

Lecture Notes in Computer Science 7354
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Juha Kärkkäinen Jens Stoye (Eds.)

Combinatorial
Pattern Matching
23rd Annual Symposium, CPM 2012
Helsinki, Finland, July 3-5, 2012
Proceedings

13

Volume Editors

Juha Kärkkäinen
University of Helsinki, Department of Computer Science
P.O. Box 68, Gustaf Hällströmin katu 2b, 00014 University of Helsinki, Finland
E-mail: juha.karkkainen@cs.helsinki.fi

Jens Stoye
Bielefeld University, Faculty of Technology
Universitätsstraße 25, 33615 Bielefeld, Germany
E-mail: jens.stoye@uni-bielefeld.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-31264-9 e-ISBN 978-3-642-31265-6
DOI 10.1007/978-3-642-31265-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012939778

CR Subject Classification (1998): I.5, F.2, G.1, G.2.1-2, G.2, E.1, E.4, H.3.3, I.2.7,
H.2.8, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The papers contained in this volume were selected to be presented at the 23rd
Annual Symposium on Combinatorial Pattern Matching (CPM 2012) held in
Helsinki, Finland, during July 3–5, 2012, co-located with the 13th Scandinavian
Symposium and Workshops on Algorithm Theory (SWAT 2012).

The conference program included 33 contributed papers and two invited talks
by Ron Shamir from Tel Aviv University and by Gonzalo Navarro from Univer-
sity of Chile in Santiago. The contributed papers were selected out of 60 submis-
sions from 28 countries; each paper was reviewed by at least three reviewers. The
joint program with the co-located SWAT 2012 conference included additional 34
contributed papers and two invited talks, by Joseph S.B. Mitchell from State
University of New York at Stony Brook and by Roger Wattenhofer from ETH
Zürich, published in a separate volume.

The Program Committee decided to grant the Best Student Paper Award to
Pawe�l Gawrychowski for the paper titled“Simple and Efficient LZW-Compressed
Multiple Pattern Matching”.

The objective of the annual CPM meetings is to provide an international
forum for research in combinatorial pattern matching and related applications.
It addresses issues of searching and matching strings and more complicated pat-
terns such as trees, regular expressions, graphs, point sets, and arrays. The
goal is to derive non-trivial combinatorial properties of such structures and
to exploit these properties in order to either achieve superior performance for
the corresponding computational problems or pinpoint conditions under which
searches cannot be performed efficiently. The meeting also deals with problems in
computational biology, data compression and data mining, coding, information
retrieval, natural language processing, and pattern recognition.

The Annual Symposium on Combinatorial Pattern Matching started in 1990,
and has since taken place every year. Previous CPM meetings were held in
Paris, London (UK), Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus,
Piscataway, Warwick, Montreal, Jerusalem, Fukuoka, Morelia, Istanbul, Jeju
Island, Barcelona, London (Canada), Ontario, Pisa, Lille, New York, and Palermo.
Helsinki is the first place to host the meeting twice.

Starting from the third meeting, proceedings of all meetings have been pub-
lished in the LNCS series, as volumes 644, 684, 807, 937, 1075, 1264, 1448, 1645,
1848, 2089, 2373, 2676, 3109, 3537, 4009, 4580, 5029, 5577, 6129, and 6661.

Selected papers from the first meeting appeared in volume 92 of Theoretical
Computer Science, from the 11th meeting in volume 2 of the Journal of Discrete
Algorithms, from the 12th meeting in volume 146 of Discrete Applied Mathemat-
ics, from the 14th meeting in volume 3 of the Journal of Discrete Algorithms,
from the 15th meeting in volume 368 of Theoretical Computer Science, from the
16th meeting in volume 5 of the Journal of Discrete Algorithms, from the 19th

VI Preface

meeting in volume 410 of Theoretical Computer Science, from the 20th meeting
in volume 9 of the Journal of Discrete Algorithms, from the 21st meeting in
volume 213 of Information and Computation, and a special issue of Theoreti-
cal Computer Science is currently in preparation for selected papers from CPM
2011. A special issue of the Journal of the Discrete Algorithms is planned for
the selected extended abstracts presented at this year’s meeting.

We thank the CPM Steering Committee for supporting Helsinki as the site
for CPM 2012, and for their advice and help in different issues. Financial and
organizational support was provided by the University of Helsinki, Aalto Uni-
versity, and the Federation of the Finnish Learned Societies. The meeting would
not have been possible without the laborious work of the local organizing teams
of CPM 2012 and SWAT 2012.

The whole submission and review process was carried out with the invaluable
help of the EasyChair conference system. Finally, special thanks are due to
the members of the Program Committee and their subreviewers who worked
very hard to ensure the timely review of all the submitted manuscripts, and
participated in stimulating discussions that led to the selection of the papers for
the conference.

April 2012 Juha Kärkkäinen
Jens Stoye

Organization

Program Committee

Hiroki Arimura Hokkaido University, Japan
Diego Arroyuelo Universidad Técnica Federico Santa Maŕıa,

Chile
Hideo Bannai Kyushu University, Japan
Nieves R. Brisaboa University of A Coruña, Spain
Ferdinando Cicalese University of Salerno, Italy
Martin Farach-Colton Rutgers University and Tokutek Inc., USA
Simone Faro University of Catania, Italy
Kimmo Fredriksson University of Eastern Finland, Finland
Inge Li Gørtz Technical University of Denmark, Denmark
Shmuel Tomi Klein Bar Ilan University, Israel
Roman Kolpakov Moscow University, Russia
Juha Kärkkäinen University of Helsinki, Finland (Co-chair)
Gad M. Landau University of Haifa, Israel, and NYU-Poly, USA
Thierry Lecroq University of Rouen, France
Bin Ma University of Waterloo, Canada
Jan Manuch University of British Columbia, Canada, and

Simon Fraser University, Canada
Mehryar Mohri Courant Institute of Mathematical Science,

USA, and Google Research, New York, USA
Enno Ohlebusch University of Ulm, Germany
Heejin Park Hanyang University, South Korea
Mathieu Raffinot LIAFA, Université Paris Diderot, France
Sven Rahmann University of Duisburg-Essen, Germany
Wojciech Rytter Warsaw University, Poland, and Copernicus

University, Poland
Yasmı́n Rı́os-Soĺıs Autonomous University of Nuevo León, Mexico
Marinella Sciortino University of Palermo, Italy
Rahul Shah Louisiana State University, USA
Jens Stoye Bielefeld University, Germany (Co-chair)
Wing-Kin Sung National University of Singapore, Singapore
Jorma Tarhio Aalto University, Finland
German Tischler The Wellcome Trust Sanger Institute, UK
Alexander Tiskin University of Warwick, UK
Dekel Tsur Ben Gurion University of the Negev, Israel

VIII Organization

Steering Committee

Alberto Apostolico University of Padova, Italy, and Georgia
Institute of Technology, USA

Maxime Crochemore Université Paris-Est, France, and King’s,
College London, UK

Zvi Galil Georgia Institute of Technology, USA

Organizing Committee

Travis Gagie Aalto University, Finland
Juha Kärkkäinen University of Helsinki, Finland
Veli Mäkinen University of Helsinki, Finland
Simon J. Puglisi King’s College London, UK
Leena Salmela University of Helsinki, Finland
Jouni Sirén University of Helsinki, Finland
Jorma Tarhio Aalto University, Finland
Esko Ukkonen University of Helsinki, Finland
Niko Välimäki University of Helsinki, Finland

Additional Reviewers

Allauzen, Cyril
Amit, Mika
Andonov, Rumen
Bader, Martin
Bansal, Mukul S.
Bille, Philip
Blin, Guillaume
Breslauer, Dany
Castiglione, Giuseppa
Cid-Garćıa, Néstor
Cording, Patrick
Czeizler, Elena
D’Addario, Marianna
Dondi, Riccardo
Ernst, Corinna
Feng, Guangyu
Fertin, Guillaume
Gagie, Travis
Gawrychowski, Pawe�l
Gog, Simon
Grabowski, Szymon
Groult, Richard
He, Lin

Hermelin, Danny
Hernández-Landa, Leonardo
I, Tomohiro
Ibarra-Rojas, Omar
Inenaga, Shunsuke
Kaltenbach, Hans-Michael
Kannan, Rajgopal
Karhu, Kalle
Kim, Jin Wook
Kim, Sung-Ryul
Kociumaka, Tomasz
Kopelowitz, Tsvi
Kowaluk, Miroslaw
Lee, Inbok
Lefebvre, Arnaud
Marschall, Tobias
Mnich, Matthias
Morales-Marroqúın, Miguel
Na, Joong Chae
Patil, Manish
Prieur-Gaston, Élise
Puglisi, Simon J.
Riley, Michael

Organization IX

Rosone, Giovanna
Rozenberg, Liat
Salmela, Leena
Sammeth, Michael
Sim, Jeong Seop
Sirén, Jouni
Szreder, Bartosz
Thachuk, Chris

Thankachan, Sharma V.
Uno, Takeaki
Venturini, Rossano
Vialette, Stéphane
Vildhøj, Hjalte Wedel
Waleń, Tomasz
Weimann, Oren
Yang, Lian

Table of Contents

Invited Talks

Gene Regulation, Protein Networks and Disease: A Computational
Perspective . 1

Ron Shamir

Wavelet Trees for All . 2
Gonzalo Navarro

Contributed Papers

The Maximum Number of Squares in a Tree . 27
Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka,
Marcin Kubica, Jakub Radoszewski, Wojciech Rytter,
Wojciech Tyczyński, and Tomasz Waleń

Faster and Simpler Minimal Conflicting Set Identification
(Extended Abstract) . 41

Aı̈da Ouangraoua and Mathieu Raffinot

Partitioning into Colorful Components by Minimum Edge Deletions 56
Sharon Bruckner, Falk Hüffner, Christian Komusiewicz,
Rolf Niedermeier, Sven Thiel, and Johannes Uhlmann

Approximation Algorithms and Hardness Results for Shortest Path
Based Graph Orientations . 70

Dima Blokh, Danny Segev, and Roded Sharan

Constant-Time Word-Size String Matching . 83
Dany Breslauer, Leszek G ↪asieniec, and Roberto Grossi

Pattern Matching in Multiple Streams . 97
Raphaël Clifford, Markus Jalsenius, Ely Porat, and Benjamin Sach

An Efficient Linear Pseudo-minimization Algorithm for Aho-Corasick
Automata . 110

Omar AitMous, Frédérique Bassino, and Cyril Nicaud

Efficient Two-Dimensional Pattern Matching with Scaling and Rotation
and Higher-Order Interpolation . 124

Christian Hundt and Florian Wendland

XII Table of Contents

Hardness of Longest Common Subsequence for Sequences with Bounded
Run-Lengths . 138

Guillaume Blin, Laurent Bulteau, Minghui Jiang,
Pedro J. Tejada, and Stéphane Vialette

Near Linear Time Construction of an Approximate Index for All
Maximum Consecutive Sub-sums of a Sequence . 149

Ferdinando Cicalese, Eduardo Laber, Oren Weimann, and
Raphael Yuster

The Complexity of String Partitioning . 159
Anne Condon, Ján Maňuch, and Chris Thachuk

Towards an Optimal Space-and-Query-Time Index for Top-k Document
Retrieval . 173

Wing-Kai Hon, Rahul Shah, and Sharma V. Thankachan

Document Listing for Queries with Excluded Pattern 185
Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and
Jeffrey Scott Vitter

Cross-Document Pattern Matching . 196
Gregory Kucherov, Yakov Nekrich, and Tatiana Starikovskaya

FEMTO: Fast Search of Large Sequence Collections 208
Michael P. Ferguson

Speeding Up q-Gram Mining on Grammar-Based Compressed Texts 220
Keisuke Goto, Hideo Bannai, Shunsuke Inenaga, and
Masayuki Takeda

Simple and Efficient LZW-Compressed Multiple Pattern Matching 232
Pawe�l Gawrychowski

Computing the Burrows-Wheeler Transform of a String and Its
Reverse . 243

Enno Ohlebusch, Timo Beller, and Mohamed I. Abouelhoda

Efficient Algorithm for Circular Burrows-Wheeler Transform 257
Wing-Kai Hon, Tsung-Han Ku, Chen-Hua Lu, Rahul Shah, and
Sharma V. Thankachan

Least Random Suffix/Prefix Matches in Output-Sensitive Time 269
Niko Välimäki

Compressed String Dictionary Look-Up with Edit Distance One 280
Djamal Belazzougui and Rossano Venturini

Time-Space Trade-Offs for Longest Common Extensions 293
Philip Bille, Inge Li Gørtz, Benjamin Sach, and Hjalte Wedel Vildhøj

Table of Contents XIII

Local Exact Pattern Matching for Non-fixed RNA Structures 306
Mika Amit, Rolf Backofen, Steffen Heyne, Gad M. Landau,
Mathias Möhl, Christina Schmiedl, and Sebastian Will

Impact of the Energy Model on the Complexity of RNA Folding with
Pseudoknots . 321

Saad Sheikh, Rolf Backofen, and Yann Ponty

Finding Longest Common Segments in Protein Structures in Nearly
Linear Time . 334

Yen Kaow Ng, Hirotaka Ono, Ling Ge, and Shuai Cheng Li

A Linear Kernel for the Complementary Maximal Strip Recovery
Problem . 349

Haitao Jiang and Binhai Zhu

Efficient Exponential Time Algorithms for Edit Distance between
Unordered Trees . 360

Tatsuya Akutsu, Takeyuki Tamura, Daiji Fukagawa, and
Atsuhiro Takasu

Fixed-Parameter Algorithms for Finding Agreement Supertrees 373
David Fernández-Baca, Sylvain Guillemot, Brad Shutters, and
Sudheer Vakati

Computing the Rooted Triplet Distance between Galled Trees by
Counting Triangles . 385

Jesper Jansson and Andrzej Lingas

Minimum Leaf Removal for Reconciliation: Complexity and
Algorithms . 399

Riccardo Dondi and Nadia El-Mabrouk

On the Closest String via Rank Distance . 413
Liviu P. Dinu and Alexandru Popa

On Approximating String Selection Problems with Outliers 427
Christina Boucher, Gad M. Landau, Avivit Levy,
David Pritchard, and Oren Weimann

The Parameterized Complexity of the Shared Center Problem 439
Zhi-Zhong Chen, Lusheng Wang, and Wenji Ma

Author Index . 453

Gene Regulation, Protein Networks and Disease:

A Computational Perspective

Ron Shamir�

Blavatnik School of Computer Science, Tel Aviv University
rshamir@tau.ac.il

Abstract. Understanding complex disease is one of today’s grand
challenges. In spite of the rapid advance of biotechnology, disease under-
standing is still very limited and further computational tools for disease-
related data analysis are in dire need. In this talk I will describe some of
the approaches that we are developing for these challenges. I will describe
methods for utilizing expression profiles of sick and healthy individuals
to identify pathways dysregulated in the disease, methods for integrated
analysis for expression and protein interactions, and methods for regu-
latory motif discovery. If time allows, I’ll discuss methods for analysis of
genome aberrations in cancer. The utility of the methods will be demon-
strated on biological examples.
Joint work with Igor Ulitsky, Ofer Lavi, Yaron Orenstein, Richard M.

Karp, Gideon Dror, Akshay Krishnamurthy, Michal Ozery-Flato, Chaim
Linhart, Luba Trakhtenbrot, Shai Izraeli, Annelyse Thevenin and Liat
Ein-Dor.

� Supported in part by the Raymond and Beverly Sackler Chair in Bioinformatics,
the Israel Science Foundation (Grant 802/08), the European Union 7th Framework
(TRIREME and APO-SYS grants), and IBM Research Open Collaborative Research
grant.

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, p. 1, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Wavelet Trees for All�

Gonzalo Navarro

Dept. of Computer Science, University of Chile
gnavarro@dcc.uchile.cl

Abstract. The wavelet tree is a versatile data structure that serves
a number of purposes, from string processing to geometry. It can be
regarded as a device that represents a sequence, a reordering, or a grid
of points. In addition, its space adapts to various entropy measures of the
data it encodes, enabling compressed representations. New competitive
solutions to a number of problems, based on wavelet trees, are appearing
every year. In this survey we give an overview of wavelet trees and the
surprising number of applications in which we have found them useful:
basic and weighted point grids, sets of rectangles, strings, permutations,
binary relations, graphs, inverted indexes, document retrieval indexes,
full-text indexes, XML indexes, and general numeric sequences.

1 Introduction

The wavelet tree was invented in 2003 by Grossi, Gupta, and Vitter [54], as a data
structure to represent a sequence and answer some queries on it. Curiously, a
data structure that has turned out to have a myriad of applications was buried in
a paper full of other eye-catching results. The first mention to the name “wavelet
tree” appears on page 8 of 10 [54, Sec. 4.2]. The last mention is also on page 8,
save for a figure caption on page 9. Yet, the wavelet tree was a key tool to obtain
the main result of the paper, a milestone in compressed full-text indexing.

It is interesting that, after some thought, one can see that the wavelet tree
is a slight generalization of an old (1988) data structure by Chazelle [25], heav-
ily used in Computational Geometry. This data structure represents a set of
points on a two-dimensional grid: it describes a successive reshuffling process
where the points start sorted by one coordinate and end up sorted by the other.
Kärkkäinen, in 1999 [66], was the first to put this structure in use in the com-
pletely different context of text indexing. Still, the concept and usage were totally
different from the one Grossi et al. would propose four years later.

We have already mentioned three ways in which wavelet trees can be regarded:
(i) as a representation of a sequence; (ii) as a representation of a reordering of
elements; (iii) as a representation of a grid of points. Since 2003, these views
of wavelet trees, and their interactions, have been fruitful in a surprisingly wide
range of problems, extending well beyond the areas of text indexing and com-
putational geometry where the structure was conceived.

� Partially funded by Millennium Nucleus Information and Coordination in Networks
ICM/FIC P10-024F, Chile.

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 2–26, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Wavelet Trees for All 3

aaba _a_a_aabaa
0 0 0 0 00 0 00 1 0 0 1 0

al_a_ _l raaba l raaba da

__ _ aaaaaaaaa

bb
0 0 0 0 0 0 0 0 01 1 1
a_a_a_aaaa aa

0 0 0 0 0 00 0 0 0 0 0 001 1 1 1 1 1

0 0 0 011

1 1 01
lll d

ll l

llrdrl

rr

d

_,a b r

_ a l

_,a,b

d

d,l

d,l,r

Fig. 1. A wavelet tree on string S = "alabar a la alabarda”. We draw the spaces as
underscores. The subsequences of S and the subsets of Σ labeling the edges are drawn
for illustration purposes; the tree stores only the topology and the bitmaps.

Our goal in this article is to give an overview of this marvellous data structure
and its many applications. We aim to introduce, to an audience with a general
algorithmic background, the basic data organization used by wavelet trees, the
information they can model, and the wide range of problems they can solve.
We will also mention the most technical results and give the references to be
followed by the more knowledgeable readers, advising the rest what to skip.

Being ourselves big fans of wavelet trees, and having squeezed them out for
several years, it is inevitable that there will be many references to our own work
in this survey. We apologize in advance for this, as well as for oversights of others’
results, which are likely to occur despite our efforts.

2 Data Structure

Let S[1, n] = s1s2 . . . sn be a sequence of symbols si ∈ Σ, where Σ = [1..σ] is
called the alphabet. Then S can be represented in plain form using n�lg σ� =
n lg σ +O(n) bits (we use lg x = log2 x).

Structure. A wavelet tree [54] for sequence S[1, n] over alphabet [1..σ] can be
described recursively, over a sub-alphabet range [a..b] ⊆ [1..σ]. A wavelet tree
over alphabet [a..b] is a binary balanced tree with b − a + 1 leaves. If a = b,
the tree is just a leaf labeled a. Else it has an internal root node, vroot, that
represents S[1, n]. This root stores a bitmap Bvroot [1, n] defined as follows: if
S[i] ≤ (a+ b)/2 then Bvroot [i] = 0, else Bvroot [i] = 1. We define S0[1, n0] as the
subsequence of S[1, n] formed by the symbols c ≤ (a+ b)/2, and S1[1, n1] as the
subsequence of S[1, n] formed by the symbols c > (a+ b)/2. Then, the left child
of vroot is a wavelet tree for S0[1, n0] over alphabet [a..�(a+ b)/2�] and the right
child of vroot is a wavelet tree for S1[1, n1] over alphabet [1 + �(a+ b)/2�..b].

Fig. 1 displays a wavelet tree for the sequence S = "alabar a la alabarda".
Here for legibility we are using Σ = {’ ’, a, b, d, l, r}, so n = 19 and σ = 6.

Note that this wavelet tree has height �lg σ�, and it has σ leaves and σ − 1
internal nodes. If we regard it level by level, it is not hard to see that it stores

4 G. Navarro

exactly n bits at each level, and at most n bits in the last one. Thus, n�lg σ�
is an upper bound to the total number of bits it stores. Storing the topology of
the tree requires O(σ lg n) further bits, if we are careful enough to use O(lg n)
bits for the pointers. This extra space may be a problem on large alphabets. We
show in the paragraph “Removing redundancy” how to save it.

Tracking Symbols. This wavelet tree represents S, in the sense that one can
recover S from it. More than that, it is a succinct data structure for S, in the
sense that it takes space asymptotically equal to a plain representation of S, and
it permits accessing any S[i] in time O(lg σ), as follows.

To extract S[i], we first examine Bvroot [i]. If it is a 0, we know that S[i] ≤ (σ+
1)/2, otherwise S[i] > (σ+1)/2. In the first case, we must continue recursively on
the left child; in the second case, on the right child. The problem is to determine
where has position i been mapped to on the left (or right) child. In the case of
the left child, where Bvroot [i] = 0, i has been mapped to position i0, which is the
number of 0s in Bvroot up to position i. For the right child, where Bvroot [i] = 1,
this corresponds to position i1, the number of 1s in Bvroot up to position i. The
number of 0s (resp. 1s) up to position i in a bitmap B is called rank0(B, i) (resp.
rank1(B, i)). We continue this process recursively until we arrive at a leaf. The
label of this leaf is S[i]. Note that we do not store the leaf labels; those are
deduced as we successively restrict the subrange [a..b] of [1..σ] as we descend.

Operation rank was already considered by Chazelle [25], who gave a simple
data structure using O(n) bits for a bitmap B[1, n], that computed rank in
constant time (note that we only have to solve rank1(B, i), since rank0(B, i) =
i − rank1(B, i)). Jacobson [63] improved the space to n + O(n lg lg n/ lgn) =
n + o(n) bits, and Golynski [48,49] proved this space is optimal as long as we
maintain B in plain form and build extra data structures on it. The solution
is, essentially, storing rank answers every s = lg2 n bits of B (using lgn bits
per sample), then storing rank answers relative to the last sample every (lg n)/2
bits (using lg s = 2 lg lgn bits per sub-sample), and using a universal table to
complete the answer to a rank query within a sub-sample. We will use in this
survey the notation rankb(B, i, j) = rankb(B, j)− rankb(B, i− 1).

Above, we have tracked a position from the root to a leaf, and as a consequence
we have discovered the symbol represented at the root position. It is also useful to
carry out the inverse process: given a position at a leaf, we can track it upwards
and find out where it is on the root bitmap. This is done as follows.

Assume we start at a given leaf, at position i. If the leaf is the left child of
its parent v, then the position i′ corresponding to i at v is the i-th occurrence
of a 0 in its bitmap Bv. If the leaf is the right child of its parent v, then i′

is the position of the i-th occurrence of a 1 in Bv. This procedure is repeated
from v until we reach the root, where we find the final position. The operation
of finding the i-th 0 (resp. 1) in a bitmap B[1, n] is called select0(B, i) (resp.
select1(B, i)), and it can also be solved in constant time using the n bits of B
plus o(n) bits [27,79]. Thus the time to track a position upwards is also O(lg σ).

The constant-time solution for select [27,79] is analogous to that of rank.
The bitmap is cut into blocks with s 1s. Those that are long enough to store

Wavelet Trees for All 5

all their answers within sublinear space are handled in this way. The others are
not too long (i.e., O(lgO(1) n)) and thus encoding positions inside them require
fewer bits (i.e., O(lg lgn)). This permits repeating the idea recursively a second
time. The third time, the remaining blocks are so short that can be handled
in constant time using universal tables. Golynski [48,49] reduced the o(n) extra
space to O(n lg lgn/ lgn) and proved this is optimal if B is stored in plain form.

With the support for rank and select, the space required by the basic binary
balanced wavelet tree reaches n�lg σ�+ o(n) lg σ+O(σ lg n) bits. This completes
a basic description of wavelet trees; the rest of the section is more technical.

Reducing Redundancy. As mentioned, the O(σ lgn) term can be removed if
necessary [72,74]. We slightly alter the balanced wavelet tree shape, so that all
the leaves are grouped to the left (for this sake we divide the interval [a..b] of
[1..σ] into [a..a+2�lg(b−a+1)�−1] and [a+2�lg(b−a+1)�..b]). Then, all the bitmaps
at all the levels belong to consecutive nodes, and they can all be concatenated
into a large bitmap B[1, n�lg σ�]. We know the bitmap of level � starts at position
1 + n(�− 1). Moreover, if we have determined that the bitmap of a wavelet tree
node corresponds to B[l, r], then the bitmap of its left child is at B[n+ l, n+ l+
rank0(B, l, r)−1], and that of the right child is at B[n+ l+rank0(B, l, r), n+r].
Moving to the parent of a node is more complicated, but upward traversals can
always be handled by first going down from the root to the desired leaf, so as to
discover all the ranges in B of the nodes in the path, and then doing the upward
processing as one returns from the recursion.

Using just one bitmap, we do not need pointers for the topology, and the
overall space becomes n�lg σ� + o(n) lg σ bits. The time complexities do not
change (albeit in practice the operations are slowed down a bit due to the extra
rank operations needed to navigate [28]).

The redundancy can be further reduced by representing the bitmaps using
a structure by Golynski et al. [50], which uses n + O(n lg lg n/ lg2 n) bits and
supports constant-time rank and select (this representation does not leave the
bitmap in plain form, and thus it can break the lower bound [49]). Added over
all the wavelet tree bitmaps, the space becomes n lg σ+O(n lg σ lg lg n/ lg2 n) =
n lg σ + o(n) bits.1 This structure has not been implemented as far as we know.

Speeding Up Traversals. Increasing the arity of wavelet trees reduces their
height, which dictates the complexity of the downward and upward traversals.
If the wavelet tree is d-ary, then its height is �lgd σ�. However, the wavelet tree

1 We assume lg σ = O(lg n) here; otherwise there are many symbols that do not appear
in S. If this turns out to be the case, one should use a mapping from Σ to the range
[1..σ′], where σ′ ≤ n is the number of symbols actually appearing in S. Such a
mapping takes constant time and σ′ lg(σ/σ′) + o(σ′) +O(lg lg σ) bits of space using
the “indexable dictionaries” of Raman et al. [93]. Added to the n lg σ′+ o(n) bits of
the wavelet tree, we are within n lg σ + o(n) + O(lg lg σ) bits. This is n lg σ + o(n)
unless n = O(lg lg σ), in which case a plain representation of S using n�lg σ� bits
solves all the operations in O(lg lg σ) time. To simplify, a recent analysis [45] claims
n lg σ+O(n) bits under similar assumptions. We will ignore the issue from now, and
assume for simplicity that all symbols in [1..σ] do appear in S.

6 G. Navarro

does not store bitmaps anymore, but rather sequences Bv over alphabet [1..d],
so that the symbol at Sv[i] is stored at the child numbered Bv[i] of node v.

In order to obtain time complexities O(1 + lgd σ) for the operations, we need
to handle rank and select on sequences over alphabet [1..d], in constant time.
Ferragina et al. [40] showed that this is indeed possible, while maintaining the
overall space within n lg σ+o(n) lg σ, for d = o(lg n/ lg lgn). Using, for example,
d = lg1−ε n for any constant 0 < ε < 1, the overall space is n lg σ+O(n lg σ/ lgε n)
bits. Golynski et al. [50] reduced the space to n lg σ + o(n) bits.

To support symbol rank and select on a sequence R[1, n] over alphabet
[1..d], we assume we have d bitmaps Bc[1, n], for c ∈ [1..d], where Bc[i] = 1 iff
R[i] = c. Then rankc(R, i) and selectc(R, i) are reduced to rank1(Bc, i) and
select1(Bc, i). We cannot afford to store those Bc, but we can store their extra
o(n) data for binary rank and select. Each time we need access to Bc, we access
instead R and use a universal table to simulate the bitmap’s content. Such table
gives constant-time access to chunks of length lgd(n)/2 instead of lg(n)/2, so
the overall space using Golynski et al.’s bitmap index representation [48,49] is
O(dn lg lg n/ lgd n), which added over the lgd σ levels of the wavelet tree gives
O(n lg σ·d lg d lg lg n/ lgn). This is o(n lg σ) for any d = lg1−ε n. Further reducing
the redundancy to o(n) bits requires more sophisticated techniques [50].

Thus, the O(lg σ) upward/downward traversal times become O(lg σ/ lg lg n)
with multiary wavelet trees. Although theoretically attractive, it is not easy to
translate their advantages to practice (see, e.g., a recent work studying inter-
esting practical alternatives [17]). An exception, for a particular application, is
described in the paragraph “Positional inverted indexes” of Section 5).

The upward traversal can be speeded up further, using techniques known in
computational geometry [25]. Imagine we are at a leaf u representing a sequence
S[1, nu] and want to directly track position i to an ancestor v at distance t, which
represents sequence S[1, nv]. We can store at the leaf u a bitmap Bu[1, nv], so
that the nu positions corresponding to leaf u are marked as 1s in Bu. This bitmap
is sparse, so it is stored in compressed form as an “indexable dictionary” [93],
which uses nu lg(nv/nu)+o(nu)+O(lg lgnv) bits and can answer select1(Bu, i)
queries in O(1) time. Thus we track position i upwards for t levels in O(1) time.

The space required for all the bitmaps that point to node v is the sum, over
at most 2t leaves u, of those nu lg(nv/nu) + o(nu) + O(lg lg nv) bits. This is
maximized when nu = nv/2

t for all those u, where the space becomes t · nv +
o(nv)+O(2t lg lgnv). Added over all the wavelet tree nodes with height multiple
of t, we get n lg σ+o(n lg σ)+O(σ lg lg n) = n lg σ+o(n lg σ). This is in addition
to those n lg σ + o(n) bits already used by the wavelet tree.

If we want to track only from the leaves to the root, we may just use t = lg σ
and do the tracking in constant time. In many cases, however, one wishes to
track from arbitrary to arbitrary nodes. In this case we can use 1/ε values of
t = lgiε σ, for i ∈ [1..1/ε− 1], so as to carry out O(lgε σ) upward steps with one
value of t before reaching the next one. This gives a total complexity for upward
traversals of O((1/ε) lgε σ) using O((1/ε)n lg σ) bits of space.

Wavelet Trees for All 7

Construction. It is easy to build a wavelet tree in O(n lg σ) time, by a linear-
time processing at each node. It is less obvious how to do it in little extra space,
which may be important for succinct data structures. Two recent results [31,96]
offer various relevant space-time tradeoffs, building the wavelet tree within the
time given, or close, and asymptotically negligible extra space.

3 Compression

The wavelet tree adapts elegantly to the compressibility of the data in many
ways. Two key techniques to achieve this are using specific encodings on bitmaps,
and altering the tree shape. This whole section is technical, yet nonexpert readers
may find inspiring the beginning of the paragraph “Entropy coding”, and the
paragraph “Changing shape”.

Entropy Coding. Consider again Fig. 1. The fact that the ’a’ is much more
frequent than the other symbols translates into unbalanced 0/1 frequencies in
various bitmaps. Dissimilarities in symbol frequencies are an important source
of compressibility. The amount of compression that can be reached is measured
by the so-called empirical zero-order entropy of a sequence S[1, n]:

H0(S) =
∑
c∈Σ

(nc/n) lg(n/nc) ≤ lg σ

where nc is the number of occurrences of c in S and the sum considers only the
symbols that do appear in S. Then nH0(S) is the least number of bits into which
S can be compressed by always encoding the same symbol in the same way.2

Grossi et al. [54] already showed that, if the bitmaps of the wavelet tree are
compressed to their zero-order entropy, then their overall space is nH0(S). Let
Bvroot contain n0 0s and n1 1s. Then zero-order compressing it yields space
n0 lg(n/n0) + n1 lg(n/n1). Now consider its left child vl. Its bitmap, Bvl , is of
length n0, and say it contains n00 0s and n01 1s. Similarly, the right child is of
length n1 and contains n10 0s and n11 1s. Adding up the zero-order compressed
space of both children yields n00 lg(n0/n00) + n01 lg(n0/n01) + n10 lg(n1/n10) +
n11 lg(n1/n11). Now adding the space of the root bitmap yields n00 lg(n/n00) +
n01 lg(n/n01) + n10 lg(n/n10) + n11 lg(n/n11). This would already be nH0(S) if
σ = 4. It is easy to see that, by splitting the spaces of the internal nodes until
reaching the wavelet tree leaves, we arrive at

∑
c∈Σ nc lg(n/nc) = nH0(S).

This enables using any zero-order entropy coding for the bitmaps that sup-
ports constant-time rank and select. One is the “fully-indexable dictionary” of
Raman et al. [93], which for a bitmap B[1, n] requires nH0(B)+O(n lg lg n/ lgn)
bits. A theoretically better one is that of Golynski et al. [50], which we have al-
ready mentioned without yet telling that it actually compresses the bitmap, to
nH0(B) + O(n lg lg n/ lg2 n). Pătraşcu [91] showed this can be squeezed up to

2 In classical information theory [32], H0 is the least number of bits per symbol achiev-
able by any compressor on an infinite source that emits symbols independently and
randomly with probabilities nc/n.

8 G. Navarro

nH0(B)+O(n/ lgc n), answering rank and select in time O(c), for any constant
c, and that this is essentially optimal [92].

Using the second or third encoding, the wavelet tree represents S within
nH0(S) + o(n) bits, still supporting the traversals in time O(lg σ). Ferragina
et al. [40] showed that the zero-order compression can be extended to multiary
wavelet trees, reaching nH0(S) + o(n lg σ) bits and time O(1 + lg σ/ lg lgn) for
the operations, and Golynski et al. [50] reduced the space to nH0(S)+o(n) bits.
Recently, Belazzougui and Navarro [12] showed that the times can be reduced to
O(1 + lg σ/ lgw), where w = Ω(lg n) is the size of the machine word. Basically
they replace the universal tables with bit-parallel operations. Their space grows
to nH0(S)+o(n(H0(S)+1)). (They also prove and match the lower bound time
complexity Θ(1 + lg(lg σ/ lgw)) using techniques that are beyond wavelet trees
and this survey, but that do build on wavelet trees [7,4].)

It should not be hard to see at this point that the sums of nu lg(nv/nu) spaces
used for fast upward traversals in Section 2 also add up to (1/ε)nH0(S).

Changing Shape. The algorithms for traversing the wavelet tree work indepen-
dently of its balanced shape. Furthermore, our previous analysis of the entropy
coding of the bitmap also shows that the resulting space, at least with respect to
the entropy part, is independent of the shape of the tree. This was already noted
by Grossi et al. [55], who proposed using the shape to optimize average query
time: If we know the relative frequencies fc with which each leaf c is sought,
we can create a wavelet tree with the shape of the Huffman tree [62] of those
frequencies, thus reducing the average access time to

∑
c∈Σ fc lg(1/fc) ≤ lg σ.

Mäkinen and Navarro [70, Sec. 3.3], instead, proposed giving the wavelet tree
the Huffman shape of the frequencies with which the symbols appear in S.
This has interesting consequences. First, it is easy to see that the total number
of bits stored in the wavelet tree is exactly the number of bits output by a
Huffman compressor that takes the symbol frequencies in S, which is upper
bounded by n(H0(S) + 1). Therefore, even using plain bitmap representations
taking n+ o(n) bits of space, the total space becomes at most n(H0(S) + 1) +
o(n(H0(S) + 1)) + O(σ lg n), that is, we compress not only the data, but also
the redundancy space. This may seem irrelevant compared to the nH0(S)+o(n)
bits that can be obtained using Golynski et al. [50] over a balanced wavelet
tree. However, it is unclear whether that approach is practical; only that of
Raman et al. [93] has successful implementations [89,28,84], and this one leads
to total space nH0(S)+o(n lg σ). Furthermore, plain bitmap representations are
significantly faster than compressed ones, and thus compressing the wavelet tree
by giving it a Huffman shape leads to a much faster implementation in practice.

Another consequence of using Huffman shape, implied by Grossi et al. [55],
is that if the accesses to the leaves are done with frequency proportional to
their number of occurrences in S (which occurs, for example, if we access at
random positions in S), then the average access time is O(1 + H0(S)), better
than the O(lg σ) of balanced wavelet trees. A problem is that the worst case
could be as bad as O(lg n) if a very infrequent symbol is sought [70]. However,
one can balance wavelet subtrees after some depth, so that the average depth is

Wavelet Trees for All 9

O(1+H0(S)), the maximum depth is O(lg σ), and the total number of bits is at
most n(H0(S) + 2) [70].

Recently, Barbay and Navarro [10] showed that Huffman shapes can be com-
bined with multiary wavelet trees and entropy compression of the bitmaps, to
achieve space nH0(S)+o(n) bits, worst-case time O(1+lg σ/ lg lgn), and average
case time O(1 +H0(S)/ lg lg n).

An interesting extension of Huffman shaped wavelet trees that has not been
emphasized much is to use them a mechanism to give direct access on any
variable-length prefix-free coding. Let S = s1, s2, . . . , sn be a sequence of sym-
bols, which are encoded in some way into a bit-stream C = c(s1)c(s2) . . . c(sn).
For example, S may be a numeric sequence and c can be a δ-code, to favor
small numbers [13], or c can be a Huffman or another prefix-free encoding. Any
prefix-free encoding ensures that we can retrieve S from C, but if we want to
maintain the compressed form C and access arbitrary positions of S, we need
tricks like sampling S at regular intervals and store pointers to C.

Instead, a wavelet tree representation of S, where for each si we rather encode
c(si), uses the same number of bits of C and gives direct access to any S[i] in
time O(|c(si)|). More precisely, at the bitmap root position Bvroot [i] we write a
0 if c(si) starts with a 0, and 1 otherwise. In the first case we continue by the
left child and in the second case we continue by the right child, from the second
bit of c(si), until the code is exhausted. Gagie et al. [43] combined this idea with
multiary wavelet trees to obtain a faster decoding.

Very recently, Grossi and Ottaviano [56] also took advantage of specific shapes,
to give the wavelet tree the form of a trie of a set of strings. The goal was to
handle a sequence of strings and extend operations like access and rank to such
strings. The idea extends a previous, more limited, approach [72,74].

High-Order Entropy Coding. High-order compression extends zero-order
compression by encoding each symbol according to a context of length k that
precedes or follows it. The k-th order empirical entropy of S [77] is defined as
Hk(S) =

∑
A∈Σk(|SA|/n) H0(SA) ≤ Hk−1(S), where SA is the string of symbols

preceding context A in S. Any statistical compressor assigning fixed codes that
depend on a context of length k outputs at least nHk(S) bits to encode S.

The Burrows-Wheeler transform [22] is a useful tool to achieve high-order
entropy. It is a reversible transformation that permutes the symbols of a string
S[1, n] as follows. First sort all the suffixes S[i, n] lexicographically, and then list
the symbols that precede each suffix (where S[n] precedes S[1, n]). The result,
Sbwt[1, n], is the concatenation of the strings SA for all the contexts A. By
definition, if we compress each substring SA of Sbwt to its zero-order entropy,
the total space is the k-th order entropy of S, for k = |A|.

The first [54] and second [39] reported use of wavelet trees used a similar par-
titioning to represent each range of Sbwt with a zero-order compressed wavelet
tree, so as to reach nHk(S) + o(n lg σ) bits of space, for any k ≤ α lgσ n and any
constant 0 < α < 1. In the second case [39], the use of Sbwt was explicit. The par-
titioning was not with a fixed context length, but instead an optimal partitioning
was used [36]. This way, they obtained the given space simultaneously for any k in

10 G. Navarro

the range. In the first case [54], they made no reference to the Burrows-Wheeler
transform, but also compressed the sequences SA of the k-th order entropy for-
mula, for a fixed k. We give more details on the reasons behind the use of Sbwt in
Section 5.

Already in 2004, Grossi et al. [55] realized that the careful partitioning into
many small wavelet trees, one per context, was not really necessary to achieve
k-th order compression. By using a proper encoding on its bitmaps, a wavelet
tree on the whole Sbwt could reach k-th order entropy compression of a string S.
They obtained 2nHk(S) bits, plus redundancy, by using γ-codes [13] on the runs
of 0s and 1s in the wavelet tree bitmaps. Mäkinen and Navarro [73] observed the
same fact when encoding the bitmaps using Raman et al. [93] fully indexable
dictionaries. They reached nHk(S) + o(n lg σ) bits of space, simultaneously for
any k ≤ α lgσ n and any constant 0 < α < 1, using just one wavelet tree for the
whole string. This yielded simpler and faster indexes in practice [28].

The key property is that some entropy-compression methods are local, that
is, their space is the sum of the zero-order entropies of short substrings of Sbwt.
This can be shown to be upper-bounded by the entropy of the whole string, but
also by the sum of the entropies of the substrings SA. Even more surprisingly,
Kärkkäinen and Puglisi [67] recently showed that the k-th order entropy is still
reached if one cuts Sbwt into equally-spaced regions of appropriate length, and
thus simplified these indexes further by using the faster and more practical
Huffman-shaped wavelet trees on each region.

There are also more recent and systematic studies [35,59] of the compress-
ibility properties of wavelet trees, and how they relate to gap and run-length
encodings of the bitmaps, as well to the balancing and the arity.

Exploiting Repetitions. Another relevant source of compressibility is repet-
itiveness, that is, that S[1, n] can be decomposed into a few substrings that
have appeared earlier in S, or alternatively, that there is a small context-free
grammar that generates S. Many compressors build on these principles [13],
but supporting wavelet tree functionality on such compressed representations is
harder.

Mäkinen and Navarro [71] studied the effect of repetitions in the Burrows-
Wheeler transform of S. They showed that Sbwt could be partitioned into at most
nHk(S)+σk runs of equal letters in Sbwt, for any k. It is not hard to see that those
runs are inherited by the wavelet tree bitmaps, where run-length compression
would take proper advantage of them. Mäkinen and Navarro followed a different
path: they built a wavelet tree on the run heads and used a couple of bitmaps
to simulate the operations on the original strings. The compressibility of those
two bitmaps has been further studied by Mäkinen et al. [95,75] in the context
of highly repetitive sequence collections, and also by Simon Gog [47, Sec. 3.6.1].

In some cases, however, we need the wavelet tree of the very same string S
that contains the repetition, not its Burrows-Wheeler transform. We describe
such an application in the paragraph “Document retrieval indexes” of Section 6.

Recently, Navarro et al. [86] proposed a grammar-compressed wavelet tree
for this problem. The key point is that repetitions in S[1, n] induce repetitions

Wavelet Trees for All 11

in Bvroot [1, n]. They used Re-Pair [69], a grammar-based compressor, on the
bitmaps, and enhanced a Re-Pair-based compressed sequence representation [53]
to support binary rank (they only needed downward traversals). This time, the
wavelet tree partitioning into left and right children cuts each repetition into
two, so quickly after a few levels such regularities are destroyed and another
type of bitmap compression (or none) is preferred. While the theoretical space
analysis is too weak to be useful, the result is good in practice and leaves open
the challenge of achieving stronger theoretical and practical results.

We will find even more specific wavelet tree compression problems later.

4 Sequences, Reorderings, or Point Grids?

Now that we have established the basic structure, operations, and encodings of
wavelet trees, let us take a view with more perspective. Various applications we
have mentioned display different ways to regard a wavelet tree representation.

As a Sequence of Values. This is the most basic one. The wavelet tree on a
sequence S = s1, . . . , sn represents the values si. The most important operations
that the wavelet tree must offer to support this view are, apart from accessing
any S[i] (that we already explained in Section 2), rank and select on S. For
example, the second main usage of wavelet trees [39,40] used access and rank

on the wavelet tree built on sequence Sbwt in order to support searches on S.
The process to support rankc(S, i) is similar to that for access, with a subtle

difference. We start at position i in Bvroot , and decide whether to go left or
right depending on where is the leaf corresponding to c (and not depending on
Bvroot [i]). If we go left, we rewrite i ← rank0(Bvroot , i), else we rewrite i ←
rank1(Bvroot , i). When we arrive at the leaf c, the value of i is the final answer.
The time complexity for this operation is that of a downward traversal towards
the leaf labeled c. To support selectc(S, i) we just apply the upward tracking,
as described in Section 2, starting at the i-th position of the leaf labeled c.

As a Reordering. Less obviously, the wavelet tree structure describes a stable
ordering of the symbols in S, so that if one traverses the leaves one finds first
all the occurrences of the smaller symbols, and within the same symbol (i.e., the
same leaf), they are ordered by original position. As it will be clear in Section 5,
one can argue that this is the usage of wavelet trees made by their creators [54].

In this case, tracking a position downwards in the wavelet tree tells where
it goes after sorting, and tracking a position upwards tells where each symbol
is placed in the sequence. An obvious application is to encode a permutation π
over [1..n]. Our best wavelet tree takes n lgn + o(n) bits and can compute any
π(i) and π−1(i) in time O(lg n/ lg lg n) by carrying out, respectively, downward
and upward tracking of position i. We will see improvements on this idea later.

As a Grid of Points. The slightly less general structure of Chazelle [25] can
be taken as the representation of a set of points supported by wavelet trees. It is
generally assumed that we have an n×n grid with n points so that no two points
share the same row or column (i.e., a permutation). A general set of n points is

12 G. Navarro

mapped to such a discrete grid by storing the real coordinates somewhere else
and breaking ties somehow (arbitrarily is fine in most cases).

Take the set of points (xi, yi), in x-coordinate order (i.e., xi < xi+1). Now de-
fine string S[1, n] = y1, y2, . . . , yn. Then we can find the i-th point in x-coordinate
order by accessing S[i]. Moreover, since the wavelet tree is representing the re-
ordering of the points according to y-coordinate, one can find the i-th point in
y-coordinate order by tracking upwards the i-th point in the leaves.

Unlike permutations, here the emphasis is in counting and reporting the points
that lie within a rectangle [xmin, xmax]× [ymin, ymax]. This is solved through a
more complicated tracking mechanism, well-known in computational geometry
and also described explicitly on wavelet trees [72]. We start at the root bitmap
range Bvroot [xl, xr], where xl = xmin and xr = xmax. Now we map the interval
to the left and to the right, using xl ← rank0/1(Bvroot , xl − 1) + 1 and xr ←
rank0/1(Bvroot , xr), and continue recursively. At any node along the recursion,
we may stop if (i) the interval [xl, xr] becomes empty (thus there are no points
to report); (ii) the interval of leaves (i.e., y-coordinate values) represented by the
node has no intersection with [ymin, ymax]; (iii) the interval of leaves is contained
in [ymin, ymax]. In case (iii) we can count the number of points falling in this
sub-rectangle as xr−xl+1. As it is well known that we visit only O(lg n) wavelet
tree nodes before stopping all the recursive calls (see, e.g., a recent detailed proof,
among other more sophisticated wavelet tree properties [45]), the counting time
is O(lg n). Each of the xr − xl + 1 points found in each node can be tracked
up and down to find their x- and y-coordinates, in O(lg n) time per reported
occurrence. There are more efficient variants of this technique that we will cover
in Section 7, but they build on this basic idea.

5 Applications as Sequences

Full-Text Indexes. A full-text index built a string S[1, n] is able to count and
locate the occurrences of arbitrary patterns P [1,m] in S. A classical index is the
suffix array [52,76], A[1, n], which lists the starting positions of all the suffixes
of S, S[A[i], n], in lexicographic order, using n�lgn� bits. The starting positions
of the occurrences of P in S appear in a contiguous range in A, which can be
binary searched in time O(m lg n), or O(m+lgn) by doubling the space. A suffix
tree [98,78,1] is a more space-consuming structure (yet still O(n lg n) bits) that
can find the range in time O(m). After finding the range, each occurrence is
reported in constant time, both in suffix trees and arrays.

The suffix array of S is closely related to its Burrows-Wheeler transform:
Sbwt[i] = S[A[i]− 1] (taking S[0] = S[n]). Ferragina and Manzini [37,38] showed
how, using at most 2m access and rank operations on Sbwt, one could count
the number of occurrences in S of a pattern P [1,m]. Using multiary wavelet
trees [40,50] this gives a counting time of O(m) on polylog-sized alphabets, and
O(m lg σ/ lg lg n) in general. Each such occurrence can then be located in time
O(lg1+ε n lg σ/ lg lgn) for any ε > 0, at the price of O(n/ lgε n) = o(n) further
bits of space. This result has been superseded very recently [7,12,11,4], in some

Wavelet Trees for All 13

cases using wavelet trees as a part of the solution, and in all cases with some
extra price in terms of redundancy, such as o(nHk(S)) and O(n) further bits.

Grossi et al. [57,58,54] used wavelet trees to obtain a similar result via a
quite different strategy. They represented A by means of a permutation Ψ(i) =
A−1[A[i]+1], that is, the cell in A pointing to A[i]+1. Ψ turns out to be formed
by σ contiguous ascending runs. The suffix array search can be simulated in
O(m lg n) accesses to Ψ . They encode Ψ separately for the range of each context
SA (recall paragraph “High-order entropy coding” in Section 3). As all the Ψ
pointers coming from each run are increasing, a wavelet tree is used to describe
how the σ ascending sequences of pointers coming from each run are intermingled
in the range of SA. This turns out to be, precisely, the wavelet tree of SA. This
is why both Ferragina et al. and Grossi et al. obtain basically the same space,
nHk(S) + o(n lg σ) bits. Due to the different search strategy, the counting time
of Grossi et al. is higher. On the other hand, the representation of Ψ allows them
to locate patterns in sublogarithmic time, still using O(nHk(S))+ o(n lg σ) bits.

This is the best known usage of wavelet trees as sequences, and it is well
covered in earlier surveys [82]. New extensions of these basic concepts, supporting
more sophisticated search problems, appear every year (e.g., [94,14]). We cover
next other completely different applications.

Positional Inverted Indexes. Consider a natural language text collection. A
positional inverted index is a data structure that stores, for each word, the list
of the positions where it appears in the collection [3]. In compressed form [99] it
takes space close to the zero-order entropy of the text seen as a sequence of words
[82]. This entropy yields very competitive compression in natural language texts.
Yet, we need to store both the text (usually zero-order compressed, so that direct
access is possible) and the inverted index, adding up to at least 2nH0(S), where
S is the text regarded as a sequence of word identifiers. Inverted indexes are by
far the most popular data structures to index natural language text collections,
so reducing their space requirements is of high relevance.

By representing the sequence of word identifiers using a wavelet tree, we ob-
tain a single representation for both the text and the inverted index, all within
nH0(S) + o(n) bits [28]. In order to access any text word, we just compute S[i].
In order to access the i-th element of the inverted list of any word c, we compute
selectc(S, i). Furthermore, operation rankc(S, i) is useful to implement some
list intersection algorithms [8], as it finds the position i in the inverted list of
word c more efficiently than with a binary or exponential search.

Arroyuelo et al. [2] extended this functionality to document retrieval: retrieve
the distinct documents where a word appears. They use a special symbol “$”
to mark document boundaries. Then, given the first occurrence of a word c,
p = selectc(S, 1), the document where this occurrence lies is j = rank$(S, p)+1,
document j ends at position p′ = select$(S, j), it contains o = rankc(S, p, p

′)
occurrences of the word c, and the search for further relevant documents can
continue from query selectc(S, o+ 1).

An improvement over the basic idea is to use multiary wavelet trees, more
precisely of arity up to 256, and using the property that wavelet trees give direct

14 G. Navarro

access to any variable-length code. Brisaboa et al. [19] started with a byte-
oriented encoding of the text words (using either Huffman with 256 target sym-
bols, or other practical encoding methods [20]) and then organized the sequence
of codes into a wavelet tree, as described in the paragraph “Changing shape” of
Section 3. A naive byte-based rank and select implementation on the wavelet
tree levels gives good results in this application, with the bytes represented in
plain form. The resulting structure is indeed competitive with positional inverted
indexes in many cases. A variant specialized on XML text collections, where the
codes are also used to distinguish structural elements (tags, content, attributes,
etc.) in order to support some XPath queries, is also being developed [18].

Graphs. Another simple application of this idea is the representation of directed
graphs [28]. Let G be a graph with n nodes and e edges. An adjacency list,
using n lg e + e lgn bits (the n pointers to the lists plus the e target nodes)
gives direct access to the neighbors of any node v. If we want also to perform
reverse nagivation, that is, to know which nodes point to v, we must spend other
n lg e+ e lgn bits to represent the transposed graph.

Once again, representing with a wavelet tree the sequence S[1, e] concate-
nating all the adjacency lists, plus a compressed bitmap B[1, e] marking the
beginnings of the lists, gives access to both types of neighbors within space
n lg(e/n) + e lgn + O(n) + o(e), which is close to the space of the plain rep-
resentation (actually, possibly less). To retrieve the i-th neighbor of a node v,
we compute the starting point of the list of v, l ← select1(B, v), and then
access S[l+ i− 1]. To retrieve the i-th reverse neighbor of a node v, we compute
p ← selectv(S, i) to find the i-th time that v is mentioned in an adjacency
list, and then compute with rank1(B, p) the owner of the list where v is men-
tioned. Both operations take time O(lg n/ lg lgn). This is also useful to represent
undirected graphs, where adjacency lists must usually represent each edge twice.
With a wavelet tree we can choose any direction for an edge, and at query time
we join direct and reverse neighbors of nodes to build their list.

Note, finally, that the wavelet tree can compress S to its zero-order entropy,
which corresponds to the distribution of in-degrees of the nodes. A more sophis-
ticated variant of this idea, combined with Re-Pair compression [69], was shown
to be competitive with current Web graph compression methods [29].

6 Applications as Reorderings

Apart from its first usage [54], that can be regarded as encoding a reordering,
wavelet trees offer various interesting applications when seen in this way.

Permutations. As explained in Section 4, one can easily encode a permutation
with a wavelet tree. It is more interesting that the encoding can take less space
when the permutation is, in a sense, compressible. Barbay and Navarro [9,10]
considered permutations π of [1..n] that can be decomposed into ρ contiguous
ascending runs, of lengths r1, r2, . . . , rρ. They define the entropy of such a per-
mutation as H(π) =

∑ρ
i=1(ri/n) lg(n/ri), and show that it is possible to sort

an array with such ascending runs in time O(n(H(π) + 1)). This is obtained by

Wavelet Trees for All 15

building a Huffman tree on the run lengths (seen as frequencies) and running a
mergesort-like algorithm that follows the Huffman tree shape.

They note that, if we encode with 0 or 1 the results of the comparisons of the
mergesort algorithm at each node of the merging tree, the resulting structure
contains at most n(H(π) + 1) bits, and it represents the permutation. Starting
at position i in the top bitmap Bvroot one can track down the position exactly as
done with wavelet trees, so as to arrive at position j of the t-th leaf (i.e., run). By
storing, in O(ρ lg n) bits, the starting position of each run in π, we can convert
the leaf position into a position in π. Therefore the downward traversal solves
operation π−1(i), because it starts from value i (i.e., position i after sorting π),
and gives the position in π from where it started before the merging took place.
The corresponding upward traversal, consequently, solves π(i). Other types of
runs, more and less general, are also studied [9,10].

Some thought reveals that this structure is indeed the wavelet tree of a se-
quence formed by replacing, in π−1, each symbol belonging to the i-th run, by
the run identifier i. Then the fact that a downward traversal yields π−1(i) and
that the upward traversal yields π(i) are natural consequences. This relation is
made more explicit in a later article [7,4].

Generic Numeric Sequences. There are several basic problems on sequences
of numbers that can be solved in nontrivial ways using wavelet trees. We mention
a few that have received attention in the literature.

One such problem is the range quantile query: Preprocess a sequence of num-
bers S[1, n] on the domain [1..σ] so that later, given a range [l, r] and a value i,
we can compute the i-th smallest element in S[l, r].

Classical solutions to this problem have used nearly quadratic space and con-
stant time. Only a very recent solution [65] reaches O(n lg n) bits of space (apart
from storing S) and O(lg n/ lg lg n) time. We show that, by representing S with
a wavelet tree, we can solve the problem in O(lg σ) time and just o(n) extra
bits [46,45]. This is close to O(lg n/ lg lgn) (in this problem, we can always make
σ ≤ n hold), and it can be even better if σ is small compared to n.

Starting from the range S[l, r], we compute rank0(Bvroot , l, r). If this is i or
more, then the i-th value in this range is stored in the left subtree, so we go to
the left child and remap the interval [l, r] as done for counting points in a range
(see Section 4). Otherwise we go right, subtracting rank0(Bvroot , l, r) from i and
remapping [l, r] in the same way. When we arrive at a leaf, its label is the i-th
smallest element in S[l, r].

Another fundamental problem is called range next value: Preprocess a se-
quence of numbers S[1, n] on the domain [1..σ] so that later, given a range [l, r]
and a value x, we return the smallest value in S[l, r] that is larger than x.

The state of the art also includes superlinear-space and constant-time solu-
tions, as well as one using O(n lg n) bits of space and O(lg n/ lg lg n) time [100].
Once again, we achieve o(n) extra bits and O(lg σ) time using wavelet trees [45]
(we improve this time in the paragraph “Binary relations” of Section 7).

Starting at the root from the range S[l, r], we see if value x labels a leaf
descending from the left or from the right child. If x descends from the right

16 G. Navarro

child, then no value on the left child can be useful, so we recursively descend
to the right child and remap the interval [l, r] as done for counting points in a
range. Else, there may be values > x on both children, but we prefer those on
the left, if any. So we first descend to the left child looking for an answer (there
may be no answer if, at some node, the interval [l, r] becomes empty). If the left
child returns an answer, this is what we seek and we return it. If, however, there
is no value > x on the left child, we seek the smallest value on the right child.
We then enter into another mode where we see if there is any 0-bit in Bv[l, r].
If there is one, we go to the left child, else we go to the right child. It can be
shown that the overall process takes O(lg σ) time.

A variant of the range next value problem is called prevLess [68]: return the
rightmost value in S[1, r] that is smaller than x. Here we start with S[1, r]. If
value x labels a leaf descending from the left, we map the interval to the left
child and continue recursively from there. If, instead, x descends from the right
child, then the answer may be on the left or the right child, and we prefer the
rightmost in [1, r]. Any 0-bit in Bv[1, r] is a value smaller than x and thus a valid
answer. We use rank and select to find the rightmost 0 in Bv[1, r]. We also
continue recursively by the right child, and if it returns an answer, we map it to
the bitmap Bv[1, r]. Then we choose the rightmost between the answer from the
right child and the rightmost zero. The overall time is O(lg σ).

Non-positional Inverted Indexes. These indexes store only the list of dis-
tinct documents where each word appears, and come in two flavors [99,3]. In the
first, the documents for each word are sorted by increasing identifier. This is use-
ful to implement list unions and intersections for boolean, phrase and proximity
queries. In the second, a “weight” (measuring importance somehow) is assigned
to each document where a word appears. The lists of each word store those
weights and are sorted by decreasing weight. This is useful to implement ranked
bag-of-word queries, which give the documents with highest weights added over
all the query words. It would seem that, unless one stores two inverted indexes,
one must choose one order in detriment of the queries of the other type.

By representing a reordering, wavelet trees can store both orderings simul-
taneously [85,45]. Let us represent the documents where each word appears in
decreasing weight order, and concatenate all the lists into a sequence S[1, n]. A
bitmap B[1, n] marks the starting positions of the lists, and the weights are stored
separately. Then, a wavelet tree representation of S simulates, within the space
of just one list, both orderings. By accessing S[l+i−1], where l = select1(B, c),
we obtain the i-th element of the inverted list of word c, in decreasing weight
order. To access the i-th element of the inverted list of a word in increasing
document order, we also compute the end of its list, r = select1(B, c+ 1)− 1,
and then run a range quantile query for the i-th smallest value in the range
[l, r]. Many other operations of interest in information retrieval can be carried
out with this representation and little auxiliary data [85,45].

Document Retrieval Indexes. An interesting extension to full-text retrieval
is document retrieval, where a collection S[1, n] of general strings (so inverted
indexes cannot be used) is to be indexed to answer different document retrieval

Wavelet Trees for All 17

queries. The most basic one, document listing, is to output the distinct docu-
ments where a pattern P [1,m] appears. Muthukrishnan [80] defined a so-called
document array D[1, n], where D[i] gives the document to which the i-th lexico-
graphically smallest suffix of S belongs (i.e., where the suffix S[A[i], n] belongs,
where A is the suffix array of S). He also defined an array C[1, n], where C[i]
points to the previous occurrence of D[i] in D. A suffix tree was used to identify
the range A[l, r] of the pattern occurrences, so that we seek to report the distinct
elements in D[l, r]. With further structures to find minima in ranges of C [15],
Muthukrishnan gave an O(m+occ) algorithm to find the occ distinct documents
where P appears. This is time-optimal, yet the space is impractical.

This is another case where wavelet trees proved extremely useful. Mäkinen and
Välimäki [97] showed that, if one implemented D as a wavelet tree, then array
C was not necessary, since C[i] = selectD[i](D, rankD[i](D, i − 1)). They also
used a compressed full-text index [39] to identify the range D[l, r], so the total
time turned out to be O(m lg σ + occ lg d), where d is the number of documents
in S. Moreover, for each document c output, rankc(D, l, r) gave the number of
times P appeared in c, which is important for ranked document retrieval.

Gagie et al. [46,45] showed that an application of range quantile queries
enabled the wavelet tree to solve this problem elegantly and without any range
minima structure: The first distinct document is the smallest value in D[l, r].
If it occurs f1 times, then the second distinct document is the (1 + f1)-th
smallest value in D[l, r], and so on. They retained the complexities of Mäkinen
and Välimäki, but the solution used less space and time in practice. Later
[45] they replaced the range quantile queries by a depth-first traversal of the
wavelet tree that reduced the time complexity, after the suffix array search, to
O(occ lg(d/occ)). The technique is similar to the two-dimensional range searches:
recursively enter into every wavelet tree branch where the mapped interval [l, r]
is not empty, and report the leaves found, with frequency r − l + 1.

This depth-first search method can easily be extended to support more com-
plex queries, for example t-thresholded ones: given s patterns, we want the doc-
uments where at least t of the terms appear. We can first identify the s ranges
in D and then traverse the wavelet tree while maintaining the s ranges, stopping
when less than t intervals are nonempty, or when we arrive at leaves (where
we report the document). Other sophisticated traversals have been proposed for
retrieving the documents ranked by number of occurrences of the patterns [33].

An interesting problem is how to compress the wavelet tree of D effectively.
The zero-order entropy of D has to do with document lengths, which is generally
uninteresting, and unrelated to the compressiblity of S. It has been shown [44,86]
that the compressibility of S shows up as repetitions in D, which has stimulated
the development of wavelet tree compression methods that take advantage of
the repetitiveness of D, as described at the end of Section 3.

7 Applications as Grids

Discrete Grids. Much work has been done in Computational Geometry over
structures very similar to wavelet trees. We only highlight some results of

18 G. Navarro

interest, generally focusing on structures that use linear space. We assume here
that we have an n×n grid with n points not sharing rows nor columns. Interest-
ingly, these grids with range counting and reporting operations have been inten-
sively used in compressed text indexing data structures [66,81,38,72,26,16,30,68]

Range counting can be done in time O(lg n/ lg lgn) and O(n lg n) bits [64].

This time cannot be improved within space O(n lgO(1) n) [90], but it can be
matched with a multiary wavelet-tree like structure using just n lgn+ o(n lg n)
bits [16]. Reaching this time, instead of the easy O(lg n) we have explained in
Section 4, requires a sophisticated solution to the problem of doing the range
counting among several consecutive children of a node, that are completely con-
tained in the x-range of the query. They [16] also obtain a range reporting time
(for the occ points in the range) of O((1+occ) lg n/ lg lg n). This is not surprising
once counting has been solved: it is a matter of upward or downward tracking on
a multiary wavelet tree. The technique for faster upward tracking we described
in the paragraph “Speeding up traversals” of Section 2 can be used to improve
the reporting time to O((1 + occ) lgε n), using O((1/ε)n lgn) bits of space [24].

Wavelet trees offer relevant solutions to other geometric problems, such as
finding the dominant points in a grid, or solving visiblity queries. Those problems
can be recast as a sequence of queries of the form “find the smallest element larger
than x in a range”, described in the paragraph “Generic numeric sequences” of
Section 6, and therefore solved in time O(lg n) per point retrieved [83]. That
paper [83,87] also studies extensions of geometric queries where the points have
weights and statistical queries on them are posed, such as finding range sums,
averages, minima, quantiles, majorities, and so on. The way those queries are
solved open interesting new avenues in the use of wavelet trees.

Some queries, such as finding the minimum value of a two-dimensional range,
are solved by enriching wavelet trees with extra information aligned to the
bitmaps. Recall that each wavelet tree node v handles a subsequence Sv of the
sequence of points S[1, n]. To each node v with bitmap Bv[1, nv] we associate a
data structure using 2nv + o(nv) bits that answers one-dimensional range mini-
mum queries [41] on Sv[1, nv]. Once built, this structure does not need to access
Sv, yet it gives the position of the minimum in constant time. Since, as ex-
plained, a two-dimensional range is covered by O(lg n) wavelet tree nodes, only
those O(lg n) minima must be tracked upwards, where the actual weights are
stored, to obtain the final result. Thus the query requires O(lg1+ε n) time and
O((1/ε)n lgn) bits of space by using the fast upward tracking mechanism.

Other queries, such as finding the i-th smallest value of a two-dimensional
range, are handled with a wavelet tree on the weight values. Each wavelet tree
node stores a grid with the points whose weights are in the range handled by that
node. Then, by doing range counting queries on those grids, one can descend left
or right, looking for the rightmost leaf (i.e., value) such that the counts of the
children to the left of the path followed add up to less than i. The total time is
O(lg2 n/ lg lg n), however the space becomes superlinear, O(n lg2 n) bits.

Finally, an interesting extension to the typical point grids are grids of rectan-
gles, which are used in geographic information systems as minimum bounding

Wavelet Trees for All 19

rectangles of complex objects. Then one wishes to find the set of rectangles
that intersect a query rectangle. This is well solved with an R-tree data struc-
ture [60], but a wavelet tree may offer interesting space reductions. Brisaboa et
al. [21] describe a technique to store n rectangles where one does not contain
another in the x-coordinate range (so the set is first separated into maximal “x-
independent” subsets and each subset is queried separately). Two arrays with
the ascending lower and upper x-coordinates of the rectangles are stored (as the
sets are x-independent, the same position in both arrays corresponds to the same
rectangle). A wavelet tree on those x-coordinate-sorted rectangles is set up, so
that each node handles a range of y-coordinate values. This wavelet tree stores
two bitmaps per node v: one tells whether the rectangle Sv[i] extends to the y-
range of the left child, and the other whether it extends to the right child. Both
bitmaps can store a 1 at a position i, and thus the rectangle is stored in both
subtrees. To avoid representing a large rectangle more than O(lg n) times, both
bits are set to 0 (which is otherwise impossible) when the rectangle completely
contains the y-range of the current node. The total space is O(n lg n) bits.

Given a query [xmin, xmax] × [ymin, ymax], we look for xmin in the array of
upper x-coordinates, to find position xl, and look for xmax in the array of lower
x-coordinates, to find position xr. This is because a query intersects a rectangle
on the x-axis if the query does not start after the rectangle ends and the query
does not end before the rectangle starts. Now the range [xl, xr] is used to traverse
the wavelet tree almost like on a typical range search, except that we map to
the left child using rank1 on one bitmap, and to the right child using rank1 on
the other bitmap. Furthermore, we report all the rectangles where both bitmaps
contain a 0-bit, and we remove duplicates by merging results at each node, as
the same rectangle can be encountered several times. The overall time to report
the occ rectangles is still O((1 + occ) lg n).

Binary Relations. A binary relation R between two sets A and B can be
thought of as a grid of size |A| × |B|, containing |R| points. Apart from strings,
permutations and our grids, that are particular cases, binary relations are good
abstractions for a large number of more applied structures. For example, a non-
positional inverted index is a binary relation between a set of words and a set
of documents, so that a word is related to the documents where it appears. As
another example, a graph is a binary relation between the set of nodes and itself.

The most typical operations on binary relations are determining the elements
b ∈ B that are related to some a ∈ A and vice versa, and determining whether
a pair (a, b) ∈ A × B is related in R. However, more complex queries are also
of interest. For example, counting or retrieving the documents related to any
term in a range enables on-the-fly stemming and query expansion. Retrieving
the terms associated to a document permits vocabulary analyses. Accessing the
documents in a range related to a term enables searches local to subcollections.
Range counting and reporting allows regarding graphs at a larger granularity
(e.g., a Web graph can be regarded as a graph of hosts, or of pages, on the fly).

Barbay et al. [5,6] studied a large number of complex queries for binary re-
lations, including accessing the points in a range in various orders, as well as

20 G. Navarro

reporting rows or columns containing points in a range. They proposed two
wavelet-tree-like data structures for handling the operations. One is basically a
wavelet tree of the set of points (plus a bitmap that indicates when we move
from one column to the next). It turns out that almost all the solutions described
so far on wavelet trees find application to solve some of the operations.

In the extended version [6] they use multiary wavelet trees to reduce the
times of most of the operations. Several nontrivial structures and algorithms
are designed in order to divide the times of various operations by lg lg n (the
only precedent we know of is that of counting the number of points in a range
[16]). For example, it is shown how to solve the range next value problem (recall
paragraph “Generic numeric sequences” of Section 6) in time O(lg n/ lg lg n).
Others, like the range quantile query, stay no better than O(lg n).

Barbay et al. also propose a second data structure that is analogous to the
one described for rectangles in the paragraph “Discrete grids”. Two bitmaps are
stored per node, indicating whether a given column has points in the first and
in the second range of rows. This extension of a wavelet tree is less powerful
than the previous structure, but it is shown that its space is close to the entropy
of the binary relation: (1+

√
2)H+O(|A|+|B|+|R|) bits, where H = lg

(|A|·|B|
|R|

)
.

This is not achieved with the classical wavelet tree. A separate work [34] builds
on this to obtain a fully-compressed grid representation, within H + o(H) bits.

Colored Range Queries. A problem of interest in areas like query log and web
mining is to count the different colors in a sequence S[1, n] over a universe of σ
colors. Inspired in the idea of Muthukrishnan [80] for document retrieval (recall
paragraph “Document retrieval indexes” in Section 6), Gagie et al. [44] showed
that this is a matter of counting how many values smaller than l are there in
C[l, r], where C[i] = max{j<i, S[j]=S[i]}. This is a range counting query for
[l, r]× [1, l−1] on C seen as a grid, that can be solved in time O(lg n) using the
wavelet tree of C. Note that this wavelet tree, unlike that of S, uses n lgn+o(n)
bits. Gagie et al. compressed it to n lg σ+O(n lg lg n) bits, by taking advantage
of the particular structure of C, which shows up in the bit-vectors. Gagie and
Kärkkäinen [42] then reduced the space to nH0(S) + o(nH0(S)) + O(n) with
more advanced techniques, and also reduced the query time to O(lg(r − l+ 1)).

8 Conclusions and Further Challenges

We have described the wavelet tree, a surprisingly versatile data structure that
offers nontrivial solutions to a wide range of problems in areas like string process-
ing, computational geometry, and many more. An important additional asset of
the wavelet tree is its simplicity to understand, teach, and program. This makes
it a good data structure to be introduced at an undegraduate level, at least in its
more basic variants. In many cases, solutions with better time complexity than
the ones offered by wavelet trees are not so practical nor easy to implement.

Wavelet trees seem to be unable to reach access and rank/select times of
the form O(lg lg σ), as other structures for representing sequences do [51], close
to the lower bounds [12]. However, both have been combined to offer those time

Wavelet Trees for All 21

complexities and good zero-order compression of data and redundancy [7,4,12].
Yet, the lower bounds on some geometric problems [24], matched with current
wavelet trees [16,6], suggest that this combination cannot be carried out much
further than those three operations. Still, there are some complex operations
where it is not clear that wavelet trees have matched lower bounds [45].

We have described the wavelet tree as a static data structure. However, if the
bitmaps or sequences stored at the nodes support insertions and deletions in time
indel(n), then the wavelet tree easily supports insertions and deletions in the se-
quence S[1, n] it represents, in time O(h·indel(n)), where h is its height. This has
been used to support indels in time O((1+ lg σ/ lg lg n) lgn/ lg lg n) [61,88]. The
alphabet, however, is still fixed in those solutions. While such a limitation may
seem natural for sequences, it looks definitely artificial when representing grids:
one can insert and delete new x-coordinates and points, but the y-coordinate
universe cannot change. Creating or removing alphabet symbols requires chang-
ing the shape of the wavelet tree, and the bitmaps or sequences stored at the
nodes undergo extensive modifications upon small tree shape changes (e.g., AVL
rotations). Extending dynamism to support this type of updates, with good time
complexities at least in the amortized sense, is an important challenge for this
data structure. It is also unclear what is the dynamic lower bound on a general
alphabet; on a constant-size alphabet it is Θ(lg n/ lg lgn) [23]. Very recently [56]
a dynamic scheme for a particular case (sequences of strings) has been proposed.

A path that, in our opinion, has only started to be exploited, is to enhance the
wavelet tree with “one-dimensional” data structures at its nodes v, so that, by
efficiently solving some kind of query over the corresponding subsequences Sv,
we solve a more complex query on the original sequence S. In most cases along
this survey, these one-dimensional queries have been rank and select on the
bitmaps, but we have already shown some examples involving more complicated
queries [44,87,83]. This approach may prove to be very fruitful.

In terms of practice, although there are many successful and publicly avail-
able implementations of wavelet tree variants (see, e.g., libcds.recoded.cl and
http://www.uni-ulm.de/in/theo/research/sdsl.html), there are some challenges
ahead, such as carrying to practice the theoretical results that promise fast and
small multiary wavelet trees [40,50,17] and lower redundancies [49,91,50].

Acknowledgements. Thanks to Jérémy Barbay, Ana Cerdeira, Travis Gagie,
Juha Kärkkäinen, Susana Ladra, Simon Puglisi, and all those who took the time
to read early versions of this manuscript.

References

1. Apostolico, A.: The myriad virtues of subword trees. In: Combinatorial Algo-
rithms on Words. NATO ISI Series, pp. 85–96. Springer (1985)

2. Arroyuelo, D., González, S., Oyarzún, M.: Compressed Self-indices Supporting
Conjunctive Queries on Document Collections. In: Chavez, E., Lonardi, S. (eds.)
SPIRE 2010. LNCS, vol. 6393, pp. 43–54. Springer, Heidelberg (2010)

22 G. Navarro

3. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval, 2nd edn.
Addison-Wesley (2011)

4. Barbay, J., Claude, F., Gagie, T., Navarro, G., Nekrich, Y.: Efficient fully-
compressed sequence representations. CoRR, abs/0911.4981v4 (2012)

5. Barbay, J., Claude, F., Navarro, G.: Compact Rich-Functional Binary Relation
Representations. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp.
170–183. Springer, Heidelberg (2010)

6. Barbay, J., Claude, F., Navarro, G.: Compact binary relation representations with
rich functionality. CoRR, abs/1201.3602 (2012)

7. Barbay, J., Gagie, T., Navarro, G., Nekrich, Y.: Alphabet Partitioning for Com-
pressed Rank/Select and Applications. In: Cheong, O., Chwa, K.-Y., Park, K.
(eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp. 315–326. Springer, Heidelberg
(2010)

8. Barbay, J., López-Ortiz, A., Lu, T., Salinger, A.: An experimental investigation
of set intersection algorithms for text searching. ACM J. Exp. Alg. 14 (2009)

9. Barbay, J., Navarro, G.: Compressed representations of permutations, and appli-
cations. In: Proc. 26th STACS, pp. 111–122 (2009)

10. Barbay, J., Navarro, G.: On compressing permutations and adaptive sorting.
CoRR, abs/1108.4408 (2011)

11. Belazzougui, D., Navarro, G.: Alphabet-Independent Compressed Text Indexing.
In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp.
748–759. Springer, Heidelberg (2011)

12. Belazzougui, D., Navarro, G.: New lower and upper bounds for representing se-
quences. CoRR, abs/1111.2621 (2011)

13. Bell, T., Cleary, J., Witten, I.: Text Compression. Prentice Hall (1990)
14. Beller, T., Gog, S., Ohlebusch, E., Schnattinger, T.: Computing the Longest Com-

mon Prefix Array Based on the Burrows-Wheeler Transform. In: Grossi, R., Sebas-
tiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp. 197–208. Springer,
Heidelberg (2011)

15. Bender, M., Farach-Colton, M.: The LCA Problem Revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

16. Bose, P., He, M., Maheshwari, A., Morin, P.: Succinct Orthogonal Range Search
Structures on a Grid with Applications to Text Indexing. In: Dehne, F., Gavrilova,
M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 98–109.
Springer, Heidelberg (2009)

17. Bowe, A.: Multiary Wavelet Trees in Practice. Honours thesis, RMIT Univ., Aus-
tralia (2010)

18. Brisaboa, N.R., Cerdeira-Pena, A., Navarro, G.: A Compressed Self-indexed Rep-
resentation of XML Documents. In: Agosti, M., Borbinha, J., Kapidakis, S., Pa-
patheodorou, C., Tsakonas, G. (eds.) ECDL 2009. LNCS, vol. 5714, pp. 273–284.
Springer, Heidelberg (2009)

19. Brisaboa, N., Fariña, A., Ladra, S., Navarro, G.: Reorganizing compressed text.
In: Proc. 31st SIGIR, pp. 139–146 (2008)

20. Brisaboa, N., Fariña, A., Navarro, G., Paramá, J.: Lightweight natural language
text compression. Inf. Retr. 10, 1–33 (2007)

21. Brisaboa, N.R., Luaces, M.R., Navarro, G., Seco, D.: A Fun Application of Com-
pact Data Structures to Indexing Geographic Data. In: Boldi, P. (ed.) FUN 2010.
LNCS, vol. 6099, pp. 77–88. Springer, Heidelberg (2010)

22. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Tech. Rep. 124, Digital Equipment Corporation (1994)

Wavelet Trees for All 23

23. Chan, H.-L., Hon, W.-K., Lam, T.-W., Sadakane, K.: Compressed indexes for
dynamic text collections. ACM Trans. Alg. 3(2), article 21 (2007)

24. Chan, T., Larsen, K.G., Pătraşcu, M.: Orthogonal range searching on the RAM,
revisited. In: Proc. 27th SoCG, pp. 1–10 (2011)

25. Chazelle, B.: A functional approach to data structures and its use in multidimen-
sional searching. SIAM J. Comp. 17(3), 427–462 (1988)

26. Chien, Y.-F., Hon, W.-K., Shah, R., Vitter, J.: Geometric Burrows-Wheeler trans-
form: Linking range searching and text indexing. In: Proc. 18th DCC, pp. 252–261
(2008)

27. Clark, D.: Compact Pat Trees. PhD thesis, Univ. of Waterloo, Canada (1996)

28. Claude, F., Navarro, G.: Practical Rank/Select Queries over Arbitrary Sequences.
In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 176–
187. Springer, Heidelberg (2008)

29. Claude, F., Navarro, G.: Extended Compact Web Graph Representations. In:
Elomaa, T., Mannila, H., Orponen, P. (eds.) Ukkonen Festschrift 2010. LNCS,
vol. 6060, pp. 77–91. Springer, Heidelberg (2010)

30. Claude, F., Navarro, G.: Self-indexed grammar-based compression. Fund.
Inf. 111(3), 313–337 (2010)

31. Claude, F., Nicholson, P.K., Seco, D.: Space Efficient Wavelet Tree Construction.
In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024,
pp. 185–196. Springer, Heidelberg (2011)

32. Cover, T., Thomas, J.: Elements of Information Theory. Wiley (1991)

33. Culpepper, J.S., Navarro, G., Puglisi, S.J., Turpin, A.: Top-k Ranked Document
Search in General Text Databases. In: de Berg, M., Meyer, U. (eds.) ESA 2010,
Part II. LNCS, vol. 6347, pp. 194–205. Springer, Heidelberg (2010)

34. Farzan, A., Gagie, T., Navarro, G.: Entropy-Bounded Representation of Point
Grids. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS,
vol. 6507, pp. 327–338. Springer, Heidelberg (2010)

35. Ferragina, P., Giancarlo, R., Manzini, G.: The myriad virtues of wavelet trees.
Inf. Comp. 207(8), 849–866 (2009)

36. Ferragina, P., Giancarlo, R., Manzini, G., Sciortino, M.: Boosting textual com-
pression in optimal linear time. J. ACM 52(4), 688–713 (2005)

37. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proc. 41st FOCS, pp. 390–398 (2000)

38. Ferragina, P., Manzini, G.: Indexing compressed texts. J. ACM 52(4), 552–581
(2005)

39. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: An Alphabet-Friendly FM-
Index. In: Apostolico, A., Melucci, M. (eds.) SPIRE 2004. LNCS, vol. 3246, pp.
150–160. Springer, Heidelberg (2004)

40. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Trans. Alg. 3(2), article 20 (2007)

41. Fischer, J.: Optimal Succinctness for Range Minimum Queries. In: López-Ortiz,
A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010)

42. Gagie, T., Kärkkäinen, J.: Counting Colours in Compressed Strings. In: Gian-
carlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 197–207. Springer,
Heidelberg (2011)

43. Gagie, T., Navarro, G., Nekrich, Y.: Fast and Compact Prefix Codes. In: van
Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM
2010. LNCS, vol. 5901, pp. 419–427. Springer, Heidelberg (2010)

24 G. Navarro

44. Gagie, T., Navarro, G., Puglisi, S.J.: Colored Range Queries and Document Re-
trieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 67–81.
Springer, Heidelberg (2010)

45. Gagie, T., Navarro, G., Puglisi, S.J.: New algorithms on wavelet trees and appli-
cations to information retrieval. Theor. Comp. Sci. 426-427, 25–41 (2012)

46. Gagie, T., Puglisi, S.J., Turpin, A.: Range Quantile Queries: Another Virtue of
Wavelet Trees. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS,
vol. 5721, pp. 1–6. Springer, Heidelberg (2009)

47. Gog, S.: Compressed Suffix Trees: Design, Construction, and Applications. PhD
thesis, Univ. of Ulm, Germany (2011)

48. Golynski, A.: Optimal Lower Bounds for Rank and Select Indexes. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051,
pp. 370–381. Springer, Heidelberg (2006)

49. Golynski, A.: Optimal lower bounds for rank and select indexes. Theor. Comp.
Sci. 387(3), 348–359 (2007)

50. Golynski, A., Grossi, R., Gupta, A., Raman, R., Rao, S.S.: On the Size of Succinct
Indices. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698,
pp. 371–382. Springer, Heidelberg (2007)

51. Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets:
a tool for text indexing. In: Proc. 17th SODA, pp. 368–373 (2006)

52. Gonnet, G., Baeza-Yates, R., Snider, T.: New indices for text: Pat trees and Pat
arrays. In: Information Retrieval: Data Structures and Algorithms, ch. 3, pp. 66–
82. Prentice-Hall (1992)

53. González, R., Navarro, G.: Compressed Text Indexes with Fast Locate. In: Ma, B.,
Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 216–227. Springer, Heidelberg
(2007)

54. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
Proc. 14th SODA, pp. 841–850 (2003)

55. Grossi, R., Gupta, A., Vitter, J.: When indexing equals compression: Experiments
with compressing suffix arrays and applications. In: Proc. 15th SODA, pp. 636–
645 (2004)

56. Grossi, R., Ottaviano, G.: The wavelet trie: Maintaining an indexed sequence of
strings in compressed space. In: Proc. 31st PODS (to appear, 2012)

57. Grossi, R., Vitter, J.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. In: Proc. 32nd STOC, pp. 397–406 (2000)

58. Grossi, R., Vitter, J.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM J. Comp. 35(2), 378–407 (2006)

59. Grossi, R., Vitter, J., Xu, B.: Wavelet trees: From theory to practice. In: Proc.
1st CCP, pp. 210–221 (2011)

60. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proc.
10th SIGMOD, pp. 47–57 (1984)

61. He, M., Munro, J.I.: Succinct Representations of Dynamic Strings. In: Chavez,
E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 334–346. Springer, Hei-
delberg (2010)

62. Huffman, D.: A method for the construction of minimum-redundancy codes. Pro-
ceedings of the I.R.E. 40(9), 1090–1101 (1952)

63. Jacobson, G.: Space-efficient static trees and graphs. In: Proc. 30th FOCS, pp.
549–554 (1989)

64. JáJá, J., Mortensen, C.W., Shi, Q.: Space-Efficient and Fast Algorithms for Mul-
tidimensional Dominance Reporting and Counting. In: Fleischer, R., Trippen, G.
(eds.) ISAAC 2004. LNCS, vol. 3341, pp. 558–568. Springer, Heidelberg (2004)

Wavelet Trees for All 25

65. Jørgensen, A.G., Larsen, K.D.: Range selection and median: Tight cell probe lower
bounds and adaptive data structures. In: Proc. 22nd SODA, pp. 805–813 (2011)

66. Kärkkäinen, J.: Repetition-Based Text Indexing. PhD thesis, Univ. of Helsinki,
Finland (1999)

67. Kärkkäinen, J., Puglisi, S.J.: Fixed Block Compression Boosting in FM-Indexes.
In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024,
pp. 174–184. Springer, Heidelberg (2011)

68. Kreft, S., Navarro, G.: Self-indexing Based on LZ77. In: Giancarlo, R., Manzini,
G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 41–54. Springer, Heidelberg (2011)

69. Larsson, J., Moffat, A.: Off-line dictionary-based compression. Proceedings of the
IEEE 88(11), 1722–1732 (2000)

70. Mäkinen, V., Navarro, G.: New search algorithms and time/space tradeoffs for
succinct suffix arrays. Tech. Rep. C-2004-20, Univ. of Helsinki, Finland (April
2004)

71. Mäkinen, V., Navarro, G.: Succinct suffix arrays based on run-length encoding.
Nordic J. Comp. 12(1), 40–66 (2005)

72. Mäkinen, V., Navarro, G.: Position-Restricted Substring Searching. In: Correa,
J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 703–714.
Springer, Heidelberg (2006)

73. Mäkinen, V., Navarro, G.: Implicit Compression Boosting with Applications
to Self-indexing. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS,
vol. 4726, pp. 229–241. Springer, Heidelberg (2007)

74. Mäkinen, V., Navarro, G.: Rank and select revisited and extended. Theor. Comp.
Sci. 387(3), 332–347 (2007)

75. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. J. Comp. Biol. 17(3), 281–308 (2010)

76. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comp. 22(5), 935–948 (1993)

77. Manzini, G.: An analysis of the Burrows-Wheeler transform. J. ACM 48(3), 407–
430 (2001)

78. McCreight, E.: A space-economical suffix tree construction algorithm. J.
ACM 23(2), 262–272 (1976)

79. Munro, I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,
vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

80. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Proc.
13th SODA, pp. 657–666 (2002)

81. Navarro, G.: Indexing text using the Ziv-Lempel trie. J. Discr. Alg. 2(1), 87–114
(2004)

82. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1),
article 2 (2007)

83. Navarro, G., Nekrich, Y., Russo, L.: Space-efficient data-analysis queries on grids.
CoRR, abs/1106.4649v2 (2012)

84. Navarro, G., Providel, E.: Fast, small, simple rank/select on bitmaps. In: Proc.
11th SEA (to appear, 2012)

85. Navarro, G., Puglisi, S.J.: Dual-Sorted Inverted Lists. In: Chavez, E., Lonardi, S.
(eds.) SPIRE 2010. LNCS, vol. 6393, pp. 309–321. Springer, Heidelberg (2010)

86. Navarro, G., Puglisi, S.J., Valenzuela, D.: Practical Compressed Document Re-
trieval. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp.
193–205. Springer, Heidelberg (2011)

26 G. Navarro

87. Navarro, G., Russo, L.M.S.: Space-Efficient Data-Analysis Queries on Grids. In:
Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS,
vol. 7074, pp. 323–332. Springer, Heidelberg (2011)

88. Navarro, G., Sadakane, K.: Fully-functional static and dynamic succinct trees.
CoRR, abs/0905.0768v5 (2010)

89. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictio-
nary. In: Proc. 9th ALENEX (2007)

90. Pătraşcu, M.: Lower bounds for 2-dimensional range counting. In: Proc. 39th
STOC, pp. 40–46 (2007)

91. Pătraşcu, M.: Succincter. In: Proc. 49th FOCS, pp. 305–313 (2008)
92. Pătraşcu, M., Viola, E.: Cell-probe lower bounds for succinct partial sums. In:

Proc. 21st SODA, pp. 117–122 (2010)
93. Raman, R., Raman, V., Rao, S.: Succinct indexable dictionaries with applications

to encoding k-ary trees and multisets. In: Proc. 13th SODA, pp. 233–242 (2002)
94. Schnattinger, T., Ohlebusch, E., Gog, S.: Bidirectional Search in a String with

Wavelet Trees. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp.
40–50. Springer, Heidelberg (2010)

95. Sirén, J., Välimäki, N., Mäkinen, V., Navarro, G.: Run-Length Compressed In-
dexes Are Superior for Highly Repetitive Sequence Collections. In: Amir, A.,
Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 164–175. Springer,
Heidelberg (2008)

96. Tischler, G.: On Wavelet Tree Construction. In: Giancarlo, R., Manzini, G. (eds.)
CPM 2011. LNCS, vol. 6661, pp. 208–218. Springer, Heidelberg (2011)

97. Välimäki, N., Mäkinen, V.: Space-Efficient Algorithms for Document Retrieval.
In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 205–215. Springer,
Heidelberg (2007)

98. Weiner, P.: Linear pattern matching algorithm. In: Proc. 14th Annual IEEE Sym-
posium on Switching and Automata Theory, pp. 1–11 (1973)

99. Witten, I., Moffat, A., Bell, T.: Managing Gigabytes, 2nd edn. Morgan Kaufmann
(1999)

100. Yu, C.-C., Hon, W.-K., Wang, B.-F.: Efficient Data Structures for the Orthogonal
Range Successor Problem. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609,
pp. 96–105. Springer, Heidelberg (2009)

The Maximum Number of Squares in a Tree

Maxime Crochemore1,3, Costas S. Iliopoulos1,4, Tomasz Kociumaka2,
Marcin Kubica2, Jakub Radoszewski2,�, Wojciech Rytter2,5,��,

Wojciech Tyczyński2, and Tomasz Waleń2,6

1 Dept. of Informatics, King’s College London, London WC2R 2LS, UK
{maxime.crochemore,csi}@dcs.kcl.ac.uk

2 Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Warsaw, Poland

{kociumaka,kubica,jrad,rytter,w.tyczynski,walen}@mimuw.edu.pl
3 Université Paris-Est, France

4 Faculty of Engineering, Computing and Mathematics,
University of Western Australia, Perth WA 6009, Australia

5 Faculty of Mathematics and Computer Science,
Copernicus University, Toruń, Poland

6 Laboratory of Bioinformatics and Protein Engineering,
International Institute of Molecular and Cell Biology in Warsaw, Poland

Abstract. We show that the maximum number of different square sub-
strings in unrooted labelled trees behaves much differently than in words.
A substring in a tree corresponds (as its value) to a simple path. Let
sq(n) be the maximum number of different square substrings in a tree of
size n. We show that asymptotically sq(n) is strictly between linear and
quadratic orders, for some constants c1, c2 > 0 we obtain:

c1n
4/3 ≤ sq(n) ≤ c2n

4/3.

1 Introduction

Repetitions are a fundamental notion in combinatorics and algorithmics on
words. The basic type of a repetition are squares: words of the type zz, where
z �= ε. (By ε we denote the empty word.) In this paper we consider square sub-
strings corresponding to simple paths in labelled trees. If a tree is a single path
then it is a problem of classical repetitions in strings. Combinatorics of squares
in classical strings has been investigated in [7,9,10] and for partial words in [3].
Squares were also studied in the context of games, e.g. in [8].

Repetitions in trees and graphs have already been considered, for example
in [4,1,2]. The number of square substrings in general graphs dramatically in-
creases — it can be exponential, even in case of binary alphabet.

Assume we have a tree T whose edges are labelled with symbols from an
alphabet Σ. By |T | we denote the size of the tree, that is the number of nodes.

� The author is supported by grant no. N206 568540 of the National Science Centre.
�� The author is supported by grant no. N206 566740 of the National Science Centre.

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 27–40, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

28 M. Crochemore et al.

a b
c

c

bc
c

a a

c

a

Fig. 1. There are 4 square substrings in this tree: aa, acaaca, bcbc, cc. Note that cc
occurs twice. The longest is acaaca and it corresponds to a path marked with a solid
line in the figure.

If u and v are two nodes of T , then by val(u, v) we denote the sequence of labels
of edges on the path from u to v. We call val(u, v) a substring of T . (Note that
a substring is a string, not a path.) Figure 1 illustrates a square substring in a
sample tree. We consider only simple paths: this means that vertices of a path
do not repeat (though edges on the path do not need to have distinct labels).

For a tree T , by sq(T) we denote the number of different square substrings in
T . For the tree T from Fig. 1, we have sq(T) = 4. Let sq(n) be the maximum
of sq(T) over all trees of size n. We show that sq(n) = Θ(n4/3). Thus sq(n) has
different asymptotics than the maximum number of different square substrings in
a standard word (a single path tree) of length n, which is known to be Θ(n) [7].

We introduce a family of trees which we call combs. The lower bound for
sq(n) turns out to be realized by trees from this family, and such trees also play
an important role in the proof of the upper bound. Before we show the general
upper bound, we provide some intuition behind this proof by showing the same
upper bound for combs and for special squares of the form (aibaj)2 in general
trees.

2 Bounds for Combs

Before we show a general O(n4/3) bound on the number of squares in a tree,
we analyze the number of squares for a family of trees which we call standard
combs. The notion of combs is generalized later in the paper.

A standard comb is a labelled tree that consists of a path called the spine,
with at most one branch attached to each node of the spine. All spine-edges
are labelled with the letter a. Each branch is a path starting with the letter b,
followed by a number of a-labelled edges, see Fig. 2.

As we show in the theorem below, there exists a family Tm of standard combs
for which sq(Tm) = Ω(|Tm|4/3). From this one easily obtains sq(n) = Ω(n4/3)
for any n. In this section we also prove an upper bound of O(n4/3) for the
number of squares in a standard comb of size n. This proof is extensively used
throughout the proof of the same upper bound for general trees, given in the
following sections. Hence, our family of standard combs Tm meets the asymptotic
upper bound for sq(n) for general trees.

The Maximum Number of Squares in a Tree 29

a
a

a
a

b

a

a

a

b

a

b

a
a

b

a
a

Fig. 2. A standard comb containing 11 square substrings

For m = k2 we define a set Zm = {1, . . . , k} ∪ {i · k : 1 ≤ i ≤ k}. For
example, if m = 9, then Zm = {1, 2, 3, 6, 9}.

Lemma 1. Assume m is a square of a positive integer. Then for each 0 < j < m
there exist u, v ∈ Zm such that u − v = j.

Proof. Each number 0 < j < m can be written as p
√

m−q, where 0 < p, q ≤
√

m.
This formula corresponds to distance between points q and p

√
m. ��

For m = k2 we define a standard comb Tm as follows: Tm consists of a spine of
length m with vertices numbered from 1 to m, and branches of the form bam

attached to each vertex j ∈ Zm of the spine, see Fig. 3.

a a a· · ·

√
m

b

a

a

...

b

a

a

...

b

a

a

...

b

a

a

...

b

a

a

...

a a a a· · ·

√
m

b

a

a

...

a · · · a a a· · ·

√
m

b

a

a

...

√
m

m

Fig. 3. The structure of a standard comb Tm

Theorem 1. [Lower Bound Theorem]
For each tree Tm we have sq(Tm) = Ω(|Tm|4/3).

Proof. From Lemma 1, for every 0 < j < m there are two nodes u, v of degree 3
on the spine with distance(u, v) = j. Hence, Tm contains all squares of the form
(aibaj−i)2 for 0 ≤ i ≤ j and 0 < j < m. Altogether this gives Ω(m2) different
squares. Note that |Tm| = O(m

√
m). Hence, the number of square substrings in

Tm is Ω(|Tm|4/3). ��

30 M. Crochemore et al.

Lemma 2. The number of squares in a standard comb of size n is O(n4/3).

Proof. Let T be a standard comb of size n. Note that T contains only square
substrings of the form (ai)2 or (aibaj)2. The number of squares of the former
type is O(n). We need to bound the number of squares of the latter type (special
squares). Any occurrence of a special square starts and ends within two different
branches of T .

There are at most n4/3 different special squares for which i < n2/3 and j <
n2/3. Hence, it suffices to prove that there are O(n4/3) special square substrings
of T for i ≥ n2/3 or j ≥ n2/3, we call such special squares long.

A branch of a standard comb is called long if it contains at least n2/3 nodes.
Note that there are O(n1/3) long branches in T . Any occurrence of a long special
square has at least one endpoint in a long branch.

Consider a node u located in a branch B of T and a long branch B′. There
is at most one occurrence of a long special square that starts in u and ends
within the branch B′. Indeed, if there are i a-labelled edges on the path from
u to the spine and k edges on the path connecting the branches B and B′

then the considered square (aibak−i)2 uniquely determines its other endpoint.
Hence, the total number of long special squares is bounded by the number of
nodes u multiplied by the number of long branches B′, that is, by O(n4/3). This
completes the proof. ��

3 Prelude to Upper Bound Proof

In this section we show a tight upper bound for special squares, defined at the
end of Section 1. Along the way we introduce some part of the machinery for the
general proof. Define a double tree D = (T1, T2, R) as a labelled tree consisting
of two disjoint (except one vertex) trees T1, T2 with a common root R. The size
of D is defined as |D| = |T1|+ |T2|− 1. The substrings of D are defined as values
of paths which start within T1 and end in T2. An example of a double tree is
shown in Fig. 4, T1 lies below R (lower tree) while T2 above R (upper tree).

A directed rooted labelled tree is deterministic if the edges going down from
the same vertex have different labels. Note that a tree is deterministic if and
only if it is a trie (also called a prefix tree) of the values of the paths from R to
the leaves. A double tree is deterministic if each of the trees T1, T2 treated as
a directed tree with root R is deterministic. A double deterministic tree is also
called here a D-tree. The double tree in Fig. 4 is a sample D-tree.

Lemma 3. For each double (possibly nondeterministic) tree there exists a D-
tree with at most the same number of vertices and the same set of substrings
(going from T1 to T2).

Proof. For a moment let us direct each tree Ti down from R (treated as a root).
Assume we have a vertex v with edges (v, u), (v, w) going to its children and
labelled with the same letter a. Then we can glue the vertices u, w. We can
perform such operation going top-down from the root in a BFS traversal. Note

The Maximum Number of Squares in a Tree 31

that the resulting trees Ti are deterministic, their sizes could only decrease, and
the set of the substrings of the D-tree remains unchanged. ��

A path in a tree T is said to be anchored in a node R ∈ T if R lies on this path.
A square is anchored in R if it is a value of a path anchored in R.

A path p from v to u in a D-tree is called a D-square if v ∈ T1, u ∈ T2, val (v, u)
is a square and its midpoint lies within T1, and amongst all such paths of the
same value p has its starting node closest to R. Since the D-tree is deterministic,
no two D-squares have the same value. Below we bind the number of D-squares
in D-trees with the number of squares in ordinary trees. Recall that a centroid
of a tree T is a node R such that each component of T \ {R} contains at most
n/2 nodes. It is a well-known fact that each tree has a centroid.

Lemma 4. Assume that the number of D-squares in any D-tree of size n is
O(n4/3). Then the number of squares in any tree is also O(n4/3).

Proof. Let T be a tree of size n and let R be its centroid. Consider a D-tree
D = (T1, T2, R) composed of two copies T1 and T2 of T , determinised as in
Lemma 3.

Let xx be a square in T anchored in R. Either this square or its reverse corre-
sponds to a D-square in D. Obviously |D| = O(n), therefore, by the hypothesis
of the lemma, there are O(n4/3) D-squares in this D-tree. Hence, the number of
squares in T anchored in R is also O(n4/3).

Now we need to count the squares in T that are not anchored in R. After
removing the node R, the tree is partitioned into components T1, . . . , Tk, such
that

∑
i |Ti| = n − 1 and |Ti| ≤ n/2. Hence, the number of squares in T can be

written as:
sq(T) ≤ O(|T |4/3) +

∑
i sq(Ti).

A solution to this recurrence yields the upper bound sq(n) = O(n4/3). ��

The proof of the assumption of the previous lemma is the core of this paper. In
full generality it is provided in the last section. Here we limit ourselves to a very
special type of squares. There is a useful connection between D-trees and combs,
as expressed by the following observation, see Fig. 4.

T1

T2

b

a

b

b a

a

a

a

a b

b b
a

a
b

a
bb

aaa

b b a

b

a

b

a b a

b

a

a

a

a

a b

b
a

a

a
b

aaa

b a

b

a

a

R R

Fig. 4. Illustration of Observation 1

32 M. Crochemore et al.

Observation 1. Assume we have a D-tree labelled with letters a, b. Let us take
only paths from a vertex in T1 to R or from R to a vertex in T2 which contain
at most one b, with other edges labelled with a. Then the resulting labelled tree
is a standard comb (with at most one additional branch attached to R).

Corollary 1. Assume binary alphabet {a, b}. The maximum number of special
squares in any tree is O(n4/3).

Proof. By Lemma 4, it suffices to consider a D-tree D = (T1, T2, R) and only
special D-squares in D. The special D-squares with both occurrences of b in T2

are uniquely determined by their upper end and those with both occurrences
in T1 by their lower end. Hence the number of such D-squares in linear. By
Lemma 2 and Observation 1, there are O(n4/3) special D-squares which have
one b in T1 and one b in T2. ��

4 (p, q)-Representations of Substrings

In this section w denotes a word of length n. We start by recalling a few basic
notions of word periodicity, see e.g. [5,6,11]. A border of w is defined as a prefix
of w which is also a suffix of w. We say that a positive integer p is a period of
w = w1w2 . . . wn if wi = wi+p holds for all 1 ≤ i ≤ n − p. A non-empty word w
is called periodic if it has a period p such that 2p ≤ |w|. The primitive root of
a word w, denoted root(w), is the shortest word u such that uk = w for some
positive integer k. We call a word w primitive if root(w) = w, otherwise it is
called non-primitive. We recall several periodic properties of words [5,6,11].

Fact 1. A word w has a border of length b if and only if w has a period |w| − b.

Fact 2 (Periodicity Lemma). If a word of length n has two periods p and q,
such that p + q ≤ n + gcd(p, q), then gcd(p, q) is also a period of the word.

Fact 3 (Synchronizing Properties)

(a) If uv = vu then both words u, v are powers of the same primitive word.
(b) Let q �= ε be a primitive word. Then q has exactly two occurrences in qq.
(c) Let p �= ε, q �= ε be such that pq is primitive. Then qp has exactly one

occurrence in pqpq.

As a consequence of the synchronizing properties of primitive words, we obtain
the following auxiliary fact that will be useful in the proof of the main result
(Lemma 9).

Fact 4. Let p, p′, q, q′ be words such that: q �= ε and q′ �= ε, pq is primitive,
pq = p′q′, and qp = q′p′. Then p = p′ and q = q′.

Proof. First assume p = ε. Then q′p′ = qp = pq = p′q′. From Fact 3a, since
q′ �= ε, we get p′ = ε. This naturally implies that q = q′. Now assume that p �= ε.
We have pqpq = p′q′p′q′ = p′qpq′ and from Fact 3c we know that there is only
one occurrence of qp in pqpq. Thus p = p′ and q = q′. ��

The Maximum Number of Squares in a Tree 33

Assume that w is periodic. There exists a unique representation of w: w = (pq)kp
such that k ≥ 2, q �= ε and pq is primitive. This representation is called a
canonical representation of w. Here |pq| is the shortest period of w. We say that
w is of periodic type (p, q).

Example 1. The word abbabbab has a canonical representation (abb)2ab, with
p = ab and q = b. On the other hand, bababa has a representation (ba)3 with
p = ε and q = ba.

Fact 5. Borders of w that are periodic belong to O(log n) periodic types. Addi-
tionally, w may have O(log n) borders which are not periodic.

Proof. As for the first part of the lemma, let u, v be periodic borders of w such
that |u| < |v| ≤ 1.5|u|. We show that u and v are of the same periodic type.

Indeed, let v = (pq)kp, where d = |pq| is the shortest period of v, and u =
(p′q′)k′

p′ be the canonical representations of v and u. The border u is also a
border of v. Due to Fact 1, both d and |v| − |u| are periods of v. Moreover
d < 1

2 |v| (since k ≥ 2) and |v| − |u| ≤ 1
3 |v| (since |v| ≤ 1.5|u|). Hence, by the

Periodicity Lemma, |v|− |u| is a multiple of d. The word u is a prefix of v, hence
u = (pq)�p for some � < k. Now, let us show that � ≥ 2. Assume to the contrary
that � ≤ 1. Then:

3|p| + 2|q| ≤ (k + 1)|p| + k|q| = |v| ≤ 1.5|u| ≤ 3|p| + 1.5|q|.

This is clearly a contradiction, since |q| > 0. Hence � ≥ 2. Now by the uniqueness
of canonical representations we obtain p = p′, q = q′ and k′ = �. This concludes
that the borders u and v are of the same periodic type.

As for the second part, let u, v be non-periodic borders of w such that |u| < |v|.
We show that |v| > 2|u|.

Assume to the contrary that |u| < |v| ≤ 2|u|. As in the previous part of the
proof, we see that |v| − |u| is a period of v. However,

2(|v| − |u|) = |v| + |v| − 2|u| ≤ |v| + 2|u| − 2|u| = |v|,

therefore v is periodic, a contradiction. ��
A periodic border v of w is called global if its period is the period of the whole
word w. Equivalently, v is global if v, w are of the same periodic type. If w is of
periodic type (p, q) and its canonical representation is w = (pq)kp, then all its
global borders are (pq)k′

p for 2 ≤ k′ ≤ k.

Definition 1. Let p, q be such words that q �= ε and pq is primitive. The rep-
resentation w = p(qp)�y(pq)rp is called the (p, q)-representation of w if: (a)
�, r ≥ 1; (b) y has a prefix qp but not (qp)2; (c) y has a suffix pq but not (pq)2,
see Fig. 5 and 6.

Lemma 5. Assume w has a non-global periodic border of periodic type (p, q).
Then w has a (p, q)-representation w = p(qp)�y(pq)rp. Moreover: (a) this (p, q)-
representation is unique (i.e., �, r and y are unique); (b) y is not a prefix of
(qp)2; (c) y is not a suffix of (pq)2; (d) all borders of w of periodic type (p, q)
are: (pq)k′

p for 2 ≤ k′ ≤ min(�, r) + 1.

34 M. Crochemore et al.

w2 : � � � � � � � � � � � � � � � � �� � � � � �

w1 : � � � � � � � � � � � � � � �� � � � �

Fig. 5. The (p, q)-representations: w1 = a(abaa)2abaaba(aaba)1a and w2 =
a(abaa)2abaabaaba(aaba)1a. In both cases p = a, q = aba and y is marked grey.

y
∗∗

Fig. 6. A schematic view of a (p, q)-representation. The ∗-symbols correspond to the
first mismatch for the continuation of the period qp from the left side and the period
pq from the right side.

Proof. Let u = (pq)kp be the longest border of w of type (p, q). Clearly p is a
prefix of w and |w| > |u| > 2|p|, so let us write w = pzp. Now, let (qp)�+1 be the
maximal power of qp that is a prefix of z. We have for some z′: w = p(qp)�z′p.
Let (pq)r+1 be the maximal power of pq that is a suffix of z′. Now we can write
w = p(qp)�y(pq)rp. Let us prove that this representation satisfies the required
conditions. We get the following easily:
– z has a prefix qp and a suffix pq.
– z′ has a prefix qp but not (qp)2, and a suffix pq
– y has a prefix qp but not (qp)2, and a suffix pq but not (pq)2.

Let us now show that y is not a prefix of (qp)2. Assume to the contrary. Recall
that pq is a suffix of y. Thus we get an occurrence of pq in qpqp. If p �= ε, from
Fact 3 we get that y = qpq. But then, w would be of type (p, q). Therefore
p = ε. From Fact 3 we conclude that y = q and w is a power of q. This is,
however, impossible since w has a non-global periodic border (pq)kp = qk. This
contradiction implies that y is not a prefix of (qp)2.

A symmetric argument proves that y is not a suffix of (pq)2. Since none of
(qp)2 and y is a prefix of the other, p(qp)�+2 is not a prefix of w. Similarly
(pq)r+2p is not a suffix of w. Thus u = (pq)min(�,r)+1. In particular �, r ≥ 1.
Clearly (pq)k′

p for 2 ≤ k′ ≤ min(�, r) + 1 are the only periodic borders of w of
the type (p, q).

Now it remains to show the uniqueness of the representation. Assume there
was another representation w = p(qp)�′y′(pq)r′

p. Since y′ has a prefix qp but not
(qp)2, �′ + 1 is the largest m such that p(qp)m is a prefix of m, that is �′ = �.
Similarly r′ = r and finally y′ = y. ��

A periodic border is called maximal if it is the longest border of its periodic type.
By Fact 5, w has O(log n) maximal borders.

We call a border regular if it is periodic and is neither global nor maximal.

The Maximum Number of Squares in a Tree 35

5 General Combs and General Upper Bound

Due to Lemma 4, in this section we are only dealing with D-squares in a deter-
ministic double tree D = (T1, T2, R) of size n.

For a node v ∈ T1 we define the set SQ(v) of all D-squares which start in v.
Each D-square in SQ(v) of value xx induces a period |x| of val(v, R), and thus
corresponds to a border u of val (v, R). This D-square is called regular if u is a
regular border of val(v, R). The periodic type of a D-square is defined as the
periodic type of the underlying border u.

The following lemma lets us concentrate only on the regular D-squares.

Lemma 6. At most O(n log n) D-squares in D are not regular.

Proof. We show that in SQ(v) at most O(log n) D-squares are not regular. Each
D-square in SQ(v) corresponds to a different border of val(v, R). The borders
corresponding to non-regular D-squares are non-periodic, global or maximal; we
extend these terms to D-squares as in the case of regular D-squares and borders.
We have the following claim.

Claim. In SQ(v) at most one D-square is global.

Proof. Let xx and x′x′ be values of two global D-squares starting in v. Assume
|x| < |x′|. Let w = val (v, R) = (pq)kp. The global D-squares are of the form
(pq)k′

. Since a global border is periodic of periodic type (p, q), we have 1 ≤ k′ ≤
k − 2. Let x = (pq)� and x′ = (pq)�′ , � < �′.

Let u be an ancestor of v the defined by val(u, R) = (pq)k−1p. A path starting
in u and going to the upper end of x′x′ has the value (pq)2�′−1, which has a prefix
(pq)2� = xx. We have � < k − 1, so this occurrence has a centre in the lower
part of the D-tree. Hence, it is a candidate for a D-square of the value xx. This
concludes that the original path of value xx starting in v could not be a D-
square, which is a contradiction. ��

As we noticed in Section 4, only O(log n) borders of val (v, R) can be non-periodic
or maximal. Hence only O(log n) D-squares starting in v can correspond to a
non-regular border. Thus there can be only O(n log n) D-squares which are not
regular. ��

We introduce an important notion of a general comb. Before we give a formal
definition, we provide a few sentences of intuition behind it. Assume val (v, u)
is a regular D-square of type (p, q). By Lemma 5 we have the representation
val(v, R) = p(qp)�y(pq)rp. All D-squares of type (p, q) starting in v correspond
to the same representation. Those squares induce a particular structure of paths
labelled with p, q and y in the upper part of the D-tree D. A similar structure
is also present in the lower part.

Definition 2. Let p, q, y satisfy the conditions of Lemma 5. A D-tree
(T1, T2, R) is called a (p, q, y)-comb if

– for each leaf v ∈ T1, val(v, R) = p(qp)my(pq)kp for some integers k, m,

36 M. Crochemore et al.

v

R
pq pq pq pq pq

pq pq pq p

����� ���	
	 � �����

pqpqpqpq

p y

��
�� �����
	 ������

Fig. 7. Correspondence between squares in trees and borders

– for each leaf u ∈ T2, val(R, u) = (qp)my(pq)k for some integers k, m.

Let D be a D-tree containing a regular D-square of periodic type (p, q). Then by
Comb(D, p, q, y) we denote the maximal subtree of D that is a (p, q, y)-comb.

p
q

p
q

p
q

p
pq

pq

pq

p

q

p

q

y

p

q

p

q

y

p

q

p

q

y

y

p

q

p

q

p

y

p

q

p

q

p

y

p

q

p

q

p

R

Fig. 8. A sample (p, q, y)-comb with the root R; the main nodes are shown as larger
circles; the bended edges are partially glued to the spine due to determinisation. All
(p, q, y)-combs are subtrees of this infinite D-tree. For p = ε, q = a and y = aba we
obtain a standard comb.

Note that the conditions of Definition 1 and Lemma 5 in particular imply that
neither y is a prefix of (qp)2 nor (qp)2 a prefix of y. Similarly neither y is a suffix
of (pq)2 nor (pq)2 a suffix of y. Hence, all combs have a regular structure, see
Fig. 8. Each (p, q, y)-comb consists of a path labelled with p(qp)m (for an integer
m) and containing the root, which we call the spine, and the branches which are
paths attached directly to the spine.

The Maximum Number of Squares in a Tree 37

Some nodes of the combs are particularly important for the D-squares. These
are nodes v of values val (v, R) = p(qp)ky(pq)mp in the lower part, and nodes u of
values val(R, u) = (qp)ky(pq)m in the upper part (k, m are arbitrary nonnegative
integers in both cases). Such nodes are called main. For a comb C, by Main(C)
we denote the set of main nodes in C, and by ‖C‖ we denote |Main(C)|. D-squares
in C with both endpoints in main nodes are said to be induced by the comb.

The following lemma confirms a strong relation between combs and regular
D-squares.

Lemma 7. Each regular D-square of type (p, q) in D is induced by the corre-
sponding comb Comb(D, p, q, y).

Proof. Let val(v, u) be a regular D-square in D of type (p, q). By Lemma 5,
val(v, R) has a following representation val(v, R) = p(qp)�y(pq)rp. The underly-
ing border is regular, that is (pq)kp for some 2 ≤ k ≤ min(�, r), hence the value
of the D-square is (p(qp)�y(pq)r−k)2. Thus val(R, u) = (qp)�−ky(pq)r−k. Now it
is clear that both v and u are main nodes of Comb(D, p, q, y). ��

The following result is a simple extension of the upper bound for standard combs.

Lemma 8. A comb C induces O(‖C‖4/3) D-squares.

Proof. Let C be a (p, q, y)-comb. We can construct a (ε, a, aba)-comb C′ of the
same structure of branches and main nodes as C. Clearly, ‖C‖ = ‖C′‖ and the
number of squares induced by both combs is the same. But now C′ is a standard
comb.

For the comb C′ we have an upper bound sq(C′) = O(|C′|4/3) from Lemma 2.
In order to obtain an O(‖C′‖4/3) bound for the number of squares induced by
C′, it suffices to restrict the proof of that lemma to special squares (aibaj) for
i ≥ 2 and j ≥ 1. This way we obtain an upper bound of O(‖C′‖4/3) for the
number of D-squares induced by C′, consequently an O(‖C‖4/3) upper bound for
an arbitrary comb C. ��

Finally, we can prove the main lemma.

Lemma 9 (Key lemma). A D-tree of size n contains O(n4/3) regular D-
squares.

Proof. We show that combs in a D-tree are almost disjoint with regard to
their main nodes. More precisely, due to combinatorial properties of words, any
two different such combs can have at most two common main nodes in upper
branches, and same for lower branches (Claim 2). Before that, we show that
certain pairs of combs (with |pq| = |p′q′|) have none common main nodes at all
(Claim 1).

Claim 1. If C = Comb(D, p, q, y) and C′ = Comb(D, p′, q′, y′) are different
combs satisfying |pq| = |p′q′|, then Main(C) ∩ Main(C′) = ∅.

38 M. Crochemore et al.

Proof. Assume u is a common main node of the two combs. It can lie either in
the upper part or in the lower part of D. First, let us consider the first case.
Let w = val(R, u). Since qp and q′p′ is a prefix of w and pq and p′q′ is a suffix
of w, we get that qp = q′p′ and pq = p′q′. By Fact 4, p = p′ and q = q′. We
now know that w = (qp)�y(pq)r = (qp)�′y′(pq)r′

. Assume � �= �′, without the
loss of generality � < �′. Since y′ has a prefix qp, y(pq)r has a prefix (qp)2.i This
is impossible by the definition of a comb. By a similar argument, r = r′. Hence
y = y′, so C and C′ cannot be different combs.

Now, consider a common main node u in the lower part. Let w = val(u, R).
As previously we easily obtain that p = p′ and q = q′. This time we have
w = p(qp)�y(pq)rp = p(qp)�′y′(pq)r′

p. Exactly in the same way as before, we get
� = �′, r = r′ and conclude that y = y′. ��

Claim 2. Let C = Comb(D, p, q, y) and C′ = Comb(D, p′, q′, y′). Then either
C = C′ or |Main(C) ∩ Main(C′)| ≤ 4.

Proof. By Claim 1, it suffices to show that if C and C′ have at least 5 common
main nodes, then |pq| = |p′q′|. First we show that no two common main nodes
may lie on a single branch (in the upper or in the lower tree). Assume we have
such two nodes u and u′ and u is the lower among them. Then val(u, u′) is a power
of both pq and p′q′. But pq and p′q′ are primitive, so |pq| = |root(val (u, u′))| =
|p′q′|, which by claim concludes the proof of this case.

Now we show that no three common main nodes may lie in the upper tree.
Assume that u, u′, u′′ are such nodes. Since no two of them can lie on the same
branch, they are aligned as in Fig. 9 (up to a permutation of u, u′, u′′).

R

v

v′

u

u′
u′′

Fig. 9. Main nodes on three different branches of a D-tree

Note that nodes v and v′ need to be branching nodes of both combs. Obviously,
|pq| = |root(val (v, v′))| = |p′q′|. This again concludes the proof of the current
case.

Finally, it remains to show that no three common main nodes may lie in the
lower tree. The proof is exactly the same as in the previous case. ��

Now let us divide combs into small combs, for which ‖C‖ ≤ n0.6, and the remain-
ing big combs. Due to the following claim, we can restrict the further analysis
to big combs.

The Maximum Number of Squares in a Tree 39

Claim 3. The number of regular D-squares in D induced by small combs is
o(n4/3).

Proof. Consider a node v in the lower part of the D-tree D. Assume SQ(v) con-
tains s > 0 regular D-squares of type (p, q), and val(v, R) = w = p(qp)�y(pq)rp
is a corresponding representation. Let C = Comb(D, p, q, y). We will show that
|Main(C)| = Ω(s2).

Indeed, let x1x1, . . . , xsxs be those s regular D-squares ordered by increasing
lengths. As in the proof of Lemma 7 the values of these D-squares are of reg-
ular form. Namely, we have xi = p(qp)�y(pq)ki for some max(0, r − �) ≤ k1 <
. . . < ks < r. Let u1, . . . , us be the other endpoints of these D-squares. We have
val(R, ui) = (qp)�−r+kiy(pq)ki . The nodes in the upper tree of C corresponding
to paths of the form (qp)�−r+kiy(pq)k for 0 ≤ k ≤ ki are all distinct main nodes,
hence |Main(C)| ≥ ((k1 +1)+(k2+1)+ . . .+(ks +1)) ≥ (1+2+ . . .+s) = Ω(s2).

As a consequence, we get that O(n0.3) D-squares from SQ(v) can be induced
by a single small comb. Moreover, by Fact 5, regular squares starting in v are
induced by O(log n) combs. Consequently, the number of elements of SQ(v) that
are induced by small combs is O(n0.3) ·O(log n) = o(n1/3). In total, small combs
induce o(n4/3) squares. ��
Let C1, . . . , Ck denote all big combs of D. As a consequence of Claim 2, the total
size of all these combs, measured in the number of main nodes, turns out to be
linear in terms of n.

Claim 4. For any D-tree of n nodes,
∑k

i=1 ‖Ci‖ = O(n).

Proof. We will show the following inequality:
k∑

i=1

‖Ci‖ ≤ n + 2(k − 1)(k − 2). (1)

From this inequality, by ‖Ci‖ ≥ n0.6, we get

k · n0.6 ≤ n + 2(k − 1)(k − 2).

Comparing asymptotics of both sides of the inequality, we conclude that for
almost all values of n (that is, all values excluding only a finite number) k < n0.5.
For such values of k the right side of the inequality (1) is O(n), which will
conclude the proof of the claim provided that we show that inequality.

As for the proof of (1), using Claim 2 we obtain that:∣∣∣∣∣
k⋃

i=1

Main(Ci)

∣∣∣∣∣ =

∣∣∣∣∣∣
k⋃

i=1

⎛⎝Main(Ci) \
i−1⋃
j=1

Main(Cj)

⎞⎠∣∣∣∣∣∣
=

k∑
i=1

∣∣∣∣∣∣Main(Ci) \
i−1⋃
j=1

Main(Cj)

∣∣∣∣∣∣
≥

k∑
i=1

(‖Ci‖ − 4 · (i − 1)) =
k∑

i=1

‖Ci‖ − 2(k − 1)(k − 2).

40 M. Crochemore et al.

Consequently:

k∑
i=1

‖Ci‖ − 2(k − 1)(k − 2) ≤
∣∣∣∣∣

k⋃
i=1

Main(Ci)

∣∣∣∣∣ ≤ n

which is equivalent to the inequality (1). ��

Let D be a D-tree of size n. Due to Lemma 7, each regular D-square in D is
induced by a comb in D. By Claim 3, there are o(n4/3) such D-squares induced by
small combs. Finally, by Lemma 8 and Claim 4, the number of regular D-squares
induced by big combs C1, . . . , Ck of D is bounded by:

k∑
i=1

O
(
‖Ci‖4/3

)
= O

(
k∑

i=1

‖Ci‖
)4/3

= O(n4/3).

This completes the proof of the key lemma. ��

As a corollary of the key lemma, by Lemma 4 and 6 we obtain the desired upper
bound.

Theorem 2. The number of squares in a tree with n nodes is O(n4/3).

References

1. Alon, N., Grytczuk, J.: Breaking the rhythm on graphs. Discrete Mathemat-
ics 308(8), 1375–1380 (2008)

2. Alon, N., Grytczuk, J., Haluszczak, M., Riordan, O.: Nonrepetitive colorings of
graphs. Random Struct. Algorithms 21(3-4), 336–346 (2002)

3. Blanchet-Sadri, F., Mercas, R., Scott, G.: Counting distinct squares in partial
words. Acta Cybern. 19(2), 465–477 (2009)

4. Bresar, B., Grytczuk, J., Klavzar, S., Niwczyk, S., Peterin, I.: Nonrepetitive color-
ings of trees. Discrete Mathematics 307(2), 163–172 (2007)

5. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press (2007)

6. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific (2003)
7. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. of Combi-

natorial Theory Series A 82, 112–120 (1998)
8. Grytczuk, J., Przybylo, J., Zhu, X.: Nonrepetitive list colourings of paths. Random

Struct. Algorithms 38(1-2), 162–173 (2011)
9. Ilie, L.: A simple proof that a word of length n has at most 2n distinct squares. J.

Comb. Theory, Ser. A 112(1), 163–164 (2005)
10. Ilie, L.: A note on the number of squares in a word. Theor. Comput. Sci. 380(3),

373–376 (2007)
11. Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983)

Faster and Simpler Minimal Conflicting

Set Identification

(Extended Abstract)

Aı̈da Ouangraoua1 and Mathieu Raffinot2

1 INRIA Lille, LIFL - Université Lille 1, Villeneuve d’Ascq, France
aida.ouangraoua@inria.fr

2 CNRS/LIAFA, Université Paris Diderot - Paris 7, France
raffinot@liafa.jussieu.fr

Abstract. Let C be a finite set of n elements and R = {r1, r2, . . . , rm}
a family of m subsets of C. A subset X of R satisfies the Consecutive
Ones Property (C1P) if there exists a permutation P of C such that each
ri in X is an interval of P . A Minimal Conflicting Set (MCS) S ⊆ R
is a subset of R that does not satisfy the C1P, but such that any of
its proper subsets does. In this paper, we present a new simpler and
faster algorithm to decide if a given element r ∈ R belongs to at least
one MCS. Our algorithm runs in O(n2m2+nm7), largely improving the
current O(m6n5(m+n)2 log(m+n)) fastest algorithm of [Blin et al, CSR
2011]. The new algorithm is based on an alternative approach considering
minimal forbidden induced subgraphs of interval graphs instead of Tucker
matrices.

1 Introduction

Let C = {c1, . . . , cn} be a finite set of n elements and R = {r1, r2, . . . , rm}
a family of m subsets of C. Those sets can be seen as a m × n 0-1 matrix
M = (R, C), such that the set C represents the columns of the matrix, and the
set R the rows of the matrix: each ri ∈ R represents the set of columns where
row i has an entry 1.

A subset X of R satisfies the consecutive ones property (C1P) if there exists
a permutation P of C such that each ri in X is an interval of P . Testing the
consecutive ones property is the core of many algorithms that have applications
in a wide range of domains, from VLSI circuit conception through planar embed-
dings [8] to computational biology for the reconstruction of ancestral genomes
[1,2,4,5,10]. We focus on this last field in this paper.

On real biological matrices, the C1P is rarely satisfied, and only some subsets
of rows might satisfy the desired property. However, the combinatorics of such
sets is difficult to handle, and a strategy to deal with them has been proposed
in [1,5,10]. It consists in identifying the rows belonging to minimal conflicting
subsets of rows that do not satisfy the C1P, but such that any of their proper
subset does.

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 41–55, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

42 A. Ouangraoua and M. Raffinot

Definition 1. A set S ⊆ R,S �= ∅ is a Minimal Conflicting Set (MCS) if S
does not satisfy the C1P, but such that ∀X ,X ⊂ S, the set X satisfies the C1P.

However, it is not difficult to build examples of matrices such that the number of
MCS is polynomial or even exponential in the number of rows. Figure 1 shows an
example of a matrix for which the number of MCS is exponential in the number
of rows.

c4 c61c c2 c 3 c 5

6r
1r

5r

7r

8r

9
r

(b)

2

3

4

r
r

r

0

0 0 10

1

0

0

0

0

0

0

0 0 0 1

001 1 0

0 0 0

10 0

0 0

1 1

1 0

1 1

0

0

1

0

0

1 1 0 0 0

0 1 01

1 10 0 0

1

2

3

4

5

6

7

9

r
r

r
r
r

r
r

r
r8

(a)

Fig. 1. (a) A matrix not satisfying the C1P and such that the number of MCS is
exponential in the number of rows. (b) A row intersection graph of the matrix whose
vertices correspond to the rows of the matrix, and such that there exists an edge
between two rows ri and rj if ri ∩ rj �= ∅.

From a computational point of view, the first question that arises is the fol-
lowing: is a given row r ∈ R included in at least one MCS ? This question
has been raised in [1], recalled in [4,5] and recently solved in polynomial time
O(m6n5(m + n)2 log(m + n)) in [3]. This currently fastest algorithm is based on
the identification of minimal Tucker forbidden submatrices [6,11].

In this paper we present a new simpler O(m2n2 + nm7) time algorithm for
deciding if a given row belongs to at least one MCS and if true exhibit one. Our
algorithm is based on an alternative approach considering minimal forbidden
induced subgraphs of interval graphs [7] instead of Tucker matrices. Moreover,
our central paradigm consists in reducing the recognition of complex forbidden
induced subgraphs to the detection of induced cycles in ad-hoc graphs. Our
approach is faster and simpler, but a limit shared by both approaches resides in
avoiding to report the number of MCS to which a given row belongs.

2 MCS and Forbidden Induced Subgraphs

The row-column intersection graph of a 0-1 matrix M = (R, C) is a vertex-
colored bipartite graph GRC(M) whose set of vertices is R ∪ C ; the vertices
corresponding to rows (resp. columns) are black (resp. white) ; there exists an
edge between two rows ri ∈ R and rj ∈ R if ri ∩rj �= ∅, and there exists an edge
between a row r ∈ R and a column c ∈ C if c ∈ r.

Faster and Simpler Minimal Conflicting Set Identification 43

It should be noted that a column vertex (white) is only connected to row
vertices (black). The neighborhood N(r) of a row r is the set of rows intersecting
r, N(r) = {x ∈ R : r ∩ x �= ∅} and N(ri, rj) = N(ri) ∩ N(rj). The span L(c)
of a column c is the set of rows containing c, L(c) = {r ∈ R : c ∈ r}.

a

1

32b 4 c

2b 4 c

a

1

a

1 2

b 3 k c

a

1

2b c3 k 4

3

IV

II III

V1

k

2

43
5

6

7I

k>3

k>2 k>2

Fig. 2. Forbidden induced subgraphs for the row-column intersection graph of M =
(R, C) to satisfy the C1P. Black vertices correspond to rows, and white vertices to
colums.

Theorem 1 ([7], Theorem 4). A 0-1 matrix M = (R, C) satisfies the C1P
if and only if its row-column intersection graph does not contain a forbidden
induced subgraph of the form I, II, III, IV, or V (Figure 2).

Property 1. From Theorem 1, a set S ⊆ R is a MCS if the row-column intersec-
tion graph GRC(S, C) contains a subgraph of the form I, II, III, IV, or V; and
for any T ⊂ S, GRC(T , C) does not contain a subgraph of the form I, II, III, IV,
or V.

Given a MCS S ⊆ R, a forbidden induced subgraph contained in GRC(S, C) is
said to be responsible for the MCS S. If this forbidden induced subgraph is of
the form I (resp. II; III; IV; V), we simply say that S is a MCS of the form I
(resp. II; III; IV; V).

Definition 2. A row of a MCS S that intersects all other rows of S is called a
kernel of S. In a forbidden induced subgraph responsible for S, any kernel of S
constitutes a black vertex that is connected to all other black vertices.

Property 2. An induced subgraph of the form II, III, IV, or V always contains
at least one kernel, while an induced subgraph of the form I contains no kernel.
We denote by GR(M), the subgraph of GRC(M) induced by the set of rows R,
thus containing only black vertices.

Graph Sizes. GR(M) has m vertices and at most m(m − 1)/2 edges, while
GRC(M) has m + n vertices and at most nm + m(m − 1)/2 edges.

44 A. Ouangraoua and M. Raffinot

� �

�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�
�

�
�
� �

�

�
�

�
�

�

�

�

�
�

�

�
�

�
�

�
�

�

������

����

�����

���� ��
� �
�
�

�
�

�

�

���
	 �

��� ��
 �
�

�
	

�

� 	
��

��

�
�

�
	

�
�

�
�

� 	

�
�

�
�

�
�

�
�

Fig. 3. The different steps of the algorithm: in each case, when row r has a specific
location in the forbidden induced subgraph that is looked for, this location is indicated
in bold character. Other rows and columns of the forbidden induced subgraph are
indicated in grey color characters.

3 A Global Algorithm

Our algorithm to decide if a row r ∈ R of a 0-1 matrix M = (R, C) belongs to
at least one MCS, is based on a sequence of algorithms for finding a forbidden
subgraph of GRC(M) responsible for a MCS containing r. It looks for some MCS
of the form I, III, II, IV, or V, containing r, in the following order:

1. MCS of type I, 2. MCS of size 3 (types IV or V), 3. MCS of type II, 4. MCS
of type III, 5. MCS of type IV and size larger than 3, and MCS of type V and
size larger than 3. See Figure 3 for an overview. The steps 2 to 4 are based on
straightforward brute-force algorithms to detect forbidden induced subgraphs of
GRC(M) containing at most 4 black vertices (rows) including r. For this reason,
their detailed descriptions are not presented in this extended abstract. They can
however be found in [9]. The steps 1, 5, and 6 rely on a reduction to the detection
of induced chordless cycles in ad-hoc graphs. In the following, we simply write
GRC(M) as G and GR(M) as GR.

STEP 1: Forbidden induced subgraph I. We first test if r belongs to a MCS
of the form I. The rows (black vertices) of such a MCS necessarily consitute an
induced chordless cycle in GR. Thus it suffices to search for an induced chordless
cycle in GR containing r (see Figure 3.I and Algorithm 1 ; a P4 of a graph is an
induced chordless path of the graph containing 4 vertices).

Faster and Simpler Minimal Conflicting Set Identification 45

Algorithm 1.1. Check I (r, GR) – O(m5)

Input: a row r, the subgraph GR.
Output: returns a MCS S given by a forbidden induced subgraph of the form
I containing r if such a MCS exists, otherwise returns ”NO”.

1: for any P4 of GR containing r do
2: Consider the graph G′ obtained from GR after removing the two internal

vertices of the P4 and their neighborhood from the graph, and consider
the extremities ri and rj of the P4

3: if there exists a rirj-path in G′ then
4: find a chordless path P in this graph linking ri and rj .
5: return the set of vertices of the P4 plus the set of vertices of P
6: end if
7: end for
8: return ”NO”

Proposition 1. Algorithm Check I is correct and worst case O(m5) time.

Proof. The correctness of Algorithm Check I comes from the fact that, r is
contained in a MCS of the form I if and only if r belongs to an induced chordless
cycle of GR of length at least 4 whose set of vertices S constitutes the MCS
(Figure 3.I). A P4 of GR is an induced chordless path of GR containing 4 vertices.
In this case, Algorithm Check I returns such a set of vertices since an induced
chordless cycle of GR of length at least 4 containing r is a P4 containing r whose
extremities are linked by a chordless path in the subgraph of G that does not
contain the neighborhood of the internal vertices of the P4. This set S cannot
contain a smaller subset of rows that is a MCS, as no subset of S can be a MCS
of the form I, or a MCS of any other form because of Property 2.

Algorithm Check I might be implemented in O(m5). The test performed on
a given P4 containing r (lines 2-5 of the algorithm) can be achieved in O(m2 +
m log m) as follows: removing the neighborhood of its internal vertices might be
done in m2 time, and finding a chordless path between the two extremities might
be performed using Dijkstra’s algorithm in O(m2 +m logm) time. Enumerating
all P4 containing r might be done in time O(m3) using a BFS from r stopping at
depth 4. Eventually, the whole algorithm is in O(m3(m2 + m log m)) = O(m5)
time. ��

Precomputation. In the following steps, we assume that the following precom-
putations have been achieved: (a) for any triplet of rows (r, ri, rj) in G that are
pairwise connected, r − (ri ∪ rj) and (ri ∩ rj) − r are precomputed ; (b) two
rows ri and rj are overlapping if ri ∩ rj �= ∅ and ri − rj �= ∅ and rj − ri �= ∅.
The overlapping relation between any couple of rows in G is precomputed ; (c)
for any quadruplet of rows (r, ri, rj , rk) in G such that ri, rj , and rk overlap
r, r − (ri ∩ rj ∩ rk) is precomputed. All those precomputations can simply be
performed in O(nm4) time using straightforward algorithms, that are, scanning
the n columns of the input matrix for each triplet or quadruplet of rows.

46 A. Ouangraoua and M. Raffinot

STEP 2: Forbidden induced subgraph responsible for a MCS of size
3. We test here if r belongs to a MCS of size 3. A MCS of size 3 is necessarily
caused by a forbidden induced subgraph of the form IV or V. As a consequence,
the following property is immediate.

Property 3. A MCS of size 3 is always composed of 3 rows that are pairwise
overlapping.

Thus, in this step, it suffices to use a brute-force algorithm, Check IV V 3, run-
ning in O(m2) time to search for a triplet of rows in G including r, satisfying one
the two configurations shown in Figure 3. IV V 3. The pseudocode of Algorithm
Check IV V 3 and its proof of correctness and complexity might be found in [9].

STEP 3: Forbidden induced subgraph II. We test here if r belongs to a
MCS of the form II, with the assumption that r is not contained in a MCS of size
3. Note that such a MCS is of size 4. In this step, it suffices to use a brute-force
algorithm, Check II 4, running in O(m3) time to search for a quatruplet of rows
in G including r, satisfying one the two configurations shown in Figure 3. II 4.
The pseudocode of Algorithm Check II 4 and its proof of correctness and com-
plexity might be found in [9].

STEP 4: Forbidden induced subgraph III. We test here if r belongs to a
MCS of the form III, with the assumption that r is not contained in a MCS
of size 3. Note that such a MCS is of size 4. In this step, we use a brute-force
algorithm, Check III 4, running in O(m3) time to search for a quatruplet of
rows in G including r, satisfying one the three configurations shown in Figure
3. III 4. The pseudocode of Algorithm Check III 4 and its proof of correctness
and complexity might be found in [9].

STEP 5: Forbidden induced subgraph IV

We test here if r belongs to a MCS of the form IV, with the assumption that
r is contained, neither in a MCS of size 3, nor in a MCS of type I. Depending
on whether the size of the MCS is 4 or larger than 4, we describe two algorithms.

MCS of Size 4. We first test if r belongs to a MCS of the form IV of size 4. In
this step, it suffices to use a brute-force algorithm, Check IV 4, running in O(m3)
time to search for a quatruplet of rows in G including r, satisfying the configu-
rations shown in Figure 3. IV 4. The pseudocode of Algorithm Check IV 4 and
its proof of correctness and complexity might be found in [9].

MCS of Size Larger than 4. We test here if r belongs to a MCS of the form
IV of size larger than 4. A MCS of the form IV of size larger than 4 contains one
and only one kernel. Depending on whether r is the kernel or not, we distinguish
two cases here.

Case 1: If row r is the kernel of the MCS. Algorithm Check IVk re-
covers a MCS S of the form IV of size larger than 4 containing r as a kernel,

Faster and Simpler Minimal Conflicting Set Identification 47

Algorithm 1.2. Check IVk (r, G) – O(nm2)

Input: a row r, the row-column intersection graph G.
Assumption: r is not contained in a MCS of size 3.
Output: returns a MCS S of size larger that 4 given by a forbidden induced
subgraph of the form IV whose kernel is r if such a MCS exists, otherwise
returns ”NO”.
1: for any column c ∈ r do
2: H = G[N(r)− L(c)]
3: for any connected component C of H do
4: pick a a couple (ri, rj) of black vertices in C that satisfies 1) ri and rj

are not connected, and 2) ri, rj overlap r.
5: find a chordless path P in C linking ri and rj

6: pick the smallest subpath Q of P linking two vertices r′i and r′j , such
that the couple (r′i, r

′
j) also satisfies 1) and 2)

7: return {r} ∪ Q
8: end for
9: end for
10: return “NO”

with the assumption that r is not contained in a MCS of size 3 (Figure 3.IVk).
The principle of the algorithm relies in first choosing the column c ∈ C, of the
forbidden induced subgraph of type IV responsible for the MCS S, such that c
is contained in r, and in no other row of the MCS (see Figure 3.IVk). Next, it
considers the subgraph H of G induced by the set of black vertices (rows) that
are neighbors of r, but do not contain the column c. We denote this subgraph by
H = G[N(r)−L(c)]. Then, it looks for a set of rows Q, constituting a chordless
path in H , such that {r} ∪ Q is a MCS of the form IV.

Proposition 2. Algorithm Check IVk is correct and runs in O(nm2) time.

Proof. Note that, if the MCS exists, then all the rows belonging to the MCS,
except r, belong to a same connected component of H . Thus, in each connected
component of H , the algorithm looks for a chordless path Q linking two vertices
ri, rj satisfying 1) ri and rj are not connected, and 2) ri, rj overlap r, and 3)
Q does not contain any smaller subpath satisfying conditions 1) and 2). These
conditions are necessary and sufficient for the set {r} ∪Q to form the rows of a
induced subgraph of the form IV . The set {r} ∪Q cannot contain a subset that
is a MCS as such a smaller MCS should be:

– either a MCS of size 3 including r, which impossible by assumption,
– or a MCS of type II or III necessarily including r as kernel,
– or a MCS of type IV and size larger than 3 having r as kernel.

The two last cases are also impossible, since Q would not have satisfy condition
3) in these cases.

Next, there might be n columns c ∈ r and up to m2 couples (ri, rj) of black
vertices to test before finding a valid couple (ri, rj) satisfying the conditions in
line 4 of the algorithm. Up to this point, the complexity is in O(nm2). Assume

48 A. Ouangraoua and M. Raffinot

now that such a couple exist. Then finding a chordless path between ri and
rj might be done by searching for a shortest path between ri and rj in the
connected component C using Dijkstra’s algorithm, which thus requires at worst
O(m2 + m log m) time. The path is of length at most m, and thus identifying
r′i and r′j is bounded by testing each pair on this path in C, which requires at
worst O(m2) time. Thus, in total, the algorithm is O(nm2) worst case time. ��

Case 2: If row r is not the kernel of the MCS. Algorithm Check IVp

recovers a MCS S of the form IV of size larger than 4 containing r, such that
r is not a kernel of the MCS, with the assumptions that r is not contained in a
MCS of size 3, and r does not belong to an induced chordless cycle of GR (Figure
4.IVp). The principle of the algorithm consists in first choosing the kernel a of
the MCS S among the black vertices (rows) neighbors of r, and the column
c ∈ C, of the induced subgraph of type IV responsible for the MCS S, that is
contained in a, but in no other row of the MCS (see Figure 3.IVp). Next, the
algorithm calls Algorithm Check IV to look for the MCS S with r, a, c, and G
given as parameters.

Algorithm 1.3. Check IVp (r, G) – O(nm6)

Input: a row r, the row-column intersection graph G.
Assumption: r is not contained in a MCS of size 3.

r does not belong to an induced chordless cycle of GR.
Output: returns a MCS S of size larger that 4 given by a forbidden induced
subgraph of the form IV containing r whose kernel is not r if such a MCS
exists, otherwise returns ”NO”.

1: for any black vertex a ∈ N(r) do
2: for any column c ∈ a − r do
3: return Check IV(r, a, c, G)
4: end for
5: end for
6: return “NO”

Algorithm Check IV is called in Algorithm Check IVp. It recovers a MCS S
of the form IV of size larger than 4 containing r, given the row r, the kernel
a of the MCS S, and the column c ∈ C, of the induced subgraph of type IV
responsible for S, that is contained in a, but in no other row of the MCS (Figure
3.IVp).

Proposition 3. Algorithm Check IVp is correct, and runs in O(nm6) time.

Proof. The correctness and the complexity of Check IVp follows directly from
the correctness and the complexity of Algorithm Check IV that is called in Al-
gorithm Check IVp.

The correctness of Check IV comes from the fact that, r does not belong to any
chordless cycle in the graph C computed at line 2 of the algorithm by assumption.
Then at line 6 of the algorithm, any chordless cycle in the graph D containing
vertex r necessarily contains at least one edge (ri, rj) belonging to the set Ea.

Faster and Simpler Minimal Conflicting Set Identification 49

Algorithm 1.4. Check IV (r, a, c, G)– O(m5)

Input: two rows r and a, and a column c ∈ a such that r ∈ (N(a)− L(c)) .
Assumption: r is not contained in a MCS of size 3.

r does not belong to an induced chordless cycle of GR.
Output: returns a MCS S of size larger that 4 given by a forbidden induced
subgraph of the form IV containing r and a, whose kernel is a if such a MCS
exists, otherwise returns ”NO”.

1: H = G[N(a)− L(c)]
2: let C = (VC , EC) be the connected component of H to which r belongs.
3: let Va be the set of vertices Va = {u ∈ VC : u − a �= ∅}.
4: let Ea be the set of edges Ea = {(u, v) ∈ V 2

a : u ∩ v = ∅}.
5: let D = (VD, ED) be the graph such that VD = VC and ED = EC ∪ Ea.
6: Q = Check I (r, D)
7: if Q �= ”NO” then
8: return {a} ∪ Q
9: end if
10: return ”NO”

The number of edges belonging to the set Ea in such a chordless cycle Q cannot
be greater than 1 as any couple of such edges in the chordless cycle would induce
a chord. Indeed, if Q contains more than one edge belonging to Ea, any two such
edges would have two extremities in Va, one from each of the two edges, that are
not connected in the graph C. These extremities would thus be linked by an edge
in Ea, creating a chord for the cycle Q in the graph D.

Therefore, the set of vertices of the chordless cycle Q induces a chordless path
in G such that each vertex of Q is connected to vertex a by definition of the graph
H , and the extremities ri and rj of Q satisfy 1) ri and rj are not connected in G,
and 2) ri, rj overlap r, and 3) Q does not contain any smaller subpath satisfying
conditions 1) and 2). These conditions are necessary and sufficient for the set
{a} ∪ Q to form the rows of an induced subgraph of the form IV , and this set
cannot contain a smaller MCS since such a MCS would be: (a) either a MCS
of size 3 including a; (b) or a MCS of type II or III necessarily including a as
kernel; (c) or a MCS of type IV and size larger than 3 having a as kernel.

The 3 cases are impossible, since they would induce a chord from the set Ea

in the chordless cycle induced by Q in the graph D.
Algorithm Check IV calls Algorithm Check I. Both algorithms have the same

time complexity in O(m5) time. It follows immediately that Algorithm Check IVp

runs in O(nm6) time. ��

STEP 6: Forbidden induced subgraph V

We test here if r belongs to a MCS of the form V, with the assumption that r
is contained neither in a MCS of size 3, nor in a MCS of type I. Depending on
whether the size of the MCS is 4, 5 or larger than 5, we describe three algorithms.
MCS of size 4 or 5.

We first test if r belongs to a MCS of the form V of size 4 or 5.

50 A. Ouangraoua and M. Raffinot

In this step, it suffices to use two brute-force algorithms, Check V 4 (resp.
Check V 5), running in O(m3) time (resp. O(m4) time) to search for a quatruplet
(resp. a quintuplet) of rows in G including r, satisfying the configurations shown
in Figure 3. V 4 (resp. Figure 3. V 5).

The pseudocode of Algorithm Check V 4 and its proof of correctness and
complexity might be found in [9].

Next, for a MCS of size 5, we look for a quadruplet of rows (ri, rj , rk, rl) such
that the set {r, ri, rj , rk, rl} is a MCS of the form V (Figure 3.V 5). Algorithm
Check V 5 looks for an induced subgraph of the form V, consisting of 5 rows
(black vertices) r, ri, rj , rk, rl that are pairwise connected, except for a on missing
edge, say (ra, rb) in {r, ri, rj , rk, rl}× {r, ri, rj , rk, rl}, and three columns (white
vertices) satisfying the configuration of Figure 3.V 5.

Algorithm 1.5. Check V 5 (r , G) – O(m4)

Input: a row r, the row-column intersection graph G.
Assumption: r is not contained in a MCS of size 3 or 4.
Output: returns a MCS S of size 5 given by a forbidden induced subgraph of
the form V containing r if such a MCS exists, otherwise returns ”NO”.

1: for any quadruplet (ri, rj , rk, rl) of black vertices such that r, ri, rj , rk, rl

are pairwise connected, except for one edge (ra, rb) in {r, ri, rj , rk, rl} ×
{r, ri, rj , rk, rl} missing do

2: if {ri, rj , rk, rl} is C1P then
3: for any pair (a, b) in ({r, ri, rj , rk, rl} − {ra, rb}) × ({r, ri, rj , rk, rl} −

{ra, rb}) do
4: if (a ∩ b) − ∪

(
{r, ri, rj , rk, rl} − {a, b}

)
�= ∅, and (rk ∩ a) −

∪
(
{r, ri, rj , rk, rl} − {rk, a}

)
�= ∅, and (rl ∩ b)− ∪

(
{r, ri, rj , rk, rl} −

{rl, b}
)
�= ∅ then

5: return {r, ri, rj , rk, rl}
6: end if
7: end for
8: end if
9: end for
10: return ”NO”

Proposition 4. Algorithm Check V 5 is correct and runs in O(m4) time.

Proof. Algorithm Check V 5 looks for an induced subgraph with 5 black vertices
{r, ri, rj , rk, rl}, that are pairwise connected, except for one missing edge (ra, rb)
in {r, ri, rj , rk, rl} × {r, ri, rj , rk, rl}. The 4 black vertices that belong to the set
with r, should correspond to a set of rows that is C1P. Moreover, there should
exist two particular rows (black vertices) of the set, with three columns (white
vertices) that satisfy the conditions on line 4 of the algorithm in order to fit the
configuration depicted in Figure 3.V 5.

Next, all the tests performed by Algorithm Check V 5 (lines 2-8 of the al-
goritm) on a given quatruplet (ri, rj , rk, rl) are achieved in O(1) thanks to the
precomputations, and given r there might be O(m4) such triplets. Thus, Algo-
rithm Check V 5 runs in O(m4) time. ��

Faster and Simpler Minimal Conflicting Set Identification 51

MCS of size larger than 5.
A MCS of the form V of size larger than 5 contains exactly two kernels. De-

pending on whether r is a kernel or not, we distinguish two cases.

Case 1: If row r is a kernel of the MCS. Algorithm Check Vk recovers
a MCS S of the form V of size larger than 5 containing r as a kernel, with
the assumption that r is not contained in a MCS of size 3, or 4 (Figure 3.Vk).
The principle of the algorithm is similar to Algorithm Check IVk. It relies in
first choosing the second kernel a of the MCS, and the column c, of the induced
subgraph of type V responsible for the MCS S, such that c is contained in both
r and a, but in no other row of the MCS (see Figure 3.Vk). Next, it consid-
ers the subgraph H of G induced by the set of black vertices (rows) that are
neighbors of both r and a, but do not contain c. We denote this subgraph by
H = G[N(r, a)−L(c)]. Then, it looks for a set of rows Q, constituting a chordless
path in H , such that {r} ∪ Q is a MCS of the form V.

