

TCAM SRAM

Curr State Input Sym Dest State

S0

01000111 S2

01100111 S2

01000000 S0

01100000 S0

01000000 S1

01100000 S1

******** S0

(a) Transitions of State S0 (b) Character Bundling (c) Transition Logic Simplification (d) Optimal Encoding

[a-fA-F]
S0 S1

S2

[gG]

Fig. 2. Outgoing transitions of state S0 and their different encodings in TCAM

In this section we go a step further and tackle the prefix problem. For any
DFA state Si, it has 256 transitions (assuming alphabet Σ is ASCII), which
have the same current state and completely different 8-bit input symbols. Obvi-
ously encoding all the 256 transitions into TCAM entries can be regard as the
simplification of a logic function with 8-input 1-output, hereinafter referred to
as a transition logic function. However. the outputs of the transition logic func-
tion have |S| possible values, which is different from the classical logic function
that always have a logic value of either “0” or “1”. Using exhaustive searching
method can get the optimal solution, but its cost is higher than that of the
classical Quine-McCluskey algorithm.

To reduce the complexity we add a limitation of encoding the transitions
with the same output together: treating a destination state as value “1” of clas-
sical logic functions, and simplifying the transitions to the state with Quine-
McCluskey algorithm; then setting their destination states to irrelevant term
(any state is allowed), and encoding the remaining transitions. We give a de-
tailed description with the example of encoding the transitions in Figure 2 (a).
Current state S0 moves to state S1 if the input symbol is in character range
[a-fA-F], moves to state S2 along g and G, and moves to itself for the re-
maining input symbols. As long as the occupied TCAM entries are arranged
according to the encoding order of destination states, the capacity of first-match
semantic ensures the correctness of lookup results. Figure 2 (c) shows the result
with the encoding order S2 → S1 → S0, which occupies 5 TCAM entries, while
character bundling algorithm occupies 7 entries, as shown in Figure 2 (b). One
thing to notice is that the occupied TCAM entries of our encoding is relevant
to the encoding order.

In this paper, we do not address the encoding order problem by testing all
possible orders. We propose a near-optimal solution to the problem based on
the distribution of transitions with the same destination state: for each DFA
state, its 256 outgoing transitions moves to few destination states, furthermore
the distribution of these transitions is very uneven. This observation can be
verified by the statistical results over the whole state set averagely. Given a
state Si in state set S, assuming its 256 outgoing transitions move to Mi different
destination states, thereinto Nij transitions move to the j-th destination state
(1 ≤ j ≤ Mi, and Ni∗ is in descending order. If not, sorting them). Obviously,



374 T. Liu et al.

snort24

bro217

snort34

snort31

Fig. 3. The distribution of AT (j) for Bro217, Snort24, Snort31 and Snort34

∑j≤Mi

j=1 Nij = 256. For state set S, the number of different destination states per

state ADS is defined as
∑i<|S|

i=0 Mi

|S| , its average number of j-th most transitions

AT (j) is defined as
∑i<|S|

i=0 Nij

|S| .

Taking RegEx sets bro217, snort24, snort31 and snort34 (widely used in prior
experiments) as examples, the corresponding DFAs has 36.8, 14.4, 11.6 and 12.3
different destination states in average. The distribution of AT (j) for the DFAs
is shown in Figure 3: the transitions to the most destination state (AT (0)) ac-
count for 90% proportions; the transitions to other destination states roughly
equal, and the value is no more than 2 in most case. Therefore, a preferable
encoding order of is determined heuristically by the number of the transitions
to the same destination state. Because when the number is one or two, encoding
them will consume the same TCAM entries regardless of the order. Nevertheless,
encoding them first can improve subsequent results. In Figure 2 (c), encoding
the transitions to state S0 only consumes one TCAM entries.

An important thing to note is that the heuristic order does not guarantee to
minimize the transition logic function. The optimal encoding is shown in Figure 2
(d), which encodes partial transitions to state S0 first. This change makes one
TCAM entry enough to encode all the transitions to state S1.

5 Experimental Results

In this section, we first give a brief description of our experimental setup. Then
we evaluate RegexFilter on the metrics of memory consumption and matching
performance. At last we show how RegexFilter changes as the change of expres-
sion size threshold β and matching probability threshold η.

5.1 Experimental Setup

In this paper, we evaluate RegexFilter on RegEx sets extracted from two real-
world systems, namely L7-Filter [3] and Snort [2]. L7-Filter is a popular open-
source application layer traffic classifier for Linux. It re-assembles the payload
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Table 1. Comparison of state size among SinstrFilter, MulstrFilter and RegexFilter

RegEx # of RegExes # of DFA states / # of RegExes unable to handle

sets original rewritten SinstrFilter MulstrFilter RegexFilter

backdoor 158 161 1452 / 0 2128 / 0 2302 / 0

l7filter 107 166 1317 / 8 1541 / 8 2847 / 0

content of a flow and identifies its application level protocol through RegEx
matching. The latest version of L7-Filter has 112 RegExes for traffic classifica-
tion. In this paper, we remove five RegExes that are overmatched, and select
the remaining ones to constitute our experimental RegEx set. Snort is a famous
open-source intrusion detection system, which can be configured to perform pro-
tocol analysis, content inspecting over online traffic to detect a variety of worms,
attacks and probes. We consider all the RegExes in backdoor.rules file of Snort
systems. In Both L7-Filter and Snort systems, each RegEx is compiled into one
automaton; at run time all automatons are used to match each incoming item
sequentially.

In this paper, we compare RegexFilter with SinstrFilter and MulstrFilter.
SinstrFilter chooses a single string that is longest as the fingerprint for each
RegEx while MulstrFilter uses all the strings as fingerprints. All the three filters
can work in two modes. One is item-filter mode, which matches an item with all
RegExes of R in verifying stage, if the item passes through filtering stage. The
other is pair-filter mode that matches an item with RegEx set T (R,O(R′, i))
in verifying stage, T (R,O(R′, i)) contains all the RegExes that match the item
successfully as described in section 1.

5.2 Experimental Evaluation

In our evaluation, we use threshold log2(β) = 16 and − log256(η) = 6 to generate
RegEx print for RegexFilter. As shown in Table 1, RegexFilter can construct a
small Regex print DFA with less than three thousand states for each RegEx set.
On the contrary, both backdoor set and l7filter set produce a composite DFA
with more than one million states. One thing to notice is that it is impossi-
ble to extract any strings for 8 RegExes of l7filter set. One example is RegEx
^[a-z][a-z0-9 -_]+, which is used to classify Finger traffic. Both SinstrFilter
and MulstrFilter have to experience the step of enumerating all possible strings
represented by these RegExes. In our experiment, SinstrFilter and MulstrFilter
do not generate fingerprints for these eight RegExes because of the high cost of
enumeration.

In this paper, we estimate the throughput of TCAM-based fingerprint match-
ing using Agrawal and Sherwood’s TCAM model, which makes the assumption
that each TCAM chip is manufactured with a 0.18 µm process. Table 2 shows
the results of TCAM-based fingerprint matching of SinstrFilter, MulstrFilter

^[a-z][a-z0-9
-_]+
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Table 2. TCAM size and throughput for RegEx print DFAs

Filters backdoor set l7filter set

TCAM size TPS Throughput TCAM size TPS Throughput

SinstrFilter 0.050 Mb 1.007 7.27 Gbps 0.046 Mb 1.018 7.27 Gbps

MulstrFilter 0.073 Mb 1.003 7.27 Gbps 0.054 Mb 1.015 7.27 Gbps

RegexFilter 0.15 Mb 1.03 5.44 Gbps 0.17 Mb 1.61 5.44 Gbps

and RegexFilter on TCAM size and throughput for backdoor and l7filter sets 1.
TCAM size is the TCAM memory required to encode the corresponding DFAs.
We calculate its value by multiplying the number of entries by the TCAM width.
For all the fingerprint DFAs, we need at most 15 state ID bits, thus TCAM width
36 is enough to store the lookup key. TPS means TCAM entries Per State, which
is calculated by dividing the number of TCAM entries required by the number
of states. DFA engine takes fixed stride over inputs with one character each
transition, the throughput is estimated by the number of TCAM lookups that
can be performed in a second for a given number of TCAM entries by 8 bits.

We can draw the following conclusions from Table 2. First, our encoding can
reduce TCAM memory required sharply, whose maximum value is less than 0.2
Mb for all the fingerprint DFAs. Second, the TPS value is far less than 256, pre-
cisely close to 1, which means that our encoding is possible to encode a DFA with
more than one millon states into a 72 Mb TCAM. Consequently, it makes Regex-
Filter to work on a set of thousands of RegExes. Third, TCAM-based matching
can achieve high throughput, the value is over 5 Gbps for all the fingerprint
DFAs. Fourth, SinstrFilter and MulstrFilter are superior to RegexFilter on the
performance of fingerprint matching. The primary reason is that their fingerprint
DFAs have less states and occupies less TCAM entries than that of RegexFilter.

A key criterion to measure filtering effectiveness is verifying rate, which is
defined as the percentage of matches performed in verifying stage when with
filtering stage among the total number of matches performed when without
filtering stage. We make a comparison over a real traffic trace captured in 2010
from a backbone network. The result is shown in Figure 4. The percentages of
items (each item is a flow here) that are matched by backdoor set and l7filter set
are 10.4% and 91.4%. The malicious ratio on the normal traffic for backdoor set
is higher than that in real Snort system, the primary reason may be we skip the
packet classification step before RegEx matching in Snort. Although more than
90% items pass through filtering stage for l7filter, verifying rate is still very small
in pair-filter mode. The result confirms our assumption that an item is usually
matched by limited RegExes. Our experiment presents RegexFilter shows the
minimum verifying rate, and recalls all matched pairs of items and RegExes.

1 Our implementation first removes transitions redundancy among state using shadow
encoding technology in [12], and then encoding each state’s remaining labeled tran-
sitions with transition logic simplification method instead of character bundling.
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Fig. 4. Comparison among SinstrFilter, MulstrFilter and RegexFilter on verifying rate
over a real traffic

After knowing the performance of TCAM-based fingerprint matching and ver-
ifying rate, we can estimate the potential throughput by determining the time
required to process a byte as the sum of the time required by TCAM-based fin-
gerprint matching and the expected time required by verifying stage to process
a byte under the verifying rate. In pair-filter mode, RegexFilter can improve
the throughput by 21.5 times for backdoor set and by 20.3 times for l7filter set.
Our RegexFilter achieves the potential throughput as 1.2 times and 1.7 times
high on backdoor and l7filter set comparing with TCAM-based SinstrFilter, and
achieves the potential throughput as 0.79 times and 1.3 times high comparing
with TCAM-based MulstrFilter. One thing to notice is that MulstrFilter intro-
duces additional time to validate whether all fingerprints of the same RegEx are
matched in sequence, which is not included in the above estimation.

5.3 Effect of Expression Size Threshold

In this section we evaluate the effect of threshold β for RegexFilter. As β is
used to bound the number of strings represented by a RegEx print, state size of
RegEx print DFA is expected to grow along with the increase of β.

Figure 5 shows the change of RegEx print DFA state size for different β on
our experimental RegEx sets. All RegEx prints are generated under threshold
− log256(η) = 6. From Figure 5 we can find that backdoor set experiences almost
the same state size of for different β. Because each RegEx in backdoor set has
string fingerprints. As for l7filter set, state size of RegEx print DFA initially
decreases rapidly as the increase of β, and then increases after a certain limit.
This behavior is because some RegExes do not have any RegEx print for small β,
i.e. RegEx ^[\x14\x1c\$].{6,15}[\xc6-\xff] used to classify “network time
protocol” traffic in L7-Filter. We add these RegExes into the set of RegEx prints
to ensure that no false-negative matches occur, as a result the fingerprint DFAs
experience state explosion for small β. As β increases further, RegexFilter can
generate RegEx prints for these RegExes. Therefore RegEx print DFA becomes
compact suddenly, and then increases in the number of states stably.
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Fig. 5. State size of fingerprint DFAs as
a function of log2(β)
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Fig. 6. Verifying rate in item-filter mode
as a function of log2(β)

Figure 6 shows that how verifying rate of RegexFilter in item-filter mode
varies along with the increase of β. The input trace is a synthetic file generated
by regex-tool [20] with pm = 0.15. Owing to the same reason as described in the
last paragraph, RegexFilter presents fluctuant curve on verifying rate for l7filter
set. In one word, verifying rate decreases as the increase of β in the whole.

5.4 Effect of Matching Probability Threshold

Threshold η, which is used to bound the maximum matching probability of each
RegEx print, is the other parameter that can impact the generation of RegEx
prints in RegexFilter. In our evaluation, we keep log2(β) fixed at 16 because
backdoor set and l7filter set presents normal behavior on state size and filtering
rate for log2(β) ≥ 14. It gives a good trade-off when log2(β) is 16.

Figure 7 and Figure 8 show the effect of threshold η on state size of RegEx
print DFA and verifying rate respectively. As can be seen in Figure 7, decreasing
η, namely increasing − log256(η), will increase the state size of RegEx print
DFAs, as more symbols will be included for higher η. The state size of RegEx
print DFA experience sublinear growth for backdoor set, while it grows slowly
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Fig. 7. State size of fingerprint DFAs as
a function of − log256(η)
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Fig. 8. Verifying rate in item-filter mode
as a function of − log256(η)
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and flatly for l7filter set. The primary reason is that little RegExes in l7filter107
set have the RegEx print whose MP value is lower than 256−8, on the contrary
some RegExes of backdoor set have long string fingerprints. We expect that the
growth rate of RegEx print DFA state size will slow down gradually and become
zero after a certain value.

From Figure 8, we find that increasing − log256(η) does not improve verify-
ing rate any more after a certain value, which are 5 and 3 for the two RegEx
sets respectively. This indicates that RegExes in real-world systems are distinct
enough with − log256(η) = 6.

6 Conclusions

In this paper, we present RegexFilter, a high-speed and memory-efficient tech-
nique to improve the throughput of RegEx matching for network and security
applications. Our solution leverage the insights that an item is usually matched
by limited RegExes, and most items do not match any member in real-word
RegEx sets. Thus we try to speedup RegEx matching by quickly finding these
RegExes that may match each arriving item as little as possible. First, we de-
velop a novel method that generate RegEx prints to filter a large number of
unmatched items with little memory requirement. The method utilizes some
new tools to guide the generation of RegEx prints without constructing DFAs.
Second, we propose an non-prefix encoding algorithm to minimize the TCAM
entries required for TCAM-based RegEx matching. As a result, RegexFilter can
perform RegEx print matching quickly.

We evaluate our work on some reasonable metrics and compare it with other
two solutions. The preliminary experimental results show that our TCAM-based
RegexFilter is suitable to accomplish the filtering task in high-speed for sets of
large-scale and complex RegExes. As part of future work, we will beef our work
and explore its extension for multi-cores.
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Abstract. HTTPS is the standard protocol for protecting information
sent over the World Wide Web. However, HTTPS adds substantial over-
head to servers, clients, and networks [1, 2]. As a result, website owners
often pass on HTTPS and resort to only HTTP for hosting websites,
leaving clients and servers vulnerable to attacks [3, 4]. Techniques have
been proposed to only enable authentication and integrity of HTTP (re-
sponse) data [2, 5–7]. However, they all suffer from vulnerabilities and
poor performance. In this paper, we propose iHTTP, a new approach for
enabling lightweight, efficient authentication and verification of HTTP
(response) data. We adaptively handle different data encodings to allow
for better performance without effecting user experience. We introduce
a novel technique, Sliding-Timestamps, to allow iHTTP clients to au-
thenticate the freshness of response data to prevent replay attacks and
amortize signing costs. We also introduce Opportunistic Hash Verifica-
tion to reduce client public key operations required to authenticate full
web pages. We show in our experimental evaluation that iHTTP provides
similar performance to HTTP, and higher throughput and lower maxi-
mum response time than HTTPS and HTTPi, the most recent HTTP
authentication approach [7], for Client-Static data.

1 Introduction

HTTP [8] is the most popular protocol used to construct the World Wide Web
because it is lightweight, flexible, and scalable. However, HTTP provides no secu-
rity protection and as a result technologists have accepted HTTP over TLS/SSL
(i.e., HTTPS) [9] as the standard for providing authentication, integrity, and
confidentiality while sacrificing being lightweight, flexible, and scalable. Other
security protocols such as SHTTP [10] and HTTPA [11] have also been proposed;
however, they suffer from similar flexibility and scalability problems. As a result,
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data owners often choose HTTPS to provide data confidentiality and HTTP to
provide efficient data delivery.

While HTTP data is non-confidential, the integrity of HTTP data is still
very important. Recent research has shown that the lack of data integrity can
have averse effects on website owners and clients. For example, Vratonjic et al.
provided a case study of ad frauds in which HTTP web content was modified
on the fly to include or rewrite advertisements. The study estimated that a
WiFi hot spot with 100 users could raise $49,400 in annual revenue via HTTP
ad content rewriting [3]. Research by Stamm et al. demonstrated an attack on
HTTP called “Drive-By Pharming”, where a malicious javascript reconfigures a
victim router’s DNS to redirect clients to fake pages. As a result, attackers are
able to launch phishing attacks or present bogus data to clients [4].

The discussion above highlights the distinct need to protect even non-sensitive
HTTP content from malicious modification. A simple solution is to enable
HTTPS for all websites. However, HTTPS adds substantial overhead to both
the server and the clients [1]. Furthermore, HTTPS does not support network
caching, which is known to significantly improve performance [12] and reduce up-
stream bandwidth usage [2]. There clearly exists a need to provide data authen-
tication and integrity of HTTP data without sacrificing flexibility and scalability
as with HTTPS.

1.1 Previous Work

A viable solution to the above problems must have a minimal impact on per-
formance, flexibility, and scalability, which existing security techniques such as
HTTPS clearly lack. Towards this end, recent research has attempted to provide
lightweight integrity verification and authentication mechanisms for HTTP.

Web Tripwires was proposed to verify if web content has changed between
the server response and client rendering by embedding a javascript measure-
ment agent in HTML pages [13]. However, Web Tripwires provides no security
protection for the measurement agent itself and can be easily bypassed.

HTTPI provides authentication and data integrity of HTTP data by using
a pre-established session key for keyed hashing of client requests and server
responses [6]. HTTPI sessions are described as long-lived with no indication of
key management. This of course poses significant threats to the security of the
system [14]. Furthermore, the evaluation of HTTPI does not consider the cost
of TLS/SSL handshakes. Indeed, HTTPI in some cases can show performance
as poorly as HTTPS.

Lesniewski-Laas et al. used HTTPS to only provide authentication and in-
tegrity while enabling caching [5], which leads to a significant reduction in the
origin server loads. However, this technique requires the modification of and the
trust in network caches, making it difficult to adopt.

To decouple authentication and integrity from key management, SINE seeks
to provide data integrity and origin authentication by digitally signing HTTP
(response) data [2], which is signed once and used to serve many client requests
to enable network caching. However, SINE is vulnerable to replay attacks of
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stale authenticated data, and does not support chunked transfer encoding as
introduced in HTTP 1.1. HTTPi further enables support of chunked transfer
encoding, and subsumes SINE by providing network caching and progressive
rendering of both chunked and non-chunked data [7].

SINE and HTTPi are promising in enabling data origin authentication and in-
tegrity without key management. However, they suffer from issues that seriously
undermine their usability. SINE enables the caching of authenticators for long
periods of time by setting a static expiration [2]. This feature allows attackers
to launch replay attacks using non-expired data. In other words, clients cannot
verify the freshness of data. HTTPi attempts to address the freshness issue by
requiring that each response to a client request, or a chunk of a response, be dig-
itally signed, thus severely impacting the server performance [7]. In both SINE
and HTTPi, clients are required to perform at least one public key operation per
server response. As a result, clients potentially are required to make hundreds
of public key operations to render a single HTML page.

1.2 Our Contributions

Among the previous research, SINE and HTTPi are the most promising can-
didates for lightweight HTTP integrity protection. However, both fail to ad-
dress the issues outlined previously. In this paper, we propose a new approach
called iHTTP to address these problems. In particular, we seek an authentication
scheme with performance similar to HTTP. Our approach is inspired by SINE
and HTTPi. However, we propose new techniques to achieve stronger security
features without sacrificing performance.

We observe that HTTP response data can be categorized into two types:
Client-Static data, and Client-Unique data. Client-Static data refers to site re-
sources which are not specific to a client. For example, many clients requesting
a single image via a common URL will receive the same HTTP content. Client-
Unique data refers to response data that is directed to a specific client. For
example, a client requesting a common URL which returns the client’s WAN IP
address will return unique HTTP content. In this case each response is unique to
the client who requested it. In this paper, we focus on techniques to authenticate
and verify Client-Static data.

iHTTP adopts three techniques to achieve lightweight authentication of HTTP
response data. The first is to handle encoding data adaptively. HTTP 1.1 data
can be encoded in two ways: Content and Transfer [8]. We observe that servers
and clients handle encoded data in different manners. For example, compressed
data is buffered while non-compressed data can be processed as a stream. We
introduce a rule to adaptively apply existing integrity techniques based on encod-
ing format. By processing unique encodings differently, we can reduce the server
response size and the number of cryptographic operations without sacrificing
flexibility or user experience.

The second technique is the decoupling of freshness verification and signature
generation. Previous signature-based HTTP integrity techniques [2, 7] tightly
couple data freshness and signature generation. As a result, these techniques
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either suffer from performance issues or are susceptible to replay attacks. To ad-
dress this issue, we present a technique called Sliding-Timestamps, which decou-
ples signature generation from data freshness authentication by using authen-
ticated hash chain values to calculate an extended timestamp. Servers simply
need to release specific hash values to extend the freshness of signatures, which
forgoes signing data to update freshness.

The third technique is aimed at reducing the cost of client verification.
Signature-based HTTP integrity techniques require clients to verify at least one
signature per response. As a result, clients may be required to verify hundreds
of responses to render a single web page, which hinders user experience and re-
quires unnecessary computation. Towards this end, we present a technique called
Opportunistic Hash Verification to provide clients an opportunity to verify re-
sponses without signature verification. Using the descriptive nature of HTML,
servers can provide contextual authentication information about anticipated fu-
ture responses. This will reduce client overhead for rendering complex web pages.

We validate iHTTP through a prototype implementation and experimental
evaluation. In our experiments, we compare iHTTP with existing standard pro-
tocols, HTTP and HTTPS, and the most recent signature-based HTTP integrity
technique HTTPi [7]. We show that iHTTP outperforms HTTPS and HTTPi
significantly. Furthermore, our results show iHTTP achieves similar throughput
to native HTTP for Client-Static data. We also provide an evaluation of the
impact of Client-Unique data on signature-based HTTP techniques.

The rest of the paper is organized as follows. Section 2 discusses our design
goals and assumptions. Section 3 reviews some signature-based HTTP integrity
techniques, on which iHTTP is based. Section 4 presents the iHTTP protocol in
detail. Section 5 provides security and performance analysis of iHTTP. Section 6
reports the implementation and evaluation, and Section 7 concludes this paper.

2 Design Goals, Assumptions, and Threat Model

Design Goals: The high-level design goals for iHTTP are given below:

– Data Origin Authentication: Clients should be able to verify whether the
received iHTTP data was generated by a trusted identifiable source.

– Data Integrity: Clients should be able to verify whether the received iHTTP
response data has been modified by intermediate parties.

– Content Freshness: Client should be able to verify whether the received
iHTTP response data is “out of date”.

– Low Performance Impact: iHTTP will have minimal impact on servers and
clients, allowing for high throughput and low response time.

– Flexibility: iHTTP should allow caching of iHTTP data without modifying
network caches or proxies.

– Standards Compatible: iHTTP should be HTTP 1.1 [8] compatible as it is
currently the latest HTTP specification and widely adopted on the Internet.

Assumptions: We assume that our client and server machines are trusted and
server private keys are protected. We also assume that the clocks on client and
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server machines are loosely synchronized. We assume data sent over iHTTP is
non-confidential as our goal is to provide efficient authentication and integrity
protection of HTTP data. Finally, we assume that iHTTP is serving Client-Static
data as opposed to Client-Unique data.
Threat Model: We assume that attackers have the ability to intercept, add,
modify, delete, reorder, and store all data sent between the client and the server.
Attackers can sign data with authentic certificates not associated with the origin
server’s domain and/or IP address. Finally, attackers can slow down the delivery
of data for limited periods of time. The client assumes a reasonable response time
from the server.

We consider the following attacks out of the scope of this paper: Attacks
aimed at disrupting network availability or undermining cryptographic primi-
tives. Such attacks constitute general attacks on network implementations and
protocol weaknesses. We also do not defend against vulnerabilities targeting web
applications or scripting software.

3 Preliminaries

In this section we discuss two signature-based HTTP integrity techniques, Naive
and Progressive Authentication, presented in [2, 7] for the authentication of
HTTP content. These techniques form the foundation of the new techniques
we develop in this paper. The notation used in this paper is included in Fig-
ure 1. Note that authenticator refers to the collective group of information sent
to clients to authenticate and verify HTTP responses.

K – Private Key provided by Certificate
Signk{X} – Sign X with private key K
H(X) – Hash of X
A.t – Timestamp
A.e – Expiration
A.u – Object’s URL
A.l – Message length
HTTP – HTTP Response
HTTP.Headers – HTTP Dependent HTTP headers
HTTP.Body – HTTP response body
HTTP.Content – Response Specific Authentication Data
SH – Signk{H(A.t|A.e|A.u|A.l|HTTP.Headers|HTTP.Content)}
Authenticator – SH, A.t, A.e, A.u, A.l, HTTP.Content

Fig. 1. Notation

HTTP Response

Non-Critical Headers

Message Body
HTTP.Content

Content-Type,
Content-Encoding,
Transport-Encoding

HTTP.Headers

A.t, A.e, A.u,
A.l

Hash/Sign

Authenticator
A.t, A.e, A.u, A.l

Signk{H(A.t|A.e|A.u|A.l|HTTP.Headers|HTTP.Content)}

Fig. 2. Naive Authentication

Naive Technique: With the Naive Technique, a server first buffers the HTTP
response prior to sending data. The server then generates the authentica-
tor specific to the HTTP response by signing the hash of a server times-
tamp (A.t), expiration (A.e), requested URL (A.u), and HTTP response
body (Signk{H(A.t|A.e|A.u|HTTP.Headers|HTTPBody)}). The authenticator
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Fig. 3. Progressive Authentication Techniques

is then sent as an HTTP header along with the associated timestamp, expiration,
and URL. Clients can then verify the integrity of the HTTP response by first
buffering the HTTP message, performing one hash operation over the data, and
one (public key) signature verification operation. Figure 2 depicts this approach.

The Naive Technique lacks progressive processing and rendering support,
which hinders user experience. Thus, Progressive Authentication was proposed
to overcome this shortfall [7].

Progressive Authentication of Data Streams: Progressive Authentication
enables the authentication of data streams by providing hashes of data blocks
as part of the authenticator [7]. To enable progressive rendering, the server first
divides the entire HTTP response body into equally sized segments (S1, ..., Sn).
Each segment is then hashed to get H(Si) and the hashes are concatenated
into a list X1 = H(S1)|...|H(Sn). The signature for the response is generated
as Signk(H(A.t|A.e|A.u|A.l|HTTP.Headers|X1)) = SH1 [7]. The authenticator
for Progressive Authentication includes (X1, A.t, A.e, A.l, SH1) and is sent along
as an HTTP header. Upon receiving the authenticator, the client immediately
verifies X1, A.t, A.e, A.l, and HTTP.Headers via the signature SH1. Once the
authenticator is verified, X1 can be used to immediately authenticate any seg-
ment upon arrival [7].

Chunked-Transfer Support: Chunked Transfer-Coding was introduced in
HTTP 1.1 to allow for servers to send partial information to clients without
knowing the response size [8]. Chunked-Transfer Authentication enables sup-
port of chunk encoded data by generating an authenticator for each individual
chunk. Essentially each chunk has a unique authenticator that protects the chunk
data and chunk order. The authenticator of the first chunk is added as an HTTP
header while the authenticators of subsequent chunks are embedded as part of
data [7]. Figure 3(b) shows the process for creating the authenticator for chunk
encoded data. Please refer to [7] for details.
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4 Our Approach – iHTTP

iHTTP is an HTTP integrity approach for efficiently enabling HTTP authenti-
cation and integrity, preventing replay attacks, and reducing overhead for both
clients and servers. iHTTP achieves these goals by adaptively handling data en-
coding, enabling Freshness Authentication with Sliding-Timestamps, and pro-
viding Opportunistic Hash Verification.

In the following, we first describe a generic authenticator generation process
for handling different data-encodings, then expand the authenticator generation
process to add Sliding-Timestamps to enable authenticator caching, and finally
describe Opportunistic Hash Verification to reduce client verification cost.

4.1 Authenticator Generation

This subsection outlines the iHTTP authenticator content and generation pro-
cess. Specifically, iHTTP adaptively uses the Naive and Progressive Authentica-
tion techniques to enable better performance by reducing cryptographic opera-
tions and payload size.

iHTTP uses cryptographic hash and digital signature to generate message
authenticators. Several key pieces of information are required for providing au-
thentication, including 1) a timestamp (A.t) used to verify the authenticator
generation time, 2) an expiration timestamp (A.e) for preventing reuse of ex-
pired authenticators, 3) the requested URL (A.u) to link the response data to
the requested URL, 4) a subset of HTTP headers (HTTP.Headers), 5) content
length (A.l), and 6) a message content identifier (HTTP.Content) referring to
a unique identifier that is generated based on the HTTP message body. Af-
ter HTTP.Content generation, the server hashes and signs the above items as
Signk{H(A.t|A.e|A.u|A.l|HTTP.Headers|HTTP.Content)}. For simplicity we
refer to this collective group of data as an authenticator.

HTTP.Headers is included in the signature to ensure clients process response
data in the correct manner by verifying the response format and properties. This
prevents data misuse attacks in which the client is persuaded to handle data in
a different manner than specified by the server. HTTP headers are categorized
into two groups: End-to-end or hop-by-hop. End-to-end must be stored and
forwarded by caches in the original form (with the exception of Content-Length,
which may be modified by network caches), while hop-by-hop headers may be
modified by caches [8]. Thus, all the non-modifiable headers in the response are
included as part of HTTP.Headers. To handle the exception Content-Length,
iHTTP uses A.l to verify the data length in the authenticator.

The Naive and Progressive Authentication techniques differ in the genera-
tion process for the message content identifier (HTTP.Content). We observe
that no single previous technique provides the best performance for generating
HTTP.Content over all data types, encodings, and formats. Thus we adap-
tively apply the two techniques to achieve the best performance for generating
HTTP.Content. Figure 1 contains the relevant notation and information with
regards to the authenticator.
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iHTTP determines the optimal authentication technique for HTTP.Content
generation based on the response encoding. We observe that compressed re-
sponses require clients to buffer data prior to decompression. As a result, the limi-
tation of Naive Technique pointed out by [2,7] does not apply to compressed data.
By applying the Naive technique, iHTTP will reduce the number of hash opera-
tions from O(n) to O(1) and decrease the authenticator size by 1.4% [7]. iHTTP
determines if responses are compressed by checking for compression tokens lo-
cated in the Content-Encoding or Transport-Encoding headers. If a compression
token is present, the Naive technique is used for the creation of HTTP.Content,
which consists of a SHA-1 hash of the HTTP message body. Otherwise, Progres-
sive Authentication is used for creating HTTP.Content, which is the concate-
nated list of SHA-1 hash segments representing the HTTP message body.

An iHTTP server generates a new authenticator when 1) the content being
served for the requested URL has changed, or 2) when the authenticator expires.

Local Authenticator Caching: The techniques presented in this paper rely
upon locally caching the server generated authenticators. The Local Authenti-
cator Cache is only concerned with caching the latest generated authenticator
per requested URL. Thus, once a new authenticator for a URL is generated,
the previous URL specific authenticator can be discarded. Caching may be im-
plemented using many different techniques and data structures. Specific caching
implementations may provide better performance in different environments and
platforms. Thus, determining the optimal caching mechanism for Local Authen-
ticator Caching is orthogonal to this work.

4.2 Freshness Authentication

As discussed previously, authenticator caching is enabled using a static expi-
ration time. This presents a dilemma to iHTTP. If the expiration time for an
authenticator is set too long, an update to the content at the corresponding
URL may have occurred before the expiration time. As a result, an attacker
may replay the old data using the authenticator before its expiration time. This
can certainly be mitigated by using a short expiration time. However, a short
expiration time will result in frequent generation of the authenticators, which
involve expensive public key operations.

In the following, we present a freshness authentication technique that can
provide fresh authentication tokens with light overhead.

Sliding-Timestamp: The problem described above is a result of a tight cou-
pling between authenticator generation and the client URL request. The tight
coupling is due to the strong constraint of generating an authenticator to prove
freshness. Thus, it is desirable to provide authenticator freshness verification
without actually signing the authenticator data.

We propose to meet this goal by allowing the server to extend a given authen-
ticator’s timestamp using a server generated hash chain. The server generates the
hash chain at the time of authenticator generation and signs the commitment of
the hash chain to bind the hash chain and authenticator. Each intermediate hash
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Fig. 4. Sliding-Timestamp Generated using a Hash Chain

in the chain represents a calculated amount of time to extend the authenticator’s
timestamp. The one-way nature of hash chains allows clients to authenticate the
server’s decision to extend the timestamp without requiring the server to sign
the authenticator data again [15]. Figure 4 illustrates this approach.

The hash chain is created using a server generated random number N , the
size of the chain n, and one-way cryptographic hash function H as X1 =
H(N), ..., Xn = H(Xn−1). The random number N is kept secret at the server;
this value can be used to calculate intermediate hash values. Xi represents the
ith hash in the chain. We consider the number of hash operations to generate Xn

beginning with Xi as ΔH and we represent this process as HΔH(Xi) = Xn. We
introduce Δt as a short server-defined configurable time-increment used for ex-
tending the authenticator timestamp. Δt represents the time duration associated
with each hash operation. Using the above properties, the extended timestamp
is calculated by A.t+ΔH ∗Δt, where A.t is the authenticator timestamp.

The server generates a hash chain during each authenticator generation. The
size of the hash chain, n, is determined by A.e−A.t

Δt . The server stores n,Δt,N , and
Xn in the local server cache associated with each authenticator. The authentica-
tor signature is modified to includeΔt andXn, i.e., the authenticator signature is
generated as Signk{H(A.t|A.e|A.u|A.l|HTTP.Headers|HTTP.Content|Δt|Xn)}.
Prior to sending an HTTP response, the server must generate the appropriateXi

to authenticate the freshness of the authenticator. Xi is calculated based on the
current server timestamp (c), the authenticator’s timestamp (A.t), Δt, and size
of the hash chain (n). The server calculates i = n− � c−A.t

Δt  and then generates
the ith hash of N as Hi(N) = Xi. (Alternatively, the server may pre-compute
all hash values and use each appropriately.) The server sends Xi, ΔH , Δt, and
Xn as part of the authenticator.

Figure 5 contains the updated final authenticator and signature. The server
generates a new authenticator only if HTTP.Content for an HTTP response
and locally cached authenticator do not match or if the authenticator expires.
Otherwise, the server uses the locally cached authenticator for the response along
with the intermediate hash chain value Xi to extend the timestamp.

Prior to verifying Xi and the extended timestamp, the client first verifies
the authenticator contents via signature. To verify the extended timestamp, the
client first verifies Xi is a member of the hash chain rooted at Xj , where Xj is
a previously verified hash chain value for the same signature or Xj = Xn when
the authenticator signature has not been previously received. Xi is verified if
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Xj = HΔH′(Xi) whereΔH ′ = ΔH−Δj andΔj is the number of hash operations
to generate Xn from Xj. If Xi is verified, the extended timestamp is calculated
by A.t +ΔH ∗Δt. The request is then proven fresh if the calculated extended
timestamp is greater than the request timestamp. If the authenticator is verified,
the client stores that last verified authenticator where Δj = ΔH and Xj = Xi

for a unique URL.
K – Private Key provided by Certificate
Signk{X} – Sign X with private key K
H(X) – Hash of X
A.t – Timestamp
A.e – Expiration
A.u – Object’s URL
A.l – Message Length
N – Server nonce used to build the hash chain
n – Hash chain size
Xi – the ith hash generated in a hash chain
∆H – Number of hash operations to convert Xi to Xn
∆t – Server defined time parameter to determine an extended timestamp
HTTP.Headers – iHTTP Dependent HTTP headers
iHTTP.Content – Data identifiers for authentication/integrity techniques
SH – Signk{H(A.t|A.e|A.u|A.l|HTTP.Headers|iHTTP.Content|Xn|∆t)}
Authenticator – SH, A.t, A.e, A.u, A.l, iHTTP.Content, ∆t, Xi,∆H

Fig. 5. iHTTP Authenticator

Given Xi, the server pro-
vides Xi−1 to extend the
authenticator timestamp by
Δt. Since it is infeasible
for third parties to compute
Xi−1 from Xi given the
one-way property of crypto-
graphic hash functions, the
clients can be sure only the
server can provide Xi−1. As
a result, this approach de-
couples the client request
and authenticator genera-
tion and allows authenticator caching to prevent resigning when HTTP.Content
matches the cache value for the requested URL.

Network Caching of iHTTP Objects: Servers may direct network caches
to store iHTTP data using standard HTTP 1.0/1.1 caching directives. In this
manner, no changes are needed by network caches to enable clients and servers
to use iHTTP. Thus, iHTTP can be adopted incrementally. However, iHTTP
requires that the server use cache-directives to allow for effective caching while
enabling iHTTP data freshness.

iHTTP uses the “must-revalidate” cache directive to force caches to revali-
date every request with the origin server. This ensures the iHTTP server can
respond with an updated fresh authenticator for each request. When a NOT-
MODIFIED response is provided, the server will provide an updated authen-
ticator and Sliding-Timestamp. The cache can overwrite any changed headers
seamlessly and forward necessary data to the client [8].

Forcing network caches to query the origin server for each request does result
in an unnecessary request when the cached authenticator is fresh. For example,
two different clients may request the same file at the same time, resulting in
the same authenticator. This limitation is due to the fact that iHTTP does not
require cache modification. For caches wishing to handle iHTTP, caches can
calculate if the cached authenticator is fresh based on the Sliding-Timestamp
and bypass the origin request.

iHTTP also uses the “no-transform” directive to prevent caches from modi-
fying response data and a set of end-to-end headers, which would cause authen-
tication failure.
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_h – SHA1 hash of the authenticator for the associated file

<html>
<head>

<link rel="stylesheet"
type="text/css"
href="layout.css" />

</head>
<body>

<img src=”coolcat.png” />
<body>
</html>

Index.html

iHTTP Cache

Embed
References

Index.html
<html>
<head>

<link rel="stylesheet"
type="text/css"
href="layout.css"
_h=”AE123A685BA498EB049AB8A456CC373FE8C019BF” />

</head>
<body>

<img src=”coolcat.png” 
_h=”499A24E188F1522F64EA46DCD13A384B5B5D93E8” />

<body>
</html>

Fig. 6. Opportunistic Hash Verification

4.3 Opportunistic Hash Verification

In the above design, iHTTP clients have to authenticate each iHTTP response
via at least one expensive signature verification operation. HTML templates
often outline multiple HTTP objects required to render a full web page, which
results in multiple responses per page.

In HTTP, clients make two types of requests: initial requests and supporting
requests. Initial requests are associated with the top level document of any web
page and will always require clients to verify the authenticator signature to
ensure freshness. Client supporting requests, on the other hand, are made for
supporting resources (e.g., iframes, images, javascript, css) required to render
the HTML page.

Note that the number of supporting resources required to render modern web-
sites is fairly large and continues to grow. For example, CNN.com contains 103
unique references to supporting files. Thus, enabling iHTTP for CNN would
require that clients perform 104 expensive signature verification operations (in-
cluding the initial request). This will pose a problem for resource constrained
clients. In the following, we propose an Opportunistic Hash Verification tech-
nique to reduce the number of client signature verification operations when au-
thenticating an entire web page.

Hash Embedding: The basic idea of Opportunistic Hash Verification is to
amortize the expensive signature verification operations at the client by match-
ing authenticated cryptographic hashes with client generated hashes based on
the received iHTTP responses. This approach uses the descriptive properties of
HTML to allow servers to provide contextual information about potential client
requests. Authenticating an HTML document in turn verifies the contextual
information and allows clients to bypass most signature verifications.

Specifically, the server will parse all responses containing HTML. HTML
tags that may generate additional client requests (i.e., link, img, script, iframe,
etc.) are located and each tag’s source value is used to search the authenti-
cator cache. The matched authenticator will be cryptographically hashed as
H(A.t|A.e|A.u|A.l|HTTP.Headers|HTTP.Content|Δt|Xn) and the hashes are
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embedded in the HTML as attributes of the associated tags. For example, Fig-
ure 6 depicts an HTML file which contains two supporting resources: a style
sheet and image. The server uses the “src” attributes of these resources to look
up the corresponding authenticator in the iHTTP local cache. The associated
authenticator is hashed and embedded as part of the HTML. Using the embed-
ded hash gives the client the opportunity to verify the expected authenticator
without a signature verification operation.

Upon receiving a response, a client hashes the authenticator content and com-
pares it with the verified embedded hash value (e.g., the “ h” attributes on the
right side of Figure 6) for the requested URL. If the hash values are equal, the au-
thenticator content is verified. To verify the freshness of the response, the client
then uses the Sliding-Timestamp technique presented earlier. If the hash values
match and the response is fresh, the HTTP.Content can be used immediately to
verify the message body. In the case when the hash values of the authenticators
do not match, the iHTTP client simply falls back to verifying the authenticator
via public key operation as the content of the requested file may have changed
in the short time between the server embedding the hash and the sending the
HTTP response to the client supporting request.

5 Analysis

5.1 Security Analysis

Data Origin Authentication: An iHTTP server signs authenticators with a
protected private key. The corresponding public key is certified by a trusted
Certificate Authority and provided to iHTTP clients. Using the verified server
certificate, clients can verify the authenticator signatures and thus verify that the
data originated from the server that possesses the certificate’s private key. Once
the authenticator is verified, HTTP.Content authenticates the message body
by matching one-way hashes of message content with HTTP.Content. When
the Opportunistic Hash Verification is used, authenticating HTML responses in
turn verifies the data origin of the supporting resources (e.g., iframes, images,
javascript, css) through the embedded hash values.

Data Integrity: Clients verify the integrity of data through signature verifica-
tions and a series of matching of hash values. The response signature allows the
client to verify the integrity of the authenticator data and HTTP headers. Once
verified, the client can then use the authenticated HTTP.Content field to verify
the integrity of the message body. When the Opportunistic Hash Verification
technique is used, the authenticated HTML allows clients to use the embedded
hash values to verify the integrity of the corresponding supporting resources.
In other words, the embedded hashes verify the integrity of the authenticator.
Part of the authenticator, HTTP.Content, can in turn verify the integrity of
the message bodies of these supporting resources. Any modification of either the
top level web page or a supporting resource will lead to a mismatch and can be
detected.
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Freshness:Data freshness authentication is provided by the authenticator times-
tamp (A.t) and the calculated Sliding-Timestamp (A.t+ΔH ∗Δt). Without the
knowledge of the private key of a server, an attacker will not be able to forge
an invalid authenticator timestamp without being detected. Moreover, due to
the one-way property of the cryptographic hash function H , the attacker cannot
forge the hash value Xi used to extend the timestamp, either, unless Xi was
released by the server. Assume the maximum clock difference between any client
and a server is δmax. The above analysis means that an attacker can hold an au-
thenticated timestamp valid for at most Δt+ δmax long before a client identifies
it as out of date. Since the clients and the server are loosely synchronized and Δt
is chosen by the server, both Δt and δmax can be kept pretty small. Finally, note
that the attacker can generate negative influence only when the server modifies
the data at the requested URL after the authenticated timestamp is released.

Mixed HTTP & iHTTP Content: A subtle security issue exists when an
HTTP document requires an iHTTP resource. While clients can authenticate the
received iHTTP data, clients cannot be sure that the received data was intended
to be requested. Nevertheless, iHTTP provides the same guarentees as HTTPS
since, in this case, the untrusted HTTP document can be misused to request
any invalid resource.

5.2 Performance Analysis

Low Performance Impact: The performance of iHTTP is highly dependent
on the authenticator generation process. iHTTP uses Sliding-Timestamps to
assist in authenticator caching which amortizes the number of signature gener-
ation operations. As a result, iHTTP has both a throughput and response time
comparable to HTTP.

However, iHTTP impacts the size of the response due to the addition of
authenticators and embedded hashes. Thus, iHTTP requires more bandwidth
to send a response which will effect overall throughput. The actual cost of
iHTTP is dependent on the content encoding, hash size, and transfer coding.
For non-compressed responses, the authenticator size is dependent on HTTP
message content, or more precisely, Hashsize ∗ ContentSize

BlockSize . Transfer coding ap-
plies one authenticator for each chunk of a response. Unfortunately, the num-
ber of chunks per response is dependent on the implementation of the server.
Thus care should be taken when chunking data as the performance benefit
of chunking can be overshadowed by the cost of enabling iHTTP. Finally, en-
abling Opportunistic Hash Verification adds a hash value for each HTTP object
in a given HTML document. Hence, the size of the response is increased by
(NumberofUniqueReferences) ∗ (HashSize). This overhead is also specific to
the HTTP content.

Flexibility: iHTTP uses HTTP header directives to configure network caches
to store authenticators and HTTP responses while enabling data freshness. Fur-
thermore, iHTTP does not require changes to existing network infrastructure
or software. Caches wishing to natively handle iHTTP can further improve
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performance, which will reduce server loads. Furthermore, no changes are needed
for server generation software such as PHP or ASP.NET to enable iHTTP.

Standards Compatible: iHTTP uses standard based configurations to achieve
compatibility (e.g., the use of standard HTTP headers to configure caches).
iHTTP also supports any combination of chunked and compression encodings.
In addition, iHTTP only requires minor modifications to clients and servers.
iHTTP does not require changes to the network infrastructure or caches, and
thus allows incremental deployment. As a result, iHTTP is backward compa-
tiable with existing network infrastructures and non-iHTTP enabled clients.

5.3 Limitation

As discussed previously, HTTP responses can be classified as either Client-
Unique or Client-Static. While iHTTP can correctly serve Client-Unique HTTP
responses, iHTTP, as well as other signature-based HTTP integrity techniques
[2, 7], are not suitable to handle Client-Unique data for two reasons:

First, Client-Unique responses can never be cached due to response data being
unique per client, which requires data to be signed for each response. As a result,
signature-based HTTP integrity techniques will perform at least as poorly as
HTTPS. Moreover, existing signature-based HTTP integrity techniques do not
provide mechanisms for allowing clients to authenticate response data as logically
correct. As a result, attackers or intermediate parties can redirect authenticated
fresh data to the wrong clients.

Similarly, iHTTP and signature-based HTTP integrity techniques do not au-
thenticate or verify cookies associated with requests or responses. Thus, servers
and clients cannot trust received cookies. However, cookies are widely used by
servers to provide a unique client experience, and hence prominently used with
Client-Unique data. When cookies are provided with Client-Static data, servers
can exclude them from the authenticated data to still retain the benefits of iHTTP.

Servers wishing to authenticate Client-Unique data should resort to HTTPS
or other integrity protocol designed to provide client specific authentication of
HTTP data.

6 Implementation and Experimental Evaluation

6.1 Implementation

iHTTP requires modification of both client and server to enable its security
features. On the server side, we implemented iHTTP as an Apache module
for handling iHTTP requests and responses. The Apache module is responsible
for authenticator generation, managing the authenticator cache, and embedding
hash identifiers into HTML. We used Apache’s Portable Runtime API to imple-
ment caching. To evaluate iHTTP against the latest proposed HTTP integrity
technique, we also implemented HTTPi as an Apache module.

iHTTP is designed to handle both chunked and non-chunked data. For non-
chunked data, the iHTTP authenticator is added as part of the HTTP headers.
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Chunked data must be handled differently as chunks occurring after the first
chunked do not contain HTTP headers. Since authenticators are associated with
each chuck, iHTTP embeds the authenticator as chunked data.

On the client side, we developed a Firefox extension to enable iHTTP support.
Our extension relies upon the Mozilla service interfaces for intercepting responses
and rewriting data. The extension handles verification as well as support for
Opportunistic Hash Verification.

6.2 Experimental Evaluation

Experimental Methodology: First, we provide a microbenchmark to investi-
gate the costs of specific iHTTP operations (e.g., signing, hashing, caching, and
hash embedding), which may impact the server performance. These operations
also represent the operational costs for the HTTPi implementation. Next we
give a macrobenchmark of the iHTTP server module to investigate the through-
put and max response time for HTTP, HTTPS, iHTTP, and HTTPi. Finally,
we benchmark iHTTP on a resource restricted client to measure the impact on
the overall response time for rendering an entire page with Opportunistic Hash
Verification enable and disabled.

Experimental Setup: Our hardware platform is an IBM HS22 X-Server with
16 cores and 32 GB of RAM. The iHTTP Apache module is installed with Apache
2.2 web server hosted on a virtual machine (VM) running CentOS 5. Apache is
run with the standard configuration for server processes. The VM is configured
with dedicated 4 CPU cores and 16 GB of RAM. To run our benchmarks, we
created another VM running Ubuntu 11.10 with 2 dedicated CPU cores and 4
GB of RAM, also hosted on the IBM HS22 X-Server. Network communication
is provided via ESXi virtual switch.

The iHTTP module is configured with a 2,048 bit SSL Certificate which repre-
sents the suggested key strength by NIST [16]. We note that larger keys will have
a more severe impact on the performance on existing HTTP integrity protocols
and thus iHTTP provides even more benefit as keys become larger.

To test resource constrained clients, we install our client module as a Firefox
mobile plugin on a Motorola Droid 2 running Android based Cyanogenmod 7.

Table 1. Server Microbench Results

Authenticator Creation 4.97771 ms
Signature Generation 4.3207 ms

Hash Embedding 0.13189 ms
Cache Search 0.08751 ms

SHA-1 Operation 0.00042 ms

Server Microbenchmark: iHTTP has
several operations for enabling the proto-
col that incur overhead. The main oper-
ations include hashing, signing, caching,
and hash embedding. We instrument the
Apache module to record the costs of
these operations and display the results
in Table 1. As expected, the time required
to sign the authenticator is significantly
more costly than the other operations involved with enabling iHTTP. Thus, we
can assume a great savings by foregoing signing each chunk with hash based
authentication and integrity verification.
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(a) Non-Chunked-Not-Compressed (b) Compressed

(c) Chunked (d) Chunked-Compressed

Fig. 7. Distribution of Response Time

Server Macrobenchmarks: To measure the impact of iHTTP on overall
performance, we run two different macrobenchmarks, JMeter Benchmark and
SpecWeb2009 Benchmark, to investigate the impact given different website con-
figurations. For these tests, our iHTTP module is configured with Δt=1 second
and an authenticator expiration (A.e) of 30 seconds(i.e., n=30 ). Δt and A.e im-
pact the overall performance. However, due to the small overhead of one SHA-1
operation, the impact is limited when n is not significantly large(e.g., n < 1000).

JMeter Benchmark: We deployed a website representing a typical blog or per-
sonal website containing only Client-Static data. Four copies were deployed to
represent each of the HTTP data formats, non-chunked-not-compressed, com-
pressed, chunked, and chunked-compressed. The sites using chunked data are
configured such that each HTML response contains five chunks. The landing
page is 67.91 Kb in size and contains 16 HTTP objects. JMeter benchmark was
configured to simulate 130 different simultaneous clients, each making 10 page
requests for the site. Each page request resulted in 17 GET requests per page.
The interactions were duplicated across the sites to ensure equality and each
simulation was run separately. Figure 7 shows the response time with respect to
the number of requests.

The figures show that iHTTP outperforms HTTPi in all cases. Furthermore,
the response times of iHTTP are very close to HTTP for both Figures 7(a)
and 7(b). iHTTP performs not as well for chunked and chunked-compressed data.
This is expected since iHTTP must handle each chunk separately. In general,
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iHTTP performs better than HTTPS since authenticator caching helps amortize
the number of signature operations.

Table 2. JMeter Results for Figure 7(a)

(a) Response Size

HTTP 16087 bytes
iHTTP 17866 bytes
HTTPS 16087 bytes
HTTPi 17226 bytes

(b) Throughput

HTTP 267.2 req/sec
iHTTP 252.8 req/sec
HTTPS 114.6 req/sec
HTTPi 84.1 req/sec

Table 2 shows the re-
sponse sizes and the through-
puts of the HTML docu-
ments for Figure 7(a). Here
we see the added cost of
the authenticators and em-
bedded hashes. The authen-
ticator size is 1,139 bytes,
and Opportunistic Hash Ver-
ification adds 640 bytes for
the HTML page, which are 7% and 4%, respectively, for non-chunked-non-
compressed responses. We note that both of these numbers are reliant on the
size of the response data.

SpecWeb2009 Benchmark: SpecWeb2009 allows us to investigate the impact
of Client-Unique data on servers and protocols by simulating dynamic web ap-
plications. We deployed the SpecWeb2009 banking application, which consists
of 15 pages and each page makes an average of 13.6 supporting requests with
the minimum being 8 requests and maximum being 19 requests. We configured
SpecWeb to simulate 150 simultaneous users for HTTP, HTTPS, iHTTP, and
HTTPi configurations. Default configurations were used for KeepAlive and SSL
sessions on the SpecWeb clients.