Algorithm 1.6. Check Vk (r, G) – O(n2m2)

Input: a row r, the row-column intersection graph G.
Assumption: r is not contained in a MCS of size 3, or 4.
Output: returns a MCS S of size larger that 5 given by a forbidden induced
subgraph of the form V such that r is one of its kernel, if such a MCS exists,
otherwise returns ”NO”.
1: for any black vertex a ∈ N(r) do
2: for any column c ∈ (r ∩ a) do
3: H = G[N(r, a)− L(c)]
4: for any connected component C of H do
5: pick a a couple (ri, rj) of black vertices in C that satisfies 1) ri and

rj are not connected, and 2) (ri ∩ r)− a �= ∅, and 3) (rj ∩ a)− r �= ∅.
6: find a chordless path P in C linking ri and rj

7: pick the smallest subpath Q of P linking two vertices r′i and r′j , such
that the couple (r′i, r

′
j) also satisfies 1) and 2) and 3)

8: return {r} ∪ Q
9: end for
10: end for
11: end for
12: return “NO”

Proposition 5. Algorithm Check Vk is correct and runs in O(n2m2) time.

Proof. The proofs are similar to the proofs for the correctness and the complexity
of Algorithm Check IVk as the two algorithms are based on the same principle.
However, here the complexity is multiplied by a factor n due to considering all
black vertices a ∈ N(r). ��

Case 2: If row r is not a kernel of the MCS. Algorithm Check Vp re-
covers a MCS S of the form V of size larger than 5 containing r, such that r
is not a kernel of the MCS, with the assumptions that r is not contained in a

52 A. Ouangraoua and M. Raffinot

MCS of size 3 or 4, and r does not belong to an induced chordless cycle of GR

(Figure 3.V).
The principle of the algorithm is similar to the principle of Algorithm

Check IVp. It consists in first choosing the two kernels (a, b) of the MCS S
among the black vertices (rows) neighbors of r, and the column c, of the induced
subgraph responsible for S, that is contained in both a and b, but in no other
row of the MCS. Next, the algorithm calls Algorithm Check V to look for the
MCS S with r, (a, b), c, and G given as parameters.

Proposition 6. Algorithm Check Vp is correct and runs in O(nm7) time.

Proof. In order to prove the correctness and the complexity of Algorithm
Check Vp, we need to prove the correctness and give the complexity of Algorithm
Check V that is called in Check Vp.

The correctness of Check V comes from the fact that r does not belong to any
chordless cycle in the graph C computed at line 2 of the algorithm by assumption.
Let Q be a chordless cycle in the graph D containing vertex r, computed at line
9 of the algorithm. Since r does not belong to an induced chordless cycle of the C
by assumption, then Q necessarily contains at least one edge belonging to the set
EAB ∪Ea ∪Eb. We first give two trivial but useful properties for the remaining
of the proof: (i) for any two edges of Q, there always exist two extremities u and
v of these edges, one from each edge, that are not connected by an edge in the
graph C, i.e u ∩ v = ∅; (ii) VA ⊆ Vb, and VB ⊆ Va. We also prove the following
useful property: (iii) Va ⊆ (VB ∪Vb) and Vb ⊆ (VA ∪Va). Let x ∈ Va, there exists
c such that c ∈ x and c �∈ a. Then, either c �∈ b in which case x ∈ Vb, or c ∈ b,
which implies that x ∈ VB . The proof is similar for Vb ⊆ (VA ∪ Va).

We now prove that the cycle Q necessarily contains at most one edge of
the set EAB ∪ Ea ∪ Eb. Indeed, let us suppose that Q contains two edges of
EAB ∪ Ea ∪ Eb. Then, let u, v be two disconnected extremities of these edges
in the graph C (Property (i)). We show that (u, v) necessarily constitutes an
edge that is a chord for the chordless cycle Q in the graph D : contradiction.
(1) If (u, v) ∈ V 2

A (resp. (u, v) ∈ V 2
B), then from Property (ii), (u, v) ∈ V 2

b (resp.
(u, v) ∈ V 2

a), and thus (u, v) ∈ Eb (resp. (u, v) ∈ Ea); (2) If (u, v) ∈ V 2
a (resp.

Algorithm 1.7. Check Vp (r, G) – O(nm7)

Input: a row r, the row-column intersection graph G.
Assumption: r is not contained in a MCS of size 3, 4.

r does not belong to an induced chordless cycle of GR.
Output: returns a MCS S of size larger that 5 given by a forbidden induced
subgraph of the form V containing r, but not as a kernel, if such a MCS exists,
otherwise returns ”NO”.

1: for any couple of connected black vertices (a, b) ∈ N(r)2 do
2: for any column c ∈ (a ∩ b)− r do
3: return Check V (r, (a, b), c, G)
4: end for
5: end for
6: return “NO”

Faster and Simpler Minimal Conflicting Set Identification 53

Algorithm 1.8. Check V (r, (a, b), c, G)– O(m5)

Input: three rows r, a and b, and a column c ∈ a∩ b such that r ∈ (N(a, b)−
L(c)) .
Assumption: r is not contained in a MCS of size 3, 4 or 5.

r is not contained in a MCS of type IV .
r does not belong to an induced chordless cycle of GR.

Output: returns a MCS S of size larger that 5 given by a forbidden induced
subgraph of the form V containing a, b, and r, and whose kernels are a and b,
if such a MCS exists, otherwise returns ”NO”.

1: H = G[N(a, b)− L(c)]
2: let C = (VC , EC) be the connected component of H to which r belongs.
3: let VA be the set of vertices VA = {u ∈ VC : (u ∩ a)− b �= ∅}.
4: let VB be the set of vertices VB = {v ∈ VC : (v ∩ b)− a �= ∅}.
5: let EAB be the set of edges EAB = {(u, v), u ∈ VA, v ∈ VB : u ∩ v = ∅}.
6: let Va be the set of vertices Va = {u ∈ VC : u − a �= ∅}, and Ea be the set
of edges Ea = {(u, v) ∈ V 2

a : u ∩ v = ∅}.
7: let Vb be the set of vertices Vb = {u ∈ VC : u − b �= ∅}, and Eb be the set
of edges Eb = {(u, v) ∈ V 2

b : u ∩ v = ∅}.
8: let D = (VD, ED) be the graph such that VD = VC and ED = EC ∪ EAB ∪

Ea ∪ Eb

9: Q = Check I (r, D)
10: if Q �= ”NO” then
11: return {a, b} ∪ Q
12: end if
13: return ”NO”

(u, v) ∈ V 2
b), then (u, v) ∈ Ea (resp. (u, v) ∈ Eb); (3) If (u, v) ∈ VA × VB (or the

symmetric), then (u, v) ∈ EAB. (4) If (u, v) ∈ VA × Va (or the symmetric), then
from Property (iii); (u, v) ∈ VA × VB or (u, v) ∈ VA × Vb, and thus (u, v) ∈ EAB

or (u, v) ∈ Eb from cases 3. and 6; (5) If (u, v) ∈ VB×Vb (or the symmetric), then
from Property (iii), (u, v) ∈ VB ×VA or (u, v) ∈ VB ×Va, and thus (u, v) ∈ EAB

or (u, v) ∈ Ea from cases 3. and 6; (6) If (u, v) ∈ VA ×Vb (resp. (u, v) ∈ VB ×Va)
(or the symmetric), then from Property (ii), (u, v) ∈ V 2

b (resp. (u, v) ∈ V 2
a), and

thus (u, v) ∈ Eb (resp. (u, v) ∈ Ea); (7) If (u, v) ∈ Va × Vb (or the symmetric),
then from Property (iii), (u, v) ∈ Vb×Vb or (u, v) ∈ VB ×Vb, and thus (u, v) ∈ Eb

or (u, v) ∈ EAB ∪ Ea from cases 1 and 5.
In consequence, there exits at most one edge, and then exactly one edge of

the set EAB ∪ Ea ∪ Eb in the cycle Q in the graph D. Next, let (ri, rj) be the
only edge of Q belonging to EAB ∪ Ea ∪ Eb. We show that (ri, rj) �∈ Ea ∪ Eb.
Indeed, if (ri, rj) ∈ Ea (resp. (ri, rj) ∈ Eb), then the set {a} ∪Q (resp. {b} ∪Q)
satisfies the conditions to be a MCS of type IV with a (resp. b) as kernel, which
is impossible by assumption.

So, we have (ri, rj) ∈ EAB − (Ea ∪ Eb). Finally, removing the edge (ri, rj)
from the cycle yields a chordless path Q in G containing r such that each vertex
of Q is connected to vertices a and b, and the extremities ri and rj of Q satisfy
1) ri and rj are not connected, and 2) (ri∩a)−b �= ∅, and 3) (rj ∩b)−a �= ∅. and
4) Q does not contain any smaller subpath satisfying conditions 1) and 2) and
3). These conditions are necessary and sufficient for the set {a, b} ∪ Q to form

54 A. Ouangraoua and M. Raffinot

the rows of an induced subgraph of the form V, and this set cannot contain a
smaller MCS since such a MCS would be: either a MCS of size 3 including a or
b, or a MCS of type II or III necessarily including a or b as kernel, or a MCS of
type IV and size larger than 3 having a or b as kernel, or a MCS of type V and
size larger than 3 having a and b as kernels. These 3 last cases are impossible,
since they would induce a chord from the set EAB ∪ Ea ∪ Eb in the chordless
cycle induced by Q in the graph D.

The correctness of Algorithm Check Vp follows immediately from the correct-
ness of Algorithm Check V. Algorithm Check V calls Algorithm Check I. Both
algorithms have the same time complexity in O(m5) time. It follows immediately
that Algorithm Check IVp runs in O(nm7) time. ��

4 Conclusion

We describe a O(n2m2 + nm7) time algorithm for deciding if a given row r of a
m × n 0-1 matrix M belongs to at least one MCS.

The algorithm consists in a precomputation phase that runs in O(nm4), fol-
lowed by 6 consecutive steps in which we look for some MCS containing r, and
constituting the set of rows of a forbidden induced subgraph in the row-column
intersection graph of M . The core of the algorithm relies in reducing the recogni-
tion of complex forbidden induced subgraphs to the detection of induced cycles
in ad-hoc graphs.

Steps Algorithms Comp. STEP 5 Check IV 4 O(m3)
STEP 1 Check I O(m5) Check IVk O(nm2)
STEP 2 Check IV V 3 O(m2) Check IVp O(nm6)
STEP 3 Check II 4 O(m3) STEP 6 Check V 4 O(m3)
STEP 4 Check III 4 O(m3) Check V 5 O(m4)

Check Vk O(n2m2)
Check Vp O(nm7)

Acknowledgment. This work is partly supported by the french MAPPI project
(ANR-2010-COSI-004). We would like to thanks Nicolas Trotignon for his valu-
able comments on induced subgraphs and also Juraj Stacho for his participation
to some meeting on the subject.

References

1. Bergeron, A., Blanchette, M., Chateau, A., Chauve, C.: Reconstructing Ancestral
Gene Orders Using Conserved Intervals. In: Jonassen, I., Kim, J. (eds.) WABI
2004. LNCS (LNBI), vol. 3240, pp. 14–25. Springer, Heidelberg (2004)

2. Blin, G., Rizzi, R., Vialette, S.: A Faster Algorithm for Finding Minimum Tucker
Submatrices. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.)
CiE 2010. LNCS, vol. 6158, pp. 69–77. Springer, Heidelberg (2010)

Faster and Simpler Minimal Conflicting Set Identification 55

3. Blin, G., Rizzi, R., Vialette, S.: A Polynomial-Time Algorithm for Finding a Min-
imal Conflicting Set Containing a Given Row. In: Kulikov, A., Vereshchagin, N.
(eds.) CSR 2011. LNCS, vol. 6651, pp. 373–384. Springer, Heidelberg (2011)

4. Chauve, C., Haus, U.-U., Stephen, T., You, V.P.: Minimal Conflicting Sets for the
Consecutive Ones Property in Ancestral Genome Reconstruction. In: Ciccarelli,
F.D., Miklós, I. (eds.) RECOMB-CG 2009. LNCS, vol. 5817, pp. 48–58. Springer,
Heidelberg (2009)

5. Chauve, C., Tannier, E.: A methodological framework for the reconstruction of con-
tiguous regions of ancestral genomes and its application to mammalian genomes.
PLoS Comput. Biol. 4(11), 11 (2008)

6. Dom, M.: Algorithmic aspects of the consecutive-ones property. Bulletin of the
Eur. Assoc. for Theor. Comp. Science (EATCS) 98, 27–59 (2009)

7. Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of
intervals on the real line. Fund. Math. 51, 45–64 (1962)

8. Nishizeki, T., Rahman, M.S.: Planar Graph Drawing. World Scientific (2004)
9. Ouangraoua, A., Raffinot, M.: Faster and Simpler Minimal Conflicting Set Identi-
fication. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp.41–55.
Springer, Heidelberg (2012)

10. Stoye, J., Wittler, R.: A unified approach for reconstructing ancient gene clusters.
IEEE/ACM Trans. Comput. Biol. Bioinf. 6(3), 387–400 (2009)

11. Tucker, A.C.: A structure theorem for the consecutive 1s property. Journal of
Combinatorial Theory. Series B 12, 153–162 (1972)

Partitioning into Colorful Components

by Minimum Edge Deletions

Sharon Bruckner1,�, Falk Hüffner2,��, Christian Komusiewicz2,
Rolf Niedermeier2, Sven Thiel3, and Johannes Uhlmann2,���

1 Institut für Mathematik, Freie Universität Berlin
sharonb@mi.fu-berlin.de

2 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin
{falk.hueffner,christian.komusiewicz,rolf.niedermeier}@tu-berlin.de,

johannes.uhlmann@campus.tu-berlin.de
3 Institut für Informatik, Friedrich-Schiller-Universität Jena

sven.thiel@uni-jena.de

Abstract. The NP-hard Colorful Components problem is, given a
vertex-colored graph, to delete a minimum number of edges such that no
connected component contains two vertices of the same color. It has ap-
plications in multiple sequence alignment and in multiple network align-
ment where the colors correspond to species. We initiate a systematic
complexity-theoretic study of Colorful Components by presenting
NP-hardness as well as fixed-parameter tractability results for differ-
ent variants of Colorful Components. We also perform experiments
with our algorithms and additionally develop an efficient and very accu-
rate heuristic algorithm clearly outperforming a previous min-cut-based
heuristic on multiple sequence alignment data.

1 Introduction

We study a maximum parsimony approach to the discovery of heterogeneous
components in vertex-colored graphs:

Colorful Components

Instance: An undirected graph G = (V,E) and a coloring of the ver-
tices χ : V → {1, . . . , c}.
Task: Find a minimum subset of edges E′ ⊆ E such that in G′ =
(V,E \ E′), all connected components are colorful, that is, they do not
contain two vertices of the same color.

Such an edge set E′ is called a solution, and we denote its size by k. Color-

ful Components is an edge modification problem originating from biological
applications in sequence and network alignment as described next.

� Supported by project NANOPOLY (PITN-GA-2009–238700).
�� Supported by DFG project PABI (NI 369/7-2).

��� Supported by DFG project PABI (NI 369/7-2).

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 56–69, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Partitioning into Colorful Components by Minimum Edge Deletions 57

The first application of Colorful Components stems from Multiple Se-
quence Alignment. This is the process of aligning at least three protein, DNA,
or RNA sequences such that positions believed to be homologous, that is, result-
ing from inheritance from a common ancestor, are written in a common column.
This serves to illustrate the similarity or dissimilarity between the sequences and
makes it possible to investigate their evolutionary relationship. [6] present an
algorithm for this problem where a central step is to find connected subgraphs in
graphs whose vertices are positions of the sequences, edges indicate that a pair of
positions should be aligned, and the colors one-to-one correspond to sequences.
These subgraphs correspond to partial alignment columns and thus may contain
at most one vertex from each input sequence. This yields the Colorful Com-

ponents problem. The solution of Colorful Components is then used by
the DIALIGN software to compute a multiple alignment. [6] solve Colorful

Components using a greedy algorithm, subsequently called “min-cut heuris-
tic”: Find two vertices of the same color in some connected component, find a
minimum edge cut between them, and remove it; repeat this until all connected
components are colorful.

A second biological motivation forColorful Components arises inNetwork
Alignment for multiple protein–protein interaction (PPI) networks. We propose
a method for network alignment that is based on solving Colorful Compo-

nents. Given networks Gi = (Vi, Ei) and a similarity relation S between the
proteins of different species, first create a network whose vertex set is

⋃
Vi and

in which vertex v ∈ Vi receives color i. Then, add an edge {u, v} if uSv. The
detected colorful components are then sets of matched proteins. Every protein
appears in exactly one component, and every component has at most one protein
from each species, which is a very strict model. The results can then be viewed
as functional orthologs [14], or they can form the basis for further analysis. [7]
suggest a three-step framework for network alignment where the first step is to
aggregate the proteins from the different species into subsets, and Colorful

Components offers a way of performing this task that results in consistent,
disjoint aggregated groups.

Related combinatorial problems. Colorful Components can be seen as the
problem of destroying by edge deletions all bad paths, that is, simple paths be-
tween two vertices of the same color. Thus, it is a special case of the well-known
NP-hard Multicut problem, which has as input an undirected graph and a set
of vertex pairs and asks for a minimum number of edges to delete to disconnect
each given vertex pair. Multicut is fixed-parameter tractable with respect to
the number k of edge deletions, with a running time of 2O(k3) · |V |O(1) [4, 13].

Colorful Components is also a special case of Multi-Multiway Cut [1].
This problem asks to disconnect by edge deletions all paths between vertices from
the same vertex set of some given vertex sets. Thus, Colorful Components

is the special case where the vertex sets form a partition. Finally, there is related
work on “clustering with diversity” [11] which extends a traditional clustering
problem by asking that in each resulting cluster all points of the underlying
colored metric space must have different colors.

58 S. Bruckner et al.

Contributions. On the theoretical side, we present a first systematic study
on the computational complexity of Colorful Components, exhibiting both
tractable and intractable cases. First, we observe that Colorful Components

is NP-hard even in trees. Then, we present a complexity dichotomy concerning
the number c of colors showing that Colorful Components is polynomial-
time solvable for two or less colors and NP-hard otherwise. For three or more
colors, we also obtain super-polynomial running time lower bounds (based on
the Exponential Time Hypothesis) even in the case that the input graph has
bounded degree. On the positive side, we present fixed-parameter algorithms
with running time 2c · |V |O(1) for Colorful Components in trees and with
running time O((c−1)k · |E|) in general graphs. In experimental work we demon-
strate that, somewhat surprisingly, we can get better results by solving the more
general Weighted Multi-Multiway Cut problem, since this allows us to
merge vertices. We take advantage of this in data reduction rules, a simplified
branching, and a new heuristic. With the branching algorithms, we can solve
to optimality more than half of the instances generated from the BAliBASE 3.0
benchmark [15] each time within five minutes on a standard PC, with up to 5 000
vertices and 13 000 edges. Our heuristic has an average error of 0.6%, a large
improvement over the 29.2% of the previously suggested min-cut heuristic [6].
We also show the strength of the developed data reduction rules.

Preliminaries. We consider only undirected and simple graphs G = (V,E)
where n := |V | and m := |E|. We assume that n = O(m) since isolated vertices
can be removed from the input in linear time. A bad path is a simple (that is,
cycle-free) path between two vertices of the same color. The length of a path is
the number of its edges. An edge cut is a set of edges whose deletion increases
the number of connected components. For a nonnegative number t, a graph is
t-edge connected if it does not have an edge cut of size less than t.

The Exponential Time Hypothesis (ETH) states that, for all x ≥ 3, x-SAT,
which asks whether a boolean input formula in conjunctive normal form with n
variables and m clauses and at most x variables per clause is satisfiable, cannot
be solved within a running time of 2o(n) or 2o(m); see [12] for a recent survey.
A problem is fixed-parameter tractable with respect to a parameter k if it can
be solved in f(k) · nO(1) time for an arbitrary (typically exponential) function f
in k.

2 Computational Hardness

In this section, we present hardness results for two restricted variants of Col-

orful Components.
First, we consider the special case where the input graph is a tree. For ob-

taining our hardness result, we exploit the connection between Colorful Com-

ponents and Multicut. Note that Multicut is NP-hard and MaxSNP-hard
even if the input is a star, that is, a tree consisting of a central vertex with
attached degree-1 vertices [8]. Multicut in stars can be reduced to Colorful

Partitioning into Colorful Components by Minimum Edge Deletions 59

Components as follows: for every pair {s, t} to be disconnected, create degree-1
vertices s′ and t′ attached to s and t, respectively, and color s′ and t′ with the
same unique color. Each original vertex gets a further unique color. Since this
reduction produces trees whose diameter is four, we arrive at the following.

Proposition 1. Colorful Components is NP-hard even in trees with diam-
eter four.

In stars, however, Colorful Components turns out to be polynomial-time
solvable: If the central vertex v has two neighbors with the same color, one
can delete the edge between v and one of the two identically colored degree-
one vertices. If v has no two neighbors of the same color, then every connected
component is colorful.

Second, we study the computational complexity of Colorful Components

if the number of colors is fixed. This is of interest since the number of colors may
be small in practical cases.

Theorem 1. Colorful Components with three colors in graphs with max-
imum degree six is NP-hard; it cannot be solved in 2o(k) · nO(1), 2o(n) · nO(1),
or 2o(m) · nO(1) time unless the ETH is false.

Proof. We present a polynomial-time many-to-one reduction from the NP-hard
3-SAT problem which has as input a Boolean formula φ in 3-CNF.1 For simplicity,
we assume that every clause contains exactly three literals.

The basic idea of the reduction is as follows. For each variable xi of a given
3-CNF formula φ, we construct a variable cycle of length 4mi, where mi denotes
the number of clauses that contain xi. These cycles are colored alternatingly
with two colors ce and co such that deleting every second edge yields a minimum-
cardinality edge deletion set for obtaining colorful components for this cycle. The
corresponding two possibilities are used to represent the two choices for the value
of xi. Then, for each clause Cj of φ containing the variables xp, xq, and xr, we
connect the three corresponding variable cycles by a clause gadget. This gadget
has the property that if the solutions for the variable gadgets correspond to an
assignment that satisfies Cj , then one needs only four edge deletions for the
clause gadget. Conversely, if four edge deletions are sufficient, then the assign-
ment corresponding to the deletions in the variable cycle satisfies Cj . Let m be
the number of clauses in φ and observe that, since φ is a 3-CNF formula, the over-
all number of vertices in the variable cycles is 12m. Our construction guarantees
that there is a satisfying assignment for φ if and only if the constructed graph can
be transformed into one with colorful components by exactly 6m+ 4m = 10m
edge deletions, where 6m edge deletions are used for the variable cycles and
4m modifications are used for the clause gadgets. The details follow.

Given a 3-CNF formula φ consisting of the clauses C0, . . . , Cm−1 over the
variables {x0, . . . , xn−1}, construct a Colorful Components-instance (G =

1 A similar reduction type was previously used to show analogous results for Transi-

tivity Editing [16] and Cluster Editing [10], which, in contrast, are defined on
uncolored graphs.

60 S. Bruckner et al.

r4π(r,j)

r4π(r,j)+1

p4π(p,j) p4π(p,j)+1

q4π(q,j)+1

q4π(q,j)+2

aj

Fig. 1. The clause gadget for clause Cj = (xp ∨ x̄q ∨ xr). White vertices have
color ce, gray vertices have color co, and black vertices have color cg. The vertex aj

is the reserved vertex for Cj , the other vertices lie on the variable cycles for xp, xq,
and xr, respectively.

(V,E), k) as follows. For each variable xi, 0 ≤ i < n, G contains a variable cycle
consisting of the vertices V v

i := {i0, . . . , i4mi−1} and the edgesEv
i := {{ik, ik+1} |

0 ≤ k < 4mi} (for ease of presentation let i4mi = i0). An edge {ix, ix+1} is even
if x is even, and odd otherwise. A vertex ix receives color ce if x is even; otherwise,
it receives color co. So far, the constructed graph consists of a disjoint union of
cycles and has 12m vertices and edges.

Next, add a clause gadget to G for each clause of φ. In the construction of the
clause gadgets, we need for each clause Cj in the variable cycles of Cj ’s variables
a fixed set of vertices that are “reserved” for Cj . To this end, suppose that for
each variable xi an arbitrary but fixed ordering of the clauses containing xi is
given, and let π(i, j) ∈ {0, . . . , 4mi − 1} denote the position of a clause Cj that
contains xi in this ordering. We now give the details of the construction of the
clause gadgets. Let Cj be a clause containing the variables xp, xq, and xr (either
negated or nonnegated). We construct a clause gadget connecting the variable
cycles of xp, xq, and xr. First, let aj be a new vertex that appears only in the
clause gadget for clause Cj and color aj with a third color cg. Let Eg

j denote
the edge set of the clause gadget and let Eg

j contain for each i ∈ {p, q, r} the
edges {aj , i4π(i,j)} and {aj , i4π(i,j)+1} if xi occurs nonnegated in Cj or the edges
{aj, i4π(i,j)+1} and {aj , i4π(i,j)+2}, otherwise. See Fig. 1 for an illustration. The

construction of G = (V,E) is completed by setting V :=
⋃n−1

i=0 V v
i ∪

⋃m−1
j=0 {aj}

and E :=
⋃n−1

i=0 Ev
i ∪

⋃m−1
j=0 Eg

j .
We show the correctness of the reduction by showing the following claim.

φ is satisfiable ⇔ G can be transformed into a graph with colorful com-
ponents by deleting at most k := 10m edges.

“⇒”: Given a satisfying assignment β for φ, we can transform G into a graph
with colorful connected components as follows. For each variable xi delete the
odd edges of the variable cycle of xi if β(xi) = true and the even edges otherwise.
After these deletions, there are no bad paths that contain only vertices from the
variable cycles. Then, proceed as follows for each clause Cj . Assume without loss
of generality that Cj contains the variables xp, xq, and xr, and that the literal

Partitioning into Colorful Components by Minimum Edge Deletions 61

corresponding to xp is true. Then, delete the four edges that are incident with aj
and with one vertex of the variable cycles of xq and xr. After the deletion of these
four edges, there are no bad paths that contain aj , which can be seen as follows.
Clearly, aj is only adjacent to two vertices on the variable cycle of xp. Since the
literal corresponding to xp in Cj is true, the edge between these two vertices
corresponds to the truth assignment that makes this literal true. Consequently,
this edge is not deleted and the edges of the variable cycle that are before and
after this edge are deleted. Hence, aj and its two neighbors in the variable cycle
of xp form an isolated triangle with three different colors.

Summarizing, this means that after deleting the four edges as described above
for each clause gadget, all bad paths containing some aj have been destroyed.
The overall number of edge deletions is 10m: For the variable cycles, we per-
form altogether

∑
0≤i<n 4mi/2 = 6m edge deletions, and for each clause gadget

four edges are deleted.
“⇐”: Let S denote an optimal solution for G with |S| ≤ k := 10m. To show

that φ is satisfiable, we make some observations about the structure of G and S.
First, we show that 10m is a lower bound on any solution for G, that is, |S| ≥

10m and thus |S| = 10m. First, note that for each variable xi the variable
cycle contains 4mi/2 edge-disjoint bad paths. Hence, G contains overall 6m
edge-disjoint induced bad paths such that all vertices of the bad paths are in
the variable cycles. Clearly, at least 6m edge deletions are needed for these bad
paths. For each clause Cj , 0 ≤ j < m, at least four edges incident with aj have to
be deleted since aj has degree six and can have degree at most two in a colorful
component. Hence, every solution has size at least 6m+

∑
0≤j<m 4 = 10m and

thus |S| = 10m.
Now, since at least 6m edges are deleted in the variable cycles, this means

that for each clause Cj exactly four edges incident with aj are deleted by S.
Consequently, for each variable cycle either all even or all odd edges are deleted.

Consider the assignment β for φ that, for each xi, 0 ≤ i < n, sets β(xi) := true
if all odd edges of V v

i are deleted and sets β(xi) := false if all even edges of V v
i

are deleted. We show that β is a satisfying assignment. Consider an arbitrary
clause Cj containing the variables xp, xq, and xr . Since aj is in a colorful com-
ponent after the edge deletions, it can have at most two neighbors. Furthermore,
these neighbors must be on the same variable cycle: otherwise, aj would be in a
connected component of size five, because after the edge deletions, every vertex
is adjacent to exactly one further vertex on its variable cycle. Hence, after the
edge deletions, aj is adjacent to at most two vertices of the variable cycle of
one of xp, xq, and xr of Cj . Let xp be this variable. Furthermore, since exactly
four edge deletions are incident with aj , both edges that are incident with the
vertices of the variable cycle of xp are not deleted by S. Without loss of gener-
ality, assume that xp appears nonnegated in Cj . Then the two vertices of V v

p

that are adjacent to aj are p4π(p,j) and p4π(p,j)+1. Since S is a solution, the
edge {p4π(p,j), p4π(p,j)−1} is not deleted by S: otherwise, aj is in a connected
component of size five. Hence, all odd edges of V v

p are deleted, and therefore the
assignment β fulfills clause Cj .

62 S. Bruckner et al.

Altogether, this shows the correctness of the reduction. Since the reduction can
be performed in polynomial time and produces a graph with maximum degree
six, it implies NP-hardness in graphs with maximum degree six. Furthermore,
for formulas with m clauses, the reduction produces graphs with |V | < 13m, k =
10m and |E| = 18m. Hence, any algorithm with running time 2o(k) ·nO(1), 2o(|V |),
or 2o(|E|) implies an algorithm with running time 2o(m) for 3-SAT, contradicting
the ETH. ��

3 Algorithms

Two colors. While Theorem 1 shows that Colorful Components is NP-hard
for three colors, for two colors it can be solved in polynomial time via computing
a maximum matching in bipartite graphs.

Proposition 2. Colorful Components in two-colored graphs can be solved
in O(

√
nm) time.

Proof. We begin by removing all edges {u, v} where u and v have the same
color. The remaining graph is bipartite, since it has a proper 2-coloring. This
instance can be solved by computing a maximum matching: First, observe that
the edges that are not deleted by a solution to Colorful Components must
be a matching in the bipartite graph. This is because the degree of every vertex
in the solution is either one (it is a part of a component of size two, which is
the largest possible component size) or zero. Since maximizing the number of
undeleted edges is equivalent to minimizing the number of deleted edges, we can
obtain a minimum-cardinality solution by computing a maximum matching M ,
and then deleting all edges not contained in M .

Removing all edges between vertices with identical colors can be done in O(m)
time. A maximum matching in a bipartite graph can be found in O(

√
nm) time

using the Hopcroft–Karp algorithm. ��

An efficient algorithm in trees with few colors. Let T = (V,E) denote the input
tree and assume that T is rooted at an arbitrary vertex. The idea is to do
dynamic programming bottom-up from the leaves, storing for each v ∈ V and
C ⊆ {1, . . . , c} the minimal cost T (v, C) of a solution for the subtree rooted at v
where the connected component containing v contains exactly the colors of C.

We describe the algorithm for binary trees. Define Tv to be the subtree of the
tree T that is rooted in node v. We then find, for every vertex v and every subset
of colors C ⊆ {1, . . . , c}, the minimal cost T (v, C). We compute this by dynamic
programming using a table T [·, ·]. Performing a bottom-up traversal starting at
the leaves, for each v we compute T (v, C) for every C. When computing the
cost T (v, C), we choose the minimal cost between four options: In the first case,
we do not delete the two edges from v to its children. The cost of the solution
then is the minimum value of the sum of the costs of the two subtrees for every
combination of colors that will give C. In the second and third case, we delete
the edge to the left or the right subtree, respectively. The cost is obtained by

Partitioning into Colorful Components by Minimum Edge Deletions 63

summing the cost of the solution for the subtree taken and the minimal possible
cost for the rest of the tree. In the last case both edges are deleted. More formally,
this reads as follows.
Initialization: For each leaf v, set T [v, {χ(v)}] := 0 and T [v, C] := ∞ for C ⊆
{1, . . . , c} and C �= {χ(v)}.
Recursion: Let l and r denote the two children of an inner node v.

T [v, C] := min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
minC1�C2�{χ(v)}=C T [l, C1] + T [r, C2],

T [r, C \ {χ(v)}] + 1 + minC′⊆X T [l, C′],

T [l, C \ {χ(v)}] + 1 + minC′⊆X T [r, C′],

2 + minC1⊆X T [l, C1] + minC2⊆X T [r, C2]

The running time of this algorithm is O(3c · n). The size of our dynamic pro-
gramming table is O(2c · n) to include all possible color subsets. Overall, the
computation can be executed in O(3c · n) time: for each vertex we need to
consider at most O(3c) combinations of color subsets (every subset and the pos-
sibilities to split it into two). For each such combination the computation of the
recursion can be performed in constant time if we maintain for each v the min-
imum cost of Tv. To extract the actual colorful components found, one can use
a traceback procedure within the same running time bound. The exponential
factor can be further improved (increasing the polynomial factor) to 2c by using
the convolution-based techniques of [2].

To extend this algorithm to work in general trees, we use a standard trick for
dynamic programming in trees: Order the children of every node and add an
additional dimension i = 1, . . . , d to the dynamic programming table, where d is
the maximum degree in the tree. We then compute T [v, i, C] by an adaption of
the above approach. We omit the straightforward details.

Theorem 2. Colorful Components on trees can be solved in 2c ·nO(1) time.

An efficient fixed-parameter algorithm for graphs with few colors. Whereas on
general graphs due to Theorem 1 there is no hope for fixed-parameter tractabil-
ity with respect to the parameter “number c of colors”, additionally using the
parameter “number k of edge deletions” leads to fixed-parameter tractability.

First, we describe a simple O(ck ·m)-time search tree algorithm. Using breadth-
first search, it finds a bad path between two vertices of the same color. This
strategy will be referred to as bad-path branching in the experimental part. This
path has length at most c, since after visiting c+ 1 vertices in the breadth-first
search there must be a bad path. Now, branch into the c cases to destroy this bad
path by edge deletion, and for each case recursively solve the resulting instance.
Since at most k edge deletions are needed, the search tree has depth at most k
and therefore size O(ck); a bad path can be found in O(m) time.

We can get a speed-up by using the observation that we can either find a
bad path of length at most c − 1 or solve the problem in polynomial time. As
a motivation for this improvement, observe that in practical applications the
parameter c denoting the number of colors can be quite small with values in the

64 S. Bruckner et al.

one-digit range. Moreover, according to Theorem 1 we cannot expect a 2o(k) ·
nO(1)-time algorithm for Colorful Components on three-colored graphs.

Theorem 3. For c ≥ 3, Colorful Components can be solved in O((c− 1)k ·
m) time.

Proof. We first describe the algorithm and then bound its running time. In the
following analysis, assume that k is fixed in advance.

As long as the input graph contains a vertex v with degree at least three,
perform a breadth-first search starting at v until either two vertices with the
same color have been found or all vertices of v’s connected component have been
visited. In the second case, v’s connected component is colorful and can therefore
be removed from the graph. In the first case, we have visited at most c+1 vertices
until a vertex pair with the same color has been found. The bad path between
these two vertices has length at most c− 1: since v has degree at least three, at
least one neighbor of v is not on this path.

After a bad path has been found, branch into the at most c − 1 edges to
destroy it. Clearly, one of the edges has to be deleted. Hence, a solution can be
found by recursively solving Colorful Components for each of these cases;
now with k − 1 edge deletions.

In case the graph has only vertices of degree at most two, proceed as follows.
If the connected component is a cycle, then one of the following two cases can
occur. If there is a bad path of length at most c − 1 between any pair of two
vertices, then branch as described above. Otherwise, the coloring on the cycle is
ordered, that is, we can assume without loss of generality that each vertex with
color 1 is adjacent to one vertex with color 2 and one vertex with color c; each
vertex with color 2 is adjacent to one vertex with color 1 and one vertex with
color 3, and so on. In this case, a solution for the connected component is simply
to delete all edges between vertices of color c and 1. In the last remaining case,
the connected component is a simple path. A solution for a path can be found by
visiting the edges along the path starting from one of the two degree-one vertices
until there is a color that has already been visited. Then, the last visited edge
can be deleted; this is repeated until the path is colorful.

The running time of the algorithm can be shown as follows. The search tree
has size O((c− 1)k) since at each search tree node, we branch into at most c− 1
cases, and the depth of the tree is at most k. A path to branch on can be
found in O(m) time since the procedure only uses breadth-first search. Finally,
all presented algorithms for the polynomial-time special cases can be performed
in O(m) time as well; the overall running time follows.

If k is not given in advance, we can start the algorithm described above for
increasing values of k until a solution is found; the running time bound remains
the same since

∑
1≤i≤k(c− 1)i = O(c− 1)k. ��

The observation that we can either find a bad path of length c− 1 or solve the
problem in polynomial time also implies the following factor-(c− 1) approxima-
tion algorithm: As long as the graph contains a bad path of length at most c−1,
delete all c − 1 of these edges. If the graph has none of these bad paths, solve

Partitioning into Colorful Components by Minimum Edge Deletions 65

the problem in linear time. The approximation factor follows from the observa-
tion that at least one of the c − 1 edges has to be deleted, and that deleting
“unnecessary” edges does not create new bad paths.

Corollary 1. Colorful Components can be approximated within a factor
of c− 1 in O(m2) time.

Note that for c ≥ 11 the factor-(4 ln(c + 1)) approximation which is implied
by the relation to Multi-Multiway Cut [1] gives better approximation ratios,
for c < 11 our bound is better.

Data reduction. The following two polynomial-time executable data reduction
rules for Colorful Components are relevant for the experimental work.

Rule 1. If a connected component is colorful, then remove it from G.

Rule 1 can be executed in linear time. We note that Rule 1 provides a trivial
kernelization [9]2 for Colorful Components with respect to the combined
parameter (k, c): obviously, after exhaustive data reduction, the instance has
at most 2kc vertices, since an edge deletion can produce at most two colorful
components, each of size at most c. This can be improved to a kernelization
yielding only (1+ ε)kc vertices for any ε > 0: The idea of the corresponding data
reduction is to choose any constant � and to check (by say brute-force) for every
connected component C and for all 1 ≤ i ≤ � whether (C, i) forms a yes-instance
of Colorful Components and, if so, decrease the parameter k accordingly
by i. The larger we choose �, the smaller ε gets. We omit the details.

Rule 2 is less obvious.

Rule 2. Let B = {b1, . . . , bt} be a minimal edge cut, let GB be one side of the
cut (that is, a connected component of G−B such that each edge in B has exactly
one endpoint in GB), and let N denote the vertices that are incident with B but
not in GB. If GB is colorful and t-edge connected and each color of N also occurs
in GB, then delete B and decrease k by |B|.

Proof (of correctness). The correctness of Rule 2 can be seen as follows. Let S
be a solution that does not contain some {u, v} ∈ B with u ∈ N . Then, the
bad path from u to the vertex in GB with color χ(u) is destroyed by a set X of
at least t edge deletions within GB. Hence, the set S′ := (S \X) ∪ B is also a
solution: First, |S′| ≤ |S|. Second, the deletion of X only destroys bad paths that
visit at least one vertex of V (GB) and all of these bad paths are also destroyed
by deleting B since GB is colorful. ��

Note that so far it is not clear whether Rule 2 is applicable in polynomial time
if t is not a constant.

2 Informally, a kernelization transforms in polynomial time the original instance into
a smaller equivalent instance whose size is upper-bounded by a function solely de-
pending on the parameter; ideally, this function is a small polynomial.

66 S. Bruckner et al.

4 Formulation as Weighted Multi-Multiway Cut

In the Colorful Components formulation, it is not possible to simplify a
graph based on the knowledge that two vertices belong to the same connected
component; we would like to be able to merge two such vertices. For this, we
first need to allow not just a single color per vertex, but a set; moreover, we
need to allow edge weights. Thus, we arrive at the edge-weighted version of
Multi-Multiway Cut [1]: given an undirected graph G = (V,E) with edge
weights w : E → {x ∈ � | x ≥ 1} and vertex sets S1, . . . , Sc ⊆ V , find a
minimum-weight subset of edges E′ ⊆ E such that in G′ = (V,E \ E′) no
connected component contains two vertices from the same Si.

To emphasize the connection to Colorful Components, for Weighted

Multi-Multiway Cut we define the colors χ(u) of a vertex u as {i | u ∈ Si}.
Note that we require weights to be at least 1.

Now, we can merge two vertices u and v with disjoint colors. This means to
replace them by a new vertex u′ with colors χ(u) ∪ χ(v) and N(u′) := N(u) ∪
N(v)\{u, v}, where w({u′, x}) := w({u, x})+w({v, x}) (assuming w({x, y}) = 0
for {x, y} /∈ E).

Edge branching. Using the merge operation, we can do a simple branching on an
edge [3]: either delete the edge, or merge its endpoints; in the experimental part
this will be referred to as edge branching. Note that merging does not necessarily
decrease the parameter; but it is easy to see that if we branch on each edge of a
forbidden path successively, then the last edge of the path cannot be merged since
it connects vertices with an intersecting color set. This allows us to immediately
delete the edge; thus, the O(ck ·m)-time branching is still possible.

Data reduction. We can also adapt Rule 2 to Weighted Multi-Multiway Cut;
the proof is similar to that of Rule 2.

Rule 3. Let V ′ ⊆ V be a colorful subgraph. If the cut between V ′ and V \ V ′

is at least as large as the connectivity of V ′, then merge V ′ into a single vertex.
Herein, connectivity is defined as the minimum total weight of edges to be deleted
to obtain at least one more connected component.

Merge heuristic. The idea of the heuristic is to repeatedly merge the two vertices
“most likely” to be in the same component. During the process, we immediately
delete edges connecting vertices with intersecting color sets. The merge cost of
two vertices u and v is the weight of the edges that would need to be deleted
when merging u and v, while the cut cost is defined as

3w({u, v}) +
∑

w∈V |{{u,w},{v,w}}⊆E

min{w({u,w}), w({v, w})}

as a rough approximation of the minimum cut between u and v. The factor 3
has been tuned heuristically. We then always merge the endpoints of the edge
that maximizes cut cost minus merge cost.

Partitioning into Colorful Components by Minimum Edge Deletions 67

Table 1. Instances before and after data reduction. Herein, n, m, and c are the number
of vertices, edges, and colors, respectively, for the whole graph while n′,m′,c′ denote
those values for the largest connected component of the instances.

original after Rule 2 after Rule 3

n m c n′ m′ c′ n m c n′ m′ c′ n m c n′ m′ c′

min. 178 156 3 8 7 3 0 0 0 0 0 0 0 0 0 0 0 0
max. 9311 26344 10 3048 6063 10 2769 5583 10 2769 5583 10 2602 5336 10 2602 5336 10
avg. 1702 3159 6.2 504 921 6.2 486 839 5.2 407 697 4.7 429 712 5.9 354 607 5.3
med. 1187 1401 6 149 232 6 172 262 6 46 90 5 119 128 6 42 58 5

5 Experiments

We performed experiments with instances from the multiple sequence alignment
application. The search tree algorithm, data reduction, and merge heuristic were
implemented in OCaml and compiled with the OCaml native-code compiler ver-
sion 3.11.2. The test machine is a 2.66GHz Intel Xeon X5550 with 8MB cache
and 16GB main memory, running under openSUSE 11.3 Linux.

The source code and the test instances are available under the GNU GPL
license at http://fpt.akt.tu-berlin.de/colcom/.

Data. We generated one Colorful Components instance for each multi-
ple alignment instance from the BAliBASE 3.0 benchmark [15], using the di-
afragm 1.0 software [6]. We restricted the experiments to the 135 of the 386
instances that have at most 10 colors (that is, 10 sequences to be aligned). In-
stances with more colors can mostly not be solved with our exact methods.

Implementation details. To speed up the branching algorithms from Section 3
and Section 4, we use a transposition table in order to avoid recomputing the
solutions of identical search tree nodes. We also track upper and lower bounds.
These bounds are seeded with the result of the heuristic and a simple greedy
packing, respectively. The branching is always on a shortest bad path. If during
the branching process the instance decomposes into connected components, we
solve them separately.

To efficiently find data reduction opportunities with Rule 2 and Rule 3, we try
starting with each vertex and successively add more vertices with disjoint colors
that minimize the cut to other edges, until we have either found a reduction
opportunity or no more vertices can be added.

Results. We first examine the effect of data reduction (see Table 1), that is,
we compare the size of the instances before and after exhaustively applying the
data reduction rules. With Rule 2, we can solve 47 instances by data reduction
alone, the largest among those having 3115 vertices and 4383 edges. The num-
ber of edges is reduced on average by 76.1% (median 92.8%). When considering
the largest connected component, we get an average reduction of 64.5% (me-
dian 65.8%). Rule 2 reduces the largest component only by 55.4% on average

http://fpt.akt.tu-berlin.de/colcom/

68 S. Bruckner et al.

(median 54.9%). Thus, clearly for many instances only data reduction makes the
exact approaches feasible.

Next, we consider the running times of the branching algorithms. For the bad-
path branching, we have 61 instances that can be solved in less than 1 second, 6
instances that can be solved in 1 second to 10 minutes, and 68 cannot be solved in
10 minutes. With edge branching, we can solve 70 instances in less than 1 second,
9 in 1 second to 10 minutes, and 56 remain unsolved. We note that in ongoing
research, we are able to solve several more instances to optimality with integer
linear programming (ILP) based approaches.

For the heuristics, we compare the solution quality for the 112 instances for
which we know the optimal solution. The min-cut heuristic [6] has an error be-
tween 0% (once) and 70.0%, with an average error of 29.2% (median 27.8%).
In contrast, the merge heuristic has an error between 0% (76 times) and 12.7%,
with the average error 0.6% (median 0%). Without data reduction, the results
are slightly worse with 66 times an optimal result and an average error of 1.0%
(median 0%). Thus, clearly the merge heuristic is much superior for these in-
stances, and in fact solves the majority of the instances optimally. Both heuristics
take at most two seconds to solve an instance.

Finally, for the instances for which an exact solution was found, we com-
pared the solution quality of the alignments obtained by using DIALIGN with
and without the partial alignment columns indicated by an exact solution for
Colorful Components, by the merge heuristic, and by the min-cut heuristic.
The found alignments were compared with the BAliBASE reference alignments
concerning the reconstruction of total columns (TC score) and position pairs
(SP score). The exact algorithm had a TC score of 56.6%, the merge heuristic
achieved 55.1%, the min-cut heuristic 53.6%, and the alignment without anchors
achieved 54%; for SP-score the results are similar. This indicates that minimiz-
ing edge deletions for obtaining Colorful Components is indeed helpful for
obtaining better alignments. Note that, concerning TC score, DIALIGN with
the min-cut heuristic is about 10 percentage points worse than current state-
of-the-art multiple alignment methods [6]. Hence, an improvement of roughly 3
percentage points is a sizable step towards closing the gap between DIALIGN
and these methods.

6 Outlook

It is open to obtain a smaller problem kernel, a problem kernel with size inde-
pendent of c, and branching algorithms with branching number less than c− 1.
So far, it is also undetermined whether Rule 2 and Rule 3 can be exhaustively
applied in polynomial time. From the modeling perspective, it is interesting to
consider a relaxation of the colorfulness constraint: In preliminary experiments
with network alignment data, we found that allowing only one protein of each
species to be matched was, while a natural model, too strict. Generalizing Color

Components to allow a constant number of occurrences of each color for the
connected components could result in improved network alignments.

Partitioning into Colorful Components by Minimum Edge Deletions 69

References

[1] Avidor, A., Langberg, M.: The multi-multiway cut problem. Theoretical Computer
Science 377(1-3), 35–42 (2007)

[2] Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast
subset convolution. In: Proc. 39th STOC, pp. 67–74. ACM (2007)

[3] Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: Going weighted: Parameter-
ized algorthims for cluster editing. Theoretical Computer Science 410(52), 5467–
5480 (2009)

[4] Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Proc. 43rd STOC,
pp. 459–468. ACM (2011)

[5] Bruckner, S., Hüffner, F., Komusiewicz, C., Niedermeier, R.: Entity disambiguation
by partitioning under heterogeneity constraints (February 2012) (manuscript, sub-
mitted), http://fpt.akt.tu-berlin.de/publications/disambiguation.pdf

[6] Corel, E., Pitschi, F., Morgenstern, B.: A min-cut algorithm for the consistency
problem in multiple sequence alignment. Bioinformatics 26(8), 1015–1021 (2010)

[7] Deniélou, Y.-P., Boyer, F., Viari, A., Sagot, M.-F.: Multiple Alignment of Biolog-
ical Networks: A Flexible Approach. In: Kucherov, G., Ukkonen, E. (eds.) CPM
2009. LNCS, vol. 5577, pp. 263–273. Springer, Heidelberg (2009)

[8] Garg, N., Vazirani, V.V., Yannakakis, M.: Primal–dual approximation algorithms
for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)

[9] Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
ACM SIGACT News 38(1), 31–45 (2007)

[10] Komusiewicz, C.: Parameterized Algorithmics for Network Analysis: Clustering &
Querying. PhD thesis, Technische Universität Berlin, Berlin, Germany (2011)

[11] Li, J., Yi, K., Zhang, Q.: Clustering with Diversity. In: Abramsky, S., Gavoille, C.,
Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS,
vol. 6198, pp. 188–200. Springer, Heidelberg (2010)

[12] Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the Exponential
Time Hypothesis. Bulletin of the EATCS 105, 41–71 (2011)

[13] Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by
the size of the cutset. In: Proc. 43rd STOC, pp. 469–478. ACM (2011)

[14] Park, D., Singh, R., Baym, M., Liao, C.-S., Berger, B.: IsoBase: a database
of functionally related proteins across PPI networks. Nucleic Acids Re-
search 39(Database), 295–300 (2011)

[15] Thompson, J.D., Koehl, P., Ripp, R., Poch, O.: BAliBASE 3.0: latest develop-
ments of the multiple sequence alignment benchmark. Proteins: Structure, Func-
tion, and Bioinformatics 61(1), 127–136 (2005)

[16] Weller, M., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: On making directed
graphs transitive. Journal of Computer and System Sciences 78(2), 559–574 (2012)

http://fpt.akt.tu-berlin.de/publications/disambiguation.pdf

Approximation Algorithms

and Hardness Results
for Shortest Path Based Graph Orientations�

Dima Blokh1,��, Danny Segev2,��, and Roded Sharan1

1 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
{blokhdmi,roded}@post.tau.ac.il

2 Department of Statistics, University of Haifa, Haifa 31905, Israel
segevd@stat.haifa.ac.il

Abstract. The graph orientation problem calls for orienting the edges
of an undirected graph so as to maximize the number of pre-specified
source-target vertex pairs that admit a directed path from the source to
the target. Most algorithmic approaches to this problem share a com-
mon preprocessing step, in which the input graph is reduced to a tree by
repeatedly contracting its cycles. While this reduction is valid from an
algorithmic perspective, the assignment of directions to the edges of the
contracted cycles becomes arbitrary, and the connecting source-target
paths may be arbitrarily long. In the context of biological networks, the
connection of vertex pairs via shortest paths is highly motivated, leading
to the following variant: Given an undirected graph and a collection of
source-target vertex pairs, assign directions to the edges so as to maxi-
mize the number of pairs that are connected by a shortest (in the original
graph) directed path. Here we study this variant, provide strong inap-
proximability results for it and propose an approximation algorithm for
the problem, as well as for relaxations of it where the connecting paths
need only be approximately shortest.

1 Introduction

Protein-protein interactions form the skeleton of signal transduction in the cell.
While many of these interactions carry directed signaling information, current
interaction measurement technologies, such as yeast two hybrid [5] and co-
immunoprecipitation [7], reveal the presence of an interaction, but not its di-
rectionality. Identifying this directionality is fundamental to our understanding
of how these protein networks function.

To tackle the arising orientation problem, previous work has relied on infor-
mation from perturbation experiments [13], in which a gene is perturbed (cause)
and as a result other genes change their expression levels (effects). The funda-
mental assumption is that, for an effect to take place, there must be a directed

� Due to space limitations, some proofs are omitted from this extended abstract. These
will appear in the full version of this paper.

�� These authors contributed equally to this work.

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 70–82, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Approximation Algorithms and Hardness Results for Shortest Path 71

path in the network from the causal gene to the affected gene. This setting calls
for an orientation, that is, an assignment of directions to the edges of the net-
work, such that a maximum number of pairs admit a directed path from the
cause (source of response) to the affected genes (targets of the response).

Recently, large scale networks for many organisms have become available,
leading to increasing interest in orientation problems of this nature. Medve-
dovsky et al. [10], Gamzu et al. [6], and later on Elberfeld et al. [3], were the
first to study the maximum graph orientation problem (MGO), where the
objective is to direct the edges of a given (undirected) network so as to max-
imize the number of vertex pairs that are connected by directed source-target
paths, which are allowed to be of arbitrary length. They proved that MGO is
NP-hard to approximate to within a factor better than 12/13 and provided an
Ω(log logn/ logn) approximation algorithm for it. It was further shown that
MGO, as well as several natural extensions, admit efficient integer programming
formulations [10, 11].

The main caveat of these approaches is that they all employ a preprocess-
ing step in which cycles in the input graph are contracted one after the other,
ending up with a tree network. Such structural modifications do not affect the
optimization criterion, since directed connectivity can be preserved when cycles
are consistently oriented in advance, either in clockwise or counter-clockwise di-
rection. However, in practice, this preprocessing step results in a large fraction of
the edges being arbitrarily oriented and in arbitrarily long directed source-target
paths.

Other approaches to the problem concentrated on short connecting paths,
which are more plausible biologically [13]. Gitter et al. [8] focused on paths whose
length is bounded by a parameter k, showing that while the resulting problem
is NP-hard, it can still be approximated within factor O(k/2k). Vinayagam et
al. [12] developed a Bayesian learning strategy to predict the directionality of
each edge based on the shortest paths that contain it.

Problem definition and our contribution. In this paper, we study the latter
biologically-motivated setting [8], in which the directed paths connecting each
pair of source-target vertices are required to be shortest. Let G = (V,E) be an
undirected graph with a vertex set V of size n and an edge set E of size m.
Denote by δG(s, t) the length (number of edges) of a shortest path between s

and t. An orientation
G of G is a directed graph on the same vertex set whose
edge set contains a single directed instance of every undirected edge, but noth-
ing more. We say that a pair of vertices (s, t) is satisfied by an orientation
G
when the latter contains a directed s-t path of length δG(s, t). The maximum

shortest-path orientation (MSPO) problem is defined as follows:

Input: An undirected graph G and a collection P = {(s1, t1), . . . , (sk, tk)} of
source-target vertex pairs.

Objective: Compute an orientation of G that satisfies a maximum number of
pairs.

72 D. Blokh, D. Segev, and R. Sharan

Our contribution is three-fold: (i) We relate the hardness of approximating
MSPO to that of the Independent Set problem through a combinatorial construc-
tion called the “single-pair gadget”, which may be interesting in its own right.
Consequently, we show that this problem is NP-hard to approximate within
factors O(k1−ε) and O(m1/3−ε), for any fixed ε > 0 (Section 2). (ii) On the
positive side, we adapt the approximation algorithm of [3], which was initially
suggested for MGO in mixed graphs, and attain a performance guarantee of

Ω(1/max{n, k}1/
√
2) (Section 3.1). (iii) Last, we show that significantly better

upper bounds can be obtained when one is willing to settle for bi-criteria ap-
proximations, where the strict requirement of connecting pairs only via shortest
paths is relaxed and, instead, approximately-shortest paths are allowed. Here,
we make use of random embeddings to compute Õ(logn)-approximate shortest
paths connecting an Ω(1/ logn) fraction of all pairs, with constant probability.
Additionally, we show that by using (1+ ε)-approximate shortest paths one can
satisfy an Ω̃(1/

√
k) fraction of the pairs (Section 3.2).

2 Hardness of Approximation

In this section we provide a reduction from Independent Set showing that it is
NP-hard to approximate MSPO to within factors Ω(1/k1−ε) and Ω(1/m1/3−ε) of
optimum for any fixed ε > 0. To this end, we first construct a single-pair gadget,
which shows that there are MSPO instances in which even optimal orientations
satisfy only one out of k source-target pairs. This construction will serve as
the main building block of our hardness reduction. The single-pair gadget is
also interesting in its own right, as it creates a strong separation between our
definition of satisfying a given pair via a shortest path and the one studied by
Medvedovsky et al. [10], in which pairs could be satisfied via any directed path,
a setting where a logarithmic fraction of all pairs can always be satisfied.

2.1 The Single-Pair Gadget

For convenience, we describe the single-pair gadget using an edge-weighted mixed
graph, in which some of the edges are pre-directed. Later on, we show how to
remove these extra constraints. In what follows, given any integer k, we show
how to create an MSPO instance (G,P) with k pairs, O(k2) vertices and O(k2)
edges, such that the following properties are satisfied: (1) For every pair in P
there is some orientation that satisfies it, and (2) Any orientation of G satisfies
at most one pair in P . To this end, we will argue that, in the instance described
below, there is a unique shortest path connecting any given source-target pair.
Moreover, these will be contradicting paths, in the sense that when one sets the
direction of any such path from source to target all other paths can no longer be
similarly directed (due to overlapping edges that need to be oriented in opposite
directions).

Our construction is schematically drawn in Figure 1. In detail, the graph
vertices are partitioned into k layers, V1, . . . ,Vk, where Vi contains 2k−i vertices,
{vi,1, . . . , vi,2k−i}. There are three types of edges:

Approximation Algorithms and Hardness Results for Shortest Path 73

– Cross edges, Ecross: For every 1 ≤ i ≤ k − 1 and i < j ≤ k, we have a pair
of directed edges (vj,i, vi,2j−i−1) and (vi,2j−i−2, vj,i+1). The weight of these
edges is 1.

– Contradiction edges, Econt: For every 1 ≤ i ≤ k − 1 and i < j ≤ k, we have
an undirected edge (vi,2j−i−2, vi,2j−i−1). The weight of these edges is 0.

– Direction edges, Edir: For every 1 ≤ i ≤ k − 1 and i < j ≤ k + 1, we have a
directed edge (vi,2j−i−1, vi,2j−i). The weight of these edges is 2.

Finally, the collection of pairs is P = {(si, ti) : 1 ≤ i ≤ k}, where si = vi,1 and
ti = vi,2k−i.

2S 2=V 21

S 3=V 31

S k

=V 11S 1

V 12 V 13 V 14 V 1,2k−2

V 23 V 24 V 25

V 33

Vk,3

V k−1,3

V 22

V k−1,2

Vk,2

S k−1 =V k−1,1

V 32

t 1

V 2,2k−3

=V k,1

t

Fig. 1. The single-pair gadget (only the first two layers are shown). Here, direction
edges are drawn as thick lines, cross edges as regular lines, and contradiction edges as
thin lines.

We begin to analyze the single-pair gadget by highlighting a couple of struc-
tural properties that will be required to establish the uniqueness of shortest
paths and the way in which they intersect. Observations 1 and 2 characterize
the unique paths that connect vertices in one vertical column of the gadget
(i.e, vi,i, . . . , vk,i) to its successive column (vi+1,i+1, . . . , vk,i+1). Somewhat in-
formally, these observations will allow us to argue that for any si-ti path, the
sequence of column entry points si = vi,1 � vi2,2 � · · ·� vii,i is non-decreasing
in its vertical distance from si, that is, i ≤ i2 ≤ · · · ≤ ii.

Observation 1. For every 1 ≤ i ≤ k − 1 and i < j1 ≤ j2 ≤ k, there is only one
path from vj1,i to vj2,i+1. More specifically,

– If j1 = j2, this path takes the cross edge from vj1,i to vi,2j1−i−1, then a single
contradiction edge (in right-to-left direction), and finally the cross edge from
vi,2j1−i−2 to vj1,i+1. Hence, the total weight of this path is 2.

– If j1 < j2, this path takes the cross edge from vj1,i to vi,2j1−i−1, then travels
in left-to-right direction in Vi, alternating between direction and contradic-
tion edges, and finally takes the cross edge from vi,2j2−i−2 to vj2,i+1. Hence,
the total weight of this path is 2 + 2(j2 − j1).

74 D. Blokh, D. Segev, and R. Sharan

Observation 2. For every 1 ≤ i ≤ k − 1 and i < j1 < j2 ≤ k, there are no
paths from vj2,i to vj1,i+1.

With these observations in place, let us focus on one particular si-ti path, pi,
which is schematically drawn in Figure 2 (for i = 3). This path repeatedly takes
two cross edges and one contradiction edge i−1 times until it arrives to vi,i, and
then traverses Vi in left-to-right direction to reach vi,2k−i = ti. The next lemma
shows that pi must be shortest and unique.

V 25V24V23V22

t 1

S k

Sk−1

S 1

S 2

S 3

V 12 V 13 V 14 V 1,2k−2

V 2,2k−3 t 2

V 32
t 3

V k−1,3

Vk,3Vk,2

V k−1,2

Fig. 2. The path p3 connecting s3 to t3

Lemma 1. For every 1 ≤ i ≤ k, the path pi is the unique shortest si-ti path.

Proof. By definition of pi, this path traverses 2(i − 1) cross edges and i − 1
contradiction edges prior to arriving at vi,i. Then it traverses k − i additional
pairs of direction and cross edges before reaching ti. Therefore, the total weight
of pi is exactly 2(i− 1) + 2(k − i) = 2k − 2.

Now consider some other si-ti path, p �= pi, and let vj,i be the entry point
of p into the ith column (whose vertices are vi,i, . . . , vk,i). Suppose j = i and
consider all the entry points of p into columns 2, . . . , i− 1. By Observation 2 all
these points must be at layer i and, hence, p identifies with pi, contradicting our
initial assumption. Thus, we may assume that j > i. By Observations 1 and 2,
it follows that p traverses 2(i− 1) cross edges and j − i direction edges prior to
arriving at vj,i. The combined weight of those edges is 2(i−1)+2(j−i) = 2j−2.
From vj,i, the path p must traverse the cross edge to vi,2j−i−1 and then k− j+1
additional direction edges before reaching ti. Consequently, the total weight of
p is (2j− 2)+1+2(k− j+1) = 2k+1, which is strictly greater than the weight
of pi, a contradiction. ��
We conclude that for every pair (si, ti) ∈ P there exists an orientation satisfying
this pair, in which all contradiction edges along pi are oriented from si to ti.
It remains to show that any orientation satisfies at most one pair. Suppose to
the contrary that there exists an orientation
G that satisfies both (si1 , ti1) and
(si2 , ti2), for some i1 < i2, meaning in particular that both pi1 and pi2 must

agree with
G. However, these paths intersect in exactly one contradiction edge,
(vi1,2i2−i1−2, vi1,2i2−i1−1), where in pi1 it is orientated from left to right, while
in pi2 its direction is from right to left, a contradiction.

Approximation Algorithms and Hardness Results for Shortest Path 75

2.2 Reduction from Independent Set

We are now ready to make use of the single-pair gadget in order to prove the
hardness of approximating MSPO. To simplify the presentation, we first establish
this result for the more general setting in which the underlying graph is mixed
(i.e., contains both directed and undirected edges) and weighted, similar to the
construction described in Section 2.1.

Theorem 3. For any fixed ε > 0, it is NP-hard to approximate MSPO to within
factors Ω(1/k1−ε) and Ω(1/m1/2−ε) of optimum in mixed weighted graphs.

Proof. The basis for our reduction is the Independent Set problem, which is
known to be hard to approximate to within a factor of Ω(1/n1−ε) on an n-vertex
graph for any fixed ε > 0 [9]. Given an Independent Set instance G = (V,E), we
begin by constructing a single-pair gadget for k = |V |. In this construction, every
layer Vi represents a vertex vi ∈ V . Next, for every pair of vertices vi and vj such
that (vi, vj) /∈ E, we replace the cross edges (vj,i, vi,2j−i−1) and (vi,2j−i−2 , vj,i+1)
by a single directed edge (vj,i, vj,i+1) of weight 2. This modification is illustrated
in Figure 3.

33

S 2=V 21

S 3=V 31

S k

=V 11S 1

V 12 V 13 V 14 V 1,2k−2

V 23 V 24 V 25

Vk,3

V k−1,3

V 22

V k−1,2

Vk,2

S k−1 =V k−1,1

V 32

t 1

V 2,2k−3

=V k,1

t 2

V

Fig. 3. An example modification for v2 and v3, where their newly added edge is drawn
as a dashed line

Now, for an original vertex vi, let us focus once again on one particular si-ti
path, p̃i. This path is created from the unique shortest path pi in the origi-
nal single-pair gadget by replacing every 〈cross, contradiction, cross〉 sequence
of edges along pi with its corresponding newly-added edge, whenever this modifi-
cation has been made. By adapting the analysis given in Section 2.1, it is easy to
verify that p̃i becomes the unique shortest si-ti path. We proceed by observing
that for every pair of original vertices vi and vj , i < j, the unique shortest paths
p̃i and p̃j , respectively connecting si to ti and sj to tj , are edge-disjoint if and
only if (vi, vj) /∈ E. This follows from the way in which p̃i and p̃j were derived
from pi and pj , along with our previous observation that pi and pj intersect
in exactly one contradiction edge. This edge, (vi1,2i2−i1−2, vi1,2i2−i1−1), will be
skipped in the modified instance by p̃j if and only if (vi, vj) /∈ E.

76 D. Blokh, D. Segev, and R. Sharan

It follows that there is a one-to-one correspondence between solutions {vi :
i ∈ I} to the Independent Set instance and sets of pairs {(si, ti) : i ∈ I} that
can be satisfied by some orientation. As the resulting MSPO instance consists
of n pairs and O(n2) edges, the hardness of approximation for Independent Set
implies bounds of Ω(1/k1−ε) and Ω(1/m1/2−ε) on the approximability of MSPO.

��

It remains to show that the above reduction can be extended to the setting
of undirected and unweighted graphs. For the former, we will show that when
every directed edge is replaced in the single-pair gadget by an undirected edge,
shortest paths remain unchanged. The following lemmas establish the correctness
of this alteration. Due to space limitations and the rather involved nature of the
corresponding proofs, these are deferred to the full version of our paper.

Lemma 2. For every 1 ≤ i ≤ k, a shortest si-ti path in the undirected single-
pair gadget cannot traverse cross edges in a direction different than the one
defined in the mixed gadget.

Lemma 3. For every 1 ≤ i ≤ k, a shortest si-ti path in the undirected single-
pair gadget cannot traverse direction edges from right to left.

It remains to show how to remove edge weights from our construction. To this
end, we first transform the original weights in the single-pair gadget so that
these become positive integers. While cross and direction edges are associated
with weights 1 and 2, respectively, contradiction edges are associated with zero
weights. Our objective is to “scale” these values without changing the shortest
path structure on the one hand, and while avoiding the use of large values on
the other hand so as not to affect the inapproximability bound by much.

We begin by setting the weight of contradiction edges to 1/k. This implies
that for every 1 ≤ i ≤ k, the total weight of the unique shortest si-ti path pi
(see Section 2.1), which has been preserved during the reduction from mixed to
undirected graphs, is at most 2k − 2 + (k − 1)/k. This is lighter than any other
si-ti path, which has weight at least 2k + 1 according to the proof of Lemma 1.
We proceed by scaling all edge weights by a factor of k to make them integral.
Last, we replace each edge e of weight w(e) by a path consisting of w(e) unit-
weight edges. As a result, the number of vertices and edges blows up to O(k3)
instead of O(k2) as in the original gadget. Combined with our reduction from
the Independent Set problem, the next inapproximability result follows.

Theorem 4. For any fixed ε > 0, it is NP-hard to approximate MSPO to within
factors of Ω(1/k1−ε) and Ω(1/m1/3−ε) of optimum.

Interestingly, we can use our construction to provide similar hardness of approx-
imation results for the problem variant studied by Gitter at al. [8], for which
non-trivial bounds were not known before. Further details will be provided in
the full version of this paper.

Approximation Algorithms and Hardness Results for Shortest Path 77

3 Approximation Algorithms

In this section we provide an approximation algorithm for MSPO whose perfor-
mance guarantee is sub-linear in either the number of vertices of the underlying
graph or in the number of input pairs. In light of the hardness results estab-
lished in Section 2, we cannot expect to come significantly closer to the optimal
number of satisfied pairs, and the only possible avenue for improvement is de-
creasing the exponent we attain. However, a detailed inspection of Theorem 4
and its proof reveals that these do not exclude the possibility of obtaining better
performance guarantees when one is willing to relax the strict requirement of
satisfying pairs only via shortest paths and, instead, make use of approximately
shortest paths. We explore this option as well, and show how to improve our
previously-mentioned algorithm by utilizing such paths.

3.1 Exact Shortest Paths

To tackle MSPO, we adapt the approximation algorithm of Elberfeld et al. [3],
which was initially suggested for MGO in mixed graphs. In that setting, pairs
could be satisfied via any connecting path, regardless of its length, whereas in
the current setting, connecting paths are required to be shortest.

Let (G,P) be an MSPO instance. For every (si, ti) ∈ P , choose arbitrarily
a shortest path pi between them. Let P = {pi : (si, ti) ∈ P}. The algorithm is
iterative. At any point in time, we will be holding a partial orientation G	 of G
and a subset P	 ⊆ P of shortest paths, where these sets are indexed according
to the step number that has just been completed. Initially G0 = G and P0 = P .
Now, as long as none of the termination conditions described below is met, we
proceed as follows:

1. Let p̂ = (s, . . . , t) be a minimum-length path in P	.
2. Orient p̂ in the direction from s to t to obtain G	+1.
3. To prevent the edges in p̂ from being re-oriented in subsequent iterations,

discard from P	 the path p̂ as well as any path that overlaps (in edges) with
it, obtaining P	+1.

There are two conditions that will cause the greedy iterations to terminate. For
now, we state both conditions in terms of two parameters, α ≥ 0 and β ≥ 0,
whose values will be optimized later on.

1. |P	| ≤ nα. In this case, we orient an arbitrary path from P	.
2. There exists a vertex v such that at least |P	|β paths in P	 go through v. Let
P ′
	 be this sub-collection of paths and let P ′ be the collection of corresponding

pairs. We show in the full version of this paper that one can satisfy at least
1/4 of these pairs.

Under both termination conditions, we complete the orientation by directing the
remaining edges in an arbitrary manner. With some modifications through their
analysis, the arguments of Elberfeld et al. [3] essentially give rise to the next
claim.

78 D. Blokh, D. Segev, and R. Sharan

Lemma 4. When the algorithm terminates due to condition 1, the number of
satisfied pairs is Ω(k/nmax{1−α(1−2β),α}). Termination due to condition 2 leads
to Ω(k/max{n1−α(1−2β), k1−β}) satisfied pairs.

To obtain the best-possible performance guarantee, we pick values for α and β so
as to minimize the maximum of all exponents mentioned above. To this end, the
optimal values are α∗ =

√
1/2 and β∗ = 1 −

√
1/2, in which case the maximal

exponent becomes
√
1/2 ≈ 0.707.

Theorem 5. MSPO can be approximated to within factor Ω(1/max{n, k}1/
√
2).

3.2 Approximate Shortest Paths

In order to improve on the performance guarantee attained in Theorem 5, we
proceed by providing bi-criteria approximation algorithms for MSPO. Here, we
relax the strict requirement of satisfying pairs only via shortest paths and, in-
stead, allow approximately-shortest paths.

The precise setting we consider is as follows: For σ ≥ 1, we say that a given
orientation
G σ-satisfies the pair (si, ti) when it contains a directed si-ti path
of length at most σ times that of a shortest path, i.e., δ�G(si, ti) ≤ σ · δG(si, ti).
For α ≤ 1 and σ ≥ 1, we say that a given algorithm guarantees an (α, σ)-
approximation when, for any instance of the problem, it computes an orientation
that σ-satisfies at least α ·OPT pairs. Here, OPT stands for the maximal number
of pairs that can be 1-satisfied by any orientation.

An (Ω(1/ logn), Õ(logn))-approximation via embedding. With a slight adapta-
tion of the metric embeddings terminology to our particular setting, the basic
idea in this approach is to compute a random spanning tree T ⊆ G, sampled
from a distribution T over a set of spanning trees in a way that pairwise dis-
tances do not get “stretched” by much in expectation. This line of work [2, 4] has
evolved into a near-optimal bound due to Abraham, Bartal, and Neiman [1], who
showed how to sample a random spanning tree such that the expected stretch is
Õ(log n) uniformly over all vertex pairs, that is,

max
(u,v)∈V ×V

ET∼T

[
δT (u, v)

δG(u, v)

]
≤ ψ(n) = O(log n log logn(log log logn)3) .

Here, ET∼T [·] denotes expectation with respect to the random choice of T , and
ψ(n) is our notation for the precise upper bound on the maximal expected
stretch. In what follows, we argue that this result can be exploited to obtain
logarithmic error bounds in both the number of satisfied pairs and in the extent
to which distances are stretched.

Theorem 6. There is a randomized algorithm that Õ(logn)-satisfies Ω(k/ logn)
pairs, with constant probability.

Approximation Algorithms and Hardness Results for Shortest Path 79

Proof. We begin by computing a random spanning tree T using the embed-
ding method of Abraham et al. [1]. With respect to this tree, let Psmall ⊆ P
be the collection of pairs whose shortest path distances have not been signif-
icantly stretched beyond a factor of ψ(n), which will be formally defined as
Psmall = {(si, ti) ∈ P : δT (si, ti) ≤ 2ψ(n) · δG(si, ti)}. Since ET∼T [δT (si, ti)] ≤
ψ(n) · δG(si, ti) for every pair (si, ti) ∈ P , by Markov’s inequality, each of these
pairs is indeed a member of Psmall with probability at least 1/2. For this reason,
E[|Psmall|] ≥ k/2, which implies that |Psmall| ≥ k/4 with probability at least 1/3,
since

k

2
≤ E [|Psmall|]

= Pr

[
|Psmall| ≥

k

4

]
· E

[
|Psmall|

∣∣∣∣|Psmall| ≥
k

4

]
+ Pr

[
|Psmall| <

k

4

]
· E

[
|Psmall|

∣∣∣|Psmall| <
k

4

]
≤ Pr

[
|Psmall| ≥

k

4

]
· k +

(
1− Pr

[
|Psmall| ≥

k

4

])
· k
4
.

Thus, with constant probably we obtain a spanning tree for which |Psmall|, i.e.,
the number of pairs in P with stretch smaller than 2ψ(n) = Õ(logn), contains a
constant fraction of the pairs in P . Since we formed a tree instance, the maximum
tree orientation algorithm of Medvedovsky et al. [10] can be used to compute an
orientation that satisfies Ω(1/ logn) · |Psmall| = Ω(k/ logn) pairs. ��

An (Ω̃(1/
√
k), 1 + ε)-approximation. Even though our embedding-based algo-

rithm improves on the one described in Section 3.1 by orders of magnitude, at
least as far as the number of satisfied pairs is concerned, it uses paths that may
be Ω̃(logn)-fold longer than needed. In the remainder of this section, we pro-
pose another direction for improvement, in which pairs are guaranteed to be
(1 + ε)-satisfied, for any required degree of accuracy ε > 0. As it turns out, by
resorting to ε-approximate paths, it is possible to satisfy Ω̃(1/k1/2) pairs, rather

than Ω(1/max{n, k}1/
√
2) as in the exact case.

Prior to formally describing our algorithm, it is worth pointing out that when
a constant fraction of the pairs (si, ti) ∈ P are connected via very short paths,
or more precisely, when δG(si, ti) ≤ 1/ε, the setting in question becomes very
simple. In this case, a random orientation where the direction of each edge is
picked at random, with equal probabilities for both options (independently of
other edges), 1-satisfies each pair with probability at least 2−1/ε. Therefore, the
expected fraction of pairs that are satisfied is Ω(2−1/ε). For this reason, we focus
attention only on pairs for which δG(si, ti) > 1/ε, and assume from this point
on that all other pairs have already been discarded from P .

Let β = β(n, k, ε) be a parameter whose value will be optimized later on. As
in the greedy algorithm, we use pi to denote some shortest si-ti path, arbitrarily
picked in advance, and define P = {pi : (si, ti) ∈ P}. Moreover, for a path p ∈ P ,

80 D. Blokh, D. Segev, and R. Sharan

let Ip(P) be the set of paths in P that intersect p, i.e, share at least one common
edge. With these definitions in place, our algorithm works in two phases:

1. As long as there exists a path p ∈ P , say from s to t, such that |Ip(P)| < β:
(a) Orient p in the direction from s to t.
(b) Discard from P the path p as well as all paths in Ip(P).

2. Once the condition in phase 1 is no longer satisfied, let p be the shortest
among all paths in P , connecting s to t.
(a) Partition the path p into at most 1/ε edge-disjoint subpaths, each of

length at most �ε · δG(s, t)� ≤ 2ε · δG(s, t), where this inequality holds
since δG(s, t) ≥ 1/ε.

(b) Identify a subpath p̃ for which |Ip̃(P)| ≥ (ε/2) · |Ip(P)| ≥ εβ/2, and let
r be some arbitrary vertex in p̃.

(c) Construct an r-rooted shortest-path tree T in the subgraph that results
from unifying p̃ and all paths in Ip̃(P). At this point in time, we have just
created an instance of the maximum tree orientation problem, where the
underlying tree is T and the collection of pairs are those corresponding
to the paths in Ip̃(P). Hence, we can use the algorithm of [10] to compute
an orientation that satisfies Ω(1/ logn) · |Ip̃(P)| = Ω(εβ/ logn) pairs.

Obviously, all pairs that were connected in phase 1 are 1-satisfied, since these
connections are due to exact shortest paths. For this reason, it remains to show
that every connection in phase 2 uses a (1 + ε)-approximate shortest path. This
follows from the next claim, where we derive an upper bound on the factor by
which pairwise distances can grow in T (for the relevant subset of pairs).

Lemma 5. For every path pi ∈ Ip̃(P) connecting si to ti,

δT (si, ti) ≤ (1 + 4ε) · δG(si, ti) .

Proof. Consider some path pi ∈ Ip̃(P), and let ysi be its first vertex (in the
direction from si to ti) that also belongs to the subpath p̃. Similarly, let yti be
the last vertex in pi that still resides in p̃. Since T is an r-rooted shortest path
tree in the union of p̃ and all paths in Ip̃(P), and since the entire length of p̃ is
at most 2ε · δG(s, t) and δG(s, t) ≤ δG(si, ti), we must have{

δT (r, si) ≤ δG(r, ysi) + δG(ysi , si) ≤ 2ε · δG(si, ti) + δG(ysi , si)

δT (r, ti) ≤ δG(r, yti) + δG(yti , ti) ≤ 2ε · δG(si, ti) + δG(yti , ti)

These inequalities can now be used to prove the desired claim, since:

δT (si, ti) ≤ δT (si, r) + δT (r, ti)

≤ (2ε · δG(si, ti) + δG(ysi , si)) + (2ε · δG(si, ti) + δG(yti , ti))

≤ (δG(si, ysi) + δG(ysi , yti) + δG(yti , ti)) + 4ε · δG(si, ti)
= δG(si, ti) + 4ε · δG(si, ti)
≤ (1 + 4ε) · δG(si, ti) .

��

Approximation Algorithms and Hardness Results for Shortest Path 81

We conclude the description of the algorithm by showing how to optimize the
value of β = β(n, k, ε) such that it balances between the worst-case performances
of phases 1 and 2.

Theorem 7. For any fixed ε > 0, there is a deterministic algorithm that (1+ε)-
satisfies a fraction of Ω(1/

√
(k logn)/ε) of the pairs.

Proof. Let D be the number of paths that were eliminated from P in phase 1.
By the condition to terminate this phase, at least D/β of these paths must have
been oriented so that the corresponding pairs are satisfied. In addition, as shown
above, the number of (1+ ε)-satisfied pairs in phase 2 is Ω(εβ/ logn). Therefore,
the overall number of (1 + ε)-satisfied pairs is at least

D

β
+Ω

(
εβ

logn

)
=

1

β
·D +Ω

(
εβ

(|P | −D) log n

)
· (|P | −D)

= Ω

(
min

{
1

β
,

εβ

(|P | −D) log n

})
· |P |

= Ω

(
min

{
1

β
,

εβ

k logn

})
· k .

To obtain the best-possible performance guarantee, we pick a value for β so
as to maximize min{ 1

β ,
εβ

k log n}. The latter term attains its maximal value at

β∗ =
√
(k logn)/ε. ��

Acknowledgments. We would like to thank Ofer Neiman for valuable discus-
sions and pointers regarding metric embeddings. RS was supported by a research
grant from the Israel Science Foundation (grant no. 241/11).

References

[1] Abraham, I., Bartal, Y., Neiman, O.: Nearly tight low stretch spanning trees. In:
Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer
Science, pp. 781–790 (2008)

[2] Alon, N., Karp, R.M., Peleg, D., West, D.B.: A graph-theoretic game and its
application to the k-server problem. SIAM Journal on Computing 24(1), 78–100
(1995)

[3] Elberfeld, M., Segev, D., Davidson, C.R., Silverbush, D., Sharan, R.: Approxima-
tion Algorithms for Orienting Mixed Graphs. In: Giancarlo, R., Manzini, G. (eds.)
CPM 2011. LNCS, vol. 6661, pp. 416–428. Springer, Heidelberg (2011)

[4] Elkin, M., Emek, Y., Spielman, D.A., Teng, S.-H.: Lower-stretch spanning trees.
SIAM Journal on Computing 38(2), 608–628 (2008)

[5] Fields, S.: High-throughput two-hybrid analysis. The promise and the peril. The
FEBS Journal 272(21), 5391–5399 (2005)

[6] Gamzu, I., Segev, D., Sharan, R.: Improved Orientations of Physical Networks.
In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 215–225.
Springer, Heidelberg (2010)

82 D. Blokh, D. Segev, and R. Sharan

[7] Gavin, A.-C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A.,
Schultz, J., Rick, J.M., Michon, A.-M., Cruciat, C.-M., Remor, M., Hofert, C.,
Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M.,
Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C.,
Heurtier, M.-A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes,
G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G.,
Superti-Furga, G.: Functional organization of the yeast proteome by systematic
analysis of protein complexes. Nature 415(6868), 141–147 (2002)

[8] Gitter, A., Klein-Seetharaman, J., Gupta, A., Bar-Joseph, Z.: Discovering path-
ways by orienting edges in protein interaction networks. Nucleic Acids Re-
search 39(4), e22 (2011)

[9] H̊astad, J.: Clique is hard to approximate within n1−epsilon. In: Proceedings of
the 37th Annual Symposium on Foundations of Computer Science, pp. 627–636
(1996)

[10] Medvedovsky, A., Bafna, V., Zwick, U., Sharan, R.: An Algorithm for Orienting
Graphs Based on Cause-Effect Pairs and Its Applications to Orienting Protein
Networks. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI),
vol. 5251, pp. 222–232. Springer, Heidelberg (2008)

[11] Silverbush, D., Elberfeld, M., Sharan, R.: Optimally Orienting Physical Networks.
In: Bafna, V., Sahinalp, S.C. (eds.) RECOMB 2011. LNCS, vol. 6577, pp. 424–436.
Springer, Heidelberg (2011)

[12] Vinayagam, A., Stelzl, U., Foulle, R., Plassmann, S., Zenkner, M., Timm, J.,
Assmus, H.E., Andrade-Navarro, M.A., Wanker, E.E.: A directed protein inter-
action network for investigating intracellular signal transduction. Science Signal-
ing 4(189), rs8 (2011)

[13] Yeang, C.-H., Ideker, T., Jaakkola, T.: Physical network models. Journal of Com-
putational Biology 11(2/3), 243–262 (2004)

Constant-Time Word-Size String Matching�

Dany Breslauer1, Leszek Gąsieniec2, and Roberto Grossi3

1 Caesarea Rothschild Institute, University of Haifa, Haifa, Israel
2 University of Liverpool, Liverpool, United Kingdom

3 Dipartimento di Informatica, Università di Pisa, Pisa, Italy

Abstract. We present a novel string-matching algorithm that requires
constant time for text scanning in an unusual model where (a) the input
pattern and text are each packed into a single word, (b) the output is a
one word bit-mask identifying the pattern occurrences in the text, and
(c) there are constant-time arithmetic, bitwise, and shift instructions
that operate on words whose size is proportional to the arbitrarily long
input length. Our bit-parallelism techniques build upon and also greatly
simplify existing parallel random access machine algorithms by using
two “simple structure” rather than “small size” deterministic samples,
i.e., one deterministic sample is very small (size two), while the other is
a potentially very long prefix of the pattern. Pattern preprocessing takes
time proportional to the word size. Our results also establish, by recent
reductions, new bounds for the packed string matching problem.

1 Introduction

In modern computers, a machine ω-bit word is typically larger than the size in
bits of an alphabet character and the machine level instructions are optimized
to operate on whole words, i.e., 64-bit or longer words versus 8-bit ASCII, 16-bit
UCS, 2-bit 4-character biological DNA, 5-bit 20-character amino acid alphabets,
etc. Thus, it is quite natural to store strings where consecutive characters are
packed into one larger word and compare the characters in bulk rather than
compare them individually. Specifically, if the characters of a string are drawn
from an alphabet Σ, then a word with at least ω ≥ log2 n bits fits up to α packed
characters as a base |Σ| number, where the packing factor is α = ω/log2 |Σ| ≥
log|Σ| n. We assume that |Σ| is a power of two, ω is divisible by log2 |Σ|, and
the packing factor α ≤ ω is a whole integer.
In this settings, it takes just O(n/α) time to read a packed string of length n,

instead of the O(n) time required to examine all of its characters individually. In
the packed string-matching problem, both the pattern of length m and the text
of length n are given packed: the idea of using the packed string representation
in the string matching problem was considered already in early string matching

� Work partially supported by the European Research Council (ERC) project
SFEROT, and by the Israeli Science Foundation Grants 686/07, 347/09 and 864/11,
and by Italian project PRIN AlgoDEEP (2008TFBWL4) of MIUR.

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 83–96, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

84 D. Breslauer, L. Gąsieniec, and R. Grossi

papers by Knuth, Morris and Pratt [22, §4] and Boyer and Moore [6, §8-9] but
they are far from reaching the optimal time bound of O(n/α+m/α).
In this paper, we focus on the case where the whole pattern and text fit into

a single word (i.e. m,n ≤ α) and so the output is a bit-mask representing all
occurrences of the pattern in the text. Our main result is a constant-time word-
size packed string-matching algorithm in the word RAM model, that has the
standard constant-time arithmetic, bitwise, and shift instructions that operate
on words whose size is proportional to the input length. Our new algorithm’s text
processing takes O(1) time, but requires an O(α)-time pattern preprocessing.
Our result has implications for the general version of the packed string-

matching problem. In the known literature, the problem has also been considered
by various authors in [1,2,4,5,13,15,16,24,25] to give efficient algorithm in theory
and practice. Ben-Kiki et al. [3] show that the problem can be optimally solved
in O(n/α + m/α) time using constant auxiliary space and even in real time,
using two specialized AC0 constant-time word-size packed string instructions
called wslm and wssm (e.g. in Intel’s SSE4.2): in the absence of these special-
ized instructions, Ben-Kiki et al. [3] give emulation algorithms in the ω-word
RAM model, as shown in Table 1, where the state of the art on the problem for
the ω-word RAM is summarized, and occ denotes the number of occurrences.

Table 1. Comparison of packed string matching algorithms in the ω-word RAM

Time Space Reference
O(n

log|Σ| n
+ nεm+ occ) O(nεm) Fredriksson [15,16]

O(n
log|Σ| n

+m+ occ) O(nε +m) Bille [5]

O(n
α
+ n

m
+m+ occ) O(m) Belazzougui [2]

O(n
α
+ m

α
+ occ) O(1) Ben-Kiki et al. [3] wssm & wslm

O(n log logω
α

+ m
log|Σ| n

+ ω + occ) O(mε + ω) Ben-Kiki et al. [3] emulation

O(n
α
+ m

log|Σ| n
+ ω + occ) O(mε + ω) This paper

The motivation behind our study is now clear. Our new word-size string-
matching algorithm in this paper can be employed in Ben-Kiki et al.’s [3] reduc-
tion, showing that the packed string matching problem can be solved in O(n/α)
text scanning time in the ω-word RAM model. Here the word-size pattern pre-
processing takes O(m/ log|Σ| n+α) time, but this overhead is only incurred once,
resulting in an O(n/α+m/ log|Σ| n+α) time packed string-matching algorithm.
Our result borrows techniques from algorithms in the parallel random access

machine model, and surprisingly, also greatly simplifies on the existing string-
matching algorithms in that model [7,8,9,10,11,12,18,19,20,21,26,27]. Perhaps,
it is worthwhile to note that our algorithm uses integer multiplication, which is
not an AC0 operation, since it can be used to compute the parity [17], while
the string matching problem is in AC0. We also contribute in this paper with
a constant-time algorithm for finding the most significant bit in a word: this
cannot be easily derived from the least significant bit as we do not know how to
bitwise reverse a word in O(1) time.

Constant-Time Word-Size String Matching 85

2 Basic Concepts

Period. A string u is a period of a string x, if x is a prefix of uk for some
integer k, or equivalently if x is a prefix of ux. Thus, x may be written as ulv,
where v is prefix of x’s period u. The shortest period of x is called the period of
x and its length is denoted by π(x). Galil [18] and all subsequent parallel string-
matching algorithms reduce the search for a highly periodic pattern x = ulv,
such that l > 2, to a search for occurrences of the pattern prefix u2v, that is
followed by counting runs of consecutive occurrences of u2v that must fall in an
arithmetic progression, by the periodicity lemma. Breslauer and Galil [9] showed
that Ω(log logn) time is required by any optimal parallel algorithm that finds
the pattern’s period length.

Witness. If the pattern x is not a prefix of yx, namely y is not a period of x,
then there must be at least one character mismatch between x and the prefix of
yx of length π(x); such a mismatch is called a witness for the non-periodicity
of length |y| and it exists for all length |y|, such that 1 ≤ |y| < π(x). A witness
may be used to eliminate at least one of two close-by occurrences candidates in
a process called a duel, where a text symbol that is aligned with the witness is
used to eliminate at least one of the two occurrence candidates, or even both,
as that text symbol cannot be equal simultaneously to the two different pattern
symbols. Vishkin [26] introduced witnesses in an optimal O(log n) time parallel
string-matching algorithm, improving on an earlier alphabet dependent result by
Galil [18], and Breslauer and Galil [8] subsequently used witnesses to improve
the time further to O(log logn).

Deterministic Sample. A k-deterministic sample for the pattern x is a small set
of locations DS in x such that if we verify that the pattern occurrence candidate
matches all the text symbols aligned at the locations in DS, then no other oc-
currence candidates that are closer than k locations to each other are plausible;
such occurrence candidates are not entirely eliminated by verifying the symbols
in DS, but rather must be still sparsified by eliminating candidates that are too
close-by to each other. Vishkin [27] introduced deterministic samples and proved
that a π(x)-deterministic sample of size |DS| ≤ log π(x) always exist, in an opti-
mal parallel algorithm that has faster optimalO(log∗ n) time text processing, but
slower optimal O(log2 n) pattern preprocessing. Galil [19] improved the text pro-
cessing to O(1) time and Crochemore et al. [11] used constant-size log log π(x)-
deterministic samples to improve the pattern processing time. Ben-Kiki et al. [3]
used deterministic samples in the bit-parallel settings, to get a constant-time
word-size packed string-matching algorithm that uses O(ω log logα) bit words.

Word-size RAM Operations. Consider the set of binary words B = {0, 1}ω of
length ω. In our fast solution to text search we use a number of constant time
operations defined on whole words from B or their partitions into consecutive
blocks of uniform length. We assume also that indices of bits in words drawn from
B are enumerated from w − 1 down to 0, counting from the left. This notation

86 D. Breslauer, L. Gąsieniec, and R. Grossi

is adopted to reflect a natural representation of polynomials. To be precise, any
word A ∈ B can be interpreted as the polynomial PA(x) = Aω−1 ·xω−1 +Aω−2 ·
xω−2+ . . .+A1 ·x1+A0 ·x0, where V (A) is defined as PA(2). For this reason we
will also refer to elements of B as vectors. We will need the following operations
defined on words from B :

(1) X = and(A,B) - bit AND, where Xi = (Ai ∧Bi), for all i = 0, .., ω − 1.
(2) X = or(A,B) - bit OR, where Xi = (Ai ∨Bi), for all i = 0, .., ω − 1.
(3) X = neg(A) - bit negation, where Xi = ¬Ai, for all i = 0, .., ω − 1.
(4) X = xor(A,B) - bit exclusive OR, where Xi = (¬Ai ∧Bi)∨ (Ai ∧¬Bi), for
all i = 0, .., ω − 1.

(5) X = add(A,B) - addition, where X satisfies V (X) = V (A) + V (B).
(6) X = sub(A,B) - subtraction, where X satisfies V (X) = V (A)− V (B).
(7) X = mul(A,B) - multiplication, where X satisfies V (X) = V (A) · V (B).
(8) X = shl(A, k) - shift left by k positions, whereX satisfies V (X) = V (A)·2k.
(9) X = shr(A, k) - shift right by k positions, where X satisfies V (X) =

�V (A)/2k�.
(10) X = rmo(A, k) - rightmost 1 in each consecutive block of size k, i.e., Xi = 1
iff Ai = 1 ∧ Ai−l = 0, for all 0 ≤ l < (i mod k).

(11) X = lmo(A, k) - leftmost 1s in each consecutive block of size k, i.e., Xi = 1
iff Ai = 1 ∧ Ai+l = 0, for all (i mod k) < l < k.

It has been shown in [14,23] that operations (1-10) can be implemented in O(1)
time in the model adopted in this paper. One can also derive from [14] the
following lemma.

Lemma 1. Any word in B of the form (0a(0b1c0d)e0f), for non-negative integer
values a, b, c, d, e, f, s.t., a+ f + e(b+ c+ d) = ω can be generated in O(1) time.

In contrast, a fast implementation of operation (11), i.e., finding the leftmost
(most significant) 1s in consecutive non-overlapping blocks of uniform size is not
known. As one of the contributions of this paper we discuss the implementation
of this operation in O(1) time in Section 4.

3 Word-Size Text Search

In the bit-parallel setting, we need an algorithm that may easily map to the
standard primitives in the ω-word RAM model. Inspiration comes from parallel
algorithms: we describe here a new text scanning algorithm with a simple and
regular memory access pattern, which in turn, also greatly simplifies on previous
work. The resulting algorithm bares some resemblance to Gąsieniec et al.’s [20]
sequential algorithm and to Crochemore et al.’s [11] parallel algorithm.

Slub. Our approach is based on two stage deterministic samples whose size is
not necessarily small, as given by the following definition.

Definition 1. Given a string x of period length π(x), we say that the substring
z is a slub in x if there exist two distinct symbols a and b such that

Constant-Time Word-Size String Matching 87

1. both za and zb occur in x, but,
2. za occurs only once among the first π(x) locations in x.

Note that za may occur also elsewhere in x among locations π(x) + 1, . . . , |x|:
this is not in contrast with the fact that it occurs only once among 1, . . . , π(x).
Also, if x contains just one distinct symbol, i.e. x = am for a symbol a, the
string-matching problem is trivially solved. Hence, we assume that x �= am for
all symbol a and show next that a slub always exists in x: we actually choose
z to be a pattern prefix, but other choices are possible. The length of the slub
may be anything between 0 and |x| − 1. Observe that any string that occurs in
x at location i ≥ π(x) + 1 must also occur starting at location i− π(x).

Lemma 2. If x �= am for all symbol a, there is a prefix z of x that is a slub.

Proof. Let za be the shortest prefix of x that occurs only once among the first
π(x) locations of x. Such shortest prefix clearly exists since za = x only occurs
once in x. Since x �= am, the shorter prefix z occurs more than once in the first
π(x) location and at least one such occurrence is some zb, a �= b. Alternatively,
if we consider the suffix tree built on x without any terminating symbol, then z
is the branching parent node of the leaf x: clearly, za is a prefix of x and some
zb, a �= b, also appears in x. ��

For example, the pattern x = anb has a slub z = an−1 that appears as its
prefix followed by the symbol a and starting at the second location followed
by the symbol b. The pattern abn has a slub that is the empty string z = ε
that appears at its beginning followed by the symbol a and starting at all other
locations followed by the symbol b.

Lemma 3. Given a slub z and symbols a and b, the deterministic sample con-
sisting of the locations of the symbols a and b in x is a |z| + 1-deterministic
sample of size 2.

Proof. Observe that any occurrence candidate starting fewer than |z|+ 1 loca-
tions after an occurrence candidate with a verified deterministic sample {a, b}
may be eliminated, since a character in z that is aligned with a in one z instance
must match b in the other z instance, leading to non-constructive evidence that
such an occurrence candidate may be eliminated. See Figure 1-a. ��

Goldberg and Zwick [21] also used larger deterministic samples, but our new
algorithm is unusual in that it uses only two “simple structure” rather than
“small size” deterministic samples, i.e., the first deterministic sample is very
small and eliminates occurrence candidates via non-constructive evidence, while
the second deterministic sample is a potentially very long prefix of the pattern.

The algorithm. Let x �= am be the input pattern with period length π(x)—and
so x = ulv where u is made up of the first π(x) symbols of x—and z be its slub
as in Lemma 2. Slubs may be used to obtain a simple parallel string matching
algorithm that works by starting out from all the n text positions as candidates:

88 D. Breslauer, L. Gąsieniec, and R. Grossi

(a)
a b
a b

a bx x

a a
(b)

Fig. 1. The new string-matching algorithm using slubs: (a) sparsify to one candidate in
each |z|+ 1 block: after verifying the size-2 deterministic sample {a, b}, any surviving
occurrence candidate that has another close-by candidate on its left, may be elimi-
nated. (b) sparsify to one candidate in each period length block: after verifying the
deterministic sample za, any surviving occurrence candidate that has another close-by
candidate on its right, may be eliminated.

1. For each occurrence candidate, verify the size-2 deterministic sample for a
and b. In each block of length |z| + 1, eliminate all remaining occurrence
candidates except for the leftmost viable candidate by Lemma 3. Note that
O(n/(|z|+ 1)) candidates remain.

2. For each remaining occurrence candidate, verify the pattern prefix za. In each
block of length π(x) eliminate all the remaining occurrence candidates except
for the rightmost viable candidate since za is unique within the first π(x)
pattern locations. Note that O(n/π(x)) candidates survive. See Figure 1-b.

3. For each surviving occurrence candidate, verify the pattern prefix u of length
π(x). All the occurrences of the period u of x are known at this point.

4. Count periodic runs of u; verify pattern tail v (a prefix of u) too if it is last
in the current run.

Theorem 1. There exist a word-size string-matching algorithm that takes O(1)
time in the ω-word RAM, following pattern preprocessing.

The proof of Theorem 1 is in the implementation of the steps 1–4 of the basic
algorithm via bit-parallel techniques as outlined next. We assume without loss
of generality that the pattern x and the text y are binary strings of length at
most ω with only 0 and 1 symbols. The pattern preprocessing is described in
Section 5 and finds the period length π(x) of the pattern and the slub z with
deterministic sample {a, b}.

Step 1. We first need to verify the small deterministic sample for the slub z.
Let ia < ib be the indices of the deterministic sample symbols a and b in the
pattern x. Without loss of generality suppose that a = 1 and b = 0. We copy x
and complement it into x′. We then perform a left shift shl of x′ by d = ib − ia
locations, so as to align the symbols a and b that need to be verified. We then
perform a bitwise and followed by a left shift shl by ia locations to obtain r, so
that the resulting 1s in r mark the candidate occurrences.
At this point, we need to (|z| + 1)-sparsify these candidate occurrences in r.

We conceptually divide r into blocks of length |z|+1 and keep only the leftmost
candidate in each block using the bitwise lmo operation described in Section 4.

Constant-Time Word-Size String Matching 89

Note that since candidates in consecutive blocks might not be |z| + 1 apart,
we consider odd and even blocks separately and remove candidates that have a
near neighbor. To do this, we employ a binary mask 1|z|+10|z|+11|z|+10|z|+1 . . .
in bitwise and with r for odd blocks, and repeat the same for even blocks. We
make a bitwise or of the outcomes, storing it into r. As a result, the remaining
candidates in r are now represented by 1s separated by at least |z| 0s.

Step 2. We can now verify the sparse candidate occurrences marked in r against
za, namely, check if each of these candidate occurrence starts with the prefix za,
when the candidates are at least |z| + 1 locations apart. We again proceed by
odd and even blocks, so let us assume without loss of generality that r contains
only the candidate occurrences in its odd blocks to avoid interference with those
in the even blocks. Consider the word p which contains za followed by a run of
0s. If we multiply p and r and store the result in c, we obtain that c has a copy
of za in each location corresponding to a marked location of r, while the rest are
0s. If we perform a right shift shr of r by |z|+1 locations and make it in or with
y, storing the result in y′, we have that each potential occurrence of za in y is
also an occurrence in y′ but terminated by 1. Since the bits in r at least |z|+ 1
apart and we are considering the candidate occurrences in the odd blocks, we
get za at the candidate occurrences without interference in this way. Then, we
perform a bitwise xor between c and y′, storing the result in d. Consider now
an odd block and its next (even) block: for the current candidate in location i,
there is an occurrence of za if and only if the nearest 1 is in position i+ |z|+ 1.
We conceptually divide d into larger blocks of length 2(|z|+1) and keep only the
leftmost candidate in each larger block using the bitwise lmo operation described
in Section 4. We then perform a left shift of d by |z|+ 1 positions and store the
result in s, so now each 1 in s marks an occurrence of za.
At this point, we need to π(x)-sparsify these candidate occurrences in s. This

is logically done the same way as the |z| + 1 sparsification above, only keeping
the rightmost surviving candidate in each block of size π(x) through the bitwise
rmo operation described in Section 4.

Step 3. We can now verify the sparse candidate occurrences marked in s again
the period u of x, namely, check if each of these candidate occurrence starts with
the prefix u, when the candidates are at least π(x) locations apart. This step is
done the same way as the verification again the prefix za in Step 2, using the
pattern period u instead of za.

Step 4. Recall that the pattern is x = ulv. If l = 1, we can also check v in a similar
way we did for u, and complete our task by suitably anding the results. Hence
we focus here on the interesting case l ≥ 2. While general counting is difficult
in our setting, our task is simpler since occurrences mean that the periods are
lined up in an arithmetic progress.
We first select the candidates in which u2v occurs: note that this is a minor

variation of what discussed so far for u and uv. Hence, let t be the word in which
each 1 marks an occurrence of u2v. We filter the runs of these occurrences by

90 D. Breslauer, L. Gąsieniec, and R. Grossi

storing in t the bitwise or of two words: the former is obtained by putting t in
and with its left shift shl by π(x) positions; the latter is obtained by putting t
in and with its right shift shr by π(x) positions. At this point, the word t thus
obtained has 1 in correspondence of aligned occurrences of u2v, and we have
runs of 1s at distance π(x) from each other inside each run. All we have to do
is to remove the last l − 1 1s of each run in t, since they are shorter than the
pattern: the remaining ones are the pattern occurrences. Summing up: counting
is not possible, but removing those shorter than the pattern is doable.
To avoid interferences we consider blocks of l×π(x) bits and work separately

on the odd and even blocks, as already discussed before. First mark the last
occurrence of u2v inside each run of t. This is done by making the xor of t with
itself shifted right shr by π(x) locations, and with the result shifted left shl by
π(x) locations and put in and with t, storing the outcome in q. Now the 1s in
q corresponds to the last occurrence of u2v inside each run of t. If we multiply
the word (10π(x)−1)l−1 (followed by 0s) by q, and we store in q the result shifted
left shl by (l− 2)× π(x) locations, we capture the last l− 1 entries of each run,
exactly those to be removed. At this point, if we complement q and make an and
with t, storing the result in t, we obtain that the 1s in t finally corresponds to
the occurrences of x in y.

4 Implementing lmo Operation

We show how to implement the lmo(A, k) operation, that was defined in Section 3
and constitutes an integral part of our fast text search procedure, in constant
time in the ω-word RAM. Knuth [23] observes that “big-endian and little-
endian approaches aren’t readily interchangeable in general, because the laws
of arithmetic send signals leftward from the bits that are least significant” and
therefore assumes that a less traditional bit reversal AC0 instruction, that can
be easily implemented in hardware, is available in his model: such instruction
would trivially map between lmo and rmo operations. Related endian conversion
byte reversal instructions, often used in network applications to convert between
big and little endian integers, are available in contemporary processors.
Given a word A ∈ B we are asked to determine the leftmost (the most signif-

icant) 1 in each consecutive k-block Kj of A, for j = 0, . . . , ω/k− 1. Each block
Kj is formed of contiguous k positions (j + 1) · k + 1, . . . , j · k. We propose the
solution when the size of the consecutive blocks k = q2 without loss of general-
ity, for some integer q > 0. One of the main ideas behind the solution lies in
partitioning of each block Kj into consecutive sub-blocks K

q−1
j , . . . ,K0

j , each of
length q =

√
k. If a block (sub-block) contains 1s we say that this is a non-zero

block (sub-block). The lmo algorithm operates in three stages.
During Stage 1 we identify all non-zero sub-blocks Ki

j . Later in Stage 2 we
identify in each Kj the leftmost non-zero sub-block Ki∗

j . Finally, in Stage 3 we
identify the leftmost 1 located at position j · k+ i∗ · q+ l∗ in each sub-block Ki∗

j

which also refers to the leftmost 1 in Kj .

Constant-Time Word-Size String Matching 91

STAGE 1 (DETERMINE ALL NON-ZERO SUB-BLOCKS)

During this stage we identify all non-zero sub-blocks Ki
j in each Kj . More pre-

cisely, for the input word A we compute a word B ∈ B, in which each non-zero
sub-block Ki

j in A, for i = 0, . . . , q − 1 and j = 0, . . . , ω/k− 1, is identified in B
by the most significant (leftmost) bit j · k+ i · q+ q− 1 in Kj

i set to 1 in B. The
remaining bits in B are set to 0. A more detail description of this stage follows.

Part A: Extract the most significant bits in sub-blocks. For a rather
technical reason, we will extract first the most significant bit in each sub-blockKj

i

of A. We store extracted bits in a separate word X replacing the corresponding
positions in A by 0s to form a new word A1. This process is performed in four
steps:

A.1 Create a bit mask M1= (10q−1)ω/q, see Lemma 1.
A.2 X= and(A,M1), where X contains the most significant bits extracted from
sub-blocks.

A.3 M2= neg(M1), where M2 is built to extract all but the most significant
bits in sub-blocks.

A.4 A1= and(A,M2), where A1 is the requested new word.

Part B: Determine empty (zero) sub-blocks. During this part we create a
new word A2 in which the most significant bit in each sub-block is set to 1 if the
remaining k− 1 bits in this sub-block in A contain 0s. This process is performed
in four steps:

B.1 A−= neg(A), where A− contains negated bits of A.
B.2 A′= and(A−,M2), where A′ is obtained from A− by removal of the most
significant bit in each sub-block.

B.3 Create a bit mask M3= (0q−11)ω/q, see Lemma 1.
B.4 A2= and(add(A′,M3),M1), where A2 is the requested new word.

Part C: Determine non-empty (non-zero) sub-blocks. Non-zero sub-
blocks in A are represented by 1s present at the leftmost bits of these sub-blocks
in B and all other bits set to 0s. The process is performed in two steps:

C.1 B= and(neg(A2),M1), where A3 identifies sub-blocks with 1s located out-
side of the most significant bits.

STAGE 2 (DETERMINE IN EACH BLOCK THE LEFTMOST NON-ZERO
SUB-BLOCK)

The second stage is devoted to computation of the leftmost non-zero sub-block
Ki∗

j in each block Kj , for j = 0, . . . , ω/k − 1 on the basis of word B.
More precisely, for the input word B (obtained on the conclusion of stage 1)

we compute a word C ∈ B, in which each the leftmost non-zero sub-block Ki∗

j ,
for j = 0, . . . , ω/k − 1, is identified in C by the most significant (leftmost) bit
j · k+ i∗ · q+ q− 1 in Ki∗

j set to 1 in C. The remaining bits in C are set to 0. A
more detail description of this stage follows.

92 D. Breslauer, L. Gąsieniec, and R. Grossi

In order to make computation of the leftmost non-zero sub-block viable, more
particularly to avoid unwanted clashes of 1s, we consider separately three dif-
ferent words based on B. In each of the three words the bits of selected blocks
are culled, i.e., reset to 0s as follows, where B[Kj] denotes the segment of B
corresponding to block Kj .

(1) BL = B[Kω
k −1]0

2kB[Kω
k −4]0

2k...B[K2]0
2k,

(2) BM = 0kB[Kω
k
−2]0

2kB[Kω
k
−5]0

2k...B[K1]0
k, and

(3) BR = 02kB[Kω
k −3]0

2kB[Kωk−6]0
2k...B[K0].

In each of these 3 words, the blocks that are spared from resetting are called
alive blocks. Without loss of generality (computation on other two words and
their alive blocks are analogous) lets show how to compute the most significant
non-zero sub-blocks in alive blocks in BR.

Part D: Fishing out BR

D.1 Create a bit mask M4 = (02k1k)n/3k, see Lemma 1.
D.2 BR = and(B,M4), where all bits irrelevant to BR are culled.

The following lemma holds:

Lemma 4. The only positions at which 1s may occur in BR refer to the leftmost
bits in sub-blocks of alive blocks, i.e., 3j · k+ iq− 1, for all j = 0, . . . , ω

3k − 1 and
i = 1, . . . , q.

Proof. The proof follows directly from the definition of B and M4. ��

Part E: Reversing the leftmost bits of sub-blocks in each block. Dur-
ing this step we multiply and shuffle 1s of BR. To be precise, we compute the
product of BR and the shuffling palindrome of the form P = (10q)q−11, where
Y = mul(BR, P). The main purpose of this process is to generate a sequence
of bits from BR that appear in the reverse order in Y. These bits can be later
searched for the rightmost bit using the procedure rmo that already has efficient
implementation. We need a couple of more detail observations.

Lemma 5 (Global independence of bits). In the product of BR and P there
is no interference (overlap) between 1s coming from different alive blocks.

Proof. Since (alive) blocks with 1s in BR are separated by the sequence of 0s of
length ≥ 2k and |P | ≤ k any 1s belonging to different alive blocks are simply
too far to interfere during the multiplication process. ��

Lemma 6 (Local independence of bits). Only one pair of 1s can meet at
any position of the convolution vector of the product BR and P .

Proof. Observe that bits from the two words meet at the same position in the
convolution vector if the sum of the powers associated with the bits are the same.

Constant-Time Word-Size String Matching 93

Recall that 1s in BR in jth alive block may occur only at positions 3j ·k+ iq−1,
for i = 1, . . . , q, and all 1s in P are located at positions 0 and l(q + 1), for
l = 0, . . . , q − 1. Assume by contradiction that there exist 1 ≤ i1 < i2 ≤ q and
0 ≤ l1 < l2 ≤ q − 1, s.t., 3j · k+ i2q − 1 + l1(q + 1) = 3j · k+ i1q − 1 + l2(q + 1).
The latter equation is equivalent with (l2− l1)(q+1) = (i2− i1)q. Since we know
that q and q+1 are relatively prime and l2− l1 and i2− i1 are both smaller than
q we can conclude that the equivalence cannot hold. ��

We focus now our attention on the specific contiguous chunks of bits in Y that
contain the leftmost bits of sub-blocks in the same alive block arranged in the
reverse order. Consider jth alive block in BR (note that now i ranges form 1 to
q).

Lemma 7 (Reversed bits). The bit 3j ·k+iq−1, for i = 1, . . . , q, from the jth
alive block in BR appears in Y = mul(BR, P) at position (3j+1) ·k+ q− (i+1).

Proof. The proof comes directly from the definition of the product of two vectors
and the content of BR and P. In particular, for i = 1, . . . q the bit 3j · k+ iq− 1
in BR meets 1 at position (q − i)(q + 1) in P and it gets replicated at position
3j ·k+iq−1+(q−i)(q+1) = 3j ·k+iq−1+q2+q−iq−i = (3j+1)k+q−(i+1).

��

The sequence of bits (3j+1)k+q−(i+1) in Y, for i = 1, . . . q, and j = 0, . . . , ω
3k−1,

is called the j-significant sequence. The main purpose of the next step is to ex-
tract the significant sequences from Y and later to determine the rightmost 1 in
each j-significant sequence. Note that the rightmost 1 in j-significant sequence
corresponds to the leftmost 1 in jth sub-block.

Part F: Find the rightmost bits in significant sequences

F.1 Create bit mask M5 = 0(03k−q1q)
ω
3k 0k−1 by Lemma 1, where 1s in this

bit-mask correspond to the positions located in significant sequences in Y .
F.2 Y1= and(Y,M5), where all positions outside of the significant sequences are
culled.

F.3 Y2= rmo(Y1, 3k) where rmo operation computes the rightmost bit in each
significant sequence of Y1.

When the rightmost 1 in each significant sequence is determined and stored in
Y2 we apply the shuffle (reverse) mechanism once again. In particular, we use
multiplication by palindrome P and shift mechanism to recover the original po-
sition of the leftmost 1 (representing the leftmost non-zero sub-block) in each
active block of BR.

Part G: Find the leftmost non-zero sub-block in each active block
Consider the jth active block and assume that its i∗ sub-block is the leftmost
non-zero sub-block in this block, where 1 ≤ i∗ ≤ q. This sub-block is represented
by 1 located at position 3jk + i∗q − 1 in BR. According to Lemma 7 after Part
E this 1 is present in Y, and in turn in Y2, at position (3j + 1)k + q − (i∗ + 1).

94 D. Breslauer, L. Gąsieniec, and R. Grossi

G.1 Compute Y3= mul(Y2, P), where the bits are shuffled again.
G.2 Compute bit mask M6= (02k(10q−1)q)

ω
3k 0k+q, see Lemma 1.

G.3 Y4= and(Y3,M6), where we fish out bits of our interest.
G.4 CR= shr(Y4, k + q), where we reinstate the original location of bits.

During multiplication of Y2 by P (step G.1) we focus on the instance of this 1 in
the product vector Y3 = mul(Y2, P) generated by 1 located at position i∗(q + 1)
in P. This specific instance of 1 from Y2 is located at position (3j + 1)k + q −
(i∗ + 1) + i∗(q + 1) = (3j + 1)k + q(i∗ + 1)− 1. This last expression can be also
written as 3jk + qi∗ − 1 + (k + q).
We still need to cull unwanted 1s resulting from multiplication of Y2 and P.

In order to do this, we define a bit mask M6 = (02k(10q−1)q)
ω
3k 0k+q (Steps G.2)

in which 1s are located at positions 3jk + ql − 1 + (k + q), for j = 0, . . . ω
3k − 1

and l = 1, . . . , q. And we apply this mask to vector Y3 (Step G.3).

Lemma 8. The 1s in M6 are only those located at position 3jk+qi∗−1+(k+q)
for any choice of i∗.

Proof. We need to show that other 1s in Y3 obtained on the basis of 1s located
at position 3jk + i∗q − 1 in BR and 1s in P at positions i(q + 1), for i �= i∗,
will not survive the culling process. Assume to contrary that there exists 1 in Y3

formed on the basis of 1 located at the position (3j + 1)k + q − (i∗ + 1) in Y2

and 1 located at a position i(q + 1) in P , for i �= i∗. The location of this 1 in Y3

is (3j+1)k+ q− (i∗ +1)+ i(q+1) = 3jk+ qi+ (i− i∗)− 1+ (k+ q). But since
0 < |i− i∗| < q the location of this 1 cannot overlap with 1s in M6. ��
We conclude the process (Step G.4) by shifting Y4 by k + q positions to the
right. This is required to relocate the leftmost 1s in the leftmost non-zero sub-
blocks to the correct positions. The computations on sequences BL and BM can
be performed analogously to form CL and CM . We conclude by forming C=
or(or(CL, CM), CR) which is the combination of CL, CM and CR.

STAGE 3 (FINDING THE LEFTMOST 1 IN EACH BLOCK)

The third stage is devoted to computation of the leftmost 1 in sub-block Ki∗

j in
each Kj, for j = 0, . . . , ω

k − 1 on the basis of C.
More precisely, for the input word C (obtained on the conclusion of Stage 2)

containing information on location of Ki∗

j in each block Kj we compute a word
D ∈ B, in which the leftmost 1 in Ki∗

j located at position j · k + i∗ · q + l∗ in
Ki∗

j is present in D while the remaining bits in D are set to 0. Note that the
selected 1s stand also for the leftmost 1s in blocks, i.e., they form the solution
to our problem.
The operations used in Stage 3 are analogous to those used in Stage 2. Due

to limited space the detail description of this stage is omitted here.

5 Word-Size Pattern Preprocessing

The pattern preprocessing is the more difficult part in parallel string match-
ing algorithms and also in our case using bit-parallelism: as demonstrated by

Constant-Time Word-Size String Matching 95

Breslauer and Galil’s [9] Ω(log logn) period computation lower bound and the
faster text processing by Vishkin [27] and Galil [19]. We assume that the pre-
processing is done in O(m/α + ω) time by a purely sequential algorithm, with
additional O(m

log|Σ| n
) for the wslm emulation required in [3]. Observe that the

period may be computed in the ω-word RAM model in constant time using
larger O(ω logω)-bit words, or in O(log ω) time using ω-bit words.

6 Parallel Random Access Machine

The new algorithm presented in Section 3 offers a much simpler constant time
CRCW parallel random access machine algorithm than Galil [19], Crochemore
et al. [11] and Goldberg and Zwick [21]. The pattern preprocessing is composed
of two parts: the first is the witness computation as in Breslauer and Galil’s [8]
work, and the second computes the information needed by the new algorithm
in this paper in constant time, but only for the pattern prefix of length

√
m.

Applying first the algorithm to the pattern prefix of length
√
m and using peri-

odicity properties, we can sparsify the remaining candidate occurrences to one
in every

√
m block, and then use witnesses to eliminate the rest.

7 Conclusions

We presented a theoretical way of simulating a string-matching instruction al-
ready available in modern machines on the ω-bit word RAM. There is a number
of questions to be answered. We are curious whether there exist constant-time
word-size packed string-matching algorithms in the ω-bit word RAM model us-
ing only AC0 instructions, i.e., no integer multiplication. As a first step, it would
be interesting to obtain an algorithm where integer multiplication is only used
in the pattern processing, but not in the text preprocessing. We are also curious
whether the parallel random access machine pattern preprocessing can be done
faster than O(log logn) if the alphabet is small integers [7].

References

1. Baeza-Yates, R.A.: Improved string searching. Softw. Pract. Exper. 19(3), 257–271
(1989)

2. Belazzougui, D.: Worst Case Efficient Single and Multiple String Matching in
the RAM Model. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS,
vol. 6460, pp. 90–102. Springer, Heidelberg (2011)

3. Ben-Kiki, O., Bille, P., Breslauer, D., Gąsieniec, L., Grossi, R., Weimann, O.:
Optimal Packed String Matching. In: Proc. FSTTCS. LIPIcs, vol. 13, pp. 423–432.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)

4. Klein, S.T., Kopel Ben-Nissan, M.: Accelerating Boyer Moore Searches on Binary
Texts. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 130–143.
Springer, Heidelberg (2007)

5. Bille, P.: Fast searching in packed strings. J. Discrete Algorithms 9(1), 49–56 (2011)

96 D. Breslauer, L. Gąsieniec, and R. Grossi

6. Boyer, R., Moore, J.: A fast string searching algorithm. Comm. of the ACM 20,
762–772 (1977)

7. Breslauer, D., Czumaj, A., Dubhashi, D.P., Meyer auf der Heide, F.: Compari-
son Model Lower Bounds to the Parallel-Random-Access-Machine. Inf. Process.
Lett. 62(2), 103–110 (1997)

8. Breslauer, D., Galil, Z.: An optimal O(log log n) time parallel string matching al-
gorithm. SIAM J. Comput. 19(6), 1051–1058 (1990)

9. Breslauer, D., Galil, Z.: A Lower Bound for Parallel String Matching. SIAM J.
Comput. 21(5), 856–862 (1992)

10. Cole, R., Crochemore, M., Galil, Z., Gąsieniec, L., Hariharan, R., Muthukrishnan,
S., Park, K., Rytter, W.: Optimally fast parallel algorithms for preprocessing and
pattern matching in one and two dimensions. In: Proc. FOCS, pp. 248–258 (1993)

11. Crochemore, M., Galil, Z., Gąsieniec, L., Park, K., Rytter, W.: Constant-Time
Randomized Parallel String Matching. SIAM J. Comput. 26(4), 950–960 (1997)

12. Czumaj, A., Galil, Z., Gąsieniec, L., Park, K., Plandowski, W.: Work-time-optimal
parallel algorithms for string problems. In: Proc. STOC, pp. 713–722. ACM (1995)

13. Faro, S., Lecroq, T.: Efficient pattern matching on binary strings. In: Proc. SOF-
SEM (2009)

14. Fich, F.E.: Constant Time Operations for Words of Length w. Technical report,
University of Toronto (1999), http://www.cs.toronto.edu/~faith/algs.ps

15. Fredriksson, K.: Faster String Matching with Super-Alphabets. In: Laender,
A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 44–57. Springer,
Heidelberg (2002)

16. Fredriksson, K.: Shift-or string matching with super-alphabets. IPL 87(4), 201–204
(2003)

17. Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hier-
archy. Mathematical Systems Theory 17(1), 13–27 (1984)

18. Galil, Z.: Optimal parallel algorithms for string matching. Inform. and Control 67,
144–157 (1985)

19. Galil, Z.: A Constant-Time Optimal Parallel String-Matching Algorithm. J.
ACM 42(4), 908–918 (1995)

20. Gąsieniec, L., Plandowski, W., Rytter, W.: Constant-space String Matching with
Smaller Number of Comparisons: Sequential Sampling. In: Galil, Z., Ukkonen, E.
(eds.) CPM 1995. LNCS, vol. 937, pp. 78–89. Springer, Heidelberg (1995)

21. Goldberg, T., Zwick, U.: Faster parallel string matching via larger deterministic
samples. J. Algorithms 16(2), 295–308 (1994)

22. Knuth, D., Morris, J., Pratt, V.: Fast pattern matching in strings. SIAM J. Com-
put. 6, 322–350 (1977)

23. Knuth, D.E.: Combinatorial Algorithms. The Art of Computer Programming,
vol. 4A. Addison-Wesley Professional (January 2011)

24. Navarro, G., Raffinot, M.: A Bit-Parallel Approach to Suffix Automata: Fast Ex-
tended String Matching. In: Farach-Colton, M. (ed.) CPM 1998. LNCS, vol. 1448,
pp. 14–33. Springer, Heidelberg (1998)

25. Tarhio, J., Peltola, H.: String matching in the DNA alphabet. Software Practice
Experience 27, 851–861 (1997)

26. Vishkin, U.: Optimal parallel pattern matching in strings. Inform. and Control 67,
91–113 (1985)

27. Vishkin, U.: Deterministic sampling - A new technique for fast pattern matching.
SIAM J. Comput. 20(1), 22–40 (1990)

http://www.cs.toronto.edu/~faith/algs.ps

Pattern Matching in Multiple Streams�

Raphaël Clifford1, Markus Jalsenius1, Ely Porat2, and Benjamin Sach3

1 University of Bristol, Department of Computer Science, Bristol, UK
2 Bar-Ilan University, Department of Computer Science, Ramat-Gan, Israel
3 University of Warwick, Department of Computer Science, Coventry, UK

Abstract. We investigate the problem of deterministic pattern match-
ing in multiple streams. In this model, one symbol arrives at a time and
is associated with one of s streaming texts. The task at each time step is
to report if there is a new match between a fixed pattern of length m and
a newly updated stream. As is usual in the streaming context, the goal is
to use as little space as possible while still reporting matches quickly. We
give almost matching upper and lower space bounds for three distinct
pattern matching problems. For exact matching we show that the prob-
lem can be solved in constant time per arriving symbol and O(m + s)
words of space. For the k-mismatch and k-difference problems we give
O(k) time solutions that require O(m+ ks) words of space. In all three
cases we also give space lower bounds which show our methods are op-
timal up to a single logarithmic factor. Finally we set out a number of
open problems related to this new model for pattern matching.

1 Introduction

We introduce a new set of problems centered on pattern matching in multiple
streaming texts. In this model, one symbol arrives at a time and is added to the
tail of exactly one of s streaming texts. The task at each time step is to report if
there is a new match between a fixed pattern P of length m and a newly updated
stream. Our interest is in deterministic algorithms with guaranteed worst case
time complexity. The goal is to use as little space as possible while still reporting
matches quickly.

The problem of pattern matching in a single stream using limited space had
a major breakthrough in 2009 when it was shown that exact matching can be
performed using only O(logm) words of space and O(logm) time [20]. This
result was subsequently simplified [10] and then improved [4] to run in constant
time per new symbol. To achieve this small space, these methods are however all
necessarily randomised and allow some small probability of error. Where neither
randomisation nor error is permitted, a straightforward argument shows us that
there is no hope of using space sublinear in the pattern size. This follows directly
from the observation that we could use such a matching algorithm to reproduce
the pattern in its entirety and that it therefore must use at least linear space.

� This work was partially supported by EPSRC.

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 97–109, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

98 R. Clifford et al.

Where there are multiple streams however the situation is not as clear cut
even where no randomisation is allowed. A naive approach would simply be to
store s copies of the working space, one for each stream. This will typically then
require Θ(ms) space overall. Where the number of streams s is large, the space
usage of such an approach is therefore likely to be prohibitive.

Our contribution is first to show that for three particularly common pattern
matching problems, pattern matching in multiple streams can be solved in con-
siderably less than Θ(ms) space without the use of randomisation. In Section 3
we give a constant time algorithm for exact matching that requires only O(m+s)
words of space. In Section 4 we review a recently introduced data structure which
allows us to perform longest common extension (LCE) queries between a stream-
ing text and a fixed pattern in constant time andO(m) space. This data structure
is then used in Sections 5 and 6 where we give O(k) time and O(m + ks) space
solutions to the k-mismatch and k-difference problems. In Section 7 we give al-
most matching space lower bounds for our problems as well as lower bounds for
some other common pattern matching problems. Finally in Section 8 we set out
a number of open problems that immediately arise for this new model of pattern
matching.

2 Related Work

Randomised space lower bounds for a wide range of pattern matching problems
in a single stream were given in [7]. In [6,9] it was also shown that a large set of
pattern matching algorithms could be converted from offline to online with only
at worst a multiplicative logarithmic factor overhead in their time complexity.
This therefore provided an effective deamortisation of almost the entire field of
combinatorial pattern matching and a ready tool for the construction of fast
streaming pattern matching algorithms.

In the more usual offline setting, a great deal of progress has been made in
finding fast algorithms for a variety of approximate matching problems. One
of the most studied is the Hamming distance which measures the number of
single character mismatches between two strings. Given a text of length n and
a pattern of length m, the task is to report the Hamming distance at every
possible alignment. Solutions running in O(n

√
m logm) time which are based on

repeated applications of the FFT were given independently by both Abrahamson
and Kosaraju in 1987 [1,15]. Particular interest has been paid to the bounded
variant we also consider called the k-mismatch problem. Here a bound k is
given and we need only report the Hamming distance if it is less than or equal
to k. If the number of mismatches is greater than the bound, the algorithm
need only report that fact and not give the actual Hamming distance. In 1986
Landau and Vishkin gave a beautiful O(nk) time algorithm that is not FFT
based and uses constant time lowest common ancestor (LCA) operations on
the suffix tree of the pattern and text [18]. This was subsequently improved to
O(n

√
k log k) time by a method based on filtering and FFTs again [3]. A separate

line of research considered the question of how to find approximations within a

Pattern Matching in Multiple Streams 99

(1 + ε) multiplicative factor of the Hamming distance [12,14]. The edit distance
measures the minimum number of single character insert, delete and mismatch
operations required to transform one string into another. We consider a bounded
problem called k-difference which reports the edit distance at every alignment
only if it is at most k. An O(nk) solution to this problem was given in [19] using
LCE queries to perform jumps within the dynamic programming table.

2.1 Preliminaries and a New Model for Multiple Streams

In order to design algorithms for pattern matching in multiple streams we first
define a new computational model which we will use throughout. In this new
model there is only one stream, however we will carefully distinguish between
space that any pattern matching algorithm uses that is associated with the
pattern and space associated with the text. We call this model, which may be of
independent interest, the single stream read-only preprocessing model or simply
the read-only preprocessing model for short.

Any algorithm that operates in this model operates in two phases: a prepro-
cessing phase followed by an online phase. During the preprocessing phase, the
algorithm processes the pattern without any knowledge of the text. The out-
put of the preprocessing phase is termed the pattern space. The online phase
is provided read-only access to a copy of the pattern space. It is important to
note that the online phase is not provided direct access to the pattern unless the
pattern is explicitly stored in the pattern space. The online phase continues as
in the original single stream model, processing each text character as it arrives.
Any space used by the online phase in addition to the read-only pattern space
is termed text space. The text space can therefore only store information that
is associated with the text and its relation to information already stored in the
pattern space.

Algorithms developed in the read-only preprocessing model translate directly
to the multiple stream model that we are interested in. Consider an algorithm
in the read-only preprocessing model. Let f be the time taken per new arriving
symbol, gp the pattern space and gt the text space of this algorithm. Since the
pattern space is independent of the text, it can be shared across multiple texts.
Therefore we can directly derive a new pattern matching algorithm in the multi-
ple stream model which runs in O(f) time per character using O(gp+sgt) space.
The space and time requirements of the preprocessing stage are arguably of less
significance given that they are a function only of the pattern size. Nevertheless,
for all three pattern matching problems we consider, the preprocessing stage can
be implemented in O(m) space and O(m logm) time. We assume throughout
that all computation is performed in the unit cost RAM model.

3 Exact Matching

We begin by giving a real-time variant of the KMP algorithm. We will apply it
to the read-only preprocessing model ensuring it takes O(1) time, using O(m)

100 R. Clifford et al.

pattern space and O(1) text space, so that in the multiple stream model it
will take O(1) time and use O(m + s) space. The more usual real-time variant
provided by Galil [11] will not suffice for our purposes as it buffers the text and
therefore would use O(ms) space in the multiple stream model.

First recall that at each stage of the standard KMP algorithm we keep track
of the longest prefix of the pattern that matches a suffix of the text seen so
far. When a new character T [i] arrives, we extend the matching prefix by T [i] if
possible, otherwise we shift the pattern according to a pre-computed prefix table,
also known as the failure function. More precisely, suppose that P [0 . . . j − 1]
matches T [i− j . . . i− 1] when T [i] arrives. If P [j] = T [i], we extend the match,
otherwise we look at position j of the prefix table, which gives us the largest value
0 < j′ < j such that P [0 . . . j′ − 1] matches T [i− j′ . . . i − 1] and P [j′] �= P [j].
Then we compare P [j′] with T [i] to see if we can extend the new match by T [i].
If not, we shift the pattern again using the prefix table, and so on.

While it is well-known that the time complexity per character is O(1) amor-
tised, our motivations call for an unamortised solution. Instead of using a prefix
table, for each position j of the pattern we store a dictionary Dj that contains
every pair (σ, j′) ∈ Σ × {1, . . . ,m − 1} where 0 < j′ < j is the largest index
such that P [0 . . . j′ − 1] matches P [j − j′ . . . j − 1] and P [j′] = σ �= P [j]. The
pairs (σ, j′) in Dj are indexed by the symbol σ and Σ denotes the alphabet. In
other words, whenever a match P [0 . . . j − 1] cannot be extended to P [0 . . . j]
(i.e., P [j] �= T [i]), instead of repeatedly shifting the pattern according to the
prefix table until T [i] is matched, we look up symbol T [i] in Dj and immediately
get the length j′ of the prefix of P that the KMP algorithm would eventually
align with T [i−j′ . . . i−1] in order to be able to extend the match to P [j′] = T [i].
The dictionaries Dj can be pre-computed as all shifts are based on self-matches
with the pattern itself. By using a static perfect dictionary we can do lookups in
constant time. Thus, a KMP algorithm equipped with these dictionaries instead
of a prefix table will run in unamortised O(1) time per character. An interesting
fact is that the total space usage to store these dictionaries is only O(m). The
following lemma was proved in [22], where it was stated in the language of finite
automata. For completeness we include a proof.

Lemma 1 (Theorem 1 of [22]). The sum of the sizes of all dictionaries,

m−1∑
j=0

|Dj| � m.

Proof. A lookup in the dictionary Dj results in a shift of the pattern. We show
that for every length � ∈ {1, . . . ,m − 1} there is at most one element over
all dictionaries that moves the pattern along by � positions. For contradiction,
suppose that some (σ1, j

′
1) ∈ Dj1 and (σ2, j

′
2) ∈ Dj2 , where j1 < j2, both shift

the pattern by �. By definition, we have P [j1] �= P [j′1]. If the same shift � is
applied when the j2-length prefix of P is moved along, we must have P [j1] =
P [j1 − �] = P [j′1], which leads to a contradiction. ��

Pattern Matching in Multiple Streams 101

By using static perfect hashing, we can store all dictionaries D0, . . . , Dm−1 in
O(m) pattern space. Although preprocessing time is not our focus, we briefly
discuss how to construct the dictionaries in O(m log logm) time.

We begin by constructing the standard KMP prefix table in O(m) time. We
then construct each dictionary Dj by considering j in increasing order, starting
with j = 0. For any j � 0, the dictionary Dj is constructed as follows. Let
j′ < j be the index given by the original KMP prefix function for P [0 . . . j]. The
elements in { (σ, j′′) ∈ Dj′ | σ �= P [j] }∪{(P [j′], j′)} are added to Dj . These are
precisely the elements that belong to Dj according to its definition. Over all j,
gathering the elements to be added to the dictionaries takes O(m) time. The
running time is therefore dominated by the time it takes to insert the elements
into the dictionaries. By using the the static dictionary of Ružić [21], construction
takes

m−1∑
j=0

O
(
|Dj | log log |Dj |

)
� O(m log logm) .

time, where Lemma 1 has been applied.
The next lemma summarises the result, which together with the properties of

the read-only preprocessing model gives us Theorem 3.

Lemma 2. Exact matching can be solved in the read-only preprocessing model
in O(1) time per character and using O(m) pattern space and O(1) text space.

Theorem 3. Exact matching in the multiple stream model with s texts can be
solved in O(1) time per character and O(m+ s) space.

4 LCE Queries in a Stream

In preparation for the algorithms we give for the k-mismatch and k-difference
problems, we will be required to maintain a data structure that allows us to
compute LCE queries in a streaming text in O(1) time and O(m) space. This
method was first introduced in [8], although the idea of representing the text in
terms of substrings of the pattern was first used in a different setting in [2]. We
provide a brief recap here.

We will split the streaming text into contiguous substrings which are encoded
as triplets, (i′, j, �), each representing an �-length text substring T [i′ . . . (i′+�−1)]
that equals a pattern substring P [j . . . (j + � − 1)]. We refer to such a triple as
p-region and a disjoint ordered sequence of triplets that encode the entire text
as a p-representation . For example, with P = babbac and T = abcaababba, a
p-representation of T is

(0, 1, 2), (2, 5, 1), (3, 4, 1), (4, 1, 2), (6, 1, 4).

The p-representation is not necessarily unique. We say that it is of minimal
length if it contains a minimal number of triplets.

In [8] it was shown that we can extend a minimal length p-representation of
T [0 . . . i− 1] to a minimal length p-representation of T [0 . . . i] in O(1) time when

102 R. Clifford et al.

symbol T [i] arrives. More precisely, the extended p-representation is obtained
greedily by updating the last p-region if possible, otherwise adding a new p-region
(i, j, 1), where j is some position such that P [j] = T [i]. To accomplish this task
in O(1) time, a suffix tree of the pattern can be used [8]. For our purposes in
terms of pattern space and text space, we may construct the suffix tree during
the pattern preprocessing phase and store it together with the pattern itself in
the pattern space. Deciding whether to update the last p-region or add a new
one when a new symbol T [i] arrives can then be done in constant text space.
For simplicity of explanation we will assume that all symbols in T occur at least
once in P . For further details of the method and how to handle symbols which
occur in the text but not the pattern, we refer the interested reader to [8].

As we will see shortly, a benefit of using a minimal length p-representation of
T is that we can answer longest common extension (LCE) queries between the
pattern and T [0 . . . i] in O(1) time. We write LCE(i′, j) to denote the length of
the longest prefix of P [j . . .m−1] that is also a prefix of T [i′ . . . i]. The following
lemma was stated as Lemma 1 in [8].

Lemma 4. For a minimal length p-representation of T , at most three p-regions
overlap T [i′ . . . (i′+�−1)], where � is the length returned by any LCE(i′, j) query.

It is well known that we can precompute a static data structure using O(m)
space, denoted LCEp, to support LCE queries between the pattern and itself
in O(1) time. This is traditionally achieved with a suffix tree on which lowest
common ancestor queries are answered in constant time. It now follows from
Lemma 4 that any LCE(i′, j) query on the streaming text can be answered in
O(1) time by performing at most three pattern-pattern LCE queries in the LCEp

structure.

5 k-Mismatch in Multiple Streams

We described in Section 4 how a p-representation of the text can be maintained
in O(1) time and O(m) pattern space. The actual p-representation of T [0 . . . i]
will be stored in the text space of size O(i). Instead of storing every p-region, we
could store only the most recent p-regions of the text. This representation will of
course only give us access to some suffix of the text seen so far. Our algorithm for
the k-mismatch problem, which we present in the read-only preprocessing model
in the first instance, will store the most recent 4(k+1) p-regions, requiring O(k)
text space.

In order to determine whether T [(i −m+ 1) . . . i] has at most k mismatches
with P when T [i] arrives, we apply the kangaroo technique [17] consisting of up
to k + 1 LCE queries between the text and the pattern. We will perform these
LCE queries in the reverse of T and P , starting from the rightmost character
T [i]. It should not be too hard to see that the data structures described in
Section 4 can be modified to support reverse LCE queries between the pattern
and the text with no effect on the asymptotic time and space complexities. Also,
Lemma 4 holds for reverse LCE queries. In the next lemma we prove that all

Pattern Matching in Multiple Streams 103

LCE queries performed by the algorithm fall within the 4(k + 1) most recent
p-regions.

Lemma 5. The k-mismatch problem can be solved in the read-only preprocessing
model in O(k) time per character and using O(m) pattern space and O(k) text
space.

Proof. The time complexity follows immediately from the algorithm description,
similarly with the pattern and text space complexities. For the correctness of the
algorithm we need to show that none of the at most k + 1 reverse LCE queries
performed to determine the number of mismatches between T [(i −m + 1) . . . i]
and P fall outside the text substring represented by the 4(k + 1) most recent
p-regions.

From Lemma 4 it follows that one LCE query could span three p-regions. As
part of the kangaroo technique, we skip over a mismatch position between each
LCE query. The mismatch could fall inside a new p-region, hence no more than a
total of 4(k+1) p-regions are involved in a series of up to k+1 LCE queries. ��

From Lemma 5 and the properties of the read-only preprocessing model, we
immediately have the following theorem.

Theorem 6. The k-mismatch problem can be solved in the multiple stream
model with s texts in O(k) time per character and O(m+ ks) space.

6 k-Difference in Multiple Streams

Let D[j, i] denote the minimum of all k-bounded edit distances between the
pattern prefix P [0 . . . j] and all suffixes of T [0 . . . i]. For the k-difference problem
we want to output D[m − 1, i] as soon as T [i] arrives. We have the standard
dynamic programming recurrence,

D[j, i] = min

⎧⎪⎪⎨⎪⎪⎩
D[j, i− 1] + 1 (insert)
D[j − 1, i] + 1 (delete)
D[j − 1, i − 1] + 1− eq(i, j) (mismatch)
k + 1 (k-bounded)

where eq(i, j) = 1 if T [i] = P [j] and 0 otherwise. For the base cases we have
D[j,−1] = min(k + 1, j + 1) and D[−1, i] = 0 for all i, j.

We now present a solution for the k-difference problem, first in the read-only
preprocessing model and then give the final result in the multiple stream model
as required. Whenever a text character T [i] arrives such that i is a multiple of
k, we start a child process which will be responsible for outputting D[m− 1, i′]
for all i′ ∈ {(i + k), . . . , (i + 2k − 1)} as each such T [i′] arrives (Interval 2 in
Fig. 1). Therefore, there is a child process responsible for each and every output.
The k text arrivals between T [i] and the first output for a child process will, as
explained below, give us enough time to prepare for the outputs. Observe that
at most two child processes are running at any one time, hence we only need

104 R. Clifford et al.

k

mP

k

k

k

km−1

T

A
B
C

Interval 2
Interval 1

RA

i

0

m−1
RB

Fig. 1. The dynamic programming table for k-difference

to show that one child process can be implemented in O(k) time per character,
O(m) pattern space and O(k) text space.

The operation of a child process is divided into three stages, each responsible
for computing cells of the blocks denotedA, B and C, respectively, of the dynamic
programming table in Fig. 1. In the first stage, which runs during the k/2-length
text interval starting with the arrival of T [i] (first half of Interval 1 in Fig. 1),
the child process will compute the cells marked RA in Fig. 1, that is the cells
D[(m − 3k − 1) . . . (m − 2), i − 1]. To do this we use the technique of Landau-
Vishkin [19] which is an offline algorithm that we run on blockA. Their algorithm
takes O(k2) time and uses O(m) space by operating along the diagonals of the
dynamic programming table (shaded in dark gray in the figure). Their algorithm
is based around LCE queries of the text, which we can take advantage of in a
similar fashion to the k-mismatch algorithm from the previous section. We will
see below that we only need to store O(k) p-regions of the text to perform the
LCE queries, hence we can run their algorithm in O(k) text space. The running
time of O(k2) is spread evenly over k/2 text arrivals, and therefore takes O(k)
time per character.

Once the first stage is completed we have obtained the values of the cells
marked RA in the figure. Now the second stage takes over. Here we compute the
cells of block B of the dynamic programming table by direct use of the recurrence
above. The work is spread evenly over the next k/2 text arrivals (second half
of Interval 1) by computing two columns of the block B per arrival. The final
column, marked RB in the figure, is therefore done by the arrival of T [i + k].
Thus, the second stage takes O(k) time per character and uses only O(k) space.
We should mention that the values of cells on the boundary of B (excluding RA)
that are used in the recurrence when computing block B are all set to ∞. This
however does not affect the correctness of the computed values of RB.

In the final and third stage we compute all cell values of block C by direct use
of the recurrence, like we did for block B during the second stage. We use the

Pattern Matching in Multiple Streams 105

values of RB and set the other boundary cells to ∞ (which does not affect the
correctness of the final output). For each arriving character during Interval 2 in
Fig. 1, we compute the corresponding column of block C. Therefore the running
time is O(k) per character, and space usage is O(k).

All steps of the child process described above, except for the real-time LCE
processing, require only O(k) space. During the pattern preprocessing phase,
as for the k-mismatch algorithm above, we will construct the required LCEp

structure and the suffix tree of the pattern, and store both these structures as
well as a copy of the pattern, using a total of O(m) pattern space. We modify
the LCE processing to store only the most recent 5(k + 1) p-regions. We will
show that whenever the edit distance is k or less, storing the 5(k + 1) most
recent p-regions is sufficient to support every LCE query. Thus, if any LCE
query stretches beyond these p-regions, the edit distance must be more than k.
The following lemma summarises the result. The result for the multiple stream
model follows immediately from the above observation about the relationship
between the models.

Lemma 7. The k-difference problem can be solved in the read-only preprocessing
model in O(k) time per character using O(m) pattern space and O(k) text space.

Proof (sketch). The time and space complexities follow from inspection of the al-
gorithm description. For correctness, suppose there exists an i′ ∈ {(i+k), . . . , (i+
2k − 1)} such that D[m− 1, i′] � k. Therefore, by the problem definition, there
exists an � such that P can be transformed into T [(i′− �+1) . . . i′] in at most k
insert, delete and mismatch operations. We will first show that this immediately
implies the existence of a p-representation of T [(i′ − � + 1) . . . i′] containing at
most 2k + 1 p-regions.

Consider any transformation of P into P ′ := T [(i′−�+1) . . . i′] which contains
at most k operations. We denote by C the �-length array which states the ‘origin’
of each character in P ′: C[j′] = j if the transformation aligns P ′[j′] with P [j]
and P ′[j′] = P [j], otherwise C[j′] = −∞, which means that C[j′] is the result
of an insert operation or is aligned with a symbol different from P ′[j′].

We can construct a p-representation R of P ′ by a single pass of C as follows. If
C[0] �= −∞, we begin by creating the p-region (0, C[0], 1). Otherwise, we create
the region (0, j′′, 1) where j′′ is any index such that P [j′′] = P ′[0]. For each
j′ > 0, we consider three disjoint cases:

1. C[j′] = C[j′ − 1] + 1. Increase the length of the most recent region by one.
2. C[j′] > C[j′ − 1] + 1. Create a new p-region (j′, C[j′], 1).
3. C[j′] = −∞. Create a new p-region (j′, j′′, 1), where j′′ is any index such

that P ′[j′] = P [j′′].

We now consider the number of p-regions in the p-representation R. An addi-
tional p-region is only created when either case 2 or case 3 occurs in the con-
struction. Case 3 occurs only when C[j′] = −∞. However, by the definition of C,
each −∞ corresponds P [j′] to being a result of a mismatch or insert operation
of which there are at most k in total. Therefore case 3 occurs at most k times.

106 R. Clifford et al.

Case 2 occurs when C[j′] > C[j′ − 1] + 1. By the definition of C, this implies
that either some character P [j′′] with C[j′ − 1] < j′′ < C[j′] was deleted or
C[j′−1] = −∞ which in turn implies that either a mismatch or insert operation
occurred at C[j′− 1]. Hence case 2 can occur at most k times. The total number
of p-regions is therefore upper bounded by 2k + 1 as a mismatch or insert can
cause two new p-regions to be created, one at some C[j′ − 1] and another at
C[j′].

To see that 5(k+1) p-regions are enough, first observe that every LCE query
performed ends in the substring T [(i − m + 1) . . . (i + 2k − 1)]. As P can be
transformed into T [(i′− �+1) . . . i′] in at most k moves, we have that � � m−k.
We also have that i′ ∈ {(i + k), . . . , (i + 2k − 1)} and hence T [(i′ − � + 1) . . . i′]
is a substring of T [(i − m + 1) . . . (i + 2k − 1)]. We can then then convert the
p-representation of T [(i′ − � + 1) . . . i′] into a p-representation of T [(i − m +
1) . . . (i + 2k − 1)] by adding at most 3k p-regions of length one each. Thus,
(2k + 1) + 3k � 5(k + 1) p-regions suffice to support any LCE query. ��

Theorem 8. The k-difference problem can be solved in the multiple stream
model with s texts in O(k) time per character and O(m+ ks) space.

7 Space Lower Bounds

In this section we show that our space upper bounds for k-mismatch and k-
difference are optimal (up to a log factor). We also show that for several other
common distance measures, pattern matching in s streams requires Ω(ms) bits
of space, implying that we may not do better than treating each stream inde-
pendently.

The log sized gap between our lower bounds and upper bounds comes from
the fact that we state the lower bounds in bits whereas the upper bounds are
given in words. A smaller gap could be obtained by considering large alphabets
(see e.g. [7]), however for simplicity we give our lower bounds assuming binary
alphabets.

Our results are based on reductions from two one-way communication com-
plexity problems with known lower bounds. In a one-way communication model,
only Alice can send messages to Bob and then Bob must output the correct
answer. In the Equality problem, Alice has a string X ∈ {0, 1}m and Bob has
a string Y ∈ {0, 1}m. Bob must determine whether X = Y . The communica-
tion complexity is Ω(m) bits [16]. In the Indexing problem, Alice has a string
X ∈ {0, 1}m and Bob has an index n ∈ {0, . . . ,m− 1}. Bob must find X [n]. The
problem is known to have an Ω(m) bit lower bound [16].

Theorem 9. The k-mismatch and k-difference problems in s streams both re-
quire Ω(m+ ks) bits of space.

Proof. First consider the case where m � ks. We reduce from the Equality

problem, where Alice has a string X ∈ {0, 1}m and Bob has a bit string Y ∈
{0, 1}m. Let the pattern P be the string X . Let A be any algorithm that solves

Pattern Matching in Multiple Streams 107

either k-mismatch or k-difference on the pattern P . Alice sends the internal state
of A to Bob, who feeds the algorithm with the string Y in one of the streams.
The output is 0 if and only if X = Y , hence Ω(m) bits of space is required.

Now consider the case where m < ks. We reduce from the Indexing problem,
where Alice has a string X ∈ {0, 1}ks and Bob has an index n ∈ {0, . . . , ks− 1}.
Let A be any algorithm that solves either k-mismatch or k-difference on the
pattern P = {0}m. Alice feeds each of the s streams with k bits from her string
X such that the first stream is fed the first k bits of X , the second stream is fed
the next k bits of X , and so on. Alice then sends the internal state of A to Bob
who now wants to determine X [n] which was fed into stream r = �n/k�. Bob
feeds the stream r with m−k+(n mod k) 0s, which ensures that X [n] is aligned
with the first position of P . Let d be the output by A at this alignment and
observe that for both k-mismatch and k-difference, d equals the number of 1s in
the last m symbols of the stream r. Bob now feeds another 0 into the stream r.
Let d′ be the new output by A. It follows that X [n] = 0 if and only if d = d′,
hence Ω(ks) bits of space is required. The space lower bound of Ω(m+ ks) bits
is obtained by combining the two cases. ��
Theorem 10. Exact matching in s streams requires Ω(m+ s) bits of space.

Proof. Following the proof of Theorem 9, we reduce from the Equality problem
ifm > s, otherwise we reduce from Indexing where Alice feeds each stream with
either one 0 or one 1. By feeding m− 1 0s into any stream, Bob can determine
any of the s bits. ��
We now turn our attention to the L1, L2 and Hamming distance problems. For
any constant p, the Lp distance between two equal length strings X and Y is

given by dp(X,Y) =
(∑

j |X [j]− Y [j]|p
)1/p

.

Theorem 11. Computing the L1, L2 and Hamming distances, as well as the
cross-correlation/convolution in s streams, requires Ω(ms) bits of space.

Proof. We reduce from the Indexing problem, where Alice has a string X ∈
{0, 1}ms

and Bob has an index n ∈ {0, . . . ,ms−1}. Let A be any algorithm that
solves either of the problems in the statement of the lemma on the pattern P =
{1}m, where instead of computing the L2 distance, the square of the distance
is computed. Observe that a lower bound for computing the square of the L2

distance is also a lower bound for the L2 distance. Each of the problems is now
local in the sense that the output is the sum of m position-wise values. Following
the idea in the proof of Theorem 9, Alice feeds each stream with m bits of her
string X before sending the internal state to Bob. In order to determine X [n],
Bob feeds the appropriate stream r with enough 1s to align X [n] with the first
position of P . By feeding another 1 into the stream r and comparing the two
outputs, Bob can determine the value of X [n]. ��

8 Open Problems

The space complexity of the results we give are tight to within a log factor when
no randomisation is permitted. Further, the time complexity of both the exact

108 R. Clifford et al.

matching and k-difference algorithms we give match that of the fastest known
offline algorithms per arriving symbol. However, for k-mismatch there remains
a gap of approximately O(

√
k) between the fastest single stream algorithm [8]

and the time complexity we give for multiple streams. There is an even more
pronounced gap for the special case of constant sized alphabets when the bound
k is relatively large. Here the k-mismatch problem can be solved in a single
stream in O(log2 m) time per symbol and O(m) space [5], independent of the
value of k. It would be interesting to consider whether there is a O(poly(logm))
time, multiple stream algorithm using only O(m+ ks) space in this case.

We have seen that the read-only preprocessing model is a useful conceptual
tool for developing algorithms in the multiple stream model. In particular we
have used the fact that any efficient algorithm in the former model immediately
gives an efficient algorithm in the latter. It is natural to wonder whether these
models are in fact equivalent. We conjecture that for any O(gp + sgt) space
algorithm for a pattern matching problem in the multiple stream model (where
gp, gt do not depend on s), there is an O(gp) pattern space, O(gt) text space
algorithm in the read-only preprocessing model with the same time complexity
per character.

If we are concerned with randomised computation where each output has to
be correct with some (arbitrarily large) constant probability, we can derive new
space lower bounds for all three problems with some modification. In particular,
k-mismatch and k-difference will require at least Ω(logm+ks) bits of space and
exact matching Ω(logm+ s) bits of space. These lower bounds follow from the
randomised counterpart of Equality and Indexing. The randomised one-way
communication complexity with private randomness for Equality is Θ(logm)
bits [23], and for Indexing it remains Ω(m) bits (see [13] for an elementary
proof). It is not yet clear whether these randomised lower bounds for the multiple
streams problem can be met by matching algorithmic upper bounds.

References

1. Abrahamson, K.: Generalized string matching. SIAM Journal on Computing 16(6),
1039–1051 (1987)

2. Amir, A., Landau, G.M., Lewenstein, M., Sokol, D.: Dynamic text and static pat-
tern matching. ACM Transactions on Algorithms (TALG) 3(2) (2007)

3. Amir, A., Lewenstein, M., Porat, E.: Faster algorithms for string matching with k
mismatches. Journal of Algorithms 50(2), 257–275 (2004)

4. Breslauer, D., Galil, Z.: Real-Time Streaming String-Matching. In: Giancarlo, R.,
Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 162–172. Springer, Heidelberg
(2011)

5. Clifford, R., Efremenko, K., Porat, B., Porat, E.: A Black Box for Online Approxi-
mate Pattern Matching. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS,
vol. 5029, pp. 143–151. Springer, Heidelberg (2008)

6. Clifford, R., Efremenko, K., Porat, B., Porat, E.: A black box for online approxi-
mate pattern matching. Information and Computation 209(4), 731–736 (2011)

7. Clifford, R., Jalsenius, M., Porat, E., Sach, B.: Space Lower Bounds for Online Pat-
tern Matching. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661,
pp. 184–196. Springer, Heidelberg (2011)

Pattern Matching in Multiple Streams 109

8. Clifford, R., Sach, B.: Pseudo-realtime Pattern Matching: Closing the Gap. In:
Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 101–111. Springer,
Heidelberg (2010)

9. Clifford, R., Sach, B.: Pattern matching in pseudo real-time. Journal of Discrete
Algorithms 9(1), 67–81 (2011)

10. Ergun, F., Jowhari, H., Sağlam, M.: Periodicity in Streams. In: Serna, M., Shaltiel,
R., Jansen, K., Rolim, J. (eds.) APPROX and RANDOM 2010, LNCS, vol. 6302,
pp. 545–559. Springer, Heidelberg (2010)

11. Galil, Z.: String matching in real time. Journal of the ACM 28(1), 134–149 (1981)
12. Indyk, P.: Faster algorithms for string matching problems: Matching the convolu-

tion bound. In: FOCS 1998: Proc. 39th Annual Symp. Foundations of Computer
Science, pp. 166–173 (1998)

13. Jayram, T.S., Kumar, R., Sivakumar, D.: The one-way communication complexity
of hamming distance. Theory of Computing 4(1), 129–135 (2008)

14. Karloff, H.: Fast algorithms for approximately counting mismatches. Information
Processing Letters 48(2), 53–60 (1993)

15. Kosaraju, S.R.: Efficient string matching (1987) (manuscript)
16. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University Press

(1997)
17. Landau, G.M., Vishkin, U.: Efficient string matching in the presence of errors.

In: FOCS 1985: Proc. 26th Annual Symp. Foundations of Computer Science, pp.
126–136 (1985)

18. Landau, G.M., Vishkin, U.: Efficient string matching with k mismatches. Theoret-
ical Computer Science 43, 239–249 (1986)

19. Landau, G.M., Vishkin, U.: Fast string matching with k differences. Journal of
Computer System Sciences 37(1), 63–78 (1988)

20. Porat, B., Porat, E.: Exact and approximate pattern matching in the streaming
model. In: FOCS 2009: Proc. 50th Annual Symp. Foundations of Computer Science,
pp. 315–323 (2009)

21. Ružić, M.: Constructing Efficient Dictionaries in Close to Sorting Time. In: Aceto,
L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 84–95. Springer, Heidelberg
(2008)

22. Simon, I.: String matching algorithms and automata. In: First American Workshop
on String Processing, pp. 151–157 (1993)

23. Yao, A.C.-C.: Some complexity questions related to distributive computing. In:
STOC 1979: Proc. 11th Annual ACM Symp. Theory of Computing, pp. 209–213
(1979)

An Efficient Linear Pseudo-minimization

Algorithm for Aho-Corasick Automata�

Omar AitMous1, Frédérique Bassino1, and Cyril Nicaud2

1 LIPN, UMR 7030, Université Paris 13 - CNRS, 93430 Villetaneuse, France
2 LIGM, UMR 8049, Université Paris-Est - CNRS, 77454 Marne-la-Vallée, France

{aitmous,bassino}@lipn.univ-paris13.fr, nicaud@univ-mlv.fr

Abstract. A classical construction of Aho and Corasick solves the pat-
tern matching problem for a finite set of wordsX in linear time, where the
size of the input X is the sum of the lengths of its elements. It produces
an automaton that recognizes A∗X, where A is a finite alphabet, but
which is generally not minimal. As an alternative to classical minimiza-
tion algorithms, which yields a O(n log n) solution to the problem, we
propose a linear pseudo-minimization algorithm specific to Aho-Corasick
automata, which produces an automaton whose size is between the size
of the input automaton and the one of its associated minimal automaton.
Moreover this algorithm generically computes the minimal automaton:
for a large variety of natural distributions the probability that the output
is the minimal automaton of A∗X tends to one as the size of X tends to
infinity.

1 Introduction

Pattern matching issues arise naturally in various fields of computer science, mo-
tivating an ever renewed search for efficient algorithms that answer the following
question: given a set of words X , the set of patterns, what is the best way to
compute the number of occurrences of words of X in a large text?

The literature mostly focuses on finite sets of patterns, and a first efficient
solution to the pattern matching problem was given by Aho and Corasick [1]:
they described an elegant construction for an automaton that recognizes A∗X ,
where A is a finite alphabet, which can thereafter be used to sequentially parse
the text. The algorithm proceeds in two steps. The prefix tree of X is built
first (we call its transitions tree transitions), and is then cleverly completed with
failure transitions, using properties on borders of words. Defining the size of X
as the sum of the lengths of its words, their solution runs in linear time. This
algorithm is still widely used as a primitive brick in many situations (see for
instance Baker [3] and Bird [5] algorithms for 2D pattern recognition).

Aho-Corasick automaton is always deterministic and complete, but unfortu-
nately not necessarily minimal, as depicted on Figure 1. However, unless for

� This work was completed with the support of the ANR project MAGNUM number
2010-BLAN-0204.

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 110–123, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Efficient Linear Pseudo-minimization Algorithm 111

specific patterns, Aho-Corasick automaton and the corresponding minimal one
seem to differ only in a few number of states. This asks for some simpler pro-
cess than the usual minimization algorithms [8], whose worst-case complexity
is at least O(n logn). It is however still not known whether Aho-Corasick au-
tomata can be minimized in linear time. The purpose of this article is to give
a natural probabilistic framework on sets of patterns, under which we explain
the observations above. Based on this study, we also propose a linear algorithm
which generically1 computes the minimal automaton. When this algorithm fails
to output the minimal automaton, it still produces an automaton that recognizes
A∗X and whose size is intermediate between the size of Aho-Corasick automaton
and the one of the corresponding minimal automaton. For this reason, we call it
a pseudo-minimization2 algorithm.

Contrary to what we stated, the algorithm proposed in [2] does not always
build the minimal automaton; we can nonetheless prove that it generically does.
The present article can be seen as a natural continuation of this framework
of analysis, which results in a much simpler algorithm, which works for more
general probabilistic models. Especially, the number of words do not need to be
fixed anymore in our new settings.

ε

a

b

aa

ba

a

b

a

a

b

b
b

a

ab
1 2 3

a, b a

b

b a

Fig. 1. On the left, an Aho-Corasick automaton that is not minimal, for X = {aa, ba},
and on the right, the corresponding minimal automaton with three states

Our probabilistic framework can be described informally as follows. A set of
patterns is generically of size O(n), n being the asymptotic parameter3, with
patterns of length at least Ω(log n) and with low correlation. Low correlation
means that a factor of length � in a pattern of X has probability exponentially
small in � to appear elsewhere in X . These conditions are natural, since they
are satisfied by classical probabilistic models on sets of words, as we shall see
in Section 3.2. In particular they hold for the uniform distribution on sets of m
words whose sum of lengths is n, with m = O(nγ), for 0 ≤ γ < 1

2 .

1 A property holds “generically” when the probability it holds tends to one as the size
tends to infinity.

2 The notion of pseudo-minimal automaton we define in this article is not to be con-
fused with the one introduced by Dominique Revuz in [11] for acyclic automata.

3 It is sometime convenient to allow a size O(n) instead of strictly equal to n.

112 O. AitMous, F. Bassino, and C. Nicaud

Recall that most minimization algorithms proceed by merging Nerode-equiva-
lent states, which leads to the minimal automaton. We first prove that under
our probabilistic models, the Aho-Corasick automata generically have the two
following properties:

• The failure transitions all end at states “near the root” (at distance at most
O(log n) from the initial state).

• Any state that is near the root is not Nerode-equivalent to another state.

This leads to consider another equivalence relation on states defined by: p and
q are ≡-equivalent when p and q are either both final or both not final, and for
any letter a, either both p

a−→ p′ and q
a−→ q′ are failure transitions and p′ = q′,

or both transitions are tree transitions and p′ ≡ q′. Notice that it differs from
Nerode-equivalence in the fact that failure transitions must end at the same state
instead of at equivalent states. Therefore merging ≡-equivalent states results in
a partially minimized automaton. However, generically, the two properties above
ensure that≡-equivalence and Nerode-equivalence are equal, and that the partial
minimization is in fact a full minimization. Moreover, ≡-equivalence is easier to
calculate than Nerode-equivalence, and we provide an algorithm that computes
it in linear time, by adapting Revuz famous algorithm for minimizing acyclic
automata [12].

The article is organized as follows. After recalling basic facts about words and
automata in Section 2, we formally define and illustrate the considered prob-
abilistic models in Section 3. In this section are also stated results on typical
properties on associated Aho-Corasick automata. Our algorithms and the anal-
ysis of their complexities are then given in Section 4, along with experimental
results.

2 Definitions and Notations

In the sequel, we always work on a fixed finite alphabet A with k ≥ 2 letters.

Words. A word y is a factor of a word x if there exist two words u and v such
that x = u·y·v. The word y is a prefix (resp. a suffix) of x if u = ε (resp. v = ε),
ε being the empty word. We say that y is a proper prefix (resp. suffix) of x if y
is a prefix (resp. suffix) such that y �= x. Given a set of words X , we denote by
Pref(X) the set of all prefixes of words in X and by ‖X‖ its size, defined as the
sum of the lengths of its words. If u is a word of length n, its letters have indices
in {0, . . . , n− 1} and we denote by u[i, j], for 0 ≤ i ≤ j ≤ n− 1, the factor of u
starting at index i and ending at index j.

Deterministic Automata. A deterministic and complete finite automaton (or
just automaton for short since we do not consider other kinds of automata in
this article) over a finite alphabet A is a quintuple A = (A,Q, q0, F, δ), where
Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final
states and δ, the transition function, is a complete mapping from Q×A to Q. The
transition function δ is extended inductively to Q×A∗ by setting, for any p ∈ Q,

An Efficient Linear Pseudo-minimization Algorithm 113

δ(p, ε) = p and for any word u ∈ A∗ and any letter a ∈ A, δ(p, ua) = δ(δ(p, u), a).
A word u is recognized by the automaton when δ(q0, u) ∈ F . The size of an
automaton is its number of states. A classical result states that to each regular
language L (a set of the words recognized by an automaton) one can associate its
smallest automaton which recognizes it. This automaton is unique and is called
the minimal automaton of L. See [9] for more results about automata.

Aho-Corasick Algorithm. Let X = {u1, u2, . . . , um} be a set of m non-
empty words, whose sum of lengths ‖X‖ =

∑m
i=1 |ui| is n. Aho-Corasick al-

gorithm [1] builds an automaton that recognizes A∗X but which is not always
minimal (see Figure 1). It has linear time and space complexities and proceeds
in two main steps: The first step consists in constructing a tree-automaton
AX = (A, Pref(X), ε,X, δ), whose states are labelled by the prefixes of the
words of X . The initial state is the empty word ε and the set of final states is
made of the words of X . The transition function δ is defined by δ(u, a) = ua
for any word u and any letter a such that ua ∈ Pref(X). Transitions of this
kind are referred to as tree transitions. The second step consists in completing
the transition function of the automaton AX , and possibly in adding some final
states, to obtain the automaton ACX : For any state u and any letter a, δ(u, a)
is the longest suffix of ua that is also in Pref(X), and the set of final states is
Pref(X) ∩ A∗X ; this can be done in linear time since the tree-automaton has
already been calculated (more details on the complexity of the construction can
be found in [6], proposition 2.9). The new transitions, which are not tree transi-
tions, are called failure transitions. An example of Aho-Corasick’s construction
is depicted on Figure 2. For more information on Aho-Corasick automata and
related algorithms, the reader is referred to [7].

ε

a b

aa ba

aab bab

aaba baba

a b

a a

b b

a a

ε

a b

aa ba

aab bab

aaba baba

a b

a a

b b

a a

b

b

a

a

b
b

b

aa

b

Fig. 2. The two steps construction of the Aho-Corasick automaton ACX recognizing
A∗X, where X = {aa, aaba, baba}. This automaton is not minimal because states aa,
aaba and baba are equivalent, as are states a, aab and bab. Its minimal automaton has
five states.

Note that since states of ACX are words, we can define the size |q| of a state
as its length as a word of A∗.

114 O. AitMous, F. Bassino, and C. Nicaud

3 Probabilistic Models and Generic Properties

In this section we define the probabilistic models that are studied throughout
this article. Then we illustrate them on natural examples and, finally, we exhibit
the two main properties that hold generically for these models, and that will be
used in the algorithmic section (Section 4).

3.1 Probabilistic Models with Low Correlation

A probabilistic model is a sequence (Pn)n≥1 of probability measures on the same
space. A property P is said to be generic for the probabilistic model (Pn)n≥1

when the probability that P is satisfied, tends to 1 when n tends to infinity.
Let Tm denote the set of allm-tuples of non-emptywords and T = ∪m≥1Tm. Un-

der a probabilistic model (Pn)n≥1 over T , a probability such as Pn (ui satisfies P)
is to be understood as Pn (X has at least i words and ui satisfies P) .

Definition 1. A probabilistic model with low correlation is a probabilistic model
(Pn)n≥1 on T such that there exist C > 0, α > 0 and β > 1, and some λ > 8

log β
such that, the three following conditions hold generically:

(1) the tuple is of size at most Cn;
(2) ∀n ≥ 1, ∀i, i′ ≥ 1, ∀j, j′ ≥ 0, ∀� ≥ 0, if (i, j) �= (i′, j′) then

Pn (ui[j, j + �− 1] = ui′ [j
′, j′ + �− 1]) ≤ αβ−	;

(3) every word of the tuple is of length at least λ logn.

The definition above can be roughly described as follows:
• Because of Condition (1), the parameter n is, with high probability, an

upper bound of the magnitude of the size of X : it is the parameter that will be
used to measure the complexity. Note that it is convenient in some situations
to allow this upper bound of O(n) instead of requiring the length to be exactly
equal to n.
• Condition (2) means that generically, for two coordinates i and i′ in the

tuples and two starting positions j and j′ in the words ui and ui′ , the probability
that the � next letters coincide in ui and ui′ is exponentially small in �.
• Condition (3) means that generically, the words in a tuple are not too small

with respect to n. The value 8
log β can be improved, but this is the smallest one

that keeps our proof simple.
Hence, Condition (1) controls the size of the tuple, whereas Conditions (2)

and (3) force the words of the tuple to have low self and mutual correlations.
For instance it generically prevents that a word is a factor of another one.

� Example: Section 3.2 is devoted to examples of such distributions, but let
us mention a first simple one to illustrate the definition. Let A = {a, b} be a
binary alphabet and for any n ≥ 1, let Pn be the uniform distribution on words
of length n, which are seen as 1-tuples of words. Condition (1) and Condition (3)
hold, since the size of the tuple is the length of its only word, which is equal to
n. Condition (2) also holds, since with probability 1 there is only one word: we

An Efficient Linear Pseudo-minimization Algorithm 115

only have to consider the case i = i′ with two different starting positions j < j′

in a random word u of length n. Using classical arguments from combinatorics
on words [10], the number of words such that u[j, j + �− 1] and u[j′, j′ + �− 1]
exist and are equal is at most 2n−	. Hence, Condition (2) holds with α = 1 and
β = 2. This simple probabilistic model is therefore of low correlation.

Lemma 1 below will be useful in the sequel and illustrates our terminology of
“low correlation”. If X = (u1, . . . , uk) is a tuple of words, a word w appears more
than once as a factor in X if there exist i, i′ ≥ 1 and j, j′ ≥ 0, with (i, j) �= (i′, j′)
such that ui[j, j + |w| − 1] and ui′ [j

′, j′ + |w| − 1] both exist and are equal to w.

Lemma 1. Under a probabilistic model with low correlation, generically, no
word of length � ≥ λ

2 logn− 1 appears more than once as a factor in a tuple.

Proof. The statement is similar to the one of Condition (2), except that it is not
for fixed i, i′, j, j′ and �. We bound the probability from above by summing the
probabilities for each choice of the five parameters that satisfies our hypothesis.

Note that since Condition (1), Condition (2) and Condition (3) hold gener-
ically, it is sufficient to assume that they hold to prove the lemma, as we are
looking for a generic result. We refer to such a tuple as a generic tuple in the
rest of the proof.

By Condition (1), the size of a generic tuple is at most Cn, hence each of its
words is also of length at most Cn. And since each word is non-empty, its length
is at least 1, so that the number of components in a generic tuple is at most Cn.
The length of a factor that can appear in a generic tuple is also at most Cn.

Hence, for n ≥ 1, the probability that a word of length � ≥ λ
2 logn−1 appears

more than once as a factor in a generic tuple is bounded from above by (we use
Iverson bracket notation: [[P]] equals to 1 is P is true and 0 if P is false)

Cn∑
	=λ

2 logn−1

Cn∑
i,i′=1

Cn−	−1∑
j,j′=0

Pn (ui[j, j + �− 1] = ui′ [j
′, j′ + �− 1]) [[(i, j) �= (i′, j′)]]

≤ C4n4
Cn∑

	=λ
2 logn−1

αβ−	 ≤ C4n4αβ1− λ
2 logn

∞∑
m=0

β−m

≤ C4αβ2

β − 1
n4−λ

2 log β ,

and this quantity tends to zero when n tends to infinity, since λ
2 log β > 4. ��

3.2 Examples of Probabilistic Models with Low Correlation

� Tuples of at most O(nγ) words of total length n, 0 < γ < 1
2 : In

this model, let (mn)n≥1 be a sequence of positive integers that is O(nγ), for
some γ ∈ (0, 1

2). For any n ≥ 1, we consider the uniform distribution on tuples
X = (u1, . . . , umn) of mn words of total length n. A typical instance of this

116 O. AitMous, F. Bassino, and C. Nicaud

model is when mn is a fixed integer (which is a distribution of tuple studied
in [4]).

Obviously, Condition (1) always holds, with C = 1. Moreover, as mentioned
in [4], such a tuple can be seen as a word u drawn uniformly at random in An

and a composition of n into mn parts also chosen uniformly at random and
independently. For any integers i, i′, j, j′ such that (i, j) �= (i′, j′), if ui[j, j +
� − 1] = ui′ [j

′, j′ + � − 1], this factor appears at two different positions in u
(the concatenation of the ui’s).The probability for a word of length n to contain
a repetition of length � is classically equal to k−	. Therefore Condition (2) is
satisfied for α = 1 and β = k.

In order to prove that Condition (3) also holds generically, we use the following
technical lemma:

Lemma 2. For any γ and δ in (0, 1) such that 2γ + δ < 1, generically, a com-
position of n into mn = O(nγ) parts contains no part of length smaller than
nδ.

Since γ < 1
2 in the model, there exists some δ > 0 such that 2γ + δ < 1, and

thus Lemma 2 applies. This proves Condition (3).

� Tuples of nγ words of length at most n1−γ , 0 < γ < 1: Conditions
(1) and (2) are direct consequences of the definition. Condition (3) is still easily
checked since generically a word of length at most n1−γ is of length greater than
1
2n

1−γ .
For an example of such a distribution, choose γ = 1

2 and consider the set of
tuples containingm = �

√
n� words, each word being chosen uniformly at random

(and independently) in the set A≤m of all words of length at most m.

� More advanced models for words: For the same choices of distributions
on sizes as above, if we enrich the model by generating the words according to
a Bernoulli model (which associates a positive probability to each letter) or by
an ergodic finite Markov chain, it is not difficult to check that the conditions for
having low correlation still hold. It is mainly a consequence of the exponentially
fast forgetfulness property of finite Markov chains (Bernoulli models are simpler
instances of finite Markov chains).

3.3 Generic Properties of the Associated Aho-Corasick Automaton

Lemma 3. Under a probabilistic model with low correlation over the set of tu-
ples X from which the automaton is built, any state q of the Aho-Corasick au-
tomaton such that |q| ≥ λ

2 logn has generically only one incoming transition.

Proof. For any n ≥ 1, let X be a tuple that satisfies all conditions of low corre-
lation and therefore the generic properties of Lemma 1.

If the property of Lemma 3 does not hold, there exists a state q, with |q| ≥
λ
2 logn and a failure transition p

a−→ q ending on q. By construction of the
transition function δ in an Aho-Corasick automaton, q is the longest proper

An Efficient Linear Pseudo-minimization Algorithm 117

suffix of the word p · a that is also a prefix of a word of X . Therefore, q = w · a
for some word w of length at least λ

2 logn− 1, since |w| = |q| − 1. The word w
is a proper suffix of p, and a prefix of q; it is therefore a factor that appears at
least twice in the tuple. By Lemma 1, this event does not happen generically,
concluding the proof. ��

Lemma 4. Under a probabilistic model with low correlation over the set of tu-
ples X from which the automaton is built, generically, every state q of the Aho-
Corasick automaton such that |q| < λ

2 logn is not Nerode-equivalent to another
state of the automaton.

Proof. For any n ≥ 1, let X be a tuple that satisfies all conditions of low corre-
lation and therefore the generic properties of Lemma 1 and Lemma 3. Let ACX
be the Aho-Corasick automaton associated with X and q be a state such that
|q| < λ

2 logn.
We claim that q is not Nerode-equivalent to another state of ACX . By con-

tradiction, assume that there exists a state p �= q that is Nerode-equivalent to
q, with |p| ≥ |q| (if |p| < |q| then |p| < λ

2 logn and one can switch the roles of
p and q). Let u be a word such that there exists a path from p to a final state
labelled by u that uses tree transitions only.

Consider the path labelled by u starting from q; since p and q are equivalent,
this path ends at a final state f . Hence, by Condition (3) and since |q| < λ

2 logn,

we have |u| ≥ λ
2 logn. This path is made of tree and failure transitions, and there

is at least one failure transition by Lemma 1, otherwise X would contain two
occurrences of u, but |u| ≥ λ

2 logn. Let r be the last state reached by a failure
transition along this path, and let w be the suffix of u = vw that labels this path
from r to f . By construction, the path starting from r and labelled by w uses
tree transitions only. Hence w labels paths using tree transitions only, from both
states r and p · v. These two states are different: since the path starting at state
q and labelled by v uses at least one failure transition, |r| = |δ(q, v)| < |q| + |v|
and since |q| ≤ |p|, this implies that |r| < |p · v|.

At this point, we have proved that w appears at least twice as a factor in X .
It only remains to prove that w is long enough to make this situation impossible
in our settings: since X satisfies the property of Lemma 3 and r is the target of a
failure transition, it has at least two incoming transitions and then |r| < λ

2 logn.
Moreover, since r ·w ∈ X and X satisfies Condition (3), then |r|+ |w| ≥ λ logn.
Hence |w| ≥ λ

2 logn, yielding the contradiction for a generic X , by Lemma 1. ��

4 A Pseudo-minimization Algorithm for Aho-Corasick
Automata

In this section we present a simple algorithm that, under a low correlation proba-
bilistic model for the inputs, generically minimizes the Aho-Corasick automaton
in linear time and space.

118 O. AitMous, F. Bassino, and C. Nicaud

4.1 Algorithm

The pseudo-minimization algorithm4 we propose is an adaptation of Revuz al-
gorithm [12] that minimizes acyclic deterministic automata.

Let us first introduce the notion of ≡-equivalence on states of an automaton.
Two states p and q are ≡-equivalent when both p and q are terminal or both non-
terminal, and for every letter a, either both p

a−→ and q
a−→ are tree transitions

and δ(p, a) is ≡-equivalent to δ(q, a), or both p
a−→ and q

a−→ are failure transitions
and δ(p, a) = δ(q, a). Therefore if the two transitions are not of the same nature,
the two states are not ≡-equivalent. Note that if two states are ≡-equivalent they
have to be at the same distance from terminal states. We use this observation
to define the distance function d on the states of the Aho-Corasick automaton.
For any state p, d(p) is the maximal distance from p to a leaf in the prefix tree:
d(p) = max{|w| | p · w ∈ X}. Denote also by Di the set of states at distance
i; the distance function defines a partition D = (Di)0≤i≤d(ε) of the set of states
Q. The distance function relies on tree transitions only and can be computed
bottom-up by a depth-first traversal of the tree.

If we have already computed ≡-equivalent states for all the classes Dj with
j < i, we can easily compute the ≡-equivalent states in the class Di, using the
definition. This leads to a simple pseudo-minimization method (see Algorithm 1
below).

Algorithm 1. Pseudo-Minimization Method

Inputs : Aho-Corasick Automaton ACX

Outputs: Pseudo-Minimal Automaton
1 compute D;
2 for i = 0 to d(ε) do
3 detect ≡-equivalent states at distance i;
4 merge them;

More precisely, to detect ≡-equivalent states at distance i, we proceed as
follows. Let p and q be two states with d(p) = d(q) = i. Assuming that for
j < i, ≡-equivalent states in classes Dj have already been merged, p and q are
≡-equivalent if and only if both p and q are terminal or non-terminal, and for
every a ∈ A, δ(p, a) = δ(q, a). The last item differs from the definition because
of the dynamic merging of ≡-equivalent states in the process of the method.

Algorithm 2 explains how ≡-equivalent states at distance i are detected. Given
the list of the states of Di, it first splits the list in two: terminal and non-
terminal states. Then these groups are, in turn, split according to each letter of
the alphabet, by using a kind of bucket sort algorithm on outgoing transitions,
but in which we are only interested in identifying states having identical outgoing
transitions (not actually sorting them). In order to test only non-empty lists in

4 An implementation of the algorithm can be found in http://lipn.fr/~aitmous/

http://lipn.fr/~aitmous/

An Efficient Linear Pseudo-minimization Algorithm 119

Algorithm 2. State-Distinguishing Algorithm

Inputs : Set of states S
Outputs: A set of lists of pseudo-equivalent states

1 a ← first letter of A;
2 split S into two lists L1 (of terminal states) and L2 (of non-terminal states);
3 R1 ← {L1, L2};
4 R2 ← ∅;
5 while R1 	= ∅ and a 	= null do
6 R2 ← R1;
7 R1 ← ∅;
8 while R2 	= ∅ do
9 L ← first list of R2;

10 create an array T of |Q| empty lists;
11 for all states p ∈ L do
12 q ← δ(p, a);
13 add p to the list T [q];

14 for all non-empty lists � ∈ T do
15 if |�| ≥ 2 then
16 add � to R1;

17 a ← next letter of A; // returns null if there is no more letter in A

18 return R1;

line 14, we can use a list NE to keep track of non-empty lists. Whenever a state
p is inserted in an empty list T [q] in line 13, q is inserted in the list NE.

Figure 3 illustrates the pseudo-minimization of the automaton given Figure 2,
showing an example where the pseudo-minimization algorithm fails to output the
minimal automaton.

Lemma 5. With the states of Di, and all equivalent states at distance less than
i already merged, Algorithm 2 computes the classes of ≡-equivalent states of Di.

Proof. The proof of the proposition uses the same arguments as in [12]. We
prove the validity of the algorithm by induction on the number of executions of
the outer loop (lines 5-16). After c executions, R1 contains only lists of states
that are either all terminal or all non-terminal, and have the same outgoing
transitions labelled by the c first letters of the alphabet.

In lines 8-16, the list of states L is split by the next outgoing transitions. Thus
the lists added to R1 only contain states with the same c + 1 first transitions.
Since the inner loop is executed on every list in R2, the property holds.

At the end of the outer-loop, if there are ≡-equivalent states, they are in the
same lists of R1. ��

Theorem 1. Under a probabilistic model with low correlation on the inputs of
the algorithm, the pseudo-minimization algorithm generically returns the mini-
mal automaton of A∗X.

120 O. AitMous, F. Bassino, and C. Nicaud

ε

a b

aa ba

aab bab

aaba baba

a b

a a

b b

a a

b

b

a

a

b
b

b

aa

b

0

1 2

3 4

5

6

a b

a a

b b

a

b
b

a
a

b

a

b

0

1 2

3 4

a b

a ab
b

b
b

a
a

Fig. 3. The pseudo-minimization of the Aho-Corasick automaton recognizing A∗X,
where X = {aa, aaba, baba} (left), produces the automaton (center). The automaton
is not minimal since states 3 and 6 are equivalent, as are states 1 and 5. On the right
is depicted the minimal automaton.

Proof. Let A be an Aho-Corasick automaton satisfying the statements of Lem-
mas 3 and 4. Since these properties are generic, it is sufficient to prove that such
an automaton is minimized by the pseudo-minimization algorithm.

Let p and q be two Nerode-equivalent states of A such that p �= q. For any
letter a ∈ A, if δ(p, a) is a failure transition, then by Lemma 3, δ(p, a) ends at
some state r with |r| < λ

2 logn. And by Lemma 4 the state r is not Nerode-
equivalent to another state. Hence δ(q, a) = r too. If δ(p, a) and δ(q, a) are both
tree transitions and p and q are in Di, then p · a and q · a are in Dj for some
j < i, and have already been merged if they were Nerode-equivalent. Hence
δ(p, a) = δ(q, a) in this case too. ��

4.2 Complexity

Lemma 6. Algorithm 2 distinguishes r states in space and time O(|Q|+ r).

Proof. Lines 14-16 take at most the same number of steps as the loop in lines 11-
13 (in the worst case, each state of L has a different outgoing transition labeled
by a). Thus the time complexity is bounded by the number of times line 11 is
executed and that is kr in the worst case. The additional time and space is used
for the array T of size |Q|. ��

The space complexity of Algorithm 2 is linear in |Q| since, for any letter a, lists
of states are split according to their outgoing transition labelled by a, which can
reach any state of ACX . Hence, the array T is of size |Q|. This bound can be
lowered by a renumbering of the states, using an idea of Revuz [12]: at step i,
we use a counter to associate numbers to states that are adjacent to elements
of Di. These numbers range from 1 to the number ni of such states. Since the
automaton is deterministic, ni ≤ |Di| × k. We gain in complexity using these
numbers as indices of T instead of elements ofQ. To avoid conflicts when going to

An Efficient Linear Pseudo-minimization Algorithm 121

step i+1, we also store for each state at which step its number has been updated:
at Line 12, when a state q = δ(p, a) is checked for some state p, either q has
already been numbered at this step and we do not change it, or we associate q
with the next value of the counter. In both cases, p is added at the corresponding
index in T .

Theorem 2. Algorithm 1 is linear in time and space.

Proof. The distance function can be computed in linear time using a depth-first
traversal of the tree automaton. Once it is done, the calculation of ≡-equivalent
states is done bottom-up, using a depth-first traversal of the tree automaton too.
Using the renumbering technique mentioned above, we avoid the |Q| multiplier

at each level, which leads to an overall linear complexity, since
∑d(ε)

i=0 |Di| is equal
to the number of states of the Aho-Corasick automaton. ��

Remark: in practice, one can use closed hashing to assign a unique number to
every ≡-equivalent class or state label both viewed as strings. We see this closed
hash table as an injective function from strings to positive integers. Start with
adding the label of every state in the hash table. Then associate to any state q
a string signature σ(q) of the form σ(q) = “T |na|nb|nc”, for A = {a, b, c}, where
T stands for “q is terminal”, and where na is the number assigned by the hash
table to the class of δ(q, a) if it is a tree transition, or the number assigned to
state δ(q, a) if it is a failure transition. Doing this bottom-up, two states are
≡-equivalent if and only if they have the same signature, the number associated
to the signature being obtained by a search in the hash table. This leads to a
linear algorithm in practice.

4.3 Experimental Results

We experimented our algorithm on different types of patterns. First we tested
it on the genome of the mycoplasma genitalium, a parasitic bacterium. The
genome consists of 482 protein encoding genes, for a total length of more than
580,000 base pairs. For this experiment, our algorithm did output the minimal
automaton. There are no small words, as the genes’ length range from around
100 to around 5500. It is therefore in the framework of our theoretical model,
which explains why our algorithm behaves well, as shown in Table 1.

Table 1. For the mycoplasma genitalium genome, the pseudo-minimization algorithm
actually computes the minimal automaton

Aho-Corasick automaton Pseudo-minimal automaton Minimal automaton

528 670 states 526 347 states 526 347 states

122 O. AitMous, F. Bassino, and C. Nicaud

We also tried our algorithm on a French dictionary, which has almost 380,000
words. This result depicted in Table 2 has been anticipated: as a consequence
of having both a lot of small words and high correlations, we are clearly out
of our low correlation model, and the classical minimization is more efficient in
reducing the space representation (though a lot of space is already gained using
our linear algorithm).

Table 2. For the French dictionary, the pseudo-minimization does not compute the
minimal automaton

Aho-Corasick automaton Pseudo-minimal automaton Minimal automaton

722 074 states 113 130 states 27 362 states

We also observed in several situations that though not computing the minimal
automaton, the output of our algorithm differs from the minimal automaton by
only a few states. This is typically the case when taking a set made of all the
words that differ from a random word u by at most one letter.

5 Conclusion

We proposed a pseudo-minimization algorithm for Aho-Corasick automata
and proved that, under natural probabilistic models, it outputs the minimal
automaton with high probability. In order to obtain more general results we
isolated the probabilistic properties that make the analysis work from the study
of models of patterns that satisfy these properties: this way we obtained more
general results, that can be reused for new models, provided one checks that the
low correlation properties hold. Note that there is a trade off between Condi-
tions (2) and (3): one can ask for a polynomial decrease in Condition (2) at the
cost of a more restrictive size requirement in Condition (3). We choose this state-
ment because most common sources for words satisfy the exponential decrease
of Condition (2).

Experiments show that for probabilistic models with low correlation, the algo-
rithm as expected outputs the minimal automaton. An interesting phenomenon
can be observed for patterns that are clearly out of our probabilistic framework.
Although not computing the minimal automaton, the algorithm still computes
an automaton whose number of states is often close to that of the minimal
automaton.

A natural continuation of this work is to quantify that kind of observations
for relaxed probabilistic models.

An Efficient Linear Pseudo-minimization Algorithm 123

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975)

2. AitMous, O., Bassino, F., Nicaud, C.: Building the Minimal Automaton of A∗X in
Linear Time, When X Is of Bounded Cardinality. In: Amir, A., Parida, L. (eds.)
CPM 2010. LNCS, vol. 6129, pp. 275–287. Springer, Heidelberg (2010)

3. Baker, T.P.: A technique for extending rapid exact-match string matching to arrays
of more than one dimension. SIAM J. Comput., 533–541 (1978)

4. Bassino, F., Giambruno, L., Nicaud, C.: The average state complexity of rational
operations on finite languages. Int. J. Found. Comput. Sci. 21(4), 495–516 (2010)

5. Bird, R.S.: Two dimensional pattern matching. Inf. Process. Lett. 6(5), 168–170
(1977)

6. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on strings. Cambridge Uni-
versity Press (2007)

7. Crochemore, M., Rytter, W.: Text Algorithms. Oxford Univ. Press (1994)
8. Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton.
In: Theory of Machines and Computations, pp. 189–196. Academic Press (1971)

9. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

10. Lothaire, M.: Applied Combinatorics on Words. Cambridge University Press (2005)
11. Revuz, D.: Dictionnaires et lexiques: methodes et algorithmes. PhD thesis, Institut

Blaise Pascal (1991)
12. Revuz, D.: Minimisation of acyclic deterministic automata in linear time. Theoret.

Comput. Sci. 92(1), 181–189 (1992)

Efficient Two-Dimensional Pattern Matching

with Scaling and Rotation
and Higher-Order Interpolation

Christian Hundt and Florian Wendland

Institut für Informatik, Universität Rostock, Germany
{christian.hundt,florian.wendland}@uni-rostock.de

Abstract. Two-dimensional pattern matching with scaling and rota-
tion for given pattern P and text T is the computational problem of
finding a subtext in T such that a scaled and rotated transformation of
P most accurately resembles the subtext. Applications of pattern match-
ing are found, for instance, in computer vision, medical imaging, pattern
recognition and watermarking. All known approaches to find a globally
optimal matching depend on the basic nearest-neighbor interpolation.
To use higher-order interpolations, current algorithms apply numeri-
cal techniques that provide only locally optimal solutions. This paper
presents the first algorithm to find an optimal match under a large class
of higher-order interpolation methods including bilinear and bicubic. The
algorithm exploits a discrete characterization of the parameter space for
scalings and rotations to achieve a polynomial time complexity.

Keywords: combinatorial pattern matching, discrete scalings and rota-
tions, higher-order interpolation methods, discrete algorithms.

1 Introduction

For a two-dimensional pattern P and a text T , the objective of two-dimensional
pattern matching, considered in this paper, is to determine a combination f of
scaling and rotation such that the transformed pattern f(P) most closely resem-
bles some subtext T ′ of T . Although the problem originates from the challenge
of recognizing patterns in strings, 2D-patterns and texts are usually interpreted
as digital images.

A digital image consists of color values defined only at integer coordinates,
also called pixels. Applying the transformation f : R2 → R2 to pixels (i, j)T ,
the coordinates (x, y)T = f(i, j) are probably not integral and a priori, they
have no color values. In image processing, this difficulty is usually overcome by
using interpolation methods to assign colors to all real points (x, y)T derived
from the values of neighboring pixels. Certainly, the globally optimal matching
depends crucially on the applied interpolation method which is subject to the
particular application. Although many practical applications prefer higher-order
interpolation methods, many approaches to 2D-pattern matching build on simple
nearest neighbor interpolation.

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 124–137, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Efficient Two-Dimensional Pattern Matching 125

This paper presents the first polynomial time 2D-pattern matching algorithm
to find a globally optimal solution for combinations of scalings and rotations as
well as a large class of higher-order interpolation methods including bilinear and
bicubic interpolation.

Because of space limitations, all proofs have been removed.

Previous Work

Two-dimensional pattern matching has a wide range of applications, as for in-
stance in computer vision [15], medical imaging [6, 18, 19], pattern recognition
and digital watermarking [7].

Especially in medical imaging [19], the problem is solved by interpreting the
pattern P and the text T as continuous mappings p, t : R2 → R and subsequently
minimizing

∫
(x,y)∈R2 ‖p(f(x, y)) − t(x, y)‖ dx dy over all admissible transforma-

tions f . This approach, called image registration, finds locally optimal solutions
but has difficulties to find a global optimum.

Feature based techniques to 2D-pattern matching, proposed for instance in
[1, 16], extract salient features like points, lines and regions from P and T , and
search for a transformation f that moves the geometrical objects of P closest
to a subset of features from T . Feature matching, however, is also a difficult
problem, even for points [13] and simple transformations such as rotation and
translation [14].

Generalizing the search of patterns in strings, research in combinatorial pat-
tern matching [2–5, 10, 11, 17] recently showed how to efficiently solve the 2D-
pattern matching problem of finding all exact copies of a given pattern P and its
transformations f(P) in a text T if only nearest-neighbor interpolation is used.
Their methods can be easily transferred to the case considered in this paper
where the best match is sought.

The common idea is to find a subset f1, f2, . . . of transformations that are
eligible to completely render D(P), the dictionary of all possible transformed
patterns, i. e., D(P) = {f1(P), f2(P), . . .}. Then, 2D-pattern matching is con-
veniently solved by selecting a subtext T ′ that is most similar to one of the
transformed patterns in D(P). Fredriksson and Ukkonen [11] were the first to
apply this idea successfully for rotations and Amir et al. [3] found a similar dis-
cretization for scalings. Finally, Hundt et al. [12] developed a unique approach
for combinations of scaling and rotation.

However, all these techniques build on nearest-neighbor interpolation. Al-
though higher-order methods, such as bilinear or bicubic interpolation, are pre-
ferred in image processing applications, no analogous result has been known
until recently. Wendland [22] demonstrated how to realize the same ideas for
bilinear interpolation and introduced an algorithm to compute the dictionaries
of all bilinear interpolated, scaled patterns in O(mn2 logn) time and all bilinear
interpolated, rotated patterns in O(m3 logm) time.

126 C. Hundt and F. Wendland

Contribution of This Paper

This paper shows for a large class of interpolation methods I how to efficiently
compute the dictionary D(P, I) that contains all I-interpolated transformations
of input pattern P obtained by simultaneously scaling by some factor s ∈ R and
rotating by some angle α ∈ R.

For every I, the dictionary D(P, I) is a finite set, whereas the set of all
(s, α) ∈ R2 is uncountable. Hence, R2 necessarily decomposes into equivalence
classes where every class consists of all pairs (s, α) that transform P into the
same element of D(P, I).

The main result of this paper is a precise description of these equivalence classes
in dependence of P and I. It shows how to efficiently compute the corresponding
partition of R2 in two stages. The first stage subdivides R2 according to a set of
lines that are defined just by the size of P . This works like the approach to 2D-
pattern matching for nearest-neighbor interpolation [12]. The second stage refines
the partition in a non-linear fashion that depends on I and the color values of
P . The difficulties of this step are caused by the non-linear borders between the
equivalence classes and the need to handle irrational numbers. Consequently, find-
ing representative transformations f1, f2, . . . for all equivalence classes to compute
D(P, I) represents the main challenge of this paper.

2 Technical Preliminaries

In this paper, a pattern P is a mapping P : Z2 → N ∪ {⊥} that assign a color
value P 〈i, j〉 to every pixel (i, j)T ∈ Z2. The size of P is denoted by m ∈ N,
which means that P has support z(m) = {(i, j)T | − m ≤ i, j ≤ m}. For all
pixels (i, j)T ∈ z(m), the color value P 〈i, j〉 is a natural number and for all
(i, j)T �∈ z(m) a special color ⊥ marks the exterior of P , i. e., P 〈i, j〉 = ⊥. The
largest color value in P is denoted by c(P) = max{P 〈i, j〉 | (i, j)T ∈ z(m)}. The
same definitions also apply to the text T , which has size n ∈ N and support
z(n) = {(i, j)T | − n ≤ i, j ≤ n}.

Interpolation methods I define color values at real points (x, y)T ∈ R2 in
patterns or texts. This requires arithmetics with colors which work like for nat-
ural numbers, except that operations fed with argument ⊥ have result ⊥. Every
method I is defined as a set of mappings Idi,dj : [0, 1)2 → [0, 1] that describe
how the color values of points (dx, dy)T ∈ [0, 1)2 depend on the surrounding
pixels (di, dj)T ∈ Z2. The I-interpolation of a given pattern P assigns a color
value PI〈x, y〉 to all (x, y)T ∈ R2 as

PI〈x, y〉 =

⎡⎣ ∑
(di,dj)T∈Z2

Idi,dj(x− �x�, y − �y�) · P 〈�x�+ di, �y�+ dj〉

⎤⎦ (1)

where �·� denotes the floor function and [·] denotes rounding. For convenience, let
also �(x, y)T � = (�x�, �y�)T and [(x, y)T] = ([x], [y])T for all vectors (x, y)T ∈ R2.
This notion allows, e. g., to define bilinear interpolation Ib by the mappings

Efficient Two-Dimensional Pattern Matching 127

Ibdi,dj(dx, dy) =
{
(1− |dx− di|) · (1− |dy − dj|) : if di, dj ∈ {0, 1}
0 : otherwise,

but also allows for more complex methods such as bicubic interpolation.
An interpolation method I is called feasible if (1) the mappings Idi,dj are

polynomial functions for all (di, dj)T ∈ Z2, (2) the degree of every polynomial
Idi,dj is at most d for some fixed d ∈ N, (3) every coefficient of any Idi,dj is a
rational number with numerator and denominator encoded by b bits (plus one
sign bit) for some fixed b ∈ N and (4) there is a fixed radius r ∈ N such that
Idi,dj = 0 for every (di, dj)T that fulfill |di| ≥ r or |dj| ≥ r. In that case, I
is called k-feasible for k = max{d, b, r}. Many common higher methods, like
bicubic interpolation, are feasible and, for example, Ib is 2-feasible.

The set of combined scaling and rotation contains exactly all functions

f(x, y) =

(
s cosα s sinα
−s sinα s cosα

)
·
(
x
y

)
(2)

given by some s, α ∈ R, where s �= 0. Applying the transformation f to pattern
P using interpolation method I yields a transformed pattern f(PI) of size 2n.
The color values of all pixels (i, j)T in the pattern f(PI) are defined using the
inverse transformation f−1 which combines scaling by s−1 and rotation by −α.
This paper uses parameters p = s−1 cosα and q = −s−1 sinα to specify the
inverse of f and this is denoted explicitly by f−1

p,q . Then, the color values of all

(i, j)T ∈ z(2n) are defined as f(PI)〈i, j〉 = PI〈x, y〉 with (x, y)T = f−1
p,q (i, j).

According to this, D(P, I) is the dictionary of all transformed patterns f(PI)
with size 2n obtained by any combination f of scaling and rotation.

The distortion between the f -transformed pattern f(PI) and a subtext of T is
given by Δi,j(f, PI , T), a function computed in polynomial time t(m,n), where
(i, j)T selects a subtext of T . A possible choice is

Δi,j(f, PI , T) =
∑

(i′,j′)T∈Z2

|f(PI)〈i′, j′〉 − T 〈i′ + i, j′ + j〉|

where |⊥| = 0 to ignore ⊥-pixels of f(PI) and T .
Finally, 2D-pattern matching with interpolation I and distortion Δ can be

formalized as follows: For a given pattern P of size m and a text T of size n find
a transformed pattern f(PI) in D(P, I) and select a subtext by (i, j)T ∈ z(n)
such that the distortion Δi,j(f, PI , T) is minimum over all possible choices.

3 Algebraic Parameter Space Characterization

Following the definitions of the previous section related to Equation 2, every
inverse transformation f−1 determines one parameter (p, q)T ∈ R2. This is in
fact a one-to-one correspondence between the set of inverse transformations and
the parameters, because every (p, q)T ∈ R2 defines f−1

p,q with scaling
√
p2 + q2

and rotation arccos(p(p2 + q2)−2). The only exception occurs at point p = q = 0
which does not define an injective function f−1

p,q and which is therefore ignored in

128 C. Hundt and F. Wendland

this paper. Consequently, it is meaningful to consider R2 as a parameter space
for the set of inverse transformations.

The central tool developed in this paper is a subdivision of the parameter
space R2 into a polynomial number of subspaces ψ1, . . . , ψN such that any pair
of transformations f1, f2 gives the same transformation f1(PI) = f2(PI) of a
given pattern P if their inverse transformations f−1

p1,q1 and f−1
p2,q2 are represented

by parameters (p1, q1)
T and (p2, q2)

T contained in the same subspace ψk for
some k ∈ {1, . . . , N}. This means that each of the N subspaces represents one
transformed pattern in the dictionary D(P, I).

This algebraic characterization of the parameter space is used in the new al-
gorithm to compute a polynomial number of transformations f1, . . . , fN that are
eligible to render the complete dictionary D(P, I) = {f1(PI), . . . , fN(PI)}. Af-
terwards, the best match is found by the comparison of every pattern in D(P, I)
and every subtext of T .

The parameter space subdivision is defined in two stages. The first one de-
pends only on the size of P . It partitions R2 into convex subspaces φ1, . . . , φM .
The benefit of this is that every subspace φw, w ∈ {1, . . . ,M} is associated with
two mappings Xφw and Yφw such that all parameters (p, q)T ∈ φw fulfill for

all pixels (i, j)T ∈ z(2n) that �f−1
p,q (i, j)� = (Xφw(i, j), Yφw (i, j))

T
. This means

that all transformations represented by φw have a similar behavior. Particularly,
for all pixels (i, j)T ∈ z(2n) there is a unit square given by its lower left point

(Xφw(i, j), Yφw(i, j))
T
such that all inverse transformations f−1

p,q represented by

parameters (p, q)T ∈ φw transform (i, j)T to a point (x, y)T = f−1
p,q (i, j) located

in the given square, i. e.,
⌊
(x, y)T

⌋
= (Xφw(i, j), Yφw(i, j))

T .
The basic idea of the second stage is to use the properties of feasible interpo-

lation methods I and the mappings Xφw and Yφw to refine the primal partition
by subdividing every φw into subsubspaces ψ1, . . . , ψMw . In fact, according to
Equation 1, feasible interpolation of a color value f(PI)〈i, j〉 at the pixel (i, j)T

is defined as a sum of I-polynomials whose coefficients are multiplied by the
color values of pixels around the point (x, y)T = f−1

p,q (i, j). Considering the pa-

rameters (p, q)T of a single subspace φw the advantage of the mappings Xφw

and Yφw is that the approximate location of (x, y)T , which is the unit square at

(Xφw(i, j), Yφw(i, j))
T
, is already known. This fixes the pixels surrounding (x, y)T

and has the effect that f(PI)〈i, j〉 is given by a unique sum of polynomials for
all parameters from φw. Then, the sum’s value depends only on the position of
(x, y)T relative to the square’s base point (Xφw(i, j), Yφw(i, j))

T
. Now, it is possi-

ble to subdivide the subspace φw exactly into the regions, where the interpolated
value f(PI)〈i, j〉 is fixed to a specific color for all pixels (i, j)T ∈ z(2n).

The advantage of this two stage process is that the first one works on a global
level which is independent of I and the actual color values in P . Although, it
does not establish the complete partition, it helps to use the gained structure
and proceed from this level. Subsequently, the refinement of the primal partition,
which is much more technically involved, can be carried out locally and on its
own for every subspace.

Efficient Two-Dimensional Pattern Matching 129

Convex Primal Partition

The partition of the parameter space R2 into the convex spaces φ1, . . . , φM is
connected to the following proposition.

Proposition 1. Let (i, j)T be a pixel in the support z(2n), let (i′, j′)T be an
integer pair and let f−1

p,q be an inverse combination of scaling and rotation repre-

sented by the parameter (p, q)T ∈ R2. The transformed point (x, y)T = f−1
p,q (i, j)

fulfills �x� ≥ i′ if and only if ip+ jq ≥ i′. Analogously, it is true that �y� ≥ j′ if
and only if jp− iq ≥ j′.

According to the proposition, it is possible to algebraically express the set of
parameters (p, q)T which represent inverse transformations f−1

p,q that transform

the pixel (i, j)T to a point (x, y)T = f−1
p,q (i, j) belonging to a unit square with

lower left point (i′, j′)T ∈ Z2. In particular, it is true that (x, y)T belongs to
the given square, i. e.,

⌊
(x, y)T

⌋
= (i′, j′)T , if and only if (1) ip + jq ≥ i′, (2)

ip+ jq < i′ + 1, (3) jp− iq ≥ j′ and (4) jp− iq < j′ + 1. The set of parameters
fulfilling these conditions forms a region in R2 that is bounded by lines.

The boundary lines of such regions can be described as linear polynomials. For
a pixel (i, j)T ∈ z(2n) and any unit square with lower left point (i′, j′)T ∈ Z2,
let

ehi,j,i′(p, q) = ip+ jq − i′ and evi,j,j′ (p, q) = jp− iq − j′.

A line cuts the parameter space into two subspaces and to fix a notation, let

L+(e�i,j,h) = {(p, q)T | e�i,j,h(p, q) ≥ 0} and

L−(e�i,j,h) = {(p, q)T | e�i,j,h(p, q) < 0}

denote these two subspaces of R2 for any � ∈ {h, v}, any (i, j)T ∈ z(2n) and
h ∈ Z.

The partition of the parameter space is obtained by taking into account all
combinations of pixels (i, j)T , all unit squares with some lower left point (i′, j′)T

and the k-feasibility of I. Particularly, for given natural numbers k,m and n, let

L(k,m, n) =
{
ehi,j,i′ | (i, j)T ∈ z(2n), i′ ∈ {−k −m− 1, . . . , k +m+ 1}

}
∪{

evi,j,j′ | (i, j)T ∈ z(2n), j′ ∈ {−k −m− 1, . . . , k +m+ 1}
}

be the set of primal polynomials and based on this notion, it is possible to
describe the primal partition as follows: For given natural numbers k,m and n the
primal partition Φ(k,m, n) of R2 is defined by the set L(k,m, n) = {e1, . . . , eW }
of primal polynomials as

Φ(k,m, n) =

{
φ =

W⋂
w=1

Lsw(ew)

∣∣∣∣∣ ∃s1, . . . , ∃sW ∈ {+,−}, φ �= ∅
}
.

130 C. Hundt and F. Wendland

Theorem 1. Let k,m, n ∈ N. Then, any two parameters (p1, q1)
T and (p2, q2)

T

represent transformations f−1
p1,q1 and f−1

p2,q2 such that for all pixels (i, j)T ∈ z(2n)

and all (i′, j′)T ∈ {−k − m − 1, . . . , k + m + 1}2 it is true: If there exists φ ∈
Φ(k,m, n) such that (p1, q1)

T ∈ φ and (p2, q2)
T ∈ φ then

�f−1
p1,q1(i, j)� = (i′, j′)T ⇐⇒ �f−1

p2,q2(i, j)� = (i′, j′)T .

In the theorem, the coordinates of the lower left point (i′, j′)T of a square range
only in {−k − m − 1, . . . , k + m + 1}2 instead of the complete set Z2. This is
sufficient because the paper considers k-feasible interpolation methods I which
operate on a limited support. Thus, if a transformed point (x, y)T = f−1

p,q (i, j)
falls left or below −k−m− 1 or right or above k+m+1 then it has color value
PI〈x, y〉 = ⊥.

Finally, it is time to define the mappings Xφ, Yφ : z(2n)→ Z for all subspaces
φ ∈ Φ(k,m, n). According to Theorem 1 it is true that for any given subspace
φ there are integer pairs (i′, j′)T for all pixels (i, j)T ∈ z(2n) such that all
parameters (p, q)T ∈ φ represent f−1

p,q which transform (i, j) to the unit square

with lower left at (i′, j′), i. e., �f−1
p,q (i, j)� = (i′, j′)T . Consequently, it is straight

forward to let Xφ(i, j) = i′ and Yφ(i, j) = j′. Particularly, Xφ and Yφ can be
computed by selecting an arbitrary parameter (p, q)T from φ to set

Xφ(i, j) = �x� and Yφ(i, j) = �y�

with (x, y)T = f−1
p,q (i, j) for all (i, j)

T ∈ z(2n).

Non-linear Refinement

The non-linear refinement of the parameter space partition builds on the proper-
ties of the primal partition and depends on the interpolation method I and the
color values of the given pattern P . For every subspace φw ∈ Φ(k,m, n), it de-
fines a subpartition into subsubspaces ψ1, . . . , ψMw such that two combinations
f1, f2 of scaling and rotation fulfill f1(PI) = f2(PI) if the inverse transforma-
tions f−1

p1,q1 and f−1
p2,q2 are represented by parameters (p1, q1)

T , (p2, q2)
T ∈ ψw′

with w′ ∈ {1, . . . ,Mw}.
According to the previous section, it is known that both f−1

p1,q1 and f−1
p2,q2

transform every pixel (i, j) to the same unit square, the one identified by lower

left point (Xφw(i, j), Yφw (i, j))
T
. But this does not yet mean that the color values

f1(PI)〈i, j〉 and f2(PI)〈i, j〉 are equal.
But, looking at the points (x1, y1)

T = f−1
p1,q1(i, j) and (x2, y2)

T = f−1
p2,q2(i, j)

it is true that a k-feasible method I interpolates (x1, y1)
T and (x2, y2)

T quite
similar. In fact, the mappings Xφw and Yφw can be used to define polynomial
functions

eφw,PI
i,j (p, q) =

k∑
dj=−k

k∑
di=−k

Idi,dj(ip+ jq −Xφw(i, j), jp− iq − Yφw(i, j))

· P 〈Xφw(i, j) + di, Yφw(i, j) + dj〉

Efficient Two-Dimensional Pattern Matching 131

which express a relation between the argument parameters (p, q)T ∈ φw and
the color values PI〈x, y〉 interpolated at the coordinates (x, y)T = f−1

p,q (i, j).

Particularly, from f(PI)〈i, j〉 = PI〈x, y〉 follows that eφw,PI
i,j (p, q) describes the

transformed pattern’s color value at pixel (i, j)T in dependence of the argument

parameter (p, q)T , i. e., it is true that f(PI)〈i, j〉 =
[
eφw,PI
i,j (p, q)

]
for the parame-

ter argument (p, q)T that represents the inverse f−1
p,q of f . The point is, that fixing

a pattern P of size m, a natural number n, a k-feasible interpolation method
I, and a subspace φw ∈ Φ(k,m, n) gives unique polynomials eφw,PI

i,j for all pix-

els (i, j)T ∈ z(2n) to describe the corresponding color value in the transformed
pattern. This definiteness allows the subdivision of φw into the subsubspaces
ψ1, . . . , ψMw which is based on the following lemma:

Lemma 1. Let k,m and n be natural numbers, let φ be a subspace in Φ(k,m, n),
let P be a pattern of size m and let I be a k-feasible interpolation method. More-
over, let f be a combination of scaling and rotation with inverse f−1

p,q represented

by a parameter (p, q)T ∈ φ, let (i, j)T be a pixel in the support z(2n) and let
c ∈ {0, . . . , c(P)} be a color value. Then f(PI)〈i, j〉 = PI〈f−1

p,q (i, j)〉 ≥ c if and

only if eφ,PI
i,j (p, q) ≥ c− 0.5.

In compliance with the previous subsection, the subdivision of the parameter
subspace φ is described by polynomials

eφ,PI
i,j,c (p, q) = eφ,PI

i,j (p, q)− c+ 0.5

in the two variables p and q which are collected in the set

C(k,m, n, φ, PI) =
{
eφ,PI
i,j,c

∣∣∣ (i, j)T ∈ z(2n), c ∈ {0, . . . , c(P)}
}

of refinement polynomials for any given natural numbers k,m and n, subspace
φ ∈ Φ(k,m, n), pattern P of size m and k-feasible interpolation method I. In
fact, the subdivision given by a single polynomial eφ,PI

i,j,c is again denoted as

L+(eφ,PI
i,j,c) = {(p, q)T ∈ φ | eφ,PI

i,j,c (p, q) ≥ 0} and

L−(eφ,PI
i,j,c) = {(p, q)T ∈ φ | eφ,PI

i,j,c (p, q) < 0}
and based on this, the complete partition of φ is defined by all refinement poly-
nomials C(k,m, n, φ, PI) = {e1, . . . , eW } according to

Ψ(k,m, n, φ, PI) =

{
ψ = φ ∩

W⋂
w=1

Lsw(ew)

∣∣∣∣∣ ∃s1, . . . , ∃sW ∈ {+,−}, ψ �= ∅
}
.

However, this time the polynomials eφ,PI
i,j,c are not necessarily linear, and thus,

the subspaces in Ψ(k,m, n, φ, PI) are separated by curves.

Corollary 1. Let k,m, n be natural numbers, let P be a pattern of size m, let I
be a k-feasible interpolation method and let φ ∈ Φ(k,m, n). Then, two combina-
tions f1, f2 of scaling and rotations fulfill f1(PI) = f2(PI) if their inverse trans-
formations f−1

p1,q1 and f−1
p2,q2 are represented by parameters (p1, q1)

T , (p2, q2)
T ∈ φ

that belong to the same subsubspace ψ ∈ Ψ(k,m, n, φ, PI).

132 C. Hundt and F. Wendland

Complete Partition

Theorem 1 and Corollary 1 together imply a complete characterization of the
parameter space R2 for combinations of scaling and rotation: For given natural
numbers k,m and n, pattern P of size m and k-feasible interpolation method I
let

Υ (k,m, n, PI) =
⋃

φ∈Φ(k,m,n)

Ψ(k,m, n, φ, PI)

denote the complete partition of R2.

Theorem 2. Let k,m, n be natural numbers, let P be a pattern of size m and let
I be a k-feasible interpolation method. Then, two combinations f1, f2 of scaling
and rotations fulfill f1(PI) = f2(PI) if their inverse transformations f−1

p1,q1 and

f−1
p2,q2 are represented by parameters (p1, q1)

T ∈ R2 and (p2, q2)
T ∈ R2 that

belong to the same subsubspace ψ ∈ Υ (k,m, n, PI).

The theorem leads to the basic idea of computing D(P, I), namely, to retrieve
a set {(p1, q1)T , . . . , (pN , qN)T } of points in parameter space R2, at least one
from every subspace ψ in Υ (k,m, n, PI), and then to find the represented in-
verse transformations {f−1

p1,q1 , . . . , f
−1
pN ,qN } which enable the computation of the

dictionary D(P, I) = {f1(PI), . . . , fN (PI)}.

4 A Polynomial Time Algorithm

The new algorithm works according to the idea introduced in the previous
section to preprocess the dictionary D(P, I) before performing actual pattern
matching. The algorithm starts by computing a data structure to enumerate
Φ(k,m, n) and then samples for every subspace φw ∈ Φ(k,m, n) a set of parame-
ters {(p1, q1)T , . . . , (pMw , qMw)

T } to touch all subsubspaces in Ψ(k,m, n, φ, PI).
This solves the challenge to find a sampling set {(p1, q1)T , . . . , (pN , qN)T } of
parameters in R2 suitable to cover every subsubspace ψ ∈ Υ (k,m, n, PI) by at
least one of them.

Enumerating Φ(k,m, n)

The proposed enumeration technique for the first stage is similar to the pattern
matching algorithm introduced by Hundt et al. [12]. The new algorithm com-
putes an incidence graph to be used as a data structure for Φ(k,m, n). Incidence
graphs are a common notion from computational geometry that are analyzed
for instance by Edelsbrunner [9]. They can be applied to describe the geometric
structure and relationship of the subspaces in Φ(k,m, n). Basically, the inci-
dence graph contains a node for every subspace in Φ(k,m, n) and two nodes are
connected by an edge if the corresponding subspaces are neighbors in R2.

Theorem 3. Let k,m and n be natural numbers. The set Φ(k,m, n) contains
O((k +m)2n4) subspaces. The enumeration of all subspaces φ ∈ Φ(k,m, n) and
the computation of all mappings Xφ and Yφ takes O((k +m)2n6) time.

Efficient Two-Dimensional Pattern Matching 133

The next subsection describes how to hit every subsubspace in Ψ(k,m, n, φ, PI)
by a set of parameter points {(p1, q1)T , (p2, q2)T , . . .} from subspace φ. The pro-
cedure depends on the shape of φ. In fact, Φ(k,m, n) contains subspaces that
are points, line segments or convex polygons in R2. The sampling of φ depends
crucially on its shape and is most complex if φ is a polygon.

Sampling All Subspaces in Φ(k,m, n)

For every enumerated subspace φw ∈ Φ(k,m, n), the algorithm samples a set
{(p1, q1)T , . . . , (pMw , qMw)

T } of parameters from φw such that every subsubspace
ψ ∈ Ψ(k,m, n, φw, PI) is touched by at least one of them.

The sampling approach depends crucially on the shape of φw. Firstly, if φw

consists of a single parameter (p, q)T , then sampling (p, q)T alone is sufficient.
Secondly, if φw is a line segment then it is clearly the case that Ψ(k,m, n, φw, PI)
consists of smaller line subsegments which are bounded by the intersection points
between the line segment φw and the curves that are given by the polynomials
in C(k,m, n, φw, PI). Hence, the sampling set is built of two point types: in the
first place, all intersection points between φw and the curves and secondly, one
point between every pair of consecutive intersections. A numerical difficulty with
this approach is that the intersection points can be irrational.

Finally, the most challenging case occurs if φw is a polygon. The basic idea
of getting the sampling points in this situation works in three steps: Firstly, the
algorithm determines the set of all intersection points between two curves de-
scribed by polynomials in C(k,m, n, φw, PI). Secondly, the algorithm determines
a circle of sufficiently small radius around every found intersection point. In this
way, every subsubspace of φw should be intersected by at least one of these cir-
cles. The sampling set is built of two types of points on these circles where the
first type consists of all intersection points between the circles and the curves
and the second type is obtained from adding one point on every resulting arc.

The first challenge with this approach is to determine a suitable radius for the
circles around the curve intersections. The difficulty in this task is that big circles
may contain entire subsubspaces which are subsequently missed in the sampling
process. Because nearly all subsubspaces have at least two curve intersections
in their boundary, a convenient way to make sure that circles cannot contain
entire subsubspaces, is to define a radius that prevents circles to contain more
than one curve intersection. For that purpose, the following lemma estimates the
minimum distance between two distinct curve intersections:

Lemma 2. For given natural numbers k,m and n, subspace φ ∈ Φ(k,m, n),
pattern P of size m and k-feasible interpolation method I, let (p1, q1)

T be a
point that fulfills e1(p1, q1) = 0 and e2(p1, q1) = 0 for two distinct refinement
polynomials e1, e2 ∈ C(k,m, n, φ, PI) and let (p2, q2)

T be a different point that
fulfills e3(p2, q2) = 0 and e4(p2, q2) = 0 for two distinct refinement polynomials
e3, e4 ∈ C(k,m, n, φ, PI) which may be the same as e1 and e2. Then, it holds that

134 C. Hundt and F. Wendland

|p1 − p2| ≥
2

(216 · c(P)k(k +m+ n))16k4 or

|q1 − q2| ≥
2

(216 · c(P)k(k +m+ n))16k4 .

The argumentation for the correctness of the lemma applies the product between
the q-resultant of e1 and e2 and the q-resultant of e3 and e4, which is a univariate
polynomial that (1) eliminates the variable q, (2) has a root p for every q ∈ R with
e1(p, q) = e2(p, q) = 0 or e3(p, q) = e4(p, q) = 0, (3) has degree at most 4k2, and
(4) contains only integer coefficients with absolute values bounded polynomially
in c(P),m, n and exponentially in k2. Rump [21] gives a lower bound for the
root separation of such a polynomial which provides the first estimation in the
lemma. The second estimation is found analogously using the p-resultants.

Based on the lemma, the radius of all circles has to be chosen less than σ =
2(216 · c(P)k(k +m + n))−16k4

. Although this number is very small, it can be
represented exactly with a logarithmic amount of bits if k is a constant.

Assuming that the approach drafted above enables the sampling of all sub-
subspaces that have curve intersections in their boundary leaves the problem to
hit subsubspaces ψ with an intersection-free boundary. In fact, those subsub-
spaces are caused by curves that are represented by refinement polynomials in
C(k,m, n, φw, PI) which do not intersect any other curves. Now it may happen,
that there is no nearby curve intersection where the corresponding surrounding
circle intersects ψ and consequently, ψ would remain untouched by the sampling.
To overcome this problem, the algorithm computes one additional circle for ev-
ery polynomial in C(k,m, n, φw, PI) that surrounds a point on the represented
curve.

Another difficulty is the exact computation of the curve intersections because
they may have irrational coordinates. According to Lemma 2 the algorithm can
compute every intersection point (p, q)T with an error of at most 0.25σ to obtain
a point (p′, q′)T with a euclidean distance of less than 0.4σ. A circle around
(p′, q′)T that has radius 0.5σ contains (p, q)T and surely no other intersection
point between curves. The following lemma shows that all curve intersection
points can be efficiently computed with sufficient precision:

Lemma 3. For given natural numbers k,m and n, subspace φ ∈ Φ(k,m, n),
pattern P of size m and k-feasible interpolation method I, the computation of a
set P(k,m, n, φ, PI) of parameters such that

1. for every pair of distinct refinement polynomials e1 and e2 in C(k,m, n, φ, PI)
and every parameter (p, q)T ∈ φ that simultaneously fulfills e1(p, q) = 0
and e2(p, q) = 0, there exists a parameter (p′, q′)T ∈ P(k,m, n, φ, PI) with

max{|p− p′|, |q − q′|} ≤ 0.5(216 · c(P)k(k +m+ n))−16k4

,

2. for every polynomial e ∈ C(k,m, n, φ, PI) there exists a parameter (p′, q′)T in

P(k,m, n, φ, PI) with max{|p−p′|, |q−q′|} ≤ 0.5(216·c(P)k(k+m+n))−16k4

for some (p, q)T ∈ φ with e(p, q) = 0 (if such (p, q)T exists),

Efficient Two-Dimensional Pattern Matching 135

3. every (p′, q′)T ∈ P(k,m, n, φ, PI) fulfills |p′|, |q′| ≤ (40 ·c(P)k(k+m+n))2k
2

and
4. |P(k,m, n, φ, PI)| ∈ O(k4n4c(P)2)

takes O(k13mn6c(P)2 log13N) time where N = max{k,m, n, c(P)}.
The basic idea behind the computation of P(k,m, n, φw, PI) is based on the
algorithm of Diochnos et al. [8] that computes a set of disjoint rectangles for
two given refinement polynomials e1 and e2, such that every rectangle contains
exactly one common root of e1 and e2. To establish the upper bounds on the
number of roots and the root spread the lemma applies the q- and p-resultants
of e1 and e2 which are univariate polynomials that (1) describe the common
roots of e1 and e2, (2) have degree 2k2 and (3) contain only integer coefficients
a0, . . . , a2k2 with bounded absolute value. This implies directly that e1 and e2
have at most 4k4 common roots and all O(n2c(P)) refinement polynomials to-
gether provide at most O(k4n4c(P)2) curve intersections. Moreover, Cauchy’s

upper bound
∑2k2

i=0

∣∣ ai

a0

∣∣ on the absolute value of polynomial roots limits the root
spread.

Using the parameters in P(k,m, n, φw, PI), the algorithm is able to determine
the sampling set by following the idea of encircled curve intersections described
above. Thus, it finds the set {f−1

p1,q1 , . . . , f
−1
pMw ,qMw

} of inverse transformations
to obtain f1(PI), . . . , fMw(PI). According to the following lemma all pattern
transformations given by parameters in φw can be computed in polynomial time:

Lemma 4. Let k,m and n be natural numbers, let φ ∈ Φ(k,m, n), let P be a
pattern of size m and let I be a k-feasible interpolation method. The computation
of the set

D(P, I, φ) = {f(PI) | the inverse f−1
p,q of f is represented some (p, q)T ∈ φ}

takes O(k13mn6c(P)3 log13N) time.

The lemma can be shown simply by following the presented ideas which provides
a subroutine to compute D(P, I, φ). Finally, the new algorithm can compute the
dictionary D(P, I) by merging the sets D(P, I, φ) for all φ ∈ Φ(k,m, n). This
is realized by enumerating all subspaces φ ∈ Φ(k,m, n) and then calling the
subroutine to get D(P, I, φ). The enumeration can be implemented by firstly
computing the incidence graph of Φ(k,m, n) using Edelsbrunner’s algorithm [9]
and secondly traversing the graph with, e. g., depth first search. After prepro-
cessing the entire dictionary D(P, I), performing 2D-pattern matching is solved
by moving every pattern in D(P, I) over the text T . The following theorem
specifies the complexity of the whole procedure:

Theorem 4. Let k,m and n be natural numbers, let P be a pattern of size m,
let T be a text of size n and let I be a k-feasible interpolation method. The
computation of the set D(P, I) takes O(k15m3n10c(P)3 log13N) time.

If the colors of P and T originate from a fixed set {0, . . . , c} of colors, if I
is fixed and if Δ is a fixed distortion measure which has a time complexity of

136 C. Hundt and F. Wendland

t(m,n) ∈ O(n2), then 2D-pattern matching with scaling and rotation for given
P and T can be solved in O(m3n15) time.

These results show for the first time that globally optimal solutions for 2D-
pattern matching with higher-order interpolation methods can be found in poly-
nomial time.

5 Conclusions and Future Work

This paper presents the first polynomial time algorithm for 2D-pattern match-
ing with scaling and rotation and higher-order interpolation methods. The an-
nounced time bound represents roughly a doubling of exponents with respect
to the time complexity of the problem for nearest-neighbor interpolation. This
remains true, if the quality of interpolation or the number of colors are increased.
The following table compares the presented results with previous work:

Nearest-Neighbor Bilinear Feasible

Scaling O(mn2) [4] O(mn4 logn) [22] open

Rotation O(m3n2) [10] O(m3n2 logm) [22] open

Scaling and
Rotation

O(m2n6) [12]
O(m3n15)
(this paper)

O(m3n15)
(this paper)

Notice that [4] deals with exact matching, while the rest of the table deals with
best matching. However, the computation of the dictionary dominates the time
complexity in either case which makes the comparison reasonably fair.

The foundation of the proposed algorithm is a novel characterization of the
parameter space for scaling and rotation. Although the time complexity does not
suggest practical applicability of the algorithm, it nevertheless allows to evaluate
current heuristic matching methods.

It remains future work to implement the new algorithm in the pattern match-
ing framework developed by Nevries [20]. This framework is already capable of
pattern matching with nearest-neighbor interpolation and consequently, it could
be extended to compare the complexity and the matching quality for different
interpolation methods.

Acknowledgment. The authors like to thank Maciej Lískiewicz, Ragnar
Nevries and the anonymous reviewers for their helpful suggestions.

References

1. Bovik, A. (ed.): Handbook of Image and Video Processing. Academic Press, San
Diego (2000)

2. Amir, A., Butman, A., Crochemore, M., Landau, G., Schaps, M.: Two-dimensional
pattern matching with rotations. Theor. Comput. Sci. 314(1-2), 173–187 (2004)

Efficient Two-Dimensional Pattern Matching 137

3. Amir, A., Butman, A., Lewenstein, M., Porat, E.: Real two dimensional scaled
matching. Algorithmica 53(3), 314–336 (2009)

4. Amir, A., Chencinski, E.: Faster Two Dimensional Scaled Matching. In: Lewen-
stein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 200–210. Springer,
Heidelberg (2006)

5. Amir, A., Kapah, O., Tsur, D.: Faster Two Dimensional Pattern Matching with
Rotations. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM
2004. LNCS, vol. 3109, pp. 409–419. Springer, Heidelberg (2004)

6. Brown, L.G.: A survey of image registration techniques. ACM Computing Sur-
veys 24(4), 325–376 (1992)

7. Cox, I.J., Bloom, J.A., Miller, M.L.: Digital Watermarking, Principles and Practice.
Morgan Kaufmann, San Francisco (2001)

8. Diochnos, D.I., Emiris, I.Z., Tsigaridas, U.E.P.: On the asymptotic and practical
complexity of solving bivariate systems over the reals. J. Sym. Comput. 44(7),
818–835 (2009)

9. Edelsbrunner, H., O’Rourke, J., Seidel, R.: Constructing arrangements of lines and
hyperplanes with applications. SIAM J. Comput. 15, 341–363 (1986)

10. Fredriksson, K., Navarro, G., Ukkonen, E.: Sequential and indexed two-dimensional
combinatorial template matching allowing rotations. Theor. Comput. Sci. 347(1-2),
239–275 (2005)

11. Fredriksson, K., Ukkonen, E.: A Rotation Invariant Filter for Two-Dimensional
String Matching. In: Farach-Colton, M. (ed.) CPM 1998. LNCS, vol. 1448,
pp. 118–125. Springer, Heidelberg (1998)

12. Hundt, C., Lískiewicz, M., Nevries, R.: A combinatorial geometric approach to two-
dimensional robustly pattern matching with scaling and rotation. Theor. Comput.
Sci. 51(410), 5317–5333 (2009)

13. Indyk, P.: Algorithmic aspects of geometric embeddings. In: Proc. FOCS 2001,
pp. 10–33 (2001)

14. Indyk, P., Motwani, R., Venkatasubramanian, S.: Geometric matching under noise:
Combinatorial bounds and algorithms. In: Proc. SODA 1999, pp. 354–360 (1999)

15. Kasturi, R., Jain, R.C.: Computer Vision: Principles. IEEE Computer Society
Press, Los Alamitos (1991)

16. Kropatsch, W.G., Bischof, H. (eds.): Digital Image Analysis - Selected Techniques
and Applications. Springer, Berlin (2001)

17. Landau, G.M., Vishkin, U.: Pattern matching in a digitized image. Algorith-
mica 12(3/4), 375–408 (1994)

18. Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Medical
Image Analysis 2(1), 1–36 (1998)

19. Modersitzki, J.: Numerical Methods for Image Registration. Oxford University
Press (2004)

20. Nevries, R.: Entwicklung und Analyse eines beschleunigten Image Matching-
Algorithmus für natürliche Bilder, Diplomarbeit, Universität Rostock (2008)

21. Rump, S.M.: Polynomial minimum root separation. Math. Comp. 33(145), 327–336
(1979)

22. Wendland, F.: Exact polynomial algorithms for image matching with bilinear in-
terpolation, Master Thesis, Universität Rostock (2011)

Hardness of Longest Common Subsequence

for Sequences with Bounded Run-Lengths

Guillaume Blin1, Laurent Bulteau2, Minghui Jiang3,
Pedro J. Tejada3, and Stéphane Vialette1

1 Université Paris-Est, LIGM, UMR 8049, France
2 Université de Nantes, LINA, UMR 6241, France

3 Utah State University, Department of Computer Science, USA

Abstract. The longest common subsequence (LCS) problem is a clas-
sic and well-studied problem in computer science with extensive applica-
tions in diverse areas ranging from spelling error corrections to molecular
biology. This paper focuses on LCS for fixed alphabet size and fixed run-
lengths (i.e., maximum number of consecutive occurrences of the same
symbol). We show that LCS is NP-complete even when restricted to (i)
alphabets of size 3 and run-length at most 1, and (ii) alphabets of size
2 and run-length at most 2 (both results are tight). For the latter case,
we show that the problem is approximable within ratio 3/5.

1 Introduction

A subsequence of a string is obtained by deleting zero or more symbols of that
string. Finding the longest string which is equal to a subsequence of two or
more strings is a classic problem known as the longest common subsequence
(LCS) problem. LCS yields extensive applications in diverse areas ranging from
spelling error corrections to molecular biology, and has been extensively studied
during the last 30 years. In particular the case where the number of sequences
is 2 has been studied in detail, and LCS is well-known to be polynomial-time
solvable by dynamic programming in this case (see [10] and references therein).
Furthermore, there exist methods with lower complexity which often depend on
the length of the lcs, the size of the alphabet, or both (the best general reference
is [4]). More generally, the problem is solvable in polynomial-time by dynamic
programming when the number of input sequences is constant. For the general
case of an arbitrary number of input sequences, the problem is NP-complete
[21]. The problem has also been studied in the framework of parameterized
complexity [6,7,24]. LCS for unbounded alphabet size is W[t]-hard for t ≥ 1
when parameterized by the number of input sequences, and W[2]-hard when
parameterized by the length of the sought common subsequence. For a fixed
alphabet size, LCS is W[1]-hard when parameterized by the number of input
sequences but is fixed-parameter tractable when parameterized by the length of
the sought common subsequence.

Run-length encoding is a well-known method for compressing strings, and a
whole line of research is devoted to studying LCS for run-length encoded strings.

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 138–148, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Hardness of LCS for Sequences with Bounded Run-Lengths 139

A string s is run-length encoded if it is described as an ordered sequence of pairs
(σ, i), often denoted σi, each consisting of an alphabet symbol σ and an integer
i. Each pair corresponds to a run in s consisting of i consecutive occurrences
of σ. For example, the string s = bbbbbaaccc can be encoded as b5a2c3. Two
typical applications of run-length encoding can be found in image compression
since many images contain large runs of identically-valued pixels, and in mini-
satellites in biological sequences since these sequences contain a large number
of tandem repeats. In this context, two lines of research are being explored. A
first line of research has tried to improve the running time of the algorithms by
using sparse dynamic programming to compute small subsets of the elements in
the standard lcs table [9,11,20,2]. A second line of research has tried to find al-
gorithms with running times depending only on the number of runs in the input
strings, without computing individual elements of the standard lcs table [23,3].
It is worth mentioning that work has also been done on computing the similarity
of two run-length encoded string in the affine gap penalty model [17], the string
edit distance problem, the pairwise global alignment model, the pairwise local
alignment model in the linear-gap model with arbitrary scoring matrices [14],
and on computing the constrained lcs of run-length encoded strings [1]. Refer
to [19,13,18,22,16] and references therein for more problems on run-length en-
coded strings.

This paper is devoted to studying LCS for the general case of an arbitrary
number of input sequences for a fixed size alphabet with a special focus on fixed
run-lengths. To shorten notations, for positive integers p and q, we let LCS(p, q)
stand for LCS where input sequences are defined over an alphabet of size at
most p, and each input sequence has maximum run-length at most q. Abusing
notation, we shall write q = ∞ to denote unbounded run-lengths.

The paper is organized as follows. In Section 2, we present a new simple
proof for the hardness of LCS for binary alphabets and show that LCS(3, 1)
is NP-complete. Section 3 is devoted to proving hardness of LCS(2, 2), and we
consider in Section 4 approximation issues of this problem.

2 Preliminary Results and NP-Completeness of LCS(3, 1)

For an arbitrary number of sequences, Maier [21] showed that LCS is
NP-complete even for an alphabet of size 2 (in our terms, LCS(2,∞) is
NP-complete). This result serves as a classical example to demonstrate the limit
of dynamic programming approaches to solving LCS for an arbitrary number
of input sequences. However, Maier’s proof is notoriously complicated and we
propose here as a warm-up an alternate and simpler proof (we shall next adapt
this proof to prove the NP-completeness of LCS(3, 1)).

Proposition 1. LCS(2,∞) is NP-complete.

Proof. By reduction from maximum independent set. Let G = (V, E) be a
graph with n vertices and m edges. Write V = {1, 2, . . . , n}. We construct
m + 1 sequences S0, S1, . . . , Sm over alphabet Σ = {0, 1}, each of length at

140 G. Blin et al.

most (n + 1)2 − 2 as follows. The sequence S0 is defined to be (0n1)n. For
each edge ej = {u, v} ∈ E, u < v and 1 ≤ j ≤ m, the sequence Sj is de-
fined to be (0n1)u−1 0n (0n1)v−u 0n (0n1)n−v. For example, in a graph with
7 vertices the edge between vertices 2 and 4 is represented by the sequence
071 07 (071)2 07 (071)3.

We claim that the graph G has an independent set of size k if and only if the
sequences S0, S1, . . . , Sm have a common subsequence of length n2 + k.

Suppose first that G has an independent set I of size k. Consider the sequence
T = T1 T2 . . . Tn, where Ti = 0n if i /∈ I and Ti = 0n1 if i ∈ I. Clearly,
|T | = n2 + k, and T is a subsequence of S0. Furthermore, since each edge has at
least one vertex not in I, it can be seen (details omitted) that T is a common
subsequence of S1, S2, . . . , Sm.

We now prove the reverse implication. Suppose that S0, S1, . . . , Sm have a
common subsequence of length n2+k. Then any lcs of these m+1 input sequences
has length at least n2 + k. Let Topt be an lcs of S0, S1, . . . , Sm, and consider
a multiple alignment of S0, S1, . . . , Sm inducing Topt. We modify this multiple
alignment by shifting 0s right to obtain another multiple alignment inducing
Topt where matched 0s cannot be shifted right anymore (by shifting a 0 right we
mean modifying the alignment so that a 0 in the induced Topt is aligned with a 0
of Sj to the right of the matched 0 of Sj in the original alignment, for at least one
sequence Sj). For each sequence Sj , 0 ≤ j ≤ m, find the rightmost 0 included
in the multiple alignment and shift it right until it is the rightmost 0 of Sj or it
is just before a 1 included in the multiple alignment. Observe that each one of
those 0s is the rightmost 0 of a 0n1 or a 0n substring, and hence all the other
0s in those 0n1 or 0n substrings of Sj , 0 ≤ j ≤ m, can be aligned by shifting
other 0s included in the alignment right (otherwise, Topt is not an lcs). Moreover,
observe that at least one 0 from each 0n1 substring of S0 has to be included in the
alignment since otherwise we obtain |Topt| ≤ n(n+1)−n = n2 < n2 +k, for any
k ≥ 1, contradicting our assumption that the length of an lcs is at least n2 + k.
Thus by repeating this shifting process for the substrings of Sj, 0 ≤ j ≤ m, to
the left of the last 0n1 or 0n substrings considered, we can make sure that all
the 0s in S0 are included in the alignment, and moreover all the symbols that
are included in the alignment from each 0n1 substring of S0 are aligned with
symbols from the same 0n1 or 0n substring of Sj , 1 ≤ j ≤ m.

Therefore a longest common subsequence is obtained by including all the 0s
in S0 and maximizing the number of 1s that can be aligned. After the shifting
process described above it can be seen that for each edge ej = {u, v} of G, at
least one of the two 0n1 substrings at positions u and v of S0 must be aligned
with a substring 0n of Sj . To maximize the number of 1s in Topt, pick such
vertices to create a minimum vertex cover. The remaining vertices form a max-
imum independent set and thus |Topt| = n2 + α(G). Hence, if we suppose that
S0, S1, . . . , Sm has a common subsequence of length n2 + k ≤ n2 + α(G), then
G has an independent set of size k ≤ α(G). ��

Taking run-lengths into consideration, we observe that LCS(2, 1) is certainly
solvable in polynomial-time since each input sequence is a binary string with

Hardness of LCS for Sequences with Bounded Run-Lengths 141

alternate symbols. (We shall prove in Section 3 that LCS(2, 2) is, however, al-
ready NP-complete.) The following negative result is thus tight.

Proposition 2. LCS(3, 1) is NP-complete.

Proof. Let G be a graph with n vertices and m edges. We construct m + 1
sequences of length at most (n+ 1)(2n+ 1)−2, over alphabet Σ = {a, b, c}. The
proof uses the construction of Proposition 1 where we replace each 0 by ab and
each 1 by c. For example, in a graph with 7 vertices the edge between vertices 2
and 4 is represented by the sequence (ab)7c (ab)7 ((ab)7c)2 (ab)7 ((ab)7c)3

We claim that the graph G has an independent set of size k if and only if the
sequences S0, S1, . . . , Sm have a common subsequence of length 2n2 + k.

For the direct implication, the proof works as for the one of Proposition 1. For
the reverse implication, a similar argument can be used to show that there is an
alignment that induces an lcs including all the as and bs of S0, and for which all
the included symbols from each (ab)nc substring of S0 are aligned with symbols
from the same (ab)nc or (ab)n substring of Sj , 1 ≤ j ≤ m: instead of finding
the rightmost 0, simply find the rightmost b included in the alignment (if the
rightmost symbol in {a, b} included in the alignment is an a, the alignment does
not induce an lcs) and shift it right until it is the rightmost b of Sj or it is next
to a c included in the alignment; then align all the other as and bs in the same
(ab)nc or (ab)n substrings of Sj, 0 ≤ j ≤ m. Then again, an lcs is obtained by
including all the as and bs in S0 and maximizing the number of cs that can be
aligned, and the rest of the proof works. ��

3 NP-Completeness of LCS(2, 2)

In the light of Proposition 1 and Proposition 2, a natural question arises: is
LCS(2, 2) polynomial-time solvable? In other words, for an alphabet of size 2,
does limiting the run-length to its minimal non-trivial value enough to guarantee
tractability? We answer by the negative, and this section is devoted to proving
hardness of LCS(2, 2).

The following easy property will turn to be extremely useful for the rest of
the discussion as it allows us to focus on common subsequences with run-lengths
at most 2.

Proposition 3. Let S be an arbitrary input instance of LCS(2, 2). Then, there
exists an lcs of S with maximum run-length 2.

Proof. For any three consecutive identical symbols in a longest common subse-
quence, the second symbol can always be replaced. ��

We, however, observe that the above proposition cannot be taken as a general
rule. Indeed, the following two propositions rule out any extension of Proposi-
tion 3 to larger alphabets and/or run-lengths.

Proposition 4. For any integer n, there exist an input instance S of LCS(3, 1)
such that every lcs of S has maximum run-length at least n.

142 G. Blin et al.

Proof. It is enough to observe that sequences (01)n and (02)n have exactly one
lcs, which is 0n. ��

Proposition 5. For any integer n, there exist an input instance S of LCS(2, 3)
such that every lcs of S has maximum run-length at least n.

Proof. Let Ln be the set of all sequences on alphabet Σ = {0, 1} that start
with 0, contain exactly n 0s, have run-length at most 3 for 0, and contain no two
consecutive 1s (i.e., run-lengths at most 1 for 1). Clearly, a common subsequence
of Ln has length n since 0n is a common subsequence of Ln. We show by induction
on n that the only lcs of Ln is 0n. The property is certainly valid for 1 ≤ n ≤ 3
since 0n ∈ Ln. For n ≥ 4, assume that the property holds up to n − 1, and
suppose, aiming at a contradiction, that there exists a common subsequence T
of Ln that contains at least one 1. Write T = 0p 1 R, where 0 ≤ p ≤ n and
R ∈ Σ∗. Define S = (01)p−10001 (S = 001 if p = 0). The sequence S contains
p + 2 0s, and we claim that 0 ≤ p ≤ n− 2. Indeed, if p > n− 2 then the smallest
prefix of S that contains n 0s belongs to Ln but is not a super-sequence of T , a
contradiction. Now, define L′ = SLn−p−2. We have L′ ⊆ Ln, and hence T is a
common subsequence of L′. Furthermore, by construction of S, R is a common
subsequence of Ln−p−2. Therefore, by the induction hypothesis, R has length at
most n− p− 2, and hence T has length at most p + 1 + (n− p− 2) = n− 1. ��

Before diving into the reduction, we need the following definitions. A 10-sequence
is a sequence starting with 1 and ending with 0. If S and T are 10-sequences,
we say that S is a 10-tight subsequence of T if S is a subsequence of T and
neither 10S nor S10 is a subsequence of T . The following easy lemmas are used
in upcoming Proposition 6.

Lemma 1. Let S1, T1, S2, and T2 be 10 sequences. If S1 is a 10-tight subse-
quence of T1 and S2 is a 10-tight subsequence of T2, then S1S2 is a 10-tight
subsequence of T1T2.

Lemma 2. Let S1, S2, S3, T1, T2, T3 be 10-sequences where S1 is a 10-tight
subsequence of T1, and S3 is a 10-tight subsequence of T3. Then, S1S2S3 is a
subsequence of T1T2T3 if and only if S2 is a subsequence of T2.

Proposition 6. LCS(2, 2) is NP-complete.

The proof is by a reduction from 3-SAT. Let an arbitrary instance of 3-SAT be
given by a CNF formula Φ with n variables {v1, v2, . . . , vn} and m clauses. For
any variable vi, we write +vi for positive literal vi, −vi for the negative literal
vi, and ±vi for any literal of variable vi. First, we define 9 basic substrings as
follows (bold is used to emphasize some difference between the strings; A0 vs
B0, {X, Y, Z}− vs {X, Y, Z}+):

Hardness of LCS for Sequences with Bounded Run-Lengths 143

A0 = 1011 00110010
B0 = 1011 01010010
D0 = 1100 1100 1100
X− = 1011 00100100
Y− = 11011 00100100
Z− = 11011 0010010
X+ = 1011 01100100
Y+ = 11011 01100100
Z+ = 11011 0110010.

We now define m + 2 sequences {A, B, C1, C2, . . . , Cm} based on these 9 sub-
strings. The first two sequences are simply defined to be A = (A0)n and B =
(B0)n. For each 1 ≤ j ≤ m, write x ∨ y ∨ z for the j-th clause of the formula,
where literals x, y and z are ±va, ±vb, and ±vc respectively and a < b < c.
Define

Xj =

{
X− if x = −va

X+ if x = +va

Yj =

{
Y− if y = −vb

Y+ if y = +vb

Zj =

{
Z− if z = −vc

Z+ if z = +vc

and

L = (A0)a−1 Xj (1 0 D0)b−a−1

R = (D0 1 0)c−b−1 Zj (A0)n−c.

The string Cj is defined to be Cj = L 1 0 Yj 1 0R.
After the construction step, we now turn to proving the correctness of the

reduction. We need some technical lemmas. Let P = 1011 0110010 and N =
1011 0010010.

Lemma 3. A and B have 2n lcs, they are exactly {P, N}n.

Proof. Consider an alignment that induces an lcs of A and B. Note that B0 is
divided into a left block 101101 and a right block 010010. There are 2n such
blocks in B. We show that the number of fully matched blocks is exactly m = n.

Every sequence of {P, N}n has length 11n and is a common subsequences of A
and B. Since |A| = |B| = 12n, both A and B have n symbols that are not part of
the common subsequence. Therefore, at most n blocks can be partially matched

144 G. Blin et al.

(otherwise we miss more than n symbols), and hence m ≥ n. Furthermore, each
block of B that is fully matched introduces at least one gap in A (since no block
of B is a substring of A). Thus we also have m ≤ n. Moreover, in A, the gap
between two substrings matched to two consecutive blocks of B must be 0.

In the alignment, the 2n blocks of B specify 2n corresponding blocks of A,
where each fully matched block of B corresponds to a partially matched block of
A with one gap, and, each partially matched block of B with one gap corresponds
to a completely matched block of A. Observe that a completely matched block
(10110)1 of B introduces a single gap in A only if it corresponds to a partially
matched block (10110)01 of A which is a prefix of A0, and that a completely
matched block 0(10010) of B introduces a single gap in A only if it corresponds to
a partially matched block 01(10010) of A which is a suffix of A0. Since the prefix
(10110)01 and the suffix 01(10010) both overlap in each A0, there must be at
most one completely matched block (10110)1 or 0(10010) in each B0. Hence each
B0 contains one fully matched block and one partially matched block, and, for
each B0, the lcs contains either (10110)1 (10010) = P or (10110) 0(10010) = N .
Therefore, the lcs is in {P, N}n. ��

According to Lemma 3, if sequences {A, B, C1, C2, . . . , Cm} have an lcs of length
11n, then it is in {P, N}n. A sequence S ∈ {P, N}n is easily mapped to a
truth assignment φS as follows: φS(vi) = true if the i-th block of S is P , and
φS(vi) = false otherwise.

Lemma 4. For any j and any sequence S ∈ {P, N}n, S is a subsequence of Cj

if and only if φ(vs) satisfies the j-th clause of Φ.

Proof. We write Si for the i-th block of S (such that for every i, Si ∈ {P, N}).
For i ≤ j, we write Si..j = SiSi+1 . . . Sj . If φS satisfies a boolean term t, we
write φS � t, otherwise φS � t. We first need to compare P and N with each
basic substring of Cj , and we obtain the following important relations (the proof
is tedious but easy).

– P is a 10-tight subsequence of A0, 10D0, D010, X+, Z+, X−10, 10Z−.
– N is a 10-tight subsequence of A0, 10D0, D010, X−, Z−, X+10, 10Z+.
– P (but not N) is a subsequence of Y+, and N (but not P) is a subsequence

of Y−. P and N are subsequences of 10Y−, Y−10, 10Y+ and Y+10.

We prove the lemma by combining Lemma 1 with the above relations. The proof
is divided into three parts.

Part 1: from 1 to b − 1. Each Si, 1 ≤ i < a, is a 10-tight subsequence of A0,
and hence S1..a−1 is a 10-tight subsequence of (A0)a−1. Furthermore, sequence
Sa is a subsequence of Xj if and only if φS � x (since P is a subsequence of X+

but not of X−, and N is a subsequence of X− but not of X+). Similarly, Sa is
a 10-tight subsequence of Xj10 if and only if φS � x. Hence,

– if φS � x, S1..a is a subsequence of (A0)a−1Xj,
– if φS � x, S1..a is a 10-tight subsequence of (A0)a−1Xj10.

Hardness of LCS for Sequences with Bounded Run-Lengths 145

Moreover, each Si, a < i < b, is a 10-tight subsequence of 10D0 and D010, and
hence

– if φS � x, S1..b−1 is a subsequence of (A0)a−1Xj(10D0)b−a−1 = L,
– if φS � x, S1..b−1 is a 10-tight subsequence of (A0)a−1Xj(10D0)b−a−110

= L10.

Part 2: from n down to b + 1. Using a similar argument as in Part 1, reading
sequences from right to left, with Zj instead of Xj , we have:

– if φS � z, Sb+1..n is a subsequence of (D010)c−b−1Zj(A0)n−c = R,
– if φS � z, Sb+1..n is a 10-tight subsequence of 10(D010)c−b−1Zj(A0)n−c

= 10R.

Part 3: junction. If φS � x, then S1..b−1, Sb, Sb+1..n are subsequences of L,
10Yj, 10R, respectively, and hence S is a subsequence of Cj = L10Yj10R. If
φS � y, then S1..b−1, Sb, Sb+1..n are subsequences of L10, Yj , 10R, respectively,
and hence S is a subsequence of Cj = L10Yj10R. If φS � z, then S1..b−1,
Sb, Sb+1..n are subsequences of L10, Yj10, R, respectively, and hence S is a
subsequence of Cj = L10Yj10R.

If φS � x ∨ y ∨ z, then Sb is not a subsequence of Yj . Since S1..b−1 and
Sb+1..n are 10-tight subsequences of L10 and 10R, respectively, then, according
to Lemma 2, S = S1..b−1SbSb+1..n is not a subsequence of Cj = L10 Yj 10R. ��

Proof (Proof of Proposition 6.). Let S be an lcs of {A, B, C1, . . . , Cm}. If S has
length at least 11n, then by Lemma 3 it is in {P, N}n, and by Lemma 4, φS

satisfies every clause of Φ, and hence Φ is satisfiable. Conversely, if Φ is sat-
isfiable, set any truth assignment, and create sequence S = S1 S2 . . . Sn such
that Si = P if vi is true, and Si = N otherwise. Then S is a common sub-
sequence of {A, B, C1, C2, . . . , Cm} of size 11n. Since the construction of se-
quences A, B, C1, . . . , Cm can be carried on in polynomial-time, LCS(2, 2) is
NP-complete. ��

4 Approximation

In its most general setting (unbounded number of strings, etc.), LCS is approx-
imable within ratio O(m/ log(m)), where m is the length of the shortest input
string [12]. It is, however, not approximable within ratio nε for any constant
ε < 1, where n is the length of the longest input string [15] (see also [5]), and it
is APX-hard if the size of the alphabet is fixed [15]. Despite the discouraging re-
sults, it has been proved that LCS over a fixed alphabet can be indeed very well
approximated on the average by using a simple algorithm called Long Run [15].
Bonizzoni et al. [8] developed an approximation algorithm for LCS called Ex-
pansion Algorithm (their algorithm first compresses sequences to streams by the
same concept of run-length encoding, then progressively find a common sequence
of all streams by the bottom-up tree merging technique).

We present here a 3/5-approximation algorithm for LCS(2, 2). The algorithm
performs an exhaustive search for a limited number of common subsequences.

146 G. Blin et al.

The approximation ratio analysis, which uses linear programming techniques,
is based on the structure of optimal solutions of LCS(2, 2) obtained in
Proposition 3.

Proposition 7. LCS(2, 2) is approximable within ratio 3/5.

Proof. Let S1, S2, . . . , Sm, be m input sequences over alphabet Σ = {0, 1} with
maximum run-length 2. The approximation algorithm is as follows:

Input: Subsequences S1, S2, . . . , Sn over alphabet Σ = {0, 1}
Output: A common subsequence of S1, S2, . . . , Sn

for all P ∈ {01, 001, 011} do
Let TP be the lcs of S1, S2, . . . , Sn in {P}∗

end for
return maximum length of TP , P ∈ {01, 001, 011}

For the sake of clarity, write A = 01, B = 001, C = 011, D = 0011, and
X = {A, B, C, D}. We focus on the case where each input sequence starts with 0
and terminates with 1 (the general case is easily deduced from this restriction).

Let Topt be an lcs of S1, S2, . . . , Sm, and nopt = |Topt|. According to Propo-
sition 3, there is no loss of generality in assuming that Topt has maximum run-
length 2. First, it is easily seen that X is a code (i.e., any u ∈ Σ∗ has at most
one X-factorization). Furthermore, since each input sequence starts with 0 and
terminates with 1, so does any lcs. Thus Topt has maximum run-length 2, starts
with 0 and terminates with 1, hence it has an X-factorization into k factors
Topt = t1t2 . . . tk. Let nA (respectively nB, nC , and nD) be the number of in-
dices i, 1 ≤ i ≤ k, such that ti = A (respectively, ti = B, ti = C, and ti = D),
and define nA = nA/nopt, nB = nB/nopt, nC = nC/nopt, nD = nD/nopt.
Summing up the lengths of all factors, we have nopt = 2nA + 3nB + 3nC + 4nD,
and

2nA + 3nB + 3nC + 4nD ≥ 1 (1)

(Notice that (1) is fundamentally an equality but only the “≥” part is used in
the rest of the proof.)

We now turn to relating |TP |, P ∈ {01, 001, 011}, to nA, nB, nC , and nD.
From optimality of |TP |, P ∈ {01, 001, 011}, we obtain

|TA| ≥ 2nA + 2nB + 2nC + 2nD

|TB| ≥ 3nB + 3nD

|TC | ≥ 3nC + 3nD.

By definition, the approximation ratio r of our algorithm is

r = max{|TA|, |TB|, |TC |}/nopt,

Hardness of LCS for Sequences with Bounded Run-Lengths 147

and hence

r ≥ 2nA + 2nB + 2nC + 2nD (2)
r ≥ 3nB + 3nD (3)
r ≥ 3nC + 3nD (4)

Inequalities (1) to (4) together with domain constraints nA ≥ 0, nB ≥ 0, nC ≥ 0,
and nD ≥ 0 define a (minimization) linear program (LP) that can be solved as
follows. Let r∗ be the optimal solution of the defined LP (referred to as the
primal problem). We consider the dual LP:

maximize y1
such that y2 + y3 + y4 ≤ 1

2y1 ≤ 2y2
3y1 ≤ 2y2 + 3y3
3y1 ≤ 2y2 + 3y4
4y1 ≤ 2y2 + 3y3 + 3y4

By the strong duality theorem, r∗ is also the optimal solution for the dual LP.
A lower bound for the dual LP is obtained by choosing: y1 = y2 = 3/5 and
y3 = y4 = 1/5, and hence r∗ ≥ 3/5, thereby proving the proposition. ��

Remark that the approximation ratio of the proposed algorithm is exactly
3/5. Indeed, for the sequence (0110010011)n none of the tested patterns in
{01, 001, 011} would return a subsequence of length greater than 3n/5.

References

1. Ann, H.-Y., Yang, C.-B., Tseng, C.-T., Hor, C.-Y.: Fast algorithms for computing
the constrained lcs of run-length encoded strings. In: Arabnia, H.R., Yang, M.Q.
(eds.) Proc. International Conference on Bioinformatics & Computational Biology
(BIOCOMP), Las Vegas, USA, pp. 646–649. CSREA Press (2009)

2. Ann, H.-Y., Yang, C.-B., Tseng, C.-T., Hor, C.-Y.: A fast and simple algorithm
for computing the longest common subsequence of run-length encoded strings.
Information Processing Letters 108, 360–364 (2008)

3. Apostolico, A., Landau, G.M., Skiena, S.: Matching for run-length encoded strings.
Journal of Complexity 15(1), 4–16 (1999)

4. Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence
algorithms. In: Proc. of the 7th International Symposium on String Processing
Information Retrieval (SPIRE), Coruña, Spain, pp. 39–48. IEEE Computer Society
(2000)

5. Berman, P., Schnitger, G.: On the complexity of approximating the independent
set problem. Information and Computation 96, 77–94 (1992)

6. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hallett, M.T., Wareham, H.T.:
Parameterized complexity analysis in computational biology. Computer Applica-
tions in the Biosciences 11(1), 49–57 (1995)

148 G. Blin et al.

7. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Wareham, H.T.: The parame-
terized complexity of sequence alignment and consensus. Theoretical Computer
Science 147, 31–54 (1994)

8. Bonizzoni, P., Della Vedova, G., Mauri, G.: Experimenting an approximation al-
gorithm for the lcs. Discrete Applied Mathematics 110(1), 13–24 (2001)

9. Bunke, H., Csirik, J.: An improved algorithm for computing the edit distance of
run-length coded strings. Information Processing Letters 54, 93–96 (1995)

10. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings, Cambridge (2007)
11. Freschi, V., Bogliolo, A.: Longest common subsequence between run-length-

encoded strings: a new algorithm with improved parallelism. Information Process-
ing Letters 90, 167–173 (2004)

12. Halldórsson, M.M.: Approximation via partitioning. Technical report, School of In-
formation Science, Japan Advanced Institute of Science and Technology, Hokuriku
(1995)

13. Hsu, P.-H., Chen, K.-Y., Chao, K.-M.: Finding All Approximate Gapped Palin-
dromes. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878,
pp. 1084–1093. Springer, Heidelberg (2009)

14. Huang, G.S., Liu, J.J., Wang, Y.L.: Sequence Alignment Algorithms for Run-
Length-Encoded Strings. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS,
vol. 5092, pp. 319–330. Springer, Heidelberg (2008)

15. Jiang, T., Li, M.: On the approximation of shortest common supersequences and
longest common subsequences. SIAM Journal on Computing 24, 1122–1139 (1995)

16. Hsu, P.-H., Chen, K.-Y., Chao, K.-M.: Finding All Approximate Gapped Palin-
dromes. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878,
pp. 1084–1093. Springer, Heidelberg (2009)

17. Kim, J.W., Amir, A., Landau, G.M., Park, K.: Computing similarity of run-
length encoded strings with affine gap penalty. Theoretical Computer Science 395,
268–282 (2008)

18. Liu, J.J., Huang, G.S., Wang, Y.L.: A fast algorithm for finding the positions
of all squares in a run-length encoded string. Theoretical Computer Science 410,
3942–3948 (2009)

19. Liu, J.J., Huang, G.S., Wang, Y.L., Lee, R.C.T.: Edit distance for a run-length-
encoded string and an uncompressed string. Information Processing Letters 105,
12–16 (2007)

20. Liu, J.J., Wang, Y.L., Lee, R.C.T.: Finding a longest common subsequence between
a run-length-encoded string and an uncompressed string. Journal of Complexity 24,
173–184 (2008)

21. Maier, D.: The complexity of some problems on subsequences and supersequences.
Journal of the ACM 25(2), 322–336 (1978)

22. Matsubara, W., Inenaga, S., Ishino, A., Shinohara, A., Nakamura, T., Hashimoto,
K.: Efficient algorithms to compute compressed longest common substrings and
compressed palindromes. Theoretical Computer Science 410, 900–913 (2009)

23. Mitchell, J.S.B.: A geometric shortest path problem, with application to computing
a longest common subsequence in run-length encoded strings. Technical report,
Department of Applied Mathematics, SUNY Stony Brook (1997)

24. Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest com-
mon supersequence and longest common subsequence problems. J. of Computer
and System Sciences 67(4), 757–771 (2003); Special issue on Parameterized com-
putation and complexity

Near Linear Time Construction

of an Approximate Index
for All Maximum Consecutive Sub-sums

of a Sequence

Ferdinando Cicalese1, Eduardo Laber2, Oren Weimann3, and Raphael Yuster4

1 Department of Computer Science, University of Salerno, Italy
cicalese@dia.unisa.it

2 Department of Informatics, PUC-Rio, Rio de Janeiro, Brazil
laber@inf.puc-rio.br

3 Department of Computer Science, University of Haifa, Israel
oren@cs.haifa.ac.il

4 Department of Mathematics, University of Haifa, Israel
raphy@math.haifa.ac.il

Abstract. We present a novel approach for computing all maximum
consecutive subsums in a sequence of positive integers in near linear time.
Solutions for this problem over binary sequences can be used for reporting
existence (and possibly one occurrence) of Parikh vectors in a bit string.
Recently, several attempts have been tried to build indexes for all Parikh
vectors of a binary string in subquadratic time. However, to the best of
our knowledge, no algorithm is know to date which can beat by more
than a polylogarithmic factor the natural Θ(n2) exhaustive procedure.
Our result implies an approximate construction of an index for all Parikh
vectors of a binary string in O(n1+η) time, for any constant η > 0. Such
index is approximate, in the sense that it leaves a small chance for false
positives, i.e., Parikh vectors might be reported which are not actually
present in the string. No false negative is possible. However, we can tune
the parameters of the algorithm so that we can strictly control such
a chance of error while still guaranteeing strong sub-quadratic running
time.

Keywords: Parikh vectors, maximum subsequence sum, approximate
pattern matching, approximation algorithms.

1 Introduction

Let s = s1, . . . , sn be a sequence of non-negative integers. For each � = 1, . . . , n,
we denote with m� the maximum sum over a consecutive subsequence of s of
size �, in formulae:

m� = max
i=1,...,n−�+1

i+�−1∑
j=i

sj .

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 149–158, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

150 F. Cicalese et al.

The Maximum Consecutive Subsums Problem (MCSP) asks for computing
m� for each � = 1, . . . , n.

Since an obvious implementation of the above formula allows to compute
m� for a single value of � in O(n) time, it follows that there exists a trivial
O(n2) procedure to accomplish the above task. The interesting question is then
about subquadratic procedure for solving MCSP. Notwithstanding quite some
effort which has been recently devoted to the problem, surprisingly enough, no
algorithm is known which is significantly better than the natural Θ(n2).

In this paper we show that we can closely approximate the values m� (within
an approximation factor as close to 1 as desired) with a procedure whose running
time can be as close to linear as desired. More precisely, our main result is as
follows.

Main Theorem. For any ε, η > 0, there exists an algorithm that computes
values m̃1, . . . , m̃n such that 1 ≤ m̃j/mj ≤ 1 + ε, for each j = 1, . . . , n, in time
O(kε,η · n1+η), where kε,η is a constant only depending on ε and η.

MCSP arises in several scenarios of both theoretical and practical interest.
Our main motivation for studying MCSP comes from the following Parikh vector
matching problem.

An Index for Constant Time Parikh Vector Membership Queries.
Given a string t over an alphabet [σ] = {1, 2, . . . , σ}, for each c ∈ [σ], let xc

be the number of occurrences of character c in t. The vector (x1, . . . , xσ) is
called the Parikh vector of t.

In the Parikh vector matching problem, given a string t (the text) over the
alphabet [σ], together with a vector of non-negative integers p = (x1, . . . , xσ) (the
Parikh vector pattern) we ask for (all/one/existence) of occurrences of substrings
s of t such that the Parikh vector of s is p.

Equivalently, we are asking for all the jumbled occurrences of a string s (the
pattern) in a string t (the text), i.e., any occurrence of some permutation of s
in t. Therefore, the Parikh vector matching problem is a type of approximate
string matching [16,10].

Typical applications of such model come from interpretation of mass spec-
trometry data analysis [5]. More generally, Parikh vector matching applies in
scenarios where, notwithstanding the linearity (mono-dimensional) of the struc-
ture in which we perform the pattern search, it is not important the order in
which what we are searching for, actually occurs. A typical example might be
testing for bio-chemical characteristics of (part) of a macromolecule which only
depends upon the presence of some substructures and their occurrence within a
relatively short distance, whilst their relative order is not significant [1,3,15,18].

Given an alphabet [σ] and a string s it is not hard to see that the maximum
number of Parikh vectors occurring in s is O(n2), since each Parikh vector is
associated to at least one of the Θ(n2) substrings of s. On the other hand, for any
given length n there exist Ω(nσ) distinct Parikh vectors.1 This also motivates

1 The number of Parikh vector of length n is equal to the number of ways we can split
n elements into σ parts, which is exactly

(
n+σ−1

σ−1

)
.

Near Linear Time Construction of an Approximate Index 151

filtering algorithms based on executing membership queries before looking for
the actual occurrences of the Parikh vector query.

For binary string t, knowing for each � = 1, . . . , n the minimum and maximum
number of 1’s found in a substring of size � of t, we can answer membership
queries in constant time. More precisely, the connection between MCSP and
Parikh vector membership query problem is given by the following.

Lemma 1. [9] Let s be a binary string and for each i = 1, . . . , n let μmin
� (resp.

μmax
�) denote the minimum (resp. maximum) number of ones in a substring of

s of length �. Then for any Parikh vector p = (x0, x1) we have that there exists
a substring in s with Parikh vector p if and only if μmin

x0+x1
≤ x1 ≤ μmax

x0+x1
.

It follows that, after constructing the tables of μmin’s and μmax’s—which is
equivalent to solving two instances of the MCSP—we can answer in constant
time Parikh vector membership queries, i.e., questions asking: “Is there an oc-
currence of the Parikh vector (x0, x1) in s?” This is achieved by simply checking
the condition in the previous Lemma.

Therefore, there has been significant interest in trying to solve the MCSP on
binary sequences in subquadratic time.

To the best of our knowledge the best known constructions are as follows:
Burcsi et al. in [9,8] showed a O(n2/ log n)-time algorithm which is based on
the O(n2/ log n) algorithm of Bremner et al. [7,12] for computing (min, +)-
convolution; Moosa and Rahman in [17] obtained the same result by a different
use of (min, +)-convolution, moreover, they show that an O(n2/ log2 n) construc-
tion can be obtained assuming word-RAM operations.

Another interesting application of MCSP is in the following problem in the
analysis of statistical data.

Finding Large Empty Regions in Data Sets. Bergkvist and Damaschke
in [4] used the index of all maximum consecutive subsums of a sequence of
numbers for speeding up heuristics for the following problem: Given a sequence
of positive real numbers x1, . . . , xn, called items, and integers s ≥ 1 and p ≥ 0,
find s pairwise disjoint intervals with total of s + p items and maximum total
length. Here an interval is a set of consecutive items xi, xi+1, . . . , xj (i ≤ j) and
its length is xi + xi+1 + . . . xj . This problem, aka DIMaxL (Disjoint Intervals
of Maximum Length) and its density variant where we are interested in interval
of maximum density [12], rather than absolute length, are motivated by the
problem of finding large empty regions (big holes) in data sets. Several other
motivating applications can be found in [4] and [12].

By employing a geometric argument, in [4] a heuristic procedure is presented
for the MCSP which can solve the problem in O(n3/2) time in the best case,
but whose worst case remains quadratic.

152 F. Cicalese et al.

2 The Approximate Index

Let s = s1, . . . , sn be a sequence of non-negative integers. Our aim is to compute
m� = maxi=1,...,n−�+1

∑i+�−1
j=i sj for each � = 1, . . . , n. In this section we will

prove the following result

Theorem 1. For any constant ε, η ∈ (0, 1), let k be the minimum positive inte-
ger such that the positive real solution α̃ of the equation α = 1 + 1/αk, satisfies
1 + ε > α̃. Let t = �1/η�.

There exists an algorithm which in time O(kt−1·n1+η) computes values m̃1, . . . ,
m̃n such that 1 ≤ m̃�/m� ≤ 1 + ε, for each � = 1, . . . , n.

We shall start describing our approach by first presenting an algorithm which
computes a (1+

√
5

2)-approximation of the values m�’s in O(n3/2) time. Then we
will show a variant of the approach which can be parametrized to achieve the
desired (1 + ε)-approximation in time O(n1.5). Finally, we will show how, by
recursively applying such a strategy we can achieve the same approximation in
time O(n1+η), for any constant η > 0.

We will use the following simple facts.

Fact 1. For each 1 ≤ i < j ≤ n it holds that mi ≤ mj .

Fact 2. For each � ∈ [n] and positive integers i, j such that i + j = �, it holds
that m� ≤ mi + mj .

Fact 1 directly follows by the non-negativity of the elements in the sequence.
Fact 2 is a consequence of the following easy observation. For a fixed �, let
sr, . . . , sr+�−1 be a subsequence achieving sr + · · ·+ sr+�−1 = m�. By definition
we have that, for any i, j such that i + j = � it holds that sr + · · ·+ sr+i−1 ≤ mi

and sr+i + · · · + sr+�−1 ≤ mj , from which we obtain the desired inequality.
For ease of presentation, we shall usually neglect rounding necessary to pre-

serve the obvious integrality constraints. The reader can assume that, when
necessary, numbers are rounded to the closest integer. It will always be clear
that these inaccuracies do not affect the asymptotic results. On the other hand,
this way, we gain in terms of much lighter expressions.

2.1 Warm-Up: A Golden Ratio Approximation in O(n3/2)

Let α = 1+
√

5
2 . The value α defines the approximation of our solutions. Fix an

integer t ≥ 2 and set g = n1/2.
The basic idea is to compute via exhaustive search the value of mj×g for each

j = 1, . . . , n/g and then to use these values for approximating all the others.
For each j = 1, . . . , n/g, we set m̃j×g = mj×g , i.e., our approximate index

will contain the exact value.
Let � be such that j × g < � < (j + 1) × g for some j = 1, . . . , n/g − 1. By

Fact 1 we have that mj×g ≤ m� ≤ m(j+1)×g. Therefore, if m(j+1)×g/mj×g ≤ α,

Near Linear Time Construction of an Approximate Index 153

by setting m̃� = m(j+1)×g we also have that m̃� is an α-approximation of the
real value m�.

What happens if the gap between m(j+1)×g and mj×g is large?
If m(j+1)×g/mj×g > α, our idea is to compute exhaustively m� for each

� = j × g + 1, . . . , (j + 1) × g − 1. The critical point here is that the above
“large” gap can only happen once! This is formalized in the following argument:
Let j > 0 be the minimum integer such that m(j+1)×g/mj×g > α. Therefore, by
Fact 1 we also have

m(j+1)×g/mg > α. (1)

Now, for each i > j, we have

m(i+1)×g

mi×g
≤ mi×g + mg

mi×g
= 1 +

mg

mi×g
≤ 1 +

mg

m(j+1)×g
< 1 + 1/α = α, (2)

where the first inequality follows by Fact 2; the second inequality follows by Fact
1 together with i ≥ (j + 1), respectively; the third inequality follows from (1)
and the last equality because α = (1 +

√
5)/2.

Therefore, after encountering the first large gap between mj×g and m(j+1)×g

all the following gaps will be “small”, hence we can safely set m̃� = m(i+1)×g

for each i > j and i × g < � ≤ (i + 1) × g. In fact, using again Fact 1 we have
m̃�/m� ≤ m(i+1)×g/mi×g and then by (2) we are guaranteed that m̃� = m(i+1)×g

is indeed an α-approximation of the exact m�.

2.2 As Close to 1 as Wished

In this section we prove our main result which follows by refining the algorithm
described in the previous section. Here we use the expression “compute m� ex-
haustively” (for some fixed �) to indicate the linear time computation attained
by scanning the sequence s from left to right and computing the sum of all con-
secutive subsequences of size �. This exhaustive computation for a single � can
be clearly achieved in Θ(n) time.

Let k be the minimum positive integer such that α ≤ 1 + ε, where α is
the positive real solution of the equation α = 1 + 1/αk. In an explicit way,
k = �− ln(ε)

ln(1+ε)�.
The value α defines the approximation of our solutions. Let us also set g =

n1/2.
We partition the list of values m� (� = 1, . . . , n) into n/g intervals, each of

them with g consecutive values. Then, we proceed as follows:

1. Compute exhaustively the exact value for each m� in the first interval, i.e.,
for m� such that � = 1, . . . , g.

2. Compute exhaustively the exact value for the extremes of all intervals (i.e.,
for m� such that � = 2g, 3g, . . .).

3. Let mg, m2g, . . . be the extremes of the n/g intervals. We say that an extreme
mi×g is relevant if mi×g/m(i−1)×g > α. Compute exhaustively m� for every
� such that the rightmost extreme of its interval is among the first k relevant
extremes.

154 F. Cicalese et al.

4. The remaining points are approximated by the value of the rightmost point
in the interval where they lie (i.e., for � ∈ {jg +1, . . . , (j +1)g−1} such that
m(j+1)g/mjg ≤ α we set m̃� = m(j+1)g).

We have to prove that the values m̃’s satisfy the desired (1 + ε)-approximation.
Let j1, . . . , jr, with r ≤ k, be the values of j for which the algorithm verified

mj×g/m(j−1)×g > α and hence computed exhaustively m� in the interval � =
(j − 1)g, . . . , jg.

It is easy to see that m̃�/m� ≤ α for each � ≤ jr × g.
Moreover, if r < k, it also means that mj×g/m(j−1)×g ≤ α for each j > jr.

Hence, we also have that m̃�/m� ≤ α for each � > jr × g.
Assume now that r ≥ k. Let us write j∗ for jr. Since for k times we had that

mj×g/m(j−1)×g > α, we have in particular that

mj∗×g

mg
> αk. (3)

Now, let us consider an integer � such that i × g < � < (i + 1) × g − 1 for some
i ≥ j∗. In such case we have that m̃� = m(i+1)×g. Therefore, for our purposes,
it is enough to show that m(i+1)×g

m�
≤ α.

Indeed we have

m(i+1)×g

m�
≤

m(i+1)×g

mi×g
≤ mi×g + mg

mi×g
= 1 +

mg

mi×g
≤ 1 +

mg

mj∗×g
< 1 +

1
αk

= α.

The first inequality follows by Fact 1, since � > i × g. The second inequality
follows by Fact 2 yielding m� ≤ mi×g + m�−i×g together with m�−i×g ≤ mg (by
Fact 1 and � − i × g < g).

The third inequality follows by mi×g ≥ mj∗×g (i ≥ j∗ and Fact 1). The fourth
inequality follows from (3) and the last equality by the definition of α.

This concludes the proof that for each � the values m̃� is indeed an α-
approximation (and hence a (1 + ε)-approximation) of m�.

For the time bound, we observe that the number of times in the above proce-
dure we compute with the exhaustive linear procedure some value m� is at most
(k + 1) × n1/2 for the full intervals of size g and n1−1/2 for the extremes of the
intervals. Therefore the algorithm runs in time O(k × n3/2).

2.3 The Last Piece: A Recursive Argument

In the above procedure, for g = n1/2 we first compute mg, m2g, m3g, . . . , mn in
time O(n3/2). Then, we identify (up to) k+1 relevant intervals. The first interval
is [m1, mg] and the other k intervals are all the ones of the form [mjg, m(j+1)g]
where m(j+1)g/mjg > α. For each one of the k + 1 relevant intervals we com-
pute exhaustively all m� values inside the interval, hence in total requiring time
O(k × n3/2).

In order to reduce the time complexity, instead of computing all the values
exhaustively in the relevant intervals we can recursively use in each interval the

Near Linear Time Construction of an Approximate Index 155

argument we use for the full “interval” m1, . . . , mn. In particular, this means
subdividing each relevant interval into subintervals and computing exhaustively
the m� values only at the subintervals’ boundaries, but for k + 1 relevant subin-
tervals, where we recurse again.

Let us first consider an example giving a (1 + ε)-approximation in time
O(n1+1/3). For this we choose g = n2/3 and compute exhaustively mg, m2g, . . . ,
mn, so spending in total O(n1+1/3) time. Then, we identify k+1 relevant intervals
just as before. Suppose that [mjg, m(j+1)g] is one of the k + 1 relevant intervals,
i.e., m(j+1)g/mjg > α. We partition this interval into n1/3 sub-intervals each
of size n1/3. Now, we first compute m� for every sub-interval endpoint, which
requires n1/3×n = O(n1+1/3) time. Then, we compute m� exhaustively for each
� in the k + 1 relevant sub-intervals, i.e., the first sub-interval and the ones for
which the ratio of the values m� at the boundaries is greater than α. As done in
the previous subsection, it can be easily shown that at most k sub-intervals can
exist for which such condition is verified.

Overall, the number of values of � for which we compute m� exhaustively are:

– the n1/3 boundaries g, 2g, This requires O(n1/3) exhaustive computa-
tions of some m�.

– the n1/3 boundaries of the sub-interval in the k + 1 relevant intervals, i.e.,
in total O(kn1/3) exhaustive computations of some m�.

– for each one of the k + 1 relevant interval, we may have up to k + 1 relevant
sub-intervals and each relevant sub interval requires to compute n1/3. In
total this gives additional O(k2n1/3) exhaustive computations of some m�.

Therefore, we have that the time complexity becomes O(k2n1+1/3).
If we want to get O(n1+1/4) running time we can choose g = n3/4 and add

one more level of recursion, i.e., partition the sub-intervals to sub-sub-intervals.
This way the running time becomes O(k3n1+1/4).

In general, given any fixed η > 0 we can set t = �1/η� and g = n1−1/t. By using
t − 1 levels of recursion we then get a (1 + ε)-approximation in O(ktn1+1/t) =
O(kε,ηn1+η) time, where kε,η is a constant depending only on ε and η. This
provides the proof of our main theorem. The algorithm is described in the pseu-
docode below.

3 Applying the Index to the Parikh Vector Matching
Problem

We can now analyze the consequences of our result with respect to the connection
between MCSP and Parikh vector membership query problem.

An immediate corollary of Theorem 1 is the following.

Corollary 1. Let s be a binary string and for each i = 1, . . . , n let μmin
� (resp.

μmax
�) denote the minimum (resp. maximum) number of ones in a substring of s

of lenght �. For any ε, η ∈ (0, 1), we can compute in O(n1+η) approximate values
μ̃min

� (resp. μ̃max
�) such that

μmin
� ≥ μ̃min

� ≥ (1 − ε)μmin
� μmax

� ≤ μ̃max
� ≤ (1 + ε)μmax

�

156 F. Cicalese et al.

Algorithm 1. Approximate index for all maximum consecutive subsums
Input: A string s, an approximation value ε and a time threshold η s.t. ε, η ∈ (0, 1).
Output: m̃1, . . . , m̃n such that mj/m̃j ≤ ε, for each j ∈ [n].
1: Set k to the minimum integer s.t. 1+ ε is not smaller than the positive real solution
of α = 1 + 1/αk.

2: Set t =
1/η�
3: Recursive-Approx(1, n, 1)
4: return m̃1, . . . , m̃n.

Recursive-Approx(start, end, depth)

1: if depth = t − 1 then
2: for all � = start, . . . , end do
3: compute m� exhaustively and set m̃� = m�

4: end for
5: else
6: Set size = (end − start+ 1) and g = size/n1/t.
7: Recursive-Approx(start, start+ g, depth+ 1)
8: Set j = 2 and κ = 0.
9: while j ≤ n1/t and κ < k do
10: compute mstart+jg exhaustively and set m̃start+jg = mstart+jg

11: if mstart+j×g > α mstart+(j−1)×g then
12: Recursive-Approx(start+ (j − 1)g, start+ jg, depth+ 1)
13: κ = κ+ 1
14: else
15: for all � = start+ (j − 1)g + 1, . . . , start+ jg − 1 do
16: Set m̃� = mstart+jg

17: end for
18: end if
19: j = j + 1
20: end while
21: for all i = j, . . . , n1/t do
22: compute mstart+ig exhaustively and set m̃start+ig = mstart+ig

23: for all � = start+ (i − 1)g + 1, . . . , start+ ig − 1 do
24: Set m̃� = mstart+ig

25: end for
26: end for
27: end if

Let s be a binary string of length n. Fix a tolerance threshold ε > 0, and
let μ̃min

� and μ̃max
� (� = 1, . . . , n) be as in Corollary 1. In terms of Parikh vector

membership queries, we have the following necessary condition for the occurrence
of a Parikh vector in the string s.

Corollary 2. For any p = (x0, x1) such that there exists a substring of s whose
Parikh vector equals p, we have that

μ̃min
x0+x1

≤ x1 ≤ μ̃max
x0+x1

.

Near Linear Time Construction of an Approximate Index 157

We also have an ”almost matching” sufficient condition, which also follows from
Lemma 1 and Corollary 1.

Corollary 3. Fix a Parikh vector p = (x0, x1). If

μ̃min
x0+x1

1 − ε
≤ x1 ≤

μ̃max
x0+x1

1 + ε

then p occurs in s.

As a consequence, if we use the values μ̃min and μ̃max we can answer correctly to
any membership query involving a Parikh vector which occurs in s. Moreover,
we can also answer correctly any membership query involving a Parikh vector
satisfying the condition in Corollary 3. In contrast, it might be that the approxi-
mate index makes us report false positives, when the membership query is about
a Parikh vectors p = (x0, x1) such that

μ̃min
x0+x1

≤ x1 ≤
μ̃min

x0+x1

1 − ε
or

μ̃max
x0+x1

1 + ε
≤ x1 ≤ μ̃max

x0+x1
.

4 Some Final Observations and Open Problems

We presented a novel approach to approximating all maximum consecutive sub-
sums of a sequence of non-negative integers in time O(n1+η), for any constant
η > 0. This can be directly used for obtaining a linear size index for binary string,
which allows to answer in constant time Parikh vector membership queries. The
existence of a o(n2) time solution for the exact case remains open. Some obser-
vations are in order regarding our approach.

A first observation is that we do not need to store m̃j for each j = 1, . . . , n
as it is sufficient to store only the distinct values computed exhaustively. This
brings down also the space complexity of our approximate index to O(nε).

The computation of the approximate index is extremely easy and fast to im-
plement, and, in contrast to the previous exact solution present in the literature
[9,8,17], it does not require any tabulation or convolution computation. In order
to get the flavor of the quantities involved, notice that for k = 30 we can already
guarantee an approximation ratio α = 1.085 and with k = 500, we get α = 1.009.

With respect to the Parikh vector indexing problem, one can clearly modify
the algorithm in order to store together with the value m̃k also the position
where the corresponding maximizing substring occurs. This way the algorithm
can report a substring whose Parikh vector is an (1 + ε)-approximation of the
desired Parikh vector. Moreover, this can also serve as a starting point for ex-
amining, in time proportional to εk the surrounding part of s in order to check
whether the reporting position actually leads to an exact match. Along this
line, an alternative is to associate to each m̃s both m(j−1)×g and mj×g and the
corresponding positions.

It would be interesting to investigate whether it is possible to obtain Las
Vegas algorithms for the Parikh vector problem based on our approximation

158 F. Cicalese et al.

perspective. Another direction for future investigation regards the extension of
our approach to cover the case of Parikh vector membership queries in strings
over non-binary alphabets.

References

1. Amir, A., Apostolico, A., Landau, G.M., Satta, G.: Efficient text fingerprinting via
Parikh mapping. J. Discrete Algorithms 1(5-6), 409–421 (2003)

2. Babai, L., Felzenszwalb, P.F.: Computing rank-convolutions with a mask. ACM
Trans. Algorithms 6(1), 1–13 (2009)

3. Benson, G.: Composition Alignment. In: Benson, G., Page, R.D.M. (eds.) WABI
2003. LNCS (LNBI), vol. 2812, pp. 447–461. Springer, Heidelberg (2003)

4. Bergkvist, A., Damaschke, P.: Fast algorithms for finding disjoint subsequences
with extremal densities. Pattern Recognition 39, 2281–2292 (2006)

5. Böcker, S.: Sequencing from compomers: Using mass spectrometry for DNA de
novo sequencing of 200+ nt. Journal of Computational Biology 11(6), 1110–1134
(2004)

6. Böcker, S., Lipták, Z.: A fast and simple algorithm for the Money Changing Prob-
lem. Algorithmica 48(4), 413–432 (2007)

7. Bremner, D., Chan, T.M., Demaine, E.D., Erickson, J., Hurtado, F., Iacono, J.,
Langerman, S., Taslakian, P.: Necklaces, Convolutions, and X + Y. In: Azar, Y.,
Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 160–171. Springer, Heidelberg
(2006)

8. Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: On Approximate Jumbled Pattern
Matching. Theory of Computing Systems 50(1), 35–51 (2012)

9. Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: On Table Arrangements, Scrabble
Freaks, and Jumbled Pattern Matching. In: Boldi, P. (ed.) FUN 2010. LNCS,
vol. 6099, pp. 89–101. Springer, Heidelberg (2010)

10. Butman, A., Eres, R., Landau, G.M.: Scaled and permuted string matching. Inf.
Process. Lett. 92(6), 293–297 (2004)

11. Chan, T.M.: All-pairs shortest paths with real weights in O(n3/ log n) time. Algo-
rithmica 50(2), 236–243 (2008)

12. Chen, Y.H., Lu, H.I., Tang, C.Y.: Disjoint Segments with Maximum Density. In:
Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005.
LNCS, vol. 3515, pp. 845–850. Springer, Heidelberg (2005)

13. Cicalese, F., Fici, G., Lipták, Z.: Searching for jumbled patterns in strings. In:
Proc. of the Prague Stringology Conference 2009 (PSC 2009), pp. 105–117 (2009)

14. Cieliebak, M., Erlebach, T., Lipták, Z., Stoye, J., Welzl, E.: Algorithmic complex-
ity of protein identification: Combinatorics of weighted strings. Discrete Applied
Mathematics 137(1), 27–46 (2004)

15. Eres, R., Landau, G.M., Parida, L.: Permutation pattern discovery in biosequences.
Journal of Computational Biology 11(6), 1050–1060 (2004)

16. Jokinen, P., Tarhio, J., Ukkonen, E.: A comparison of approximate string matching
algorithms. Software Practice and Experience 26(12), 1439–1458 (1996)

17. Moosa, T.M., Rahman, M.S.: Sub-quadratic time and linear size data structures for
permutation matching in binary strings. J. Discrete Algorithms 10(1), 5–9 (2012)

18. Parida, L.: Gapped Permutation Patterns for Comparative Genomics. In: Bücher,
P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 376–387.
Springer, Heidelberg (2006)

The Complexity of String Partitioning

Anne Condon1, Ján Maňuch1,2, and Chris Thachuk1

1 Dept. of Computer Science, University of British Columbia, Vancouver BC, Canada
{condon,jmanuch,cthachuk}@cs.ubc.ca

2 Dept. of Mathematics, Simon Fraser University, Burnaby BC, Canada

Abstract. Given a string w over a finite alphabet Σ and an integer K,
can w be partitioned into strings of length at most K, such that there are
no collisions? We refer to this question as the string partition problem
and show it is NP-complete for various definitions of collision and for a
number of interesting restrictions including |Σ| = 2. This establishes the
hardness of an important problem in contemporary synthetic biology,
namely, oligo design for gene synthesis.

1 Introduction

Many problems in genomics have been solved by the application of elegant
polynomial-time string algorithms, while others amount to solving known NP-
complete problems; for instance, sequence assembly amounts to solving shortest
common superstring [11], and genome rearrangement to sorting strings by re-
versals and transpositions [2]. The hardness of these problems has motivated
extensive research into heuristic algorithms as well as polynomial-time algo-
rithms for useful restrictions [6,10,19,9,8,14,16]. In a similar vein, we establish
the hardness of the following fundamental question: can a string be partitioned
into factors (i.e. substrings), of bounded length, such that no two collide? We re-
fer to this as the string partition problem and study it under various restrictions
and definitions of what it means for two factors to collide.

The study of string partitioning is motivated by an increasingly important
problem arising in contemporary synthetic biology, namely gene synthesis. This
technology is emerging as an important tool for a number of purposes including
the determination of RNAi targeting specificity of a particular gene [12], design
of novel proteins [5] and the construction of complete bacterial genomes [7].
There have been numerous studies utilizing synthetic genes to determine the
potential of gene vaccines [13,3,17,1]. Despite the tremendous need for synthetic
genes for both interrogative studies and for therapeutics, construction of genes,
or any long DNA or RNA sequence, is not a trivial matter. Current technology
can only produce short oligonucleotides (oligos) accurately. As such, a common
approach is to design a set of oligos that could assemble into the desired sequence
[18].

To understand the connection between string partitioning and gene synthesis,
consider the following. A DNA oligo, or strand is a string over the four letter
alphabet {A, C, G, T}. The reverse complement F ′ of an oligo F is determined

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 159–172, 2012.
© Springer-Verlag Berlin Heidelberg 2012

160 A. Condon, J. Maňuch, and C. Thachuk

from F by replacing each A with a T and vice versa, each C with a G and
vice versa, and reversing the resulting string. Two DNA oligos F and F ′ are
said to hybridize if a sufficiently long factor of F is the reverse complement of
a factor of F ′ (see Figure 1). A DNA duplex consists of a positive strand and
its reverse complement, the negative strand. The collision-aware oligo design for
gene synthesis (CA-ODGS) problem is to determine cut points in the positive
and negative strands, which demarcate the oligos to be synthesized, such that
the resulting design will successfully self-assemble. For the oligos to self-assemble
correctly, they should 1) alternate between the positive and negative strands,
with some overlap between successive oligos, and 2) only hybridize to the oligos
they overlap with by design. Since there is variability in the length of the selected
oligos, there are exponentially many designs.

CATTAATCGCAATACCAGGGATCGATTCGTTTTTTCCCTGAATCGAGCAA

AAGCAAAAAAGGGACTTTTACGCGTAAGTAATT

a

b

c

d

e

f

AGCGTTATGGTCCCTAGCT

g

h

5'

3'

3'

5'AGCGTTATGGTCCCTAGCT

AATGCGCATT CCAGGGATCGA

i

CATTA
ATCGC

AATA

TTACG
CGTAA

GTAAT
T

a

b

c

AATGC
GCATT

AGCGT
TATGG

TCCCT
AGCT

h

CCAGG
GATCG

A
i

CCAGG
GATCG

ATTCG
TTTTT

TCCCT
GAATC

GAGCA
A

AAGCA
AAAAA

GGGAC
TT

d

e

f

g

AGCGT
TATGG

TCCCT
AGCT

Fig. 1. An intended self-assembly (top) of a set of oligos for a desired DNA duplex. A
foiled self-assembly (bottom) of the same oligos due to d and h being identical.

In previous work [4], the authors provided some evidence that the CA-ODGS
problem may be hard by showing that partitioning a string into factors, of
bounded length, such that no two are equal is NP-complete, even for strings
over a quaternary alphabet. See Figure 1 for an example design that assembles
incorrectly into two fragments, with the wrong ordering of oligos and therefore
primary sequence, due to identical oligos. In this work, we study the underly-
ing string partition problem in much greater detail. We show that partitioning
strings such that no selected string is a copy/factor/prefix/suffix of another is
NP-complete. We begin by showing that the more general problem of partition-
ing a set of strings is hard and then we show how those instances can be reduced
to single string instances, for each respective definition of collision. See Figure 2
for an example of a single string instance (left) and set of strings instance (right).
In all cases, we demonstrate the problems remain hard even when restricted to
binary strings.

The Complexity of String Partitioning 161

m i s s i s s i p p i a c g g g a t

c c t a g c g g a

c a g g g c t a

Fig. 2. (Left) Two partitions are shown for the string mississippi. The selected strings
in both partitions have maximum length 2. The partition shown above the string is
factor-free: no selected string is a factor of another; however, the partition shown below
the string is not factor-free. (Right) A valid factor-free multiple string partition of a
set of three strings into selected strings of maximum length 3.

2 Preliminaries

A string w is a sequence of letters over an alphabet Σ. Let |w| denote the length
of w, wR a mirror image (reversal) of w, and let (w)i denote the string w repeated
i times. The empty string is denoted as ε. String x is a factor of w if w = αxβ,
for some (possibly empty) strings α and β. Similarly, x is a prefix (suffix) of w if
w = xβ (w = αx) for some (possibly empty) strings α and β. The prefix (suffix)
of length k of w will be denoted as prefixk(w) (suffixk(w)).

A K-partition of w is a sequence P = p1, p2, . . . , pl, for some l, where each pi
is a string over Σ of length at most K and w = p1p2 . . . pl. We say that strings
p1, . . . , pl are selected in the K-partition and that strings pi . . . pj , 1 ≤ i ≤ j ≤ l,
are super-selected, with respect to the selected strings. We say P is equality-
free, prefix-free, suffix-free, or factor-free if for all i, j, 1 ≤ i �= j ≤ l, neither
pi nor pj is a copy, prefix, suffix, or factor, respectively, of the other. We say
such partitions are valid (for the problem in question); otherwise, we say the
partition contains a collision. We generalize the notion of a K-partition to a
set of strings W to mean a K-partition for each string in W . The length of W
is the combined length of the strings in the set and will be denoted by ||W||.
A K-partition for a set of strings is valid if no two elements in any, possibly
different, partition collide. Finally, we will refer to the boundaries of a partition
of string w as cut points, where the first cut point 0 and the last cut point |w|
are called trivial. For instance, the first partition of mississippi in Figure 2 has
the following non-trivial cut points 1, 3, 5, 7 and 9.

In what follows we will prove NP-completeness of various string partition-
ing problems by showing a polynomial reduction from an arbitrary instance of
3SAT(3), a problem shown to be NP-complete by Papadimitriou [15].

Problem 1 (3SAT(3)).
Instance: A formula φ with a set C of clauses over a set X of variables in
conjunctive normal form such that:

1. every clause contains two or three literals,
2. each variable occurs in exactly three clauses, once negated and twice positive.

Question: Is φ satisfiable?

162 A. Condon, J. Maňuch, and C. Thachuk

3 The String Partition Problems

3SAT(3)

EF-MSP(K=2)
EF-MSP(L=2) EF-SP(L=2)

EF-SP(K=2)

FF-MSP(K=3)
FF-MSP(L=2) FF-SP(L=2)

FF-SP(K=3)

PF-MSP(K=2)
PF-SP(K=2)

PF-MSP(L=2) PF-SP(L=2)

Fig. 3. Chain of reductions for different string partition variations from original
3SAT(3) problem. K is maximum selected string size and L is maximum alphabet size.
Parameters are unbounded if not shown. EF , FF and PF are equality-free, factor-free,
and prefix(suffix)-free, respectively.

For each X in {equality, prefix, suffix, factor}, we will consider two string parti-
tion problems.

Problem 2 (X -Free Multiple String Partition (X -MSP) Problem).
Instance: Finite alphabet Σ of size L, a positive integer K, and a set of strings
W over Σ∗.
Question: Is there an X -free, K-partition P of W?

Problem 3 (X -Free String Partition (X -SP) Problem).
Instance: Finite alphabet Σ of size L, a positive integer K, and a string w over
Σ∗.
Question: Is there an X -free, K-partition P of w?

We will show NP-completeness of all these problems even when restricted to
the constant size of the partition (K = 2, 3), or to the binary alphabet (L = 2).
See Figure 3 showing the chain of reductions used to prove the complexity of
the three variations and related restrictions of the problem.

4 Equality-Free String Partition Problems

4.1 Equality-Free Multiple String Partition with Unbounded
Alphabet

We now describe a polynomial reduction from 3SAT(3) to EF-MSP with K =
2 and unbounded alphabet. Let φ be an instance of 3SAT(3), with set C =
{c1, . . . , cm} of clauses, and set X = x1, . . . , xn of variables. We shall define
an alphabet Σ and construct a set of strings W over Σ∗, such that W has a

The Complexity of String Partitioning 163

collision-free 2-partition if and only if φ is satisfiable. Let |ci| denote the number

of literals contained in the clause ci and let c1i , . . . , c
|ci|
i be the literals of clause

ci.
We construct W to be a union of three types of strings: clause strings (C),

enforcer strings (E) and forbidden strings (F). First, for each clause of φ, we
create a clause string C such that an equality-free 2-partition of C unambiguously
selects exactly one literal from C. We refer to the selected strings corresponding
to literals as selected literals. Intuitively, the selected literals of the clause strings
are intended to be a satisfying truth assignment for the variables of φ. Second,
for each variable we create an enforcer string to ensure that selected literals are
consistent. Specifically, the enforcer strings ensure that a positive and a negative
literal for the same variable cannot be simultaneously selected. Finally, we find
it helpful to create so called forbidden strings that ensure certain strings cannot
be selected in the clause and enforcer strings.

We construct an alphabet Σ, formally defined below, which includes a letter
for each literal occurrence in the clauses, one letter for each variable, and the
letters � and � used as delimiters.

Σ = {x̂i; xi ∈ X} ∪ {ĉji ; ci ∈ C ∧ 1 ≤ j ≤ |ci|} ∪ {�,�}

Note that |Σ| is linear in the size of the 3SAT(3) problem φ (at most n+3m+2).

Construction of forbidden strings: To ensure that certain strings cannot be se-
lected in C or E , we will use the following set of forbidden strings F = {�,�}.

Observation 1. No string from the forbidden set F can be selected in C or E.

Construction of clause strings: For each clause ci ∈ C, construct the i-th clause
string to be ĉ1i � ĉ2i if |ci| = 2, and ĉ1i � ĉ2i � ĉ3i if |ci| = 3.

ĉ1i � ĉ2i ĉ1i � ĉ2i � ĉ3i

Fig. 4. The 2-literal clause string (left) and 3-literal clause string (right) used in the
reduction from 3SAT(3) to EF-MSP. Shown below each string are all valid 2-partitions.
Selected literals of a partition are shown in red.

Lemma 1. Given that no string from the forbidden set F is selected in C, exactly
one literal letter must be selected for each clause string in any equality-free 2-
partition of C.

Proof. Consider the clause string for clause ci. Whether ci has two or three
literals, the forbidden substring � cannot be selected alone. Therefore, each �
must be selected with an adjacent literal letter. This leaves exactly one other
literal letter which must be selected (see Figure 4). ��

164 A. Condon, J. Maňuch, and C. Thachuk

Construction of enforcer strings: We must now ensure that no literal of φ that is
selected in C is the negation of another selected literal. By definition of 3SAT(3),
each variable appears exactly three times: twice positive and once negated. Let cpi
and cqj be the two positive and crk the negated occurrences of a variable xv. Then
construct the enforcer string for this variable as follows ĉpi � ĉrkx̂v ĉ

r
kx̂v ĉ

r
k � ĉqj .

ĉpi � ĉrk x̂v ĉrk x̂v ĉrk � ĉqj

Fig. 5. All possible 2-partitions are shown for the enforcer string of a variable xv having
two positive literals cpi and cqj , and one negative literal c

r
k. In each partition, either ĉ

r
k

is selected or both ĉpi and ĉqj are which guarantees that letters for positive and negated
literals of xv cannot be simultaneously selected in C.

Lemma 2. Given that no string from the forbidden set F is selected in C ∪ E,
any equality-free 2-partition of C ∪ E must be consistent. In addition, for any
consistent choice of selecting letters for literals in C, there is an equality-free
2-partition of C ∪ E ∪ F .

Proof. Consider the enforcer string for variable xv with positive literals cpi =
cqj = xv, and the negated literal crk = ¬xv . Figure 5 shows all 9 possible 2-
partitions of the enforcer string (since � is a forbidden string, each � must be
selected with an adjacent letter). It follows that in each of them either ĉrk is
selected or both ĉpi and ĉqj are. In the first case, ĉrk cannot be selected in C and
thus satisfied literals are chosen consistently for xv. In the second case, letters
for neither of the positive occurrences of xv can be selected in C.

To show the second part of the claim, observe that there is a 2-partition of
the enforcer string compatible with any of four valid combinations of selecting
letters for the corresponding literals in C (for example, by choosing the fifth or
the last 2-partitions in Figure 5). Since enforcer strings share only one letter in
common, namely, �, which is never selected in the enforcer strings, there are no
collisions between 2-partitions of all enforcer strings. Furthermore, there are no
collisions between strings selected in C and in E : strings of length two selected
in C contain the letter �, which does not appear in the enforcer strings; strings
of length one are literals and the partitioning of enforcer strings was chosen in
a way that literals (in C) cannot be selected again in E . ��

This completes the reduction. Notice that the reduction is polynomial as the
combined length of the constructed set of strings W = C ∪ E ∪ F is at most
5m+ 9n+ 2.

The Complexity of String Partitioning 165

Theorem 1. Equality-Free Multiple String Partition (EF-MSP) is NP-complete
for K = 2.

Proof. It is easy to see that EF-MSP Problem is in NP: a nondeterministic
algorithm need only guess a partition P where |pi| ≤ K for all pi in P and
check in polynomial time that no two strings in P are equal. Furthermore, it is
clear that an arbitrary instance φ of 3SAT(3) can be reduced to an instance of
EF-MSP, specified by a set of strings W = C ∪ E ∪ F , in polynomial time and
space by the reduction detailed above.