Table 3. SpecWeb2009 Results

Protocol Avg Resp Bytes/Req
HTTP 544 ms 41,818

HTTPS 576 ms 41,828
iHTTP 647 ms 50,627
HTTPi 662 ms 52,147

Table 3 shows that both iHTTP and
HTTPi perform more poorly than HTTPS
and HTTP. First, we observe that each of the
15 generated HTML pages generate Client-
Unique content per URL request. Hence, the
“account summary.php” page will contain
content specific to the user who requested
it. In this case, iHTTP and HTTPi will be
required to regenerate the authenticator for
each client request.

Client Benchmark: This section compares iHTTP Opportunistic Hash Veri-
fication with plain signature-based HTTP integrity techniques. We do not pro-
vide comparison of iHTTP with HTTP and HTTPS, since previous research
has already provided a thorough comparison of signature-based HTTP integrity
techniques with HTTP and HTTPS [7].

We installed the iHTTP client on Firefox mobile version 8.0. We requested the
landing page of our static website used in the JMeter benchmark and recorded
the load time of 20 requests when both enabling and disabling Opportunistic
Hash Verification from the server. The plain signature-based approach requires
16 additional public key operations by the client.
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The average time per page load for the plain signature-based approach took
7.4321 second. Pages with Opportunistic Hash Verification enabled on aver-
age took 5.8291 seconds to load. This shows that Opportunistic Hash Verifi-
cation reduces the computational overhead of the client by 21% compared to
previous HTTP integrity techniques. Furthermore, the disparity of performance
will increase with the number of HTTP objects outlined in the HTML page.

7 Conclusion

In this paper, we proposed a new protocol named iHTTP to enable lightweight
authentication of Client-Static HTTP response data. The proposed iHTTP pro-
tocol adaptively handles different data encodings to allow for better perfor-
mance without effecting user experience. It also uses a hash chain based Sliding-
Timestamps to provide efficient freshness authentication without using public
key operations, and exploits Opportunistic Hash Verification to reduce client
public key operations. Our experimental evaluation demonstrated that iHTTP
provides similar performance to HTTP, and higher throughput and lower max-
imum response time than HTTPS for Client-Static data.
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Abstract. HTTP Parameter Pollution (HPP) vulnerabilities allow at-
tackers to exploit web applications by manipulating the query parameters
of the requested URLs. In this paper, we present Application Request
Cache (ARC), a framework for protecting web applications against HPP
exploitation. ARC hosts all benign URL schemas, which act as generators
of the complete functional set of URLs that compose the application’s
logic. For each incoming request, ARC exports the URL, extracts the as-
sociated schema, and searches for it in the set of already known benign
schemas. In case the schema is not found, the request is rejected, and
the event is recorded.

ARC can be transparently integrated with existing web applications
without any modifications to the server and client code. It is implemented
in Google’s Go language and uses efficient data structures for storing the
URL schemas, imposing negligible computational overhead on the web
application server. When running on a 4-core Linux server, ARC can
process hundreds of thousands of URL requests per second. A typical
URL resolution is in the scale of microseconds.

Keywords: HPP, Web Security.

1 Introduction

Web applications are experiencing a variety of highly sophisticated attacks that
stem from many different sources. Some of them exist due to fundamental design
choices of the web platform [5], while others rise due to faulty browser implemen-
tations [4,20]. Some of them are based on deceiving users by creating specially
crafted visual conditions [10,15], and others emanate from the complexity and
the wide use of web applications in many different systems [27,7]. HTTP Pa-
rameter Pollution (HPP) is a recently discovered technique for exploiting web
applications. HPP can be considered as an injection attack that targets URLs;
one of the fundamental concepts of the web platform [33]. Web browsers com-
municate with web applications through HTTP requests and responses, which
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reference resources using URLs. This communication can be polluted by inject-
ing parameters in the HTTP stream. These injected parameters form URLs,
which if served, instruct the application to perform actions that were originally
not part of the application’s design. Thus, the control flow of the web application
is altered according to an attacker’s need.

To illustrate the attack in a short example (in Section 2 we give a detailed
presentation of HPP and, more particularly, in Section 2.1 we discuss a formal
threat model), consider an e-store application taking two arguments, namely a
product identifier and an action, which affects the product state. A combination
of a product identifier and the action purchase results in ordering a product.
The product identifier and the action must be attached as parameters in a URL,
which in turn is communicated to the application through the construction of
an HTTP request. If the attacker manages to pollute the request with extra
parameters, then the control flow of the application may change in numerous
ways. The simplest manifestation of the vulnerability is for the attacker to inject
a particular parameter multiple times. In case the parameter that carries out the
product identifier is duplicated, then many different control flows can take place,
depending on the parameter occurrence (first, last, or a combination of) that the
application will give significance while the URL is parsed.

About 1,499 of 5,000 highly ranked in Alexa.com web sites are considered
vulnerable to HPP exploitation according to the methodology outlined by Bal-
duzzi et al. [3]. In this paper, we propose Application Request Cache (ARC),
a framework that can protect web applications from HPP exploitation. ARC
does not detect HPP vulnerabilities, although it can record HPP exploitation
attempts. It is deployed at server side and works completely transparently. A
web application can be protected, using ARC, from HPP exploitation by simply
incorporating ARC in the application server. Note that clients need no further
modifications. In contrast to PAPAS [3], which currently is the only available
methodology for discovering HPP vulnerabilities, ARC aims at protecting the
web application without auditing. ARC assumes that the web application is vul-
nerable and tries to protect it from being exploited. To this respect, ARC and
PAPAS can be combined. The former as a protection layer and the latter as a
periodic auditor.

ARC is based on the following fundamental concept. Each web application is
characterized by a set of URL schemas, which act as generators of the complete
functional set of URLs that compose the application’s logic. A URL schema is
extracted by a URL by masking out all variables that are assigned to the URL’s
parameters. Each control flow is triggered by having the application serving a
URL, which stems from a particular URL schema. ARC collects all schemas
taken from benign requests during a training phase.1 At production time, for
each incoming request, ARC extracts the URL and its schema, and searches for

1 Notice that the term “cache” is frequently used to describe temporary storage that
holds recently or frequently used elements for improving performance. In this work,
we use the term “cache” to refer to storage that holds a set of benign URL schemas,
which can generate all possible URLs that can be safely served by a web application.
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it in a set of already known benign schemas. In case the schema is not found,
the request is rejected and the event is recorded. An incoming polluted URL
will have no schema stored in ARC and thus will be rejected. This methodology
cannot only prevent HPP, but also certain types of XSS [11], where JavaScript
is attached to HTTP parameters [37].

ARC is fast. Our prototype is developed using Google’s Go, a very efficient
programming language for constructing system tools. ARC stores all cached
schemas in carefully selected data structures, which are implemented using maps

and slices, as provided by Go. ARC also takes advantage of the multiprocessing
features of Go, goroutines and channels. In a 4-core Linux server, ARC can
process hundreds of thousands of URLs per second. A typical request resolution
takes no more than a few microseconds.

Contributions. This paper contributes the following:

– We define a formal threat model for HPP; a new class of vulnerability tar-
geting web applications.

– We design ARC, a framework that can efficiently protect web applications
from HPP exploitation. The framework can be applied transparently in any
application server. The web application and the available clients need no
modifications.

– We implement and evaluate an ARC prototype. We implement ARC in Go,
a fast strong typed C-like language by Google. ARC running on a 4-core
Linux server, with 4 concurrently running goroutines, can process hundreds
of thousands of URL requests per second. Memory requirements, in terms
of RSS, from application to application increase linearly with the size of
different URL schemas.

2 HTTP Parameter Pollution

Web sites have evolved from simple, mostly-static document repositories to com-
plex, multi-tier applications. Although different organizational paradigms are
possible (e.g., 3-, 4-, and n-tier), modern web applications incorporate a mixture
of technologies that are typically grouped into two parts: the application part
and presentation part. The former runs on the server and consists of server-side
code written in PHP, Perl, Java, ASP.NET, or even C/C++, whereas the latter
is rendered by the client, i.e., the web browser, and is made up of (D)HTML,
JavaScript, Flash, etc. The two parts communicate over TCP using the HTTP
protocol in a request-response manner. A typical form of communication involves
a request issued from a web browser, for accessing a resource provided by the
web application, using a request path defined very precisely in a URL [6]. The
web browser issues an HTTP request, which embeds the URL describing the
location of the resource, and if the web server can serve the request, it does so
by returning the result in the form of an HTTP response. Otherwise, an error is
returned, again as an HTTP response. The following simplified URL shows an
example of an on-line purchase.

http://www.e-store.com/purchase?item_id=42 (1)

http://www.e-store.com/purchase?item_id=42
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The communication channel between the server and the client that is used for
exchanging URLs can be attacked, affecting both the confidentiality and integrity
of the application. An attacker can eavesdrop the communication and steal confi-
dential information (e.g., credit card numbers or account credentials), or modify
a request issued by the client, before reaching the server, and hence break the
integrity of the communication. Such attacks can be easily prevented, by forcing
the web application to communicate with the client over HTTPS [17]. Neverthe-
less, carefully crafted injection attacks can still happen, even when HTTPS is
in use. For instance, an attacker can lure an unsuspecting user to click on a hy-
perlink that targets a URL embedding some JavaScript code. Upon clicking the
link, a request from the victim’s browser is sent to a server. This request embeds
JavaScript code, which, if not sanitized correctly by the web server, exists in the
response and will be executed in the victim’s browser. This is called Cross-Site
Scripting (XSS) reflection attack. HPP is yet another injection technique for
attacking web applications [21]. Instead of pushing JavaScript code in URLs,
the attacker is polluting the URL by injecting her own combination of HTTP
parameters. Consider the following URL that has the same HTTP parameter
(i.e., item id) encoded twice.

http://www.e-store.com/purchase?item_id=6&item_id=42 (2)

The result of processing this request depends on the web application’s logic.
There are three possible scenarios. If the application consumes the first (from
left to right) occurrence of item id, then the item with id 6 is purchased. On
the other hand, if the application consumes the second occurrence of item id,
then the item with id 42 is purchased. Finally, it is possible that the application
considers both values, or a concatenation of them, as a valid id. In that case,
both items or item 642 (or 426) are purchased. This ambiguity in processing URL
parameters is the core weakness behind HPP. The attacker is taking advantage
that there is no standardized way of processing URL parameters, in order to
exploit a web application by altering its the control flow.

To a large extent, HPP attacks are manifested by duplicating URL encoded
parameters. However, it is also possible to launch an HPP attack without inject-
ing the same parameter multiple times, but by constructing URLs that the web
application does not handle correctly.

http://www.e-store.com/purchase?item_id=42&action=empty_basket (3)

Normally, the request shown in URL 3 results in purchasing item 42. However,
due to the high complexity of modern web applications, each incoming request
is processed by a series of scripts. Hence, the script chain of the imaginary web
application may host a script for which the action parameter is significant. If
such a script is executed, then the basket holding user products will be emptied.

Running Example. Suppose that Alice is the victim, e-store is an electronic
commerce application, vulnerable to HPP, and Bob is the attacker, who runs

http://www.e-store.com/purchase?item_id=6&item_id=42
http://www.e-store.com/purchase?item_id=42&action=empty_basket
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his own web site. Bob’s goal is to force Alice buying a different product than
the one she originally intended to. Additionally, Bob has no access to the e-store
and has not compromised Alice’s host machine or her browser. However, Bob
can lure Alice into visiting his site. Bob’s site presents some offers that can be
purchased from the e-store. The web application of e-store has an entrance page,
which shows all items per category, in the following form:

<a href=’http://www.e-store.com/show?category=1’>Show cat 1<a/>
<a href=’http://www.e-store.com/show?category=2’>Show cat 2<a/>
...
<a href=’http://www.e-store.com/show?category=9’>Show cat 9<a/>

Upon clicking one of the above links, the e-store application extracts the
category parameter, and concatenates it with the purchase action and a list of
available ids (item id) for the selected category. Note that e-shop erroneously
trusts category and does not verify it for validity before processing it.

<a href=’http://www.e-store.com/purchase?category=7&item_id=1’>Buy item 1<a/>
<a href=’http://www.e-store.com/purchase?category=7&item_id=2’>Buy item 2<a/>
...
<a href=’http://www.e-store.com/purchase?category=7&item_id=99’>Buy item 99<a/>

Now, Bob is creating his own entrance page with offers that can be purchased
from e-store and lures Alice to visiting his site. Bob’s site has the following form:

<a href=’http://www.e-store.com/show?category=1%26item_id=42’>Go to offer 1<a/>
<a href=’http://www.e-store.com/show?category=2%26item_id=42’>Go to offer 2<a/>
...
<a href=’http://www.e-store.com/show?category=9%26item_id=42’>Go to offer 9<a/>

Alice clicks one of the above hyperlinks and the e-store application extracts
the category parameter, which in our case is <number>%26item id=42, and
performs the concatenation. The result is shown below (notice that %26 has
been compiled to ‘‘&’’).

<a href=’http://www.e-store.com/purchase?category=7&item_id=42&item_id=1’>Buy item 1<a/>
<a href=’http://www.e-store.com/purchase?category=7&item_id=42&item_id=2’>Buy item 2<a/>
...
<a href=’http://www.e-store.com/purchase?category=7&item_id=42&item_id=99’>Buy item 99<a/>

Assuming that the e-store application gives significance to the first parameter
(from left to right) while parsing a URL, the product with identifier 42 will be
purchased no matter which hyperlink Alice clicks.

2.1 Formal Threat Model

We now define a formal threat model for HPP vulnerabilities. A is a web ap-
plication, and ui is used for denoting any URL schema that has the following
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[URL] [URL schema]

http://www.e-store.com/purchase?item_id=42 | purchase?item_id=
http://www.e-store.com/purchase?item_id=30&discount=true | purchase?item_id=&discount=

Fig. 1. Examples of URLs (left) and their respective URL schemas (right). A URL
schema expresses a family of HTTP requests that act as descriptors of valid control
flows.

form: action?p1=&p2=&...&pN=. The schema is composed of an action and a
set of parameters that can take arbitrary values. URL schemas express families
of HTTP requests that are served by the web application and act as descriptors
of valid control flows. Figure 1, illustrates a set of URLs with their respective
URL schemas.

Ua = {u1, u2, ..., un} is a set that contains all benign URL schemas that A can
handle. This means that for each incoming URL in Ua, a well defined control
flow f takes place, according to the application’s logic. More formally:

∀u ∈ Ua −→ f ∈ FL

FL = {f1, f2, ..., fN} contains the control flows that can be handled safely by
the web application. We denote as Fc the set of all possible control paths of A.
Apparently, FL ⊆ Fc and Fh = Fc−FL is the set of all control flows that A can
reach, but not initially programmed to execute.

We define the set Uhpp = {v1, v2, ..., vN} that contains all URL schemas that
can initiate a control flow f ∈ Fh. Ideally, we want A to reject all incoming v
for which the following relationship holds:

∀v ∈ Uhpp −→ f ∈ Fh.

Notice that flows in Fh may have arbitrary consequences and force the web
application to produce undesired results.

2.2 Extreme Cases

We have defined HPP as a technique that is based on the creation of URLs em-
bedding a combination of legitimate, yet unexpected, HTTP parameters, which
can drive a web application to an undesired state. So far, we have discussed
only the case where a combination of parameters is not handled (sanitized) cor-
rectly. However, it is possible that HPP can be carried out using the following
techniques, depending always on the complexity of the web application.

Parameter Sequence. An attacker may carefully construct URLs that contain
valid HTTP parameters, but in a non-expected order. Depending on the com-
plexity of a web application, it might be possible that the URLs trigger a series
of server-side scripts, which if executed in a non-expected order, a surprising
result occurs. Note that ARC can be configured so that it can protect against
such attacks (see Section 3).
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HASH

URLAction1

URLAction2

URLAction3

URLActionN

p1 = p2 = p3 =

p1 = 

p5 =

p4 =

p2 = 

p2 = 

null

p1 = p6 = p7 = 

p9 = 

p2 = p4 = 

Fig. 2. The data structures used by ARC. A hash table, which holds references to
linked lists hosting the set of the parameters of each schema. Each entry in the table
has been produced by hashing the action part of a URL schema.

Parameter Values. An attacker may carefully construct URLs that have an
expected sequence of HTTP parameters, but with erroneous values. This case is
hard to prevent, since it stems from unsafe input sanitization. ARC is based on
URL schemas, which have already masked out all values, and tries to prevent
parameter injection. We believe that with minor modifications, ARC might be
able to handle such scenarios, but it needs significant effort and knowledge of
the web application’s internals by the developer.

3 Application Request Cache

An ARC is a cache that stores all possible URL schemas supported by a web
application’s logic. Recall that a URL schema is characterized by an action
and a set of parameters. Each parameter is not bounded by a specific range of
values. URL schemas express generators of HTTP requests served by the web
application and they act as descriptors of valid control flows. A URL schema
describes a series of different control flows. For example, consider the following
URL schema taken from the running example of this paper:

www.e-store.com/process-item?item_id=&action=

The schema is characterized by an action, in our example “process-item”,
and a set of two parameters: {item id, action}. New control flows are created
depending on the value each parameter of the set takes. If “delete” is assigned
to “action” the product corresponding to a given “item id” will be erased. If
“show” is assigned to “action” the product corresponding to a given “item id”
will be rendered in the user’s browser. ARC aims at collecting and maintaining
all benign URL schemas supported by a web application. An ARC-enabled web
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application, checks every incoming HTTP request to verify if a benign URL
schema for the particular request is already stored in the ARC. In the case
there is no available schema, ARC does not forward the HTTP request to the
application server, and the event is logged. There are two crucial things for
the transparent and efficient operation of the system. First, the collection of
URL schemas must take place in a controlled environment and in an automated
fashion. Second, upon the schemas’ cache has been built, ARC must resolve each
incoming HTTP request as fast as possible.

Data Collection - Training. ARC needs to know in advance all valid URL
schemas supported by the web application. Thus, ARC needs initially to be
trained, while the web application is running in non-hostile environment and is
receiving only legitimate traffic. It is common for many anomaly detection sys-
tems to require an initial training phase [30,25,29]. While in training phase, ARC
passively monitors all web traffic received by the web application, filters out all
URLs and extracts all URL schemas. These URL schemas are the generators
of the complete set of legitimate HTTP requests the web application can serve
without becoming HPP exploitable. Training is particularly easy for large com-
panies, which perform extensive beta-testing prior publishing their applications
in the wild. Passively monitoring a web application while it is being developed
can produce the complete set of allowed schemas, since developers are used to
test every new feature they implement. Training is also easy for applications
that are based on frameworks for providing blog, forum, or other web services.
This is because the application must be monitored once for extracting all URL
schemas. The same cache can be used by all application instances.

Another option is to use a crawler or scanner for extracting all possible URLs
the application provides. However, modern applications use dynamic interfaces
implemented in AJAX [12], which many times perform requests towards the ap-
plication server asynchronously using JavaScript. These requests cannot be easily
captured by a crawler. However, today, there are efforts towards sophisticated
crawlers that can handle the complexity and the dynamic nature of Web2.0 ap-
plications with rich interfaces. One such effort is Crawljax [22], which has been
used by researchers for extracting the user interface of Web2.0 applications [8].
Finally, notice, that many frameworks assume that all URLs an application can
handle is known [26,16,2] (see discussion in Section 6).

Data Structures. The data structures used by ARC is a hash table and a col-
lection of linked lists. Each schema is stored in the cache in the following way.
First, the action part of the schema is hashed. In the case there is no entry in
the hash table with the same key, a new hash node is inserted at the index,
which is equal to the key. Otherwise, a pointer of the currently occupied index
of the hash table is fetched. This pointer holds references to linked lists, which
host the set of the parameters of each schema. In the case that there is no list
hosting the parameters of the new schema, a new one is created and a reference
is assigned to the hash index. The data structures are schematically depicted in
Figure 2. Observe the hash table that stores each action (from 1 to N), which
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is noted with URLActionX. Each hash entry stores pointers towards a series of
linked lists. In the example ARC of Figure 2, URLAction1 stores two pointers,
meaning that this entry describes two different URL schemas, each of them de-
scribed by three different parameters. In the same fashion, URLAction2 stores
one pointer towards a list that contains a single parameter, and URLAction3

stores a pointer towards null, meaning the particular schema takes no parame-
ters. Finally, URLActionN stores three pointers towards three lists, containing 1,
4, and 2 parameters, respectively.

Search Algorithm. It is trivial now to derive the search algorithm and its
complexity, since we have analyzed the data structures employed by ARC in the
previous part. For each incoming HTTP GET or POST request the URL schema
is derived by parsing the request line. The action part (the part before the char-
acter “?”) and the set of parameters (all left parts of expressions “par=var”
delimited with each other by the character “&”) are derived in this step. We
assume that URLs follow the specification [6]. ARC can be extended to use a
custom URL schema, for web applications that do not follow the specification,
since ARC runs purely at the server side and, thus, can co-operate with the ap-
plication server. We do not account for parsing operations in complexity, since
all requests have to be parsed by the application server, no matter if ARC is
enabled or not. When a URL schema is derived, the action part is hashed and
is looked-up in the ARC table. The complexity of this operation is O(1). Now,
the set with the parameters of the schema has to be checked against all sets
already stored with this action. We define as URL action density, ρ, the ratio of
unique actions over all possible URL schemas. For example, a web application
that supports 1,000 URL schemas and those include 100 unique actions, has
ρ = 0.1. The density reversed approximates how many schemas are associated
with a particular action, or how many lists are associated with each hash bucket.
Assuming that an input schema has a number of parameters, N , then the com-
plexity of the search is O(Nρ ). Thus, the complexity of the complete algorithm

is O(1) +O(Nρ ) ) O(N). Thus, the search algorithm has linear complexity with
the number of parameters of each input schema.

Optimizations.We can substitute the linked lists with trees, in order to reduce
the search time required for scanning the lists. The optimized version can reduce
the search time and, thus, increase the URL throughput (see Section 4). However,
security must be sacrificed, since cases described in Section 2.2 cannot be handled
correctly. Thus, for the rest of this paper, we discuss and evaluate only the
unoptimized ARC. A second approach is to use DFAs for searching the cache.
Consider, for example, that each URL can be represented by a string, whose
characters are selected from a space defined by all the different parameters, which
can occur in all collected URL schemas. Although, a DFA has linear complexity
in search, in practice, implementing regular expressions that can contain all the
thousands of URL parameters used by a large web application is not considered
trivial, due to intrinsic constraints of current off-the-shelf implementations. For
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example, PCRE 2 has a hard limit for the maximum size of a regular expression,
and it needs special recompilation for changing this. Finally, we can use a single
hash table for speeding up search. For each incoming schema, we can concatenate
the action part and all parameters and feed the result to a hashing function. By
definition, this will speed up the search to O(1), no-matter the length of the
URL parameters of each incoming schema. However, large web applications,
using many URLs, will experience hash collisions, which can be resolved by
incorporating linked lists. Thus for large web applications, this approach is,
essentially, identical to the approach we follow for building ARC.

3.1 Implementation

We implemented an ARC prototype in Go [19]. Go is a programming language
created by Google for fast system development. We created two versions, one
single-threaded and one that utilizes 4 threads. In the world of Go, the term
goroutine is used, instead of thread. Goroutines cannot be used standalone.
There is no way for a goroutine to complete and communicate the result to the
rest of the program, unless a channel is used. Thus, for the rest of this paper, we
will refer to the single-threaded version as single-channel ARC and to the multi-
threaded one as 4-channel ARC . As far as the data structures are concerned,
we use maps for implementing the hash and slices for implementing the linked
lists. Maps and slices are standard data structures provided by Go. A map

represents a relation of two data types, one serving as the key and one as the
data holder. On the other hand, slices are similar to C arrays, but their size
can be modified at run-time. The ARC implementation works as follows. First,
it builds the cache by reading a collection of already stored URLs in the disk. It
forms the cache (see Figure 2), which is maintained in memory (we evaluate the
system’s memory footprint in Section 4). For each incoming HTTP request the
application server extracts the URL (and the POST parameters, if it is required)
and forwards it to the ARC. The URL schema is extracted and the ARC looks
up in the available cache for its existence. If the schema exists, the parsed form of
the URL is forwarded to the application server, otherwise the incoming request
is dropped and the event is logged. We implemented ARC and the application
server in Go. However, with minimum changes, ARC can cooperate with any
modular application server.

4 Evaluation

All experiments are carried out using artificially created traces. In this way, we
are able to create large collections with thousands of URL schemas, in order to
stress our implementation as much as possible. Initially, we create three different
URL sets. The set is composed by URLs that are formed by a random action part
and by a set of random strings representing URL parameters. Each parameter is
a random string of size between 6 and 16 characters. Each set is characterized by

2 http://www.pcre.org

http://www.pcre.org
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Table 1. Properties of URL sets used in evaluation. Each set is characterized by
4 properties: (1) the amount of URLs the set includes, (2) the minimum number of
parameters a random URL of the set may include, (3) the maximum number of pa-
rameters a random URL of the set may include, and (4) the density ρ of the set.

Web Application URLs Min Par. Max Par. ρ

Small 1,000 5 12 0.01
Medium 10,000 7 15 0.001
Heavy 100,000 12 20 0.001
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Fig. 3. Cumulative distribution function of HTTP parameters, as collected from a
real-world trace, including HTTP/HTTPS traffic for the phpBB and phpMyAdmin
applications. The plot depicts 1 million URLs sampled from a trace containing over 50
millions of captured URLs.

4 properties: (1) the amount of URLs the set includes, (2) the minimum number
of parameters a random URL of the set may include, (3) the maximum number
of parameters a random URL of the set may include, and (4) the density ρ of
the set. Recall from Section 3, that ρ is defined as the ratio of unique actions
over all possible URL schemas. Thus, we create three URL collections, each one
representing a different web application. The first set contains 1,000 URLs, each
one having 5 to 12 parameters, with ρ = 0.01. We will further refer to this set
as Small Application. The second set contains 10,000 URLs, each one having 7
to 15 parameters, with ρ = 0.001. We will further refer to this set as Medium
Application. Finally, the third set contains 100,000 URLs, each one having 12
to 20 parameters, with ρ = 0.001. We will further refer to this set as Heavy
Application. We summarize all these details in Table 1.

The characteristics of the artificially created traces are based on real-world ev-
idence. We monitored two well-known web applications, phpBB and phpMyAd-
min, and managed to collect over 50 millions of URLs. We then analyzed a
sample of 1 million URLs and measured the number of HTTP parameters per
HTTP GET/POST request. We plot the CDF in Figure 3. Notice, that the
majority of HTTP requests include less than 5 different parameters, and there
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Fig. 4. Cumulative distribution function of all measured resolutions, for both the
single-channel and the 4-channel version of the ARC, and for all different web appli-
cations. The majority of all request resolutions, about 98%, are completed in less than
10 microseconds.
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Fig. 5. Resolved requests per second for the small, medium, and heavy application, re-
spectively. The 4-channel ARC significantly outperforms the single-channel one, serving
hundreds of thousands requests per second, in all applications.

were not recorded HTTP requests containing more than 18 parameters. The tree
different URL sets are precomputed and stored to files on disk. For each exper-
iment, ARC loads the URLs, exports the schemas, and creates the caches as we
described in Section 3 (see Figure 2). All information is maintained in memory.
As far as the hardware setup is concerned, all experiments run in a Linux server,
equipped with i7/2.93 GHz (4-cores) and 4 GB RAM.

4.1 Request Resolution

We are interested to identify the average time it takes for ARC to process one
singe request. We run the ARC with one of the three URL sets, which corre-
spond to a particular web application (small, medium, and heavy). We forward
1,000,000 URL requests towards ARC, after it has loaded all URLs and has built
all data structures. All requests are taken randomly from the initial file that hosts
the artificially created URLs. For each request we measure the time needed by
ARC to find the URL schema that corresponds to the incoming URL request.
The search time includes parsing the initial URL. We perform all measurements
with the Nanoseconds() function, which is contained in the time package.
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Fig. 6. Resident Set Size (RSS) and Virtual Size (VSIZE), both as reported by ps(1),
while running ARC for each one of the three applications. Notice, that both, 4-channel
and single-channel, versions have similar memory requirements. Also, memory require-
ments, in terms of RSS, from application to application increase linearly.

In Figure 4 we plot the CDF of all measured resolutions, for both the single-
channel and the 4-channel ARC, and for all different web applications. It is
important to highlight the following. First, the majority of all request resolutions,
about 98%, are completed in less than 10 microseconds. We consider that the
performance is enough for not causing significant overhead to an application
server, even in configurations that are based on commodity hardware. Second,
the requests for the heavy application seem to be resolved a little bit slower than
the medium one, and the requests of the medium one seem to be resolved a little
bit slower than the small one. This is reasonable, since the heavy application is
characterized by URLs that have more parameters that the ones of the medium
and of the small ones. This has two consequences: (1) the parsing time is longer
(recall, that we account for parsing in every search operation), and (2) the lists’
size is larger or, more formally, N is larger (recall the complexity of the search
algorithm, O(N), presented in Section 3). Finally, notice that the 4-channel ARC
behaves worse than the single-channel ARC (all CDFs are shifted to the right, in
the right plot of Figure 4). Initially, this seems to be counterintuitive. However,
it is not. The 4-channel version has the additional overhead of managing and
context-switching the 4 goroutines. This affects slightly the performance of each
request resolution. Nevertheless, the overall performance of the 4-channel version
significantly outperforms the single-channel version, since the 1,000,000 requests
are completed in shorter time. We quantify this in the following part.

4.2 Request Throughput

We configure ARC to run with each one of the three different applications for
600 seconds. We record how many requests ARC can resolve per second for the
small, medium and heavy application, respectively. We run all experiments for
both, 4-channel and the single-channel, ARC implementations. We present the
results in Figure 5. Notice, that the 4-channel ARC significantly outperforms
the single-channel one in all applications. Observe, that the 4-channel ARC can
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1 package hello
2

3 import (
4 "arc"
5 ....
6 )
7

8 func init() {
9 http.HandleFunc("/", handler)

10 arc_stats = arc.Init()
11 }
12

13 func handler(w http.ResponseWriter, r *http.Request) {
14 if (arc.FilterURL(r.URL.RawPath) == true) {
15 fmt.Fprint(w, deliver_page(r))
16 } else {
17 fmt.Fprint(w, deliver_error("URL is not supported."))
18 }
19 }

Fig. 7. An example web application written in Go, for running over Google’s Ap-
pEngine, which incorporates ARC. Some functions are omitted for presentation pur-
poses. Notice, that ARC integrates seamlessly with the rest of the code.

serve hundreds of thousands requests per second. This is to be expected, because
the 4-channel ARC takes advantage of all 4 cores of the server. Thus, a typical
request resolution maybe slightly faster for the single-channel ARC, but the
overall throughput is much greater for the 4-channel ARC.

4.3 Memory Footprint

ARC stores all information (i.e., all URL schemas) in memory for fastest access.
The more the distinct URL schemas a web application has, the more the memory
the ARC needs. In Figure 6 we plot the Resident Set Size (RSS) and the Virtual
Size (VSIZE), both as reported by ps(1), while running ARC for each one of
the three applications. Notice that both versions (i.e., 4-channel and single-
channel) have similar memory requirements. This is to be expected, since both
versions maintain memory in exactly the same way. Notice, also, that the memory
requirements, in terms of RSS, from application to application increase linearly.
Recall from Table 1, that the size of complexity, in terms of URL schemas, for
each application increases by one order of magnitude.

5 Case Study

Google AppEngine [9] is a platform for deploying web applications. Recently,
Google announced an SDK for building web applications in Go. Although, it is
still experimental, it seems the ideal application server for incorporating ARC
into. Notice, that ARC can be enabled in any application server as an external
CGI script. A typical web application written in Go is composed as a package.
There are many official Go packages for managing HTTP requests and URLs,
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which can be easily imported in the main package, which serves as the core of
the application. Next, there is an initialization routine which assigns handlers
for URLs matching a specific pattern, and, finally, there is a series of handlers
that can serve incoming requests. Enabling ARC for an AppEngine application is
trivial. In Figure 7 we present the skeleton of an example web application written
in Go for running over Google’s AppEngine. Some functions have been omitted
for presentation reasons. There are three basic steps needed for enabling ARC.
First, the arc package must be imported (line 4). Second, arc.Init() must be
called for initializing the cache (line 10). This function reads all available URL
schemas from a text file and organizes them to data structures in memory (see
Section 3 for the description of the data structures used). Finally, a check is
applied to the core request handler for filtering out all incoming URLs that are
not compatible with any of the available stored schemas. This check is performed
using the arc.Filter() function, which takes as a parameter the incoming URL
in raw format (line 14) and returns a boolean value (true if the URL compiles
to a valid schema, false otherwise).

6 Related Work

HPP is originally discovered by Luca Carettoni and Stefano di Paola in 2009 [21].
The most relevant research to ARC is PAPAS [3], which aims at detecting HPP
vulnerabilities through a black-box scanning technique. In this respect, PAPAS
and ARC are different, since ARC aims at preventing exploitation through HPP;
ARC assumes that the application is vulnerable. Nevertheless, the two technolo-
gies can be combined. A web application, which rapidly changes, can use ARC for
protection and occasionally scanned for new HPP vulnerabilities. HPP Finder [1]
is a Chrome extension that scans web pages in real-time for detecting potential
HPP exploits. Thus, the extension aims at protecting the end user from vulner-
able (to HPP) web applications. However, HPP Finder has limited scope. It can
identify only hyperlinks and forms that include a particular parameter multiple
times. As we have already discussed in Section 2, HPP is a broader class of vul-
nerabilities that can be manifested when a parameter occurs multiple times in
an HTTP request. Moreover, HPP Finder has many false positives, especially in
pages with radio buttons. Therefore, HPP Finder is not considered a complete
solution against HPP exploitation, but rather a precaution.

There are many frameworks for detecting and preventing
XSS [18,23,14,28,26,32]. Robertson and Vigna [26] attempt to introduce
structure in the web documents served by a web application, for taking
advantage of it and detect potential injections. The framework needs a map
of all URLs that the application supports in advance. In their context, this is
called a RouteMap and it is similar to the routes package present in popular
web development frameworks, such as Rails [16] and Pylons [2]. ARC needs
also all URLs supported by a web application, in order to extract all possible
URL schemas. However, ARC does not assume that this information is known
(we have listed techniques in Section 3 for collecting URLs). Researchers
have developed generic techniques for covering web exploitation [25,30]. These
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techniques share a common property with ARC; they are also based on a
training phase for collecting features that characterize the benign behavior of
the web application. These proposals are more generic, and, thus, suffer from
false positives. ARC, on the other hand, is practical and focuses on HPP only.
Web exploitation is not only XSS. HPP is among the recently discovered highly
sophisticated techniques for attacking a web application [5,7,27,20,4,15,36].
To that end, many academic efforts aim at applying security concepts from
operating systems to the web platform [34,35,13,24,31].

7 Conclusion

HTTP Parameter Pollution (HPP) is a recently discovered technique for exploit-
ing web applications. Since web applications communicate with browsers using
HTTP requests and responses, the communication can be polluted by injecting
parameters that alter the control flow of the web application according to an at-
tacker’s need. In this paper, we constructed a formal threat model for HPP and
we proposed Application Response Caches (ARC), a framework that can pre-
vent HPP exploitation in web applications. ARC can be transparently enabled
in an application server, without further modifications to the web application
and to the clients. We implemented a single-channel and a 4-channel ARC pro-
totype using Google’s Go language. ARC running on a 4-core Linux server, with
4 concurrently running goroutines, can process hundreds of thousands of URL
requests per second. A typical URL resolution is in the scale of microseconds.
Memory requirements, in terms of RSS, from application to application increase
linearly with the size of different URL schemas.
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Abstract. JavaScript-based applications are very popular on the web today.
However, the lack of effective protection makes various kinds of privacy vio-
lation attack possible, including cookie stealing, history sniffing and behavior
tracking. There have been studies of the prevalence of such attacks, but the dy-
namic nature of the JavaScript language makes reasoning about the information
flows in a web application a challenging task. Previous small-scale studies do not
present a complete picture of privacy violations of today’s web, especially in the
context of Internet advertisements and web analytics. In this paper we present
a novel, fast and scalable architecture to address the shortcomings of previous
work. Specifically, we have developed a novel technique called principal-based
tainting that allows us to perform dynamic analysis of JavaScript execution with
lowered performance overhead. We have crawled and measured more than one
million websites. Our findings show that privacy attacks are more prevalent and
serious than previously known.

Keywords: Privacy, Web security, Information flow, JavaScript, Dynamic
analysis.

1 Introduction

Privacy violation is common in web applications today, especially with the excessive
power of the JavaScript language. The Same-Origin Policy (SOP) [1] governs the ac-
cesses by JavaScript to web page and network resources, which ensures objects in a
web application are only accessible by JavaScript from the same origin (defined as the
tuple < protocol, host, port >). Unfortunately, a web application often needs to in-
clude third-party scripts in the same origin of the web application itself. If the scripts
have privacy violations, they are free of restrictions from SOP. Besides, although XML-
HttpRequest is restricted by SOP, its successor Cross-Origin Resource Sharing (CORS)
has more flexibility in sending requests to different origins. Moreover, SOP does not
prevent information leakage through requests for external resources, such as images,
and CSS background.

This concern has motivated researchers to search for an answer. Work by Krishna-
murthy and Wills [2] examined 75 mobile Online Social Networks (OSNs) and showed
that all of these OSNs exhibit some leakage of private information to third parties. In a
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similar vein, Krishnamurthy et al. [3] surveyed 120 popular non-OSN websites. Using
a proxy, they monitored the traffic and discovered 56% of the sites directly leak pieces
of private information in clear text to third-party aggregators. From another perspec-
tive, Jang et al. [4] studied Alexa global top 50,000 websites and found multiple cases
of privacy violation including history sniffing and behavior tracking. However, analysis
on potential privacy-violation behaviors at the web page level is too coarse-grained, as
it does not distinguish between different pieces of JavaScript on the page. On the other
hand, although fine-grained taint tracking, such as [4], provides desirable accuracy in
identifying information leakage behaviors, the performance overhead imposed by it has
limited the scale of the study that can be performed on real-world web applications.

Our Approach. In this work, we propose an effective mechanism to perform a large-
scale study on privacy-violating behaviors in real-world web applications. We observe
that web applications often include many third-party libraries. Although these libraries
share the same namespace, they are loosely coupled. The reason is threefold. First of
all, by virtue of the JavaScript language, local objects declared inside a function are
only accessible inside that scope. Furthermore, functions are typically wrapped inside
a closure (e.g. jQuery), restricting accesses to their objects. And even if a function does
declare objects in the global scope, other code will probably not access these objects
because the code is oblivious to the existence of the objects. As a result, the objects are
only accessed and modified by their creator. Based on this fact, we propose to track web
application behaviors at the granularity of the JavaScript libraries, which greatly boosts
the performance in tracking potential privacy violation behaviors in web applications.
We thereafter refer to this novel technique as principal-based tracking.

In this paper, we present the design, implementation, and evaluation of LeakTracker,
a fast and scalable tool to study the privacy violations in web contents. We perform
principal-based tracking on web applications to identify the libraries that have suspi-
cious behaviors in accessing user privacy information, where the principal is defined
as the URL of the source of the JavaScript. For each piece of JavaScript code going to
be compiled by the JavaScript runtime, we introduce a tag specifying which principal
this piece of code belongs to. The resulting script, when executed, can introduce more
scripts into the system and these new scripts will in turn be tagged, and this process
continues. Our system then monitors the behaviors of scripts with different principals,
and identifies suspicious behaviors in accessing users’ private information.

To verify that such suspicious scripts do leak private information to external parties,
we perform an additional variable-level dynamic taint analysis only on them, and for the
rest of the web application, our system runs at full speed without tainting. By applying
the principal-based tainting technique, we manage to reduce the significant performance
overhead associated with application-wide taint analysis [5,6,4], while directing the
power of taint analysis directly towards those suspicious script principals.

We have implemented a prototype of LeakTracker by extending the JavaScript en-
gine of Mozilla Firefox. Our prototype tracks not only JavaScript code originated from
web pages but also JavaScript from browser plugins (e.g. Flash/Silverlight) and exten-
sions. Based on this prototype, we have developed a HoneyMonkey-style [7] crawler
and deployed it on production systems. Our computer cluster consists of ten monkeys
and one monkey controller to drive them. Compared to previous work, we
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substantially extend the scope of the study, by crawling the list of top one million global
websites provided by Alexa. The cluster finished crawling these websites within one
week, demonstrating that our design is fast and scalable. We have further evaluated the
performance of LeakTracker with the SunSpider [8] benchmark suite, which indicates
that our system incurs a reasonable performance impact.

In summary, this paper makes two primary contributions:

– Principal-based tainting technique. We design a less expensive dynamic tainting
technique that tracks the taint flows in a web application. It tracks JavaScript origi-
nated from different sources, including that from NPAPI-based plugins and browser
extensions. We show that our technique is robust in the presence of JavaScript ob-
fuscation and redirection. Our implemented prototype confirms that the technique
incurs reduced performance overhead.

– Comprehensive evaluation through large-scale study. We evaluate LeakTracker
in terms of effectiveness and performance. With timeout parameter set at fifteen
seconds, within a week of deployment, we finished crawling the global top one
million websites. We show that even in such popular set of websites, privacy at-
tacks are still prevalent. Specifically we found that 39.1% of websites exfiltrate cer-
tain private information about the user and her browser. Most alarmingly, 31,811
websites still spy on user behaviors and 7 websites still sniff on users’ browsing
history.

The rest of this paper is organized as follows. Section 2 provides an overview of the
problem and existing works. Next, Section 3 and 4 detail the design and implementa-
tion of LeakTracker. After that, Section 5 presents our evaluation results. We cover the
related work in Section 6 and finally Section 7 concludes this paper.

2 Background

In this section we review the economic and technical reasons why privacy violations
come to exist, especially how the issue tends to relate to Internet advertisements (ads)
and web analytics.

Internet advertising is an important business model to support free Internet content.
To sustain the publishing effort and to earn a profit, web publishers display ads on their
sites and get paid by the advertisers, or more often, the ad networks (who are in turn paid
by the advertisers). The arrangement is somewhat similar to the situation in traditional
media like television and newspapers. In other word, the user unwittingly gives up some
of his time viewing ads in exchange for the content provided by the publishers. This
win-win arrangement between the users, the publishers, and the advertisers is one of
the reasons that contribute to the booming of web media since the late 1990s.

With the rising popularity of the web, advertisers get more and more sophisticated.
Instead of serving the same ad to everyone visiting a particular website, advertisers or ad
networks adopt a practice called targeted advertising. In this practice, they dynamically
decide what kind of ads to display to the site’s visitors. For example, the ads can be
chosen based on the type of content users are viewing, thus making Internet advertising
more relevant and presumably more helpful to visitors. The net result is generally more
ad clicks, more sales, and ultimately more profit for the advertisers and the publishers.
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Unfortunately, advertisers do not stop at this point. To further enhance the relevancy
of their ads, they start to adopt more aggressively practices, namely, tracking and profil-
ing visitors. According to a study by the Wall Street Journal (WSJ) [9] in August 2010,
“the nation’s 50 top websites on average installed 64 pieces of tracking technology
onto the computers of visitors, usually with no warning.” They also identified that be-
tween the web users and the advertisers, there are “more than 100 middlemen: tracking
companies, data brokers and advertising networks”. Data about the users’ interests are
collected, aggregated, packaged, and sold to the advertisers, who use analytics software
to determine the most relevant ads to serve. For example, BlueKai, one of the major
data brokers, sells 50 million pieces of personal information on a daily basis.

Besides the economic reasons for tracking, some technological advances make track-
ing more effective. For example, a study [10] by the Stanford Center for Internet and
Society (CIS) found that Microsoft Advertising network places a syncing cookie on
its live.com domain, effectively respawning the tracking cookie even though the user
has cleared cookies in an attempt to preserve her privacy. This mechanism is referred to
as “supercookies”. Flash Local Shared Objects (LSO) can also be used to achieve the
same purpose. The second tracking method, reported by the Panopticlick project at the
Electronic Frontier Foundation [11], is called “fingerprinting”. In this method, public
configuration information provided by the web browser can be used to create a signa-
ture that uniquely identifies the browser and its user. Their study [12] shows that this
method is highly effective: pick a browser at random, at best only one in 286,777 other
browsers will share its signature, resulting in 18.1 bit of entropy.

In this paper, we focus on privacy attacks that happen when embedded JavaScript
code abuses its privileges to track and leak confidential user information such as history,
behaviors, interests and so forth. Out-of-band methods like traffic fingerprinting are out
of the scope of this work. Our goal in this work is to conduct an extensive study and
quantify the state of privacy violations in web contents.

3 System Design

We have developed a comprehensive and efficient system called LeakTracker to track
privacy violations in web applications, whose overall architecture is shown in Figure 1.
The parts in dark colors are major components of LeakTracker. In essence, we first
identify JavaScript principals in a web application that have suspicious behaviors in
accessing privacy information, and then apply the principles of dynamic taint analysis
to track their executions. If the taint flows from critical sources to critical sinks our
reference monitor logs an alert. In other words, by observing the flow of taint we can
detect possible privacy information leakage in a web application.

Next, we will explain the principal-based tracking technique, followed by the elab-
oration on how we assign principals to JavaScript in different cases with principal tag-
ging. Finally, we elaborate on the taint sources and sinks tracked by our system.

3.1 Principal-Based Tracking

Despite being a powerful technique, taint analysis incurs a significant performance
overhead. This overhead is mainly associated with the introduction, propagation and
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Fig. 1. LeakTracker architecture

checking of taint. One needs to perform these for every JavaScript bytecode instructions
executed. As a result, the performance impact from taint analysis is prohibitive. To re-
duce this overhead, we introduce a novel technique called principal-based tainting. Our
key insight is: even though an embedded JavaScript widget shares the global namespace
with other JavaScript code, its objects are naturally isolated from other code. JavaScript
libraries, such as jQuery, tend to wrap functions and variables inside closures, and even
for global variables or functions, they are generally not accessed by other JavaScript
since other scripts are oblivious to their existence. The net result is that the objects are
only accessed and modified by the creator. As a result we only need to perform taint
analysis on the relevant functions, instead of the entire web application as implemented
in previous approaches [5,6,4]. This lessens the performance overhead introduced by
taint analysis.

To differentiate relevant functions from irrelevant ones, we introduce the concept of
principal. A principal is defined as the URL of the JavaScript code introduced to the
page. We observe that modern web applications typically employ third-party tracking
libraries to track user behaviors, and such JavaScript libraries put users’ privacy infor-
mation at risk. During our analysis on privacy violations, it is necessary to distinguish
first-party and third-party logic mixed in a web application to further lower the need for
full-blown taint analysis. For example, it is quite natural and even expected that a web
page will set and later read the cookie object to restore view settings, user preferences,
among other things. On the other hand, it would be suspicious for a third party code to
read the cookie and then transmit its content to a third party server. In fact, this con-
stitutes the cookie stealing attack. However, due to the complex interactions between
principals, it is challenging to differentiate the owner of a piece of code and accurately
assign a principal to each piece of JavaScript. We detail our principal assignment strat-
egy next.
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3.2 Principal Tagging

Although JavaScript libraries tend to be independent of each other during execution,
they may modify or overwrite other pieces of scripts. For instance, a script principal can
overwrite the handler on a DOM element created by another principal. In another case,
a principal can introduce more code into the page by features like document.write, by
modifying the DOM tree, and so forth. To address this challenge, we introduce a second
technique termed principal tagging.

As can be seen in Figure 1, our system completely tracks the provenance of all
JavaScript code and assigns appropriate principal tags. The flow of tags is as follows.
We start with the most common source of JavaScript code: the DOM. A <script> tag
requests the browser rendering engine to send the corresponding JavaScript code to the
JavaScript compiler. Our instrumented JavaScript compiler, in addition to parsing and
compiling JavaScript code into bytecode, determines the principal of the script from
the DOM and attaches a tag to the resulting JSScript object. We note that a <script>
tag is not the only way to introduce JavaScript code into a web application. Another
way of doing so is to use unnamed JavaScript code blocks, e.g. event handler code. Yet
JavaScript code can also be introduced into the system by browser plugins (e.g. Flash
and Silverlight) or browser extensions. A list of all sources is shown in Table 1.

As Table 1 indicates, JavaScript code can also be generated dynamically by the run-
ning JavaScript code through the use of JavaScript language features like eval() or DOM
APIs like document.write(). We interpose on these vectors and propagate the principal
tag from the creator script to the created script accordingly. In this way, we always keep
track of the true identity of every piece of code. We also note that by keeping the full
URL of the script in the tag, our system offers much better precision and accuracy than
the Same Origin Policy(SOP), which assigns the same origin to all scripts embedded in
the same page.

3.3 Taint Sources and Sinks

The Reference Monitor (RM) component guards the taint sources and sinks according
to our policy. In our system, we track all major taint sources and sinks. For example,
to detect possible cookie stealing attacks, the RM keeps track of all principals that
has accessed the cookie object. Similarly, we treat the getComputedStyle function
as a taint source to detect history hijacking attacks. We also track the registration of
event handlers and other sensitive sources, as further discussed in Section 4. After our

Table 1. Script Sources

Source Type
DOM Direct script
DOM Unnamed script

Source of the plugin object Plugins
Source of the extension Extensions

JavaScript JS features
JavaScript DOM APIs
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principal-based tracking technique identifies the script principals that exhibit suspicious
behaviors in accessing user privacy information and sending data through the sinks
(e.g. the network), we apply taint analysis on these principals to confirm whether they
actually leak privacy information to the network. Upon detection of a policy violation
(e.g. sending private information to a third party server) the RM will record the identity
of the offender to the audit log, and let the operation succeed. We note again that the
focus in this work is to detect policy violation and not to implement a protection system,
so currently when any tainted data is flowed to the taint sink, we log such event with
the principal of the JavaScript that generates such behaviors.

4 Implementation

We have implemented a prototype of LeakTracker by instrumenting Mozilla Firefox
3.6.13. The reference monitor is implemented with 700 source lines of code (SLOCs)
in C++. About 1200 SLOCs is used to implement the principal tracker. We add about
2400 SLOCs into the SpiderMonkey JavaScript engine to track and propagate taint.
Overall, we add 4300 SLOCs to Mozilla Firefox code base.

The crawler is implemented using AutoIT, a specialized scripting language for appli-
cation automation. The monkey controller is implemented in 500 SLOCs. 300 SLOCs
is needed to implement a monkey. The total number of SLOCs used to implement the
crawling infrastructure is 800 SLOCs. In the following subsections, we examine each
component of LeakTracker and present its implementation details.

4.1 Instrumented Browser

To implement the principal-based tainting technique, we first need to be able to track
the principal of any piece of JavaScript code. We therefore instrument the browser to
introduce and propagate the principal tag. The tag is stored as a property of the JSS-
cript object. As shown in Table 1, there are six sources and each of them need to be
handled a little differently. We provide details on each of them as follows. The first one
is JavaScript code directly included on the page using the script tag. If the src property
is specified, the tag will be set to the value of the src property. This case is relatively
straight-forward. On the other hand, if script code is specified directly in the body of the
script tag, then the principal should be carefully determined based on who created that
script tag. If the creator was another JavaScript, LeakTracker will assign the principal
tag of the created script to that of the creator. If, however, the script tag is part of the
original HTML document then the newly created script’s tag will have the principal

Table 2. DOM Functions and Properties

Family Functions
Write write, writeln
Timer setTimeout, setInterval

DOM Tree Manipulation createElement, insertBefore, appendChild, ...
DOM Node Property innerHTML, text, textContent
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of the hosting page. The second case is handled in a similar way. In both cases, we
enhanced the Firefox’s JSTokenStream class to achieve the goal.

In the third case, the principal of the script should be that of the embedded object and
not of the hosting page. For example, for JavaScript code introduced by Flash plugin,
the principal should be set to the URL of the Flash file. We modified the internal NPAPI
implementation inside nsNPAPIPlugin.cpp for this purpose. The fourth case is handled
similar to the first case, in that the newly created script will inherit the principal of the
extension, which starts with “chrome://”. The fifth case is the least complicated of
all. In this one, we copy the tag directly from caller of eval() to the newly created script.
The final case requires the most engineering effort, as we need to instrument every
relevant DOM API functions. This careful implementation is needed to thwart obfusca-
tion attempts. Table 2 lists the APIs that we instrument. With the above mechanisms in
place, we can now realize the principal-based dynamic taint analysis technique.

Recall that we apply additional variable-level taint analysis to principals detected as
suspicious by the principal-based tracking. Variable-level taint analysis helps confirm
the information flow between the sources and the sinks. For example, if we introduce
taint at any reads from the cookie object, and later find a tainted object being send
to a remote server, we can conclude that the content of the cookie is being leaked to
the server. Tracking taint propagation for the entire web application is very expensive.
Therefore our instrumented JavaScript engine only performs taint propagation for the
script originated from suspicious principals. For every piece of JavaScript code, upon
determining that the principal is trusted, the engine switches to an alternate execution
path that is free of taint propagation operations. From that moment on, the piece of code
is executed at full speed to completion. This helps reduce the overall overhead incurred
by taint analysis. On the other hand, if the principal is determined to be suspicious by
the principal-based taint analysis, we propagate taint as the code executes. To achieve
this goal, we instrumented the 235 opcodes of the JavaScript bytecode interpreter. These
opcodes operate on the unified jsval type. We introduced a taint bit into this jsval struc-
ture. The instrumented opcodes then propagate this taint bit. In this way, taint analysis
is achieved with minimum space overhead.

The second component of our instrumented browser is the reference monitor (RM).
To implement the RM, we instrument the Firefox’s JavaScript interpreter and introduce
guards at the critical sinks. When our system tracks suspicious principals, the RM will
inject taint into any objects derived from taint sources. There are four critical sinks
that JavaScript code can use to send data to a remote server: XMLHttpRequest, form
submission, CSS property misuse, and src property misuse. As further discussed in
Section 5, our findings indicate that the last method is the most frequently used for
exfiltrating data. Every time there is an access to a critical sink, the RM will check if
the taint bit is present. If it is, the RM will raise an alert and record the principal of the
executing code into the audit log.

4.2 Crawler

To explore and scan the web, we implement a HoneyMonkey-style[7] crawler. In this
approach, a machine, which we refer to as the monkey controller, maps and dispatches
tasks to individual monkeys. Note that a monkey can actually be a controller itself, and
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further map the tasks to its children. In this way, a tree is formed with monkeys as
the leaves. Therefore the LeakTracker architecture supports scalability by allowing the
flexible addition of computing power should the need arise.

We now discuss the monkey itself. Inside each monkey there is a software agent
that acts as a liaison between the controller and the instrumented browser. The agent,
upon receiving tasks from the controller, will drive the browser to visit websites. This
approach is more advantageous than the use of an indexer in traditional crawler like
Heritrix[13] in that a full-blown browser allows us to examine dynamically generated
page while an indexer does not.

The monkey controller takes as input a list of websites, and divides it into tasks,
each consists of one hundred websites. It then maps the tasks to idle monkeys, and
instructs them to start crawling. The monkeys crawl the websites and when they have
finished with the tasks, they compress the logs and send them to a log server. They
then signal the controller for more tasks. The system continues to operate as described
until there is no more tasks, at which point it remains idle. For each task, the software
agent iterates over the list and drives our instrumented Firefox browser to visit each
of the websites. It also sends keystrokes and mouse events to the browser to simulate
keyboard and mouse activities. This is necessary to observe possible behavior tracking
of websites. After letting the website run for a timeout period of fifteen seconds, the
agent will close the browser, collect the logs and continue with the next website. Our
empirical experience shows that the threshold of fifteen seconds is enough to let most
websites finish loading.

5 Evaluation and Findings

We have deployed LeakTracker on production systems to survey the web. In our pro-
totype, ten monkeys were used to run the crawling, each is a virtual machine running
Microsoft Windows XP Service Pack 3 . The virtual machine was configured with one
virtual CPU running at 3.0GHz and 320MB of memory. The entire computing cluster
ran on an IBM eServer BladeCenter HS21 with VMWare ESX Server 3i as the hyper-
visor. Within one week our computing cluster finished crawling the Alexa global top
one million websites, demonstrating that our design is fast and scalable. Overall, we
found 817,831 instances of leakage in 391,837 out of one million websites (roughly
39.1%), resulting in an average of 2.08 instances per website. In the following sections,
we provide detailed discussion of our findings.

5.1 General Findings

Examining the leakage cases identified in our experiment, we found that most of them
are caused by web analytics software embedded in the websites. Manual examinations
of a random sample of two hundred leakages reveal that most of them leak screen
resolutions, color depth, and JavaScript version. More than a dozen of them transmit
the full list of installed browser plugins to the tracking server. One typical case is shown
below:
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http://charter.122.2o7.net/b/ss/charternetprod/1/H.22.1/s436952264
8743?AQB=1&ndh=1&t=4%2F7%2F2011%209%3A49%3A29%204%20240&ce=UTF-8&
ns=charter&pageName=homepage&g=http%3A%2F%2Fcharter.net%2F&cc=USD&
ch=home&server=web12.charter.synacor.com&events=event1&c1=home&v1=
D%3Dc1&v7=D%3Dc7&v9=D%3Dc9&v17=D%3Dc17&c23=Repeat&v23=D%3Dc23&c
27=4&v27=D%3Dc27&c28=Less%20than%201%20day&v28=D%3Dc28&c29=10%
3A30am&v29=D%3Dc29&c30=thursday&v30=D%3Dc30&c51=non-customized&c52
=not%20a%20premium%20owner&c53=logged-out&s=1680x1050&c=24&j=1.7&v
=N&k=Y&bw=1680&bh=900&p=Test%20Plug-in%3BMozilla%20Default%20Plug-
in%3BGoogle%20Update%3BShockwave%20Flash%3BSilverlight%20Plug-In%3
BAdobe%20Acrobat%3BQuickTime%20Plug-in%207.6.8%3B&AQE=1

This is the actual query string captured by LeakTracker when it was being set to the
src property of an image. The taint sources in this case are the screen object (height,
width and colorDepth properties) and the navigator object (the plugins prop-
erty). As pointed out in [12], the tracking server could then use the captured information
and other public information such as IP addresses, User-Agent strings and so forth to
compute a fingerprint of the user. We therefore consider this a potentially dangerous
privacy attacks. To ease the examination effort, we implemented a classifier based on
data provided by Ghostery (www.ghostery.com). This classifier allows us to identify
the provider of each suspicious JavaScript principal found by our system. Running the
classifier over our log database, we found 480 known providers and they are responsi-
ble for the majority of the leakages. Our system detects six new trackers that were not
previously identified by Ghostery, one of which is ClickHeat, a behavior tracker (further
discussed in section 5.2 ). We observe a long-tail effect in the distribution of leakages
over trackers. In other words, some providers are more popular than others (for example
Google Analytics is used in 339,147 sites, Quantcast - 34,351 sites) but the majority of
leaks are in the long-tail.

Regarding the distribution of trackers per website (we count one distinct script file
as one tracker, regardless of how many leaks resulted by that tracker), we found that
the majority of them employ less than ten trackers. Specifically, 384,535 sites (98.1%)
have less than ten trackers on their page. A minority of the sites, however, have a large
amount of trackers, four of which even have more than 50. Overall, we found 7,302
sites that have more than ten trackers. The list of 20 websites with the most trackers is
shown in Table 3. We also observe that less popular websites tend to have many more
trackers than popular websites. As can be seen in Table 3, 19 out of 20 websites have
ranking more than 200,000.

On the prevalence of the four popular kinds of attacks, we did not observe any case
of cookie stealing or location hijacking. This finding is consistent with those reported
by Jang et al. [4]. We, however, did find notable cases of history sniffing and behavior
tracking, which we discuss in the following subsections.

5.2 Behavior Tracking Cases

We found multiple cases of behavior tracking in Alexa global top one million websites.
In this kind of privacy attack, a website will stealthily record the behaviors of visit-
ing users. It achieves this goal by installing event handlers on various relevant events
like mouse movements, mouse hovering and so forth. The collected log is then silently
transferred back to the server using XMLHttpRequest, form submission, CSS property
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Table 3. 20 Sites Embedded the Most Trackers

Site Rank Trackers
pmcarpenter.blogs.com 430602 62

freestore.spb.ru 534501 58
minordetails.typepad.com 800405 55

thefraserdomain.typepad.com 307401 51
exopolitics.com 570650 46

travel.ru 10106 44
tuschistesmachistas.com 990528 44

meine-preis.de 686600 43
mylol.net 268601 42

sysopt.com 251904 40
thediscountdivaguide.com 733649 40

markwebberforum.com 857301 40
thelifeofluxury.com 299507 40

blackberrydownload.net 305801 39
bigwigbiz.com 505509 39

smallbizlabs.com 428284 38
democracyforums.com 762002 38

usaonlinemall.net 559693 38
community.web.id 286006 37

bestpriceproduct.com 838801 37

Table 4. Behavior Tracking Providers

Tracking
Provider

Sites Events Tracked

Tynt Insight 1602 copy, mouseover
ClickDensity 259 mousedown
ClickHeat 475 mousedown, focus
Omniture 6884 mousedown, keydown
Woopra 2263 mousedown, mousemove, keydown
Pagealizer 5 mousedown
Statcounter 15149 mousedown, load, unload
Visual Website
Optimizer

651 blur, focus, focusin, focusout, load, resize, scroll, unload, click,
dblclick, mousedown, mouseup, mousemove, mouseover, mouseout,
mouseenter, mouseleave, change, select, submit, keydown, keypress,
keyup

ClickTale 2187 load, unload, scroll, mousemove, mouseover, mouseout, mousedown,
mouseup, click, contextmenu, resize, keydown, keyup, keypress, focus,
blur, select, change

Etracker 1334 mousedown
Reinvigorate 722 mouseup
SeeVolution 203 onscroll, onpaste, keydown, on blur, change, focus, mousedown
Mouseflow 77 mousemove, mouseover, mousedown, mouseup
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Fig. 2. ClickHeat

misuse, or src property misuse. The aggregated behavior data can then be used to gen-
erate a profile about the specific interests of that user. This proves to be very effective in
tailoring highly relevant ads to that user. This is the main reason why user interest data
command a premium in data exchange, as pointed out in [9] . As this level of surveil-
lance is more than most people are comfortable with [14], we consider it a dangerous
kind of privacy attack.

Table 4 summarizes our findings. The first column shows the name of the track-
ing provider we have identified. The number of sites that embeds a particular tracker
is listed in the second column. The last column shows the event handlers identified by
LeakTracker. Overall, we found that 31,811 websites spy on user behaviors, using track-
ers provided by 13 companies. All of them are interested in tracking mouse events, with
most of them register event handlers for mousedown and mousemove. This preference
is expected, as mouse cursor movement is shown to have strong correlation with eyes
movement and thus user’s attention [15]. Some of the trackers seem very aggressive
in collecting data, as indicated by the number of event they track. For instance, Visual
Website Optimizer registers handlers for 23 events, while ClickTale registers 18.

We identified one new behavior tracker not previously recognized by Ghostery, who
refers to itself as ClickHeat. Figure 2 shows a demo by ClickHeat itself, where data
collected from users visiting its websites are used to compute a heatmap. As can be
seen in the heatmap, hot and bright colors like yellow and green represent most clicked
areas while cold colors like blue represent less frequently clicked areas.

5.3 History Sniffing Cases

History sniffing attacks have received considerable attention recently. In this kind of at-
tack, a website gains unauthorized accesses to its visitors’ browsing history and
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Table 5. Sites Performing History Sniffing

Site Description Inspected URLs
golfdigestschool.com Sports casinogolfschools.com, executivegolfschool.org, +18
webleads-tracker.fr Business quivisite.com, +2

gearyi.com Business businessol.com, +2
netfactor.com Business leadlander.com, +3

pagealizer.com Business yahoo.com, +13
beencounter.com Business sitebrand.com, +5

bitbang.it Business facebook.com, +2

exfiltrates the data. Due to its highly invasive nature, history sniffing is generally con-
sidered an unsavory practice and several high profile lawsuits have been made against
the perpetrators [16,17]. These lawsuits have drawn considerable scrutiny over the be-
havioral advertising industry, leading to the establishment of AdChoices and opt-out
programs. One of our goals in this paper is to assess how the current situation is.

As shown in Table 5, history sniffing attacks still exist in the wild and
we observed several cases of history sniffing occurring in the long-tail of the
web. Specifically, we found seven websites still sniff on users’ browsing history,
querying for a total of 53 websites. Portions of the attack code captured from
http://www.netfactor.com/ are shown below:

var b_c_urls = [ ’iuuq://xxx.fyb68768hkih878nqmf.dpn’, ’iuuq://xxx
.mfbemboefs.dpn’, ’iuuq://xxx.wjtjtubu.dpn’, ’iuuq://xxx.efnboecbtf
.dpn’];
var b_c_urls_id = [ ’-1’, ’7850’, ’12973’, ’12972’];
b_c["3"] = "8301265327807-1";
...
if (ciphertext.length>2)
{
ciphertext = ciphertext.replace("][", String.fromCharCode(92));
ciphertext = ciphertext.replace(")(", String.fromCharCode(39));
Decrypt();
}
...
style_to_add_to_page += ".beencounter-id-" + b_c_urls_id_ +
":visited {background:url("+String.fromCharCode(39)+"http://www.
beencounter.com/b.php?one=" + b_c_urls_id_ + b_c_url_ending
+String.fromCharCode(39)+")}";

links_to_add_to_page += "<a href="+ String.fromCharCode(39) +
plaintext + String.fromCharCode(39) +" class="+String.fromCharCode(
39)+"beencounter-id-" + b_c_urls_id_ +String.fromCharCode(39) +
">&nbsp;</a>";
...
document.write( "<style type=" + String.fromCharCode(39) + "text/css"
+String.fromCharCode(39)+ ">" );
document.write( style_to_add_to_page );
document.write( "</style>" );
document.write( "<div style=" + String.fromCharCode(39) + "position:
absolute;left: -4000px ;text-indent:-999px"+
String.fromCharCode(39)+">" );
document.write("<img src="+String.fromCharCode(39)+"http://www.
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beencounter.com/b.php?one=" + b_c_url_ending+
String.fromCharCode(39)+">");
document.write(links_to_add_to_page );
document.write( "</div>" );

We have reverse-engineered the attacks and found that all of them are caused by
a tracker called Beencounter. In the following, we provide a quick description of the
attack. The list of URLs to sniff for is pre-encrypted and stored in the b c urls array.
This encryption apparently is to avoid detection. Each of the URL is associated with
a predetermined unique ID stored in b c urls id. At runtime, the URLs are decrypted
and used to build a list of links, stored in links to add to page. The associated IDs are
then used to build respective CSS styles and then stored in style to add to page. As
can be seen in the attack code, the CSS background property is misused to trigger the
browser into sending requests to the web server. Therefore when the links are inserted
into the page, the web server can learn about which sites the user has visited, based on
what is requested and what is not requested by the browser.

5.4 Performance

In order to assess the performance overhead of LeakTracker, we conducted experiments
with SunSprider [8], an industry standard in browser benchmarking. The version of
the benchmarking suite used was 0.9.1 and our experiments were done with a Dell
Optiplex 760 workstation running Windows 7 x64 Service Pack 1. This workstation
was equipped with an Intel Core 2 Quad Q9550 CPU (2.83Ghz 12 MB L2 Cache) and
4 GB of RAM. The baseline for evaluation was the original Mozilla Firefox 3.6.13.
Each experiment was repeated ten times, and the average result was recorded. Overall,
our instrumented browser completes the test in 1979ms versus 899.5ms of the original
browser, resulting in a 2.2 times slowdown. We consider this satisfactory given the
amount of additional computation needed to propagate and check taints, as a typical
dynamic taint analysis system can incur up to 7.9x slowdown [4,5,6].

6 Related Work

Web-based attacks have received significant attention over the last few years. The
threats from malicious web pages have motivated researcher into developing mecha-
nisms to protect web surfers from being exploited. We first review related work on
detection of malicious websites followed by a brief discussion on specific protection
approaches.

6.1 Detection

Recent work by Curtsinger et al. [18] presents a mostly static approach to detect
JavaScript malware. Their tool uses Bayesian classification of hierarchical features of
the JavaScript AST to identify syntax elements that are highly predictive of malware.
The results show that the system can achieve a very low false positive rate at negligible
performance overhead. As a result, it can be deployed inside an end-user browser or as a
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first-level filter to reduce the workload of a dynamic, high-overhead but more effective
approach like NOZZLE [19]. In a similar fashion to ZOZZLE, Prophiler by Canali et
al. [20] combines JavaScript, HTML and URL features into one classifier that is able to
quickly discard benign pages. According to their evaluation, the tool is able to reduce
the load on a more costly dynamic analysis tools Wepawet [21] by 85%. In addition to
using classifiers, it is also possible to detect attacks through the static analysis of other
content retrieved from the web server, as shown in [22], [23], [24].

Work by Jang et al. [4] focuses on detecting privacy violating information flows
in JavaScript web applications. Using dynamic taint analysis, they are able to detect
the leaking of sensitive information through taint sinks and show four kinds of attack:
cookie stealing, location hijacking, history sniffing, and behavior tracking. Their em-
pirical study of Alexa global top 50,000 websites shows that many websites, including
several in the top 100 sites, leak private information about users’ browsing behavior.
Their implementation uses a dynamic source-to-source rewriting approach where taints
are injected, propagated and blocked within the rewritten JavaScript code. In contrast,
LeakTracker implements taint tracking at one level below, inside the JavaScript engine
itself. As a result, it incurs lower performance overhead and is more resilient to sub-
version. In the same vein as [4], using the Fiddler framework, Krishnamurthy et al.
[3] surveyed 120 popular non-social-network websites and show that 56% of the sites
directly leak pieces of private information in clear text to third-party aggregators.

6.2 Protection

Cross-site scripting (XSS) attacks can be prevented in several ways. BrowserShield
[25], for instance, rewrites dynamic scripts into safe equivalents before sending them
to the clients. BLUEPRINT [26], on the other hand, integrates with web applications
to encode user-generated HTML content into a syntactically inert format and decodes
it at the client. This allows them to bypass the anomalous parsing behaviors from client
web browsers. ConScript [27] leverages aspect-oriented programming techniques to
insert hooks into various interfaces, thus allowing the tool to restrict how JavaScript can
interact with its environment. Document Structure Integrity (DSI) [28] takes a different
approach and cast the XSS problem as a document structure problem where client and
server have inconsistent views of the document structure. Their evaluation shows that
the tool is effective and incurs low performance overhead.

The possibility of history sniffing attack was first considered nine years ago by
Clover in a BUGTRAQ mailing list post in February of 2002 [29]. This, however, has
not been considered seriously by the browser vendors until recently when Jang et al. [4]
reported 46 popular websites did sniff on users’ history. After the disclosure, a preven-
tion mechanism was proposed by L. David Baron of Mozilla [30] and has been adopted
in the latest version of major browsers. Right after that, in May 2011, Weinberg et al.
[31] demonstrated a new kind of history sniffing attack that circumvents even Baron’s
defense and to date, no newer protection measure has been proposed.

Dynamic taint analysis has widespread application in the research community. Vogt
et al. [5] instrumented the browser’s JavaScript engine to track a taint bit that determines
whether a piece of data is sensitive and report an XSS attack if this data is sent to a
domain other than the page’s domain. In the same vein, Dhawan et al. [6] used similar
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techniques to analyze confidentiality properties of JavaScript browser extensions for
Firefox.

From another perspective, the JavaScript language can be constrained to allow sand-
boxing of untrusted widgets. AdSafety [32] uses a novel type system to analyze the
robustness of web sandboxes. They found several new bugs in the implementation of
AdSafe, a web sandbox by Yahoo. Concurrent with AdSafety, Taly et al. [33] also stud-
ies JavaScript reference monitors and devises a restricted version of the JavaScript
language. They then develop a tool that can soundly prove that an API cannot be
circumvented or subverted, hence ensuring the robustness of sandbox protection.

7 Conclusions

We have presented the design, implementation and evaluation of LeakTracker, a fast
and scalable tool to study the privacy violations in web content. Particularly, we de-
veloped a novel technique called principal-based tainting that allowed us to perform
dynamic analysis of JavaScript execution at reduced performance overhead. We have
implemented a Firefox-based prototype of LeakTracker and deployed it on production
systems. We have crawled and surveyed the Alexa global top one million websites. Our
findings demonstrated that privacy attacks are more prevalent and serious than previ-
ously known.
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Abstract. Location based social or geosocial networks (GSNs) have re-
cently emerged as a natural combination of location based services with
online social networks: users register their location and activities, share it
with friends and achieve special status (e.g., “mayorship” badges) based
on aggregate location predicates. Boasting millions of users and tens of
millions of daily check-ins, such services pose significant privacy threats:
user location information may be tracked and leaked to third parties.
Conversely, a solution enabling location privacy may provide cheating
capabilities to users wanting to claim special location status. In this pa-
per we introduce new mechanisms that allow users to (inter)act privately
in today’s geosocial networks while simultaneously ensuring honest be-
havior. An Android implementation is provided. The Google Nexus One
smartphone is shown to be able to perform tens of badge proofs per
minute. Providers can support hundreds of million of check-ins and sta-
tus verifications per day.

1 Introduction

Location based services offer information and entertainment services to mobile
users, that rely on the geographical position of their mobile devices. A recently in-
troduced but popular example, is the geosocial network (GSN) – a social network
centered on the geographical position of its users. Services such as Foursquare [1],
Yelp [2] or Gowalla [3] allow users to register or “check-in” their location, share
it with their friends, leave recommendations and collect prize “badges”. Badges
are acquired by checking-in at certain locations, following a required pattern
simultaneously with other users, i.e. multiplayer games, or obtaining the highest
number of check-ins during a time window (“mayor” badge).

Besides keeping track of their friends’ location, the user incentives for
participation include receiving promotional deals, coupons and personalized rec-
ommendations. The main source of revenue for service providers lies in ad tar-
geting. Boasting millions of users [4] and tens of millions of location check-ins
per day [5], GSNs can provide personalized, location dependent ads. As such,
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the price of participation for users is steep: compromised location privacy. Ser-
vice providers learn the places visited by each user, the times and the sequence
of visits as well as user preferences (e.g., places visited more often) [6,7]. The
implications are significant as service providers may use this information in ways
that the users never intended when they signed-up (e.g., having their location
information shared with third parties [8,9]).

While compromised privacy may seem a sufficient reason to avoid the use
of such services, it may not be necessary. Instead, we propose here a frame-
work where users themselves store and manage their location information. The
provider’s (oblivious) participation serves solely the goal of ensuring user cor-
rectness. This enables users to privately and securely check-in and acquire special
location based status, e.g., in the form of badges. Badges are defined as aggre-
gate predicates of locations. We then devise solutions to support a variety of
such predicates, including (i) registering a pre-defined number of times at a lo-
cation or set of locations, (ii) registering the most number of times (out of all
the users) at a location and (iii) simultaneously registering with k other users
at a location.

Given the recent surge of location privacy breaches and the ensuing liabili-
ties issues [10], implementing privacy solutions may ultimately be in the service
provider’s best interest.

The problem is two-faceted. On one side, clients need strong privacy guaran-
tees: The service provider should not learn user profile information, including
(i) linking users to (location,time) pairs, (ii) linking users to any location, even
if they achieve special status at that location and (iii) building user profiles –
linking multiple locations where the same user has registered. On the other side,
when awarding location-related badges, the service provider needs assurances of
client correctness. Otherwise, since special status often comes with financial and
social perks, clients have incentives to report fake locations [11], copy and share
special status tokens, or check-in more frequently than allowed.

We note that, despite being seemingly attractive, the simple use of client
pseudonyms as a means to provide client privacy during check-ins and special
status requests is vulnerable to profile based de-anonymization attacks [12,13].

In this work we first define essential privacy and correctness properties for
the aggregate location predicate problem. We then introduce Spotr , a venue-
oriented location verification protocol, that allows GSN providers to certify
the locations claimed by users. Spotr relies on single-use, 2 dimensional QR
(Quick Response) codes, displayed on devices inside participating venues. Fur-
thermore, we propose three privacy-preserving solutions, GeoBadge, GeoM and
MPBadge, for the three aggregate location predicates described above. The so-
lutions deploy cryptographic techniques such as zero-knowledge proofs, quadratic
residuosity constructs, threshold secret sharing and blind signatures. Clients col-
lect special, provider-issued tokens during check-ins, which they either aggregate
to build generic, non-traceable badges, or use to build zero-knowledge proofs of
ownership. Client correctness is partly ensured by the use of blind signatures of
single-use tokens.
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We have implemented and evaluated the performance of our solutions on
a Revision C4 BeagleBoard, Google Nexus One smartphones and a 16 quad-
core server. Experimental results are extremely positive. The GSN provider can
support thousands of check-ins and special status verifications per second, while
a smartphone can build strongly secure aggregate location and correctness proofs
in just a few seconds.

2 Related Work

Location Cloaking: Anonymization, pseudonimization, location and temporal
cloaking techniques (introducing errors in location reports to provide 1-out-of-k
anonymity) have been initially proposed in [14], followed by a significant body
of work [15,16,17,18]. These techniques are vulnerable to de-anonymization at-
tacks [12,13]: the identity of a user frequently reporting a residential address
may be revealed by computing intersection sets of of cloaked reports.

Location Verification: Saroiu and Wolman [19] introduced the location proof
concept – a piece of data that certifies a receiver to a geographic location. The
solution relies on special access points (APs), that are able to issue such signed
proofs. Luo and Hengartner [20] extend this concept with client privacy, achieved
with the price of requiring three independent trusted entities. Note that both
solutions rely on the existence of specialized APs or cell-towers, that modify their
beacons and are willing to participate and sign arbitrary information. To address
the central management problems, Zhu and Cao [21] proposed the APPLAUS
system, where co-located, Bluetooth enabled devices compute privacy preserving
location proofs.

Proximity Alerts: Zhong et al. [22] have proposed three protocols that pri-
vately alert participants of nearby friends. Location privacy here means that
users of the service can learn a friend’s location only if the friend is nearby.
Manweiler et al. [23] propose several cloaking techniques for private server-based
location/time matching of peers. Narayanan et al. [24] proposed several other
solutions for the same problem, introducing the use of location tags as a means
to provide location verification. Our work is different, by enabling private and
correct aggregate location predicates in GSNs.

This paper extends our previous work [25] with a location verification solu-
tion, Spotr , detailed descriptions of the private aggregate location predicate
protocols (GeoBadge, GeoM and MPBadge), proofs of correctness and privacy,
details of Foursquare as well as implementation results of Spotr , GeoBadge
and GeoM .

Summary: Existing work has focused on (i) hiding user location from LBS
providers and other parties and on (ii) enabling users to prove claimed locations.
Besides proposing a novel, venue oriented approach for location verification, in
this paper we focus on the next step, of anonymizing location aggregates defined
by geosocial networks.
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3 Model

3.1 The System

We consider a geosocial network provider, S. Each subscriber (or user) has an
account with S. Subscribers are assumed to have mobile devices equipped with
a GPS receiver and a Wi-Fi interface (present on most smartphones). To use the
provider’s services, a client application needs to be downloaded and installed.
Subscribers can register and receive initial service credentials, including a unique
user id; let IdA denote the id of user A. In the following we use the terms user
and subscriber to refer to users of the service and the term client to denote the
software provided by the service and installed by users on their devices.
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Fig. 1. Foursquare stats: (a) CDF of days out, check-ins and things done by users. (b)
Badge and friends evaluation.

Foursquare: In the following, we model the online geosocial network provider
S after the most popular in existence to date, Foursquare [1]. In Foursquare,
users report their location, through check-ins at venues of interest, share it with
friends (e.g., imported from Facebook or discovered and invited on Foursquare)
and are awarded points and “badges”. A user with more check-in days at a
venue than anyone else in the past 60 days becomes the “Mayor” of the venue.
Foursquare has partnered with a long list of venues (bars, cafes, restaurants, etc)
to reward the Mayor with freebies and specials. Foursquare imposes a discrete
division of time, in terms of epochs. A user can check-in at one venue at most once
per epoch. This strategy has made Foursquare quite popular, with a constantly
growing user base, which we currently estimate at over 14 million users.

In order to understand the need for our solutions, we have collected profiles
from 781,239 randomly selected Foursquare users. Our first question was how
active are Foursquare users. Figure 1(a) shows the CDF of the number of check-
ins, days out (days the user was actively performing check-ins) and things done
(e.g., reviews left for a venue) by users. Note that 45% of the collected users have
between 80 and 950 check-ins, for between 50 and 300 days of activity (at this
time Foursquare is 2 years and a half old). This shows that many Foursquare
users are very active. Our second question regards the popularity of badges
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Fig. 2. (a) Scatterplot check-ins vs. users in a small town. (b) Per-venue check-in
distribution over time for two random venues.

in geosocial networks. Figure 1(b) shows the cumulative distribution function
(CDF) of the number of badges earned by users as well as their friends. Note
that 45% of the users (between the median and the 95th percentile) have between
10 and 50 badges and between 20 and 95 friends. This, coupled with the large
numbers of check-ins reported strengthens our belief that private badge protocols
are needed.

We corroborate the check-in data in a location-aware fashion: Figure 2(a)
shows the scatter plot of check-ins vs. users in one of the most active locations
in our dataset, the city of Babylon in Long Island, NY. Each point on the plot
denotes a venue, the x axis shows the total number of check-ins recorded at
the venue and the y axis shows the total number of users that have performed
the check-ins. Note that a few venues record 1000-5000 check-ins, from more
than 500 users. Most venues however range from a few tens to a few hundred
check-ins and users. Finally, Figure 2(b) shows the evolution between August
2010 and February 2011 of the number of check-ins per day for two randomly
selected venues. The number of check-ins range between 3 to almost 70 per day.
Our conclusions are that Foursquare users are actively checking-in and venues
record many daily check-ins. This data rich environment can be a goldmine
for rogue GSN providers. Moreover, the number of recorded check-ins suggests
that badges and mayorship are likely to become objects of contention. These
points show that devising private and secure “badging” protocols is a problem
of primary importance for GSNs.

Geo: A private GSN. A full-fledged privacy solution is composed of a set of
protocols Geo = {Setup, RegisterV enue, Subscribe, CheckIn, StatV erify}.
Setup is executed initially by the service provider to generate system-wide pa-
rameters and RegisterV enue is used to register a new venue with the provider
S. Subscribe is initiated by a client when registering with the service. CheckIn
is executed by a client to report its presence at a venue to S and StatV erify
is executed when the client has accumulated sufficient check-ins and claims its
special status. Each operation returns -1 to report failure or 0 for success.
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We support three special status types. First, location badges (see Section 6),
issued after the client runs CheckIn during k different epochs at a venue V (e.g.,
“local” badge in Foursquare [1]) or after the client runs CheckIn at k different,
select, locations (e.g., “adventurer” badge). Second, mayorships (see Section 7),
issued when the client has the largest number of CheckIn runs, at most one
per epoch, in the past m epochs at a given venue V . m is a system parameter.
Third, multi-player badges (see Section 8), issued when the client runs CheckIn
simultaneously with s other users at the same location. s is a system parameter.

3.2 Privacy and Correctness Properties

ServerModel. The provider S is honest, yet curious. S follows the protocol cor-
rectly, but is interested in collecting tuples of the format (Id, V, T ), where Id is a
user id, V is a venue and T is a time value. To this end, it may collude with exist-
ing clients and generate Sybil clients to track users of interest. The provider has
no interest in colluding with users to issue badges without merit. To achieve pri-
vacy, intuitively, the provider should learn nothing about Geo clients. First, this
includes the venues at which users run theCheckIn function, howmany times and
when they run CheckIn (in total and for any venue). We note that this necessar-
ily includes also hiding correlations between venues where a given client has run
CheckIn. We formalize this intuition using games run between an adversary A
and a challenger C.A controls the service provider and any number of clients, thus
controls the initial parameter generation functionality (e.g., the Setup function).
A shares public parameters with C. C controls two clients C0 and C1. C initially
runs the Subscribe function with A for the two clients and obtains their unique
identifiers.

In a first CheckIn-Indistinguishability game, we model the adversary’s inabil-
ity to distinguish between clients during CheckIn executions, even when the
adversary controls an initial trace of CheckIn executions. The game is defined
for a given venue V .

CheckIn Indistinguishability (CI-IND). A generates l bits c1, .., cl and
sends them to C. For each bit ci, C executes CheckIn(Cci(V ),A). After pro-
cessing all l bits, C flips a bit b ∈ {0, 1} and runs CheckIn(Cb,A). A outputs
a bit b′. A solution is said to be CI-IND if the advantage of A in the CI-IND
game, Adv(A) = |Pr[b = b′]− 1/2—, is negligible.

In a second, StatVerify-Indistinguishability game, the adversary (e.g., service
provider) should be unable to distinguish between clients running StatV erify,
even if the adversary is able to trace client CheckIn executions.

StatVerify Indistinguishability (SV-IND). C performs l CheckIn and m
StatV erify operations on behalf of C0 and C1, as requested by C. A StatV erify
operation succeeds only if special status has been achieved by the correspond-
ing client in the previous CheckIn runs. A generates k > 2s new bits c1, .., ck
such that at least s of them are 0 and at least s of them are 1. A sends c1, .., ck
to C. For each bit ci, C runs CheckIn(Cci(V ),A). Finally, C flips a coin b ∈ {0, 1}
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and runs StatV erify(Cb(V, s),S). A outputs a bit b′. A solution is said to be
SV-IND if the advantage of A, Adv(A) = |Pr[b = b′]− 1/2|, is negligible.

Note that even though the CheckIn runs are executed for the same venue V ,
irrespective of the client, the SV-IND game is also suitable for the mayor badge
– only one of the clients (Cb) will become mayor. However, for mayor badges,
the value s needs to exceed the number of CheckIn executions run on behalf of
any client in the first step of the SV-IND game. Finally, we also need to allow
the server to collect venue-based statistics:

Provider Usability. The service provider can count the number of CheckIn
executions for any venue as well as list the issued badges and mayorships.

Client Model. The client is assumed to be malicious. Malicious clients can
be outsiders that are able to corrupt existing devices or may be insiders, i.e.,
subscribers, users that have installed the client. Malicious clients can try to cheat
on their location (claim to be in a place where they are not [11]), attempt to
prove a status they do not have, or disseminate credentials received from the
server to other clients. The latter case includes any information received from
the server, certifying presence at a specific location. Formally, we need a solution
that has the following properties.

Status Safety. The challenger C controls the service provider and the adversary
A controls any number of clients. The challenger runs first the Setup protocol and
provides A with its public parameters. A runs Subscribe any number of times
to generate clients. A then runs CheckIn with C for any number of venues, but
at most k− 1 times for any venue. A runs StatV erify with C. The advantage of
A is defined to be Adv(A) = Pr[StatV erify(C(paramsC), S(privS)) = 1]. We
say that a solution is safe if Adv(A) is negligible.

Note that a safe solution also prevents clients from running CheckIn for
venues where they are not located – otherwise A would succeed in StatV erify
with less than k CheckIn runs at a site.

Token Non-distributability. No client or coalition thereof can use the same
set of tokens more than once.

Token-Epoch Immutability. No client or coalition thereof can obtain more
than one token per site per epoch.

4 Tools

Cryptographic Tools. We use a semantically secure cryptosystem, as well
as unforgeable signature schemes. Let SX(M) denote the signature of a mes-
sage M by participant X . Unforgeability is defined in terms of security “against
one-more-forgery”, where the user engaged in l runs of the signature algorithm
with the signer cannot obtain more than l signatures. We also use blind signa-
tures with the standard (i) blindness and (ii) unforgeability properties. Blindness
means that the signer learns nothing about the signed messages. We use cryp-
tographic hashes that are easy to compute and are (i) pre-image resistant, (ii)
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second pre-image resistant and (iii) collision resistant. We use x ∈R S to denote
the random choice of x from set S.

Anonymizers. We assume the existence of a network anonymizer, Mix, such
as Tor [26]. Anonymizers or mix-nets [26,27] are tools that make communication
untraceable and unlinkable. Untraceability implies the infeasibility of finding
the identity of the issuer of a given set of messages. Unlinkability implies the
infeasibility of discovering pairs of communicating entities.

Anonymous Authentication. We rely on anonymous authentication tech-
niques with revocation and identity escrow, e.g., [28], performed over Mix, to
enable users to prove they are service subscribers.

QR-Assumption. Given a large composite n = pq, where p and q are safe
primes and given n but not p and q, it is computationally hard to decide if any
value v, whose Jacobi symbol (v|n) is 1, is a quadratic residue or not. v is a
quadratic residue if there exists a value y such that y2 = v mod n.

5 Spotr : Secure Location Verification

In this section, we propose Spotr , a solution that allows the GSN provider
to privately verify the claimed locations of clients. Since venues have the most
incentives to correctly reward users, Spotr relies on the co-operation of venue
owners: owners need to install and operate a device inside their venues. We show
that simple, off-the-shelf equipment is sufficient and no Internet connectivity is
required – thus imposing solely a one time investment. Spotr relies on Quick
Response Codes (QR codes), 2D barcodes consisting of black modules arranged
in a square pattern on a white background, that can store up to 2,953 bytes.

Let SpotrV denote the device installed at venue V . When registering
SpotrV , the owner instructs SpotrV to generate a public/private key, store
the private key, encode the public key in a QR code and display it on the screen.
The owner takes a picture of the QR code, decodes the public key and reports
it to S, the GSN provider. S associates with each venue, the owner’s public
key. At any time, SpotrV displays a QR code encoding T,ΔT, SO(H(T, ctr)),
containing the time when the QR code was generated, an expiration increment
ΔT and the owner O’s signature on these values. During a check-in at V , the
following takes place:

CheckIn(C(Id, V, T, pubS), S(privS , pubO)): The user approaches SpotrV ,
snaps a picture of the displayed QR code and sends it, along with the venue
identity, over Mix, to S. With the public key pubO of the owner O of venue V ,
S verifies the correctness of the received signature, and that the current time is
between [T, T +ΔT ]. If the verifications succeed, S validates the check-in. Oth-
erwise, it returns -1. SpotrV changes the QR code to encode a fresh timestamp
when either (i) the current time approaches T +ΔT or (ii) it detects that the
current QR code has been read (see Section 9 for implementation details).

We are exploring alternative, challenge-response based location verification
protocols involving Wi-Fi/Bluetooth/NFC communication between the user
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smartphone and the venue’s device. They are not included here due to space
limitations. Spotr will be used as a building block by all subsequent solutions,
GeoBadge, GeoM and MPBadge. Its security is proved as part of GeoBadge.

6 Geo-Badge

GeoBadge is a private protocol that allows users to prove having visited the same
location k times. At the end of the section we show how to adapt it to support
private proofs of visiting k different places. GeoBadge works as follows: each
subscribed client contacts the provider over the anonymizer Mix, authenticates
anonymously, proves its current location and obtains a blindly signed, single use
nonce and a share of a secret associated with the current venue. When k shares
have been acquired (after k check-ins at the same venue) the client is able to
reconstruct the secret - which is the proof required for the badge of the venue.
The single use nonces prevent users from distributing received shares (or proofs).

GeoBadge extends Geo and provides the skeleton on which we build the
subsequent solutions. Each client maintains a set Tk, storing all the tokens ac-
cumulated during CheckIn runs. When the client accumulates enough tokens in
Tk to achieve special status, it runs StatV erify, aggregating the tokens in Tk.
In the following we instantiate each protocol, executed between a client C and
the GSN provider S.

Setup: The server chooses a large prime p and generates a random key K. The
server publishes p and keeps K secret.

RegisterVenue(C(), S(privS)): The client C that registers venue V , called the
owner of the venue, sends to S its public key. For each new venue V , S gen-
erates a secret MV randomly. S uses a threshold secret sharing solution to
compute shares of MV , by generating a polynomial Pol of degree k − 1 whose
free coefficient is MV : Pol(x) = MV + c1x + c2x

2 + ... + ck−1x
k−1. S keeps

Pol’s coefficients secret but publishes the degree k and the verification value
V erV = H(MV HK(V ) mod p). S stores Pol’s coefficients for V , along with the
public key of V ’s owner - to be used as part of Spotr (see Section 5).

Subscribe(C(), S(pubS, privS)): The communication in this step is performed
overMix, to hide C’s location from S. C runs the setup stage of the Anonymous
Authentication protocol of Boneh and Franklin [28] to obtain tokens that allow
it later to authenticate anonymously with the server.

CheckIn(C(Id, V, T, pubS), S(privS)): Let time T be during epoch e. The fol-
lowing actions are performed by a client C and the service provider S:

– Anonymous Authentication: C runs the anonymous authentication pro-
cedure of Boneh and Franklin [28] to prove to S that it is a subscriber. This step
is performed over Mix.

– Location Verification: C runs Spotr (Section 5) to prove presence at V .

– Token Generation: C generates a fresh random value R and sends the
blinded R to S, asO(R). S computes xe = HK(e)mod p and ye = Pol(xe)mod p.
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S sends to C (as a reply over the anonymizer) the tuple (xe, ce, SS(O(R))), where
ce = HK(V )ye mod p and the last field denotes the blindly signed R. C “un-
blinds” the signed nonce, obtaining se = SS(R) and stores (xe, ce, se) into its
token set Tk.

StatVerify(C(Id, V, k, T k, pubS), S(privS)): Let Tk = {(x1, c1, SS(R1)), ..,
(xk, ck, SS(Rk))}. Let lj(x) = Πm=1..k,m �=j

x−xm

xj−xm
mod p be the Lagrange coeffi-

cients. The following steps are executed, over Mix:

– C computes SS = Σj=1..kcj lj(0). C verifies that H(SS) = V erV . If the veri-
fication fails, C outputs -1 and stops. Otherwise, it sends SS, along with the set
of signed nonces, (SS(R1), .., SS(Rk)) and the venue V to S.

– S verifies that (i) the k random values are indeed signed by it, (ii) that
R1, .., Rk are unique and have not been used before and (iii) thatH(SS) = V erV .
If either verification fails, S outputs -1. Otherwise, S stores the values R1, .., Rk,
then issues a badge SS(“GeoBadge′′, V, Tc) for the venue V , where Tc is the
current issuance time. S sends this badge to C (as a reply over Mix).

6.1 Analysis

Correctness. The following holds due to Lagrange interpolation:

SS =

k∑
j=1

cj lj(0) = HK(V )

k∑
j=1

Pol(xj)lj(0) = HK(V )Pol(0) = HK(V )MV

Theorem 1. GeoBadge is CI-IND.

Proof. (Summary) Following the CI-IND game, A’s view consists of the outcome
of l+ 1 anonymous authentication procedures, l+ 1 venue signatures (from QR
codes) and l+1 blinded random values. The venue signatures carry no informa-
tion identifying the client. The blinded random values are information theoretical
secure. Then, ifA can distinguish between C0 and C1 in the last step of the game,
we can build an adversary that has a non-negligible advantage against either (i)
the anonymous authentication solution of Boneh and Franklin [28] or (ii) the
untraceability property of Mix.

Theorem 2. GeoBadge is SV-IND.

Proof. (Summary) At the completion of the SV-IND game C can reconstruct
the SS values for both C0 and C1. A has published a pre-commitment for SS –
V erV . Note that C’s verification of H(SS) = V erV prevents A from guessing b
based on the value C to reconstruct during StatV erify. Thus, if the adversary
has non-negligible advantage in the SV-IND game then we can also build an
adversary that has non-negligible advantage against either (i) the untraceability
property of Mix, (ii) the semantic security of the blinding algorithm E, or (iii)
the information theoretic security of the threshold secret sharing mechanism.
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Theorem 3. GeoBadge provides Status Safety.

Proof. (Summary) Spotr efficiently prevents a single attacker from falsely claim-
ing presence at V : without being present, the attacker is unable to predict or
forge the signature displayed on SpotrV (see the security against one-more-
forgery of the signature scheme from Section 4). Then, if there exists an adver-
sary that has non-negligible advantage in the Badge-Safety game we can build
an adversary that has a non-negligible advantage against (i) the pre-image re-
sistance property of hashes (inverting V erV = H(SS)) or (ii) the information
theoretic threshold secret sharing technique (including combining shares gener-
ated at multiple sites).

Note that triviallyGeoBadge also provides the Token Non-Distributability prop-
erty – the single use, server signed random nonces prevent more than one run of
StatV erify for a given set of tokens. The Token-Epoch Immutability property
holds (no colluding clients can obtain more than one token for a venue during
any epoch e), since the pair (xe, ce) is a deterministic function of e.

7 Geo-M

Using the Foursquare terminology, the user that has run CheckIn the most
number of times, at a venue S, within the past m epochs, becomes the mayor of
the place. We now propose GeoM , a solution that allows users to achieve this
status with privacy, while allowing anyone to verify correctness. GeoM extends
GeoBadge: First, it allows clients to prove any number of check-ins, not just
a pre-defined value k. Second, the check-ins are time constrained: clients have
to prove that all check-ins have occurred in the past m epochs. Finally, client
issued proofs can be published by the provider to be verified by any third party,
without the risk of being copied and re-used by other clients.

GeoM achieves these features by requiring the service provider to issue only
one token for each venue during any epoch. When a user has accumulated k
tokens for a venue, it proves to the provider that it has k out of the m tokens
given in the past m epochs for that venue. The proof is in zero knowledge (ZK)
and if it verifies is published by the server.

Setup: The server generates two large safe primes p and q and the composite
n = pq. Let N denote n’s bit length. S publishes n and keeps p and q secret.

RegisterVenue(C(), S(privS)): For each newly registered venue V , S generates
a new random seed rV and uses it to initialize a pseudo-random number generator
GV . During every epoch ei, for the venue V , S generates a fresh random token
ti, using GV , and publishes t2i mod n.

CheckIn(C(Id, V, T, q, pubS), S(privS)): Inherits the Anonymous Authentica-
tion and Location Verification steps from GeoBadge. If they succeed, let time
T be within epoch ei, when the provider’s published token value is t2i mod n.
C generates a random nonce R, engages in a blind signature protocol with S
and obtains SS(R). S also sends to C the value ti, the square root of the value
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published for the epoch ei. C stores ti in the set Tk along with the signed nonce,
SS(R). All communication takes place over Mix.
StatVerify(C(Id, V, k, T k, pubS), S(privS)): Without loss of generality, let T =
{(t1, SS(R1)), .., (tk, SS(Rk))} be the set of all tokens issued by S for venue
V in the past m epochs and let T 2 = {t21, t22, .., t2m} denote the corresponding
published values. Note that the membership of T 2 changes during every epoch.
The client and the server run the following steps s times (ZK proof of the client
knowing k square roots of values from T 2). If successful, at the end of the s steps
S will be convinced with probability 1− 2−s.

– C generates y1, .., ym ∈R {0, 1}N and a random permutation π1. C computes
the set M = π1{t21y21 , .., t2my2m} and sends it to S. Note that C does not need to
know t1, .., tm to compute M .

– C generates z1, .., zk ∈R {0, 1}N and a random permutation π2 and computes
the set Proof = π2{t1z1, .., tkzk}, which it sends to S.

– S flips a coin b and sends it to C.

– If b=0, C sends y1, .., ym to S, which then verifies that for every t2i ∈ T 2,
t2i (yi)

2 occurs once in M .

– If b=1, C generates and sends A = π2{a1 = z−1
1 y1, .., ak = z−1

k yk}. S verifies
that for every pi ∈ Proof and corresponding ai, (piai)

2 occurs in M once.

If any step fails, S outputs -1 and stops. Otherwise, it generates a signed “mayor”
token SS(“Mayor′′, V, Tc) for venue V issued at time Tc and sends it to C. All
communication in this step is done overMix. To reduce delays, the ZK proof can
be non-interactive – in the standard way, by making the challenge bits depend in
an unpredictable way on the values sent to the server. This allows C to send the
entire proof at once. S publishes the ZK proof for the current “mayor”, which
can be downloaded and verified by any third party.

7.1 Analysis

Theorem 4. The StatV erify protocol of GeoM is a zero knowledge proof sys-
tem of k square roots from T 2.

Proof. (Summary) To see that GeoM is a proof system, we need to prove com-
pleteness and soundness.

Completeness – an honest server will be convinced by an honest client of the
correctness of the proof. If b=0, S is convinced that M is obtained from T 2 by
multiplication with quadratic residues, y2i . That is, for each ti ∈ T 2, t2i y

2
i ∈ M .

If b=1, S is convinced that C knows the square roots of k elements in M . This is
because C can provide ai values that satisfy (piai)

2 = (tiziz
−1
i yi)

2 = t2i y
2
i ∈ M .

In conjunction, these two cases prove to S that C knows the square roots of k
elements from T 2 with probability 1− 2−s.

Soundness – if the statement is false, no cheating client can convince an
honest server that the statement is true, except with small probability. Without
loss of generality, let us assume that C knows only k − 1 square roots of T 2,
t1, .., tk−1. If C expects the challenge to be b = 0, C generates y1, .., ym as in the
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protocol, builds M correctly but generates Proof = π2{t1z1, .., tk−1zk−1, zk},
where zk is random. If the challenge ends up being b = 1, C has to produce one aj
value that is equal to yjz

−1
j (t2j)

1/2, for one j ∈ k..m. Due to the QR-Assumption,

C is unable even to tell whether any t2j is a quadratic residue or not. If C expects

the challenge to be 1, it builds Mπ1 = {t21w2
1 , .., t

2
k−1w

2
k−1, w

2
k, .., w

2
m}, where the

wi’s are random. It then build Proof to be
Proof = π2{t1z1, .., tk−1zk−1, zk}. If b = 1, C can provide square roots for k
values in M . If b = 0 however, C has to produce m− k + 1 values yj such that
yj = wj(t

−2
j )1/2, which contradicts again the QR-Assumption. The chance of a

cheating client to succeed after s repetitions is 2−s.
Zero Knowledge – if the statement is true, no cheating server learns any-

thing except this fact. We prove this by following the approach from [29,30].
Specifically, let S∗ be an arbitrary, fixed, expected polynomial time server Turing
machine. We generate an expected polynomial time machine M∗ that, without
being given access to a client C (or the square roots of any elements from T 2,
produces an output whose probability distribution is identical to the probability
distribution of the output of < C, S∗ >.

While we skip details due to space limitations, we note that M∗ is built by
using S∗ as a black box. For each of the s steps of the protocol, M∗ flips a coin
a and builds the sets M and Proof anticipating that the challenge bit b will
equal a. It then feeds these values to S∗, which then outputs b. If b = a, M∗

outputs the transcript of the transaction and moves to the next step. Otherwise,
it repeats the current step. M∗ terminates in expected polynomial time (each
of the s steps is executed on average twice). The probability distributions of the
output of < C, S∗ > and of M∗ are identical, which is proved by induction.

Theorem 5. GeoM is CI-IND and SV-IND.

Proof. (Intuition) The CI-IND proof is inherited from GeoBadge: CheckIn pro-
tocol differs solely in the provider’s issuance of a square root value. For the
SV-IND proof, we note that StatV erify is a ZK proof system. Then, an ad-
versary with advantage in the SV-IND game can be used to build an adversary
against Mix’s untraceability property.

Theorem 6. GeoM provides Status Safety.

Proof. Results directly from Theorem 4: StatV erify is a proof system of having
k square roots from T 2. A cheating client can succeed with probability 2−s,
where s is the number of proof iterations.

The single-use blindly signed nonces generated during CheckIn ensure the token
non-distributability property of GeoM . GeoM trivially provides the token-epoch
immutability property, as S issues a single token per venue per epoch.

8 Multi-player: MP-Badge

The multi-player badge is issued when a user presents proof of co-location and
interaction with k − 1 other users at a venue V . k is a parameter that may
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depend on the venue V . We now present MPBadge, an extension of GeoBadge
that provides this functionality with privacy. MPBadge relies on threshold sig-
natures, where each client is able to provide a signature share and k unique
signature shares generated at the same venue in the same epoch (see protocol
MP − CheckIn). The shares can then be combined to produce a signed co-
location proof. An additional difficulty here lies in the ability of an anonymous
user to cheat: run CheckIn multiple times in the same epoch, obtain k signa-
ture shares and generate by itself the co-location proof. We solve this issue by
allowing a user to run CheckIn only once per venue per epoch - using the blind
signature generation, BSGen, protocol (see below).

Setup: The server S generates two large safe primes p and q and the composite
n = pq. Let N denote n’s bit length. S publishes n and keeps p and q secret.

RegisterVenue(C(), S(privS)): The following steps are executed:

– S stores a key table KT , indexed by venues and epochs. KT [V, e] contains
a unique key, used only for signing values for a venue V during epoch e. Let v
denote the total number of venues supported.

– For each venue V and epoch e, S generates a value MV,e ∈R {0, 1}N and a
random polynomial PolV,e with degree k−1, whose free coefficient is MV,e. MV,e

and PolV,e are secret.

BSGen(C(Id, e, pubS), S(privS)): Executed once per epoch e by each client C
(when active) with provider S, over an authenticated channel. C generates v
random values, one for each venue in the system, R1, .., Rv. C and S engage in
a blind signature protocol, where each Ri is blindly signed by S with KT [Pi, e].
S records the epochs when C has executed this step and returns -1 if C at-
tempts to run this step twice for the same epoch. Otherwise, the client obtains
BSKT [Pi,e](R), ∀i = 1..v.

CheckIn(C(Id, V, T, n, pubS), S(privS)): C and S run the Anonymous Authen-
tication and Location Verification steps of GeoBadge. If they succeed, C sends
R,BSKT [V,e](R) to S over Mix – the values correspond to the venue V and
epoch e where C runs CheckIn. S verifies that (i) R has not been used before
and (ii) the validity of its signature. If either step fails, S returns -1. Otherwise,
S stores R and generates a share of MV,e: (xe, ye), where xe is random and
ye = PolV,e(xe). S sends (xe, ye) to C as a reply over Mix, and C stores them.

MP-CheckIn(C1(Id1, V, T ), C2(Id2, V, T, xe,2, ye,2)): This step is executed when
a client C1 contacts a co-located client C2 to build a co-location proof for V
during epoch e (containing current time T ). The communication is done over
Mix. C1 contacts C2 with the message M = (“MPBadge′′, V, e). If C2 has al-
ready executed CheckIn at venue V and epoch e, let (xe,2, ye,2) be its share of
MV,e. C2 then generates σe,2 = Mye,2 mod n and sends back to C1 the tuple
(xe,2, σe,2, R2, BSV,e(R2) mod n). R2 is the value that C2 has had the server
blindly sign: BSV,e(R2). C1 stores these values in the set Tk.

StatVerify(C(Id, V, k, T k, e, pubS), S(privS)): Without loss of generality, let
Tk = {(xe,i, σe,i, Ri, BSV,e(Ri)}, ∀i = 1..k. C and S run the following steps:
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– C computes σ=
∏k

i=1 σ
li(0)
i = MΣiye,ili(0) = MMV,e . C sends σ, Ri, BSV,e(Ri),

for all k Ri values received from co-located clients to S over Mix.