Now suppose there is a satisfying truth assignment for φ. Simply select one
corresponding true literal per clause in C. The construction of clause strings
guarantees that a 2-partition of the rest of each clause string is possible. Also,
since a satisfying truth assignment for φ cannot assign truth values to opposite
literals, then Lemma 2 guarantees that a valid partition of the enforcer strings is
possible which does not conflict with the clause strings. Therefore, there exists
an equality-free multiple string partition of W .

Likewise, consider an equality-free multiple string partition of W . Lemma 1
ensures that at least one literal per clause is selected. Furthermore, Lemma 2
guarantees that if there is no collision, then no two selected variables in the
clauses are negations of each other. Therefore, this must correspond to a satis-
fying truth assignment for φ (if none of the three literals of a variable is selected
in the partition of C then this variable can have arbitrary value in the truth
assignment without affecting satisfiability of φ). ��

4.2 Equality-Free String Partition with Unbounded Alphabet

Theorem 2. Equality-Free String Partition (EF-SP) is NP-complete for
K = 2.

Proof. To show that EF-SP Problem for K = 2 is NP-complete, we will reduce
EF-MSP Problem for K = 2 to it. Consider an arbitrary instance I of EF-MSP
having a set of strings W = {w1, w2, . . . , w	} over alphabet Σ, and maximum
partition size K = 2. We construct an instance Ī of EF-SP as follows. Let
Σ̂ = {�} ∪ {di, for 1 ≤ i < �}, where Σ̂ ∩ Σ = ∅. Set the alphabet of Ī to

Σ̄ = Σ ∪ Σ̂ and the maximum partition size to K̄ = 2. Note that |Σ̄| = |Σ|+ �.
Finally, construct the string

w̄ = �� ���w1d1 ��d1w2d2 ��d2 . . . d	−1 ��d	−1w	 .

The prefix of w̄ of length five can be partitioned in two different ways each
selecting �. Consequently, in any 2-partition of w̄, remaining occurrences of
� must be selected together with an adjacent letter different from �, i.e., all
strings di� and �di must be selected. Therefore, any 2-partition of w̄ contains a
2-partition ofW and the strings D = {�,��,��, d1�,�d1, . . . , d	−1�,�d	−1}.
On the other hand, since all strings in D contain � /∈ Σ, any 2-partition of w̄
together with D forms a 2-partition of W . It follows that there is a 2-partition
of W if and only if there is a 2-partition of w̄. The reduction is in polynomial
time and space as |w̄| = ||W||+ 4�+ 1. ��

166 A. Condon, J. Maňuch, and C. Thachuk

4.3 Equality-Free Multiple String Partition with Binary Alphabet

Theorem 3. The EF-MSP with maximum partition size K = 2 can be poly-
nomially reduced to the EF-MSP Problem with the alphabet size L = 2. Con-
sequently, the EF-MSP is NP-complete for binary alphabet. In addition, this
reduction satisfies the following property: for any set C containing n distinct
strings of length δ, where n is the size of the alphabet of the EF-MSP with maxi-
mum partition size K = 2 and δ ≥ log2 n, every selected word in a valid partition
(if it exists) of the EF-MSP with the binary alphabet is a prefix of a string in
C2, and its maximum partition size is K̄ = 2δ.

Proof. We will show a reduction from the EF-MSP with maximum partition
size K = 2. Consider an arbitrary instance I of EF-MSP having a set of strings
W = {w1, w2, . . . , w	} over alphabet Σ = {a1, . . . , an}, and maximum partition
size K = 2. We will construct an instance Ī of EF-MSP over binary alphabet
Σ̄ = {0, 1}. Let δ be any number greater or equal to log2 n. Let C = {c1, . . . , cn}
be a set of any distinct binary codewords of length δ. We set K̄ to 2δ. Let h be
a homomorphism from Σ to C such that h(ai) = ci, for every i = 1, . . . , n. The
set of strings of Ī will contain h(W), i.e., the original strings in W mapped by
h to the binary alphabet Σ̄. However, we need to guarantee that the partition
of strings in h(W) does not contain fragments of codewords. For this reason, we
also add to W̄ the following strings:

Ŵ = {prefixi(c); c ∈ C, i = 1, . . . , δ − 1} ∪
{prefixi(cd); c, d ∈ C, i = δ + 1, . . . , 2δ − 1}

We set W̄ = h(W) ∪ Ŵ .
First, consider a valid 2-partition P of W . We construct a K̄-partition P̄ of

W̄ as follows. For each string s selected in P , we select the corresponding h(s)

in P̄ . For each string t ∈ Ŵ , we select t entirely. Note that strings selected from
h(W) have length either δ or 2δ, while strings selected from Ŵ have lengths
different from δ and 2δ. Therefore, there cannot be any collisions between these
two groups of selected strings. Furthermore, there are no collisions in the first
group, since there were no collisions in P . Obviously, there are no collisions in
the second group of selected strings. It follows that P̄ is a valid K̄-partition of
W̄ .

Conversely, consider a valid K̄-partition P̄ of W̄ . First, we will show that all
strings in Ŵ are selected without non-trivial cut points. We will prove that by
induction on the length i of strings. The base case, i = 1, is trivially true, as
one-letter strings cannot be partitioned into shorter strings. Now, assume the
claim is true for all strings in Ŵ of lengths smaller than i < 2δ and different
from δ. Consider a word u ∈ Ŵ of length i. Assume that u is partitioned into
strings u1, . . . , ut, where t ≥ 2. Note that the length of u1 is smaller than i. If
the length of u1 is different from δ, we have a collision, as u1 ∈ Ŵ and by the
induction hypothesis, it was selected without non-trivial cut points. Assume that
the length of u1 is δ. Then u2 is a prefix of a codeword of length smaller than

The Complexity of String Partitioning 167

min{δ, i}, and we have a collision again as in the previous case. It follows that
t = 1, i.e., u is selected without non-trivial cut points in P̄ . Second, we show
that all strings selected in the partition of strings in h(W) have lengths either
δ or 2δ. Assume that this is not the case for some string s ∈ h(W). Note that
s = ci1ci2 . . . cip , for some indices i1, . . . , ip. Let s = s1 . . . sq be the partition
of s and let j be the smallest j such that the length of sj is not δ or 2δ. Then
s1 . . . sj−1 = ci1 . . . cir , for some r < p. Consequently, sj is a prefix of cir+1cir+2 ,

i.e., sj ∈ Ŵ , and we have a collision, since sj was already selected in partition

of Ŵ . Hence, each string in h(W) is partitioned into strings of lengths either δ
or 2δ, which can be easily mapped to a valid 2-partition of W .

It follows that there is a 2-partition of W if and only if there is K̄-partition
of W̄ and that the reduction satisfies the property described in the claim.

Finally, let us check that the reduction is polynomial. The size of h(W) is

|W| and the length of h(W) is δ||W||. The size of Ŵ—the set of all unique
prefixes for codewords of length less than δ, and all unique prefixes of pairs of
adjacent codewords with length greater than δ and less than 2δ—is at most
(n2 + n)(δ − 1) as there are n codewords in total. Therefore, the length of Ŵ is
at most n ·(1+ · · ·+δ−1)+n2 ·(δ+1+δ+2+ · · ·+2δ−1) = (3n2+n)(δ−1)δ/2.
Since δ can be chosen to be Θ(log n), the size of W̄ is polynomial in the size of
W and the size of the original alphabet Σ. ��

4.4 Equality-Free String Partition with Binary Alphabet

Theorem 4. Equality-Free String Partition (EF-SP) Problem is NP-complete
for binary alphabet (L = 2).

Proof. We will show a reduction from the EF-MSP Problem with the binary
alphabet (L = 2) satisfying properties listed in Theorem 3. Consider an instance
I of EF-MSP having a set of strings W = {w1, w2, . . . , w	} over alphabet Σ =
{0, 1}, and maximum partition size K = 2δ such that all selected words in any
valid K-partition are prefixes of the elements of a set C2, where C contains
n distinct strings of length δ each starting with 0, � ≤ (n2 + n)(δ − 1), and
δ ≥ max(9, 3 log2(n + 1)). By Theorem 3, this instance can be polynomially
reduced to an instance of the EF-MSP with maximum partition size K = 2. We
will construct an instance Ī of EF-SP over binary alphabet Σ̄ = {0, 1} with the
same partition size K = 2δ. We will show that the size of Ī is polynomial in the
size of I, and hence, it will follow by Theorems 1 and 3, that the EF-SP Problem
is NP-complete.

To construct the string w̄ we will interleave strings w1, . . . , w	 with delimiters
d1, . . . , d	−1 defined in a moment as follows:

w̄ = w1d1w2d2w3 . . . d	−1w	 .

To define the delimiter strings, we will need the following functions. Let bin :
N → {0, 1}∗ be a function mapping a positive integer to its standard binary
representation without the leading one. For example bin(1) = ε, bin(2) = 0 and

168 A. Condon, J. Maňuch, and C. Thachuk

bin(10) = 010. Next, the functions padi : {0, 1}∗ → {0, 1}∗ will pad a given
string with i − 1 ones and one zero on the left, i.e., padi(s) = (1)i−10s. We
will refer to strings returned by this functions as padded strings. The function
chain : {0, 1}∗ → {0, 1}∗ maps a string s with i trailing zeros, i.e., s = s′(0)i,
where s′ is either the empty string or a string ending with 1, to the following
concatenation of padded strings and mirror images (reversals) of padded strings:

chain(s) = padRK−|s|(s) padK−|s|(s
′) padRK−|s|(s

′) padK−|s|(s
′0) padRK−|s|(s

′0)

. . . padK−|s|(s
′(0)i−1) padRK−|s|(s

′(0)i−1) padK−|s|(s) .

Finally, we set the delimiter dj to chain(bin(j)), for every j > 1. For j = 1, we
set d1 to 0(1)K−1(1)K(K−1)/2(1)K−10. To illustrate this definition, let us list the
first five delimiter strings:

d1 = 0(1)K−1(1)K(K−1)/2(1)K−10

d2 = chain(0) = 00(1)K−2(1)K−200(1)K−2(1)K−200

d3 = chain(1) = 10(1)K−2(1)K−201

d4 = chain(00) = 000(1)K−3(1)K−300(1)K−3(1)K−30000(1)K−3(1)K−3000

d5 = chain(01) = 100(1)K−3(1)K−3001

Now, consider a valid K-partition P ofW . We construct a K-partition P̄ of w̄ as
follows. Each substring wj is partitioned in the same way as in P . Each delimiter
dj , where j > 1, is partitioned to its padded strings and mirror images of padded
strings. In addition, the delimiter d1 is partitioned into one mirror image of a
padded string, strings (1), (1)2, . . . , (1)K in any order, and one padded string.
Note that all strings selected in wj ’s are prefixes of C2, and since each c ∈ C
has length δ = K/2 and starts with 0, all these selected strings start with 0 and
the longest run of 1 they contain has length at most δ − 1. Hence, they cannot
collide with strings (1), (1)2, . . . , (1)K and with padded strings which all start
with 1. To show they do not collide with mirror images of padded strings, we
will show that each padded string (or its mirror image) contains a run of at
least δ ones. By the definition of functions padi, each padded string or its mirror
image selected in a delimiter dj contains a substring (1)K−|bin(dj)|−1, i.e., a run
of K − (�log2 j� − 1) − 1 = K − �log2 j� ones. Since j < � ≤ (n2 + n)(δ − 1),
it is enough to show that log2[(n

2 + n)(δ − 1)] ≤ δ. This follows from the fact
that δ ≥ 2 log2(n + 1) + δ/3 and δ/3 ≥ log2(δ − 1) for δ ≥ 9. Finally, we need
to show that all selected padded strings and their mirror images are distinct.
Note that each selected padded string starts with at least δ ones and contains
at least one zero, hence, it cannot be equal to a selected mirror image of padded
string. Hence, it is enough to show that two delimiter dj and dj′ , where j, j

′ < �
do not contain the same padded string or its mirror image. Without loss of
generality, let us only consider the padded strings. If bin(j) and bin(j′) have
different lengths then the padded strings of dj and dj′ start with (1)K−| bin(j)|−10

and (1)K−| bin(j′)|−10, hence they cannot be equal. Therefore, assume they have
the same length. Let s (respectively, s′) be the prefix of bin(j) (respectively,

The Complexity of String Partitioning 169

bin(j′)) without the trailing zeros. Clearly, s �= s′. Now, the padded strings from
dj and dj′ are same only if s0i = s′0i

′
for some i and i′. However, since both s

and s′ end with one or one of them is the empty string, we must have i = i′,
and hence also s = s′, a contradiction. Since the K-partition P of W was valid,
it follows that the K-partition of w̄ is also valid.

Conversely, consider a valid K-partition P̄ of w̄. It is enough to show that P̄
super-selects each delimiter in w̄. We will show by induction on j that delimiters
d1, . . . , dj are super-selected and furthermore, that each of these delimiters is
partitioned into its padded strings and mirror images of padded strings. For
the base case j = 1, it is easy to see that P̄ must select string 0(1)K−1, then
strings (1)1, . . . , (1)K in any order and string (1)K−10, and thus d1 is super-
selected in P̄ and its padded string and its mirror image of a padded string are
selected. Next, assume that the induction hypothesis is satisfied for delimiters
d1, . . . , dj−1. Consider delimiter string dj . First, we will show that dj contains
cut points in P̄ shown by ·’s below:

padRK−|s|(s) · padK−|s|(s
′) padRK−|s|(s

′) · padK−|s|(s
′0) padRK−|s|(s

′0)·
. . . · padK−|s|(s

′(0)i−1) padRK−|s|(s
′(0)i−1) · padK−|s|(s) ,

where s = bin(j) and s′ is the prefix of s without the trailing zeros and i is the
number of trailing zeros. Note that each letter “·” is preceded and followed by
K − | bin(j)| − 1 ones. Since | bin(j)| ≤ δ − 1, we have a run of at least K = 2δ
ones, thus this run must contain a cut point. By contradiction assume that there
is a cut point before the letter “·” in this run of ones. Then the selected string
starting at this cut point is in the form (1)K−i−10u, where i < | bin(j)| and
|u| ≤ i. Note that u might be the empty string and the selected string must
contain the zero preceding u since all strings consisting only of ones are already
selected in d1. Let v = u(0)i−|u|. Since |v| = i < | bin(j)|, we have v = bin(j′),
where j′ < j. The delimiter string dj′ contains padK−i(u) = (1)K−i−10u, which
by the induction hypothesis has been already selected. Analogously, we arrive
into a contradiction, if there is a cut point after “·” in the run of ones surrounding
the letter “·”. It follows that there is a cut point at each letter “·” above in P̄ .

Next, we show that each of super-selected strings of dj :

padK−|s|(s
′) padRK−|s|(s

′), . . . , padK−|s|(s
′(0)i−1) padRK−|s|(s

′(0)i−1) ,

has a cut point exactly in the middle. The length of each padded string or of
its mirror image is at least K − |s| and since | bin(j)| ≤ δ − 1, this length is at
least δ + 1. Hence, there has to be at least one cut point in each of the above
super-selected strings in P̄ . We will first prove the claim for the first super-
selected string padK−|s|(s

′) padRK−|s|(s
′). By contradiction, and without loss of

generality, assume that there is a cut point inside padK−|s|(s
′) = (1)K−|s|−10s′.

Thus a string in the form (1)K−|s|−10u, where u is a proper prefix of s′, is
selected in P̄ . Consider string v = u(0)|s|−|u|. Obviously, |v| = |s| and v is
lexicographically smaller than s, and thus bin(j′) = v for some j′ < j. By
the induction hypothesis, string padK−|v|(u) = (1)K−|s|−10u has been already

170 A. Condon, J. Maňuch, and C. Thachuk

selected in dj′ , a contradiction. It follows by straightforward induction on i
that the remaining super-selected strings are partitioned exactly in the middle.
Finally, observe that if there is a cut point inside padK−|s|(s) then either one
the padded strings of dj′ or one of the padded strings of dj described above

is selected again . Similarly, there cannot be any cut point inside padRK−|s|(s).
Since the length of these two strings is exactly K, there has to be a cut point
just after padK−|s|(s) and just before padRK−|s|(s), i.e., dj is super-selected. This
completes the induction proof, and we have that all delimiter strings in w̄ are
super-selected by P̄ , and thus P̄ gives us also a partition of the set W .

It follows that there is a K-partition of W if and only if there is K-partition
of w̄. Finally, let us check that the reduction is polynomial. The length of each
padded string or its mirror image is at most K. The length of d1 is K(K+3)/2 <
K2. String bin(j) for 1 < j < � has length at most δ − 1, and hence each dj
contains at most 2δ = K padded strings and mirror images of padded strings.
Hence, |dj | ≤ K2. Thus, the total length of w̄ is at most ||W||+ �K2. ��

5 Factor-, Prefix- and Suffix-Free String Partition
Problems

Here, we summarize the results for these partition problems. Due to space limi-
tations, their proof can be found in the full version of this paper.

Theorem 5. Both Factor-Free Multiple String Partition (FF-MSP) and Factor-
Free String Partition (FF-SP) are NP-complete in the following two cases: (a)
when the maximum partition size is 3; and (b) when the alphabet is binary.

Theorem 6. Both Prefix(Suffix)-Free Multiple String Partition (PF-MSP) and
Prefix(Suffix)-Free String Partition (PF-SP) are NP-complete in the following
two cases: (a) when the maximum partition size is 2; and (b) when the alphabet
is binary.

6 Conclusion

We have established the complexity of the following fundamental question: given
a string w over an alphabet Σ and an integer K, can w be partitioned into
factors no longer than K such that no two collide? We have shown this prob-
lem is NP-complete for versions requiring that no string in the partition is a
copy/factor/prefix/suffix of another. Furthermore, we have shown the problems
remain hard even for binary strings. This resolves a number of open questions
from previous work [4] and establishes the theoretical hardness of a practical
problem in contemporary synthetic biology, specifically, the oligo design for gene
synthesis problem.

The Complexity of String Partitioning 171

References

1. Chlichlia, K., Schirrmacher, V., Sandaltzopoulos, R.: Cancer immunotherapy: Bat-
tling tumors with gene vaccines. Current Medicinal Chemistry - Anti-Inflammatory
& Anti-Allergy Agents 4, 353–365 (2005)

2. Christie, D.A., Irving, R.W.: Sorting strings by reversals and by transpositions.
SIAM Journal on Discrete Mathematics 14(2), 193–206 (2001)

3. Cid-Arregui, A., Juarez, V., Hausen, H.Z.: A Synthetic E7 Gene of Human Papillo-
mavirus Type 16 That Yields Enhanced Expression of the Protein in Mammalian
Cells and Is Useful for DNA Immunization Studies. Journal of Virology 77(8),
4928–4937 (2003)

4. Condon, A., Maňuch, J., Thachuk, C.: Complexity of a Collision-Aware String
Partition Problem and Its Relation to Oligo Design for Gene Synthesis. In: Hu, X.,
Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 265–275. Springer, Heidel-
berg (2008)

5. Cox, J.C., Lape, J., Sayed, M.A., Hellinga, H.W.: Protein fabrication automation.
Protein Science 16(3), 379–390 (2007)

6. Eriksen, N.: (1+ ε)-Approximation of sorting by reversals and transpositions. The-
oretical Computer Science 289(1), 517–529 (2002)

7. Gibson, D., Benders, G., Andrews-Pfannkoch, C., Denisova, E., Baden-Tillson, H.,
Zaveri, J., Stockwell, T., Brownley, A., Thomas, D., Algire, M., et al.: Complete
Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome.
Science 319(5867), 1215–1220 (2008)

8. Goldstein, A., Kolman, P., Zheng, J.: Minimum common string partition problem:
Hardness and approximations. The Electronic Journal of Combinatorics 12(R50),
1 (2005)

9. Hannenhalli, S.: Polynomial algorithm for computing translocation distance be-
tween genomes. Discrete Applied Mathematics 71(1), 137–151 (1996)

10. Hartman, T.: A Simpler 1.5-Approximation Algorithm for Sorting by Transposi-
tions. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS,
vol. 2676, pp. 156–169. Springer, Heidelberg (2003)

11. Karp, R.M.: Mapping the genome: some combinatorial problems arising in molec-
ular biology. In: STOC 1993: Proceedings of the Twenty-Fifth Annual ACM Sym-
posium on Theory of Computing, pp. 278–285. ACM, New York (1993)

12. Kumar, D., Gustafsson, C., Klessig, D.F.: Validation of RNAi silencing specificity
using synthetic genes: salicylic acid-binding protein 2 is required for innate immu-
nity in plants. Plant J. 45(5), 863–868 (2006)

13. Lin, C.T., Tsai, Y.C., He, L., Calizo, R., Chou, H.H., Chang, T.C., Soong, Y.K.,
Hung, C.F., Lai, C.H.: A DNA vaccine encoding a codon-optimized human pa-
pillomavirus type 16 E6 gene enhances CTL response and anti-tumor activity. J.
Biomed. Sci. 13(4), 481–488 (2006)

14. Myers, E., Sutton, G., Delcher, A., Dew, I., Fasulo, D., Flanigan, M., Kravitz,
S., Mobarry, C., Reinert, K., Remington, K., et al.: A whole-genome assembly of
Drosophila. Science 287(5461), 2196 (2000)

15. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
16. Pevzner, P., Tang, H., Waterman, M.: An Eulerian path approach to DNA fragment

assembly. Proceedings of the National Academy of Sciences of the United States
of America 98(17), 9748 (2001)

172 A. Condon, J. Maňuch, and C. Thachuk

17. Roden, R., Wu, T.: Preventative and therapeutic vaccines for cervical cancer. Ex-
pert Review of Vaccines 2(4), 495–516 (2003)

18. Stemmer, W.P., Crameri, A., Ha, K.D., Brennan, T.M., Heyneker, H.L.: Single-
step assembly of a gene and entire plasmid from large numbers of oligodeoxyri-
bonucleotides. Gene 164(1), 49–53 (1995)

19. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–
3346 (2005)

Towards an Optimal Space-and-Query-Time

Index for Top-k Document Retrieval�

Wing-Kai Hon1, Rahul Shah2, and Sharma V. Thankachan2

1 Department of CS, National Tsing Hua University, Taiwan
wkhon@cs.nthu.edu.tw

2 Department of CS, Louisiana State University, USA
{rahul,thanks}@csc.lsu.edu

Abstract. Let D ={d1, d2, ...dD} be a given set of D string documents
of total length n, our task is to index D, such that the k most relevant
documents for an online query pattern P of length p can be retrieved
efficiently. We propose an index of size |CSA|+n logD(2+o(1)) bits and
O(ts(p) + k log log n + poly log log n) query time for the basic relevance
metric term-frequency, where |CSA| is the size (in bits) of a compressed
full text index ofD, with O(ts(p)) time for searching a pattern of length p.
We further reduce the space to |CSA|+ n logD(1 + o(1)) bits, however
the query time will be O(ts(p) + k(log σ log log n)1+ε + poly log log n),
where σ is the alphabet size and ε > 0 is any constant.

1 Introduction and Related Work

Document retrieval is a special type of pattern matching that is closely related
to information retrieval and web searching. In this problem, the data consists of
a collection of text documents, and given a query pattern P , we are required to
report all the documents in which this pattern occurs (not all the occurrences). In
addition, the notion of relevance is commonly applied to rank all the documents
that satisfy the query, and only those documents with the highest relevance
are returned. Such a concept of relevance has been central in the effectiveness
and usability of present day search engines like Google, Bing, Yahoo, or Ask.
When relevance is considered, the query has an additional input parameter k,
and the task is to report the k documents with the highest relevance to the
query pattern (in the decreasing order of relevance), instead of finding all the
documents that contain the query pattern (as there may be too many). More
formally, let D ={d1, d2, ...dD} denote a given set of D string documents to be
indexed, whose total lengths is n, and let P denote a query pattern of length p.
Let occ be the number of occurrences of this pattern over the entire collection D,
and ndoc be the number of documents out of D in which the pattern P appears.
One of the main issues is the fact that k # ndoc # occ. Thus, it is important
to design indexes which do not have to go through all the occurrences or even
all the documents in order to answer a query.

� This work is supported in part by Taiwan NSC Grant 99-2221-E-007-123 (W. Hon)
and US NSF Grant CCF–1017623 (R. Shah).

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 173–184, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

174 W.-K. Hon, R. Shah, and S.V. Thankachan

The research in string document retrieval was introduced by Matias et al. [20],
and Muthukrishnan [22] formalized it with the introduction of relevance met-
rics like term-frequency (tf) and min-dist1, and proposed indexes with efficient
query performance. Since then, this has been an active research area [29,30]. The
top-k document retrieval problem was introduced in [12], where an O(n log n)-
word index is proposed with O(p + k + logn log logn) query time for the case
when the relevance metric is term-frequency. A recent flurry of activities in this
area [26,16,8,2,4,27,24,18,13,25] came with Hon et al.’s work [15] where they gave
a linear-space index with O(p+k log k) query time, which works for a wide class
of relevance metrics. The recent structure by Navarro and Nekrich [23] achieves
optimal O(p + k) query time using O(n(log σ + logD + log log n)) bits, which
improves the results in [15] in both space and time. If the relevance metric is
term-frequency, their index space can be further improved to O(n(log σ+logD))
bits. All these interesting results have contributed towards the goal of achieving
an optimal query time index. However, the space is far from optimal, moreover
the constants hidden in the space bound can restrict the use of these indexes in
practice. On the other side, the succinct index proposed by Hon et al. [15] takes
about O(log4 n) time to report each document, which is likely to be impractical.
This time bound has been further improved by [2,8], but still polylog(n) time
is required per reported document. Another line of work is to derive indexes
using about n logD bits additional space, and the best known index takes a per
document report time of O(log k log1+ε n) [2]. Efficient practical indexes are also
known [4], but their query algorithms are heuristics with no worst-case bound.
In this paper, we introduce two space efficient indexes with per document report
time poly-log-logarithmic in n. The main results are summarized as follows.

Theorem 1. There exists an index of size |CSA| + n logD(2 + o(1)) bits with
a query time of O(ts(p) + k log logn + poly log logn) for retrieving top-k doc-
uments with the highest term frequencies, where |CSA| is the size (in bits) of
a compressed full text index of D with O(ts(p)) time for searching a pattern of
length p.

Theorem 2. There exists an index of size |CSA|+n logD(1+ o(1)) bits with a
query time of O(ts(p) + k(log σ log logn)1+ε + poly log logn) for retrieving top-k
documents with the highest term frequencies, where |CSA| is the size (in bits)
of a compressed full text index of D with O(ts(p)) time for searching a pattern
of length p, σ is the alphabet size and ε > 0 is a constant.

Table 1 gives a summary of the major results in the top-k frequent document
retrieval problem. The time complexities are simplified by assuming that we are
using the full text index proposed by Belazzougui and Navarro, of size |CSA| =
nHh + O(n) + o(n log σ) bits and ts(p) = O(p), where Hh is the hth order
empirical entropy of D [1]. We also assume D < nε for some ε < 1 and ε > 0 is
any constant.

1 tf(P, d) is the number of occurrences of P in d and min-dist(P, d) is the minimum
distance between two occurrences of P in d.

Towards an Optimal Space-and-Query-Time Index 175

Table 1. Indexes for Top-k Frequent Document Retrieval

Source Index Space (in bits) Time per reported document

[12] O(n log n+ n log2 D) O(1)

[15] O(n log n) O(log k)

[4] |CSA|+ n logD(1 + o(1)) Unbounded

[15] 2|CSA|+ o(n) O(log4+ε n)

[2] 2|CSA|+ o(n) O(log k log2+ε n)

[8] |CSA|+O(n logD
log logD

) O(log3+ε n)

[2] |CSA|+O(n logD
log logD

) O(log k log2+ε n)

[2] |CSA|+O(n log log logD) O(log k log2+ε n)

[23] O(n log σ + n logD) O(1)

[8] |CSA|+ n logD + o(n) O(log2+ε n)

[2] |CSA|+ n logD + o(n) O(log k log1+ε n)

Ours |CSA|+ 2n logD(1 + o(1)) O(log log n)

Ours |CSA|+ n logD(1 + o(1)) O((log σ log log n)1+ε)

2 Preliminaries

2.1 Top-k Using Range Maximum/Minimum Queries

One of the main tools in top-k retrieval is the range maximum/minimum query
structures (RMQ) [6]. We summarize the results in the following lemmas (We
defer the proofs to the full version [14]).

Lemma 1. Let A[1...n] be an array of n numbers. We can preprocess A in linear
time and associate A with a 2n+ o(n) bits RMQ data structure such that given
a set of t non-overlapping ranges [L1, R1], [L2, R2], . . . , [Lt, Rt], we can find the
largest (or smallest) k numbers in A[L1..R1] ∪ A[L2..R2] ∪ · · · ∪ A[Lt..Rt] in
unsorted order in O(t+ k) time.

Lemma 2. Let A[1...n] be an array of n integers taken from the set [1, π], and
each number A[i] is associated with a score (which may be stored separately
and can be computed in tscore time). Then the array A can be maintained in
O(n log π) bits, such that given two ranges [x′, x′′], [y′, y′′], and a parameter k,
we can search among those entries A[i] with x′ ≤ i ≤ x′′ and y′ ≤ A[i] ≤ y′′, and
report the k highest scoring entries in unsorted order in O((log π + k)(log π +
tscore)) time.

3 A Brief Review of Hon et al.’s Index

In this section we give a brief description of Hon et al.’s index [15]. Let T =
d1#d2# · · ·#dD# be a text obtained by concatenating all the documents in D,
separated by a special symbol # not appearing elsewhere inside any of the dis.

176 W.-K. Hon, R. Shah, and S.V. Thankachan

Then the suffix tree [31,21,19] of T is called the generalized suffix tree GST of D.
Then any given substring T [a...b] (which does not contain #) of T is a substring
of some document dx ∈ D, and the value of x can be computed in O(1) time
by maintaining an (n+D)(1 + o(1))-bit auxiliary data structure2. Each edge in
GST is labeled by a character string and for any node u, the path label of u,
denoted by path(u) is the string formed by concatenating the edge labels from
root to u. Note that the path label of the ith leftmost leaf in GST is exactly the
ith lexicographically smallest suffix of T . For a pattern P [1..p] that appears in
T , the locus node of P is denoted by locus(P), which is the unique node closest
to the root such that P is a prefix of path(locus(P)), and can be determined in
O(p) time. We augment the following structures on GST.

N-structure: An N-structure entry is a triplet (doc, score, parent) and is as-
sociated with some node in GST. If u is a leaf node with path(u) is a suffix of
document d, the an N-structure entry with doc = d is stored at u. However, if it
is an internal node, multiple N-structure entries may be stored at u as follows:
an entry with doc = d is stored if and only if at least two children of u contain (a
suffix of) document d in their subtrees. The score field in an N-structure entry
for a document d associated with a node u is score(path(u), d): the relevance
score of d with respect to the pattern path(u)3. The parent field stores (the pre-
order rank of) the lowest ancestor of u which has an entry for document d in its
N-structure. In case there is no such ancestor, we assign a dummy node which
is regarded as the parent of the root of GST.

I-structure: An I-structure entry is a triplet (doc, score, origin) and is associ-
ated with some node in GST. If node u has an N-structure entry for document d
and an N-structure entry of another node v is given by (d, score(path(v), d), u),
then u will have an I-structure entry (d, score(path(v), d), v). An internal node
may be associated with multiple I-structure entries, and these entries are main-
tained in an array, sorted by the origin field. In addition, a range maximum
query (RMQ) structure is maintained over the array based on the score field.

3.1 Query Answering

To answer a top-k query, we first search for the query pattern P in GST and find
its locus node locus(P). We also find the rightmost leaf locusR(P) in the subtree
of locus(P). Now, our task is to find, among the documents whose suffixes appear
in the subtree of locus(P), which k of them have the highest occurrences of P .
Hon et al. showed that this can be done by checking only the I-structure entries
associated with the proper ancestors of locus(P), and then retrieving those k
entries which has the highest score values and whose origin is from the subtree of
locus(P) (inclusively). The number of ancestors of P is bounded by p and since
the I-structure entries are sorted according to the origin values, the entries to be
checked will occupy a contiguous region in the sorted array. The boundaries of

2 Maintain a bit vector B[1...(n + D)], where B[i] = 1 if and only if T [i] = #, then
x = rankB(a) + 1 and can be computed in O(1) time using [28].

3 The score is dependent only on d and the set of occurrences of path(u) in d.

Towards an Optimal Space-and-Query-Time Index 177

the contiguous region can be obtained by performing a binary search based on
(the pre-order ranks of) locus(P) and locusR(P). Once we get the boundaries of
the contiguous region in each proper ancestors of locus(P), we can apply RMQ
queries repeatedly over score and retrieve the top-k scoring documents in sorted
order in O(p logn + k log k) time. The binary search step can be made faster
by maintaining a predecessor structure [32] and the resulting time will become
O(p log log n + k log k). This time has been further improved to O(p + k log k)
by introducing two additional fields δf and δ	 in each N-structure entry. The
number of N-structure entries (hence I-structure entries) is ≤ 2n. Therefore the
index space is O(n log n) bits.

4 Our Linear-Space Index

In this section, we derive a modified version of Hon et al.’s linear index without
δ fields and still achieve O(p) term in query time. The main technique is by
introducing a novel criterion that categorizes the I-structure entries as near and
far. The far entries associated with certain nodes can be maintained together as
a combined I-structure, which reduces the number of I-structure boundaries to be
searched to O(p/π+π), where π is a sampling factor. By choosing π = log logn,
we shall use predecessor search structure (instead of δ fields) and can compute
the I-structure boundaries in O((p/π+π) log logn) = O(p+log2 logn) time. We
have the following result.

Theorem 3. There exists an index of size O(n log n) bits for top-k document
retrieval with O(p+ log2 logn+ k log log logn+ k log k) query time.

Proof. Firstly, we mark all nodes in GST whose node-depths are multiples of π
(node-depth of root is 0). Thus, any unmarked node is at most π nodes away
from its lowest marked ancestor. Also, the number of marked ancestors of any
node = �(number of ancestors)/π�. For any node w in GST, we define a value
ζ(w) < π, where ζ(w) = 0 if w is marked, else it is the number of nodes in
the path from w (exclusively) till its lowest marked ancestor (inclusively). In
each I-structure entry (d, s, v) associated with a node w, we maintain a fourth
component ζ(w). Next, we categorize the I-structure entries as far and near as
follows:

An I-structure entry associated with a node w, with origin = v, is near
if there exists no marked node in the path from v (inclusively) to w
(exclusively), else it is far.

We restructure the entries such that all far entries are maintained in a combined
I-structure associated with some marked nodes as follows: if (d, s, v, ζ(w)) is a
far entry in the I-structure Iw associated with node w, then we remove this entry
from Iw and move to a combined I-structure associated with the node u, where
u = w if w is marked, else u is the lowest marked ancestor of w (i.e., u is ζ(w)
nodes above w). All the entries in the combined I-structure are maintained in
the sorted order of origin values. A predecessor search structure over the origin

178 W.-K. Hon, R. Shah, and S.V. Thankachan

field and RMQ structure over the score field is maintained over all I-structures.
Next, to understand how to answer a query with our index, we introduce the
following auxiliary lemma.

Lemma 3. The top-k documents corresponding to a pattern P can be obtained
by checking the following I-structure entries (with origins coming from the subtree
of locus(P)):
(i) near entries in the regular I-structures associated with the nodes in the path
from locus(P) (exclusively) till its lowest marked ancestor u (inclusively), and
there are at most π such nodes;
(ii) far entries with ζ < ζ(locus(P)) in the combined I-structure of u, and
(iii) far entries in the combined I-structures associated with the marked proper
(at most p/π) ancestors of u.

Proof. In the original index by Hon et al., we need to check the I-structure
entries in all ancestors of locus(P). We may categorize them as follows:

(a) near entries associated with a node in the subtree of u (inclusively);

(b) far entries associated with a node in the subtree of u (inclusively);

(c) far entries associated with an ancestor node of u;

(d) near entries associated with an ancestor node of u.

All entries in (a) belong to category (i) in the lemma. The valid entries in (b)
belong to category (ii), where the inequality ζ < ζ(locus(P)) ensures that the all
entries in category (ii) were originally from an ancestor of locus(P) . All those
entries in (c), which may be a possible candidate for the top-k documents, belong
to category (iii) in the lemma. None of the entries in (d) can be a valid output,
as the origin of those entries are not coming from the subtree of u (from the
definition of a near entry), hence not from the subtree of locus(P). On the other
hand, since we always check for the entries with origins coming from the subtree
of locus(P), these entries must be a subset of those checked in the original index
by Hon et al. In conclusion, the entries checked in both indexes are exactly the
same, and the lemma follows. ��

Based on the above lemma, we may compute k candidate answers from each
category and the actual top-k answers can be computed by comparing the score
of these 3k documents. In category (i) we have at most π boundaries to be
searched, which takes O(π log logn) time, and then retrieve the k candidate
answers in the unsorted order in O(π + k) time using lemma 1. Similarly in
category (iii), the number of I-structure boundaries to be searched is p/π and
it takes total O((p/π) log logn+ k) time. However, for category (ii), we have an
additional constraint on ζ value of the entries. To facilitate the process, the ζ
components are maintained by the data structure in Lemma 2 in O(n log π) bits,
so that the desired answers can be reported in O((log π+k)(log π+O(1))) time.
The O(k log k) is for sorting the answers. The time for initial pattern search is
O(p). Putting all together with π = log logn, we obtain Theorem 3. ��

Towards an Optimal Space-and-Query-Time Index 179

5 Space-Efficient Encoding of Our Index

In this section, we derive a space-efficient index for the relevance metric term-
frequency. The major contribution is that, instead of using O(log n) bits for an
I-structure entry, we design some novel encodings so that each entry requires
only logD + log π + O(1) bits. The GST will be replaced by a compressed full
text index CSA of size |CSA| bits [11,5,10,1] along with the tree encoding of
GST in 4n + o(n) bits [17]4. Thus locus(P) can be computed in O(p) time by
taking the LCA (lowest common ancestor) of leftmost and rightmost leaf in the
suffix range of P .

A core component of our index is the document array DA, where DA[i] stores
the id of document to which the ith smallest suffix in GST belongs to. The
DA can be maintained in n logD+O(n logD

log logD) bits and can answer the following

queries in O(log logD) time [9]. (i) access(i): returnsDA[i]; (ii) rank(d, i): returns
the number of occurrences of document d in DA[1...i]; (iii) select(d, j): is −1 if
j > |d|, else i where DA[i] = d and rank(d, i) = j. Now we show how to use
DA for efficient encoding and decoding of different components in an I-structure
entry.

Term-frequency Encoding: Given an I-structure entry with origin = v and
doc = d, the corresponding term-frequency score is exactly the number of occur-
rences of d in DA[i...j], where i and j are the leftmost leaf and the rightmost leaf
of v, respectively. Thus, given the values v and d, we can find i and j in constant
time based on the tree encodings of the GST, and then compute term-frequency
in O(log logD) time based on two rank queries on DA. Thus, we will discard
the score field completely for all I-structure entries, but keeping only the RMQ
structure over it.

Origin Encoding: Origin encoding is the most trickiest part, and is based on
the following observation by Hon et. al [15]: for any document d and for any
node v in GST, there is at most one ancestor of v that contains an I-structure
entry with doc = d and origin from a node in the subtree of v (inclusively).
We introduce two separate schemes for encoding origin fields in near and far
entries. This reduces the origin array space from O(n log n) bits to O(n) bits
and decoding takes O(log logD) time.

Encoding near entries: Let Iw be a regular I-structure (with only near entries)
associated with a node w and let wq represents the pre-order rank of qth child
of w. Then from the definition of I-structures, for a given document d, there
exists at most one entry in Iw with doc = d and origin from the sub-tree of wq

(inclusively). Thus, for a given document d and an internal node w, an entry
in Iw can be associated to a unique child node wq of w (where wq represent

4 Any n-node ordered tree can be represented in 2n + o(n) bits, such that if each
node is labeled by its pre-order rank in the tree, any of the following operations can
be supported in constant time [17]: parent(i), which returns the parent of node i;
child(i, q), which returns the q-th child of node i; child-rank(i), which returns the
number of siblings to the left of node i; lca(i, j), which returns the lowest common
ancestor of two nodes i and j; and lmost-leaf(i)/rmost-leaf(i), which returns the
leftmost/rightmost leaf of node i.

180 W.-K. Hon, R. Shah, and S.V. Thankachan

the qth child of w from left, 1 ≤ q ≤ degree(w), and pre-order rank of wq

can be computed in constant time [17]), such that origin is in the subtree of wq.
Moreover, this origin must be the node, closest to root, in the subtree of wq which
has an N-structure entry for d. From the definition of N-structure, this origin
node must be the lowest common ancestor (LCA) of the leaves corresponding to
the first and last suffixes of d in the subtree of wq , which can be computed using
the tree encoding of GST and a constant number of rank/select operations on
DA in total O(log logD) time. Therefore, by maintaining the information about
wq (origin-child = q) for each I-structure entry, the corresponding origin value
can be decoded in O(log logD) time. Thus, the origin array can be replaced
completely by the origin-child array. Recall that each node maintains the I-
structure entries in sorted order of the origins, so that the corresponding origin-
child array will be monotonic increasing. In addition, the value of each entry is
between 1 and degree(w), so that the array can be encoded using a bit vector
of length |Iw| + degree(w)5. The total size of the bit vectors associated with
all nodes can be bounded by

∑
w∈GST (|Iw | + degree(w)) = O(n) bits. The

O(n log n) bits predecessor search structure over origin array is replaced by a
structure of o(n) bits space and O(log logn) search time6.

Encoding far entries: In order to encode the origin values in far entries, we
introduce the following notions. Let w∗ be a marked node, then another node
w∗

q is called its qth marked child, if w∗
q is the qth smallest (in terms of pre-

order rank) marked node with w∗ as its lowest marked ancestor. Given the
pre-order rank of w∗, the pre-order rank of w∗

q can be computed in constant
time by maintaining an additional O(n) bits structure7. Let Iw∗ represents the
combined I-structure (with only far entries) associated with a marked node w∗.
The origin value of any far entry in Iw∗ is always a node in the subtree of
some marked child w∗

q of w∗, and is always unique for a given q and doc =
d. Thus by maintaining the information about w∗

q (origin-child∗ = q), we can
decode the corresponding origin value for a particular document d. i.e. origin
is the LCA of the leaves corresponding to the first and last suffix of d in the

5 A monotonic increasing sequence S = 1333445 can be encoded as B = 101100010010
in |B|(1 + o(1)) bits, where S[i] = rank1(select0(i)) on B, and can be computed in
constant time [28].

6 Construct a new array by sampling every log2 nth element in the original array, and
maintain predecessor search structure over it. Now, when we perform the query, we
can first query on this sampled structure to get an approximate answer, and the
exact answer can be obtained by performing binary search on a smaller range of
only log2 n elements in the original array. The search time still remains O(log log n).

7 Let GST∗ be a tree induced by the marked nodes in GST, so that w∗ is the lowest
marked ancestor of w∗

q in GST if and only if the node corresponding to w∗ in GST∗

(say, w) is the parent of node corresponding to w∗
q (say wq) in GST

∗. Moreover,
w∗

q is said to be the qth marked child of node w∗ in GST, if wq is the qth child
of q in GST∗. Given the pre-order rank of any marked node in GST, its pre-order
rank in GST∗ (and vice versa) can be computed in constant time by maintaining an
additional bit vectors of size 2n+ o(n) which maintain the information if a node is
marked or not.

Towards an Optimal Space-and-Query-Time Index 181

sub-tree of w∗
q , which can be computed using the tree encoding of GST and a

constant number of rank/select operations on DA in total O(log logD) time.
Now origin array can be replaced by origin-child∗ array, which can be encoded
in
∑

w∗∈GST∗(|Iw∗ | + degree(w∗)) = O(n) bits (using the similar scheme for
encoding origin-child array for near entries). The predecessor search structure
is replaced by o(n) bits sampled predecessor search structure.

Query Answering : Query answering algorithm remains the same as that
in our linear index, except the fact that decoding origin and term-frequency
takes O(log logD) time. Then the time complexities for the steps in Lemma
3 are as follows: Step (i) O((π log log n + k) log logD), Step (ii) O((log π +
k)(log π + log logD)) and Step (iii) (((p/π) log logn + k) log logD). Since the
term-frequencies are positive integers ≤ n, we shall use a y-fast trie [32] to get
the sorted answer in O(k log logn) time. By choosing π = log2 logn, the query
time can be bounded by O(ts(p) + p + log4 logn + k log logn), which gives the
query time in Theorem 1. Here ts(p) is the time for initial pattern searching in
CSA, and is Ω(p) for space-optimal CSA’s [5,1].

Space Analysis: The index consists of a full text index of |CSA| bits, DA of
n logD(1+ o(1)) bits, I-structures of total 2n(logD+O(log π)+O(1)) bits, tree
encodings, RMQ structures and sampled predecessor search structures (together
O(n) bits). By choosing π = log2 logn, the index space can be bounded by
|CSA|+ n logD(3 + o(1)) +O(n log log log n) bits. In order to obtain the space
bounds in Theorem 1, we may categorize D into the following two cases.

1. When logD/ log logD > log log log n, the O(n log log logn) term can be ab-
sorbed in o(n logD). The space can be further reduced by n logD bits from
the following observation that the term-frequency is 1 for those I-structure
entries with origin = a leaf in GST, and there are n such entries. Therefore
all such entries can be deleted and in case if such a document is within top-k,
that can be reported using document listing. For that we shall use Muthukr-
ishnan’s chain array idea [22]. The chain array C[1...n] is defined as follows:
C[i] = j, where j < i is the largest number with DA[i] = DA[j] and can be
simulated using DA as j = select(DA[i], rank(DA[i], i)− 1) in O(log logD)
time. Thus we do not maintain chain array, instead an 2n+o(n) = o(n logD)
bits RMQ structure [6] over it. Let [L,R] be the suffix range of P in the full
text index, then document listing can be performed (in O(log logD) time per
document) by reporting all those documents DA[i] such that L ≤ i ≤ R and
C[i] < L using repeated RMQ’s. Although those documents with frequency
> 1 will get retrieved again (but only once), it will not affect the overall time
complexity.

2. When logD/ log logD ≤ log log logn, we shall use the index described in
Theorem 4. Thus the space-query bounds will be |CSA|+ n logD(1 + o(1))
bits and O(ts(p) + log logn+ k logD log2 logD) = O(ts(p) + k log log n) re-
spectively.

By combining the above case, we get the result in Theorem 1. ��

182 W.-K. Hon, R. Shah, and S.V. Thankachan

Theorem 4. There exists an index of size |CSA| + n logD(1 + o(1)) bits with
a query time of O(ts(p) + log logn+ k logD log2 logD) for retrieving top-k doc-
uments with the highest term frequencies for a query pattern P of length p.

Proof. See the full version [14].

6 Saving More Space

The most space-efficient version of our index (described in theorem 2) is proved
in this section. First, we give the following auxiliary lemma (see the full version
for proof [14]).

Lemma 4. There exists an O(n log σ log logn) bits structure, which can answer
access/rank/select queries on DA in O(log2 logn) time, and can compute an
entry C[i] in the chain-array data structure (for document listing) in O(log logn)
time.

To achieve space reduction, we categorize D into the following cases:

1. logD < (log σ log logn)1+ε/2: We shall use the index described in Theorem
4 and the query time will be O(ts(p) + k(log σ log logn)1+ε).

2. logD ≥ (log σ log logn)1+ε/2: In this case DA is replaced by a structure
described in Lemma 4, which makes the index space n logD(1 + o(1)) bits.
Then by re-deriving the bounds with π = log3 logn, our query time will be
O(ts(p) + log6 logn+ k log2 logn).

The O(k log2 logn) term can be further improved to O(k log log n) from
the following observation that, once we get the I-structure boundaries, we
do not need any information about the origin fields for further query pro-
cessing. Thus the only value needed is the term-frequency, which can be
computed as follows: a sampled document array Ds

A is maintained, such
that DA[i] = d is stored if and only if (rankDA(d, i))mod ρ = 0, for an
integer ρ = Θ(logD), else we store a NIL value, where rankDA(d, j) is the
number of occurrences of d in DA[1...j]. Then Ds

A can be maintained in
O(n logD/α) = O(n) bits and can compute an approximate rank. That is
ρ rankD2

A
(d, j) ≤ rankDA (d, j) ≤ ρ rankD2

A
(d, j) + ρ. Thus associated with

each I-structure entry, we shall store this error (= Θ(logD)), which is equal
to actual term-frequency minus approximate term-frequency (computed us-
ingDs

A). Thus by storing this error corresponding to each I-structure entry in
total O(n log ρ) = O(n log logD) = o(n logD) bits space, the term-frequency
can be obtained in O(log logD) = O(log logn) time by first computing the
approximate term-frequency using Ds

A and then by adding this stored value.
Note that for the initial I-structure boundary searches, the origin decoding
is performed using the structure in Lemma 4. Moreover, this structure can
compute chain array values in O(log logn) time, which can be used for docu-
ment listing in O(log logn) time per report (when the I-structure entries with
term-frequency = 1 are deleted from the index, and later such a document
is an answer for a query).

Towards an Optimal Space-and-Query-Time Index 183

By combining the above cases, we obtain an |CSA|+n logD(1+o(1)) bits index
with query time O(ts(p)+k(log σ log logn)1+ε+log6 logn), which completes the
proof of Theorem 2. ��

References

1. Belazzougui, D., Navarro, G.: Alphabet-Independent Compressed Text Index-
ing. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942,
pp. 748–759. Springer, Heidelberg (2011)

2. Belazzougui, D., Navarro, G.: Improved Compressed Indexes for Full-Text Doc-
ument Retrieval. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011.
LNCS, vol. 7024, pp. 386–397. Springer, Heidelberg (2011)

3. Blum, M., Floyd, R.W., Pratt, V., Rivest, R., Tarjan, R.: Time Bounds for Selec-
tion. Journal of Computer and System Sciences 7(4), 448–481 (1973)

4. Shane Culpepper, J., Navarro, G., Puglisi, S.J., Turpin, A.: Top-k Ranked Docu-
ment Search in General Text Databases. In: de Berg, M., Meyer, U. (eds.) ESA
2010. LNCS, vol. 6347, pp. 194–205. Springer, Heidelberg (2010)

5. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Trans. Alg. 3(2), art. 20 (2007)

6. Fischer, J.: Optimal Succinctness for Range Minimum Queries. In: López-Ortiz, A.
(ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010)

7. Frederickson, G.N.: An Optimal Algorithm for Selection in a Min-Heap. Informa-
tion and Computation 104(2), 197–214 (1993)

8. Gagie, T., Navarro, G., Puglisi, S.J.: Colored Range Queries and Document Re-
trieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 67–81.
Springer, Heidelberg (2010)

9. Golynski, A., Munro, J.I., Rao, S.S.: Rank/Select Operations on Large Alphabets:
A Tool for Text Indexing. In: SODA, pp. 368–373 (2006)

10. Grossi, R., Vitter, J.S.: Compressed Suffix Arrays and Suffix Trees with Applica-
tions to Text Indexing and String Matching. SIAM Journal on Computing 35(2),
378–407 (2005)

11. Grossi, R., Gupta, A., Vitter, J.S.: High-Order Entropy-Compressed Text Indexes.
In: SODA, pp. 841–850 (2003)

12. Hon, W.K., Patil, M., Shah, R., Wu, S.-B.: Efficient Index for Retrieving Top-k
Most Frequent Documents. Journal of Discrete Algorithms 8(4), 402–417 (2010)

13. Hon, W.-K., Shah, R., Thankachan, S.V., Vitter, J.S.: String Retrieval for Multi-
pattern Queries. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393,
pp. 55–66. Springer, Heidelberg (2010)

14. Hon, W.-K., Shah, R., Thankachan, S.V.: Towards an Optimal Space-and-Query-
Time Index for Top-k Document Retrieval. In: Kärkkäinen, J., Stoye, J. (eds.)
CPM 2012. LNCS, vol. 7354, pp. 173–184. Springer, Heidelberg (2012)

15. Hon, W.K., Shah, R., Vitter, J.S.: Space-Efficient Framework for Top-k String
Retrieval Problems. In: FOCS, pp. 713–722 (2009)

16. Hon, W.-K., Shah, R., Vitter, J.S.: Compression, Indexing, and Retrieval for Mas-
sive String Data. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129,
pp. 260–274. Springer, Heidelberg (2010)

17. Jansson, J., Sadakane, K., Sung, W.K.: Ultra-succinct Representation of Ordered
Trees. In: SODA, pp. 575–584 (2007)

184 W.-K. Hon, R. Shah, and S.V. Thankachan

18. Karpinski, M., Nekrich, Y.: Top-k Color Queries for Document Retrieval. In:
SODA, pp. 401–411 (2011)

19. Manber, U., Myers, G.: Suffix Arrays: A New Method for On-Line String Searches.
SIAM Journal on Computing 22(5), 935–948 (1993)

20. Matias, Y., Muthukrishnan, S.M., Şahinalp, S.C., Ziv, J.: Augmenting Suffix Trees,
with Applications. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.)
ESA 1998. LNCS, vol. 1461, pp. 67–78. Springer, Heidelberg (1998)

21. McCreight, E.M.: A Space-Economical Suffix Tree Construction Algorithm. Jour-
nal of the ACM 23(2), 262–272 (1976)

22. Muthukrishnan, S.: Efficient Algorithms for Document Retrieval Problems. In:
SODA, pp. 657–666 (2002)

23. Navarro, G., Nekrich, Y.: Top-k document retrieval in optimal time and linear
space. In: SODA, pp. 1066–1077 (2012)

24. Navarro, G., Puglisi, S.J., Valenzuela, D.: Practical Compressed Document Re-
trieval. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630,
pp. 193–205. Springer, Heidelberg (2011)

25. Navarro, G., Valenzuela, D.: Space-Efficient Top-k Document Retrieval. To appear
in SEA (2012)

26. Navarro, G., Puglisi, S.J.: Dual-Sorted Inverted Lists. In: Chavez, E., Lonardi, S.
(eds.) SPIRE 2010. LNCS, vol. 6393, pp. 309–321. Springer, Heidelberg (2010)

27. Patil, M., Thankachan, S.V., Shah, R., Hon, W.K., Vitter, J.S., Chandrasekaran,
S.: Inverted Indexes for Phrases and Strings. In: SIGIR, pp. 555–564 (2011)

28. Raman, R., Raman, V., Rao, S.: Succinct Indexable Dictionaries with Applica-
tions to Encoding k-ary Trees, Prefix Sums and Multisets. ACM Transactions on
Algorithms 3(4) (2007)

29. Sadakane, K.: Succinct Data Structures for Flexible Text Retrieval Systems. Jour-
nal of Discrete Algorithms 5(1), 12–22 (2007)

30. Välimäki, N., Mäkinen, V.: Space-Efficient Algorithms for Document Retrieval.
In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 205–215. Springer,
Heidelberg (2007)

31. Weiner, P.: Linear Pattern Matching Algorithms. In: SWAT (1973)
32. Willard, D.E.: Log-logarithmic Worst-Case Range Queries Are Possible in Space

Θ(N). Information Processing Letters 17(2), 81–84 (1983)

Document Listing

for Queries with Excluded Pattern�

Wing-Kai Hon1, Rahul Shah2, Sharma V. Thankachan2,
and Jeffrey Scott Vitter3

1 National Tsing Hua University, Taiwan
wkhon@cs.nthu.edu.tw

2 Louisiana State University, USA
{rahul,thanks}@csc.lsu.edu

3 The University of Kansas, USA
jsv@ku.edu

Abstract. Let D = {d1, d2, ..., dD} be a given collection of D string
documents of total length n. We consider the problem of indexing D such
that, whenever two patterns P+ and P− comes as an online query, we can
list all those documents containing P+ but not P−. Let t represent the
number of such documents. An index proposed by Fischer et al. (LATIN,
2012) can answer this query in O(|P+|+ |P−|+ t+

√
n) time. However,

its space requirement is O(n3/2) bits. We propose the first linear-space
index for this problem with a worst case query time of O(|P+|+ |P−|+√

n log log n+
√

nt log2.5 n).

1 Introduction and Related Work

Document retrieval is a fundamental problem in information retrieval, where
the task is to index a collection of documents, such that whenever a pattern
(or a set of patterns) comes as an online query, we can efficiently retrieve those
documents which are relevant to the query. An occurrence of a query pattern
in a document makes it relevant to the query. However, query with excluded
patterns is a problem orthogonal to this. That is, the occurrence of an excluded
pattern in a document makes it less relevant to the query. Such queries are
fundamental and important in web-search applications. For example, the search
results from Google for a pattern ”jaguar” consists of many webpages related
to “jaguar car”, but one may be interested in jaguar as a big cat, not as a car.
Whereas the search results for the query “jaguar -car” will be those documents
which are related to “jaguar”, but not to “car”. Here the “-” symbol before the
pattern“car” indicates that it is an excluded pattern.

More formally, we shall define the document listing problem for excluded
pattern queries as follows: given a collection D of D documents {d1, d2, ..., dD}
of total length n, and the query consisting of two patterns P+ (called included

� This work is supported in part by Taiwan NSC Grant 99-2221-E-007-123 (W. Hon)
and US NSF Grant CCF–1017623 (R. Shah).

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 185–195, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

186 W.-K. Hon et al.

pattern) and P− (called excluded pattern), our task is to list the set of documents
containing P+ but not P−. Traditionally, the documents are split into terms (or
words) and then an inverted index is built over such terms. However, in the case
of genome data or some Asian texts, there may be no natural word demarcation
(we may call such documents as strings), so that the inverted index may provide
only limited searching capabilities or may require too much space. To the best
of our knowledge, the only known index which supports this kind of queries for
string documents is by Fischer et al. [8], which takes O(n3/2) bits of space and
has O(|P+| + |P−| + t +

√
n) query time, where t is the number of documents

containing P+ but not P−. We propose the first linear-space solution for this
problem, and our main result is captured in the following theorem.

Theorem 1. Given a collection of D string documents of total length n, there
exists an O(n)-word data structure that supports listing documents with P+ but
not P− in O(|P+|+ |P−|+

√
n log log n +

√
nt log2.5 n) time, where P+ and P−

are two online query patterns and t represents the number of such documents.

On a related note, string document retrieval problem for queries with a single
(included) pattern is a well studied problem [21,26,27,20] with many interest-
ing results. Another fundamental problem which has received a lot of attention
recently is the top-k document retrieval [20,22,18,1,5,9,12,23,24,15,14]. Muthukr-
ishnan [21] has studied the problem where the query consists of an excluded pat-
tern alone, and has given an optimal-query-time solution. Document listing for
queries with two included-patterns (P1 and P2) is another harder problem, and
the following are the space-time tradeoffs of the known indexes (here t represents
the number of documents containing both P1 and P2):

– Õ(n3/2)-space1 and O(|P1| + |P2| +
√

n + t) query time [7].
– O(n log n) words and O(|P1| + |P2| +

√
n(t + 1) log2.5 n) query time [4].

– O(n) words and O(|P1| + |P2| +
√

n(t + 1) log1.5 n) query time [16].

Fischer et al. [8] showed that document listing problem for two-included-pattern
queries is much harder than the one with single-included-pattern using reduction
techniques via Geometric Burrows-Wheeler Transform (GBWT) [3].

2 Preliminaries

2.1 Suffix Trees and Suffix Arrays

Suffix Tree: Given a text T [1...n], a substring T [i...n] with 1 ≤ i ≤ n is called
a suffix of T . The lexicographic arrangement of all n suffixes of T in a compact
trie is called the suffix tree of T [28], where the ith leftmost leaf represents the
ith lexicographically smallest suffix. Each edge in the suffix tree is labeled by a

1 The notation Õ ignores poly-logarithmic factors. Precisely, Õ(f(n)) ≡
O(f(n) logO(1) n).

Document Listing for Queries with Excluded Pattern 187

character string and for any node u, path(u) is the string formed by concatenat-
ing the edge labels from root to u. For any leaf v, path(v) is exactly the suffix
corresponding to v. For a given pattern P , a node u is defined as the locus node
of P if it is the closest node to the root such that P is a prefix of path(u); such
a node can be determined in O(|P |) time.

Suffix Array: Suffix array SA[1...n] of a text T is an array such that SA[i] stores
the starting position of the ith lexicographically smallest suffix of T [19]. In SA
the starting positions of all suffixes with a common prefix are always stored in
contiguous range. The suffix range of a pattern P is defined as the maximal
range [�, r] such that for all j ∈ [�, r], P is a common prefix of the suffix which
starts at SA[j].

Generalized Suffix Tree: Given a collection D of strings, the generalized suffix
tree (GST) of D is a compact trie which stores all suffixes of all strings in D. For
the purpose of our index, we define an extra array DA called document array,
such that DA[i] = j if and only if the ithe lexicographically smallest suffix is
from document dj .

2.2 Wavelet Tree

Let A[1...n] be an array of length n, where each element A[i] is a symbol drawn
from a set Σ of size σ. The wavelet tree (WT) [11] for A is an ordered balanced
binary tree on Σ, where each leaf is labeled with a symbol in Σ, and the leaves
are sorted alphabetically from left to right. Each internal node Wk represents
an alphabet set Σk, and is associated with a bit-vector Bk. In particular, the
alphabet set of the root is Σ, and the alphabet set of a leaf is the singleton
set containing its corresponding symbol. Each node partitions its alphabet set
among the two children (almost) equally, such that all symbols represented by the
left child are lexicographically (or numerically) smaller than those represented
by the right child. For the node Wk, let Ak be a subsequence of A by retaining
only those symbols that are in Σk. Then Bk is a bit-vector of length |Ak|, such
that Bk[i] = 0 if and only if Ak[i] is a symbol represented by the left child of Wk.
Indeed, the subtree from Wk itself forms a wavelet tree of Ak. To reduce space
requirement, the array A is not stored explicitly in the wavelet tree. Instead,
we only store the bit-vectors Bk, each of which is augmented with Raman et
al.’s scheme [25] to support constant-time bit-rank and bit-select operations.
WT takes n log σ(1 + o(1)) bits space and can answer the following queries in
O(log σ) time.
rankc(i) = number of occurrences of c ∈ Σ in A[1...i]
selectc(i) = −1 if rankc(n) < i, else return j, where A[j] = c and rankc(j) = i.

Note that by using the n log σ + O(n log σ/ log log σ) bits index by [10], rankc

and selectc can be performed in O(log log σ) time.

188 W.-K. Hon et al.

2.3 Weight-Balanced Wavelet Tree

Weight-balanced wavelet tree (WBT) is a modified version of WT proposed by
Hon et al. [16]. Here the number of 0’s and 1’s in any bit-vector Bk is made
almost equal, which ensures the following property.

Lemma 1. Let Wk be a node in WBT at depth δk, and Bk denote its associated
bit-vector. Let nk = |Bk|. Then we have nk ≤ 4n/2δk.

WBT on an array A[1...n] takes n(log σ + 2)(1 + o(1)) bits of space. The tree
depth of WBT can be of O(log n), so that the worst case query time (for rankc(i)
and selectc(i) for any c ∈ Σ) is O(log n). See Appendix A and B for more details
of WBT.

3 Data Structures for Document Counting

Here we describe an index which can count the number of documents containing
P+ but not P−. We capture the result in the following theorem.

Theorem 2. There exists an O(n)-word index that supports counting the num-
ber of documents with P+ but not P− in O(|P+| + |P−| +

√
n log log n) time,

where P+ and P− are two online query patterns.

Index Construction: The following shows the main components of the doc-
ument counting index.

– GST/GSA, the generalized suffix tree/array of D.
– Document array DA, where DA[i] = j if the ith lexicographically smallest

suffix belongs to document dj .
– An 2n + o(n) bits structure, which can compute document-frequency df(P)

of a pattern P in O(1) time from the suffix range of P [26].2
– COUNT matrix, to be defined below.

First, starting from left in GST, we combine every g (called group size, to be
determined later) contiguous leaves together to form a group. Thus, the first
group consists of �1, ..., �g, the next group consists of �g+1, ..., �2g, and so on,
where �j denotes the jth leftmost leaf in GST. Consequently, we have a total of
O(n/g) groups, and for each group we mark the least common ancestor (LCA)
of its first and its last leaves. Moreover, if two nodes are marked, we mark their
LCA as well. The total number of marked nodes by this scheme can be bounded
by O(n/g) [13]. Now suppose for any node u in GST, with its subtree containing
the leaves �x, �x+1, . . . , �y, then the range [x, y] is referred to as the suffix range
corresponding to u.

Lemma 2. [13] The suffix range [L, R] of any pattern P can be split into a
suffix range [L′, R′] corresponding to some marked node u∗, and two other suffix
ranges [L, L′ − 1] and [R′ + 1, R] with L′ − L < g and R − R′ < g.
2 df(P) = the number of distinct documents in D which has at least one occurrence
of P .

Document Listing for Queries with Excluded Pattern 189

Proof. By setting L′ = g�L/g� + 1 and R′ = g�R/g�, we have L′ − L < g and
R − R′ < g, and the LCA of �L′ and �R′ gives the desired marked node u∗. ��

Essentially, the suffix range [L, R] of a pattern P corresponds to the leaves
�L, �L+1, . . . , �R in the GST. This set of leaves can be partitioned into three
groups: those which are under the subtree of u∗ (�L′ , �L′+1, . . . , �R′), and the re-
maining two with those on the left of �L′ and those on the right of �R′ . We shall re-
fer to the latter two groups of leaves (�L, �L+1, . . . , �L′−1 and �R′+1, �R′+2, . . . , �R)
as fringe leaves, each such group contains fewer than g leaves.

Let d be a document in D, and u and v be two nodes in GST. Then we define
the following functions:

– F (d, u, v) = 1, if d contains the pattern path(u) but not the pattern path(v),
else 0.

– COUNT (u, v) =
∑

d∈D F (d, u, v), which is the number of documents con-
taining the pattern path(u) but not the pattern path(v).

Lemma 3. The function F (d, u, v) can be evaluated in O(ψ) time, where ψ
denotes the time for a rankd query on DA.

Proof. Using the tree encoding of GST, the suffix ranges [Lu, Ru] and [Lv, Rv]
corresponding to u and v can be computed in constant time. Then, the number
of occurrences of path(u) in d, called term-frequency (denoted by tf(path(u), d))
can be computed as follows: tf(path(u), d) = rankd(Ru) − rankd(Lu − 1). Sim-
ilarly tf(path(v), d) = rankd(Rv) − rankd(Lv − 1). If tf(path(u), d) ≥ 1 and
tf(path(v), d) = 0, then F (d, u, v) = 1, else 0. Therefore, the time for computing
F can be bounded by O(ψ), where ψ denotes the time for a rankd query on
DA. ��
COUNT matrix is simply an O(n/g) × O(n/g) matrix (of size O(n2 log D/g2)
bits), which stores COUNT (u∗, v∗) between all pairs of marked nodes u∗ and
v∗ in GST.
Query Answering : The first step is to obtain the locus nodes u and v (and
the corresponding suffix ranges [Lu, Ru] and [Lv, Rv]) of P+ and P−, respec-
tively. Then, we compute the suffix ranges [L′

u, R′
u] and [L′

v, R
′
v] (as described in

Lemma 2), and the corresponding marked LCA nodes u∗ and v∗. Our objective
is to compute COUNT (u, v), where as COUNT (u∗, v∗) is precomputed and is
stored in the COUNT matrix. We have the following lemma on these values.

Lemma 4. Given COUNT (u∗, v∗), the value COUNT (u, v) can be computed
in O(gψ) time, where g is the group size and ψ is the time for a rankd query on
DA.

Proof : Let S(u, v) represent the set of all documents containing the pattern
path(u) but not the pattern path(v), hence COUNT (u, v) = |S(u, v)|. Note that
for those documents dj , with none of its suffix corresponding to a fringe leaf (i.e.,
DA[i] �= dj for all i ∈ [Lu, L′

u − 1] ∪ [R′
u + 1, Ru] ∪ [Lv, L

′
v − 1] ∪ [R′

v + 1, Rv]),
dj ∈ S(u∗, v∗) if and only if dj ∈ S(u, v). From this observation, COUNT (u, v)
can be computed from COUNT (u∗, v∗) by recomputing the membership of only

190 W.-K. Hon et al.

those documents with suffixes corresponding to a fringe leaf, and the number
of such documents is bounded by 4g. Note that we may not be able to find
the set S(u, v) efficiently as we have not stored S(u∗, v∗), however what we are
interested is in |S(v, v)|, which can be computed from |S(u∗, v∗)| as follows:

COUNT (u, v) ← COUNT (u∗, v∗)
for all distinct documents d corresponding to a fringe
leaf do

if F (d, u, v) = 1 and F (d, u∗, v∗) = 0 then
COUNT (u, v) ← COUNT (u, v) + 1

else if F (d, u, v) = 0 and F (d, u∗, v∗) = 1 then
COUNT (u, v) ← COUNT (u, v) − 1

end if
end for
return COUNT (u, v)

The time for evaluating F is O(ψ), and the number of such distinct documents
is bounded by 4g. This completes the proof of the lemma. ��
Therefore document counting query can in general be answered in O(|P+| +
|P−| + gψ) time. However, we need to handle the following two special cases as
well.

1. When Ru − Lu + 1 < 2g, the marked node u∗ may not exist. Then we shall
retrieve all (at most g) distinct documents corresponding to the suffixes in
[Lu, Ru], and eliminate those documents which has a suffix in [Lv, Rv] as
well. This can be verified in O(ψ) time per document, hence the total time
can be bounded by O(|P+| + |P−| + gψ).

2. When Rv − Lv + 1 < 2g the marked node v∗ may not exist.. Therefore, we
first retrieve all (at most g) distinct documents corresponding to the suffixes
in [Lv, Rv]. These are the documents (say excluded documents) which do
not contribute to COUNT (u, v). Now, we compute the number of excluded
documents which have an occurrence of P+ as well using DA in O(gψ) time.
By subtracting this number from df(P+) (the number of distinct documents
where P+ occurs), we get COUNT (u, v), and the total time can be bounded
by O(|P+| + |P−| + gψ).

The space and time bounds in Theorem 2 can simultaneously be achieved by
choosing g =

√
n, and by maintaining DA using the data structure in [10], where

ψ = O(log log D) = O(log log n).

4 Data Structures for Document Listing

Our index supporting document listing consists of the following components:

Document Listing for Queries with Excluded Pattern 191

– GST of D.
– Weight-balanced wavelet tree (WBT) over document array DA.
– Let Wk represent an internal node in WBT, Dk be the set of distinct doc-

uments represented by the leaf nodes in the sub-tree of Wk and nk =∑
dj∈Dk

|dj |. At every internal node Wk, we maintain the index (from Section
3) for answering document counting query for the corresponding document
collection Dk. However, to save space, we do not maintain the generalized
suffix tree GSTk of Dk; instead, we maintain only its tree encoding3 along
with marked nodes information and the 2nk + o(nk) bits data structure
for finding document-frequency. Moveover we do not need to maintain sep-
arate document array for this collection, since the subtree of Wk in WBT
is a weight-balanced wavelet tree (WBTk) on Dk. We choose the group size
gk =

√
nk log n and since we are using WBT , the time for a rankd query on

DA is ψ = O(log n).

Index Space: The total index space can be computed as follows: GST takes
O(n log n) bits, WBT takes O(n log D) bits. The bit vector Bk associated with
the node Wk is of length nk. Therefore the tree encoding (along with the marked
nodes information and the data structure for computing df(P)) of GSTk takes
O(nk) bits space. The COUNT matrix associated with data structure in node
Wk takes O(n2

k log D/g2
k) = O(nk) bits by choosing gk =

√
nk log n. Note that∑

k |nk| is the size of WBT (in bits). Thus the total space is O(n log n) bits
= O(n) words.
Query Answering : Query answering is performed as follows: After computing
the locus nodes of P+ and P− in GST, we perform a document counting query
on D. This is performed using the count structure associated with the root node
in WBT . If the count is non-zero, we do a multi-way search in both child nodes,
which correspond to searching two partitions of D. This procedure is continued
recursively until we reach a leaf node in the binary tree, thus the document
corresponding to that leaf can be listed as an output. At any node, if the count
is zero, we do not need to continue the recursive step further in its subtree.

Let [L, R] be the suffix range of a pattern P in GST . Then, the suffix range
of P in GSTk can be computed in O(ψ) time by translating the range [L, R]
to the node Wk by navigating the WBT . Once we get the suffix range of a
pattern, its locus node (and the corresponding marked node) in GSTk can be
computed in constant time using the tree encoding [17]. Therefore, we need to
perform the pattern searching only once (in GST), and the count queries at
each internal node Wk of the WBT can be performed in O(gkψ) time, instead
of O(|P+| + |P−| + gkψ) time. The overall query time consists of the following
components and can be analyzed as follows:

3 Any n-node ordered tree can be represented in 2n + o(n) bits, such that if each
node is labeled by its pre-order rank in the tree, any of the following operations
can be supported in constant time [17]: parent(i), which returns the parent of node
i; lca(i, j), which returns the lowest common ancestor of two nodes i and j; and
lmost-leaf(i)/rmost-leaf(i), which returns the leftmost/rightmost leaf of node i.

192 W.-K. Hon et al.

– Count Queries: The count query at an internal node Wk takes O(gkψ) =
O(

√
nk log n log n) time. Since WBT ensures that nk ≤ 4n/2δk , where δk is

the depth of Wk, so the overall time for count queries will be bounded by:

O

(∑
Wk∈WBTvisited

√
nk log n log n

)

= O

(
√

n log3/2 n
∑

Wk∈WBTvisited

2−δk/2

)

= O

⎛⎝√
n log3/2 n

√ ∑
Wk∈WBTvisited

12

√ ∑
Wk∈WBTvisited

2−δk

⎞⎠ (1)

= O
(√

n log3/2 n
√

t log n
√

log(1 + # of nodes in WBTvisited)
)

(2)

= O
(√

nt log2.5 n
)

,

where Equation (1) is by Cauchy-Schwarz’s inequality,4 while Equation (2)
is by the following fact: In a binary tree T with a total of z nodes, and the
depth of a node u ∈ T is given by δu, then

∑
u∈T 2−δu ≤ log(1 + z)5.

– Initial pattern matching: This is the time for searching P+ and P− in GST
and computing the locus nodes u and v, respectively, which can be bounded
by O(|P+| + |P−|).

– WBT tree traversal : Let t = COUNT (u, v) be the number of outputs. Now,
consider a binary tree structure WBTvisited, which is a subtree of WBT with
only those nodes visited when we answer the query. Since each internal node
in WBTvisited must be on the path from the root to some document in the
output set, and since the height of WBT is O(log n), the number of internal
nodes in WBTvisited is bounded by O(t log n). As WBTvisited is a binary
tree, the total number of nodes (i.e., leaves and internal nodes) is bounded
by O(t log n). Thus, the tree traversal time can be bounded by O(t log n),
since it takes only constant time to traverse from a node to its child node.

Note that even if t = 0, we need to spend O(
√

n log3/2 n) time for count query
at the root note of WBT . Putting all things together, we get a query time
of O(|P+| + |P−| +

√
n log3/2 n + t log n +

√
nt log2.5 n) = O(|P+| + |P−| +√

n log3/2 n +
√

nt log2.5 n). The O(
√

n log3/2 n) term can be improved to
O(

√
n log log n) by maintaining an additional O(n)-word data structure (de-

scribed in Theorem 2) for performing the first count query, just in case t = 0.
This completes the proof of Theorem 1.
4
∑n

i=1 xiyi ≤
√∑n

i=1 x2
i

√∑n
i=1 y2

i .
5 This fact can be proven by induction: When T contains a single node this is trivially
valid (δroot = 0). And for a general tree, we can split T as the root, and two binary
trees T1 and T2 of z1 and z2 nodes respectively, where z = 1 + z1 + z2. Then∑

u∈T 2
−δu = 1+ 1

2
(
∑

u∈T1
2−δu +

∑
u∈T2

2−δu) ≤ 1+ 1
2
(log(1+ z1)+ log(1+ z2)) ≤

log(2
√
(1 + z1)(1 + z2) ≤ log(1 + z1 + 1 + z2) = log(1 + z).

Document Listing for Queries with Excluded Pattern 193

5 Concluding Remarks

In this paper, we give the first linear space index for two-pattern queries with
one included pattern and one excluded pattern. The technique used in this paper
is similar to that in [16], where we define a different COUNT matrix for solving
the two-pattern queries problem with positive patterns only. However, there are
some subtle differences. In particular, the handling of the fringe leaves, and the
analysis of the query time in document listing, are much trickier. For further
work, we hope to extend the study to the top-k version of this problem, though
we suspect that it may not be easily solved with the existing techniques in the
literature for positive patterns. Finally, the authors wish to thank Travis Gagie
for providing his manuscript [8] on the first solution to this problem.

References

1. Belazzougui, D., Navarro, G.: Improved Compressed Indexes for Full-Text Doc-
ument Retrieval. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011.
LNCS, vol. 7024, pp. 386–397. Springer, Heidelberg (2011)

2. Bender, M.A., Farach-Colton, M.: The LCA Problem Revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

3. Chien, Y.-F., Hon, W.-K., Shah, R., Vitter, J.S.: Geometric Burrows-Wheeler
transform: Linking range searching and text indexing. In: DCC, pp. 252–261 (2008)

4. Cohen, H., Porat, E.: Fast Set Intersection and Two Patterns Matching. Theor.
Comput. Sci. 411(40-42), 3795–3800 (2010)

5. Shane Culpepper, J., Navarro, G., Puglisi, S.J., Turpin, A.: Top-k Ranked Docu-
ment Search in General Text Databases. In: de Berg, M., Meyer, U. (eds.) ESA
2010, Part II. LNCS, vol. 6347, pp. 194–205. Springer, Heidelberg (2010)

6. Ferragina, P., Giancarlo, R., Manzini, G.: The Myriad Virtues of Wavelet Trees.
Inf. and Comp. 207(8), 849–866 (2009)

7. Ferragina, P., Koudas, N., Muthukrishnan, S., Srivastava, D.: Two-dimensional
substring indexing. J. Comput. Syst. Sci. 66(4), 763–774 (2003)

8. Fischer, J., Gagie, T., Kopelowitz, T., Lewenstein, M., Mäkinen, V., Salmela,
L., Välimäki, N.: Forbidden Patterns. In: Fernández-Baca, D. (ed.) LATIN 2012.
LNCS, vol. 7256, pp. 327–337. Springer, Heidelberg (2012)

9. Gagie, T., Navarro, G., Puglisi, S.J.: Colored Range Queries and Document Re-
trieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 67–81.
Springer, Heidelberg (2010)

10. Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets: a
tool for text indexing. In: SODA, pp. 368–373 (2006)

11. Grossi, R., Gupta, A., Vitter, J.S.: High-Order Entropy-Compressed Text Indexes.
In: SODA, pp. 841–850 (2003)

12. Hon, W.K., Patil, M., Shah, R., Wu, S.-B.: Efficient Index for Retrieving Top-k
Most Frequent Documents. Journal of Discrete Algorithms 8(4), 402–417 (2010)

13. Hon, W.K., Shah, R., Vitter, J.S.: Space-Efficient Framework for Top-k String
Retrival Problems. In: FOCS, pp. 713–722 (2009)

14. Hon, W.-K., Shah, R., Vitter, J.S.: Compression, Indexing, and Retrieval for Mas-
sive String Data. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129,
pp. 260–274. Springer, Heidelberg (2010)

194 W.-K. Hon et al.

15. Hon, W.-K., Shah, R., Thankachan, S.V.: Towards an Optimal Space-and-Query-
Time Index for Top-k Document Retrieval. In: Kärkkäinen, J., Stoye, J. (eds.)
CPM 2012. LNCS, vol. 7354, pp.173–184. Springer, Heidelberg (2012)

16. Hon, W.-K., Shah, R., Thankachan, S.V., Vitter, J.S.: String Retrieval for Multi-
pattern Queries. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393,
pp. 55–66. Springer, Heidelberg (2010)

17. Jansson, J., Sadakane, K., Sung, W.K.: Ultra-succinct Representation of Ordered
Trees. In: SODA, pp. 575–584 (2007)

18. Karpinski, M., Nekrich, Y.: Top-K Color Queries for Document Retrieval. In:
SODA, pp. 401–411 (2011)

19. Manber, U., Myers, G.: Suffix Arrays: A New Method for On-Line String Searches.
SICOMP 22(5), 935–948 (1993)

20. Matias, Y., Muthukrishnan, S.M., Şahinalp, S.C., Ziv, J.: Augmenting Suffix Trees,
with Applications. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.)
ESA 1998. LNCS, vol. 1461, pp. 67–78. Springer, Heidelberg (1998)

21. Muthukrishnan, S.: Efficient Algorithms for Document Retrieval Problems. In:
SODA, pp. 657–666 (2002)

22. Navarro, G., Nekrich, Y.: Top-k document retrieval in optimal time and linear
space. In: SODA, pp. 1066–1077 (2012)

23. Navarro, G., Puglisi, S.J.: Dual-Sorted Inverted Lists. In: Chavez, E., Lonardi, S.
(eds.) SPIRE 2010. LNCS, vol. 6393, pp. 309–321. Springer, Heidelberg (2010)

24. Patil, M., Thankachan, S.V., Shah, R., Hon, W.K., Vitter, J.S., Chandrasekaran,
S.: Inverted Indexes for Phrases and Strings. In: SIGIR, pp. 555–564 (2011)

25. Raman, R., Raman, V., Rao, S.S.: Succinct Indexable Dictionaries with Applica-
tions to Encoding k-ary Trees, Prefix Sums and Multisets. TALG 3(4) (2007)

26. Sadakane, K.: Succinct Data Structures for Flexible Text Retrieval Systems.
JDA 5(1), 12–22 (2007)

27. Välimäki, N., Mäkinen, V.: Space-Efficient Algorithms for Document Retrieval.
In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 205–215. Springer,
Heidelberg (2007)

28. Weiner, P.: Linear Pattern Matching Algorithms. In: Proc. Switching and Au-
tomata Theory, pp. 1–11 (1973)

A Proof of Lemma 1

Let W� and Wr denote the left and the right children of Wk, respectively. Let
B� and Br be their corresponding bit-vectors, and n� and nr be their lengths.
Thus nk = n� + nr. Let Lk denote the number of occurrences of the least fre-
quent symbol σ′ (i.e., σ1) represented by Wk, and similarly L� and Lr. By the
partitioning property, we can easily show that nr − Lr ≤ nl and n� − L� ≤ nr.
Also, Lk ≤ L� (resp., Lr). Combining these, 2(nr−Lr) ≤ n� +nr−Lr ≤ nk−Lk

(similar is true for n� − L�). Thus, we get that the quantity nk − Lk goes down
by at least the factor of half as we go to a child node.

Thus, nk −Lk ≤ n/2δk . Now for any node which has at least two leaves in its
subtree, Lk ≤ (1/2)nk and thus nk ≤ 2n/2δk . Taking leaf nodes into account,
we get nk ≤ 4n/2δk . This completes the proof of Lemma 1.

Document Listing for Queries with Excluded Pattern 195

B Space of a WBT

Lemma 5. The space of a weight-balanced wavelet tree of an array A of size n
is n(H0(A) + 2)(1 + o(1)) bits, where H0(A) is the 0th-order empirical entropy
of A.

Proof. Let the depth of a leaf corresponding to the symbol σi be δi. Then σi

contributes fi bits in each bit-vector corresponding to the nodes from root to this
leaf (excluding the leaf). Hence the contribution of σi towards the total space is
fi·δi. By Lemma 1, δi ≤ log(4n/fi). Therefore, the total size of a weight-balanced
wavelet tree is at most (1 + o(1))

∑
fi · (log(n/fi) + 2) = n(H0(A) + 2)(1 + o(1))

bits. This completes the proof of Lemma 5. ��

Cross-Document Pattern Matching

Gregory Kucherov1, Yakov Nekrich2, and Tatiana Starikovskaya3,1

1 Laboratoire d’Informatique Gaspard Monge, Université Paris-Est & CNRS,
Marne-la-Vallée, Paris, France

Gregory.Kucherov@univ-mlv.fr
2 Department of Computer Science, University of Chile, Santiago, Chile

yakov.nekrich@googlemail.com
3 Lomonosov Moscow State University, Moscow, Russia

tat.starikovskaya@gmail.com

Abstract. We study a new variant of the string matching problem called
cross-document string matching, which is the problem of indexing a col-
lection of documents to support an efficient search for a pattern in a
selected document, where the pattern itself is a substring of another
document. Several variants of this problem are considered, and efficient
linear-space solutions are proposed with query time bounds that either
do not depend at all on the pattern size or depend on it in a very lim-
ited way (doubly logarithmic). As a side result, we propose an improved
solution to the weighted level ancestor problem.

1 Introduction

In this paper we study the following variant of the string matching problem that
we call cross-document string matching: given a collection of strings (documents)
stored in a “database”, we want to be able to efficiently search for a pattern in
a given document, where the pattern itself is a substring of another document.
More formally, assuming we have a set of documents T1, . . . , Tm, we want to
answer queries about the occurrences of a substring Tk[i..j] in a document T	.

This scenario may occur in various situations when we have to search for a
pattern in a text stored in a database, and the pattern is itself drawn from a
string from the same database. In bioinformatics, for example, a typical project
deals with a selection of genomic sequences, such as a family of genomes of
evolutionary related species. A common repetitive task consists then in looking
for genomic elements belonging to one of the sequences in some other sequences.
These elements may correspond to genes, exons, mobile elements of any kind,
regulatory patterns, etc., and their location (i.e. start and end positions) in
the sequence of origin is usually known from a genome annotation provided by a
sequence data repository (such as GenBank or any other). A similar scenario may
occur in other application fields, such as the bibliographic search for example.

In this paper, we study different versions of the cross-document string match-
ing problem. First, we distinguish between counting and reporting queries, asking
respectively about the number of occurrences of Tk[i..j] in T	 or about the oc-
currences themselves. The two query types lead to slightly different solutions.

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 196–207, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Cross-Document Pattern Matching 197

In particular, the counting problem uses the weighted level ancestor problem [1,2]
to which we propose a new solution with an improved complexity bound.

We further consider different variants of the two problems. The first one is the
dynamic version where new documents can be added to the database. In another
variant, called document counting and reporting, we only need to respectively
count or report the documents containing the pattern, rather than counting or
reporting pattern occurrences within a given document. This version is very
close to the document retrieval problem previously studied (see [3] and later
papers referring to it), with the difference that in our case the pattern is itself
selected from the documents stored in the database. Finally, we also consider
succinct data structures for the above problems, where we keep involved index
data structure in compressed form.

Let m be the number of stored strings and n the total length of all strings.
Our results are summarized below:

(i) for the counting problem, we propose a solution with query time O(t +
log logm), where t = min(

√
log occ/ log log occ, log log |P |), P = Tk[i..j] is

the searched substring and occ is the number of its occurrences in T	,
(ii) for the reporting problem, our solution outputs all the occurrences in time

O(log logm+ occ),
(iii) in the dynamic case, when new documents can be dynamically added to

the database, we are able to answer counting queries in time O(log n) and
reporting queries in time O(log n + occ), whereas the updates take time
O(log n) per character,

(iv) for the document counting and document reporting problems, our algo-
rithms run in time O(log n) and O(t + ndocs) respectively, where t is as
above and ndocs is the number of reported documents,

(v) finally, we also present succinct data structures that support counting, re-
porting, and document reporting queries in cross-document scenario (see
Theorems 6 and 7 in Section 4.3).

For problems (i)-(iv), the involved data structures occupy O(n) space. Interest-
ingly, in the cross-document scenario, the query times either do not depend at
all on the pattern length or depend on it in a very limited (doubly logarithmic)
way.

Throughout the paper positions in strings are numbered from 1. Notation
T [i..j] stands for the substrings T [i]T [i+ 1] . . . T [j] of T , and T [i..] denotes the
suffix of T starting at position i.

2 Preliminaries

2.1 Basic Data Structures

We assume a basic knowledge of suffix trees and suffix arrays.
Besides using suffix trees for individual strings Ti, we will also be using the

generalized suffix tree for a set of strings T1, T2, . . . , Tm that can be viewed as

198 G. Kucherov, Y. Nekrich, and T. Starikovskaya

the suffix tree for the string T1$1T2$2 . . . Tm$m. A leaf in a suffix tree for Ti is
associated with a distinct suffix of Ti, and a leaf in the generalized suffix tree is
associated with a suffix of some document Ti together with the index i of this
document. We assume that for each node v of a suffix tree, the number nv of
leaves in the subtree rooted at v, as well as its string depth d(v) can be recovered
in constant time. Recall that the string depth d(v) is the total length of strings
labelling the edges along the path from the root to v.

We will also use the suffix arrays for individual documents as well as the
generalized suffix array for strings T1, T2, . . . , Tm. Each entry of the suffix array
for Ti is associated with a distinct suffix of Ti and each entry of the generalized
suffix array for T1, . . . , Tm is associated with a suffix of some document Ti and
the index i of the document the suffix comes from. We store these document
indices in a separate array D, called document array, such that D[i] = k if the
i-th entry of the generalized suffix array for T1, . . . , Tm corresponds to a suffix
coming from Tk.

For each considered suffix array, we assume available, when needed, two aux-
iliary arrays: an inverted suffix array and another array, called the LCP-array,
of longest common prefixes between each suffix and the preceding one in the
lexicographic order.

2.2 Weighted Level Ancestor Problem

The weighted level ancestor problem, defined in [1], is a generalization of the
level ancestor problem [4,5] for the case when tree edges are assigned positive
weights.

Consider a rooted tree T whose edges are assigned positive integer weights.
For a node w, let weight(w) denote the total weight of the edges on the path
from the root to w; depth(w) denotes the usual tree depth of w.

A weighted level ancestor query wla(v, q) asks, given a node v and a positive
integer q, for the ancestor w of v of minimal depth such that weight(w) ≥ q
(wla(v, q) is undefined if there is no such node w).

Two previously known solutions [1,2] for weighted level ancestors problem
achieve O(log logW) query time using linear space, where W is the total weight
of all tree edges. Our data structure also uses O(n) space, but achieves a faster
query time in many special cases. We prove the following result.

Theorem 1. There exists an O(n) space data structure that answers weighted
ancestor query wla(v, q) in O(min(

√
log g/ log log g, log log q)) time, where g =

min(depth(wla(v, q)), depth(v)− depth(wla(v, q))).

If every internal node is a branching node, we obtain the following corollary.

Corollary 1. Suppose that every internal node in T has at least two chil-
dren. There exists an O(n) space data structure that finds w = wla(v, q) in
O(
√

lognw/ log lognw) time, where nw is the number of leaves in the subtree of
w.

Cross-Document Pattern Matching 199

Our approach combines the heavy path decomposition technique of [2] with
efficient data structures for finger searching in a set of integers. The proof is
given in the Appendix.

3 Cross-Document Pattern Counting and Reporting

3.1 Counting

In this section we consider the problem of counting occurrences of a pattern
Tk[i..j] in a document T	.

Our data structure consists of the generalized suffix arrayGSA for documents
T1, . . . , Tm and individual suffix trees Ti for every document Ti.

For every suffix tree T	 we store a data structure of Theorem 1 supporting
weighted level ancestor queries on T	. We also augment the document array D
with an O(n)-space data structure that answers queries rank(k, i) (number of
entries storing k before position i in D) and select(k, i) (i-th entry from the
left storing k). Using the result of [6], we can support such rank and select
queries in O(log logm) and O(1) time respectively. Moreover, we construct a
data structure that answers range minima queries (RMQ) on the LCP array:
for any 1 ≤ r1 ≤ r2 ≤ n, find the minimum among LCP [r1], . . . LCP [r2]. There
exists a linear space RMQ data structure that supports queries in constant time,
see e.g., [7]. An RMQ query on the LCP array computes the length of the longest
common prefix of two suffixes GSA[r1] and GSA[r2], denoted LCP (r1, r2).

Our counting algorithm consists of two stages. First, using GSA, we identify
a position p of T	 at which the query pattern Tk[i..j] occurs, or determine that
no such p exists. Then we find the locus of Tk[i..j] in the suffix tree T	 using a
weighted ancestor query.

Let r be the position of Tk[i..] in the GSA. We find indexes r1 =
select(�, rank(r, �)) and r2 = select(�, rank(r, �) + 1) in O(log logm) time.
GSA[r1] (resp. GSA[r2]) is the closest suffix from document T	 that precedes
(resp. follows) Tk[i..] in the lexicographic order of suffixes. Observe now that
Tk[i..j] occurs in T	 if and only if either LCP (r1, r) or LCP (r, r2) (or both)
is no less than j − i + 1. If this holds, then the starting position p of GSA[r1]
(respectively, starting position of GSA[r2]) is the position of Tk[i..j] in T	. Once
such a position p is found, we jump to the leaf v of T	 that contains the suffix
T	[p..].

The weighted level ancestor u = wla(v, (j − i + 1)) is the locus of Tk[i..j] in
T	. This is because T	[p..p+ j− i] = Tk[i..j]. By Corollary 1, we can find node u
in O(

√
lognu/ log lognu) time, where nu is the number of leaf descendants of u.

Since u is the locus node of Tk[i..j], nu is the number of occurrences of Tk[i..j]
in T	. By Theorem 1, we can find u in O(log log(j − i+ 1)) time.

Summing up, we obtain the following Theorem.

Theorem 2. For any 1 ≤ k, � ≤ m and 1 ≤ i ≤ j ≤ |Tk|, we can count
the number of occurrences of Tk[i..j] in T	 in O(t + log logm) time, where t =
min(

√
log occ/ log log occ, log log(j−i+1)) and occ is the number of occurrences.

200 G. Kucherov, Y. Nekrich, and T. Starikovskaya

The underlying indexing structure takes O(n) space and can be constructed in
O(n) time.

3.2 Reporting

A reporting query asks for all occurrences of a substring Tk[i..j] in T	.
Compared to counting queries, we make a slight change in the data structures:

instead of using suffix trees for individual documents Ti, we use suffix arrays.
The rest of the data structures is unchanged.

We first find an occurrence of Tk[i..j] in T	 (if there is one) with the method
described in Section 3.1. Let p be the position of this occurrence in T	. We then
jump to the corresponding entry r of the suffix array SA	 for the document T	.
Let LCP	 be the LCP-array of SA	. Starting with entry r, we visit adjacent
entries t of SA	 moving both to the left and to the right as long as LCP	[t] ≥
j − i + 1. While this holds, we report SA	[t] as an occurrence of Tk[i..j]. It is
easy to observe that the procedure is correct and that no occurrence is missing.
As a result, we obtain the following theorem.

Theorem 3. All the occurrences of Tk[i..j] in T	 can be reported in O(log logm+
occ) time, where occ is the number of occurrences. The underlying indexing struc-
ture takes O(n) space and can be constructed in O(n) time.

4 Variants of the Problem

4.1 Dynamic Counting and Reporting

In this section we focus on a dynamic version of counting and reporting problems,
where the only dynamic operation consists in adding a document to the database1.

Recall that in the static case, counting occurrences of Tk[i..j] in T	 is done
through the following two steps (Section 3.1):

1. compute position p of some occurrence of Tk[i..j] in T	,
2. in the suffix tree of T	, find the locus of string T	[p..p + j − i], and retrieve

the number of leaves in the subtree rooted at u.

For reporting queries (Section 3.2), Step 1 is basically the same, while Step 2 is
different and uses an individual suffix array for T	.

In the dynamic framework, we follow the same general two-step scenario. Note
first that since Step 2, for both counting and reporting, uses data structures
for individual documents only, it trivially applies to the dynamic case without
changes. However, Step 1 requires serious modifications that we describe below.

Since the suffix array is not well-suited for dynamic updates, at Step 1 we
will use the generalized suffix tree for T1, T2, . . . , Tm hereafter denoted GST . For

1 Document deletions are also possible to support but require some additional con-
structions that are left to the extended version of this paper.

Cross-Document Pattern Matching 201

each suffix of T1, T2, . . . , Tm we store a pointer to the leaf of GST corresponding
to this suffix.

We maintain a dynamic doubly-linked list EL corresponding to the Euler
tour of the current GST . Each internal node of GST is stored in two copies in
EL, corresponding respectively to the first and last visits of the node during the
Euler tour. Leaves of GST are kept in one copy. Observe that the leaves of GST
appear in EL in the “left-to-right” order, although not consecutively.

On EL, we maintain the data structure of [8] which allows, given two list
elements, to determine their order in the list in O(1) time (see also [9]). Insertions
of elements in the list are supported in O(1) time too.

Furthermore, we maintain a balanced tree, denoted BT , whose leaves are
elements of EL. Note that the size of EL is bounded by 2n (n is the size of
GST) and the height of BT is O(log n). Since the leaves of GST are a subset of
the leaves of BT , we call them suffix leaves to avoid the ambiguity.

Each internal node u of BT stores two kinds of information: (i) the rightmost
and leftmost suffix leaves in the subtree of BT rooted at u, (ii) minimal LCP
value among all suffix leaves in the subtree of BT rooted at u.

Finally, we will also need an individual suffix array for each inserted document
Ti.

We are now in position to describe the algorithm of Step 1. Like in the static
case, we first retrieve the leaf of GST corresponding to suffix Tk[i..]. To identify
a position of an occurrence of Tk[i..j] in T	, we have to examine the two closest
elements in the list of leaves of GST , one from right and from left, corresponding
to suffixes of T	. To find these two suffixes, we perform a binary search on the
suffix array for T	 using order queries of [8] on EL. This step takes O(log |T	|)
time.

We then check if at least one of these two suffixes corresponds to an occurrence
of Tk[i..j] in T	. In a similar way to Section 3, we have to compute the longest
common prefix between each of these two suffixes and Tk[i..], and compare this
value with (j−i+1). This amounts to computing the minimal LCP value among
all the suffixes of the corresponding range.

This can be done in O(log n) time by using a standard range trees ap-
proach [10]: for any sublist of EL we can retrieve O(log n) nodes vi that cover
it. The least among all minimal LCP values stored in nodes vi is the minimal
LCP value for the specified range of suffixes.

The query time bounds are summarized in the following lemma.

Lemma 1. Using the above data structures, counting and reporting all occur-
rences of Tk[i..j] in T	 can be done respectively in time O(log n) and time
O(log n+ occ), where occ is the number of reported occurrences.

We now explain how the involved data structures are updated. Suppose that
we add a new document Tm+1. Extending the generalized suffix tree by Tm+1

is done in time O(|Tm+1|) by McCreight’s or Ukkonen’s algorithm, i.e. in O(1)
amortized time per symbol.

When a new node v is added to a suffix tree, the following updates should be
done (in order):

202 G. Kucherov, Y. Nekrich, and T. Starikovskaya

(i) insert v at the right place of the list EL (in two copies if v is an internal
node),

(ii) rebalance the tree BT if needed,
(iii) if v is a leaf of GST (i.e. a suffix leaf of BT), update LCP values and

rightmost/leftmost suffix leaf information in BT ,

To see how update (i) works, we have to recall how suffix tree is updated when
a new document is inserted. Two possible updates are creation of a new internal
node v by splitting an edge into two (edge subdivision) and creating a new leaf u
as a child of an existing node. In the first case, we insert the first copy of v right
after the first copy of its parent, and the second copy right before the second
copy of its parent. In the second case, the parent of u has already at least one
child, and we insert u either right after the second (or the only) copy of its left
sibling, or right before the first (or the only) copy of its right sibling.

Rebalancing the tree BT (update (ii)) is done using standard methods. Ob-
serve that during the rebalancing we may have to adjust the LCP and right-
most/leftmost suffix leaf information for internal nodes, but this is easy to do as
only a constant number of local modifications is done at each level.

Update (iii) is triggered when a new leaf u is created in GST and added to
EL. First of all, we have to compute the LCP value for u and possibly to update
the LCP value of the next suffix leaf u′ to the right of u in EL. This is done in
O(1) time as follows. At the moment when u is created, we memorize the string
depth of its parent D = d(parent(u)). Recall that the parent of u already has at
least one child before u is created. If u is neither the leftmost nor the rightmost
child of its parent, then we set LCP (u) = D and LCP (u′) remains unchanged
(actually it also equals D). If u is the leftmost child of its parent, then we set
LCP (u) = LCP (u′) and then LCP (u′) = D. Finally, if u is the rightmost child,
then LCP (u) = D and LCP (u′) remains unchanged.

We then have to follow the path in BT from the new leaf u to the root
and possibly update the LCP and rightmost/leftmost suffix leaf information for
all nodes on this path. These updates are straightforward. Furthermore, during
this traversal we also identify suffix leaf u′ (as the leftmost child of the first
right sibling encountered during the traversal), update its LCP value and, if
necessary, the LCP values on the path from u′ to the root of BT . All these
steps take time O(log n).

Thus, updates of all involved data structures take O(log n) time per symbol.
The following theorem summarizes the results of this section.

Theorem 4. In the case when documents can be added dynamically, the number
of occurrences of Tk[i..j] in T	 can be computed in time O(log n) and reporting
these occurrences can be done in time O(log n+ occ), where occ is their number.
The underlying data structure occupies O(n) space and an update takes O(log n)
time per character.

Cross-Document Pattern Matching 203

4.2 Document Counting and Reporting

Consider a static collection of documents T1, . . . , Tm. In this section we focus on
document reporting and counting queries: report or count the documents which
contain at least one occurrence of Tk[i..j], for some 1 ≤ k ≤ m and i ≤ j.

For both counting and reporting, we use the generalized suffix tree, generalized
suffix array and the document array D for T1, T2, . . . , Tm. We first retrieve the
leaf of the generalized suffix tree labelled by Tk[i..] and compute its highest
ancestor u of string depth at least j − i + 1, using the weighted level ancestor
technique of Section 2.2. The suffixes of T1, T2, . . . , Tm starting with Tk[i..j] (i.e.
occurrences of Tk[i..j]) correspond then to the leaves of the subtree rooted at u,
and vice versa. As shown in Section 3.1, this step takes O(t) time, where t =
min(

√
log occ/ log log occ, log log(j− i+1)) and occ is the number of occurrences

of Tk[i..j] (this time in all documents).
Once u has been computed, we retrieve the interval [left(u)..right(u)] of ranks

of all the leaves under interest. We are then left with the problem of count-
ing/reporting distinct values in D[left(u)..right(u)]. This problem is exactly
the same as the color counting/ color reporting problem that has been studied
extensively (see e.g., [11] and references therein).

For color reporting queries, we can use the solution of [3] based on an O(n)-
space data structure for RMQ, applied to (a transform of) the document array
D. The pre-processing time is O(n). Each document is then reported in O(1)
time, i.e. all relevant documents are reported in O(ndocs) time, where ndocs
is their number. The whole reporting query then takes time O(t + ndocs) for t
defined above.

For counting, we use the solution described in [12]. The data structure re-
quires O(n) space and a color counting query takes O(log n) time. The following
theorem presents a summary.

Theorem 5. We can store a collection of documents T1, . . . , Tm in a linear space
data structure, so that for any pattern P = Tk[i..j] all documents that contain P
can be reported and counted in O(t+ndocs) and O(log n) time respectively. Here
t = min(

√
log occ/ log log occ, log log |P |), ndocs is the number of documents that

contain P and occ is the number of occurrences of P in all documents.

4.3 Compact Counting, Reporting and Document Reporting

In this section, we show how our reporting and counting problems can be solved
on succinct data structures [13].

Reporting and Counting. Our compact solution is based on compressed suffix
arrays [14]. A compressed suffix array for a text T uses |CSA| bits of space and
enables us to retrieve the position of the suffix of rank r, the rank of a suffix
T [i..], and the character T [i] in time Lookup(n). Different trade-offs between
space usage and query time can be achieved (see [13] for a survey).

Our data structure consists of a compressed generalized suffix array CSA for
T1, . . . , Tm and compressed suffix arrays CSAi for each document Ti. In [15] it

204 G. Kucherov, Y. Nekrich, and T. Starikovskaya

was shown that using O(n) extra bits, the length of the longest common prefix
of any two suffixes can be computed in O(Lookup(n)) time. Besides, the ranks
of any two suffixes Tk[s..] and T	[p..] can be compared in O(Lookup(n)) time: it
suffices to compare T	[p+ f] with Tk[s+ f] for f = LCP (Tk[s..], T	[p..]).

Note that ranks of the suffixes of T	 starting with Tk[i..j] form an interval
[r1..r2]. We use a binary search on the compressed suffix array of T	 to find
r1 and r2. At each step of the binary search we compare a suffix of T	 with
Tk[i..]. Therefore [r1..r2] can be found in O(Lookup(n) · logn) time. Obviously,
the number of occurrences of Tk[i..j] in T	 is r2 − r1. To report the occurrences,
we compute the suffixes of T	 with ranks in interval [r1..r2].

Theorem 6. All occurrences of Tk[i..j] in T	 can be counted in O(Lookup(n) ·
logn) time and reported in O((log n + occ)Lookup(n)) time, where occ is the
number of those. The underlying indexing structure takes 2|CSA| + O(n +
m log n

m) bits of memory.

Document Reporting. Again, we use a binary search on the generalized suffix
array to find the rank interval [r1..r2] of suffixes that start with Tk[i..j]. This
can be done in O(Lookup(n) · logn) time.

In [16], it was shown how to report, for any 1 ≤ r1 ≤ r2 ≤ n, all distinct
documents Tf such that at least one suffix of Tf occurs at position r, r1 ≤ r ≤ r2,
of the generalized suffix array. The construction uses O(n+m log n

m) additional
bits, and all relevant documents are reported in O(Lookup(n)·ndocs) time, where
ndocs is the number of documents that contain Tk[i..j]. Summing up, we obtain
the following result.

Theorem 7. All documents containing Tk[i..j] can be reported in O((log n +
ndocs)Lookup(n)) time, where ndocs is the number of those. The underlying
indexing structure takes 2|CSA|+O(n+m log n

m) bits of space.

Acknowledgments. T.Starikovskaya has been supported by the mobility grant
funded by the French Ministry of Foreign Affairs through the EGIDE agency
and by a grant 10-01-93109-CNRS-a of the Russian Foundation for Basic Re-
search. Part of this work has been done during a one-month stay of Y.Nekrich at
the Marne-la-Vallée University supported by the BEZOUT grant of the French
government. The authors also would like to thank Tsvi Kopelowitz for fruitful
discussions and valuable comments.

References

1. Farach, M., Muthukrishnan, S.: Perfect Hashing for Strings: Formalization and
Algorithms. In: Hirschberg, D.S., Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075,
pp. 130–140. Springer, Heidelberg (1996)

2. Amir, A., Landau, G.M., Lewenstein, M., Sokol, D.: Dynamic text and static pat-
tern matching. ACM Trans. Algorithms 3 (2007)

Cross-Document Pattern Matching 205

3. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Pro-
ceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2002. Society for Industrial and Applied Mathematics, Philadelphia (2002)

4. Berkman, O., Vishkin, U.: Finding level-ancestors in trees. J. Comput. Syst.
Sci. 48(2), 214–230 (1994)

5. Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theor.
Comput. Sci. 321(1), 5–12 (2004)

6. Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets:
a tool for text indexing. In: ACM-SIAM Symposium on Discrete Algorithms, pp.
368–373. ACM Press (2006)

7. Bender, M.A., Farach-Colton, M.: The LCA Problem Revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

8. Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two Simplified
Algorithms for Maintaining Order in a List. In: Möhring, R.H., Raman, R. (eds.)
ESA 2002. LNCS, vol. 2461, pp. 152–164. Springer, Heidelberg (2002)

9. Dietz, P., Sleator, D.: Two algorithms for maintaining order in a list. In: Proceed-
ings of the 19th Annual ACM Symposium on Theory of Computing, STOC 1987,
pp. 365–372. ACM, New York (1987)

10. Bentley, J.L.: Multidimensional divide-and-conquer. Commun. ACM 23(4), 214–
229 (1980)

11. Gagie, T., Navarro, G., Puglisi, S.J.: Colored Range Queries and Document Re-
trieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 67–81.
Springer, Heidelberg (2010)

12. Bozanis, P., Kitsios, N., Makris, C., Tsakalidis, A.: New Upper Bounds for Gen-
eralized Intersection Searching Problems. In: Fülöp, Z., Gécseg, F. (eds.) ICALP
1995. LNCS, vol. 944, pp. 464–474. Springer, Heidelberg (1995)

13. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv. 39
(2007)

14. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching (extended abstract). In: Proceedings of the
Thirty-Second Annual ACM Symposium on Theory of Computing, STOC 2000,
pp. 397–406. ACM, New York (2000)

15. Sadakane, K.: Compressed suffix trees with full functionality. Theory Comput.
Syst. 41, 589–607 (2007)

16. Sadakane, K.: Succinct data structures for flexible text retrieval systems. J. of
Discrete Algorithms 5, 12–22 (2007)

17. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum span-
ning trees and shortest paths. J. Comput. Syst. Sci. 48(3), 533–551 (1994)

18. Andersson, A., Thorup, M.: Dynamic ordered sets with exponential search trees.
J. ACM 54(3), 13 (2007)

Appendix: Proof of Theorem 1

Here we prove Theorem 1. We use the heavy path decomposition technique of [2].
A path π in T is heavy if every node u on π has at most twice as many nodes

in its subtree as its child v on π. A tree T can be decomposed into paths using
the following procedure: we find the longest heavy path πr that starts at the

206 G. Kucherov, Y. Nekrich, and T. Starikovskaya

root of T and remove all edges of πr from T . All remaining vertices of T belong
to a forest; we recursively repeat the same procedure in every tree of that forest.

We can represent the decomposition into heavy paths using a tree�. Each node
�j in � corresponds to a heavy path πj in T . A node �j is a child of a node �i in
� if the head of πj (i.e., the highest node in πj) is a child of some node u ∈ πi.
Some node in πi has at least twice as many descendants as each node in πj ; hence,
� has height O(log n).

O(n log n)-Space Solution. Let �j denote a root-to-leaf path in �. For a node �
in � let weight(�) denote the weight of the head of π, where π is the heavy path
represented by � in �. We store a data structure D(�j) that contains the values
of weight(�) for all nodes � ∈ �j . D(�j) contains O(log n) elements; hence, we
can find the highest node � ∈ �j such that weight(�) ≥ q in O(1) time. This
can be achieved by storing the weights of all nodes from �j in the q-heap [17].

For every heavy path πj , we store the data structure E(πj) from [18] that
contains the weights of all nodes u ∈ πj and supports the following queries:
for an integer q, find the lightest node u ∈ πj such that weight(u) ≥ q. Using

Theorem 1.5 in [18], we can find such a node u ∈ πj in O(
√

logn′/ log logn′)
time where n′ = min(nh, nl), nh = |{ v ∈ pj |weight(v) > weight(u) }|,
and nl = |{ v ∈ pj |weight(v) < weight(u) }|. Moreover, we can also find
the node u in O(log log q) time; we will show how this can be done in the
full version of this paper. Thus E(πj) can be modified to support queries in

O(min(
√
log n′/ log logn′, log log q)) time.

For each node u ∈ T we store a pointer to the heavy path π that contains u
and to the corresponding node � ∈ �.

A query wla(v, q) can be answered as follows. Let � denote the node in �
that corresponds to the heavy path containing v. Let �j be an arbitrary root-
to-leaf path in � that also contains �. Using D(�j) we can find the highest
node � ∈ �j, such that weight(�) ≥ q in O(1) time. Let πt denote the heavy
path in T that corresponds to the parent of �, and πs denote the path that
corresponds to �. If the weighted ancestor wla(v, q) is not the head of πs, then
wla(v, q) belongs to the path πt. Using E(πt), we can find u = wla(v, q) in
O(min(

√
log n′/ log logn′, log log q)) time where n′ = min(nh, nl), nh = |{ v ∈

πt |weight(v) > weight(u) }|, and nl = |{ v ∈ πt |weight(v) < weight(u) }|.
All data structures E(πi) use linear space. Since there are O(n) leaves in �

and each path �i contains O(log n) nodes, all D(�i) use O(n logn) space.

Lemma 2. There exists an O(n log n) space data structure that finds the
weighted level ancestor u in O(min(

√
logn′/ log log n′, log log q)) time.

O(n)-Space Solution. We can reduce the space from O(n log n) to O(n) using
a micro-macro tree decomposition. Let T0 be a tree induced by the nodes of
T that have at least logn/8 descendants. The tree T0 has at most O(n/ log n)
leaves. We construct the data structure described above for T0; since T0 has
O(n/ logn) leaves, its heavy-path tree �0 also has O(n/ logn) leaves. Therefore
all structures D(�j) use O(n) words of space. All E(πi) also use O(n) words of

Cross-Document Pattern Matching 207

space. If we remove all nodes of T0 from T , the remaining forest F consists of
O(n) nodes. Every tree Ti, i ≥ 1, in F consists of O(log n) nodes. Nodes of Ti are
stored in a data structure that uses linear space and answers weighted ancestor
queries in O(1) time. This data structure will be described later in this section.

Suppose that a weighted ancestor wla(v, q) should be found. If v ∈ T0, we
answer the query using the data structure for T0. If v belongs to some Ti for
i ≥ 1, we check the weight wr of root(Ti). If wr ≤ q, we search for wla(v, q) in
Ti. Otherwise we identify the parent v1 of root(Ti) and find wla(v1, q) in T0. If
wla(v1, q) in T0 is undefined, then wla(v, q) = root(Ti).

Data Structure for a Small Tree. It remains to describe the data structure for a
tree Ti, i ≥ 1. Since Ti contains a small number of nodes, we can answer weighted
level ancestor queries on Ti using a look-up table V . V contains information
about any tree with up to logn/8 nodes, such that node weights are positive

integers bounded by logn/8. For any such tree T̃ , for any node v of T̃ , and for

any integer q ∈ [1, logn/8], we store the pointer to wla(v, q) in T̃ . There are

O(2log n/4) different trees T̃ (see e.g., [5] for a simple proof); for any T̃ , we can

assign weights to nodes in less than (logn/8)! ways. For any weighted tree T̃
there are at most (logn)2/64 different pairs v, q. Hence, the table V contains
O(2log n/4(logn)2(logn/8)!) = o(n) entries. We need only one look-up table V
for all mini-trees Ti.

We can now answer a weighted level ancestor query on Ti using reduction to
rank space. The rank of a node u in a tree T is defined as rank(u, T) = |{ v ∈
T |weight(v) ≤ weight(u) }|. The successor of an integer q in a tree T is the
lightest node u ∈ T such that weight(u) ≥ q. The rank rank(q, T) of an integer
q is defined as the rank of its successor. Let rank(T) denote the tree T in which
the weight of every node is replaced with its rank. The weight of a node u ∈ T
is not smaller than q if an only if rank(u, T) ≥ rank(q, T). Therefore we can find
wla(v, q) in a small tree Ti, i ≥ 1, as follows. For every Ti we store a pointer to

T̃i = rank(Ti). Given a query wla(v, q), we find rank(q, Ti) in O(1) time using a

q-heap [17]. Let v′ be the node in T̃i that corresponds to the node v. We find

u′ = wla(v′, rank(q, Ti)) in T̃i using the table V . Then the node u in Ti that
corresponds to u′ is the weighted level ancestor of v.

FEMTO: Fast Search

of Large Sequence Collections

Michael P. Ferguson

Laboratory for Telecommunications Sciences, College Park, Maryland
mferguson@ltsnet.net

Abstract. We present FEMTO, a new system for indexing and search-
ing large collections of sequence data. We used FEMTO to index and
search three large collections, including one 182 GB collection. We com-
pare the performance of FEMTO indexing and search with Bowtie and
with Lucene, and we compare performance with indexes stored on hard
disks and in flash memory. To our knowledge, we report on the first
compressed suffix array storing more than 100 GB. Even for the largest
collection, most searches completed in under 10 seconds.

Keywords: FM-index, document retrieval, external memory, regular
expression, compressed suffix array.

1 Introduction

The FM-index of Ferragina and Manzini [8–10] is a remarkable structure for
string searching because it supports O(m) search, where m is the length of
the search pattern, while typically using less space than the original data. Fur-
thermore, the FM-index for n bytes of data can be constructed in O(n) time.
However, in practice, an FM-index - as well as other compressed suffix arrays
- must compete with more established techniques, such as Boyer-Moore [3] or
grep, which perform an O(n) scan of the data.

There are three problems with the typical compressed suffix array that make it
a poor choice for many information retrieval problems. The first problem is that
most implementations are not capable of handling very large collections. They
assume that the index fits into main memory or that 4 bytes are sufficient to store
offsets. Furthermore, a straightforward implementation of the FM-index for hard
disks will have poor performance since each search step requires millisecond-long
random access to the index.

The second problem is that, when compared to a tool like grep, compressed
suffix arrays offer limited flexibility. The implementations only return counts or
offsets. At the same time, many uses of an index only need a list of matching
documents. In addition, compressed suffix arrays only allow string search; there
is no support for regular expressions.

The third problem is that the indexing procedure is extremely slow for large
collections. Collections that cannot be indexed in main memory must be indexed

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 208–219, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

FEMTO 209

on disk. Dementiev et al. demonstrated external-memory suffix array construc-
tion at 9.88 microseconds/byte, or about 100 KB/second [6]. Compare that rate
with the speed of scanning from disk - easily about 70 MiB/second 1.

We believe that we have made progress in solving these three problems. We
have created a system called FEMTO: the FM-index for External Memory
with Throughput Optimizations. It is an FM-index with some improvements
to make external memory operation faster. Our goal is to create an FM-index
that can compete better with the scanning approach for large, archival collec-
tions. FEMTO minimizes seeks to perform well in external memory, supports
more flexible usage including document retrieval and regular expression search,
and constructs indexes in parallel and in external memory at rates exceeding 1
MiB/second with 4 machines.

2 Background

We summarize the operation of an FM-index as in [10]. First, to index any
number of documents, concatenate the documents together to create an n-byte
text string T . The next step in the indexing process is to perform the Burrows-
Wheeler transform (BWT) on T [4]. Conceptually, form an n by n matrix from
all the rotations of the n-byte input string, and sort the rows of this matrix
lexicographically. This sorted matrix is called M . The BWT of the original n-
byte string is the last column ofM , which is called L. The original input T can be
reconstructed from the L column using the last-to-first column mapping [4]. This
mapping, denoted LF , provides a mechanism for stepping backwards in the text.
That is, if row r begins with T [i..], LF (r) will give the index of the row beginning
with T [i− 1..]. The LF mapping can be computed entirely from information in
the L column. In particular, LF (i) = C[L[i]] +Occ(L[i], i)− 1, where C stores,
for each character, the number of characters less than that character in the entire
input, and Occ(ch, i) is the number of times the character ch appears at or before
row i in the L column.

Note that in practice, the BWT is computed by first building the suffix array
of the input string. It is straightforward to compute the L column from the suffix
array [4].

An FM-index stores the L column, the C array, information to help compute
Occ(L[i], i), and - for some fraction of marked rows - offset information. The FM-
index uses these structures to support two kinds of searches: count and locate.
Given a pattern of m bytes, the count search works in O(m) steps to find the
rows in the conceptual matrix M that begin with that pattern. The count search
simply returns the number of matching rows. A locate search finds the offset for
each matching row. Both of these methods find the range of rows beginning
with a particular pattern with the backward search method of Ferragina and
Manzini [10], which goes through the pattern backwards, maintaining the range
of matching rows, and uses a variant on the LF -mapping. To find the offset for

1 In this paper, we use the IEC binary prefixes: MB and GB mean 106 and 109 bytes;
MiB and GiB mean 220 and 230 bytes.

210 M.P. Ferguson

a particular row, an FM-index applies the LF -mapping until a marked row is
reached [10]. We call each application of the LF -mapping a backward step.

3 The FEMTO Index

The FEMTO index is based on a combination of methods, including the FM-
index [8, 10] and the Compressed Suffix Array [13]. Like other indexes, the
FEMTO index is made up of blocks. A FEMTO index has a single header block
and many data blocks. The header block stores the C array and the number
of occurrences of each character before the start of each data block. Each data
block contains buckets storing the L column and marking information as well
as the number of times each character appears before each bucket in the block.
The L column data is stored in a wavelet tree inside each bucket. This wavelet
tree structure provides a fast way of computing Occ(ch, i). We use our own
implementation of the wavelet tree described by Grossi, Gupta, and Vitter [13].
FEMTO marks character offsets i with i (mod k) = 0, for some parameter k
known as the mark period. FEMTO uses a succinct dictionary [13] to record
which rows are marked and stores the offsets for marked rows in a separate
array. Lastly, for each chunk of h rows, FEMTO stores the corresponding set of
document numbers.

3.1 High Throughput with External Memory

We assume that at any given time, FEMTO is processing several queries in
parallel. Each of these queries can be expressed as a sequence of requests. These
requests find a small unit of information - such as Occ(L[i], i). In order to service
one of these requests, the system must read the appropriate bucket from disk.
Once the bucket is loaded, the system can service any number of requests for
that bucket with no extra I/O cost. The search system keeps the requests in a
tree structure sorted by row. That way, it visits requests in row order in order
to avoid needing to re-read parts of the index. In addition, FEMTO processes
the sorted requests in multiple threads using a work-stealing strategy.

This method is new as suggested; compressed suffix array implementations
typically assume that they will process a single query at a time. Two implemen-
tations use related techniques to reduce the search time for a single query, as in
Grossi and Vitter [14] for reporting occurrences and in the FM-index version 2
for doing count queries with the mark character inserted [9].

Sorting requests provides an enormous reduction in the number of block cache
misses. After enabling request sorting during development, we observed about a
5000-fold reduction in the amount of I/O to perform 100,000 queries.

3.2 Bi-directional Locate

During a locate operation, FEMTO steps both forward and backward at the
same time to find a marked row. Backward step works in the usual manner,

FEMTO 211

but forward step uses binary search on the header block and on a data block.
These forward and backward steps are continued independently until a marked
row is located. As a row range is stepped forward or backward, it becomes more
and more spread across the index. By stepping both forwards and backwards,
FEMTO reduces this spreading, leading to better cache performance. Note that
the complexity of this locate procedure remains O(k) index operations, assuming
that every kth character is marked. Early experiments showed that bi-directional
locate incurs about half the I/O of backward steps.

3.3 Improving Document Search Time

FEMTO employs a new scheme to improve the performance of queries for match-
ing documents, which we call locate documents queries. These queries do not
need to return the locations of matches within the documents - only the set of
matching documents. To improve these searches, FEMTO divides the index into
chunks of h rows. For each chunk, it stores a list of documents present in that
range of rows. When reporting the documents contained in an arbitrary range
of rows, FEMTO does the normal locate procedure for the results in the partial
first and last chunks. For each full chunk, it reads the set of matching documents
directly. The list of document numbers stored in each chunk is compressed using
standard information retrieval methods as in [21].

Assuming that each chunk can be read in a single block operation, the number
of block operations to locate the documents represented by r matching rows is
O(r/h + hk), where h is the chunk size and k is the mark period. This is an
improvement over the original O(rk) search time, and in practice it can mean
10-200x speedup when returning a large number of results.

These measures to improve document search time, especially when reporting
a very large number of documents, are important for applications that require
the entire list of matching documents, such as Boolean query processing. An
alternative approach would be to store the document numbers for each row in a
wavelet tree as described in [12]. In addition, Culpepper et al. extend that result
in order to directly compute the top k results, ranked by term frequency [5].
Although we were not able to perform a direct comparison, we believe that the
wavelet tree approaches create larger indexes - on the order of 3n bytes - while
the FEMTO indexes range from n/2 to 2n bytes.

3.4 Regular Expression Search

We have developed a regular expression search method for the FM-index which
is an analogue of the trie automaton search of Baeza-Yates et al. [1]. First,
take a regular expression and reverse it - e.g. ab(c*d |ef)g becomes g(dc* |fe)ba.
Then, compile it to a nondeterministic finite automaton (NFA) using Thomp-
son’s method [20]. Next, simulate the NFA on the compressed suffix array. The
simulation operates on a mapping from ranges of rows to automaton states. Each
step of the algorithm proceeds in a similar manner to the backward search; take

212 M.P. Ferguson

a backwards step for each character on a transition from a current NFA state
and then add the resulting range of rows and state to the mapping.

simulate_nfa :

add the entry ([0, n-1] -> the set of start states) to mapping

while(the mapping is not empty) :

pop an entry ([first, last] -> nfa_states) from the mapping

for every character ch reachable from nfa_states :

new_first = C[ch] + Occ(ch, first - 1)

new_last = C[ch] + Occ(ch, last) - 1

new_states=states reachable from nfa_states after reading ch

add ([new_first, new_last] -> new_states) to the mapping,

reporting a match if a final state is set

This algorithm has some desirable properties. First, exact string search proceeds
as in backward search. Second, this algorithm is able to re-use a partial match;
for example when searching for (abc|def)xyz, the algorithm only computes the
range of rows matching xyz once. Note that this algorithm performs at least z
index operations, where z is the length of the longest match; thus it is Ω(z). Fur-
thermore, some regular expressions, such as the infinite wildcard .∗, will cause
the algorithm to visit every row in the index. Although this algorithm is not
appropriate for all regular expressions, it performs well with simple regular ex-
pressions. Lastly, it is possible to modify this algorithm to support approximate
queries by simulating approximate NFA search, although space does not allow
us to describe it in detail here. Our implementation of approximate NFA search
is based upon the approximate regular expression search of Wu and Manber [22],
but interacts with the index just like simulate nfa above.

3.5 Parallel External Memory Index Construction

We developed a parallel external-memory suffix array construction system, based
upon the difference cover algorithm [16]. Our independent implementation com-
bines the ideas of [17] and [6]. We observed linear performance indexing the
English corpus from the Pizza & Chili website [11]. In a 10-gigabit Ethernet
cluster using 3 disks per node, we measured 0.45 MiB/s on a single machine,
1.61 MiB/s on four machines, and 2.7 MiB/s on eight machines.

There are many notable alternative ways to construct an FM-index. First,
there are direct index construction schemes, such as [15] and [19], that require
memory space for the resulting compressed index. Also, Ferragina et al. present
in [7] a many-pass method to compute the BWT in external memory. Since this
many-pass method has I/O complexity O(n2/(MB logn)), it is only appropriate
for collections that are not much larger than main memory. Lastly, [2] shows how
to efficiently index many small documents, but their method works with fixed-
size documents and is quadratic in the document size - and so not applicable to
a large, varied collection. Nonetheless, we believe that future work along these
lines may lead to a generally useful direct-to-BWT external memory scheme.

FEMTO 213

4 Experimental Methods

We report experiments with three different large data sets. The first is a col-
lection of bacterial sequence data from the National Center for Biotechnology
Information (NCBI) Genomes collection - totaling 3.8 GB. The second collection
is 43 GB containing all textual documents from Project Gutenberg collection.
The final collection is all 182 GB of sequence data from the NCBI Genomes
collection. To our knowledge, this is the first time that compressed suffix arrays
have been constructed for such large collections.

To construct our Gutenberg dataset, we created a local mirror of the Project
Gutenberg collection (http://www.gutenberg.org) in November 2011 and then
we selected only documents that the file command reported as text. We in-
dexed this collection with Apache Lucene Core 3.5.0 (http://lucene.apache.org)
for comparison. We modified the Lucene searching demonstration to give perfor-
mance timing and to only ever return 10 results. When searching for a pattern
containing multiple words, we used the phrase query mechanism in Lucene.

To construct the Genomes collection, we downloaded all .fna, .fa, .fasta, .seq,
.fsa, .ffn, .faa, .frn, and gzip compressed versions of those same files, in November
2011, from ftp://ftp.ncbi.nih.gov/genomes. We then removed redundant com-
pressed files as well as symbolic links and ARCHIVE directories and uncom-
pressed the compressed files.

We constructed the Bacteria collection by taking files from the Bacteria sub-
directory of our Genomes collection, up to 3.76 GB. We limited the size in order
to compare with Bowtie2 (available at http://bowtie-bio.sourceforge.net) [18].
Bowtie2 cannot currently create an index for more than 4 GiB of input data. We
used Bowtie 2.0.0-beta3. When searching with Bowtie, we used the arguments
–mm –sam-nosq –end-to-end -M 0 -N 0 -L 500 -i L,0,500 in addition to the -x
argument to specify the index and the -c argument to specify a search pattern.
We used these arguments in order to request exact matches and to request that
the index be memory mapped instead of read in at program start.

FEMTO indexes were constructed with a block size of 128 MiB, a bucket size
of 1MiB, a document chunk size of h = 2048, and a mark period of k = 20.

Because we are measuring external memory performance, we flushed the Linux
page cache between each experiment and performed an operation to clear out
hardware RAID and disk buffers. Then we performed a search for an unrelated
term in order to make sure that any index headers or program images were in
cache. Finally, we performed the measured search. Thus, these search perfor-
mance numbers represent the time to get results when the search program is
cached but almost all of the index is not.

We performed experiments on two different systems. The first has an 8-disk
hardware RAID-6 array, 8-cores of Intel Xeon X5355 at 2.66 GHz, and 16 GiB of
memory. The second system has 8 flash memory devices configured in a hardware
RAID-5 array, 24 cores of Xeon X5670 at 2.93 GHz, and 24 GiB of memory.

214 M.P. Ferguson

 0

 1

 2

 3

 4

 5

 6

3 6 9 12 17 23 28

T
im

e
in

 s
ec

on
ds

Pattern Length

Gutenberg Disk Searches

FEMTO
FEMTO-count

Lucene

 0

 0.05

 0.1

 0.15

 0.2

 0.25

3 6 9 12 17 23 28

T
im

e
in

 s
ec

on
ds

Pattern Length

Gutenberg Flash Searches

FEMTO
FEMTO-count

Lucene

Fig. 1. Gutenberg (42.94 GB) indexed search speeds. Note that the time to search with
grep is 559 s on disk, or 221 s on flash memory. Each query is limited to 10 results.

4.1 Results

FEMTO, Lucene, and Bowtie2 all create indexes for completely different pur-
poses: FEMTO is meant to support large, archival indexing and search of any
sequence data; Lucene indexes word data; and Bowtie2 was created for sequence
alignment. Nonetheless, it is useful to compare these systems to understand, as
a practical matter, in what situations a system such as FEMTO should be used.
Table 1 summarize index size and indexing time.

Table 1. Data set and index construction information. Bacteria was indexed with
Bowtie2, Gutenberg with Lucene. Genomes indexed with 7 machines. FEMTO indexes
sizes show optional document chunk structure; see Section 4.3.

Corpus Information Indexing time and index size

Size # Docs Bowtie2/Lucene FEMTO

Bacteria 3.76 GB 1896 16940 s 5.26 GB 7572 s 1.91 GB - 2.34 GB

Gutenberg 42.93 GB 94471 5133 s 14.84 GB 108025 s 19.83 GB - 40.87 GB

Genomes 182.43 GB 23242528 - 158434 s* 87.62 GB - 296.68 GB

Figures 1-3 show external memory search performance. Figure 1 shows that
FEMTO is not as fast as Lucene, but it is not far behind. Most patterns were
one word and returned exactly 10 matches. Note that the pattern of length 9
had no matches, the pattern of length 28 had only 3 matches, and that the
23-long pattern is two words and the 28-long pattern is three words. Lucene
search time depends on the number of words in the search - hence it increases
for the last two - while a FEMTO search depends more directly on the number of
characters. Observe that the time to identify matching rows - shown in the figure
in the white area labeled FEMTO-count - increases as the pattern size grows.
Searches backed by flash memory are noticeably faster for both systems, and
benefit FEMTO more than Lucene, since FEMTO is limited by disk seek speed.
Lastly, both systems are 100-1000x faster on disk than grep for this collection.

FEMTO 215

As Figure 2 shows, FEMTO is competitive with Bowtie2 for single-query
exact-match searches. Bowtie2 was not designed for this kind of external memory
operation, but it is a BWT-based index like FEMTO. Bowtie2 performs exact
search about as quickly as FEMTO. For most of these searches, FEMTO is
slightly faster. Note that for both of these systems, the search time increases
as the pattern length grows. Lastly, for a collection of only 4GB, a scan of the
collection with grep is competitive with the time to do a search with either of
these indexes if the index is stored on disk; we measured grep to take 11.5 s
which is about the time it takes to run a 256-character query.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

32 64 128 192 256

T
im

e
in

 s
ec

on
ds

Pattern Length

Bacteria Disk Searches

FEMTO
bowtie2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

32 64 128 192 256

T
im

e
in

 s
ec

on
ds

Pattern Length

Bacteria Flash Searches

FEMTO
bowtie2

Fig. 2. Bacteria (3.76 GB) indexed search speeds. Note that the time to search with
grep is 11.5 s on disk, or 6.12 s with flash memory. Each query returned only one result.

 0.1

 1

 10

32 64 128 256

T
im

e
in

 s
ec

on
ds

Pattern Length

Genomes FEMTO Searches

disk
flash

 0.1

 1

 10

3.8 43 182

T
im

e
in

 s
ec

on
ds

Collection Size (GB)

12-Character FEMTO Searches

locate disk
count disk

locate flash
count flash

Fig. 3. Genomes (182.43 GB) indexed search speeds. Note that the time to search this
collection with grep is 1246 s on disk, or an estimated 493 s with flash memory. Each
query returned one or two results. Note that these plots are on log-log scale.

FEMTO scales to very large index sizes while still offering fast searches. Only
FEMTO was able to construct a sequence index for the Genomes collection. As
the left-hand side of Figure 3 shows, sequence queries still complete in seconds
and take time proportional to the length of the query. Observe on the right-hand
side of Figure 3 that FEMTO search performance is approximately constant over
the range of collection sizes measured here - from 3.76 GB to 182 GB.

216 M.P. Ferguson

To demonstrate the capabilities of sorting requests, we also measured the per-
formance of serial and parallel count queries over randomly selected length-12
patterns in the Gutenberg data set. See Figure 4. The request sorting mechanism
offers better throughput on disk when processing many count queries simulta-
neously, but does not offer much of an advantage when the index is in memory.

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 1e+04 1e+05

T
im

e
in

 s
ec

on
ds

Number of Queries

Gutenberg Count Queries: Disk

serial
parallel

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000 1e+04 1e+05
T

im
e

in
 s

ec
on

ds

Number of Queries

Gutenberg Count Queries: Cached

serial
parallel

Fig. 4. Gutenberg (42.94 GB) indexed search speeds for many count queries. Note that
these plots are on log-log scale.

4.2 Approximate Search

The FEMTO query “APPROX constitutional” searches for all sequences within
edit distance 1 of “constitutional”. That query took 37.6 s on the disk system
and 2.41 s on the flash system. The analogous Lucene query, “constitutional˜”
took 103 s on the disk system and 96 s on the flash memory system. Thus,
FEMTO is quite a bit faster than Lucene at approximate search. Approximate
search is still fast even for our largest index - a 32 character search against the
Genomes index took 53.2 s with the disk system and 3.34 s with flash memory.

4.3 FEMTO Index Space

Table 2 shows how the space of each FEMTO index was used. Each column
shows index structures that support different features. Using only the data in
the BWT & Occs, the index supports finding the range of matching rows for
a pattern. Adding in the Offsets allows the index to report back the offsets of
matching rows, and the mark period (20) represents a time-space trade-off for
that operation. Finally, adding in the Doc Chunks allows the index to rapidly

Table 2. FEMTO index statistics. Percentages show proportion of collection size.

Collection BWT & Occs Offsets Doc Chunks Total

Bacteria - 3.76 0.96 (25%) 0.94 (25%) 0.44 (11%) 2.34 (62%)

Gutenberg - 42.93 7.74 (18%) 12.00 (28%) 21.04 (49%) 40.87 (95%)

Gutenberg’ - 42.93 7.74 (18%) 12.00 (28%) 2.4594 (6%) 22.21 (52%)

Genomes - 182.43 32.97 (18%) 51.13 (28%) 209.06 (115%) 296.68 (163%)

FEMTO 217

report a large number of matching documents for large ranges of rows. This
kind of operation is important for searches which require follow-on processing,
such as Boolean queries. Note that without the document chunk information,
each of these indexes would be about 50% the size of the original collection.
The document chunks did not compress well in the larger collections, which
have orders of magnitude more documents than the chunk size of h = 2048.
To investigate further, we created a Gutenberg index with a h = 131072, listed
as Gutenberg’ in the table, that achieves much better compression. Thus, for
consistent compression, h should depend on the number of documents.

4.4 Reporting Results

We measured the speed of finding the offset or document for a varying num-
ber of rows in the Gutenberg index. These queries really show the ability for
FEMTO to minimize I/O operations. See Figure 5. With flash memory, we ob-
served locate speeds up to 7000 results/second and document locate speeds up
to 90,000 results/second. On disk, locate performed at up to 800 results/second
and document locate operated at up to 70,000 results/second. We believe that
the decrease in locate performance around 10,000 results comes from the work-
ing set no longer fitting into main memory. Also, note that for 10 million results,
the query processing data structures occupy 8 GiB of memory.

 1

 10

 100

 1000

 10000

 100000

 100 1000 1e+04 1e+05 1e+06 1e+07

T
im

e
in

 s
ec

on
ds

Number of Results

Gutenberg Reporting Offsets: Disk

locate
locate-documents

 1

 10

 100

 1000

 10000

 100000

 100 1000 1e+04 1e+05 1e+06 1e+07

T
im

e
in

 s
ec

on
ds

Number of Results

Gutenberg Reporting Offsets: Flash

locate
locate-documents

Fig. 5. Gutenberg (42.93 GB) locate speeds. Note that these plots are on log-log scale.

5 Conclusion

We have demonstrated the feasibility of using an improved FM-index for large
sequence and document retrieval problems. We have demonstrated interactive
search times even with our largest collection. This index structure is very quick
to search - especially with flash memory - and supports regular expression and
sequence queries.

218 M.P. Ferguson

Availability. The FEMTO software is not yet released. Please contact the
author regarding distribution and development.

Acknowledgments. We would like to thank Aaron Marcus from Virginia Tech
and Katherine Gibson from the University of Maryland Baltimore County for
their help implementing regular expression search; and John Dorband, Yaacov
Yesha, and Nancy Walia from the University of Maryland Baltimore County for
their help with parallel suffix array construction.

References

1. Baeza-Yates, R.A., Gonnet, G.H.: Fast text searching for regular expressions or
automaton searching on tries. J. ACM 43(6), 915–936 (1996)

2. Bauer, M.J., Cox, A.J., Rosone, G.: Lightweight BWT Construction for Very
Large String Collections. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS,
vol. 6661, pp. 219–231. Springer, Heidelberg (2011)

3. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM 20(10),
762–772 (1977)

4. Burrows, M., Wheeler, D.: A block-sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation (1994)

5. Culpepper, J.S., Navarro, G., Puglisi, S.J., Turpin, A.: Top-k Ranked Document
Search in General Text Databases. In: de Berg, M., Meyer, U. (eds.) ESA 2010.
LNCS, vol. 6347, pp. 194–205. Springer, Heidelberg (2010)

6. Dementiev, R., Kärkkäinen, J., Mehnert, J., Sanders, P.: Better external memory
suffix array construction. In: ALENEX/ANALCO, pp. 86–97. SIAM (2005)

7. Ferragina, P., Gagie, T., Manzini, G.: Lightweight data indexing and compression
in external memory. Algorithmica 63(3), 707–730 (2012)

8. Ferragina, P., Manzini, G.: An experimental study of a compressed index. Infor-
mation Sciences 135(1-2), 13–28 (2001)

9. Ferragina, P., Manzini, G.: Fm-index version 2 web page (2005),
http://roquefort.di.unipi.it/~ferrax/fmindexV2/index.html

10. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581
(2005)

11. Ferragina, P., Navarro, G.: Pizza & chili website (2006),
http://pizzachili.dcc.uchile.cl or http://pizzachili.di.unipi.it

12. Gagie, T., Puglisi, S.J., Turpin, A.: Range Quantile Queries: Another Virtue of
Wavelet Trees. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS,
vol. 5721, pp. 1–6. Springer, Heidelberg (2009)

13. Grossi, R., Gupta, A., Vitter, J.S.: When indexing equals compression: experiments
with compressing suffix arrays and applications. In: SODA 2004: Proceedings of
the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (2004)

14. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. In: STOC 2000: Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing (2000)

15. Hon, W.-K., Lam, T.-W., Sadakane, K., Sung, W.-K., Yiu, S.-M.: A space and time
efficient algorithm for constructing compressed suffix arrays. Algorithmica 48(1),
23–36 (2007)

16. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM 53(6), 918–936 (2006)

http://roquefort.di.unipi.it/~ferrax/fmindexV2/index.html
http://pizzachili.dcc.uchile.cl
http://pizzachili.di.unipi.it

FEMTO 219

17. Kulla, F., Sanders, P.: Scalable parallel suffix array construction. Parallel Com-
put. 33(9), 605–612 (2007)

18. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.: Ultrafast and memory-efficient
alignment of short dna sequences to the human genome. Genome Biology 10(3),
R25 (2009)

19. Sirén, J.: Compressed Suffix Arrays for Massive Data. In: Karlgren, J., Tarhio, J.,
Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 63–74. Springer, Heidelberg
(2009)

20. Thompson, K.: Programming techniques: Regular expression search algorithm.
Commun. ACM 11(6), 419–422 (1968)

21. Witten, I., Moffat, A., Bell, T.: Managing Gigabytes: Compressing and Indexing
Documents and Images, 2nd edn. Morgan Kaufmann (1999)

22. Wu, S., Manber, U.: Fast text searching: allowing errors. Commun. ACM 35, 83–91
(1992)

Speeding Up q-Gram Mining

on Grammar-Based Compressed Texts

Keisuke Goto, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda

Department of Informatics, Kyushu University
{keisuke.gotou,bannai,inenaga,takeda}@inf.kyushu-u.ac.jp

Abstract. We present an efficient algorithm for calculating q-gram fre-
quencies on strings represented in compressed form, namely, as a straight
line program (SLP). Given an SLP T of size n that represents string T ,
the algorithm computes the occurrence frequencies of all q-grams in T ,
by reducing the problem to the weighted q-gram frequencies problem
on a trie-like structure of size m = |T | − dup(q, T), where dup(q, T)
is a quantity that represents the amount of redundancy that the SLP
captures with respect to q-grams. The reduced problem can be solved
in linear time. Since m = O(qn), the running time of our algorithm is
O(min{|T | − dup(q, T), qn}), improving our previous O(qn) algorithm
when q = Ω(|T |/n).

1 Introduction

Many large string data sets are usually first compressed and stored, while they
are decompressed afterwards in order to be used and analyzed. Compressed
string processing (CSP) is an approach that has been gaining attention in the
string processing community. Assuming that the input is given in compressed
form, the aim is to develop methods where the string is processed or ana-
lyzed without explicitly decompressing the entire string, leading to algorithms
with time and space complexities that depend on the compressed size rather
than the whole uncompressed size. Since compression algorithms inherently cap-
ture regularities of the original string, clever CSP algorithms can be theoreti-
cally [13,4,10,7], and even practically [19,9], faster than algorithms which process
the uncompressed string.

In this paper, we assume that the input string is represented as a Straight
Line Program (SLP), which is a context free grammar in Chomsky normal form
that derives a single string. SLPs are a useful tool when considering CSP algo-
rithms, since it is known that outputs of various grammar based compression
algorithms [17,16], as well as dictionary compression algorithms [24,22,23,21] can
be modeled efficiently by SLPs [18]. We consider the q-gram frequencies problem
on compressed text represented as SLPs. q-gram frequencies have profound ap-
plications in the field of string mining and classification. The problem was first
considered for the CSP setting in [11], where an O(|Σ|2n2)-time O(n2)-space
algorithm for finding the most frequent 2-gram from an SLP of size n represent-
ing text T over alphabet Σ was presented. In [3], it is claimed that the most

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 220–231, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Speeding Up q-Gram Mining on Grammar-Based Compressed Texts 221

frequent 2-gram can be found in O(|Σ|2n logn)-time and O(n log |T |)-space, if
the SLP is pre-processed and a self-index is built. A much simpler and efficient
O(qn) time and space algorithm for general q ≥ 2 was recently developed [9].

Remarkably, computational experiments on various data sets showed that the
O(qn) algorithm is actually faster than calculations on uncompressed strings,
when q is small [9]. However, the algorithm slows down considerably compared
to the uncompressed approach when q increases. This is because the algorithm
reduces the q-gram frequencies problem on an SLP of size n, to the weighted
q-gram frequencies problem on a weighted string of size at most 2(q − 1)n.
As q increases, the length of the string becomes longer than the uncompressed
string T . Theoretically, q can be as large as O(|T |), hence in such a case the
algorithm requires O(|T |n) time, which is worse than a trivial O(|T |) solution
that first decompresses the given SLP and runs a linear time algorithm for q-
gram frequencies computation on T .

In this paper, we solve this problem, and improve the previous O(qn) algo-
rithm both theoretically and practically. We introduce a q-gram neighbor relation
on SLP variables, in order to reduce the redundancy in the partial decompression
of the string which is performed in the previous algorithm. Based on this idea,
we are able to convert the problem to a weighted q-gram frequencies problem
on a weighted trie, whose size is at most |T | − dup(q, T). Here, dup(q, T) is a
quantity that represents the amount of redundancy that the SLP captures with
respect to q-grams. Since the size of the trie is also bounded by O(qn), the time
complexity of our new algorithm is O(min{qn, |T | − dup(q, T)}), improving on
our previous O(qn) algorithm when q = Ω(|T |/n). Preliminary computational
experiments show that our new approach achieves a practical speed up as well,
for all values of q.

2 Preliminaries

2.1 Intervals, Strings, and Occurrences

For integers i ≤ j, let [i : j] denote the interval of integers {i, . . . , j}. For an
interval [i : j] and integer q > 0, let pre([i : j], q) and suf ([i : j], q) represent
respectively, the length-q prefix and suffix interval, that is, pre([i : j], q) = [i :
min(i + q − 1, j)] and suf ([i : j], q) = [max(i, j − q + 1) : j].

Let Σ be a finite alphabet. An element of Σ∗ is called a string. For any integer
q > 0, an element of Σq is called a q-gram. The length of a string T is denoted
by |T |. The empty string ε is a string of length 0, namely, |ε| = 0. For a string
T = XY Z,X , Y and Z are called a prefix, substring, and suffix of T , respectively.
The i-th character of a string T is denoted by T [i], where 1 ≤ i ≤ |T |. For
a string T and interval [i : j](1 ≤ i ≤ j ≤ |T |), let T ([i : j]) denote the
substring of T that begins at position i and ends at position j. For convenience,
let T ([i : j]) = ε if j < i. For a string T and integer q ≥ 0, let pre(T, q)
and suf (T, q) represent respectively, the length-q prefix and suffix of T , that is,
pre(T, q) = T (pre([1 : |T |], q)) and suf (T, q) = T (suf ([1 : |T |], q)).

222 K. Goto et al.

For any strings T and P , let Occ(T, P) be the set of occurrences of P in T ,
i.e., Occ(T, P) = {k > 0 | T [k : k + |P | − 1] = P}. The number of elements
|Occ(T, P)| is called the occurrence frequency of P in T .

2.2 Straight Line Programs

X1 X2

a ba a ab a b a b a a b

X1 X3

X1 X2

X3

X1 X2

X3

X4

X1

X5X4
X6

X1 X2
X3

X1 X2

X3
X4

X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13

Fig. 1. The derivation tree of SLP T =
{X1 → a, X2 → b, X3 → X1X2,
X4 → X1X3, X5 → X3X4, X6 → X4X5,
X7 → X6X5}, representing string T =
val(X7) = aababaababaab.

A straight line program (SLP) is a set of
assignments T = {X1 → expr1, X2 →
expr2, . . . , Xn → exprn}, where each
Xi is a variable and each expri is an
expression, where expri = a (a ∈ Σ),
or expri = X	(i)Xr(i) (i > �(i), r(i)). It
is essentially a context free grammar in
the Chomsky normal form, that derives
a single string. Let val (Xi) represent
the string derived from variable Xi. To
ease notation, we sometimes associate
val(Xi) with Xi and denote |val (Xi)| as
|Xi|, and val(Xi)([u : v]) as Xi([u : v])
for any interval [u : v]. An SLP T repre-
sents the string T = val(Xn). The size
of the program T is the number n of assignments in T . Note that |T | can be as
large as Θ(2n). However, we assume as in various previous work on SLP, that
the computer word size is at least log |T |, and hence, values representing lengths
and positions of T in our algorithms can be manipulated in constant time.

The derivation tree of SLP T is a labeled ordered binary tree where each
internal node is labeled with a non-terminal variable in {X1, . . . , Xn}, and each
leaf is labeled with a terminal character in Σ. The root node has label Xn.
Let V denote the set of internal nodes in the derivation tree. For any internal
node v ∈ V , let 〈v〉 denote the index of its label X〈v〉. Node v has a single child
which is a leaf labeled with c when (X〈v〉 → c) ∈ T for some c ∈ Σ, or v has
a left-child and right-child respectively denoted �(v) and r(v), when (X〈v〉 →
X〈	(v)〉X〈r(v)〉) ∈ T . Each node v of the tree derives val (X〈v〉), a substring of T ,
whose corresponding interval itv(v), with T (itv(v)) = val (X〈v〉), can be defined
recursively as follows. If v is the root node, then itv(v) = [1 : |T |]. Otherwise,
if (X〈v〉 → X〈	(v)〉X〈r(v)〉) ∈ T , then, itv(�(v)) = [bv : bv + |X〈	(v)〉| − 1] and
itv(r(v)) = [bv + |X〈	(v)〉| : ev], where [bv : ev] = itv (v). Let vOcc(Xi) denote
the number of times a variable Xi occurs in the derivation tree, i.e., vOcc(Xi) =
|{v | X〈v〉 = Xi}|. We assume that any variable Xi is used at least once, that is
vOcc(Xi) > 0.

For any interval [b : e] of T (1 ≤ b ≤ e ≤ |T |), let ξT (b, e) denote the deepest
node v in the derivation tree, which derives an interval containing [b : e], that
is, itv(v) ⊇ [b : e], and no proper descendant of v satisfies this condition. We
say that node v stabs interval [b : e], and X〈v〉 is called the variable that stabs
the interval. If b = e, we have that (X〈v〉 → c) ∈ T for some c ∈ Σ, and
itv(v) = b = e. If b < e, then we have (X〈v〉 → X〈	(v)〉X〈r(v)〉) ∈ T , b ∈ itv(�(v)),

Speeding Up q-Gram Mining on Grammar-Based Compressed Texts 223

and e ∈ itv(r(v)). When it is not confusing, we will sometimes use ξT (b, e) to
denote the variable X〈ξT (b,e)〉.