– S verifies that (i) the time when the communication of the previous step has
been initiated is within epoch e, (ii) that (“MPBadge′′, V, e)MV,e = σ and (iii)
that all BSV,e(Ri) signatures verify for venue V during epoch e. S checks that
the exact set of k revealed blind signatures has not been used before more than
k-1 times: S records the set of k blind signatures and allows it to be used only k
times. Subsequent uses of the tokens are allowed, as long as the newly revealed
set contains at least one fresh blind signature. If any verification fails, S outputs
-1 and stops. Otherwise, S generates an MPBadge: SS(“MPBadge′′, V, e, Tc),
where Tc is the time of issue, and sends it over Mix to C.

While we omit the proofs due to space constraints, we note that MPBadge
is CI-IND and SV-IND.

9 Evaluation

Spotr Implementation: We have implemented Spotr in Android and have
tested it on a Revision C4 of the BeagleBoard [31] system, featuring an OMAP
3530 DCCB72 720 MHz and a Google Nexus One smartphone featuring a 1
GHz Scorpion processor, Adreno 200 GPU with 512 MB RAM. We use the
ambient light sensor of the Nexus One to detect when anyone takes a picture
of the displayed QR code (light level changes). Figure 3 shows a picture of the
BeagleBoard displaying a generated QR code. The time to generate a QR code
on the BeagleBoard is 50ms. The time to decode the QR code on the Nexus One
is 190ms, at a distance of 20cm.

Fig. 3. Spotr on BeagleBoard

We have implemented GeoBadge
and GeoM in Android and Java and
have tested the client side on the
Nexus One smartphone and the server
side on a 16 quadcore server featur-
ing Intel(R) Xeon(R) CPU X7350 @
2.93GHz and 128GB RAM. We have
stress-tested the server side by sequen-
tially sending multiple client requests.
All the results shown in the following
are computed as an average over at
least 10 independent runs.

GeoBadge: We study the most compute-intensive functions of GeoBadge:
Setup, the GSN provider side of CheckIn, the client and provider sides of
StatV erify. We investigate first the dependence on the modulus bit size. The
Setup cost, a one time cost for the GSN provider, ranges from 277ms for 512 bit
keys to 16.49s for 2048 bit keys.

Figure 4(a) shows the performance of the remaining three components in mil-
liseconds (ms) using a logarithmic y scale. The x axis is the modulus size, ranging
from 512 to 2048 bits. The value of k, the number of CheckIn runs required to
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Fig. 4. GeoBadge dependence on (a) modulus size, (b) k, the check-in count

acquire the badge is set to 50. On a single core, the CheckIn cost, is 13ms even
for a 2048 bit modulus size. The cost of the provider side of StatV erify is al-
most constant for different key bit sizes, also around 13ms – on an OpenSSL
sample, the cost of performing one signature verification for 2048 bit is 0.1ms,
thus dwarfed by the cost of string operations. Thus, the provider can support
more than 4800 CheckIn or StatV erify runs per second, or more than 412 mil-
lion operations per day. The client side of StatV erify requires 16.5s for 2048 bit
keys, on the Nexus One.
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Fig. 5. GeoM : (a) Dependence on N , the modulus size, (b) StatVerify client and server
side, function of k, the number of check-ins

Figure 4(b) shows the performance dependency of the same protocols on k,
the number of check-ins required, when the key size is set to 1024 bits. The client
StatV erify takes up to 21s when k = 100. The provider components are much
faster: the StatV erify takes less than 27ms, allowing the provider to support
more than 2400 such operations per second (more than 207 million ops per day).
The CheckIn cost is even smaller, less than 10ms for k=100, allowing more than
6500 simultaneous check-ins, or more than 560 million check-ins per day.

GeoM: For the next experiment, we studied GeoM . We have first tested key bit
sizes ranging from 512 to 2048. A one time occurrence for the GSN provider, the
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s: number of proof sets
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Fig. 6. StatVerify dependence on s, the
number of proof iterations. y axis is time
in milliseconds, in logarithmic scale

Setup cost ranges from 227ms to
1.5s and is negligible. Figure 5(a)
shows the performance of CheckIn
(server side) and StatV erify (client
and server side) in ms, as a func-
tion of the key bit size. The y axis
shows the time in ms, in logarithmic
scale. s, the number of proof rounds
is set to 40, m, the number of past
epochs is set to 60 and k, the num-
ber of CheckIn runs is set to 30.
The client side StatV erify, executed
on the Nexus One platform , re-
quires between 1.7s to 7.5s. Since the
provider is the bottleneck, the sensi-
tive operations are CheckIn and the

provider side of StatV erify. These operations are fast: Requiring one table
lookup and a signature generation, CheckIn takes 4.8ms. On a 16 quadcore
server, the provider can support more than 13,000 check-ins per second - more
than 1.1 billion ops per day. The provider side of StatV erify is less compute
intensive than the client side: it ranges from 36ms to 309ms (form 2048 bit keys).

We further evaluate the dependency of StatV erify (client and server side) on
the value of k when the modulus size N is 1024, m=60 and s=40. Figure 5(b)
shows that the server side exhibits small linear increases with k, but is only
124ms when k = m = 60. The server can support 512 simultaneous StatV erify
runs per second or 44+ million per day. The client side is less then 4.6s even
for 60 check-ins. Finally, Figure 6 shows the dependency of StatV erify on the
value of s, the number of proof sets. N is set to 1024, m is set to 60 and k is set
to 30. Both costs are linear: up to 211ms, or 18+ million runs per day for the
provider and 7.2s for the client.

Summary. The server side overhead of GeoBadge and GeoM is small. The
provider can support thousands of CheckIns and StatV erifys per second. While
on the order of a few seconds, the client side overhead of StatV erify is not time
sensitive and can be executed in the background.

10 Conclusions

We studied privacy issues related to aggregate location predicates in GSNs and
proposed solutions that privately and securely enable aggregate location pred-
icates. We showed that our solutions are efficient, as the provider can support
between tens of millions to 1.1 billion operations per day. We leave for future
work the issue of allowing the provider to privately collect aggregates over user
information. This will address the provider’s reluctance to offer services without
being able to collect valuable user information.
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Abstract. The popularity of Twitter greatly depends on the quality and
integrity of contents contributed by users. Unfortunately, Twitter has at-
tracted spammers to post spam content which pollutes the community.
Social spamming is more successful than traditional methods such as
email spamming by using social relationship between users. Detecting
spam is the first and very critical step in the battle of fighting spam.
Conventional detection methods check individual messages or accounts
for the existence of spam. Our work takes the collective perspective, and
focuses on detecting spam campaigns that manipulate multiple accounts
to spread spam on Twitter. Complementary to conventional detection
methods, our work brings efficiency and robustness. More specifically,
we design an automatic classification system based on machine learning,
and apply multiple features for classifying spam campaigns. Our experi-
mental evaluation demonstrates the efficacy of the proposed classification
system.

Keywords: Spam Detection, Anomaly Detection, Machine Learning,
Twitter

1 Introduction

With the tremendous popularity of online social networks (OSNs), spammers
have exploited them for spreading spam messages. Social spamming is more
successful than traditional methods such as email spamming by taking advantage
of social relationship between users. One important reason is that OSNs help
build intrinsic trust relationship between cyber friends even though they may
not know each other in reality. This leads to users to feel more confident to read
messages or even click links from their cyber friends. Facilitated by this fact,
spammers have greatly abused OSNs and posted malicious or spam content,
trying to reach more victims.

Detecting spam is the first and very critical step in the battle of fighting spam.
Our work chooses Twitter as the battlefield. Currently, Twitter is the most pop-
ular micro-blogging site with 200 million users. Twitter has witnessed a variety
of spam attacks. Conventional spam detection methods on Twitter mainly check
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individual tweets or accounts for the existence of spam [30, 16]. The tweet-level
detection screens individual tweets to check whether they contain spam text con-
tent or URLs. As of August 2011, around 8.3 million tweets are generated per
hour [9], and they demand near real-time delivery. Thus, the tweet-level detec-
tion would consume too much computing resources and can hardly meet time-
stringent requirements. The account-level detection checks individual accounts
for the evidence of posting spam tweets or aggressive automation behavior. Ac-
counts violating the Twitter rules of spam and abuse [11] will get suspended.
Suspending spam accounts is an endless cat and mouse game as it is easy for
spammers to create new accounts to replace suspended ones.

Our work shifts the perspective from individual detection to collective detec-
tion and focuses on detecting spam campaigns. A spam campaign is defined as
a collection of multiple accounts controlled and manipulated by a spammer to
spread spam on Twitter for a specific purpose (e.g., advertising a spam site or
selling counterfeit goods). Detecting spam campaigns is an important comple-
ment to conventional spam detection methods. Moreover, our work brings two
additional benefits. (1) Efficiency. Our approach clusters related spam accounts
into a campaign and generates a signature for the spammer behind the cam-
paign. Thus, not only our work can detect multiple existing spam accounts at a
given time, it can also capture future ones if the spammer maintains the same
spamming strategies. (2) Robustness. There are some spamming methods which
cannot be detected at individual level. For example, Twitter defines the behavior
of “posting duplicate content over multiple accounts” as spamming. By grouping
related accounts, our work can detect such a collective spamming behavior.

We have performed data collection for three months in 2011, and obtained a
dataset with 50 million tweets posted by 22 million users. Using the dataset, we
cluster tweets with the same final URL into a campaign, partitioning the dataset
into numerous campaigns based on URLs. We perform a detailed analysis over
the campaign data and generate a set of useful features to classify a campaign
into two classes: spam or legitimate. Based on the measurement results, we
present an automatic classification system using machine learning. We validate
the efficacy of the classification system. The experimental results show high
accuracy with low false positive rate.

The remainder of the paper is organized as follows. Section 2 presents a brief
background of Twitter and covers related work of social spam detection. Section
3 details the data collection and measurements on Twitter. Section 4 describes
our automatic classification system. Section 5 evaluates the system efficacy for
detecting spam campaigns. Finally, Section 6 concludes the paper.

2 Related Work

As spammers often use Twitter-specific features to allure victims, we first briefly
describe the background of Twitter and its working mechanism. Then, we survey
related work in social spam detection and discuss the scope of our work.
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2.1 Twitter and Related Social Spam Detection

Users post textual messages on Twitter, known as tweets. The tweet length is
up to 140 characters, which limits the spam content the spammer can include
in a tweet. Thus, embedding an external URL in a tweet becomes a routine
for spammers to allure users to spam websites. A tweet may contain some tex-
tual features for better user interaction experience, which are also abused by
spammers. A hashtag, namely a word or a phrase prefixed with the # sym-
bol, is used to group tweets by their topic. For example, #Japan Tsunami and
#Egyptian Revolution are two of the worldwide trending hashtags on Twitter in
March 2011. Spammers may attach popular hashtags to unrelated spam tweets
to increase the chance of being searched. This spamming trick is called hashtag
hijacking. The mention feature, namely the @ symbol followed by a username
in a tweet, enables the direct delivery of the tweet to the user. This feature
facilitates spammers to directly send spam to targeted users.

Traditional spam methods include sending spam emails [31] and creating spam
web content [27]. The past few years have witnessed the rapid rise of online social
networks. One key feature of such systems is the reliance on content contributed
by users. Unfortunately, the system openness coupled with the large user popula-
tion has made OSNs an ideal target of social spammers. By exploiting the social
trust among users, social spam may achieve a much higher success rate than
traditional spam methods. For example, Grier et al. analyzed the click-through
rate of spam on Twitter [21], and found out that around 0.13% of spam tweets
generate a visit, orders of magnitude higher than click-through rate of 0.003% -
0.006% reported for spam email [24].

As a countermeasure, Twitter has released its rules against spam and abuse
[11]. Accounts violating the rules will result in permanent suspension. The set
of rules mainly define spam on Twitter in the following categories of content,
behavior and social relationship. In the content category, it is forbidden to post
content or URLs of any kinds of spam. Large numbers of unrelated @replies,
mentions and #hashtags, or duplicate content are also disallowed. The behavior
category covers both individual and collective behavioral codes. At the individual
level, aggressive automation such as constantly running programs to post tweets
without human participation is prohibited. At the collective level, using multiple
accounts to post duplicate content is also considered as spamming. In terms of
social relationship, one cannot follow a large number of users in a short amount
of time, or have a small number of followers compared to the number of friends
it is following, or create or purchase accounts in order to gain followers.

To avoid being detected by Twitter rules, social spammers have adopted a sim-
ilar idea of email spam campaigns by coordinating multiple accounts to achieve a
specific purpose. The spammer distributes the workload among spam accounts,
thus individual accounts now may exhibit stealthy spam behavior and fly under
the radar. Besides, multiple accounts also can spread spam to a wider audience.
Some related studies have demonstrated the wide existence of spam campaigns
on OSNs, such as Twitter and Facebook, respectively [21, 20]. The existing
work mainly relies on the URL feature. More specifically, related messages with
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the shared final landing URL are clustered into a campaign. Then, the URL is
looked up in URL blacklists. If the URL is blacklisted, the campaign is classified
as a spam campaign; otherwise it is legitimate. Currently, the existing detection
methods have some disadvantages listed as follows. First, URL blacklists have
the lag effect, allowing more than 90% of visitors to click on a spam URL be-
fore it becomes blacklisted [21]. Furthermore, URL blacklists can only cover part
of spam URLs, and thus some spam campaigns may escape detection. Second,
some URL blacklists generate false positive errors as they only check the host-
name component of a URL, instead of the whole URL. For example, the URL
shortening service http://ow.ly is listed on the URIBL blacklist [13] because it
is greatly abused by spammers. Although http://ow.ly/6eAci is a benign URL
that redirects to a CNN’s report of Hurricane Irene, it is blacklisted by URIBL
based on the hostname. Third, the URL feature generates false negative errors.
For instance, consider a campaign that advertises a benign website in an ag-
gressive spamming way. The spammer manipulates multiple accounts to post
duplicate tweets about the website. The URL feature cannot classify the tweets
as a spam campaign since the website URL is benign and not blacklisted. The
first two disadvantages may be overcome by improving blacklisting process, but
the third cannot be fixed by merely using the URL feature. Thus, the other fea-
tures, such as collective posting content and behavior, should also be included.
This paper improves the existing work by introducing new features. The details
of classification features are covered in Section 4.1.

2.2 Scope of This Paper

A variety of spam attacks exist on Twitter. This paper solely focuses on char-
acterizing and detecting large-scale spam campaigns conducted on Twitter. The
definition of spam in this paper is spreading malicious, phishing or scam1 content
in tweets. Spammers may carry different purposes, but spam campaigns exhibit
a shared feature that, they either create or compromise a large number of Twit-
ter accounts to spread spam to a wide range of audience. Our work does not
screen individual tweets to detect spam, and may miss small spam campaigns2.
As a complement to existing spam detection methods, the main contribution of
this paper is detecting multiple related spam tweets and accounts in a robust
and efficient way.

Note that after detecting a spam campaign, a site administrator may further
classify the involved accounts into Sybil and compromised accounts, and process
them accordingly. Here Sybil accounts refer to those created by spammers and
exclusively used to post spam tweets. Compromised accounts refer to those used
by legitimate users but hijacked by spammers to post spam without the permis-
sion of owners. Sybil accounts will be permanently suspended, while the owners

1 We define a scam as any webpage that advertises a spectrum of solicitations, includ-
ing but not limited to pornography, online gambling, fake pharmaceuticals.

2 According to our clustering algorithm presented in Section 3.2, a single tweet may
be clustered as a campaign if no other related tweets exist in the dataset.
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of compromised accounts can be notified for spamming activities via their reg-
istration emails. The differentiation between these two types of accounts is out
of the scope of this paper.

3 Characterization

3.1 Data Collection

To measure the pervasiveness of spam, we conduct the data collection on Twitter
from February to April in 2011. Thanks to Twitter’s courtesy of including our
test accounts to its whitelist, our dataset accumulates more than 50 million
tweets posted by around 22 million accounts. We develop a crawler in PHP which
taps into Twitter’s Streaming API [12] and Search API [14], respectively. The
Streaming API outputs a small proportion of real-time global tweets via random
sampling, and constitutes the majority of our dataset. The Search API enables
the crawler running specific searches against the real-time index of recent tweets.
Since this work studies spam campaigns, we exclude tweets without URLs, and
focus on the remaining 8 million tweets with URLs in the dataset. Due to the
limited length of tweets, most spam tweets contain URLs to allure users to
visit external spam websites. Thus, we assume that tweets without URLs are
not spam. As shown in Section 3.2, our clustering algorithm is based on shared
URLs.

URL redirection is widely used on Twitter. Normal users apply URL short-
ening services, such as t.co and bit.ly, to convert arbitrarily long URLs to short
ones to better fit in tweets. Spammers also use shortening and other redirec-
tion techniques to hide original spam URLs and to avoid blacklist detection. We
develop a Firefox extension in JavaScript to automatically visit every URL in
the dataset and convert to its final landing URL if redirection is used. Some
spammers tend to use long redirection chains that involve multiple hops (such
as original URL -> intermediate URL -> ... -> final URL) to hide their traces.
The extension records the whole chain, and provides a classification feature.

3.2 Clustering

We develop a clustering algorithm that clusters tweets into campaigns based on
shared final URLs3. The idea behind the algorithm is that those tweets that
share the same final URL are considered related. A tweet is modeled as the
<textual content, URL> pair. A given campaign, ci, is denoted by a vector
ci =< ui, Ti, Ai >, where ui is the shared final URL i for the campaign, Ti is
the set of tweets containing ui, and Ai is the set of accounts that have posted
tweets in Ti. Let C denote the current set of campaigns. The clustering procedure
iteratively chooses without replacement an arbitrary tweet t in the dataset. If
the tweet’s URL is ui′ and ci′ ∈ C, then the tweet is added in the campaign

3 The subsequent campaign classification applies a variety of features, including both
content and URL of tweets. More feature details are presented in Section 4.1.
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Fig. 1. URL Statistics of Campaigns

by updating Ti′ = Ti′ ∪ {t}. If t’s account, a, is also new, then an update
Ai′ = Ai′ ∪ {a} is also performed. If ci′ /∈ C, then a new campaign ci′ is created
and C = C ∪ {ci′} is updated.

In our implementation, we store the dataset in MySQL database, and create
a table for the clustering result. Every URL string is hashed, and the hash
value is set as the table index. Two URL strings are compared by their indexed
hash values to improve the clustering performance. Once complete, the dataset
includes 5,183,656 campaigns. The largest contains 7,350 accounts with 9,761
tweets posted.

3.3 Ground Truth Creation

After campaigns have been clustered, we create a ground truth set containing
samples labeled as spam and legitimate campaigns. We select some campaigns
from our dataset, manually perform several heuristics tests, and use human
expertise to label unknown campaigns. Due to the limited raw data returned
by the Twitter API with low privilege, we favor the campaigns associated with
a large number of accounts and tweets during the selection process as large
campaigns carry abundant collective behavior characteristics. Small campaigns
are excluded from our selection.

More specifically, we follow Twitter’s spam rules during the manual inspection,
and check both collective and individual features of an unknown campaign. First,
we inspect the campaign’s final URL. A batch script is performed to check the
URL in five blacklists: Google Safe Browsing, PhishingTank, URIBL, SURBL and
Spamhaus [1, 3, 13, 7, 6].More details of the blacklist detectionwill be presented in
Section 4.1. If the URL is captured by the first two blacklists, the related campaign
is directly labeled as spam without further manual inspection required.

Second, we check the tweet content of the campaign. The human inspects the
content to see if (1) it contains spam information, (2) it is unrelated with the
URL’s web content (namely, the URL is misleading), (3) duplicate or similar
content is posted via single or multiple accounts. In addition, we also check
content-related Twitter properties.
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Third we check the automation degree exhibited in the campaign, as automa-
tion is a good indicator of spam. The script presents the human inspector with
the posting device makeup, the median, and the entropy value of the posting
inter-arrival timing sequence. The formal description of these features will be de-
tailed in Section 4.1. Aggressive automation may raise the red flag, and influence
the human’s classification decision for the campaign.

By taking all of the above into consideration, the human inspector reaches the
decision to label the campaign as spam or legitimate. In practice, we find out
that most spam campaigns carry obvious characteristics of URL and content,
making it easy to differentiate them from legitimate campaigns. We acknowledge
that we may make mistakes in labeling campaigns, but believe that the error
rate is very low. Finally, the ground truth set contains 744 spam campaigns and
580 legitimate ones.

3.4 Campaign Analysis

We now examine the characteristics of spam campaigns and compare with le-
gitimate ones. The data analysis leads to the formal definition of classification
features in Section 4.1.

We first discuss using URL statistics to reveal account connection in the cam-
paign. We have observed that accounts in a legitimate campaign are usually run
by independent users, while those involved in a spam campaign are often con-
trolled by the same spammer. The URL statistics can provide hints of account
connection. For clarity, we first define two terms: master URL and affiliate URL.
For a normal URL such as http://biy.ly/5As4k3, affiliate URLs with it can be
created by appending random strings as the query component to the URL, such
as http://biy.ly/5As4k3?=xd56 and http://biy.ly/5As4k3?=7yfd. The original
URL is denoted as master URL. Affiliate URLs help track the origin of click
traffic. By assigning every account with a specific affiliate URL, the spammer
can evaluate the spamming effect of individual accounts. This trick widely exists
in online pyramid scams. Frequent appearance of affiliate URLs indicates strong
connection among accounts. In contrast, different forms of master URLs indicate
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Fig. 4. Inter-arrival Timing Distribution of Campaigns

account independence. Although the tweets in a campaign share the same final
URL, they may have different master URLs, such as http://bit.ly/1wgYxU and
http://ow.ly/6jRqX4. We define the master URL diversity ratio as the number
of unique master URLs over the number of tweets in a campaign. A low ratio
indicates the wide usage of affiliate URLs and account dependence, whereas a
high ratio indicates the account independence. Figure 1 shows that more than
50% of spam campaigns use affiliate URLs, while only 3.6% of legitimate cam-
paigns contain affiliate URLs. The average master URL diversity ratio of spam
campaigns is 0.225, much lower than that of legitimate campaigns, at 0.423.

Now we analyze the temporal properties of campaigns. We define the active
time of a campaign as the time span between its first and last tweet in our
dataset. We point out a limitation of our dataset as our collection runs for
three months while a campaign may exist before and/or after the measured
period. While the largest possible active time in our dataset is 90 days, the
actual time may be greater. Figure 2 shows the cumulative distribution function
(CDF) of active time (in days) of spam and legitimate campaigns. Around 40% of
campaigns in both categories have active time less than 30 days. For those longer
than 30 days, the average active time of legitimate campaigns is 72.0 days, greater
than that of spam campaigns at 59.5 days. Thanks to the workload distribution
among accounts, the spamming behavior of an account may be stealthy during its
initial stage, and avoid Twitter’s detection. It explains the equal proportions of
both categories within the 30-day time window. The accumulation of spamming
behavior and the increase of campaign size expose spam accounts, and many of
them get suspended by Twitter. Beyond the 30-day window, the average active
time of spam campaigns is clearly shorter than that of legitimate ones. However,
more efforts need to be made to detect and eliminate spam campaigns in the
initial stage for damage control.

The burstiness characterizes the overall workload distribution of spam cam-
paigns. Figure 4 plots the inter-arrival timing pattern of two categories of cam-
paigns. Due to space limit, each category contains 150 individual campaigns.

4 All the URLs in this paragraph lead to http://twitter.com.
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Each campaign is represented by a vertical strip. Each tweet corresponds to a
tiny horizontal segment in the strip, and a block of intensive strips represent
a burst of tweets in the campaign. A large number of spam campaigns show
burstiness in the early stage. Some spammers aim to achieve the spamming goal
in a quick way, and direct spam accounts to massively post tweets. Although
the workload is distributed to multiple accounts, the collective inter-arrival pat-
tern can reflect the overall campaign workload. The gradual suspension of spam
accounts causes the stagnation in the late stage 5. Many legitimate campaigns
tend to take a while to grow up, and demonstrate burstiness in the late stage.
A popular legitimate campaign generates the epidemic effect by making more
users tweet about it, spreading to even the larger audience.

Entropy is another temporal property that detects periodic or regular timing
of posting patterns in a campaign. In Information Theory, the entropy rate is
a measure of the complexity of a random process [19]. A high entropy rate in-
dicates a random process, whereas a low entropy rate indicates a regular one.
More theoretical proofs can be found in our previous work [18]. To get relative
entropy for every campaign, we normalize entropy values via dividing them by
the maximum value of the campaign in the ground truth set. Figure 3 plots the
CDF of relative entropy of posting inter-arrivals of both categories. The behavior
of auto programs (namely Twitter bots) is often less complicated than that of
humans, which can be measured by low entropy rate. In the range between [0.6,
1], the relative entropy of the legitimate category is clearly higher than that of
the spam category. The majority of spam campaigns (and a large proportion of
their accounts) run auto devices to post, driven by regular or pseudo-random
timers. In contrast, tweets in legitimate campaigns are mostly posted by hu-
mans. The intrinsic irregularity and complexity of human behavior generates a
higher entropy rate. We also find an interesting fact that, a small part of spam
campaigns post their tweets manually, generating high entropy. We speculate it
is either a form of click farm on Twitter, or some spammers are not professional,
and do not run auto programs to tweet.

5 We re-visit the accounts involved in a spam campaign, and observe that a high
proportion of these accounts have been suspended by Twitter.
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Finally we discuss a dilemma spammers often face, namely reusing spam ac-
counts. If multiple tweets in the campaign are posted by an account, considering
the tweets share the same final URL, the account exhibits the evidence of dupli-
cated posting, which is an indicator of spam. We introduce the account diversity
ratio feature. For normalization, this feature is defined as the number of accounts
in the campaign over that of tweets. Figure 5 plots the CDF of this feature of
both categories. Spammers want to operate accounts in a stealthy way, which
requires individual accounts to post few tweets. In reality, it costs effort to get
followers to a spam account, and the number of “influential” accounts owned by
a spammer is limited. Thus, the spammer tends to repeatedly use accounts to
post duplicate spam, causing the low ratio. The figure clearly demonstrates that,
the account diversity ratio of legitimate campaigns is much higher than that of
spam campaigns. In particular, about 28.8% legitimate campaigns have the ratio
as 1, meaning every tweet in the campaign is posted by a unique account. The
average ratio of legitimate campaigns is 86.4%, while that of spam campaigns
is 45.0%. It further suggests that, legitimate campaigns have stronger account
independence than spam campaigns.

4 Classification

In this section, we first present the design philosophy of the classification system.
In particular, we formally describe classification features and introduce semantic
similarity to detect duplicate content in a campaign. Then, we implement the
classifier based on the Random Forest algorithm.

4.1 Classification Features

The classification involves a variety of features, ranging from individual
tweet/account levels to a collective campaign level. No single feature is capa-
ble of discriminating effectively between spam and legitimate campaigns. Here
we introduce these features used in our classification, and later the machine
learning algorithm will decide the importance (namely weight) of the features
during the training, which is shown in Section 5.1.

Tweet-level Features. We start with tweet-level features, as tweets are the
atomic unit of Twitter. A tweet is modeled as the <textual content, original
URL> pair.

Spam Content Proportion. Some spam tweets carry explicit spam informa-
tion, such as “buy Viagra online without a prescription” and “get car loan with
bad credit”. We create a list of spam words with high frequency on Twitter to
capture spam content based on our observation and some existing lists of spam
trigger words [5, 2]. The tweet text is tokenized into words which are further
checked in the spam word list. This feature is defined as the number of spam
words over the total word number in a tweet .

URL Redirection. We develop a Firefox extension to check the original URL
in the tweet. If URL redirection is used, it records the final landing URL. By
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recording the status change in the browser’s address bar, the extension logs the
whole redirection chain (such as original URL -> intermediate URL -> ... ->
final URL). Besides the binary redirection flag, hop number also serves as a
useful feature. Spammers tend to use multi-hop redirection to hide spam origins
and avoid URL blacklists.

URL Blacklisting. We check the final URL in five blacklists including Google
Safe Browsing, PhishingTank, URIBL, SURBL, and Spamhaus. Google Safe
Browsing checks URLs against Google’s constantly updated lists of suspected
phishing and malware pages. PhishingTank focuses on phishing websites. The
mechanisms of URIBL, SURBL and Spamhaus are similar. They contain suspi-
cious websites that have appeared in spam emails. If the URL appears in any of
the blacklists, the feature is set as true. As the tweets in a campaign share the
same final URL, this operation only needs to be performed once.

Account-level Features. We also collect data of Twitter accounts involved
in a campaign by calling Twitter’s REST API [10], and present account-level
features to characterize accounts.

Account Profile. An account has a self-introduction profile consisting of a
short description text and homepage URL. We check whether the description
contains spam or the URL is blacklisted.

Social Relationship. Tweets of an account can only be delivered to its fol-
lowers. To achieve a wide influence, the spammer needs to accumulate a large
number of followers. However, normal users are unlikely to follow spam accounts.
A common trick shared by spammers is following a great number of users (either
targeted or randomly selected), and expecting some of them to follow back. Many
spam victims blindly follow back “spammer friends” without carefully checking
those suspicious accounts. For an account, we calculate its friend count, follower
count, and the ratio between them.

Account Reputation. Extended from the previous feature, we have observed
that users are likely to follow “famous” accounts. This feature is calculated and
normalized as follower count/ (follower count + friend count). A celebrity
usually has many followers and few friends6, and its reputation is close to 1.
However, for a spammer with few followers and many friends, its reputation is
close to 0.

Account Taste. Intuitively, the account chooses whom to follow (namely,
friends), and this reflects its “taste”. If it follows spammers, its “taste” is bad.
By doing this, it helps spread spam to more users, making itself a “supporter”
of spammers. This feature is defined as average Account Reputation of all the
friends of the account.

Lifetime Tweet Number. Spam accounts may get suspended for aggressively
posting spam. Due to the short lifetime, averagely spam accounts may post fewer

6 For example, @Yankees, the official Twitter account of New York Yankees, has
400,000 followers and only 29 friends.
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tweets. This feature shows the number of tweets an account has posted in lifetime
when it is visited by our crawler.

Account Registration Date. Spammers may frequently create new accounts
to replace suspended ones. Many spam accounts in our measurement have been
created recently.

Account Verification. Twitter verifies accounts for celebrities and organiza-
tions. It is difficult for spammers to acquire verified accounts. This binary feature
shows whether the account is verified or not.

Account Protection. For user privacy, an account that opts in the protection
option makes its tweets invisible to general public, and only visible to approved
followers. The option conflicts with the purpose of spreading spam to the wide
audience, and may not be adopted by spam accounts.

Campaign-level Features. Collective features may reveal the characteristics
of spam campaigns that cannot be observed through individual features. At last
we present the campaign-level features as follows. The features of the account
diversity ratio, the original URL diversity ratio, the affiliate link number and
the entropy of inter-arrival timing have been explained in Section 3.4.

Hashtag Ratio. Spammers often hijack trending hashtags and append them to
unrelated spam tweets to increase the chance of being searched and displayed.
The feature is defined as the number of hashtags in the tweets over the number
of tweets of the campaign.

Mention Ratio. Another trick spammers often play is using @mention to de-
liver spam to targeted users even without the existing social relationship. The
feature is defined as the number of mentions in the tweets over the number of
tweets of the campaign.

Content Self-similarity Score. A spam campaign may contain similar tweets
created by spam content templates. Users in a legitimate campaign usually con-
tribute content individually, and may not show a strong self-similarity. This
feature measures the content self-similarity of the campaign. The details are
presented in Section 4.2.

Posting Device Makeup. Twitter supports a variety of channels to post
tweets, such as web, mobile devices, and 3rd-party tools. The 8 million tweets in
our campaign dataset are posted by 44,545 distinct devices. In the perspective of
behavior automation, they can be divided into two categories: manual and auto
devices. Manual devices require direct human participation, such as tweeting
via web browser or smart-phone. Auto devices are piloted programs that auto-
matically perform tasks on Twitter, and require minimum human participation
(such as importing Twitter account information). We manually label the top
100 devices as manual or auto, and use the tdash’s API [8] to process the rest.
In the campaign dataset, around 62.7% of tweets are posted by manual devices,
and the rest 37.3% by auto devices. For every campaign, the script checks its
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posting devices against the labeled device list, and calculates the proportions of
manual and auto devices as the value of posting device makeup.

4.2 Content Semantic Similarity

Spammers may use content templates to create similar spam tweets. Calculating
semantic similarity can detect duplicate or similar content in multiple tweets
in the campaign. The calculation is challenging as short messages like tweets
do not carry as many semantic features as long texts (i.e. email bodies). Our
work applies the Vector Space Model [29] that converts tweet texts into vectors,
and then calculates the cosine similarity between them. Equation 1 denotes the
cosine similarity between two n-dimensional vectors, A and B.

cos sim =
A •B
‖A‖‖B‖ =

n∑
i=1

Ai ×Bi√
n∑

i=1

A2
i ×

√
n∑

i=1

B2
i

(1)

For implementation, we use SenseClusters, an open-source program [4], that
clusters text messages based on contextual similarity. Given the set of tweets
in the campaign, we treat it as a text corpus, and generate a vocabulary by
extracting distinct words from the corpus. Then we generate an occurrence ma-
trix with tweets as rows, and words in the vocabulary as columns. The value
of cellij is the TF-IDF (Term Frequency - Inverse Document Frequency) weight
[15], which represents the occurrence frequency of wordj in tweeti. As the most
intuitive approach, 1st-order similarity detects the number of exact words shared
(or overlapped) between tweets. Because spam templates often adopt synonym
interchanging for the purpose of obfuscation, our work applies 2nd-order simi-
larity to measure similar tweets. Its general idea is to replace the context with
something else that will still represent it, and yet likely provide more informa-
tion from which similarity judgments can be made [28]. Given the tweet corpus,
SenseClusters divides N tweets into K clusters based on the semantic sense on
the fly.

We design Equation 2 to measure the self-similarity of the campaign’s tweet
content.

self sim score =

K∑

i=1

clusteri size
w1 ∗ clusteri sim

w2

Kw3
, (2)

where K is the number of semantic clusters in the campaign, and w1 to w3 are
weight factors with their tuning procedure presented in Section 5.1.

4.3 Machine Learning Classifier

Our classification problem can be defined as follows. Given a campaign, c =<
u, T,A >, the classifier determines c as a either spam or legitimate campaign. We
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choose Random Forest [17] as the machine learning algorithm7, and train the clas-
sifier to make the binary decision. Random Forest serves as an ensemble classifier
that includes multiple decision trees. The algorithm combines the bagging idea in
[17] and random feature selection in [23] to construct a “forest” of decision trees
with controlled variation. Suppose the training set containsM features, and each
decision tree only usesm(<< M) features to reach the decision. For classification,
an unknown sample is pushed down the tree, and assigned with the class of the
leaf node where the sample ends up. More details about decision tree can be found
in [25]. Given a specific sample, every decision tree makes a classification decision
(either spam or legitimate campaign in our case), and Random Forest applies the
majority voting of all the trees to reach the final decision.

5 Evaluation

In this section, we first train the classifier. Then, we evaluate the accuracy of
our classification system based on the ground truth set.

5.1 Training

As described in Section 3.3, our ground truth set consists of manually labeled
campaigns. More specifically, 744 spam campaigns contain around 70,000 ac-
counts and 131,000 tweets, whereas 580 legitimate campaigns contain around
150,000 accounts and 180,000 tweets.

Before training the classifier, we need to determine the content self-similarity
feature by tuning the weight factors in Equation 2 with the following method.
We choose Decision Tree as the tuner, and the feature represented by the self-
similarity score as the only classification feature. We try different combinations of
numeric values of w1 to w3. In every test round, a combination generates a dif-
ferent self-similarity score for a campaign in the ground truth set. The decision
tree associates the self-similarity feature with the root as it is the only feature in
the classification, and calculates the best split between spam and legitimate cam-
paigns. The combination of (w1 = 0.8, w2 = 0.5, w3 = 1) generates the highest
overall accuracy on the ground truth set, and is chosen for Equation 2. According
to the algorithm of the SenseClusters, the cluster similarity score assigned is also
no greater than 1. Note that w1 and w2 are decimal fractions, and they add more
weights to the cluster size and cluster similarity. Furthermore, w2 makes cluster
similarity more important than cluster size, as w2 is less than w1.

5.2 Cross Validation

By calculating the values of the features described in Section 4.1, a feature vector
is generated for each campaign. Weka supports a collection of machine learning
algorithms for classification, including mainstream categories of Bayes, trees and

7 The reason is explained in Section 5.2
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Table 1. Algorithm Performance Comparison

Feature Accuracy (%) FPR (%) FNR (%)

Random Forest 94.5 4.1 6.6

Decision Table 92.1 6.7 8.8

Random Tree 91.4 9.1 8.2

KStar 90.2 7.9 11.3

Bayes Net 88.8 9.6 12.4

SMO 85.2 11.2 17.6

Simple Logistic 84.0 10.4 20.4

Decision Tree 82.8 15.2 18.8

so on [22]. We try multiple algorithms in each category, list and compare perfor-
mance results for the top classifiers with accuracy greater than 80% in Table 1.
For each classifier, we use Cross Validation with ten folds to train and test it
over the ground truth set [26]. The dataset is randomly partitioned into ten
complementary subsets with equal size. In each round, one out of ten subsets is
retained as the test set to validate the classifier, while the remaining nine subsets
are used as the training set to train the classifier. The individual results from
ten rounds are averaged to generate the final estimation.

Table 1 lists three metrics for evaluating the classification performance sorted
on accuracy. Considering the confusion matrix with spam campaigns as posi-
tive cases, Accuracy is the proportion of samples that are correctly identified,
False Positive Rate (FPR) is the proportion of negatives cases that are incor-
rectly classified as positive, and False Negative Rate (FNR) is the proportion
of positives cases that are incorrectly classified as negative. During evaluation,
we expect to constrain the FPR low at the cost of accepting the medium FNR.
Classifying benign campaigns as spam upsets legitimate users, while missing a
small part of spam campaigns is tolerable. Random Forest achieves the highest
accuracy, lowest FPR and FNR, and hence is selected as the final classifier for
our dataset.

Some features play a more important role than others during the classification.
Subsequently, we attempt to evaluate the discrimination weight each feature has.
Similar to the tuning method for Equation 2, in each test, we use only one fea-
ture to independently cross validate the ground truth set with Decision Tree8.
The one with the highest accuracy may be considered as the most important
feature. Table 2 presents the performance results of the top 10 features, which
are also sorted on accuracy. The Account Diversity Ratio feature has the high-
est accuracy at 85.6%. Technically this one is not difficult to bypass, because
spammers could use a large amount of accounts to distribute the workload and
lower the ratio. However, spam accounts with limited normal followers cannot
generate the satisfying propaganda. We speculate that, in reality, spammers tend
to repeatedly use “influential” accounts to deliver spam to a wide audience. The

8 Random Forest transforms to Decision Tree in the case of single-feature classification.
There is only one decision tree to build, and the single feature is associated with its
root.
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Table 2. Feature Performance Comparison

Feature Accuracy (%) FPR (%) FNR (%)

Account Diversity Ratio 85.6 16.2 13.0

Timing Entropy 83.0 9.5 22.8

URL Blacklists 82.3 3.2 29.0

Avg Account Reputation 78.5 25.6 18.3

Active Time 77.0 16.2 28.3

Affiliate URL No 76.7 9.6 34.0

Manual Device % 74.8 10.3 36.8

Tweet No 75.4 28.6 21.5

Content Self Similarity 72.3 33.7 23.0

Spam Word Ratio 70.5 25.8 32.4

Timing Entropy feature captures the intrinsic complexity of human behavior,
that is difficult for bot accounts to bypass. However, many spam campaigns in-
volve manual accounts (probably in the form of click farm), that generate the
high FNR at 22.8% for the feature.

We are particularly interested in the performance of the URL Blacklist feature,
as it is used as the only feature for spam campaign detection in some existing work
[21].We present the performance comparison between our work based onRandom-
Forest-based classifier that applies multiple features and the previous work based
on the single blacklist feature. Blacklists are haunted by the inevitable lag effect,
and cannot include all spam sites “in-the-wild”. Besides, blacklists cannot detect
duplicate spamming over multiple accounts. These factors generate a high FNR
at 29.0%. By using multi-dimensional features, our classifier manages to capture
more spam campaigns that would have been missed by the blacklist feature, and
lowers the FNR to 6.6%. The low FPR of the blacklist feature is caused by the
fact that, some blacklists only check the hostname of URL, and mis-classify some
benign web pages hosted by the blacklisted websites. The FPR of our approach
(4.1%) is slightly higher than that of the blacklist feature (3.2%). Most impor-
tantly, our approach improves the accuracy from 82.3% to 94.5%.

6 Conclusion

Spam haunts social networks, as social relationship facilitates spam spreading.
Conventional spam detection methods check individual accounts or messages for
the existence of spam. In this paper, we exploit the collective detection approach
to capturing spam campaigns with multiple accounts. Our work uses the features
combining both content and behavior to distinguish spam campaigns from le-
gitimate ones, and build an automatic classification framework. Our work can
be applied to other social networks by integrating application-specific features.
Spam detection is an endless cat-and-mouse game. As spamming methods may
evolve in the future, some features may be added or replaced with new ones, and
the classifier should also be re-trained with the up-to-date ground truth dataset.
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Abstract. RFID-based path authentication enables supply chain man-
agers to verify the exact path that a tag has taken. In this paper, we
introduce a new oracle Move that models a tag’s movement along a de-
signed or an arbitrary path in a supply chain. With this oracle, we refine
the existing security and privacy notions for RFID-based path authen-
tication. In addition, we propose a new privacy notion, called path pri-
vacy, for RFID-based path authentication. Our privacy notion captures
the privacy of both tag identity and path information in a single game.
Compared to existing two-game based privacy notions, it is more rigor-
ous, powerful, and concise. We also construct a new path authentication
scheme. Our scheme does not require the entities in a supply chain to
have any connection with each other except in the initial stage. It re-
quires only 480 bits storage and no computational ability on each tag;
thus it can be deployed on the standard EPCglobal Class 1 Generation
2 tags in the market.

1 Introduction

Supply chain is a network of multiple parties such as suppliers, transporters,
storage facilities, distributors, and retailers that participate in the production,
delivery, and sale of product [5]. It is difficult to monitor a supply chain since the
involving parties are distributed at multiple locations or even across countries.
So that supply chains are vulnerable to the counterfeiting problem, where an
adversary injects fake goods into a supply chain. The counterfeiting problem has
become a major threat to supply chains. According to the 2011 report of Inter-
national Chamber of Commerce, it is estimated that the counterfeiting accounts
for 5-7% of world trade, or about 600 billion U.S. dollars per year [6]. The ratio
of counterfeiting is even higher in luxury market.

Radio Frequency IDentification (RFID) technology has been recently used
to facilitate real-time monitoring of supply chains so as to thwart counterfeit-
ing threats. In general RFID-enabled supply chains, each item is attached with
a tag. The tag stores identity information of the item. A reader identifies an
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item through the interaction with the corresponding tag. Various tag authenti-
cation schemes (e.g.[2,5,8,9,10,11,12,13]) have been proposed to enable privacy-
preserving identification of tags.1 However, most of proposals require tags to have
certain computational capability, which may incur unbearable cost in practice.
Another common problem of deploying existing solutions in supply chain is that:
to monitor a supply chain, the manager should have access to all the databases
of the entities in the supply chain. This requires high-quality network connection
and fine-grained access control, which may not be realistic in practice.

Recently, RFID-enabled path authentication was proposed by Blass,
Elkhiyaoui and Molva [3,4], and extended later to be more practical [6,14], to
tackle the counterfeiting problem in supply chains. In the proposal, which is
named as TRACKER, the manager of a supply chain verifies the genuineness
of tag by checking whether it has been processed by a series of reliable readers.
Compared to the existing tag authentication schemes [2,5,8,9,10,11,12,13], the
verification of a tag’s genuineness is merely based on the credentials stored on the
tag about the readers that have processed the tag along the path. TRACKER
can be implemented with standard EPCglobal C1 G2 tags, which has several
hundred bits storage and no computational ability. It does not require the en-
tities in the supply chain to have any connection except in the initial stage. In
this paper, we refine the privacy notions for path authentication and propose a
more practical path authentication scheme. Our contributions include:

– We analyze the existing security and privacy notions for path authentication
in RFID-enabled supply chain, including tag unlinkability and step unlink-
ability. We show that these two notions can be further refined to be more
concise and formal.

– We propose a combined privacy notion that considers both tag unlinkabil-
ity and step unlinkability for RFID-enabled supply chains. We analyze the
relations among our new privacy notion, the tag unlinkability notion and
the step unlinkability notion. We prove that our privacy notion implies tag
unlinkability and step unlinkability.

– We propose a new path authentication solution using the standard EPC
Class 1 Gen 2 tags without sharing the secret among supply chain parties.
Compare to TRACKER, our solution is more efficient and requires less stor-
age. We prove that our solution satisfies the security notion and the privacy
notion.

2 Background

First, we model an RFID-enabled supply chain management system and the
adversary in the system. Then we refine the security and privacy notions for
RFID-enabled path authentication in supply chains.

1 Most of the existing tag authentication schemes and their extensions are listed on
http://www.avoine.net/rfid/
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2.1 RFID-Enabled Supply Chain Management System

Supply chain is a network of multiple parties, which can be represented by a
digraph G = (V,E), where V is a set of vertices, E is a set of edges. Each vertex
v ∈ V represents one step in the supply chain. Note that each supply chain
party may conduct several steps to process an item. Each directed edge e ∈ E,
e = −−→vivj , denotes that vj is a possible next step to step vi in the supply chain.
A path is a finite sequence of steps P = (v0, · · · , vl), where (vi, vi+1) ∈ E, for
i ∈ {0, l− 1}. Every path shares the same source v0. The last step vl of a valid
path Pvalidi = (v0, · · · , vl) represents a check point. Every item enters the supply
chain from v0, and goes through a path according to its own procedure. When it
arrives at the check point, the manager will verify the item. Note that if a path
consists of an empty set of steps (except v0), we call it empty path, and denote
it as “−”.

An RFID-enabled supply chain system consists of an issuer I, a set of man-
agers M and a set of normal readers R. The issuer I is located at the source
v0 of the supply chain; a managers from M is placed at the end of each valid
path and normal readers from R are placed at other places of a supply chain.
The issuer I initializes a tag by storing certain information on the tag. While a
tag goes through the supply chain, each reader in its path updates the content
of the tag. Eventually, the tag arrives at a manager, the manager reads out the
content of the tag and checks the validity of the tag. Formally, the system has
the following functions:

– Initialize(κ): Given the security parameter κ, the system prepares a supply
chain G, an issuer I and a set of l managers M, a set of m readers R and
a set of n tags T , and a set of ν valid path Pvalid. We denote the content
stored on any tag Ti as state STi .

– Read(Ti): a function that returns back the current internal state STi of Ti.
– Write(Ti): a function that writes a new state S′

Ti
to Ti. Here we assume that

the readers in each step are honest, that is, they update a tag only if the tag
is authenticated.

– PathCheck(Sj
Ti
): a function that verifies whether tag Ti has gone through a

valid path Pvalid. If it is the case, it returns the valid path Pvalid, else it
returns ∅.

2.2 Adversary Model

We use the following the notations. If A(·, ·, · · · ) is a randomized algorithm,
then y ← A(x1, x2, · · · ; ρ) means that y is assigned with the unique output
of algorithm A on inputs x1, x2, · · · and coins ρ, while y ← A(x1, x2, · · · ) is
a shorthand for first picking ρ at random and then setting y ← A(x1, x2, · · · ).
y ← AO1,··· ,On(x1, x2, ...) denotes that y is assigned with the output of algorithm
A which takes x1, x2, ... as inputs and has oracle accesses to O1, ..., On. If S is
a set, then s ∈R S indicates that s is chosen uniformly at random from set S.
Let Pr[E ] denote the probability that an event E occurs. Let N denote the set
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of all integers. Let R denote the set of all real numbers. A function f : N → R
is said to be negligible if for every c > 0 there exits a number n0 ∈ N such that
f(n) < 1

nc holds for all n > n0.
An adversary A, against RFID path authentication, is given accesses to four

oracles O = {O1, O2, O3, O4}. O1, O2, O3 denote Read, Write, PathCheck func-
tions, respectively. O4 denotes a function Move(Ti, k,K, b), where k ∈ N , K ∈
{P,G}, b ∈ {0, 1}. Move (Ti, k,K, b) is defined as follows:

– If K = G, no matter whether b = 0 or b = 1, starting from the current step
of Ti with internal state Sj

Ti
, move the tag Ti forward k ≥ 1 steps arbitrarily

in the supply chain system G.
– If K = P , works as follows: If b = 1, from the current step of Ti with internal

state Sj
Ti
, move the tag Ti forward k ≥ 1 steps through the designated path

P (the length of P is at least k steps). If b = 0, move tag Ti forward k ≥ 1
steps according to any path that does not have a common step with P . The
reader in each step updates the tag’s state. Finally, Move(Ti, k, P, b) returns

back the state transcript {Sj+1
Ti

, · · · , Sj+k
Ti

} of Ti from step j + 1 to j + k.

Note that oracle O4 is a new oracle introduced in this paper. It is critical to
precisely model various kinds of tag movement. In [4,3], the concept of path is
not explicitly defined, and the operations on tag movement are specified through
step-level oracles; thus, it is difficult to describe the tag movement at path level.
While using O4, any tag movement can be precisely represented by adjusting the
parameters of Move function. The introducing of O4 facilitates defining clear
security and privacy notions.

The four oracles capture the adversary’s ability to read from a tag, write into
a tag, check the validity of a tag, and follow a tag through a designated path P
(for the case of K = P ) or simply update the state of the tag by forwarding it
arbitrarily in the system G (for the case of K = G). We denote by AO(para) a
probabilistic polynomial-time (PPT) algorithm A that, on input of some system
public parameters para, runs a supply chain system via the four oracles in O.
An adversary is a (t, n1, n2, n3, n4)-adversary if it works in time t and makes
oracle queries to Oμ without exceeding nμ times, where 1 ≤ μ ≤ 4.

2.3 Existing Security and Privacy Notions

Security Notion. The security goal of our system is to prevent an adversary
from inserting counterfeited goods to the supply chain. As the manager checks
the authenticity of a tag merely based on the state stored on a tag, the system
should prevent an adversary from forging a tag’s internal state with a valid path
that has not been actually taken by the tag in the supply chain. Since standard
EPC C1 G2 tags have no computation capability, no reader authentication is
performed. If a tag’s state has been changed by an adversary, even if it has gone
through a valid path, it is not considered as a valid tag by a manager.

The security for RFID path authentication means, it is infeasible for any
probabilistic polynomial-time adversary A to create a state Sl

Ti
for a tag Ti
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such that given Sl
Ti
, a manager M outputs a valid path Pvalid = {v0, · · · , vl}

which Ti has not gone through. It is formalized by an experiment ExpSecurity
A [κ]

shown in Figure 1. The adversary A consists of two algorithms A1 and A2 which
run in two phases, learning phase and challenge phase. Firstly, given parameter
κ, the experiment setups the system through Setup(κ), and passes the public
system parameters para to A1. In the learning phase, A1 is allowed to collect
information by querying the four oracles without exceeding n1, n2, n3, n4 times,
respectively. Then it generates a transcript st which contains the information
about the system it gathered during the learning phase. In the challenge phase,
A2 creates a tag T with state sjT using st. The tag T may have a new ID or
an existing ID in the system. Then the game checks the validity of Ti through
Check(sjT ). ExpSecurity

A [κ] outputs 1 if both of the following two conditions hold:

Check(sjT ) returns a valid path Pvalid; and there exists z ∈ {1, . . . , l} such that
the tag has not passed vz in its z-th step, where l denotes the length of the path
and vz denotes the z-th step in Pvalid. ExpSecurity

A [κ] outputs 0, otherwise.

Experiment ExpSecurity
A [κ]

1. run Setup(κ) to setup I,R, T ,M.
2. {st} ← AO

1 (para). // the learning phase
3. T ← A2(st). //the challenge phase

4. sjT ← Read(T ).

5. output 1, if Pvalid ←− PathCheck(Sj
T ),

and there is a step vz ∈ Pvalid which T has not gone through in its z-th step;
output 0, otherwise.

Fig. 1. Security Experiment

Definition 21. The advantage of A, denoted AdvSecurity
A (κ), in the security

experiment is ∣∣∣Pr[ExpSecurity
A [κ] = 1]

∣∣∣
Definition 22. We say an RFID path authentication scheme is
(t, n1, n2, n3, n4, ε)-secure, if for any t-time adversary A who makes at

most n1, n2, n3, n4 queries to O1, O2, O3, O4 respectively, AdvSecurity
A (k) < ε

holds. The probability is taken over coins of A and the oracles.

Privacy Notions. For an RFID-enabled supply chain system, Blass, Elkhiyaoui
and Molva [3] considered two privacy notions: tag unlinkability and step unlink-
ability. Tag unlinkability corresponds to the privacy of a tag’s identity. Step
unlinkability corresponds to the privacy of a tag’s path. Note that in the older
version of TRACKER [4], there is another path privacy notion, namely path
unlinkability, which is proven to be weaker than step unlinkability in [3].

Tag Unlinkability Briefly, tag unlinkability requires that no efficient adversary
can link the state information stored in a tag to the tag’s identity. In [4], the
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tag unlinkability is defined through a formal experiment. The experiment con-
tains two phases: the learning phase and the challenge phase. An adversary A
is provided with two tags T0 and T1. In the learning phase, the adversary can
access the system and gather information without exceeding the constraints set
by the game. In the challenge phase, the game updates the tags by moving them
one more step further in the supply chain. The experiment then flips a coin
δ ∈R {0, 1}, and provides the updated state of Tδ to the adversary. The adver-
sary guesses the value of δ. The adversary wins the game if it can successfully
guess δ with probability 1/2 plus a non-negligible quantity.