SLPs can be efficiently pre-processed to hold various information. |Xi| and
vOcc(Xi) can be computed for all variables Xi(1 ≤ i ≤ n) in a total of O(n)
time by a simple dynamic programming algorithm. Also, the following Lemma
is useful for partial decompression of a prefix of a variable.

Lemma 1 ([8]). Given an SLP T = {Xi → expr i}ni=1, it is possible to pre-
process T in O(n) time and space, so that for any variable Xi and 1 ≤ j ≤ |Xi|,
Xi([1 : j]) can be computed in O(j) time.

The formal statement of the problem we solve is:

Problem 1 (q-gram frequencies on SLP). Given integer q ≥ 1 and an SLP T
of size n that represents string T , output (i, |Occ(T, P)|) for all P ∈ Σq where
Occ(T, P) �= ∅, and some i ∈ Occ(T, P).

Since the problem is very simple for q = 1, we shall only consider the case for
q ≥ 2 for the rest of the paper. Note that although the number of distinct q-
grams in T is bounded by O(qn), we would require an extra multiplicative O(q)
factor for the output if we output each q-gram explicitly as a string. In our
algorithms to follow, we compute a compact, O(qn)-size representation of the
output, from which each q-gram can be easily obtained in O(q) time.

3 O(qn) Algorithm [9]

In this section, we briefly describe the O(qn) algorithm presented in [9]. The
idea is to count occurrences of q-grams with respect to the variable that stabs
its occurrence. The algorithm reduces Problem 1 to calculating the frequencies
of all q-grams in a weighted set of strings, whose total length is O(qn). Lemma 2
shows the key idea of the algorithm.

Lemma 2. For any SLP T = {Xi → expr i}ni=1 that represents string T , integer
q ≥ 2, and P ∈ Σq, |Occ(T, P)| =

∑n
i=1 vOcc(Xi) · |Occ(ti, P)|, where ti =

suf (val (X	(i)), q − 1)pre(val(Xr(i)), q − 1).

Proof. For any q ≥ 2, v stabs the interval [u : u+q−1] if and only if [u : u+q−1] ⊆
[sv : fv] = suf (itv(�(v)), q− 1)∪pre(itv(r(v)), q− 1). (See Fig. 2.) Also, since an
occurrence of Xi in the derivation tree always derives the same string val (Xi),
ti = T ([sv : fv]) for any node v such that X〈v〉 = Xi. For any node v and u > 0,
let [bv, ev] = itv(v) and jv = u − bv + 1. We have |Occ(T, P)| = |{u > 0 | T ([u :
u+ q− 1]) = P}| =

∑
v∈V |{u > 0 | ξT (u, u+ q− 1) = v,X〈v〉([jv : jv + q− 1]) =

P}| =
∑n

i=1

∑
v∈V:X〈v〉=Xi

|{u > 0 | ξT (u, u+ q− 1) = v,X〈v〉([jv : jv + q− 1]) =

P}| =
∑n

i=1

∑
v∈V:X〈v〉=Xi

Occ(T ([sv : fv]), P) =
∑n

i=1 vOcc(Xi) · Occ(ti, P).
��

From Lemma 2, we have that occurrence frequencies in T are equivalent to occur-
rence frequencies in ti weighted by vOcc(Xi). Therefore, the q-gram frequencies

224 K. Goto et al.

problem can be regarded as obtaining the weighted frequencies of all q-grams in
the set of strings {t1, . . . , tn}, where each occurrence of a q-gram in ti is weighted
by vOcc(Xi).

q - 1q - 1

q

Xi

Xℓ(i) Xr(i)ti

T

Fig. 2. Length-q intervals where
X〈ξT (u,u+q−1)〉 = Xi, and (Xi →
X	(i)Xr(i)) ∈ T

This can be further reduced to a weighted
q-gram frequency problem for a single string z,
where each position of z holds a weight associ-
ated with the q-gram that starts at that posi-
tion. String z is constructed by concatenating
all ti’s with length at least q. The weights of
positions corresponding to the first |ti|−(q−1)
characters of ti will be vOcc(Xi), while the
last (q−1) positions will be 0 so that superflu-
ous q-grams generated by the concatenation
are not counted. The remaining is a simple
linear time algorithm using suffix and lcp ar-
rays (e.g. [12,14]) on the weighted string, thus
solving the problem in O(qn) time and space.

4 New Algorithm

We now describe our new algorithm which solves the q-gram frequencies problem
on SLPs. The new algorithm basically follows the previous O(qn) algorithm, but
is an elegant refinement. The reduction for the previous O(qn) algorithm leads
to a fairly large amount of redundantly decompressed regions of the text as
q increases. This is due to the fact that the ti’s are considered independently
for each variable Xi, while neighboring q-grams that are stabbed by different
variables actually share q−1 characters. The key idea of our new algorithm is to
exploit this redundancy. (See Fig. 3.) In what follows, we introduce the concept
of q-gram neighbors, and reduce the q-gram frequencies problem on SLP to a
weighted q-gram frequencies problem on a weighted tree.

4.1 q-Gram Neighbor Graph

We say that Xj is a right q-gram neighbor of Xi (i �= j), or equivalently, Xi is a
left q-gram neighbor of Xj , if for some integer u ∈ [1 : |T | − q], X〈ξT (u,u+q−1)〉 =
Xi and X〈ξT (u+1,u+q)〉 = Xj . Notice that |Xi| and |Xj | are both at least q if Xi

and Xj are right or left q-gram neighbors of each other.

Definition 1. For q ≥ 2, the right q-gram neighbor graph of SLP T = {Xi →
expri}ni=1 is the directed graph Gq = (V,Er), where

V = {Xi | i ∈ {1, . . . , n}, |Xi| ≥ q}
Er = {(Xi, Xj) | Xj is a right q-gram neighbor of Xi }

Note that there can be multiple right q-gram neighbors for a given variable.
However, the total number of edges in the neighbor graph is bounded by 2n, as
will be shown below.

Speeding Up q-Gram Mining on Grammar-Based Compressed Texts 225

Xℓ(i)
Xr(i)

Xi

Xj
Xℓ(j) Xr(j)

ti
tj

q - 1

Xℓ(j) Xr(j)

Xj

Xi
Xℓ(i) Xr(i)

tj

ti

q - 1

Fig. 3. q-gram neighbors and redundancies. (Left) Xj is a right q-gram neighbor of Xi,
and Xi is a left q-gram neighbor of Xj . Note that the right q-gram neighbor of Xi is
uniquely determined since |Xr(i)| ≥ q and it must be a descendant on the left most path
rooted at Xr(i). However, Xj may have other left q-gram neighbors, since |X	(j)| < q,
and they must be ancestors ofXj . ti (resp. tj) represents the string corresponding to the
union of intervals [u : u+q−1] where X〈ξT (u,u+q−1)〉 = Xi (resp.X〈ξT (u,u+q−1)〉 = Xj).
The shaded region depicts the string which is redundantly decompressed, if both ti and
tj are considered independently. (Right) Shows the reverse case, when |Xr(i)| < q.

Lemma 3. Let Xj be a right q-gram neighbor of Xi. If, |Xr(i)| ≥ q, then Xj is
the label of the deepest node on the left-most path of the derivation tree rooted at
a node labeled Xr(i) whose length is at least q. Otherwise, if |Xr(i)| < q, then Xi

is the label of the deepest node on the right-most path rooted at a node labeled
X	(j) whose length is at least q.

Proof. Suppose |Xr(i)| ≥ q. Let u be a position, where X〈ξT (u,u+q−1)〉 = Xi and
X〈ξT (u+1,u+q)〉 = Xj . Then, since the interval [u+1 : u+q] is a prefix of itv(Xr(i)),
Xj must be on the left most path rooted at Xr(i). Since Xj = X〈ξT (u+1,u+q)〉, the
lemma follows from the definition of ξT . The case for |Xr(i)| < q is symmetrical
and can be shown similarly. ��

Lemma 4. For an arbitrary SLP T = {Xi → expri}ni=1 and integer q ≥ 2, the
number of edges in the right q-gram neighbor graph Gq of T is at most 2n.

Proof. Suppose Xj is a right q-gram neighbor of Xi. From Lemma 3, we have
that if |Xr(i)| ≥ q, the right q-gram neighbor of Xi is uniquely determined
and that |X	(j)| < q. Similarly, if |Xr(i)| < q, |X	(j)| ≥ q and the left q-gram
neighbor of Xj is uniquely Xi. Therefore,

∑n
i=1 |{(Xi, Xj) ∈ Er | |Xr(i)| ≥

q}| +
∑n

i=1 |{(Xi, Xj) ∈ Er | |Xr(i)| < q}| =
∑n

i=1 |{(Xi, Xj) ∈ Er | |Xr(i)| ≥
q}|+

∑n
i=1 |{(Xi, Xj) ∈ Er | |X	(j)| ≥ q}| ≤ 2n. ��

Lemma 5. For an arbitrary SLP T = {Xi → expri}ni=1 and integer q ≥ 2, the
right q-gram neighbor graph Gq of T can be constructed in O(n) time.

Proof. For any variable Xi, let lmq(Xi) and rmq(Xi) respectively represent the
index of the label of the deepest node with length at least q on the left-most and
right-most path in the derivation tree rooted at Xi, or null if |Xi| < q. These

226 K. Goto et al.

values can be computed for all variables in a total of O(n) time based on the
following recursion: If (Xi → a) ∈ T for some a ∈ Σ, then lmq(Xi) = rmq(Xi) =
null . For (Xi → X	(i)Xr(i)) ∈ T ,

lmq(Xi) =

⎧⎪⎨⎪⎩
null if |Xi| < q,

i if |Xi| ≥ q and |X	(i)| < q,

lmq(X	(i)) otherwise.

rmq(Xi) can be computed similarly. Finally,

Er = {(Xi, Xlmq(Xr(i))) | lmq(Xr(i)) �= null , i = 1, . . . , n}
∪{(Xrmq(X�(i)), Xi) | rmq(X	(i)) �= null , i = 1, . . . , n}.

��
Lemma 6. Let Gq = (V,Er) be the right q-gram neighbor graph of SLP T =
{Xi = expri}ni=1 representing string T , and let Xi1 = X〈ξT (1,q)〉. Any variable
Xj ∈ V (i1 �= j) is reachable from Xi1 , that is, there exists a directed path from
Xi1 to Xj in Gq.

Proof. Straightforward, since any q-gram of T except for the left most T ([1 : q])
has a q-gram on its left. ��

4.2 Weighted q-Gram Frequencies over a Trie

From Lemma 6, we have that the right q-gram neighbor graph is connected.
Consider an arbitrary directed spanning tree rooted at Xi1 = X〈ξT (1,q)〉 which
can be obtained in linear time by a depth first traversal on Gq from Xi1 . We
define the label label (Xi) of each node Xi of the q-gram neighbor graph, by

label(Xi) = ti[q : |ti|]

where ti = suf (val(X	(i)), q− 1)pre(val(Xr(i)), q− 1) as before. For convenience,
let Xi0 be a dummy variable such that label(Xi0) = T ([1 : q − 1]), and Xr(i0) =
Xi1 (and so (Xi0 , Xi1) ∈ Er).

Lemma 7. Fix a directed spanning tree on the right q-gram neighbor graph of
SLP T , rooted at Xi0 . Consider a directed path Xi0 , . . . , Xim on the spanning
tree. The weighted q-gram frequencies on the string obtained by the concatenation
label(Xi0)label(Xi1) · · · label (Xim), where each occurrence of a q-gram that ends
in a position in label (Xij) is weighted by vOcc(Xij), is equivalent to the weighted
q-gram frequencies of strings {ti1 , . . . tim} where each q-gram in tij is weighted
by vOcc(Xij).

Proof. Proof by induction: for m = 1, we have that label(Xi0)label(Xi1) = ti1 .
All q-grams in ti1 end in ti1 and so are weighted by vOcc(Xi1). When label(Xij) is
added to label (Xi0) · · · label(Xij−1), |label(Xij)| new q-grams are formed, which
correspond to q-grams in tij , i.e. |tij | = q − 1 + |label (Xij)|, and tij is a suffix
of label(Xij−1)label (Xij). All the new q-grams end in label (Xij) and are thus
weighted by vOcc(Xij). ��

Speeding Up q-Gram Mining on Grammar-Based Compressed Texts 227

Algorithm 1. Constructing weighted trie from SLP

1 Construct right q-gram neighbor graph G = (V,Er);
2 Calculate vOcc(Xi) and |label(Xi)| for i = 1, . . . , n;
3 for i = 0, . . . , n do visited[i] = false;
4 Xi1 = X〈ξT (1,q)〉 = lmq(Xn);
5 Define Xi0 so that Xr(i0) = Xi1 and |label(Xi0)| = q − 1;
6 root ← new node; // root of resulting trie

7 BuildDepthFirst(i0, root);
8 return root

Procedure. BuildDepthFirst(i, trieNode)

// add prefix of r(i) to trieNode while right neighbors are unique

1 l ← 0; k ← i;
2 while true do
3 l ← l + |label(Xk)|;
4 visited[k]← true;

// exit loop if right neighbor might be non-unique or is visited

5 if |Xr(k)| < q or visited[lmq(Xr(k))] = true then break;
6 k ← lmq(Xr(k));

7 add new branch from trieNode with string Xr(i)([1 : l]);
8 let end of new branch be newTrieNode ;

// If |Xr(k)| < q, there may be multiple right neighbors.

// If |Xr(k)| ≥ q, nothing is done because it was already visited.

9 for Xc ∈ {Xj | (Xk, Xj) ∈ Er} do
10 if visited[c] = false then BuildDepthFirst (Xc, newTrieNode);

From Lemma 7, we can construct a weighted trie Υ based on a directed spanning
tree of Gq and label (), where the weighted q-grams in Υ (represented as length-q
paths) correspond to the occurrence frequencies of q-grams in T 1.

Lemma 8. Υ can be constructed in time linear in its size.

Proof. See Algorithm 1. Let G be the q-gram neighbor graph. We construct Υ
in a depth first manner starting at Xi0 . The crux of the algorithm is that rather
than computing label() separately for each variable, we are able to aggregate the
label()s and limit all partial decompressions of variables to prefixes of variables,
so that Lemma 1 can be used.

Any directed acyclic path on G starting at Xi0 can be segmented into mul-
tiple sequences of variables, where each sequence Xij , . . . , Xik is such that j is
the only integer in [j : k] such that j = 0 or |Xr(ij−1)| < q. From Lemma 3,
we have that Xij+1 , . . . , Xik are uniquely determined. If j > 0, label(Xij) is
a prefix of val (Xr(ij)) since |Xr(ij−1)| < q (see Fig. 3 Right), and if j = 0,

1 A minor technicality is that a node in Υ may have multiple children with the same
character label, but this does not affect the time complexities of the algorithm.

228 K. Goto et al.

label(Xi0) is again a prefix of val(Xr(i0)) = val (Xi1). It is not difficult to see
that label (Xij) · · · label (Xik) is also a prefix of Xr(ij) since Xij+1 , . . . , Xik are
all descendants of Xr(ij), and each label() extends the partially decompressed
string to consider consecutive q-grams in Xr(ij). Since prefixes of variables of
SLPs can be decompressed in time proportional to the output size with linear
time pre-processing (Lemma 1), the lemma follows. ��

We only illustrate how the character labels are determined in the pseudo-code
of Algorithm 1. It is straightforward to assign a weight vOcc(Xk) to each node
of Υ that corresponds to label (Xk).

Lemma 9. The number of edges in Υ is (q−1)+
∑
{|ti|− (q−1) | |Xi| ≥ q, i =

1, . . . , n} = |T | − dup(q, T) where

dup(q, T) =
∑
{(vOcc(Xi)− 1) · (|ti| − (q − 1)) | |Xi| ≥ q, i = 1, . . . , n}}

Proof. (q − 1) +
∑
{|ti| − (q − 1) | |Xi| ≥ q, i = 1, . . . , n} is straight forward

from the definition of label (Xi) and the construction of Υ . Concerning dup, each
variable Xi occurs vOcc(Xi) times in the derivation tree, but only once in the
directed spanning tree. This means that for each occurrence after the first, the
size of Υ is reduced by |label (Xi)| = |ti| − (q− 1) compared to T . Therefore, the
lemma follows. ��

To efficiently count the weighted q-gram frequencies on Υ , we can use suffix
trees. A suffix tree for a trie is defined as a generalized suffix tree for the set of
strings represented in the trie as leaf to root paths2. The following is known.

Lemma 10 ([20]). Given a trie of size m, the suffix tree for the trie can be
constructed in O(m) time and space.

With a suffix tree, it is a simple exercise to solve the weighted q-gram frequencies
problem on Υ in linear time. In fact, it is known that the suffix array for the
common suffix trie can also be constructed in linear time [6], as well as its longest
common prefix array [15], which can also be used to solve the problem in linear
time.

Corollary 1. The weighted q-gram frequencies problem on a trie of size m can
be solved in O(m) time and space.

From the above arguments, the theorem follows.

Theorem 1. The q-gram frequencies problem on an SLP T of size n, repre-
senting string T can be solved in O(min{qn, |T | − dup(q, T)}) time and space.

Note that since each q ≤ |ti| ≤ 2(q− 1), and |label (Xi)| = |ti|− (q− 1), the total
length of decompressions made by the algorithm, i.e. the size of the reduced
problem, is at least halved and can be as small as 1/q (e.g. when all |ti| = q),
compared to the previous O(qn) algorithm.

2 When considering leaf to root paths on Υ , the direction of the string is the reverse
of what is in T . However, this is merely a matter of representation of the output.

Speeding Up q-Gram Mining on Grammar-Based Compressed Texts 229

5 Preliminary Experiments

We first evaluate the size of the trie Υ induced from the right q-gram neighbor
graph, on which the running time of the new algorithm of Section 4 is dependent.
We used data sets obtained from Pizza & Chili Corpus, and constructed SLPs
using the RE-PAIR [16] compression algorithm. Each data is of size 200MB.
Table 1 shows the sizes of Υ for different values of q, in comparison with the
total length of strings ti, on which the previousO(qn)-time algorithm of Section 3
works. We cumulated the lengths of all ti’s only for those satisfying |ti| ≥ q, since
no q-gram can occur in ti’s with |ti| < q. Observe that for all values of q and for
all data sets, the size of Υ (i.e., the total number of characters in Υ) is smaller
than those of ti’s and the original string.

Table 1. A comparison of the size of Υ and the total length of strings ti for SLPs
that represent textual data from Pizza & Chili Corpus. The length of the original text
is 209,715,200. The SLPs were constructed by RE-PAIR [16].

XML DNA ENGLISH PROTEINS
q

∑
|ti| size of Υ

∑
|ti| size of Υ

∑
|ti| size of Υ

∑
|ti| size of Υ

2 19,082,988 9,541,495 46,342,894 23,171,448 37,889,802 18,944,902 64,751,926 32,375,964
3 37,966,315 18,889,991 92,684,656 46,341,894 75,611,002 37,728,884129,449,835 64,698,833
4 55,983,397 27,443,734139,011,475 69,497,812112,835,471 56,066,348191,045,216 93,940,205
5 72,878,965 35,108,101185,200,662 92,516,690148,938,576 73,434,080243,692,809114,655,697
6 88,786,480 42,095,985230,769,162114,916,322183,493,406 89,491,371280,408,504123,786,699
7 103,862,589 48,533,013274,845,524135,829,862215,975,218103,840,108301,810,933127,510,939
8 118,214,023 54,500,142315,811,932153,659,844246,127,485116,339,295311,863,817129,618,754
9 131,868,777 60,045,009352,780,338167,598,570273,622,444126,884,532318,432,611131,240,299

10 144,946,389 65,201,880385,636,192177,808,192298,303,942135,549,310325,028,658132,658,662
15 204,193,702 86,915,492477,568,585196,448,347379,441,314157,558,436347,993,213138,182,717
20 255,371,699104,476,074497,607,690200,561,823409,295,884162,738,812364,230,234142,213,239
50 424,505,759157,069,100530,329,749206,796,322429,380,290165,882,006416,966,397156,257,977
100537,677,786192,816,929536,349,226207,838,417435,843,895167,313,028463,766,667168,544,608

The construction of the suffix tree or array for a trie, as well as the algorithm
for Lemma 1, require various tools such as level ancestor queries [5,2,1] for which
we did not have an efficient implementation. Therefore, we try to assess the
practical impact of the reduced problem size using a simplified version of our
new algorithm. We compared three algorithms (NSA, SSA, STSA) that count
the occurrence frequencies of all q-grams in a text given as an SLP. NSA is
the O(|T |)-time algorithm which works on the uncompressed text, using suffix
and LCP arrays. SSA is our previous O(qn)-time algorithm [9], and STSA is
a simplified version of our new algorithm. STSA further reduces the weighted
q-gram frequencies problem on Υ , to a weighted q-gram frequencies problem
on a single string as follows: instead of constructing Υ , each branch of Υ (on
line 7 of BuildDepthFirst) is appended into a single string. The q-grams that are
represented in the branching edges of Υ can be represented in the single string, by
redundantly adding suf (Xr(i)([1 : l]), q − 1) in front of the string corresponding
to the next branch. This leads to some duplicate partial decompression, but the
resulting string is still always shorter than the string produced by our previous
algorithm [9]. The partial decompression of Xr(i)([1 : l]) is implemented using

230 K. Goto et al.

Table 2. Running time in seconds for SLPs that represent textual data from Pizza &
Chili Corpus. The SLPs were constructed by RE-PAIR [16]. Bold numbers represent
the fastest time for each data and q. STSA is faster than SSA whenever q > 3.

XML DNA ENGLISH PROTEINS
q NSA SSA STSA NSA SSA STSA NSA SSA STSA NSA SSA STSA
2 41.67 6.53 7.63 61.28 19.27 22.73 56.77 16.31 19.23 60.16 27.13 30.71
3 41.46 10.96 10.92 61.28 29.14 31.07 56.77 25.58 25.57 60.53 47.53 50.65
4 41.87 16.27 14.5 61.65 42.22 41.69 56.77 37.48 34.95 60.86 74.89 73.51
5 41.85 21.33 17.42 61.57 56.26 54.21 57.09 49.83 45.21 60.53 101.64 79.1
6 41.9 25.77 20.07 60.91 73.11 68.63 57.11 62.91 55.28 61.18 123.74 75.83
7 41.73 30.14 21.94 60.89 90.88 82.85 56.64 75.69 63.35 61.14 136.12 72.62
8 41.92 34.22 23.97 61.57 110.3 93.46 57.27 87.9 69.7 61.39 142.29 71.08
9 41.92 37.9 25.08 61.26 127.29 96.07 57.09 100.24 73.63 61.36 148.12 69.88

10 41.76 41.28 26.45 60.94 143.31 96.26 57.43 110.85 75.68 61.42 149.73 69.34
15 41.95 58.21 32.21 61.72 190.88 84.86 57.31 146.89 70.63 60.42 160.58 66.57
20 41.82 74.61 39.62 61.36 203.03 83.13 57.65 161.12 64.8 61.01 165.03 66.09
50 42.07 134.38 53.98 61.73 216.6 78.0 57.02 166.67 57.89 61.05 181.14 66.36
100 41.81 181.23 60.18 61.46 217.05 75.91 57.3 166.67 56.86 60.69 197.33 69.9

a simple O(h + l) algorithm, where h is the height of the SLP which can be as
large as O(n).

All computations were conducted on a Mac Pro (Mid 2010) with MacOS X
Lion 10.7.2, and 2 x 2.93GHz 6-Core Xeon processors and 64GB Memory, only
utilizing a single process/thread at once. The program was compiled using the
GNU C++ compiler (g++) 4.6.2 with the -Ofast option for optimization. The
running times were measured in seconds, after reading the uncompressed text
into memory for NSA, and after reading the SLP that represents the text into
memory for SSA and STSA. Each computation was repeated at least 3 times,
and the average was taken.

Table 2 summarizes the running times of the three algorithms. SSA and STSA
computed weighted q-gram frequencies on ti and Υ , respectively. Since the dif-
ference between the total length of ti and the size of Υ becomes larger as q
increases, STSA outperforms SSA when the value of q is not small. In fact, in
Table 2 STSA was faster than SSA for all values of q > 3. STSA was even faster
than NSA on the XML data whenever q ≤ 20. What is interesting is that STSA
outperformed NSA on the ENGLISH data when q = 100.

References

1. Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theor.
Comput. Sci. 321(1), 5–12 (2004)

2. Berkman, O., Vishkin, U.: Finding level-ancestors in trees. J. Comput. System
Sci. 48(2), 214–230 (1994)

3. Claude, F., Navarro, G.: Self-indexed grammar-based compression. Fundamenta
Informaticae 111(3), 313–337 (2011)

4. Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A subquadratic sequence align-
ment algorithm for unrestricted scoring matrices. SIAM J. Comput. 32(6),
1654–1673 (2003)

Speeding Up q-Gram Mining on Grammar-Based Compressed Texts 231

5. Dietz, P.: Finding Level-Ancestors in Dynamic Trees. In: Dehne, F., Sack, J.-R.,
Santoro, N. (eds.) WADS 1991. LNCS, vol. 519, pp. 32–40. Springer, Heidelberg
(1991)

6. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and index-
ing labeled trees, with applications. J. ACM 57(1) (2009)

7. Gawrychowski, P.: Pattern Matching in Lempel-Ziv Compressed Strings: Fast, Sim-
ple, and Deterministic. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011.
LNCS, vol. 6942, pp. 421–432. Springer, Heidelberg (2011)

8. Ga̧sieniec, L., Kolpakov, R., Potapov, I., Sant, P.: Real-time traversal in grammar-
based compressed files. In: Proc. DCC 2005, p. 458 (2005)

9. Goto, K., Bannai, H., Inenaga, S., Takeda, M.: Fast q-gram Mining on SLP Com-
pressed Strings. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011.
LNCS, vol. 7024, pp. 278–289. Springer, Heidelberg (2011)

10. Hermelin, D., Landau, G.M., Landau, S., Weimann, O.: A unified algorithm for ac-
celerating edit-distance computation via text-compression. In: Proc. STACS 2009,
pp. 529–540 (2009)

11. Inenaga, S., Bannai, H.: Finding characteristic substrings from compressed texts.
International Journal of Foundations of Computer Science 23(2), 261–280 (2012);
a preliminary version appeared in PSC 2009

12. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
Journal of the ACM 53(6), 918–936 (2006)

13. Karpinski, M., Rytter, W., Shinohara, A.: An efficient pattern-matching algorithm
for strings with short descriptions. Nordic Journal of Computing 4, 172–186 (1997)

14. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-Time Longest-
Common-Prefix Computation in Suffix Arrays and Its Applications. In: Amir, A.,
Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidel-
berg (2001)

15. Kimura, D., Kashima, H.: A linear time subpath kernel for trees. IEICE Technical
Report, IBISML2011-85, pp. 291–298 (2011)

16. Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Proc. DCC
1999, pp. 296–305. IEEE Computer Society (1999)

17. Nevill-Manning, C.G., Witten, I.H., Maulsby, D.L.: Compression by induction of
hierarchical grammars. In: Proc. DCC 1994, pp. 244–253 (1994)

18. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci. 302(1-3), 211–222 (2003)

19. Shibata, Y., Kida, T., Fukamachi, S., Takeda, M., Shinohara, A., Shinohara, T.,
Arikawa, S.: Speeding Up Pattern Matching by Text Compression. In: Bongiovanni,
G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 306–315.
Springer, Heidelberg (2000)

20. Shibuya, T.: Constructing the suffix tree of a tree with a large alphabet. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sci-
ences E86-A(5), 1061–1066 (2003)

21. Storer, J., Szymanski, T.: Data compression via textual substitution. Journal of
the ACM 29(4), 928–951 (1982)

22. Welch, T.A.: A technique for high performance data compression. IEEE Com-
puter 17, 8–19 (1984)

23. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory IT-23(3), 337–349 (1977)

24. Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding.
IEEE Transactions on Information Theory 24(5), 530–536 (1978)

Simple and Efficient LZW-Compressed Multiple

Pattern Matching

Pawe�l Gawrychowski�

Institute of Computer Science, University of Wroc�law, Poland
Max-Planck-Institute für Informatik, Saarbrücken, Germany

gawry@cs.uni.wroc.pl

Abstract. We consider a natural variant of the classical multiple pat-
tern matching problem: given a Lempel-Ziv-Welch representation of a
string t[1 . . N] and a collection of (uncompressed) patterns p1, p2, . . . , p	
with

∑
i |pi| =M , does any of pi occur in t? As shown by Kida et al. [12],

extending the single pattern algorithm of Amir, Benson and Farach [2]
gives a running time of O(n+M2) for the more general case. We prove
that in fact it is possible to achieve O(n logM +M) or O(n +M1+ε)
complexity. While not linear, running time of our solution matches the
single pattern bounds achieved by [2] and [14] in a more structured and
unified manner, and without using a lot of combinatorics on words. The
only nontrivial components are the suffix array, constant time range min-
imum queries, and any balanced binary search trees.

Keywords: multiple patternmatching, compression, Lempel-Ziv-Welch.

1 Introduction

Pattern matching is the most natural problem concerning processing text data.
It has been thoroughly studied, and many different linear time solutions are
known, starting from the well-known Knuth-Morris-Pratt algorithm [13]. While
it might seem that the existence of a linear time [5,13,15], constant space [9],
and constant delay [8] solutions means that the question is completely solved,
this is not quite the case. Whenever we must store a lot of text data, we store it
in a compressed representation. This suggests a natural research direction: could
we process this compressed representation without wasting time (and space) to
uncompress it? Or, in other words, can we use the high compression ratio to
accelerate the computation? In turns out that for pattern matching and some
compression methods, the answer is yes. For the case of Lempel-Ziv-Welch [16]
compressed text, there are two algorithms given by Amir, Benson, and Farach [2]:
one with a O(n + m2) running time, and one with O(n logm + m), where m
is the length of the pattern and n the size of the compressed representation
of a text t[1 . .N]. Farach and Thorup [7] considered the more general case of

� Supported by MNiSW grant number N N206 492638, 2010–2012 and START schol-
arship from FNP.

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 232–242, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Simple and Efficient LZW-Compressed Multiple Pattern Matching 233

Lempel-Ziv compression, and developed a (randomized) O(n log2 N
n +m) time

algorithm. When the compression used is Lempel-Ziv-Welch, their complexity
reduces to O(n log N

n +m). In a recent paper we proved that in fact it is possible
to achieve a (deterministic) linear running time for this case [10], even if both
the pattern and the text are compressed [11]. A natural research direction is
to consider multiple pattern matching, where instead of just one pattern we are
given their collection p1, p2, . . . , p	 (which, for example, can be a set of forbidden
words from a dictionary), and we should check if any of them occurs in the
text. It is known that extending one of the algorithms given by Amir et al.
results in a O(n+M2) running time for multiple Lempel-Ziv-Welch-compressed
pattern matching, where M =

∑
i |pi| [12]. It seems realistic that the set of

the patterns is very large, and hence M2 addend in the running time might be
substantially larger than n. In this paper we prove that in fact it is possible
to achieve O(n logM +M) or O(n +M1+ε) complexity for this problem, with
the space usage being O(n + M) and O(n + M1+ε), respectively. While such
running time is not linear, it matches the best bounds for the single pattern case
developed by [2] and [14] in a unified and structured manner, and is achieved
using rather simple means. The main tool in our algorithms is reducing the
problem to simple-to-state purely geometrical questions on an integer grid, which
allows us to avoid using a lot of nontrivial combinatorics on words. Hence we
believe they could be good candidates in real-life applications, and “simple” in
the title is justified.

2 Preliminaries

Let M =
∑	

i=1 |pi| be the total size of all patterns. We assume that the alphabet
Σ is either constant (which is the simple case) or consists of integers which can
be sorted in linear time (in other words, polynomial in n and M). In the latter
case we renumber the letters and assume the alphabet to be {0, 1, . . . ,M − 1}).
We consider strings of length N over Σ given in a Lempel-Ziv-Welch compressed
form which are represented as a sequence of n codewords where a codeword is
either a single letter, or a previously occurring codeword concatenated with a
single character (using both n and N might be confusing, but it is enough to
remember that big N stands for the big original size, while small n refers to the
hopefully small compressed size; similarly, big M denotes the big original size
of all patterns). This additional character is not given explicitly: we define it as
the first character of the next codeword, and initialize the set of codewords to
contain all single characters in the very beginning (this is a technical detail which
is not important to us). The resulting compression method enjoys a particularly
simple encoding/decoding process, but unfortunately requires outputting at least
Ω(
√
N) codewords. Still, its simplicity and good compression ratio achieved on

real life instances make it an interesting model to work with. For the rest of the
paper we will use LZW when referring to Lempel-Ziv-Welch compression.

We use the following notion for a string w: prefix(w) is the longest prefix of
w which is a suffix of some pattern, suffix(w) is the longest suffix of w which is
a prefix of some pattern, and wr is its reversal.

234 P. Gawrychowski

To prove the main theorem we need to design a few data structures. To sim-
plify the exposition we use the notion of a 〈f(M), g(M)〉 structure meaning that
after a f(M) time preprocessing we are able to execute one query in g(M) time.
If such structure is offline, we are able execute a sequence of t queries in total
f(M)+tg(M) time. Similarly, a 〈f(M), g(M)〉 dynamic structure allows updates
in f(M) time and queries in g(M) time. It is persistent if updating creates a
new copy instead of modifying the original data. The notion of persistence is
well-studied, see for example [6].

We will extensively use the suffix tree T and the suffix array built for concate-
nation of all patterns separated by a special character $ (which does not occur
in either the text or any pattern, and is smaller than any original letter) which
we call A:

A = p1$p2$. . . $p	−1$p	

Similarly, T r is the suffix tree built for the reversed concatenation Ar:

Ar = pr	$p
r
	−1$. . . $p

r
2$p

r
1

Both suffix arrays are enriched with range minimum query structures enabling
us to compute the longest common prefix and suffix of any two substrings in
constant time.

Lemma 1 (see [3]). Given an array t[1 . . n] we can build in linear time and
space a range minimum/maximum query structure RMQ(t) which allows com-
puting the minimum/maximum t[k] over all k ∈ {i, i+ 1, . . . , j} for a given i, j
in constant time.

Lemma 2 (see [3]). A can be preprocessed in linear time so that given any two
fragments A[i . . i + k] and A[j . . j + k] we can find their longest common prefix
(suffix) in constant time.

A snippet is any substring of any pattern pi[j . . k]. We represent it as a triple
(i, j, k). Given such triple, we would like to retrieve the corresponding (explicit or
implicit) node in the suffix tree (or reversed suffix tree) efficiently. 〈f(M), g(M)〉
locator allows g(M) time retrieval after a f(M) time preprocessing.

Lemma 3. 〈O(M),O(logM)〉 locator exists.

Proof. 〈O(M logM),O(logM)〉 is very simple to implement: for each vertex of
the suffix tree we construct a balanced search tree containing all its ancestors
sorted according to their depths. Constructing the tree for a vertex requires
inserting just one new element into its parent tree (note that most standard bal-
anced binary search trees can be made persistent so that inserting a new number
creates a new copy and does not destroy the old one) and so the whole construc-
tion takes O(M logM) time. This is too much by a factor of logM , though.
We use the standard micro-macro tree decomposition (see [4]) to remove it. The
suffix tree is partitioned into small subtrees by choosing at most M

logM macro
nodes such that after removing them we get a collection of connected compo-
nents of at most logarithmic size. Such partition can be easily found in linear

Simple and Efficient LZW-Compressed Multiple Pattern Matching 235

time. Then for each macro node we construct a binary search tree containing all
its macro ancestors sorted according to their depths. There are just M

logM macro
nodes so the whole preprocessing is linear. To find the ancestor v at depth d we
first retrieve the lowest macro ancestor u of v by following at most logM edges
up from v. If none of the traversed vertices is the answer, we find the macro
ancestor of u of largest depth not smaller than d using the binary search tree
in O(logM) time. Then retrieving the answer requires following at most logM
edges up from u. ��

To improve the query time in the above lemma we need to replace the balanced
search tree. 〈f(M), g(M)〉 dynamic dictionary stores a subset S of {0, . . . ,M−1}
so that we can add or remove elements in O(M ε) time, and check if a given x
belongs to S (and if so, retrieve its associated information) or find its successor
and predecessor in O(1) time.

Lemma 4. 〈O(M ε),O(1)〉 persistent dynamic dictionary exists for any ε > 0.

Proof. Choose an integer k ≥ 1
ε . The idea is to represent the numbers in base

B = M
1
k and store them in a trie of depth k. At each vertex we maintain a table

child[0 . . B−1] with the i-th element containing the pointer to the corresponding
child, if any. This allows efficient checking if a given x belongs to the current
set (we just inspect at most k vertices and at each of them use the table to
retrieve the next one in constant time). Note that we do not create a vertex if its
corresponding tree is empty. To find the successor (or predecessor) efficiently, we
maintain at each vertex two additional tables next[0 . . B−1] and prev[0 . . B−1]
where next[i] is the smallest j ≥ i such that child[j] is defined and prev[i] is
the largest j ≤ i such that child[j] is defined. Using those tables the running
time becomes O(k) = O(1). Whenever we add or remove an element, we must
recalculate the tables at all vertices from the traversed path. Its length is k and
each table is of size B so the updates require O(kB) = O(M ε) time. Note that
the whole structure is easily made persistent as after each update we create a
new copy of the traversed path and do not modify any other vertices. ��

Lemma 5.
〈
O(M1+ε),O(1)

〉
locator exists for any ε > 0.

Proof. The idea is the same as in Lemma 3: for each vertex of the suffix tree
we construct a structure containing all its ancestors sorted according to their
depths. Note that the depth are smaller than M so we can apply Lemma 4.
The total construction time is O(M ×M ε) = O(M1+ε) and answering a query
reduces to one predecessor lookup. ��

We assume the following preprocessing for both the suffix tree and the reversed
suffix tree.

Lemma 6. A suffix tree built for a text of length M can be preprocessed in
linear time so that given an implicit or explicit vertex v we can retrieve its pre-
and post-order numbers (pre(v) and post(v), respectively) in the uncompressed
version of the tree (i.e., in the suffix trie) in constant time.

236 P. Gawrychowski

Proof. For each explicit vertex, we store its pre- and post-order numbers in the
suffix trie. To compute the numbers for an implicit vertex, we use the data stored
at its lowest explicit ancestor. ��

3 Overview of the Algorithm

We are given a sequence of blocks, each block being either a single letter, or
a previously defined block concatenated with a single letter. For each block we
would like to check if the corresponding word occurs in any of the patterns, and
if not, we would like to find its longest suffix (prefix) which is a prefix (suffix)
of any of the patterns. First we consider all blocks at once and for each of them
compute its longest prefix which occurs in some pi.

Lemma 7. Given a LZW compressed text we can compute for all blocks the
corresponding snippet (if any) and the longest prefix which is a suffix of some
pattern in total linear time.

Proof. The idea is the same as in the single pattern case [10]: intersect the suffix
tree and the trie defined by all blocks at once. ��

To compute the longest suffix which is a prefix of some pattern, we would like to
use the Aho-Corasick automaton built for all p1, p2, . . . , p	, which is a standard
multiple pattern matching tool [1]. Recall that its state set consists of all unique
prefixes pi[1 . . j] organized in a trie. Additionally, each v stores the so-called fail-
ure link failure(v), which points to the longest proper suffix of the corresponding
word which occurs in the trie as well. If the alphabet is of constant time, we can
afford to build and store the full transition function of such automaton. If the
alphabet is {0, 1, . . . ,M − 1}, it is not clear if we can afford to store the full
transition function. Nevertheless, storing the trie and all failure links are enough
to navigate in amortized constant time per letter. This is not enough for our
purposes, though, as we need a worst case bound. We start with building the
trie and computing the failure links. This is trivial to perform in linear time
after constructing the reversed suffix tree: each state is a (implicit or explicit)
node of the tree with an outgoing edge starting with $. Its failure link is simply
the lowest ancestor corresponding to such node as well. Then depending on the
preprocessing allowed we get two time bounds.

Lemma 8. Given a LZW compressed text we can compute for all blocks the
longest suffix which is a prefix of some pattern in total time O(n + M1+ε) for
any ε > 0.

Proof. At each vertex we create a
〈
O(M1+ε),O(1)

〉
persistent dynamic dictio-

nary. To create the dictionary for v we take the dictionary stored at failure(v)
and update it by inserting all edges outgoing from v. There are at most M up-
dates to all dictionaries, each of them taking O(M ε) time, and then any query
is answered in constant time, resulting in the claimed bound. ��

Simple and Efficient LZW-Compressed Multiple Pattern Matching 237

Lemma 9. Given a LZW compressed text we can compute for all blocks the
longest suffix which is a prefix of some pattern in total time O(n logM +M).

Proof. For a vertex v consider the sequence of its ancestors failure(v), failure2(v),
failure3(v), To retrieve the transition δ(v, c) we should find the first vertex in
this sequence having an outgoing edge starting with c. For each different charac-
ter c we build a separate structure S(c) containing all intervals [pre(v), post(v)]
for v having an outgoing edge starting with c, where pre(v) and post(v) are
the pre- and post-order numbers of v in a tree defined by the failure links (i.e.,
failure(v) is the parent of v there). Then to to calculate δ(v, c) we should locate
the smallest interval containing pre(v) in S(c). By implementing S(c) as a bal-
anced search tree we get the claimed bound. ��

Hence we reduced the original problem to multiple pattern matching in a col-
lection of sequences of snippets, with the total size of all collections linear in
n. To solve the latter, we try to simulate the Knuth-Morris-Pratt algorithm
on each of those sequences. Of course we cannot afford to process the snip-
pets letter-by-letter, and hence must develop efficient procedures operating on
whole snippets. A high level description of the algorithm is given in Multiple-

pattern-matching. prefixer and detector are low-level procedures which will
be developed in the next section.

Note that instead of constructing the set P we could call detector(c, sk) di-
rectly but then its implementation would have to be online, and that seems
difficult to achieve in the 〈O(M),O(logM)〉 variant.

Algorithm 1. Multiple-pattern-matching(s1, s2, . . . , sn′)

1: P ← ∅
2: c ← s1
3: for k = 2, 3, . . . , n′ do
4: add (c, sk) to P
5: c ← prefixer(c, sk)
6: end for
7: for all (s, s′) ∈ P do
8: detector(s, s′)
9: end for

4 Multiple Pattern Matching in a Sequence of Snippets

A 〈f(M), g(M)〉 prefixer is a data structure which preprocesses the collection
of patterns in f(M) time so that given any two snippets we can compute the
longest suffix of their concatenation which is a prefix of some pattern in g(M)
time.

Lemma 10. 〈O(M),O(logM)〉 prefixer exists.

Proof. Let the two snippets be s1 and s2. First note that using Lemma 2 we
can compute the longest common prefix of sr2s

r
1 and a given suffix of Ar in

238 P. Gawrychowski

constant time. Hence we can apply binary search to find the (lexicographi-
cally) largest suffix of Ar which either begins with sr2s

r
1 or is (lexicographi-

cally) smaller in O(logM) time. Given this suffix Ar[i . . |Ar|] we compute d =
|LCP(|srssr1|, Ar[i . . |Ar|])| and apply Lemma 3 to retrieve the ancestor v of
Ar[i . . |Ar|] at depth d in O(logM) time. The longest prefix we are looking for
corresponds to an ancestor u of v which has at least one outgoing edge starting
with $. Observe that such u must be explicit as there are no $ characters on the
root-to-v path. This means that we can apply a simple linear time preprocess-
ing to compute such u for each possible explicit v in linear time. Then given a
(possibly implicit) v we use the preprocessing to compute the u corresponding
to the longest prefix in constant time, giving a O(logM) total query time. ��

Lemma 11.
〈
O(M1+ε),O(1)

〉
prefixer exists for any ε > 0.

Proof. For each pattern pi we consider all possibilities to cut it into two parts
pi = pi[1 . . j]pi[j + 1 . . |pi|]. For each cut we locate vertex u corresponding to
pi[1 . . j] in the reversed suffix tree and v to pi[j + 1 . . |pi|] in the suffix tree. By
Lemma 5 it takes constant time and by Lemma 6 we can then compute pre(u),
pre(v) and post(v). Then we add a horizontal segment {pre(u)}×[pre(v), post(v)]
with weight j to the collection. Now consider a query consisting of two snip-
pets s1 and s2. First locate the vertex u corresponding to s1 in the reversed
suffix tree and v to s2 in the suffix tree. Then construct a vertical segment
[pre(u), post(u)] × {pre(v)} and observe that the query reduces to finding the
heaviest horizontal segment in the collection it intersects (if there is none, we
retrieve the lowest ancestor of v which has an outgoing edge starting with $,
which can be precomputed in linear time), see Figure 1. Additionally, the hori-
zontal segments are either disjoint or contained in each other. If the latter case,
weight of the longer segment is bigger than weight of the shorter. To this end we
prove that there exists a

〈
O(M1+ε),O(1)

〉
structure for computing the heaviest

horizontal segments intersected by a given vertical segments in such collection
on a M2 ×M2 grid.

We sweep the grid from left to right maintaining a structure describing the
currently active horizontal segments. The structure is based on the idea from
Lemma 5 with k ≥ 2

ε . Each leaf corresponds to a different y coordinate and
stores all active horizontal segments with this coordinate on stack, with the most
recently encountered segment on top (because weights of intersecting segments
are monotone with their lengths, it is also the heaviest segment). Each inner

vertex stores a table heaviest[0 . .M
2
k] with the i-th element containing the max-

imum weight in the subtree corresponding to the i-th leaf, if any. Additionally, a
range maximum query structure RMQ(heaviest) is stored so that given any two
indices i, j we can compute the maximum heaviest[k] over all k ∈ {i, i+1, . . . , j}
in constant time. Adding or removing an active segment require locating the
corresponding stack and either pushing a new element or removing the topmost
element. Then we must update the tables at all ancestors of the corresponding

Simple and Efficient LZW-Compressed Multiple Pattern Matching 239

s1 s2

pi[1..j] pi[j + 1..|pi|]$ $

T r T

s1

pi[1..j] s2

pi[j + 1..|pi|]

Fig. 1. Reducing prefixer queries to segments intersection

leaf, which by Lemma 1 takes kO(M 2
k) = O(M1+ε) time. Given a query, we

first locate the appropriate version of the structure. Then we traverse the trie
and find the heaviest intersected segment by asking at most 2k range maximum
queries. ��
A 〈f(M), g(M)〉 detector is a data structure which preprocesses the collection
of patterns in time f(M) so that given any two snippets we can detect an oc-
currence of a pattern in a their concatenation in g(M) time. Both implemen-
tation that we are going to develop are based on the same idea of reducing
the problem to a purely geometric question on an integer grid, similar to the
one from Lemma 11. For each pattern pi we consider all possibilities to cut
it into two parts pi = pi[1 . . j]pi[j + 1 . . |pi|]. For each cut we locate in con-
stant time vertex u corresponding to pi[1 . . j] in the reversed suffix tree and v
to pi[j + 1 . . |pi|] in the suffix tree. If both u and v are explicit vertices, add a
rectangle [pre(u), post(u)] × [pre(v), post(v)] to the collection. Then given two
snippets s1 and s2 detecting an occurrence in their concatenation reduces in
constant time to retrieving any rectangle containing (pre(u), pre(v)) where u is
the vertex corresponding to s1 in the reversed suffix tree and v to s2 in the suffix
tree, see Figure 2. Note that the x and y projections of any two rectangles in
the collection are either disjoint or contained in each other. Assuming no pat-
tern occurs in another, no two rectangles are contained in each other (if some pi
occurs in some pj , which can be efficiently detected in the preprocessing stage,
we can forget about pj). We call a collection with such two properties valid.

Lemma 12. 〈O(M),O(logM)〉 offline detector exists.

Proof. Recall that in the offline version we are given all queries in an advance.
We sweep the grid from left to right maintaining a structure describing currently

240 P. Gawrychowski

s1 s2

pi[1..j] pi[j + 1..|pi|]$ $

T r T

s1

pi[1..j]

pi[j + 1..|pi|]

s2

Fig. 2. Reducing detector queries to rectangles retrieval in a valid collection

intersected rectangles. At a high level the structure is just a full binary tree on
M leaves corresponding to different y coordinates (and each inner vertex corre-
sponding to an continuous interval of y coordinates). If we aim to achieve loga-
rithmic time of both update and query, the implementation is rather straightfor-
ward. We want to achieve constant time update, though. Say that we encounter
a new rectangle and need to insert an interval [y1, y2] with y1 < y2 into the
structure. We compute the lowest common ancestor v of the leaves correspond-
ing to y1 and y2 in the tree (as the tree is full there exists a simple arithmetic
formula for that) and call v responsible for [y1, y2]. v corresponds to an interval[
α2	, (α+ 2)2	

)
such that y1 ∈

[
α2	, (α+ 1)2	

)
and y2 ∈

[
(α+ 1)2	, (α+ 2)2	

)
.

For each inner vertex we store its interval stack. To insert [y1, y2] we simply push
it on the interval stack of the responsible vertex. Note that because the collection
is valid, all intervals I1, I2, . . . , Ik stored on the same interval stack at a given
moment are nested, i.e., I1 ⊆ I2 ⊆ . . . ⊆ Ik. To remove an interval we locate the
responsible vertex and pop the topmost element from its interval stack. The only
nontrivial part is detecting an interval containing a given point x. First traverse
the path starting at the corresponding leaf. This gives us a sequence of logM
interval stacks. Observe that for a fixed interval stack it is enough to check if its
top element (if any) contains x, hence O(logM) query time follows. ��

Lemma 13.
〈
O(M1+ε),O(1)

〉
detector exists for any ε > 0.

Proof. We sweep the grid from left to right maintaining a structure describing
currently intersected rectangles. The structure should allow adding or removing
intervals from {0, 1, . . . ,M − 1} and retrieving any interval containing a speci-
fied point. A straightforward use of the idea from Lemma 4 allows an efficient
implementation of those operations in O(M ε) and O(1) time, respectively. ��

Simple and Efficient LZW-Compressed Multiple Pattern Matching 241

By plugging either Lemma 10 and Lemma 12 or Lemma 11 and Lemma 13 into
Multiple-pattern-matching we get the main theorem.

Theorem 1. Multiple pattern matching in a sequence of n snippets can be per-
formed in O(n logM +M) or O(n+M1+ε) time, where M is the combined size
of all patterns.

By adding Lemma 7 and either Lemma 9 or Lemma 8 we get the claimed total
running time of the whole solution.

Theorem 2. Multiple pattern matching in LZW compressed texts can be per-
formed in O(n logM +M) or O(n+M1+ε) time, where M is the combined size
of all patterns and n size of the compressed representation. The space used by
the solutions is O(n+M) and O(n+M1+ε), respectively.

5 Conclusions

We presented two efficient solutions for detecting if some pattern occurs in a
LZW-compressed text. A natural generalization is detecting all occurrences. If
no pattern occurs in another, a straightforward generalizations of Lemma 12
and Lemma 13 allow generating all occ occurrences in O(n logM +M+occ) and
O(n +M1+ε + occ) time, respectively. Without such assumptions, there is one
problem, though: we cannot assume that the collection of rectangles in Lemma 12
is valid, and O((n+M) logM+occ) running time seems to be required. We leave
dealing with this problem as future work. Additionally, we offer the following
open problem: how quickly can we just count the number of occurrences?

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18, 333–340 (1975)

2. Amir, A., Benson, G., Farach, M.: Let sleeping files lie: pattern matching in z-
compressed files. In: SODA 1994: Proceedings of the Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, Philadelphia, PA, USA, pp. 705–714. Society
for Industrial and Applied Mathematics (1994)

3. Bender, M.A., Farach-Colton, M.: The LCA Problem Revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

4. Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theor.
Comput. Sci. 321(1), 5–12 (2004)

5. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM 20(10),
762–772 (1977)

6. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures
persistent. J. Comput. Syst. Sci. 38(1), 86–124 (1989)

7. Farach, M., Thorup, M.: String matching in Lempel-Ziv compressed strings. In:
STOC 1995: Proceedings of the Twenty-Seventh Annual ACM Symposium on The-
ory of Computing, pp. 703–712. ACM, New York (1995)

242 P. Gawrychowski

8. Galil, Z.: String matching in real time. J. ACM 28(1), 134–149 (1981)
9. Galil, Z., Seiferas, J.: Time-space-optimal string matching (preliminary report). In:
STOC 1981: Proceedings of the Thirteenth Annual ACM Symposium on Theory
of Computing, pp. 106–113. ACM, New York (1981)

10. Gawrychowski, P.: Optimal pattern matching in LZW compressed strings. In: Ran-
dall, D. (ed.) SODA, pp. 362–372. SIAM (2011)

11. Gawrychowski, P.: Tying up the loose ends in fully LZW-compressed pattern
matching. In: Dürr, C., Wilke, T. (eds.) STACS. LIPIcs, vol. 14, pp. 624–635.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

12. Kida, T., Takeda, M., Shinohara, A., Miyazaki, M., Arikawa, S.: Multiple pattern
matching in LZW compressed text. In: Proceedings of Data Compression Confer-
ence, DCC 1998, pp. 103–112. IEEE (1998)

13. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

14. Kosaraju, S.R.: Pattern Matching in Compressed Texts. In: Thiagarajan, P.S. (ed.)
FSTTCS 1995. LNCS, vol. 1026, pp. 349–362. Springer, Heidelberg (1995)

15. Morris Jr., J.H., Pratt, V.R.: A linear pattern-matching algorithm. Technical Re-
port 40, University of California, Berkeley (1970)

16. Welch, T.A.: A technique for high-performance data compression. Computer 17(6),
8–19 (1984)

Computing the Burrows-Wheeler Transform
of a String and Its Reverse

Enno Ohlebusch1, Timo Beller1, and Mohamed I. Abouelhoda2,3

1 Institute of Theoretical Computer Science, University of Ulm, 89069 Ulm, Germany
{Enno.Ohlebusch,Timo.Beller}@uni-ulm.de

2 Center for Informatics Sciences, Nile University, Giza, Egypt
mabouelhoda@yahoo.com

3 Faculty of Engineering, Cairo University, Giza, Egypt

Abstract. The contribution of this paper is twofold. First, we provide
new theoretical insights into the relationship between a string and its
reverse: If the Burrows-Wheeler transform (BWT) of a string has been
computed by sorting its suffixes, then the BWT and the longest common
prefix array of the reverse string can be derived from it without suffix
sorting. Furthermore, we show that the longest common prefix arrays
of a string and its reverse are permutations of each other. Second, we
provide a parallel algorithm that, given the BWT of a string, computes
the BWT of its reverse much faster than all known (parallel) suffix sorting
algorithms. Some bioinformatics applications will benefit from this.

1 Introduction

The Burrows-Wheeler transform [2] is used in many lossless data compression
programs, of which the best known is Julian Seward’s bzip2. Moreover, it is the
basis of FM-indexes that support backward search [4]. In some bioinformatics
applications, one needs both the Burrows-Wheeler transform BWT of a string
S and the Burrows-Wheeler transform BWTrev of the reverse string Srev. For
example, in the prediction of RNA-coding genes [15] or short read alignment [12],
it is advantageous to be able to search in forward and backward direction. This
bidirectional search requires BWT as support for backward search and BWTrev

as support for forward search. Another example is de novo sequence assembly
based on pairwise overlaps between sequence reads. Simpson and Durbin [16]
showed how an assembly string graph can be efficiently constructed using all
pairs of exact suffix-prefix overlaps between reads. (Välimäki et al. [17] provide
techniques to find all pairs of approximate suffix-prefix overlaps.) To compute
overlaps between reverse complemented reads, they build an FM-index for the
set of reads and an FM-index for the set of reversed reads.

The Burrows-Wheeler transform BWT of a string S is usually computed by
sorting all suffixes of S (hence the suffix array of S is known). Of course, the
Burrows-Wheeler transform BWTrev of the reverse string Srev can be obtained
in the same fashion. However, because of the strong relationship between a string
and its reverse, it is quite natural to ask whether BWTrev can be directly derived

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 243–256, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

244 E. Ohlebusch, T. Beller, and M.I. Abouelhoda

from BWT—without sorting the suffixes of Srev. In this paper, we prove that
this is indeed the case. More precisely, we give an algorithm for this task that
has O(n log σ) worst-case time complexity. (If needed, the suffix array SArev of
Srev can easily be obtained from BWTrev; see e.g. [13].) Interestingly, essentially
the same algorithm can be applied to obtain the Burrows-Wheeler transform of
the reverse complement of a DNA sequence.

We further study the relationship between the lcp-array LCP of S and the
lcp-array LCPrev of Srev. To be precise, we prove that LCPrev is a permutation
of LCP. Furthermore, we show that LCPrev can also be directly computed: by
just one additional statement, it is possible to compute all irreducible lcp-values
of LCPrev with the same algorithm, and the remaining reducible lcp-values of
LCPrev can easily be derived from them.

In contrast to suffix sorting, our new algorithm is easy to parallelize. Experi-
ments show that it is faster than all known (parallel) suffix sorting algorithms.

2 Preliminaries

Let Σ be an ordered alphabet of size σ whose smallest element is the so-called
sentinel character $. In the following, S is a string of length n over Σ having the
sentinel character at the end (and nowhere else). For 1 ≤ i ≤ n, S[i] denotes the
character at position i in S. For i ≤ j, S[i..j] denotes the substring of S starting
with the character at position i and ending with the character at position j.
Furthermore, Si denotes the ith suffix S[i..n] of S.

The suffix array SA of the string S is an array of integers in the range 1 to
n specifying the lexicographic ordering of the n suffixes of the string S, that is,
it satisfies SSA[1] < SSA[2] < · · · < SSA[n]; see Fig. 1 for an example. We refer to
the overview article [14] for construction algorithms (some of which have linear
run time). In the following, ISA denotes the inverse of the permutation SA.

The suffix tree ST for S is a compact trie storing the suffixes of S: for any
leaf i, the concatenation of the edge labels on the path from the root to leaf i
exactly spells out the suffix Si. In the following, we denote an internal node α in
ST by ω, where ω is the concatenation of the edge labels on the path from the
root to α. A pointer from an internal node cω to the internal node ω is called a
suffix link ; see [8] for details.

The Burrows and Wheeler transform [2] converts a string S into the string
BWT[1..n] defined by BWT[i] = S[SA[i]−1] for all i with SA[i] �= 1 and BWT[i] =
$ otherwise; see Fig. 1. The permutation LF , defined by LF (i) = ISA[SA[i]− 1]
for all i with SA[i] �= 1 and LF (i) = 1 otherwise, is called LF -mapping. The LF -
mapping can be implemented by LF (i) = C[c] + Occ(c, i), where c = BWT[i],
C[c] is the overall number of characters in S which are strictly smaller than c,
and Occ(c, i) is the number of occurrences of the character c in BWT[1..i].

The lcp-array of S is an array LCP such that LCP[1] = −1 and LCP[i] =
|lcp(SSA[i−1], SSA[i])| for 2 ≤ i ≤ n, where lcp(u, v) denotes the longest common
prefix between two strings u and v; see Fig. 1. It can be computed in linear time
from the suffix array and its inverse; see [11,13,10,6]. A value LCP[i] is called
reducible if BWT[i] = BWT[i− 1]; otherwise it is irreducible.

Computing the Burrows-Wheeler Transform of a String and Its Reverse 245

i SA BWT SSA[i]

1 10 g $

2 3 t aataatg$

3 6 t aatg$

4 4 a ataatg$

5 7 a atg$

6 1 $ ctaataatg$

7 9 t g$

8 2 c taataatg$

9 5 a taatg$

10 8 a tg$

i LCPrev BWTrev Srev
SArev [i]

1 −1 c $

2 0 t aataatc$

3 3 t aatc$

4 1 a ataatc$

5 2 a atc$

6 0 t c$

7 0 $ gtaataatc$

8 0 g taataatc$

9 4 a taatc$

10 1 a tc$

Fig. 1. Left-hand side: suffix array SA and BWT of the string S = ctaataatg$ (the
input). Right-hand side: Burrows-Wheeler transform BWTrev of Srev = gtaataatc$
(the output). The computation of LCPrev will be explained in Sect. 4.

Ferragina and Manzini [4] showed that it is possible to search a pattern back-
wards, character by character, in the suffix array SA of string S, without storing
SA. Let c ∈ Σ and ω be a substring of S. Given the ω-interval [i..j] in the
suffix array SA of S (i.e., ω is a prefix of SSA[k] for all i ≤ k ≤ j, but ω is
not a prefix of any other suffix of S), backwardSearch(c, [i..j]) returns the cω-
interval [C[c] + Occ(c, i − 1) + 1 .. C[c] + Occ(c, j)]. In our example of Fig. 1,
backwardSearch(a, [2..5]) returns the aa-interval [2..3].

The wavelet tree introduced by Grossi et al. [7] supports one backward search
step in O(log σ) time. To explain this data structure, we may view the ordered
alphabet Σ as an array of size σ so that the characters appear in ascending order
in the array Σ[1..σ], i.e., Σ[1] = $ < Σ[2] < . . . < Σ[σ]. We say that an interval
[l..r] is an alphabet interval, if it is a subinterval of [1..σ]. For an alphabet interval
[l..r], the string BWT[l..r] is obtained from the Burrows-Wheeler transformed
string BWT of S by deleting all characters in BWT that do not belong to the
sub-alphabet Σ[l..r] of Σ[1..σ]. The wavelet tree of the string BWT over the
alphabet Σ[1..σ] is a balanced binary search tree defined as follows. Each node v

of the tree corresponds to a string BWT[l..r], where [l..r] is an alphabet interval.
The root of the tree corresponds to the string BWT = BWT[1..σ]. If l = r, then v
has no children. Otherwise, v has two children: its left child corresponds to the
string BWT[l..m] and its right child corresponds to the string BWT[m+1..r], where
m = � l+r

2 �. In this case, v stores a bit vector B[l..r] whose i-th entry is 0 if the
i-th character in BWT[l..r] belongs to the sub-alphabet Σ[l..m] and 1 if it belongs
to the sub-alphabet Σ[m+ 1..r]. To put it differently, an entry in the bit vector
is 0 if the corresponding character belongs to the left subtree and 1 if it belongs
to the right subtree. Moreover, each bit vector B in the tree is preprocessed so
that the queries rank0(B, i) and rank1(B, i) can be answered in constant time,
where rankb(B, i) is the number of occurrences of bit b in B[1..i]. Obviously, the
wavelet tree has height O(log σ). Because in an actual implementation it suffices
to store only the bit vectors, the wavelet tree requires only n log σ bits of space

246 E. Ohlebusch, T. Beller, and M.I. Abouelhoda

Algorithm 1. For an ω-interval [i..j], the function call getIntervals([i..j]) re-
turns the list of all cω-intervals, and is defined as follows.
getIntervals([i..j])

list ← []
getIntervals′([i..j], [1..σ], list)
return list

getIntervals′([i..j], [l..r], list)
if l = r then

c ← Σ[l]
add(list, [C[c] + i..C[c] + j])

else
(a0, b0)← (rank0(B

[l..r], i− 1), rank0(B[l..r], j))
(a1, b1)← (i− 1− a0, j − b0)
m = l+r

2
�

if b0 > a0 then
getIntervals′([a0 + 1..b0], [l..m], list)

if b1 > a1 then
getIntervals′([a1 + 1..b1], [m+ 1..r], list)

plus o(n log σ) bits for the data structures that support rank queries in constant
time.

For an ω-interval [i..j], the procedure getIntervals([i..j]) presented in Algo-
rithm 1 returns the list of all cω-intervals; cf. [1,3]. More precisely, it starts with
the ω-interval [i..j] at the root and traverses the wavelet tree in a top down fash-
ion as follows. At the current node v, it uses constant time rank queries to obtain
the number b0 − a0 of zeros in the bit vector of v within the current interval. If
b0 > a0, then there are characters in BWT[i..j] that belong to the left subtree of
v, and the algorithm proceeds recursively with the left child of v. Furthermore,
if the number of ones is positive (i.e. if b1 > a1), then it proceeds with the right
child in an analogous fashion. Clearly, if a leaf corresponding to character c is
reached with current interval [p..q], then [C[c]+p .. C[c]+q] is the cω interval. In
this way, Algorithm 1 computes the list of all cω-intervals. This takes O(k log σ)
time for a k-element list. In our example of Fig. 1, getIntervals([2..5]) returns
the list [[2..3], [8..9]], where [2..3] is the aa-interval and [8..9] is the ta-interval.

3 The Burrows-Wheeler Transform of the Reverse String

If we reverse the order of the characters in a string, we obtain its reverse string.
For technical reasons, however, we assume that the sentinel symbol $ occurs at
the end of each string under consideration. For this reason, the reverse string
Srev of a string S that is terminated by $ is obtained by deleting $ from S,
reversing the order of the characters, and appending $. For example, the reverse
string of S = ctaataatg$ is Srev = gtaataatc$ (and not $gtaataatc).

Computing the Burrows-Wheeler Transform of a String and Its Reverse 247

Algorithm 2. Procedure bwtrev(k, [i..j], �) uses the wavelet tree of the BWT,
the suffix array SA, and S. The call bwtrev(1, [1..n], 0) computes BWTrev.
bwtrev(k, [i..j], �)

list ← getIntervals([i..j]) /* intervals in increasing lexicographic order */
while list not empty do
[lb..rb]← head(list)
if lb = rb then

pos ← SA[lb] + �+ 1
if pos > n then

pos ← pos− n
BWTrev[k]← S[pos]
k ← k + 1

else
if S[SA[lb] + �+ 1] = S[SA[rb] + �+ 1] then

for q ← k to k + rb− lb do
BWTrev[q]← S[SA[lb] + �+ 1]

else
bwtrev(k, [lb..rb], �+ 1)

k ← k + rb− lb + 1
if list not empty then LCPrev[k]← � /* this will be explained in Sect. 4 */

Given the BWT of S, Algorithm 2 recursively computes the Burrows-Wheeler
transformed string BWTrev of Srev by the procedure call bwtrev(1, [1..n], 0).
We exemplify the algorithm by applying it to S = ctaataatg$. The procedure
call getIntervals([1..10]) returns the list [[1..1], [2..5], [6..6], [7..7], [8..10]], where
[1..1] is the $-interval, [2..5] is the a-interval, and so on; cf. Fig. 1. Then, the first
interval [lb..rb] = [1..1] is taken from the list (note that head(list) removes the
first element of list and returns it). Because lb = rb, the algorithm computes
pos = SA[1] + 0 + 1 = 11. Furthermore, since pos > n = 10, it assigns the
character S[11 − 10] = S[1] = c to BWTrev[1] and increments k (so the new
value of k is 2). Now the interval [lb..rb] = [2..5] is taken from the list. Because
S[SA[lb] + � + 1] = S[SA[2] + 0 + 1] = S[4] = a �= t = S[8] = S[SA[5] + 0 +
1] = S[SA[rb] + � + 1], Algorithm 2 recursively calls bwtrev(2, [2..5], 1). The
procedure call getIntervals([2..5]) returns the list [[2..3], [8..9]], where [2..3] is
the aa-interval and [8..9] is the ta-interval. Then, the first interval [lb..rb] = [2..3]
is taken from the list. In this case, S[SA[lb] + �+ 1] = S[SA[2] + 1 + 1] = S[5] =
t = t = S[8] = S[SA[3] + 1 + 1] = S[SA[rb] + � + 1]. Thus, t is assigned to both
BWTrev[2] and BWTrev[3]. Now the algorithm continues with the new value
k = 2 + 3− 2 + 1 = 4. Fig. 2 shows the recursion tree of Algorithm 2.

In essence, the correctness of Algorithm 2 is a consequence of the following
lemma. Moreover, the lemma allows us to parallelize the algorithm.

Lemma 1. Let [i..j] be the ω-interval for some substring ω of S, and let k be the
left boundary of the ωrev-interval in SArev. If [lb1..rb1], . . . , [lbm..rbm] are the in-
tervals in list = getIntervals([i..j]) corresponding to the strings c1ω, . . . , cmω,

248 E. Ohlebusch, T. Beller, and M.I. Abouelhoda

ε

BWTrev =

Fig. 2. The recursion tree of Algorithm 2 applied to the BWT of S = ctaataatg$: for
each internal node there is a recursive call. E.g., the recursive call with the aat-interval
as parameter determines the characters of BWTrev in the taa-interval of SArev.

where c1 < . . . < cm, then the intervals [s1..e1], . . . , [sm..em] in SArev corre-
sponding to the strings ωrevc1, . . . , ω

revcm satisfy sq = k +
∑q−1

p=1(rbp − lbp + 1)
and eq = sq + (rbq − lbq), where 1 ≤ q ≤ m.

Proof. We prove the lemma by finite induction on q. In the base case q = 1.
Because c1 is the smallest character in Σ for which the c1ω-interval is non-
empty, the suffixes of Srev that have ωrevc1 as a prefix are lexicographically
smaller than those suffixes of Srev that have ωrevcp, 2 ≤ p ≤ m, as a prefix.
Hence s1 = k. Moreover, it follows from the fact that the ωrevc1-interval has
size rb1 − lb1 + 1 that the ωrevc1-interval is the interval [k..k + (rb1 − lb1)].
For the inductive step suppose that the ωrevcq−1-interval [sq−1..eq−1] satisfies
sq−1 = k +

∑q−2
p=1(rbp − lbp + 1) and eq−1 = sq−1 + (rbq−1 − lbq−1). Because cq

is the q-th smallest character in Σ for which the cqω-interval is non-empty, the
suffixes of Srev that have ωrevcq as a prefix are lexicographically larger than the
suffixes of Srev that have ωrevcp as a prefix, where 1 ≤ p ≤ q− 1. It follows that
the ωrevcq-interval [sq..eq] satisfies sq = eq−1 +1 = k+

∑q−1
p=1(rbp− lbp +1) and

eq = sq + (rbq − lbq). ��

Theorem 1. Algorithm 2 correctly computes BWTrev.

Proof. We prove the theorem by induction on k. Suppose Algorithm 2 is applied
to the ω-interval [i..j] for some �-length substring ω of S, and let the cω-interval
[lb..rb] be the interval dealt with in the current execution of the while-loop.
According to the inductive hypothesis, BWTrev[1..k − 1] has been computed

Computing the Burrows-Wheeler Transform of a String and Its Reverse 249

correctly. Moreover, by Lemma 1, [k..k + rb − lb] is the ωrevc-interval in SArev.
We further proceed by a case-by-case analysis.

– If lb = rb, then cω occurs exactly once in S and it is the length �+ 1 prefix
of suffix SSA[lb]. In this case, the suffix of Srev that has ωrevc as a prefix is
the k-th lexicographically smallest suffix of Srev. The character BWTrev[k]
is S[SA[lb]+ �+1] because this is the character that immediately follows the
prefix S[SA[lb]..SA[lb] + �] = cω of suffix SSA[lb].

– If lb �= rb and S[SA[lb]+�+1] = S[SA[rb]+�+1], then each occurrence of cω
in S is followed by the same character a = S[SA[lb]+ �+1]. Thus, each suffix
of Srev in the ωrevc-interval [k..k + rb − lb] is preceded by a. Consequently,
BWTrev[q] = a for every q with k ≤ q ≤ k + rb − lb. So in this case, it is
not necessary to know the exact lexicographic order of the suffixes in the
ωrevc-interval.

– If lb �= rb and S[SA[lb] + � + 1] �= S[SA[rb] + � + 1], then not all the char-
acters in BWTrev[k..k + rb − lb] are the same and thus the recursive call
bwtrev(k, [lb..rb], �+ 1) determines the lexicographic order of the suffixes in
the ωrevc-interval [k..k + rb − lb] as far as it is needed. ��

Next, we analyse the worst-case time complexity of Algorithm 2.

Lemma 2. The procedure bwtrev is executed with the parameters (k, [i..j], �),
where [i..j] is the ω-interval for some substring ω of S, if and only if ω is an
internal node in the suffix tree ST of S.

Proof. We use induction on �. There is just one procedure call with � = 0, namely
bwtrev(1, [1..n], 0). The interval [1..n] is the ε-interval, where ε denotes the empty
string. Clearly, the node ε is the root node of the suffix tree ST, and the root is
an internal node. According to the inductive hypothesis, the procedure bwtrev is
executed with the parameters (k, [i..j], �), where [i..j] is the ω-interval for some
substring ω of S, if and only if ω is an internal node in the suffix tree ST of S.
For the inductive step, assume that [lb..rb] is one of the intervals returned by the
procedure call getIntervals([i..j]), say the cω-interval. We prove that there is a
recursive procedure call bwtrev(k′, [lb..rb], �+ 1) if and only if cω is an internal
node of ST. It is readily verified that cω is an internal node of ST if and only
if the cω-interval contains two different suffixes of S, one having cωa as a prefix
and one having cωb as a prefix, where a and b are different characters from Σ.
Again, we proceed by case analysis:

– If lb = rb, then cω occurs exactly once in S. Hence cω is not an internal node
of ST. Note that Algorithm 2 does not invoke a recursive call to bwtrev.

– If S[SA[lb] + � + 1] = S[SA[rb] + � + 1], then each occurrence of cω in S is
followed by the same character. Again, cω is not an internal node of ST and
Algorithm 2 does not invoke a recursive call to bwtrev.

– If a = S[SA[lb]+ �+1] �= S[SA[rb]+ �+1] = b, then cω is an internal node of
ST and Algorithm 2 invokes the recursive call bwtrev(k′, [lb..rb], �+ 1). ��

250 E. Ohlebusch, T. Beller, and M.I. Abouelhoda

i SA BWT SSA[i]

1 10 g $

2 3 t aataatg$

3 6 t aatg$

4 4 a ataatg$

5 7 a atg$

6 1 $ ctaataatg$

7 9 t g$

8 2 c taataatg$

9 5 a taatg$

10 8 a tg$

i SArev BWTrev Srev
SArev [i]

1 10 g $

2 8 t ag$

3 5 t attag$

4 2 c attattag$

5 1 $ cattattag$

6 9 a g$

7 7 t tag$

8 4 t tattag$

9 6 a ttag$

10 3 a ttattag$

Fig. 3. Left-hand side: suffix array SA and BWT of the string S = ctaataatg$. Right-
hand side: SArev and BWTrev of the reverse complement cattattag$ of S.

Lemma 2 implies that the recursion tree of Algorithm 2 coincides with the
suffix link tree SLT of S (recall that the suffix link tree SLT has a node ω for each
internal node ω of ST and, for each suffix link from cω to ω in ST, there is an
edge ω → cω in SLT); see Fig. 2. This is can be seen as follows. If the execution
of bwtrev(k, [i..j], �) invokes the recursive call bwtrev(k′, [lb..rb], � + 1), where
[i..j] is the ω-interval and [lb..rb] is the cω-interval, then there is a suffix link
from node cω to node ω because both are internal nodes in the suffix tree of S.

Theorem 2. Algorithm 2 has a worst-case time complexity of O(n log σ).

Proof. According to Lemma 2, there are as many recursive calls to the procedure
bwtrev as there are internal nodes in the suffix tree ST of S. Because ST has
n leaves and each internal node in ST is branching, the number of internal
nodes is at most n − 1. We use an amortized analysis to show that the overall
number of intervals returned by calls to the procedure getIntervals is bounded
by 2n − 1. Let L denote the concatenation of all lists returned by procedure
calls to getIntervals. For each element [lb..rb] of L, either at least one entry of
BWTrev is filled in, or there is a recursive call to the procedure bwtrev. It follows
that L has at most 2n − 1 elements because BWTrev has n entries and there
are at most n − 1 recursive calls to the procedure bwtrev. It is a consequence
of this amortized analysis that the overall time taken by all procedure calls to
getIntervals is O(n log σ) because a procedure call to getIntervals that returns
a k-element list takes O(k log σ) time. Clearly, the theorem follows from this
fact. ��

The Burrows-Wheeler transform of the reverse complement of a DNA-sequence
can also be computed by Algorithm 2. One just has to change the order in
which intervals are generated by the procedure getIntervals. Recall that the
reverse complement of a DNA-sequence S is obtained by reversing S and then
replacing each nucleotide by its Watson-Crick complement (a is replaced with
t and vice versa; c is replaced with g and vice versa). For example, the reverse

Computing the Burrows-Wheeler Transform of a String and Its Reverse 251

ε

BWTrev =

Fig. 4. The recursion tree of Algorithm 2 with modified procedure getIntervals applied
to the BWT of the string S = ctaataatg$, calculating the Burrows-Wheeler transform
of the reverse complement cattattag$.

complement of ctaataatg is cattattag; see Fig. 3 for the corresponding suffix
arrays and Burrows-Wheeler transforms. Up to now, a φ-interval was generated
before an ω-interval if and only if φrev <lex ωrev, where <lex is the lexicographic
order induced by the order $ < a < c < g < t on the alphabet Σ. In the
computation of the Burrows-Wheeler transform of the reverse complement of a
DNA-sequence, a φ-interval must be generated before an ω-interval if and only
if φrev <lex′ ωrev, where <lex′ is the lexicographic order induced by the order
$ < t < g < c < a. Moreover, instead of assigning the nucleotide S[SA[lb]+ �+1]
to a position in BWTrev, its Watson-Crick complement must be assigned. The
recursion tree of our example can be found in Fig. 4.

4 The LCP-Array of the Reversed String

The next lemma proves a strong relationship between LCP and LCPrev.

Lemma 3. The longest common prefix array LCPrev of Srev is a permutation
of the longest common prefix array LCP of S.

Proof. We show that each lcp-value occurs as often in LCP as in LCPrev. Let
� ∈ {1, . . . , n} and define the set M	 by M	 = {ω | ω is an �-length substring but
not a suffix of S}. We count how many entries in the array LCP are smaller than
�. There are � proper suffixes of S having a length ≤ �. For each such suffix SSA[k]

we have LCP[k] < �. Any other suffix has a length greater than � and hence its
�-length prefix belongs to M	. Let ω ∈M	 and let [i..j] be the ω-interval. Clearly,
for all k with i < k ≤ j, we have LCP[k] ≥ � because the suffixes SSA[k−1] and

252 E. Ohlebusch, T. Beller, and M.I. Abouelhoda

i LCP SSA[i]

1 −1 $
2 0 atc$

3 2 atgcatc$

4 0 c$

5 1 catc$

6 3 catgcatc$

7 0 gcatc$

8 4 gcatgcatc$

9 0 tc$

10 1 tgcatc$

i LCPrev Srev
SArev [i]

1 −1 $
2 0 acg$

3 3 acgtacg$

4 0 cg$

5 2 cgtacg$

6 1 ctacgtacg$

7 0 g$

8 1 gtacg$

9 0 tacg$

10 4 tacgtacg$

Fig. 5. The lcp-arrays of S = gcatgcatc$ and Srev = ctacgtacg$

SSA[k] share the prefix ω. By contrast, LCP[i] < � because ω is not a prefix of
SSA[i−1]. Thus, there are |M	|many entries in the array LCP satisfying LCP[k] < �
and |SSA[k]| > �. In total, the array LCP has |M	|+� many entries that are smaller
than �. Analogously, there are |M	+1|+ �+1 many entries in the array LCP that
are smaller than � + 1, where � ∈ {1, . . . , n − 1}. Consequently, the lcp-value �
occurs (|M	+1|+ �+1)− (|M	|+ �) = |M	+1| − |M	|+1 times in the LCP-array.
By the same argument, the lcp-value � occurs |M rev

	+1| − |M rev
	 | + 1 many times

in the array LCPrev, where M rev
	 = {ω | ω is an �-length substring but not a

suffix of Srev}. Now the lemma follows from the equality |M	| = |M rev
	 |, which

is true because ω ∈M	 if and only if ωrev ∈M rev
	 .

Fig. 5 illustrates the proof of Lemma 3. The proper suffixes of S with length
≤ 2 occur at the indices 1 and 4 in the (conceptual) suffix array, so LCP[1] and
LCP[4] are smaller than 2. Furthermore, we have M2 = {at, ca, gc, tc, tg} and
the corresponding entries in the LCP-array at the indices 2, 5, 7, 9, and 10 are
also smaller than 2. So there are |M2|+ 2 = 7 entries of the LCP-array that are
smaller than 2. Since M3 = {atc, atg, cat, gca, tgc}, there are |M3|+3 = 8 entries
of the LCP-array that are smaller than 3. We conclude that the value 2 occurs
8− 7 = 1 times in the LCP-array. By the same argument, it occurs only once in
LCPrev. Note that M rev

2 = {ac, cg, ct, gt, ta} and M rev
3 = {acg, cgt, cta, gta, tac}.

In fact, Algorithm 2 can also be used to compute LCPrev. This can be seen
as follows. Suppose Algorithm 2 is applied to the ω-interval [i..j] for some �-
length substring ω of S, and let k be the left boundary of the ωrev-interval in
SArev. It is a consequence of Lemma 1 that the procedure call bwtrev(k, [i..j], �)
correctly computes the boundaries [sq..eq] of the ωrevcq-intervals in SArev, where
c1, . . . , cm are the characters for which cqω is a substring of S (1 ≤ q ≤ m). By
the conditional statement “if list not empty then LCPrev[k]← � ”, Algorithm 2
assigns the value � at each index s2, . . . , sm (but not at index s1). This is correct,
i.e., LCPrev[sq] = � for 2 ≤ q ≤ m, because ωrevcq−1 is a prefix of the suffix at
index eq−1 and ωrevcq is a prefix of the suffix at index sq = eq−1 + 1.

Thus, whenever Algorithm 2 fills an entry in the lcp-array LCPrev, it assigns
the correct value. However, the algorithm does not fill LCPrev completely; in

Computing the Burrows-Wheeler Transform of a String and Its Reverse 253

Algorithm 3. Given a partial LCP-array that contains at least all irreducible
LCP-values, this procedure computes the whole LCP-array.

for all c ∈ Σ do /* initialize the array count */
count[c]← C[c]

todo[1..n]← [0, . . . , 0] /* initialize the bit array todo */
for i ← 1 to n do /* replace undefined LCP-values with LF -values */

c ← BWT[i] /* BWT is accessed sequentially */
count[c]← count[c] + 1
if LCP[i] = ⊥ then

todo[i]← 1
LCP[i]← count[c] /* LCP[i] stores LF (i) */

initialize an empty stack
for i ← 1 to n do

k ← i
while todo[k] = 1 do

push(k)
k ← LCP[k] /* recall that LCP[k] contains LF (k) */

� ← LCP[k]
while stack is not empty do

� ← �− 1
top ← pop()
LCP[top]← �
todo[top]← 0

Fig. 1 the computed entries are underlined. This is because whenever Algorithm
2 detects a cω-interval [lb..rb] in the list returned by getIntervals([i..j]) with
lb �= rb and S[SA[lb] + � + 1] = S[SA[rb] + � + 1], then it does not determine
the lexicographic ordering of the suffixes in the ωrevc-interval [s..e]. Instead, it
fills BWTrev[s..e] with a’s because each occurrence of cω in S is followed by
the same character a = S[SA[lb] + �+ 1]. Consequently, if an entry LCPrev[p] is
not filled by Algorithm 2, then BWTrev[p− 1] = BWTrev[p]. Hence LCPrev[p] is
reducible. To sum up, Algorithm 2 computes all irreducible lcp-values of LCPrev

(and possibly some reducible values). We next show how the remaining lcp-values
can be computed in linear time.

Algorithm 3 shows pseudo-code for the computation of the whole LCP-array
of a string,1 provided that all irreducible LCP-values are already stored in the
LCP-array. It uses an auxiliary array count of size σ, which is inizialized in the
first for-loop by setting count[c] = C[c] for all c ∈ Σ.2 Furthermore, it uses a bit
array todo of size n which initially contains a series of zeros. The key property
utilized by Algorithm 3 is that a reducible value LCP[i] can be computed by the
equation (see [13, Lemma 1] and [10, Lemma 4])

LCP[i] = LCP[LF [i]]− 1 (1)
1 In our context, the string under consideration is Srev.
2 If the array C is not needed later, then it can be used instead of count.

254 E. Ohlebusch, T. Beller, and M.I. Abouelhoda

because BWT[i] = BWT[i − 1] is equivalent to LF [i] = LF [i − 1] + 1. In its
second for-loop, Algorithm 3 computes the LF -mapping. Recall that LF (i) =
C[c] + Occ(c, i), where c = BWT[i] and Occ(c, i) is the number of occurrences
of the character c in BWT[1..i]. The algorithm scans the BWT from left to right
and counts how often each character appeared already. Every time character
c appears during the scan of BWT, count[c] is incremented by one. When the
algorithm finds the j-th occurrence of character c at index i in BWT, then
LF (i) = C[c] + j = count[c]. During the execution of the second for-loop, if an
undefined entry LCP[i] is detected, then the value LF (i) is stored in LCP[i] and
todo[i] is set to 1 (from now on todo[i] = 1 if and only if the value LCP[i] still
needs to be computed). In the third for-loop, Algorithm 3 computes the missing
LCP-values. For each index i, it follows LF -pointers until an index k is reached
with todo[k] = 0, and it stores the sequence i, LF (i), . . . , LF q(i) on a stack, where
k = LF q+1(i). Since todo[k] = 0, LCP[k] contains the correct lcp-value �. It is
a consequence of Equation 1 that the LCP-value at index LF q(i)—the topmost
element of the stack—is LCP[LF q(i)] = � − 1. After LF q(i) has been popped
from the stack, the subsequent values LCP[LF q−1(i)], . . . , LCP[LF (i)], LCP[i] are
obtained similarly by a repeated application of Equation 1.

5 Parallelization and Experimental Results

Based on Lemma 1 and the observation that each entry BWTrev [k] is accessed
only once in Algorithm 2, the arrays BWTrev and LCPrev can be efficiently
computed in parallel. The parallel algorithm for a shared-memory multi-core
system can be obtained by modifying Algorithm 2 as follows: the algorithm
uses a queue and instead of a recursive call bwtrev(k, [lb..rb], � + 1) the tuple
(k, [lb..rb], � + 1) is added to the queue. Processors successively remove tuples
from the queue and process them until the queue is empty. The time complexity
of the algorithm is O(p+ n/p), where p is the number of processors.

We implemented Algorithm 2 (called bwtrev) using Simon Gog’s library sdsl
(http://www.uni-ulm.de/in/theo/research/sdsl.html). To compare it with meth-
ods that compute BWTrev from SArev, we used Yuta Mori’s library libdivsufsort
library (http://code.google.com/p/libdivsufsort), which is the fastest sequential
suffix array construction algorithm. Table 1 shows the running times of con-
structing BWTrev with and without the LCPrev-array (the goΦ algorithm [6]
from the sdsl was used to construct LCPrev from SArev). Chromosome 1 of the
human genome can be found at http://www.ncbi.nlm.nih.gov/ and the other
test files at http://code.google.com/p/libdivsufsort/wiki/SACA_Benchmarks.
The results in Table 1 show that our sequential algorithm is competitive.

We then conducted experiments with the parallel implementation of Algo-
rithm 2. For a fair comparison, we used two parallel suffix sorting algorithms:
the mkESA package [9] (only for DNA/protein datasets) and our own implemen-
tation (called pbs) of an improved version of the algorithm of [5]. (To the best of
our knowledge, no other implementation of a parallel suffix sorting algorithm is
available.) Our experiments were conducted on a multi-core machine of 32 pro-
cessors (8 Quadcore AMD Opteron processors with 2.3 GHz, L1 Cache=64K,

Computing the Burrows-Wheeler Transform of a String and Its Reverse 255

Table 1. Running times in seconds for different algorithms and datasets

Data σ size libdivsufsort libdivsufsort + lcp bwtrev bwtrev + lcp

human chr1 4 200MB 173.0 280.0 219.0 236.0
swissprot 20 22MB 16.2 27.5 24.5 26.0
dickens 100 10.2MB 6.0 10.0 11.1 11.9

Table 2. Running times in seconds for the datasets of Table 1 with different numbers
of processors (e.g. p32 = 32 processors). The numbers x(y) in each table entry should
be interpreted as follows: x is the time for constructing BWTrev and y is the time for
constructing BWTrev and LCPrev. There are no entries for the mkESA package for
dickens because it can solely handle biological data.

human chr1
Tool p1 p2 p4 p8 p16 p32
mkESA 235 (342) 230 (337) 222 (329) 222 (329) 222 (329) 222 (329)
pbs 397 (504) 274 (381) 187 (294) 156 (263) 128 (235) 127 (234)
bwtrev 219 (236) 151 (159) 72 (78) 41 (44) 22 (27) 18 (19)

swissprot
Tool p1 p2 p4 p8 p16 p32
mkESA 121.5 (132.8) 101.9 (113.2) 90.7 (102.0) 82.3 (93.6) 70.4 (81.7) 70.4 (81.7)
pbs 41.3 (52.6) 26.6 (37.9) 17.2 (28.5) 10.6 (21.9) 10.6 (21.9) 10.2 (21.5)
bwtrev 24.5 (26.0) 14.1 (14.9) 6.9 (7.4) 3.7 (4.1) 2.0 (2.4) 2.0 (2.4)

dickens
Tool p1 p2 p4 p8 p16 p32
pbs 17.6 (21.6) 10.8 (14.8) 7.8 (11.8) 6.5 (10.5) 5.7 (9.7) 5.4 (9.4)
bwtrev 11.7 (11.8) 6.0 (6.2) 2.9 (3.1) 1.7 (1.8) 1.1 (1.3) 1.1 (1.3)

and L2 Cache= 512K) and a total of 256 GB RAM. All programs were compiled
with gcc/g++ using the -O3 optimization option. The results of Table 2 show
that our algorithm outperforms the other tools in terms of absolute running
time and scalability. It should be pointed out that with just two processors our
algorithm outperforms libdivsufsort, the best sequential algorithm.

References

1. Beller, T., Gog, S., Ohlebusch, E., Schnattinger, T.: Computing the Longest Com-
mon Prefix Array Based on the Burrows-Wheeler Transform. In: Grossi, R., Sebas-
tiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp. 197–208. Springer,
Heidelberg (2011)

2. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Research Report 124, Digital Systems Research Center (1994)

3. Culpepper, J.S., Navarro, G., Puglisi, S.J., Turpin, A.: Top-k Ranked Document
Search in General Text Databases. In: de Berg, M., Meyer, U. (eds.) ESA 2010.
LNCS, vol. 6347, pp. 194–205. Springer, Heidelberg (2010)

256 E. Ohlebusch, T. Beller, and M.I. Abouelhoda

4. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proc. IEEE Symposium on Foundations of Computer Science, pp. 390–398 (2000)

5. Futamura, N., Aluru, S., Kurtz, S.: Parallel suffix sorting. In: Proc. 9th Interna-
tional Conference on Advanced Computing and Communications, pp. 76–81. IEEE
(2001)

6. Gog, S., Ohlebusch, E.: Lightweight LCP-array construction in linear time (2011),
http://arxiv.org/pdf/1012.4263

7. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proc. 14th Annual Symposium on Discrete Algorithms, pp. 841–850 (2003)

8. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, New York (1997)

9. Homann, R., Fleer, D., Giegerich, R., Rehmsmeier, M.: mkESA: Enhanced suffix
array construction tool. Bioinformatics 25(8), 1084–1085 (2009)

10. Kärkkäinen, J., Manzini, G., Puglisi, S.J.: Permuted Longest-Common-Prefix Ar-
ray. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 181–192.
Springer, Heidelberg (2009)

11. Kasai, T., Lee, G.H., Arimura, H., Arikawa, S., Park, K.: Linear-Time Longest-
Common-Prefix Computation in Suffix Arrays and Its Applications. In: Amir, A.,
Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidel-
berg (2001)

12. Lam, T.-W., Li, R., Tam, A., Wong, S., Wu, E., Yiu, S.-M.: High throughput
short read alignment via bi-directional BWT. In: Proc. International Conference
on Bioinformatics and Biomedicine, pp. 31–36. IEEE Computer Society (2009)

13. Manzini, G.: Two Space Saving Tricks for Linear Time LCP Array Computation.
In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 372–383.
Springer, Heidelberg (2004)

14. Puglisi, S.J., Smyth, W.F., Turpin, A.: A taxonomy of suffix array construction
algorithms. ACM Computing Surveys 39(2), 1–31 (2007)

15. Schnattinger, T., Ohlebusch, E., Gog, S.: Bidirectional Search in a String with
Wavelet Trees. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp.
40–50. Springer, Heidelberg (2010)

16. Simpson, J.T., Durbin, R.: Efficient construction of an assembly string graph using
the FM-index. Bioinformatics 26(12), i367–i373 (2010)

17. Välimäki, N., Ladra, S., Mäkinen, V.: Approximate All-Pairs Suffix/Prefix Over-
laps. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 76–87.
Springer, Heidelberg (2010)

http://arxiv.org/pdf/1012.4263

Efficient Algorithm for Circular

Burrows-Wheeler Transform�

Wing-Kai Hon1, Tsung-Han Ku1, Chen-Hua Lu2 Rahul Shah3,
and Sharma V. Thankachan3

1 National Tsing Hua University, Taiwan
{wkhon,thku}@cs.nthu.edu.tw

2 Academia Sinica, Taiwan
walchl@iis.sinica.edu.tw

3 Louisiana State University, USA
{rahul,thanks}@csc.lsu.edu

Abstract. Given a set P of d patterns, the circular dictionary match-
ing problem is to index P such that for any online query text T , we
can quickly locate the occurrences of any cyclic shift of any pattern of
P within T efficiently. This problem can be applied on practical prob-
lems that arise in bioinformatics and computational geometry. Recently,
Hon et al. (2011) applied a variant of the well-known Burrows-Wheeler
transform, called circular Burrows-Wheeler transform (circular BWT)
[Mantaci, Restivo, Rosone, and Sciortino, Theoretical Computer Science,
2007], and showed that this can be used to solve the circular dictionary
matching problem efficiently. In this paper, we give the first construc-
tion algorithm for the circular BWT, which takes O(n log n) time and
requires O(n log σ) bits working space, where n denotes the total length
of the patterns in P and σ is the alphabet size.

1 Introduction

Given a set P of d patterns, the dictionary matching problem is to index P
such that for any online query text T , we can quickly locate the occurrences
of any pattern of P within T efficiently. This problem has been well-studied in
the literature [1,4,10], and an index taking optimal space and simultaneously
supporting optimal-time query is achieved [2,8]. A central technique to derive
optimal-spaced indexes is to apply the well-known Burrows-Wheeler transform
(BWT) [3] to represent P in an alternative way, and augment this representation
with auxiliary data structures so as to support the desired pattern matching
queries efficiently.

Cyclic shifts of the indexed patterns can also be valid patterns in some prac-
tical applications in bioinformatics and computational geometry [12]. In bioin-
formatics, the genomes of many viruses, such as herpes simplex virus (HSV-1),

� This work is supported in part by Taiwan NSC Grant 99-2221-E-007-123 (W. Hon)
and US NSF Grant CCF–1017623 (R. Shah).

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 257–268, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

258 W.-K. Hon et al.

exist as circular strings [17]. Also, due to the launch of next-generation sequenc-
ing technology, the biologists in the metagenomics area are now collecting and
sequencing microbial samples from an environment directly, without isolating
and culturing the samples. Those samples have circular chromosomes and plas-
mid DNA [6,16]. In computational geometry, a polygon may be stored by listing
the co-ordinates of its vertices in clockwise order. As applications in these two
fields usually involve huge data sets, it is very important to find a compact index-
ing scheme for the circular patterns supporting online pattern matching query
efficiently. Hon et al. [7] recently applied a variant of the BWT, called circu-
lar Burrows-Wheeler transform (circular BWT) that was originally proposed by
Mantaci et al. [14], and showed that this can be used to solve the above circular
dictionary matching problem efficiently.

Although there are several efficient construction algorithms for the BWT in
the literature, such as [9] and [11], none of them can be applied directly to
construct circular BWT due to the different nature of the two definitions. Tech-
nically speaking, most of the existing construction algorithms of BWT assume
each input pattern ends with a special end-marking character, and utilize this
character to distinguish the lexicographical ordering among the patterns and
their suffixes. In contrast, the circular BWT is defined on patterns of infinite
length (see Section 2 for its definition) so that adding such an end-marker will
intuitively destroy the circular nature of the patterns. In this paper, we give the
first construction algorithm for the circular BWT, which takes O(n log n) time
and requires O(n log σ) bits working space, where n denotes the total length
of the patterns in P and σ is the alphabet size. Our result stems from some
observations about the circular patterns, which in turn allows us to adapt the
algorithm in [9] for our construction.

2 Preliminaries

Let P = P [1..|P |] be a pattern of length |P |. A cyclic shift of P is called a
circular suffix of P . For example, the circular suffixes of abc are abc, bca, and
cab. Let P∞ denote the string formed by repeating P infinite number of times.
Then we have the following definition.

Definition 1. Let P and Q be two patterns. We say P is circularly larger than
Q, or simply P is larger than Q, if and only if P∞ is lexicographically larger
than Q∞. The notions of “smaller than”, or “equal to”, are defined analogously.

For example, suppose that P = ba, Q = bbba, and R = b. Then, we have P is
smaller than Q, and both patterns are smaller than R.

Let P = {P1, P2, . . . , Pd} be a set of d patterns of total length n, with charac-
ters drawn from an alphabet of size σ. Let S = P1P2 · · ·Pd be the concatenation
of the patterns in P . Any cyclic shift of a pattern Pi in P will be called a circular
suffix of S. In addition, the circular suffix which starts at position j in S, denoted
by Sj , will be referred to as the jth circular suffix of S. For example, suppose
that P = {ba, bbba, b}. Then, we have S = babbbab, and the circular suffixes

Efficient Algorithm for Circular Burrows-Wheeler Transform 259

of S are S1 = ba, S2 = ab, S3 = bbba, S4 = bbab, S5 = babb, S6 = abbb, and
S7 = b.

We define the circular suffix array SA◦[1..n] of S, such that SA◦[i] = j if
Sj is the ith smallest circular suffix of S. For example, P = {ba, bbba, b}, and
SA◦[1..7] = [2, 6, 1, 5, 4, 3, 7]. Note that if two circular suffixes are equal, we
arrange them arbitrarily in SA◦.

1 We also define SA−1
◦ [1..n] of S, such that

SA−1
◦ [j] = i if and only if SA◦[i] = j.
Let L be a binary vector which represents the length of each pattern in S, such

that a length of value k is encoded in unary by 10k−1. We append an extra 1 at
the end of L as a sentinel. For instance, L = 10100011 in our running example.
Let rank b(L, i) denote the number of b’s in L[1..i], and selectb(L, j) denote the
position of the jth b in L. Based on L and its operations, we define the circular
Ψ◦[1..n] function of S, which is analogous to the Ψ function in [9], as follows.

Ψ◦[i] =

{
SA−1

◦ [j + 1] if L[j + 1] �= 1
SA−1

◦ [select1[rank1[j + 1]− 1] otherwise

where j = SA◦[i].
2 Then we have the following lemma.

Lemma 1. Suppose that SA◦[1..n] and L of S are given. We can construct the
Ψ◦[1..n] of S in O(n) time using O(n log n) bits working space.

Proof. Based on SA◦, we can easily construct SA−1
◦ [1..n] in O(n) time in

O(n log n) bits space. Next, we construct an o(n)-bit auxiliary index of L in
O(n) time so that the rank and select queries on L can be answered in O(1)
time [15]. The lemma thus follows. ��

Finally, the circular Burrows-Wheeler transform (cbwt) on S, which is a variant
of the well-known Burrows-Wheeler transform [3], is a character string cbwt [1..n]
of length n such that the ith character cbwt [i] is the last character of the ith
smallest circular suffix of S. The cbwt for our running example is cbwt [1..7] =
bbabbab.

Lemma 2. Suppose that S and Ψ◦[1..n] are given. Then we can construct cbwt
in O(n) time using O(n log σ) bits working space.

1 For ease of discussion, we assume that each pattern Pi cannot be written as P k

for some period string P and some integer k > 1. Also, we further assume that no
pattern is a cyclic shift of another one. Under these assumptions, the lexicographical
ordering of the circular suffixes will be distinct. Handling the general case involves
minor adaptation to the indexing scheme, where the main idea is to represent a
periodic string by its shortest period and its length. We defer the details in the full
paper.

2 In other words, suppose that Sj denotes the ith smallest circular suffix of S, and Sj

comes from the pattern Pk in P . Then Ψ◦[i] is the rank of the circular suffix Sj+1

in SA◦ if Sj+1 also comes from the same pattern Pk, and otherwise it is the rank of
Pk in SA◦.

260 W.-K. Hon et al.

Proof. We sort the characters in S in O(n) time and O(n log σ) bits space by
counting sort, so that Ssorted[i] stores the first character of the ith smallest
circular suffix. Then by computing j = Ψ◦[i] iteratively for each i, we can fill in
cbwt [j] = Ssorted[i] accordingly. The total time is O(n). ��

3 Construction of Circular Burrows-Wheeler Transform

To construct the circular BWT, we can first obtain the Ψ◦, and then convert it
into the circular BWT in linear time based on Lemma 2. Thus, in the remainder
of this paper, we focus on the efficient construction of Ψ◦ instead. Basically, such
a construction requires us to implicitly sort the circular suffixes of S. We begin
with the following definition and observation.

Definition 2 (Period [5]). Let x be a nonempty string. An integer p such that
0 < p ≤ |x| is called a period of x if x[i] = x[i + p] for i = 1, 2, . . . , |x| − p. For
example, if x = abababab, then the possible periods of x are 2, 4, 6, and 8.

Lemma 3. Let Si and Sj be two circular suffixes of S, and |Si| < |Sj |. If Si is
circularly equal to Sj, |Si| will be a period of Sj.

Proof. Suppose Si is circularly equal to Sj . That means S∞
j =S∞

i . Let p be the
length of Si. Then, we will have Sj [k] = S∞

i [k] and S∞
i [k + p] = Sj [k + p] for

1 ≤ k ≤ |Sj | − p. Also, S∞
i [k] = S∞

i [k + p] for any k. Thus, by Definition 2, p is
a period of Sj . ��

Note that the converse of the above lemma is not true. That is, if |Si| is a
period of Sj , Si may not be equal to Sj. For example, consider Si = aab and
Sj = aabaa. Although |Si| = 3 is a period of Sj , but Si is not circularly equal
to Sj. So, if we want to know whether Si is equal to Sj or not, we cannot just
verify whether |Si| is a period of Sj and Si = Sj[1..|Si|]. To do so, we will need
the following lemmas.

Lemma 4 (Weak Periodicity Lemma [5]). Let p and q be two periods of
a string x. If p + q ≤ |x|, then gcd(p, q) is also a period of x. Here, gcd(p, q)
denotes the greatest common divisor of p and q.

Lemma 5. Let Si and Sj be two circular suffixes of S, and |Si| < |Sj |. |Si| is a
period of SjSj and Si = Sj[1..|Si|] if and only if Si is circularly equal to Sj.

Proof. (Only if part:) Let |Si| = p and |Sj | = q such that p < q. Suppose p
is a period of SjSj and Si = Sj [1..p]. Since p and q are periods of SjSj and
p+ q < 2q, by Lemma 4, gcd(p, q) is also a period of SjSj . As gcd(p, q) divides
q, this implies that the prefix of Sj of length gcd(p, q) can be repeated integral
number of times to form SjSj (and thus Sj as well). Similarly, as Si is equal
to the prefix of Sj in the first p characters, and gcd(p, q) divides p, the prefix
of Sj of length gcd(p, q) can be repeated integral number of times to form Si.
This immediately implies that Si is circularly equal to Sj . (If part:) This part is
obviously true. ��

Efficient Algorithm for Circular Burrows-Wheeler Transform 261

Lemma 5 implies that to compare two circular suffixes Si and Sj , we only need to
compare S∞

i and S∞
j directly up to length 2|Sj | (assuming |Si| < |Sj |).3 Thus,

to construct circular BWT, one way is to apply the above idea to sort all the
circular suffixes, and then obtain the last character of the corresponding suffix to
fill in the cbwt array. However, this would need Ω(n2 logn) time in worst case.

In the following, we adapt the algorithm in [9] to improve the efficiency. The
basic idea is to obtain the Ψ◦ function when we only consider patterns in P that
are short, and then repeatedly update the Ψ◦ function to include the circular
suffixes of each long pattern in P .

3.1 Constructing Ψ◦ for All Short Patterns

We first sort all the d patterns by their lengths. Without losing of generality,
we suppose that the result is |P1| ≤ |P2| ≤ · · · ≤ |Pd|, and S = P1P2 · · ·Pd.
Then, we separate patterns into short pattern group and long pattern group.
Short patterns are those patterns whose lengths are shorter than 0.5n/ logn;
otherwise, they are long patterns.

Suppose P1, P2, . . . , Ps are the short patterns. First, we find the first i such
that the total lengths of P1, P2, . . . , Pi is just greater than or equal to 0.5n/ logn.4

As each pattern is short, the total length is bounded by n/ logn. Next, we sort
the circular suffixes of the patterns in {P1, P2, . . . , Pi} based on Larsson and
Sadakane’s suffix sorting algorithm [13]. After sorting, we would have the Ψ◦
function of P1..Pi.

We repeat the procedure for Pi+1, . . . , Pj , whose total length is just greater
than or equal to 0.5n/ logn. Then, we apply the suffix sorting algorithm, and
would have another Ψ◦ function of Pi+1..Pj . After that, we combine the Ψ◦
functions of P1 · · ·Pi and of Pi+1 · · ·Pj , based on Hon et al.’s algorithm [9], and
obtain the Ψ◦ of P1 · · ·Pj .

The above procedures are repeated until we obtain the Ψ◦ of P1..Ps. Algo-
rithm 1 shows how we perform the sorting of the circular suffixes, and Algo-
rithm 2 shows how we can combine the Ψ◦ functions into one.

Example: Suppose P = {ba, bbba, b}. Since the longest pattern is bbba whose
length is 4, we will execute the for-loop of Algorithm 1 for three times.

– Step 1: We sort b, a, b, b, b, a, b. After sorting, we rename each character.
In this case, a↔ 1 and b↔ 2. Thus, ba→ 21, bbba→ 2221, and b→ 2.

– Step 2: Then, we sort ba, ab, bb, bb, ba, ab, bb by sorting the corre-
sponding tuples, which are (2, 1), (1, 2), (2, 2), (2, 2), (2, 1), (1, 2), (2, 2), re-
spectively. After sorting, we rename each tuple. That is (1, 2)→ 1, (2, 1)→ 2,
(2, 2)→ 3. So, ba→ 21, bbba→ 3321, and b→ 3.

– Step 3: Furthermore, we sort baba, abab, bbba, bbab, babb, abbb, bbbb by
sorting the corresponding tuples, which are (2,2), (1,1), (3,2), (3,1), (2,3),
(1,2), (3,3). After sorting, we rename each tuples. That means (1, 1) → 1,

3 In fact, Mantaci et al. [14] have shown a better bound of |Si|+ |Sj | − gcd(|Si|, |Sj |),
based on the Fine and Wilf theorem.

4 If no such i is found, we set i to be s.

262 W.-K. Hon et al.

Algorithm 1. Sorting circular suffixes by Larsson-Sadakane’s algorithm [13]

Input: Patterns P = {P1, P2, . . . , Pi}, with |P1| < |P2| < · · · < |Pi|
Output: Ordering of all circular suffixes of P
1: Sort all characters in P , and rename each character by its rank
2: for r ← 1 to �log 2|Pi|� do
3: For each consecutive 2r characters starting at each position of each pat-

tern, we label it by a tuple (u, v), where u and v are the corresponding
names of the first 2r−1 consecutive characters and the last 2r−1 consecu-
tive characters, respectively. We assume the patterns are circular so that
consecutive characters are defined for each position.

4: Sort all the tuples and rename each tuple according to its rank.
/* After this step, the lexicographical ordering to each

circular substring of length 2r is determined */

5: end for
6: The ordering of each circular suffix among all the circular suffixes is denoted

by the final name corresponding to it

(1, 2) → 2, (2, 2) → 3, (2, 3) → 4, (3, 1) → 5, (3, 2) → 6, (3, 3) → 7. So,
ba→ 31, bbba→ 6542, and b→ 7.

– Step 4: Finally, we sort babababa, abababab, bbbabbba, bbabbbab, babbbabb,
abbbabbb, bbbbbbbb by sorting the corresponding tuples, which are (3,3),
(1,1), (6,6), (5,5), (4,4), (2,2), (7,7). After sorting, we rename each tuples.
That means (1, 1) → 1, (2, 2) → 2, (3, 3) → 3, (4, 4) → 4, (5, 5) → 5,
(6, 6)→ 6, (7, 7)→ 5. So, ba→ 31, bbba→ 6542, and b→ 7.

– Finally, we conclude that

(abab)∞ < (abbb)∞ < (baba)∞ < (babb)∞ < (bbab)∞ < (bbba)∞ < b∞.

Theorem 1. Algorithm 1 correctly computes the ordering between the circular
suffixes in P.

Proof. Since we will compare all the substring of length 2r of all the circular
patterns, for 0 ≤ r ≤ �log 2|Pi|�, we will compare the prefixes of each pair of
circular suffixes for at least twice of their lengths. By Lemma 5, we know that
we will get the correct ordering of each pair of circular suffixes, so that the final
output arrangement is correct. ��

In Algorithm 2, we construct an auxiliary bit vector V in Step 2 to aid the sub-
sequent steps. Suppose that it is obtained correctly. Then, it is straightforward
to obtain the following lemmas.

Lemma 6. For any circular suffix x of P1P2 · · ·Pi, let r be the rank of x among
all circular suffixes in P1P2 · · ·Pj and r′ be the rank of x among all circular
suffixes in P1P2 · Pi. Then, r = select0(V, r

′ + 1) and r′ = rank0(V, r).

Efficient Algorithm for Circular Burrows-Wheeler Transform 263

Lemma 7. For any circular suffix x of P1P2 · · ·Pi, let r be the rank of x among
all circular suffixes in P1P2 · · ·Pj . Suppose that the next circular suffix of x is
y. Then,

– the rank of y among all circular suffixes in P1P2 · · ·Pi is Ψ1[rank0(V, r)] = r′;
– the rank of y among all circular suffixes in P1P2 · · ·Pj is select0(V, r

′ + 1).

Lemma 8. For any circular suffix x of Pi+1Pi+2 · · ·Pj, let r be the rank of x
in P1P2 · · ·Pj . Suppose that the next circular suffix of x is y. Then,

– the rank of y in Pi+1Pi+2 · · ·Pj is Ψ2[rank1(V, r)] = r′.
– the rank of y in P1P2 · · ·Pj is r′ + rank0(V, h), where h = select1(V, r

′).

Algorithm 2. Merging two Ψ◦ functions by Hon et al.’s algorithm [9]

Input: Ψ1 = Ψ◦ for P1P2 · · ·Pi and Ψ2 = Ψ◦ for Pi+1Pi+2 · · ·Pj

Output: Ψ◦ for P1P2 · · ·Pj

1: For each circular suffix in Pi+1Pi+2 · · ·Pj , compute its relative rank among
all circular suffixes in P1P2 · · ·Pi. The relative ranks are stored in an array
R

2: Let m denote the length of P1P2 · · ·Pj . Use R to construct a bit vector
V [1..m] (with the auxiliary data structures of [15] to support O(1)-time
rank/select operations), such that V [i] = 0 if the circular suffix of P1P2 · · ·Pj

with rank i is a circular suffix of P1P2 . . . Pi, and V [i] = 1 otherwise
3: /* the values of Ψ◦ are obtained iteratively */

4: for r ← 1 to m− 1 do
5: if V [r] = 0 then
6: p← rank0(V, r); r′ ← Ψ1[p]; Ψ◦[r]← select0(V, r

′ + 1);
7: else
8: p ← rank1(V, r); r′ ← Ψ2[p]; h ← select1(V, r

′); Ψ◦[r] ←
(r′ + rank0(V, h));

9: end if
10: end for

Based on the above lemmas, we have the following theorem.

Theorem 2. Algorithm 2 correctly computes the Ψ◦ for P1P2 · · ·Pj .

To finish the discussion of Algorithm 2, it remains to show how to compute
the relative ranks in Step 1 and how to construct the bit vector V in Step 2,
efficiently. Firstly, let $ be a symbol whose alphabetical ordering is smaller than
any character in the alphabet of P . We observe that for a circular suffix π of Ph,
where h ∈ [i+ 1, j], the following equalities hold:

rank of π∞ among all circular suffixes in P1P2 · · ·Pi

= rank of πππ̂ among all circular suffixes in P1P2 · · ·Pi

= rank of πππ̂$ among all circular suffixes in P1P2 · · ·Pi

264 W.-K. Hon et al.

where π̂ denotes a prefix of π. In the above, the first equality follows from
Lemma 5, and the second equality follows from the alphabetical order of $.
Thus, the desired relative rank of any circular suffix π of Ph can be obtained if
we can obtain the relative rank of each suffix of PhPhPh$ in the circular suffixes
of P1P2 · · ·Pi. This can be done by applying the backward search algorithm
similar to the one in [9] as follows: Let #(a) be the number of circular suffixes
of P1P2 · · ·Pi starting with character a, and let α(a) be the number of circular
suffixes of P1P2 · · ·Pi which is lexicographically smaller than the character a.
Firstly, we find the relative rank of $ among all circular suffixes in P1P2 · · ·Pi.
It is 0 because $ is alphabetically the smallest character. Next, suppose that the
relative rank r(Q) of a string Q is known. We can compute the relative rank r
of the string cQ, for any character c, by finding (i) r1 = α(c), and (ii) the rank
r2 of cQ among all circular suffixes of P1P2 · · ·Pi that begins with the character
c. The desired r is equal to r1 + r2. The value of r2 can be obtained by binary
searching r(Q) in the range Ψ1[α(c) + 1, α(c + 1)] (the values in the range is
known to be increasing [7]). Thus, we can iteratively repeat the above step, and
obtain the rank of each suffix of PhPhPh$ as desired. Finally, we store these
relative ranks in an array R. After sorting R (which may contain equal values),
we can obtain the desired bit vector V of Step 2 in linear time by scanning the
sorted R.

Based on the above algorithms, we can compute the Ψ◦ function of P1P2 · · ·Ps

as follows. First, we partition the small patterns into subgroups so that each
subgroup (except the last one) has total length Θ(n/ log n). Then, we sort the
circular suffixes in the first and the second subgroups (by Algorithm 1), obtain Ψ◦
functions of these two subgroups (by Lemmas 1 and 2), and apply Algorithm 2
to merge the Ψ◦ functions. Next, we sort the third subgroup and obtain its Ψ◦
function, and apply Algorithm 2 to merge this with the Ψ◦ function for the first
two subgroups. We repeat these steps to merge each of the remaining subgroups.
This gives the following theorem.

Theorem 3. The Ψ◦ function for P1P2 · · ·Ps can be obtained in O(n log n) time
using O(n log σ) bits working space.

Proof (sketch). Each time when we apply Algorithm 1 to sort the circular suffixes
of the patterns whose total length is O(n/ logn), it can be done in O(n) time.
Each time when we apply Algorithm 2, we need O(n) time to performO(n/ log n)
binary searches, each taking O(log n) time, and O(n) time to construct the bit
vector V . After that, the computation of Ψ◦ can be done in O(n) time. As the
number of subgroups of short patterns is O(log n), the total time is bounded by
O(n logn). For the space requirement, we need to construct the Ψ◦ function. As
its values are obtained iteratively, the Ψ◦ can be stored and encoded on the fly
by the same manner as in [9], which takes O(n log σ) bits. The other arrays, such
as L, #, α, V , and R can be represented in O(n log σ) bits as well. The theorem
thus follows.

Efficient Algorithm for Circular Burrows-Wheeler Transform 265

3.2 Updating Ψ◦ for Long Patterns

Next, we describe how we deal with the long patterns. One may simply apply
the method in the previous section to include the circular suffixes of each long
pattern Pk. However, when only O(n log σ) bits of working space is allowed, we
have two problems: (i) We cannot apply Algorithm 1 as a subroutine to compute
the Ψ◦ of Pk, and (ii) we cannot use the array R in Algorithm 2 (Step 1) to store
the relative ranks of each circular suffix of Pk with respect to those included in
the current Ψ◦ function. To circumvent the first problem, we use the ordinary Ψ
function of PkPkPk$ as a replacement of the circular Ψ◦ function of Pk, where the
former can be constructed in O(|Pk| logn) time using O(n log σ) bits of working
space [9]. Based on this Ψ function, we can maintain the relative ranks between
the circular suffixes of Pk among themselves. To circumvent the second problem,
we partition Pk into � segments of length Θ(n/ logn), say Pk = π1π2 · · ·π	, and
apply a modified version of Algorithm 2 for � times so that the circular suffixes
of Pk corresponding to the same segment will be included as a batch. Details are
as follows.

We use a running example in this section to ease our discussion. Let P =
{abba, cdca, bcaacabb}, which contains two short patterns and one long pattern.
Suppose that the Ψ◦ function Ψ1 for the short patterns are already obtained:

Ψ1 = [2, 5, 7, 1, 4, 3, 8, 6].

Next, we update the current Ψ1 to include the circular suffixes of a long pattern,
say Pk. We construct the ordinary Ψ function of P = PkPkPk$. This func-
tion, together with its o(|Pk|)-bit auxiliary data structure that is constructed
together [9], allows us to obtain the rank ρ(i) of each suffix P [i..] among them-
selves in O(log n) time. In the running example, we include our long pattern
P3 = bcaacabb, and the corresponding ρ function will be as follows (which is
not stored explicitly):

ρ = [19, 22, 4, 10, 25, 7, 14, 16, 18, 21, 3, 9, 24, 6, 13, 15, 17, 20, 2, 8, 23, 5, 12, 11, 1].

Next, we apply Algorithm 2 to include the circular suffixes corresponding to
each segment πj of Pk = π1π2 · · ·π	, one segment at a time. More precisely, the
inclusion is performed in a backward manner, so that we include those circular
suffixes corresponding to π	 first, and then those corresponding to π	−1, and
so on. To process each segment πj , we will construct a new bit vector V (as
in Step 2 of Algorithm 2) to indicate whether each position in the updated
Ψ1 is due to an existing circular suffix from the current Ψ1, or a new circular
suffix corresponding to πj . To do so, at the very beginning, we use backward
search of PkPk$ in Ψ1 obtain the rank of PkPk$ with respect to those circular
suffixes in Ψ1. Then to process each segment πj , we will already have the rank
of πj+1πj+2 · · ·π	PkPk$ with respect to those circular suffixes in the current Ψ1,
so that a backward search with the portion πj in the current Ψ1 is sufficient to
locate all the positions of 1 in the bit vector V .

In our running example, at the beginning, we use backward search of P3P3$
and obtain its rank (which is 5) among all circular suffixes in Ψ1. Next, when we

266 W.-K. Hon et al.

process cabb of P3, a backward search with cabb allows us to obtain the relative
ranks of the new circular suffixes with respect to those in the current Ψ1, which
are 5, 5, 2, 5 (in backward order). This in turn allows us to obtain the desired V
as follows:

V = [0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0].

By the time when we process bcaa of P3, we will have updated the current Ψ1

to include those circular suffixes from cabb of P3. Also, we will have the rank of
cabbP3P3$ among all circular suffixes in the current Ψ1, which is 9. A backward
search with bcaa now allows us to obtain the relative ranks of the new circular
suffixes with respect to those in the current Ψ1, which are 3, 1, 8, 8 (in backward
order). This in turn allows us to obtain the desired V in this step as follows:

V = [0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0].

Once the bit vector V is ready, we can compute the entries of the new Ψ◦ as
follows. First, for those entries of Ψ◦ that are due to circular suffixes in the current
Ψ1, the corresponding V entries will be 0, and the new Ψ◦ will be updated in the
same way as before (see Lines 5 and 6 in Algorithm 2). Second, the remaining
entries of Ψ◦ are all due to the new circular suffixes of the current segment πj .
More precisely, the pth 1 in V corresponds to the pth lexicographically smallest
suffix in the segment πj , whose Ψ◦ entry should be filled with the rank of its
next suffix among all circular suffixes in the new Ψ◦. To obtain such a value, we
use ρ to compute the relative ranks of the new circular suffixes from πj . Based
on that, for each new circular suffix x, its next suffix y among the new circular
suffixes can be determined, which consequently allows us to compute the desired
Ψ◦ corresponding to x.

In the running example, when we first process cabb of P3, we extract the ranks
of the corresponding suffixes from ρ, which are 25, 7, 14, 16. After sorting, we ob-
tain the relative ranks to be 4, 1, 2, 3. In this case, the Ψ◦ entry corresponding to
the lexicographically 4th smallest suffix (i.e., the select1(V, 4)th entry) should be
set to select1(V, 1), the entry corresponding to the lexicographically 1st smallest
suffix should be set to select1(V, 2). In general, if we use H to store the relative
ranks, then for 1 ≤ z ≤ |pj| − 1, we should set

Ψ◦[select1(V,H [z])]← select1(V,H [z + 1]).

For the boundary case when z = |pj |, the corresponding next suffix will be
(πj+1 · · ·π	π1 · · ·πj)

∞, so that we should set Ψ◦[select1(V,H [z])] to be the rank
of the corresponding next suffix among the circular suffixes in Ψ◦. Thus, we
would have computed the following values:

Ψ◦[3]← 7, Ψ◦[7]← 8, Ψ◦[8]← 85, Ψ◦[9]← 3.

By merging the values of Ψ◦ computed in the two cases, we can obtain the
complete Ψ◦, in ascending order of entries, as follows:

Ψ◦ = [2, 6, 7, 11, 1, 5, 8, 8�, 3, 4, 12, 10].

5 This value corresponds to the rank of P3P3$ among all the circular suffixes in the
current Ψ◦.

Efficient Algorithm for Circular Burrows-Wheeler Transform 267

Note that there is a repeated rank (with value 8) in the Ψ◦, since one of them
corresponds to the rank of PkPk$, where such a string does not correspond to
any circular suffix considered in Ψ◦.

Next, we update Ψ1 to be the Ψ◦ we have just obtained, and process bcaa

of P3. Following the above procedures, we get H = [3, 4, 1, 2], and we would
have computed the following Ψ◦ values corresponding to the entries of the new
circular suffixes:

Ψ◦[2]← 5, Ψ◦[5]← 136, Ψ◦[11]← 12, Ψ◦[12]← 2.

By merging the values of Ψ◦ computed in the two cases, we can obtain the
complete Ψ◦, in ascending order of entries, as follows:

Ψ◦ = [3, 5, 8, 9, 13, 15, 1, 7, 10, 10�, 12, 2, 4, 6, 16, 14].

Again, there is a repeated rank (with value 10) in the Ψ◦, since one of them
corresponds to the rank of PkPk$, where such a string does not correspond to
any circular suffix in Ψ◦.

Finally, when all the segments are processed, the entry with the rank of PkPk$
in the Ψ◦ can now be updated as the rank of PkPkPk$, as both strings represent
the same string P∞

k , and the latter one truly exists in the circular suffixes con-
sidered in Ψ◦. Essentially, the updating will always increase the rank by exactly
1, so that the final Ψ◦ becomes:

Ψ◦ = [3, 5, 8, 9, 13, 15, 1, 7, 10, 11, 12, 2, 4, 6, 16, 14].

This gives the following theorem.

Theorem 4. Suppose that the Ψ◦ function for P1 · · ·Pk−1 is given. Then the Ψ◦
function for P1 · · ·Pk can be obtained in O(|Pk | logn) time using O(n log σ) bits
working space.

Proof (sketch). In the above steps, the total time for all backward searches is∑	
j=1 O(|πj | logn) = O(|Pk| logn). Overall, the bit vector V is constructed �

times, which takes O(n�) time in total. Next, for the H array, it is constructed
� times. Each time we need to extract |πj | = Θ(n/ logn) ρ values, and perform
sorting on these values, both requiring O(n) time. Thus, the total time to con-
struct all the H arrays is bounded by O(n�). Finally, the Ψ◦ array is constructed
� times, each time taking O(n) time, so that the total time is again bounded
by O(n�). As n� = O(|Pk| logn), the construction time bound in the theorem
follows. For the space requirement, the Ψ◦ can be stored and encoded on the
fly using O(n log σ) bits, while the other arrays, such as H and V , require only
O(n) bits. The working space bound in the theorem follows. ��

Using the above algorithm, we can repeatedly add the circular suffixes of the next
long pattern into the current Ψ◦. By combining the above result with Theorem
3, we obtain the following theorem.

6 This value corresponds to the rank of cabbP3P3$ among all the circular suffixes in
the current Ψ◦.

268 W.-K. Hon et al.

Theorem 5. The Ψ◦ function for P1P2 · · ·Pd can be obtained in O(n log n) time
using O(n log σ) bits working space.

References

1. Aho, A., Corasick, M.: Efficient String Matching: An Aid to Bibligoraphic Search.
Communications of the ACM 18(6), 333–340 (1975)

2. Belazzougui, D.: Succinct Dictionary Matching with No Slowdown. In: Amir, A.,
Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 88–100. Springer, Heidelberg
(2010)

3. Burrows, M., Wheeler, D.J.: A Block-sorting Lossless Data Compression Algo-
rithm. Technical Report 124, Digital Equipment Corporation, Paolo Alto, CA,
USA (1994)

4. Chan, H.L., Hon, W.K., Lam, T.W., Sadakane, K.: Compressed Indexes for Dy-
namic Text Collections. ACM Transactions on Algorithms 3(2) (2007)

5. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, New York
(1994)

6. Eisen, J.A.: Environmental Shotgun Sequencing: Its Potential and Challenges for
Studying the Hidden World of Microbes. PLoS Biology 5(3), e82 (2007)

7. Hon, W.-K., Lu, C.-H., Shah, R., Thankachan, S.V.: Succinct Indexes for Circular
Patterns. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC
2011. LNCS, vol. 7074, pp. 673–682. Springer, Heidelberg (2011)

8. Hon, W.-K., Ku, T.-H., Shah, R., Thankachan, S.V., Vitter, J.S.: Faster Com-
pressed Dictionary Matching. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS,
vol. 6393, pp. 191–200. Springer, Heidelberg (2010)

9. Hon, W.K., Lam, T.W., Sadakane, K., Sung, W.K., Yiu, S.M.: A Space and
Time Efficient Algorithm for Constructing Compressed Suffix Arrays. Algorith-
mica 48(1), 28–36 (2007)

10. Hon, W.K., Lam, T.W., Shah, R., Tam, S.L., Vitter, J.S.: Compressed Index for
Dictionary Matching. In: DCC, pp. 23–32 (2008)

11. Hon, W.K., Sadakane, K., Sung, W.K.: Breaking a Time-and-Space Barrier in
Constructing Full-Text Indices. SIAM J. Computing 38(6), 2162–2178 (2009)

12. Iliopoulos, C.S., Rahman, M.S.: Indexing Circular Patterns. In: Nakano, S.-I., Rah-
man, M.S. (eds.) WALCOM 2008. LNCS, vol. 4921, pp. 46–57. Springer, Heidelberg
(2008)

13. Larsson, N.J., Sadakane, K.: Faster suffix sorting. Theoretical Computer Sci-
ence 387(3), 258–272 (2007)

14. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: An Extension of the Burrows
Wheeler Transform. Theoretical Computer Science 387(3), 298–312 (2007)

15. Raman, R., Raman, V., Rao, S.S.: Succinct Indexable Dictionaries with Applica-
tions to Encoding k-ary Trees and Multisets. In: SODA, pp. 233–242 (2002)

16. Simon, C., Daniel, R.: Metagenomic Analyses: Past and Future Trends. Applied
and Environmental Microbiology 77(4), 1153–1161 (2011)

17. Strang, B.L., Stow, N.D.: Circularization of the Herpes Simplex Virus Type 1
Genome upon Lytic Infection. Journal of Virology 79(19), 12487–12494 (2005)

Least Random Suffix/Prefix Matches

in Output-Sensitive Time

Niko Välimäki�

Helsinki Institute for Information Technology, Department of Computer Science,
University of Helsinki, Finland
nvalimak@cs.helsinki.fi

Abstract. We study the problem of finding suffix/prefix matches (over-
laps) when given a set of r strings of total length n. Gusfield et al. (1992)
gave an algorithm to find the longest exact overlaps between all string-
pairs in the optimal O(n+ toutput) time, where toutput ≤ r2 is the number
of non-zero length overlaps found. So far the best worst-case time for
finding approximate overlaps within edit distance k has been O(knr)
(Landau et al. 1998), which gives Ω(r2) time regardless of the output
size. We propose the first output-sensitive algorithm to find either the
longest or the least random approximate overlaps. Given the maximum
edit distance k allowed in an overlap, the approximate overlaps can be
found in linear space and in O((n+ toutput) polylog(n)) time for any con-

stant k. If all input strings are shorter than log n/(k
1
k σ), we achieve the

time complexity O(n logk n + toutput) for any k. For strings longer than
ε logk r, we improve the previous best worst-case time from O(knr) to

O(c
k

k!
nr) for moderate k and constants c > 1 and ε > 0.

1 Introduction

In the suffix/prefix matching problem, we are given a (multi-)set of strings, T ,
having r strings of total length n. The string A[1 . . a] is said to have a suf-
fix/prefix match (overlap) of length � with string B[1 . . b] if the suffix A[a −
�+ 1 . . a] matches the prefix B[1 . . �]. The goal is to output the longest overlap
for each ordered-pair of strings in T . More specifically, we output only those
overlaps that have non-zero lengths, or lengths greater than a given minimum
threshold. Gusfield et al. [5] gave an optimal-time algorithm to find the longest
exact overlaps in O(n+ toutput) time, where toutput ≤ r2 denotes the output size.

A natural extension to the above problem is to find approximate overlaps, that
is, allow some number of insertions, deletions and mismatches between the suffix
and prefix. Insertions and deletions can, however, make it non-trivial to choose
the “best” approximate overlap. Now a more appropriate goal is to find the
least random overlaps [8]. All the previous algorithms [8,9,15,21] for approximate
overlaps have Ω(r2) worst-case time regardless of the output size. Comparing

� Funded by the Academy of Finland grant 118653 (ALGODAN), and Helsinki Doc-
toral Programme in Computer Science (HECSE).

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 269–279, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

270 N. Välimäki

a quadratic number of sequence pairs becomes infeasible e.g. for the current
iteration of DNA sequencing machines, some of which produce huge volumes of
constant length sequences [12]. We propose the first algorithms that achieve time
proportional to the output size; for example, if the number of allowed errors k
is constant, we can find the least random overlaps in O((n+ toutput) polylog(n))
time, which is within polylog(n) factor from the optimal time. For sequences

shorter than logn/(k
1
k σ), we can achieve O(n logk n + toutput) time for any k.

All of our results have a linear working-space and assume an alphabet size of
σ = O(polylog(n)).

If the number of strings is relatively low, output sensitivity does not make a
difference since r2 becomes O(n). Even so, we still improve the previous best

worst-case bound from O(knr) [9] to O(c
k

k! nr) when all the strings are longer

than ε logk r for any ε > 0 and k < log r/ log log r.
The next two sections give a short review of the earlier work on exact and ap-

proximate overlaps, respectively. The latter sections describe our algorithms, in-
cluding an extension to find the least random overlaps. The last section sketches
how to decrease the working-space to O(n log σ) bits.

2 Preliminaries

A string S[1 . . n] = S[1]S[2] · · ·S[n] is a sequence of symbols. Each symbol is
an element of an ordered alphabet Σ = {1, 2, . . . , σ}, where we assume σ =
O(polylog(n)). A substring of S is written S[i . . j] = S[i]S[i+1] · · ·S[j]. A prefix
of S is a substring of the form S[1 . . j], and a suffix is a substring of the form
S[i . . n]. The lexicographical order “<” among strings is defined in the obvious
way. The unit-cost edit distance ed(T, T ′) is defined as the minimum number of
insertions, deletions and replacements of symbols to transform string T into T ′

[10]. Hamming distance h(T, T ′) is the number of mismatching symbols between
strings T and T ′. Hamming distance requires that |T | = |T ′| while the edit
distance can be computed for arbitrary length strings.

2.1 Finding Exact Overlaps

The exact all-pairs suffix/prefix matching problem is to find, for each ordered
pair Ti, Tj ∈ T , their longest non-zero length overlap. The problem is interesting
here because there exists an elegant output-sensitive solution. The problem can
be solved in optimal time by building a generalized suffix tree for the input
strings:

Theorem 1 ([5,4]). Given a set of r strings of total length n, the longest exact
overlaps can be found in linear space and in O(n+toutput) time, where toutput ≤ r2

is the number of non-zero length overlaps found.

The algorithm computes the longest suffix/prefix matches as follows. First, the
strings T1, T2, . . . , Tr are concatenated into one string T = T1$1T2$2 · · ·Tr$r,
separating each string by a unique terminator symbol $i. The generalized suffix

Least Random Suffix/Prefix Matches in Output-Sensitive Time 271

tree of T contains in total n leaves and at most n− 1 internal nodes. We require
two special definitions: an internal node v is said to have a terminating edge i if
there exists a leaf node branching from v with the symbol $i; and a leaf node l
is called a whole-suffix j if the labels from the root node to leaf l spell out the
whole string Tj . Notice that there are at most n terminating edges and exactly
r whole-suffixes.

To output the longest overlaps, we traverse the suffix tree once in the depth-
first order and keep track of terminating edges using r stacks. For each internal
node v encountered during the traversal, we check if it has one or more termi-
nating edges, and for each terminating edge i of v, we push the string depth
of v into the i-th stack. Now, whenever we encounter a leaf that corresponds
to some whole-suffix j, we can output the longest overlaps by outputting the
topmost values in non-empty stacks: if the topmost value of i-th stack is �, then
the prefix of Tj[1 . . �] matches the suffix Ti[|Ti| − � + 1 . . |Ti|], and it must be
the longest prefix of Tj that matches a suffix of Ti. When we visit v the second
time (postorder), we pop the stack values inserted at v. Finally, after traversing
the whole suffix tree, we have covered all different combinations of overlapping
string-pairs. To avoid using O(r2) time to check all r stacks for all r whole-
suffixes, we can keep track of non-empty stacks with a doubly-linked list [5]. See
[14] for a space-efficient variant of the above algorithm.

3 Related Work on Approximate String Matching

There are several results for finding overlaps in the approximate case. We omit
here all the algorithms that might work well in practice — their worst-case time
is typically Ω(n2). This includes e.g. the q-gram filter from Rasmussen et al.
[15], and the suffix filter from Välimäki et al. [21], to name a few. We will next
introduce the concept of least random overlaps and revisit some basic results on
approximate pattern and dictionary matching.

Least Random Overlaps. Let A[1 . . a] and B[1 . . b] denote two random strings
from the Bernoulli trial over symbols in Σ. Kececioglu and Myers [8] proposed
a precomputed table Prσ(l, d) that gives an upper-bound for the probability
that A and B match with d errors and l matching symbols. They consid-
ered only insertions and deletions to estimate Prσ(l, d), thus, the number of
matching symbols is simply l = (a + b − d)/2. The goal is to find the over-
lap that minimizes Prσ(l, d) or maximizes the likelihood of the alignment, say
Lσ(l, d) = − logσ Prσ(l, d). The likelihood values are increasing in l and decreas-
ing in d [8]. Let lmax = max{|Ti| : Ti ∈ T } denote the largest string length in T .
If we assume that the likelihood values are precomputed for 0 ≤ l ≤ lmax and
0 ≤ d ≤ k, the least random overlaps can be found in O(εn2) time, where ε > 0
is an error rate parameter and k = �εlmax� [8].

Landau et al. [9] improved the above worst-case bound to O(k |Tj |) for a
string-pair Ti and Tj . Then the total time over all string-pairs is O(knr). They
also generalized the likelihood computation for the edit distance model: since

272 N. Välimäki

now there is no direct way to compute l, they assumed a precomputed table
Lσ(m,n, d) for 0 ≤ m,n ≤ lmax and 0 ≤ d ≤ k. Then the likelihood of A
matching B with edit distance d is given by Lσ(a, b, d).

Approximate Pattern Matching. We will next give a summary of basic re-
sults on approximate string matching under the unit-cost edit distance model
[10]. Let Uk(P) denote the set of strings within k edit distance from string
P [1 . .m]. The set Uk(P) is called the neighborhood of P . A classical result shows
that Uk(P) = O(σkmk) [20]. A simple depth-first search [7, Remark 2] on the
suffix tree of T can be used to search the neighborhood of P . We start the traver-
sal from the root and traverse down until the current path does not appear as a
prefix of any of the strings in Uk(P) — see e.g. [13] for a more detailed explana-
tion. In the worst case, string T contains all the possible strings in Uk(P) and
the total number of columns evaluated in the dynamic programming becomes
O(mmin{n, σkmk}). Since each column can be computed in O(k) time and space
[19], the total time to traverse the neighborhood becomes O(σkmk+1k). The re-
sult is a subset of suffix tree nodes whose upward path label (or a prefix of it)
belongs to the neighborhood of P .

The above traversal can be done in backward manner by using an FM-index
[3] to cover all suffixes of P and their neighborhoods in one traversal. The FM-
index can be constructed in O(n logn log σ) time and in nHk(T)+o(n log σ) bits
of space, where Hk(T) ≤ log σ denotes the k-th order entropy of T [11]. Since we
assume σ = O(polylog(n)), pattern matching is supported in constant time per
symbol [3], thus, the time complexity of the above traversal is retained. Each step
of the backward search gives a suffix array range [s, e] that can be mapped to the
corresponding suffix tree node v with a constant-time lowest common ancestor
(LCA) query [17], that is, v = lca(ls, le), where ls and le are the s-th and e-
th leaf in lexicographical order. Finally, notice that a single backward traversal
is enough to cover all suffixes of P and their neighborhoods Uk(P [i . .m]) for
i ∈ [1,m] because strings Uk(P [i . .m]) occur as suffixes of the strings in Uk(P).

Approximate Dictionary Queries. We review a result by Cole et al. [2] for
approximate dictionary queries. The result assumes a weakly nonuniform RAM
model, that is, a fixed number of precomputed constants that depend on the
word length [6]. It will be utilized later in Sect. 4 as a part of our algorithm.

Theorem 2 ([2]). Given a set of r strings of total length n, a dictionary query
asks which strings match to a given pattern of length m. After preprocessing the
dictionary in a deterministic

O

(
n+ r

(c1 log r)
k

k!
+ min{n, σ} logn

)
time and O

(
n+ r

(c1 log r)
k

k!

)
space,

approximate matches within Hamming distance k ≤ polylog(r) can be found in1

1 The (log log r)-factor in the query time is explained at the end of Sect. 5 in Cole et
al. [2]. It requires that k ≤ polylog(r). For larger k, the factor grows to (log log n).

Least Random Suffix/Prefix Matches in Output-Sensitive Time 273

O

(
m+

(c2 log r)
k

k!
log log r + toutput

)
time,

where toutput is the number of matching strings and c1, c2 > 1 are constants. The
same complexities hold also for edit distance apart from the output size which
grows to 3k · toutput.

The data structure is called the k-error tree and has several interesting proper-
ties: (P1) the k-error tree of r strings contains in total O(r(c1 log r)

k/k!) nodes
and leaves, (P2) each leaf of the k-error tree corresponds to one of the r strings,
and (P3) one string corresponds to at most O((c1 log r)

k/k!) leaves. Notice that
Cole et al. [2] provide both deterministic and randomized preprocessing time
complexities; the additional time required by the deterministic preprocessing is
O(min{n, σ} logn) which simplifies to O(n) here because σ = O(polylog(n)).

The k-error tree is used for approximate pattern matching as follows. First,
the given pattern is preprocessed so that subsequent LCP queries between any
suffix of the pattern and the k-error tree can be computed in O(log log r) time.
This preprocessing is done only once and requires O(m) time. Now the ac-
tual pattern matching can be completed solely by LCP queries, requiring in
total O((c2 log r)

k/k!) LCP queries. The total time complexity is then O(m +
(log log r)(c2 log r)

k/k!). As a result, the pattern matching query returns a set
of O((c2 log r)

k/k!) nodes from the k-error tree. Occurrences of the pattern, i.e.
strings whose prefix matches the pattern with ≤ k errors, can be enumerated by
outputting the string identifiers from the leaves that belong to the result nodes’
subtrees.

4 Output-Sensitive Algorithms

In this section, we show how to find the longest approximate overlaps. Since the
suffix and prefix can have different lengths in the edit distance model, we define
the length of the overlap as the length of the suffix in the alignment, and report
the longest suffix length that matches. The next two subsections describe an
algorithm for short and long strings, respectively. The last subsection combines
these algorithms for sets of variable sized strings.

Remark 1. In all cases, we can easily report only those overlaps that are longer
than a given minimum length threshold �min. The threshold should be �min > k
since suffixes of length � ≤ k match any prefix of length � with edit distance k.

4.1 Method for Short Strings

We propose the following algorithm to deal with short strings, that is, we assume
that all strings in T are of length at most β.

Lemma 1. We are given a set T of r strings, where each string is of length
at most β and the total length is n. After preprocessing the input strings in
O(n log n logσ) time, the longest approximate overlaps within edit distance k

274 N. Välimäki

can be found in O(nβk σk k + toutput) time and O(n) space, where toutput ≤ r2 is
the total number of overlaps outputted.

Proof. Let us first show how to achieve the time complexity with a three-step
algorithm. (i) We start by building the suffix tree of string T = T1$1T2$2 · · ·Tr$r
and preprocess it for constant-time LCA queries [17]. We also build the FM-
index2 of Ferragina et al. [3] for T in O(n log n log σ) time [11]. (ii) Then, we do
approximate search on each string Ti separately. More specifically, the goal is
to mark nodes of the suffix tree that have approximate match with one or more
suffixes of Ti. The marks are represented as 3-tuples 〈i, �, d〉, where i denotes the
string identifier of Ti, � denotes the length of the suffix of Ti that was aligned
and d ≤ k denotes the edit distance. The marks are attached to the nodes as e.g.
linked lists. The approximate pattern matching of Ti is done backwards using the
FM-index (see Sect. 3): at each step of the backward search, we map the current
suffix array range [s, e] to the corresponding suffix tree node v = lca(ls, le), and
check if v already has a mark from Ti (such a mark must be the last one in v’s
linked list). Then, we record from the dynamic programming matrix the longest
suffix length � having edit distance d ≤ k, and insert a new mark 〈i, �, d〉 if v
does not yet have a mark from Ti. If v already has a mark 〈i, �′, d′〉 and � > �′,
we update the mark to new values 〈i, �, d〉. The search covers all suffixes of Ti in
O(σk|Ti|k+1k) time (see Sect. 3). Since we add at most one mark per node, there
are in total O(min{|Ti|k+1σk, n}) marks inserted for Ti. The total time over all
r strings is O(

∑
σk|Ti|k+1k) = O(βkσkk

∑
|Ti|), where

∑
|Ti| = n. (iii) Finally,

we do a depth-first traversal through the suffix tree similar to Gusfield et al’s
algorithm in Sect. 2.1: now the r stacks are used to keep track of the inserted
marks, so that, each mark 〈i, �, d〉 we encounter gets pushed to stack i if � is
larger than the current topmost suffix length in stack i. When we encounter the
whole-suffix of Tj, we output the topmost mark 〈i, �, d〉 from each stack, which
represents the longest suffix of Ti that matches Tj with an edit distance of at
most k.

Finally, let us analyze the space complexity. Searching all r strings at once
requires more than linear space since then the total number of markers inserted
to the tree would be O(nβkσk). To achieve linear space we partition the set T
into disjoint sets T1, T2, . . . , Tβ so that the set Ti contains strings of length i.
Some of the sets can be empty. Let ri denote the number of strings in Ti so that
now

∑
rii = n, that is, the total length of the original set T . We process each set

Ti separately: we search �n/ik+1σk� strings of Ti at a time. Then the number of
inserted marks is O(�n/ik+1σk� ·min{ik+1σk, n}) = O(n). However, it requires
us to repeat the suffix tree traversal O

(
ri
n ik+1σk

)
times for each Ti. This does

not affect the total time complexity since

O

(
n ·

β∑
i=1

ri
n
ik+1σk

)
= O

(
βkσk

β∑
i=1

ri i

)
= O

(
nβkσk

)
.

2 The construction in [11] does not retain the lexicographical order $i < $i+1. This is
not a problem since we never search over a $i. Also, the order $i < c ∈ Σ is retained
similar to the generalized suffix tree.

Least Random Suffix/Prefix Matches in Output-Sensitive Time 275

In other words, if we process at most
⌈
n/ik+1σk

⌉
strings at a time at step (ii), we

never exceed O(n) space for marks. The step (iii) needs to be repeated multiple
times, but the total time needed to do all these traversals is O(nβkσk). The total
number of push/pop operations is not affected since step (iii) is repeated over
disjoint sets of marks. ��

If all the strings in T are shorter than logn/(k
1
k σ) the above lemma directly

gives an O(n logk n + toutput) time algorithm to find the longest approximate
overlaps between all pairs of strings for any k ≥ 2.

4.2 Method for Long Strings

We propose the following algorithm to deal with long strings. Here we assume
that all strings are of length at least β, thus, the number of strings is bounded
to r ≤ �n/β�. Let us first consider this one-against-all problem:

Lemma 2. We are given a pattern P of length m and a set T of r strings,
where each string is of length ≥ β and their total length is n. After preprocessing
the set T in

O

(
n+ r

(c1 log r)
k

k!

)
time and O

(
n+ r

(c1 log r)
k

k!

)
space,

the longest approximate overlaps within edit distance k ≤ polylog(r) and between
the pattern and all the strings in T can be found in

O

(
m+m

(c2 log r)
k

k!
log log r + toutput

(c1 log r)
k

k!

)
time,

where toutput ≤ r ≤ �n/β� is the total number of overlaps outputted and c1, c2 > 1
are constants. For larger k, the term (log log r) grows to (log logn).

Proof. First, build the index in Theorem 2 for the set of r strings, which gives
the above preprocessing time and space. Then, the pattern is preprocessed in
O(m) time (see Sect. 3). After the preprocessing, we can search each suffix of
P in just O(log log r (c2 log r)

k/k!) time per suffix. More specifically, we search
each suffix of the pattern in order from the longest to the shortest suffix. This
ensures that the longest overlaps are found first since the length of the overlap
was defined to be the length of the suffix in the alignment. As a result we find
in total O(m(c2 log r)

k/k!) nodes from the k-error tree. Each result node corre-
sponds to one interval in the array of leaves, however, these intervals can overlap:
the interval [i . . j] can either be inside other interval [i′ . . j′] that has been al-
ready outputted, or it can cover some number of intervals [i1 . . j1], . . . , [ip . . jp]
that have been already outputted. We can detect these two cases (plus the case
when the interval does not overlap) using a y-fast trie [22] as follows. When we
are outputting results from an interval [i . . j], we first check if the interval is
already processed using a 〈i′, j′〉 ← predecessor(i) query. If j′ ≥ j the interval

276 N. Välimäki

[i . . j] appears inside [i′ . . j′] and has been already outputted. If not, we need
to check if there are some intervals [i1 . . j1], . . . , [ip . . jp] inside [i . . j]. We can
avoid re-outputting them by first computing 〈i1, j1〉 ← successor(i) and then
using subsequent 〈ii′ , ji′〉 ← successor(ii′−1 + 1) queries to cover each i′ ∈ [2, p].
Finally, we mark the interval as processed by adding a new key-value pair 〈i, j〉
into the y-fast trie, and remove the intervals [i1 . . j1], . . . [ip . . jp] to avoid later
re-computation. In total, we do at most one insertion, deletion and predecessor
operation per result node. Also, we do at most two successor operations per
result node. Thus, the total number of required operations on the y-fast trie
is O(m(c2 log r)

k/k!), each of them costing O(log log r) (amortized) worst-case
time [22]. The total space is not affected since the number of inserted intervals
is limited by the size of the k-error tree.

We can ensure that the actual output size is toutput ≤ r by using a bit-vector
of length r to mark strings whose overlap against P is already reported. Fur-
thermore, we can reset the bit-vector in O(toutput) time by simply recording the
output into a linked list. The total number of queries to this bit-vector is still
O(toutput(c1 log r)

k/k!) because each string identifier is repeated O((c1 log r)
k/k!)

times in the leaves. ��

Constructing the index only once and iterating the above algorithm over all
strings in T solves the all-against-all problem for longest approximate overlaps
when all strings have length ≥ β:

Corollary 1. Given a set T of r strings, where each string is of length ≥ β
and their total length is n, the longest approximate overlaps within edit distance
k ≤ polylog(r) can be found in

O

(
n+ n

(c2 log r)
k

k!
log log r + toutput

(c1 log r)
k

k!

)
time

and O(n + r (c1 log r)
k/k!) space, where toutput ≤ r2 ≤ r�n/β� is the total num-

ber of overlaps outputted and c1, c2 > 1 are constants. For larger k, the term
(log log r) grows to (log logn).

If all the strings in T are longer than β = ε logk r, for any ε > 0, and k <

log r/ log log r, the above corollary simplifies to O(c
k

k! nr) time and linear space,
where c = max{c1, c2} is a constant. More precisely, the space is O(n+ckn/k!) =
O(n) because r ≤ �n/β�, and the terms in the above time complexity are

n
(c2 log r)

k

k!
log log r = O

(
ck

k!
nr

)
when k < log r/ log log r, and

toutput
(c1 log r)

k

k!
≤ r

⌊
n

β

⌋
(c1 log r)

k

k!
= O

(
ck

k!
nr

)
.

This is an improvement over the previous best worst-case time of O(knr) [9]

because ck

k! nr = o(knr) when k is not a constant.

Least Random Suffix/Prefix Matches in Output-Sensitive Time 277

4.3 Sets of Mixed Length Strings

Lemma 1 and 2 can be combined to support input sets with mixed length strings:

Theorem 3. Given a set of r strings of total length n and a maximum number
of errors k = O(1), the longest approximate overlap for each string-pair can be
found in O((n + toutput)polylog(n)) time and O(n) space, where toutput ≤ 2r2 is
the total number of overlaps outputted and c1, c2 > 1 are constants.

Proof. We choose β = (c1 logn)
k/k! and call strings of length ≤ β and > β short

and long, respectively. Long strings can overlap short strings, and vice-versa;
the preprocessing of Lemma 2 is done for all strings in T of length ≥ β − k.
This requires O(n polylog(n)) time and O(n + r′(c1 log r)

k/k!) = O(n) space,
where r′ ≤ �n/(β − k)� = O(n/β) is the number of strings to preprocess. Then,
Corollary 1 gives us O((n+t′output)polylog(n)) time to find overlaps for all string-
pairs that have length ≥ β − k. The preprocessing of Lemma 1 is done for the
whole set T . We search all short strings, including suffixes of length β from
long strings, using the technique in Lemma 1. This gives the time complexity
O(nβkσkk+t′′output) = O(n polylog(n)+t′′output) to output the longest approximate
overlaps up to length β for all pairs of short strings and long strings. The final
output, t′output + t′′output, can contain two overlaps for some string-pairs having
length from β − k to β. ��

5 Least Random Overlaps

We can modify Lemma 1 to find the least random overlaps (see Sect. 3) instead
of the longest overlaps. We assume that the likelihood values Lσ(m,n, d) are pre-
computed. First, we need to modify step (ii) so that we do not insert the mark
for the longest suffix, but instead, for the one with maximum likelihood. The
maximum value can be computed simultaneously with the dynamic program-
ming: at each step of the backward search, we know the length of the prefix in
the alignment �′, and from the dynamic programming matrix, we can choose the
suffix length � that maximizes Lσ(�, �

′, d): there are O(k) possible suffix lengths
within k edit distance, and we add the mark for the best combination of d and
�. Also, we need to modify the process of collecting the inserted marks into the
r stacks during the step (iii) of Lemma 1. Now, we insert the mark 〈i, �, d〉 to
stack i only if its likelihood value is larger than the topmost value in the stack i.
When we arrive at a whole-suffix, the topmost values in each stack correspond
to overlaps having the highest likelihoods.

Lemma 2 can also be modified to find the least random overlaps. For each
query, we receive O(m(c2 log r)

k/k!) result nodes from the k-error tree. For each
result node, we know the suffix and prefix length, say � and �′, and the num-
ber of errors d ≤ k. The goal is to sort the result nodes based on Lσ(�, �

′, d)
values. We cannot afford to store the whole result set, however, we can keep
track of the highest likelihood of each result node found so far; then the re-
sult size is bounded also by the size of the k-error tree. Thus, we traverse the

278 N. Välimäki

O(min{m(c2 log r)
k/k!, r(c1 log r)

k/k!}) nodes in depth-first order3, and use a
stack to record the highest likelihood ancestor — we output only those nodes
that have higher likelihood than their ancestor. Similar to Lemma 2, we need to
take care not to output the same interval multiple times. Outputting the final
results in this order means that the overlaps having the highest likelihoods are
outputted first.

Corollary 2. We can find the least random approximate overlaps, which max-
imize the precomputed likelihood values Lσ(m,n, d), in the same time and space
as the longest approximate overlaps in the above subsections.

6 Discussion

All the algorithms that we proposed require a linear working-space, that is,
O(n log n) bits of memory. Let Hk(T) ≤ log σ denote the k-th order entropy
of T [18]. It seems possible to achieve nHk(T) + O(n) = O(n log σ) bits of
working-space with a negligible slowdown. Lemma 1 can be made space-efficient
by substituting the suffix tree with a compressed suffix tree (CST) that admits
constant time navigation in |CST | = nHk(T) + Θ(n) bits of space [16]. The
space required by the markers can be reduced to O(n) bits by increasing the
number of suffix tree traversals in step (iii) of Lemma 1 by a factor of logn.
Furthermore, the suffix tree used inside the k-error tree can be substituted with
a CST (similar to what Chan et al. [1] did), and a larger β can be chosen to
force the data structure of Lemma 2 into |CST | + O(n) bits. A space-efficient
variant of e.g. Theorem 3 retains the time complexity given. The exact details
are out of the scope of this paper.

Acknowledgments. The author would like to thank Veli Mäkinen, Kimmo
Fredriksson and Enno Ohlebusch for their constructive feedback.

References

1. Chan, H.-L., Lam, T.-W., Sung, W.-K., Tam, S.-L., Wong, S.-S.: A Linear Size
Index for Approximate Pattern Matching. In: Lewenstein, M., Valiente, G. (eds.)
CPM 2006. LNCS, vol. 4009, pp. 49–59. Springer, Heidelberg (2006)

2. Cole, R., Gottlieb, L.-A., Lewenstein, M.: Dictionary matching and indexing with
errors and don’t cares. In: Proc. STOC 2004, pp. 91–100. ACM (2004)

3. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Trans. Algorithms 3(2), 20–44 (2007)

4. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press (1997)

3 We can do the traversal in O(m(log log r)(c2 log r)
k/k!) time and O(r(c1 log r)

k/k!)
space by using an additional y-fast trie to track the pre- and post-order numbers of
the result nodes.

Least Random Suffix/Prefix Matches in Output-Sensitive Time 279

5. Gusfield, D., Landau, G.M., Schieber, B.: An efficient algorithm for the all pairs
suffix-prefix problem. Inf. Process. Lett. 41(4), 181–185 (1992)

6. Hagerup, T., Miltersen, P.B., Pagh, R.: Deterministic dictionaries. J. Algo-
rithms 41(1), 69–85 (2001)

7. Jokinen, P., Ukkonen, E.: Two Algorithms for Approximate String Matching in
Static Texts. In: Tarlecki, A. (ed.) MFCS 1991. LNCS, vol. 520, pp. 240–248.
Springer, Heidelberg (1991)

8. Kececioglu, J.D., Myers, E.W.: Combinatiorial algorithms for dna sequence assem-
bly. Algorithmica 13(1/2), 7–51 (1995)

9. Landau, G.M., Myers, E.W., Schmidt, J.P.: Incremental string comparison. SIAM
J. Comput. 27(2), 557–582 (1998)

10. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and re-
versals. Soviet Physics Doklady 10(8), 707–710 (1966)

11. Mäkinen, V., Navarro, G.: Dynamic entropy-compressed sequences and full-text
indexes. ACM Trans. Algorithms 4, 32:1–32:38 (2008)

12. Metzker, M.L.: Sequencing technologies - the next generation. Nature Reviews
Genetics 11(1), 31–46 (2010)

13. Navarro, G., Baeza-Yates, R.A., Sutinen, E., Tarhio, J.: Indexing methods for
approximate string matching. IEEE Data Engineering Bulletin 24(4), 19–27 (2001)

14. Ohlebusch, E., Gog, S.: Efficient algorithms for the all-pairs suffix-prefix prob-
lem and the all-pairs substring-prefix problem. Inf. Process. Lett. 110(3), 123–128
(2010)

15. Rasmussen, K.R., Stoye, J., Myers, E.W.: Efficient q-gram filters for finding all
e-matches over a given length. J. of Computational Biology 13(2), 296–308 (2006)

16. Sadakane, K.: Compressed suffix trees with full functionality. Theory of Computing
Systems 41(4), 589–607 (2007)

17. Schieber, B., Vishkin, U.: On finding lowest common ancestors: simplification and
parallelization. SIAM Journal on Computing 17(6), 1253–1262 (1988)

18. Shannon, C.E.: A mathematical theory of communication. Bell System Technical
Journal 27(1), 379–423 (1948)

19. Ukkonen, E.: Algorithms for approximate string matching. Information and Con-
trol 64(1-3), 100–118 (1985)

20. Ukkonen, E.: Finding approximate patterns in strings. J. Algorithms 6(1), 132–137
(1985)

21. Välimäki, N., Ladra, S., Mäkinen, V.: Approximate all-pairs suffix/prefix overlaps.
Information and Computation 213, 49–58 (2012); CPM 2010 Special Issue

22. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space
Theta(N). Inf. Process. Lett. 17(2), 81–84 (1983)

Compressed String Dictionary Look-Up

with Edit Distance One�

Djamal Belazzougui1 and Rossano Venturini2

1 LIAFA, Univ. Paris Diderot - Paris 7
dbelaz@liafa.jussieu.fr

2 Dept. of Computer Science, University of Pisa
rossano@di.unipi.it

Abstract. In this paper we present different solutions for the problem
of indexing a dictionary of strings in compressed space. Given a pattern
P , the index has to report all the strings in the dictionary having edit
distance at most one with P . Our first solution is able to solve queries
in (almost optimal) O(|P |+ occ) time where occ is the number of strings
in the dictionary having edit distance at most one with P . The space
complexity of this solution is bounded in terms of the k-th order entropy
of the indexed dictionary. Our second solution further improves this space
complexity at the cost of increasing the query time.

1 Introduction

Modern web search, information retrieval, data base and data mining applica-
tions often require solving string processing and searching tasks. Most of such
tasks boil down to some basic algorithmic primitives which involve a large dic-
tionary of strings with variable length. The interest in approximate searches
over dictionaries of strings is increasing since they appear frequently in many
practical scenarios. In Web search, for example, users query the engine with
possibly misspelled terms that can be corrected by choosing among the closest
terms stored in a trustable dictionary. In data mining and data base applica-
tions, instead, an automatically built dictionary may contain noise in the form
of misspelled strings. Thus, we may need to resort to approximate searches in
order to identify the closest dictionary strings with respect to a (correct) input
string.

The Edit distance (also known as Levenstein distance) is the most commonly
used distance to deal with misspelled strings. The edit distance between two
strings is defined as the minimal number of edit operations required to transform
the first string into the second string. There are three possible edit operations:

� This work has been partially supported by the MADALGO Center for Massive Data
Algorithmics, a Center of the Danish National Research Foundation, the French
ANR-2010-COSI-004 MAPPI project, the S-CUBE EU-FP7- 215483 project, the
ASSETS CIP-ICT-PSP-250527 project, MIUR PRIN MadWeb 2008, and FIRB Lin-
guistica 2006.

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 280–292, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Compressed String Dictionary Look-Up with Edit Distance One 281

deletion of a symbol, insertion of a symbol and substitution of a symbol with
another.

The problem String Dictionary Look-up with Edit Distance One is defined as
follows. Let D = {S1, S2, . . . , Sd} be a set of d strings of total length n drawn
from an alphabet Σ of size σ. We want to build a (compressed) index that, given
any string P [1, p], reports all the strings in D having edit distance at most 1 with
P . In the following we assume that the strings in D are all distinct and sorted
lexicographically (namely, for any 1 ≤ i < d, Si < Si+1).

In this paper we provide two efficient and compressed solutions for the prob-
lem above. The first solution guarantees (almost) optimal query time while re-
quiring compressed space. Namely, we show how to obtain an index of 2nHk +
n · o(log σ) + 2d log d bits, that is able to report all the occ strings having edit
distance at most 1 with P in time O(p + occ). Here Hk denotes the k-th order
entropy of the strings in the dictionary. Interestingly, the time complexity of
this solution is independent of alphabet size. This is quite an uncommon result
for compressed data structures dealing with texts. The second solution provides
possible space/time tradeoffs by using a completely different approach. Its space
occupancy, indeed, decreases to nHk +n · o(log σ) bits. This better space bound
is obtained at the cost of increasing the query time to O(p log log σ).

Interestingly, our first solution can be extended to support an additional op-
eration which has interesting practical applications. We assume that each string
Si in D has been assigned a score c(Si). For example, the score could establish
the relative importance of any string with respect to the others. It is possible to
extend our solution in order to support the extra operation Top(P [1, p], k) that
reports the k highest scored strings in D having edit distance at most 1 with P .
This operation is solved in O(p+ k log k) time.

2 Related Work

The literature presents several solutions to the problem of indexing string dic-
tionaries to efficiently search strings with error distance one. In the following we
restrict our attention only on results that currently have the best time/space
complexities.

The work in [3] proposes two solutions to solve the string dictionary lookup
with Hamming distance one1. The first solution has O(p+ occ) query time and
uses O(σ · n logn) bits of space. The main data structure is a trie that indexes
strings in D plus extra strings. An extra string is a string that does not belong to
D but has Hamming distance one with at least a string in the set. Clearly, each
root to a leaf path in the trie represents either a string in D or an extra string. In
every leaf representing a string S there is stored the list of indices of strings in D
that have Hamming distance one with S. The query for P is solved by navigating
the trie. If a leaf is reached, it reports all the indices stored in the leaf. The major
drawback of this solution is represented by its space occupancy for non-constant

1 However, they can be easily extended to deal with the more general Edit distance.

282 D. Belazzougui and R. Venturini

size alphabet and by its construction time. Indeed, it is unknown how to build
this data structure in O(nσ) time.

The second solution in [3] is slower than the previous one by an additive term
O(log n) (namely, query time is O(p+logn+occ)). The advantage is represented
by its space occupancy which is O(n log n) and, thus, it is better for non-constant
size alphabets. The solution resorts to two tries and a balanced search tree. The
first trie contains the set of strings D while the second trie indexes the strings
in D reversed. The query algorithm exploits the following property: if there
exists a string S in D having distance one with P [1, p], it can be factorized
as S = P [1, i] · c · P [i + 2, p], for some index i and symbol c ∈ Σ. This is a
key property that has been exploited by almost all the subsequent solutions,
including ours. These solutions differ from each other in data structures and
algorithms they use to discover all these factorizations. For each string S[1, s]
in D, we consider all triplets (npi(S), S[i + 1], nsi+2(S)) where npi(S) is the
identifier of the node corresponding to prefix S[1, i] in the first trie and nsi+2(S)
is the identifier of the node corresponding to S[i + 2, s] reversed in the second
trie. These triples are inserted in a search tree that is able to report, given a pair
of node identifiers u and v, all the triples with u in the first component and v in
the third component. The query algorithm works as follows. For any index i, it
identifies the nodes npi(P) and nsi+2(P) and uses the search tree by querying for
these two nodes. If the triple (npi(P), c, nsi+2(P)) is returned, then the string
S = P [1, i] · c · P [i+ 2, p] is in D and has distance one from P . Remarkably, this
solution can be easily made dynamic: inserting or deleting a string P [1, p] from
D costs O(p+ logn).

The current best solution is the one presented in [1]. This solution follows
a similar approach but obtains significantly better time and space complexi-
ties. Indeed, this solution achieves O(p + occ) query time by requiring optimal
O(n log σ) bits of space. This is obtained by carefully combining compact tries,
(minimal) perfect hash functions and Rabin-Karp fingerprinting.

The solution presented in [4] solves the problem for Hamming distance and
it deals with binary strings having a fixed length L. The strong limitation on
the length of strings allows to achieve optimal O(L/w) query time, where w
is the size of a memory word. However, the space usage grows to O(n · L lgL)
bits. Moreover, this solution can only report a single matching string from the
dictionary.

Finally, we observe that currently known solutions to solve the more general
problem of approximate full-text indexing are not competitive with solutions
presented in this paper. Indeed, all known solutions for approximate full-text
indexing for edit distance one incur at least a factor Ω(log n) in space usage
and/or an additive Ω(log n) term in query time.

3 Background

In this section we collect a set of algorithmic tools that will be used by our
solutions. We report each result together with a brief description. More details
can be obtained by consulting the corresponding references.

Compressed String Dictionary Look-Up with Edit Distance One 283

Compressed Strings with Fast Random Access. We will require the avail-
ability of a storage scheme for a text T which uses compressed space and is able
to decode in O(1) time any symbol of T . To this aim, we use the following result
in [9].

Lemma 1. Given a text T [1, n] drawn from an alphabet of size σ, there ex-
ists a compressed data structure that supports the access in constant time of
any substring of T of length O(log n) bits requiring nHk(T) + extra bits, where
Hk(T) denotes the kth empirical entropy of T and k = o(logσ n). The extra
space depends on the alphabet size σ: extra = o(n) if log σ = o(log n/ log logn),
extra = n · o(log σ) otherwise.

The scheme can be also used in cases in which T is the concatenation of a set of
strings (namely, T = S1 · S2 · . . . · Sd). The starting positions of strings in T are
stored by resorting to Elias-Fano’s representation [7,8] within d log(nd) + O(d)
bits. This additional structure allows us to access an arbitrary portion of any
string in optimal time.

Rabin-Karp Signature. Given a string S[1, s], the Rabin-Karp signature [13]
rk(S) is equal to

∑s
i=1 S[i] · ti (mod M), where M is a prime number and t is a

randomly chosen integer in [1,M−1]. Given a set of strings D of d strings of total
length n, it can be obtained an instance rk() of the Rabin-Karp signature that
maps strings in D to the first O(M) integers without collisions, with M chosen
among the first O(n · d2) integers. It is known that a value of t that guarantees
no collisions can be found in expected O(1) attempts (e.g., see the analysis in
[6]). The representation of the suitable function requires O(logn) bits of space.

Interestingly, Rabin-Karp signature guarantees that, after a preprocessing
phase over a string S, signatures of strings close enough to S can be computed
in constant time. This property is formally stated by the following lemma.

Lemma 2. Given a string S[1, s], for every prefix P of S, rk(P) can be computed
in constant time. Moreover, for every string Q at distance 1 from S, rk(Q) can
be computed in constant time. It is required a preprocessing phase that takes time
O(s).

Minimal Perfect Hash Function. Result in [12] shows how to build a spa-
ce/time optimal minimal perfect hash function. This result is summarized in the
following lemma.

Lemma 3. Given a subset of S ⊆ U = 2w of size n, there exists a minimal
perfect hash function for S that can be evaluated in O(1) time and requires
n log e+ o(n) bits of space.

Compressed Static Function. Often we have to represent satellite data asso-
ciated with the keys in S. Repetitions in these associated values can be exploited
in order to reduce space requirements. The following result can be proven by us-
ing standard techniques.

284 D. Belazzougui and R. Venturini

Theorem 1. A function F that assigns values from [σ] (with σ = ω(1)) to keys
in S = {x1, x2, . . . , xn} ⊂ U ⊆ 2w can be represented in nH0 + n · o(log σ)
bits such that the evaluation of F requires constant time, where H0 denotes the
empirical entropy of the assigned values {F (x1), F (x2), · · · , F (xn)}.

Proof. We use a minimal perfect hash function m() to map keys to the first n
integers by paying log e+ o(1) bits per key (Lemma 3). We construct a sequence
A that has the value associated with key xj in position m(xj). Sequence A is
represented in compressed form by using schema of Lemma 1.

4 A Compressed and Fast Solution

Our first solution can be seen as a compressed variant of the solution presented
in [1]. However, we need to apply significant and non-trivial changes to that
solution in order to achieve compressed space and to retain exactly the same
(almost optimal) query time. More formally, in this section we prove the following
theorem.

Theorem 2. Given a set of strings D = {S1, S2, . . . , Sd} of d strings of total
length n drawn from an alphabet Σ of size σ, there exists an index that, given
any pattern P [1, p], reports in O(p + occ) time all the occ strings in D having
edit distance at most one with P . It requires:

1. nHk + o(n) + 2d log d bits of space for any k = o(log n), if σ = O(1);
2. 2nHk+n ·o(log σ)+2d log d bits of space for a fixed k = o(logσ n), otherwise.

At a high level our solution works as follows. Firstly, it identifies a set ofO(p+occ)
candidate strings being a superset of the strings that have edit distance at most
one with P . Then, it discards all candidate strings that actually do not belong to
D. For the moment, let us assume that establishing whether or not a candidate
string belongs to D costs constant time. Later, we will discuss how to efficiently
perform this non-trivial task2.

Our solution requires identifying strings in D that share prefixes and suffixes
with the query string P . For this aim we resort to two patricia tries PT and
PT r that index respectively the strings in D and the strings in D written in
reversed order. As common, a node in each patricia trie is uniquely identified
by the time of its visit in the preorder visit of the tree. The tree structure of
each patricia trie is represented in O(d) bits with standard succinct solutions
[14]. In order to perform searches on patricia tries, we add data structures to
compute the length of longest common prefix (lcp) and longest common suffix
(lcpr) for any pair of strings in D. A standard constant time solution requiring
O(d(1+log n

d)) bits of space is obtained by writing lcps between lexicographically
consecutive strings (resp. reverse strings) using Elias-Fano’s representation [7,8]
and by resorting to Range Minimum Queries (rmq) (see e.g., [11]) on these

2 Notice that just accessing each symbol of these candidate strings would cost O(p+
p · occ) time which is much higher than our claimed complexity.

Compressed String Dictionary Look-Up with Edit Distance One 285

arrays. Fast percolation of the tries is obtained by augmenting the branching
nodes with monotone minimal perfect hash functions as described in [2]. In this
way choosing the correct edge to follow from the current node can be done in
constant time regardless of the alphabet size. The extra cost in term of space
is bounded by O(d log log σ) bits. The correctness of the steps performed during
the search is established by comparing the searched string and labels on the
followed edges. This is done by accessing directly to the appropriate portion of
strings in D from their compressed representations. For this aim D is represented
by resorting to the compressed scheme of Lemma 1 that allows constant time
access to any symbol of any string in D. The space required by this is bounded
by kth order entropy accordingly to Lemma 1. Since the strings do not keep
their original order in the trie PT r, we store a permutation π of {1, 2, . . . , d}
that keeps track of the original order in D of each leaf of PT r. Namely, π(i) is
the index in D of the ith lexicographically smaller string in PT r. Clearly, storing
π requires d log d+O(d) bits.

Candidate Strings Obtained by Deleting a Symbol. The identification of
candidate strings for deletion is an easy task. Indeed, we observe that there are
just p possible candidate strings obtainable from P [1, p] by deleting one of its
symbol. Thus, we simply consider any string P [1, i] · P [i + 2, p] as a candidate
string. However, any of these strings is reported only after having checked that
it actually belongs to D. As said above, for the moment we assume that this
non-trivial task can be done in O(1) (amortized) time.

Candidate Strings Obtained by Inserting or Substituting a Symbol.
Identifying candidate strings for insertion or substitution of a symbol is an easy
task whenever the alphabet has constant size. In this case there are, indeed,
O(σ · p) = O(p) candidate strings obtained by inserting or substituting any
possible symbol of Σ in any position of P . This implies that data structures
above suffice for Point 1 in Theorem 23. Identifying insertions and substitutions
with a larger alphabet is a much harder task, which requires an additional data
structure. Our additional data structure follows the idea presented in [1] which
allows us to reduce the number of candidate strings from O(σ · p) to O(p+ occ).
However, our solution is forced to use more sophisticated arguments in order to
achieve space bounded in term of kth order entropy. In the following we consider
only insertions since substitutions are solved similarly.

Given the set of strings D and the two patricia tries PT and PT r, our first
step consists in building a set T of tuples. For each string S in D of length s,
we consider each of its factorizations of the form S = S[1, i] · c · S[i + 2, s]. For
each of them, we add to T the tuple 〈np, i, c = S[i+ 1], s− (i+ 2), ns〉 where np
(resp. ns) is the index of the highest node in PT (resp. PT r) prefixed by S[1, i]
(resp. S[i+ 2, s] reversed). Observe that the cardinality of T is at most n, since
we add at most s tuples for a string S of length s.

3 Recall that we are still assuming that we can check in O(1) whether a candidate
string belongs to D.

286 D. Belazzougui and R. Venturini

The set T contains enough information to allow the identification of all the
candidate strings. For insertion we consider all the factorizations of P having
the form P = P [1, i] · P [i + 1, p]. For each of them, we identify the (highest)
nodes npi and nsi+1 in PT and PT r that are prefixed respectively by P [1, i] and
P [i+ 1, p] reversed. Clearly, identifying all these nodes for all the factorizations
of P requires O(p) time by resorting to the patricia tries.

The key observation to identify candidate strings is the following: If there
exists a tuple 〈npi, i, c, p−i−1, nsi+1〉 in T , then the string S = P [1, i]·c·P [i+1, p]
belongs to D and, obviously, has distance one from P 4.

Our data structure is built on top of T and allows us to easily identify
the required tuples. We notice that there may exist several tuples of the form
〈np, i, �, ns, i′〉. These groups of tuples share the same four components np, i, ns
and i′, and differ just for the symbol c. In order to distinguish them, we arbitrar-
ily rank tuples in the same group and we assign to each of them its position in
the ranking. We build a data structure that, given the indexes np and ns of two
nodes, two lengths i and i′ and rank r, returns the symbol c of the rth tuple of
the form 〈np, i, �, ns, i′〉 in T . The data structure is allowed to return an arbitrary
symbol whenever such a tuple does not exist. The use of such a data structure
to solve our problem is simple. For each factorization P [1, i] ·P [i+1, p] of P , we
query the data structure above several times by passing the parameters npi, i,
p−i−1, nsi+1 and r. The value of r is initially set to 0 and increased by 1 for the
subsequent query. After every query, we check if the string S = P [1, i]·c·P [i+1, p]
belongs to D, where c is the symbol returned by the data structure. We pass to
the next factorization as soon as we discover that either the string S does not
belong to D or symbol c has been already seen for the same factorization. Both
these conditions provide the evidence that no tuple 〈npi, i, �, p−i−1, nsi+1〉 with
rank r or larger can belong to T . It is easy to see that the overall number of
queries is O(p+ occ).

We are now ready to present a data structure to index T as described
above that requires O(1) time per query and uses entropy bounded space.5 The
first possible compressed solution consists in appropriately defining a function
F () which is then represented by using solution in Theorem 1. For any tuple
〈np, i, c, ns, i′〉 having rank r in T , we set F (np, i, ns, i′, r) equal to c. Queries
above are solved by appropriately evaluating function F (). Accordingly to The-
orem 1, each query is solved in constant time. As far as space occupancy is
concerned, we observe that F () is defined for at most n values and that any
symbol of any string in D is assigned at most once. Thus, by combining these
considerations with Theorem 1, it follows that the representation of F () requires
at most nH0 + n · o(log σ) bits. A boost of this space complexity to nHk is ob-
tained by defining several functions F , one for each possible context of length
k. Here k = o(logσ n) is an arbitrary but fixed parameter. The function Fcntxt()
is defined only for tuples 〈np, i, c, ns, i′〉 where the symbol c is preceded by the

4 Observe that similar considerations hold also for substitutions with the difference
that we skip ith symbol in factorizations of the form P = P [1, i−1] ·P [i] ·P [i+1, p].

5 We remark that the set of tuples T is just conceptual and not explicitly stored.

Compressed String Dictionary Look-Up with Edit Distance One 287

context cntxt in the string that induced the tuple. By summing up the cost of
storing the representations of these functions, we have that the space occupancy
is bounded by nHk + n · o(log σ) bits for the fixed k = o(logσ n). Notice that
splitting F in several functions is not an issue for our aim. In the algorithm
above, indeed, we can query the correct function since we are always aware of
the correct context.

Checking Candidate Strings. It is left to explain how to establish, in constant
time, whether a candidate string belongs to D. Observe that any candidate string
has the form S = P [1, i] · P [i+2, p] in case of deletion, S = P [1, i] · c · P [i+1, p]
in case of insertion, or S = P [1, i] · c ·P [i+2, p] in case of substitution, for some
symbol c and index i. The main issue behind this task is given by the fact that
strings may not fit in a constant number of memory words. Thus, we cannot
manage them directly in constant time. For this aim Rabin-Karp function rk() is
used to create small sketches of the strings in D that fit in O(1) memory words
and that uniquely identify each string. Observe that the signatures assigned by
function rk() are values smaller than M and, thus, each of them fits in O(1)
words of memory.

Once we have these perfect signatures, we use a minimal perfect hash function
to connect each signature to the corresponding string in D. Let Drk be the set
of signatures assigned by rk() to strings in D (i.e., Drk = {rk(S) | S ∈ D}). We
construct a minimal perfect hash function mph that maps signatures in Drk to
the first n integers. Lemma 3 guarantees O(1) evaluation time by requiring O(d)
bits of space. As satellite data, the entry for the string S stores in log d+ O(1)
bits the index of the leaf in PT r that corresponds to S reversed. Clearly, if S
belongs to D, mph(rk(S)) gives us in constant time the index of S reversed in
PT r while π(mph(rk(S))) reports the index of S in PT . It is worth noticing that
the result of these operations are meaningless whenever S does not belong to D.

The check of candidate strings requires a preprocessing phase shared among
all the candidate strings. Firstly, we compute in O(p) the Rabin-Karp signatures
of all prefixes and suffixes of P . In this way, the signature of any candidate string
S can be computed in constant time by appropriately combining two of those
signatures (Lemma 2). Then, we identify a leaf pleaf in PT that shares the
longest common prefix with P . Similarly, we identify a leaf sleaf in PT r having
the longest common prefix with P reversed. Given the properties of patricia tries
and our succinct representation, identifying these two leaves cost O(p) time.

The check for the single candidate string S = P [1, i] · c · P [i + 1, p] obtained
by inserting symbol c in (i + 1)th position is done as follows 6. We compute
in constant time the values k = π(mph(rk(S))) and k′ = mph(rk(S)). Then, we
have to check that the candidate string S is equal to the string Sk in D. Instead
of comparing S and Sk symbol by symbol, we exploit the fact that S and Sk

coincide if and only if the following three conditions are satisfied:

6 Checks for other types of errors are done in a similar way.

288 D. Belazzougui and R. Venturini

– lcp(k, pleaf) is at least i;
– lcpr(k

′, sleaf) is at least p− i;
– (i+ 1)th symbol of Sk is equal to c.

Clearly, these three conditions are checkable in constant time. The O(p) prepro-
cessing time is amortized over the O(p+ occ) candidate strings.

Finding Top-k Strings. As we mentioned in the Introduction, our solution
could be extended to support an additional operation which has interesting prac-
tical applications. Assume that each string Si in D has assigned a score c(Si).
For example, the score could establish the relative importance of any string with
respect to the others. It is possible to extend our solution in order to support
the extra operation Top(P [1, p], k) that reports the k highest scored strings in D
having edit distance at most 1 with P . This operation is solved in O(p+ k log k)
time. We assume that values c() are available for free. Notice that we can easily
avoid this assumption by storing in d log d+O(d) bits the ranking of strings in
D induced by c().

We first present a simpler O((p + k) log k) time algorithm which is, then,
modified in order to achieve the claimed time complexity. We said above that
an arbitrary rank is assigned to tuples in T belonging the same group (namely,
tuples of the form 〈np, i, �, ns, i′〉 that differ just for the symbol �). Instead, this
algorithm requires that the assigned ranks respecting the order induced by c().
Namely, lower ranks are assigned to tuples corresponding to strings with higher
values of c(). The searching algorithm is similar to the previous one. The main
difference is in the order in which the factorizations of P [1, p] are processed.
The algorithm works in steps and keeps a heap. The role of the heap is that
of keeping track of the top-k candidate strings seen so far. Each factorization
is initially considered active and becomes inactive later in the execution. Once
a factorization becomes inactive, it is no longer taken into consideration. Each
factorization has also associated a score which is initially set to +∞. At each
step, we process the active factorization with the largest score. We query func-
tion F () with the correct value of r for the current factorization. Let S be the
candidate string identified by resorting to F (). If S does not belong to D, the
current factorization becomes inactive and we continue with the next factoriza-
tion. Otherwise, we insert S into the heap with its score c(S) and we decrease
the score associated to the current factorization to c(S). At each step we also
check the number of string into the heap. If they are k+1, we remove the string
with the lowest score and we declare inactive the factorization that introduced
that string.

Notice that, apart from the first k steps, in each step a factorization becomes
inactive. Since there are O(p) factorizations, our algorithm performs at most
O(p+ k) insertions into a heap containing at most k strings. Thus, the claimed
time complexity easily follows. The improvement is obtained by observing that
most of the time (i.e., O(p log k)) is spent in inserting the first string of each
factorization into the heap. This is no longer necessary if we use the following
strategy. We first collect the first string of each factorization together with its

Compressed String Dictionary Look-Up with Edit Distance One 289

score and we apply the classical linear time selection algorithm to identify the k-
th smallest score. This step costs O(p) time. We immediately declare inactive the
p−k factorizations whose strings have a smaller score. We insert the remaining k
strings into the heap and we use the previous algorithm to complete the task. The
latter step costs now O(k log k) time, since we have just k active factorizations.

5 A More Compressed Solution

The factor 2 multiplying the Hk term in space bound of Theorem 2 may be
annoying in some scenario. In this section we provide a solution which is able
to overcome this limitation at the cost of (slightly) increasing the query time.
Formally, we prove the following theorem.

Theorem 3. Given a set of strings D = {S1, S2, . . . , Sd} of d strings of total
length n drawn from an alphabet Σ of size σ, there exists an index requiring
nHk + n · o(log σ) bits of space for a fixed k = o(logσ n) that, given any pattern
P [1, p] reports all the occ strings in D having edit distance at most one with P
in:

1. O(p(min(p, logσ n log logn))+occ) worst-case time when σ = logc n for some
constant c.

2. O(p log log σ + occ) worst-case time when σ = ω(logc n) for any constant c.

This solution uses a completely different approach with respect to our previous
one. Indeed, it resorts to a collection of compressed permuterm indexes [10] built
on the dictionary D. More precisely, we divide strings in D based on their length.
Let D	 denote the set of strings in D of length �. A compressed permuterm index
R	 is built for each set D	.

7

In [10] it is shown how design a Burrows-Wheeler Transform [5] (BWT) based
index for a dictionary of strings. Among the other types of queries, the index
solves efficiently the so-called PrefixSuffix query that, given a prefix P and a
suffix S, identifies all the strings in the dictionary having P as prefix and S as
suffix. In our solution we are interested in this type of query which is solved
by using a slightly different variant of the compressed permuterm index. The
main difference is the sorting strategy used to obtain the underlying Burrows-
Wheeler Transform (BWT) [5]. In [10] a text is obtained by concatenating the
strings of the dictionary by using, as separator, a special symbol # not appearing
in Σ. Then, all the suffixes of this text are sorted lexicographically to obtain the
rows of the Burrows-Wheeler matrix. In our variant we first append the symbol
at the end of each string, then we construct the BWT matrix by sorting
lexicographically all the cyclic rotations of the strings in the set. This different
way to proceed guarantees us that symbols in any row belong to the same string.

7 We notice that the number of distinct lengths and, thus, compressed permuterm
indexes is O(

√
n).

290 D. Belazzougui and R. Venturini

This fact turns out to be useful below when we will define parent and depth
operations. The searching algorithm presented in [10] does not change8.

Given a pattern P [1, p], we query only three compressed permuterm indexes:
Rp−1 for deletions, Rp for substitutions and Rp+1 for insertions. In the following
we will only describe the solution for insertion. Deletion and substitution are
solved in a similar way. The basic idea behind our searching algorithm is the
following. For each cyclic rotation Pi = P [i, p]#P [1, i− 1] of P , we use the com-
pressed permuterm index Rp+1 in order to identify the range of rows of Burrows-
Wheeler Transform [5] which are prefixed by Pi, if any (see [10] and references
therein for more details). We observe that having that range [r, l] suffices for
identifying the strings in D obtained by inserting a symbol in ith position on P .
These symbols are, indeed, the ones contained in BWTp+1[l, r], where BWTp+1

is the Burrows-Wheeler Transform of set Dp+1. However, we cannot compute all
these ranges in a näıve way (i.e., searching each Pi separately), since it would
cost at least p2 time.

A faster solution requires to augment the compressed permuterm index with
a data structure that supports the two operations: parent and depth. Consider
the conceptual compact trie build on top of rows of BWTp+1. Given a range
[l, r], let u be the node of the above trie corresponding to range [l, r]. The two
operations are defined as follows:

1. parent(u) returns the range [l′, r′] corresponding to the parent of the node u;
2. depth(u) returns the length of the locus of node u.

Using the solution presented in [15], we are able to support both these operations
in O(logσ n̂ log log n̂) time by requiring O(n̂ log σ

log log n̂) bits of additional space,
where n̂ is the total size of the indexed dictionary.

Our solution works in two phases. In the first phase, it identifies the range of
rows of BWTp+1 sharing the longest common prefix with P0 = #P [1, p]. This is
done by using the following strategy. We search P0 backwards. At any step i, we
keep the following invariant: [li, ri] is the largest range of rows of BWTp+1 which
are prefixed by the longest prefix of P0[p− i, p+1]. We also keep a counter � that
tells us the length of this prefix. Notice that it may happen that a backwards
step from [li, ri] with the next symbol P [p − i − 1] returns an empty range.
In this case, we repeatedly enlarge the range [li, ri] via parent operations until
the subsequent backwards step is successful. The value of � is kept updated by
increasing it by one after every successful backwards step or by setting it equal
to the value returned by depth after every call to parent.

Similarly, the second phase matches suffixes of P backwards. The main differ-
ence is given by the fact that the starting range [l1, r1] and value of � are the ones
computed in the previous phase. In each step, we claim that we have identified the
range of rows prefixed by some Pi = P [i, p]#P [1, i − 1], for the appropriate i, as
soon as the value of � reaches p+1. The overall time complexity of these two phases
is O(p logσ n̂ log log n̂), since we have at most 2p calls to parent and depth.

8 Actually, the different construction of the Burrows-Wheeler Transform defined here
was already implicitly in use in [10] and simulated at query time by means of function
jump2end (see [10] for more details).

Compressed String Dictionary Look-Up with Edit Distance One 291

The discussion above provides a proof of Point 1 of Theorem 3. Observe that
the time complexity of the above solution is dominated by the time spent in
performing parent and depth operations.

Point 2 of Theorem 3 is obtained by showing that, for sufficiently large al-
phabet (i.e., σ = ω(logc n), for any constant c), faster implementations of these
operations (i.e., O(log log σ) time) are possible. We can, indeed, improve the
time complexity of the solution above if we are allowed to use more space. More
precisely, using more space, we can improve the time of parent (for all cases) and
depth (for the case of large depths):

1. The operation parent can be supported in constant time using O(n) addi-
tional bits of space. This is feasible by using the Sadakane’s compressed suffix
tree [16].

2. The operation depth can be supported in constant time using O(n log t) bits
of space when the string depth is at least p − t for some parameter t. For
this aim, we can just store a table Δ which stores log(t + 1) bits per node.
These bits will store a special value whenever the depth is less than p − t,
otherwise, we store the difference between the depth and p.

Now that we have a constant time parent operation, the depth operation remains
as the only bottleneck for achieving faster query time. Assume that the com-
pressed suffix tree supports the depth operation in time t. We first notice that
a given range obtained after t′ < t backwards steps can correspond to a Pi if
and only if the depth of the node obtained after the last parent operation was
precisely p− t′. This condition can be checked directly by probing the table Δ.
If this is not the case, we adopt a lazy strategy. Instead of computing a depth
after each parent, we safely wait until we performed t backwards steps after the
last parent operation. The O(t) time required by depth is amortized on the cost
of these (at least) t backwards steps. Point 2 of Theorem 3 is proven by setting
t = O(logσ n log log n) and by observing that the backwards steps become the
dominant cost (i.e., O(p log log σ)).

6 Conclusion

In this paper we described two different compressed solutions for the look-up
with Edit distance one in a dictionary of strings. The first solution requires
2Hk(S) + n · o(log σ) + 2d log d bits of space for a fixed k = o(logσ n). It is able
to solve queries in (almost optimal) O(|P | + occ) time where occ is the number
of strings in the dictionary having edit distance at most one with the query
pattern P . The second solution further improves this space complexity which
is reduced to nHk + n · o(log σ) bits. However, the time complexity grows to
O(|P | logσ n log logn+ occ) or O(|P | log log σ + occ) depending on the alphabet
size. Interestingly enough, the two solutions solve the problem at hand by resort-
ing to two different approaches: the former is based on (perfect) hashing while
the latter is based on the compressed permuterm index.

An interesting open problem asks to design an index that obtains simultane-
ously the time complexity of the former solution and the space complexity of the

292 D. Belazzougui and R. Venturini

second one. Furthermore, it is still open the question regarding the possibility
of designing a solution that solves the problem in O(|P | · log σ/w + occ) time,
where w is the size of a word machine. At the moment, there does not exist any
solution achieving such a time complexity, even non compressed one.

Finally, building efficient dictionaries for edit distance d larger than 1 is still
an open problem. However, the approaches we used in our two solutions are not
easily extendible to efficiently solve query for higher edit distance. Indeed, we
could just solve a query in O(σd−1|P |d+occ) time for edit distance d by resorting
to the standard dynamic programming approach.

References

1. Belazzougui, D.: Faster and Space-Optimal Edit Distance “1” Dictionary. In:
Kucherov, G., Ukkonen, E. (eds.) CPM 2009 Lille. LNCS, vol. 5577, pp. 154–167.
Springer, Heidelberg (2009)

2. Belazzougui, D., Navarro, G.: Alphabet-Independent Compressed Text Indexing.
In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp.
748–759. Springer, Heidelberg (2011)

3. Brodal, G.S., Ga̧sieniec, L.: Approximate Dictionary Queries. In: Hirschberg, D.S.,
Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 65–74. Springer, Heidelberg
(1996)

4. Brodal, G.S., Srinivasan, V.: Improved bounds for dictionary look-up with one
error. Information Processing Letters 75(1-2), 57–59 (2000)

5. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation (1994)

6. Dietzfelbinger, M., Gil, J., Matias, Y., Pippenger, N.: Polynomial Hash Functions
are Reliable (Extended abstract). In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623,
pp. 235–246. Springer, Heidelberg (1992)

7. Elias, P.: Efficient storage and retrieval by content and address of static files. J.
ACM 21, 246–260 (1974)

8. Fano, R.M.: On the number of bits required to implement an associative memory.
Memorandum 61, Computer Structures Group, Project MAC (1971)

9. Ferragina, P., Venturini, R.: A simple storage scheme for strings achieving entropy
bounds. Theor. Comput. Sci. 372(1), 115–121 (2007)

10. Ferragina, P., Venturini, R.: The compressed permuterm index. ACM Transactions
on Algorithms 7(1), 10 (2010)

11. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

12. Hagerup, T., Tholey, T.: Efficient Minimal Perfect Hashing in Nearly Minimal
Space. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 317–
326. Springer, Heidelberg (2001)

13. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
Journal of Research and Development 31(2), 249–260 (1987)

14. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM J. Comput. 31(3), 762–776 (2001)

15. Russo, L.M.S., Navarro, G., Oliveira, A.L.: Fully compressed suffix trees. ACM
Transactions on Algorithms 7(4), 53 (2011)

16. Sadakane, K.: Compressed suffix trees with full functionality. Theory Comput.
Syst. 41(4), 589–607 (2007)

Time-Space Trade-Offs
for Longest Common Extensions�

Philip Bille1, Inge Li Gørtz1, Benjamin Sach2, and Hjalte Wedel Vildhøj1

1 Technical University of Denmark, DTU Informatics
{phbi,ilg,hwvi}@imm.dtu.dk

2 University of Warwick, Department of Computer Science
sach@dcs.warwick.ac.uk

Abstract. We revisit the longest common extension (LCE) problem,
that is, preprocess a string T into a compact data structure that sup-
ports fast LCE queries. An LCE query takes a pair (i, j) of indices in
T and returns the length of the longest common prefix of the suffixes
of T starting at positions i and j. We study the time-space trade-offs
for the problem, that is, the space used for the data structure vs. the
worst-case time for answering an LCE query. Let n be the length of T .
Given a parameter τ , 1 ≤ τ ≤ n, we show how to achieve either O(n/

√
τ)

space and O(τ) query time, or O(n/τ) space and O(τ log(|LCE(i, j)|/τ))
query time, where |LCE(i, j)| denotes the length of the LCE returned
by the query. These bounds provide the first smooth trade-offs for the
LCE problem and almost match the previously known bounds at the
extremes when τ = 1 or τ = n. We apply the result to obtain improved
bounds for several applications where the LCE problem is the computa-
tional bottleneck, including approximate string matching and computing
palindromes. Finally, we also present an efficient technique to reduce LCE
queries on two strings to one string.

1 Introduction

Given a string T , the longest common extension of suffix i and j, denoted
LCE(i, j), is the length of the longest common prefix of the suffixes of T starting
at position i and j. The longest common extension problem (LCE problem) is
to preprocess T into a compact data structure supporting fast longest common
extension queries.

The LCE problem is a basic primitive that appears as a subproblem in a wide
range of string matching problems such as approximate string matching and
its variations [3, 6, 18, 20, 25], computing exact or approximate tandem repeats
[10, 19, 22], and computing palindromes. In many of the applications, the LCE
problem is the computational bottleneck.

In this paper we study the time-space trade-offs for the LCE problem, that is,
the space used by the preprocessed data structure vs. the worst-case time used by
� This work was partly supported by EPSRC.

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 293–305, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

294 P. Bille et al.

LCE queries. We assume that the input string is given in read-only memory and
is not counted in the space complexity. There are essentially only two time-space
trade-offs known: At one extreme we can store a suffix tree combined with an
efficient nearest common ancestor (NCA) data structure [12] (other combinations
of O(n) space data structures for the string can also be used to achieve this
bound). This solution uses O(n) space and supports LCE queries in O(1) time.
At the other extreme we do not store any data structure and instead answer
queries simply by comparing characters from left-to-right in T . This solution
uses O(1) space and answers an LCE(i, j) query in O(|LCE(i, j)|) = O(n) time.
Using succinct data structures the space for the first solution can be slightly
improved to O(n) bits (see e.g. [8]). The second solution was recently shown to
be very practical [13].

1.1 Our Results

We show the following main result.

Theorem 1. For a string T of length n, and any parameter τ , 1 ≤ τ ≤ n, we
can solve the longest common extension problem

(i) in O
(

n√
τ

)
space, O(τ) query time, and O(n2√

τ
) preprocessing time, or in

(ii) in O
(

n
τ

)
space, O

(
τ log

(
|LCE(i,j)|

τ

))
query time, and O(n log n) preprocess-

ing time. The preprocessing time bound is achieved with high probability, that
is, with probability at least 1 − 1/nc for any constant c. All other bounds are
worst case.

Hence, we provide a smooth time-space trade-off that allows several new and
non-trivial bounds. For instance, with τ =

√
n Theorem 1(i), gives a solution

using O(n3/4) space and O(
√

n) time. If we allow randomisation, we can use
Theorem 1(ii) to further reduce the space to O(

√
n) while using query time

O(
√

n log(|LCE(i, j)|/√
n)) = O(

√
n log n). Note that at both extremes of the

trade-off (τ = 1 or τ = n) we almost match the previously known bounds.
Furthermore, we also consider LCE queries between two strings, i.e. the pair

of indices to an LCE query is from different strings. We present a general result
that reduces the query on two strings to a single one of them. When one of the
strings is significantly smaller than the other, we can combine this reduction
with Theorem 1 to obtain even better time-space trade-offs.

1.2 Techniques

The high-level idea in Theorem 1 is to combine and balance out the two extreme
solutions for the LCE problem. For Theorem 1(i) we use difference covers to
sample a set of suffixes of T of size O(n/

√
τ). We store a compact trie combined

with an NCA data structure for this sample using O(n/
√

τ) space. To answer
an LCE query we compare characters from T until we get a mismatch or reach a
pair of sampled suffixes, which we then immediately compute the answer for. By

Time-Space Trade-Offs for Longest Common Extensions 295

the properties of difference covers we compare at most O(τ) characters before
reaching a pair of sampled suffixes. Similar ideas have previously been used to
achieve trade-offs for suffix array and LCP array construction [15, 26].

For Theorem 1(ii) we show how to use Rabin-Karp fingerprinting [16] in-
stead of difference covers to reduce the space further. We show how to store a
sample of O(n/τ) fingerprints, and how to use it to answer LCE queries using
doubling search combined with directly comparing characters. This leads to the
output-sensitive O(τ log(|LCE(i, j)|/τ)) query time. We reduce space compared
to Theorem 1 by computing fingerprints on-the-fly as we need them. Initially,
we give a Monte-Carlo style randomised data structure that may answer queries
incorrectly (see Theorem 5). However, this solution uses only O(n) preprocessing
time and is therefore of independent interest in applications that can tolerate
errors. To get the error-free Las-Vegas style bound of Theorem 1(ii) we need
to verify the fingerprints we compute are collision free; i.e. two fingerprints are
equal iff the corresponding substrings of T are equal. The main challenge is to
do this in only O(n log n) time. We achieve this by showing how to efficiently
verify fingerprints of composed samples which we have already verified, and by
developing a search strategy that reduces the fingerprints we need to consider.

Finally, the reduction for LCE on two strings to a single string is based on a
simple and compact encoding of the larger string using the smaller string. The
encoding could be of independent interest in related problems, where we want
to take advantage of different length input strings.

1.3 Applications

With Theorem 1 we immediately obtain new results for problems based on LCE
queries. We review some the most important below.

Approximate String Matching. Given strings P and T and an error thresh-
old k, the approximate string matching problem is to report all ending positions
of substrings of T whose edit distance to P is at most k. The edit distance
between two strings is the minimum number of insertions, deletions, and substi-
tutions needed to convert one string to the other. Let m and n be the lengths of
P and T . The Landau-Vishkin algorithm [20] solves approximate string match-
ing using O(nk) LCE queries on P and substrings of T of length O(m). Using
the standard linear space and constant time LCE data structure, this leads to
a solution using O(nk) time and O(m) space (the O(m) space bound follows by
the standard trick of splitting T into overlapping pieces of size O(m)). If we plug
in the results from Theorem 1 we immediately obtain the following result.

Theorem 2. Given strings P and T of lengths m and n, respectively, and a
parameter τ , 1 ≤ τ ≤ m, we can solve approximate string matching

(i) in O
(

m√
τ

)
space and O(nk · τ + nm√

τ
) time, or

(ii) in O
(

m
τ

)
space and O(nk · τ log m) time with high probability.

296 P. Bille et al.

To the best of our knowledge these are the first non-trivial bounds for approxi-
mate string matching using o(m) space.

Palindromes. Given a string T the palindrome problem is to report the set of
all maximal palindromes in T . A substring T [i . . . j] is a maximal palindrome iff
T [i . . . j] = T [i . . . j]R and T [i − 1 . . . j + 1] �= T [i − 1 . . . j + 1]R. Here T [i . . . j]R
denotes the reverse of T [i . . . j]. Any palindrome in T occurs in the middle of
a maximal palindrome, and thus the set of maximal palindromes compactly
represents all palindromes in T . The palindrome problem appears in a diverse
range of applications, see e.g. [2, 4, 9, 14, 17, 21, 24].

We can trivially solve the problem in O(n2) time and O(1) space by a linear
search at each position in T to find the maximal palindrome. With LCE queries
we can immediately speed up this search. Using the standard O(n) space and
constant time solution to the LCE problem this immediately implies an algo-
rithm for the palindrome problem that uses O(n) time and space (this bound can
also be achieved without LCE queries [23]). Using Theorem 1 we immediately
obtain the following result.

Theorem 3. Given a string of length n and a parameter τ , 1 ≤ τ ≤ n, we can
solve the palindrome problem

(i) in O
(

n√
τ

)
space and O

(
n2√

τ
+ nτ

)
time.

(ii) in O
(

n
τ

)
space and O(n · τ log n) time with high probability.

For τ = ω(1), these are the first sublinear space bounds using o(n2) time. Sim-
ilarly, we can substitute our LCP data structures in the LCP-based variants
of palindrome problems such as complemented palindromes, approximate palin-
dromes, or gapped palindromes, see e.g. [17].

Tandem Repeats. Given a string T , the tandem repeats problem is to report all
squares, i.e. consecutive repeated substrings in T . Main and Lorentz [22] gave a
simple solution for this problem based on LCP queries that achieves O(n) space
and O(n log n + occ) time, where occ is the number of tandem repeats in T .
Using different techniques Gąsieniecs et al. [11] gave a solution using O(1) space
and O(n log n+occ) time. Using Theorem 1 we immediately obtain the following
result.

Theorem 4. Given a string of length n and parameter τ , 1 ≤ τ ≤ n, we can
solve the tandem repeats problem

(i) in O
(

n√
τ

)
space and O

(
n2√

τ
+ nτ · log n + occ

)
time.

(ii) in O
(

n
τ

)
space and O

(
nτ · log2 n + occ

)
time with high probability.

While this does not improve the result by Gąsieniecs et al. it provides a simple
LCP-based solution. Furthermore, our result generalizes to the approximate ver-
sions of the tandem repeats problem, which also have solutions based on LCP
queries [19].

Time-Space Trade-Offs for Longest Common Extensions 297

2 The Deterministic Data Structure

We now show Theorem 1(i). Our deterministic time-space trade-off is based on
sampling suffixes using difference covers.

2.1 Difference Covers

A difference cover modulo τ is a set of integers D ⊆ {0, 1, . . . , τ − 1} such that
for any distance d ∈ {0, 1, . . . , τ − 1}, D contains two elements separated by
distance d modulo τ (see example 1).

Example 1. The set D = {1, 2, 4} is a difference cover modulo 5.

d 0 1 2 3 4
i, j 1, 1 2, 1 1, 4 4, 1 1, 2

1
2

4

0
3

1

4

23

A difference cover D can cover at most |D|2 differences, and hence D must have
size at least

√
τ . We can also efficiently compute a difference cover within a

constant factor of this bound.

Lemma 1 (Colbourn and Ling [5]). For any τ , a difference cover modulo τ
of size at most

√
1.5τ + 6 can be computed in O(

√
τ) time.

2.2 The Data Structure

Let T be a string of length n and let τ , 1 ≤ τ ≤ n, be a parameter. Our
data structure consists of the compact trie of a sampled set of suffixes from T
combined with a NCA data structure. The sampled set of suffixes S is the set
of suffixes obtained by overlaying a difference cover on T with period τ , that is,

S = {i | 1 ≤ i ≤ n ∧ i mod τ ∈ D} .

Example 2. Consider the string T = dbcaabcabcaabcac. As shown below, us-
ing the difference cover from Example 1, we obtain the suffix sample S =
{1, 2, 4, 6, 7, 9, 11, 12, 14, 16}.

P = d
1

b
2

c
3

a
4

a
5

b
6

c
7

a
8

b
9

c
10

a
11

a
12

b
13

c
14

a
15

c
16

D D D D

298 P. Bille et al.

By Lemma 1 the size of S is O(n/
√

τ). Hence the compact trie and the NCA data
structures use O(n/

√
τ) space. We construct the data structure in O(n2/

√
τ)

time by inserting each of the O(n/
√

τ) sampled suffixes in O(n) time.
To answer an LCE(i, j) query we explicitly compare characters starting from

i and j until we either get a mismatch or we encounter a pair of sampled suffixes.
If we get a mismatch we simply report the length of the LCE. Otherwise, we do
a NCA query on the sampled suffixes to compute the LCE. Since the distance to
a pair of sampled suffixes is at most τ the total time to answer a query is O(τ).
This concludes the proof of Theorem 1(i).

3 The Monte-Carlo Data Structure

We now show Theorem 5 below which is an intermediate step towards proving
Theorem 1(ii) but is also of independent interest, providing a Monte-Carlo time-
space trade-off. The technique is based on sampling suffixes using Rabin-Karp
fingerprints. These fingerprints will be used to speed up queries with large LCEP

values while queries with small LCEP values will be handled naively.

Theorem 5. For a string T of length n, and any parameter τ , 1 ≤ τ ≤ n, we
can solve the LCE problem in O

(
n
τ

)
space, O

(
τ log

(
|LCE(i,j)|

τ

))
query time,

and O(n) preprocessing. The solution is randomised (Monte-Carlo); with high
probability, all queries are answered correctly.

3.1 Rabin-Karp fingerprints

Rabin-Karp fingerprints are defined as follows. Let 2nc+4 < p ≤ 4nc+4 be some
prime and choose b ∈ Zp uniformly at random. Let S be any substring of T , the
fingerprint φ(S) is given by,

φ(S) =
|S|∑

k=1
S[k]bk mod p .

Lemma 2 gives a crucial property of these fingerprints (see e.g. [16] for a proof).
That is with high probability we can determine whether any two substrings of
T match in constant time by comparing their fingerprints.

Lemma 2. Let φ be a fingerprinting function picked uniformly at random (as
described above). With high probability,

φ(T [i . . . i + α − 1]) = φ(T [j . . . j + α − 1])
iff T [i . . . i + α − 1] = T [j . . . j + α − 1] for all i, j, α. (1)

3.2 The Data Structure

The data structure consists of the fingerprint, φk, of each suffix of the form
T [kτ . . . n] for 0 < k < n/τ , i.e. φk = φ(T [kτ . . . n]). Note that there are O(n/τ)

Time-Space Trade-Offs for Longest Common Extensions 299

such suffixes and the starting points of two consecutive suffix are τ characters
apart. Since each fingerprint uses constant space the space usage of the data
structure is O(n/τ). The n/τ fingerprints can be computed in left-to-right order
by a single scan of T in O(n) time.

Queries. The key property we use to answer a query is given by Lemma 3.

Lemma 3. The fingerprint φ(T [i . . . i+α−1]) of any substring T [i . . . i+α−1]
can be constructed in O(τ) time. If i, α are divisible by τ , the time becomes O(1).
Proof. Let k1 = �i/τ	 and k2 = �(i + α)/τ	 and observe that we have φk1 and
φk2 stored. By the definition of φ, we can compute φ(T [k1τ . . . k2τ − 1]) = φk1 −
φk2 ·b(k2−k1)τ mod p in O(1) time. If i, α = 0 mod τ then k1τ = i and k2τ = i+α
and we are done. Otherwise, similarly we can then convert φ(T [k1τ . . . k2τ − 1])
into φ(T [k1τ −1 . . . k2τ −2]) in O(1) time by inspecting T [k1τ −1] and T [k2τ −1].
By repeating this final step we obtain T [i . . . i + α − 1] in O(τ) time.

We now describe how to perform a query by using fingerprints to compare sub-
strings. We define φ�

k = φ(T [kτ . . . (k + 2�)τ − 1]) which we can compute in O(1)
time for any k, � by Lemma 3.

First consider the problem of answering a query of the form LCE(iτ, jτ). Find
the largest � such that φ�

i = φ�
j . When the correct � is found convert the query

into a new query LCE((i+2�)τ, (j+2�)τ) and repeat. If no such � exists, explicitly
compare T [iτ . . . (i + 1)τ − 1] and T [jτ . . . (j + 1)τ − 1] one character at a time
until a mismatch is found. Since no false negatives can occur when comparing
fingerprints, such a mismatch exists. Let �0 be the value of � obtained for the
initial query, LCE(iτ, jτ), and �q the value obtained during the q-th recursion.
For the initial query, we search for �0 in increasing order, starting with �0 = 0.
After recursing, we search for �q in descending order, starting with �q−1. By
the maximality of �q−1, we find the correct �q. Summing over all recursions
we have O(�0) total searching time and O(τ) time scanning T . The desired
query time follows from observing that by the maximality of �0, we have that
O(τ + �0) = O(τ + log(|LCE|/τ)).

Now consider the problem of answering a query of the form LCE(iτ, jτ + γ)
where 0 < γ < τ . By Lemma 3 we can obtain the fingerprint of any substring
in O(τ) time. This allows us to use a similar approach to the first case. We
find the largest � such that φ(T [jτ + γ . . . (j + 2�)τ + γ − 1]) = φ�

i and convert
the current query into a new query, LCE((i + 2�)τ, (j + 2�)τ + γ). As we have
to apply Lemma 3 before every comparison, we obtain a total complexity of
O(τ log(|LCE|/τ)).

The general case can be reduced to one of the first two cases by scanning O(τ)
characters in T . By Lemma 2, all fingerprint comparisons are correct with high
probability and the result follows.

4 The Las-Vegas Data Structure

We now show Theorem 1(ii). The important observation is that when we compare
the fingerprints of two strings during a query in Section 3, one of them is of the

300 P. Bille et al.

form T [jτ . . . jτ + τ · 2� − 1] for some �, j. Consequently, to ensure all queries are
correctly computed, it suffices that φ is τ-good:

Definition 1. A fingerprinting function, φ is τ-good on T iff

φ(T [jτ . . . jτ + τ · 2� − 1]) = φ(T [i . . . i + τ · 2� − 1])
iff T [jτ . . . jτ + τ · 2� − 1] = T [i . . . i + τ · 2� − 1] for all (i, j, �). (2)

In this section we give an algorithm which decides whether a given φ is τ -good on
string T . The algorithm uses O(n/τ) space and takes O(n log n) time with high
probability. By Lemma 2, a uniformly chosen φ is τ -good with high probability
and therefore (by repetition) we can generate such a φ in the same time/space
bounds. For brevity we assume that n and τ are powers-of-two.

4.1 The Algorithm

We begin by giving a brief overview of Algorithm 1. For each value of � in
ascending order (the outermost loop), Algorithm 1 checks (2) for all i, j. For some
outermost loop iteration �, the algorithm inserts the fingerprint of each block-
aligned substring into a dynamic perfect dictionary, D� (lines 3-9). A substring
is block-aligned if it is of the form, T [jτ . . . (j + 2�)τ − 1] for some j (and block-
unaligned otherwise). If more than one block-aligned substring has the same
fingerprint, we insert only the left-most as a representative. For the first iteration,
� = 0 we also build an Aho-Corasick automaton [1], denoted AC, with a pattern
dictionary containing every block-aligned substring.

The second stage (lines 12-21) uses a sliding window technique, checking each
time we slide whether the fingerprint of the current (2�τ)-length substring oc-
curs in the dynamic dictionary, D�. If so we check whether the corresponding
substrings match (if not a collision has been revealed and we abort). For � > 0,
we use the fact that (2) holds for all i, j with � − 1 (otherwise, Algorithm 1
would have already aborted) to perform the check in constant time (line 18).
I.e. if there is a collision it will be revealed by comparing the fingerprints of the
left-half (L′

i �= Lk) or right-half (R′
i �= Rk) of the underlying strings. For � = 0,

the check is performed using the AC automaton (lines 20-21). We achieve this
by feeding T one character at a time into the AC. By inspecting the state of
the AC we can decide whether the current τ -length substring of T matches any
block-aligned substring.

Correctness. We first consider all points at which Algorithm 1 may abort. First
observe that if line 21 causes an abort then (2) is violated for (i, k, 0). Second,
if line 18 causes an abort either L′

i �= Lk or R′
i �= Rk. By the definition of φ,

in either case, this implies that T [i . . . i + τ · 2� − 1] �= T [kτ . . . kτ + 2�τ − 1].
By line 16, we have that f ′

i = fk and therefore (2) is violated for (i, k, �). Thus,
Algorithm 1 does not abort if φ is τ -good.

Time-Space Trade-Offs for Longest Common Extensions 301

Algorithm 1. Verifying a fingerprinting function, φ on string T

1: // AC is an Aho-Corasick automaton and each D� is a dynamic dictionary
2: for � = 0 . . . log2(n/τ) do
3: // Insert all distinct block-aligned substring fingerprints into D�

4: for j = 1 . . . n/τ − 2� do
5: fj ← φ(T [jτ . . . (j + 2�)τ − 1])
6: Lj ← φ(T [jτ . . . (j + 2�−1)τ − 1]), Rj ← φ(T [(j + 2�−1)τ . . . (j + 2�)τ − 1])
7: if � ∃(fk, Lk, Rk, k) ∈ D� such that fj = fk then
8: Insert (fj , Lj , Rj , j) into D� indexed by fj

9: if � = 0 then Insert T [jτ . . . (j + 1)τ − 1] into AC dictionary
10: // Check for collisions between any block-aligned and unaligned substrings
11: if � = 0 then Feed T [1 . . . τ − 1] into AC
12: for i = 1 . . . n − τ · 2� + 1 do
13: f ′

i ← φ(T [i . . . i + τ · 2� − 1])
14: L′

i ← φ(T [i . . . i + τ · 2�−1 − 1]), R′
i ← φ(T [(i + 2�−1)τ . . . i + τ · 2� − 1])

15: if � = 0 then Feed T [i + τ − 1] into AC // AC now points at T [i . . . i + τ − 1]
16: if ∃(fk, Lk, Rk, k) ∈ D� such that f ′

i = fk then
17: if � > 0 then
18: if (L′

i �= Lk or R′
i �= Rk) then abort

19: else
20: Compare T [i . . . i + τ − 1] to T [kτ . . . (k + 1)τ − 1] by inspecting AC
21: if T [i . . . i + τ − 1] �= T [kτ . . . (k + 1)τ − 1] then abort

It remains to show that Algorithm 1 always aborts if φ is not τ -good. Consider
the total ordering on triples (i, j, �) obtained by stably sorting (non-decreasing)
by � then j then i. E.g. (1, 3, 1) < (3, 2, 3) < (2, 5, 3) < (4, 5, 3). Let (i∗, j∗, �∗)
be the (unique) smallest triple under this order which violates (2). We first
argue that (fj∗ , Lj∗ , Rj∗ , j∗) will be inserted into D�∗ (and AC if �∗ = 0). For
a contradiction assume that when Algorithm 1 checks for fj∗ in D�∗ (line 7,
with j = j∗, � = �∗) we find that some fk = fj∗ already exists in D�∗ , implying
that k < j∗. If T [j∗τ . . . j∗τ + τ2� − 1] �= T [kτ . . . kτ + τ2� − 1] then (j∗τ, k, �∗)
violates (2). Otherwise, (i∗, k, �∗) violates (2). In either case this contradicts the
minimality of (i∗, j∗, �∗) under the given order.

We now consider iteration i = i∗ of the second inner loop (when � = �∗).
We have shown that (fj∗ , Lj∗ , Rj∗ , j∗) ∈ D�∗ and we have that f ′

i∗ = fj∗ (so
k = j∗) but the underlying strings are not equal. If � = 0 then we also have
that T [j∗τ . . . (j∗ + 1)τ − 1] is in the AC dictionary. Therefore inspecting the
current AC state, will cause an abort (lines 20-21). If � > 0 then as (i∗, j∗, �∗) is
minimal, either L′

i∗ �= Lj∗ or R′
i∗ �= Rj∗ which again causes an abort (line 18),

concluding the correctness.

Time-Space Complexity. We begin by upper bounding the space used and the
time taken to performs all dictionary operations on D� for any �. First observe
that there are at most O(n/τ) insertions (line 8) and at most O(n) look-up
operations (lines 7,16). We choose the dictionary data structure employed based
on the relationship between n and τ . If τ >

√
n then we use the deterministic

302 P. Bille et al.

dynamic dictionary of Ružić [27]. Using the correct choice of constants, this
dictionary supports look-ups and insert operations in O(1) and O(

√
n) time

respectively (and linear space). As there are only O(n/τ) = O(
√

n) inserts, the
total time taken is O(n) and the space used is O(n/τ). If τ ≤ √

n we use the
Las-Vegas dynamic dictionary of Dietzfelbinger and Meyer auf der Heide [7]. If
Θ(

√
n) = O(n/τ) space is used for D�, as we perform O(n) operations, every

operation takes O(1) time with high probability. In either case, over all � we take
O(n log n) total time processing dictionary operations.

The operations performed on AC fall conceptually into three categories, each
totalling O(n log n) time. First we insert O(n/τ) τ -length substrings into the AC
dictionary (line 9). Second, we feed T into the automaton (line 11,15) and third,
we inspect the AC state at most n times (line 20). We store AC in the standard
compacted form with edge labels stored as pointers into T . This means that the
space used is O(n/τ), the number of strings in the AC dictionary.

Finally we bound the time spent constructing fingerprints. We first consider
computing f ′

i (line 13) for i > 1. We can compute f ′
i in O(1) time from f ′

i−1,
T [i − 1] and T [i + τ · 2�]. This follows immediately from the definition of φ.
We can compute L′

i and R′
i analogously. Over all i, �, this gives O(n log n) time.

Similarly we can compute fj from fj−1, T [(j − 1)τ . . . jτ − 1] and T [(j − 1 +
2�)τ . . . (j+2�)−1] in O(τ) time. Again this is analogous for L′

i and R′
i. Summing

over all j, � this gives O(n log n) time again. Finally observe that the algorithm
only needs to store the current and previous values for each fingerprint so this
does not dominate the space usage.

5 Longest Common Extensions on Two Strings

We now show how to efficiently reduce LCE queries between two strings to LCE
queries on a single string. We generalize our notation as follows. Let P and T
be strings of lengths n and m, respectively. Define LCEP,T (i, j) to be the length
of the longest common prefix of the substrings of P and T starting at i and j,
respectively. For a single string P , we define LCEP (i, j) as usual. We can always
trivially solve the LCE problem for P and T by solving it for the string obtained
by concatenating P and T . We show the following improved result.
Theorem 6. Let P and T be strings of lengths m and n, respectively. Given
a solution to the LCE problem on P using s(m) space and q(m) time and a
parameter τ , 1 ≤ τ ≤ n, we can solve the LCE problem on P and T using
O(n

τ + s(m)) space and O(τ + q(m)) time.
For instance, plugging in Theorem 1(i) in Theorem 6 we obtain a solution using
O(n

τ + m√
τ

) space and O(τ) time. Compared with the direct solution on the
concatenated string that uses O(n+m√

τ
) we save substantial space when m
 n.

5.1 The Data Structure

The basic idea for our data structure is inspired by a trick for reducing constant
factors in the space for the LCE data structures [9, Ch. 9.1.2]. We show how to

Time-Space Trade-Offs for Longest Common Extensions 303

extend it to obtain asymptotic improvements. Let P and T be strings of lengths
m and n, respectively. Our data structure for LCE queries on P and T consists
of the following information.

– A data structure that supports LCE queries for P using s(m) space and
q(m) query time.

– An array A of length
⌊

n
τ

⌋
such that A[i] is the maximum LCE value between

any suffix of P and the suffix of T starting at position i · τ , that is, A[i] =
maxj=1...m LCEP,T (j, iτ).

– An array B of length
⌊

n
τ

⌋
such that B[i] is the index in P of a suffix that

maximizes the LCE value, that is, B[i] = arg maxj=1...m LCEP,T (j, iτ).

Arrays A and B use O(n/τ) space and hence the total space is O(n/τ + s(m)).
We answer an LCEP,T query as follows. Suppose that LCEP,T (i, j) < τ . In
that case we can determine the value of LCEP,T (i, j) in O(τ) time by explicitly
comparing the characters from position i in P and j in T until we encounter
the mismatch. If LCEP,T (i, j) ≥ τ , we explicitly compare k < τ characters until
j + k ≡ 0 (mod τ). When this occurs we can lookup a suffix of P , which the
suffix j + k of T follows at least as long as it follows the suffix i + k of P . This
allows us to reduce the remaining part of the LCEP,T query to an LCEP query
between these two suffixes of P as follows.

LCEP,T (i, j) = k + min
(

A

[
j + k

τ

]
, LCEP

(
i + k, B

[
j + k

τ

]))
.

We need to take the minimum of the two values, since, as shown by Example 3,
it can happen that the LCE value between the two suffixes of P is greater than
that between suffix i + k of P and suffix j + k of T . In total, we use O(τ + q(m))
time to answer a query. This concludes the proof of Theorem 6.

Example 3. Consider the query LCEP,T (2, 13) on the string P from Example 2
and

T = c
1

a
2

c
3

d
4

e
5

a
6

b
7

a
8

a
9

c
10

a
11

a
12

b
13

c
14

a
15

a
16

b
17

c
18

d
19

c
20

a
21

e
22

The underlined positions in T indicate the positions divisible by 5. As shown
below, we can use the array A = [0, 6, 4, 2] and B = [16, 3, 11, 10].

P = d
1

b
2

c
3

a
4

a
5

b
6

c
7

a
8

b
9

c
10

a
11

a
12

b
13

c
14

a
15

c
16

i iv A[i] B[i]

1 5 0 16

2 10 6 3

3 15 4 11

4 20 2 10

e
c a a b c a a

a a b c d
c a e

304 P. Bille et al.

To answer the query LCEP,T (2, 13) we make k = 2 character comparisons and
find that

LCEP,T (2, 13) = 2 + min
(

A

[
13 + 2

5

]
, LCEP

(
2 + 2, B

[
13 + 2

5

]))

= 2 + min(4, 5) = 6 .

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18 (1975)

2. Allouche, J., Baake, M., Cassaigne, J., Damanik, D.: Palindrome complexity. The-
oret. Comput. Sci. 292(1), 9–31 (2003)

3. Amir, A., Lewenstein, M., Porat, E.: Faster algorithms for string matching with k
mismatches. J. Algorithms 50(2), 257–275 (2004)

4. Breslauer, D., Galil, Z.: Finding all periods and initial palindromes of a string in
parallel. Algorithmica 14(4), 355–366 (1995)

5. Colbourn, C.J., Ling, A.C.: Quorums from difference covers. Inf. Process.
Lett. 75(1-2), 9–12 (2000)

6. Cole, R., Hariharan, R.: Approximate String Matching: A Simpler Faster Algo-
rithm. SIAM J. Comput. 31(6), 1761–1782 (2002)

7. Dietzfelbinger, M., Meyer auf der Heide, F.: A New Universal Class of Hash Func-
tions and Dynamic Hashing in Real Time. In: Paterson, M. (ed.) ICALP 1990.
LNCS, vol. 443, pp. 6–19. Springer, Heidelberg (1990)

8. Fischer, J., Heun, V.: Theoretical and Practical Improvements on the RMQ-
Problem, with Applications to LCA and LCE. In: Lewenstein, M., Valiente, G.
(eds.) CPM 2006. LNCS, vol. 4009, pp. 36–48. Springer, Heidelberg (2006)

9. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and
computational biology, Cambridge (1997)

10. Gusfield, D., Stoye, J.: Linear time algorithms for finding and representing all the
tandem repeats in a string. J. Comput. Syst. Sci. 69, 525–546 (2004)

11. Gąsieniec, L., Kolpakov, R., Potapov, I.: Space efficient search for maximal repe-
titions. Theoret. Comput. Sci. 339(1), 35–48 (2005)

12. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM J. Comput. 13(2), 338–355 (1984)

13. Ilie, L., Navarro, G., Tinta, L.: The longest common extension problem revisited
and applications to approximate string searching. J. of Discrete Algorithms 8, 418–
428 (2010)

14. Jeuring, J.: The Derivation of On-Line Algorithms, with an Application to Finding
Palindromes. Algorithmica 11(2), 146–184 (1994)

15. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM 53(6), 918–936 (2006)

16. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987)

17. Kolpakov, R., Kucherov, G.: Searching for Gapped Palindromes. In: Ferragina, P.,
Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 18–30. Springer, Heidelberg
(2008)

18. Landau, G.M., Myers, E.W., Schmidt, J.P.: Incremental string comparison. SIAM
J. Comput. 27(2), 557–582 (1998)

Time-Space Trade-Offs for Longest Common Extensions 305

19. Landau, G.M., Schmidt, J.P.: An Algorithm for Approximate Tandem Repeats. J.
Comput. Biol. 8(1), 1–18 (2001)

20. Landau, G.M., Vishkin, U.: Fast Parallel and Serial Approximate String Matching.
J. Algorithms 10, 157–169 (1989)

21. Lu, L., Jia, H., Dröge, P., Li, J.: The human genome-wide distribution of DNA
palindromes. Funct. Integr. Genomics 7(3), 221–227 (2007)

22. Main, M.G., Lorentz, R.J.: An O (n log n) algorithm for finding all repetitions in
a string. J. Algorithms 5(3), 422–432 (1984)

23. Manacher, G.: A New Linear-Time “On-Line” Algorithm for Finding the Smallest
Initial Palindrome of a String. J. ACM 22(3), 346–351 (1975)

24. Matsubara, W., Inenaga, S., Ishino, A., Shinohara, A., Nakamura, T., Hashimoto,
K.: Efficient algorithms to compute compressed longest common substrings and
compressed palindromes. Theoret. Comput. Sci. 410(8-10), 900–913 (2009)

25. Myers, E.W.: An O(ND) difference algorithm and its variations. Algorithmica 1(2),
251–266 (1986)

26. Puglisi, S.J., Turpin, A.: Space-Time Tradeoffs for Longest-Common-Prefix Array
Computation. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008.
LNCS, vol. 5369, pp. 124–135. Springer, Heidelberg (2008)

27. Ružić, M.: Uniform deterministic dictionaries. ACM Trans. Algorithms 4, 1–23
(2008)

Local Exact Pattern Matching
for Non-fixed RNA Structures

Mika Amit1,�, Rolf Backofen3,4,��, Steffen Heyne3,��, Gad M. Landau1,2,���,
Mathias Möhl3,��, Christina Schmiedl3,��, and Sebastian Will3,5,��

1 Department of Computer Science, University of Haifa, Mount Carmel, Haifa, Israel
2 Department of Computer Science and Engineering, NYU-Poly, Brooklyn NY, USA

3 Bioinformatics, Institute of Computer Science, Albert-Ludwigs-Universität,
Freiburg, Germany

4 Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs-Universität,
Freiburg, Germany

5 CSAIL and Mathematics Department, MIT, Cambridge MA, USA

Abstract. Detecting local common sequence-structure regions of RNAs is a bi-
ologically meaningful problem. By detecting such regions, biologists are able to
identify functional similarity between the inspected molecules. We developed dy-
namic programming algorithms for finding common structure-sequence patterns
between two RNAs. The RNAs are given by their sequence and a set of potential
base pairs with associated probabilities. In contrast to prior work which matches
fixed structures, we support the arc breaking edit operation; this allows to match
only a subset of the given base pairs. We present an O(n3) algorithm for local
exact pattern matching between two nested RNAs, and an O(n3 log n) algorithm
for one nested RNA and one bounded-unlimited RNA.

1 Introduction

Ribonucleic acid (RNA) is a chain of nucleotides present in the cells of all living or-
ganisms. Most RNAs are single-stranded. RNA strands have a backbone made from
groups of phosphates and ribose sugar, to which one of four bases can attach (Adenine,
Cytosine, Guanine, and Uracil). The bases are linked together by their phosphodiester
bonds (usually referred to as backbone connection), and interact with each other using
hydrogen bonds (usually referred to as bond connections), forming the RNA structure.
We further denote two bases that are connected by bond connection as base pairs and
a base that has only backbone connections as a single base. RNA performs important
functions for living organisms, ranging from the regulation of gene expression to as-
sistance with copying genes. The important role that small RNA take in operating the
cell’s control has been discovered recently and it was referred to as the breakthrough of
the year 2002 in Science magazine [4].

� Partially supported by the Israel Science Foundation grant 347/09 and DFG.
�� Partially supported by the German Research Foundation (BA 2168/3-1and MO 2402/1-1).

��� Partially supported by the National Science Foundation Award 0904246, Israel Science
Foundation grant 347/09, Grant No. 2008217 from the United States-Israel Binational Sci-
ence Foundation (BSF) and DFG.

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 306–320, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Local Exact Pattern Matching for Non-fixed RNA Structures 307

Finding similarity between sequences and structures of RNAs is an important and
well studied task. The reason is that the activity and functionality of RNA is determined
by its sequence and mainly by its secondary and tertiary structure [15]. Furthermore,
the structure of a molecule is usually much more preserved during evolution than its
sequence alone. Thus, analyzing and comparing the secondary (and tertiary) structures
of given RNAs plays a very important role in the RNA research.

The complexity of RNA secondary structure is defined by the amount and order of
the base pairs that it contains. It is commonly categorized as follows:

– Plain: no arcs at all (this is the primary structure of the RNA)
– Nested: each base can be connected to at most one other base, and there are no

crossing arcs
– Crossing: each base can be maximally connected to one other base
– Bounded-Unlimited: each base can be maximally connected to a constant number

of other bases
– Unlimited: no restrictions on the arcs

Figure 1 demonstrates three ways of visualizing RNA nested structure. Throughout
this work we use the arc-annotated sequence, that represents both the sequence and
the structure of the RNA by adding an arc between each two bases that have a bond
connection. This representation can describe both nested and bounded-unlimited RNA
structures (see figure 1).

Fig. 1. RNA secondary structure representations: figures (a-c) represent the same RNA sample
of length 18 with depth 5. (a) schematic two dimensional description of RNA folding (b) arc
annotated sequence (c) an ordered tree: a single base is represented as a leaf and a base pair is
represented as either a leaf (if the base pair’s size is 2) or as an internal node with child nodes (of
the base pairs and single bases that it contains). Figure (d) represents a bounded-unlimited RNA
structure with an arc-annotated sequence.

There are several approaches to compute the similarity between two given RNAs,
among them are tree similarity algorithms such as edit distance ([19], [20], [11], [5],
[2], [6]), alignment ([10], [16], [1], [14]), and LAPCS ([7], [13], [9]). An edit dis-
tance between two ordered trees, T1 and T2, of sizes n and m (n > m), is a set
of edit operations applied on T1 in order to turn it into T2. The optimal edit dis-
tance between two trees is such set of edit operations with minimum cost. Tree align-
ment restricts the edit operations such that insertions are made for both T1 and T2 to

308 M. Amit et al.

make them isomorphic, and then relabeling of the nodes is done (see [3] for a thor-
ough survey). Zhang and Shasha [20] present an edit distance algorithm that works in
O(nm ×min{D1, L1} ×min{D2, L2}) where Di is the depth of tree i and Li is the
number of leaves in tree i. Klein [11] presents an O(m2n logn) algorithm, which in
some cases performs better than the previous algorithm. Recently an optimal O(n3)
decomposition algorithm for tree edit distance was given by Demaine et al. [5]. Ma et
al. [21] compute the edit distance between two RNAs where at least one is of nested
structure. This algorithm runs in O(n2D1D2), and an explanation of how to modify it
to run in O(n3 logn) is given.

Jansson and Peng [8] describe O(n4) algorithms for finding a subforest F of T1

such that F has a minimal edit distance from T2. The structure of F is restricted to
being a simple, sibling or closed subforest, where a simple subforest is a subtree, a
sibling subforest is a set of simple subforests whose roots are siblings in T1, and closed
is a complete subtree of T1.

Another approach for similarity checking is finding common motifs between two
RNAs. In this problem, local maximal exact sequence-structure patterns are computed.
Backofen and Siebert [17] solve this problem in O(n2) time.

1.1 Our Results

In this work, we are looking for local exact pattern matching between two RNA
molecules. We use the definitions from [17], and add an additional edit operation: arc
breaking, which breaks a base pair into two single bases. Adding the arc breaking op-
eration means that the bonds are not necessarily preserved in the common substructure.
This enhancement to the pattern matching algorithm allows greater flexibility in both
the input and the output. Instead of representing a fixed structure, the input can be in-
terpreted as a set of weighted secondary structures. This is encoded by base pairs with
probabilities. For this purpose we score the match of two base pairs according to their
probabilities. The arc breaking operation is not supported in [17],[21], or any other al-
gorithms based on tree edit distance, and it is one of our major achievements in this
paper. Figure 2 demonstrates the arc breaking edit operation. The formal definitions of
the problems are given in section 2.

Fig. 2. Arc breaking operation: both representations show the result of the arc breaking operation
for base pair CG in positions (10,16)

We present a simple O(n4) algorithm for computing the local exact pattern matching
between two nested RNAs (section 3). In section 4, we continue with an O(n3 logn)

Local Exact Pattern Matching for Non-fixed RNA Structures 309

algorithm, and in section 6 we show how to modify the algorithm to support one
nested and one bounded-unlimited input structure ((Nested,Bounded−Unlimited),
in short). In section 5 we show how to improve the algorithm for (Nested,Nested)
RNAs to O(n3).

Due to space limitations we will describe the following algorithms in the extended
version of this paper:

– An O(n3k2) algorithm for computing the local approximate matching between two
nested RNAs with at most k mismatches. This algorithm can be also modified to
work in O(n3k2 logn) for (Nested,Bounded− Unlimited) RNAs.

– An O(n3) algorithm for computing the most similar sibling substructure between
two (Nested,Nested) RNAs, as defined in [8].

2 Notations and Definitions

RNA sequence is an ordered pair R = (S,B), where S = s1, . . . , s|S|, and si is defined
over the alphabet Σ = {A,C,G,U} and represents the RNA primary structure. B, the
optional secondary structure, is a set of tuples {(a, b, p)|1 ≤ a < b ≤ |S|, 0 < p ≤ 1},
such that a tuple bp = (a, b, p) ∈ B represents a hydrogen bond (a base pair) between
bases a and b that exists with probability p in R. We denote a and b as the left and right
endpoints of bp, respectively. A base that is neither left nor right endpoint is denoted
as a single base. We further distinguish between two connection types of bases in R:
the connection between a base i and its subsequent base i+ 1 is denoted as a backbone
connection, and a base pair connection is denoted as a bond connection. The size of
a base pair bp = (a, b, p) ∈ B is the number of bases that it contains. i.e., |bp| =
(b − a + 1). We assume that the number of base pairs in R is O(n), which holds for
nested and bounded-unlimited structures by definition.

Definition 1 (Parent-child relation between bases). A parent of base pair bp=(a, b, p)
∈ B (resp. single base i) is the smallest size base pair pbp = (c, d, q) ∈ B that con-
tains bp (resp. i) in it. That is, c, d are the closest endpoints of a base pair such that
c < a < b < d (resp. c < i < d). We denote bp (resp. i) as the child of pbp.

We proceed with definitions of substructures of R (see figure 3 for examples):

Definition 2 (Path). A path in RNA R is a sequence of positions (i1, . . . , iy) such that
∀1 ≤ k < y, ik is connected to ik+1 with either a backbone or a bond connection. If ik
is connected to ik+1 with a bond connection we say that the base pair bp = (ik, ik+1, p)
is contained in the path.

Definition 3 (Pattern). A pattern in RNA R is a set of positions P = {i1, . . . , iy} such
that ∀k, l ∈ P there exists a path in P that connects ik and il.

Definition 4 (Exact Pattern Matching). Given two RNAs R1 = (S1, B1) and R2 =
(S2, B2), with sizes n and m respectively, an exact pattern matching (in short, matching)
M , over R1 and R2 is a set of pairs M = {(i1, j1), . . . , (ik, jk)| ∀1 ≤ � ≤ k, 1 ≤ i	 ≤
n, 1 ≤ j	 ≤ m} that satisfies the following conditions:

310 M. Amit et al.

1. S1(i) = S2(j) ∀1 ≤ � ≤ k.
2. P1 = {i1, . . . , ik} is a pattern in R1.
3. P2 = {j1, . . . , jk} is a pattern in R2.
4. For each 1 ≤ x, y ≤ k, a base pair bp1 = (ix, iy, p) is contained in P1 if and only

if a base pair bp2 = (jx, jy, q) is contained in P2.
5. M is maximally extended.

The first condition applies to the sequence equivalence requirement, whereas the rest of
the conditions apply to the structural equivalence requirement. The last condition refers
to the maximality of the matching, meaning that it cannot be extended sequence- or
structure- wise. For two base pairs in the matching, bp1 = (a, b, p) ∈ B1 and bp2 =
(c, d, q) ∈ B2, we say that (bp1, bp2) ∈M .

Fig. 3. Path and pattern examples in two different representations of the same RNA sample. A
path is marked with horizontal lines and contains the bases {1,2,3,20,21}, a pattern is shadowed
and contains the bases {5,6,8,9,12,13,14,15,16,17,18}. Note that the pattern contains the base
pairs (5,18), (8,14) and (9,13), whereas the base pairs (3,20) and (10,12) are not included.

Each matching M has an associated score that can be described as:

score(M) =
∑

(i,j)∈M

α(i, j) +
∑

(bp1,bp2)∈M

β(bp1, bp2),

where α : [1, |Σ|]× [1, |Σ|]→ R returns the score of matching two single bases:

α(i, j) = 1 if S1(i) = S2(j) or −∞ otherwise,

and β : ([1, |B1|]) × ([1, |B2|]) → R returns the score of matching two base pairs
bp1 = (a, b, p), bp2 = (c, d, q):

β(bp1, bp2) = ((1 + p)× (1 + q)) if S1(a) = S2(c) and S1(b) = S2(d), or −∞,
otherwise.

The definition of the scoring functions enables finding biologically meaningful struc-
tures via the scoring. In the general case the scoring functions can be defined to return
scores other than 1 or (1 + p)× (1 + q) when the bases match. The optimal sequence-
structure matching depends on both the matching of single bases and base pairs. This
enables us to sometimes prefer a matching of a base pair with a high probability over
matching a single base, or prefer matching large sequence of single bases over low
probability base pair (see figure 4).

Local Exact Pattern Matching for Non-fixed RNA Structures 311

Fig. 4. Two matchings example. The figure presents two matching examples that can be defined
between R1 and R2. In both cases the matchings are maximally extended. Note that matching
(a) contains the base pairs (b1, b′1) and (b2, b′2), and matching (b) contains (b1, b′1), (b2, b

′
2)

and (b3, b′3). The matching scores depend on the definition of α and β functions. Given b1 =
(3, 21, 0.9), b2 = (6, 16, 0.6), b3 = (8, 14, 0.1), b′1 = (3, 20, 0.8), b

′
2 = (6, 17, 0.5), and b′3 =

(8, 11, 0.3) and using our function definitions, score(a) = 15+(1.9 ·1.8)+(1.6 ·1.5) = 20.82
and score(b) = 12 + (1.9 · 1.8) + (1.6 · 1.5) + (1.1 · 1.3) = 19.25, thus the matching with the
maximal score is (a).

2.1 Local Exact Pattern Matching Problem Definition

Given two RNAs, R1 = (S1, B1) and R2 = (S2, B2) with sizes n and m, resp. (n ≥
m), scoring functionsα() and β(), and a number c, we want to find the setM containing
all matchings with a score greater than c. i.e,

M = {M |M is a matching and score(M) ≥ c)}

Note that the definition of the problem does not restrict the structure of the given RNA
molecules. We will explore two different settings of RNAs: (Nested,Nested) and
(Nested,Bounded− Unlimited).

3 A Simple O(n4) Algorithm for Local Exact Pattern Matching

In this section we solve the local exact pattern matching problem following its definition
in section 2.1. We use similar ideas to those in Zhang and Shasha’s tree edit distance
algorithm [20]. The algorithm distinguishes between two cases of matchings: those that
don’t contain any base pair matching and those that contain at least one. In the first case,
no base pair from B1 is matched with a base pair from B2. The problem is, therefore,
finding common substrings using suffix trees in time and space O(n +m) ([12]). The
second case is the more interesting one, and we will explore its implementation in the
following sections. The key idea is that we find the matchings between each combina-
tion of a base pair from B1 and a base pair from B2. For convenience reasons, we refer
to arc-annotated substrings as substrings.

3.1 Finding the Maximal Matching between Two Base Pairs

The algorithm divides the process of finding the matching into two stages: finding the
maximal matching in between the two endpoints of both base pairs (discussed in

312 M. Amit et al.

sections 3.2), and extending the match ”outside” of the base pairs (discussed in section
3.3). On each of these stages, the maximal score is saved in tableM , of sizeO(|B1||B2|),
in which an entry Mbp1,bp2 contains the scores of comparing the two base pairs bp1 ∈
B1 and bp2 ∈ B2: inside the base pairs, their maximal extensions and the total score.
We denote these scores as M in

bp1,bp2
, Mout

bp1,bp2
, and M total

bp1,bp2
respectively.

3.2 Finding the Maximal Score Matching Inside the Base Pairs

The input of the algorithm is two RNAs R1 = (S1, B1) and R2 = (S2, B2) and the
output is M in table, in which an entry M in

bp1,bp2
contains the maximal matching score

between the base pairs bp1 ∈ B1 and bp2 ∈ B2 and their inner parts. The values of
M in table are computed in increasing order of the base pairs’ sizes in order to enable
reuse of calculations: if two base pairs are contained in two other base pairs, then the
calculation of the smaller base pairs’ maximal matching is already calculated and there
is no need to recalculate it (see figure 5 case (c) for an example).

The main procedure of the algorithm computes for every combination of a base pair
bp1 = (a, b, p) ∈ B1 and a base pair bp2 = (c, d, q) ∈ B2, their maximal matching
score by comparing the two substrings s = (sa, . . . , sb) and t = (tc, . . . , td) that are
defined over bp1 and bp2, respectively. It is a dynamic programming algorithm that
computes matchings between prefixes of the substrings s and t, in increasing order of
their sizes.

We next describe the patternMatch() function that computes the maximal match-
ing score between two substring s and t.

The Pattern Matching Function
For every two substrings s = (sa, . . . , si) and t = (tc, . . . , tj) the function computes
four different matchings:

– Lmatch: The maximal left-to-right matching that starts at positions (a, c) and con-
tinues going from left to right using a backbone or bond connections until either a
mismatch occurs or the rightmost bases of s or t are reached.

– Rmatch: The maximal right-to-left matching that starts at (i, j) and continues go-
ing from right to left until either a mismatch occurs or the leftmost bases of s or t
are reached.

– Full: The maximal matching that contains both (a, c) and (i, j) indices, if such
matching exists.

– Score: The maximal left to right and right to left matchings between the two sub-
strings, such that they do not overlap and are maximally extended.

Note that the maximal matching score does not necessarily include both Rmatch and
Lmatch, since the bases they contain may overlap. Another observation is that the score
of a Full matching is not always greater than Score (see figure 5 for examples).

We use Score(a . . . i, c . . . j) to refer to Score between substrings s = (sa, . . . , si)
and t = (tc, . . . , tj). We refer to Lmatch, Rmatch and Full properties in a similar
way. The values are computed according to the following equations (in the same order):

Full(a . . . i, c . . . j) = max

{
Full(a . . . i− 1, c . . . j − 1) + α(i, j)

Full(a . . . e− 1, c . . . f − 1) +M in
b1,b2

(1)

Local Exact Pattern Matching for Non-fixed RNA Structures 313

Fig. 5. Lmatch,Rmatch,Full and Score matchings between substrings si and ti: Lmatch is
marked with ’L’ right arrows, and Rmatch is marked with ’R’ left arrows. The probabilities of
b1 and b2 to exist in si and ti are 0.2 and 0.2, resp.
(a) Non-overlapping: Lmatch(s1, t1) contains ’CCA’ and Rmatch(s1, t1) contains ’GGAC’,
Full = −∞ and Score(s1, t1) = 7 (both ’CCA’ and ’GGAC’) .
(b) Overlapping: Lmatch(s2, t2) contains positions (6,33) and (7,34), Rmatch(s2, t2) contains
positions (7,35) and (6,34). Note that using both (7,34) and (7,35) (or both (6,33) and (6,34))
would have created an overlapping matching. Therefore, Score(s2, t2) = 9 (all single bases of
s2 and t2 excluding base 35), and Full(s2, t2) = −∞ since there is no matching that contains
both (3,30) and (11,39). Note that in this case, the maximal score is the one that uses arc breaking
operation: Score(s2, t2) does not include ”jumping over” b1 and b2.
(c) ”Jumping over” base pairs: Lmatch(s3, t3) contains ’CC’, Rmatch(s3, t3) contains ’GG’,
(b1, b2), and ’A’. Note that since b1 and b2 are contained in Rmatch(s3, t3), the matching bases
inside of them (’AC’ and ’U’) are also contained in Rmatch(s3, t3). Also note that the matching
between b1 and b2 is a Full matching: the matching bases {(17, 50), (19, 53), (20, 54)} contains
both endpoints of b1 and b2. Full(s3, t3) = −∞ and Score(s3, t3) = 9.43 (contains ’CC’ from
left and ’GG’, (b1, b2), and ’A’ from right).
(d) Full < Lmatch: Full(s4, t4) = 9 by matching all bases of both s4 and t4 and arc-
breaking b1 and b2. Lmatch(s4, t4) = 9.43 by ”jumping over” the base pairs b1 and b2,
Rmatch(s4, t4) = 9. Hence, Score(s4, t4) = Lmatch(s4, t4).

Lmatch(a . . . i, c . . . j) = max

⎧⎪⎨⎪⎩
Lmatch(a . . . i− 1, c . . . j)

Lmatch(a . . . i, c . . . j − 1)

Full(a . . . i, c . . . j)

(2)

Rmatch(a . . . i, c . . . j) = max

⎧⎪⎨⎪⎩
Rmatch(a . . . i− 1, c . . . j − 1) + α(i, j)

Rmatch(a . . . e− 1, c . . . f − 1) +M in
b1,b2

0

(3)

Score(a . . . i, c . . . j) = max

⎧⎪⎨⎪⎩
Lmatch(a . . . i, c . . . j)

Score(a . . . i − 1, c . . . j − 1) + α(i, j)

Score(a . . . e − 1, c . . . f − 1) +M in
b1,b2

(4)

314 M. Amit et al.

where b1 = (e, i, r) ∈ B1 and b2 = (f, j, w) ∈ B2 (if such base pairs do not exist the
value of M in

b1,b2
is −∞).

Finally, the score of M in
bp1,bp2

is set as follows:
M in

bp1,bp2
= β(bp1, bp2) + Score(a . . . b, c . . . d).

The computation of Full values is straight-forward: either the matching is extended
to include the rightmost bases, or it is extended to include the rightmost base pairs and
their inner parts. If the matching cannot be extended, the value is set to −∞. Lmatch
value is the maximum between previously computed Lmatch scores and the current
computed Full value. Rmatch contains the maximal score that includes i, j, therefore,
if the bases mismatch, it is set to 0. Otherwise, it is the maximum between extending the
matching with the rightmost bases or base pairs. The value of Score is the maximum
between extending the maximal score with either single base or base pairs matching, or
the maximal left to right matching,Lmatch, that was computed between the substrings.
The reason for that is that each one of the allowed operations can set Rmatch score to
0. Lmatch, on the other hand, cannot be decreased and it can only be increased to
contain the Full matching score (if it is bigger).

Note that in any of the computations the structure of the rightmost bases is not
checked, which can lead to arc-breaking - the case when a base pair is treated as two
single bases with no bond connection between them.

The value of Rmatch is not used for the total score in this algorithm, but in the
improved algorithm it will be used and for clarity we define it here.

3.3 Extending the Match Outside the Base Pairs

This section describes the algorithm for computing the maximal extension of the match-
ing outside the endpoints of base pairs. The input of the algorithm is two RNAs, R1 =
(S1, B1) and R2 = (S2, B2), and the table M in. The output is Mout table. Each base
pairs comparison can be extended to both left and right, in this section we describe the
algorithm for the extension to the right; the extension to the left is similar.

The algorithm computes the maximal extensions scores for every position i ∈ R1

and j ∈ R2, in decreasing order of i and j. The values are kept in Rextend table (of
size O(n2)), in which an entry Rextend(i, j) contains the maximal extension starting
at positions i, j going right. If a mismatch occurs between si and tj , the value is set to
0. Otherwise, the value is the maximum between matching single bases and matching
base pairs, as follows:

Rextend(i, j) = max

⎧⎪⎨⎪⎩
Rextend(i+ 1, j + 1) + α(i, j)

Rextend(b+ 1, d+ 1) +M in
b1,b2

0

(5)

where b1 = (i, b, r) ∈ B1 and b2 = (j, d, w) ∈ B2.
Eventually, for every two base pairs, bp1 = (a, b, p) ∈ B1 and bp2 = (c, d, q) ∈ B2,

the values in Mout
bp1,bp2

table are set as follows: Mout
bp1,bp2

= Rextend(b + 1, d + 1) +
Lextend(a− 1, c− 1).

Local Exact Pattern Matching for Non-fixed RNA Structures 315

3.4 Complete O(n4) Algorithm

The algorithm for computing the local exact pattern matching between two given RNA
molecules is as follows:

(a) Compute the pattern matching inside all base pairs into M in.
(b) Compute the extension tables Rextend and Lextend and the table Mout accord-

ingly.
(c) For each base pair bp1 ∈ B1 and each base pair bp2 ∈ B2: M total

bp1,bp2
= M in

bp1,bp2
+

Mout
bp1,bp2

.

Time Complexity: the time complexity of step (a) is equal to the total number of prefixes
compared (since each of the allowed operations computation is done in constant time),
which can be bounded by O(n4). In step (b), the computation of each entry in Rextend
and Lextend tables is again done in constant time. Therefore, its time complexity is the
number of entries in the tables, which is O(n2). In addition, in step (b) the algorithm
computes Mout table is O(n2) time.

The last step runs in O(n2) time: for each combination of a base pair from B1 and a
base pair from B2, the computation is done in constant time.

Therefore, the time complexity of the complete algorithm is O(n4 + n2 + n2) =
O(n4).

From this time complexity analysis we immediately observe that the bottleneck of
the algorithm is computing the maximal matching score inside the base pairs. In the
next sections (4 and 5) we show how to improve this time complexity.

4 An O(n3 logn) Algorithm for Local Exact Pattern Matching

In this algorithm we take advantage of the fact that not all substrings that are compared
as part of the O(n4) algorithm need to be compared. We use similar ideas of Klein’s
tree edit distance algorithm [11]. We first explain the heavy path decomposition concept
in regarding RNAs and continue with the modifications to the O(n4) algorithm.

Definition 5 (heavy-light base pairs). For a given RNA R = (S,B), we define each
base pair in B as heavy or light by the following recursive definition: the base pair
bp1 = (1, |R|, p) is defined light (if such base pair does not exist, we add it as a fictive
base pair). For each base pair bp ∈ B, we pick a child base pair of bp with maximal
size among the children of bp and mark it as heavy, the rest of the children are marked
as light. We say that heavy(bp) = hp if hp is the heavy child base pair of bp.

The sequence of bp1, heavy(bp1), heavy(heavy(bp1)), . . . defines a descending path
called the heavy path, let P (bp1) denote this path. We recursively decompose R into
heavy paths: we start with P (bp1) and add the heavy path of each light child base pair
of bp1 (see figure 6). We denote each light base pair as the root of the heavy path that it
contains.

The following Lemma of Sleator and Tarjan [18] bounds the number of light base
pairs that contain a base in R:

316 M. Amit et al.

Fig. 6. Heavy path decomposition: in this RNA structure, we have three heavy path routes. They
are presented in both tree and arc-annotated structures.

Lemma 1 (Sleator and Tarjan [18]). Each base in RNA R = (S,B), of size n, is
contained in at most O(log n) light base pairs.

Definition 6 (Special Substrings). The set of special substrings of a substring s =
(sa, . . . , sb), that is defined over a base pair bp = (a, b, p) ∈ B1 with heavy(bp) =
(x, y, r) ∈ B1, consists of the suffixes of (sa, . . . , sy) starting at positions a, . . . , x, and
the prefixes of (sa, . . . , sb) ending at positions y, . . . , b (see figure 7).

Fig. 7. Special Substrings Example: the special substrings of a base pair, bp = (a, b, p), with a
heavy child base pair, hp = (x, y, r)

Let s be a substring. We denote last(s) as either the rightmost or the leftmost base of
s. We define last(s) of a suffix special substring, s, to be the leftmost base in s, and
last(s) of a prefix special substring s to be its rightmost base. Each base i in (a, . . . , b)
that is not contained in the heavy child base pair of bp, hp, defines exactly one special
substring that contains i as its last base. Thus, the number of special substrings defined
over the base pair is: size(bp)− size(hp).

Let bp1 = (a, b, p) ∈ B1 with heavy(bp) = hp = (x, y, r) ∈ B1, bp2 = (c, d, q) ∈
B2, and let s = (sa, . . . , sb), h = (sx, . . . , sy) and t = (tc, . . . , td) be the substrings
defined over bp1, hp and bp2, respectively.

The algorithm is based on two changes to the O(n4) algorithm: the first modifica-
tion is in the compared substrings: we compare all substrings of t and only the special
substrings of s as part of the patternMatch() function. The special substrings are
compared in increasing order of their sizes: we start with the heavy child base pair’s

Local Exact Pattern Matching for Non-fixed RNA Structures 317

substring, h, and increase the substring from left, until the left endpoint of bp is reached
(the suffixes special substrings). Then, we continue with the prefixes of bp, starting
from sa, . . . , sy , and continue going from left to right until the right endpoint of bp is
reached.

The second modification is in the main procedure of patternMatch(): in the previ-
ous algorithm, last(s) was always the rightmost base, in this version it is sometimes the
leftmost base. Thus, the function should support ignoring or matching of both last(s)
positions. The function is therefore the combination of two patternMatch() versions:
for the prefixes comparisons the computation is exactly as described in section 3.2. For
the suffixes comparisons the values are set according to the following equations:

Full(i . . . b, j . . . d) = max

{
Full(i+ 1 . . . b, j + 1 . . . d) + α(i, j)

Full(e+ 1 . . . b, f + 1 . . . d) +M in
b1,b2

(6)

Lmatch(i . . . b, j . . . d) = max

⎧⎪⎨⎪⎩
Lmatch(i+ 1 . . . b, j + 1 . . . d) + α(i, j)

Lmatch(e+ 1 . . . b, f + 1 . . . d) +M in
b1,b2

0

(7)

Rmatch(i . . . b, j . . . d) = max

⎧⎪⎨⎪⎩
Rmatch(i+ 1 . . . b, j . . . d)

Rmatch(i . . . b, j + 1 . . . d)

Full(i . . . b, j . . . d)

(8)

Score(i . . . b, j . . . d) = max

⎧⎪⎨⎪⎩
Rmatch(i . . . b, j . . . d)

Score(i + 1 . . . b, j + 1 . . . d) + α(i, j)

Score(e + 1 . . . b, f + 1 . . . d) +M in
b1,b2

(9)

where b1 = (i, e, r) ∈ B1 and b2 = (j, f, w) ∈ B2.
Eventually, the value in M in table is set to:
M in

bp1,bp2
= β(bp1, bp2) + Score(a . . . b, c . . . d).

Time Complexity: the same reasons that the O(n4) algorithm gave constant time for
each patternMatch(s, t) function call apply here, too. We therefore count the number
of compared substrings: following Lemma 1, each base is defined as last(s) of at most
O(log n) special substrings, which gives a total of O(n logn) special substrings. The
set of substrings t, are all O(n2) substrings of R2. The number of compared substrings
is therefore O(n log n× n2) = O(n3 logn).

Thus, the time complexity of the above algorithm for computing the matching inside
each combination of a base pair from B1 and a base pair from B2 is O(n3 logn) time.

5 An O(n3) Algorithm for Local Exact Pattern Matching

In the previous algorithm (section 4) we select the larger RNA structure as the dominant
structure. w.l.o.g. we defined R1 to be the dominant structure, and for each bp1 ∈ B1,
bp1 was the dominant base pair, by which special substrings were defined.

318 M. Amit et al.

An improvement for this algorithm can be done using the optimal decomposition
algorithm described in [5]. The key observation is that the dominant structure can be
decided for each combination of base pairs comparison rather than once for the entire
algorithm. The complete description and proof of the algorithm are given in [5]. In this
section we give the highlights of the algorithm and ”translate” it into the arc-annotated
representation of RNA molecules.

As an initialization step of the algorithm, both R1 and R2 are recursively decom-
posed into heavy paths (see figure 8). The algorithm computes the matching between
each combination of a base pair bp1 ∈ B1 and a base pair bp2 ∈ B2. The difference
is that on each such comparison, the algorithm selects the dominant base pair to be the
one with the larger root (i.e. |root(bp1)| and |root(bp2)|). The rest of the algorithm is
exactly the same as the previous O(n3 logn) algorithm, meaning that the special sub-
strings of the dominant base pair are compared with all substrings of the other base pair
(see figure 8 for an example).

Fig. 8. Heavy Path Decomposition of Both RNA Molecules: R1 contains the heavy path
(1, 4, 6, 7, U). In addition R1 contains the heavy paths (2, 8, 9, A), (3, G), and 5. In the com-
parison between 6 ∈ B1 and E ∈ B2 the dominant base pair is 6, whereas in the comparison
between 8 ∈ B1 (or 2 ∈ B1) and B ∈ B2 the dominant base pair is B.

This enhancement to the algorithm improves the time complexity to O(n3). The
intuition to this improvement is that on each comparison between two base pairs, we
compare all substrings of the relatively smaller base pair with the special substrings of
the relatively larger base pair (see complete proof in [5]).

6 Local Exact Pattern Matching for (Nested, Bounded-Unlimited)
Inputs

The input of this algorithm consists of two RNA structures R1 = (S1, B1) and R2 =
(S2, B2), where R1 is a nested structure and R2 is a bounded-unlimited structure. The
output is the maximal local exact matching set M defined over R1 and R2.

The algorithm is similar to the O(n3 logn) algorithm described in section 4. The
difference is that the bounded-unlimited structure of R2 needs to be handled: as opposed
to the previous algorithm, where each base can be connected by a bond connection to
at most one other base, in the bounded-unlimited structure it can be connected to O(1)
other bases. Let i be last(s) of substring s, and let the last(s) be the rightmost base
in s, w.l.o.g.. If i is a right endpoint of a base pair bp1 = (e, i, p) ∈ R1, there can be

Local Exact Pattern Matching for Non-fixed RNA Structures 319

several base pairs in R2 with j being their right endpoint (e.g. bpk = (fk, j, qk) ∈ R2).
All of these base pairs should be considered in the matching between s and t.

Note that even though R2 has a bounded-unlimited structure, the output matching
structure is always nested. Hence the only modification that is necessary is to iterate
over all base pairs with right endpoint j and pick the one that gives the maximal total
score.

In an analogous way, the algorithm for extending the matching outside of the base
pairs, as described in section 3.3, is also modified to support the bounded-unlimited
structure of R2. Again, on each base pairs comparison the algorithm compares at most
O(1) options of base pairs matching.

Time Complexity: the only modification to patternMatch() function is that we com-
pare O(1) base pairs of substring t with the base pair that starts at last(s), if such
exist. This, of course, does not add to the overall time complexity analysis. In a similar
way, the modification to the algorithm for computing the maximal extensions does not
change its time complexity.

The total time complexity of the entire algorithm is therefore O(n3 logn).

References

1. Backofen, R., Chen, S., Hermelin, D., Landau, G.M., Roytberg, M.A., Weimann, O., Zhang,
K.: Locality and gaps in RNA comparison. Journal of Computational Biology 14, 1074–1087
(2007)

2. Backofen, R., Landau, G.M., Möhl, M., Tsur, D., Weimann, O.: Fast RNA Structure Align-
ment for Crossing Input Structures. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS,
vol. 5577, pp. 236–248. Springer, Heidelberg (2009)

3. Bille, P.: A survey on tree edit distance and related problems. Theoretical Computer Sci-
ence 337, 217–239 (2005)

4. Couzin, J.: Small RNAS make big splash. Science 298(5602), 2296–2297 (2002)
5. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An Optimal Decomposition Algo-

rithm for Tree Edit Distance. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.)
ICALP 2007. LNCS, vol. 4596, pp. 146–157. Springer, Heidelberg (2007)

6. Dulucq, S., Touzet, H.: Decomposition algorithms for the tree edit distance problem. J. Dis-
crete Algorithms 3(2-4), 448–471 (2005)

7. Evans, P.A.: Algorithms and Complexity for Annotated Sequence Analysis. PhD thesis, Uni-
versity of Alberta (1999)

8. Jansson, J., Peng, Z.: Algorithms for finding a most similar subforest. Theory Comput.
Syst 48(4), 865–887 (2011)

9. Jiang, T., Lin, G., Ma, B., Zhang, K.: The longest common subsequence problem for arc-
annotated sequences. J. Discrete Algorithms 2(2), 257–270 (2004)

10. Jiang, T., Wang, L., Zhang, K.: Alignment of trees – an alternative to tree edit. TCS: Theo-
retical Computer Science 143 (1995)

11. Klein, P.N.: Computing the Edit-Distance between Unrooted Ordered Trees. In: Bilardi, G.,
Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 91–102.
Springer, Heidelberg (1998)

12. Landau, G.M., Vishkin, U.: Fast parallel and serial approximate string matching. Journal of
Algorithms 10, 157–169 (1989)

320 M. Amit et al.

13. Lin, G.H., Chen, Z.Z., Jiang, T., Wen, J.: The longest common subsequence problem for se-
quences with nested arc annotations. JCSS: Journal of Computer and System Sciences 65(3),
465–480 (2002)

14. Möhl, M., Will, S., Backofen, R.: Lifting Prediction to Alignment of RNA Pseudoknots. In:
Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 285–301. Springer, Heidelberg
(2009)

15. Moore, P.B.: Structural motifs in RNA. Annual Review of Biochemistry 68, 287–300 (1999)
16. Schirmer, S., Giegerich, R.: Forest Alignment with Affine Gaps and Anchors. In: Giancarlo,

R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 104–117. Springer, Heidelberg
(2011)

17. Siebert, S., Backofen, R.: A dynamic programming approach for finding common patterns in
RNAS. Journal of Computational Biology 14(1), 33–44 (2007)

18. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. Journal of Computer and
System Sciences 26(3), 362–391 (1983)

19. Tai, K.C.: The tree-to-tree correction problem. JACM: Journal of the ACM 26(3), 422–433
(1979)

20. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and
related problems. SIAM Journal on Computing 18(6), 1245–1262 (1989)

21. Zhang, K., Wang, L., Ma, B.: Computing Similarity between RNA Structures. In:
Crochemore, M., Paterson, M. (eds.) CPM 1999. LNCS, vol. 1645, pp. 281–293. Springer,
Heidelberg (1999)

Impact of the Energy Model on the Complexity

of RNA Folding with Pseudoknots

Saad Sheikh1,4, Rolf Backofen2, and Yann Ponty3,4,�

1 University of Florida, Gainesville, USA
2 Albert Ludwigs University, Freiburg, Germany

3 Ecole Polytechnique, CNRS UMR 7161, Palaiseau, France
4 AMIB Team-Project, INRIA, Saclay, France

Abstract. Predicting the folding of an RNA sequence, while allow-
ing general pseudoknots (PK), consists in finding a minimal free-energy
matching of its n positions. Assuming independently contributing base-
pairs, the problem can be solved in Θ(n3)-time using a variant of the
maximal weighted matching. By contrast, the problem was previously
proven NP-Hard in the more realistic nearest-neighbor energy model.
In this work, we consider an intermediate model, called the stacking-

pairs energy model. We extend a result by Lyngsø, showing that RNA
folding with PK is NP-Hard within a large class of parametrization for
the model. We also show the approximability of the problem, by giving
a practical Θ(n3) algorithm that achieves at least a 5-approximation for
any parametrization of the stacking model. This contrasts nicely with
the nearest-neighbor version of the problem, which we prove cannot be
approximated within any positive ratio, unless P = NP .

Keywords: RNA folding, General pseudoknots, Hardness, Inapprox-
imability.

1 Introduction

Ribonucleic Acid (RNA) is one of the key pieces to the puzzle of molecular bi-
ology. It plays a very large number of roles, not only by coding for proteins,
but also through catalytic and regulatory functions. To play such roles, RNA
folds into an intricate structure which is stabilized by the pairing, mediated by
hydrogen bonds, of some of its positions. The conformations that arise from
this folding process are instrumental to the function of an RNA. Consequently,
the process of RNA folding has been extensively studied by molecular biol-
ogy and biochemistry, and its in silico prediction has given rise to a wealth of
computational approaches. Early work on the subject have focused on the sec-
ondary structure, a restriction of all admissible base-pairs that forbids crossing-
interactions. Under the assumption of reasonable, additive, energy models, such
a restriction implies an optimal-substructure property for computing the most
stable conformation, i.e. the one having minimal free-energy. Polynomial-time

� To whom correspondance should be addressed.

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 321–333, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

322 S. Sheikh, R. Backofen, and Y. Ponty

U G U G C C C G G C A U G G G U G C A G U C U A U A G G G U G A G A G U C C C G A A C U G U G A A G G C A G A A G U A A C A G U U A G C C U A A C G C A A G G G U G U C C G U G G C G A C A U G G A A U C U G A A G G A A G C G G A C G G C A A A C C U U C G G U C U G A G G A A C A C G A A C U U C A U A U G A G G C U A G G U A U C A A U G G A U G A G U U U G C A U A A C A A A A C A A A G U C C U U U C U G C C A A A G U U G G U A C A G A G U A A A U G A A G C A G A U U G A U G A A G G G A A A G A C U G C A U U C U U A C C C G G G G A G G U C U G G A A A C A G A A G U C G C A G A A G U C A U A G U A C C C U G U U C G C A G G G G A A G G A C G G A A C A A G U A U G G C G U U C G C G C C U A A G C U U G A A C C G C C G U A U A C C G A A C G G U A C G U A C G G U G G U G U

Fig. 1. Canonical base-pairs of the Oceanobacillus iheyensis group II intron, derived
from a 3D model (PDB id: 3IGI) using RNAView [19]

algorithms, based on dynamic-programming (DP), have consequently been pro-
posed for predicting the minimal free-energy secondary structure conformation
of an RNA from its sequence. Unfortunately, the assumption of a non-crossing
conformation may impede the quality of the prediction, since functionally es-
sential crossing-interactions are found in many families of non-protein-coding
RNAs (ncRNAs), as illustrated by Figure 1. For instance, pseudoknots (PK),
can be found within the RFAM consensus [8] of at least 70 functional families
of ncRNAs and are conserved throughout the evolution.

Taking general pseudoknots into account is known to turns RNA minimal-
free energy prediction into a rather challenging problem. A pioneering work by
Cary, Tabaska et al [6,17] considered a simple additive model, associating in-
dependent energy contributions to each putative base-pair, and used a O(n3)
maximal-weighted matching algorithm to extract a minimal free-energy folding.
Unfortunately, this energy model is regarded as unrealistic because of its inca-
pacity to capture the interaction of consecutive – stacking – base-pairs, which
constitute a primary stabilizing force in RNA folding. Such energy contributions
are captured by the nearest neighbor energy model, in which the contri-
bution of each base-pair depends on the base-pairing status and partners of its
consecutive positions. The hardness of RNA folding assuming a nearest-neighbor
energy model was independently established by Lyngsø and Pedersen [12], and
Akutsu [1]. Subsequent efforts have therefore focused on providing either param-
eterized complexity algorithms [11,20], heuristics [4,18] or exact DP schemes for
tractable subsets of pseudoknots [16,15].

It is frequent that the complexity of solving any problem in computational
biology optimally is tied to the chosen model (e.g. [3]). However, despite a sig-
nificant amount of research focusing on predicting pseudoknots, the impact of
a specific instantiation of the energy model on the computational complexity of
RNA folding with pseudoknots has only been partly unexplored. In this extended
abstract, we further study the influence of the energy model on the complex-
ity and approximability of RNA folding with unconstrained pseudoknots. In
addition to the base-pair and nearest-neighbor models, we consider the stack-
ing base-pairs energy model, which captures the dependency between con-
secutive base-pairs. The computational complexity of RNA folding under this

Energy Models and RNA Folding with Pseudoknots 323

energy model was first studied by Ieong et al [9]. They were able to show the
NP-hardness of maximizing the number of stacking-pair among the set of planar
secondary structures, a restriction of general pseudoknots. This restriction was
lifted by Lyngsø [13], who established the hardness of maximizing the number
of base-pairs, allowing general types of pseudoknots. Approximation algorithms
we also sought, leading to the current best 8/3-approximation O(n10)-time al-
gorithm reported by Jiang [10]. However all of these works consider a purely
combinatorial model, maximizing the number of base-stacking, while the contri-
bution of stacking pairs to the free-energy may vary significantly. It is therefore a
natural question to ask to what extent the hardness of folding with pseudoknots
is affected by perturbations of the energy model. More generally, understanding
what makes the problem hard, and just how hard, could be instrumental to the
development of future algorithms, achieving better tradeoffs between sensibility
and complexity.

This extended abstract is organized as follows. First we formally define in
Section 2 our main problem, along with the different energy models considered.
We discuss the NP-hardness of the stacking base-pairs in Section 3, and present
an approximation in Section 4. In Section 5, we show the inapproximability of
RNA folding with pseudoknots under the nearest-neighbor energy model. Finally
Section 6 summarizes the contributions and describes futures lines of research.

2 Problem Statement and Free-Energy Models

Let ω ∈ {A,C,G,U}∗ be an RNA sequence, and m be a partial matching of
the positions in ω, i.e. a set of non overlapping pairs of positions in ω. An
energy model is a real-valued function Ew that associates a free-energy to ω
by summing over the contributions of local motifs in the matching. The precise
definition of local motifs will depend on the exact energy model.

A low free-energy indicates a stable folding. Furthermore, any free-energy con-
tribution is usually determined up to an additive constant. Therefore one can
assume that the contribution to the free-energy of any local motif is negative,
with the exception of extremely unfrequent motifs which will be forbidden and
assigned +∞ contributions. Let us then rephrase the problem of as an optimiza-
tion (minimization) problem.

RNA-PK-Fold(E) problem
Input: An RNA sequence w.
Ouput: A partial matching m over w, i.e. a set of pairwise disjoint pairs of
positions in [1, |w|], which minimizes Ew(m).

The three reference energy models are usually considered:

– Base-pairs model B [14,6,17]: Here, local motifs are simply individual
base pairs, independently contributing to the free-energy:

Bw(m) =
∑

(i,j)∈m

ΔB(wi, wj)

324 S. Sheikh, R. Backofen, and Y. Ponty

5’

3’

Base-pairs (B) Stacking pairs (S) Nearest neighbor(S)

a h i p q

b g j o r

c f k n s

d e l m t

a h p q

g j o r

c f k n

d e m t

p q

o r

c f

d e

a h

b g j p q

a h i p q

g j o r

c f k n s

d e m t

d e k n

l m t

Fig. 2. Typical picture of a standard pseudoknot/matching (Left) and individual con-
tributions of local motifs to the three energy models considered (Right). Dark nodes
indicate the supporting base pair for each motif (i.e. (i, j) pairs in our definition below).

where ΔB : {A,C,G,U}2 → R− ∪ {+∞}.
– Stacking pairs model S [13,5]: This model only considers consecutively

nested pairs as motifs, and disregards isolated pairs:

Sw(m) =
∑

(i,j),(i+1,j−1)∈m

ΔS(wi, wj , wi+1, wj−1)

where ΔS : {A,C,G,U}4 → R− ∪ {+∞}.
– Nearest-neighbors model N [12,16]: This motif definition is even more

expressive, allowing different contributions for each base-pair, depending on
its bases, the base-pairing status of its consecutive neighbors and own their
own partners:

Nw(m) =
∑

(i,j)∈m
i<j

ΔN (wi, wj , wi+1, wj−1, wmi+1 , wmj−1)

where ΔN is any function {A,C,G,U}4×{A,C,G,U,∅}2 → R−∪{+∞}, mi

denotes the partner of a position i in m (or ∅ if i is unpaired, while w∅ ≡ ∅

by convention).

These three models induce different decompositions into motifs for any given
structure, as illustrated by Figure 2.

3 NP-Hardness of RNA-PK-Fold(S) in Any
Non-degenerate Stacking Energy Model

Consider the set of canonical base-pairs (A,U), (G,C) and (G,U). A combi-
natorial stacking model S∗ specializes the stacking pairs model by assign-
ing a −1.0 kcal.mol−1 contribution to any canonical stacking pair, and +∞ to

Energy Models and RNA Folding with Pseudoknots 325

others. It was showed by Lyngsø [13] that the RNA-PK-Fold(S∗) problem is
NP-complete, using a reduction from the BIN-PACKING problem.

Here we complement this result by showing its robustness, i.e. the NP-hardness
of the problem under a wide class of stacking energy model.

Theorem 1. Let S be a stacking energy model that allows (G,C) pairs, and
forbids (A,C) and (C,G) pairs. Then RNA-PK-Fold(S) is NP-hard.

Proof. In order to prove the hardness of RNA-PK-Fold(S), let us remind the
statement of the 3-PARTITION problem:

3-PARTITION problem
Input: A multiset of integral valuesX = {xi}ni=1 of cardinality n = 3m, such
that

∑n
i=1 xi = m ·K for some K ∈ N, and �K/4� < x < �K/2�, ∀x ∈ X.

Ouput: True if there exists a partition of X into m triplets
((xaj , xbj , xcj))

m
j=1 such that

xaj + xbj + xcj = K, ∀j ∈ [1,m],

and False otherwise.

From Garey and Johnson [7], it is known that 3-PARTITION is strongly NP-
complete, i.e. not only is the problem NP-hard, but it remains hard even when
the elements of X are upper-bounded by some polynomial function P (n).

Lemma 2. Let X be a 3-PARTITION instance whose values are bounded by
P (n), and wX be an RNA sequence such that:

wX = Cx1ACx2ACx3A · · ·ACxn AGKAGKA · · ·AGK︸ ︷︷ ︸
m times

.

There exists a 3-partition of X into equally summing triplets if and only if there
exists a solution to RNA-PK-Fold(S) over wX having energy k = δ · (K − 3) ·m
kcal.mol−1 with δ := ΔS(C,G,C,G).

Let us summarize the argument:

– A matching has minimal free-energy iff any block Cx is entirely paired to
some contiguous substring of a single GK block.

– A matching has minimal free-energy iff every position in every GK block is
connected.

– Any optimal matching thus gives us a mapping between the Cx and GK

blocks, which can be transformed in polynomial-time into a solution to the
3-Partition problem.

Proof. X is 3-partitionable ⇒ ∃m∗ such that SwX (m∗) = δ · (K − 3) ·m:
If X is 3-partitionable, then there exists m disjoint triplets ((xaj , xbj , xcj))

m
j=1

whose sum is identicallyK. If follows that the Cx blocks in wX can be partitioned
into triplets (Cxaj ,Cxbj ,Cxcj) that can form a three-tier perfect helix with the

326 S. Sheikh, R. Backofen, and Y. Ponty

A B

C D

X =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
2

4
2

3
2

1

x1 x2 x3 x4 x5 x6

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(K = 7)

C C A C C C C A C C A C C C A C C A C A G G G G G G G A G G G G G G GwX =

G G G

G G G G A C C A C

A A

C C A C C C C A C C A C C C

G G G G G G G

Cx1 Cx2 Cx3 Cx4 Cx5 Cx6 GK GK

1 2 3

5 10

20

25

2 2 3
x1 x3 x4

4 2 1
x2 x5 x6

K

Fig. 3. Illustrating the reduction: Finding a 3-partition of a set of numbers X (A) is
equivalent to finding a matching for wX that produces a maximal number of stacking
pairs (C), from which one easily deduces a set of equally summing triplets (D). Such a
matching can be represented as a pseudoknotted secondary structure (B).

j-th block GK ≡ Gxaj .Gxbj .Gxcj . By creating xaj (resp. xbj and xcj) nested base-
pairs between the block Cxaj (Cxbj and Cxcj) and the beginning (resp. middle and
ending) of the j-th block GK , one obtains exactly (xaj)−1+(xbj)−1+(xcj−1) =
K − 3 stacking pairs. Repeating the operation for each triplet j yields a valid
conformation with (K − 3) ·m stacking (G,C)/(G,C) pairs, and the implication
follows.

∃m∗ such that SwX (m∗) = δ · (K − 3) ·m ⇒ X is 3-partitionable:
Let us remark that the absence of U implies that the only admissible base-pairs

are C/G or G/C, arising from interactions between Cx and GK blocks respectively.
First, let us show that each GK block contributes to at most K − 3 stacking

pairs, and that this upper-bound cannot be reached unless GK creates K base-
pairs with exactly 3 distinct Cx blocks. Indeed, it is easily seen that any GK

block, connected to b blocks (Cxd1 , . . . ,Cxdb) by at least one base-pair, for a
total number P of base-pairs, creates at most P − b stacking pairs. This bound
is reached when GK is split into b portions, each forming a perfect helix with
the corresponding Cxdi block. Noting that xi < �K/2� is equivalent to xi ≤
�K/2�− 1, one has that any connection of GK with b blocks can therefore create
at most min(K, b · (�K/2� − 1)) base-pairs. It follows that, for b = 1 and b = 2,
the maximum number of stackings involving GK is bounded by �K/2� − 2 and
2�K/2�−4 ≤ K−4 respectively. For b ≥ 3, the number of base-pairs is potentially
no longer limited by the lack of occurrences of C, but by the K occurrences of
G in GK . It follows that, when b ≥ 3, the maximum number of stacking pairs is
K − 3, and is reached for b = 3 when every position in GK is paired.

Then let us assume the existence of a matching with (K−3)·m stacking pairs.
Since K − 3 is the upper-bound on the number of stacking pairs supported by a
given GK block, then each of the m GK blocks must achieve this upper-bound.
It follows that each GK block must create a total of exactly K base-pairs with

Energy Models and RNA Folding with Pseudoknots 327

a triplet of blocks (Cx
a,C

x
b ,C

x
c). A direct corollary is that every G and C in wX

must be paired.
We have now established that, within any matching having m · (K− 3) stack-

ing pairs, each GK block creates exactly K base-pairs with a triplet of blocks
(Cx

ai
,Cx

bi
,Cx

ci). To conclude on the implication, we need to show that each Cx

block interacts with a single GK block, i.e. that the (Cx
ai
,Cx

bi
,Cx

ci) triplets are
mutually disjoint. Indeed, if a block Cxi is found in two distinct triplets, then
there exists a block Cxj that is not within any triplet (remember that there are
3K blocks Cx and K triplets). It follows that at most m · K − xj base-pairs
exist within this matching, which contradicts K base-pairs for every GK block.
Consequently, no Cxi can be present in two distinct triplets, and the triplets are
therefore disjoint.

Therefore, the interacting blocks found in a matching having energy δ · (K −
3)·m induce a partition of the {Cxi}3mi=1 blocks into m triplets. Furthermore, each
(Cx

a,C
x
b ,C

x
c) triplet must give rise toK base-pairs, and therefore xa+xb+xc ≥ K.

Since the triplets are disjoint and partition a set of a total m ·K occurrences of
C, then any excess of C within a triplet implies a lack of C within another, so
one has xa + xb +xc = K. We conclude that any matching of wX having energy
δ · (K − 3) ·m induces the existence of a partition {Cxi}3mi=1 blocks into disjoint
triplets (Cxa ,Cxb ,Cxc) such that xa + xb + xc = K which, in turn, implies the
existence of a 3-partition for X . ��

It follows from Lemma 2 that any algorithm for RNA-PK-Fold(S) gives an al-
gorithm for the 3-PARTITION problem. Furthermore the length of wX exactly
equals

∑n
i=1 xi+K ·m+2m−1 = 2K ·m+2m−1 ∈ O(n2 ·P (n)) where P (n) is the

polynomial upper bound on the value of each xi. Therefore any polynomial algo-
rithm for RNA-PK-Fold(S) gives a polynomial algorithm for the 3-PARTITION
problem. Since 3-PARTITION is NP-hard, then so is RNA-PK-Fold(S) and The-
orem 1 follows. ��

4 Approximability of RNA-PK-Fold(S) in the Stacking
Model

Since objective functions are usually derived experimentally or statistically, it is a
natural question to ask whether hard problems can be efficiently approximated.
Previous works on the subjetc only considered a combinatorial version of the
problem, and the current best algorithm [10] produces a matching whose number
of stacking pairs is guaranteed to be at least 3/8 · OPT , where OPT is the
maximal number of stacking pairs in any matching. Unfortunately, this result
does not hold for arbitrary-valued stacking energy models, as the free-energy
of valid stacking pairs may greatly vary. For instance, the latest version of the
Turner model reports a factor ∼ 3.6 discrepancy between stacking canonical
pairs, bringing the guaranteed approximation ratio down to 1/10. By contrast,
we show that RNA-PK-Fold(S) can be approximated in polynomial time up to
a factor at least 1/5, for any stacking model S.

328 S. Sheikh, R. Backofen, and Y. Ponty

Input : An RNA sequence w
Output: A matching m of non-overlapping pairs of positions
G = (V,E)← ([1, |w| − 1],∅);
M ← ∅;
foreach u, v ∈ V do

if wu base pairs with wv+1 and wu+1 base pairs with wv then
// Label each edge with its weight/energy

E ← E ∪ (u, v,−ΔS(wu, wv+1, wu+1, wv));
end

end
m′ ← MaxWeightedMatching(G);
foreach (u, v) ∈ m′ sorted by increasing value ΔS(wu, wv+1, wu+1, wv) do

if ∀(u′, v′) ∈ m, {u′, v′} ∩ {u, v + 1, u+ 1, v} = ∅ or
(u′, v′) ∈ {(u, v + 1), (u+ 1, v)} then

m ← m ∪ {(u, v + 1), (u+ 1, v)};
end

end
return m

Algorithm 1: A 5-approximation for any stacking energy model.

Theorem 3. In any stacking energy model, RNA-PK-Fold(S) ∈ APX, and can
be approximated in polynomial time within a factor at least 1/5.

Proof. To prove the approximability of RNA-PK-Fold(S), let us consider Algo-
rithm 1. This algorithm contracts consecutive positions in the RNA sequence as
vertices, and adds an edge, weighted according to the energy function, between
any pair of compatible positions. Computing a maximal weighted matching on
this graph gives a set of stacking-pair which is not necessarily a valid matching,
since distinct pairs of stacking pairs may induce more than a single partners for
a given position. Therefore the algorithm considers the returned stacking pairs
in decreasing order, and only retains the stacking pairs that do not conflict with
the current selection of stacking-pairs.

Now let m∗ be the optimal matching for the given RNA string w, m′ be
the maximal matching over G, and m be the matching finally returned by the
algorithm. Let us remark that m′ induces a set of matched pairs over w that
does not strictly constitutes a matching, as some position may be matched twice.
Nevertheless let us write Sw(m′) as a shorthand for the total energy of m′,
obtained by summing over the stacking pairs induced by m′. Any matching
can be decomposed as a set of stacking pairs (leaving a set of isolated, non-
contributive, base-pairs), hence one has Sw(m′) ≤ Sw(m∗) ≤ 0. Any edge (i, j) in
m′ may conflict with at most 4 other, adjacent, stacking-pairs. Furthermore, the
algorithm considers the edges in m′ by decreasing contribution, so the stacking
pairs induced by any edge (i, j) in m′ may only conflict with four stacking
pairs having (negative) contribution of smaller absolute value. Discarding these
competitors guarantees that at least 1

5 of the total energy of m′ is retained in m,

i.e. Sw(m) ≤ 1
5Sw(m′) ≤ 0, and one therefore concludes that Sw(m)

Sw(m∗) ≥
1
5 . ��

Energy Models and RNA Folding with Pseudoknots 329

Remark that the actual approximation ratio achieved by Algorithm 1 might
be better than 1/5, even in the worst-case scenario. However, this crude upper-
bound already establishes the approximability of the problem, nicely contrasting
with our upcoming inaproximability result for the nearest-neighbor version of the
problem.

5 Inapproximability of RNA-PK-Fold(N) in the
Nearest-Neighbor Energy Model

The stacking model, considered in the above sections, makes the prediction of
RNA structure NP-Hard, yet remains approximable in general. By contrast, let
us show that RNA-PK-Fold(N), the nearest-neighbor version of the problem,
is non-approximable. More precisely, let us show the stronger property that,
unless P = NP , there is no polynomial-time algorithm that guarantees to find
a matching whose free-energy approximates that of the optimal matching up to
a strictly positive factor r(n).

Theorem 4. There exists instances of the nearest-neighbor model such that
RNA-PK-Fold(N) /∈ APX.

Proof. Let us briefly outline our proof strategy. We encode any set of num-
bers X as a string w, having length polynomial on the sum of values in X ,
and whose matchings are either forbidden (+∞ free-energy), empty (0 free-
energy), or have negative energy. Focusing on the latter category, we show that
any negative energy matching can be turned, in polynomial-time, into a so-
lution to the 3-PARTITION problem. It follows that any polynomial-time al-
gorithm that guarantees a positive-ratio approximation, thereby producing a
matching having negative free-energy anytime such a matching exists, immedi-
ately yields a polynomial-time algorithm for the 3-PARTITION problem. The
NP-hardness of this problem allows us to conclude on the hardness of approx-
imating RNA-PK-Fold(N ∗), within any positive ratio, in the nearest-neighbor
energy problem.

Let us consider the 3-PARTITION problem, fully defined in Section 3. For
any instance X = {xi}3mi=1 of the problem, let us consider the following RNA
sequence:

w = Cx1ACx2A · · ·ACx3mAGKUGKU · · ·GKU︸ ︷︷ ︸
m times

U2m

Moreover let us consider a nearest-neighbor energy model N ∗, defined by a func-
tion Δ∗

N such that:

330 S. Sheikh, R. Backofen, and Y. Ponty

Δ∗
N : (A) C C G G −→ −1, ∀i < j,

(B) C X Y G −→ −1, ∀i < j, ∀X �= C, ∀Y,
(i + 1 and j − 1 must both

base-pair somewhere, possibly

together)

(C) A X Y U −→ −1, ∀i < j, ∀(X,Y),
(i + 1 and j − 1 must both

base-pair somewhere, possibly

together)

(D) −→ +∞, ∀i < j.

i i+1 j-1 j

i i+1 j-1 j

i i+1 j-1 j

Any other motif

Lemma 5. Let X be a 3-PARTITION instance whose values are bounded by
P (n). Then the following statements are equivalent:

– There exists a 3-partition of X into m triplets of equal sum.
– There exists a matching of strictly negative energy over w under N ∗.

Proof. X is 3-PARTITIONABLE ⇒ ∃m∗ such that N ∗
w(m

∗) < 0: Since X
is 3-PARTITIONABLE, then there exists a partition ofX intom disjoint triplets
((xaj , xbj , xcj))

m
j=1 whose sum are identically K. Consider the matching that

pairs each GK block with one of the triplet of blocks Cxaj , Cxbj and Cxcj , creating
nested sequences of base-pairs, and completed with 3 · m (A,U) unconstrained
base-pairs over the remaining positions. Clearly, all the positions are involved
in a base-pair, and consecutive CC · · ·GG are nested as required by energy rule
(A). Therefore, any base-pair falls within the scope of energy rules (A), (B) or
(C), and the final energy of the matching is N ∗

w(m
∗) = −m · (K + 3) < 0.

∃m∗ such that N ∗
w(m

∗) < 0 ⇒ X is 3-PARTITIONABLE: Let us start
by proving that, within an energy model N ∗, any matching of w having nega-
tive energy is a perfect matching, i.e. every position in the matching is paired.
Since N ∗ only allows (C,G) and (A,U) pairs, therefore any valid (finite, negative
contribution) base-pair (i, j) must involve a position in the left half of w (C or
A) and a position in its right half (G or U), i.e. such that i ≤ m · (K + 3) < j.
In order to be valid, (i, j) must also be in a context where i + 1 (resp. j − 1) is
paired to j′ ≥ m · (K + 3) (resp. i′ < m · (K + 3)). The same argument applies
to (i+1, j′) and (i′, j− 1), and one easily shows by induction that any matching
featuring a base-pair (i, j) has infinite energy unless every position in [i, j] is
paired. It follows that any matching having negative energy is perfect on some
interval [a, b], a ≤ m · (K + 3) < b, and leaves the remaining positions unpaired.

Now let us consider which bounds for the interval [a, b] are compatible with
a negative energy. Let us denote by w[a,b] the [a, b] factor in a sequence w,

Energy Models and RNA Folding with Pseudoknots 331

and by |w|t the number of occurrences of some letter t in w, then one has
|w[a,b]|A = |w[a,b]|U and |w[a,b]|C = |w[a,b]|G. Observe that, since xi < K/2, one

has
|w[a,b]|A
|w[a,b]|C ≤ 1

1+K/2 . Furthermore, if b falls before the final run U2m, then

b < m · (2K + 4) and one has 1
1+K ≤ |w[a,b]|U

|w[a,b]|G . It follows that
|w[a,b]|A
|w[a,b]|C <

|w[a,b]|U
|w[a,b]|G ,

i.e. the matching cannot be perfect on [a, b], and its energy cannot be negative.
We are then left to consider the case where m · (2K + 4) ≤ b ≤ |wX |. In such
a case, one has |w[a,b]|G = m ·K and one has a = 1. Indeed any greater value
a would lead to less than

∑
xi = m ·K copies of C, and some G would be left

alone. Remark that |w[1,b]|A = 3m, so one must have b = |w|, from which we
conclude that any matching having negative energy is perfect, i.e. base-pairs
every position.

Let us finally show that a 3-PARTITION of X can be retrieved from a match-
ing having negative energy. Remind that energy rule (A) forces two consecutive
occurrences of C to pair with consecutive occurrences of G. This property ex-
tends transitively, and any Cxi block in w must therefore be entirely connected
to a single GK block. Since a matching of negative energy is perfect, then all
the positions in a GK block must be base-paired. Two Cxi blocks are not suf-
ficient (xi < K/2) to saturate a GK block, and four blocks would be too large
(xi > K/4), violating the constraint that each block must be entirely paired to
a single GK block. Therefore a triplet (Cxai ,Cxbi ,Cxci) blocks is in total inter-
action with each GK block, and the corresponding values (ai, bi, ci) constitute a
3-PARTITION of X . ��

From Lemma 5, one knows that the existence of a 3-PARTITION for X can
be derived from the existence of a matching of w having negative energy under
N ∗. Now assume there exists a polynomial-time algorithm A that guarantees an
r(n) > 0 approximation ratio. Then A would produce a matching m such that
N ∗

w(m) = N ∗
w(m

∗)/r(n), for m∗ the optimal matching. In particular, A would
produce a matching having negative energy anytime such a matching exists.
One could then decide, in polynomial time, the 3-partitionability of any set X .
Since the decision version of 3-PARTITION is NP-Hard, then there is no such
algorithm unless P = NP . ��

6 Conclusion/Perspectives

We considered the influence of the energy model on the computational complex-
ity of RNA folding with general pseudoknots. In the simplest base-pair model,
the problem is exactly equivalent to finding a maximal weighted matching in
the graph of compatible positions, and can be solved in Θ(n3) [17]. By contrast,
it was previously established that the more expressive nearest-neighbor model
made the problem NP-Hard [1,12]. We completed this result by showing that
this problem is actually inapproximable within any ratio. Turning to a less ex-
pressive – yet realistic – stacking energy model, we have showed that, although
NP-hard, the problem could be approximated in polynomial time, at least up to
a 1

5 approximation ratio.

332 S. Sheikh, R. Backofen, and Y. Ponty

Quite nicely, a similar approach could be used to refine the computational
complexity of RNA-RNA interaction prediction. Already proven NP-complete
by Alkan et al [2], it can be verified that our approximation algorithm achieves
the same ratio for RNA-RNA interactions. Furthermore, our NP-hardness and
inapproximability results consider bi-partite strings, for which an algorithm for
the RNA-RNA interaction problem, suitably parameterized, would yield the
same matching as an algorithm for RNA folding with general pseudoknots.

These results show a difference in essence between the nearest-neighbor and
the stacking models, which could serve as a starting point for a design of practical
(approximation) algorithms for the stacking version of the problem. To that
purpose, we plan to complement this study by investigating the existence of a
polynomial-time approximation scheme for the problem. Another direction for
complementing this study would consider the impact of the energy model on the
parameterized-complexity of the problem.

Acknowledgement. This work was supported by the French ANR MAGNUM
ANR 2010 BLAN 0204 grant (YP) and by an INRIA Postdoc Program (SS).

References

1. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure pre-
diction with pseudoknots. Discrete Appl. Math. 104(1-3), 45–62 (2000)

2. Alkan, C., Karakoç, E., Nadeau, J.H., Şahinalp, S.C., Zhang, K.: RNA-RNA Inter-
action Prediction and Antisense RNA Target Search. In: Miyano, S., Mesirov, J.,
Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS
(LNBI), vol. 3500, pp. 152–171. Springer, Heidelberg (2005)

3. Ashley, M.V., Berger-Wolf, T.Y., Chaovalitwongse, W., Dasgupta, B., Khokhar, A.,
Sheikh, S.: On Approximating an Implicit Cover Problem in Biology. In: Goldberg,
A.V., Zhou, Y. (eds.) AAIM 2009. LNCS, vol. 5564, pp. 43–54. Springer, Heidelberg
(2009)

4. Bindewald, E., Kluth, T., Shapiro, B.A.: Cylofold: secondary structure prediction
including pseudoknots. Nucleic Acids Research 38(suppl. 2), W368–W372 (2010)

5. Bon, M.: Prédiction de structures secondaires d’ARN avec pseudo-noeuds. Ph.D.
thesis, Ecole Polytechnique (September 2009)

6. Cary, R.B., Stormo, G.D.: Graph-theoretic approach to RNA modeling using com-
parative data. In: Proceedings International Conference on Intelligent Systems for
Molecular Biology, vol. 3, pp. 75–80 (1995)

7. Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling un-
der resource constraints. SIAM Journal on Computing 4(4), 397–411 (1975)

8. Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., Eddy, S.R.: Rfam: an
RNA family database. Nucleic Acids Research 31(1), 439–441 (2003)

9. Ieong, S., Kao, M.-Y., Lam, T.W., Sung, W.-K., Yiu, S.-M.: Predicting RNA sec-
ondary structures with arbitrary pseudoknots by maximizing the number of stack-
ing pairs. Journal of Computational Biology 10(6), 981–995 (2003)

10. Jiang, M.: Approximation algorithms for predicting RNA secondary structures
with arbitrary pseudoknots. IEEE/ACM Trans. Comput. Biology Bioinform. 7(2),
323–332 (2010)

Energy Models and RNA Folding with Pseudoknots 333

11. Liu, C., Song, Y., Shapiro, L.: RNA Folding Including Pseudoknots: A New Param-
eterized Algorithm and Improved Upper Bound. In: Giancarlo, R., Hannenhalli, S.
(eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp. 310–322. Springer, Heidelberg
(2007)

12. Lyngsø, R.B., Pedersen, C.N.: RNA pseudoknot prediction in energy-based models.
J. Comput. Biol. 7(3-4), 409–427 (2000)

13. Lyngsø, R.B.: Complexity of Pseudoknot Prediction in Simple Models. In: Dı́az,
J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142,
pp. 919–931. Springer, Heidelberg (2004)

14. Nussinov, R., Jacobson, A.: Fast algorithm for predicting the secondary structure
of single-stranded RNA. Proc. Natl. Acad. Sci. U S A 77, 6903–6913 (1980)

15. Reidys, C.M., Huang, F.W.D., Andersen, J.E., Penner, R.C., Stadler, P.F., Nebel,
M.E.: Topology and prediction of RNA pseudoknots. Bioinformatics 27(8), 1076–
1085 (2011)

16. Rivas, E., Eddy, S.: A dynamic programming algorithm for RNA structure predic-
tion including pseudoknots. J. Mol. Biol. 285, 2053–2068 (1999)

17. Tabaska, J.E., Cary, R.B., Gabow, H.N., Stormo, G.D.: An RNA folding method
capable of identifying pseudoknots and base triples. Bioinformatics 14(8), 691–699
(1998)

18. Theis, C., Janssen, S., Giegerich, R.: Prediction of RNA Secondary Structure In-
cluding Kissing Hairpin Motifs. In: Moulton, V., Singh, M. (eds.) WABI 2010.
LNCS, vol. 6293, pp. 52–64. Springer, Heidelberg (2010)

19. Yang, H., Jossinet, F., Leontis, N., Chen, L., Westbrook, J., Berman, H., West-
hof, E.: Tools for the automatic identification and classification of rna base pairs.
Nucleic Acids Research 31(13), 4250–4263 (2003)

20. Zhao, J., Malmberg, R., Cai, L.: Rapid ab initio prediction of RNA pseudoknots
via graph tree decomposition. Journal of Mathematical Biology 56, 145–159 (2008)

Finding Longest Common Segments

in Protein Structures in Nearly Linear Time

Yen Kaow Ng1, Hirotaka Ono2, Ling Ge3, and Shuai Cheng Li4,�

1 Department of Computer Science, Faculty of Information and Communication
Technology, Universiti Tunku Abdul Rahman, Malaysia

ykng@utar.edu.my
2 Department of Economic Engineering, Faculty of Economics,

Kyushu University, Japan
hirotaka@en.kyushu-u.ac.jp

3 College of Business, University of Massachusetts Dartmouth,
North Dartmouth, USA

lge@umassd.edu
4 Department of Computer Science, City University of Hong Kong, Hong Kong

shuaicli@cityu.edu.hk

Abstract. The Local/Global Alignment (Zemla, 2003), or LGA, is a
popular method for the comparison of protein structures. One of the
two components of LGA requires us to compute the longest common
contiguous segments between two protein structures. That is, given two
structures A = (a1, . . . , an) and B = (b1, . . . , bn) where ak, bk ∈ R3, we
are to find, among all the segments f = (ai, . . . , aj) and g = (bi, . . . , bj)
that fulfill a certain criterion regarding their similarity, those of the maxi-
mum length. We consider the following criteria: (1) the root mean square
deviation (RMSD) between f and g is to be within a given t ∈ R; (2) f
and g can be superposed such that for each k, i ≤ k ≤ j, ‖ak−bk‖ ≤ t for
a given t ∈ R. We give an algorithm of O(n log n + nl) time complexity
when the first requirement applies, where l is the maximum length of
the segments fulfilling the criterion. We show an FPTAS which, for any
ε ∈ R, finds a segment of length at least l, but of RMSD up to (1+ε)t, in
O(n log n+n/ε) time. We propose an FPTAS which for any given ε ∈ R,
finds all the segments f and g of the maximum length which can be
superposed such that for each k, i ≤ k ≤ j, ‖ak−bk‖ ≤ (1+ε)t, thus ful-
filling the second requirement approximately. The algorithm has a time
complexity of O(n log2 n/ε5) when consecutive points in A are separated
by the same distance (which is the case with protein structures).

1 Introduction

Scoring functions for the purpose of comparing the similarity between two given
3-dimensional structures are commonly used in protein science. They serve at
least two important functions in protein structure prediction: (1) for the evalua-
tion of constructed models against the native structures, and (2) for the selection

� Corresponding author.

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 334–348, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Finding Longest Common Segments in Protein Structures 335

of consensus structures out of a collection of similar structures [13,15]. A tra-
ditional candidate for such scoring functions is the root mean square deviation
(RMSD) [8,9]. However, the use of the RMSD for the first purpose suffers from a
few shortcomings [2,7,3]. For example, the RMSD measure tends to overestimate
the difference between two structures when only a small part of the structure
differs, but differs very significantly. The significance of RMSD values also differs
on structures of different lengths, since it is in general less likely, and therefore
more significant, for longer structures to have a low RMSD.

These shortcomings have resulted in the proposal of other similarity mea-
sures [6,10,12]. In this paper we are interested in the Local/Global Alignment
(LGA) [16], a method for protein model comparison which has become very pop-
ular in the protein structure prediction community. The LGA method consists of
two computations: the Global Distance Test (GDT) and the Longest Continuous
Segments (LCS). The GDT can be computed in O(n7) time using methods from
algorithmic geometry [4], and it also allows a practical PTAS [11]. Less is known
of the computational complexity of the LCS. To our best knowledge, no algo-
rithm with theoretical bounds (such as runtime complexity and approximation
ratio) has been published on the LCS.