We slightly modify the experiment to ExpTag−Unlinkability
A [κ]. In the learning

phase, the adversary is allowed to access the oracles O1, O2, O3, O4 without ex-
ceeding n1, n2, n3, n4 times, respectively. Then, the adversary outputs two tags
T0 and T1 together with a transcript st, where st is the information it has gath-
ered. In the challenge phase, the experiment tosses a coin δ ∈R {0, 1}. The
experiment moves the tag Tδ one step forward arbitrarily in the system G, and
provides the updated state Sδ of tag Tδ to the adversary. With Sδ and the tran-
script st, the adversary guesses the value of δ, then outputs the guessed value
δ′. If δ = δ′, the experiment outputs 1; else, the experiment outputs 0. The
adversary wins the game if the experiment outputs 1 with probability 1/2 plus
a non-negligible quantity.

A key difference between the original tag unlinkability notion [3] and our
refined one is that, in the original notion, the challenge tags T0 and T1 are
selected by the experiment, while in our notion, the challenge tags T0 and T1

are selected by the adversary; therefore, the adversary in our notion is stronger
then the adversary in [3]. We depict ExpTag−Unlinkability

A [κ] in Figure 2.

Experiment ExpTag−Unlinkability
A [κ]

1. run Setup(κ) to setup I,R, T ,M.
Denote by para the public system parameter.

2. {T0, T1, st} ← AO
1 (para).

3. δ ←−R {0, 1}.
4. Sδ ←Move(Tδ, 1, G, 1), i.e., move Tδ one step arbitrarily forward in the system G.

Denote by Sδ the updated state of Tδ.
5. δ′ ← AO

2 (Sδ, st).
6. output 1 if δ′ = δ, 0 otherwise.

Fig. 2. Tag Unlinkability Experiment

Definition 23. The advantage of A, denoted AdvTag−Unlinkability
A (κ), in the tag

unlinkability experiment is
∣∣∣Pr[ExpTag−Unlinkability

A [κ] = 1]− 1
2

∣∣∣
Definition 24. An RFID path authentication scheme is (t, n1, n2, n3, n4, ε)-tag-
unlinkable, if for any t-time adversary A who makes at most n1, n2, n3, n4 queries
to O1, O2, O3, O4, respectively, we have AdvTag−Unlinkability

A (κ) < ε. The proba-
bility is taken over the choice of δ, coins of A and the oracles.
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Step Unlinkability Step unlinkability requires that no efficient adversary is fea-
sible to tell whether the two paths of any two different tags share a common
step or not. In [3], the step unlinkability game is defined as follows. Firstly, the
experiment randomly chooses a tag T for the adversary. In the learning phase,
the adversary arbitrarily queries the oracle without exceeding the constraints.
The adversary may gather information from the system. It may follow T , so that
it knows the path of the targeted tag. In the challenge phase, the experiment
provides the adversary with another tag Tc, the adversary lets Tc move forward
along its path for several steps and then reads the state of Tc. Finally, the ad-
versary is asked to guess whether T and Tc have a step in common besides v0.
The adversary breaks the path privacy if the probability of correct guessing is
non-negligibly more than 1

2 .
The above experiment defined in [4] is based on the assumption that every

tag passes through every step with the same probability. However, given a tag,
in case that the probabilities of the tag to pass by different steps are not even,
then, an adversary can trivially win the game. We give an example to illustrate
the situation. Suppose there are four paths in the system, Pa, Pb, Pc and Pd

and every tag will go through the fours paths with equal probability. Pa, Pb,
Pc shares a common step v besides v0, while Pd have no common step with the
other three paths besides v0. In case that the adversary learns that tag T has
gone through path Pa, for any Tc the probability that it has a common step v
with T is 75%. Thus the adversary will win the game with non-trivial advantage.

We modify the step unlinkability experiment to make it more rigorous. The
new step unlinkability experiment ExpStep−Unlinkability

A [κ] is shown in Figure 3.
The experiment starts by setting the system I,R, T ,M through Setup(κ). An
adversary A runs two algorithms A1 and A2, respectively in the two phases.
In the learning phase, A1 queries the oracle set O and outputs a tag T and
transcript st. In the challenge phase, the experiment creates a new tag Tc, and
then tosses a coin δ ∈R {0, 1}. The experiment sets a path P as follows: if δ = 0,
the path P does not have any common step with T ’s path; else the path P have
certain common steps with T ’s path. After getting the path P , the experiment
moves Tc along path P in k steps. A2 reads the state STc of Tc, guesses the
value of δ, and outputs the guessed value δ′. Note that STc contains the states
updated by the readers in path P . If the probability of δ′ = δ is non-negligibly
more than 1

2 , the adversary wins the game.

Definition 25. The advantage of A, denoted AdvStep−Unlinkability
A (k), in the

step unlinkability experiment is
∣∣∣Pr[ExpStep−Unlinkability

A [κ] = 1]− 1
2

∣∣∣
Definition 26. An RFID path authentication scheme is (t, n1, n2, n3, n4, ε)-step
unlinkable, if for any t-time adversary A who makes at most n1, n2, n3, n4 queries
to O1, O2, O3, O4, respectively, we have AdvStep−Unlinkability

A (k) < ε. The proba-
bility is taken over the choice of δ, coins of A and oracles.
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Experiment ExpStep−Privacy
A [κ]

1. run Setup(κ) to setup T,R, T ,M. Denote by para
the public system parameter.

2. {T, k, st} ← AO
1 (para).

3. create a new tag Tc.
4. randomly selects a bit δ ∈ {0, 1}.
5. if δ = 0, selects a path P that dose not have any common step with T ’ path;
else, select a path P that has one or more common steps with T ’s path.
The length of the path is at least k.

6. STc ←Move(Tc, k, P, 1).
7. δ′ ← A2(STc , st).
8. output 1 if δ′ = δ, 0 otherwise.

Fig. 3. Step Unlinkability Experiment

3 A New RFID Privacy Notion for Path Authentication

In this section, we propose a new privacy notion, named path privacy, for path
authentication. This notion captures the privacy of tag identity and path infor-
mation in a single game. We show that path privacy implies tag unlinkability
and step unlinkability.

3.1 Path Privacy

In [3], two privacy notions, tag-unlinkability and step-unlinkability, should be
used together to analyze the privacy of a path authentication scheme. These
two notions are formulated separately (via four algorithms). We present a single
game-based privacy notion, path-privacy, which implies tag unlinkability and
step unlinkability.

The experiment ExpPath−Privacy
A [κ] of path privacy is shown in Figure 4

and formalized as follows. The experiment consists of two phases: the learning
phase and the challenge phase. An adversary A runs two algorithms A1 and A2,
respectively in the two phases. The experiment sets up the system I,R, T ,M
through Setup(κ). In the learning phase, A1 queries the four oracles without
exceeding n1, n2, n3, n4 times, respectively. A1 outputs two tags T0, T1, a path
P that has at least k steps left for both tags, and state information st. In the
challenge phase, the experiment firstly flips a coin δ. If δ = 1, the experiment
moves T1 k steps along the path P , and T1 is updated by k readers in the path.
Let the state of T1 be denoted as S1. If δ = 0, the experiment moves T0 k
steps without going through the path P (T0 is updated by k readers that are
not in the path). Let the state of T0 be denoted as S0. The Move operations are
performed by the game challenger, and the adversary has no access to the readers
and the tag during the Move operations. In the challenge phase, the experiment
provides A2 with Sδ and st. A2 guesses the value of δ as δ′. If δ′ = δ, the
experiment outputs 1; else the experiment outputs 0. If the experiment outputs
1 with probability non-negligibly more than 1

2 , the adversary wins the game.
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Experiment ExpPath−Privacy
A [κ]

1. run Setup(κ) to setup I,R, T ,M. Denote by para
the public system parameter.

2. {T0, T1, P, k, st} ← AO
1 (para), where P is a path of length at least k,

st is state information.
3. δ ← {0, 1}.
4. Sδ ←Move(Tδ, k, P, δ). Denote by Sδ the state of Tδ.
5. δ′ ← AO

2 (Sδ, st).
6. output 1 if δ′ = δ, 0 otherwise.

Fig. 4. Path Privacy Experiment

Definition 31. The advantage of A, denoted AdvPath−Privacy
A (k), in the path

privacy experiment is
∣∣∣Pr[ExpPath−Privacy

A [κ] = 1]− 1
2

∣∣∣
Definition 32. A RFID path authentication scheme is (t, n1, n2, n3, n4, ε)-
private, if for any t-time adversary A who makes at most n1, n2, n3, n4 queries
to O1, O2, O3, O4, respectively, we have AdvPrivacy

A (k) < ε. The probability is
taken over the choice of δ, coins of A and oracles.

3.2 Relations among Privacy Notions

Now, we analyze the relations among our new privacy notion and the two existing
privacy notions. We show that path-privacy is stronger than tag unlinkability
and step unlinkability.

Theorem 1. Path-privacy implies tag unlinkability.

Proof. Path privacy implies that S0 and S1 in the path privacy experiment are
computationally indistinguishable, even if the adversary A has full control over
the supply chain system via the four oracle access except that the random bit δ
is blinded to A. Intuitively, tag unlinkability is implied by path privacy, as the
ability of linking tag’s state to tag’s identity can be directly used to break path
privacy.

In more details, we show that it is possible to construct an adversary B that
(t, n1, n2, n3, n4, ε)-breaks path privacy using A as a subroutine, where A is
an adversary which can (t, n1, n2, n3, n4, ε)-break tag unlinkability. Adversary
B plays the path privacy game using adversary A as a subroutine; it is A who
conducts the attacks to the system, while A aims to win the tag-unlinkability
game. Firstly, ExpPath−Privacy

B [κ] sets up the system I,R, T ,M and publishes
the public system parameter para. Then B passes para to A. A plays the tag-
unlinkability game. In the learning phase, when A1 queries the oracles O, the
queries are transferred to B1, and B1 queries the oracles O for A1 in the path-
privacy experiment. Then A1 outputs {T0, T1, st}. Upon receiving A1’s output,
B1 chooses a path P and submits {T0, T1, P, 1, st} to the path-privacy exper-

iment. The experiment ExpPath−Privacy
B [κ] chooses δ ∈R {0, 1}, and returns
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Sδ ← Move(Tδ, 1, P, 1) to B2. B2 transfers Sδ to A2. When A2 stops, B2 outputs
whatever output by A2. It is clear that if A wins the tag unlinkability game,
then B wins the path privacy game. We have:

Pr[ExpPath−Privacy
B [κ] = 1] = Pr[ExpTag−Unlinkability

A [κ] = 1] (1)

If A (t, n1, n2, n3, n4, ε)-breaks tag-unlinkability, then B also (t, n1, n2, n3, n4, ε)-
breaks path privacy. �

Theorem 2. Path privacy implies step unlinkability.

Proof. Assuming that a system is not step-unlinkable, there exists an adversary
A which can (t, n1, n2, n3, n4, ε)-break its step unlinkability. We can construct
an adversary B that breaks the path privacy using A as a subroutine.

ExpPath−Privacy
B [κ] sets up the system I,R, T ,M and publishes the public

system parameter para. B passes para to A. If A can break the step unlinka-
bility in ExpStep−Unlinkability

A [κ]. Then B can use A as a subroutine to break
path-privacy. In the learning phase, A1 gathers the information of the system.
In this process, A1 cannot query the oracles directly; instead, it submits the
queries to B1 and then B1 queries the oracles O for A1. Then A1 outputs {T, st}.
As A1 fully controls the system during the learning phase, then A1 knows the
path of T . We denote the path by P , which is contained in st. Then A1 passes
{T, k, st} to B1. B1 creates two new tags T0 and T1 and outputs {T0, T1, P, k, st}.
ExpPath−Privacy

B [κ] tosses a coin δ. If δ = 0, then the experiment moves T0 with-
out going through path P in k step, and the state of T0 is denoted as S0; else, the
experiment moves T1 through path P in k step, and the state of T1 is denoted
as S1. The experiment returns Sδ to B2. B2 transfers Sδ to A2, and outputs
whatever output by A2.

In the above path-privacy game, B2 is provided with the state Sδ. If δ = 0,
then the tag with state S0 does not have any common step with T . If δ = 1,
then the tag with state S1 has at least one common step with T . Given Sδ, A2

guesses whether the tag has a common step with T or not. B2 can directly use
the result of A2. It is clear that:

Pr[ExpPath−Privacy
B [κ] = 1] = Pr[ExpStep−Unlinkability

A [κ] = 1] (2)

Hence, if A (t, n1, n2, n3, n4, ε)-breaks the step-unlinkability, then B also
(t, n1, n2, n3, n4, ε)-breaks the path privacy. �

4 A New RFID Path Authentication Protocol

We propose a new RFID-based path authentication scheme under the path pri-
vacy notion. Our path authentication scheme is suitable for a supply chain that
where the paths of products are pre-determined. We use pseudorandom function
and elliptic curve ElGamal encryption scheme as building blocks.
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4.1 Building Blocks

Pseudorandom function Given a security parameter κ, let m(·) and l(·) be
two positive polynomials in κ. We say that

{Fk : {0, 1}m(κ) −→ {0, 1}l(κ)}k∈R{0,1}κ (3)

is a PRF ensemble if the following two conditions hold:

1. Efficient evaluation: There exists a polynomial-time algorithm that on input
k and x ∈ {0, 1}m(κ) returns Fk(x).

2. Pseudorandomness: A PPT oracle machineA(t, ε)-breaks the PRF ensemble,
if

|Pr[AFκ (κ) = 1]− Pr[AHκ (κ) = 1]| ≥ ε (4)

where Fκ is a random variable uniformly distributed over the multi-set
Fk, k ∈R {0, 1}κ, Hκ is uniformly distributed among all functions mapping
m(κ)-bit-long strings to l(κ)-bit-long strings, and the running time of A is
at most t (here each oracle query accounts for one unit operation).

The PRF ensemble is pseudorandom, if for all sufficiently large κ, there exists no
algorithm A that can (t, ε)-break the PRF ensemble, for any t that is polynomial
in κ and any ε that is nonnegligible in κ [15].

Elliptic Curve ElGamal Cryptosystem An elliptic curve ElGamal cryp-
tosystem provides the following usual set of operations:

– Setup: The system outputs an elliptic curve E over a finite field Fp, where
p is a large prime. Let P be a point on E(Fp) of a large prime order q such
that the discrete logarithm problem is intractable for G =< P >.

– Key generation: The secret key is sk ∈ Fp. The corresponding public key pk
is the pair of points (P, Y = sk · P ).

– Encryption: To encrypt a point M ∈ E , one randomly selects r ∈ Fq and
computes E(M) = (U, V ) = (r · P,M + r · Y ). The ciphertext is c = (U, V ).

– Decryption: To decrypt a ciphertext c = (U, V ), one computes D(c) = U −
sk · V = M .

To encrypt message m, we need a point mapping algorithm to transform m ∈
Fq to a point in the elliptic curve E . M(m) = m · P is a simple additively
homomorphic and unreversed mapping M : Fq → E , where P is a point in
E of large prime order q. This mapping is a one-to-one mapping from Fq to
G =< P >: if ∃m1,m2 ∈ Fq such that M(m1) = M(m2), then m1 = m2 mod q.

ElGamal system supports re-encryption operation denoted as ReE. Given
a ciphertext c = (U, V ) under a public key pk = (P, Y = sk · P ), and the
public key pk, ReE re-randomizes the ciphertext c to c′, where c′ = (U ′, V ′) =
(U + r · P, V + r · Y ), for r ∈R Fq. ElGamal system preserves the semantic
security property under re-encryption [7]. Let Ore−encrypt be an oracle that,
provided with two ciphertexts c0, c1, randomly chooses b ∈ {0, 1}, re-encrypts
cb using ElGamal and public key pk, and returns the resulting ciphertext cb.
The semantic security of ElGamal under re-encryption implies that guessing the
value of b is as difficult for A as the decisional Diffie-Hellman (DDH) problem [7].



484 S. Cai et al.

4.2 Protocol

Assume that an RFID-enabled supply chain path authentication system consists
of a set of n tags, an issuer I, a set of l managers M, and a set of m normal
readersR. Our protocol has three steps: initialization, updating and verification.
In the initialization step, the issuer and the managers setup the system together
and initialize the tags. When the tags enter the supply chain, the corresponding
reader updates the tags on each step. Finally, when a tag reaches a manager in
M, the manager reads out the content of the tag and checks the validity of the
tag. Each tag stores an encrypted ID and an encrypted credential generated by
the readers in its path.

Initialization: The managers M generate (sk, pk) = (x, y = gx) for ElGamal
encryption and send pk to the issuer and the readers. The underlying elliptic
curve of the ElGamal system is denoted as E . The issuer I selects a secret-key
k0 ∈ {0, 1}κ, where κ is the system parameter. I sets for each reader Rj a
secret key kj , where 1 ≤ j ≤ m. I distributes kj to Rj . The issuer selects a
pseudorandom function PRF, and sends PRF to all the normal readers.

Each tag Ti has an unique identity IDi, where IDi ∈ E . For each Ti, the
issuer I sets its initial state to be {ci = E(IDi), ti = PRFk0(IDi)}. We denote
the path which Ti will go through as Pi. Suppose Pi = (Ri0 , Ri1 , Ri2 , · · · , Ril),
for any 0 ≤ j ≤ l, where ij denotes the reader ID in the position j of path Pi.
Then for Ti, the issuer I computes vi = PRFkil

(PRFkil−1
(· · · (PRFk0(IDi))),

and stores a copy of (IDi, vi) on the databases of the managers M.

Interaction between Reader and Tag: When tag Ti reaches Rj , reader Rj

reads out Ti’s current state STi = {ci, ti}. Rj computes the new state {c′i, t′i},
where c′i is re-randomization of ci under the public key pk and t′i = PRFkj (ti),
and then writes {c′i, t′i} to the tag.

Check the Validity of Tag: Only the managers M can check the validity of
tags. Upon the arrival of a tag at a check point, with state {ci, ti}, M decrypts ci
to get IDi, and searches its database; if and only if it can find a tuple (IDi, vi)
that satisfies ti = vi, then Ti is considered as a valid tag.

4.3 Security and Privacy Analysis

The security and privacy of the proposed protocol are based on the pseudo-
randomness of PRF and the semantic security of Elgamal Encryption scheme
under re-encryption. In the following, we provide a formal security and privacy
analysis.

Suppose PRF is a pseudorandom function that mapps m(κ)-bit-long strings
to l(κ)-bit-long strings. We call the function CPRF (m) = PRFkl

(PRFkl−1

(· · · (PRFk0(m))) as “cascaded” pseudorandom function, where k0, ..., kl are ran-
domly chosen keys for the pseudorandom function PRF . If for all ki, 0 ≤ i ≤ l,
PRFki is a pseudorandom function, CPRF (m) is a pseudorandom function (for-
mal proof please refer to [4]).
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Lemma 1. Producing a new valid pair {ci, ti} contradicts with the pseudoran-
domness property of CPRF . Here a new pair of {ci, ti} means that ci is a ci-
phertext of a new IDi under the public key of the system, or ci is a ciphertext
of an existing IDi in the system while ti is a new value that has not appeared in
the system.

Proof (sketch). The security of our system is based on the pseudorandomness

of CPRF (m). Suppose there is an oracle Odistinguish
CPRF , given a message m, the

oracle randomly returns the value of CPRF (m) or H(m), denoted as m′, where
H() is an arbitrarily selected function among all functions mapping m(κ)-bit-
long strings to l(κ)-bit-long strings. After getting m′, the adversary outputs 1 if
it guesses m′ = CPRF (m), else he outputs 0. Pr[ACPRF (κ) = 1] denotes the

probability that the adversary outputs 1 when the oracle Odistinguish
CPRF returns

value CPRF (m). Pr[AH(κ) = 1] denotes the probability that the adversary

outputs 1 when the oracle Odistinguish
CPRF returns value H(m). Since CPRF is a

pseudorandom function, given A with limited access to the function CPRF ,
we have |Pr[ACPRF (κ) = 1] − Pr[AH(κ) = 1]| ≥ ε, where ε is negligible. We
will show that if an adversary A′ can successfully forge a new pair {ci, ti}, then
using A′ as a subroutine, there exists an adversary A that breaks CPRF (m)’s
pseudorandomness, namely the value of |Pr[ACPRF (κ) = 1] − Pr[AH(κ) = 1]|
will be non-negligible.

A sets up a supply chain system with public key pk, private key sk for El-
gamal encryption system, and a valid path in which the readers have the keys
k0, · · · , kl, respectively, where l is the length of the path. A does not know
the keys k0, · · · , kl, while it is provided with PRFk0 , · · · , PRFki by the ora-

cle Odistinguish
CPRF . A transfers the public system parameters to A′ which runs

two algorithms A′
1 and A′

2 in ExpPath−Privacy
A′ [κ], . In the learning phase, A′

1

accesses the supply chain system without exceeding the constraints defined in
ExpPath−Privacy

A′ [κ]. In the challenge phase, A′
2 outputs a new pair {ci, ti}. A

decrypts ci to get ID. Then A queries Odistinguish
CPRF with ID. Odistinguish

CPRF returns
a message mesID. In case {ci, ti} is valid, then by checking whether mesID = ti,

A knows whether Odistinguish
CPRF has chosen the function CPRF or a random func-

tion H(). As a result, if A′ (t, n1, n2, n3, n4, ε)-breaks the the security of path
authentication, then A (t, ε)-breaks the pseudorandomness of function CPRF .

Theorem 3. If PRF is pseudorandom, then our system has path privacy prop-
erty under the semantic security of ElGamal re-encryption.

Proof (sketch). Assume that our system is not path private, namely, there ex-
ists an adversary A that breaks the path privacy of our system. Then we can
construct an adversary B to break the semantic security of ElGamal encryption
system under re-encryption. B uses A as a subroutine and maintains a list L to
answer A’s queries as follows.

Suppose the public key of an ElGamal encryption cryptosystem is pk, and its
corresponding private key is sk. Adversary B can break the semantic security
of the system under re-encryption. B firstly simulates a path authentication
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system; it initializes the system the same as Initialization step defined in Section
4.2, except that the public and private keys of the manager are set to pk and sk,
respectively. Note that B knows all the secret keys of the readers, but it does not
know the value of sk. Then an adversary A starts the path-privacy experiment.
In the learning phase of A1, when A1 queries the oracles, B answers the queries.
B can answer the queries to O1, O2 and O4 directly. However, B does not have
the private key sk, hence in case A1 queries the O3 with a state {ci, ti}, B cannot
decrypt ci to get IDi and compare the value of ti with vi in the database. In
order to answer the queries to O3, B maintains a list L that records the history of
each oracle’s operations. Firstly, B inserts the tuples (IDi, ci, ti, vi) for i = 1 to
n into list L. Then, each time a tag’s state is changed, B adds a link between the
tag’s new state and old state. With the list L, given a tag’s state, even through
B cannot decrypt the ciphertext, it can get the tag’s ID through the records of
the tag’s state in list L. Thus B can answer the queries to O3 by searching the
database and comparing ti with vi. At the end of the learning phase, A1 outputs
two tags T0 and T1, a path P with no less than k steps, st. Suppose that the state
of T0 is {c0, t0}, the state of T1 is {c1, t1}. B firstly submits the two messages
{c0, c1} to Ore−encrypt. Ore−encrypt randomly chooses b ∈ {0, 1}, and re-encrypts
cb to c′b under the public key pk. Then B sends S = {c′b, r} to A2, where r is a
random string. Note that actually, B should provide {c′b, tb} to A2, where t′b is
the new value of tb after been processed by k readers in path P . We argue that
{c′b, r} and {c′b, t′b} contain same information that can be used by A2. A2 cannot
get any information from t′b since the function PRF is a pseudorandom function.
A2 guesses the value of b by analyzing {c′b, r}. B outputs whatever output by A.

Assuming the pseudorandomness of PRF, the advantage of B to break the
semantic security of ElGamal under re-encryption is the same as the advantage
of A to break the path privacy of the system. Since the ElGamal encryption
scheme under re-encryption is semantic secure, hence our system is path private.

�

4.4 Performance

Computational requirement: Our scheme does not require the tags to perform
any computation. All the computation will be performed at the reader side. To
update a tag, each reader requires one re-encryption operation and one computa-
tion on PRF . For a manager to verify a tag’s validity, it requires one decrypting
operation and one comparison.

Storage requirement: Each tag Ti’s state Si consists of {ci, ti}. ci is ElGamal
ciphertext on IDi which requires 2 · 160 bits. ti is the path mark, generated by
the PRF, thus 160 bits is sufficient. Therefore 480 bits storage is required for
each tag. The protocol can thus be implemented with the standard EPC Class 1
Gen 2 tag with an extensible EPC memory bank (scalable between 16-480 bits),
a scalable user memory bank (64-512 bits), which are available in the market [1].

On the reader side, the issuer stores a copy of system parameters includ-
ing pk and kj , for 0 ≤ j ≤ m, m is the number of normal readers. So the
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storage requirement for the issuer is O(1). Each normal reader Rj at step vj
needs to store the public key pk of the system and its own key kj , the storage
requirement for each normal reader is O(1). Each manager stores a copy of sk.
It also maintains a database DB, for each tag Ti, DB stores the verification
information (IDi, vi). The storage requirement for a manager is O(n), n is the
number of the tags. As a tag’s record takes 480 bits, a manager with 1GB storage
can stores more than 17 million tags’ records.

Compare to TRACKER [3,4], our system is more practical. Since the tags’
paths are predetermined in the initial stage, there is no need to store the path in-
formation on tag. A manage can perform path verification by simple comparison.
Consequently, the storage and computational requirements on updating tags are
reduced. The comparisons of storage and computational requirements between
our protocol and TRACKER are shown in Table 1. Note that in comparing the
computational load, we omit the cheap operations such as hash operation, com-
puting PRF, and point addition on elliptic curve etc. We only count the relative
expensive operations such as point multiplication on elliptic curve.

Table 1. Comparisons of TRACKER and Our Protocol

TRACKER [3] Our protocol

storage requirement

tag 960 bits 480 bits
issuer O(1) O(1)
normal reader O(1) O(1)
manager O(n+ vp), vp is the number of valid paths O(n), n is the number of tags

n is the number of tags

computational requirement of processing a tag (operation on elliptic curve)

issuer 8 point multiplication 2 point multiplication
normal reader 10 point multiplication 2 point multiplication
manager 5 point multiplication 1 point multiplication

5 Conclusions

In this paper, we analyzed the existing security and privacy notions for RFID-
enabled path authentication in [3]. We provided refined versions of the notions.
We proposed the first single-game-based privacy notion for path authentication
which implies the existing notions. We also proposed a path authentication pro-
tocol that satisfies the privacy notion. Our protocol can be implemented on
standard EPC class 1 Generation 2 tags, and it outperforms the existing path
authentication solutions [3,4] for RFID-enabled supply chains.
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Abstract. RFID technology constitutes a fundamental part of what is
known as the Internet of Things; i.e. accessible and interconnected ma-
chines and everyday objects that form a dynamic and complex environ-
ment. In order to secure RFID tags in a cost-efficient manner, the last
few years several lightweight cryptography-based tag management pro-
tocols have been proposed. One of the most promising proposals is the
HB+ protocol, a lightweight authentication protocol that is supported
by an elegant security proof against all passive and a subclass of ac-
tive attackers based on the hardness of the Learning Parity with Noise
(LPN) problem. However, the HB+ was shown to be weak against ac-
tive man-in-the-middle (MIM) attacks and for that several variants have
been proposed. Yet, the vast majority of them has been broken.

In this paper, we introduce a new variant of the HB+ protocol that can
provably resist MIM attacks. More precisely, we improve the security of
another recently proposed variant, theHB# protocol by taking advantage
of the properties of the well studied Gold power functions. The new
authentication protocol is called GHB# and its security can be reduced
to the LPN problem. Finally, we show that the GHB# remains practical
and lightweight.

1 Introduction

Radio Frequency Identification (RFID) technology constitutes a fundamental
part and key enabler of what is known as the Internet of Things (IoT); i.e. ac-
cessible and interconnected machines and everyday objects that form a dynamic
and complex environment. In the IoT vision, the Internet extends into our every-
day lives through a wireless network of uniquely identifiable objects or ‘things’.
RFID tags are much “smarter” and more efficient than the classical barcode
and can provide us with the data needed to manage ‘things’, unmanageable un-
til today; thus rendering RFID the most pervasive technology in human history.
Each physical object is accompanied by a rich, globally accessible virtual object
that contains both current and historical information on that object’s physi-
cal properties, origin, ownership. When available ubiquitously and in real time,
this information can dramatically streamline how we manufacture, distribute,
manage, and recycle our goods.
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Applications ranging from inventory monitoring, and payment systems to
supply-chain management and smart home devices are already taking advan-
tage of the RFID technology. However, this rapid proliferation of RFID tags
raises several security and privacy concerns. Given also that, in order to sustain
the pervasiveness, the cost of the tag must remain as low as possible; i.e. space,
as well as, peak and average power consumption limitations must be instituted,
it was identified early on that new lightweight cryptographic protocols have to
be deployed for their management.

In this context, several new lightweight schemes have been proposed in the
last few years ([1]), mainly for secure tag authentication. Amongst the proposed
solutions, the most prominent ones are the authentication schemes that are based
on the conjectured hardness of the Learning Parity in the presence of Noise
(LPN) problem, which is closely related to the well-studied problem of decoding
random linear codes.

Definition 1. (LPN Problem) Let A be a random (q × k)-binary matrix, let x
be a random k-bit vector, let η ∈ (0, 1/2) be a noise parameter, and let ν be a
random q-bit vector such that wt(ν) ≤ ηq. Given A, η, and z = A ·xt+νt, find
a k-bit vector yt such that wt(A · yt + z) ≤ ηq.

In [12], Juels and Weis proposed HB+, a symmetric key authentication scheme,
inspired by HB ([11]), the work of Hopper and Blum for the secure identification
of human beings. The HB+ has very simple circuit representation, as it performs
only a few dot-product and bit exclusive-or computations. In more detail, the
prover (the Tag) and the verifier (the Reader) exchange random binary vectors
a and b, and the prover based on this exchanged information and two secret
vectors x and y, produces and transmits to the verifier one bit z = ax⊕ by+ ν,
where ν is one bit that follows a Bernoulli distribution with parameter η ∈ (0, 12 ).
The verifier accepts z = ax ⊕ by. This basic interaction has soundness 1

2 and
completeness 1− η and it is improved via sequential or parallel composition, i.e.
the verifier accepts if after r repetitions of the basic round at most t times the
condition is not satisfied.

Certainly, the most interesting feature of the protocol is the elegant proof
that supports its security analysis. Specifically, in [12], a concrete reduction of
the LPN problem to the security of the HB+ protocol in two attack models was
shown. In the first model the attacker is passive and can only eavesdrop the
communication between the prover and the verifier, while in the second model
she is active and she can also send queries to the prover. The original proof was
further simplified and extended in [13], [14].

However, the above described attack models do not include more powerful
adversaries, like the ones that can manipulate messages exchanged between the
reader and the tag. Thus, it came as no surprise that soon after the introduction
of the HB+, it was shown ([7]) that there is a simple man-in-the-middle (MIM)
attack that can easily reveal the secret vectors x and y. Motivated by this MIM
attack, several variants of HB+ have been proposed ([6],[8], [2], [24], [22], [3],
[20], [16], [25]). However, most of these schemes have been shown to be weak
against a MIM attacker.
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Recently, the first two HB+ variants that can provably resist MIM attacks
have been proposed and both are based on equivalent to LPN problems. In [15],
Kiltz et al. built on the Subspace LWE problem to construct two secure Message
Authentication Code (MAC) schemes. However, both these schemes require the
application of Pairwise Independent Permutation, while the secret keys are very
long. In [4], Bosley et al., introduced the Learning Subspace with Noise (LSN)
problem and they showed the equivalence between the LPN and LSN. Based on
the LSN problem, they introduced an authentication protocol and they proved
its security against MIM attacks. This protocol is equivalent to the second MAC
scheme introduced in [15].

1.1 Our Contribution

In this paper, we propose a new variant of the HB+ protocol that can provably
resist all known MIM attacks. More precisely, we improve the security of another
recently proposed variant, the HB# protocol ([8]), by taking advantage of the
properties of the Gold power functions. The HB# protocol was introduced by
Gilbert et al. and it was provably secure against the attack that succeeded against
HB+([7]). However, Oaufi et al. [21] presented another MIM attack on HB#.
The main objective of our work is to enhance the security of HB# by adding
some nonlinear components without increasing significantly its complexity.

The idea of using nonlinear functions to built secure LPN-based authentica-
tion protocols is not new. In [2], Bringer et al. proposed the HB++ protocol, a
modified version of the HB+ protocol that could resist the attack in [7] using a
specific family of nonlinear multi-output Boolean functions, the Gold functions.
Gold functions can be efficiently implemented in hardware, they have been ex-
tensively studied in the literature and they possess very good cryptographic
properties, like high nonlinearity and good derivative behaviour, and for that
they constitute an excellent choice. However, HB++ was shown to be weak [9].
A more recent attempt to introduce nonlinear HB-like protocols by Madhavan
et al. [18] was also unsuccessful ([23]).

Our protocol, called GHB#, is the first nonlinear variant of HB+ that it
is provably resistant against MIM attacks. Our reduction is using rewinding,
like in the case of the HB+ and HB# protocol and the security is based on
the hardness of the LPN problem. Moreover, we show that, despite the use of
nonlinear functions, the GHB# protocol remains as practical and lightweight as
its direct ancestor HB#.

1.2 Outline

The paper is organized as follows. In Section 2, we establish the necessary back-
ground on vectorial Boolean functions with emphasis in the family of Gold func-
tions. In the same section, we describe the HB# protocol. In Section 3, we present
the new authentication protocol and in Section 4, we provide efficient implemen-
tation guidelines and we compute the overall complexity. In Section 5, we provide
the security analysis and we prove that the new protocol is secure against active
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attackers that can interrogate a tag and/or modify all the exchanged messages
between a tag and the reader. Finally, conclusions and topics for further research
can be found in Section 6.

2 Background

2.1 Gold Functions

Vectorial Boolean functions constitute fundamental building blocks for many
cryptographic algorithms and have been extensively studied in the literature. In
this paper, we use a specific family of such functions, the so called Gold functions
that possess very good cryptographic properties ([10], [5]). First we introduce
some notation and then we present the necessary background.

Let F2 be the finite field with two elements and Bn,m the set of vectorial
Boolean function with n inputs and m outputs; i.e. the set of multi-output
Boolean from Fn

2 to Fm
2 . We use normal, bold and capital bold letters, x, x and

M to denote single elements, vectors and matrices, respectively. Also, normal
and capital bold letters are used for single input (univariate) and multi input
Boolean functions, respectively. The Hamming weight wt(x) of a vector x =
[x(0), x(1), · · · , x(n− 1)] is the number of nonzero elements. Finally, 0m denotes
the all zeros vector of length m and for real numbers η, ψ ∈ -, ]η, ψ[ = {x ∈
-|η < x < ψ}.

Definition 2. ([5]) A vectorial function F ∈ Bn,m is balanced if it takes all
values y ∈ Fm

2 the same number of times; i.e. 2n−m times.

Definition 3. ([5]) The derivative of a vectorial Boolean function F ∈ Bn,m is
defined as DaF (x) = F (x) + F (x+ a), a ∈ Fn

2 and a �= 0n.

Definition 4. A vectorial Boolean function F ∈ Bn,m is called almost perfect
nonlinear (APN) if and only if for every a ∈ Fn

2 , a �= 0n and b ∈ Fm
2 the

equation DaF (x) = b has zero or 2 solutions.

In [10], R. Gold introduced the so-called Gold functions, the power functions
x → xd on the field F2n , where n odd and d = 2i + 1, with gcd(i, n) = 1
and 1 ≤ i < n−1

2 . Gold proved that these univariate polynomials are APN
functions, with very high nonlinearity, balanced and have quadratic algebraic
degree. (Note that Gold functions have good cryptographic properties when n
is an even integer.)

Gold functions have been defined and analysed as univariate functions, but
it is well known, that they can be easily transformed to a vectorial Boolean
function. Let {α0, · · · , αn−1} be a basis of F2n over F2, then any element x ∈ F2n

can be written as x =
∑n−1

i=0 xiαi, xi ∈ F2. In this paper, we are going to use

a normal basis {γ20, γ21 , · · · , γ2n−1} of F2n over F2, where γ ∈ F2n . It is well
known that there is such basis for any m > 1 ([17]). Note that depending on the
choice of the basis, the mapping from the univariate functions to the vectorial
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Boolean functions differs. Thus, a Gold function g = xd can be written as a
multi input Boolean function G as follows,

G(x0, x1, · · · , xn−1) = g(
n−1∑
i=0

xiγ
2i).

Similarly, the output of the function can be written as a linear combination of
the elements of the basis.

Definition 5. ([5]) Two functions are affine equivalent if one derives from the
other with some left and right compositions with an affine permutation.

We denote by G(n, d) the set of all multi-input vectorial Boolean functions that
are affine equivalent to a Gold function with n inputs and outputs and with
exponent d. That is, ifG is the Gold multi-input Boolean function, then for every
vectorial Boolean function Φ ∈ G(n, d), there are affine permutations P 1 and P 2

such that Φ = P 1◦G◦P 2. Every function Φ ∈ G(n, d) has all the aforementioned
properties of Gold functions; i.e. Φ is APN, balanced and quadratic ([5]).

Since every Φ ∈ G(n, d) is quadratic, it can be written as

Φ(x(0), · · · , x(n− 1)) = L(x(0), · · · , x(n− 1))⊕Q(x(0), · · · , x(n− 1)),

where L is a linear vectorial Boolean function and Q a purely quadratic vectorial
Boolean function. We denote by IΦ ⊂ {0, 1, · · · , n − 1} the smallest subset of
the input variable indexes of Φ, such that

Q(x(0), x(1), · · · , x(n− 1)) = 0m,

for all x ∈ K(Φ), where

K(Φ) = {x ∈ Fn
2 | x(i) = 0, ∀ i ∈ IΦ}.

Clearly, K(Φ) is the subspace of equations xi = 0, i ∈ IΦ, and the restriction of
Φ to this subspace is a linear vectorial function, i.e. Φ(x1⊕x2) = Φ(x1)⊕Φ(x2),
for x1,x2 ∈ K(Φ).

2.2 The HB# protocol

In this section, we briefly describe the HB# protocol ([8]). We try to apply,

as possible, the established notation. We use x
$← X to denote the assignment

to x of a value sampled from the uniform distribution on the finite set X . We
use Ber(η) to denote the Bernoulli distribution with parameter η, meaning that
a bit ν ∈ Ber(η), then Pr[ν = 1] = η and Pr[ν = 0] = 1 − η. A vector ν
randomly chosen among all the vectors of length m, such that ν(i) ∈ Ber(η)

and η ∈ (0, 1/2), for 0 ≤ i ≤ m − 1, is denoted as ν
$← Ber(m, η). Finally, we

use b
$← Fk

2 to denote a random binary vector b of length k.
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Tag (prover)

(secret X, Y)

Reader (verifier)

(secret X, Y)

�
Choose b

$← F
kY
2 ,

ν
$← Ber(m, η) b

�

z = a · X ⊕ b · Y ⊕ ν

Choose a
$← F

kX
2

a

�
If wt(z ⊕ a · X ⊕ b · Y ) ≤ τ ,

then accept tag.

z

Fig. 1. The HB# protocol

The HB# protocol can be seen as a natural matrix extension of the HB+

protocol, where the prover and the verifier, instead of vectors, they share two
binary matricesX and Y with size kX×m and kY ×m respectively. The protocol
is again a three pass one, but now the verifier and prover need only one round
to interact (Fig. 1). Like the HB+ protocol, the HB# has low computational
complexity O(kX ·m+ kY ·m), while it reduces the transmission costs to (kY +
kX +m) bits in total and it provides more practical error rates. However, at the
same time, it needs more memory bits for the secret keys, as the tag has to store
the two secret matrices, i.e. (kX ·m+ kY ·m) bits in total.

Security analysis. The HB# protocol was designed to resist the attack intro-
duced in [7] and for that it is supported by a proof of security against attackers
that can modify only the messages sent by the reader to the tag during an execu-
tion of the protocol. To prove the security of the scheme, a natural matrix-based
extension of the HB problem was introduced, the MHB puzzle.

Definition 6. ((k,m, η, q)-MHB puzzle, [8]) Let η ∈ (0, 1/2) and m and q be
polynomials in k. On input the security parameter 1k, the puzzle generator G
draws a random secret (k×m)-binary matrix X, q random vectors (a1, · · · ,aq)
of length k, computes for 1 ≤ i ≤ q the set of answers zi = ai ·X + νi, where
each bit of νi is 1 with probability η, and draws a random vector a of length
k constituting the challenge to the adversary. It outputs {(ai, zi)}1≤i≤q and a.
The solver returns a vector z. The secret is X, and the verifier V accepts, if and
only if, z = a ·X.

Using the theory of weakly verifiable puzzles the hardness of this extended prob-
lem was proved (Lemma 1) and a concrete reduction of the MHB puzzle to the
security of the HB# protocol was provided in [8]. We are going to use the MHB
puzzle in our proposal as well.

Lemma 1. ([8]) Assume the hardness of the LPN problem. Then, the MHB
puzzle is (1− 1

2m )-hard.

Attack against HB#. In [21], it was shown that the protocol is not secure
against a more general MIM attack. That is, when the attacker can manipulate
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all the messages exchanged between a legitimate tag and the reader, and not
only the messages sent by the reader, there is a key recovery attack that she
can mount. In a few words, the attack goes as follows. The attacker obtains a
valid triplet (b̂, â, ẑ); i.e. a triplet that satisfies wt(ẑ⊕ b̂ ·X ⊕ â ·Y ) ≤ τ . Using
this triplet to modify several executions of the protocol between the reader and
the same legitimate tag, the success of the i-th authentication depends on the
condition wt(νi ⊕ ν̂) ≤ τ , where ν̂ = ẑ ⊕ b̂ · X ⊕ â · Y and νi ∈ Ber(m, η)
is the masking vector used by the tag. The overall success probability leaks
information on the Hamming weight of ν̂. In the second phase of the attack, the
attacker modifies one bit of ŷ and computes the Hamming weight of the new
vector ν̂ ′. Thus, one bit of the vector ν̂ can be estimated from the difference
between wt(ν̂) and wt(ν̂ ′). After repeating the same procedure several times a
set of linear equations is constructed involving b̂ ·X + â · Y and the solution of
this linear system reveals the secret keys X and Y .

During the application of this attack many unsuccessful executions of protocol
occur and a mechanism that detects this abnormal behaviour could provide a
sufficient countermeasure. However, such a mechanism is not built-in property
of the protocol and a new protocol has to be proposed. In the following section,
we will show that the GHB# is such a proposal.

3 The GHB# protocol

In this section, we introduce a nonlinear variant of the HB# protocol, a one round
symmetric key protocol called the GHB#. Following the notation introduced in
Section 2.2, the tag and the reader share two secret binary matrices X and Y of
size kX ×m and kY ×m respectively. The single round of the protocol appears
in Fig. 2.

The tag and the reader exchange the randomly selected vectors b and a of
length kY and kX , respectively. Then, the tag computes and sends the vector
z = Φ(a ·X)⊕Φ(b ·Y )⊕ ν of length m, where ν ∈ Ber(m, η). If wt(z ⊕Φ(a ·
X) ⊕ Φ(b · Y )) ≤ τ , then the reader accepts the tag as authentic. Otherwise,
the tag is rejected. The threshold τ = um, where u ∈

]
η, 1

2

[
.

The function Φ is publicly known and it can be any multi-input function that
belongs to G(m, d); i.e. it is affine equivalent to a Gold multi-input vectorial
Boolean function G, as defined in Section 2.1. The choice of the specific uni-
variate Gold function xd used for the construction of G does not influence the
security of the protocol or its complexity. In Section 4, we give design directives
for the efficient hardware implementation of Φ and we compute the hardware
cost that brings to the protocol.

The error rates of the new protocol are computed similarly to the ones of HB#.
In more detail, the false rejection rate PFR of the protocol; i.e. the probability
to reject a legitimate tag, equals the probability wt(ν) > τ and it is given by

PFR =
m∑

i=τ+1

(
m
i

)
ηi(1− η)m−i.
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Tag (prover)

(secret X, Y)

Reader (verifier)

(secret X, Y)

�
Choose b

$← F
kY
2 ,

ν
$← Ber(m, η) b

�

z = Φ(a ·X) ⊕ Φ(b · Y ) ⊕ ν

Choose a
$← F

kX
2

a

�
If wt(z ⊕ Φ(a ·X) ⊕ Φ(b · Y )) ≤ τ ,

then accept tag.

z

Fig. 2. The GHB# protocol

It is common practice, in most HB-like protocols, to use an extra step in which
ν is used only when its Hamming weight is at most τ ; i.e. the completeness error
is PFR = 0.

Finally, the false acceptance rate PFA; i.e. the probability to accept a ran-
domly selected response z, equals the probability a binary vector of length m to
have Hamming weight at most τ . That is that, the soundness error is given by:

PFA =

τ∑
i=0

(
m
i

)
2−m.

4 Complexity Analysis and Implementation Issues

Next, we compute the overall storage, communication and computation com-
plexity. The main challenge for the GHB protocol is to efficiently implement the
function Φ and for that we provide implementation directives.

Storage Complexity. The memory cost for the tag; i.e. the storage for the two
secret matrices, is (kX ·m+ kY ·m) bits.

Communication Complexity. The protocol requires (kY + kX +m) bits to
be transfered in total.

Computational Complexity. We concentrate on the computationally weaker
of the two entities; i.e. the tag. We distinguish two main operations, the mul-
tiplication of the random vectors with the secret matrices and the application
of the function Φ for the computation of z. The two multiplications require in
total approximately O(kX ·m + kY ·m) basic binary operations. This is, also,
the computational complexity of the HB# protocol. For the implementation of
Φ, we propose the following approach.

Let {γ, γ2, γ22 , · · · , γ2m−1} be a normal basis of F2m over F2, where γ ∈ F2m . It
is well known that there is such basis for any m > 1 ([17]). The implementation

of a Gold function x2i+1 requires one exponentiation and one multiplication.
By ⊗ we demote the multiplication of two field elements of the field. When a
field element x ∈ F2m is represented in normal form; i.e. x =

∑m−1
i=0 x(i)γ2i , the
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Fig. 3. The implementation of the function Φ

exponentiation can be performed by right cyclic shift of the binary representation
x. Thus, x2i is obtained by simply shifting x to the right by i steps.

Concerning the multiplication x ·x2i , one of the most straightforward ways to
perform efficiently a normal basis multiplication is the one proposed by Massey
and Omura [19]. More precisely, for each normal basis there is an m×m matrix
M called the multiplication matrix of the normal basis and if x1 and x2 is,
respectively, the binary vector representation of the elements x1, x2 ∈ F2m with
respect to the basis, then the binary representation of the product y = x1x2 is
computed as y(m − 1 − i) = h(x2i

1 , x2i

2 ), for 0 ≤ i ≤ m − 1, where h(x1, x2) =
x1MxT

2 . The complexity of the operation is determined by the number CN

of ones of M . It is proved that the number of required AND and XOR gates
is CN and CN − 1 respectively. When an optimal normal basis is used, then
CN = 2m+ 1, and we have the least possible complexity.

Finally, since the function Φ belongs to G(m, d), any function affine equivalent
to a Gold function can be used. This function can be implemented from the
proposed construction for the Gold functions by multiplying the input and the
output vectors by the m×m matrix that corresponds to the left and right affine
permutations, respectively. If P1 and P2 are these two matrices, then the total
computation is given in Fig. 3. The complexity for each one of the permutations
can vary from constant to at most O(m2). Thus, the computational complexity
of the Φ function varies from O(m) to O(m2) depending on the choice of the
permutations and the total computational complexity of the protocol is at most
O(kX ·m+ kY ·m+m2).

To summarize the GHB# protocol has the same communication and storage
complexity as the its predecessor HB#, while it requires at least O(m) (and
at most O(m2)) more basic binary computations (Table 1). In Table 2, we use
practical parameters that have been proposed for the HB# protocol in order to
compare the efficiency of the two protocols.

Table 1. Complexity Comparison between GHB# and HB#

Security Stor. Compl. Comm. Compl. Comp. Compl.

HB# Active O(kX ·m+ kY ·m) O(kX + kY +m) O(kX ·m+ kY ·m)

GHB# MIM O(kX ·m+ kY ·m) O(kX + kY +m) O(kX ·m+ kY ·m+m)
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Table 2. Comparison between the GHB# and HB# protocols for practical parameters

kX kY m η τ Stor. GHB# Stor. HB# Comm. GHB# Comm. HB# Comp. GHB# Comp.HB#

80 512 1163 0.25 405 688k 688k 1.7k 1.7k 689k 688k
80 512 441 0.125 113 261k 261k 1k 1k 261k 261k

5 Security Analysis

5.1 Definition of Security Models

Following the notation used in [8], we use RX,Y ,τ to denote the algorithm that
it is run by the reader (verifier) and TX,Y ,η the one run by a legitimate tag

(prover). We use X
$← F(m1,m2)

2 to indicate the random selection of a m1 ×m2

binary matrix X.
All the attacks against HB+ and its variants are active ones; i.e. the attacker

can interact with the reader and/or the tag and change some of the messages
exchanged between the two legitimate entities. We distinguish two models of
security, the DET −model and the MIM −model. In each of the models the
adversary runs in two stages. In the first stage she has some interaction with the
prover and/or the verifier and in the second she interacts only with the verifier
and wins if the verifier returns accept. We define the advantage of an attacker
A against GHB# in the models as the overhead success probability over PFA;
i.e. the best possible soundness error we can hope for is the success probability
when the attacker does not perform any action during the first phase of the
attack and just sends a randomly selected z in the second phase. Note that,
PFA is negligible for the chosen values of τ and for security m = Θ(k), where k
is the security parameter. In the DET −model the attacker interacts only with
an honest prover for a polynomial number of times. More precisely,

Definition 7. (DET-model). In the DET −model the attack is carried in two
phases:

– Phase 1. Adversary A interacts q times with the honest tag TX,Y ,η. More
precisely, on the i-th invocation, TX,Y ,η internally generates a random blind-
ing vector bi, it takes a challenge ai from A as input and outputs zi =
Φ(ai ·X)⊕Φ(bi · Y )⊕ νi and sends the message to A.

– Phase 2. Adversary A interacts with the reader RX,Y ,τ trying to imperson-
ate the tag TX,Y ,η with advantage

AdvDET
A (kX , kY ,m, η, τ, q) =

Pr[X
$← F(kX ,m)

2 ,Y
$← F(kY ,m)

2 ,ATX,Y ,η(1k) : 〈A,RX,Y ,τ 〉 = ACC]− PFA.

In the MIM − model the attacker can interact with both the prover and the
verifier and learn the verifier’s decision, accept or reject.

Definition 8. (MIM-model). In the MIM −model the attack is carried in two
phases and the adversary can manipulate all messages exchanged between the tag
and the reader:



GHB#: A Provably Secure HB-Like Lightweight Authentication Protocol 499

– Phase 1. On the i-th invocation, TX,Y ,η internally generates a random
blinding vector bi and sends it to the adversary A. The reader RX,Y ,τ re-

ceives a modified blinding vector b̂i = b̄ ⊕ bi from A. Then, the reader
generates a challenge vector ai and sends it to the adversary A. The tag
receives a modified challenge vector âi = ā ⊕ ai from A and replies with
zi = Φ(âi ·X)⊕Φ(bi ·Y )⊕ νi, νi ∈ Ber(m, η). The reader receives a mod-
ified vector ẑi = z̄ ⊕ zi and if wt(ẑi ⊕Φ(ai ·X)⊕Φ(b̂i · Y )) ≤ τ , then the
reader outputs accept. Otherwise, it outputs reject. The adversary interferes
for q executions of the of the protocol.

– Phase 2. Adversary A interacts with the reader RX,Y ,τ trying to imperson-
ate the tag TX,Y ,η with advantage

AdvMIM
A (kX , kY ,m, η, τ, q) = Pr[X

$← F(kX ,m)
2 ,

Y
$← F(kY ,m)

2 ,ATX,Y ,η ,RX,Y ,τ (1k) : 〈A,RX,Y ,τ 〉 = ACC] − PFA.

Note 1. As we have all ready described in Section 1, most variants of the HB+

protocol are secure under the DET−model. However, the attack presented in [7],
the GRS attack, against the HB+ protocol was easily applied to most of these
variants ([9]). This attack is included in the MIM −model, but the adversary
in the first phase is limited to modify only the messages that the reader sends.
The HB# protocol was the first one provably secure against the GRS attack,
but it was shown to be weak under the MIM −model ([21]).

5.2 Security Proofs

Next we prove that the GHB# protocol is secure under both the DET −model
and the MIM −model given the hardness of the LPN problem. Our reduction
is using rewinding, like in the case of the HB+ and HB# protocols and the
security is based on the MHB puzzle. We say that a function in x is negligible if
it vanishes faster then the inverse of any polynomial in x.

Lemma 2. There is Φ̂ ∈ G(m, d), such that for each x1,x2 ∈ K(Φ̂), it holds

that Φ̂(x1 ⊕ x2) = Φ̂(x1)⊕ Φ̂(x2) =
(
y||0|IΦ̂|

)
, for some y ∈ F

m−|IΦ̂|
2 .