Given two protein structures A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn)
where the elements ak, bk ∈ R3, the LCS uses the longest common contiguous
residues of A and B with an RMSD less than or equal to a cutoff threshold t,
in evaluating how similar the structures are. Hence the LCS requires us to find
all the segments f = (ai, ai+1, . . . , aj) and g = (bi, bi+1, . . . , bj), 1 ≤ i ≤ j ≤ n,
of the longest length where the RMSD between f and g is within t. A trivial
algorithm is to enumerate all O(n2) segments and analyze each in O(n) time,
hence requiring O(n3) time. We show in this paper that the problem can be
solved in O(n log n+nl) time, where l is the length of the longest segments that
fulfill the criterion. Furthermore, for any ε ∈ R one can obtain, in O(n log n+n/ε)
time, a segment of length at least l but with an RMSD of up to (1 + ε)t.

An alternative formulation of the LCS is to find f = (ai, ai+1, . . . , aj) and
g = (bi, bi+1, . . . , bj), 1 ≤ i ≤ j ≤ n, of the longest length that can be superposed
such that for each k, i ≤ k ≤ j, ‖ak − bk‖ ≤ t for a given t ∈ R. The O(n7)
algorithm for the GDT mentioned above can be adapted to solve this problem.
However, the high runtime would render the algorithm impractical for routine
use in protein structure prediction. We show that for protein structures, where
consecutive residues are separated by the same distance, there is an FPTAS of
O(n log2 n/ε5) time complexity, which computes an approximate solution where
for each k, i ≤ k ≤ j, ‖ak− bk‖ ≤ (1+ ε)t, for any specified ε ∈ R. Theoretically,
this algorithm demonstrates a non-trivial use of a natural generalization of the
radial pair (or radial axis) introduced in [11].

2 Preliminary

In this paper R denotes the set of all rotation matrices, and T denotes the set of
all translation vectors. A protein structure A is modeled as a sequence of three

336 Y.K. Ng et al.

dimensional points, denoted as (a1, a2, . . . , an), where ai ∈ R3 for 1 ≤ i ≤ n. For
integers i, j, 1 ≤ i ≤ j ≤ n, A[i, j] denotes the segment (ai, ai+1, . . . , aj). For a
segment f = (ai, ai+1, . . . , aj), S(f) denotes the set {ai, ai+1, . . . , aj}. We write
f ⊆ A iff f = A[i, j] for some i, j, 1 ≤ i ≤ j ≤ n.

Given two structures A = (a1, a2, . . . , an), B = (b1, b2, . . . , bn), the RMSD of
A and B is defined to be

RMSD(A,B) = min
R∈R,T∈T

√∑n
i=1 ‖Rai − bi − T ‖2

n
.

For A = (a1, . . . , an), B = (b1, . . . , bn), and i, j, 1 ≤ i ≤ j ≤ n, we call B[i, j]
the corresponding segment of A[i, j].

For a given t ∈ R, we define a longest contiguous segment of A and B under
the RMSD, denoted LCSRMSD(A,B, t), to be a segment of the longest length
among all A[i, j], 1 ≤ i ≤ j ≤ n, which fulfills RMSD(A[i, j], B[i, j]) ≤ t.
ALCSRMSD(A,B, t) denotes the set of all LCSRMSD(A,B, t).

In this paper we also define a longest contiguous segment of A and B under
the bottleneck distance, LCSdist(A,B, t), to be a segment of the longest length
among all f ⊆ A where under some superposition, each residue ak in f fulfills
‖ak − bk‖ ≤ t. ALCSdist(A,B, t) denotes the set of all LCSdist(A,B, t).

Solving ALCSRMSD and solving ALCSdist require different strategies for a few
reasons. In solving ALCSRMSD, the RMSD can be very efficiently computed due
to the existence of efficient closed-form solutions [8,1,14]. However, for ALCSdist,
approximations have to be considered since we know of no practically efficient
way to exactly determine if there is a superposition that matches corresponding
points in two segments to within a threshold distance. As far as we know, the
algorithm closest to solving this problem exactly has a high runtime of O(n7) [4].

On the other hand, ALCSdist is easier to deal with in the following way. If the
residues in two corresponding segments cannot be matched to within distance t,
all the segments which extend these segments will not be matchable to within
distance t as well. These extended segments need not be evaluated when solving
ALCSdist. A similar strategy cannot be used in the case of ALCSRMSD, since
an extension of segments f and g where RMSD(f, g) > t may have an RMSD
within t, due to the 1/n factor in the RMSD measure.

3 Algorithms for ALCSRMSD

As mentioned, closed form solutions exist for computing the RMSD. We use the
well-known Kabsch algorithm, which has an O(n) time complexity [8]. Using the
algorithm, a simple way to compute ALCSRMSD(A,B, t) is possible: Compute
the RMSDs of all the contiguous segments, of all possible lengths, and from the
segments with RMSDs not exceeding t, obtain those of the longest length. Since
there are only O(n2) segments in total, this completes in O(n3) time.

For our algorithms, we first claim the following.

Lemma 1. There exists an algorithm which, given A = (a1, . . . , an) and B =
(b1, . . . , bn), completes a pre-computation step in O(n) time and thereafter, for
any i, j, 1 ≤ i ≤ j ≤ n, computes RMSD((ai, . . . , aj), (bi, . . . , bj)) in O(1) time.

Finding Longest Common Segments in Protein Structures 337

Proof. We explain how each of the steps in the Kabsch algorithm can be com-
puted in O(1) time through the use of pre-computed values. Given two segments
P = (a1, a2, . . . , an) and Q = (b1, b2, . . . , bn), the Kabsch algorithm for comput-
ing RMSD(P,Q) consists of the steps (S1)-(S5) below. Here, each coordinate is
treated as a 3-dimensional vector, while P and Q are treated as n× 3 matrices.

(S1) Compute the centroids of P and Q respectively.
(S2) Translate P or Q so that their centroids coincide.
(S3) Compute PTQ. This gives us a 3× 3 matrix C.
(S4) Compute the singular value decomposition, V SWT say, of C.
(S5) RMSD(P,Q) is then computed in O(1) time from V , S, and W .
For i, 1 ≤ i ≤ n, we pre-compute the values
– Ai =

∑i
k=1 ak.

– Bi =
∑i

k=1 bk.

– su,vi =
∑i

k=1 a
u
kb

v
k for each u, v, 1 ≤ v, u ≤ 3, where auk denotes the u-th

component of ak, and bvk denotes the v-th component of bk.
It is clear that this pre-computation can be completed in O(n) time. Now,

given the segments P ′ = P [i, j] and Q′ = Q[i, j] where 1 ≤ i ≤ j ≤ n,

– The centroid of P ′ is
∑j

k=i ak/(j − i+ 1). This can be computed as (Aj −
Ai−1)/(j− i+1). The centroid of Q′ can be computed similarly. Hence (S1) can
be computed in O(1) time.

– The (u, v)-th component of P ′TQ′ is
∑j

k=i a
u
kb

v
k. This can be computed as

su,vj − su,vi−1. Hence (S3) can be computed in O(1) time.
– To compute step (S2), it suffices that we reflect the translation’s effect in

the matrix C in step (S3). The (u, v)-th element of C′ = P ′TQ′ is
∑j

k=i a
u
kb

v
k.

Suppose P ′ is to be translated from its original coordinates of P by (σ1, σ2, σ3).
The (u, v)-th element of C′ is then

j∑
k=i

(auk − σu)bvk =

j∑
k=i

aukb
v
k − σu

j∑
k=i

bvk = su,vj − su,vi−1 − σu(Bv
j −Bv

i−1).

where Bv
j denotes the v-th component of Bj .

Finally, (S4) is traditionally solved in O(1) time using an analytical approach,
that is, by solving the resultant cubic equation from det(C − λI) = 0.

Table 1 shows an algorithm for computing ALCSRMSD(A,B, t). By Lemma 1,
steps (2.2)-(2.2.2) can be computed in O(n) time. Since they are repeated exactly
n times, the algorithm completes in O(n2) time.

We now show an algorithm to estimate l, the length of the segments in
ALCSRMSD(A,B, t). Our estimation � of l will fulfill � ≤ l ≤ 6�. This will allow
us to restrict the values of l to examine in step (2) in the algorithm in Table 1
to only �, � + 1, . . ., 6�, thus bringing that algorithm’s runtime to O(nl). Our
algorithm for finding � is presented in Table 2. To show its correctness, we first
state the following lemma.

Lemma 2. For any two structures P and Q of length l, if RMSD(P,Q) ≤ t
for t ∈ R, then for any x, 1 ≤ x < l, either RMSD(P [1, x], Q[1, x]) ≤ t or
RMSD(P [x+ 1, l], Q[x+ 1, l]) ≤ t.

338 Y.K. Ng et al.

Table 1. Algorithm for computing ALCSRMSD(A,B, t)

Input: Structures A = (a1, . . . , an), B = (b1, . . . , bn), and RMSDthreshold t ∈ R.
Output: ALCSRMSD(A,B, t).

(1) Set ALCSl ← ∅ for l from 1 to n.
(2) For l ← 1 to n (l specifies the length of the segments to examine),
(2.2) For i ← 1 to n− l + 1, (i specifies the position to obtain the segment)
(2.2.1) If RMSD(A[i, i+ l − 1], B[i, i+ l − 1]) ≤ t,
(2.2.2) Add A[i, i+ l − 1] to ALCSl.
(3) Find maximum � where ALCS	 	= ∅ and return ALCS	.

Proof. Let R and T be such that

RMSD(P,Q) =

√∑l
i=1 ‖Rai − bi − T ‖2

l
.

By definition,

xRMSD(P [1, x], Q[1, x])2 ≤
x∑

i=1

‖Rai − bi − T ‖2, (1)

and

(l − x)RMSD(P [x+ 1, l], Q[x+ 1, l])2 ≤
l∑

i=x+1

‖Rai − bi − T ‖2. (2)

Summing (1) and (2) gives

xRMSD(P [1, x], Q[1, x])2+(l−x)RMSD(P [x+1, l], Q[x+1, l])2 ≤
l∑

i=1

‖Rai− bi−T‖2.

Dividing both sides by l, we have

1

l

(
xRMSD(P [1, x], Q[1, x])2 + (l − x)RMSD(P [x+ 1, l], Q[x+ 1, l])2

)

≤
∑l

i=1 ‖Rai − bi − T ‖2
l

= RMSD(P,Q)2 ≤ t2. (3)

Now suppose both RMSD(P [1, x], Q[1, x]) > t and RMSD(P [x + 1, l], Q[x +
1, l]) > t. Then

1

l

(
xRMSD(P [1, x], Q[1, x])2 + (l − x)RMSD(P [x+ 1, l], Q[x+ 1, l])2

)
>

1

l

(
xt2 + (l − x)t2

)
= t2,

which contradicts (3).

Finding Longest Common Segments in Protein Structures 339

Table 2. Algorithm for estimating the length of the elements in ALCSRMSD(A,B, t)

Input: Structures A = (a1, . . . , an), B = (b1, . . . , bn), and threshold t ∈ R.
Output: An estimation � of the length l of the elements in ALCSRMSD(A,B, t),

where � ≤ l ≤ 6�.
(1) Set � ← n/2�.
(2) Partition A into n/�� + 1 contiguous segments of length �, P 	

1 , P
	
2 , . . . say.

(3) (The last segment may not have the same length as the other segments.)
(4) For each i, 1 ≤ i ≤ n/�� − 2, find if there exists either
(4.1) (i) P ′ ⊆ P 	

i P
	
i+1 ending in P 	

i+1 (i.e. P 	
i+1 is the suffix of P ′), or

(4.2) (ii) P ′ ⊆ P 	
i+2P

	
i+3 beginning in P 	

i+2 (i.e. P 	
i+2 is the prefix of P ′),

(4.3) with RMSD(P ′, Q′) ≤ t, where Q′ ⊆ B is the corresponding segment of P ′.
(5) If either (i) or (ii) is found, output � and terminate program.
(6) Else, let � ← �/2�. If � ≥ 2, repeat from (2). Otherwise, output �.

If a segment P ⊆ A of length l has RMSD(P,Q) ≤ t (where Q ⊆ B is its
corresponding segment), then P ′ in step (4) must exist when � ≤ (l + 1)/3,
because then, P necessarily spans two consecutive segments, P 	

i+1 and P 	
i+2 say,

entirely. Then, by Lemma 2, either the segment P ′ described by (4.1), or that
described by (4.2) must fulfill the RMSD requirement.

If (4) is unfulfilled prior to �, then no segment of length l ≥ 3(2�)− 1 = 6�− 1
which fulfills the RMSD requirement exists. Hence, l < 6�−1 ≤ 6�. On the other
hand, if (4) is fulfilled at �, then there exists a segment of length at least � which
fulfills the RMSD requirement. The correctness of the algorithm follows.

The runtime of the algorithm is as follows. By Lemma 1, steps (4)-(4.3) can
be computed in O(n) time. Since � is halved in each iteration, these steps are
repeated O(log n) times, and the algorithm completes in O(n log n) time. Hence,

Theorem 1. There is an algorithm which, given structures A = (a1, . . . , an),
B = (b1, . . . , bn), and t ∈ R, computes ALCSRMSD(A,B, t) in O(n logn + nl)
time, where l is the length of the segments in ALCSRMSD(A,B, t).

With the approximation �, we can very efficiently obtain a segment of at least
length l, but compromises on the threshold t. First, for structuresA = (a1, . . . , an)
and B = (b1, . . . , bn), we define

RSD(A,B) = minR∈R,T∈T
√∑n

i=1 ‖Rai − bi − T ‖2.

It is clear that for P ⊆ A andQ ⊆ B, RSD(P,Q) ≤ RSD(A,B). Since RSD(A,B)
can be computed from RMSD(A,B), a similar lemma as Lemma 1 can be ob-
tained for RSD. These properties give us the following result.

Lemma 3. There is an algorithm of O(n) time complexity which, given struc-
tures A, B of length n, and threshold x ∈ R, computes a segment of the longest
length among all P ⊆ A with RSD(P,Q) ≤ x, where Q ⊆ B is the corresponding
segment of P .

340 Y.K. Ng et al.

Proof. Table 3 shows an algorithm which, given a threshold x ∈ R, computes
a longest segment P ⊆ A fulfilling RSD(P,Q) ≤ x, where Q ⊆ B is the corre-
sponding segment of P .

Table 3. Algorithm for computing a longest segment of RSD within x

Input: Structures A = (a1, . . . , an), B = (b1, . . . , bn), threshold x ∈ R.
Output: A segment P ⊆ A of the longest length fulfilling RSD(P,Q) ≤ x, where

Q ⊆ B is the corresponding segment of P .

(1) Pre-compute values for computing RSD in O(1) time.
(2) Let pos ← 1, l ← 1, and maxlen← 1.
(3) Let P ← A[pos, pos+ l] and Q ← B[pos, pos+ l].
(4) If RSD(P,Q) ≤ x and l ≥ maxlen (A longer segment is found.)
(4.1) Let LCSRSD ← P and maxlen← l + 1.
(4.2) Let l ← l + 1. (Extend)
(4.3) Repeat from (3).
(5) Otherwise, (RSD(P,Q) > x)
(5.1) Let pos ← pos+ 1 and l ← maxlen− 1. (Move)
(5.2) Repeat from (3).
(At any point if pos+ l > n, output LCSRSD and terminate program.)

The algorithm makes use of the fact that if a segment P results in a larger
RSD than x, then all the segments which extend P will result in RSDs larger
than x. As a result, at any point in the algorithm, if LCSRSD is set as A[i, j],
then for all i′ < i, every A[i′, j′] where j′ > j will result in an RSD larger than
x (hence need not be evaluated). The correctness of the algorithm is clear from
this analysis.

Since there can be at most O(n) Move and Extend steps, step (4) is per-
formed at most O(n) times. Each computation of the RSD requires O(1) time,
given the pre-computation in step (1), which requires O(n) time. Hence the time
complexity of the algorithm is O(n).

We use the algorithm in Lemma 3 to find, for each of k different values of d from
� to 6� − 5	

k (that is, d = �, � + 5	
k , � +

10	
k , . . . , 6� − 5	

k), a segment P ⊆ A of

RSD(P,Q) ≤ t
√
d+ 5	

k and of length at least d. We select the longest of these

segments.
When d ≤ l ≤ d + 5	

k , a segment of length at least l will be found, since for
any segment P ∈ ALCSRMSD(A,B, t),

RMSD(P,Q) ≤ t⇒ RSD(P,Q) ≤ t
√
l ≤ t

√
d+

5�

k
.

Finding Longest Common Segments in Protein Structures 341

Since we select the longest segment P which fulfills the condition, our segment
has length d ≥ l. Furthermore,

RMSD(P,Q) ≤ RSD(P,Q)√
d

≤
t
√
d+ 5	

k√
d

≤
t
√
d+ 5d

k√
d

≤ t

√
1 +

5

k
≤ t(1 +

5

2k
)

Let ε = 5/2k, then RMSD(P,Q) ≤ (1 + ε)t.

Theorem 2. There is an algorithm of O(n log n + n
ε) time complexity which,

given structures A, B of length n, threshold t ∈ R, and precision ε ∈ R, com-
putes a segment P ⊆ A of length at least l (i.e. the length of the elements in
ALCSRMSD(A,B, t)) with RMSD(P,Q) ≤ (1 + ε)t, where Q ⊆ B is the corre-
sponding segment of P .

4 FPTAS for ALCSdist

We first show an FPTAS of O(n2 logn/ε) time complexity for ALCSdist (A,B, t+
εt) on general structures. This will help in explaining the workings of the nearly
linear time FPTAS. As mentioned, the computation of ALCSdist(A,B, t) is com-
plicated by the lack of an efficient algorithm to compute a superposition that
matches corresponding points in a segment to within a given bottleneck thresh-
old t. We use ideas from an algorithm which computes such a superposition
efficiently, but compromises on the threshold requirement of t [11]. Instead of
ALCSdist(A,B, t), the algorithm computes ALCSdist(A,B, t + εt) for a variable
ε ∈ R which affects its runtime.

To decide if two segments f ⊆ A and g ⊆ B are matchable, one can choose
ai and aj in f , and first transform f under a transformation T which brings ai
and aj to within distance t from bi and bj respectively. Then, f is rotated along
the axis formed by Tai and Taj, to see if there exists an angle which brings all
corresponding points in f and g to within distance t. Some care is needed in the
choice of T — an incorrect T may result in fewer matchable points. However,
short of an analytically method to determine the correct T , we exhaustively
try out every T that is formed through possible positions of Tai and Taj in a
discretized space. The discretization may result in the loss of the optimal T . To
address this issue, we carefully select ai and aj to fulfill the property of a and
a′ below.

Definition 1. Given a finite set of points S, two points a, a′ ∈ S, and positive
integer k, we write 〈[a] k→ a′〉S iff max{‖a− a′′‖ | a′′ ∈ S} ≤ k‖a− a′‖. We call
a and a′ a k-radial pair, and refer to a as its pivot. (Note that 〈[a] k→ a′〉S does
not imply 〈[a′] k→ a〉S.) We also write 〈[a] 1→ a′〉S as 〈[a]a′〉S , and refer to such
a, a′ as simply a radial pair.

The k-radial pair naturally generalizes the radial pair in [11]. The following result
applies to k-radial pairs.

342 Y.K. Ng et al.

Lemma 4. Given a set of points S, rigid transformations T, T , and ai, aj ∈ S
where 〈[ai] k→ aj〉S, if ‖Tai − Tai‖ ≤ δ and ‖Taj − Taj‖ ≤ δ, then there exists
a rotation R about the axis through the points Tai and Taj, such that ∀x ∈ S,
‖RTx−Tx‖ ≤ (2k + 1)δ.

Proof. Let p1, p2 be two arbitrary points where ‖p1−Ta1‖ ≤ δ, ‖p2−Ta2‖ ≤ δ
and ‖p1− p2‖ = ‖a1− a2‖. To prove the hypothesis it suffices that we show that
there exists a transformation T ′ where T ′Ta1 = p1, T

′Ta2 = p2, and ∀a ∈ S,
‖T ′Ta − Ta‖ ≤ (2k + 1)δ. (That is, to show the hypothesis with T and R
as stated, one only needs to further note that any transformation T ′T can be
decomposed into RT .)

We consider T ′ as the composition of two transformations, t and r, as follows:
– t is the translation where tTa1 = p1.
– r is the rotation about the axis through a1, orthogonal to the plane defined

by p1, tTa2 and p2, with rotation angle α = ∠(tTa2 p1 p2).

Clearly rtTa1 = p1 and rtTa2 = p2.
Now ∀a ∈ S, ‖Ta − tTa‖ = ‖t‖ = ‖Ta1 − p1‖ ≤ δ. Since ‖Ta2 − p2‖ ≤ δ,

we have ‖tTa2 − p2‖ ≤ 2δ. Since 〈[a1] k→ a2〉S , ∀a ∈ S,
(1) ‖a1 − a‖ ≤ k‖a1 − a2‖,
(2) ∠tTa a1 rtTa = α.
By (1) and (2), we have ‖tTa − rtTa‖ ≤ k‖tTa2 − p2‖ ≤ 2kδ. Then, since

‖tTa−Ta‖ ≤ δ, by triangle inequality we have ‖rtTa−Ta|| ≤ (2k + 1)δ. Let
T ′ = rt and we are done.

By Lemma 4, if T introduces an error of atmost δ to Tai and Taj with respect to an
optimal transformationT , there will be a rotation such that the error introduced
by T in each of the other x ∈ S is no larger than (2k+1)δ. By using a discretization
of unit size δ = εt/(2k+1), the possible error introduced in each point is at most
εt, as allowed for our approximation algorithm. Using this discretization, there are
O(k5/ε5) possible combinations for the positions of Tai and Taj, each giving rise
to a rotation axis. To see this, note the following. Since we require ‖ai − bi‖ ≤ t
and ‖aj − bj‖ ≤ t, it suffices that we examine coordinates of ai and aj which
fulfill these conditions. By Lemma 4, we require a discretization of resolution at
least εt/(2k + 1). We first discretize a sphere of radius (1 + ε

2k+1)t centered at qi
using cubes of side length εt/(2k + 1). Each cube corresponds to a grid point in

Finding Longest Common Segments in Protein Structures 343

the discretized space. This gives us a total of O(k3/ε3) grid points to examine for
ai. Once ai is fixed at a grid point, all the possible positions for aj must be on a
sphere cap centered at ai with radius ‖ai − aj‖, and are to be contained in the
sphere of radius (1+ ε

2k+1)t centered at bj. If the two regions do not overlap, then
clearly f and g are not matchable, and we are done. If the two regions overlap,
then the overlap has an area of O((1 + ε

2k+1)
2t2). We discretize this area with

grids of resolution εt/(2k + 1), resulting in O(k2/ε2) grid points to evaluate for
aj . Hence there are O(k5/ε5) possible combinations for the positions of ai and aj ,
each giving rise to a rotation axis.

For each rotation axis, the task is to examine if there exists a rotation R
such that for each ai in f , ‖Rai − bi‖ ≤ t. This can be done, as follows, in
O(l log l) time, where l is the length of f . We first find, for each ak in f , the
pair of rotation angles which brings ak into and out of distance t from bk. Each
of these pair of angles [p, q] gives us an interval where two corresponding points
are matched. (If p > q, the interval is broken into two parts [p, 2π) and [0, q].)
We construct a tree out of these intervals according to a suggestion in [5] (see
Problem 14.1). One construction of the data structure is as follows. A red-black
tree T is contructed, with each interval forming two of its nodes — one node
formed out of the interval’s smallest value and one out of its largest value. The
label l(v) of each node v is the value from which the node is formed. All the
nodes in the left subtree of a node v has a label smaller than l(v), while all
the nodes in the right subtree of a node v has a label larger than l(v). That is,
each node represents a point in [0, 2π) when the number of interval overlaps may
change — an in-order traversal of T would enumerate these points in increasing
order. We keep a value inorout(v) for each node v, where

inorout(v) =

{
1 if v is formed out of an interval’s smallest value,
−1 if v is formed out of an interval’s largest value.

Let v1, v2, . . . be an in-order traversal of T , then overlap(vj) =
∑j

i=1 inorout(vi)
gives us the number of overlaps at the point represented by vj .

To be able to compute the maximum of overlap(v) for each node v ∈ T
efficiently, each v is further augmented with the following values: (1) sum(v) =∑

u∈T (v) inorout(u), where T (v) is the subtree rooted at v; (2) maxsum(v),

which is defined as follows. Suppose an in-order traversal of T (v) is v1, v2, . . . , vk.

Then, maxsum(v) = max{
∑j

i=1 inorout(vi) | 1 ≤ j ≤ k}.
For a node v ∈ T , let left(v) denote the left child of v and right(v) denote

the right child of v. Then, sum(v) for each node v can be computed in O(1) time
with sum(v) = sum(left(v))+inorout(v)+sum(right(v)), whereasmaxsum(v)
can be computed in O(1) time with maxsum(v) = max{maxsum(left(v)),
sum(left(v)) + inorout(v), sum(left(v)) + inorout(v) + maxsum(v)}. To find
the maximum number of overlaps in the intervals, it suffices that we return
maxsum(root), which can be done in O(1) time. If maxsum(root) = l, then
there exists an interval where all l points are matched. Inserting/removing an
interval into T requires the insertion/removal of two nodes, each which involves
modification to O(log |T |) nodes to maintain the red-black tree property. Hence,

344 Y.K. Ng et al.

the tree can be constructed in O(l log l) time. (In Section 4.1, we will further
make use of the O(log l) update time of the tree.) The lemma below follows.

Lemma 5. Given two segments f = (a′1, . . . , a
′
l), g = (b′1, . . . , b

′
l), and a′i, a

′
j ∈

S(f) such that 〈[a′i] k→ a′j〉S(f), whether there exists a transformation T where

(∀m, 1 ≤ m ≤ l)[‖Ta′m − b′m‖ ≤ (1 + ε)t] can be decided in O(
(
k
ε

)5
l log l) time.

Our approximation algorithm for ALCSdist(A,B, t) is in Table 4. The algorithm
maintains a set ALCS of all the currently found longest contiguous segments, as
well as their length, maxlen. The algorithm examines each pair A[i, j], B[i, j] in
the following manner, starting with the pair A[1, 2] and B[1, 2].

- If a pair A[i, j], B[i, j] is matchable, A[i, j] is recorded in ALCS, and the
algorithm proceeds to examine A[i, j+1] and B[i, j+1] (Extend the segment).

- Otherwise, the algorithm will proceed to examine A[i+1, i+maxlen], B[i+
1, i+maxlen] (Move the position of the segment to examine by a point).

Table 4. Algorithm for computing threshold approximation to ALCSdist(A,B, t)

Input: Structures A = (a1, . . . , an), B = (b1, . . . , bn), threshold t ∈ R, and
precision ε ∈ R.

Output: ALCSdist(A,B, t+ εt).

(1) Let pos ← 1, l ← 1, maxlen← 2, and ALCS← ∅.
(2) Let f ← A[pos, pos+ l] and g ← B[pos, pos+ l].
(3) Find a, a′ ∈ S(f) s.t. 〈[a]a′〉S(f). (Find radial pair)
(4) If f and g are matchabe by t and ε (Computed via Lemma 5)
(4.1) ((4.2)-(4.3) simply adds segment A[pos, pos+ l] to ALCS)
(4.2) If l + 1 = maxlen, add A[pos, pos+ l] into ALCS.
(4.3) Otherwise, let ALCS← {A[pos, pos+ l]} and maxlen← l + 1.
(4.4) Let l ← l + 1. (Extend)
(4.5) Repeat from (2).
(5) Otherwise, (f and g are not matchable)
(5.1) Let pos ← pos+ 1 and l ← maxlen− 1. (Move)
(5.2) Repeat from (2).
(At any point if pos+ l > n, output ALCS and terminate program.)

The algorithm makes use of the fact that if a segment f cannot be matched
under the threshold t and ε, then all the segments which extend f are not
matchable under the same threshold. As a result, at any point in the algorithm,
if A[i, j] is added to ALCS, then for all i′ < i, (1) all A[i′, j′] where j′ > j are not
matchable (hence need not be evaluated), while (2) all matchable A[i′, i′+(j−i)]
are in ALCS. The correctness of the algorithm is clear from this analysis.

Since there can be at most O(n) Move and Extend steps, step (4) is per-
formed at most O(n) times. Hence the total time required for the step is
O(n2 logn/ε5). To find a radial pair in S(f) in step (3), we use an arbitrary
point in S(f) as a, and find from the remaining points in S(f) the furthest point

Finding Longest Common Segments in Protein Structures 345

from a. This operation takes O(l) time, and is carried out at most O(n) times
in the algorithm. Hence the O(n2 logn/ε5) term dominates the runtime.

Theorem 3. There is an algorithm of time complexity O(n2 logn/ε5) which
accepts two structures A, B, and a bottleneck distance t ∈ R as input, and
outputs ALCSdist(A, B, t+ εt).

4.1 Nearly Linear-Time FPTAS for ALCSdist on Protein Structures

The distances between consecutive points in a protein structure are the same (i.e.
3.8Å). This fact allows us to compute ALCSdist more efficiently. In this section we
assume the distance between consecutive points in the structure A = (a1, . . . , an)
to be the same, i.e. (∀i, 1 < i < n)[‖ai−1 − ai‖ = ‖ai − ai+1‖].

As in the discussion which leads to Lemma 5, given f = A[i, i + l − 1] and
g = B[i, i + l − 1], we can use the tree of intervals to compute if f and g are

matchable in O(
(
k
ε

)5
l log l) time. These trees can be reused, to compute if the

subsequent segments f ′ = A[i+1, i+ l] and g′ = B[i+1, i+ l] are matchable in

only O(
(
k
ε

)5
log l) time, provided that the same k-radial pair can be used. This

latter runtime is for the removal of one interval from, as well as the addition of
another interval to each tree constructed earlier, due to the removal of the point
ai and the addition of the point ai+l. As mentioned, this modification to the
tree structure requires O(log l) time. In order to exploit this lower runtime, our
algorithm will attempt to reuse the same k-radial pair in examining subsequent
segments.

Our algorithm first splits A into segments of maximal lengths, using the sub-
routine in Table 5. Its runtime is as follows. The subroutine uses 2-radial pairs in
computing whether segments are matchable. We examine the number of times
these 2-radial pairs are changed (i.e. when the condition in (4.2) is fulfilled)
throughout the computation for a segment of length l in Segments. Consider
how points are to be arranged in order that the fewest points are required be-
tween two subsequent changes in p. Since consecutive points are separated by an
equal distance, these points are necessarily arranged along a path of the short-
est distance between the boundaries of two concentric spheres, one of radius
‖p− pivot‖ and the the other 2‖p− pivot‖. That is, they are spread out along
a radial line from pivot. Applying this rule recursively, for a fixed number of
points, the condition in (4.2) is fulfilled most frequently when the points are
arranged along a straight line. In which case, the condition is fulfilled O(log l)
times. Each time it is fulfilled, O(l log l) time is required to recompute a tree of
intervals. Hence, O(l log2 l/ε5) time is required in total for these cases.

On the other hand, the condition in (4.2) fails for O(l) times. Whenever that
happens, O(log l) time is required to modify and O(1) time to examine each
tree of intervals, hence requiring a total runtime of O(l log l/ε5) for these cases.
The earlier O(l log2 l/ε5) runtime dominates. Since

∑
l∈{|s||s∈Segments} l = n, the

overall runtime complexity of the subroutine is O(n log2 n/ε5).
It is clear that any longest contiguous segment cannot span more than two

consecutive segments sr and sr+1 in Segments. It follows that a longest contigu-

346 Y.K. Ng et al.

Table 5. Subroutine for partitioning A into maximally matchable segments

Input: Structures A = (a1, . . . , an), B = (b1, . . . , bn), threshold t ∈ R, and
precision ε ∈ R.

Output: A partitioning of A into segments, where each partitioned segment A[i, j]
is matchable to B[i, j] but A[i, j + 1] is not matchable to B[i, j + 1].

(1) Let pos ← 1, l ← 1, Segments ← ∅, and r ← 0.
(2) Let f ← A[pos, pos+ l] and g ← B[pos, pos+ l].
(3) Let pivot ← apos and p ← apos+l.
(4) If f and g are matchable by t and ε, (Then, extend f as follows)
(4.1) Let l ← l + 1, f ← A[pos, pos+ l], and g ← B[pos, pos+ l].
(4.2) If the newly added point p′ in f has ‖p′ − pivot‖ > 2‖p− pivot‖
(4.3) Let p ← p′ (Hence changing the 2-radial pair)
(4.4) Repeat from (4).
(5) Else (f and g are not matchable. Start a new segment f)
(5.1) Let r ← r + 1, sr ← A[pos, pos+ l − 1] and add sr into Segments.
(5.2) Let pos ← pos+ l and l ← 1.
(5.3) Repeat from (2).
(At any point if pos+ l > n, output Segments and terminate program.)

ous segment must either start within a segment sr in Segments and end within
sr+1, or is exactly a segment in Segments. The algorithm in Table 6 accepts the
concatenation of two consecutive segments in Segments, A′ = srsr+1, as well as
its corresponding segment B′ ⊆ B as input, and computes ALCS(A′, B′, t+ εt).
The strategy used by the algorithm is similar to that in Table 4, except for its
use of 3-radial pairs instead of radial pairs. The correctness of the algorithm is
argued similarly. The pivot of the 3-radial pairs is set to the point in the center
of A′. This point is necessarily in every segment in ALCS(A′, B′, t + εt), since
any f ∈ ALCS(A′, B′, t+εt) must be as long as the longer of sr and sr+1. Hence,
the same pivot is used throughout the computation.

The runtime of the main routine is as follows. Steps (1)-(4.6) can be analyzed in
the same way as the subroutine in Table 5. These steps run in O(l log2 l/ε5) time.
Consider the number of times the condition in step (5.3) is fulfilled. If at any point
of time, p is set to a point of an index larger than that of pivot, the condition will
fail in all subsequent checks. Hence assume that p is always set to a point of a
smaller index than pivot. Suppose there are � consecutive points between pivot
and p at some point of time. Since consecutive points are at a fixed distance of
say, c apart, the distance between pivot and p is not more than c(�+ 1).

Consider the moment when the condition in step (5.3) is fulfilled, and a new
p is to be chosen. By our condition that consecutive points are separated by c

apart, there must exist a point at a distance at least c(+1)
3 , but no further than

c(+1)
3 + c from pivot. Hence, the point p′ chosen as the new p is no further than

c(+1)
3 + c from pivot. Observe that the distance from the pivot to the new p is

nearly one third of the distance from pivot to the original p.
Suppose after m number of times of such a reduction, the distance between

pivot and p becomes no more than 3c. We examine the smallest number of m

Finding Longest Common Segments in Protein Structures 347

Table 6. Main routine for computing ALCSdist(A,B, t+ εt) for protein structures

Input: A′ = (a′
1, . . . , a

′
l), B

′ = (b′1, . . . , b
′
l), threshold t ∈ R, and precision ε ∈ R.

Output: ALCSdist(A
′, B′, t+ εt).

(1) Let pos ← 1, l ← l
2
� − 1, maxlen← l

2
�, and ALCS← ∅.

(2) Let f ← A′[pos, pos+ l] and g ← B′[pos, pos+ l].
(3) Let pivot ← a′

maxlen and find p ∈ S(f) such that 〈[pivot]p〉S(f).
(4) If f and g are matchable by t and ε, (Then, extend f as follows)
(4.1) If l + 1 = maxlen, add A[pos, pos+ l] into ALCS.
(4.2) Otherwise, let ALCS← {A[pos, pos+ l]} and maxlen← l + 1.
(4.3) Let l ← l + 1, f ← A′[pos, pos+ l] and g ← B′[pos, pos+ l].
(4.4) If the newly added point p′ in f has ‖p′ − pivot‖ > 3‖p− pivot‖
(4.5) Let p ← p′. (Hence changing the 3-radial pair)
(4.6) Repeat from (4).
(5) Else (f and g are not matchable)
(5.1) Let pos ← pos+ 1 and l ← maxlen− 1. (Move the segment)
(5.2) Let f ← A′[pos, pos+ l] and g ← B′[pos, pos+ l].
(5.3) If p 	∈ S(f), (p was the point ai of the smallest i in f before the Move)
(5.4) Find in f from the point of the largest to the smallest index,
(5.5) for a point p′ such that ‖p′ − pivot‖ > ‖p− pivot‖/3.
(5.6) Let p ← p′. (Hence changing the 3-radial pair)
(5.7) Repeat from (4).
(At any point if pos+ l > n, output ALCS and terminate program.)

when this becomes true. It is easy to verify that the left hand side of the following
inequality is the maximum distance between p and the pivot after the m-th time
the condition is fulfilled.

c(�+ 1)

3m
+
(c

3m−1
+

c

3m−2
+ · · ·+ c

)
≤ 3c

�+ 1

3m
+

(
1

2
− 1

2 · 3m−1

)
≤ 2

�− 1

2
≤ 3m+1

2

The inequality shows that this happens when m is at least log3(2� − 1)− 1, or
rather, of O(log �). When that happens, the point next to pivot with a larger
index will be chosen as the new p, since it is at a distance of c from pivot.
Henceforth, the condition will fail.

Since there are only l points in total, it follows that the condition is fulfilled
at most O(log l) times. Each time the condition is fulfilled, O(l log l/ε) time is
required for the recomputation of the trees of intervals. This runtime dominates
over those of the other computations, which are, O(log l/ε5) time for each of the
O(l) times when the condition fails, and O(l) time for output of results (since
|ALCS| ≤ l and each segment can be described using two numbers). Hence, the
runtime of the main routine is O(l log2 l/ε5).

348 Y.K. Ng et al.

Since we perform the main routine for every two consecutive segments sr and
sr+1 in Segments, it has a total runtime of O(

∑
l∈{|sr|+|sr+1||sr ,sr+1∈Segments}

l log2 l/ε5) = O(n log2 n/ε5).

Theorem 4. There is an algorithm of time complexity O(n log2 n/ε5) which ac-
cepts (1) two structuresA,B where the distance between subsequent points is fixed,
and (2) a bottleneck distance t ∈ R, as input, and outputs ALCSdist(A, B, t+ εt).

Acknowledgements. This research was supported by The Malaysian Min-
istry of Higher Education (MOHE) under Fundamental Research Grant Scheme,
FRGS (FRGS/2/2010/SG/UTAR/03/2).

References

1. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-d point sets.
IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 698–700 (1987)

2. Bowie, J.U., Luthy, R., Eisenberg, D.: A method to identify protein sequences that
fold into a known 3-dimensional structure. Science 253(5016), 164–170 (1991)

3. Bryant, S.H., Altschul, S.F.: Statistics of sequence-structure threading. Current
Opinion in Structural Biology 5(2), 236–244 (1995)

4. Choi, V., Goyal, N.: A Combinatorial Shape Matching Algorithm for Rigid Protein
Docking. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004.
LNCS, vol. 3109, pp. 285–296. Springer, Heidelberg (2004)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press (2009)

6. Cristobal, S., Zemla, A., Fischer, D., Rychlewski, L., Elofsson, A.: A study of
quality measures for protein threading models. BMC Bioinformatics 2(5) (2001)

7. Jones, D.T., Taylor, W.R., Thornton, J.M.: A new approach to protein fold recog-
nition. Nature 358, 86–89 (1992)

8. Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta
Crystallographica Section A 32(5), 922–923 (1976)

9. Kabsch, W.: A discussion of the solution for the best rotation to relate two sets of
vectors. Acta Crystallographica Section A 34(5), 827–828 (1978)

10. Leszek, R., Daniel, F., Arne, E.: Livebench-6: large-scale automated evaluation of
protein structure prediction servers. Proteins 53(suppl. 6), 542–547 (2003)

11. Li, S.C., Bu, D., Xu, J., Li, M.: Finding nearly optimal GDT scores. J. Comput.
Biol. 18(5), 693–704 (2011)

12. Siew, N., Elofsson, A., Rychlewski, L., Fischer, D.: Maxsub: an automated measure
for the assessment of protein structure prediction quality. Bioinformatics 16(9),
776–785 (2000)

13. Simons, K.T., Kooperberg, C., Huang, E., Baker, D.: Assembly of protein tertiary
structures from fragments with similar local sequences using simulated annealing
and bayesian scoring functions. J. Mol. Biol. 268(1), 209–225 (1997)

14. Umeyama, S.: Least-squares estimation of transformation parameters between two
point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991)

15. Wu, S., Skolnick, J., Zhang, Y.: Ab initio modeling of small proteins by iterative
tasser simulations. BMC Biology 5(17) (2007)

16. Zemla, A.: LGA: a method for finding 3D similarities in protein structures. Nucleic
Acids Research 31(13), 3370–3374 (2003)

A Linear Kernel for the Complementary

Maximal Strip Recovery Problem

Haitao Jiang1,2 and Binhai Zhu3

1 School of Computer Science and Technology, Shandong University,
Jinan, Shandong 250100, China

htjiang@mail.sdu.edu.cn
2 School of Mathematics and System Science, Shandong University,

Jinan, Shandong 250100, China
3 Department of Computer Science, Montana State University,

Bozeman, MT 59717-3880, USA
bhz@cs.montana.edu

Abstract. In this paper, we compute the first linear kernel for the com-
plementary problem of Maximal Strip Recovery (CMSR)— a well-known
NP-complete problem in computational genomics. Let k be the param-
eter which represents the size of the solution. The core of the technique
is to first obtain a tight 18k bound on the parameterized solution search
space, which is done through a mixed global rules and local rules, and via
an inverse amortized analysis. Then we apply additional data-reduction
rules to obtain a tight 84k kernel for the problem. Combined with the
known algorithm using bounded degree search, we obtain the best FPT
algorithm for CMSR to this date, running in O(2.36kk2 + n2) time.

1 Introduction

The rapid development of the parameterized complexity theory greatly enhances
our understanding beyond NP-completeness and the traditional computational
complexity theory [6,22,13]. For many theoretically intractable applications,
FPT (fixed-parameter tractable) algorithms can be very effective [7,11,21].

In the parameterized complexity theory, kernelization is a very useful tool
[9,14]. Loosely, kernelization means the reduction of the problem instance size to
a function of k (k is the parameter throughout this paper). In reality, small (es-
pecially small linear) kernel can make it feasible to use some traditional method
like branch-and-bound or ILP, so it is always meaningful. On the other hand,
there are various problems which do not admit small (or even polynomial) kernels
unless the polynomial hierarchy collapses to its third level [1,8,10,12].

In the Complementary Maximal Strip Recovery (CMSR) problem, we need to
delete at most k letters from the two input sequences (signed permutations) such
that the remaining letters all form into strips (or maximal common substrings
of length at least two, some could be in negated and reversed form). To this
date, there are two bounded search tree algorithms running in O∗(3k) [17] and
O∗(2.36k) [3] respectively for CMSR, but no (linear or even polynomial) kernel

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 349–359, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

350 H. Jiang and B. Zhu

is known. Part of the reason that a (linear) kernel is elusive for the CMSR is that
the only known local rule (see Lemma 1, i.e., ‘long’ maximal common substrings
can be kept as strips) is not enough to establish any polynomial kernel.

In this paper, we obtain a linear 84k kernel for CMSR. The core of our idea
is to first bound the parameterized solution search space (i.e., the set of letters,
whose size is a function of k, from which an optimal solution can be obtained). By
applying a set of global rules (together with the local rule induced by Lemma 1), we
show that this space is of size at most 18k. On top of this we can build successfully
the linear kernel of size 84k for CMSR.

This paper is organized as follows. In Section 2, we define the MSR and CMSR
problems and the corresponding concepts for FPT formally. In Section 3, we derive
the 84k kernel bound for CMSR. In Section 4, we close the paper with several open
problems.

2 Preliminaries

MSR and CMSR. Maximal Strip Recovery (MSR) was a problem originally pro-
posed by the David Sankoff group to eliminate noise and ambiguities in genomic
maps [5,24]. In comparative genomics, a genomic map (interchangeably, a se-
quence) is represented by a sequence of distinct gene markers (interchangeably,
letters). A gene marker can appear in two different genomic maps, in either pos-
itive or negative form. A strip (syntenic block) is a sequence of distinct markers
that appears as subsequences in two maps, either directly or in reversed and
negated form. Given two genomic maps G1 and G2, the problem Maximal Strip
Recovery (MSR) [5,24] is to find two subsequences of d strips (each of length at
least two), denoted as G�

i , for i = 1, 2, and find two signed permutations πi of
〈1, . . . , d〉, such that each sequence G�

i = Sπi(1) . . . Sπi(d) (here S−j denotes the
reversed and negated sequence of Sj) is a subsequence of Gi, and the total length
of the strips Sj is maximized. Intuitively, those gene markers not included in G�

1

and G�
2 are noise and ambiguities. The complementary problem of deleting the

minimum number of noise and ambiguous markers to have a feasible solution
(i.e., every remaining marker must be in some strip) is exactly the complement
of MSR, which will be abbreviated as CMSR.

We refer to Fig. 1 for an example. In this example, each integer represents a
marker.

Not surprisingly, in [23], both MSR and CMSR were shown to be NP-complete.
Most recently, MSR was shown to be APX-hard [2,15] and CMSR was also shown
to be APX-hard [16]. For positive results, in [5,24], some heuristic approaches
based on MIS and Max Clique were proposed. In [4], a factor-4 polynomial-time
approximation algorithm was proposed for MSR. In [17], a factor-3 polynomial-
time approximation algorithm was proposed for CMSR and an O∗(3k) FPT
algorithm was proposed for CMSR (the latter improves and corrects an FPT
bound in [23]). Recently, the approximation factor for CMSR was improved to
2.33 [20]. In this paper, we will focus only on the complement of MSR, or the
CMSR problem.

Linear Kernel for CMSR 351

G1 = 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12〉
G2 = 〈−9,−4,−7,−6, 8, 1, 3, 2,−12,−11,−10,−5〉
S1 = 〈1, 2〉
S2 = 〈6, 7, 9〉
S3 = 〈10, 11, 12〉
π1 = 〈1, 2, 3〉
π2 = 〈−2, 1,−3〉
G�

1 = 〈1, 2, 6, 7, 9, 10, 11, 12〉
G�

2 = 〈−9,−7,−6, 1, 2,−12,−11,−10〉

Fig. 1. An example for the problem MSR and CMSR. MSR has a solution size of eight
(with d = 3 strips in G�

1 and G�
2; i.e., (1,2),(6,7,9) and (10,11,12)). CMSR has a solution

size of four: the deleted markers are 3,4,5 and 8.

FPT and Kernel. We now present some definitions regarding FPT algorithms.
Basically, a fixed-parameter tractable (FPT) algorithm for a decision problem
Π with parameter k is an algorithm which solves the problem in O(f(k)nc) =
O∗(f(k)) time, where f is any function only on k, n is the input size and c is
some fixed constant not related to k. FPT also stands for the set of problems
which admit such an algorithm.

A useful technique in parameterized algorithmics is to provide polynomial
time executable data-reduction rules that lead to a problem kernel. A data-
reduction rule replaces (I,k) by an instance (I ′,k′) in polynomial time such that:
(1) |I ′| ≤ |I|, k′ ≤ k, (2) (I,k) is a Yes-instance if and only if (I ′,k′) is a Yes-
instance, and (3) |I ′| ≤ g(k) for some function g. |I ′| is called the size of the kernel
for the problem instance (I, k). A set of polynomial-time data-reduction rules
for a problem are applied to an instance of the problem to achieve a reduced
instance termed the kernel. A parameterized problem is FPT if and only if
there is a polynomial time algorithm applying data-reduction rules that reduce
any instance of the problem to a kernelized instance of size g(k). More about
parameterized complexity can be found in the monographs [7,11,21].

3 A Linear Kernel for CMSR

Our idea for constructing the linear 84k kernel for CMSR is based on first identi-
fying the parameterized solution search space for CMSR. Formally, a parameter-
ized solution search space for the CMSR problem is a subset S of the markers in
G1, G2 such that we only need to delete k markers in S to obtain some optimal
sequences G�

1 and G�
2; moreover, |S| ≤ g(k) for some function g. Once an S (of

size 18k) is obtained, it is relatively easy to obtain the linear kernel.

352 H. Jiang and B. Zhu

3.1 Bounding the Solution Search Space for CMSR

We first need to do some preprocessing. Before any marker is deleted, we can
identify all maximal common substrings of length at least one (possibly in
negated and reversed form, which will also be called maximal common sub-
strings, or block for convenience) of G1 and G2. We also call a length-1 maximal
common substring (which is a letter) an isolated letter or isolate. Two substrings
are called neighbors if there is no other string in between them. The following
lemma is proved in [17], and for completeness we include the proof here.

Lemma 1. [17] Before any marker is deleted, if a length-4 maximal common
substring xyzw or −w−z−y−x appears in both G1 and G2 (or, if xyzw appears
in G1 and −w−z−y−x appears in G2, and vice versa), then there is an optimal
solution for MSR which has xyzw or −w − z − y − x as a strip.

Proof. Wlog, we only consider the case when xyzw appears in G1 and −w− z−
y−x appears in G2. The cases when xyzw (−w− z − y−x) appears in both G1

and G2 are similar.
Let the length-6 substring in G1 containing xyzw be p1(x)xyzws1(w) and let

the length-6 substring in G2 containing −w−z−y−x be p2(w)−w−z−y−xs2(x).
Here pi(x), si(x) means the predecessor and successor of x in Gi. When deleting
xyzw from G1 and −w − z − y − x from G2, at most two new strips can be
obtained which could contain {p1(x), s1(w), p2(w), s2(x)} (with a total size of
4). Clearly, retaining xyzw and −w − z − y − x as a strip can give us a solution
at least as good as any optimal solution. Hence, the lemma is proven. 	

An example for the above lemma is as follows: G1 = cdaxyzwbef and G2 =
e−w− z− y−xfcd− b− a. xyzw appears in G1, −w− z− y−x appears in G2.
So we have one optimal solution G�

1 = cdxyzw and G�
2 = −w − z − y − xcd. On

the other hand, the optimal solution is not unique as we can select G+
1 = cdabef

and G+
2 = efcd − b − a.

The above lemma holds for maximal common substrings of length greater than
4. Now let us come back to our journey of obtaining a linear kernel for CMSR.
Lemma 1 certainly provides a useful local rule to reduce the search space for
solving CMSR. The difficulty now is how to handle length-2 and length-3 blocks.
For example, let Q be a length-3 block and all Pi’s have length 2, then in

G1 = xP1QP2y · a1b1 · a2b2 · a3P3b3 · a4P4b4 · −w − z
G2 = zP3QP4w · a4b4 · a3b3 · a2P2b2 · a1P1b1 · −y − x

the optimal solution in fact deletes Q, P1, P2, P3, P4. (Dot symbol is used for
connection purpose.) Notice that Q has length-3 and has no isolated neighbor
at all, yet it has to be deleted for an optimal solution! One could construct
another counter-intuitive example where in a continuous (sequence of) length-
2/3 blocks, only a part (i.e., not all) of them are deleted. So besides Lemma 1,
it is in fact hard to apply any more local rules (with the ones we proposed early
on, eventually counter-examples are found for each of them).

It turns out that we have to use a set of global rules together with a general
graph method, which is described below in the algorithm.

Linear Kernel for CMSR 353

Let Σ be the alphabet for the input maps G1 and G2. The kernelization
procedure (for identifying S) is as follows.

1. Without deleting any gene marker in G1 and G2, identify a set of maximal
common substrings (possibly in reversed and negated form) of length at
least 4, of length-3, of length-2 and of length-1 (isolates). Then identify all
maximal continuous blocks, each of length at least 2, in G1 and G2. We call
the latter super-blocks henceforth, and denote them as V1 ∈ G1 and V2 ∈ G2.

2. (2.1) Firstly, for each block of length at least 4, change it to a new letter in
Σ1 (and delete the corresponding old letters in it from Σ whenever such a
new letter in Σ1 is created), with Σ1 ∩ Σ = ∅.
(2.2) Secondly, for any pair of super-blocks s1 ∈ V1, s2 ∈ V2 which contain at
least two pairs of common length-2 or length-3 blocks, identify the leftmost
and rightmost such common blocks in s1 (e.g., Pi, Pj) and in s2 (e.g., Pl, Pr,
with Pi = Pl, Pj = Pr or Pi = Pr, Pj = Pl, some possibly in reversed and
negated form). Change each block between and inclusive of Pi, Pj (resp.
Pl, Pr) in s1 (resp. s2) into a new letter in Σ1.
(2.3) Thirdly, for any super-block (in V1 or V2) containing at least two length-
3 blocks, identify the leftmost and rightmost length-3 blocks, say Ps, Pt.
Change each block between and inclusive of Ps, Pt into a new letter in Σ1.
(2.4) Then, construct the simple bipartite graph G = (V1, V2, E), where
there is an edge (v1, v2) ∈ E between two super-blocks v1 ∈ V1, v2 ∈ V2 iff
they share a common length-2 or length-3 block not yet put in Σ1. For any
cycle in G, identify the length-2 or length-3 blocks involved in the cycle and
change each of them into a new letter in Σ1.
(2.5) Finally, within any super-block, for all blocks between two letters in
Σ1, change each of them into a new letter in Σ1.

3. Let the resulting sequences be G′
1, G

′
2. Return S ← Σ as a parameterized

search space.

The correctness of Step 2 is as follows (Lemma 1 covers Rule (2.1)):

Lemma 2. Rule (2.2) is correct.

Proof. First, suppose that between Pi, Pj in V1 there is a P ′ of length-2 or length-
3 which is deleted in some optimal solution. As P ′ has no isolated neighbor in G1,
deleting it will create a new strip which includes at most two isolated neighbors
of it in G2. Therefore, we can keep P ′ as a strip and obtain another solution at
least as good as the assumed optimal solution (which deletes P ′).

For Pi and Pj , as they are in V1 and V2, each of them has at most 2 isolated
neighbors (one each in G1 and G2). If some optimal solution deletes one (or
both) of them, by the same argument, we can keep one (or both) of them as
strips to have a solution at least as good as the assumed optimal solution. 	

Note that after Rule (2.2) is run, now a super-block could contain length-2 and
length-3 blocks (no two common to another super-block), as well as letters in
Σ1.

354 H. Jiang and B. Zhu

Lemma 3. Rule (2.3) is correct.

Proof. First, suppose that between Ps, Pt in V1 (resp. V2) there is a P ′′ of length-
2 or length-3 which is deleted in some optimal solution. As P ′′ has no isolated
neighbor in G1 (resp. G2), deleting it will create a new strip which includes at
most two isolated neighbors of it in G2 (resp. G1). Therefore, we can keep P ′′

as a strip and obtain another solution at least as good as the assumed optimal
solution (which deletes P ′′).

For Ps and Pt, each of them has at most 3 isolated neighbors (1 in G1 and 2
in G2, or vice versa). If some optimal solution deletes one (or both) of them, by
the fact that they are of length-3, we can keep one (or both) of them as strips
to have a solution at least as good as the assumed optimal solution. 	

After the run of Rule (2.3), a super-block could contain at most one length-3
block, as well as length-2 blocks and, of course, letters in Σ1.

Lemma 4. Rule (2.4) is correct.

Proof. In the simple bipartite block graph G, if there is a cycle, with the involved
length-2 or length-3 blocks being P ′

1, P
′
2, ..., P

′
u, then |P ′

i | ≥ 2 for 1 ≤ i ≤ u. If
some optimal solution deletes some of these blocks, say P ′

i1, P
′
i2, ..., P

′
ip, then in

G we have deleted p edges, each associated with some P ′
ij . P ′

ij has at most two
isolated neighbors (at most one each in G1 and G2). Consequently, we could
keep P ′

i1, P
′
i2, ..., P

′
ip as strips to have a solution at least as good as the claimed

optimal solution. 	

Lemma 5. Rule (2.5) is correct.

Proof. In a super-block s1 in G1, any block P ′ ∈ s1 between two letters in Σ1

has at most 2 isolated neighbors in G2. So if some optimal solution deletes P ′,
we can put it back to have a solution at least as good as the assumed optimal
solution. 	

By now, it is easily seen that any given super-block s, after these run of five
rules, has at most two continuous sequences of blocks which are not put in Σ1.
In other words, at this point, each superblock contains at most one letter in Σ1.

Let Σ1 be the set of all new letters used in the kernelization process, with
Σ1 ∩ Σ = ∅. The three lemmas for obtaining the final results are:

Lemma 6. There is an optimal CMSR solution of size k for G1 and G2 if and
only if the solution can be obtained by deleting k markers in Σ from G′

1 and G′
2

respectively.

Notice that after the kernelization step, we have no cycle and no vertex of degree
zero in G. So if any connected component in G has q edges, then it must have
exactly a set H of q + 1 vertices. We have the following lemmas on H .

Lemma 7. Let G contain m connected components H1, H2, · · · , Hm, and let
each Hi have qi edges. Then, in between the vertices in G, there are at least∑m

i=1 qi + m − 2 sequences of neighboring isolates in G1, G2.

Linear Kernel for CMSR 355

Proof. The qi + 1 vertices in Hi form a tree. In G1 and G2, these vertices cor-
respond to continuous sequences of blocks (each of length at least 2, some of
which could have been converted to letters in Σ1), separated by sequences of
neighboring isolates. Let Hi have ai vertices in G1 and bi vertices in G2. In G1

the
∑m

i=1 ai vertices bound at least
∑m

i=1 ai − 1 sequences of neighboring iso-
lates. Similarly, in G2 the

∑m
i=1 bi vertices bound at least

∑m
i=1 bi − 1 sequences

of neighboring isolates. In total the vertices in G have bounded at least(
m∑

i=1

ai

)
− 1 +

(
m∑

i=1

bi

)
− 1 =

m∑
i=1

qi + m − 2

sequences of neighboring isolates, due to ai + bi = qi + 1, for i = 1..m. 	

Lemma 8. Given any connected component H in G with q edges, the total length
of all the blocks associated with the edges in H is at most � 5q

2 �.

Proof. It is clear that 3q is a trivial upper bound, due to Rules (2.1-2.3). To
have this tighter bound, first notice again that the q + 1 vertices in H form a
tree. Then by the fact that no two incident edges can both correspond to length-
3 blocks, we can conclude that the number of length-3 blocks allowed in H is
exactly the size of maximum matching of H , which is obviously at most �q/2�
(which occurs when H is in fact a path). Then the total length of all the blocks
associated with the edges in H is at most 2q + �q/2� = � 5q

2 �. 	

Finally, we have the following theorem.

Theorem 1. In G′
1 (resp. G′

2), there are at most 18k letters (markers) in Σ.
In other words, CMSR has a parameterized solution search space of size 18k.

Proof. We use an inverse amortized analysis. Assume that we have some optimal
MSR solution O∗ (i.e., all letters in O∗ are in some strips), we try to insert the
deleted letters and length-2/3 blocks back into O∗ to obtain G1, G2. There are
four sets of letters/blocks: A — those letters/blocks we insert into G1, G2 (of a
total length k); B — those isolated letters which were in some strips in O∗, but
due to the insertion of type-A letters/blocks, they are broken into isolates; C —
those blocks identified by our kernelization algorithm; and D — the remaining
length-2/3 blocks associated with the edges in the block graph G. We need to
show that

|A| + |B| + |D| ≤ |A| + 17|A| = 18k.

Note that although A could contain sequences of blocks, they will be counted
into |A| = k.

We charge a cost of 18 for each inserted type-A letter x (including x itself).
Notice that x can break at most two strips in O∗, resulting in at most 4 type-B
isolates.

The most general scenario is when we have a graph G each of its vertices
corresponds to at most two sequences of type-D blocks, e.g., a vertex in G cor-
responds to D = P1P2 · · ·Pi · Σ1 letters ·Pi+1Pi+2 · · ·Pl (there could be no Σ1

356 H. Jiang and B. Zhu

letters between Pi, Pi+1). For this scenario, first recall that now in G we have no
cycle and no vertex of degree zero; moreover, in D we have at most one length-3
block. So if each connected component Hi, 1 ≤ i ≤ m in G has qi edges, then it
must have exactly a set of qi + 1 vertices. By Lemma 7, vertices in G bound at
least

∑m
i=1 qi + m − 2 sequences of isolated neighbors.

We now finish the final proof.
First, let us consider the (at least)

∑m
i=1 qi + m − 2 sequences of isolated

neighbors (also called slots for convenience) bounded by the vertices of G. These
slots are introduced by the insertion of at least �(

∑m
i=1 qi + m − 2)/4� type-A

isolates. As what have just been discussed, each of these type-A isolates can
introduce at most 4 type-B isolates. By Lemma 8, the total length of all the
type-D blocks in G is at most

∑m
i=1�

5qi

2 �. Therefore, each type-A isolate can be
charged a total cost of

m∑
i=1

�5qi

2
�/�

∑m
i=1 qi + m − 2

4
� + 5,

which is at most 18 (when m = 1). To see why, let t = �(
∑m

i=1 qi + m − 2)/4�.
Then

m∑
i=1

qi ≤ 4t − m + 2.

Therefore,
m∑

i=1

�5qi

2
� ≤ �5

∑m
i=1 qi

2
� + m ≤ �5(4t − m + 2)

2
� + m = 10t + 5 − �3m

2
�,

which is at most 10t + 3 ≤ 13t, with m = 1 and t ≥ 1. Consequently, this means
that our charge is safe.

Second, for each substring of r isolates not bounded (delimited) by vertices of
G (we could have at most 4 such substrings of isolates, 2 each at the ends of G1

and G2), we first ignore the type-A isolates already contained in some slot and
suppose that we have a remaining of r′ isolates. These r′ isolates can be either
of type-A or type-B. It is easy to see that at least �r′/5� of these remaining r′

isolates must be deleted. (The deleted ones are of type-A.) Clearly, 18�r′/5� > r′.
So again our charge is safe.

As a simple example, assume that G1 = abc w1w2 de fg x and G2 = abc de −
w2x − w1 fg , they form G which contains a single connected component of 4
vertices and 3 edges. We have two slots: w1w2 and −w2x − w1. As x is charged
for a total cost of 18 (including itself), while the length of G1, G2 is only 10, so
the charge is safe.

Altogether, this gives us an upper bound of 18k for |A| + |B| + |D|. 	

We can show that our kernelization algorithm for constructing the parameter-
ized solution search space S is in fact tight, i.e., the size of S, returned by our
algorithm, is at least 18k for k = 1. It can be done by modifying the 10k example
at the end of the proof of Theorem 1 as follows.

Linear Kernel for CMSR 357

G1 = abc de fxg hij kl mn opq

G2 = abc fg de hij mxn kl opq
The corresponding block graph G is a path. The optimal CMSR solution is

to delete x (i.e., k=1). So the above parameterized search space bound is in fact
tight.

3.2 Computing the Linear Kernel for CMSR

To obtain the linear kernel, we need to bound the number of letters in Σ1 in
addition to S. (Note that each letter in Σ1 can be replaced by a unique block
of length 4, although it could be of length at least 4 in the original input.) By
the definition of superblocks, after Rule (2.2)-(2.5), each superblock contains at
most one letter in Σ1.

Now let us consider the number of superblocks, each containing at most one
letter in Σ1. Following the proof of Theorem 1, the number of superblocks is
equal to the number of vertices of G, which is

m∑
i=1

(qi + 1) = (
m∑

i=1

qi) + m ≤ (4t − m + 2) + m = 4t + 2,

which is bounded by 4k + 2. Therefore, the total number of letters in Σ1 in G′
1

and G′
2 is at most

(4k + 2) × 2 = 8k + 4.

Consequently, the total length of G′
1 and G′

2, expanding a letter in Σ1 into a
unique substring of length-4 in Σ4, is bounded by

18k × 2 + (8k + 4) × 4 = 68k + 16 ≤ 84k.

We thus have the main theorem of this paper.

Theorem 2. CMSR has a linear kernel of size 84k.

Corollary 1. Combined with the bounded search tree method, CMSR can be
solved in O(2.36kk2 + n2) time.

Proof. Without the linear kernel bound, using the bounded search tree method,
there is an FPT algorithm which runs in O(2.36kn2) time [3]. With the 84k
linear kernel, the running time of the corresponding algorithm can be improved
to O(2.36kk2 + n2) time. This is a standard procedure: just run the algorithm
on the linear kernel. 	

We comment that, by modifying the example at the end of Section 3.1, we can
obtain a linear kernel of size 84k (for k = 1). This shows that the 84k kernel
bound for CMSR is tight (at least for k = 1).

358 H. Jiang and B. Zhu

4 Concluding Remarks

We show a non-trivial 84k linear kernel for the Complementary Maximal Strip
Recovery problem. Combined with a known bounded search tree algorithm, this
results in the best known FPT algorithm for CMSR — in O(2.36kk2 +n2) time.
An interesting question is whether these bounds can be further improved.

Using the recent concept of weak kernels [18], Theorem 2 in fact implies that
CMSR has a (direct) weak kernel of size 18k. However, as direct weak kernels
can all be transformed into the traditional kernels (from the experience as in this
paper), we think it is better to use weak kernels solely for the indirect ones. For
problems admitting linear indirect weak kernels (e.g., Sorting by Reversals [18]
and Sorting by Unsigned DCJ Operations [19]), no linear/polynomial kernels
are known and no known bounded search tree algorithm can match up with the
solutions provided by weak kernels.

Acknowledgments. This research is partially supported by NSF grant DMS-
0918034, by NSF of China under grant 60928006, by the Open Fund of Top
Key Discipline of Computer Software and Theory in Zhejiang Provincial Col-
leges at Zhejiang Normal University, and by the Shanghai Thousand Talents
Program. We also thank Zhong Li, Guohui Lin and Lusheng Wang for several
useful discussions, and the anonymous reviewers for several useful comments.

References

1. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On Problems with-
out Polynomial Kernels (Extended Abstract). In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)

2. Bulteau, L., Fertin, G., Rusu, I.: Maximal Strip Recovery Problem with Gaps:
Hardness and Approximation Algorithms. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 710–719. Springer, Heidelberg (2009)

3. Bulteau, L., Fertin, G., Jiang, M., Rusu, I.: Tractability and Approximability of
Maximal Strip Recovery. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS,
vol. 6661, pp. 336–349. Springer, Heidelberg (2011)

4. Chen, Z., Fu, B., Jiang, M., Zhu, B.: On recovering syntenic blocks from compar-
ative maps. Journal of Combinatorial Optimization 18(3), 307–318 (2009)

5. Choi, V., Zheng, C., Zhu, Q., Sankoff, D.: Algorithms for the Extraction of Synteny
Blocks from Comparative Maps. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI
2007. LNCS (LNBI), vol. 4645, pp. 277–288. Springer, Heidelberg (2007)

6. Cook, S.: The complexity of theorem-proving procedures. In: Proceedings of the
3rd ACM Symp. on Theory of Computing (STOC 1971), pp. 151–158 (1971)

7. Downey, R., Fellows, M.: Parameterized Complexity. Springer (1999)
8. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. In: Proc. 42nd ACM Symp. Theory of
Computation (STOC 2010), Cambridge, MA, USA, pp. 251–260 (2010)

9. Fellows, M.: The Lost Continent of Polynomial Time: Preprocessing and Kerneliza-
tion. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169,
pp. 276–277. Springer, Heidelberg (2006)

Linear Kernel for CMSR 359

10. Fernau, H., Fomin, F., Lokshtanov, D., Raible, D., Saurabh, S., Villanger, Y.:
Kernel(s) for problems with no kernel: on out-trees with many leaves. In: Proc.
26th Intl. Symp. on Theoretical Aspects of Computer Science (STACS 2009), pp.
421–432 (2009)

11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
12. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct

PCPs for NP. In: Proc. 40th ACM Symp. Theory of Computation (STOC 2008),
Victoria, Canada, pp. 133–142 (2008)

13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

14. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
SIGACT News 38, 31–45 (2007)

15. Jiang, M.: Inapproximability of Maximal Strip Recovery. In: Dong, Y., Du, D.-Z.,
Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 616–625. Springer, Heidelberg
(2009)

16. Jiang, M.: Inapproximability of Maximal Strip Recovery: II. In: Lee, D.-T., Chen,
D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 53–64. Springer, Heidelberg
(2010)

17. Jiang, H., Li, Z., Lin, G., Wang, L., Zhu, B.: Exact and approximation algorithms
for the complementary maximal strip recovery problem. J. of Combinatorial Opti-
mization 23(4), 493–506 (2012)

18. Jiang, H., Zhang, C., Zhu, B.: Weak Kernels. ECCC Report, TR10-005 (October
2010)

19. Jiang, H., Zhu, B., Zhu, D.: Algorithms for sorting unsigned linear genomes by the
DCJ operations. Bioinformatics 27, 311–316 (2011)

20. Li, Z., Goebel, R., Wang, L., Lin, G.: An Improved Approximation Algorithm for
the Complementary Maximal Strip Recovery Problem. In: Atallah, M., Li, X.-Y.,
Zhu, B. (eds.) FAW-AAIM 2011. LNCS, vol. 6681, pp. 46–57. Springer, Heidelberg
(2011)

21. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Univ. Press
(2006)

22. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher,
J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, NY
(1972)

23. Wang, L., Zhu, B.: On the tractability of maximal strip recovery. J. of Computa-
tional Biology 17(7), 907–914 (2010); Correction 18(1), 129 (2011)

24. Zheng, C., Zhu, Q., Sankoff, D.: Removing noise and ambiguities from compara-
tive maps in rearrangement analysis. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 4, 515–522 (2007)

Efficient Exponential Time Algorithms

for Edit Distance between Unordered Trees�

Tatsuya Akutsu1, Takeyuki Tamura1, Daiji Fukagawa2,
and Atsuhiro Takasu3

1 Bioinformatics Center, Institute for Chemical Research, Kyoto University,
Gokasho, Uji, Kyoto, 611-0011, Japan

{takutsu,tamura}@kuicr.kyoto-u.ac.jp
2 Faculty of Culture and Information Science, Doshisha University,

Kyoto 610-0394, Japan
dfukagaw@mail.doshisha.ac.jp

3 National Institute of Informatics, Tokyo 101-8430, Japan
takasu@nii.ac.jp

Abstract. This paper presents efficient exponential time algorithms for
the unordered tree edit distance problem, which is known to be NP-hard.
For a general case, an O(1.26n1+n2) time algorithm is presented, where
n1 and n2 are the numbers of nodes in two input trees. This algorithm is
obtained by a combination of dynamic programming, exhaustive search,
and maximum weighted bipartite matching. For bounded degree trees
over a fixed alphabet, it is shown that the problem can be solved in
O((1 + ε)n1+n2) time for any fixed ε > 0. This result is achieved by
avoiding duplicate calculations for identical subsets of small subtrees.

Keywords: tree edit distance, unordered trees, dynamic programming,
maximum weight bipartite matching.

1 Introduction

Tree edit distance is one of the well-studied combinatorial pattern matching
problems on tree structured data, which has applications in computational biol-
ogy, XML databases, and image analysis [4,11].

Extensive studies have been done on tree edit distance for ordered trees since
Tai developed an O(n6) time algorithm [12], where n is the maximum size of
two input trees. Demaine et al. developed an O(n3) time algorithm and showed
that this bound is optimal under some computation strategy [6].

However, the tree edit distance problem for unordered trees has been known
to be NP-hard [14]. Furthermore, several MAX SNP-hardness results are known

� This work was partially supported by the Collaborative Research Programs of Insti-
tute for Chemical Research, Kyoto University and National Institute of Informatics.
T.A. and T.T. were partially supported by JSPS, Japan: Grant-in-Aid 22650045 and
Grant-in-Aid 23700017, respectively.

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 360–372, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Efficient Exponential Time Algorithms 361

[8,9,15]. Fukagawa et al. developed an O(h)-approximation algorithm for un-
ordered trees of height h [7]. For the closely related problem of finding a largest
common subtree, Halldórsson and Tanaka developed a 2h-approximation al-
gorithm and an O(log2 n)-approximation algorithm [8], where the former was
improved to 1.5h-approximation [3]. Several exact algorithms have also been
developed. Shasha et al. developed an O(4l1+l2 ·poly(n1, n2)) time algorithm [11],
where li and ni are respectively the numbers of leaves and nodes in an input tree
Ti (i = 1, 2). Halldórsson and Tanaka developed an O(2b1+b2 · poly(n1, n2)) time
algorithm [8], where bi is the numbers of branching nodes of Ti

1. Akutsu et al.
developed O(2.62k ·poly(n)) time algorithm under the unit cost model where k is
the maximum bound of the edit distance [1]. Some polynomial time algorithms
have also been developed for restricted editing operations [4].

In this paper, we present an O(1.26n1+n2) time algorithm for edit distance
between unordered trees. This clearly improves the result by Shasha et al. [11].
This also improves the result by Halldósson and Tanaka [8] when the time com-
plexity is measured in terms of the numbers of nodes. Although all of these al-
gorithms are based on combination of enumeration and dynamic programming,
the way of the combination in our algorithm is different from those in [8,11].
Furthermore, our result includes a detailed combinatorial analysis of the num-
ber of relevant subsets of branching nodes. We further improve the algorithm
for bounded degree trees over a fixed alphabet. We show that for such trees, the
unordered tree edit distance problem can be solved in O((1 + ε)n1+n2) time for
any fixed ε > 0. Due to the space limitation, some proofs are omitted in this
version.

2 Preliminaries

For a rooted unordered tree T = T (V,E), V (T) denote the set of nodes, E(T)
denote the set of edges, and r(T) denotes the root of T . For a node v ∈ V (T),
p(v) denotes the parent of v where v �= r(T), chd(v) denotes the set of children
of v, deg(v) denotes the outdegree of v (i.e., deg(v) = |chd(v)|), �(v) denotes the
label of v where a label is given from an alphabet Σ, h(v) denotes the height of
v where h(v) = 0 for leaves v, des(v) denotes the set of descendants of v where
v /∈ des(v), and T (v) denotes the subtree induced by v and its descendants. For a
tree T , h(T) denotes the height of T (i.e., h(T) = h(r(T))) and V ≥K(T) denotes
the set of nodes in T whose heights are no less than K.

We write T1 ≈ T2 if a tree T1 is isomorphic to a tree T2 (including label
information on nodes). We also write F1 ≈ F2 if a forest F1 is isomorphic to a
forest F2, where a forest is a multi-set of rooted trees.

An edit operation on a tree T is either a deletion, an insertion, or a substitu-
tion, where each operation is defined as follows (see also Fig. 1):

1 This bound is given recently by Halldórsson via improved analysis.

362 T. Akutsu et al.

Deletion: Delete a non-root node v in T with parent u, making the children of
v become children of u. The children are inserted in the place of v into the
set of the children of u.

Insertion: Inverse of delete. Insert a node v as a child of u in T , making v the
parent of some of the children of u.

Substitution: Change the label of a node v in T .

We assign a cost for each editing operation: γ(a, b) denotes the cost of substi-
tuting a node with label a to label b, γ(a, ε) denotes the cost of deleting a node
labeled with a, and γ(ε, a) denotes the cost of inserting a node labeled with a.

The edit distance between two unordered trees T1 = T1(V1, E1) and T2 =
T2(V2, E2) is defined as the cost of the minimum cost sequence of editing opera-
tions that transforms T1 to T2. The edit distance between T1 and T2 is denoted
by dist(T1, T2). In this paper, we assume that the cost function satisfies the con-
ditions on a distance metric [4,14]: γ(a, b) ≥ 0 for any (a, b) ∈ Σ′×Σ′, γ(a, a) = 0
for any a ∈ Σ′, γ(a, b) = γ(b, a) for any (a, b) ∈ Σ′×Σ′, γ(a, c) ≤ γ(a, b)+γ(b, c)
for any a, b, c ∈ Σ′ × Σ′ × Σ′, where Σ′ = Σ ∪ {ε}. The cost function is called
the unit cost model if γ(x, y) = 1 holds for all x �= y. We call T2 a subtree of T1

if T2 is obtained from T1 only by deletion operations2.
There exists a close relationship between the edit distance and the edit dis-

tance mapping [4,14]. M ⊆ V (T1) × V (T2) is called a mapping if the following
conditions are satisfied for any two pairs (u1, v1), (u2, v2) ∈ M : u1 = u2 if and
only if v1 = v2, u1 is an ancestor of u2 if and only if v1 is an ancestor of v2.

We define a score function f(u, v) by f(u, v) = γ(�(u), ε)+γ(ε, �(v))−γ(�(u),
�(v)) where u ∈ V1 and v ∈ V2. We can see that f(u, v) ≥ 0 holds for all (u, v).
Then, the score of a mapping M is defined by score(M) =

∑
(u,v)∈M f(u, v).

Let MOPT be a mapping with the maximum score. Then, it is well-known [2,4,8]
that the following equality holds, where we assume without loss of generality
(w.l.o.g.) that the roots of T1 and T2 correspond to each other in MOPT :

dist(T1, T2) =
∑

u∈V (T1)

γ(�(u), ε) +
∑

v∈V (T2)

γ(ε, �(v))− score(MOPT).

In this paper, a subtree of T1 (or T2) consisting of the nodes of T1 (resp. T2)
appearing in M is called a common subtree even if M contains some pairs of
non-identical labels. The largest common subtree (LCST) is defined as the com-
mon subtree with the maximum score. Since the edit distance can be computed
from LCST due to the above relationship, we hereafter focus on computation of
LCST. The score of LCST between T1 and T2 (i.e., score(MOPT)) is denoted by
S(T1, T2) where r(T1) must correspond to r(T2) (because roots are not deleted).
In the following, we let n1 = |V1|, n2 = |V2|, and n = max(n1, n2) unless other-
wise stated.

2 We also use the subtree for denoting a subgraph of a tree. However, the meaning of
the subtree is clear from the context.

Efficient Exponential Time Algorithms 363

largest common subtree

r

a

b c da h i j

f,g b

T2
r

a

d b c a

g b

h k

ij

T1
r

a

a e d

c b

f b

h i j

Fig. 1. Example of tree edit operation, mapping, and largest common subtree. T2

is obtained from T1 by deletion of node (labeled with) e, insertion of node k and
substitution of node f. The corresponding mapping M is shown by broken curves. The
largest common subtree is shown in the right-hand side.

3 Algorithm for a General Case

3.1 Algorithm

Akutsu et al. developed a heuristic exact algorithm for unordered tree edit dis-
tance by combining dynamic programming and maximum vertex weighted clique
[1]. In this subsection, in order to obtain explicit time complexity results, we re-
place maximum clique with a combination of exhaustive search and maximum
weight bipartite matching.

A set of nodes R is said to be relevant if R does not contain the root and

(∀x, y ∈ R)(x /∈ des(y) and y /∈ des(x))

holds, where R = ∅ is allowed. The key property of R is that there is no pair
(x, y) in R that has an ancestor-descendant relationship.

For each pair of relevant sets Ru for T1(u) and Rv for T2(v), we construct a
weighted bipartite graph Gb(Ru, Rv;Eb) where Eb = Ru × Rv and the weight
of an edge (p, q) ∈ Ru × Rv is given by S[u, v], which should give the score of
LCST between T1(u) and T2(v). Let BPscore(Ru, Rv) denote the weight of the
maximum weight bipartite matching of Gb. Procedure UnordBasic(T1, T2) in
the next page computes S[u, v], which is equal to S(T1(u), T2(v)), for all pairs
(u, v) ∈ V (T1) × V (T2) in a bottom up manner. It is to be noted that if u or
v is a leaf, Ru or Rv is empty and thus smax = 0 holds, where smax finally
gives the score of LCST between T1(u) and T2(v) excluding the score between u
and v. This procedure essentially solves the tree-constrained bipartite matching
problem [5] for all node pairs (u, v).

The following Proposition is clear from the description of the algorithm.

Proposition 1. UnordBasic(T1, T2) correctly computes S(T1(u), T2(v)) for all
(u, v) ∈ V (T1)× V (T2).

364 T. Akutsu et al.

T1

x y

z

a b
c

x y z a b c

X Y Z A B C D

T2

X Y
Z

A

B C

D

Fig. 2. Construction of a bipartite graph from relevant branching sets (shown by black
circles) and remaining leaves (i.e., Lu = {a, b, c} and Lv = {A,B,C,D})

Procedure UnordBasic(T1, T2)
for all pairs (u, v) ∈ V (T1)× V (T2) do (in a bottom-up way)
smax ← 0;
for all relevant sets Ru for T1(u) do
for all relevant sets Rv for T2(v) do
s← BPscore(Ru, Rv);
if s > smax then smax ← s;

S[u, v]← f(u, v) + smax.

Procedure UnordBasic(T1, T2) examines all possible pairs of relevant sets for
each pair (u, v). However, we can ignore leaves in relevant sets: we can regard
all leaves that are not descendants of the selected internal nodes as candidates
of leaves in LCST. Therefore, it is enough to examine all pairs of relevant sets of
internal nodes. For a while, we assume that every internal node in T1 and T2 has
at least two children, which means that every internal node is a branching node.
R is called a relevant branching set if R is relevant and R does not contain any
leaf or any node with outdegree 1. By modifying UnordBasic(T1, T2) based on
the above idea, we obtain procedure UnordGeneral(T1, T2) (see the next page
and Fig. 2), where smax = 0 holds if u or v is a leaf.

Enumeration of relevant branching sets can be done in O(|R| · poly(n)) time
where R is the set of all relevant branching sets, using EnumRelevant(v,R) in
the next page invoked with v = r(Ti) and R = {}. NextNode(v) returns u that
is the next non-leaf node to v in DFS (depth first search) ordering of Ti, and
NextNonDes(v) returns u that is the next non-leaf node except descendants
of u in DFS ordering of Ti, where we can use an arbitrarily fixed ordering of
siblings in Tis. It is to be noted that this procedure can be combined with the
main procedure so that it need not keep all relevant subsets.

Efficient Exponential Time Algorithms 365

Procedure UnordGeneral(T1, T2)
for all pairs (u, v) ∈ V (T1)× V (T2) do (in a bottom-up way)
smax ← 0;
for all relevant branching sets Ru for T1(u) do
for all relevant branching sets Rv for T2(v) do
Let Lu be a set of leaves in T1(u) such that no w ∈ Lu is
a descendant of a node in Ru;

Let Lv be a set of leaves in T2(v) such that no w ∈ Lv is
a descendant of a node in Rv;

s← BPscore(Ru ∪ Lu, Rv ∪ Lv);
if s > smax then smax ← s;

S[u, v]← f(u, v) + smax.

Procedure EnumRelevant(v,R)
if v is emtpy then Output R and return;
u← NextNonDes(v); /* v is relevant */
EnumRelevant(u,R∪ {v});
u← NextNode(v); /* v is not relevant */
EnumRelevant(u,R).

Since we are assuming that each internal node has at least two children, the
number of internal nodes is at most (n1 − 1)/2 + (n2 − 1)/2. Therefore, the
number of pairs of relevant branching sets per (u, v) is bounded by 2(n1+n2)/2.
Since maximum weight bipartite matching can be done in polynomial time,
UnordGeneral(T1, T2) works in O(2(n1+n2)/2 · poly(n)) ≤ O(1.415n1+n2) time.

In the above, we assumed that each internal node has at least two children.
However, this assumption can be removed in the following way.

For node u in tree T , we define û by: û = u if u is a branching node, otherwise
û is the highest branching node among the descendants of u, where û is not
defined if T (u) is a path. We compute S′[u, v], which gives the score of LCST
between T1(u) and T2(v), for all pairs (including non-branching node pairs) in
V (T1)× V (T2) by

S′[u, v]← max

⎧⎨⎩
f(u, v),
f(u, v) + maxu′∈des(u),v′∈des(v) S

′[u′, v′],
f(u, v) + maxRû,Rv̂

BPscore(Rû ∪ Lu, Rv̂ ∪ Lv),

where Rû (resp. Rv̂) is taken over all relevant branching sets for T1(û) (resp.
T2(v̂)) and Lu (resp. Lv) is the set of leaves in T1(u) (resp. T2(v)) such that no
w ∈ Lu (resp. no w ∈ Lv) is a descendant of a node in Rû (resp. Rv̂).

The second and/or third lines are not executed if there do not exist the cor-
responding u′, v′, û, and/or v̂. BPscore(Rû ∪ Lu, Rv̂ ∪ Lv) is computed in the
same way as in UnordGeneral(T1, T2) using S[u, v], which is computed by

S[u, v]← max
u′,v′|û′=u,v̂′=v

S′[u′, v′].

366 T. Akutsu et al.

If Ti(u) is a path and u is a child of some branching node, u is treated as if
it were a leaf where S′[u, v] is used instead of f(u, v) in the computation of
BPscore(Rû ∪ Lu, Rv̂ ∪ Lv).

It is straight-forward to see that the exponential factor of the above procedure
is the same as that of UnordGeneral(T1, T2).

Lemma 1. The edit distance between two unordered trees can be computed in
O(1.415n1+n2) time.

3.2 Improved Analysis

In the above, we used a very rough estimate on the number of relevant branching
sets. However, this number is much smaller than 2n/2 as shown below.

Lemma 2. The number of relevant branching sets for a tree of size n is at most
2�(n−1)/3�.

This lemma is obtained by showing that the worst case number is essentially
given when each children of the root has two leave children. To this end, we
transform a given tree T into a tree having such structure step-by-step without
decreasing the number of relevant sets, where the details are omitted in this
version. Then, this lemma is obvious because such a tree has at most �(n−1)/3�
branching nodes except the root.

Theorem 1. The edit distance between two unordered trees can be computed in
O(1.26n1+n2) time.

We can also see that the time complexity is above bounded by O(2b1+b2 ·poly(n))
time if we measure the complexity in terms of the numbers (b1 and b2) of branch-
ing nodes, where the number of relevant branching sets is much smaller than 2bi

in most trees. It should be noted that this theorem holds also for the tree-
constrained bipartite matching problem [5].

4 Algorithm for a Case of Bounded Degree and Fixed
Alphabet

4.1 Algorithm

In Section 3, we considered all possible pairs of relevant (branching) sets. How-
ever, we need not consider all possible relevant sets. In the example of Fig. 3,
bipartite graphs B2 and B3 are essentially the same, which comes from the fact
that T1(u4) ≈ T1(u6). This suggests that we only need to mind the numbers
of isomorphic subtrees once we have selected relevant nodes (shown by double
circles in Fig. 3) with height greater than some threshold. In this section, we
only consider trees of maximum outdegree D over a fixed alphabet Σ, where it
is known that this restricted problem remains NP-hard [14].

Let K be a constant. We divide each relevant set R into RH and RL by
RH = {v ∈ R | h(v) ≥ K} and RL = {v ∈ R | h(v) < K}, where we first
determine RH and then determine R and RL in the algorithm3.

3 In this section, we do not consider relevant branching sets but consider relevant sets.

Efficient Exponential Time Algorithms 367

T1 T2a

b b

f

g g g g

fd

f f f f

e

u

u1 u2

u3 u4 u5 u6

u7 u8 u9 u10

f f

f f

ed

f f

a

c

f g

v

v1

v2 v3

v4 v5

f f

B1 B2

B3

u3 u5

v2 v3 v4 v5

u4 u6 u3 u5

v2 v3 v4 v5

u4 u9

u3 u5

v2 v3 v4 v5

u6 u7

Fig. 3. Construction of bipartite graphs. B2 and B3 are essentially the same.

For each relevant set R for a tree T , F (R) denotes the forest determined by
F (R) = {T (v)|v ∈ R}. We say that two relevant sets R1 and R2 (resp. RL

1

and RL
2) are identical if RH

1 = RH
2 and F (RL

1) ≈ F (RL
2), which is denoted by

R1 (R2 (resp. RL
1 (RL

2).
For each relevant set RH in a tree T , we define R0 by R0 = {v ∈ T | h(v) <

K, v /∈ des(u) for any u ∈ RH}.
Here, we consider the case of K = 2 in Fig. 3 as an example. Suppose

R1 = {u3, u4, u5, u6}, R2 = {u3, u4, u5, u9}, R3 = {u3, u5, u6, u7}. Then, RH
1 =

{u3, u5}, RL
1 = {u4, u6}, RH

2 = {u3, u5}, RL
2 = {u4, u9}, RH

3 = {u3, u5},
RL

3 = {u6, u7}. R2 (R3 and RL
2 (RL

3 hold, whereas R1 (R2 does not hold.
For any of R1, R2 and R3, R

0 is determined as R0 = {u4, u6, u7, u8, u9, u10}.
The following is a pseudocode of our proposed algorithm.

Procedure UnordBounded(T1, T2)
for all pairs (u, v) ∈ V (T1)× V (T2) do (in a bottom-up way)
smax ← 0;
for all relevant sets RH

u ⊆ (des(u) ∩ V ≥K(T1)) do
for all relevant sets RH

v ⊆ (des(v) ∩ V ≥K(T2)) do
Compute R0

u and R0
v from RH

u and RH
v , respectively;

for all non-identical relevant sets RL
u ⊆ R0

u do
for all non-identical relevant sets RL

v ⊆ R0
v do

Ru ← RH
u ∪RL

u ; Rv ← RH
v ∪RL

v ;
s← BPscore(Ru, Rv);
if s > smax then smax ← s;

S[u, v]← f(u, v) + smax.

4.2 Analysis

In order to analyze the algorithm, we need to bound the number of RHs and the
number of non-identical RLs.

368 T. Akutsu et al.

Proposition 2. The number of non-identical RLs is O(nc1) for some constant
c1 if K, D and |Σ| are constants.

Proof. Since K, D and |Σ| are constants, the number of non-isomorphic trees
of height less than K is bounded by some constant c1. Therefore, the number of
non-identical RLs is O(nc1). ��

Enumeration of non-identical RLs can be done in the following way. Let
{t1, t2, . . . , tc1} be the set of all possible non-isomorphic trees of height less than
K. Let b = (m1,m2, . . . ,mc1) denote a forest that consists of m1 copies of t1,
m2 copies of t2, · · ·, mc1 copies of tc1 . We use a 0-1 table B[b] of size O(nc1)4.
First we initialize B[b] by letting B[b] ← 0 for all b. For each ti, let di be the
number of non-isomorphic subforests of ti. Let ki denote the number of maxi-
mal T (v)s (not including a node from RH) such that T (v) ≈ ti, where we let
ki = 1 even if there does not exist such T (v)5. For example, in T1 of Fig. 3,
ki = 2 for ti isomorphic to T (u4) ≈ T (u6) and ki = 1 for the other tis. Then,

we can examine at most kd1

1 × kd2

2 × · · · × k
dc1
c1 ways of making subforests, some

of which may be isomorphic. If a subforest corresponding to b appears, we let
B[b] ← 1. Accordingly, we can avoid the use of identical RL. Since c1 and dis
are constants (depending on K, D, and Σ) and ki ≤ n holds, the above number
is a polynomial of n as well as the size of B[b]. Since isomorphism of trees and
forests can be tested in polynomial time, enumeration of non-identical RLs can
be done in polynomial time.

Although we have not yet obtained a tight bound on c1, we can estimate an
upper bound of c1 as follows. The size of a complete D-ary tree of height K − 1
is

1 +D +D2 + · · ·+DK−1 =
DK − 1

D − 1
.

For each node v, we can consider |Σ| + 1 ways of label assignment where ‘+1’
corresponds to deletion of v and its descendants, although isomorphic trees may

be counted many times. Then, c1 is bounded by (|Σ|+1)
DK−1
D−1 and thus the num-

ber of non-identical RL is O(n(|Σ|+1)
DK−1
D−1

). Although the degree of polynomial
grows extremely fast, it is still a constant if K, D and |Σ| are constants.

For tree T , let T≥K denote the tree obtained by deleting nodes with height
less than K, where we assume w.l.o.g. K ≥ 2. Then, we have the following
propositions and lemmas.

Proposition 3. The number of leaves in T≥K is at most n/K.

Proof. We can obtain T≥K by the following procedure:

for k = 1 to K do Delete all leaves.

4 Enumeration can still be done in polynomial time without using B[b] if it is allowed
to enumerate identical relevant sets multiple times.

5 Maximal means that T (u) is not counted by any kj if u is a descendant of v and
T (v) is counted by some ki.

Efficient Exponential Time Algorithms 369

Let Li be the number of leaves deleted at the i-th step. Then, we clearly have

L1 + L2 + · · ·+ LK ≤ n,

L1 ≥ L2 ≥ · · · ≥ LK ,

from which LK ≤ n/K follows. ��

Proposition 4. The number of relevant sets for a tree with n nodes is maxi-
mized when there is no node v such that chd(v) = {u} and |chd(u)| > 1.

Proof. Assume that there exists such a node v in a tree T . We construct a tree
T ′ by deleting v and adding a new node v′ as a child of an arbitrary leaf of T (v)
(see Fig. 4). Then, we can verify that the number of relevant sets for T ′ is no
less than that for T . ��

T

v

T’

v’

u

u

Fig. 4. Construction of T ′ from T in the proof of Proposition 4

Lemma 3. The number of relevant sets in a tree T with n nodes is at most
2L · (n/L)L, where L is the number of leaves.

Proof. From Proposition 4, the number is maximized when a tree has the shape
shown in Fig. 5. Let L be the number of leaves of a tree T .

Each maximal connected component consisting of nodes with outdegree 1 and
0 is called a hair. Let the lengths of the hairs be l1, l2, . . . , lL. Clearly, (l1 +1)+
(l2+1)+· · ·+(lL+1) ≤ n. From Jensen’s inequality, (l1+1)×(l2+1)×· · ·×(lL+1)
is maximized when l1 = l2 = · · · = lL. Therefore, we have

(l1 + 1)× (l2 + 1)× · · · × (lL + 1) ≤ (n/L)L,

which is the maximum number of relevant sets of nodes in hairs.
Since the number of nodes with outdegree > 1 is at most L, the number of

combinations of selecting nodes not in any hair is at most 2L.
Therefore, the number of relevant sets is bounded by 2L × (n/L)L. ��

Lemma 4. The number of non-identical relevant sets is O(K(n/K) ·2(n/K) ·nc1).

370 T. Akutsu et al.

hair

Fig. 5. The shape of the tree maximizing the number of relevant sets

Proof. The number of non-identical relevant sets is bounded by the number of
RHs times the number of non-identical RLs.

From Lemma 3, the number of RHs is bounded by

f(L) = (n/L)L · 2L,

where L is bounded by n/K from Proposition 3. We can show that f(L) increases
as L increases where n is fixed. To see this, let

g(L) = log2 f(L) = L(log2 n− log2 L) + L.

Since we are assuming K ≥ 2 (i.e., n/L ≥ 2), we have

dg(L)

dL
= (log2 n− log2 L)−

1

ln 2
+ 1

= (log2
n

L
)− 1

ln 2
+ 1

≥ 2− 1

ln 2
> 0.

Therefore, f(L) is maximized when L = n/K.
Since the number of non-identical RLs is bounded by nc1 , the required number

is
O((n/L)L · 2L · nc1) ≤ O(K(n/K) · 2(n/K) · nc1).

��

Theorem 2. The edit distance between unordered trees of bounded degree and
bounded alphabet can be computed in O((1 + ε)n1+n2) time for any fixed ε > 0.

Proof. From Lemma 4, the time complexity of UnordBounded(T1, T2) is

O(K(n1+n2)/K · 2(n1+n2)/K · poly(n1, n2)) = O(((2K)(1/K))n1+n2 · poly(n1, n2))

for fixed K, D and Σ. For any fixed ε,

(2K)(1/K) < 1 + ε

holds for sufficiently large K. Therefore, the theorem holds. ��

Efficient Exponential Time Algorithms 371

It is to be noted that this algorithm is only of theoretical interest because of
very high degree of a polynomial factor depending on K, D and |Σ|.

The conditions on the degree and alphabet in the above seem to be necessary
as long as we use the same approach. Indeed, we can prove the following by
using reductions similar to those in [8,9,14,15] (for Theorem 3) and in [10] (for
Theorem 4).

Theorem 3. The edit distance problem between unordered trees of height 3 is
NP-hard for a ternary alphabet under the unit cost model.

Theorem 4. The edit distance problem between unordered trees is NP-hard for
trees of outdegree at most four under the unit cost model even if branching nodes
are either at height at most 1 or on a single path in a tree.

5 Concluding Remarks

In this paper, we have presented anO(1.26n1+n2) time algorithm for edit distance
between two unordered trees, where the algorithm is a combination of dynamic
programming, exhaustive search, and maximum weighted bipartite matching.
In order to analyze the time complexity, combinatorial analysis was performed
on the number of relevant sets of branching nodes. We have also shown that if
inputs are restricted to bounded degree trees over a fixed alphabet, the prob-
lem can be solved in O((1 + ε)n1+n2) time for any fixed ε > 0. This result is
achieved by avoiding duplicate calculations for identical subsets of small sub-
trees. Furthermore, we have shown hardness results that suggest the necessity
of the conditions of bounded degree and fixed alphabet.

Although the former algorithm is much faster than a naive one, the base of
the time complexity (= 1.26) is still high for practical applications. Therefore,
improvement of this factor is left as an open problem. In the latter algorithm,
the degree of polynomial grows extremely fast as a function of 1/ε. Therefore,
significant reduction of the degree of polynomial is also left as an open problem.

Acknowledgments. We would like to thank Magnús M. Halldórsson for helpful
discussions.

References

1. Akutsu, T., Fukagawa, D., Takasu, A., Tamura, T.: Exact algorithms for computing
the tree edit distance between unordered trees. Theoret. Comput. Sci. 412, 352–364
(2011)

2. Akutsu, T., Mori, T., Tamura, T., Fukagawa, D., Takasu, A., Tomita, E.: An
improved clique-based method for computing edit distance between unordered trees
and its application to comparison of glycan structures. In: Proc. 5th International
Conference on Complex, Intelligent and Software Intensive System, pp. 536–540.
IEEE Press, New York (2011)

372 T. Akutsu et al.

3. Akutsu, T., Fukagawa, D., Takasu, A.: Improved approximation of the largest
common subtree of two unordered trees of bounded height. Inf. Proc. Lett. 109,
165–170 (2008)

4. Bille, P.: A survey on tree edit distance and related problem. Theoret. Comput.
Sci. 337, 217–239 (2005)

5. Canzar, S., Elbassioni, K., Klau, G.W., Mestre, J.: On Tree-Constrained Matchings
and Generalizations. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011.
LNCS, vol. 6755, pp. 98–109. Springer, Heidelberg (2011)

6. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition
algorithm for tree edit distance. ACM Trans. Algorithms 6, 1 (2009)

7. Fukagawa, D., Akutsu, T., Takasu, A.: Constant Factor Approximation of Edit
Distance of Bounded Height Unordered Trees. In: Karlgren, J., Tarhio, J., Hyyrö,
H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 7–17. Springer, Heidelberg (2009)

8. Halldórsson, M.M., Tanaka, K.: Approximation and special cases of common sub-
trees and editing distance. In: Nagamochi, H., Suri, S., Igarashi, Y., Miyano, S.,
Asano, T. (eds.) ISAAC 1996. LNCS, vol. 1178, pp. 75–84. Springer, Heidelberg
(1996)

9. Hirata, K., Yamamoto, Y., Kuboyama, T.: Improved MAX SNP-Hard Results for
Finding an Edit Distance between Unordered Trees. In: Giancarlo, R., Manzini, G.
(eds.) CPM 2011. LNCS, vol. 6661, pp. 402–415. Springer, Heidelberg (2011)

10. Kilpeläinen, P., Mannila, H.: Ordered and unordered tree inclusion. SIAM J. Com-
puting 24, 340–356 (1995)

11. Shasha, D., Wang, J.T.-L., Zhang, K., Shih, F.Y.: Exact and approximate algo-
rithms for unordered tree matching. IEEE Trans. System,Man, and Cybernetics 24,
668–678 (1994)

12. Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26, 4220–4433 (1979)
13. Tovey, C.A.: A simplified satisfiability problem. Disc. Appl. Math. 8, 85–89 (1984)
14. Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered

labeled trees. Inf. Proc. Lett. 42, 133–139 (1992)
15. Zhang, K., Jiang, T.: Some MAX SNP-hard results concerning unordered labeled

trees. Inf. Proc. Lett. 49, 249–254 (1994)

Fixed-Parameter Algorithms

for Finding Agreement Supertrees�

David Fernández-Baca, Sylvain Guillemot, Brad Shutters,
and Sudheer Vakati

Department of Computer Science, Iowa State University, Ames, IA 50011, USA
{fernande,sguillem,shutters,svakati}@iastate.edu

Abstract. We study the agreement supertree approach for combining
rooted phylogenetic trees when the input trees do not fully agree on
the relative positions of the taxa. Two approaches to dealing with such
conflicting input trees are considered. The first is to contract a set of
edges in the input trees so that the resulting trees have an agreement
supertree. We show that this problem is NP-complete and give an FPT
algorithm for the problem parameterized by the number of input trees
and the number of edges contracted. The second approach is to remove
a set of taxa from the input trees so that the resulting trees have an
agreement supertree. An FPT algorithm for this problem when the input
trees are all binary was given by Guillemot and Berry (2010). We give
an FPT algorithm for the more general case when the input trees have
arbitrary degree.

1 Introduction

A phylogeny, or evolutionary tree, is a tree representing the evolutionary his-
tory of a set of species. The leaves of the tree represent the current species
(taxa), and the internal nodes of the tree represent the hypothetical ancestors.
A fundamental problem in phylogenetics is to construct a supertree from smaller
input trees with overlapping taxa in such a way that the inferred supertree com-
plies as closely as possible with the topological information of the input trees.
This problem is motivated by the biological and computational constraints on
constructing large scale phylogenies. The supertree problem was introduced in
[5], and a variety of supertree construction methods have been proposed. See
[3,14,1,15,4] for more on supertrees.

In this paper we use the agreement supertree approach for combining rooted
phylogenetic trees. The goal of this approach is to search for a supertree such
that each of the input trees is a restriction of the supertree to a subset of its
taxa. Formally, we have the following decision problem.

� This work was supported in part by the National Science Foundation under grants
CCF-1017189 and DEB-0829674.

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 373–384, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

374 D. Fernández-Baca et al.

Agreement Supertree (AST)
Input: a collection T of k rooted phylogenetic trees on a set of n taxa.
Question: does there exist an agreement supertree for T ?

The answer to an instance of AST is “yes” if and only if the input trees fully
agree on the relative positions of the taxa, in which case the input trees are said
to agree and an agreement supertree can be found in polynomial time [13].

The input trees may fail to have an agreement supertree because of conflicts
with respect to the relative positions of some taxa. In practice, such conflicts arise
due to errors in the inference process, or due to biological processes, e.g., lateral
gene transfer, gene duplication, and others [11,10]. These errors materialize as
misplaced taxa and unnecessary edges in the input trees. We thus consider the
following two approaches for dealing with conflicting input trees.

The first approach we consider for dealing with conflicting input trees is to find
a subset of the edges of the input trees to contract so that the resulting collection
of trees agree. Formally, we focus on the following parameterized problem.

Agreement Supertree Edge Contraction (AST-EC)
Input: a collection T of k rooted phylogenetic trees on a set of n taxa, and
an integer p.
Question: can we contract at most p internal edges of T so that the trees in
T agree?

The AST-EC problem does not seem to have been considered before. We give
a proof of the NP-hardness of the AST-EC problem, and show that it is fixed-
parameter tractable for parameters k and p.

The second approach we consider is to find a subset of the taxa to remove
from the input trees so that the resulting collection of trees agree. Formally, we
focus on the following parameterized problem.

Agreement Supertree Taxon Removal (AST-TR)
Input: a collection T of k rooted phylogenetic trees on a set of n taxa, and
an integer p.
Question: can we remove at most p taxa so that the input trees agree?

The AST-TR problem is NP-hard [8,2], but was shown to be fixed-parameter
tractable in k and p when restricted to the case when the input trees are all
binary [6]. Our contribution is to show that the more general AST-TR problem,
where the input trees are allowed to have arbitrary degree, is fixed-parameter
tractable in k and p. It was also shown in [2] that if AST-TR is parameterized
by only k or p, then the problem is fixed-parameter intractable. We also note
that the optimization version of AST-TR, i.e., finding a minimum set of taxa to
remove, is the dual of the Maximum Agreement Supertree (Smast) problem
[2,8,9]. Exact algorithms for Smast on binary trees are known that run in time
O(6knk) [6,7] and, when the maximum degree of the input trees is d, [7] gives
an O((kd)kd+32knk) time algorithm for Smast.

The rest of this paper proceeds as follows. In Section 3, we develop a charac-
terization of when a set of input trees agree. We then use this characterization to

Fixed-Parameter Algorithms for Finding Agreement Supertrees 375

develop an algorithm for testing agreement that solves the AST problem. We re-
mark here that this algorithm could be easily modified to produce an agreement
supertree when the set of input trees agree. If the algorithm answers in the nega-
tive, it returns a subset of the internal nodes of the trees in T encapsulating the
taxa on which the trees in T disagree. In Section 4 we use these internal nodes
to develop O((2k)pkn2) time algorithms to solve the AST-EC and AST-TR

problems. We also prove the NP-hardness of the AST-EC problem by giving a
reduction from Multicut to AST-EC. We conclude in Section 5 with a brief
discussion of some ideas for future research. Due to space limitations we omit
some of the proofs.

2 Definitions

Let T = {T1, . . . , Tk} be a collection of rooted phylogenetic trees, and let T be
some arbitrary tree in T . We use V (T), E(T), Ê(T), and r(T) to denote the
vertices, edges, internal edges, and root vertex of T respectively. We use L(T)
to denote the set of labels mapped to the leaves of T , and we write L(T) for⋃

i∈[k] L(Ti) and Ê(T) =
⋃

i∈[k] Ê(Ti), where [k] stands for {1, . . . , k}. For each
u ∈ V (T), we use parent(u), Ch(u), T (u), and L(u) to denote the parent of u,
the children of u, the subtree of T rooted at u, and the set of labels mapped to
the leaves of T (u), respectively.

For a label set L, the restriction of T to L, denoted by T |L, is the mini-
mal homeomorphic subtree of T connecting leaves with labels in L. For a set
L ⊆ L(T), we write T |L for the collection {T1|L, . . . , Tk|L} of trees in T re-
stricted to L. For a set F ⊆ Ê(T) we use T/F to denote the tree obtained
from T by contracting the edges of F . For a set F ⊆ Ê(T), we denote the set
{T1/F, ..., Tk/F} by T /F . Given two trees S and T where L(T) ⊆ L(S), T is an
induced subtree of S if and only if S|L(T) = T . Note that all degree two vertices
in S|L(T) are assumed to be contracted. An agreement supertree for T is a tree
S such that each Ti is an induced subtree of S. We say that the trees in T agree
if and only if there is an agreement supertree for T .

A position π in T is a tuple (v1, v2, . . . , vk) where each vertex vi is either
from the tree Ti or the symbol ⊥. A reduced position is a position where each
component is an internal node or ⊥. The reduction of a position π, denoted by π↓,
is derived by substituting every leaf vertex in π by ⊥. We use π�, respectively π⊥,
to denote the initial, respectively final, positions where vi = r(Ti), respectively
vi = ⊥, for each i ∈ [k]. We write L(π) for

⋃
i∈[k] L(π[i]). There is an agreement

supertree for π if there is an agreement supertree for the collection of trees
{T1(π[1]), . . . , Tk(π[k])}.

The graph G(T , π) is the graph whose vertex set consists of the children of
all the vertices in π and there is an edge between two vertices u and v if and
only if L(u) ∩ L(v) �= ∅. Note that the graph G(T , π) is only defined when π is
a reduced position. In the rest of this paper, G(T , π) is denoted by G = (V, E)
and Vi = Ch(π[i]) for each i ∈ [k].

376 D. Fernández-Baca et al.

3 The Agreement Supertree Problem

In this section we give a characterization of when a collection of input trees has
an agreement supertree. We then use this characterization to build an O(kn2)
time algorithm that solves the AST problem.

3.1 Chararacterizing Agreement

The proofs of Lemmas 1, 2, and 3 are omitted.

Lemma 1. The following statements hold:

1. There is an agreement supertree for T if and only if there is an agreement
supertree for every position π of T .

2. There is an agreement supertree for a position π of T if and only if there is
an agreement supertree for π ↓.

A subset U ⊆ V is nice if, for each i ∈ [k], U contains either zero, one, or all of
the elements of Vi. A partition P of V is a nice partition of G if every set of P is
nice, and, for every {C, C′} ⊆ P , C and C′ are disconnected in G. The successor
of π w.r.t. a nice set U , denoted by πU , is defined as:

πU [i] =

⎧⎪⎨⎪⎩
⊥ if Vi ∩ U = ∅
p if Vi ∩ U = {p}
π[i] if |Vi ∩ U | ≥ 2

for each i ∈ [k].

Lemma 2. Let π be a reduced position such that π �= π⊥. The following state-
ments are equivalent.

1. There is an agreement supertree for π.
2. There exists a nice partition P of G where P has at least two classes, and,

for every X ∈ P , πX has an agreement supertree.

For partitions P and Q of V , we say P is finer than Q, denoted P � Q, if
and only if, for every C ∈ P , there exists a D ∈ Q such that C ⊆ D. Let P
represent the set of all nice partitions of G, and let (P ,�) represent the ordering
of partitions of P under the operation �. Note that (P ,�) is a poset.

Lemma 3. (P ,�) has a unique minimal element.

We call the unique minimal element of (P ,�) the minimum nice partition of G.
Suppose that the minimum nice partition P of G is a singleton. Let K = {i ∈
[k] : π[i] �= ⊥}. We say that a set I ⊆ V is interesting for a reduced position π of
T if both |I∩Vi| = 2 for each i ∈ K, and there is a set F ⊆ E such that all of the
following conditions hold: (i) |F | ≤ 2|K| − 1; (ii) for each v ∈ I, there exists an
e ∈ F such that v ∈ e; and (iii) the subgraph of G induced by F has a minimum
nice partition that is a singleton. Intuitively, a set of interesting vertices certifies
there is no agreement supertree for π. If there is a set of interesting vertices for
π, we say π is an obstructing position for T .

Fixed-Parameter Algorithms for Finding Agreement Supertrees 377

3.2 Finding Successor Positions and Interesting Vertices

We now develop an algorithm GetSuccessors that takes as input a position π
in a collection T of rooted phylogenetic trees, and finds the set Π of successor
positions for each class in the minimum nice partition of G. In case the minimum
nice partition of G is a singleton, the algorithm returns a set I of interesting
vertices for π. An implementation of the algorithm and proofs of Theorems 1, 2
are omitted.

The central idea behind the GetSuccessors algorithm is that, for a given
� ∈ L(π), all of the vertices in the set S� = {v ∈ V : � ∈ L(v)} are connected, and
hence, must be in the same class of the minimum nice partition. The algorithm
examines, one by one, each label � ∈ L(π), and builds a position π� by examing
each vertex v ∈ S�. If v is already covered by a position π′, then π′ will need to
be merged with π�. If v is not already covered by some position, then we simply
add v to π�. After merging a position π′ with π�, it may be the case that π�

contains two vertices from the same input tree. In such a case, the algorithm
needs to merge with π� all of the positions covering any of the vertices from that
input tree. Furthermore, since each � ∈ L(π) can be in the subtree of at most
one v per Vi, it follows that the first time two vertices from the same input tree
end up in the same partition, those two vertices are unique and we add them to
the set I of interesting vertices.

Theorem 1. GetSuccessors can be implemented to run in O(kn) time, and
in the tuple (Π, I) returned, Π is exactly the successor positions of each class of
the minimum nice partition P of G.

If GetSuccessors determines that the minimum nice partition of G is a sin-
gleton, then the set Π returned has π as its only element. In this case, the set I
of vertices returned by the algorithm is a set of interesting vertices for π.

Theorem 2. If the set Π returned by GetSuccessors is a singleton with Π =
{π}, then I is a set of interesting vertices for π.

3.3 Testing for an Agreement Supertree

We conclude this section with an algorithm TestAgreement which takes as in-
put a position π in a collection T of rooted phylogenetic trees, and tests whether
there is an agreement supertree for π. If there is no agreement supertree for π,
the algorithm returns an obstructing position π′ and a set of interesting vertices
for π′. Note that to test for the existence of an agreement supertree for T , it
suffices to call TestAgreement on the initial position π�. The set of interest-
ing vertices returned by TestAgreement will be used in the remainder of the
algorithms discussed in this paper. Theorem 3 states the runtime and correct-
ness of the TestAgreement algorithm given in the listing of Algorithm 1. The
runtime is proven in Lemma 4 and the correctness is proven in Lemma 5.

Lemma 4. The implementation of TestAgreement given in Algorithm 1 runs
in O(kn2) time.

378 D. Fernández-Baca et al.

Proof. Since at each execution of a recursive call, the label sets in each position
returned by GetSuccessors are disjoint, it follows that the recursion tree has
O(n) leaves. So there are O(n) recursive calls to TestAgreement. Since each
execution of the loop in line 5 results in a recursive call, and the body of the loop
takes O(1) time outside of the recursive call, it follows that the algorithm spends,
over all recursive calls, a total of O(n) time executing lines 5-7. Thus, it suffices
to show that each recursive call spends at most O(kn) time outside of lines 5-7.
Clearly, lines 1 and 2 can be done in O(k) time. The call to GetSuccessors

takes O(kn) time by Theorem 1. Line 4 and 8 can clearly be done in O(1) time.
	

Lemma 5. TestAgreement correctly decides if there is an agreement su-
pertree for a position π in T , and in case there is no agreement supertree for π in
T , TestAgreement retuns a position π′ in T for which there is no agreement
supertree and I is a set of interesting vertices for π′.

Proof. We show by induction on π, that TestAgreement(T , π) correctly de-
cides if π has an agreement supertree, and, in case there is no agreement supertree
for π, the position π′′ and set I returned on line 7 are an obstructing position
for T and a set of interesting vertices for π′′.

Let P be the minimum nice partition of G.
There are two base cases: (i) when π = π⊥; and (ii) when P has a single

class. In case (i) there is an agreement supertree for π and the algorithm returns
“yes” on line 2. In case (ii), by Lemma 2, there is no agreement supertree for
π. By Theorem 1, the set Π returned in line 3 will be a singleton and π is an
obstructing position. By Theorem 2, I is a set of interesting vertices for π. Line
4 returns π along with the set of interesting vertices returned by the call to
GetSuccessors.

Now suppose that P has more than one class, Π is the set of successor positions
returned by GetSuccessors, and, for each π′ ∈ Π , TestAgreement(T , π′)
correctly decides whether there is an agreement supertree for π′. If there is
an agreement supertree for each position in Π , then by Lemma 2, there is an
agreement supertree for π and the algorithm returns “yes” on line 8. If there
is no agreement supertree for some position π′ ∈ Π , then by the inductive
hypothesis, TestAgreement(T , π′) will answer in the negative along with an
obstructing position π′′ and a set of interesting vertices for π′′. By Lemma 1,
π′′ is an obstructing position for T , so we return π′′ along with the set I of
interesting vertices returned by GetSuccessors. 	

Theorem 3 follows directly from Lemmas 4 and 5.

Theorem 3. TestAgreement can be implemented to run in O(kn2) time and
correctly decides if there is an agreement supertree for a position π in T . If there
is no agreement supertree for π, it returns an obstructing position π′ and a set
I of interesting vertices for π′.

Fixed-Parameter Algorithms for Finding Agreement Supertrees 379

Input: A position π in a collection T of trees.
Output: A tuple (B, π′, I) where B is a boolean indicating whether there is an

agreement supertree for π, and, when B is no, π′ is an obstructing
position and I is a set of interesting vertices for π′.

π ← π ↓1

if π = π⊥ then return (yes, ∅, ∅)2

(Π, I)← GetSuccessors(T , π)3

if |Π | = 1 then return (no, π, I)4

foreach π′ ∈ Π do5

(B, π′′, I)← TestAgreement(T , π′)6

if B = no then return (no, π′′, I)7

return (yes, ∅, ∅)8

Algorithm 1. TestAgreement(T , π)

4 FPT Algorithms

In this section we show that both the AST-EC and AST-TR problems are
fixed-parameter tractable for parameters k and p, by giving O((2k)pkn2) time
algorithms for both problems.

We assume that there is no agreement supertree for the collection T of input
trees, and that TestAgreement(T , π�) has returned the tuple (no, π, I). Thus,
π is an obstructing position, and I is a set of interesting vertices for π.

4.1 An Auxiliary Algorithm

We define the closure of a set C ⊆ V as the set 〈C〉G ⊆ V such that: (i) if
C ∩ Vi = ∅ then 〈C〉G ∩ Vi = ∅; (ii) if C ∩ Vi = {v}, then 〈C〉G ∩ Vi = {v};
and (iii) if |C ∩ Vi| ≥ 2 then 〈C〉G ∩ Vi = Vi. Now, given G and I, we run the
following algorithm, called Algorithm Merge. We maintain a partition P of I,
initially P contains a class {v} for each v ∈ I. At a given step, suppose that
P = {C1, . . . , Cp}. If G contains a transverse edge joining 〈Ci〉G to 〈Cj〉G for
some i, j, then we replace P by P − {Ci, Cj} + {Ci ∪ Cj}, and we continue.

Lemma 6. Let Q be the minimum nice partition of G. At a given step of Algo-
rithm Merge, it holds that: for each C ∈ P , there is a component K ∈ Q such
that 〈C〉G ⊆ K.

The crucial property of Algorithm Merge is that, by starting with the interest-
ing vertices, it will end with P consisting of a single class.

Lemma 7. Suppose that TestAgreement(T , π�) has returned (no, π, I).
Then Algorithm Merge run on G, I ends with the partition {I}.

4.2 Solving the AST-EC Problem

The computational complexity of AST-EC does not seem to have been studied
before. To motivate the development of a fixed-parameter algorithm to solve the
AST-EC problem, we first prove the problem is NP-complete.

380 D. Fernández-Baca et al.

We use a recursive parenthesized notation for trees: if � is a label, � represents
a tree with a single leaf labelled �; if T1, . . . , Tk are trees, then (T1, . . . , Tk)
represents the tree whose root is unlabelled and has T1, . . . , Tk as child subtrees.

Theorem 4. AST-EC is NP-hard.

Proof. We reduce the Multicut problem to the AST-EC problem. Given a
graph G = (V, E) and a set of requests R ⊆ V ×V , the Multicut problem asks
if there exists a set S of at most p edges in E, where, for every uv ∈ R, u and v
are in different components of G\S.

Given an instance I = (G, R, p) of Multicut, we build an instance I ′ = (T , p)
of the AST-EC problem as follows. The collection T is defined over the label set
V ∪ {x}. For every uv ∈ E, add the tree ((u, v), x) to T , and, for every request
uv ∈ R, add the tree (u, v, x) to T . The answer to I is yes if and only if the
answer to I ′ is yes. 	

In the remainder of this subsection, we show that AST-EC is fixed-
parameter tractable in parameters k and p. Lemma 8 shows that if a call to
TestAgreement(T , π�) answers negatively, we must contract at least one edge
joining an interesting vertex to its parent.

Lemma 8. Suppose that TestAgreement(T , π�) has returned a tuple
(no, π, I). In order to obtain a collection having an agreement supertree, we need
to contract one edge {v, parent(v)} with v ∈ I.

Proof. Assume that we have a set S ⊆ Ê(T) which contains none of the edges
{v, parent(v)} with v ∈ I; we show that T /S has no agreement supertree. By
definition of S, each element of I is still a node of T /S. Define the position
π′ in T /S as follows. If π[i] =⊥, then π′[i] =⊥. If π[i] = u is the parent of
two vertices v, w ∈ I, then π′[i] is the common parent of v, w in Ti/S. Let
G′ = G(T /S, π′) = (V ′, E′). We show that G′ has a unique nice component.

Let us consider an execution E of Algorithm Merge on G and I. We claim
that E can be simulated by an execution E ′ of Algorithm Merge on G′ and I. Let
PE , PE′ denote the values of P during E , E ′ respectively. We show by induction
that at each step of E , E ′, we have PE = PE′ . This holds clearly at the beginning
of E , E ′. Suppose that this holds at the beginning of step s. Then E picks an edge
induced by some label � ∈ L(〈Ci〉G) ∩ L(〈Cj〉G). The important observation is
that given C ⊆ I, we have L(〈C〉G) ⊆ L(〈C〉G′) (as L(π[i]) ⊆ L(π′[i]) for every
i ∈ [k]). Hence, � ∈ L(〈Ci〉G′) ∩ L(〈Cj〉G′), and thus E ′ can pick an edge joining
〈Ci〉G′ and 〈Cj〉G′ . This leads to the merge of Ci and Cj , and thus PE = PE′ at
the end of step s.

Applying the induction hypothesis at the last step of E , and using that E ends
with the partition {I} (Lemma 7), we obtain that E ′ ends with the partition {I}.
By Lemma 6, if Q is the minimum nice partition of G′, we have 〈I〉G′ = V ′ in a
same component of Q, and thus T /S has no agreement supertree by Lemmas 1
and 2. 	

Since TestAgreement returns a set of at most 2k interesting vertices, Lemma
8 leads to an FPT algorithm for AST-EC using a bounded search tree technique.

Fixed-Parameter Algorithms for Finding Agreement Supertrees 381

Theorem 5. AST-EC can be solved in O((2k)pkn2) time.

Proof. We use a recursive algorithm SolveAST-EC(T , p). The algorithm an-
swers “no” if p < 0. Otherwise, it runs TestAgreement(T , π�) to decide in
O(kn2) if T has an agreement supertree. It answers “yes” in case in positive an-
swer. In case of negative answer, it obtains a set I of nodes of T ; for each non-leaf
vertex v ∈ I, it recursively calls SolveAST-EC(T /{v, parent(v)}, p − 1). The
algorithm then answers “yes” iff one of the recursive calls does. The correctness
of the algorithm follows from Lemma 8, and the running time is O((2k)pkn2).

	

4.3 Solving the AST-TR Problem

We will say that a set C ⊆ L(T) is a conflict among T if T |C has no agreement
supertree. Lemma 9 shows that if TestAgreement(T , π�) answers negatively,
we can obtain a conflict among T from the set of interesting vertices.

Lemma 9. Suppose that TestAgreement(T , π�) has returned a tuple
(no, π, I). We can then obtain a set C ⊆ L of size at most 2k − 1 such that
T |C has no agreement supertree.

Proof. Consider an execution E of Algorithm Merge on G and I. For each edge
e = uv found by E , pick a label �e ∈ L(u) ∩ L(v), and let C be the resulting
set of labels. Clearly |C| ≤ 2k − 1. Consider a vertex v ∈ I ∩ Vi, then during E
consider the first time that {v} is merged with a component C; it corresponds
to some label �v ∈ L(v) ∩ C. It follows that π[i] is still a node of Ti|C, let v′

denote the child of π[i] in Ti|C that contains �v. Let I ′ = {v′ : v ∈ I}, and let
G′ = G(T |C, π) = (V ′, E′). We show that G′ has a unique nice component.

We claim that the execution E can be simulated by an execution E ′ of Algo-
rithm Merge on G′ and I ′. Let PE , PE′ denote the values of P during E , E ′ re-
spectively. We show by induction that at each step of E , E ′, if PE = {C1, . . . , Cp},
then PE′ = {C′

1, . . . , C
′
p} with C′

i ={v′ : v ∈ Ci}. This holds clearly at the begin-
ning of E , E ′. Suppose that this holds at the beginning of step s. Then E picks an
edge e = uv with u ∈ 〈Ci〉G, v ∈ 〈Cj〉G. Suppose that u ∈ V (Tp) and v ∈ V (Tq).
In Tp|C (resp. Tq|C), there is a child u′ of π[p] (resp. a child v′ of π[q]) that
contains �e. The induction hypothesis implies that u′ ∈ 〈C′

i〉G′ and v′ ∈ 〈C′
j〉G′ ,

thus E ′ can pick the edge e′ = u′v′ induced by label �e. This leads to merge C′
i

and C′
j and thus the induction hypothesis holds at the end of step s.

Applying the induction hypothesis at the last step of E , and since E ends with
the partition {I} (Lemma 7), we conclude that E ′ ends with the partition {I ′}.
By Lemma 6, if Q is the minimum nice partition of G′, we have 〈I ′〉G′ = V ′ in
a same component of Q, and thus T |C has no agreement supertree by Lemmas
1 and 2. 	

We outline an algorithm FindObstruction that takes as input a set of inter-
esting vertices and returns a conflict among T of size at most 2k − 1. Suppose
that I = {v1, . . . , vr}. We initialize components C1, . . . , Cr with Ci = {vi}, and

382 D. Fernández-Baca et al.

Input: A collection T = {T1, . . . , Tk} of rooted trees, an obstructing position π
in T , a set I = {v1, . . . , vr} of interesting vertices for π.

Output: A conflict among π.
1 if 2k ≥ n then return L
2 R ← ∅ ; J ← {1, . . . , r}
3 for i from 1 to r do
4 Ci ← {vi}
5 foreach � ∈ L(vi) do J(�)← J(�) ∪ {i}
6 for s from 1 to r − 1 do
7 Pick � ∈ L such that |J(�)| ≥ 2, and choose i, j ∈ J(�)
8 R ← R ∪ {�}
9 for � ∈ L do

10 if j ∈ J(�) then J(�)← J(�)\{j} ∪ {i}
11 for p from 1 to k do
12 if Ci ∩ Vp 	= ∅ and Cj ∩ Vp 	= ∅ then
13 foreach � ∈ L(π[p]) do J(�)← J(�) ∪ {i}
14 Ci ← Ci ∪ Cj , J ← J\{j}
15 return R

Algorithm2. FindObstruction(T , π, I)

we let J = {1, . . . , r}. We use a main loop which performs the r − 1 steps of
Algorithm Merge. At each step, we have J ⊆ {1, . . . , r}, and the current par-
tition is represented by the components Ci (i ∈ J), which are called the active
components. We maintain for each � ∈ L a variable J(�) = {i∈J :�∈L(〈Ci〉G)}.
At a given step, we have to find a label inducing an edge which joins the closure
of two active components. This amounts to looking for an � such that |J(�)| ≥ 2.
Once such an � has been found, we pick two indices i, j ∈ J(�), and we merge
the components Ci, Cj , letting Ci be the newly created component, and updat-
ing the variables J(�) accordingly. An implementation of FindObstruction is
given in the listing of Algorithm 2.

Lemma 10. Suppose that TestAgreement(T , π�) returns (no, π, I). Then
Algorithm FindObstruction(T , π, I) returns in O(kn) time a conflict among
T of size at most 2k − 1.

Proof. We first argue for the correctness. If 2k ≥ n, then the set L returned
by the algorithm is a conflict, as by assumption T has no agreement supertree.
Suppose now that 2k < n. By Lemma 9, it suffices to show that an execution E
of Algorithm 2 simulates an execution E ′ of Algorithm Merge. More precisely,
we can show the following: at each step s,

1. there is an execution E ′ of s steps of Algorithm Merge which produces the
set of components Ci (i ∈ J) and the set of labels R,

2. for each � ∈ L, J(�) = {i ∈ J : � ∈ L(〈Ci〉G)}.

This is shown by induction on s. The initialization of the variables Ci and J(�)
in Lines 3-5 ensure that this is true initially. Suppose that this holds at the

Fixed-Parameter Algorithms for Finding Agreement Supertrees 383

beginning of step s. The choice of � and i, j in Line 7 ensures that � ∈ L(〈Ci〉G)∩
L(〈Cj〉G), and thus there exists an edge e between 〈Ci〉G and 〈Cj〉G, induced by
the label �. The update of Ci ← Ci ∪ Cj and J ← J\{j} reflect the merge of
Ci and Cj , and thus we can simulate step s of Algorithm Merge which would
choose edge e and merge Ci and Cj . This establishes Point 1, and the update of
J(�) in Lines 9-13 ensures that Point 2 is preserved.

We now justify the running time. Let us assume that 2k < n, as otherwise the
algorithm takes O(1) time. We implement the sets J(�) by bit arrays, allowing
in constant time the following operations: (i) insertion or deletion of an element,
(ii) obtaining the size of the set. It follows that Lines 3-5 take O(rn) = O(kn)
time. Let us now analyze the time taken by step s of the main loop. Let Ks

denote the set of indices p for which the condition of Line 12 holds. Then Lines
7-10 take O(n) time, Lines 11-13 take O(k+ |Ks|n) time, and Line 14 takes O(k)
time. Overall, Lines 7-14 take O(n + |Ks|n) time as k = O(n). Observe that the
sets Ks are disjoint for s = 1, . . . , r−1, and thus

∑
s |Ks| = O(k). It follows that

the loop of Lines 6-14 take O(rn + kn) = O(kn) time, and we conclude that the
whole algorithm runs in O(kn) time. 	

Theorem 6. AST-TR can be solved in O((2k)pkn2) time.

Proof. We use a recursive algorithm SolveAST-TR(T , p). The algorithm an-
swers “no” if p < 0. Otherwise, it runs TestAgreement(T , π�) to decide in
O(kn2) if T has an agreement supertree. It answers “yes” in case of positive
answer. In case of negative answer, it obtains a position π and a set I of inter-
esting nodes for π. It calls FindObstruction(T , π, I) to obtain in O(kn) time
a conflict C among T of size at most 2k− 1. Then, for each � ∈ C, it recursively
calls SolveAST-TR(T |(L(T) \ {�}), p− 1), and it answers “yes” iff one of the
recursive calls does. The correctness follows from Lemma 10, and the running
time is O((2k)pkn2). 	

5 Concluding Remarks

We have given O((2k)pkn2) time algorithms for both the AST-EC and AST-TR

problems, thus showing they are fixed-parameter tractable for parameters k and
p. We remark here that the bounds given for the cardinality of the obstruction
sets for AST-EC of 2k (Lemma 8), and for AST-TR of 2k − 1 (Lemmas 9 and
10), are both tight.

Our proof that AST-EC is NP-hard relies on a reduction from the param-
eterized Multicut problem to the AST-EC problem parameterized by p. As
Multicut is fixed-parameter tractable [12], this leaves open the question of
whether AST-EC could be fixed-parameter tractable in p only. It is known that
AST-TR is fixed-parameter intractable for parameter p [2].

Our focus here was on agreement supertrees. A compatible supertree is one
that contains a refinement of each of the input trees. There are natural analogs of
AST-EC and AST-TR for compatible supertrees. For binary input trees, com-
patibility is equivalent to agreement, so the results of [6] imply fixed-parameter

384 D. Fernández-Baca et al.

tractability. However, for input trees of arbitrary degree, we have established
that any upper bound on the cardinality of an obstruction set is at least c2k.
Hence, the techniques given here are unlikely to imply efficient fixed-parameter
tractability for the analogs of AST-TR and AST-EC to compatible supertrees.

There are also analogs of both AST-EC and AST-TR to unrooted trees.
Although Smast has been studied for unrooted trees [2,7], the AST-EC and
AST-TR problems for unrooted trees do not seem to have been studied before.

References

1. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest
common ancestors with an application to the optimization of relational expressions.
SIAM J. Comput. 10(3), 405–421 (1981)

2. Berry, V., Nicolas, F.: Maximum agreement and compatible supertrees. J. Discrete
Algorithms 5(3), 564–591 (2007)

3. Bininda-Emonds, O.R.P. (ed.): Phylogenetic Supertrees: Combining Information
to Reveal the Tree of Life. Ser. on Comp. Biol., vol. 4. Springer (2004)

4. Bryant, D.: Optimal Agreement Supertrees. In: Gascuel, O., Sagot, M.-F. (eds.)
JOBIM 2000. LNCS, vol. 2066, pp. 24–31. Springer, Heidelberg (2001)

5. Gordon, A.D.: Consensus supertrees: The synthesis of rooted trees containing over-
lapping sets of labelled leaves. J. Classification 9, 335–348 (1986)

6. Guillemot, S., Berry, V.: Fixed-parameter tractability of the maximum agreement
supertree problem. IEEE/ACM Trans. Comput. Biology Bioinform. 7(2), 342–353
(2010)

7. Hoang, V.T., Sung, W.K.: Improved algorithms for maximum agreement and com-
patible supertrees. Algorithmica 59(2), 195–214 (2011)

8. Jansson, J., Ng, J.H.K., Sadakane, K., Sung, W.K.: Rooted maximum agreement
supertrees. Algorithmica 43(4), 293–307 (2005)

9. Kao, M.Y.: Encyclopedia of algorithms. Springer, New York (2007)
10. Linder, C.R., Rieseberg, L.H.: Reconstructing patterns of reticulate evolution in

plants. Am. J. Bot. 91(10), 1700–1708 (2004)
11. Maddison, W.: Gene trees in species trees. Systematic Biology 46(3), 523–536

(1997)
12. Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by

the size of the cutset. In: STOC 2011, pp. 469–478. ACM (2011)
13. Ng, M., Wormald, N.: Reconstruction of rooted trees from subtrees. Discrete Appl.

Math. 69(1-2), 19–31 (1996)
14. Scornavacca, C.: Supertree methods for phylogenomics. Ph.D. thesis, Univ. of

Montpellier II, Montpellier, France (2009)
15. Steel, M.A.: The complexity of reconstructing trees from qualitative characters and

subtrees. J. Classification 9, 91–116 (1992)

Computing the Rooted Triplet Distance

between Galled Trees by Counting Triangles

Jesper Jansson1,� and Andrzej Lingas2,��

1 Laboratory of Mathematical Bioinformatics, Institute for Chemical Research,
Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

jj@kuicr.kyoto-u.ac.jp
2 Department of Computer Science, Lund University, 22100 Lund, Sweden

Andrzej.Lingas@cs.lth.se

Abstract. We consider a generalization of the rooted triplet distance be-
tween two phylogenetic trees to two phylogenetic networks. We show that
if each of the two given phylogenetic networks is a so-called galled tree with
n leaves then the rooted triplet distance can be computed in o(n2.688) time.
Our upper bound is obtained by reducing the problem of computing the
rooted triplet distance to that of counting monochromatic and almost-
monochromatic triangles in an undirected, edge-colored graph. To count
different types of colored triangles in a graph efficiently, we extend an ex-
isting technique based on matrix multiplication and obtain several new
related results that may be of independent interest.

1 Introduction

Phylogenetic trees and their generalization to non-treelike structures, phyloge-
netic networks, are commonly used by scientists to describe evolutionary relat-
ionships among a set of objects such as biological species or natural languages
[2, 3, 6–8, 10–14]. Various metrics for measuring the (dis-)similarity of two given
phylogenetic trees have been proposed and analyzed in the literature; see, e.g., [2]
and the references therein. In this paper, we consider an extension of one particu-
lar, well-known method called the rooted triplet distance [2, 6] to the phylogenetic
network model and describe how to compute it efficiently.

The rooted triplet distance between two phylogenetic trees provides an intu-
itive measure of their dissimilarity and exhibits many attractive mathematical
properties [2, 6]. It counts the number of substructures (more precisely, subtrees
induced by three leaves) that differ between the two trees. More formally, it
is defined as follows. A rooted phylogenetic tree is an unordered, rooted tree in
which every internal node has at least two children and all leaves are distinctly
labeled. A rooted phylogenetic tree with three leaves is called a rooted triplet. A
non-binary rooted triplet leaf-labeled by {a, b, c} is called a rooted fan triplet and
is denoted by a|b|c (see the leftmost tree in Fig. 1), and a binary rooted triplet

� Funded by The Hakubi Project and KAKENHI grant number 23700011.
�� Research supported in part by VR grant 621-2008-4649.

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 385–398, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

386 J. Jansson and A. Lingas

b

ca

a

c

b| | ca

a b c

a b

c

b

b | ca |a c b |b c a

Fig. 1. The rooted fan triplet a|b|c and the rooted proper triplets ab|c, ac|b, and bc|a

is called a rooted proper triplet ; in the latter case, there are three possibilities,
denoted by ab|c, ac|b, and bc|a, corresponding to the three possible topologies
(see also Fig. 1). A rooted triplet t is said to be consistent with a rooted phy-
logenetic tree T if t is an embedded subtree of T . 1 Now, given two rooted
phylogenetic trees T1, T2 with the same set L of leaf labels, the rooted triplet
distance drt(T1, T2) is the number of rooted triplets over L that are consistent
with exactly one of T1 and T2.

The naive algorithm for computing drt(T1, T2) between two trees T1 and T2

with a leaf label set of cardinality n runs inO(n3) time: Just preprocess T1 and T2

in O(n) time so that lowest common ancestor queries can be answered in O(1)
time by the method in [9, 17], and then check each of the O(n3) possible rooted
triplets for consistency with T1 and T2 in O(1) time. Critchlow et al. [6] provided
a more efficient algorithm for computing the rooted triplet distance between two
binary phylogenetic trees with O(n2) running time, and Bansal et al. [2] extended
the O(n2)-time upper bound to two phylogenetic trees of arbitrary degrees.

Due to the recently increasing focus on phylogenetic networks (see, e.g., the
two new textbooks [10, 13]), it is compelling to consider generalizations of the
rooted triplet distance to the network case. For this case, it seems much harder
to improve on the naive O(n3)-time algorithm and to derive a subcubic upper
bound on the running time. Therefore, one would like to know if any important
special classes of phylogenetic networks such as the galled trees [8, 10] admit fast
algorithms for the rooted triplet distance. Galled trees are structurally restricted
phylogenetic networks in which all underlying cycles are vertex-disjoint (for a
detailed definition, refer to Section 2.2 below). This kind of phylogenetic network
was first considered by Wang et al. [18] and later by Gusfield et al. [8], and is also
known in the literature as a level-1 phylogenetic network [4, 10]. Galled trees have
turned out to be useful in certain settings where reticulation events do occur but
are known to be rare. 2 As a consequence, a number of algorithms for building
galled trees from different kinds of data have been published [3, 8, 10–12].

1 There are several equivalent ways to define this. For example, for any two leaf la-
bels x, y, let lcaT (x, y) denote the lowest common ancestor in T of the leaves labeled
by x and y. Then a|b|c is consistent with T if lcaT (a, b) = lcaT (a, c) = lcaT (b, c), and
ab|c is consistent with T if lcaT (a, b) is a proper descendant of lcaT (a, c) = lcaT (b, c).
See also Section 2.1 below.

2 See [8] for a discussion about the biological relevance of galled trees.

Computing the Rooted Triplet Distance between Galled Trees 387

1.1 New Results

The main contribution of our paper is an o(n2.688)-time algorithm for com-
puting the rooted triplet distance between two galled trees with n leaves each
[Theorem 4]. From a computational complexity point of view, this is significant
because it breaks the natural O(n3)-time barrier for any kind of non-tree phy-
logenetic networks for the first time. The precise running time is O(n(3+ω)/2),
where ω denotes the exponent in the running time of the fastest existing method
for matrix multiplication. It is well known that ω < 2.376 [5], and recent devel-
opments [16, 20] suggest slightly tighter bounds on ω.

Our main result is obtained in part by a reduction to the problem of counting
monochromatic and “almost-monochromatic” triangles in an undirected graph
with colored edges. To solve the latter efficiently, we strengthen a technique based
on matrix multiplication used in [1] and [19] for detecting if a graph contains
a triangle to also count the number of triangles in the graph. More exactly, we
show that:

• The number of triangles in a connected, undirected graph with m edges can

be computed in O(m
2ω

ω+1) ≤ o(m1.408) time [Theorem 1].

• If G is a connected, undirected, edge-colored graph with n vertices and C is a
subset of the set of edge colors then the number of monochromatic triangles
of G with colors in C can be computed in O(n(3+ω)/2) ≤ o(n2.688) time
[Theorem 2].

We also need to relax the concept of a monochromatic triangle to what we call
an R-chromatic triangle (see Section 3 for the definition), and obtain:

• If G is a connected, undirected, edge-colored graph with n vertices and R
is a binary relation on the colors that is computable in O(1) time then the
number of R-chromatic triangles in G can be computed in O(n(3+ω)/2) ≤
o(n2.688) time [Theorem 3].

Our new results on counting triangles in a graph may be of general interest and
could be useful in other applications unrelated to the main problem studied here.

2 Preliminaries

2.1 Basic Definitions

A (rooted) phylogenetic network U is a directed acyclic graph with a single root
vertex and a set L of distinctly labeled leaves, and no vertices having both inde-
gree 1 and outdegree 1. A vertex u is an ancestor of a vertex v (or, equivalently,
v is a descendant of u) in U if and only if there is a directed path from u to v
in U . In particular, u is an ancestor and descendant of itself. If the path from u
to v has non-zero length then v is a proper descendant of u. Next, a vertex w
is a common ancestor of vertices u and v in U if and only if w is an ancestor
of both u and v in U . Furthermore, w is a junction common ancestor (jca) of u

388 J. Jansson and A. Lingas

and v in U if and only if there are two directed non-zero length paths from w
to u and v, respectively, which are vertex disjoint but for the start vertex w.
Finally, w is a lowest common ancestor (lca) of u and v in U if and only if:
(1) w is a common ancestor of u and v; and (2) w has no proper descendant that
is a common ancestor of u and v. As an example, in Fig. 2 (i), vertices w and z
are two different jca’s of a and c, w is an lca of a and c, and z is not an lca of a
and c.

We now define rooted triplet consistency for a phylogenetic network U . Fol-
lowing [10, 11], for any three leaf labels a, b, c, say that the rooted proper triplet
ab|c is consistent with U if and only if U contains a junction common ancestor w
of a and b as well as a junction common ancestor z of c and w such that there
are four directed paths from w to a, from w to b, from z to w, and from z to c
that are vertex disjoint except for in the vertices w and z. Secondly, say that the
rooted fan triplet a|b|c is consistent with U if and only if U contains a vertex w
such that there are three directed paths from w to a, from w to b, and from w to c
that are vertex-disjoint except for in the common start vertex w. Observe that in
the special case where U is a tree, the concepts of a lowest common ancestor and
a junction common ancestor between two leaves coincide, and the definitions of
rooted triplet consistency thus reduce to the definitions in footnote 1.

Next, we define the rooted triplet distance between phylogenetic networks as:

Definition 1. Let U1, U2 be two phylogenetic networks on the same leaf label
set L. The rooted triplet distance between U1 and U2, denoted by drt(U1, U2), is
the number of rooted fan triplets and rooted proper triplets with leaf labels from L
that are consistent with exactly one of U1 and U2.

This definition of drt differs slightly from the one restricted to trees in [2, 6].
The definition in [2, 6] counts the number of “bad” cardinality-3 subsets L′ of L
for which the rooted triplet with leaf set L′ consistent with U1 differs from the
rooted triplet with leaf set L′ consistent with U2. Therefore, when restricted to
trees, our definition of drt is exactly two times drt from [2, 6] because each “bad”
subset will contribute twice to our drt (once for the rooted triplet in U1 and once
for the rooted triplet in U2); obviously, our definition of drt could be normalized
by dividing by two but then drt would no longer always be an integer in the
non-tree case. We believe that our definition is more suitable in the context of
phylogenetic networks because it allows us to distinguish between cases such as:
(i) ab|c and bc|a are consistent with U1 whereas only bc|a is consistent with U2;
and (ii) ab|c is consistent with U1 and bc|a is consistent with U2.

2.2 Galled Trees

Here, we recall the definition of the class of phylogenetic networks called the
galled tree [8, 10], and investigate some of its properties.

A reticulation vertex of a phylogenetic network is any vertex of indegree
greater than 1. For any phylogenetic network U , define its underlying undirected
graph as the undirected graph obtained by replacing every directed edge in U by
an undirected edge. A phylogenetic network U is called a galled tree if all cycles

Computing the Rooted Triplet Distance between Galled Trees 389

in its underlying undirected graph are vertex-disjoint [8, 10]. A cycle C in a
galled tree is any set of vertices that induce a cycle in the underlying undirected
graph, and the vertex of C in U that is an ancestor of all vertices on C is called
the root of C. Thus, every cycle C in a galled tree has exactly one root and
one reticulation vertex, and C consists of two directed paths from its root to its
reticulation vertex. Also, any directed path from the root of the galled tree to a
vertex on such a cycle must pass through the root of the cycle. The next lemma
summarizes some useful properties of galled trees:

Lemma 1. Let U be a galled tree with n leaves and let u, v be any two vertices
in U . Then:

1. The lowest common ancestor in U of u and v is unique.
2. There are at most two different junction common ancestors of u and v.
3. If there are two junction common ancestors of u and v then both of them lie

on the same cycle C in U . Furthermore, one of them is the root of C and
the other one is the lowest common ancestor of u and v in U .

4. The number of vertices in U as well as the number of edges in U is O(n).
5. All junction common ancestors of pairs of vertices in U can be listed in O(n2)

time.

Proof. To prove property 1, suppose there were two different lowest common
ancestors w1 and w2 of u and v in U . Consider any path from w1 to u in U
and any path from w2 to u in U . Since both paths lead to u, they must meet
at some ancestor u′ of u which then has indegree larger than 1, where u′ is a
proper descendant of w1 and also a proper descendant of w2. In the same way,
there exists an ancestor v′ of v with indegree larger than 1 which is a proper
descendant of both w1 and w2, with u′ �= v′. Now let x be a lowest common
ancestor of w1 and w2 in U . In the underlying undirected graph of U , there
is a cycle containing x and u′ and another cycle containing x and v′, i.e., two
non-vertex-disjoint cycles, contradicting the definition of a galled tree.

Next, we prove properties 2 and 3. For each cycle in U , arbitrarily term one
of the two edges on C incident to the reticulation vertex as the left reticulation
edge and the other one as the right reticulation edge. Let UL be the tree obtained
from U by removing all right reticulation edges in U and define UR symmetrically.
Then, every junction common ancestor of u and v in U is a lowest common
ancestor of u and v in at least one of UL and UR. Property 2 follows. According
to the definitions, if w is a lowest common ancestor of u and v in U then w is
also a junction common ancestor of u and v in U , which yields property 3.

To upper-bound the number of vertices in U , construct a binary galled tree U ′

(where every vertex has outdegree at most 2) by repeatedly selecting any ver-
tex w with outdegree larger than 2 and replacing any two of its outgoing
edges (w, c1) and (w, c2) by a single edge (w, x) and two edges (x, c1) and (x, c2)
where x is a newly created vertex, until no vertex with outdegree larger than 2
remains. This will not introduce any vertices having both indegree 1 and outde-
gree 1, and U ′ is still a galled tree with n leaves, but U ′ contains at least as many
vertices as U . According to Lemma 3 in [4], the number of vertices in any binary

390 J. Jansson and A. Lingas

galled tree U ′ with n leaves is O(n), so this gives an upper bound for U as well.
Furthermore, any vertex in a galled tree can have indegree at most 2 (otherwise,
there would exist two non-vertex-disjoint cycles in the underlying undirected
graph), so the total number of edges in U is O(n). Thus, property 4 holds.

Finally, since the trees UL, UR can be preprocessed in linear time to answer
ancestor or descendant queries as well as lca queries in constant time [9, 17], and
lca’s in a tree are unique, property 5 follows. ��

When the phylogenetic network U is a galled tree, the definitions of consistency
of a rooted proper triplet ab|c or a rooted fan triplet a|b|c with U can be expressed
as in Lemma 2 and Lemma 3 below. (These two key lemmas are used by our
main algorithm in Section 4 to efficiently count the number of shared rooted
triplets in two galled trees.) See Fig. 2 for some examples.

A junction common ancestor z of two vertices u, v in U is said to use another
vertex w if, after the removal of w from U , the vertex z is no longer a junction
common ancestor of u and v.

Lemma 2. Let U be a galled tree. For any three leaves a, b, c in the leaf label set
of U , the rooted proper triplet ab|c is consistent with U if and only if U contains
a junction common ancestor w of a and b as well as a different junction common
ancestor z of c and w such that if both w and z belong to the same cycle C of U
then at least one of them does not use the reticulation vertex of C.

Proof. The necessity of the condition stated in the lemma follows directly from
the definition of consistency of ab|c with U. It remains to show the sufficiency of
this condition for galled trees.

The proof is by contradiction. First of all, the path from z to w crosses neither
that from w to a or that from w to b since U is an acyclic directed graph. Next,
if the path from z to c had to cross that from w to a (or b, respectively) in an
inner vertex x then z and w would lie on a common cycle whose reticulation
vertex is exactly x, and both would use x. We obtain a contradiction. ��

Lemma 3. Let U be a galled tree, and let a, b, c be three leaf labels in U . The
rooted fan triplet a|b|c is consistent with U if and only if there exists a vertex w
in U such that: (1) w is a junction common ancestor of all three pairs of leaves
{a, b}, {a, c}, {b, c}; and (2) w is the lowest common ancestor of at least two pairs
of leaves among {a, b}, {a, c}, {b, c}.

Proof. ⇒) Suppose a|b|c is consistent with U . Then U contains a vertex w such
that there are three directed paths Pa, Pb, and Pc from w to a, b, and c, respec-
tively, that are vertex-disjoint except for in the common start vertex w. Thus,
property (1) always holds. Next, since U is a galled tree, at most two of the three
paths Pa, Pb, and Pc overlap with edges from the same cycle in U . Clearly, if none
of them overlap with the same cycle then lca(a, b) = lca(a, c) = lca(b, c) = w;
on the other hand, if w.l.o.g. Pa and Pb overlap with the same cycle then no
path from w to c can intersect Pa or Pb except for in the starting vertex w, so
lca(a, c) = lca(b, c) = w.

Computing the Rooted Triplet Distance between Galled Trees 391

a

c
b

w

z

c
ba

w

c
b

w

a v

(i) (ii) (iii)

Fig. 2. Illustrating Lemmas 2 and 3. In (i), w is a jca of a and b that does not use the
reticulation vertex, and z is a jca of c and w, so Lemma 2 gives us the rooted proper
triplet ab|c. In (ii), w is a jca and also the lca for all three pairs {a, b}, {a, c}, {b, c}, so
the network is consistent with a|b|c according to Lemma 3. Similarly, in (iii), w is a jca
for all three pairs {a, b}, {a, c}, {b, c} and the lca for exactly two pairs {a, b}, {a, c}, so
the network is consistent with a|b|c according to Lemma 3. Note that in addition to
the above, Lemma 2 also correctly identifies bc|a in (i), ab|c in (ii), and bc|a in (iii).

⇐) Suppose there exists a vertex w that satisfies properties (1) and (2). There
are two cases.

• First case: w is the lca of all three pairs of leaves in {a, b, c}, i.e., w =
lca(a, b) = lca(a, c) = lca(b, c). By the definition of a lowest common ances-
tor, no proper descendant of w can be an ancestor of any two of the three
leaves {a, b, c}. Hence, there are three internally vertex-disjoint paths w � a,
w � b, and w � c, i.e., a|b|c is consistent with U . See also Fig. 2 (ii).