Proof. The linearity derives directly for the definition of the subspace K(Φ̂).
Next, we prove the existence of such Φ̂.

By definition, every x ∈ K(Φ) has |IΦ| entries fixed to 0 and every Boolean
function Φ ∈ G(m, d) is a linear function in the subspace x ∈ K(Φ). That is,
for x ∈ K(Φ), Φ can be seen as a function with m− |IΦ| input variables and m
outputs.

Since the number of inputs is less than the number of outputs, |IΦ| of the
output bits can written as a linear combination of the other m− |IΦ|; i.e. there
is a linear transformation M that can be applied to the output of Φ and results
to |IΦ̂| zero output bits, for x ∈ K(Φ). Also, as any permutation P of the
outputs is acceptable, these zero outputs can be put last. From the composition
Φ̂ = P ◦M ◦Φ, of Φ with the linear transformation and the permutation with
Φ̂, the result follows. 
�
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Theorem 1. (Security in the DET-model) If there is an adversary A# that
can attack the GHB# protocol, with parameters (kX , kY ,m#, η, τ), in the DET-
model by interacting with an honest tag q# times, running time T# and achieving
advantage at least δ#, then, there is an adversary A that can solve the (kY ,m#−
|IΦ|, η, q)−MHB puzzle with parameters in running time T = 2qT# and success

probability δ > ( 1
2m + δ#

4 ), where q = m#q#L(2+ log2 q
#), L ≥ 2

ε′2 ln(
1

1−e−
ln2
m

),

ε′ = δ#
3

16 (12 −
τ
m )3(12 −

1
kX

) and Φ is the Gold linearly equivalent function used

in GHB#.

Proof. The adversary A has obtained q pairs (bi, zi) from the MHB puzzle gen-
erator, where zi = bi · Y ⊕ νi, 1 ≤ i ≤ q, and Y is a randomly selected k ×m
binary matrix. Let b be the k-bit challenge vector of the puzzle; i.e. she has to
compute z = b ·Y . We will show how the adversary A can solve the MHB puzzle
using the algorithm of the adversary A#. The proof is a modified version of the
proof introduced for the security reduction in the DET-model in [8].

During the attack, A# interrogates a legitimate tag and A simulates the
behaviour of the tag algorithm. The function Φ is chosen to be one that has the
properties described in Lemma 2. Let X# and Y # be the two secret matrices
shared between the tag and the reader. The kX ×m# matrix X# has all the
entries randomly selected except the i-th column X#(:, i), for all i ∈ IΦ, and the
s-th row X#(s, :), for a random row 1 ≤ s ≤ kX , that are all zero. Similarly, the
matrix Y # is a kY ×m# binary matrix that has also the i-th column Y #(:, i)
all zero, for all i ∈ IΦ, while all the other entries of the matrix are randomly
selected.

A divides the q pairs, that she has obtained from the MHB puzzle, in m sets
with Lq#(1 + r) pairs each. L is the number of estimations for each bit of the
vector z that the adversary gets from each set and r defines the size of a pool
of extra pairs that she can use in each estimation. The vector e of length m
stores intermediate values and it is initialised e = 0m. We use ’||’ to denote the
concatenation of vectors.
For j0 = 0 to m− 1 do:

1. For j1 = 0 to L− 1 do:
(a) Phase I: For j2 = 0 to q# − 1 do:

i. A selects random bit c ∈ F2 and sends b#j0,j1,j2 = b(j0L+j1)q#+j2⊕c·b.
ii. Let a#

j0,j1,j2
be the challenge vector send by the attacker A#.

iii. If a#
j0,j1,j2

(r) = c, then A replies with

z#
j0,j1,j2

= Φ(a#
j0,j1,j2

X#)⊕ z#
(j0L+j1)q#+j2

, (1)

where the second term is given by

z#
(j0L+j1)q#+j2

=
(
z(j0L+j1)q#+j2 ||μ

#
(j0L+j1)q#+j2

)
,

and μ#
(j0L+j1)q#+j2

∈ Ber(|IΦ|, η). Otherwise, she rewinds adversary

A# to the beginning of the current query and uses a new pair. If the
available pairs are exhausted, guess the message z#

(j0L+j1)q#+j2
.
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(b) Phase II: A proceeds to the second, impersonation, phase of the DET-
model attack.
i. Adversary A# sends the commitment vector b′.
ii. Adversary A chooses two challenges a′

0 and a′
1 with complement

values at the s-th bit; i.e. a′
0(s)⊕ a′

1(s) = 1.
iii. Adversary A transmits a′

0 and gets the reply z′
0.

iv. Adversary A rewinds the attacker A# just after the transmission of
b′ and sends a′

1 to get the reply z′
1.

v. Adversary A computes the sum

z′ = z′
0⊕z′

1⊕Φ

⎛⎝ kX∑
i=1,i�=s

a′
0(i)X

#(:, i)

⎞⎠⊕Φ

⎛⎝ kX∑
i=1,i�=s

a′
1(i)X

#(:, i)

⎞⎠
(2)

and adds the value of the j0-th bit to e(j0), i.e e(j0) = e(j0)+z′(j0).
2. The estimation of the bit z(j0) is given by majority decision; i.e.

z(j0) = e(j0)/L mod 2.

We will show that the attacker A successfully simulates a tag algorithm that
uses a kY ×m# binary matrix Y # that has the i-th column Y #(:, i) all zero,
for all i ∈ IΦ, i.e. from Lemma 2, Φ(b1 · Y #)⊕Φ(b2 · Y #) = Φ((b1 ⊕ b2) · Y #)
and the last |IΦ| of the output of are all zero. Finally, the secret matrix Y # is
such that Φ(bi · Y #) =

(
bi · Y || 0|IΦ|

)
.

When a#
j0,j1,j2

(r) = 0, the reply (1) of A can be written as

z#
j0,j1,j2

= Φ(a#
j0,j1,j2

X#)⊕
(
z(j0L+j1)q#+j2 ||μ

#
(j0L+j1)q#+j2

)
= Φ(a#

j0,j1,j2
X#)⊕

(
b(j0L+j1)q#+j2 · Y ||0IΦ

)
⊕
(
ν(j0L+j1)q#+j2 ||μ

#
(j0L+j1)q#+j2

)
and since ν(j0L+j1)q#+j2 ∈ Ber(m − |IΦ|, η) and μ#

(j0L+j1)q#+j2
∈ Ber(|IΦ|, η),

it holds that,
(
ν(j0L+j1)q#+j2 ||μ

#
(j0L+j1)q#+j2

)
∈ Ber(m, η).

Due to the specific choice of the matrix X#, the function Φ is restricted to K(Φ)

and behaves like a linear function. Thus, for a#
j0,j1,j2

(r) = 1, the reply (1) of A
can be written as

z#
j0,j1,j2

= Φ

⎛⎝ kX∑
i=1,i�=s

a#
j0,j1,j2

(i)X#(:, i)

⎞⎠⊕Φ(X#(s, :))

⊕ (b · Y ||0IΦ)⊕
(
b(j0L+j1)q#+j2 · Y ||0IΦ

)
⊕
(
ν(j0L+j1)q#+j2 ||μ

#
(j0L+j1)q#+j2

)
and, again, it holds that,

(
ν(j0L+j1)q#+j2 ||μ

#
(j0L+j1)q#+j2

)
∈ Ber(m, η). From

the above, we have that only the first m− |IΦ| entries of z′ given in (2) provide
an estimation of the puzzle’s answer z.
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Next, we compute necessary amount of estimations L for the majority strategy
to give the correct value of z with significant advantage δ. For the computation
of r, L, δ, we follow mainly the approach presented in [8].

For each of the L estimations of a single bit of z, the attacker has r · q# extra
pairs, where r = 1 + log2q

# and these pairs will be sufficient with probability
more than 1/2.

The guess of z is correct if either both z′
0 and z′

1 are correct or if both are false.

From [12], the probability this to happen is greater than p = 1
2+

ε3

2 −
ε3+1
kX

, where

ε = δ#

2 (12 −
τ
m ). Since, the probability of guessing the message z#

(j0L+j1)q#+j2
is

less than 1/2, the probability of correct guessing one of the m bits of z is lower

bounded by 1/4 + p/2 ≥ 1/2 + ε′, where ε′ = ε3

4 − ε3+1
2kX

.
Finally, from Chernoff bound on the majority of the L experiments, the guess

of all m bits is lower bounded by pMHB ≥
(
1− e−

Lε′2
2

)m

. Thus, for the prob-

ability pMHB to be greater than 1/2, the number of experiments must be at
least

L ≥ 2

ε′2
ln

(
1

1− e−
ln(2)
m

)
.


�

From Theorem 1, any efficient adversary achieving a noticeable advantage δ#

against the GHB# protocol in the DET-model can be turned into an efficient

solver of the MHB puzzle with a success probability greater than 1
2m by δ#

4 , and,
from Lemma 1, this contradicts the hardness assumption of the LPN problem.

Lemma 3. Let Φ ∈ G(m, d) and let X and Y be two sets of randomly selected
binary vectors of length m with cardinality |X| = 2kX and |Y| = 2kY , respectively,
and kX ≤ kY . Then, for given (b̄, ā, z̄) ∈ Fm

2 × Fm
2 × Fm

2 , the probability

p(d) = Pr [wt(DāΦ(x)⊕Db̄Φ(y)⊕ z̄) ≤ d] , 1 ≤ d ≤ n

where x ∈ X and y ∈ Y, is upper bounded by

p(d) ≤ 2−min(kX ,m)+2+mH( d
m ).

H(s) = s · log2(1s )− (1− s) · log2( 1
1−s ) is the entropy function.

Proof. From the Definition 4 of APN functions, for given ā there is a subset
Sā ⊆ Fm

2 , such that for every c ∈ Sā there is x ∈ X satisfying DāΦ(x) = c.
Since each c ∈ Sā can appear at most twice, it holds that min(2kX−1, 2m−1) ≤
|Sā| ≤ min(2kX , 2m−1). Similarly, we define Sb̄ ⊆ Fm

2 , such that for every c ∈ Sb̄
there is y ∈ Y such that Db̄Φ(y) = c, with c ∈ Sb̄ and min(2kY −1, 2m−1) ≤
|Sb̄| ≤ min(2kY , 2m−1).

All the sums c = c1 ⊕ c2 of a given vector c1 ∈ Sā with any c2 ∈ Sb̄, are
different. Thus, the sum DāΦ(x)⊕Db̄Φ(y) = c, with x ∈ X and y ∈ Y can take
the same value c with probability at most

2

2min(kX ,m)

2

2min(kY ,m)
2max(|Sā|,|Sb̄|) ≤ 1

2min(kX ,m)−2
.
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Given that the number of binary vectors of length m and Hamming weight less
than d is

∑d
i=0

(
m
i

)
≤ 2mH( d

m ), the probability DāΦ(x) ⊕Db̄Φ(y) = c to have

Hamming weight less than d ≤ n is upper bounded by 2−min(kX ,m)+2+mH( d
m ).

To conclude, clearly, the constant value z̄ does not influence this probability. 
�

Theorem 2. (Security in the MIM-model) If there is an adversary A# that can
attack the GHB# protocol with parameters (kX , kY ,m#, η, τ) in the MIM-model
by modifying q# protocol executions between an honest tag and the reader, with
running time T# and achieving advantage at least δ#, then, there is an adversary
A that can attack the GHB# protocol in the DET-model with the same parameters
by interrogating an honest tag q# times, with running time at most T# and with
advantage at least δ ≥ δ# − (PFA + δ#)q#pr, where pr is a negligible function.

Proof. The attacker A has a legitimate tag at her disposal that she can interro-
gate. We will show how A can attack GHB# protocol in the DET-model using
the algorithm that the adversary A# executes.

During the MIM attack, A# is modifying all messages between the legitimate
tag and reader. While, the adversary A has access to an honest tag, she has to
simulate the behavior of the reader. More precisely, her strategy goes as follows.

1. A receives from the honest tag TX,Y ,η a blinding vector b and sends this
vector to the A#.

2. A# produces a new blinding vector b̂ = b ⊕ b̄ and sends this vector to the
simulated reader; i.e. to the adversary A.

3. A produces a random challenge vector a, on behalf of the reader and sends
it to A#.

4. A# produces a new challenge vector â = a⊕ ā and sends this vector to the
honest tag, via A.

5. the tag responds with z and A sends the response to A#.
6. A# produces a new response vector ẑ = z ⊕ z̄ and sends this vector to the

simulated reader; i.e. to adversary Â.
7. If the triplet (b̄, ā, z̄) is all-zero, the simulated reader; i.e. A, notifies adver-

sary A# that the tag has been accepted. Otherwise, it is rejected.

The previous steps are repeated q# times. The adversary A impersonates the
tag to an honest reader in the DET-attack, by using the second phase of A#.

The probability of successfully simulating a reader’s behavior depends on the
ability of the adversary to simulate the last step; i.e. the acceptance or rejection
of the tag. Let pauth be this probability, then the overall probability of the attack
is given by

pMIM = pauth · (PFA + δ). (3)

We will compute pMIM . In order for the attack to be successful, the adversary
A must be able to simulate the reader’s behavior for q# consecutive executions
of the protocol. Let pr be the probability to fail in one execution. Then,

pauth = (1− q# · pr). (4)



504 P. Rizomiliotis and S. Gritzalis

The probability of false rejecting a tag when (b̄, ā, z̄) is all zero is PFR. That is,
pr ≥ PFR = 0, since we have assumed that the Hamming weight of ν is checked.
The value pr is also defined by the probability that the condition wt(ẑ ⊕ Φ(a ·
X) ⊕ Φ(b̂ · Y )) ≤ τ is satisfied when (b̄, ā, z̄) �= (0kY ,0kX ,0m). The sum can
be written as

ẑ ⊕Φ(a ·X)⊕Φ(b̂ · Y ) = Φ(â ·X)⊕Φ(b · Y )⊕ ν ⊕ z̄ ⊕Φ(a ·X)⊕Φ(b̂ · Y )

= DāΦ(a ·X)⊕Db̄Φ(b · Y )⊕ ν ⊕ z̄.

Let yā,b̄,z̄ = DāΦ(a ·X)⊕Db̄Φ(b ·Y )⊕ z̄ and let βā,b̄,z̄ be the Hamming weight
of yā,b̄,z̄. Then, m − βā,b̄,z̄ bits of yā,b̄,z̄ ⊕ ν follow a Bernoulli distribution of
parameter η and the rest βā,b̄,z̄ bits follow a Bernoulli distribution of parameter
1−η. That is, the Hamming weight wt(yā,b̄,z̄⊕ν) follows a binomial distribution

of expected value μ = (m−βā,b̄,z̄)η+(1−βā,b̄,z̄η) and variance σ2 = mη(1−η).
Since, the expected value is a function of βā,b̄,z̄ we can easily verify that for

βā,b̄,z̄ ≥ 1 + � τ−ηm
1−2η �, it holds that μ > τ .

When, μ > τ ; i.e. βā,b̄,z̄ ≥ 1 + � τ−ηm
1−2η � from the Chernoff bound we have

that wt(yā,b̄,z̄ ⊕ ν) < τ with probability p1 < e−
(μ−τ)2

2μ . When, μ ≤ τ ; i.e.

βā,b̄,z̄ < 1 + � τ−ηm
1−2η �, trivially we have that wt(yā,b̄,z̄ ⊕ ν) < τ with probability

p2. By combining the two cases, wt(yā,b̄,z̄ ⊕ ν) ≤ τ with probability

p̂r = p1 · Pr[μ > τ ] + p2 · Pr[μ ≤ τ ] ≤ e−
(μ−τ)2

2μ · Pr[μ > τ ] + P [μ ≤ τ ].

From Lemma 3, we have that P
[
βā,b̄,z̄ ≤ 1 + � τ−ηm

1−2η �
]
is upper bounded by

Pr

[
βā,b̄,z̄ ≤ 1 + �τ − ηm

1− 2η
�
]
≤ 2mH(

1+� τ−ηm
1−2η

�
m )+2−min(kX ,m).

Thus,

pr ≤ e−
(μ−τ)2

2μ · (1 − 2mH(
1+� τ−ηm

1−2η
�

m )+2−min(kX ,m)) + 2mH(
1+� τ−ηm

1−2η
�

m )+2−min(kX ,m)

≤ e−
(μ−τ)2

2μ + 2mH(
1+� τ−ηm

1−2η
�

m )+2−min(kX ,m).

The exponent of the second term is negative for practical values of the parameters
and a decreasing function of d. Also, similarly to [8], in order to ascertain that

the first term is negligible, we define d̂ the least integer such that μ((̂d) > (1+c)τ

for some c > 0 and for all d ≥ d̂, e−
(μ−τ)2

2μ ≤ e−
(cτ)2

2(c+1) . From (3) and (4), the
overall probability of the attack is lower bounded by

(1− q# · (e−
(μ−τ)2

2μ + 2mH(
1+� τ−ηm

1−2η
�

m )+2−min(kX ,m))) · (PFA + δ) ≤ pMIM .


�
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From Theorem 2, any efficient attacker achieving a noticeable advantage δ#

against the GHB# protocol in the MIM-model can be turned into an efficient
attacker against the same protocol in the DET-model. However, from Theorem 1
this contradicts the conjectured hardness assumption of the LPN problem.

6 Conclusions

The design of lightweight protocols for RFID tag authentication is a challenging
task. In this paper, we introduced a new secure authentication protocol, the
GHB#, that it is supported by a security proof based on the conjectured hardness
of the LPN problem. The new protocol belongs to the family of HB-like protocols
that have been extensively analysed in the last few years. The GHB# protocol is
shown to be secure against all the attacks that have been proposed so far against
LPN-based authentication protocols, including the MIM attacks in which the
attacker is able to modify all messages exchanged between an honest tag and
the reader. These MIM attacks has been the Achilles heel of almost all the
HB-like protocols with only two very recent exceptions ([15], [4]).

As further research, it is interesting to investigate the relation between the
GHB# protocol and other recently proposed LPN based protocols ([15], [4]),
that can resist MIM attacks.

Acknowledgement. The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions.
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Abstract. With cloud computing and storage services, data is not only
stored in the cloud, but routinely shared among a large number of users
in a group. It remains elusive, however, to design an efficient mechanism
to audit the integrity of such shared data, while still preserving identity
privacy. In this paper, we propose Knox, a privacy-preserving auditing
mechanism for data stored in the cloud and shared among a large number
of users in a group. In particular, we utilize group signatures to construct
homomorphic authenticators, so that a third party auditor (TPA) is
able to verify the integrity of shared data for users without retrieving
the entire data. Meanwhile, the identity of the signer on each block in
shared data is kept private from the TPA. With Knox, the amount of
information used for verification, as well as the time it takes to audit with
it, are not affected by the number of users in the group. In addition,
Knox exploits homomorphic MACs to reduce the space used to store
such verification information. Our experimental results show that Knox
is able to efficiently audit the correctness of data, shared among a large
number of users.

Keywords: Privacy-Preserving, Auditing, Shared Data, Cloud
Computing.

1 Introduction

With cloud computing and storage, users are able to access and to share resources
offered by cloud service providers at a lower marginal cost. With Dropbox, for
example, data is stored in the cloud (operated by Amazon), and shared among a
group of users in a collaborative manner. It is natural for users to wonder whether
their data remain intact over a prolonged period of time: due to hardware failures
and human errors in an untrusted cloud environment [2], the integrity of data
stored in the cloud can become compromised. To protect the integrity of data
in the cloud and to offer “peace of mind” to users, it is best to introduce a third
party auditor (TPA) to perform auditing tasks on behalf of users. Such a third
party auditor enjoys amply computation/communication resources that users
may not possess.

F. Bao, P. Samarati, and J. Zhou (Eds.): ACNS 2012, LNCS 7341, pp. 507–525, 2012.
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Provable data possession (PDP) [3], first proposed by Ateniese et al., allows
a verifier to perform public auditing on the integrity of data stored in an un-
trusted server without retrieving the entire data. Subsequent work focused on
how dynamic data [5, 11, 20, 24] and data privacy [19] can be supported during
the public auditing process. However, most of previous work only focus on au-
diting the integrity of personal data. Recently, Wang et al. [16] first design a
privacy-preserving public auditing mechanism (named Oruta) for shared data in
an untrusted cloud, so that the identity of the signer on each block in shared data
is not disclosed to the third party auditor (TPA) during an auditing task. With-
out knowing the identities of signers, the TPA cannot learn which user in the
group or which block in shared data is a higher valuable target than others [16].

Unfortunately, Oruta [16] fails to scale well to a large number of users sharing
data in a group. In Oruta, information used for verification are computed with
ring signatures [8]; as a result, the size of verification information, as well as the
time it takes to audit with it, are linearly increasing with the number of users
in a group. To make matters worse, when adding new users to a group, all the
existing verification information will need to be re-computed if ring signatures
are used, introducing a significant computation burden to all users. In addition,
the identities of signers are unconditional [8] protected by ring signatures, which
prevent the group manager to trace the identity when someone in the group is
misbehaved.

In this paper, we propose Knox, a new privacy-preserving mechanism to audit
data stored in an untrusted cloud and shared among a large number of users
in a group. In Knox, we take advantage of group signatures [6, 12] to construct
homomorphic authenticators [3, 15], so that the third party auditor is able to
verify the integrity of shared data without retrieving the entire data, but cannot
reveal the identities of signers on all blocks in shared data. Meanwhile, the size
of verification information, as well as the time it takes to audit with it, are
not affected when the number of users sharing the data increases. The original
user, who creates and shares the data in the cloud, is able to add new users
into a group without re-computing any verification information. In addition,
the original user (acts as the group manager) can trace group signatures on
shared data, and reveal the identities of signers when it is necessary. We also
utilize homomorphic MACs [1] to effectively reduce the amount of storage space
needed to store verification information. As a necessary trade-off, we allow the
third party auditor to share a secret key pair with users, which we refer to
as authorized auditing. Although we allow an authorized TPA to possess the
secret key pair, the TPA cannot compute valid group signatures as group users
because this secret key pair is only a part of a group user’s private key. To
our best knowledge, we present the first mechanism designed with scalability
in mind when it comes to support auditing data shared among a large number
of users in a privacy-preserving fashion. A high-level comparison between Knox
and previous work [16] is shown in Table 1.

The remainder of this paper is organized as follows. In Section 2, we briefly
discuss related work. Then, we present the system model, threat model and
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Table 1. Comparison between Previous Work [16] and Knox

Previous work [16] Knox

Public Auditing Yes No

Identity Privacy Yes Yes

Support for Large Groups No Yes

Traceability No Yes

design goals in Section 3. In Section 4, we introduce complexity assumptions and
cryptographic primitives used in Knox. Detailed design and security analysis of
Knox are presented in Section 5 and 6. Finally, we evaluate the performance of
Knox in Section 7, and conclude this paper in Section 8.

2 Related Work

Ateniese et al. [3] first proposed provable data possession (PDP), which allows
a client to verify the integrity of her data stored at an untrusted server without
retrieving the entire file. However, this mechanism is only suitable for static data.
To improve the efficiency of verification, Ateniese et al. [5] constructed scalable
and efficient PDP using symmetric keys. Unfortunately, it cannot support public
verifiability, and only offers each user a limited number of verification requests.

Juels and Kaliski [14] defined another similar model called proofs of retriev-
ability (POR), which is also able to check the correctness of data on an untrusted
server. The original file is added with a set of randomly-valued check blocks called
sentinels. The verifier challenges the untrusted server by specifying the positions
of a collection of sentinels, and by asking the untrusted server to return the as-
sociated sentinel values. Shacham and Waters [15] designed two improved POR
mechanisms, which are built on BLS signatures and pseudo-random functions.

Wang et al. [20] leveraged the Merkle Hash Tree to construct a public auditing
mechanism with fully dynamic data. Hao et al. [13] also designed a dynamic
public auditing mechanism based on RSA. Erway et al. [11] presented a dynamic
PDP based on the rank-based authenticated dictionary. Zhu et al. [24] exploited
index hash tables to support fully dynamic data. To ensure the correctness of
users’ data stored on multiple servers, Wang et al. [18] utilized homomorphic
tokens and erasure codes in the auditing process. An excellent survey of previous
work about data auditing can be found in [21].

Wang et al. [19] considered data privacy with public auditing in the cloud.
In their mechanism, the TPA is able to check the integrity of cloud data but
cannot obtain any private data. Zhu et al. [23] also designed a mechanism to
preserve data privacy from the TPA. Recent work [16], Oruta, represents the
first privacy-preserving public auditing mechanism for shared data in the cloud.
In this mechanism, the TPA can verify the integrity of shared data, but is not
able to reveal the identity of the signer on each block. Unfortunately, it is not
readily scalable to auditing the integrity of data shared among a large number
of users in the group.
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3 Problem Statement

3.1 System Model

In this paper, we consider data storage and sharing services in the cloud with
three entities: the cloud, the third party auditor (TPA), and users who partici-
pate as a group (as shown in Fig. 1). Users in a group include one original user
and a number of group users. The original user is the original owner of data, and
shares data in the cloud with other users. Based on access control policies [22],
other users in the group are able to access, download and modify shared data.
The cloud provides data storage and sharing services for users, and has ample
storage space. The third party auditor is able to verify the integrity of shared
data based on requests from users, without downloading the entire data.

Users Cloud 

Third Party Auditor (TPA)

Shared Data Flow

1.
 A

ud
itin

g 
Req

ue
st

4.
 A

ud
itin

g 
Rep

or
t

2. Auditing Message3. Auditing Proof

Fig. 1. The system model includes the cloud, the third party auditor and users

When a user (either the original user or a group user) wishes to check the
integrity of shared data, she first sends an auditing request to the TPA. After
receiving the auditing request, the TPA generates an auditing message to the
cloud, and retrieves an auditing proof of shared data from the cloud. Then the
TPA verifies the correctness of the auditing proof. Finally, the TPA sends an
auditing report to the user based on the result of the verification.

3.2 Threat Model

Integrity Threats. In general, two kinds of threats related to the integrity of
shared data are possible. First, an external adversary may try to pollute shared
data in the cloud, and prevent users from using shared data correctly. Second,
the cloud service provider may inadvertently corrupt or even remove shared data
in the cloud due to hardware failures and human errors. To make matters worse,
in order to avoid jeopardizing its reputation, the cloud service provider may be
reluctant to inform users about such corruption of data.
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Privacy Threats. During an auditing task, a semi-trusted TPA, who is only
responsible for verifying the integrity of shared data, may try to reveal the iden-
tity of the signer on each block in shared data based on verification information
(i.e. signatures). The identity of the signer on each block is private and sensitive
information, which users do not wish to be revealed to any third party.

3.3 Design Goals

To make it efficient and secure for the TPA to verify shared data with a large
number of users in a group, Knox should be designed to achieve the following
properties: (1) Correctness: The TPA is able to correctly audit the integrity
of shared data. (2) Efficiency: The TPA is able to verify the integrity of shared
data without retrieving the entire data from the cloud. (3) Identity privacy:
During an auditing task, the TPA cannot distinguish the identity of the signer
on each block. (4) Support for large groups: The TPA is able to efficiently
audit data that are shared among a large number of users. In particular, the
size of verification information, as well as the time it takes to audit with it, are
not affected by the number of users in the group; the original user can add new
users to the group without re-computing existing verification information. (5)
Traceability: The original user is able to trace a signature on a block and reveal
the identity of the signer.

4 Preliminaries

4.1 Bilinear Maps

Let G1, G2 and GT be three multiplicative cyclic groups of prime order p, g1 be
a generator of G1, and g2 be a generator of G2. A bilinear map e is a map e:
G1 ×G2 → GT with the following properties: 1) Computability: there exists
an efficiently computable algorithm for computing map e. 2) Bilinearity: for
all u ∈ G1, v ∈ G2 and a, b ∈ Zp, e(u

a, vb) = e(u, v)ab. 3) Non-degeneracy:
e(g1, g2) �= 1. For ease of exposition, we assume G1 = G2 in the rest of this
paper.

4.2 Complexity Assumptions

Definition 1. Computational Diffie-Hellman (CDH) Problem. For (a, b)
∈ Z2

p , given (g1, g
a
1 , g

b
1) ∈ G3

1 as input, output gab1 ∈ G1.

The CDH assumption holds in G1 if no t-time algorithm has advantage at least
ε in solving the CDH problem in G1, which means it is computational infeasible
to solve the CDH problem in G1.

Definition 2. q-Strong Diffie-Hellman (q-SDH) Problem. For γ ∈ Zp,

given a (q+2)-tuple (g1, g2, g
γ
2 , g

γ2

2 , ..., gγ
q

2 ) ∈ G1 ×Gq+1
2 as input, output a pair

(g
1/(γ+x)
1 , x) ∈ G1 × Zp.
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The q-SDH assumption holds in (G1, G2) if no t-time algorithm has advantage
at least ε in solving the q-SDH problem in (G1, G2).

Definition 3. Decision Linear (DL) Problem. For (a, b, c) ∈ Z3
p , given

(u, v, h, ua, vb, hc) ∈ G6
1 as input, output yes if a+ b = c and no otherwise.

The DL assumption holds in G1 if no t-time algorithm has advantage at least ε
in solving the DL problem in G1.

4.3 Group Signatures

Group signatures, first introduced by Chaum and van Heyst [10], aim to provide
anonymity of signers, who are from a same group. A verifier is convinced that
messages are correct and signed by one of the group members, but cannot reveal
the identity of the signer. Meanwhile, only the group manager is able to trace
these group signatures and reveal the identity of the signer. Boneh et al. [6]
(denoted as BBS) proposed a short group signature scheme based on the q-SDH
assumption. In their scheme, the length of each group signature is independent
from the number of group members.

4.4 Homomorphic MACs

Homomorphic MACs, introduced by Agrawal and Boneh [1], provide data in-
tegrity for network coding. Using homomorphic MACs, an intermediate node
can construct a valid MAC of an output block based on the MACs of in-
put blocks without knowing the secret keys. More specifically, given a block
mmmj = (mj,1, ...,mj,n) ∈ Zn

p , the homomorphic MAC of this block can be com-
puted as tj =

∑n
i=1 δimj,i + bj ∈ Zp, where δδδ = (δ1, ..., δn) is generated by a

pseudo-random generator and a secret key kprg, and bj is calculated by a pseudo-
random function and a secret key kprf . Given t1 and t2, an intermediate node
can compute a valid MAC of a new blockmmm′ =mmm1+mmm2 by calculating t′ = t1+t2
without knowing the secret key pair (kprg, kprf ).

4.5 Homomorphic Authenticators

Homomorphic authenticators (also denoted as homomorphic verifiable tags) are
basic tools to construct data auditing mechanisms [3,13,15,16,19,23,24]. Besides
unforgeability (only a user with a private key can generate valid signatures), a
homomorphic authenticable signature scheme, which denotes a homomorphic
authenticator based on signatures, should also satisfy the following properties:

Let (pk, sk) denote the signer’s public/private key pair, σ1 denote the signa-
ture on message m1 ∈ Zp, σ2 denote the signature on message m2 ∈ Zp.

– Blockless verification: Given σ1 and σ2, two random values α1, α2 ∈ Zp

and a message m′ = α1m1 + α2m2 ∈ Zp, a verifier is able to check the
correctness of message m′ without knowing message m1 and m2.
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– Non-malleability: Given σ1 and σ2, two random values α1, α2 ∈ Zp and
a message m′ = α1m1 + α2m2 ∈ Zp, a user who does not have private key
sk, is not able to generate a valid signature σ′ for message m′ by combining
signature α1 and α2.

The first property allows a verifier to check the correctness of data in the cloud
with a linear combination of all the blocks, while the entire data does not need
to be downloaded to the verifier. The second property prevents an attacker
from generating signatures for invalid messages by combining existing signa-
tures. Other cryptographic techniques related to homomorphic authenticable
signatures includes aggregate signatures [8], homomorphic signatures [7] and
batch-verification signatures [12]. If a signature scheme is blockless verifiable
and malleable, it is a homomorphic signature scheme. In the construction of
data auditing mechanisms, we should use homomorphic authenticable signatures,
not homomorphic signatures. Otherwise, based on malleability of homomorphic
signatures, an adversary can successfully corrupt data in the cloud by linearly
combining existing blocks and corresponding signatures.

5 Homomorphic Authenticable Group Signatures

5.1 Overview

As introduced at the beginning of this paper, we expect to utilize group signa-
tures for computing verification information, so that the identity of the signer
on each block can be kept private from the TPA. However, traditional group
signatures [4,6,10] cannot be directly used in Knox, since they are not blockless
verifiable. Without blockless verification, a verifier has to download the entire
data to check the integrity of shared data, which consumes excessive bandwidth
and takes long verification times. Therefore, we first build a homomorphic au-
thenticable group signature (HAGS) scheme in this section. Then we will present
the full construction of our privacy-preserving auditing mechanism for shared
data among a large number of users based on HAGS in the next section.

In HAGS, we extend BBS group signatures [6] to achieve blockless verifica-
tion. Meanwhile, to keep unforgeability (nobody outside the group can produce
valid signatures) of HAGS, we leverage BLS signatures [9] as a part of our group
signatures. BLS signatures, which are based on bilinear maps, are used in previ-
ous work [15,19] to audit data integrity of personal users. In addition, we exploit
batch verification methods of group signatures in [12] to improve the efficiency
of HAGS for verifying multiple group signatures. Note that if only using BLS
signatures among a group of users, which means that all the users in the group
generate signatures on messages only with a common private key, it is also pos-
sible to achieve identity privacy on messages. Unfortunately, traceability of the
group manager on signatures generated by group members will be immediately
lost.
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5.2 Construction of HAGS

Following general constructions of group signatures in [4,6], HAGS contains five
algorithms: KeyGen, Join, Sign, Verify and Open. In KeyGen, the group
manager generates her private key and a group public key. In Join, the group
manager is able to compute a private key for a new group user and add this user
to the group user list. A group user signs messages using her private key and the
group public key in Sign. In Verify, a verifier is able to check the correctness of
a message using the group public key, but she cannot reveal the identity of the
signer. The group manager can reveal the identity of the signer on a message in
Open.

Scheme Details: Let G1, G2 and GT be multiplicative cyclic groups of order
p, g1 and g2 be generators of G1 and G2 respectively, G1×G2 → GT be a bilinear
map. There are two hash functions, H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → G1.
The total number of group users is d.

KeyGen. The group manager randomly selects h ∈ G1\{1G1} and ξ1, ξ2 ∈
Z∗
p , and sets u, v ∈ G1 such that uξ1 = vξ2 = h. Then, she randomly selects

γ, π, η ∈ Z∗
p , and sets w = gγ2 , ρ = gπ2 ∈ G2.

The group public key is gpk = (g1, g2, h, u, v, w, ρ, η), the group manager’s
private key is gmsk = (ξ1, ξ2). The group manager keeps γ private. And π will
be a part of a group user’s private key, which is issued to group users later.

Join. For user i, 1 ≤ i ≤ d, the group manager randomly selects xi ∈ Z∗
p

with xi + γ �= 0, and sets Ai = g
1/(γ+xi)
1 ∈ G1. The private key of user i is

gsk[i] = (Ai, xi, π). The group manager secretly issues gsk[i] to user i, and
adds this user into the group user list.

Sign. Given a group public key gpk = (g1, g2, h, u, v, w, ρ, η), a private key
gsk[i] = (Ai, xi, π), a message m ∈ Zp and this message’s identifier id, user i
computes the signature σ as follows:

1. Randomly select α, β, rα, rβ , rx, rγ1 , rγ2 ← Zp.
2. Compute T1, T2 and T3 as T1 = uα, T2 = vβ , T3 = Ai · hα+β .
3. Compute γ1 = xi · α and γ2 = xi · β.
4. Compute R1, R2, R3, R4 and R5 as

R1 = urα , R2 = vrβ , R4 = T rx
1 · u−rγ1 , R5 = T rx

2 · v−rγ2 ,

R3 = e(T3, g2)
rx · e(h,w)−rα−rβ · e(h, g2)−rγ1−rγ2 .

5. Compute a challenge c ∈ Zp as c = ηmH1(T1, T2, T3, R1, R2, R3, R4, R5). For
ease of exposition, we use H1(T1, ..., R5) instead of H1(T1, T2, T3, R1, R2,
R3, R4, R5) in the remainder of this paper.

6. Compute sα, sβ , sx, sγ1 , sγ2 ∈ Zp as:

sα = rα + c · α, sβ = rβ + c · β, sx = rx + c · xi,

sγ1 = rγ1 + c · γ1, sγ2 = rγ2 + c · γ2.
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7. Compute a tag θ as θ = [H2(id)g
m
1 ]π ∈ G1.

8. Output the signature of this message m as σ = (T1, T2, T3, θ, R3, c, sα, sβ,
sx, sγ1 , sγ2) ∈ G4

1 ×GT × Z6
p .

Verify. Given a group public key gpk = (g1, g2, h, u, v, w, ρ, η), a message m, an
identifier id and a group signature σ = (T1, T2, T3, θ, R3, c, sα, sβ , sx, sγ1 , sγ2), a
verifier checks the integrity of this message as follows:

1. Re-compute values R1, R2, R4 and R5 from σ as:

R̃1 = usα · T−c
1 , R̃2 = vsβ · T−c

2 , R̃4 = T sx
1 · u−sγ1 , R̃5 = T sx

2 · v−sγ2

2. Check the following equations as:

R3
?
= e(T3, g2)

sxe(h,w)−sα−sβe(h, g2)
−sγ1−sγ2 ·

(
e(T3, w) · e(g1, g2)−1

)c
, (1)

c
?
= ηm ·H1(T1, T2, T3, R̃1, R̃2, R3, R̃4, R̃5), (2)

e(θ, g2)
?
= e(H2(id) · gm1 , ρ). (3)

If all the three equations hold, the verifier accepts message m. Otherwise,
she rejects this message.

Open. Only the group manager can trace a group signature and reveal the
identity of the signer. Given a group public key gpk = (g1, g2, h, u, v, w, ρ, η),
the group manager’s private key gmsk = (ξ1, ξ2), a message m and a signature
σ, the group manager reveals the identity of the signer as follows:

1. Verify that the signature σ is a valid signature on message m.
2. Decrypt user i’s Ai as Ai = T3/(T

ξ1
1 · T ξ2

2 ).
3. Given Ai, which is a part of user i’s private key, the group manager is able

to reveal the identity of the signer on message m.

5.3 Security Analysis of HAGS

Theorem 1. Given a message m and its group signature σ, a verifier is able
to correctly check the integrity of message m under HAGS.

Proof. Equation (1) is correct because e(T3, g2)
rx ·e(h,w)−rα−rβ ·e(h, g2)−rγ1−rγ2

= e(T3, g2)
sx · e(h,w)−sα−sβ · e(h, g2)−sγ1−sγ2 ·

(
e(T3, w) · e(g1, g2)−1

)c
. Because

R1, R2, R4, R5 can be successfully recomputed [6], Equation (2) is correct.
Equation (3) is correct since e(θ, g2) = e([H2(id)g

m
1 ]π, g2) = e(H2(id)g

m
1 , ρ).

Further explanations about correctness can be found in [6, 12].

Theorem 2. Suppose F is a (t′, ε′)-algorithm that can generate a forgery of
a group signature under HAGS. Then there exists a (t, ε)-algorithm A that can
solve the CDH problem with t ≤ t′ + (qH + qS + 1)cG1 and ε ≥ ε′/(e + qSe),
where F issues at most qH hash queries and at most qS signing queries, e =
limqS→∞(1 + 1/qS)

qS , exponentiation and inversion on G1 take time cG1 .
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Proof. Details of this proof can be found in our technical report [17].

Theorem 3. HAGS is a homomorphic authenticable group signature scheme.

Proof. We first prove that HAGS has the property of blockless verification. Then
we show HAGS is also non-malleable.

Given a group public key gpk = (g1, g2, h, u, v, w, ρ, η), two signatures σ1 =
(T1,1, T1,2, T1,3, θ1, R1,3, c1, s1,α, s1,β, s1,x, s1,γ1 , s1,γ2), σ2 = (T2,1, T2,2, T2,3, θ2,

R2,3, c2, s2,α, s2,β, s2,x, s2,γ1 , s2,γ2), and a message m′ =
∑2

j=1 yjmj ∈ Zp, where
yj ∈ Z∗

p , a verifier is able to check the correctness of messagem′ without knowing
message m1 and m2. More specifically, she first recomputes Rj,1, Rj,2, Rj,4 and
Rj,5 as in Verify. Then she checks:

2∏
j=1

R
yj

j,3
?
= e(

2∏
j=1

(T
sj,x
j,3 · h−sj,γ1−sj,γ2 · g−cj

1 )yj , g2)e(

2∏
j=1

(h−sj,α−sj,β · T cj
j,3)

yj , w),

(4)

2∏
j=1

c
yj

j
?
= ηm

′
·

2∏
j=1

H1(Tj,1, ..., R̃j,5)
yj , (5)

e(

2∏
j=1

θ
yj

j , g2)
?
= e(

2∏
j=1

H2(idj)
yj · gm′

1 , ρ). (6)

Only if all the three equations hold, then the verifier accepts message m′.
Note that only Equation (5) and (6) are related to messagem′, while Equation

(4) is independent from the content of message m′. The correctness of Equation
(4) can be proved using batch verification methods of group signatures [12].
Based on Theorem 1, the correctness of Equation (5) and (6) can be proved as:

2∏
j=1

c
yj

j =
2∏

j=1

(
ηmj ·H1(Tj,1, ..., R̃j,5)

)yj

= ηy1m1+y2m2 ·
2∏

j=1

H1(Tj,1, ..., R̃j,5)
yj = ηm

′
·

2∏
j=1

H1(Tj,1, ..., R̃j,5)
yj .

e(

2∏
j=1

θ
yj

j , g2) = e(

2∏
j=1

(H2(idj) · gmj

1 )π·yj , g2)

= e(

2∏
j=1

H2(idj)
yj · gy1m1+y2m2

1 , gπ2 ) = e(

2∏
j=1

H2(idj)
yj · gm′

1 , ρ).

Because all the three equations are correct, HAGS is blockless verifiable.
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Meanwhile, an attacker, who does not have a private key, cannot generate a
valid signature σ′ for message m′ by combining existing signatures. More specif-
ically, this user cannot construct a tag θ′ by linearly combining θ1 and θ2 with
y1 and y2. Because θy1

1 θy2

2 = [H2(id1)
yjH2(id2)

y2gm
′

1 ]π , θ′ = [H2(id
′)gm

′
1 ]π and

H2(id
′) �= H2(id1)

yjH2(id2)
y2 , then we have θy1

1 · θy2

2 �= θ′. Therefore, HAGS is
non-malleable.

Theorem 4. Given a message m and its group signature σ, only the group
manager can reveal the identity of the signer on this message. For a verifier, it
is computational infeasible to reveal the identity of the signer on message m.

Proof. For the group manager, she can always successfully recover the identity of
the signer on messagem using her manager private key gmsk = (ξ1, ξ2). Because

T3/(T
ξ1
1 ·T ξ2

2 ) = Ai ·hα+β/(uα·ξ1 ·vβ·ξ2) = Ai ·hα+β/hα+β = Ai. For a verifier, if
she can successfully choose a value c with c = α+β, then she is able to decrypt Ai

and reveal the identity of the signer by computing T3/h
c = Ai·ha+b/hc. However,

given u, v, h, T1 = uα, T2 = vβ , hc ∈ G1, deciding whether c = α + β is as hard
as solving Decision Linear problem in G1. Further proofs about anonymity and
traceability of group signatures can be found in [6].

6 Privacy-Preserving Auditing for Shared Data

6.1 Overview

We now present Knox, a privacy-preserving auditing mechanism for shared data
among a large number of users. Using HAGS, we can preserve the identity of
the signer on each block from the TPA. Meanwhile, the original user, who is the
group manager and shares data with other group users, can reveal an identity
of a signer when it is necessary. Moreover, the length of each group signature is
independent from the number of group users, which is a desirable property for
large groups to share their data in the cloud. If users wish to protect the privacy
of shared data during an auditing task, users can encrypt data using encryption
techniques, such as the combination of symmetric encryption and attribute-based
encryption [22], before outsourcing data to the cloud server. The main objective
of designing Knox is to provide identity privacy for users.

To reduce the storage space of group signatures on shared data, we utilize
homomorphic MACs [1] to compress each block into a small value, and then
sign this small value instead of signing the entire block. As a necessary trade-off,
Knox does not support public auditing, since the TPA in our mechanism needs
to share a secret key pair with all group users, referred to as authorized auditing.
This secret key pair is used to compute homomorphic MACs. Although we allow
an authorized TPA to possess this secret key pair, the TPA cannot compute
valid group signatures as group users because this secret key pair is only a part
of a group user’s private key.

Because the computation of a signature includes an identifier of a block (as
we described in HAGS), conventional methods, which only use the index of a
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block as its identifier, are not suitable for dynamic data. The reason is that
when a user modifies shared data by performing an insert or delete operation on
a single block, the indices of blocks that after the modified block are all changed,
and the change of these indices requires users to re-compute the signatures of
these blocks, even though the content of these blocks are not modified [16].
To avoid this type of re-computation and support dynamic data for users, we
take advantage of index hash tables [16, 24] as identifiers of blocks. Further
explanations about index hash tables can be found in [16, 24].

In addition, we continue to use sampling strategies as previous work [3] to de-
tect any corrupted block in shared data with a high probability, by only choosing
a subset of all blocks in each auditing task. For example, if 1% of all the blocks
are corrupted, the TPA can detect this misbehavior with a probability greater
than 99% by choosing only 460 random selected blocks, where the number of
selected blocks is independently with the total number of blocks in shared data
if the percentage of corrupted blocks is fixed [3]. To improve the detection prob-
ability, the TPA can increase the number of selected blocks in each auditing
task [3, 23]. In some emerging applications, the auditor may need to achieve a
100% detection probability if only one corrupted block exists, then all the blocks
in shared data should be selected during an auditing task. As a trade-off, the
computation and communication cost are significantly increased.

6.2 Construction of Knox

Knox includes six algorithms: KeyGen, Join, Sign, ProofGen, ProofVerify
and Open. In KeyGen, the original user of shared data generates a group
public key and a group manager private key. In Join, the original user, who
acts as the group manager, is able to issue private keys to users. A user (either
the original user or a group user) is able to sign blocks using her private key
and the group public key in Sign. In ProofGen, the cloud generates a proof of
possession of shared data to the TPA. ProofVerify is operated by the TPA to
verify the correctness of the proof. The original user can reveal the identity of
the signer on each block in Open.

Scheme Details: Let G1, G2 and GT be multiplicative cyclic groups of order
p, g1 and g2 be generators of G1 and G2 respectively, G1×G2 → GT be a bilinear
map. There are two hash functions, H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → G1.
The total number of group users is d. Data M , which is going to be shared by
users, is divided into n blocks. Each block is further divided into k elements of
Zp. Therefore, shared data M can be presented as:

M =

⎛⎜⎝mmm1

...
mmmn

⎞⎟⎠ =

⎛⎜⎝m1,1 . . . m1,k

...
. . .

...
mn,1 . . . mn,k

⎞⎟⎠ ∈ Zn×k
p .

There are also a pseudo-random generator PRG: Kprg → Zk
p and a pseudo-random

function PRF: Kprf ×I → Zp, where Kprg and Kprf denote the set of secret keys
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for PRG and PRF respectively, and I is the set of all identifiers in the index hash
table of data M .

KeyGen. The original user, who acts as the group manager, first selects
system parameters as in HAGS. Meanwhile, she also randomly computes a secret
key pair skp = (skprg, skprf ), where skprg ∈ Kprg and skprf ∈ Kprf . The group
public key is gpk = (g1, g2, h, u, v, w, ρ, η), the group manager’s private key is
gmsk = (ξ1, ξ2). The original user keeps γ private. Both π and skp will be a part
of a group user’s private key, which is issued to group users later. The original
user also privately shares skp = (skprg, skprf ) with an authorized TPA.

Join. For user i, 1 ≤ i ≤ d, the original user randomly selects xi ∈ Z∗
p

with xi + γ �= 0, and sets Ai = g
1/(γ+xi)
1 ∈ G1. The private key of user i is

gsk[i] = (Ai, xi, π, skp). The original user secretly issues gsk[i] to user i, and
adds this user into the group user list.

Sign. Given a group public key gpk = (g1, g2, h, u, v, w, ρ, η), a private key
gsk[i] = (Ai, xi, π, skp), a block mmmj ∈ Zk

p and this block’s identifier idj ∈ I,
user i computes the signature σj as follows:

1. Select αj , βj , rj,α, rj,β , rj,x, rj,γ1 , rj,γ2 as in HAGS.
2. Compute Tj,1, Tj,2, Tj,3, γj,1, γj,2, Rj,1, Rj,2, Rj,3, Rj,4 and Rj,5 as in HAGS.

3. Compute δδδ = (δ1, ..., δk) ← PRG(skprg) ∈ Zk
p and bj ← PRF(skprf , idj) ∈ Zp,

then calculate the homomorphic MAC of block mmmj = (mj,1, ...,mj,k) as tj =∑k
l=1 δl ·mj,l + bj ∈ Zp.

4. Compute a challenge cj for block mmmj as cj = ηtj ·H1(Tj,1, ..., Rj,5) ∈ Zp.

5. Compute sj,α, sj,β, sj,x, sj,γ1 , sj,γ2 as in HAGS.

6. Compute a tag θj as θj = [H2(idj)g
tj
1 ]π ∈ G1.

7. Output a signature σj of this blockmmmj as σj = (Tj,1, Tj,2, Tj,3, θj , Rj,3, cj , sj,α,
sj,β , sj,x, sj,γ1 , sj,γ2).

ProofGen. To audit the integrity of shared data, a user first sends an auditing
request to the TPA. After receiving an auditing request, the TPA generates an
auditing message as follows:

1. Randomly pick a q-element subset J of set [1, n] to locate the q selected
blocks in this auditing task.

2. Generate a random yj ∈ Zp, for j ∈ J .

3. Output an auditing message {(j, yj)}j∈J , and send it to the cloud.

After receiving an auditing message, the cloud generates a proof of possession
of selected blocks in shared data as follows:

1. Compute μl =
∑

j∈J yjmj,l ∈ Zp, for l ∈ [1, k], and aggregate the selected

tags as Θ =
∏

j∈J θ
yj

j ∈ G1.

2. Output Φ and φj = (Tj,1, Tj,2, Tj,3, Rj,3, cj , sj,α, sj,β , sj,x, sj,γ1 , sj,γ2) based
on σj , where j ∈ J and Φ is the set of all φj .

3. Generate an auditing proof {μμμ,Θ, Φ, {idj}j∈J }, and send it to the TPA,
where μμμ = (μ1, ..., μk).
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ProofVerify. Given an auditing proof {μμμ,Θ, Φ, {idj}j∈J }, an auditing mes-
sage {(j, yj)}j∈J , a group public key gpk = (g1, g2, h, u, v, w, ρ, η), a secret key
pair skp = (skprg, skprf ), the TPA verifies this proof as follows:

1. Generate δδδ = (δ1, ..., δk) ← PRG(skprg) ∈ Zk
p and bj ← PRF(skprf , idj) ∈ Zp,

where j ∈ J .
2. Re-compute Rj,1, Rj,2, Rj,4, Rj,5 as in HAGS.

3. Compute λ =
∑k

l=1 δlμl +
∑

j∈J yjbj ∈ Zp.
4. Check the following equations

∏
j∈J

R
yj
j,3

?
= e(

∏
j∈J

(T
sj,x
j,3 · h−sj,γ1−sj,γ2 · g−cj

1 )yj , g2) · e(
∏
j∈J

(h−sj,α−sj,β · T cj
j,3)

yj , w),

(7)∏
j∈J

c
yj

j
?
= ηλ ·

∏
j∈J

H1(Tj,1, ..., R̃j,5)
yj , (8)

e(Θ, g2)
?
= e(

∏
j∈J

H2(idj)
yj · gλ1 , ρ). (9)

If all three equations hold, the proof is valid. Otherwise, it is not.
5. If the proof is valid, the TPA sends a positive report to the user. Otherwise,

she sends a negative report.

Open. Given a block mmmj and a signature σj , the original user can reveal the
identity of the signer on this block using her group manager private key gmsk =
{ξ1, ξ2} as in HAGS.

Discussions. In Knox, the TPA is able to verify the integrity of shared data
without retrieving the entire data. The original user can add new users to the
group without re-computing any signature. Using the group manager’s private
key, the original user can reveal the identity of the signer on each block. While
in previous work [16], the original user cannot disclose the identity of the signer
because the identity is unconditional protected by ring signatures [8]. In addition,
if the original user in previous work [16] wishes to add new users to the group,
all signatures on shared data has to be recomputed, because the generation and
verification of a ring signature require all the current group members’ public
keys.

User Revocation. Once a group user is misbehaved and her identity is revealed
by the group manager, it is necessary to revoke this misbehaved user from the
group. In our current mechanism, to revoke a group user from the group, the
group manager needs to re-generate and re-distribute some parts of the private
key for existing users, then all existing users need to re-sign their blocks in
shared data with new private keys. The blocks previously signed by the revoked
user should be re-signed by the group manager. Specifically, the group manager
generates and distributes a new pair (π′, skp′) for existing users, then user i can
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compute group signatures with her new private key gsk′[i] = (Ai, xi, π
′, skp′);

while the revoked user cannot compute valid group signatures anymore because
she has no knowledge of (π′, skp′). The TPA will audit shared data with the
new corresponding public key gpk′ = (g1, g2, h, u, v, w, ρ

′, η), where ρ′ = gπ
′

2 .
In some special cases, the group manager herself may need to leave the group.
Then the new group manager should compute new private keys for users and a
new public key for the new group, and all the users in the new group need to
re-sign blocks in shared data with their new private keys.

6.3 Security Analysis of Knox

Theorem 5. Given shared data M and its group signatures, a verifier is able
to correctly check the integrity of shared data M .

Proof. To prove the correctness of Knox is equivalent of proving Equation (7), (8)
and (9) are all correct. Because Equation (1) is correct, it is clear that Equation
(7) is also correct. Equation (8) can be expanded as follows:∏

j∈J
c
yj

j =
∏
j∈J

(
ηtj ·H1(Tj,1, ..., R̃j,5)

)yj

=
∏
j∈J

ηtjyj ·
∏
j∈J

H1(Tj,1, ..., R̃j,5)
yj

= η
∑

j∈J yj(
∑k

l=1 δlmj,l+bj) ·
∏
j∈J

H1(Tj,1, ..., R̃j,5)
yj

= η
∑k

l=1 δlμl+
∑

j∈J yjbj ·
∏
j∈J

H1(Tj,1, ..., R̃j,5)
yj

= ηλ ·
∏
j∈J

H1(Tj,1, ..., R̃j,5)
yj .

Similar to the proof of Equation (8), the correctness of Equation (9) can be
presented as

e(Θ, g2) = e(
∏
j∈J

(
H2(idj) · gtj1

)yj

, gπ2 )

= e(
∏
j∈J

H2(idj)
yj ·

∏
j∈J

g
tjyj

1 , ρ)

= e(
∏
j∈J

H2(idj)
yj · gλ1 , ρ).

All three equations are correct, therefore, a verifier in Knox is able to correctly
check the integrity of shared data M .

Theorem 6. Given shared data M and its group signatures, it is computational
infeasible for an untrusted cloud or adversary to generate an auditing proof based
on corrupted data M ′, where this auditing proof can pass the verification under
Knox.
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Proof. Details of this proof can be found in our technical report [17].

Theorem 7. Given shared data M and its group signatures, only the original
user (the group manager) can reveal the identity of the signer on each block. For
the TPA, it is computational infeasible to reveal the identity of the signer on
each block during the auditing process.

Proof. According to Theorem 4, for the TPA, who does not possess group man-
ager’s private key gmsk = (ξ1, ξ2), revealing the identity of the signer on each
block during the auditing process is as hard as solving Decision Linear problem
in G1. The original user, who acts as the group manager, is able to trace the
identity of the signer on each block using her group manager’s private key.

7 Experimental Results

We now compare the performance of Knox with previous work, Oruta [16]. Due
to space limitations, we only provide some experimental results in this section.
Detailed analysis of computation and communication cost of Knox can be found
in [17]. In our experiments, we utilize GMP and PBC libraries to implement
cryptographic operations in Knox. All our experiments are tested on a 2.26 GHz
Linux system over 1, 000 times. The security level is |p| = 160 bits. We also
assume the total number of blocks in shared data is n = 1, 000, 000, each block
contains k = 100 elements, the size of each block is 2KB and total size of shared
data is 2GB. In the following experiments, we assume the number of selected
blocks is q = 300, which allows the TPA to keep the detection probability greater
than 95% if 1% of all the blocks are corrupted [3].
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As shown in Fig. 2, the signature size of Knox is independent from the number
of users in a group. On the contrary, the signature size of Oruta is linearly
increasing with the size of the group. Specifically, when d = k in Oruta, the size
of a signature is even the same as the size of a block.

In Fig. 3, we compare the auditing time of Knox and Oruta. In Knox, the
auditing time is independent from the group size, while the auditing time in
Oruta linearly increases with the size of the group. When the data in the cloud
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are shared by a large group, Knox requires less auditing time than Oruta. More
specifically, when the group size is 100, Knox is able to finish an auditing task
in less than 4 seconds while Oruta requires nearly 12 seconds to finish the same
auditing task.

A detailed comparison of the auditing performance between Knox and Oruta
is illustrated in Table 2, where d = 100 and k = 100. Although Knox requires less
auditing time than Oruta, the communication cost of Knox is higher. However,
it is still a small percentage of the entire size of shared data, which means the
TPA can efficiently audit shared data without downloading the entire data. Our
experimental results show that Knox has a better performance when auditing
data shared among a large number of users.

Table 2. Comparison of Auditing Performance

Oruta [16] Knox

Data Storage Usage (GB) 2

Signature Storage Usage (GB) 2 0.33

Communication Cost (KB) 18 106.4

Auditing Time (seconds) 11.49 3.44

8 Conclusion

In this paper, we propose Knox, a privacy-preserving auditing scheme for shared
data with large groups in the cloud. We utilize group signatures to compute
verification information on shared data, so that the TPA is able to audit the
correctness of shared data, but cannot reveal the identity of the signer on each
block. With the group manager’s private key, the original user can efficiently
add new users to the group and disclose the identities of signers on all blocks.
The efficiency of Knox is not affected by the number of users in the group.

Acknowledgement. We are grateful to the anonymous reviewers for their help-
ful comments. This work is supported by the National Science and Technology
Major Project (No. 2012ZX03002003), Fundamental Research Funds for the Cen-
tral Universities (No. K50511010001), National 111 Program (No. B08038) and
Doctoral Foundation of Ministry of Education of China (No. 20100203110002).

References

1. Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-Based Integrity for Network
Coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg (2009)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A.,
Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: A View of Cloud
Computing. Communications of the ACM 53(4), 50–58 (2010)



524 B. Wang, B. Li, and H. Li

3. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable Data Possession at Untrusted Stores. In: Proc. ACM CCS, pp. 598–
610 (2007)

4. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A Practical and Provably Secure
Coalition-Resistant Group Signature Scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

5. Ateniese, G., Pietro, R.D., Mancini, L.V., Tsudik, G.: Scalable and Efficient Prov-
able Data Possession. In: Proc. ICST SecureComm, pp. 1–10 (2008)

6. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

7. Boneh, D., Freeman, D.M.: Homomorphic Signatures for Polynomial Functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011)

8. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted
Signatures from Bilinear Maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

9. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

10. Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

11. Erway, C., Kupcu, A., Papamanthou, C., Tamassia, R.: Dynamic Provable Data
Possession. In: Proc. ACM CCS, pp. 213–222 (2009)

12. Ferrara, A.L., Green, M., Hohenberger, S., Pedersen, M.Ø.: Practical Short Signa-
ture Batch Verification. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp.
309–324. Springer, Heidelberg (2009)

13. Hao, Z., Zhong, S., Yu, N.: A Privacy-Preserving Remote Data Integrity Check-
ing Protocol with Data Dynamics and Public Verifiability. IEEE Transactions on
Knowledge and Data Engineering 23(9), 1432–1437 (2011)

14. Juels, A., Kaliski, B.S.: PORs: Proofs pf Retrievability for Large Files. In: Proc.
ACM CCS, pp. 584–597 (2007)

15. Shacham, H., Waters, B.: Compact Proofs of Retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

16. Wang, B., Li, B., Li, H.: Oruta: Privacy-Preserving Public Auditing for Shared
Data in the Cloud. Tech. rep., University of Toronto (2011),
http://iqua.ece.toronto.edu/~bli/techreports/oruta.pdf

17. Wang, B., Li, B., Li, H.: Knox: Privacy-Preserving Auditing for Shared Data with
Large Groups in the Cloud. Tech. rep., University of Toronto (2012),
http://iqua.ece.toronto.edu/~bli/techreports/knox.pdf

18. Wang, C., Wang, Q., Ren, K., Lou, W.: Ensuring Data Storage Security in Cloud
Computing. In: Proc. IEEE IWQoS, pp. 1–9 (2009)

19. Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-Preserving Public Auditing for
Data Storage Security in Cloud Computing. In: Proc. IEEE INFOCOM, pp. 525–
533 (2010)

20. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling Public Verifiability and
Data Dynamics for Storage Security in Cloud Computing. In: Backes, M., Ning, P.
(eds.) ESORICS 2009. LNCS, vol. 5789, pp. 355–370. Springer, Heidelberg (2009)

http://iqua.ece.toronto.edu/~bli/techreports/oruta.pdf
http://iqua.ece.toronto.edu/~bli/techreports/knox.pdf


Knox: Privacy-Preserving Auditing for Shared Data 525

21. Yang, K., Jia, X.: Data storage auditing service in cloud computing: challenges,
methods and opportunities. World Wide Web 15(4), 409–428 (2012)

22. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving Secure, Scalable, and Fine-grained
Data Access Control in Cloud Computing. In: Proc. IEEE INFOCOM, pp. 534–542
(2010)

23. Zhu, Y., Hu, H., Ahn, G.-J., Yau, S.S.: Efficient Audit Service Outsourcing for
Data Integrity in Clouds. Journal of System and Software 85(5), 1083–1095 (2012)

24. Zhu, Y., Wang, H., Hu, Z., Ahn, G.-J., Hu, H., Yau, S.S.: Dynamic Audit Ser-
vices for Integrity Verification of Outsourced Storage in Clouds. In: Proc. ACM
Symposium On Applied Computing, pp. 1550–1557 (2011)



SPICE – Simple Privacy-Preserving

Identity-Management for Cloud Environment�

Sherman S.M. Chow1, Yi-Jun He2,��, Lucas C.K. Hui2, and Siu Ming Yiu2

1 University of Waterloo, Ontario, Canada
smchow@math.uwaterloo.ca

2 University of Hong Kong, Hong Kong
{yjhe,hui,smyiu}@cs.hku.hk

Abstract. Identity security and privacy have been regarded as one of
the top seven cloud security threats. There are a few identity manage-
ment solutions proposed recently trying to tackle these problems. How-
ever, none of these can satisfy all desirable properties. In particular,
unlinkability ensures that none of the cloud service providers (CSPs),
even if they collude, can link the transactions of the same user. On the
other hand, delegatable authentication is unique to the cloud platform, in
which several CSPs may join together to provide a packaged service, with
one of them being the source provider which interacts with the clients
and performs authentication while the others will be transparent to the
clients. Note that CSPs may have different authentication mechanisms
that rely on different attributes. Moreover, each CSP is limited to see
only the attributes that it concerns.

This paper presents SPICE – the first digital identity management
system that can satisfy these properties in addition to other desirable
properties. The novelty of our scheme stems from combining and ex-
ploiting two group signatures so that we can randomize the signature to
make the same signature look different for multiple uses of it and hide
some parts of the messages which are not the concerns of the CSP. Our
scheme is quite applicable to cloud systems due to its simplicity and
efficiency.
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(e.g., storage, applications, services, etc.) with minimal requirement for the users’
computers, and minimal management effort from the service provider. Various
popular cloud computing services have emerged including Amazon’s Simple Stor-
age Service (S3), Box.net, CloudSafe and Internap XIPCloud Storage. On the
other hand, there are quite a number of security and privacy concerns in this
computing platform that are yet to be resolved [20,21]. In particular, user iden-
tity security was regarded as one of the top seven cloud security threats by the
Cloud Security Alliance in 2010 [3].

1.1 Extended DIM Framework in the Cloud

Existing solutions for tackling the identity security problem in the cloud are
usually based on the framework of a digital identity management (DIM) sys-
tem [4,6,19], which allows the cloud service providers to provide services only
to authenticated users. A typical DIM system in a cloud environment consists
of four components: cloud service providers (CSPs), identity providers (IdPs),
registrars, and users (cloud clients). IdPs are responsible for assigning attributes
to users. Registrars are able to verify the attributes given by an IdP to a user,
and then issue a certificate to the user. Based on these certificates, users can
authenticate themselves to CSPs and gain access to the authorized services.

In an extended DIM framework depicted in Figure 1, CSPs may not work alone
as independent providers. Several CSPs may join together to provide a packaged
service to the clients. One of them, called the source CSP, acts as the interface
to the clients while the others, called the receiving CSPs, can be transparent to
the clients and provide services in the back-end. A CSP can be both a source
and a receiving CSP, and a receiving CSP can also interact with different source
CSPs providing different services.

Source CSP

Source CSP

Source CSP

Receiving
CSP

Receiving
CSP

Receiving
CSP

IdP

Registar

User

Fig. 1. Extended DIM Structure

1.2 Desirable Properties for DIM in the Cloud

A DIM system should have the following desirable security/privacy and func-
tional properties for authentication.
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– Unlinkability. In cloud computing, a user may purchase multiple services
associated with the same or different CSPs. Unlinkability ensures that no
CSPs, even if they collude, can link different transactions, whether they are
of the same service or different services, of the same user.

– Delegatable Authentication. Each CSP would like to authenticate the
user in its own way before providing their packaged services. The authenti-
cation should be delegatable such that the receiving CSP can authenticate a
user without a direct communication with either the user1 or the registrar,
and without fully trusting the source CSP.2

– Anonymity. The users should be able to anonymously authenticate them-
selves, as authorized users to the CSP, without letting the CSP know about
their real identity or exact attributes.

– Accountability. The users may abuse their anonymity. If needed, a trusted
party can revoke the anonymity so the users can be held accountable for
their malicious action.

– User Centric Access Control. Users should be able to control what in-
formation they want to reveal about themselves over the cloud or to a CSP,
and to control who can access that information, and how this information
would be used in order to minimize the risk of identity theft and fraud.

– Single registration. The users only need to register themselves once for
getting the credentials without the need of contacting the registrar every
time authentication is needed.

1.3 Existing Solution and Limitations

In Bertino et al. [6]’s DIM system, the registrar stores a set of signatures, each
signing on a commitment of a user’s attribute. To authenticate to a CSP, the
user first retrieves from the registrar a set of signatures on the attributes that
the CSP requires (matching of names may be needed to determine the naming of
the attributes). Then, the user executes a zero-knowledge proof (ZKP) protocol
to prove to the CSP that the signatures presented by the user signs on the
committed attributes. Finally, a new credential will be generated to this user by
the CSP upon its verification of the registrar’s signatures. This credential can
be presented to another CSP by the user to show that there was a CSP which
verified the required set of attributes.

Different CSPs may require a different set of attributes for authentication, so
many different credentials will be issued. In their scheme, the registrar should
remain (practically always) online to return different signature sets to a user
whenever the user subscribes to new services. The number of times that the

1 It is more convenient to the users if all receiving CSPs are transparent. On the other
hand, the source CSP may want to keep the operation private and may not be willing
to let the users know the CSPs which it collaborated for providing indirect services.

2 The receiving CSP cannot fully trust the source CSP since it is also regarded as a big
client to the receiving CSP. E.g., PayPal (providing a payment gateway between the
merchant and the customer) does not rely on eBay (providing shopping “service”)
for authenticating consumers although they are partners.
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registrar responds to a user is linear to the total number of services that the
user wants to invoke. Apart from the scalability issue, this also increases the risk
of exposing the “master secret key” (used by the registrar to certify attributes)
from a variety of network attacks.

The second non-negligible consequence is the linkability issue that the attacker
may link registrar’s signatures of the same user to compromise the privacy of
that user. Even though their authentication mechanism uses zero-knowledge
proof of knowledge (ZKPoK) of a “correct”3 attribute (that is contained in the
commitment signed by the registrar) to avoid showing the attributes in clear, the
user simply shows a signature (which is an aggregation of the signatures given
by the registrar) on the commitments of the attributes, which makes different
signatures easily linkable. One may wonder if we can just also use ZKPoK to hide
the signature. Looking ahead, our solution leverages the re-randomizability of
the signature, which is a very lightweight approach when compared with ZKPoK.

The third consequence is that it is hard to delegate authentications (not to
say making the delegatable authentications unlinkable) based on this framework.
We want that a source CSP who just verified the credential of a user can con-
vince a receiving CSP that the user in question indeed has (more than) what
the receiving CSP expects, without requiring the receiving CSP to directly in-
teract with the registrar or the user. This feature is termed as delegatability in
Bertino et al.’s work and was remarked as a future research direction. Finally,
we remark that simultaneously addressing all the desirable requirements is more
involved as they may conflict with each other.

There is an open source reference implementation called Shibboleth [1], which
can be regarded as using a similar (in a high-level way) authentication mecha-
nism. Their single sign-on feature allows service providers (SPs) in a federation,
which must be explicitly configured a priori, to provide a packaged service to a
user, which seems to be the delegatable authentication feature. However, the user
needs to authorize a source SP to access a receiving SP’s service on behalf, so the
process is not transparent. Most importantly, their IdP (which plays the role of
registrar in the terminologies in [6] and in this paper) needs to be online during
the access and two certificates will be generated for both SPs. Unlinkability is
also not a concern in Shibboleth.

There are other related works which try to provide extensions of the basic
notion such as [4,11,16,19]. However, up to now, it is fair to say there still does
not exist any scheme that can satisfy both the property of unlinkability and
delegatable authentication, in an efficient yet cryptographically secure manner.

1.4 Our Contributions

We present SPICE – a DIM system in the cloud environment that can satisfy all
the aforementioned six desirable properties for identity management, which is
the first such system to our knowledge. In our scheme, the registrar issues only

3 It is not clear that how the CSP can verify if an attribute is correct if it is hidden
by the commitment and the zero-knowledge proof.
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one credential to each user no matter how many services that the user subscribes
or will subscribe later. For authentication, the user generates from the credential
many different versions of certificates for proving the possession of (different sets
of) attributes required by different service providers, without asking registrar for
issuing new certificates each time.

The novelty of our proposed system stems from extending two group signature
schemes [8,9] to their “full” potential with the help of the nice properties of
Waters’ signature [22] and Groth-Sahai proof system [15], both are implicitly
used as building blocks in [8,9]. Group signatures are privacy-oriented signatures
where a group manager can issue signing keys to many group members who in
turn can sign on behalf of the group. Anyone can be convinced that the signature
is indeed from the group, but not exactly who.

To satisfy the unlinkability property, we apply randomization to the signatures
(which acts as the certificates in our DIM system) to make them look different
and hence unlinkable for multiple requests. Both [15] and [22] are known to be
re-randomizable (see Section 4 for the technical details). On the other hand, to
control which attributes can be revealed to which CSPs, we want the messages
being signed (correspond to the attributes in our DIM system) to be partitioned
into different blocks. We thus need to extend the message space from a single
message to many blocks of messages. As a result, some of the attributes can be
hidden from the CSPs if they are not related to CSPs’ verification. Finally, for
delegated authentication, some of the attributes certified by a group signature
can be hidden by the source CSP by a sanitization process.

The idea of using sanitizable and re-randomizable group signature for a
privacy-preserving DIM is conceptually simple, and the run-time performance of
our prototype is practically efficient, hence we believe our system is applicable
in cloud environment nowadays.

2 Related Work

2.1 Identity Management Systems

After Bertino et al.’s work, Celesti et al. [11] constructed an InterCloud Identity
Management Infrastructure focusing on the InterCloud scenario where clouds
cooperate with other federated ones with the purpose to enlarge their computing
and storage capabilities. In InterCloud, the users’ home cloud should be able
to perform a single sign-on in order to gain access to the resources offered by
another cloud that participates in an InterCloud formation; each home cloud
should be able to authenticate itself with foreign clouds using its digital identity
guaranteed by a third party.

The PhD thesis of Hussain [16] studied secure anonymous authentication with
Personas. Personas are defined as sets of statements, where each statement as-
serts the status of an individual’s set of attributes. The main advantage of [16]
is that the Personas of an individual are distributed among a number of servers
which mitigate the damage of a single server compromise. However, they did not
pick up the challenge to support unlinkability and delegation.
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Angin et al. proposed an entity-centric approach for privacy and identity man-
agement in cloud computing [4]. It aims at achieving three requirements: (i)
authenticating users without disclosing personal identity information (PII); (ii)
ability to provide identity management services on untrusted hosts, such as pub-
lic hosts; and (iii) not using trusted third parties. Their approach is based on
an entity-centric DIM which uses active bundles scheme to protect PII from un-
trusted hosts; and anonymous identification which involves using zero-knowledge
proofs for authentication of an entity without disclosing its identifier. However,
the proposed approach could have a large communication overhead since each
anonymous identification would involve a good number of communications be-
tween a CSP and the user. Further, an active bundle (a token) which is a con-
tainer with a payload of sensitive data, metadata, and a virtual machine (VM),
needs to be passed between a CSP and a user during a communication session,
but no details mention about how to pass the token effectively. The token could
have a large size. So, we are not certain about the practicality of the proposed
approach.

Ranchal et al. [19] proposed another scheme to address the same privacy
problem [4] by using the active bundles scheme and computing predicate over
encrypted data for giving answer about PII. Their approach uses identity data
on untrusted hosts without TTP. However, when users asking for a service from
the CSP, the overhead is high since they need to compute a token for a CSP
using secure multiparty computation involving the cooperation with a number
of parties. Also, they did not mention how to pass effectively a big active bundle
between a user and a CSP.

2.2 Other Credential-Based Authentication Systems

A group signature is essentially a ZKPoK of the signatures. Indeed, that is ex-
actly the mechanism behind most cryptographic anonymous credentials. But
many such systems often have their own specific features (e.g., ensuring a cre-
dential can only be used for at most k times [12]) and do not perfectly fit with
our needs.

One may consider asking the user to “delegate” a credential to a source CSP
using “delegatable anonymous credential”, then the source CSP can show the
credential to a receiving CSP on the user’s behalf. Not every anonymous cre-
dential systems come with this property. A recent system (e.g., [5]) supports
delegation of the credential itself, but it is different from delegating the verifi-
cation process. In more details, the credential system in [5] requires that each
user to have their own private key for exculpability reason, which is not a con-
cern in our scenario but results in a much more complicated signing mechanism
(an interactive protocol for obtaining a signature on a message hidden in the
commitment) and the corresponding proof (the private key corresponding to the
message being signed at the i-th level is used to sign the message at the (i+1)-th
level). Besides, their application does not require any anonymity revocation. We
stressed that their scheme is more on delegating the credential (i.e. the signing
process) than delegating the verification. To conclude, delegatable anonymous
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credentials are too heavyweight for our usage on one hand, but still lack the
anonymity management mechanism required in our scenario.

Finally, we remark that there are extensions of the basic group signature idea
in terms of anonymity management mechanism, such as tracing and signature
claiming or denial considered in traceable signature [2,12].

3 Overview of SPICE

3.1 Framework of SPICE

We will describe the main entities in our system, and different phases (corre-
sponding to different tasks) of a typical run-time scenario. We will list the ac-
tions performed by different entities, the objects created, and how these objects
flow between them.

In our framework, the registrar will first create a user-specific credential, which
is then used to generate a source certificate certifying a number of attributes.
That is the user enrollment phase.

In the authentication phase, a user uses the source certificate obtained from the
registrar to create an authentication certificate, or simply a certificate according
to the set of attributes expected by a CSP. Upon successful verification, the CSP
either provides the service to the user, or contacts other receiving CSP(s) for
help in providing a packaged service.

In order to perform delegatable authentication, the CSP makes use of the cer-
tificate obtained to generate a “new” certificate depending on the set of attributes
expected by a receiving CSP.

3.2 Framework of Basic Group Signatures

A group signature scheme, GS, consists of five algorithms. The first two and
the last one are used by the group manager (GM), the third is used by group
members (U), and the fourth one is used by any verifiers.

– GS.Setup : (gpk, gsk, gok) ← GS.Setup(1κ) is an algorithm that generates a
group public (verification) key gpk, certificate issuing key gsk and opening-
key gok.

– GS.UG : sk ← GS.UGgpk(gsk, id) is an algorithm that generates a user signing

key sk to the user having identity id.
– GS.Sign : σ ← GS.Signgpk(sk,M) is a probabilistic algorithm that generates

a signature σ for message M by using signing-key sk.
– GS.Ver : 1/0 ← GS.Vergpk(σ,M) is a deterministic algorithm that decides

the correctness of signature σ on M . It outputs 1 for any input created
through GS.Setup, GS.UG and GS.Sign, 0 otherwise.

– GS.Open : id/⊥ ← GS.Opengpk(gok, σ) is an algorithm that identifies the

signer of a valid signature σ by using the opening-key gok.
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3.3 The Key Ideas

The authentication mechanism in SPICE will be instantiated by a group signature
scheme with special properties denoted by GS. The registrar will act as the
group manager in GS. As revealed previously in Section 1.4, there are multiple
attributes associated with a source certificate (which is a signature on (� − 1)
attributes given by member signing key in GS). These attributes (hosted in the
message blocks associated with GS) will be accompanied by certificate created
by the credential under the normal circumstance.

For accessing a service, the user creates a certificate by the signing algorithm of
GS, signing on one more block of message, which is the session’s information such
as the time of access, the description of the service, etc. When needs arise, the
opening mechanism of GS can be used by the registrar to revoke the anonymity
of a certificate. From now on, we will use the terminologies in the context of GS.

One of the key concepts in our scheme is randomization of the group signa-
tures. It is either applied on the signature so that multiple requests issued by
using the same signature are unlinkable, or applied on the message-component
of the signature, such that the attribute being signed can be hidden. In order
to design such a group signature scheme, we combine and extend two group
signature schemes from [8,9]. First, we extend [9] by adding two algorithms:
randomization algorithm (GS.Rand), and hiding algorithm (GS.Hide) to make
the signature re-randomizable and some blocks of the signatures can be hidden
(sanitized). Second, we extend the idea of two-level hierarchical signature in [8]
to make our group signature feasible to be signed on blocks of messages instead
of a single message.

Authentication is done by presenting a randomized copy of the certificate in
general, as depicted in Figure 2. Take a user A with only three attributes as a
simple example. User A’s certificate is a signature of attributes A1, A2 and A3.
Every time A randomizes the signature before authenticating himself to CSPs.
We use dark color to represent the original signature, and light color for the
randomized signature. The re-randomizable property prevents the certificates
from the same user from being linked.

SPICE classifies attributes into the following types for possible signature ran-
domization and sanitization.

I) Sensitive personal information. This class of attributes, depicted by A1 in
Figure 2 is relatively stable and has a common representation across different
CSPs. There is no special treatment for this class of attributes in our scheme.4

II) Service-specific attributes. Some attributes may be of interest to CSPs who
are providing a similar kind of services (e.g., whether HTML or attachment is
allowed in out-going e-mail) or providing a collective / coupled service (e.g., geo-
graphic information for various social networks or other location-based services).

4 We defer to Section 5.2 for a possible strengthening of privacy concern when getting
a credential from the registrar.
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This class is depicted by A2 in Figure 2. The CSPs may share similar authen-
tication policy, but they may employ heterogeneous naming when establishing
their authentication policies.

A nice feature considered in Bertino et al.’s work is naming heterogeneity,
i.e., the existence of variations between attributes associated with the user’s cre-
dential and attributes specified in the policies required by different CSPs. They
used a matching technique based on look-up tables, dictionaries (WordNet 2.1
English Lexical Database5), and ontology mapping (Falcon-AO6) to resolve syn-
tactic (e.g., “ID” vs. “Identity”), terminological (e.g., “email address” vs. “email
account”) and semantic (e.g., “privacy level” vs. “sharing setting”) variations.
SPICE will also use the same tools.

This class of attributes will be certified by a group signature, comes from an-
other instance of GS, i.e., instead of the group of cloud clients, now we consider
a group of CSPs. Source CSPs and receiving CSPs are group members. Being
another instance of GS, the group signature generated is supposed to be certifi-
cates on the class of attributes that may need naming resolution. In particular,
they cannot be used as typical user certificates. Whenever there is a variation
of attributes representing the same concept, the source CSP generates a group
signature certifying the same attribute with a different naming. These signa-
tures may be sent to the client or stored by the source CSP for future usage
(and re-randomization can also be done to ensure the unlinkability). In this way,
the only thing that the registrar needs to know is who are concerned with a
selected subset of attributes, instead of knowing the ontology mapping between
all these CSPs, which has been offloaded to the CSPs effectively. The operation
is depicted in Figure 2(b).

We remark that we just take a simple approach of appending another group
signature to the original one. Updating the attributes associated with a cryp-
tographic key is a tricky problem (except a recent work [10] that works with a
particular group signature scheme [7]), which hinders the mismatch resolution
considered by Bertino et al, and especially difficult when we also want to satisfy
unlinkability.

III) Irrelevant attributes. There are many other attributes, which are unrelated
to a specific (class) of services in question, depicted by A3 in Figure 2. On the
other hand, even when the CSPs are sharing authentication information, it is
likely that some of the attributes are irrelevant for some of these CSPs (e.g.,
when sharing geographic information of a user logged into a social network, it
is inappropriate to share other information such as the posting privilege of the
user in the social network to other location-based services).

The privacy of this class of attributes can be taken care of by the hiding
algorithm of our group signature scheme. The operation depicted in Figure 2(c)
is hiding attribute A3 which is not required by the receiving CSP, and Figure
2(d) is re-randomizing a sanitized signature.

5 http://wordnet.princeton.edu
6 http://iws.seu.edu.cn/projects/matching

http://wordnet.princeton.edu
http://iws.seu.edu.cn/projects/matching
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A'2

(b)

A1 A1 A2A2 A3 A3

(c)

A1 A2 A3 A 2 A 3A 1

(d)

Fig. 2. (a) Re-randomization (b) Naming conversion (c) Attribute hiding (d) Hide-
and-randomize

4 Randomizable Group Signatures

This section provides the details of instantiating the group signature scheme GS,
which is the main building block in SPICE as described in previous section.

4.1 Design of Randomizable Group Signatures

Recall that hierarchical signatures with non-interactive zero knowledge (NIZK)
proofs can be used to construct group signatures [8]. Two schemes given by
Boyen and Waters [8,9] fall into this paradigm, with Groth-Sahai proofs [15]
as the NIZK proofs. The basic idea is that, the message at the first level of the
hierarchy will serve as a group member’s identity, and the lower level corresponds
to the message that a group member is going to sign. To hide the identity, an
(extractable) NIZK proof is used to hide the message at the first level.

We use a group signature scheme which can be seen as a combination of these
two schemes [8,9]. Indeed, one can just use the scheme from [8] which uses the
hash functions of the same form (instantiated with different parameters) for both
the group members’ identities and the actual messages to be signed. As [9], the
scheme to be presented here is a hybrid of two schemes, one at each level. For
our application, we added three extra properties.

1. We want the group signatures can be re-randomizable by a public algo-
rithm, so we add the algorithm GS.Rand. For this we require two properties
from our building blocks. Recall that the group signature here is just an
NIZK proof of a “regular” signature. First, the implicit regular signatures
should be re-randomizable. This property can be satisfied by Waters’ signa-
tures – the signing mechanism used for signing the actual messages. Second,
the NIZK proofs should be re-randomizable. The Groth-Sahai proof system
[15] being used here is known to be re-randomizable (e.g., [5,14]), hence
re-randomization of the group signatures can be done.

2. We want the group signatures to be able to sign blocks of messages instead of
a single message. For this we rely on the fact that one may add a hierarchy
of messages to be signed by extending the public key with a new set of
parameters for the Waters-hashes [22] for other levels, as illustrated in the
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two-level hierarchical signatures schemes in [8]. This technique has been
utilized in other applications such as [13,18].

3. For multiple blocks of message, it is desirable if some blocks can be hidden
from the verifiers when they only concern the other blocks. For this we intro-
duce another algorithm GS.Hide which transforms a given group signature
into one with some selected blocks hidden, in the same spirit as how the
identity at the first level of the hierarchy is being hidden.

4.2 Concrete Construction

Below we supply the details of GS. In our DIM structure, registrar takes the role
of the group manager (GM), users and the CSPs are group members (U).

Basic Algebraic Settings. Let (G = 〈g〉,GT ) be a bilinear group pair of composite
order n = pq where p and q are random primes of bit size at least κ. Let Gq = 〈h〉
be the cyclic subgroup of G of order q.

GS.Setup. This algorithm is used by the registrar. It generates the bilinear groups
parameter listed above. The opening-key is gok = q. Then, it picks two random
exponents α, ω ∈ Zn, defines Â = ê(g, g)α and Ω = gω. It also picks a random
generator u ∈ G. The certificate issuing key is gsk = 〈gα, ω〉.

Suppose the number of message blocks to be supported is �, where each of them
is m bit. It picks � vectors, each vector vj consists of (m+1) random generators,
vj , vj,1, · · · , vj,m ∈ G. Define Fj(Mj) = vj

∏
vj,i

μj,i where Mj = μj,1 · · ·μj,m.

The group public key is gpk = 〈G,GT , n, g, u,Ω, h, Â,v1, · · · ,v
〉.

GS.UG. This algorithm is used by the registrar to generate signing keys for
group members (users and CSPs). The system supports 2k members and each
of their identities are mapped to integer id where 0 ≤ id < 2k < p, a unique
value sid ∈ Zn is assigned to each member and will be stored for later opening
purpose. This value must be chosen so that (ω+sid) lies in Z×

n , the multiplicative
group modulo n. The member signing key skid is in the form of 〈K1,K2,K3〉 =
〈(gα)

1
ω+sid , gsid , usid〉, which is of the same form as [9].

GS.Sign. This algorithm has three usages. When it is used by the registrar to
generate a source certificate, it will sign on (�−1) attributes. When it is used by a
user, it will sign on the information for the authentication session (by appending
the source certificate with a last block of message, i.e. the �-th block). If used
by a CSP, it will generate a sanitized certificate for solving naming conflict.

I) For signing on blocks of message {Mj}
−1
j=1 where Mj = μj,1 · · ·μj,m, it first

picks r1, · · · , r
−1 ∈ Zn and creates an ordinary signature by

θ = 〈θ1, θ2, θ3, {θj′}
+2
j′=4, {θ′j′}


+2
j′=4〉

= 〈K1,K2,K3


−1∏
j=1

Fj(Mj)
rj , {g−rj}, {hrj}〉.
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This step extends [9] in two ways. First, instead of signing on a single message
M1, a product of Fj(Mj)

rj ’s is attached to sign on multiple messages, similar to
the 2-level structure of [8]. Second, hrj is also attached for future hiding of the
component Fj(Mj)

rj , similar to how the “first-level” message is being hidden in
[8].

Then, it turns θ into a group signature with sid hidden by randomly picking
t1, t2, t3, {tj′}
+2

j′=4 ∈ Zn, computing {σj = θj · htj} for j = 1, · · · , � + 2 and
generating the corresponding proofs.

π1 = ht1t2 · (θ1)t2 · (θ2Ω)t1 ,

π2 = ut2 · g−t3 · (

−1∏
j=1

(Fj(Mj))
−tj+3 )

This is the exact same step in [9], apart from the fact that a product of Fj(Mj)
rj ’s

is attached.
The final signature is 〈{σj}
+2

j=1, {θ′j′}
+2
j′=4, π1, π2〉.

II) When given a source certificate / signature in the above form signed on
(�− 1) message blocks, one can generate a certificate / signature on � blocks by
first appending the last message M
 following the format of θ, then followed by a
re-randomization using GS.Rand to be described. Due to the lack of space we omit
an explicit description of this procedure, but that can be easily deduced from
the above description and follows a similar signing procedure in the hierarchical
signature schemes [22,8] based on Waters’ signature.

GS.Ver. This algorithm is used to verify a source certificate. The verifier outputs
1 if and only if both of the following equations hold, 0 otherwise.

ê(h, π1) = Â−1 · ê(σ1, σ2Ω),

ê(h, π2) = ê(σ2, u)ê(σ3, g)
−1


∏
j=1

(ê(σj+3, Fj(Mj))
−1)

(One may defer the checking of {θ′j′}
+2
j′=4 from GS.Ver to GS.Hide since they are

used when the (j′ − 3)-th message block Mj′−3 should be hidden.)

GS.Open. This algorithm is used by the registrar to ensure accountability. Given
a valid signature, this algorithm takes out its σ2 component, and tests whether
(σ2)

q = (gsidi )q for each suspected idi. We note that (gsidi )q can be precomputed
and stored when each user secret key is generated, as suggested in [9].

GS.Hide(σ,Mj , j) → σ′. This algorithm is used by users and source CSPs to
hide some attributes of the certificate. Given a valid signature σ that may have
been re-randomized and may have some blocks already hidden, one may hide
the j-th block of message Mj = μj,1 · · ·μj,m from being required in GS.Ver as
follows. For simplicity the below description assumes none of the blocks have
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been hidden, but it can be easily seen that the hiding action of the j-th block is
independent of whether any other block j′ �= j was hidden or not.

1. Abort if ê(σj+3, h) · ê(g, θ′j+3) �= 1.
2. Randomly pick τ1, · · · , τm ∈ Zn.
3. Create the commitments cj,k = v

μj,k

j,k · hτk for k = 1, · · · ,m.

4. Construct the proofs πj,k = (v
2μj,k−1
j,k · hτk)τk for k = 1, · · · ,m.

5. Define τ =
∑m

k=1 τk.
6. Set cj = vj

∏m
k=1 cj,k = Fj(Mj) · hτ .

7. Randomly pick r̃ ∈ Zn.
8. Compute σ′

3 = σ3 · (θ′j)τ · (cj)r̃.
9. Compute σ′

j+3 = σj+3 · g−r̃.

10. Output GS.Rand(〈{σ1, σ2, σ
′
3, σ4, · · ·, σj+2, σ

′
j+3, · · ·, σ
+3, {θ′j′}
+2

j′=4, π1,
π2, {cj,k}, {πj,k}〉).

In essence, that is the conceptual step (for hiding the group member’s identity)
in [8] which changes a regular signature to a proof of signature on a hidden
message. Broadly speaking, that is the technique from Groth-Sahai system [15].

GS.Rand(σ) → σ′. This algorithm is used by user to randomize the certificate in
order to provide certificate unlinkability. Given a valid signature σ, anyone can
output its randomized version σ′ as follows. For simplicity, we first shown how
to randomize when σ has no hidden message component.

1. First randomly pick t′1, t
′
2, t

′
3, {t′j′}
+2

j′=4 ∈ Zn.

2. Randomize the commitment parts of the signature by computing σ′
j = σj ·ht′j .

3. Then, for the proof component π1, compute π′
1 = π1 · σt′2

1 · σt′1
2 · ht′1t

′
2 ·Ωt′1 .

4. Update the corresponding proof π′
2 = π2 · ut′2 · g−t′3 · (

∏

j=1 (Fj(Mj))

−t′j+3).

Now the signature with message block hidden can also be randomized in a

similar manner, by returning π′
j,k = πj,k · c2τ

′
k

j,k · v−τ ′
k

j,k · hτ ′
kτ

′
k for randomly picked

τ ′k ∈ Zn. The commitment can be updated correspondingly by c′j,k = cj,k · hτ ′
k .

However, the proof π′
2 should be updated in a slightly different manner. For

each hidden message block j, F ′
j(·) = vj

∏m
k=1 cj,k (which is a constant function)

should be used instead of Fj(Mj).
Essentially, this algorithm just re-randomizes the commitments and the proofs

using the re-randomization procedures [5,14] of the Groth-Sahai systems [15].
Finally, it is trivial to re-randomize {θ′j′}
+3

j′=4 and hence they are omitted.

GS.Ver′. This algorithm is used to verify a randomized and sanitized certificate.

1. For all hidden message block j:
(a) Check whether the proofs are correct, abort if ê(cj,k, cj,k·v−1

j,k )= ê(h, πj,k).

(b) Define F ′
j(·) = vj

∏m
k=1 cj,k (which is a constant function).

2. Define F ′
j(Mj) = Fj(Mj) for F

′
j(·) which has not been defined previously.
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3. Output 1 if and only if both of the following equations hold, 0 otherwise.

ê(h, π1) = Â−1 · ê(σ1, σ2Ω)

ê(h, π2) = ê(σ2, u)ê(σ3, g)
−1


∏
j=1

(ê(σj+3, F
′
j(Mj))

−1)

The hybrid definition of F ′
j(·) just corresponds to the hybrid signing methods in

[8] – one on a known message and another on a hidden message.
The scheme described above is a natural combination and/or extension of

existing techniques and hence its analysis will be largely based on the existing
works. Correctness of verification follows from those in [8,9] and is trivial to see.
Security analysis of our scheme will be deferred to the full version of this paper.

5 Privacy-Preserving Identity-Management

5.1 SPICE for Web Authentication

Here we show a typical run-time scenario of our system for a typical web au-
thentication scenario. The whole system architecture is shown in Figure 3. The
white color boxes represent the components from existing technologies (e.g.,
[6,17]), and the boxes with diagonals represent our new components. There are
five components: registrar, source CSP, receiving CSP, user and web browser.
The web browser interacts with the CSPs on behalf of the user to perform on-
line authentication. The registrar is a trusted third party, which generates source
certificate for each user. It has no interaction with the web browser, and will not
involve in the authentication process. It can remain offline unless there may be
new users joining the system.

The registrar manages user attributes, and uses the algorithm GS.UG to gener-
ate users’ credentials. Then a source certificate is generated from the credentials
for the user by registrar. Each user keeps the source certificate locally. When
user accesses the browser to request for a service from a source CSP, the CSP
will send back an authentication request, which includes the attributes names
to be authenticated. These requests can be sent using an HTTP GET packet for
example. When a user receives the authentication request, the functions GS.Rand
and GS.Hide will be used to randomize and sanitize a certificate. The user up-
loads the randomized certificate to source CSP through web browser. The source
CSP uses function GS.Ver’ to authenticate the certificate. If successful, source
CSP provides the service to user.

If a source CSP and a receiving CSP join together to provide a packaged
service, the receiving CSP needs to authenticate user too. Firstly, the source CSP
uses the vocabulary conflicts handler module [6] to check if there are attributes
naming mismatch. If so, the CSP may generate another certificate using GS.Sign
accompanying this certificate. Then, the source CSP generates another certificate
by sanitizing (i.e., using GS.Hide to hide) the attributes that receiving CSP does
not concern and re-randomizing (i.e., applying GS.Rand on) the certificate. The
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sanitized certificate is sent to receiving CSP. A receiving CSP authenticates the
certificate using GS.Ver’.

Additionally, the naming management service stores the mappings with other
service provider ontologies, and the sets of synonyms (Synsets). Policy reposi-
tory stores attributes verification policies. The request manager component asks
the users for the attributes necessary for verification. The vocabulary conflicts
handler checks if there are receiving CSP required attributes names that match
the Synsets of itself.

A receiving CSP should have same modules as a source CSP. However, in
order to distinguish between their roles, we omit some of the components which
are only useful when they take another side of role.

Client’s
Web Browser

User

Attribute Record Vocabulary
Vocabulary Conflicts

Handler

Registrar

Attribute Record Storage

Credential Issuer
GS.UG () GS.Sign()Randomized Certificate

Issuer GS.Sign(),
GS.Rand(), GS.Hide()

Source CSP

Request Management

Policy Repository

Randomized
Certificate Verifier

GS.Ver’()

Sanitized Certificate
Issuer GS.Hide(),
GS.Rand()

2. Auth. request
Vocabulary Conflicts

Handler

Receiving CSP

Request Management

Policy Repository

Sanitized Certificate
Verifier GS.Ver’()

Naming Management Service

Naming Management
Service

Source certificate

1. Service request

1. Service request

2. Auth. request

3. Randomized certificate

3. Randomized certificate

Fig. 3. System Architecture based on Randomizable Group Signatures

5.2 Security, Privacy and Functional Requirements

Unlinkability. The source certificate will be randomized by user for each request,
so that the CSPs cannot obtain a certificate of a special form. If any CSP can
link these randomized certificates to the same source certificate, this breaks the
perfect unlinkability provided by GS.Rand which leads to a contradiction.

Delegatable Authentication. In order to allow a receiving CSP to authenticate a
user without directly contacting with the user, firstly re-randomization is done,
then sanitization is done by issuing a new group signature which is also re-
randomizable and unlinkable.
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Anonymity. CSPs are not able to see the clear values of the user attributes from
the certificate whenever the user chose to hide them using GS.Hide, which is
guaranteed by the hiding property of the commitment and the zero-knowledge
property of the proof implicitly used by GS.

Registrar is the trusted party who controls which user has which set of at-
tributes, so we do not consider anonymity against this party. In case the registrar
is not allowed to see this sensitive personal information, one may actually use a
group signature scheme which supports signing committed messages to realize a
signing process similar to that of a blind signature scheme. The hiding algorithm
presented in the previous section essentially changes a signature signing directly
on a message to one signing on a commitment of that message, but for simplicity
of our presentation, an explicit description of this variant is omitted.

Accountability. From the identifiability of GS, the registrar can trace which user
(or which source CSP in the case of naming mismatch) issued the certificate, by
the GS.Open algorithm using its group secret key.

User Centric Access Control. In our system, the user can choose which attributes
to reveal when presenting a certificate, the disclosure of user identity or attributes
is no longer arbitrarily or at the will of CSP.

Single Registration. The users only need to contact the registrar once in our
system, instead of contacting the registrar every time authentication is about to
occur for preserving the unlinkability in previous systems.

Efficiency. For unlinkable authentication, re-randomization is needed and its
time complexity is in the total number of attributes a user possesses. However,
it only involves a small number of exponentiations for each attribute. In par-
ticular, no pairing operation is involved on the user side. Also, we note that
the randomization can be pre-computed. The only online operation for authen-
tication is signing appending the certificate with the last block of the message,
which takes constant time (in the number of attributes). We will report a perfor-
mance evaluation of our prototype implementation for different settings in the
full version of this paper.

6 Conclusion

Privacy and security have become a critical concern with the immense growth in
the popularity of cloud computing, and digital identity management (DIM) being
one of the critical components. We proposed a privacy-aware interoperable DIM
system for the cloud based on the simple use of randomizable group signatures,
which solved two open problems (unlinkability and delegatable authentication)
left by Bertino et al. [6]. Our scheme relies on the conceptually simple use of
extended group signatures. Most part of the operations in our system can be
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performed offline and we remove the need of contacting the registrar before
every authentication or storing a large amount of certificates. We believe the
overhead is quite minimal for the privacy concern and we leave the design of
more efficient anonymous credential systems as our future work.
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Abstract. Fine-grained meter readings enable applications in an ad-
vanced metering infrastructure. However, those meter readings threaten
personal privacy by implying a sketch of daily activities of households.
The privacy issue has been addressed in smart metering systems by either
a trusted third party assumption or cryptographic primitives. We address
the privacy issue by using a trusted platform module and lightweight
cryptographic primitives. Our smart metering system simultaneously
supports the billing and load monitoring applications in a privacy pre-
serving manner. It allows an electricity service provider obtain sums of
meter readings over a time period and a monitoring center obtain sums
of meter readings from meters in an area at some recent time unit while
keeping individual meter reading private. Moreover, we formally prove
that our system is privacy preserving. Our system provides a simple yet
very practical solution to a privacy preserving smart metering system.

Keywords: Trusted platform module, smart metering, privacy preserv-
ing technique, secure aggregation, pseudorandom number generator.

1 Introduction

The emergence of smart grids has established a trend towards building our next
generation of power grid systems. As shown in Fig. 1, new features include two-
way power flows and mutual communications between electricity entities. Smart
grids integrate intelligence and automation into the conventional power grid
system to increase energy efficiency and improve system reliability and quality.
We can build advanced applications upon smart grids, such as load monitoring,
automatic billing, dynamic pricing, and power generation planning.

One essential technology of smart grids is fine-grained meter reading within
a very short period of time per household. However, meter readings of a house-
hold reveal detailed information about daily activities of the household and used
appliances during a specific time period [7,14,11]. Fine-grained meter readings
cause serious privacy issues. Actually, the granularity of meter readings often
exceeds the need of some underlying applications. Current smart meters record
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Fig. 1. Power is massively generated by a power station and transmitted by a grid
operator from the generator to end-consumers. Local renewable energy can also be
transmitted to other entities.

electricity usage every 5 to 60 minutes [8]. The next generation of smart meters
will upgrade a time unit to seconds. In billing applications, the electricity service
provider (ESP) only needs the amount of power consumption per hour to com-
pute a bill. For example, in Ontario, Canada, the time-of-use price service during
winters only needs the consumption data over two hours in an on-peak time pe-
riod, six hours in a mid-peak time period, and 12 hours in an off-peak time
period [1]. In load monitoring applications, the load monitoring center (LMC)
collects the amount of electricity usage over a local area in order to monitor
current activities of the power grid. LMC requires consumption data in much
finer time granularity than ESP does. Nevertheless, LMC only needs the total
power consumption over the area at recent time units.

To address the privacy issues against service providers, an approach of secure
aggregation is proposed. By secure aggregation techniques, a service provider can
only get an aggregated result of meter readings while individual meter reading
remains private. For the billing application, previous works use public key ho-
momorphic encryption schemes, commitment schemes, or a trusted third party
to securely aggregate meter readings of a meter. For the load monitoring appli-
cation, previous works use public key homomorphic encryption schemes, secret
sharing techniques, or distributed random noise generation to securely aggregate
meter readings of meters in an area.

On the other hand, many manufactures of smart meters use a hardware com-
ponent to address various cyber-security issues. For example, Atmel provides
electricity meters with a hardware security component for cryptographic authen-
tication. Embedding a trusted platform module chip (TPM) into a smart meter
is a general practice for securing metering services [12,13,9]. We shall assume
that a TPM is embedded into a smart meter for providing securing functions.

It is a challenge to design a smart metering system that simultaneously sup-
ports multiple privacy preserving applications without using a trusted third
party and public key cryptographic primitives. We focus on the billing and
load monitoring applications and consider the privacy requirements for them.
Our main contribution is to propose a practical privacy preserving smart me-
tering system that supports billing and load monitoring applications with TPM
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technologies. Our system uses a pseudorandom number generator and hash func-
tions supported by TPM technologies. Features of our smart metering system
are as follows:

– ESP can only query a meter for a sum of meter readings over a time period.
Each meter reading remains private against ESP.

– LMC can only query a sum of meter readings from meters in an area at a
time unit. Each meter reading remains private against LMC.

– Meter readings are securely stored in a semi-trusted storage system.
– Meters can freely join or leave our smart metering system without overhead.

Moreover, we formally define a privacy model with respect to time-series meter
readings to capture privacy requirements and prove that our smart metering
system meets the requirements.

2 Related Work

We briefly introduce existing privacy preserving protocols of smart metering
systems and TPM technologies.

Privacy preserving metering protocols. Anonymous technology is suggested by
NIST to anonymizing traces of meter readings [2]. For the billing application,
Petrlic proposed a solution by using pseudonym of households against ESP where
the grid operator to be a fully trusted intermediate translator [15]. Jawurek et
al. constructed a privacy preserving billing protocol by integrating a homomor-
phic commitment scheme, zero knowledge proofs and a tamper-evident meter [9].
Meter readings are committed and aggregated by using the homomorphic com-
mitment scheme. Only the final bill is opened to ESP and the correctness of the
computation is verified by using zero knowledge proofs. Rial and Danezis took a
similar approach [16], where they replaced the tamper-evident meter by TPM.

For the load monitoring application, Garcia and Jacobs proposed a solution
by using a trusted aggregator in a substation and an additively homomorphic
encryption scheme [6]. Each meter encrypts meter readings by using LMC’s
public key. The aggregator aggregates encrypted meter readings and only sends
the aggregated result to LMC. Shi et al. proposed a privacy model for aggregation
of time-series data (such as meter readings) while individual datum remains
private [17]. In their system, the number of meters is fixed after the system is
setup. The system must to be reset when meters join or leave. Later, Shi et al.
proposed a new solution by using the subset cover technique to tolerate leaving
meters [5]. Kursawe et al. proposed a privacy friendly aggregation method [10].
An aggregator and meters secretly share 0 for multiple times in parallel such that
no share of a meter is revealed. Ács and Castelluccia [3] proposed a solution by
using random noise and secret sharing. Meters independently generate random
noise and pairs of meters secretly share 0. Meter readings are masked by random
noise and encrypted by secret shares. The sum of masked and encrypted meter
readings gives a noisy sum of meter readings.

Bohi et al. proposed a privacy model and two approaches for the billing and
load monitoring applications, respectively [4]. First, they used a trusted third
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party to compute the bill for the billing application. Second, they introduced
random noises on meter readings, where the distribution of the noise has a known
mean and variance. LMC gets only an approximate sum of meter readings while
individual reading is private.

Our work is distinguished as it simultaneously addresses both applications but
only requires a simple and lightweight use of TPM for generating pseudorandom
numbers without a trusted third party and without mutual communications
among meters.

TPM technologies. TPM is a microcontroller that offers facilities for secure
generation of cryptographic keys, the ability to limit the use of keys, non-volatile
storage and a hardware pseudorandom number generator. It enables platform
attestation and cryptographic primitives, such as RSA and SHA-1. The TPM
specification is defined by the trusted computing group and the latest version is
TPM 1.2 revision 1161.

A TPM chip itself is a solid component through platform attestation. It em-
ploys platform configuration registers to record configurations of platform and
software, and prevents unauthorized modifications on these configurations. By
verifying configurations, TPM assures that the platform is initialized from a
secure and correct condition.

3 System Model

We describe our time notation, smart metering system, and the billing and load
monitoring applications. We also brief privacy requirements. Detailed descrip-
tions of privacy requirements are provided in Section 5.

3.1 Time Notations

Time is divided into basic time units t1, t2, · · · . Let l be a fixed positive integer,
where l ≥ 2. We set l to be the minimum number of time units where ESP gets
the sum of meter readings. Based on the parameter l, we define time periods and
the current time window. A time period T consists of al continuous time units
for any positive integer a. The current time window W is the latest continuous
l time units tz−l+1,tz−l+2, · · · , tz , where tz is the current time unit.

3.2 Smart Metering System

Our smart metering system consists of meters, a storage system, ESP and LMC,
as shown in Fig. 2. We assume that meters are purchased by households and
deployed by the grid operator. Households trust the grid operator that it honestly
deploys meters. We assume that meters are trusted, that is, meters honestly
follow defined steps. We also assume that ESP and LMC are honest-but-curious,
that is, they follow defined steps but try to dig out individual meter readings

1 The specification is available as international standard ISO/IEC 11889.
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Fig. 2. Our system model consists of meters, a storage system, ESP, and LMC

from what they obtain from communications. Moreover, we assume that ESP
and LMC do not collude.

A household Hi has a meter Mi that records power consumption di,j of Hi at
time unit tj. Households may physically move in or out an area. A meter Mi has
a serial number SN i assigned by the meter manufacture. A meter Mi encrypts
a meter reading di,j as ci,j and stores ci,j into the storage system. The storage
system stores the encrypted meter reading according to the meter and the time
unit. We assume that ESP and LMC can freely access the storage system after
being authenticated by the storage system.

Meter readings are conceptually arranged in a matrix in the storage system,
where a row represents meter readings of a household over time and a column
represents meter readings of households in an area at a time unit. An example is
shown in Fig. 3. From the time unit t1, Areas 1 and 2 have 3 and 5 households,
respectively. Each household Hi has a meter Mi for 1 ≤ i ≤ 9. At t4, new
household H9 moves in Area 3 and then a row of M9 is added in the matrix.
When household H7 moves out Area 2 at t9, the row of H7 in Area 2 is deleted
from the matrix.

3.3 Supporting Billing Applications

ESP is allowed to query the meter for decryption information of a sum of meter
readings over a time period T . ESP sums up encrypted meter readings over T .
By the decryption information, ESP decrypts the encrypted sum to obtain the
power consumption of the household over T . In the example in Fig. 3, l is set
to 4. ESP queries the meter M1 for decryption information of the time period
T = (t2, t3, t4, t5, t6, t7, t8, t9) and decrypts the encrypted sum c =

∑9
j=2 c1,j to

obtain the sum ξ =
∑9

j=2 d1,j of the meter readings between t2 and t9.
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Fig. 3. Meter readings are conceptually arranged in a matrix

Fig. 4. We model a meter in three layers

The correctness for ESP is that ESP obtains the correct sum ξ of a household
over T . The privacy requirement for ESP is that it cannot get individual meter
readings of a household.

3.4 Supporting Load Monitoring Applications

LMC is allowed to query meters in an area for approximate decryption informa-
tion of a time unit tj in the current time window W . LMC sums up encrypted
meter readings in the area at tj to get the encrypted sum. By the approximate
decryption information, LMC decrypts and gets an approximate overall power
consumption of households in the area at tj . In the same example, the current
time unit is t10 and the current time window is (t7, t8, t9, t10). LMC can query
meters in Area 2 for decryption information at t7 and decrypts the encrypted
sum c =

∑8
i=4 ci,7 to obtain an approximate sum for ξ =

∑8
i=4 di,7.

The correctness for LMC is that LMC obtains a good approximate sum ξ̃ for
ξ. We formulate the approximation by the error ratio ω = |ξ̃ − ξ|/ξ, a threshold



550 H.-Y. Lin et al.

value ε and a confidence probability δ as Pr[ω ≤ ε] > 1−δ. With sufficiently small
ε and δ, LMC obtains a good approximate sum ξ̃ for ξ with a higher probability.
The privacy requirement for LMC is that it cannot get exact individual meter
readings of a household.

3.5 Meter Model

As shown in Fig. 4, we have a three-layer model for a meter. The hardware
layer consists of hardware components, such as a TPM chip, a metering engine,
a processing and communication engine. The kernel layer consists of drivers of
hardware components. We assume that a driver is in charge of meter readings
of the metering system. The application layer is built upon the kernel layer to
provide services, such as a web interface for observing current meter readings.

The power consumption is often measured in kWh. Since we consider a finer
time granularity, the unit of measurement is changed to Wh so that integer
representation is enough. Moreover, we assume that meter readings (in integers)
at a time unit are much less than a defined number p. From the statistics of U.S.
Energy Information Administration, in 2009, the average power consumption
per household per month is 908 kWh. That is 105Wh per 5 minutes. Thus, we
set p to be of length 64 bits.

4 Privacy Preserving Smart Metering System

We describe our smart metering system and two types of queries supporting
billing and load monitoring applications.

4.1 Metering System Construction

We assume that a meter is deployed or reset by the grid operator when a house-
hold moves in an area. At the beginning, the metering system consists of a
storage system, ESP and LMC. Later, meters join in. Choose a large number p,
where p ≥ 2

√
p. Let the initial time unit be t1. Let the pseudorandom number

generator be g, where g : {0, 1}τ × {0, 1}λ → Zp. Let h and h′ be cryptographic
hash functions, where h : {0, 1}∗ → {0, 1}λ and h′ : {0, 1}∗ → {0, 1}τ . A meter
Mi runs as follows.
Meter initialization.

1. Mi takes a user input as a seed si. The TPM of Mi generates a master key
ki by using the seed si, the serial number SN i, and the hash function h′,
where ki = h′(si||SN i) and || is the operator of concatenation. The master
key ki is then securely stored in non-volatile storage of the TPM of Mi.

2. The driver of Mi creates and initializes l first-in first-out memory slots as 0.
3. The TPM of Mi generates l pseudorandom numbers ri,1, ri,2, · · · , ri,l−1 and

Ri,1, where

ri,j = g(ki, tj), 1 ≤ j ≤ l − 1, and

Ri,1 = g(ki, h(t1||t2|| · · · ||tl))
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Fig. 5. The TPM generates random numbers r1,1, r1,2, · · · , r1,l−1 and R1,1 in the ini-
tialization part and a random number R1,i+1 at time unit ti. Random numbers r1,i for
i ≥ l are computed on the fly.

Then, the TPM of Mi passes all pseudorandom numbers to the driver of
Mi.

4. The driver of Mi computes ri,l as follows:

ri,l =

⎛⎝Ri,1 −
l−1∑
j=1

r1,j

⎞⎠ mod p

Then, the driver stores l pseudorandom numbers ri,1, ri,2, · · · , ri,l in memory
slots.

Storage of meter readings at tj, j ≥ 1.

1. Mi measures the consumption di,j and encrypts it as ci,j , where

ci,j = (di,j + ri,j) mod p

ci,j is sent and stored to the storage system.
2. The TPM of Mi generates a random number Ri,j+1 and passes it to the

driver of Mi, where

Ri,j+1 = g(ki, h(tj+1||tj+2|| · · · ||tj+l)).

The driver of Mi computes

ri,j+l =

⎛⎝Ri,j+1 −
j+l−1∑
α=j+1

ri,α

⎞⎠ mod p.

The driver then replaces ri,j with ri,j+l in the memory slot.

An example of M1 is shown in Fig. 5. The TPM of M1 generates l random
numbers in the initialization part and generates a random number at each time
unit on the fly. For any time period T with l continuous time units, a random
number generated by the TPM of M1 helps decrypt the sum of meter readings
over T . The snapshots at tl of M1 is shown in Fig. 6. At any time unit, the
driver of M1 maintains the random numbers used for time units in W .
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Fig. 6. Snapshot of the meter M1 at tl

4.2 Supporting Billing Application

To compute a bill of a household Hi, ESP queries the meter Mi of Hi for a
time period T of al continuous time units, where T = (tβ , tβ+1, · · · , tβ+al−1).
The application layer of Mi divides the time period into a sub-periods and asks
the TPM to regenerate the corresponding random numbers Ri,β , Ri,β+l, Ri,β+2l,
· · · , Ri,β+(a−1)l. The application layer of Mi computes the sum B of random
numbers and sends B to ESP, where

B =

⎛⎝a−1∑
j=0

Ri,β+jl

⎞⎠ mod p

ESP gets encrypted meter readings (ci,β , ci,β+1, · · · , ci,β+al−1) over T from the
storage system and computes

β+al−1∑
j=β

di,j =

⎛⎝β+al−1∑
j=β

ci,j −B

⎞⎠ mod p (1)

ESP correctness is that ESP can obtain the consumption of a household Hi over
T . Note that for 0 ≤ j ≤ a− 1,

Ri,β+jl = (

l−1∑
k=0

ri,β+jl+k) mod p.
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Thus, ⎛⎝β+al−1∑
j=β

ci,j −B

⎞⎠ mod p =

⎛⎝β+al−1∑
j=β

(di,j + ri,j)−B

⎞⎠ mod p

=

⎛⎝β+al−1∑
j=β

di,j

⎞⎠ mod p (2)

By Equation (2), Equation (1) holds when

β+al−1∑
j=β

di,j = (

β+al−1∑
j=β

di,j) mod p

That is, the sum of meter readings must be less than p. By choosing a large p,
ESP correctness is guaranteed. In practice, it is sufficient to set p to be of 64-bits
when each meter reading is of 32-bits and al is up to 232.

4.3 Supporting Load Monitoring Application

To monitor the power consumption in an area, LMC queries meters in an area
at tj in current time widow W . A meter Mi in the area should reply. The driver
of Mi chooses a random number n according to a normal distribution N(0, σ2)
with the mean 0 and the variance σ2 and computes the noise ni,j as the floor
of the chosen random number n, i.e. ni,j = �n�. The variance σ shall be defined
later. The driver of Mi then passes a noised random number r̃i,j to LMC, where

r̃i,j = (ri,j + ni,j − �√p) mod p

Recall that the stored meter reading ci,j = (di,j + ri,j) mod p. By r̃i,j , LMC

computes a noised meter reading d̃i,j of the meter Mi as follows:

d̃i,j = (ci,j − r̃i,j mod p)− �√p
= (di,j − ni,j + �√p mod p)− �√p

The number
√
p is used to prevent an overflowing issue for correctness. Note

that d̃i,j may be negative. To obtain d̃i,j = di,j − ni,j , we need

di,j + �√p ≥ ni,j ≥ di,j − p+ �√p

Since p ≥ 2
√
p , we bound the probability by

Pr[|ni,j | ≤ di,j + �√p] ≥ 1− σ2

p

Since p is very large and σ is sufficiently small, the error probability is negligible.
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Let LMC obtain m noised meter readings d̃iα,j from m meters Miα , where

1 ≤ α ≤ m. LMC computes an approximate value ξ̃ for the overall consumption
ξ at tj in the area, where

ξ̃ =

m∑
α=1

d̃iα,j and ξ =

m∑
α=1

diα,j

Since some meters may fail to reply due to various reasons, LMC needs to set a
maximal waiting time period Tmax.

LMC correctness requires that LMC obtains an approximate value for the
overall consumption. The error between the approximate sum ξ̃ and ξ depends
on the number m and the variance σ2. Form meter readings at tj , let x = ξ̃−ξ =∑m

α=1 niα,j . We measure the error by using the error ratio ω = |x|/ξ. Let d̂ be

the average value of meter readings per time unit. Thus, we assume ξ = md̂.
Since each noise is randomly chosen from a normal distribution N(0, σ2),

the distribution of x is a normal distribution N(0,mσ2). By the Chebyshev
inequality, we have

Pr[ω ≤ ε] = Pr[|x|/ξ ≤ ε] = Pr[|x− 0| ≤ ξε] ≥ 1− mσ2

(ξε)2
= 1− σ2

md̂2ε2
(3)

Let δ = σ2

md̂2ε2
. Equation (3) shows that when σ is sufficiently small and m is

sufficiently large, LMC obtains a good approximate with high probability 1− δ.
We set d̂ to be 105 (an average meter reading in Wh per 5 minutes) according
to the statistics of U.S. Energy Information Administration. We fix δ = 1%
and present values of m and σ for achieving ε = 10%, ε = 7%, and ε = 5% in
Fig. 7. When m = 600, σ is about 25, 18 and 12, respectively. The parameter
σ is a tradeoff between LMC correctness and LMC privacy requirement. Here
we obtain that a better approximate needs a smaller σ. We will see that LMC
privacy requirement needs a larger σ in the subsection 5.2.

5 Privacy Requirements and Analysis

We formally define ESP and LMC privacy requirements and show that our sys-
tem meets the requirements. We also show that meter readings are securely
stored.

5.1 ESP Privacy Requirement and Analysis

ESP privacy requirement is that ESP cannot get individual meter readings of
a household, where ESP gets sums of meter readings in time periods and ac-
cesses encrypted meter readings. We capture the ESP privacy requirement in a
security game G, where the power of ESP is enlarged to adaptively decide meter
readings for non-challenge time periods. Even having the ability of adaptively
setting meter readings and observing resulting encrypted meter readings, ESP
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Fig. 7. Values of m and σ for achieving the error ratio ω less than 10%, 7%, and 5%,
respectively, where d̂ = 105 and δ = 1%

still cannot distinguish meter readings from two possible sets of meter readings
in the game G. The security game G is described in the following.

The challenger C represents the metering system of a household Hi and the
adversary A represents the honest-but-curious ESP. A query phase proceeds at
beginning. A adaptively chooses meter readings di,j at time units tj from j = 1
and C returns the encrypted meter readings ci,j back to A. A then decides to en-
ter the challenge phase at tj1 . This phase simulates that A reveals meter readings
and their decryption information at time units earlier than tj1 . In the challenge
phase, A chooses a time period from the time unit tj1 to a later time unit tj2 ,
where j2−j1 = al for a positive integer a, and two challenge sets D0, D1 of meter
readings for time units between tj1 and tj2 , where Dv = {dvi,j1 , d

v
i,j1+1, · · · , dvi,j2}

for v ∈ {0, 1} and
∑j2

s=j1
d0i,s =

∑j2
s=j1

d1i,s. A sends D0 and D1 to C. C throws

a random coin b and encrypts meter reading dbi,s in Db as ci,s for s ∈ [j1, j2].
Let C = {ci,j1 , ci,j1+1, · · · , ci,j2}. After getting encrypted meter readings C, A
enters the second query phase. Again, A adaptively chooses a meter reading di,j′

for arbitrary time unit tj′ where j
′ > j2 and C adaptively returns the encrypted

meter reading c1,j′ back to A. A then outputs a guessing b′ for b.
If b′ = b, A wins the game G. That is, A successfully distinguishes which set

Db is encrypted. The advantage of an adversary is defined as |Pr[b′ = b]− 1/2|.

Definition 1. A smart metering system satisfies ESP privacy requirement if
for any probabilistic polynomial time algorithm A and a negligible function ε,
|PrA[b′ = b]− 1/2| < ε.

A similar game is defined in [17], where the adversary needs to choose challenge
sets D0 and D1 at the very beginning. It only captures a snapshot of meter
readings at a time unit. In our security game, the queries from the adversary is
adaptive. As a result, our security game models a stronger security requirement.
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ESP Privacy Analysis. We first rephrase the description of the pseudorandom
number generator in our smart metering system in Definition 2. Consider a set
E0 of a polynomial number f(τ) of elements randomly and uniformly chosen
from Zp and a set E1 of the same number f(τ) of elements generated by g.

Definition 2. Let b̃ ∈ {0, 1} be a random coin. A function g : {0, 1}τ×{0, 1}λ →
Zp is a pseudorandom number generator if given a set Eb̃ of elements, no prob-

abilistic polynomial time algorithm guesses b̃ with an advantage more than ε′,
where ε′ is a negligible function in τ .

Theorem 1 states that our system satisfies ESP privacy requirement.

Theorem 1. Let g be a pseudorandom number generator. Our smart metering
system satisfies ESP privacy requirement, where ε ≤ 2ε′ .

Proof. We prove by contradiction. Assume that an adversary A wins the game
with an advantage at least 2ε′. We construct an algorithm S such that given Eb̃,

where b̃ = 0 and b̃ = 1 with equal probabilities, S guesses b̃ with an advantage
more than ε′ by using A as follows.

S acts as C and interacts withA in the security game. S embeds elements in Eb̃

as random numbers {ri,1, ri,2, · · · , ri,l−1, Ri,1, Ri,2, · · · , Ri,f(τ)−l+1}. For queries
di,j from A, S returns ci,j , where ci,j = (di,j + ri,j) mod p. For j ≥ l − 1, S
computes ri,j as (Rj−l+2 −

∑j−1
k=j−l+2 ri,k) mod p. For challenges D0 and D1

from A, S chooses Db, which is either D0 or D1 with equal probabilities, and
computes C = {ci,s|ci,s = (dbi,s + ri,s) mod p, s ∈ [j1, j2]}. After S sends C to
A, again, S answers queries from A. Finally, if A successfully guesses b′ for b,
i.e., b′ = b, S outputs 1. Otherwise, S outputs 0.

When b̃ = 1 (E1 contains pseudorandom numbers), the simulated environ-
ment is identical to our system. Thus, A outputs b′ , where b′ = b, with a
probability at least 1/2+2ε′ by our assumption. When b̃ = 0 (E0 contains truly
random numbers), for each possible set Db, there exists a unique set of values
ri,j1 , ri,j1+1, · · · , ri,j2 satisfying that ci,s = (dbi,s + ri,s) mod p for s ∈ [j1, j2].
The distributions of C conditioned on D0 and D1 are identical. Thus, A has no
advantage. Therefore, A correctly guesses b with probability 1/2. As a result, S
outputs 1 with probability 1/2. S guesses b̃ with an advantage at least ε′:

Pr[S correctly guesses b̃]

= Pr[S outputs 0|b̃ = 0]Pr[b̃ = 0] + Pr[S outputs 1|b̃ = 1]Pr[b̃ = 1]

= Pr[A outputs b′, b′ �= b|b̃ = 0]Pr[b̃ = 0]

+ Pr[A outputs b′, b′ = b|b̃ = 1]Pr[b̃ = 1]

≥ (
1

2
)
1

2
+ (

1

2
+ 2ε′)

1

2

=
1

2
+ ε′

It contradicts with the assumption. 
�
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5.2 LMC Privacy Requirement and Analysis

LMC Privacy Requirement. For LMC privacy requirement, we require that
LMC only gets an approximate value d̃i,j for di,j with a non-negligible proba-
bility.

Definition 3. A metering smart system satisfies LMC privacy requirement if
LMC guesses value d̃i,j for di,j with Pr[d̃i,j �= di,j ] ≥ η for some significant
probability η.

LMC privacy requirement is slightly weak. Nevertheless, it is practical enough
for smart grids. In smart grid deployments, the load monitoring system is often
bundled with the grid operator. The grid operator can physically measure the
power consumption at a power substation. By cooperating with the grid oper-
ator, LMC can get individual meter readings. Our LMC privacy requirement
guarantees that when LMC does not get help from the grid operator, LMC
cannot get exactly individual meter readings with a significant probability.

LMC Privacy Analysis.

Theorem 2. Let a noise be the floor of a randomly chosen number from the
normal distribution N(0, σ2) in our system. Our smart metering system satisfies
LMC privacy requirement, where δ = 1/2− 1/(4πσ2)

Proof. We analyze Pr[d̃i,j �= di,j ]. The event of d̃i,j �= di,j implies that the noise
ni,j is not 0. Since the noise ni,j is the floor of a randomly chosen value n from
N(0, σ2), the event ni,j = 0 implies that 0 ≤ n < 1. Since Pr[ni,j �= 0] and
Pr[n < 0] = (1− Pr[n = 0])/2,

Pr[ni,j �= 0] >
1

2
− 1

4πσ2

Thus, for a meter reading di,j and a noised meter reading d̃i,j , we have η =
1
2 −

1
4πσ2 , which is significant for properly chosen σ. It concludes the proof for

the LMC privacy requirement. 
�

When σ is larger, LMC has less probability to get a correct meter reading.
Nevertheless, when σ is small, LMC has a better guess ξ̃ for ξ. Based on the
previous chosen condition of ε = 10% and δ = 10% for LMC correctness, we
consider σ = 25 and m = 600 for achieving that Pr[ω ≤ 10%] ≥ 99%. Under
this setting, we have Pr[ni,j �= 0] > 0.4998. Similarly, when ε = 7% (σ = 18)
and ε = 5% (σ = 12), we have Pr[ni,j �= 0] > 0.4997 and Pr[ni,j �= 0] > 0.4994,
respectively.

5.3 Storage Security

We show that meter readings are computationally securely stored in the storage
system. Note that ESP has more information than the storage system does and
our smart metering system satisfies the ESP privacy requirement.
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Table 1. Summary of performance analysis

Actor Storage system Meter

Subject Storage Computation Communication
for storing for ESP for LMC for ESP for LMC

Result 9MB 7(l + 1)ms 14ams 14ms 64 bits 64 bits

We define the security requirement of storage in a security game G′. The
security game G′ is the same as G except that the attacker A in G′ represents
the storage system. Thus, the security game G′ captures that the storage system
colludes with ESP. The storage security requirement is then defined:

Definition 4. A metering system satisfies secure storage requirement if for any
probabilistic polynomial time algorithm A and a negligible function ε, |PrA[b′ =
b]− 1/2| < ε.

Theorem 3 states that our smart metering system satisfies secure storage re-
quirement.

Theorem 3. Let g be a pseudorandom number generator. Our smart metering
system satisfies secure storage requirement, where ε ≤ 2ε′ .

Proof. Since the proof is the same as the proof of Theorem 1, here we refer
readers to the proof of Theorem 1. 
�

6 Performance Analysis

We use the previous setting of �log2 p = 64 and set a time unit as 5 minutes.
We evaluate the storage cost, computation cost, and communication cost in the
following. Table 1 gives a summary.

Storage cost. Inside each meterMi, l pseudorandom numbers ri,z−l+1, ri,z−l+2,
· · · , ri,z are stored. The total storage size is l�log2 p, i.e. 8l bytes.

For the storage system, each household uses �log2 p bits per time unit. Let a
time unit be 5 minutes. The total storage size for meter readings of a household
over 10 years is about 9 MB.

Computation cost. Computation operations of ESP and LMC are modular
additions, which are efficient in modern computers. We focus on the compu-
tation cost of a meter. For a meter Mi, to store a meter reading di,j , one
pseudorandom number Ri,j is generated by the TPM and l modular addi-
tions are performed by the driver of Mi. To reply a query of al continuous
time units tβ , tβ+1, · · · , tβ+al−1 from ESP, a pseudorandom numbers Ri,β+kl for
0 ≤ k ≤ a − 1 are generated and a modular additions are performed by the
driver of Mi. To reply a query of a recent time unit tj from LMC, the driver of
Mi generates a random noise ni,j and performs a modular addition to compute

the noised meter reading ˜di,j .
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A recent commercial TPM chip2 consists of a cryptographic accelerator capa-
ble of computing a 1024-bit RSA signature in 100 ms. Since generating a 1024-bit
random number by using the pseudorandom number generator is no slower than
the task of generating a 1024-bit RSA signature, each 64-bit random number can
be generated in less than 7 ms. Similarly, we assume that a modular addition
over Zp can be done in less than 7 ms. Thus, the smart meter can store a meter
reading in less than a time unit (5 minutes) when l < 42856 and reply a query
in less than a time unit when a < 21428. The numerical results show that the
computation of our system is well supported by current hardware technologies.

The communication cost between a meter and ESP or LMC for a query is
�log2 p bits. That is, for a query from ESP or LMC, a meter transmits a 64-bit
sum B of random numbers or a 64-bit noised random number r̃i,j .

7 Conclusion and Future Works

We proposed a smart metering system that simultaneously supports the billing
and load monitoring applications in a privacy preserving manner. ESP can only
query for consumption of a household over a time period. LMC can only query
an approximate consumption in an area at a recent time unit. Our construc-
tion is based on the layered meter model and uses the pseudorandom number
generator in the TPM. According to our performance analysis, based on current
TPM technologies, our construction is a practical and feasible solution to privacy
preserving smart metering systems.

In addition to the billing and load monitoring applications, fine-grained con-
sumption data contribute to other intelligent smart grid applications, such as
demand prediction and power distribution planning. It is interesting to design a
secure smart metering system that supports more applications.
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Abstract. Smart metering of utility consumption is rapidly becoming
reality for multitudes of people and households. It promises real-time
measurement and adjustment of power demand which is expected to
result in lower overall energy use and better load balancing. On the
other hand, finely granular measurements reported by smart meters can
lead to starkly increased exposure of sensitive information, including all
kinds of personal attributes and activities. Reconciling smart metering’s
benefits with privacy concerns is a major challenge.

In this paper we explore some simple and relatively efficient crypto-
graphic privacy techniques that allow spatial (group-wide) aggregation
of smart meter measurements. We also consider temporal aggregation
of multiple measurements for a single smart meter. While our work is
certainly not the first to tackle this topic, we believe that proposed tech-
niques are appealing due to their simplicity, few assumptions and peer-
based nature, i.e., no need for any on-line aggregators or trusted third
parties.

1 Introduction

Growing energy needs motivate both governments and industry to look for al-
ternative energy resources and, more importantly, provide better management
of existing power grids. However, improving efficiency of existing power grids
and smart load-balancing are challenging tasks. One approach to smart load-
balancing currently pursued by many developed countries is the deployment of
so-called “smart meters” that measure and report power consumption on a reg-
ular basis, thus allowing for real-time management of the grid.

While smart meters offer some clear benefits, accurate and fine-grained mea-
surements of household energy consumption trigger serious privacy concerns [2].
A plethora of sensitive information can be gleaned or derived from such mea-
surements, e.g., types of electrical devices being used as well as presence (and
number of) inhabitants. For example, due to privacy considerations, deployment
of smart meters in the Netherlands has been cancelled by the Parliament. How-
ever, it is well under way in other European countries, the USA and Canada.
It is anticipated that 80% of EU consumers will be using smart meters by year
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2020. Since their usage is essential to better grid management, it is important to
develop technologies that reconcile privacy with desired utility and functionality
of smart meters.

In this paper, we consider three privacy smart meter scenarios:

– Spatial aggregation: a local grid corresponding to a group of households
each equipped with a smart meter, where owners are interested in aggregate
(total) consumption in order to either adjust their own consumption accord-
ing to the average or check whether there is enough energy in the grid to
power an extra electrical device. This scenario is especially very important
for self-sufficient, remote places, particularly, in developing countries, where
renewable resources (such as wind turbines and solar panels) have become
more affordable for local energy production, as an alternative to traditional
carbon-based fuels.

– Temporal aggregation: a single household equipped with a smart meter
that reports its power consumption on a regular basis, for billing purposes.
In this scenario, the energy supplier charges the households for a certain
time period.

– Spatio-temporal data aggregation: a hybrid setting that combines both
of the above scenarios. In it, each node disseminates a single value for its mea-
surement and this value is used for computing spatial aggregate consumption
for the neighborhood, in that interval. At the same time, a number of such
values per household allows computation of temporal aggregate consumption
for each smart meter, for billing purposes.

In all aforementioned scenarios, individual smart meter measurements represent
sensitive information. Our goal is to keep them private without impacting either
utility or functionality of smart meters. We plan to achieve it by blending cryp-
tographic secret sharing coupled with additively homomorphic encryption. To
this end, the main contribution of this paper is an encryption scheme, wherein
each smart meter encrypts its fine-grained power consumption measurement.
However, no one can decrypt this individual encryption. Decryption only be-
comes possible when a fixed, predefined number of encryptions is aggregated.
This scheme allows us to compute spatial consumption in a local grid with a
fixed number of households (for one period) and/or temporal consumption of a
single household (for a fixed number of periods).

Although this paper is framed in terms of smart meters and power consump-
tion, our proposed scheme is quite general. It can be used in any scenario where
there is a need to additively aggregate plaintexts and keep individual plain-
text secret. In particular, clustering and collaborative filtering algorithms, used
e.g. in social networks and e-commerce applications, rely on privacy-sensitive
data of users like preferences, profiles and ratings. While there is a potential
privacy risk for users since the service provider can process the private data for
other purposes, re-sell them to third parties or fail to provide adequate physical
security, the provided services is still very appealing for many users. In such
situations, the ideas in this paper can be used to re-design the algorithms in a
privacy-preserving way.
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Moreover, the cost of our scheme is quite low and its security is not based
on any non-standard cryptographic or adversarial assumptions. As shown in the
complexity analysis, the computation performed by each smart meter is minimal
compared to the existing works in the literature.

The rest of the paper is organized as follows. We discuss related work in
Section 2 and summarize notation and adverserial model in Section 3. We present
our protocol for computing spatial consumption in a neighborhood in Section 4
and temporal consumption of a single household in Section 5. We explain the
protocol for computing both spatial and temporal consumptions in Section 6.
We provide an informal discussion on the security of the proposed protocols in
Section 7. We discuss complexity and how to adopt our protocols for different
types of measurements in Section 8. We finally conclude the paper in Section 9.

2 Related Work

A number of research results tackled privacy issues in smart meters, including
privacy-preserving billing [19,14] and aggregation of private data. Examples of
techniques that compute the sum of multiple private inputs include [7,5], where
encryption is done by modular addition (each player simply adds its key to
the plaintext) and aggregation is very efficient, also performed via addition.
However, this approach assumes a semi-trusted aggregator who knows the sum
of all keys (for each reporting interval) and can thus decrypt the aggregated
value by subtraction. This operation is not easily extensible to settings without
the aggregator or where the latter is simply not trusted with any secrets.

Peter et al. [18] consider three methods of aggregating data in a wireless
networks based on homomorphic encryption [11]. The first protocol uses the
Domingo-Ferrer (DF) encryption scheme [8] that is allegedly both additively and
multiplicatively homomorphic. However, there is no evidence that the underlying
DF cryptosystem is secure. The second protocol is a minor modification of [7] and
the third protocol is based on Elliptic Curve ElGamal, which is quite inefficient
because of expensive algebraic operations.

Kursawe et al. [15] present cryptographic protocols for computing aggregated
consumptions using Diffie-Hellman key exchange protocol and bilinear mapping,
which also requires expensive elliptic curve operations. Kohlweiss and Danezis
[14] propose a mechanism for privacy-preserving billing in a smart grid by us-
ing homomorphic encryption, secure multi-party computation (MPC) techniques
and cryptographic commitment schemes [13]. It requires the use of certificates to
obtain accountability. Since it involves heavy-weight cryptographic tools – such
as MPC – the cost of this scheme is very high.

In a recent result, Shi et al. [20] introduce an interesting technique for aggre-
gating private data using distributed differential privacy. Similar to our work,
it blends secret sharing with homomorphic encryption. However, it also requires
the aggregator to solve an instance of the discrete log problem (albeit, with
limited range) to obtain plaintext.

Garcia and Jacobs [12] propose a scheme to compute aggregate consumption
without revealing individual measurements using homomorphic encryption and
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secret sharing. For this purpose, every smart meter splits its measurement into
random shares and encrypt each of them using the public key of another smart
meter but keeps one share for itself. A substation collects all the encryptions
and multiplies the ones which are encrypted with the same public key. Later,
the substation sends the encrypted sums to the smart meters. Upon receiving the
encrypted sum, smart meters decrypt and add their shares in plaintext. Finally,
the substation collects the plain text sums and aggregate them all to obtain the
total consumption. While this apporach is privacy preserving, the number of
homomorphic encryptions per user is linear and the amount of data transferred
is quadratic in the number of smart meters, which is clearly inefficient.

Another approach offering differential privacy in the context of smart meters is
given by Árc and Castelluccia [1]. In addition to smart meters, the authors intro-
duce two other parties: a supplier and an aggregator. Individual measurements
are protected by adding Laplacian noise. This scheme uses efficient symmetric
encryption. To prevent the aggregator from learning individual measurements,
each encryption is masked with a random number, composed of dummy keys
collectively generated by a (fixed) group of smart meters. Similar to [6], each en-
cryptor also uses another key – shared by the aggregator and each smart meter
– such that only the aggregator (or the supplier) can obtain the noise-altered
sum of all measurements.

3 Preliminaries

In this section, we provide some background information on the envisaged op-
erating environment, cryptographic schemes, the adversarial model and other
assumptions.

3.1 Anticipated Setting

We assume an environment (e.g., a residential neighborhood) composed of a
fixed (static) group of N tamper-resistant smart meters, one per household. (We
use the terms household and smart meter interchangeably from here on.) Every
smart meter – denoted by smi, 0 < i ≤ N – is programmed to report its current
measurement (power consumption) with certain fixed periodicity common to all
other smart meters. All smart meters are loosely time-synchronized, i.e., report
their current measurements at more-or-less the same time. Furthermore, a smart
meter is assumed capable of performing simple public key operations and of
generating high-quality (cryptographically strong) random numbers.

We do not assume any other active entities, such as aggregators, suppliers or
trusted third parties. One of our goals is for any smart meter to be able to act
as an aggregator, for the purpose of computing total (group-wide) consumption.
On the other hand, we do not preclude the presence of passive entities, e.g.,
an aggregator that learns total consumption by overhearing messages, while not
taking part in any protocol.
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Moreover, we assume that all underlying communication channels are secure:
both integrity and authentication of all messages are obtained via standard
means, e.g., IPSec or SSL/TLS [9].

3.2 Notation

Our notation is summarized in Table 1.

Table 1. Notation Summary

Symbol Definition Symbol Definition

N number of smart meters M number of measurement intervals

n product of two large primes smi smart meter i

g generator p, q prime numbers

Zn set of integers from 0 to n− 1 Z∗
n set of integers co-prime to n

p time interval Ki shared key of smi

Epk (·) encryption function Dsk (·) decryption function

PRF(·) pseudo random function H(·) cryptographic hash function, e.g, SHA-2

hi hash of the smi using Ki Pr(F ), α probability of a malfunction at time interval F

c(i,p) measurement of smi in time in-
terval p

Cp total consumption of N smart meters for time in-
terval p

R(i,p) composite random number of
smi for time interval p

F time interval when a smart meter malfunctions

r(i→j,p) random number sent from smi

to smj in time interval p
h(i,p) hash of the smi using the pth period identifier

(time stamp)

k bit length of each measurement T Number of colluding smart meters

3.3 Adversarial Model

We assume the semi-honest (also known as “Honest-but-Curious”) adversarial
model. Consequently, all smart meters faithfully follow all prescribed protocol
steps. However, they may attempt to learn as much as possible information
beyond what they are entitled to have. We claim that this is realistic, since we
also assume that smart meters are (somewhat) tamper-resistant and interfering
with measurements is not trivial.

We also allow adversarial smart meters to collude as long as their number
does not exceed some fixed threshold T < N − 1. (This ensures the existence of
at least two honest smart meters for which only their combined consumption is
learned by the coalition of dishonest peers).

Although participants are assumed to follow all protocol steps and provide real
measurements, we do not rule out so-called data pollution (or other DoS) attacks
that can result in meaningless or incorrect measurement results. Since smart
meters are assumed to be tamper-resistant, we do not consider such attacks.
However, we note that they are more relevant to security rather than privacy.
Also, some pollution attacks can be addressed by incorporating zero-knowledge
proofs to show that measurements are within a certain sensible range [4].
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3.4 Homomorphic Encryption

The Paillier cryptosystem presented in [17] is additively homomorphic. This
means that there exists an operation over the ciphertexts Epk (m1) and Epk (m2)
such that the result of that operation corresponds to a new ciphertext whose
decryption yields the sum of the plaintext messages m1 and m2:

Dsk (Epk (m1)× Epk (m2)) = m1 +m2 . (1)

As a consequence of additive homomorphism, exponentiation of any ciphertext
yields the encrypted product of the original plaintext and the exponent:

Epk (m)
e
= Epk (m · e) . (2)

Given message m ∈ Zn, Paillier encryption is defined as:

Epk (m, r) = gm · rn mod n2 , (3)

where n is a product of two large primes p and q, g is a generator of order n and
r is a random number in Z∗

n. The tuple (g, n) is the public key. For decryption,
we refer readers to [17].

The Paillier cryptosystem is semantically secure. This is particularly impor-
tant for encryption of plaintext within a small range.

4 Aggregating Spatial Consumption

In this section, we describe a peer-based scheme for privately computing (spatial)
aggregate consumption.

Total consumption of smi is defined as: Cp =
∑N

i=1 c(i,p), where c(i,p) is the
measurement of smi in time interval p. The measurement interval p can take
any value – from seconds to days – depending on the specific application re-
quirements. Each smart meter stores only one Paillier public key, common to all
N smart meters in the group.

One of the distinguishing features of our scheme is that the (normally private)
Paillier decryption key is actually public. In other words, it is assumed to be
known at least by all smart meters in the group. In fact, it can be known by
any other party that is authorized to learn the total consumption. This feature
is clearly unusual. However, the justification is very simple: we use homomor-
phic (Paillier) scheme not because of encryption but only for its homomorphic
property.

Note: Although both Paillier encryption and decryption keys are “public” in
our protocol, a secure instance Paillier scheme still needs to be set up correctly
and securely. For this reason, we assume the existence of a trusted party (e.g.,
a CA) that bootstraps an instance of Paillier scheme, i.e., generates appropriate
parameters, including primes, modulii and keys. This third party is no longer
required after the set up phase.
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The proposed scheme works as follows:

1. For each measurement interval p, smi generates a set of random numbers,
one for every other smart meter. It then sends these numbers to all its peers
using the underlying (secure) communication channel(s).

2. Upon receiving these random values, each smart meter encrypts its measure-
ment using the Pailler scheme. (Recall that the main idea is to prevent smart
meters from decrypting individual measurements.) All encryptions are then
diseminated to the entire group.

3. Next, each smart meter combines all encryptions, including its own, to ob-
tain the encrypted sum (using the homomorphic property), and decrypts it
using the common private key. The resulting plaintext represents the total
consumption for the p-th measurement interval.

The protocol is shown in more detail in Figure 1.

�
�
�

Epk

(
c(1,p)

)

Epk

(
c(2,p)

)

Epk

(
c(N,p)

)

s1

s2

sN

Aggregator
(any smart meter)

Dsk

(
Epk

(∑N
i=1 c(i,p)

))

Fig. 1. Spatial Consumption

4.1 Generating and Exchanging Random Numbers

To compute total consumption for interval p, all smart meters initially exchange
random values to be used for masking individual consumption measurements.
For this purpose, each smi generates a random number r(i→j,p) and sends it
to a peer smj . We assume that all smart meters participate in the protocol by
identifying themselves via valid certificates. At the end of this step, each smi

receives N − 1 random values from its peers.

Note: Exchanging random numbers between smart meter pairs in each interval
introduces unnecessary communication overhead. Instead, smart meters can ex-
change the seed of their pseudo-random number generators when they initially
become active.
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Next, each smi computes R(i,p) based on all collected randomness:

R(i,p) = n+
N∑

j=1,i�=j

r(i→j,p) −
N∑

j=1,i�=j

r(j→i,p) , (4)

where n is the Paillier modulus. R(i,p) is used later to encrypt smi’s measurement

for the pth interval.

4.2 Encrypting Measurements

Recall that we want to disseminate individual measurements such that, only
when all of them are aggregated, the total can be retrieved. We achieve this by
encrypting measurements, c(i,p) using a modified version of the Paillier cryp-
tosystem. First, for each time interval p, each smart meter computes a hash:
h(i,p) = H(p), where H(·) is a secure hash function such as SHA-2. It is re-
quired for h(i,p) to be in Z∗

n, for the encryption scheme to work. This holds when
gcd(h(i,p), n) = 1.1

Next, smi encrypts its measurement, c(i,p), as follows

Epk
(
c(i,p)

)
= gc(i,p) · hR(i,p)

(i,p) , (5)

using the common Paillier public key. Finally, each smart meter disseminates its
encryption.

Encrypting measurements in this fashion has the following features. First, no

one in the smart grid can decrypt individual encryptions due to h
R(i,p)

(i,p) , even

though everyone has the decryption key. Second, encryption remains semanti-
cally secure since h(i,p) ∈ Z∗

n and R(i,p) is a random number in Zn, which is in
accordance with the original scheme. Third, by using h(i,p), computation of total
power consumption is bound to interval p.

4.3 Aggregation of Encrypted Measurements

To obtain total power consumption Cp, any smi multiplies all encrypted mea-
surements, including its own:

N∏
i=1

Epk
(
c(i,p)

)
=

N∏
i=1

gc(i,p) · hR(i,p)

(i,p)

=g
∑N

i=1 c(i,p) · h
∑N

i=1 R(i,p)

(i,p) , (6)

where,

N∑
i=1

R(i,p) =

N∑
i=1

n+

N∑
i=1

N∑
j=1,i�=j

r(i→j,p) −
N∑
i=1

N∑
j=1,i�=j

r(j→i,p) . (7)

1 The number of values in Z∗
n2 is (Φ(n))2, which is close to n2 for large p and q.
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Since
∑N

i=1

∑N
j=1,i�=j r(i→j,p) equals

∑N
i=1

∑N
j=1,i�=j r(j→i,p), the terms in (7) can-

cel each other out and the summation results in:

N∑
i=1

R(i,p) =

N∑
i=1

n = N · n . (8)

Replacing the above sum in Eq. (6), we obtain:

g
∑N

i=1 c(i,p) · h
∑N

i=1 R(i,p)

(i,p) = g
∑N

i=1 c(i,p) · hN ·n
(i,p) , (9)

which is the encryption of
∑N

i=1 c(i,p) with a random value hN
(i,p):

g
∑N

i=1 c(i,p) · (hN
(i,p))

n = Epk

(
N∑
i=1

c(i,p)

)
= Epk (Cp) . (10)

This result decrypted to obtain the total power consumption.

5 Computing Temporal Consumption

We now consider privacy in the temporal dimension. In this setting, we envision
a single smart meter that periodically reports its consumption totals, e.g., for
the purpose of billing. However, as discussed earlier, such fine-grained reporting
might be detrimental to privacy. We consider two scenarios.

1. The smart meter reports its measurements for billing purposes and the total
is computed only when a pre-defined number of measurements is received by
the supplier. In the case of a smart meter malfunction, the supplier asks for
help from the manufacturer of that smart meter in order to obtain partial
consumption, i.e., until the time malfunction occurred.

2. The smart meter reports its accumulated measurement, i.e., the total con-
sumption:

∑
p=1 c(i,p).

Note that in this scenario, all incremental consumption measurements are
encrypted using the public key of the manufacturer. In the last interval, the
smart meter sends the total consumption to the supplier using the public
key of the latter. In the event of a malfunction (i.e., the smart meter cannot
report) the last consumption measurement encrypted with the public key of
the manufacturer will be sent to the manufacturer for decryption.

Each scenario has its advantages. While, in the first, the manufacturer is not
needed to encrypt any private data, the supplier has to store all encrypted mes-
sages sent by all smart meters. In the second scenario, however, the manufacturer
decrypts a single ciphertext for the supplier. The supplier stores only the last
message sent by each smart meter.

For these two scenarios, we define the following roles:

– Manufacturer M: the entity that produces the smart meters. It is not
involved in the billing process.
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– Supplier S: the authority that periodically bills the households for their
consumption. In this setting, we assume that invoices are sent for every M
intervals. The supplier also has a Paillier public key-pair. Its public key is
available to all smart meters in the grid.

– Smart meter: Household with a smart meter as defined before, capable
of reporting its consumption on a regular basis. Every smart meter has a
bi-directional communication channel with the supplier that uses a secure
and reliable transfer protocol.

We now present the first protocol. The second protocol is trivial to realize by
following a similar approach.

5.1 Encrypting Measurements

We use a similar construction to that in Section 4 – a modified version of the
Paillier cryptosystem: smi generates a random number, r(i,p), using a PRF that
takes two inputs: (1) the secret key Ki unique key to each smi and shared
with the manufacturer, and (2) the unique interval identifier – p. In other
words: R(i,p) := PRF(Ki, p). (Note that p can be viewed as a corsely granu-
lar timestamp.) As in Section 4, smi also generates hi := H(Ki) ∈ Z∗

n to be
used throughout all M intervals. The consumption c(i,p) is then encrypted as:

Epk
(
c(i,p)

)
= gc(i,p) · hR(i,p)

i .
With billing occurring every M measurement intervals, smi generates R(i,p)

for the first M − 1 intervals as described above. The value to be used in time
interval M is computed as follows:

R(i,M) := n−
M−1∑
p=1

R(i,p) . (11)

5.2 Obtaining Total Consumption

Upon receiving all encryptions for M time intervals from smi, the supplier ag-
gregates them:

M∏
p=1

Epk
(
c(i,p)

)
=

M∏
p=1

gc(i,p) · hR(i,p)

i = g
∑M

p=1 c(i,p) · h
∑M

i=p R(i,p)

i

= g
∑M

p=1 c(i,p) · hn
i = Epk

(
M∑
p=1

c(i,p)

)
. (12)

Since the sum of all R(i,p)’s is n, the above encryption can be easily decrypted
by the supplier.
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5.3 Coping with Malfunctions

In the event of a malfunction, smi can not send its measurements after interval
F . At the same time, with only encrypted measurements of the first F intervals,
the supplier can not decrypt and determine total consumption. To remedy the
situation, the supplier contacts the manufacturer, who has a unique secret key
Ki pre-shared with smi. The manufacturer can re-generate all random numbers
used for the first F intervals: R(i,p) := PRF(Ki, p) and hi. Having computed
these values, the manufacturer then encrypts:

Epk (O) = g0 · hR(i,F+1)

i , where R(i,F+1) = n−
F∑

p=1

r(i,p) . (13)

Using the encryption sent by the manufacturer, the supplier can compute the
total consumption for the first F intervals by multiplying the encryption received
from the manufacturer and decrypting the result using its private key.

Dsk

(
Epk

(
F∑

p=1

c(i,p)

)
· Epk (O)

)
=

F∑
p=1

c(i,p) (14)

6 Computing Spatio-temporal Consumption

In prior sections, we focused on computing either spatial or temporal total
consumption in a smart neighborhood grid. In this section, we turn to spatio-
temporal total consumption.

The scheme involves three types of entities, as before: a manufacturer, a sup-
plier and smart meters.

6.1 Encrypting Measurements

As in Section 4, each smi comes up with a secret value R(i,p) for interval p

such that
∑N

i=1 R(i,p) is a multiple of n. Each such R(i,p) can be generated
jointly by contributions from all smart meters, as described in Section 4. In
cases where manufacturer’s involvement is possible, R(i,p)-s can be provided by

the manufacturer, with the property of:
∑N

i=1 R(i,p) = 0.
In interval p, smi encrypts its consumption, c(i,p) with the common Paillier

public key:

Epk
(
c(i,p)

)
= gc(i,p) · hR(i,p)

p , (15)

where hp ∈ Z∗
n is the hash of the current interval, e.g., hp = H(p). Each cipher-

text is then broadcasted to all peers.
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p = 1 p = 2 p = 3 . . . p = M

...

c(1,1)

c(2,1)

c(N,1) c(N,2) c(N,3) . . . c(N,M)

Σ Aggregator
Supplier

Σ

Fig. 2. Spatio-Temporal Consumption

6.2 Obtaining Spatial Consumption

Upon receiving N ciphertexts, smi computes total consumption as before, by
multiplying all ciphertexts and decrypting the final value. Recall that individual
encryptions cannot be decrypted by anyone.

N∏
i=1

Epk
(
c(i,p)

)
=Epk

(
N∑
i=1

c(i,p)

)
=g

∑N
i=1 c(i,p) · h

∑N
i=1 R(i,p)

p . (16)

Since R(i,p)-s add up to a multiple of n (or sum up to 0 if the manufacturer
is involved), the above multiplication results in proper encryption of total con-
sumption, that can be decrypted using the common private key.

6.3 Obtaining Temporal Consumption

After each smart meter broadcasts the ciphertexts of its consumption for M
intervals, temporal consumption can be computed. However, each smi uses a
different hash , h(i,p), and R(i,p), for encryption in each interval p. Even after
multiplying all M ciphertexts from the same smi, it is impossible to decrypt the
resulting ciphertext:

M∏
p=1

Epk
(
c(i,p)

)
= g

∑M
p=1 c(i,p) ·

M∏
p=1

h
R(i,p)
p , (17)
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since it does not represent a valid encryption. To decrypt it, an additional random
value, R(i,M+1), must be provided by smi such that the following condition is
satisfied:

R(i,M+1) =
rn∏M

p=1 h
R(i,p)
p

, (18)

where r is a random value in Z∗
n. Note that, after multiplying the ciphertext in

in Eq. (17) with R(i,M+1), we have:

M∏
p=1

Epk
(
c(i,p)

)
· R(i,M+1) =g

∑M
p=1 c(i,p) ·

M∏
p=1

h
R(i,p)

(i,p)

× rn∏M
p=1 h

R(i,p)
p

=g
∑M

p=1 c(i,p) · rn , (19)

which can be decrypted properly.

6.4 Coping with Malfunctions

The scheme described above can be realized without any suppliers or manufac-
turers. However, in case of a malfunction, it becomes impossible to obtain the
total consumption. To recover data, collaboration between the manufacturer and
the supplier is necessary. In that case, the manufacturer should genrate and store
the random values, R(i,p), and give them to the smart meters. When a malfunc-
tion occurs, supplier asks for the random value R(i,M+1) from the manufacturer,
that could compute it to be used for decryption as in previous section.

7 Security Considerations

There are two basic flavours of security that we consider in this paper: semantic
security of the modified Paillier cryptosystem and collisions. We give an informal
discussion on these issues in this section.

The security of our schemes mainly based on the semantic security of the
modified Paillier cryptosytem. Once a measurement is encrypted, ciphertext is
disseminated, meaning that the encryption is accessibly by all of the smart me-
ters in the grid. Assuming that the bit length of the measurements are small
compared to the message space of the cryptosysten, semantic security is crucial.

The consumption measurement of smi, c(i,p), is encrypted by following the
description of the Paillier scheme but randomized in a different way. Instead of
using a random number r ∈ Z∗

n and raising it to the power of n, we generate
a hash, by taking the hash of either the time interval hp = H(p) or the shared
key of the smart meter hi = H(Ki), and raise this hash to the power of a
random number, R(i,p). The way we generate the hash value guarantees that
it is in Z∗

n, matching the requirements of the original cryptosystem. Therefore,
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the encrypted message is uniformly distributed to the ciphertext space of the
cryptosystem, satisfying the semantic security.

The security against the malicious coalition relies on the assumption that at
least two out of N smart meters are acting accordingly to the protocol spec-
ifications. It is trivial to see that any smart meter can obtain the encrypted
measurements of any other smart meter, assuming that these encryptions are
disseminated in the network, and cannot decrypt the ciphertext even though
every smart meter has the public decryption key. A coalition of N − 1 malicious,
or curious, smart meters can sum up the measurements of N − 1 smart meters
and obtain the measurement of the honest N th smart meter by subtracting that
sum from the total, which is computed by following the protocol steps. Only in
the case of having two honest smart meters in the neighbourhood, the rest of the
smart meters can not obtain the individual measurements of these two smart
meters.

8 Complexity and Data Packing

In this section, we present complexity analysis and a way to compute different
type of measurements using a single smart meter.

8.1 Complexity

We based our complexity analysis on the number of operations performed by
a smart meter, that include: en/de-cryptions, generation of random numbers,
PRF invocations and hashing. We denote the probability of malfunction for a
smart meter (e.g., quoted at 0.08% in [10]) by Pr(F) = α. The total number of
operations performed by each party for different cases is summarized in Table 2.

Table 2. Numbers of cryptographic operations for: (1) smart meter (SM), (2) aggre-
gator (A), (3) supplier (S) and (4) manufacturer (M)

Spatial Temporal Spatio-Temporal

SM A SM S M SM A S M
Encryption 1 - M - α · 1 M - - -

Decryption - 1 - 1 - - 1 1 -

Multiplication - N − 1 - M − 1 - - N − 1 M − 1 α(M − 1)

Hash 1 - M - α · F M - - α · F
PRF N − 1 - M - α · F M - - α · F

As seen in Table 2, obtaining aggregated consumptions cost only 1 encryp-
tion and constant amount of hash and PRF functions per smart meter in each
time interval. The computation of R(i,M), which is necessary for the decryp-
tion of total consumption, requires M multiplications over n and computing
the inverse of that product. In practice, smart meters are supposed to report



Private Computation of Spatial and Temporal Power Consumption 575

their consumptions as often as 5 minutes. Implementation results in [16] show
that even more expensive cryptographic operations can be realized efficiently
on smart meters. It is our conclusion that the proposed cryptographic protocols
in this paper, which are only based on performing cryptographic primitives like
encryption, hash functions and random number generation, present a highly ef-
ficient way of computing aggregated consumptions without disclosing individual
measurements.

8.2 Multiple Utility Measurements

This paper focused on aggregating smart meter measurements, however, without
specifying explicitly what kind of measurements are possible. In practice, for
each type of basic utility – e.g., water, gas and electricity – there is a different
metering device and (usually) a different supplier. However, if the same smart
device is used for measuring multiple types of utilities, our approach can still be
used.

Assume that for a given smi we have the following measurements: c(ij,p) for
j ∈ [1, L] each k bits, where k 0 n and n is the Paillier modulus. Then,
a number of such measurements can be packed into one plaintext: ĉ(i,p) :=
c(i1,p)|c(i2,p)|c(i3,p)| . . . |c(iL,p) as follows:

ĉ(i,p) :=

L∑
j=1

c(ij,p) · 2j·(k+�logN�) . (20)

This construction is similar to [21,3]. It assumes that each measurement from N
smart meters is aggregated in subsequent steps. Therefore, each measurement
type has a reserved “compartment” of k + �logN bits. With N > M , com-
partments are sufficient for computing temporal measurements. However, the
number of measurements that can fit into one plaintext is n

k+�logN� . Therefore,
more than one encryption might be needed in some cases where a vast number
of measurements are needed to be packed.

9 Conclusion

Fine granular reporting in smart metering systems causes serious privacy consid-
erations and thus creates resistance against wide-deployment of such systems.
In this paper, we have addressed computing total consumption in a privacy-
preserving way in three scenarios: spatial, temporal and spatio-temporal total
consumption computations, in which individual measurements of the households
are kept secret from any party but the total consumption in the neighbourhood
and/or of a particular smart meter is obtained accurately. The methods we have
presented rely only on the capability of performing public-key operations on the
smart metering device. The complexity analysis shows that with the currently
existing smart metering device configurations, deployment of the proposed meth-
ods is realistic.
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