• Second case: w is the lca of exactly two pairs of leaves in {a, b, c}, say w =
lca(a, b) = lca(a, c) but w �= lca(b, c) = v. Then there are two junction
common ancestors of b and c, namely w and v, so by Lemma 1, both v and w
lie on the same cycle C in U . Note that exactly one of the leaves b and c is a
descendant of the reticulation vertex of C. Let Pb and Pc be two internally
disjoint paths from w to b and c, respectively, where one of Pb and Pc passes
through the reticulation vertex of C and the other one passes through v.
Since w = lca(a, b), there is no path from w to a that intersects Pb. In the
same way, since w = lca(a, c), there is no path from w to a that intersects Pc.
Thus, there are three internally vertex-disjoint paths w � a, w � b, and
w � c, so a|b|c is consistent with U . See also Fig. 2 (iii). ��

3 Counting Monochromatic and Almost-Monochromatic
Triangles

A triangle in an undirected graph is a cycle of length 3. In [1], Alon et al. showed
how to determine if a connected, undirected graph with m edges contains a

392 J. Jansson and A. Lingas

triangle, and if so, how to find a triangle in O(m
2ω

ω+1) ≤ o(m1.408) time. In
the same paper, they also showed how to count the number of triangles in an
undirected graph with n vertices in O(nω) ≤ o(n2.376) time. We first improve
their technique to count the number of triangles more efficiently in case m# n2:

Theorem 1. Let G be a connected, undirected graph with m edges. The number

of triangles in G can be computed in O(m
2ω

ω+1) ≤ o(m1.408) time.

Proof. First, we count the number of triangles in G whose three vertices all have
degree at least t in G, where t is a threshold parameter that will be set later.
To do this, we take the subgraph of G induced by all vertices of degree ≥ t, and
apply the triangle counting method from [1] which runs in O(|V |ω) time for any
graph with |V | vertices. Since the number of vertices with degree ≥ t is O(mt),

the aforementioned method takes O(m
ω

tω) time. Let NΔ be the computed number
of triangles in the subgraph.

Secondly, we count the number of triangles with at least one vertex of degree
strictly less than t. For this purpose, we enumerate the set Et of edges in G with
at least one endpoint of degree < t, and for i = 1, . . . , |Et|, iterate the following:

• Pick an endpoint v of the i-th edge ei in Et of degree less than t; for each
edge e incident to ei at v, check if ei and e induce a triangle in G which does
not include any edge ej ∈ Et where j < i; if yes then increase NΔ by one.

The above steps can be implemented in O(t) time, so counting the remaining
triangles takes O(mt) time. By solving the equation mω

tω = mt, we obtain and

set t = m
ω−1
ω+1 . ��

Next, we similarly refine the part of Theorem 1.8 in [19] which states that a
monochromatic triangle in a connected, undirected, edge-colored graph with n
vertices can be found (if one exists) in O(n(3+ω)/2) ≤ o(n2.688) time. We obtain:

Theorem 2. Let G be a connected, undirected, edge-colored graph with n ver-
tices and let C be a subset of the set of edge colors. The number of monochromatic
triangles of G with colors in C can be computed in O(n(3+ω)/2) ≤ o(n2.688) time.

Proof. For each color i ∈ C, let Ei be the set of edges in G colored by i. Follow-
ing [19], we say that i is heavily used if |Ei| ≥ n(ω+1)/2. For each heavily used
color, we count the number of monochromatic triangles by directly applying the
triangle counting method from [1] to the subgraph induced by edges colored
with i in O(nω) time. This takes O(n2/n(ω+1)/2) ·O(nω) = O(n2−(ω+1)/2+ω) =
O(n(3+ω)/2) time in total.

To count the remaining monochromatic triangles, for each non-heavily used
color i ∈ C, we apply the method of Theorem 1 above to the subgraph induced by
the edges in Ei. This takes O(|Ei|2ω/(ω+1)) time. As in the proof of Theorem 1.8
in [19], we observe that the total time taken by the non-heavily used colors i ∈ C
is maximized if |Ei| = Θ(n(ω+1)/2) holds for each of them, and thus there are

Θ(n2−(ω+1)/2) of them. Since O(n2−(ω+1)/2) ·O((n(ω+1)/2)
2ω

ω+1) = O(n(3−ω)/2) ·
O(nω) = O(n(3+ω)/2), this shows that the total time taken by counting the
remaining monochromatic triangles is O(n(3+ω)/2), too. ��

Computing the Rooted Triplet Distance between Galled Trees 393

Finally, we consider a kind of relaxation of the concept of a monochromatic
triangle to an “almost-monochromatic triangle” in an undirected, edge-colored
graph G. Let R be a binary relation on the edge colors. A triangle in G with two
edges of the same color i and the third one of color k such that iRk holds is called
an R-chromatic triangle (e.g., if R stands for < then k is simply required to be
larger than i.). We need to extend Theorem 2 to count R-chromatic triangles.
We begin with the following technical generalization of Theorem 1:

Lemma 4. Suppose that an undirected graph G with colored edges is prepro-
cessed so that for any color edge i, the subgraph induced by the edges of color i
can be extracted in O(mi) time, where mi is the number of edges with color i in
G. Let R be a binary relation on the colors of G computable in constant time.
The number of R-chromatic triangles with at least two edges of color i in G can

be computed in O(m
2ω

ω+1

i) time.

Proof. First, extract the subgraph Gi induced by the edges of G with color i
in O(mi) time. Then, run the method of Theorem 1 on Gi with the following
modifications which do not affect the asymptotic time complexity:

1. Once the square Ci of the adjacency matrix of the subgraph of Gi consisting
of all vertices of degree at least t is computed then for each entry Ci[k, l] we
check if (k, l) is an edge of G whose color j is in the relation R with the color
i, i.e., R(i, j) holds. Only in this case we increase the count of triangles by
the arithmetic value of C[k, l] (in case (k, l) is an edge whose color is also i
and R(i, i) holds, we increase the count of triangles by C[k, l]/3 only).

2. When we scan the edges e of Gi with at least one vertex v of degree smaller
than t, then for each edge e′ of G incident to e at v, we check if these two
edges induce an R-chromatic triangle that was not counted before. If so, we
increase the count by one. ��

We now generalize Theorem 2 to R-chromatic triangles by applying Lemma 4:

Theorem 3. Let G be a connected, undirected graph with n vertices and col-
ored edges, and let R be a binary relation on the colors of G computable in
constant time. The number of R-chromatic triangles in G can be computed in
O(n(3+ω)/2) ≤ o(n2.688) time.

Proof. First construct the graphs Gi induced by the sets Ei of edges with color i.
This takes O(n2) time in total. Next, proceed as in the proof of Theorem 2. For
each heavily used color i, i.e., satisfying |Ei| ≥ n(ω+1)/2, count the number of R-
chromatic triangles with at least two edges with color i by squaring the adjacency
matrix of Gi and testing, for each entry Ci[k, l] of the resulting matrix, if (k, l) is
an edge whose color is in the relation R with i (analogously as in (1) in the proof
of Lemma 4). This takes O(n2−(ω+1)/2+ω) = O(n(3+ω)/2) time in total. To count
the remaining R-chromatic triangles, each with at least two edges colored with a
non-heavily used color i, use Lemma 4, which takes time O(|Ei|2ω/(ω+1)) for any
given color i. By an argument analogous to one in the proof of Theorem 2, the
total time to count the remaining monochromatic triangles is O(n(3+ω)/2). ��

394 J. Jansson and A. Lingas

4 Computing the Rooted Triplet Distance between
Galled Trees

In this section, we apply the triangle counting techniques from Section 3 to obtain
a subcubic-time algorithm for computing the rooted triplet distance between two
galled trees. We first explain how to compute the number of rooted fan triplets
consistent with both networks in Section 4.1 and then the number of rooted
proper triplets consistent with both networks in Section 4.2. Combining these
two results gives us our main result (Theorem 4) in Section 4.3.

4.1 Counting the Number of Shared Rooted Fan Triplets

To count the number of rooted fan triplets consistent with two given galled trees,
we use Theorems 2 and 3 as detailed below. As a warm-up, we first present a
simple reduction from the problem of counting rooted fan triplets shared by two
trees to the problem of counting monochromatic triangles in a graph.

Lemma 5. Let U1, U2 be two trees on the same set L of n leaves. The num-
ber of rooted fan triplets consistent with both U1 and U2 can be computed in
O(n(3+ω)/2) ≤ o(n2.688) time.

Proof. Form an auxiliary undirected complete graph G = (L,E) in which every
edge is assigned a color of the form (v1, v2), where v1 is a vertex of U1 and v2 is
a vertex of U2, as follows: For each edge {u, v} ∈ E, let ji for i = 1, 2 be the
unique junction common ancestor of u and v in Ui, and color the edge {u, v}
in G with the color (j1, j2). By Lemma 1, G can be constructed in O(n2) time.

For any {a, b, c} ⊆ L, the rooted fan triplet a|b|c is consistent with U1 if
and only if the junction common ancestors in U1 of a and b, of a and c, and
of b and c are identical. The same holds for U2. Therefore, a|b|c is consistent
with both U1 and U2 if and only if all three edges {a, b}, {a, c}, {b, c} have the
same color in G. It follows that the number of rooted fan triplets which are
common to both trees equals the number of monochromatic triangles in G. By
Theorem 2, we can compute the number of rooted fan triplets that are consistent
with both U1 and U2 in O(n(3+ω)/2) time. ��

Next, we adapt the reduction in the proof of Lemma 5 to the more complicated
galled tree case:

Lemma 6. Let U1, U2 be two galled trees on the same set L of n leaves. The
number of rooted fan triplets consistent with both U1 and U2 can be computed in
O(n(3+ω)/2) ≤ o(n2.688) time.

Proof. By Lemma 3, we can distinguish two classes of rooted fan triplets in a
galled tree U : those where for each of its three pairs of leaves, the lca is equal to
the shared junction common ancestor as in the example in Fig. 2 (ii) (henceforth
referred to as “class 1”), and those where the equality holds for two pairs only,
as in Fig. 2 (iii) (henceforth referred to as “class 2”). For the sake of the proof,

Computing the Rooted Triplet Distance between Galled Trees 395

we need to consider a slightly different two-partition of rooted fan triplets in U.
We shall say that a rooted fan triplet in U is of type 1 iff it belongs to the class 1
and the unique lca of each pair of leaves in the triplet is also their lca in each of
the trees UL, UR. All remaining rooted fan triplets in U are said to be of type 2.

For i = 1, 2, consider the trees (Ui)L, (Ui)R defined as in the proof of
Lemma 1. By Lemma 5, we can compute the number of shared rooted fan triplets
between (U1)A and (U2)B for any A,B ∈ {L,R} in O(n(3+ω)/2) time. Note that
each rooted fan triplet of type 1 in U1 occurs in both (U1)L and (U1)R, while
each rooted fan triplet of type 2 in U1 occurs in only one of the trees. The reason
for the distinction is that a rooted fan triplet of type 2 contains exactly one pair
of leaves whose lca in U1 relies on one of the two edges directed to a reticulation
vertex of a cycle. Hence, the lca of the pair occurs in exactly one of the trees
(U1)L and (U1)R, and consequently the rooted fan triplet also occurs in exactly
one of (not necessarily the same as above) (U1)L and (U1)R. Analogous obser-
vations hold for U2. Hence, if we sum the number of shared rooted fan triplets
between (U1)A and (U2)B over all A,B ∈ {L,R}, then each rooted fan triplet
that is of type 1 both in U1 and U2 is counted four times, while those that are of
different types in U1 and U2 are counted twice, and finally those of type 2 both
in U1 and U2 are counted only once. Hence, if for p, q ∈ {1, 2}, Tp,q denotes the
number of rooted shared fan triplets that are of type p in U1 and of type q in U2

then the computed sum equals 4T1,1 + 2T1,2 + 2T2,1 + T2,2.
In fact, we can also determine T1,1 in O(n(3+ω)/2) time in the same way as

we have done for a pair of trees in Lemma 5. While constructing the auxiliary
complete graph, we require ji to be both the lca of u and v in (Ui)L and (Ui)R),
as well as a junction common ancestor of u and v in U. Then, we use Theorem 2
to determine the number of monochromatic triangles analogously.

It remains to determine the number of shared rooted fan triplets for U1 and
U2 that are of different types in U1 and U2 in order to cancel repetitions in the
aforementioned sum, i.e., T1,2 + T2,1. To compute, say T2,1, we again form the
auxiliary complete graph on the set L of leaves and color each edge {u, v} as
described next. Recall that lca’s are unique in a galled tree. For i = 1, 2, let ji
be the unique lca of of u and v in Ui. If, for i = 1, 2, ji is also a junction common
ancestor of u and v in Ui and it is the lca of u and v in both trees (Ui)L and
(Ui)R, then {u, v} is colored with (j1, j2) as before. Next, if for i = 1, 2, ji is also
a junction common ancestor of u and v in Ui, and j1 is the lca of u and v in
exactly one of the trees (U1)L and (U1)R while j2 is the lca of u and v in both
trees (U2)L and (U2)R then {u, v} is colored with ((j1)

∗, j2). Otherwise, {u, v}
is colored with the null color. To use Theorem 3, we define the relation R by:

• (j1, j2)R(l1, l2) holds iff l1 = (k)∗, where k is a proper descendant of j1 or
j1 = k, and j2 = l2.

The trees (Ui)A for i = 1, 2, A ∈ {L,R}, can be preprocessed to support O(1)-
time lca queries in O(n) time [9, 17]. By using (U1)L, (U1)R, we can spend O(n2)
time to build a data structure supporting O(1)-time proper descendant queries.

Now, we apply Theorem 3 to the auxiliary graph to obtain the number T2,1

of rooted shared triplets of type 2 in U1 and type 1 in U2 in O(n(3+ω)/2) time.

396 J. Jansson and A. Lingas

The number T1,2 of rooted shared triplets of type 1 in U1 and type 2 in U2 is
obtained in O(n(3+ω)/2) time in the same way. ��

4.2 Counting the Number of Shared Rooted Proper Triplets

Lemma 7. Let U1, U2 be two galled trees on the same set L of n leaves. The
number of rooted proper triplets consistent with both U1 and U2 can be computed
in O(nω) ≤ o(n2.376) time.

Proof. First, for i = 1, 2, for each pair of leaves in Ui, compute their junction
common ancestors (if they exist) along with the information if the respective
junction common ancestor is located on a cycle of Ui, if it is the root of the
cycle, and if it uses the reticulation vertex of the cycle. By a straightforward
modification of the proof of Lemma 1, this takes O(n2) time.

For each vertex vi of Ui form two copies v0i , v1i . Next, for the set of pairs of
distinct leaves in L, form the classes C

v
b1
1 ,v

b2
2
, where {b1, b2} ⊂ {0, 1} and vi is

a vertex of Ui for i = 1, 2, such that (a, b) ∈ C
v
b1
1 ,v

b2
2

if and only if the following

three conditions hold for i = 1, 2: (1) vi is a junction common ancestor of a and b
in Ui; (2) vi is located on a cycle of Ui and uses the reticulation vertex of the
cycle iff bi = 1; and (3) if vi is the root of a cycle in Ui then there is no other
junction common ancestor of a and b. By Lemma 1, any pair of leaves a, b in a
galled tree can have at most two junction common ancestors. Moreover, if there
are two then they are located on the same cycle and one of them will be the root
of the cycle. Hence, from the point of view of a rooted triplet ab|c, it is sufficient
to consider the junction common ancestor of a, b that is a descendant of the root
vertex of the cycle in this case, since any path from an ancestor of the root of the
cycle can be extended to reach the descendant junction common ancestor. This
explains the third condition, which implies that the classes C

v
b1
1 ,v

b2
2

are pairwise

disjoint. These classes can be formed in O(n2) time by integer sorting.
Furthermore, for i = 1, 2, form matrices Mi such that the rows of Mi cor-

respond to the copies of vertices in Ui, the columns of Mi correspond to the
leaves in L, and Mi[v

bi
i , c] = 1 if and only if there is a junction common ancestor

of vi and c in Ui which in case bi = 1 does not use the reticulation vertex of the
cycle on which vi lies in Ui. Importantly, if Mi[v

bi
i , c] = 1 then c cannot occur in

any pair in a class of the form C
v
b1
1 ,v

b2
2
. Simply, in this case, an ancestor of c or

c itself would be a reticulation vertex used by both vi and any junction common
ancestor of vi and c. This in particular would imply bi = 1. Hence, Mi[v

bi
i , c]

would be set to 0, and we obtain a contradiction.
Next, compute Q = M1 ×M t

2 in O(nω) time. By the definitions of M1 and
M2, the value of Q[vb11 , vb22] is exactly the number of leaves c in L that have
a junction common ancestor with vi in Ui not using the reticulation vertex
of the cycle on which vi lies if bi = 1, for i = 1, 2. Note that for {b1, b2} �=
{b′1, b′2}, Cv

b1
1 ,v

b2
2
∩ C

v
b′
1

1 ,v
b′
2

2

= ∅ and the aforementioned leaves c cannot occur

in any pair in C
v
b1
1 ,v

b2
2
. By Lemma 2, the sum

∑
{b1,b2}⊂{0,1} |Cv

b1
1 ,v

b2
2
|Q[vb11 , vb22]

Computing the Rooted Triplet Distance between Galled Trees 397

equals the number of proper rooted triplets ab|c consistent with both U1 and
U2 that use vi as a junction common ancestor of a and b in Ui, for i = 1, 2,
with the exception of the case when v1 or v2 is the root vertex of a cycle in
its galled tree and there is another junction common ancestor of a and b which
is a descendant of the root vertex in the galled tree. Due to the latter, for
different pairs of v1, v2, the sum counts different sets of the proper rooted triplets
ab|c consistent with both U1 and U2. Thus, it is sufficient to compute the sum∑

v1∈U1

∑
v2∈U2

∑
{b1,b2}⊂{0,1} |Cv

b1
1 ,v

b2
2
|Q[vb11 , vb22] to obtain the total number of

rooted triplets consistent with both U1 and U2. This takes O(n2) time. ��

4.3 Computing the Rooted Triplet Distance

By combining the results established in the previous two subsections, we obtain:

Theorem 4. Let U1, U2 be two galled trees on the same set L of n leaves. The
rooted triplet distance drt(U1, U2) can be computed in O(n(3+ω)/2) ≤ o(n2.688)
time.

Proof. For i = 1, 2, let Fi denote the set of rooted fan triplets consistent with Ui,
and let Pi denote the set of rooted proper triplets consistent with Ui. We have
drt(U1, U2) =

∑2
i=1(|Fi|+ |Pi|)− 2|F1 ∩ F2| − 2|P1 ∩ P2|. Compute |Fi ∩ Fi| =

|Fi| and |F1 ∩ F2| in O(n(3+ω)/2) ≤ o(n2.688) time by Lemma 6, and compute
|Pi ∩ Pi| = |Pi| and |P1 ∩ P2| in O(nω) ≤ o(n2.376) time by Lemma 7. ��

5 Concluding Remarks

We have demonstrated that the rooted triplet distance can be computed in
subcubic time for a well-known class of phylogenetic networks called galled
trees [8, 10]. More precisely, we have presented a new o(n2.688)-time algorithm
for computing the rooted triplet distance between two input galled trees with
n leaves each [Theorem 4]. We have also derived three results on counting trian-
gles in a graph [Theorems 1–3] that may have other applications. The first two
triangle counting results are generalizations of their known (weaker) detection
counterparts from [1] and [19], respectively.

Recently, Nielsen et al. [15] showed how to compute the unrooted quartet
distance between two unrooted phylogenetic trees with n leaves in o(n2.688) time.
Interestingly, they also rely on matrix multiplication. Their method does not
count triangles in an auxiliary graph as we have done here, but uses matrix
multiplication to count so-called shared and different butterflies between the
two input trees directly. In some sense, their problem seems inherently “easier”
than ours as it does not involve cycles. A lot of the conceptual complexity in our
paper stems from the non-uniqueness of junction common ancestors in galled
trees; compare the proofs of Lemmas 5 and 6, for example.

It is an open question whether the problem of computing the rooted triplet
distance drt(U1, U2) between two galled trees U1, U2 admits a quadratic-time
algorithm or not. Another important question is if our method can be enhanced
to include even larger classes of phylogenetic networks than galled trees.

398 J. Jansson and A. Lingas

References

1. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algo-
rithmica 17(3), 209–223 (1997)

2. Bansal, M.S., Dong, J., Fernández-Baca, D.: Comparing and aggregating partially
resolved trees. Theoretical Computer Science 412(48), 6634–6652 (2011)

3. Chan, H.-L., Jansson, J., Lam, T.-W., Yiu, S.-M.: Reconstructing an ultrametric
galled phylogenetic network from a distance matrix. Journal of Bioinformatics and
Computational Biology 4(4), 807–832 (2006)

4. Choy, C., Jansson, J., Sadakane, K., Sung, W.-K.: Computing the maximum
agreement of phylogenetic networks. Theoretical Computer Science 335(1), 93–107
(2005)

5. Coppersmith, D., Winograd, S.: Matrix Multiplication via Arithmetic Progressions.
Journal of Symbolic Computation 9, 251–280 (1990)

6. Critchlow, D.E., Pearl, D.K., Qian, C.: The triples distance for rooted bifurcating
phylogenetic trees. Systematic Biology 45(3), 323–334 (1996)

7. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc., Sunderland (2004)
8. Gusfield, D., Eddhu, S., Langley, C.: Optimal, efficient reconstruction of phylo-
genetic networks with constrained recombination. Journal of Bioinformatics and
Computational Biology 2(1), 173–213 (2004)

9. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing 13(2), 338–355 (1984)

10. Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts, Algo-
rithms and Applications. Cambridge University Press (2010)

11. van Iersel, L., Kelk, S.: Constructing the Simplest Possible Phylogenetic Network
from Triplets. Algorithmica 60(2), 207–235 (2011)

12. Jansson, J., Nguyen, N.B., Sung, W.-K.: Algorithms for Combining Rooted Triplets
into a Galled Phylogenetic Network. SIAM Journal on Computing 35(5), 1098–1121
(2006)

13. Morrison, D.: Introduction to Phylogenetic Networks. RJR Productions (2011)
14. Nakhleh, L., Warnow, T., Ringe, D., Evans, S.N.: A comparison of phylogenetic

reconstruction methods on an Indo-European dataset. Transactions of the Philo-
logical Society 103(2), 171–192 (2005)

15. Nielsen, J., Kristensen, A.K., Mailund, T., Pedersen, C.N.S.: A sub-cubic time al-
gorithm for computing the quartet distance between two general trees. Algorithms
for Molecular Biology 6, Article 15 (2011)

16. Stothers, A.J.: On the Complexity of Matrix Multiplication. PhD thesis, University
of Edinburgh (2010)

17. Tarjan, R.E.: Applications of path compression on balanced trees. Journal of the
ACM 26(4), 690–715 (1979)

18. Wang, L., Ma, B., Li, M.: Fixed topology alignment with recombination. Discrete
Applied Mathematics 104(1-3), 281–300 (2000)

19. Vassilevska, V., Williams, R., Yuster, R.: Finding Heaviest H-Subgraphs in Real
Weighted Graphs, with Applications. ACM Transactions on Algorithms 6(3), Ar-
ticle 44 (2010)

20. Vassilevska Williams, V.: Breaking the Coppersmith-Winograd barrier. UC Berkely
and Stanford University (2011) (manuscript)

Minimum Leaf Removal for Reconciliation:

Complexity and Algorithms

Riccardo Dondi1 and Nadia El-Mabrouk2

1 Dipartimento di Scienze dei Linguaggi, della Comunicazione e degli Studi Culturali,
Università degli Studi di Bergamo, Bergamo, Italy

2 Départment d’Informatique et Recherche Opérationnelle, Université de Montréal,
Montréal, Canada

riccardo.dondi@unibg.it, mabrouk@iro.umontreal.ca

Abstract. Reconciliation is a well-known method for studying the evo-
lution of a gene family through speciation, duplication, and loss. Unfortu-
nately, the inferred history strongly depends on the considered gene tree
for the gene family, as a few misplaced leaves can lead to a completely
different history, possibly with significantly more duplications and losses.
It is therefore essential to develop methods that are able to preprocess
and correct gene trees prior to reconciliation. In this paper, we consider
a combinatorial problem, known as the Minimum Leaf Removal problem,
that has been proposed to remove errors from a gene tree by deleting
some of its leaves. We prove that the problem is APX-hard, even in the
restricted case of a gene family with at most two copies per genome. On
the positive side, we present fixed-parameter algorithms where the pa-
rameters are the size of the solution (minimum number of leaf removals)
and the number of genomes containing multiple gene copies.

1 Introduction

The evolution of genomes is determined by a combination of micro-evolutionary
events affecting their sequences, and macro-evolutionary events, involving rear-
rangement and content-modifying operations, affecting their overall gene content
and organization. Among content-modifying operations, duplication is a funda-
mental process in the evolution of species, and a major source of gene innovation
[24,14]. The consequence of duplications is that genes are not present in one, but
in many copies, in the genome. In parallel to duplications, gene losses appear
generally to maintain a minimum number of functional gene copies [5,10,11,20].
Using a local similarity search tool such as BLAST [2], genes can be clustered
by sequence homology into gene families . From a conceptual evolutionary point
of view, homologous gene copies originate from the same ancestral gene.

Understanding the evolution of gene families through duplication and loss is
fundamental for many reasons. In particular, it allows distinguishing between
two classes of gene homologs [21]: orthologs which are copies in different species
that arose by speciation at their most recent point of origin, and paralogs which
are gene copies in the same genome or in two different genomes that arose

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 399–412, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

400 R. Dondi and N. El-Mabrouk

from a duplication at their most recent point of origin. While orthologs are,
in essence, instances of the ‘same gene’ in different species, paralogs represent
different copies of the ancestor that are likely to have independently evolved
and diverged in their function. Consequently, identifying the “true” orthology
relationship between genes is fundamental for functional annotation of genes, as
well as phylogenetic inference and comparative genomics purposes.

Based on a micro-evolutionary model for sequences, a gene tree T that best
explains the data can be constructed for a given gene family, by using a classical
phylogenetic method. When a species tree S reflecting the speciation history
of the genomes is known, then the macro-evolutionary events that gave rise to
the data can be inferred by using a method known as Reconciliation. It consists
in “embedding” T into S, and interpreting the disagreement between the two
trees as a footprint of the evolution of the gene family through duplication and
loss. This concept was pioneered by Goodman [15] and then widely accepted,
utilized, and improved [3,6,7,8,10,13,26,28,29,30]. When no preliminary knowl-
edge on the species tree is given, a natural problem, known as the species tree
inference problem, is to infer, from a set of gene trees, a species tree leading to
a parsimonious evolution scenario [4,8,22].

A major problem in the application of gene tree reconciliation is its high
sensitivity to error-prone gene trees. Indeed, a few misplaced leaves can lead to
a completely different history, possibly with significantly more duplications and
losses [19,29]. Typically bootstrapping values are used as a measure of confidence
in each edge of a phylogeny. How should the weak edges of a gene tree be handled?
This problem has been addressed in [9,13,16] by exploring the space of gene trees
obtained from the original one by performing rearrangements (such as NNIs)
around weakly-supported edges and select the tree giving rise to the minimum
duplications and losses. A different strategy that has been recently adopted for
preprocessing a gene tree T prior to reconciliation or species tree inference, is
to “remove” misplaced leaves (gene copies). Criteria for identifying such leaves
were given in [8]. The duplication nodes of T with respect to a species tree S can
be subdivided into apparent and non-apparent duplication (NAD) nodes, where
the latter class has been flagged as potentially resulting from the misplacement
of leaves in the gene tree. The reason is that each one of the NAD nodes reflects a
phylogenetic contradiction with the species tree that is not due to the presence
of duplicated gene copies. In [12], algorithmic results have been presented for
the problem of removing, from a given gene tree, the minimum number of leaves
leading to a tree without any NAD node (the Minimum Leaf Removal Problem).
An exact polynomial-time algorithm has been described for two special classes
of gene trees, and a polynomial-time heuristic with no guarantee of optimality,
has been presented for the general case.

In this paper, we study the theoretical complexity of the Minimum Leaf Re-
moval Problem. More precisely, we show in Section 3 that the problem is APX-
hard, by reduction from the Minimum Vertex Cover problem on Cubic graph [1].
We then turn our attention in Section 4 to finding tractable versions of the prob-
lem under some biological meaningful parameterizations. The goal is to identify

Minimum Leaf Removal for Reconciliation: Complexity and Algorithms 401

parameters that are small in practice, and to constraint the exponential explosion
only to these parameters. We identify two fixed-parameter tractable versions of
the problem and present exact polynomial-time algorithms constrained by: (1)
the size of the solution (minimum number of leaf removal) and (2) the number
of genomes containing multiple gene copies (paralogs). We begin in the next
section by introducing the concepts and notations used in the rest of the paper.
Due to space limitations some of the proofs are omitted.

2 Preliminary Definitions

2.1 Trees

Let Γ = {1, 2, · · · , γ} be a set of integers representing γ different species
(genomes). We consider two kinds of rooted binary trees leaf-labelled by the
elements of Γ : a species tree S is a tree where each element of Γ labels at most
one leaf, while a gene tree T is a tree where each element of Γ may label more
than one leaf (Figure 1 (a) and (b)). A gene tree represents a gene family, where
each leaf labelled x represents a gene copy located on genome x.

Given a tree U , we denote by L(U) the set of its leaves and by V (U) the set of
its nodes. Given an internal node x of U , we denote by xl and xr respectively, the
left and right child of x, by U(x) the subtree of U rooted at x, and by Γ (U(x)) the
set of leaf-labels of U(x). If there is no ambiguity on the tree being considered,
we denote C(x) = Γ (U(x)); C(x) is called the cluster of x. An ancestor of a node
x of U is any node on the path from the root of U to x.

Given a tree U , a leaf removal consists in removing a given leaf l of U , and
suppressing the resulting degree two node (that is the parent of l). If a tree U ′ is
obtained from a tree U through a sequence of leaf removals, then U ′ is included
in U . On the other hand a subtree insertion in U consists in creating a new
node x on a branch (a, b) (joining node a to node b, b being the child of a),
making b the left child of x, setting the parent of x to a, and grafting the subtree
being inserted as the second child of x (create an edge from x to the root of the
subtree). An extension of U is a tree obtained from U through a sequence of
subtree insertions.

2.2 Reconciliation

Usually, the gene tree T obtained for a given gene family is different from the
species tree S. Roughly speaking, a reconciliation between T and S is an exten-
sion R(T, S) of T that is “consistent” with S, i.e. reflects the same phylogeny.
A rigorous definition can be found in [8,12]. A history of duplications and losses
can immediately be inferred from such a reconciliation. Different algorithms have
been developed for recovering a reconciliation minimizing a duplication and/or
loss cost [6,13,17,18,22,25,27,8], most of them based on a method called LCA
mapping.

The LCA mapping between a gene tree T and a species tree S, denoted by
lcaT,S , maps every node x of T to the Lowest Common Ancestor (LCA) of C(x)

402 R. Dondi and N. El-Mabrouk

1 2 3 244 1 3 11 3 2 2 4 32 4 1 3

B C

1 2 3 4

B

A

A

AD node

NAD node

(c) R(T,S): (b) T:
A

A

AD node

NAD node

B

A

AC

A

C

(a) S: A

A

Fig. 1. (a) A species tree S for Γ = {1, 2, 3, 4}. The three internal nodes of S are
named A, B and C; (b) A gene tree T . A leaf label g indicates a gene copy in genome
g. Internal nodes are labelled according to the LCA mapping between T and S. Flagged
nodes are duplication nodes of T with respect to S; (c) A reconciliation R(T, S) of T
and S. Dotted lines represent subtree insertions. This reconciliation reflects a history
of the gene family with two gene duplications preceding the first speciation event, and
4 losses.

in S. Formally, lcaT,S(x) = y, where y is the node of S that has the minimum
cluster such that C(x) ⊆ C(y). A duplication occurs in a node x of T (or x is a
duplication), if x and at least one of its children are mapped by lcaT,S in the
same node y of the species tree S. If x is not a duplication node, then x is a
speciation (Figure 1).

2.3 Duplication Nodes and MD-trees

The notations of this section are those used in [8,12]. Let x be a node of a gene
tree T verifying C(xl)∩ C(xr) �= ∅. Then, for any species tree S, x is guaranteed
to be a duplication node. Such a node x is called an Apparent Duplication node
(AD node for short). Given a species tree S, a duplication node x which is not
an AD node is called a Non-Apparent Duplication node (NAD node for short).
A gene tree T is MD-consistent (MD holds for “Minimum Duplication”) with a
species tree S if and only if each node of T is either a speciation or an AD node.

As explained in [12], NAD nodes point to disagreement between a gene tree T
and a species tree S that are not due to the presence of repeated leaf labels, i.e.
duplicated gene copies (see Figure 1.(b)). It has therefore been suggested, and
supported by simulations in [8], that NAD nodes may point at gene copies that
are erroneously placed in the gene tree. It has to be noticed that a misplaced
gene in a gene tree T does not necessarily lead to a NAD node. In other words,
NAD nodes can only point to a subset of misplaced leaves. However, in the
context of reconciliation, the damage caused by a misplaced leaf leading to a
NAD node is to significantly increase the real duplication and/or loss cost of the
tree. Following these observations, the Minimum Leaf Removal Problem, given
bellow, has been considered in [12] for error-correction in gene trees.

Problem 1. Minimum Leaf Removal Problem[MinLeafRem]
Input: A gene tree T and a species tree S, both leaf-labelled by Γ .
Output: A tree T ∗ MD-consistent with S such that T ∗ is obtained from T by a
minimum number of leaf removals.

Minimum Leaf Removal for Reconciliation: Complexity and Algorithms 403

3 Hardness of Minimum Leaf Removal

In this section we consider the computational (and approximation) complexity
of the MinLeafRem problem. We show that MinLeafRem is APX-hard, even in
the restricted case that each label is associated with at most two leaves of T .
We denote this restriction of the problem by MinLeafRem(2).

We prove that MinLeafRem(2) is APX-hard, by giving an L-reduction from
the Minimum Vertex Cover Problem on Cubic graphs (MVCC is known to
be APX-hard [1]).

Problem 2. Minimum Vertex Cover Problem on Cubic graphs[MVCC]
Input: A cubic graph G = (V,E) where V = {v1, . . . , vn} is the set of vertices
and E the set of edges of G (in a cubic graph, each vertex has degree 3) .
Output: A minimum cardinality set V ′ ⊆ V , such that for each edge ei,j =
{vi, vj} ∈ E, at least one of vi, vj belongs to V ′.

Let G = (V,E) be an instance of MVCC. We define an instance of MinLeafRem
associated with G, consisting of a gene tree T and a species tree S, both leaf-
labelled by Γ , defined as follows, where t = 4|V |+ |E|+ 1:

Γ ={vi,l : vi ∈ V, 1 ≤ l ≤ 4} ∪ {vji : vi ∈ V, {vi, vj} ∈ E} ∪ {ei,j : {vi, vj} ∈ E} ∪
{zi : 1 ≤ i ≤ t} ∪ {α}.

We denote Z = {zi : 1 ≤ i ≤ t}. Let U be a tree, which is either the gene tree T ,
the species tree S, or a tree included in T with a leaf labelled by α. We define
the spine of U as the path from the root of U to the unique leaf of U labelled
by α.

Next, we define an ordering on the edges E of G. Consider the edges {vi, vj},
with i < j, and {vh, vk}, with h < k, then {vi, vj} < {vh, vk}, iff i ≤ h, and
j < k if i = h. Denote with {vp, vq} the last edge in such ordering of E.

The gene tree T is defined as in Fig. 2. It contains the following kinds of
subtrees: (1) a subtree Tvi , for each vertex vi ∈ V ; (2) a subtree Teij and a leaf
ei,j , for each edge ei,j = {vi, vj} ∈ E; (3) a tree TZ , which is a caterpillar tree
of size t with leaves uniquely leaf-labelled by the set Z. Notice that the order in
which the subtrees Teij and the leaf ei,j appear in T , depends on the order of
the corresponding edges of E.

The species tree S is defined in Fig. 3. It contains the three following kinds of
subtrees : (1) a subtree Svi , for each vertex vi ∈ V ; (2) a single leaf labelled by
ei,j , for each edge ei,j = {vi, vj} ∈ E; (3) a tree SZ , which is a caterpillar tree
of size t uniquely leaf-labelled by the set Z.

It is easy to see that S is a species tree uniquely leaf-labelled by Γ , and that
T is a gene tree where each label in Γ is associated with at most two leaves of
T . The following properties of T are directly deduced from the construction of
T .

Remark 1. The root of TZ and all its ancestors are mapped (by the LCA map-
ping) to the root r of S. Consequently, all TZ ancestors are duplication nodes.

404 R. Dondi and N. El-Mabrouk

T

sp
ine
of
T

r
AD node

ep,q

AD node

...

ei,j

NAD node

AD node

Teij

...

TZ

...SPEC node

NAD node

Tvj

...
SPEC node

NAD node

Tvi

...
α

Tvi

vi,1 vji
vi,2 vi,3 vi,4 vhi vki

TZ

zt

z2
z1

... Teij

vij
ei,j vji

Fig. 2. The gene tree T , and the subtrees Tvi , TZ and Teij of T . Notice that i < j,
hence Tvj is closer to the root than Tvi . Notice that a SPEC node is a speciation node.

Moreover, we deduce from the non-empty intersection of the left and right leaf
sets that all these nodes are AD nodes.

Remark 2. For each ei,j ∈ E, the root of Tei,j is a NAD node. Indeed, it is
mapped to the same node of S than its left child, and it does not contain any
duplicated leaf-label.

Moreover, as each subtree Tvi contains NAD nodes, any solution of MinLeafRem
over instance (T, S) is obtained by removing appropriate leaves from each Tvi .
The following results give more details on the required removals.

Remark 3. Let vi be a vertex of G. Then: (1) the subtree of Tvi obtained by
removing the leaves with labels vji , vhi , vki is MD-consistent with Svi ; (2) the
subtree of Tvi obtained by removing the leaves with labels vi,1, vi,2, vi,3, vi,4 is
MD-consistent with Svi .

Minimum Leaf Removal for Reconciliation: Complexity and Algorithms 405

S

r

SZ

sp
ine
of
S

ep,q
...

ei,j

...

Svj

...

Svi

...
α

Svi

vi,2 vhi vki
vi,1 vi,3 vji

vi,4

SZ

zt

z2

z1

...

Fig. 3. The species tree S, and the subtrees Svi , SZ of S. Notice that i < j, hence Svj

is closer to the root than Svi .

Lemma 1. Let vi be a vertex of G. Then: (1) in a solution of MinLeafRem(2)
over instance (T, S) at least three leaves are removed from Tvi ; (2) a solution of
MinLeafRem(2) over instance (T, S) that contains a leaf of Tvi with a label in
{vji , vhi , vki }, contains at most three leaves of Tvi .

It follows from Remark 3 and Lemma 1 that a solution of MinLeafRem(2) over
instance (T, S) is obtained by removing leaves from each Tvi in essentially two
possible ways: either remove the four leaves {vi,1, vi,2, vi,3, vi,4}, or remove the

three leaves {vji , vhi , vki }. We will relate the former case to the vertex vi being
included in a vertex cover V ′ of G, and the latter case to the vertex vi not
included in V ′ (Lemma 4 and Lemma 5). We first give two preliminary lemmas.

Lemma 2. Each solution of MinLeafRem(2) over instance (T, S) is obtained by
removing at least one leaf from Teij , for each ei,j ∈ E.

Proof. Direct corollary of Remark 2.

The following lemma will be used to show that the caterpillar tree TZ is kept in
a solution of MinLeafRem(2).

406 R. Dondi and N. El-Mabrouk

Lemma 3. There is no optimal solution of MinLeafRem(2) over instance (T, S)
that is obtained by removing less than 4|V |+ |E|+1 leaves, one of them being a
leaf of TZ .

Proof. Let T ∗ be a solution of MinLeafRem over instance (T, S) obtained from T
by removing less than 4|V |+|E|+1 leaves. Notice that, since |Z| = 4|V |+|E|+1,
at least one leaf with a label in the set Z must be in T ∗. Assume that a leaf with
label zh is removed from T ∗. It is easy to see that inserting this leaf in T ∗ does
not affect other nodes of T ∗, that is the insertion of the leaf with label zh does
not cause any AD node to become a NAD node.

We are now ready to show the two main technical results of the reduction.

Lemma 4. Let G = (V,E) be an instance of MVCC and let (T, S) be the cor-
responding instance of MinLeafRem(2). Then, starting from a vertex cover V ′

of G, we can compute in polynomial time a solution of MinLeafRem(2) over
instance (T, S) that is obtained by removing 3|V |+ |V ′|+ |E| leaves from T .

Proof. (Sketch) Let V ′ ⊆ V be a vertex cover of G = (V,E). Then we define
a solution T ∗ by removing some leaves of the subtrees of T . We will denote by
T ∗
vi the subtree of T

∗ obtained from Tvi , and by T ∗
ei,j the subtree of T ∗ obtained

from Teij . The solution T ∗ is defined as follows:

– for each vi ∈ V ′, remove from the subtree Tvi the set of leaves labelled
by {vi,1, vi,2, vi,3, vi,4} (hence the subtree T ∗

vi has its leaf-set labelled by

{vji , vhi , vki });
– for each vi ∈ V \ V ′, remove from the subtree Tvi the set of leaves la-

belled by {vji , vhi , vki } (hence the subtree T ∗
vi has its leaf-set labelled by

{vi,1, vi,2, vi,3, vi,4});
– for each {vi, vj} ∈ E, if vi ∈ V ′, then remove from Teij the leaf labelled by

vij (hence the subtree T ∗
ei,j has its leaf-set labelled by {ei,j , vji }), else remove

from Teij the leaf labelled by vji (hence the subtree T ∗
ei,j has its leaf-set

labelled by {ei,j, vij}).

It is easy to see that the tree T ∗ is MD-consistent with S and that it is obtained
by removing 3|V |+ |E|+ |V ′| leaves from T .

Lemma 5. Let G = (V,E) be an instance of MVCC and let (T, S) be the
corresponding instance of MinLeafRem(2). Then starting from a solution of
MinLeafRem(2) over instance (T, S) that is obtained by removing at most 3|V |+
|E| + c leaves from T , with 1 ≤ c ≤ |V |, we can compute in polynomial time a
vertex cover V ′ of G such that |V ′| ≤ c.

Proof. (Sketch) Let T ∗ be a solution of MinLeafRem(2) over instance (T, S)
obtained by removing at most 3|V | + |E| + c leaves from T , with 1 ≤ c ≤ |V |.
Let T ∗

vi , with vi ∈ V , be the subtree of T ∗ obtained from Tvi after removing
appropriate leaves. Let T ∗

ei,j , with {vi, vj} ∈ E, be the subtree of T ∗ obtained
from Teij after removing appropriate leaves.

Minimum Leaf Removal for Reconciliation: Complexity and Algorithms 407

We can show (using Remark 3 and Lemma 1) that T ∗
vi , for each vi ∈ V , must

be leaf-labelled either by the set {vji , vhi , vki }, or by the set {vi,1, vi,2, vi,3, vi,4}.
Moreover, by Lemma 3, T ∗ contains all the leaves with labels in Z.

On the other hand, using Lemma 2, we can prove that T ∗
ei,j must contain the

leaf labelled by ei,j (otherwise the parent of the leaf labelled by ei,j on the spine
of T , which is an AD node in T , becomes a NAD node) and exactly one leaf with
label in {vji , vij} (otherwise the parent of the subtree Tei,j on the spine of T , which
is an AD node in T , becomes a NAD node). Moreover, if T ∗

ei,j contains a leaf

labelled by vji , then T ∗
vi must be leaf-labelled by the set {vji , vhi , vki } (otherwise

the parent of the subtree Tei,j on the spine of T becomes a NAD node), while if
T ∗
ei,j contains a leaf labelled by vij , then Tvj is leaf-labelled by the set {vij, vxj , v

y
j }

(same reason as above).
It follows that the set

V ′ = {vi : T ∗
vi is leaf-labelled by {vji , vhi , vki } }

is a vertex cover of G of minimum size, as for each edge ei,j ∈ E, exactly one of
vi and vj is contained in V ′. It is easy to see that |V ′| ≤ c.

Theorem 1. MinLeafRem(2) is APX-hard.

Proof. It follows from Lemma 4 and from Lemma 5, that we have designed an
L-reduction from MVCC to MinLeafRem(2). Since MVCC is APX-hard [1], it
follows that also MinLeafRem(2) is APX-hard.

4 Fixed-Parameter Algorithms

Since the MinLeafRem problem is APX-hard, it is interesting to see if the prob-
lem becomes tractable under some biological meaningful parameterizations (for
an introduction to parameterized complexity see [23]). In this section we focus on
the two following parameterizations: (1) the size of the solution of MinLeafRem
(that is the number of leaves removed from T in order to obtain a tree MD-
consistent with S), and (2) the number of labels in Γ associated with multiple
leaves of T (i.e. the number of genomes containing multiple gene copies). We
will give two fixed-parameter algorithms for MinLeafRem under these two pa-
rameterizations.

Notice that a third natural parameter would be the maximum number of
leaves in T associated with a single label of Γ (i.e. the maximum number of gene
copies in a given genome). However, we have already proved in the last section
that the MinLeafRem problem is already APX-hard when each label has at most
two occurrences in the gene tree T .

4.1 MinLeafRem Parameterized by the Number of Leaves Removed

In this section, we investigate the parameterized complexity of MinLeafRem,
when the problem is parameterized by the size of the solution, that is the number

408 R. Dondi and N. El-Mabrouk

of leaves removed from T . We present a fixed-parameter algorithm that is based
on the depth-bounded search tree technique. Denote by c the size of the solution,
that is the number of leaves that have to be removed from T in order to get a
tree T ∗ which is MD-consistent with the species tree S.

If T does not contain NAD nodes, then T is MD-consistent with S and it
requires no leaf removal. Hence in what follows we assume that T contains at
least one NAD node.

Now, consider a NAD node v of T . Let s be the node of S where v is mapped.
Since v is a NAD node, it follows that at least one of its children, denoted as vl
and vr, is mapped by lcaT,S in s. Assume w.l.o.g. that vl is mapped in s, that is
lcaT,S(vl) = s. Denote by sl and sr the left child and the right child respectively
of s. Since lcaT,S(vl) = s, it follows that C(vl) ⊆ C(s), C(vl)∩C(sl) = X1 �= ∅ and
C(vl) ∩ C(sr) = X2 �= ∅. It follows that either the leaves of T (vl) having labels
in X1, or the leaves of T (vl) having labels in X2, or the leaves of T (vr) must be
deleted from T . We formally prove this property in the following lemma.

Lemma 6. Let v be a NAD node of a gene tree T , and let vl, vr be the children
of v, such that lcaT,S(v) = lcaT,S(vl) = s. Let sl, sr be the children of s. Then,
there is no subtree included in T that is MD-consistent with S and that contains
a leaf of T (vl) with a label in X1 = C(vl) ∩ C(sl), a leaf of T (vl) with a label in
X2 = C(vl) ∩ C(sr), and a leaf of T (vr).

Due to Lemma 6, we can design a fixed-parameter algorithm for MinLeafRem
parameterized by c as follows. Let Dup(T) = 〈v1, . . . , vz〉 be the ordered list
of NAD nodes of T in a breadth-first visit of T . The algorithm at each step
chooses the first node v1 of Dup(T). Let lcaT,S(v

1) = s, and let sl and sr be
the two children of s. Consider a child v1x, with v1x ∈ {v1l , v1r}, of v1 that is
mapped in s, and let v1x̄ be the other child of v1. Let C(v1x) ∩ C(sl) = X1 �= ∅,
C(v1x) ∩ C(sr) = X2 �= ∅.

Now, the algorithm branches in the following cases:

1. Remove the leaves of T (v1x) with label in X1 from L(T) and suppress the
resulting degree two nodes;

2. Remove the leaves of T (v1x) with label in in X2 from L(T) and suppress the
resulting degree two nodes;

3. Remove the subtree T (v1x̄) from T , and suppress the resulting degree two
node.

After the branching, the algorithm outputs a subtree T ′ of T . Then the lca
mapping lcaT ′,S between T ′ and S is computed (in polynomial time), and the
ordered listDup(T ′) of NAD nodes of T ′ is computed (again in polynomial time).
The algorithm stops either when it finds a subtree T ′ of T that is MD-consistent
with S, or when there is no subtree included in T that can be obtained with c
leaf removals.

Theorem 2. The algorithm computes if there exists a solution of size at most
c for MinLeafRem in time O(3cpoly (|V (T)|, |V (S)|)).

Minimum Leaf Removal for Reconciliation: Complexity and Algorithms 409

Proof. The correctness of the algorithm follows from Lemma 6.
Now, we focus on the time complexity of the algorithm. At each step the

algorithm branches in three possible cases, and for each of these cases at least
one leaf is removed. As the depth of the search tree is bounded by c, the size of
the search tree is bounded by 3c. Since after each branching we require at most
time O(poly (|V (T)||V (S)|)) to compute T ′, lcaT ′,S , andDup(T ′), it follows that
the overall time complexity of the algorithm is O(3cpoly (|V (T)||V (S)|))).

4.2 MinLeafRem Parameterized by the Number of Labels with
Multiple Copies

In this section we give a fixed-parameter algorithm for MinLeafRem, when the
parameter is the number of labels associated with multiple leaves of T . Denote
by ΓD ⊆ Γ , the subset of labels associated with multiple leaves of T .

Let x be a node of T , having children xl, xr, and let y be a node of S, with
children yl, yr. Given Γ ′

D ⊆ ΓD, we define M [T (x), S(y), Γ ′
D] as the minimum

number of leaves that have to be removed to obtain a tree T ′ included in T (x)
such that (1) T ′ is MD-consistent with S(y) and (2) the subset Γ ′

D ⊆ Γ (T ′). We
can compute M [T (x), S(y), Γ ′

D] applying the following recurrence:

M [T (x), S(y), Γ ′
D] = min

Γ ′
1,D⊆Γ ′

D ,

Γ ′
2,D⊆Γ ′

D ,

Γ ′
1,D∪Γ ′

2,D=Γ ′
D

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M [T (xl), S(yl), Γ
′
1,D] +M [T (xr), S(yr), Γ

′
2,D]

if Γ ′
1,D ∩ Γ ′

2,D = ∅,
M [T (xl), S(yr), Γ

′
1,D] +M [T (xr), S(yl), Γ

′
2,D]

if Γ ′
1,D ∩ Γ ′

2,D = ∅,
M [T (xl), S(y), Γ

′
1,D] +M [T (xr), S(y), Γ

′
2,D]

if Γ ′
1,D ∩ Γ ′

2,D 	= ∅
M [T (xl), S(y), Γ

′
D] + |L(T (xr))|

M [T (xr), S(y), Γ
′
D] + |L(T (xl))|

M [T (x), S(yl), Γ
′
D]

M [T (x), S(yr), Γ
′
D]

(1)

Now, we define the basic cases of the recurrence, when each of T (x) and S(y)
is a single leaf, with Γ (T (x)) = λG and Γ (S(y)) = λS . If λG = λS , then
M [T (x), S(y), Γ ′

D] = 0 if Γ ′
D = {λG}, M [T (x), S(y), Γ ′

D] = 0 if Γ ′
D = ∅, else

M [T (x), S(y), Γ ′
D] = +∞. If λG �= λS , then M [T (x), S(y), Γ ′

D] = 1 if Γ ′
D = ∅,

else M [T (x), S(y), Γ ′
D] = +∞.

The correctness of Recurrence 1, is proved in the following lemma.

Lemma 7. Let T be a gene tree, let S be a species tree, and let ΓD ⊆ Γ be the
set of labels associated with multiple leaves of T . Let x be a node of T and y be a
node of S, and consider a subset Γ ′

D ⊆ ΓD. Then M [T (x), S(y), Γ ′
D] = c if and

only if there exists a tree T ′ included in T (x) such that (i) T ′ is MD-consistent
with S(y); (ii) T ′ is obtained by removing c leaves; (iii) Γ ′

D ⊆ Γ (T ′).

410 R. Dondi and N. El-Mabrouk

Theorem 3. Given a gene tree T and a species tree S, let ΓD ⊆ Γ be the set of
labels associated with multiple leaves of T . Then an optimal solution of MinLeaf
over instance (T, S) can be computed in time O(4|ΓD |poly(|V (T)||V (S)|)).

Proof. By Lemma 7 a solution of of MinLeaf over instance (T, S), is obtained
looking for the minimum of the values M [T (rT), S(rS), Γ

′
D], for each Γ ′

D ⊆ ΓD,
where rT (rS respectively) is the root of T (S respectively).

Now, we prove in the following that the time complexity of the algorithm
is O(4|ΓD | poly(|V (T)||V (S)|)). It is easy to see that the time complexity to
compute Recurrence 1 is dominated by case 3. The entries M [T (x), S(y), Γ ′

D]
are O(2|ΓD ||V (T)||V (S)|)). For each pair of nodes x ∈ V (T), y ∈ V (S), we
have to consider O(4|ΓD |) possible combinations. Indeed, the number of subsets
Γ ′
1,D, Γ ′

2,D ⊆ Γ ′
D, with Γ ′

D = Γ ′
1,D ∪ Γ ′

2,D, is 4|ΓD|, since we have to consider
all possible subsets Γ ′

D of ΓD and, for each subset Γ ′
D, we have to consider

all possible subsets Γ ′
1,D, Γ ′

2,D ⊆ Γ ′
D, with Γ ′

D = Γ ′
1,D ∪ Γ ′

2,D. It follows that

we have to consider 4|ΓD| combinations, since there are 4|ΓD| possible ways to
split set ΓD into four disjoint subsets (in this case the subsets are ΓD \ Γ ′

D,
Γ ′
1,D \ Γ ′

2,D, Γ ′
2,D \ Γ ′

1,D, and Γ ′
1,D ∩ Γ ′

2,D). For each combination, the recursion
can be computed in constant time.

Finding the minimum value in the entries M [T (rG), S(rS), Γ
′
D] requires time

O(2|ΓD ||V (T)||V (S)|), hence the overall time complexity to find an optimal so-
lution of MinLeafRem over instance (T, S), is O(4|ΓD |poly(|V (T)||V (S)|)).

5 Conclusion

We presented complexity results and gave two parameter tractable versions of
the Minimum Leaf Removal Problem. This problem has been shown to be a nat-
ural one to consider for preprocessing gene trees prior to reconciliation [8]. Even
though the problem is proved to be APX-hard, a polynomial-time heuristic,
showing a good performance on simulated data sets, has already been devel-
oped [12]. The fixed-parameter algorithms presented in this paper nicely com-
plement those in [12].

In the case of species tree inference, it has been shown in [8] that deciding
whether a gene tree T is an MD-tree, i.e. a tree that is MD-consistent with at
least one species tree, can be done in polynomial time and space, as well as
computing a parsimonious species tree. In the case of a tree T being not an MD-
tree, a natural extension of the Minimum Leaf Removal Problem would be to
find the minimum number of leaves that have to be removed from a given gene
tree T in order for T to be an MD-tree. Having appropriate solutions for this
problem would give natural ways for correcting gene trees prior to species tree
inference. We are presently studying the theoretical complexity of this problem.

Acknowledgements. We thank Krister M. Swenson for his careful reading of
the proofs, and his advices on notations and presentation of the paper.

Minimum Leaf Removal for Reconciliation: Complexity and Algorithms 411

References

1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theor.
Comput. Sci. 237(1-2), 123–134 (2000)

2. Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local alignment
search tool. J. Mol. Biol. 215(3), 403–410 (1990)

3. Arvestad, L., Berglung, A.C., Lagergren, J., Sennblad, B.: Gene tree reconstruction
and orthology analysis based on an integrated model for duplications and sequence
evolution. In: Gusfield, D. (ed.) RECOMB 2004, pp. 326–335. ACM, New York
(2004)

4. Blin, G., Bonizzoni, P., Dondi, R., Rizzi, R., Sikora, F.: Complexity Insights of
the Minimum Duplication Problem. In: Bieliková, M., Friedrich, G., Gottlob, G.,
Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 153–164.
Springer, Heidelberg (2012)

5. Blomme, T., Vandepoele, K., Bodt, S.D., Silmillion, C., Maere, S., van de Peer,
Y.: The gain and loss of genes during 600 millions years of vertebrate evolution.
Genome Biology 7, R43 (2006)

6. Bonizzoni, P., Della Vedova, G., Dondi, R.: Reconciling a gene tree to a species
tree under the duplication cost model. Theoretical Computer Science 347, 36–53
(2005)

7. Chang, W.-C., Eulenstein, O.: Reconciling Gene Trees with Apparent Polytomies.
In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 235–244.
Springer, Heidelberg (2006)

8. Chauve, C., El-Mabrouk, N.: New Perspectives on Gene Family Evolution: Losses
in Reconciliation and a Link with Supertrees. In: Batzoglou, S. (ed.) RECOMB
2009. LNCS, vol. 5541, pp. 46–58. Springer, Heidelberg (2009)

9. Chen, K., Durand, D., Farach-Colton, M.: Notung: Dating gene duplications using
gene family trees. Journal of Computational Biology 7, 429–447 (2000)

10. Cotton, J., Page, R.: Rates and patterns of gene duplication and loss in the human
genome. Proceedings of the Royal Society of London. Series B 272, 277–283 (2005)

11. Demuth, J., Bie, T.D., Stajich, J., Cristianini, N., Hahn, M.: The evolution of
mammalian gene families. PLoS ONE 1, e85 (2006)

12. Doroftei, A., El-Mabrouk, N.: Removing Noise from Gene Trees. In: Przyty-
cka, T.M., Sagot, M.-F. (eds.) WABI 2011. LNCS (LNBI), vol. 6833, pp. 76–91.
Springer, Heidelberg (2011)

13. Durand, D., Haldórsson, B., Vernot, B.: A hybrid micro-macroevolutionary ap-
proach to gene tree reconstruction. Journal of Computational Biology 13, 320–335
(2006)

14. Eichler, E., Sankoff, D.: Structural dynamics of eukaryotic chromosome evolution.
Science 301, 793–797 (2003)

15. Goodman, M., Czelusniak, J., Moore, G., Romero-Herrera, A., Matsuda, G.: Fit-
ting the gene lineage into its species lineage, a parsimony strategy illustrated by
cladograms constructed from globin sequences. Systematic Zoology 28, 132–163
(1979)

16. Górecki, P., Eulenstein, O.: A Linear Time Algorithm for Error-Corrected Rec-
onciliation of Unrooted Gene Trees. In: Chen, J., Wang, J., Zelikovsky, A. (eds.)
ISBRA 2011. LNCS, vol. 6674, pp. 148–159. Springer, Heidelberg (2011)

17. Gorecki, P., Tiuryn, J.: DLS-trees: a model of evolutionary scenarios. Theoretical
Computer Science 359, 378–399 (2006)

412 R. Dondi and N. El-Mabrouk

18. Guigó, R., Muchnik, I., Smith, T.: Reconstruction of ancient molecular phylogeny.
Molecular Phylogenetics and Evolution 6, 189–213 (1996)

19. Hahn, M.: Bias in phylogenetic tree reconciliation methods: implications for verte-
brate genome evolution. Genome Biology 8(R141) (2007)

20. Hahn, M., Han, M., Han, S.G.: Gene family evolution across 12 drosophilia
genomes. PLoS Genetics 3, e197 (2007)

21. Kristensen, D., Wolf, Y., Mushegian, A., Koonin, E.: Computational methods for
gene orthology inference. Briefings in Bioinformatics 12(5), 379–391 (2011)

22. Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM J. on Comput. 30,
729–752 (2000)

23. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

24. Ohno, S.: Evolution by gene duplication. Springer, Berlin (1970)
25. Page, R.: Maps between trees and cladistic analysis of historical associations among

genes, organisms, and areas. Systematic Biology 43, 58–77 (1994)
26. Page, R.: Genetree: comparing gene and species phylogenies using reconciled trees.

Bioinformatics 14, 819–820 (1998)
27. Page, R., Charleston, M.: Reconciled trees and incongruent gene and species trees.

DIMACS Series in Discrete Mathematics and Theoretical Computer Science 37,
57–70 (1997)

28. Page, R., Cotton, J.: Vertebrate phylogenomics: reconciled trees and gene duplica-
tions. In: Pacific Symposium on Biocomputing, pp. 536–547 (2002)

29. Sanderson, M., McMahon, M.: Inferring angiosperm phylogeny from EST data with
widespread gene duplication. BMC Evolutionary Biology 7, S3 (2007)

30. Vernot, B., Stolzer, M., Goldman, A., Durand, D.: Reconciliation with non-binary
species trees. Journal of Computational Biology 15, 981–1006 (2008)

On the Closest String via Rank Distance

Liviu P. Dinu1 and Alexandru Popa2

1 University of Bucharest, Faculty of Mathematics and Computer Science,
Academiei 14, RO-010014, Bucharest, Romania

ldinu@fmi.unibuc.ro
2 Department of Communications & Networking, Aalto University School

of Electrical Engineering, Aalto, Finland
alexandru.popa@aalto.fi

Abstract. Given a set S of k strings of maximum length n, the goal
of the closest substring problem (CSSP) is to find the smallest integer d
(and a corresponding string t of length � ≤ n) such that each string s ∈ S
has a substring of length � of “distance” at most d to t. The closest string
problem (CSP) is a special case of CSSP where � = n. CSP and CSSP
arise in many applications in bioinformatics and are extensively studied
in the context of Hamming and edit distance. In this paper we consider
a recently introduced distance measure, namely the rank distance. First,
we show that the CSP and CSSP via rank distance are NP-hard. Then,
we present a polynomial time k-approximation algorithm for the CSP
problem. Finally, we give a parametrized algorithm for the CSP (the
parameter is the number of input strings) if the alphabet is binary and
each string has the same number of 0’s and 1’s.

1 Introduction

1.1 Motivation

In many important problems in computational biology a common task is to sum-
marize the information shared by a collection of sequences (e.g. DNA, proteins).
More specifically, given a set of DNA or protein sequences we want to design
a new sequence that is similar to the input sequences. We mention several ap-
plications that involve this task: the design of genetic drugs with a structure
similar to a set of existing sequences of RNA [12], PCR primer design [12, 11],
genetic probe design [12], antisense drug design [5], finding unbiased consensus
of a protein family [2], motif finding [20, 13].

The aforementioned task is formalized as the closest string problem (CSP):
given a set S of strings over an alphabet Σ, find the string that minimizes the
longest distance (or radius) from the strings from S. The distance is defined to
suit to the corresponding application. For example, the CSP was studied the
first time in the area of coding theory, to determine the best encoding of a set of
messages, and the measure used to compare the strings is the Hamming distance
[10].

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 413–426, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

414 L.P. Dinu and A. Popa

In computational biology the standard method for sequence comparison is by
sequence alignment. Sequence alignment is the procedure of comparing two se-
quences (pairwise alignment) or more sequences (multiple alignment) by search-
ing for a series of individual characters or character patterns that are in the
same order in the sequences. The standard pairwise alignment method is based
on dynamic programming: the algorithm compares every pair of characters of
the two sequences and generates an alignment and a score (edit distance is
based on a scoring scheme for insertion or deletion penalties). The sequence
alignment procedure is by far too slow to compare a large number of sequences
and therefore alternative approaches might be explored in bioinformatics if we
can answer the following question: is it possible to design a sequence distance
which is at the same time easily computable and non-trivial? This important
problem, known also as DNA sequence comparison, is a major open problem in
bioinformatics [21].

The standard distances with respect to the alignment principle are edit (Lev-
enshtein) distance or ad-hoc variants. The study of rearrangement genome [17] is
investigated also with Kendall tau distance (i.e. the minimum number of swaps
needed to transform a permutation in other). To measure the similarity between
strings Dinu proposes a new distance measure, termed rank distance (RD) [7],
with applications in biology [9]. Rank distance can be computed fast and benefits
from some features of the edit distance. The RD distance between two strings
s1 and s2 is computed as follows:

1. For each character c, find its first occurrence in s1 and the first occurrence
in s2 and store the difference between their positions. Repeat this procedure
for the second occurrence, third occurrence etc. (if there is no kth occurrence
of c in s1 or s2, we define the position of c to be zero).

2. Sum up the above values and obtain the rank distance.

In other words, rank distance measures the “gap” between the positions of a
letter in the two given strings, and then sums up these values. Intuitively, rank
distance gives us the total non-alignment score between two sequences.

Clearly, rank distance gives score zero only to the letters that are in the same
position in both strings, as Hamming distance does (we recall that Hamming
distance is the number of positions in which two strings of the same length
differ). On the other hand, an important aspect is the reduced sensitivity of
the rank distance with respect to deletions and insertions. Reduced sensitivity
is of paramount importance, since it allows the ad hoc extension to arbitrary
strings, without affecting the low computational complexity. In contrast, the ex-
tensions of Hamming distance are mathematically optimal but computationally
too heavy, and lead to the edit-distance, which is the base of the standard align-
ment principle. Thus, the rank distance sides with Hamming distance rather
than Levenshtein distance as far as computational complexity is concerned: a
significant indicator is the fact that in the Hamming and rank distance case
the median string problem is tractable [8], while in the edit distance case it is
NP-hard [4].

On the Closest String via Rank Distance 415

RD is easy to implement, does not use the standard alignment principle, and
has an extremely good computational behavior. Another advantage of RD is that
it imposes minimal hardware demands: it runs in optimal conditions on modest
computers, reducing the costs and increasing the number of possible users. For
example, the time needed to compare a DNA string of 45, 000 nucleotides with
other 150 DNA strings (with similar length), on a computer with 224 MB RAM
and 1.4 GHz processor is no more than six seconds.

1.2 Previous Work

The first similarity measure used in the closest string problem is the Hamming
distance and emerged from a coding theory application [10]. The CSP via Ham-
ming distance is known to be NP-complete [10] and there exist a number of
approximation algorithms and heuristics (see, for example, [12–14]).

As the CSP is used in many contexts, alternative distance measures were
introduced. The most studied alternative approach is the edit distance. In many
practical situations, the alphabet is of fixed constant size (in computational
biology, the DNA and protein alphabets are of size 4 and 20, respectively). The
closest string problem via edit distance is NP-hard even for binary alphabets [15,
16]. The existence of fast exact algorithms when the number of input strings is
fixed is investigated in [15].

The study of genome rearrangement introduces new problems related to clos-
est string via new distances. Recently, Popov [18] shows that the CSP via swap
distance (or Kendal distance) and element duplication distance (i.e. the mini-
mum number of element duplications needed to transform a string into another)
is also NP-complete.

1.3 Our Contributions

In this paper we study the computational hardness of the closest string problem
via rank distance (CSRD). We show that the CSRD is NP-hard via a polynomial
time reduction from 3-SAT (i.e. given a boolean formula in conjunctive normal
form, where each clause has at most three literals, the goal of the 3-SAT problem
is to decide if there exists a truth assignment of the variables such that the
formula is satisfiable). Then, we present a k-approximation algorithm for the
problem. The approximation algorithm has two steps: first we show a reduction
of the CSRD problem to a matching problem and then we use an algorithm
from [3]. Finally, we show a parametrized algorithm with respect to the number
of input strings if the alphabet is binary and each string has the same number
of 0’s and 1’s. We first prove that in this case RD is equivalent to Kendall Tau
and then we use Schwarz’s algorithm [19].

The rest of the paper is organized as follows. Section 2 introduces notation
and preliminary notions. In Section 3 we show the hardness result for the CSRD.
Then, in Section 4 we present the k-approximation algorithm. In Section 5 we
describe the parametrized algorithm for binary alphabets. Section 6 is reserved
for conclusions and open questions.

416 L.P. Dinu and A. Popa

2 Preliminaries

In this section we introduce notation and preliminaries. We first introduce the
rank distance and then we define closest string and closest substring problems.

Definition 1. Let U = {1, 2, . . . ,m} be a finite set of objects, named universe.
A ranking over U is an ordered list τ = (x1 > x2 > ... > xd), where xi ∈ U for
all 1 ≤ i ≤ d, xi �= xj for all 1 ≤ i �= j ≤ d, and > is a strict ordering relation
on the set {x1, x2, ..., xd}.

A ranking defines a partial function on U where for each object i ∈ U , ord(τ, i)
represents the position of the object i in the ranking τ . The rankings that contain
all the objects of an universe U are termed full rankings, while the others are
partial rankings. By convention, if x ∈ U \ σ, we have ord(σ, x) = 0.

Definition 2. Given two partial rankings σ and τ over the same universe U ,
we define the rank distance between them as:

Δ(σ, τ) =
∑

x∈σ∪τ

|ord(σ, x) − ord(τ, x)|.

In [7] Dinu proves thatΔ is a distance function. The rank distance is an extension
of the Spearman footrule distance [6], defined below.

Definition 3. If σ and τ are two permutations of the same order, then Δ(σ, τ)
is named the Spearman footrule distance.

The rank distance is naturally extended to strings. The following observation is
immediate: if a string does not contain identical symbols, it can be transformed
directly into a ranking (the rank of each symbol is its position in the string).
Conversely, each ranking can be viewed as a string, over an alphabet identical
to the universe of the objects in the ranking. The next definition formalizes the
transformation of strings into rankings.

Definition 4. Let n be an integer and let w = a1 . . . an be a finite word of
length n over an alphabet Σ. We define the extension to rankings of w, w̄ =
a1,i(1) . . . an,i(n), where i(j) is the number of occurrences of aj in the string
a1a2 . . . aj.

Example 1. If w = aaababbbac then w̄ = a1a2a3b1a4b2b3b4a5c1.

Observe that given w̄ we can obtain w by simply deleting all the indexes. Note
that the transformation of a string into a ranking can be done in linear time
(by storing for each symbol, in an array, the number of times it appears in the
string). We extend the rank distance to arbitrary strings as follows:

Definition 5. Given w1, w2 ∈ Σ∗, we define Δ(w1, w2) = Δ(w̄1, w̄2).

On the Closest String via Rank Distance 417

Example 2. Consider the following two strings x = abcaa and y = baacc. Then,
x̄ = a1b1c1a2a3 and ȳ = b1a1a2c1c2. The order of the characters in x̄ and ȳ is
the following:

– a1: 1 and 2;
– a2: 4 and 3;
– a3: 5 and 0 (as a3 does not appear in ȳ, it has order 0);
– b1: 2 and 1;
– c1: 3 and 4;
– c2: 0 and 5 (as c2 does not appear in x̄, it has order 0);

Thus, the rank distance between x and y is the sum of the absolute differences
between the orders of the characters in x̄ and ȳ

Δ(x, y) = |1− 2|+ |4− 3|+ |5− 0|+ |2− 1|+ |3− 4|+ |0− 5| = 14

The computation of the RD between two rankings can be done in linear time
in the cardinality of the universe. Our universe has precisely |w1|+ |w2| objects
and, thus, the RD between w1 and w2 can be computed in linear time.

Let χn be the space of all strings of size n over an alphabet Σ and let
p1, p2, . . . , pk be k strings from χn. The center string problem is to find the
center of the sphere of minimum radius that includes all the k strings. An alter-
native formulation of the problem is to find a string from χn which minimizes
the distance to all the input strings. We study the closest string problem under
the metric defined by the rank distance.

Problem 1 (Closest string via rank distance). Let P = {p1, p2, . . . , pk} be a set
of k length n strings over an alphabet Σ. The closest string problem via rank
distance (CSRD) is to find a minimal integer d (and a corresponding string t
of length n) such that the maximum rank distance from t to any string in P is
at most d. We say that t is the closest string to P and we name d the radius.
Formally, the goal is to compute:

min
x∈χn

max
i=1..k

Δ(x, pi) (1)

Remark 1. The string t that minimizes (1) is not necessary unique. For example,
if P = {(1, 2, 3), (3, 1, 2), (2, 3, 1)} is a set of three length 3 permutations, then
every length 3 permutation is a closest string to P .

Let P be the set of all closest strings with CSRD(P):

CSRD(P) = arg min
x∈χn

max
i=1..k

Δ(x, pi) (2)

The CSSP is a generalization of CSP in which the concern is to find a string
similar to substrings of the input.

418 L.P. Dinu and A. Popa

Problem 2 (Closest substring via rank distance). Let P = {p1, p2, . . . , pk} be a
set of k length n strings over an alphabet Σ. The closest substring problem via
rank distance is to find a minimal integer d (and a corresponding string t of
length � ≤ n) and a set P ′ = {p′1, p′2, . . . , p′k}, where p′i is a substring of pi for all
1 ≤ i ≤ k such that the maximum rank distance from t to any string in P ′ is at
most d. We say that t is the closest substring to P and we name d the radius.
Formally, the goal is to compute:

min
x∈χ�

max
i=1..k

min
p′
i

Δ(x, p′i)

2.1 Pareto Optimality

In this subsection we prove that the CSRD satisfies the Pareto optimality crite-
rion introduced by Arrow [1]. We use this criterion in the approximation algo-
rithm from Section 4.

The Pareto optimality criterion says that given a set of rankings T = {v1, v2,
. . . , vt}, such that t rankings agree on a pair {a, b} (i.e. in all the rankings a is
preferred to b or vice-versa), then the aggregation of T maintains their relative
ranking (in our case the aggregation is the center string).

Lemma 1. Let T = {v1, v2, . . . vt} be a set of rankings and a pair of elements
{a, b} such that a is preferred to b in all the t rankings. There exists a closest
string which satisfies the Pareto optimality criterion.

Proof. Assume by contradiction that an optimal aggregation x permits b < a,
even though ∀v ∈ T a < b in v. We show that by swapping a and b in x, we
obtain the same or a better result. Let y be the permutation obtained from x
after swapping a and b. We show that y yields a score which is at most the score
of x.

From the definition of CSRD, we know that x satisfies the following:

min
x∈χn

max
v∈T

Δ(x, v)

We prove that
Δ(y, v) ≤ Δ(x, v), for all v ∈ T .

Let v ∈ T be a certain ranking. The rank distances Δ(x, v) and Δ(y, v) from v
to x and to y, respectively are:∑
c/∈{a,b}

(|ord(x, c)−ord(v, c)|+ |ord(x, a)−ord(v, a)|+ |ord(x, b)−ord(v, b)|) (3)

∑
c/∈{a,b}

(|ord(y, c)−ord(v, c)|+ |ord(y, a)−ord(v, a)|+ |ord(y, b)−ord(v, b)|) (4)

On the Closest String via Rank Distance 419

Since y is obtained from x only by swapping a and b, the first term from 3 is
equal to first term from 4, hence, we have:

Δ(x, v)−Δ(y, v) = |ord(x, a) − ord(v, a)| + |ord(x, b) − ord(v, b)|
− |ord(y, a) − ord(v, a)| − |ord(y, b) − ord(v, b)|
= |ord(y, b)− ord(v, a)| + |ord(y, a) − ord(v, b)|
− |ord(y, a) − ord(v, a)| − |ord(y, b) − ord(v, b)|
= |ord(y, b)− ord(v, a)| − |ord(y, b)− ord(v, b)|
− (|ord(y, a) − ord(v, a)| − |ord(y, a) − ord(v, b)|)
≥ 0

To obtain the last inequality, we use :

– ord(v, b) > ord(v, a) (from the hypothesis).
– f(x) = |x− ord(v, a)| − |x− ord(v, b)| is an increasing function (this follows

from Lemma 1 in [7]).
– ord(y, b) > ord(y, a).

Thus, Δ(y, v) ≤ Δ(x, v), for all v ∈ T and the theorem follows. ��

Lemma 1 says that if an element a is preferred to another element b in all the
rankings, there exists a center in which a is preferred to b. Can Lemma 1 be
extended to multiple pairs? The following theorem affirmatively answers this
question.

Theorem 1. Let T = {v1, v2, . . . vt} be a set of rankings and k pairs of elements
{a1, b1}, {a2, b2}, . . . , {ak, bk} such that ai is preferred to bi for all 1 ≤ i ≤ k in all
the t rankings. There exist a closest string which satisfies the Pareto optimality
criterion for all the k pairs.

Proof. Let (a1, b1) be the first pair of elements to whom we can apply Lemma 1.
We obtain a ranking π where a1 is preferred to b1. If there exists a pair (ai, bi)
such that bi is preferred to ai in π, then by interchanging ai and bi in π we obtain
a ranking π1 which is also in CSRD(T) (according to the proof of Lemma 1)
and ai is preferred to bi too. We continue until all the pairs satisfy the Pareto
criterion. Thus, the theorem follows. ��

3 Hardness of the Closest String via Rank Distance

In this section we prove that the CSRD problem is NP-hard via a reduction from
the 3-SAT problem (a version of the SAT problem where each clause contains
exactly three literals). This is formally stated in the next theorem.

420 L.P. Dinu and A. Popa

Theorem 2. The closest string problem via rank distance is NP-hard.

Proof. Given a 3-SAT formula φ with n variables x1, . . . , xn and m clauses
c1, . . . , cm we construct an instance of the CSRD problem with m + 4 input
strings, each of length 4n. The alphabet Σ contains 2n characters, x1, y1, x2,
y2, . . . , xn, yn, two for each variable. We prove that if we can solve CSRD in
polynomial time, then we can decide if φ is satisfiable.

For a clause ci = (za∨zb∨zc), where za, zb, zc are the literals corresponding to
the variables xa, xb, xc (i.e. either the variables or their negations), we construct
a string si:

– if za is a negation of a variable, then we set si[4a− 3] = xa, si[4a− 2] = ya,
si[4a− 1] = xa, si[4a] = ya. We proceed similarly for zb and zc.

– if za is not a negation of a variable (i.e. if za = xa), then we set si[4a−3] = ya,
si[4a− 2] = xa, si[4a− 1] = ya, si[4a] = xa. We proceed similarly for zb and
zc.

– for all the other positions w different from a, b or c we set si[4w − 3] = xw ,
si[4w − 2] = yw, si[4w − 1] = yw, si[4w] = xw

In the construction, we assume that a clause does not contain both a variable
and its negation (these clauses can be easily removed since they are satisfiable
by any assignment). We also construct four strings aux1, aux2, aux3, aux4.
The string aux1 has, for all 1 ≤ j ≤ n, aux1[4j − 3] = yj , aux1[4j − 2] = xj ,
aux1[4j − 1] = xj , aux1[4j] = yj. The string aux2 has, for all 1 ≤ j ≤ n,
aux2[4j − 3] = xj , aux2[4j − 2] = yj , aux2[4j − 1] = yj , aux2[4j] = xj . The
string aux3 has the first half like aux1 and the second half like aux2. The string
aux4 has the first half like aux2 and the second half like aux1.

We prove that φ has a satisfying assignment if and only if maxmi=1 Δ(si, q)
≤ 2(n − 3) + 8 and max4i=1 Δ(auxi, q) ≤ 2(n − 3) + 8, where q is the rank
distance center.

If φ has a satisfying truth assignment, then we construct the center q as
follows:

– if xa is false, then q[4a− 3] = xa, q[4a− 2] = ya, q[4a− 1] = xa, q[4a] = ya.
– if xa is true, then we set q[4a − 3] = ya, q[4a − 2] = xa, q[4a − 1] = ya,

q[4a] = xa.

Now we show that Δ(q, si) ≤ 2(n − 3) + 8, ∀1 ≤ i ≤ m. For a string si and a
variable x which is not in the clause ci, the four positions that correspond to the
variable x add 2 to the total rank distance (irrespective of the assignment of x,
i.e. Δ(yxyx, xyyx) = Δ(xyxy, xyyx) = 2). If x (or its negation) is in the clause
ci, then the four positions corresponding to x add 4 to the total rank distance
if x does not satisfy ci (i.e. if x is true and appears negated in ci or viceversa)
or 0 otherwise. Since every clause can be satisfied, at most two variables from
each clause add 4 to the total rank distance. Therefore, for all i ≥ 1, we have
Δ(q, si) ≤ 2(n − 3) + 8. The Δ(auxi, q), for all i, is equal to 2n and, thus, the
first implication is true.

On the Closest String via Rank Distance 421

We now prove the reverse implication. As all the characters corresponding to
a variable xi are placed on the positions from 4i − 3 to 4i in all the strings, we
know that the center has to contain these characters on the same positions too.
We claim that for each variable x, the corresponding characters are placed either
in the order xyxy or yxyx, and thus we can recover a truth assignment: if the
order is xyxy, then we set x to false; otherwise we set x to true. As the distance
is less or equal than 2n+2, this is a satisfying truth assignment (otherwise, if a
clause is not satisfied, we have a string si with Δ(si, q) = 2n+ 6).

If the order of the characters corresponding to a variable x is not xyxy or
yxyx, then the distance from q to one of the strings is greater than 2n+2. This
is enforced by the strings aux which do not allow the placement of strings xyyx
or yxxy (this structure keeps a small distance from si, but has a big distance
from one of the aux strings). ��

As the closest substring problem is a generalization of the closest string, the
hardness of the closest substring problem follows.

Corollary 1. The closest substring problem via rank distance is NP-hard.

4 A k-Approximation Algorithm

In this section we present a k-approximation algorithm for the CSRD problem.
First, we show that CSRD is equivalent to the problem of finding a minimum
weighted perfect matching in a complete bipartite graph and then we apply a
result from [3]. Berstein and Onn [3] prove that there exists a k-approximation
algorithm for the minimum (under any norm �p) weighted perfect matching,
where k is the number of different weights associated to the edges.

The reduction from CSRD to a multi-weighted complete bipartite graph is as
follows. Without loss of generality, let the alphabet be Σ = {1, 2, . . . , n}, and
let U = {p1, p2, . . . , pk} be a set of k full rankings over the alphabet Σ. Any set
of k strings where each symbol appears the same number of times in any string
can be transformed in a set of k full rankings (see Remark 2).

The nodes on the left side of the graph correspond to the characters of the
alphabet. The nodes in the right set correspond to the n available positions.
The graph is complete, since in the center string each character can be put on
every position. Observe that a full ranking p over Σ can be seen as a perfect
matching M of Kn,n, where edge e = (i, j) ∈ M if and only if j = ord(p, i).
Therefore, the set of all full rankings over Σ is equal with the set of all perfect
matchings ofKn,n. To every edge (i, j) ofKn,n we add k integer weight functions,
wd(i, j), 1 ≤ d ≤ k, such that the weight wd(i, j), is the absolute difference
between j and the position of i in pd. In other words, wd(i, j) shows how much
the RD between the center and pd increases if the center has the character i on
the j’th position. Each perfect matching has associated an n dimensional array
and, thus, the center string has associated the array with the smallest || · ||∞.

Formally, the algorithm is presented below.

422 L.P. Dinu and A. Popa

Input: U = {p1, p2, . . . , pk}, a set of k full rankings over the alphabet
Σ = {1, 2, . . . , n}.

1. Build a multi-objective complete bipartite graph Kn,n = (N,P,W) as
follows:

(a) The nodes N = {1, 2, . . . , n} on the left side of the graph correspond
to the characters Σ.

(b) The nodes P = {1, 2, . . . , n} in the right set correspond to the n
available positions.

(c) Let E = {(i, j)|1 ≤ i, j ≤ n} be the set of edges of the complete
bipartite graph Kn,n;

(d) To every edge (i, j) ∈ E are associated k integer weights:
w1(i, j), w2(i, j), . . ., wk(i, j), where wd(i, j) = |j − ord(pd, i)|,
d = 1, 2, . . . , k.

2. Apply Theorem 4.1 [3] with multi-objective function f =|| · ||∞ to the
graph Kn,n constructed at the previous steps.

3. Let M ⊂ E be the minimum perfect matching of Kn,n obtained from
the previous step.

4. For every edge (i, j) ∈M , define ord(x, i) = j.
5. Output: x.

Algorithm 1: A k-approximation algorithm for CSRD problem

Theorem 3. The ranking x returned by Algorithm 1 is a k− approximation of
CSRD problem.

Proof. First, observe that the graph constructed at Step 1, is a multiobjec-
tive bipartite graph, with the set of nodes Σ = {1, 2, . . . , n}, the set of edges
E = {(i, j)|1 ≤ i, j ≤ n}, and k ≥ 1 integer weight functions defined on E,
w1, w2, . . . , wk. We prove now the equivalence with CSRD, namely that, for
each ranking p, there exists a perfect matching Mp.

The rank distance between p and another string pd:

Δ(p, pd) =

n∑
i=1

|ord(pd, i)− ord(p, i)|

Since |ord(pd, i)− ord(p, i)| = |ord(pd, i)− j| we have:∑
(i,j)∈Mp

wd(i, j) = Δ(p, pd). (5)

Therefore, for a certain a perfect matching M ⊂ E, the following sums give
the rank distance from the ranking associated to M to each ranking pi, for
i = 1, 2, . . . , k:

〈
∑

(i,j)∈Mp

w1(i, j),
∑

(i,j)∈Mp

w2(i, j), . . . ,
∑

(i,j)∈Mp

wk(i, j)〉 (6)

On the Closest String via Rank Distance 423

We define the cost of M as the maximum of the k values obtained in (6):

cost(M) = max
d=1,k

∑
(i,j)∈M

wd(i, j) (7)

The definition of CSRD and the equations (5), (6) and (7) imply that the CSRD
is equal to problem of minimizing (7):

CSRD = min
M⊂E

cost(M) = min
M⊂E

max
d=1,k

∑
(i,j)∈M

wd(i, j) (8)

We observe that the objective function cost is in fact the infinity norm,
f =|| · ||∞, and the hypothesis of Theorem 4.1 [3] holds. Thus, the Step 2
of Algorithm 1 returns a k-approximation of the minimum nonlinear bipartite
matching problem. Finally, following Step 4, we obtain a ranking which is a k-
approximation to the CSRD problem. ��

Remark 2. If a string does not contain any identical symbols, then it can be
transformed into a ranking (see Definition 4). Similarly, each ranking can be
viewed as a string, over an alphabet identical to the universe of the ranked
objects.

Algorithm 1, which solves the CSRD problem on rankings (i.e. strings without
repetitions), can be used to solve the CSRD problem on arbitrary strings (with
repetitions and the same composition): we transform the set of strings into a
set of rankings, we compute its CSRD, and finally we retransform these newly
obtained rankings into strings by deleting the indexes.

This operation can be done due to Theorem 1 (Pareto optimality). Indeed,
if Theorem 1 would not be satisfied, then after the indexing of strings and ap-
plication of Algorithm 1 we can obtain a perfect matching that looks like this:
a2a1b2b1... (i.e. the second a of a string is in front of the first a, which is impos-
sible). However, Theorem 1 assures us that if we obtain a perfect matching in
which the second a is in front of the first a, then we can swap the two characters,
since the CSRD satisfies the Pareto optimality. Therefore, we can retransform
the obtained ranking in a string.

Remark 3. The classical bipartite matching problem is the special case where
k = 1 and f is the identity function.

Example 3. Let Σ = {1, 2, 3} and let U = {(1, 2, 3), (2, 1, 3), (3, 1, 2)} be three
rankings.

The graph associated to U (see Figure 1) is K3,3, and to every edge (i, j), 1 ≤
i, j ≤ 3, we associate three weights denoted, w(i, j) = 〈w1(i, j), w2(i, j), w3(i, j)〉.
The associated weights of K3,3 are:

w(1, 1) = 〈0, 1, 1〉, w(1, 2) = 〈1, 0, 0〉, w(1, 3) = 〈2, 1, 1〉;

w(2, 1) = 〈1, 0, 2〉, w(2, 2) = 〈0, 1, 1〉, w(2, 3) = 〈1, 2, 0〉;

424 L.P. Dinu and A. Popa

w(3, 1) = 〈2, 2, 0〉, w(3, 2) = 〈1, 1, 1〉, w(3, 3) = 〈0, 0, 2〉.

Let M = {(1, 1), (2, 2), (3, 3)} be a perfect matching of K3,3 (not necessary of
minimum cost). The ranking p = (1, 2, 3), associated to M has the following
rank distances to U :

Δ(p, (1, 2, 3)) = 0, Δ(p, (2, 1, 3)) = 2, Δ(p, (3, 1, 2)) = 4.

Thus, the cost of M is 4. In other words, p is the center of the sphere with radius
r = maxx∈U (Δ(p, x)) in which are included all rankings of U .

Fig. 1. The K3,3 graph corresponding to the set of rankings U = {(1, 2, 3), (2, 1, 3),
(3, 1, 2)}

5 A Polynomial Algorithm for Binary Alphabets

On full rankings (i.e. permutations), the RD (i.e. the footrule distance) is often
compared to the Kendall-τ distance, which simply counts the minimum number
of swaps between consecutive positions necessary to transform x into y.

In the next theorem we show that the RD between two binary strings is equal
to the Kendall-τ distance.

Theorem 4. Let u and v be two binary strings with the same number of 0’s and
1’s (i.e. |u|0 = |v|0, |u|1 = |v|1). The rank distance between u and v is equal to
two times Kendal-τ distance between u and v.

Proof. We prove by induction on the number of 1’s that Kendall-τ between two
strings is equal to total contribution of 1’s in rank distance.

If n = 1, then τ is equal to the number of moves necessary to align the two
strings, which, in turn, is equal to the absolute value of the difference between
the positions of 1 in the two strings (i.e. rank distance).

On the Closest String via Rank Distance 425

Suppose the theorem is true for n 1’s. We prove the theorem for n + 1 1’s.
Kendall-τ between two strings with n+ 1 1’s is equal to the absolute difference
between the positions of the leftmost 1’s in each string (as we have to align these
two 1’s) plus the Kendall-τ for the rest of the string. Thus, using the induction
step, Kendall-τ is equal with the cost of 1’s rank distance.

We can make a similar argument for the 0’s.
Since rank distance between the two strings is equal to the cost of 0’s added to

the cost of 1’s, we obtain that the rank distance is equal to two times Kendal-τ
between u and v. ��

Corollary 2. The CSRD problem for k binary strings, k ≥ 2, with the same
number of 0’s and 1’s, is equivalent with the center problem via Kendal-τ dis-
tance.

Proof. The proof follows immediately from the following observation. The CSRD
problem for k binary strings p1, . . . , pk is equivalent to

min
x∈χn

max
i=1..k

Δ(x, pi),

and, using Theorem 4 we can substitute Δ with τ . ��
In the general case, the closest string problem via Kendall-τ distance is an NP-
hard problem [18]. However, there exists an algorithm for the center string prob-
lem via Kendall tau distance which has running time exponential in the number
of input strings [19].

6 Conclusions

In this paper we study the closest string and the closest substring problems
under a new distance measure, named the rank distance, recently introduced
by Dinu[7]. We show that the CSP and CSSP are NP-hard via rank distance.
Then, we present a k-approximation algorithm for the problem. Finally, we show
a parametrized algorithm if the alphabet is binary and each string has the same
number of 0’s and 1’s.

A natural open question is to derive approximation algorithms with better
bounds or to prove hardness of approximation results.

Acknowledgements. The authors would like to thank the anonymous review-
ers for their helpful comments. All authors contributed equally to this work.
The research of Liviu P. Dinu was supported by the CNCS, IDEI - PCE project
311/2011.

426 L.P. Dinu and A. Popa

References

1. Arrow, K.J.: Social Choice and Indivudual Values. Wiley, New York (1963)
2. Ben-Dor, A., Lancia, G., Perone, J., Ravi, R.: Banishing Bias from Consen-
sus Sequences. In: Hein, J., Apostolico, A. (eds.) CPM 1997. LNCS, vol. 1264,
pp. 247–261. Springer, Heidelberg (1997)

3. Berstein, Y., Onn, S.: Nonlinear bipartite matching. Disc. Optim. 5(1), 53–65
(2008)

4. de la Higuera, C., Casacuberta, F.: Topology of Strings: Median String is NP-
Complete. Theor. Comput. Sci. 230(1-2), 39–48 (2000)

5. Deng, X., Li, G., Li, Z., Ma, B., Wang, L.: Genetic design of drugs without side-
effects. SIAM J. Comput. 32(4), 1073–1090 (2003)

6. Diaconis, P., Graham, R.L.: Spearman’s footrule as a measure of disarray. J. Royal
Statist. Soc. Series B (Methodological) 39(2), 262–268 (1977)

7. Dinu, L.P.: On the classification and aggregation of hierarchies with different con-
stitutive elements. Fundam. Inform. 55(1), 39–50 (2003)

8. Dinu, L.P., Manea, F.: An efficient approach for the rank aggregation problem.
Theor. Comput. Sci. 359(1-3), 455–461 (2006)

9. Dinu, L.P., Sgarro, A.: A low-complexity distance for dna strings. Fundam. In-
form. 73(3), 361–372 (2006)

10. Frances, M., Litman, A.: On covering problems of codes. Theory Comput.
Syst. 30(2), 113–119 (1997)

11. Gramm, J., Huffner, F., Niedermeier, R.: Closest strings, primer design, and mo-
tif search. currents in computational molecular biology. In: RECOMB, pp. 74–75
(2002)

12. Lanctot, J.K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection
problems. Inf. Comput. 185(1), 41–55 (2003)

13. Li, M., Ma, B., Wang, L.: Finding similar regions in many sequences. J. Comput.
Syst. Sci. 65(1), 73–96 (2002)

14. Liu, X., He, H., Sýkora, O.: Parallel Genetic Algorithm and Parallel Simulated An-
nealing Algorithm for the Closest String Problem. In: Li, X., Wang, S., Dong, Z.Y.
(eds.) ADMA 2005. LNCS (LNAI), vol. 3584, pp. 591–597. Springer, Heidelberg
(2005)

15. Nicolas, F., Rivals, E.: Complexities of the Centre and Median String Problems. In:
Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676,
pp. 315–327. Springer, Heidelberg (2003)

16. Nicolas, F., Rivals, E.: Hardness results for the center and median string problems
under the weighted and unweighted edit distances. J. Disc. Alg. 3(2-4), 390–415
(2005)

17. Palmer, J., Herbon, L.: Plant mitochondrial dna evolves rapidly in structure, but
slowly in sequence. J. Mol. Evol. 28, 87–89 (1988)

18. Popov, V.Y.: Multiple genome rearrangement by swaps and by element duplica-
tions. Theor. Comput. Sci. 385(1-3), 115–126 (2007)

19. Schwarz, N.: Rank aggregation by criteria. Minimizing the maximum Kendall-tau
distance. Diplomarbeit, Jena (2009)

20. Wang, L., Dong, L.: Randomized algorithms for motif detection. J. Bioinf. and
Comp. Biol. 3(5), 1039–1052 (2005)

21. Wooley, J.C.: Trends in computational biology: A summary based on a recomb
plenary lecture. J. Comp. Biol. 6(3/4) (1999)

On Approximating String Selection Problems

with Outliers

Christina Boucher1, Gad M. Landau2,3, Avivit Levy4,5, David Pritchard6,
and Oren Weimann2

1 Department of Computer Science, University of California, San Diego, USA
cboucher@eng.ucsd.edu

2 Department of Computer Science, University of Haifa, Haifa 31905, Israel
landau@cs.haifa.ac.il

3 Polytechnic Institute of NYU, Brooklyn, NY 11201-3840, USA
4 Shenkar College for Engineering and Design, Ramat-Gan, Israel

5 CRI, University of Haifa, Mount Carmel, Haifa 31905, Israel
6 CEMC, University of Waterloo, Canada

Abstract. Many problems in bioinformatics are about finding strings
that approximately represent a collection of given strings. We look at
more general problems where some input strings can be classified as out-
liers. The Close to Most Strings problem is, given a set S of same-length
strings, and a parameter d, find a string x that maximizes the number
of “non-outliers” within Hamming distance d of x. We prove that this
problem has no polynomial-time approximation scheme (PTAS) unless
NP has randomized polynomial-time algorithms, correcting a decade-old
mistake. The Most Strings with Few Bad Columns problem is to find a
maximum-size subset of input strings so that the number of non-identical
positions is at most k; we show it has no PTAS unless P = NP. We
also observe Closest to k Strings has no efficient PTAS (EPTAS) unless
the parameterized complexity hierarchy collapses. In sum, outliers help
model problems associated with using biological data, but we show the
problem of finding an approximate solution is computationally difficult.

1 Introduction

With the development of high-throughput next generation sequencing technolo-
gies, there has arisen large amounts of genomic data, and an increased need for
novel ways to analyze this data. This has inspired numerous formulations of bi-
ological tasks as computational problems. In light of this observation, Lanctot
et al. [18] initiated the study of distinguishing string selection problems, where
we seek a representative string satisfying some distance constraints from each
of the input strings. We will mostly have constraints in the form of an upper
bound on the Hamming distance, but lower bounds on the Hamming distance,
and substring distances, have also been considered [8, 14, 18].

Typically, the distance constraint must be satisfied for each of the input
strings. However, biological sequence data is subject to frequent random mu-
tations and errors, particularly in specific segments of the data; requiring that

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 427–438, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

428 C. Boucher et al.

the solution fits the entire input data is problematic for many problems in bioin-
formatics. It would be preferable to find the similarity of a portion of the input
strings, excluding a few bad reads that have been corrupted, rather than trying
to fit the complete set of input and in doing so finding one that is distant from
many or all of the strings.

What if we are given a measure of goodness (e.g., distance) the representative
must satisfy, and want to choose the largest subset of strings with such a repre-
sentative? Conversely, what if we specify the subset size and seek a representative
that is as good as possible? Some results are known in this area with respect to
fixed-parameter tractability [6]. Here, we prove results about the approximabil-
ity of three string selection problems with outliers. For any two strings x and y of
same length, we denote the Hamming distance between them as d(x, y), which
is defined as the number of mismatched positions. Our main results are about
the three following NP optimization problems.

Definition 1. Close to Most Strings (a.k.a. Max Close String [18, 24])
Input: n strings S = {s1, . . . , sn} of length � over an alphabet Σ, and d ∈ Z+.
Solution: a string s of length �.
Objective: maximize the number of strings si in S that satisfy d(s, si) ≤ d.

Definition 2. Closest to k Strings
Input: n strings S = {s1, . . . , sn} of length � over an alphabet Σ, and k ∈ Z+.
Solution: a string s of length � and a subset S∗ of S of size k.
Objective: minimize max{d(s, si) | si ∈ S∗}.

In the special case k = n, Closest to k Strings becomes Closest String — an
NP-hard problem [11] that has received significant interest in parameterized
complexity and approximability [1, 2, 13, 18, 20, 26, 27].

We also consider a new problem where the “outliers” are considered to be
positions (“columns”) rather than strings (“rows”). Let s(j) indicate the jth
character of string s.

Definition 3. Most Strings with Few Bad Columns
Input: n strings S = {s1, . . . , sn} of length � over an alphabet Σ, and k ∈ Z+.
Solution: a subset S∗ ⊆ S of strings such that the number {t ∈ [�] | ∃s∗i , s∗j ∈
S∗ : s∗i (t) �= s∗j (t)} of bad columns is at most k.
Objective: maximize |S∗|.

A column t is bad when its entries are not-all-equal, among strings in S∗. As
an example application, suppose we have a collection of DNA sequences from a
heterogeneous population of two sub-groups: (1) a large collection of sequences
that are identical except for k positions where mutations can occur, and (2)
additional outliers. Then Most Strings with Few Bad Columns models the prob-
lem of separating the two groups. This problem also generalizes the problem of
finding tandem repeats in a string [19].

On Approximating String Selection Problems with Outliers 429

1.1 Our Contributions

A polynomial-time approximation scheme (PTAS) for an optimization problem
is an algorithm that takes an instance of the problem and a parameter ε > 0
and, in time that is polynomial for any fixed ε, produces a solution that is within
a factor 1 + ε of being optimal. An efficient PTAS (EPTAS) further restricts
the running time to be some function of ε times a constant-degree polynomial in
the input size. A decision problem lies in ZPP if it has a randomized algorithm
that is always correct, and whose expected running time is polynomial. A well-
known equivalent characterization of ZPP is, for any fixed 0 < p < 1, that the
algorithm always runs in polynomial time, outputs either the correct answer or
no answer, and gives the correct answer with probability at least p for every
input. We defer a brief description of the parameterized complexity classes W[1]
and FPT to Section 1.2.

We present several results on the computational hardness of efficiently finding
an approximate solution to the above optimization problems. Specifically, we
show the following:

– The Close to Most Strings Problem has no PTAS, unless ZPP = NP (Theo-
rem 1).

– The Most Strings with Few Bad Columns Problem has no PTAS, unless
P = NP (Theorem 2).

– We observe that the known PTAS [24] for the Closest to k Strings Problem
cannot be improved to an EPTAS, unless W[1] = FPT.

Our first result corrects an error in prior literature. A problem is APX-hard if for
some fixed ε > 0, finding a (1+ε)-approximation is NP-hard. A 2000 paper of Ma
[24] claims that the Close to Most Strings problem is APX-hard; however, the
reduction is erroneous. To explain, it is helpful to define one more problem, Far
from Most Strings, which is the same as Close to Most Strings except that we
want to maximize the number of strings si in S that satisfy d(s, si) ≥ d (rather
than ≤). There is considerable experimental interest in heuristics for Far from
Most Strings, mostly based on local search [23, 9, 10]. Far From Most Strings was
introduced and studied by Lanctot et al. [18], and they (correctly) showed that
for any fixed alphabet size greater than or equal to three, Far from Most Strings
is at least as hard to approximate as Independent Set. Currently, Independent

Set is known [17] to be inapproximable within a factor of n/2log
3/4+ε n unless

NP ⊂ BPTIME(2log
O(1) n).

The main idea in Ma’s approach was to consider a binary alphabet. In detail,
the Far from Most Strings and Close to Most Strings Problem on alphabets
Σ = {0, 1} are basically the same problem, since a string s of length � has
d(si, s) ≤ d if and only if the 0-1 complement s of s satisfies d(si, s) ≥ � − d.
The crucial error in [24] is that Ma mis-cited [18], assuming that their result
held for binary alphabets. (One reason why the approach of [18] does not extend
to binary alphabets in any obvious way is that the instances produced by their
reduction satisfy d = �, whereas Far from Most Strings is easy to solve when
|Σ| = 2 and d = �.)

430 C. Boucher et al.

From [18] and [24] we cannot conclude anything about the hardness of Close
to Most Strings, nor can we say anything about the hardness of Far from Most
Strings when |Σ| = 2. Our results close both of these gaps: the proof of Theo-
rem 1 actually shows Close to Most Strings is hard over a binary alphabet, from
which it follows that Far from Most Strings is, too. At the same time, the hard-
ness that we are able to achieve is much more modest than the previous claim;
we show only that there is no 1.001-approximation. We also require a random-
ized reduction. It is a very interesting open problem to determine whether this
problem has any constant-factor approximation, even over a binary alphabet.

1.2 Brief Description of Parameterized Complexity

Some parameterized complexity concepts will arise in later sections, so we give
a birds-eye view of this area. With respect to a parameter k, a decision algo-
rithm with running time f(k)nO(1) (where n is the input length) is called fixed
parameter tractable (FPT); the class FPT contains all parameterized problems
with FPT algorithms. The corresponding reduction notion between two param-
eterized problems is an FPT reduction, which is FPT and also increases the
parameter by some function that is independent of the instance size. The class
W[1] is a superset of FPT closed under FPT-reductions. A problem is W[1]-hard
if any W[1] problem can be FPT-reduced to it, and W[1]-complete if it is both
in W[1] and W[1]-hard. There are many natural W[1]-complete problems, like
Maximum Clique parameterized by clique size. It is widely hypothesized that
FPT � W[1], but unproven, analogous to P � NP.

1.3 Previous Work

The Closest String Problem can be viewed as a special case of the Close to Most
Strings Problem where the number of outliers is equal to zero. This problem has
been throughly studied and therefore, there exists numerous results concerning
its complexity and approximability [2, 7, 13, 18, 20, 21, 24, 26–28]. It was shown
NP-complete, even under the restriction that the alphabet is binary, in [11].
Lanctot et al. [18] gave a polynomial-time algorithm for the Closest String Prob-
lem that achieves a 4

3 + o(1) approximation guarantee. Independently, Ga̧sieniec
et al. [12] gave a 4

3 -approximation algorithm that uses a similar technique, which
is based on a linear programming relaxation of an integer programming model of
the problem. Using randomized rounding, Li et al. [20] proved the existence of a
PTAS for this problem. The running time of the PTAS has since been improved
by Andoni et al. [2], and Ma and Sun [26]. Currently, the PTAS with the best

known running time is due to Ma and Sun, which runs in O(nΘ(ε−2))-time.
Gramm et al. [13] demonstrated that the Closest String Problem is in FPT

when parameterized by n, and when parameterized by d. Ma and Sun gave an
O(n|Σ|O(d))-time algorithm, which is a polynomial-time algorithm when d =
O(log n) and Σ has constant size [26]; Chen et al. [7] and Zhao and Zhang
[28] have improved upon the running time of this result. In [6], parameterized

On Approximating String Selection Problems with Outliers 431

versions of Closest to k Strings (under the name Closest String With Outliers)
were considered; it was shown that the problem is in FPT when parameterized
by d and n − k, and when parameterized by |Σ| and n, but W[1]-hard with
respect to any combination of the parameters {�, d, k}, and any combination of
the parameters {n− k, |Σ|}.

2 Approximation Hardness of Close to Most Strings

Theorem 1. For some ε > 0, if there is a polynomial-time (1+ε)-approximation
algorithm for the Close to Most Strings Problem, then ZPP = NP.

Proof. We use a reduction from the Max-2-SAT Problem, which is to determine
for a given 2-CNF formula, an assignment that satisfies the maximum number
of clauses. Let X = {x1, . . . , xn} be a set of Boolean variables. In 2-CNF, each
clause is a disjunction of two literals, each of which is either xi or xi for some
i. H̊astad [15] showed it is NP-hard to compute a 22/21-approximately optimal
solution to Max-2-SAT, and this is the starting point for our proof. We will
assume that m ≥ n, i.e. the number of clauses is greater than or equal to the
number of variables, which is without loss of generality since otherwise some
variable appears in at most one clause and the instance can be reduced.

Input Instance Output Instance

Input Solution Output Solution

x1 ∨ x2

x1 ∨ x2

x1 ∨ x3

x1 ∨ x3

x2 ∨ x3

x3 ∨ x4

11 11 01 01

00 11 01 01

11 01 00 01

00 01 00 01

01 00 11 01

01 01 11 11

01 10 01 01cm fixing strings, i.i.d.
...

−→

←→
value 5 + cm, x̂ = 11 11 00 11

� = 2n

}

n = 4 variables, m = 6 clauses

value 5, x = (true, true, false, true)

uniform from {01, 10}n
{

d = n

Fig. 1. Overview of the reduction used to prove Theorem 1

We give a schematic overview of our reduction in Figure 1. The reduction will
be randomized. It takes as input an instance of Max-2-SAT with m clauses and
n variables. The reduction’s output is an instance of Close to Most Strings with
cm + m strings of length 2n for some constant c, and the distance parameter
of the instance is d = n. Of these strings, cm will be “fixing” strings to enforce

432 C. Boucher et al.

a certain structure in near-optimal solutions, and the remaining m strings are
defined from the clauses as follows. Given a 2-clause ωj over the variables in X ,
we define the corresponding string sj = sj(1) . . . sj(2n) as follows:

sj(2i− 1)sj(2i) =

⎧⎪⎨⎪⎩
00 if ωj contains the literal xi,

11 if ωj contains the literal xi,

01 otherwise.

The fixing strings will all be elements of {01, 10}n, selected independently and
uniformly at random.

We now give a high-level explanation of the proof. For every variable assign-
ment vector x define a string x̂ via

x̂(2i− 1)x̂(2i) =

{
11 if xi is true,

00 if xi is false.

Notice that x̂ is at distance exactly d = n from all of the fixing strings, and that
d(x̂, sj) ≤ n if and only if x satisfies clause ωj . Hence, if x satisfies k clauses,
the string x̂ is within distance d of cm+ k out of the cm+m total strings. We
will show conversely that with high probability, for all strings s within distance
d of cm of the strings, we have s ∈ {00, 11}n. Using this crucial structural claim,
it follows that any sufficiently good approximation algorithm for Close to Most
Strings must output s such that s = x̂ for some x. Then the claim will be
complete via standard calculations.

Here is the precise statement of the structural property.

Lemma 1. Fix c ≥ 20. Let F be a set of cm strings selected uniformly and
independently at random from {01, 10}n (with replacement), with m ≥ n. Then
with probability at least 1−0.9n, every string s ∈ {0, 1}2n\{00, 11}n has distance
greater than n from at least m strings in F .

Proof. To explain the proof more simply, fix s and consider a particular f ∈ F .
Our first claim is the following:

Claim 1. For any s ∈ {0, 1}2n \ {00, 11}n, if f is selected uniformly at random
from {01, 10}n, then Pr[d(s, f) ≥ n+ 1] ≥ 1/4.

Proof. By hypothesis, for some i this s satisfies s(2i − 1) �= s(2i), say s(2i −
1) = 0 and s(2i) = 1 (the other case is symmetric). Let E denote the event
[f(2i− 1) �= s(2i− 1) and f(2i) �= s(2i)]. Since f is chosen uniformly at random
from {01, 10}n, we have Pr[E] = 1/2.

Next we show that Pr[d(s, f) ≥ n + 1 | E] ≥ 1/2. Observe that d(s, f) is
a sum of n independent random variables d(s(2j − 1)s(2j), f(2j − 1)f(2j)) for
j from 1 to n; conditioning on E just fixes one of these variables at 2. The
remaining ones are either always 1 (if s(2j− 1) = s(2j)), or a uniformly random
element of {0, 2}. The conditioned random variable d(s, f) | E is thus a shifted
and scaled binomial distribution, in particular it is symmetric about n + 1. So

On Approximating String Selection Problems with Outliers 433

Pr[d(s, f) ≥ n+1 | E] = Pr[d(s, f) ≤ n+1 | E] and since these two probabilities’
sum is at least 1, Pr[d(s, f) ≥ n+ 1 | E] ≥ 1/2 follows.

Finally, unconditioning, Pr[d(s, f) ≥ n+ 1] = Pr[d(s, f) ≥ n+ 1 | E] · Pr[E] ≥
1/2 · 1/2 = 1/4.

Continuing with the proof of Lemma 1, we next use a Chernoff bound to reason
about how a single s interacts with the entire collection F , and then will use
a union bound to cover all possible s. Let F = {f1, . . . , fcm} and let Xi be an
indicator variable for the event that d(fi, s) > n. We have argued that each Xi

is 1 with probability at least 1/4. Therefore, E[
∑

iXi] ≥ cm/4. We will use a
Chernoff bound of the following form:

Claim 2 (Lower Chernoff bound). For any δ > 0, if X is a sum of independent
random variables that each only take on the values 0 and 1, then

Pr[X < (1− δ)E[X]] < exp(−E[X]δ2/2).

For a proof of this standard result, see a book such as [25]. We will apply it to
X = E[

∑
iXi] and to δ chosen so that (1− δ)cm/4 = m, i.e. δ = 1− 4/c. Then

the Chernoff bound implies

Pr[X < m] ≤ Pr[X < (1 − δ)E[X]] < exp(−E[X]δ2/2)

≤ exp(−cm/4 · (1− 4/c)2/2) = exp(
−(c− 4)2

8c
m).

This shows that every s is very unlikely to falsify Lemma 1. We may now take a
union bound over all 4n−2n possible choices of s: the probability that a random
choice of F admits any bad s is at most

(4n − 2n) exp
(−(c− 4)2

8c
m
)
< 4n exp

(−(c− 4)2

8c
n
)
= exp

((
ln 4− (c− 4)2

8c

)
n
)
,

where we used m ≥ n in the first inequality. Any large enough c makes this
probability exponentially decreasing in n; it is straightforward to calculate that
when c = 20 this is at most 0.9n, as needed.

Now that the proof of Lemma 1 is complete, we proceed with the proof of
Theorem 1. Fix c = 20. Given a Max-2-SAT instance, we run the randomized
reduction above to get an instance of Close to Most Strings. Let sA be a (1+ ε)-
approximation for this instance, where ε will be a small constant fixed later to
satisfy two properties.

Let k∗ be the maximum number of satisfiable clauses in the Max-2-SAT in-
stance. As an important technicality, note that k∗ is lower-bounded by m/2,
since the expected number of clauses satisfied by a random assignment is at
least m/2, by linearity of expectation. So the optimal solution to the Close to
Most Strings instance has value at least cm+m/2.

First we want to use the structural lemma (Lemma 1). Assume for now the
bad event with probability 0.9n does not happen; so every s �∈ {00, 11}n (i.e. not

434 C. Boucher et al.

of the form s = x̂) is within distance d of at most cm of the (c + 1)m strings.

Thus provided that ε is small enough to satisfy 1 + ε < cm+m/2
cm = 1 + 1

2c , then
sA is of the form x̂A for some xA.

Next we finish the typical calculations in a proof of APX-hardness. We know
that sA is within distance d of at least (cm+ k∗)/(1 + ε) strings. If we can pick
ε so that

cm+ k∗

1 + ε
> cm+

21

22
k∗ (1)

then x̂A satisfies more than 21
22k

∗ clauses, which is NP-hard by H̊astad’s result.
Using that k∗ ≥ m/2, it is easy to verify that (1) holds for all ε < 1/(21 + 44c).

Finally, we confirm that the randomized algorithm for Max-2-SAT coming
from the reduction is ZPP-style. When the output sA of the Close to Most Strings
approximation algorithm satisfies sA �∈ {00, 11}n we output nothing. When sA ∈
{00, 11}n we know for certain that x̂A is a 22/21-approximate solution for Max-
2-SAT, as needed.

3 Non-existence of an EPTAS for Closest to k Strings

Ma showed in [24] that the Closest to k Strings problem has a PTAS, which
contrasts with the APX-hardness we obtain for the other problems in this pa-
per. A natural question that comes up after a PTAS is obtained, is whether the
running time can be improved to an EPTAS, or even further to a FPTAS (run-
ning time polynomial in the input length and ε−1). We observe there does not
exist an EPTAS for Closest to k Strings when the alphabet is unbounded, un-
less W[1] = FPT. To see this, we use a well-known fact relating fixed-parameter
algorithms to the notion of an EPTAS, e.g. see [22], along with the fact that
the decision version of Closest to k Strings is W[1]-hard when parameterized by
d [6].

In detail, suppose for the sake of contradiction that we had an EPTAS for
Closest to k Strings, i.e. that one could obtain a (1 + ε)-approximation in time
f(ε)sO(1) where s is the input size. It is enough to prove that there is an FPT
algorithm for the decision version of Closest to k Strings, with parameter d.
Given an instance of this parameterized problem we need only call the EPTAS
with any ε less than (d + 1)/d; notice the resulting algorithm takes FPT time
with respect to d. To analyze this, let dALG be the distance value of the solution
produced by the EPTAS algorithm, and dOPT be the optimal distance value. If
dOPT ≤ d, since dOPT ≤ dALG ≤ (1 + ε)dOPT and dOPT , dALG ∈ Z, we have
dOPT = dALG ≤ d. Otherwise, dALG ≥ dOPT > d. So, we get an FPT algorithm
just by comparing dALG to d.

Observation 1. Closest to k Strings has no EPTAS unless W[1] = FPT.

4 APX-Hardness of Most Strings with Few Bad Columns

In this section, we prove that the Most Strings with Few Bad Columns Problem
is APX-hard, even in binary alphabets. To do this we reduce from the Densest-
k-Subgraph Problem: given a graph G = (V,E) and a parameter k, find a subset

On Approximating String Selection Problems with Outliers 435

U ⊆ V with |U | = k such that |E[U]| is maximized — here E[U] denotes the
induced edges for U , meaning the set of all edges with both endpoints in U .

Our reduction will be approximation-preserving up to an additive +1 term.
Given an instance (G = (V,E), k) of Densest-k-Subgraph, we will generate an
instance of Most Strings with Few Bad Columns with |E| + 1 strings, each of
length |V |, and with the same values for the two parameters k (size of subgraph,
maximum number of bad columns).

v1 v2

v3 v4

e1

e2

e4

e3v5

e5

00000
11000
10100
01100
10010
00101

s0:
se1:
se2:
se3:
se4:
se5:

Fig. 2. Example of the reduction from an instance of Densest-k-Subgraph with G and
k = 3 to an instance of Most Strings with Few Bad Columns with 6 strings of length 5

Let us define the set S of strings generated by the reduction; to do this, index
V = {v1, v2, . . . }. For each edge e = vivj ∈ E, let that edge’s 0-1 incidence
vector χ(e) be the 0-1 string with 1s in positions i and j and 0 elsewhere; we put
χ(e) into S. Finally, we put one more string into S, namely the all-zero string 0.
This completes the description of the reduction; note it only takes polynomial
time. See Figure 2 for an illustration of this reduction. We will use the following
lemma in the proof of Claim 3.

Lemma 2. Let T ⊆ S be a subset of strings with at most k bad columns. Then
there is a subset T ′ of S with at most k bad columns, |T ′| ≥ |T |, and 0 ∈ T ′.

Proof of Lemma 2. Assume that 0 �∈ T , otherwise the lemma trivially follows.
Also, assume W = T ∪{0} has more than k bad columns, otherwise we can take
T ′ = W . Thus there must be a column that is not bad for T but that becomes
bad when adding 0. I.e. T has a column that is entirely 1s. It follows that,
viewed in the original graph setting, there exists a vertex v that is an end-point
of all the edges corresponding to T . Pick any such edge arbitrarily, i.e. suppose
s = χ(vw) ∈ T . Since the input graph is simple, in column w, all entries of T
are 0 except for χ(vw). Hence, T ′ = T \ s ∪ {0} satisfies the lemma: compared
with T it is bad in column v but not bad in column w.

Claim 3. Let α be the optimal value for the Densest-k-Subgraph instance. Then
the optimal value β for the new Most Strings with Few Bad Columns instance is
β = α+ 1.

436 C. Boucher et al.

Proof. First we show the easy direction, that β ≥ α + 1. Consider the optimal
U for Densest-k-Subgraph, so that |E[U]| = α and |U | = k. Define a subset T
of S by T = {0} ∪ {χ(e) | e ∈ E[U]}. Then the strings in T are all zero on
any index corresponding to a node outside of U ; the only bad columns are those
corresponding to nodes in U, of which there are only k. So β ≥ |T | = α+ 1.

For the reverse direction, take a subset T of β strings that have at most k
bad columns. We can assume without loss of generality that the string 0 is in T ,
as shown by Lemma 2. Using Lemma 2, we simply reverse the above reduction
to show α ≥ β − 1. Take an optimal set S∗ of strings with |S∗| = β and such
that S∗ has at most k bad columns. By Lemma 2 we may assume 0 ∈ S∗ —
this implies that the set J of all non-bad columns for S∗ satisfies s(j) = 0 for
all s ∈ S∗, j ∈ J . Thus, each χ(uv) ∈ S∗ \ {0} has both of its 1s appearing at
positions in [�] \ J , or equivalently each such uv is an element of E[V \ J]. So
V \ J is the required solution for Densest-k-Subgraph, and it has at least β − 1
induced edges. This ends the proof of Claim 3.

This reduction yields our result:

Theorem 2. The Most Strings with Few Bad Columns Problem is NP-hard,
and APX-hard.

Proof. Khot [16] showed that the Densest-k-Subgraph Problem is APX-hard. We
need only to argue that our reduction can transform a PTAS for Most Strings
with Few Bad Columns into a PTAS for Densest-k-Subgraph. Indeed, if we had
a (1+δ)-approximation algorithm for Most Strings with Few Bad Columns, then
we get an algorithm for Densest-k-Subgraph that always returns a solution of
value at least

(OPT+1)/(1+δ)−1 = (OPT−δ)/(1+δ) ≥ OPT (1−δ)/(1+δ) = OPT/(1+O(δ))

where we used OPT ≥ 1 in the middle inequality.

While we ruled out a PTAS, it would also be out of the reach of current tech-
nology to obtain a constant or polylogarithmic factor for Most Strings with Few
Bad Columns, because the best known approximation factor for the Densest-k-
Subgraph Problem is O(|V |1/4+ε) [4].

5 Conclusions and Open Problems

Our results demonstrate that while outliers help model the problems associated
with using biological data, such problems are computationally intractable to
approximate. Here are the main open problems related to our results:

– Is there a constant-factor approximation for Close to Most Strings (even over
a binary alphabet)?

– Is there a constant-factor approximation for Most Strings with Few Bad
Columns (even over a binary alphabet)?

On Approximating String Selection Problems with Outliers 437

– Does Closest to k Strings have an EPTAS when the alphabet is binary?
The reduction used in Section 3 needs an arbitrarily large alphabet. A more
important problem is, does there exist an EPTAS for the Closest String
Problem? Since the Closest String Problem is FPT with respect to d [13],
the standard technique used in Section 3 cannot be used naively. The method
presented by Boucher et al. [5] for proving the non-existence of an EPTAS
may be applicable in this context.

Acknowledgments. The authors would like to thank Dr. Bin Ma for men-
tioning the error in his inapproximability proof and encouraging us to work on
a correction. We thank Dr. Daniel Lokshtanov, Christine Lo, and the referees
for their insights and comments. This work was supported by Natural Sciences
and Engineering Research Council of Canada Post Doctoral Fellowship program,
the Gerald Schwartz and Heather Reisman Foundation, the Israel Science Foun-
dation grant (347/09), the National Science Foundation Award (0904246), and
Grant Number 2008217 from the United States-Israel Binational Science Foun-
dation (BSF) and DFG.

References

1. Amir, A., Paryenty, H., Roditty, L.: Approximations and Partial Solutions for the
Consensus Sequence Problem. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.)
SPIRE 2011. LNCS, vol. 7024, pp. 168–173. Springer, Heidelberg (2011)

2. Andoni, A., Indyk, P., Patrascu, M.: On the optimality of the dimensionality re-
duction method. In: Proc. of the 47th FOCS, pp. 449–456 (2006)

3. Arora, S.: Polynomial Time Approximation Schemes for Euclidean Travelling Sales-
man and other Geometric Problems. J. ACM 45(5), 753–782 (1998)

4. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting
high log-densities: an O(n1/4) approximation for densest k-subgraph. In: Proc. of
the 42nd STOC, pp. 201–210 (2010)

5. Boucher, C., Lo, C., Lokshantov, D.: Outlier Detection for DNA Fragment Assem-
bly. arXiv:1111.0376

6. Boucher, C., Ma, B.: Closest String with Outliers. BMC Bioinformatics 12(suppl.1),
S55 (2011)

7. Chen, Z.-Z., Ma, B., Wang, L.: A Three-String Approach to the Closest String
Problem. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp.
449–458. Springer, Heidelberg (2010)

8. Deng, X., Li, G., Li, Z., Ma, B., Wang, L.: Genetic design of drugs without side-
effects. SIAM Journal on Computing 32(4), 1073–1090 (2003)

9. Festa, P.: On some optimization problems in molecular biology. Mathematical Bio-
sciences 207(2), 219–234 (2007)

10. Festa, P., Pardalos, P.: Efficient solutions for the far from most string problem.
Annals of Operations Research (December 2011) (published Online First)

11. Frances, M., Litman, A.: On covering problems of codes. Theoretical Computer
Science 30(2), 113–119 (1997)

12. Ga̧sieniec, L., Jansson, J., Lingas, A.: Efficient approximation algorithms for the
Hamming center problem. In: Proc. of the 10th SODA, pp. 905–906 (1999)

438 C. Boucher et al.

13. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for
CLOSEST STRING and related problems. Algorithmica 37(1), 25–42 (2003)

14. Gramm, J., Guo, J., Niedermeier, R.: On Exact and Approximation Algorithms
for Distinguishing Substring Selection. In: Proc. FST, pp. 195–209 (2003)

15. H̊astad, J.: Some optimal inapproximability results. Journal of the ACM 48(4),
798–859 (2001)

16. Khot, S.: Ruling out PTAS for graph min-bisection, densest subgraph and bipartite
clique. SIAM Journal on Computing 36(4), 1025–1071 (2006)

17. Khot, S., Ponnuswami, A.K.: Better Inapproximability Results for MaxClique,
Chromatic Number and Min-3Lin-Deletion. In: Bugliesi, M., Preneel, B., Sassone,
V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 226–237. Springer, Hei-
delberg (2006)

18. Lanctot, J.K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection
problems. In: Preliminary version appeared Proc. 10th SODA Information and
Computation, pp. 41–55 (1999)

19. Landau, G.M., Schmidt, J.P., Sokol, D.: An algorithm for approximate tandem
repeats. Journal of Computational Biology 8(1), 1–18 (2001)

20. Li, M., Ma, B., Wang, L.: Finding similar regions in many strings. Journal of
Computer and System Sciences 65(1), 73–96 (2002)

21. Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized
problems. In: Proc. of the 16th SODA, pp. 760–776 (2011)

22. Marx, D.: Parameterized complexity and approximation algorithms. Com-
put. J. 51(1), 60–78 (2008)

23. Meneses, C.N., Oliveira, C.A.S., Pardalos, P.M.: Optimization techniques for string
selection and comparison problems in genomics. IEEE Engineering in Medicine and
Biology Magazine 24(3), 81–87 (2005)

24. Ma, B.: A Polynomial Time Approximation Scheme for the Closest Substring Prob-
lem. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 99–107.
Springer, Heidelberg (2000)

25. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(2000)

26. Ma, B., Sun, X.: More efficient algorithms for closest string and substring problems.
SIAM Journal on Computing 39, 1432–1443 (2009)

27. Wang, L., Zhu, B.: Efficient Algorithms for the Closest String and Distinguishing
String Selection Problems. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009.
LNCS, vol. 5598, pp. 261–270. Springer, Heidelberg (2009)

28. Zhao, R., Zhang, N.: A more efficient closest string algorithm. In: Proc. of the 2nd
BICoB, pp. 210–215 (2010)

The Parameterized Complexity

of the Shared Center Problem

Zhi-Zhong Chen1, Lusheng Wang2, and Wenji Ma2

1 Department of Information System Design, Tokyo Denki University, Hatoyama,
Saitama 350-0394, Japan

zzchen@mail.dendai.ac.jp
2 Department of Computer Science, City University of Hong Kong, Tat Chee

Avenue, Kowloon, Hong Kong SAR
lwang@cs.cityu.edu.hk

Abstract. Recently, the shared center (SC) problem has been proposed
as a mathematical model for inferring the allele-sharing status of a given
set of individuals using a database of confirmed haplotypes as reference.
The problem was proved to be NP-complete and a ratio-2 polynomial-
time approximation algorithm was designed for its minimization version
(called the closest shared center (CSC) problem). In this paper, we con-
sider the parameterized complexity of the SC problem. First, we show
that the SC problem is W [1]-hard with parameters d and n, where d
and n are the radius and the number of (diseased or normal) individuals
in the input, respectively. Then, we present two asymptotically optimal
parameterized algorithms for the problem.

Keywords: Haplotype inference, linkage analysis, pedigree, allele-sharing
status, parameterized complexity, and parameterized algorithms.

1 Introduction

Linkage analysis is the first step to reduce the possible region for identifying a
disease gene. Linkage studies have facilitated the identification of several hun-
dred human genes that can harbor mutations leading to a disease phenotype.
The fundamental problem in linkage analysis is to identify regions whose allele
is shared by all or most affected members but by none or few unaffected fam-
ily members. Most existing methods for linkage analysis are for families with
clearly given pedigrees [3,8,9,15]. The pedigree information helps a lot for de-
signing computational algorithms. Very few methods can handle the case when
the sampled individuals are closely related but the real relationship is hidden
(most of the times because of remote relationship). This situation occurs very
often when the individuals share a common ancestor six or more generations
ago.

With the new development of microarray techniques, high-density SNP geno-
type data can be used for large-scale and cost-effective linkage analysis [7,13].
Recently, the international HapMap project has produced enormous amount of

J. Kärkkäinen and J. Stoye (Eds.): CPM 2012, LNCS 7354, pp. 439–452, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

440 Z.-Z. Chen, L. Wang, and W. Ma

haplotype data for individuals in some major populations. For example, there
are 340 haplotypes in the group “Japanese in Tokyo”+“Han Chinese in Beijing”.
These new developments make it possible to propose new mathematical mod-
els for finding genes causing genetic diseases when the sampled individuals are
closely related but their pedigree is unknown.

The real problem is as follows: We are given three sets D = {ĝ1, ĝ2, . . . , ĝk},
N = {ĝk+1, . . . , ĝn}, and H = {ĥ1, ĥ2, . . . , ĥm}, where D consists of diseased
individuals represented by their genotype data on a whole chromosome C, N
consists of normal individuals represented by their genotype data on C, and H
consists of confirmed haplotype data on C of some individuals in the same (or
similar) population. For convenience, we call H the reference database. Note that
H can be obtained from any haplotype database for a set of individuals, e.g., the
database of HapMap project is available. A region on a chromosome, denoted
by [a, b], is a set of consecutive SNP sites (positions) starting at position a and
ending at position b. The objective here is to find the true mutation regions of
C. Here, a true mutation region of C means a consecutive portion of C where all
the diseased individuals share a common haplotype segment that is shared by
none of the normal individuals. The true mutation regions defined here are based
on the haplotype segments of all individuals. If we know the haplotype segments
of all the individuals, the true mutation regions can be easily computed. Thus,
the challenge is to infer the haplotypes of each individual based on the input
genotype data as well as the reference database H .

The first strike to the problem was given by Ma et al. [10]. In order to tackle
the problem, Ma et al. proposed the following strategy: First, divide the whole
chromosome into a set of (disjoint) regions of the same length L. Then, clas-
sify the length-L regions into valid or invalid regions based on a mathematical
model (called the shared center (SC) problem). Finally, design a heuristic to
merge/refine the valid regions to get predicted mutation regions. For details, see
Ma et al. [10]. The key computational technique used in the above method is
the proposed mathematical model (namely, the SC problem) for inferring the
allele-sharing status of a given set of individuals using a database of confirmed
haplotypes as reference.

Ma et al. [10] show that the SC problem is NP-complete. They also consider
the closest shared center (CSC) problem, which is the minimization counter-
part of the SC problem. They propose a ratio-2 polynomial-time approximation
algorithm for the CSC problem.

In this paper, we consider the parameterized complexity of the SC problem.
First, we show that the SC problem is W [1]-hard. We then present two pareme-
terized algorithms for the SC problem. The two algorithms are asymptotically
optimal as long as the following well-known conjecture is true:

– Conjecture 1: [6] There is no O
(
2o(n)

)
-time algorithm for deciding whether

a given boolean formula C1 ∧C2 ∧ · · · ∧Cm with n variables is satisfiable or
not, where each Ci (1 ≤ i ≤ m) is the disjunction of three literals.

The Shared Center Problem 441

2 Basic Definitions and Notations

For a finite set S, |S| denotes the number of elements in S. Similarly, for a string
s, |s| denotes the length of s. A string s has |s| positions, namely, 1, 2, . . . ,
|s|. For convenience, if L is a positive integer, then we use [1..L] to denote the
set {1, 2, . . . , L}. The letter of s at position i ∈ [1..|s|] is denoted by s[i]. Thus,
s = s[1]s[2] . . . s[|s|]. For two integers i and j with 1 ≤ i ≤ j ≤ |s|, s[i..j] denotes
s[i]s[i + 1] · · · s[j]. For a binary string s, s̄ denotes the complement string of s,
where s̄[i] �= s[i] for every i ∈ [1..|s|]. For two strings s and t of the same length,
{s �≡ t} denotes the set of all positions i ∈ [1..|s|] with s[i] �= t[i]. For a string s
and a subset P of [1..|s|], s|P denotes the string obtained from s by deleting all
letters at positions not in P .

At last, when an algorithm exhaustively tries all possibilities to find the right
choice, we say that the algorithm guesses the right choice.

3 The SC Problem

An input to the SC problem is a quadruple (D,N,H, d), where D =
{g1, g2, . . . , gk} and N = {gk+1, gk+2, . . . , gn} are sets consisting of genotype
segments of the same length L, H = {h1, h2, . . . , hm} is a set of haplotype seg-
ments of length L, and d (referred to as the radius) is a nonnegative integer. The
segments in D are from diseased individuals while those in N are from normal
individuals. Recall that a haplotype segment is a binary string, while a genotype
segment is a string on alphabet {0, 1, 2}. A haplotype pair for a genotype segment
g is a pair (h, h′) of haplotype segments of the same length as g such that the
following conditions hold for each position q:

1. If g has a 0 or 1 at position q, then both h and h′ have the same letter as g
does at position q.

2. If g has a 2 at position q, then one of h and h′ has a 0 at position q while
the other has a 1 at position q.

For convenience, for two binary strings s and t, we denote their Hamming dis-
tance by dist(s, t). Given an input (D,N,H, d), the SC problem requires the
computation of a solution to (D,N,H, d) which consists of a center haplotype
segment s of length L, a center index p ∈ {1, 2, . . . ,m}, and a haplotype pair
(hi,1, hi,2) for each gi ∈ D ∪N such that the following conditions hold:

C1. dist(s, hp) ≤ d.
C2. For each i ∈ {1, 2, . . . , k}, hi,1 = s and there is an integer xi ∈ {1, 2, . . . ,m}

such that dist(hi,2, hxi) ≤ d.
C3. For each i ∈ {k+1, k+2, . . . , n} and for each j ∈ {1, 2}, the following hold:

C3a. There is an integer xi,j ∈ {1, 2, . . . ,m} \ {p} with dist(hi,j , hxi,j) ≤ d.
C3b. There is at least one position q at which the letters of hi,j and s differ

and the letter of some g� ∈ D is 0 or 1.

Note that the position q in Condition C3b depends not only on i and j but also
on hi,j , i.e., different i, j, or hi,j may yield different q.

For the reasons for Conditions C1 through C3, the reader is referred to [10].

442 Z.-Z. Chen, L. Wang, and W. Ma

4 The Hardness of the SC Problem

A parameterized problem Q over an alphabet Σ is a subset of Σ∗ × N, where
Σ∗ is the set of all strings over Σ and N is the set of all nonnegative integers.
A parameterized problem Q over an alphabet Σ is fixed-parameter tractable if
for every (x, k) ∈ Σ∗ × N, we can decide whether (x, k) ∈ Q or not in time
O (f(k) · |x|c) for some constant c and computable function f .

Let FPT denote the set of all fixed-parameter tractable problems. There are a
number of problems that do not seem to belong to FPT. So, certain complexity
classes have been defined to include such problems in the literature. W[1] is one
of them. Here, we omit the somewhat technical definition of W[1]. For a precise
definition of W[1], the reader is referred to [4].

To give strong evidence that certain problems in W[1] are unlikely to belong
to FPT, the theory of W[1]-hardness has been developed. At the heart of this
theory is the notion of parameterized reduction. A parameterized reduction from
a parameterized problem Q over an alphabet Σ to another parameterized prob-
lem Q′ over an alphabet Γ is a function that maps each pair (x, k) ∈ Σ∗×N to
a pair (x′, k′) ∈ Γ ∗ ×N such that the following conditions hold:

– (x, k) ∈ Q if and only if (x′, k′) ∈ Q′.
– k′ is bounded from above by a function of k.
– (x′, k′) can be computed in time O (f(k) · |x|c) for some constant c and

function f .

A parameterized problem Q′ is W[1]-hard if for every parameterized problem Q
in W[1], there is a parameterized reduction from Q to Q′.

Theorem 1. The SC problem is W [1]-hard with parameters d and n.

Proof. We give a parameterized reduction from the binary closest-substring
(BCSS) problem to the special case of the SC problem where all the indi-
viduals are diseased. Recall that an instance of the BCSS problem is a tuple
(s1, . . . , sk, L, d), where s1, . . . , sk are binary strings each of length at least L
and d is a nonnegative integer. Given (s1, . . . , sk, L, d), the BCSS problem asks
if there is a binary string t of length L such that for all 1 ≤ i ≤ k, si has a
substring s′i of length L with dist(t, s′i) ≤ d. It is known that the BCSS problem
is W [1]-hard with parameters d and k [12].

Let (s1, . . . , sk, L, d) be an instance of the BCSS problem. For each 1 ≤ i ≤ k,
let Li be the length of si. For convenience, for a letter � ∈ {0, 1, 2} and a
nonnegative integer i, let �i denote the string consisting of i �s. Note that �0 is
the empty string. We obtain m = (L1 − L + 1) +

∑k
i=1(Li − L + 1) strings h1,

h2, . . . , hm as follows:

1. For each 1 ≤ j ≤ L1 − L+ 1, hj = s1[j..j + L− 1]0(d+1)k.
2. For each i ∈ {1, . . . , k} and each 1 ≤ j ≤ Li − L+ 1,

hy = si[j..j + L− 1]0(d+1)(i−1)1d+10(d+1)(k−i), where y = (L1 − L + 1) +∑i−1
z=1(Lz − L+ 1) + j.

The Shared Center Problem 443

We further obtain k strings g1, . . . , gk as follows:

– For each i ∈ {1, . . . , k}, gi = 2L0(d+1)(i−1)2d+10(d+1)(k−i).

Suppose that (s1, . . . , sk, L, d) has a solution t in the BCSS problem. Then, for
each 1 ≤ i ≤ k, there is an integer ji with 1 ≤ ji ≤ Li − L + 1 such that
dist(t, si[ji..ji + L − 1]) ≤ d. We next construct a solution for the instance
({g1, . . . , gk}, ∅, {h1, . . . , hm}, d) of the SC problem as follows.

1. s = t0(d+1)k. Note that dist(s, hj1) ≤ d because dist(t, s1[j1..j1+L−1]) ≤ d.
2. For each i ∈ {1, . . . , k}, construct a haplotype pair (hi,1, hi,2) for gi by setting

hi,1 = s and hi,2 = t0(d+1)(i−1)1d+10(d+1)(k−i). Note that for each 1 ≤ i ≤ k,

dist(hi,2, hy) = dist(t, si[ji..ji + L− 1]) = dist(t, si[ji..ji+L−1]) ≤ d, where

y = (L1 − L+ 1) +
∑i−1

z=1(Lz − L+ 1) + j.

Conversely, suppose that the instance ({g1, . . . , gk}, ∅, {h1, . . . , hm}, d) of the SC
problem has a solution. Let s be the center haplotype segment in the solution. Let
t be the prefix of s with |t| = L. We claim that t is a solution to (s1, . . . , sk, L, d)
in the BCSS problem. To see this, first note that for each 1 ≤ i ≤ (d+1)k, there
is an integer j ∈ {1, . . . , k} such that the ith rightmost letter of gj is a 0. This
implies that the last (d+1)k bits of s are 0s. So, the string hj with dist(s, hj) ≤ d
has to be among h1, . . . , hL1−L+1 because there are d+1 1s in the last (d+1)k
bits of each hj with L1 − L + 2 ≤ j ≤ m. Thus, dist(t, s1[j..j + L − 1]) ≤ d for
some 1 ≤ j ≤ L1 − L+ 1. Moreover, for each 1 ≤ i ≤ k, if we decompose gi into
two strings hi,1 and hi,2 with hi,1 = s, then hi,2 = t0(d+1)(i−1)1d+10(d+1)(k−i).
Hence, for each 1 ≤ i ≤ k, the string hy with 1 ≤ y ≤ m and dist(hy, hi,2) ≤ d

has to satisfy (L1 − L + 1) +
∑i−1

z=1(Lz − L + 1) + 1 ≤ y ≤ (L1 − L + 1) +∑i−1
z=1(Lz −L+ 1)+ (Li −L+ 1), because of the different locations of the d+ 1

1s in the last (d+1)k bits of h1, . . . , hm. Therefore, for some 1 ≤ j ≤ Li−L+1,
dist(t, si[j..j + L − 1]) = dist(t, si[j..j − L+ 1]) ≤ d. This completes the proof
of the claim and hence that of the theorem. Q.E.D.

Corollary 1. As long as Conjecture 1 is true, the SC problem cannot be solved
in O(f(d, k)ño(log d)) time for any computable function f , where ñ is the length
of the input to the SC problem.

Proof. Marx [12] shows that as long as Conjecture 1 is true, the BCSS problem
cannot be solved in O(f(d, k)n̂o(log d)) time for any computable function f , where
n̂ is the length of the input to the BCSS problem. In the reduction described in
the proof of Theorem 1, we constructed an instance I of the SC problem from
a length-n̂ instance of the BCSS problem such that |I| = O(n̂2). Moveover, the
paremeters in the two instances are the same. Thus, the corollary holds. Q.E.D.

5 An Exact Algorithm for the SC Problem

Throughout this section, let I = (D,N,H, d) be an instance of the SC problem,
whereD = {g1, g2, . . . , gk},N = {gk+1, gk+2, . . . , gn}, andH = {h1, h2, . . . , hm}.

444 Z.-Z. Chen, L. Wang, and W. Ma

Consider a genotype segment gi ∈ D ∪N and a haplotype pair (hi,1, hi,2) for
gi. A position of gi with a letter 0 indicates that both hi,1 and hi,2 have a letter
0 at the position, while a position of gi with a letter 1 indicates that both hi,1

and hi,2 have a letter 1 at the position. On the other hand, a position of gi with
a letter 2 indicates that one of hi,1 and hi,2 has a 0 at the position while the
other has a 1 at the position. For convenience, we say that a position of gi is
decided if the letter of gi at the position is 0 or 1, and is undecided otherwise.

For D, we define three sets as follows:

– The set of decided positions associated with D consists of all positions q in
R such that q is a decided position of at least one string in D.

– The set of undecided positions associated with D consists of all positions q
in R such that q is an undecided position for all strings in D.

– The set of conflicting positions associated with D consists of all positions q
in R such that q is a decided position of two distinct gi ∈ D and gj ∈ D but
the letters of gi and gj at position q differ.

We say that an integer b is a valid radius if the instance (D,N,H, b) to the SC
problem has a solution. Our goal is to decide if d is a valid radius. Obviously,
the following condition is necessary for d to be a valid radius:

A1. The set of conflicting positions associated with D is empty.

So, we hereafter assume that Condition A1 holds.
For convenience, we define the following notations:

– L is the common length of the strings in D ∪N ∪H .
– U (respectively, U) is the set of undecided (respectively, decided) positions

associated with D.
– For each gi ∈ N , Ui (respectively, Ui) is the set of undecided (respectively,

decided) positions of gi.

Now, Condition C3b in Section 1 can be concisely rewritten as follows:

C3b. hi,j |U �= s|U .
Since Condition A1 holds, we can define a letter �q for each q ∈ U as follows:

– If some segment in D is 0 at position q, then each of the other segments in
D is 0 or 2 at position q and so we define �q = 0.

– If some segment in D is 1 at position q, then each of the other segments in
D is 1 or 2 at position q and so we define �q = 1.

We call �q the center letter at position q.
Consider a gi ∈ N . We say that gi is free if there is a position in Ui ∩ U at

which the center letter is different from the letter of gi. On the other hand, we
say that gi is dead if (1) |U \ Ui| ≤ 1 and (2) at every position q in U i ∩ U , the
center letter is the same as the letter of gi.

In [10], it is shown that L is a valid radius only if the following holds:

A2. No string gi ∈ N is dead.

Since d is a valid radius only when L is a valid radius, we hereafter assume that
Condition A2 holds.

The Shared Center Problem 445

5.1 Decomposing gi ∈ N

Throughout this subsection, fix a genotype segment gi ∈ N and two haplotype
segments hj1 and hj2 in H . Note that it is possible that j1 = j2. Our goal is to
decide if there is a haplotype pair (hi,1, hi,2) for gi satisfying the following four
conditions:

B1. dist(hi,1, hj1) ≤ d.
B2. dist(hi,2, hj2) ≤ d.
B3. hi,1|U �= s|U .
B4. hi,2|U �= s|U .

To reach the above goal, we first define several notations:

– d1 = dist(gi|U i
, hj1 |U i

) and d2 = dist(gi|Ui
, hj2 |Ui

).
– S is the set of positions q ∈ Ui such that the letters of hj1 and hj2 at position

q coincide.

Lemma 1. If at least one of the following three conditions holds, then we can
easily decide if there is a haplotype pair (hi,1, hi,2) for gi satisfying Conditions B1
through B4.

1. d1 = d or d2 = d.
2. d1 + d2 + |S| > 2d.
3. d1 < d, d2 < d, d1+d2+ |S| ≤ 2d, and gi is free or (U ∩Ui)\S contains two

positions q1 and q2 such that the letter of hj1 at position q1 is not the center
letter at position q1 and the letter of hj2 at position q2 is not the center letter
at position q2.

By Lemma 1 and Condition A2, we may assume that the following hold:

D1. d1 < d and d2 < d.
D2. d1 + d2 + |S| ≤ 2d.
D3. gi is neither free nor dead.
D4. (U ∩ Ui) \ S does not contain two positions q1 and q2 such that the letter

of hj1 at position q1 is not the center letter at position q1 and the letter of
hj2 at position q2 is not the center letter at position q2.

By Condition D3, |U ∩ Ui| ≥ 2. Without loss of generality, we assume that the
center letters at the positions in U ∩ Ui are all 0s.

Lemma 2. If at least one of the following two conditions holds, then there is
no haplotype pair (hi,1, hi,2) for gi satisfying Conditions B1 through B4.

E1. |U ∩ Ui| = 2, U ∩ Ui ⊆ S, the two letters of hj1 at positions in U ∩ Ui are
different, and d1 = d2 = d− 1.

E2. d1 + d2 + |S| ≥ 2d − 1, U ∩ S = ∅, and either the letters of hj1 at the
positions in U ∩ Ui are all 0s or the letters of hj2 at the positions in U ∩ Ui

are all 0s.

446 Z.-Z. Chen, L. Wang, and W. Ma

Otherwise, we can find a haplotype pair (hi,1, hi,2) for gi satisfying Conditions B1
through B4 in O(L) time.

For convenience, we say that an integer p ∈ {1, . . . ,m} is valid for a gi ∈ N if
there is a haplotype pair (hi,1, hi,2) for gi satisfying Condtion C3. Now, we are
ready to state the key lemma in this subsection.

Lemma 3. Given an integer p ∈ {1, . . . ,m}, we can decide in O(m2L(n− k))
time if p is valid for every gi ∈ N .

5.2 Decomposing the Strings in D

Throughout this subsection, fix an integer p ∈ {1, 2, . . . ,m} that is valid for
every gi ∈ N . Let sp be the haplotype segment constructed by letting sp[q] be
the center letter at position q for each q ∈ U , and letting sp[q] = hp[q] for each
q ∈ U . Moreover, let dp be the Hamming distance between sp|U and hp|U .

Our task is to decide if we can modify at most d − dp letters of sp at the
positions in U and obtain a haplotype pair (hi,1, hi,2) for each gi ∈ D so that
Condition C2 is satisfied. Obviously, no matter how we modify the letters of sp
at the positions in U , it always holds that for each gi ∈ D, there is a unique
haplotype pair (hi,1, hi,2) with hi,1 = sp. Basically, we are not allowed to modify
the letters of sp at the positions in U and hi,2|U is the complement string of

sp|U . We hereafter use sp(i) to denote this hi,2.
Our task becomes much easier if we know the integer xi for each gi ∈ D in

Condition C2. So, we consider this case first. In this case, we want to decide
if we can modify at most d − dp letters of sp at the positions in U so that

dist(sp(i), hxi) ≤ d for all gi ∈ D. This case resembles the binary closest string
(BCS) problem. Recall that an instance of the BCS problem is a pair (S, d),
where S is a set of binary strings of the same length L and d is a nonnegative
integer. Given (S, d), the BCS problem asks if there is a binary string t of length
L such that dist(t, si) ≤ d for all si ∈ S. Known algorithms for the BCS problem
can be found in [1,2,5,11,14,16]. All the algorithms indeed solve a more general
problem (called the extended BCS problem). An input to the extended BCS
problem contains not only (S, d) but also a triple (s, P, b), where s is a string of
length L, P is a subset of [1..L], and b is an integer less than or equal to d. The
objective is to decide if we can modify at most b letters of s at the positions in
[1..L] \ P so that dist(s, si) ≤ d for all si ∈ S.

The correspondence between the extended BCS problem and the special case
of the SC problem is as follows: s, b, si ∈ S, and P in the former correspond to
sp, d− dp, hxi , and U in the latter, respectively. A slight difference between the
two is that the former tests if dist(s, si) ≤ d for all si ∈ S, while the latter tests if
dist(sp(i), hxi) ≤ d for all gi ∈ D. Based on this correspondence and difference,
it is easy to modify the algorithm in [11] for the extended BCS problem so that
it works for the special case of the SC problem. The resulting algorithm is called
Algorithm 1.

The Shared Center Problem 447

Algorithm 1

Input: A triple (s, P, b), where s is a string of length L, P is a subset of
[1..L], and b is a nonnegative integer less than or equal to d− dp.

Output: A string t obtained by modifying at most b positions of s in U \P
such that dist(t(i), hxi) ≤ d for each gi ∈ D, if such a t exists; nothing,
otherwise.

1. If dist(hxi , s(i)) ≤ d for every gi ∈ D, then output s and stop immediately.
2. Select a gi ∈ D with dist(hxi , s(i)) > d.
3. If dist(s(i), hxi)− d > min{b, |{s(i) �≡ hxi} \ P |}, then return.
4. Let Q = {s(i) �≡ hxi} \ P and � = dist(s(i), hxi)− d.
5. Guess a subset Z of Q with � ≤ |Z| ≤ b.
6. Obtain a string s′ by modifying s by flipping the letters at the positions

in Z.
7. Recursively call the algorithm on input (s′, P ∪Q,min{b− |Z|, |Z| − �}).

To solve our special case, it suffices to call Algorithm 1 on input (sp, U, d−dp).
The correctness of Algorithm 1 relies on the following lemma whose proof is the
same as that of Lemma 3.1 in [1].

Lemma 4. Let (s, P, b) be an input to Algorithm 1. Assume that t is an output of
Algorithm 1 on input (s, P, b). Suppose that dist(s(i), hxi) > d for some gi ∈ D.
Let � = dist(s(i), hxi)−d, z be the number of positions q ∈ {s(i) �≡ hxi} \P with
t(i)[q] �= s(i)[q], and b′ be the number of positions q ∈ [1..L] \ (P ∪ {s(i) �≡ hxi})
with t(i)[q] �= s(i)[q]. Then, b′ ≤ min{b− z, z − �}. Consequently, b′ ≤ 1

2 (b − �).

To see the correctness of Algorithm 1, first observe that Step 1 is clearly correct.
To see that Step 3 is also correct, first note that dist(hxi , s(i)) = |{hxi �≡ s(i)}| =
d + �. So, in order to satisfy dist(hxi , s(i)) ≤ d, we need to first select at least �
positions among the positions in {hxi �≡ s(i)} and then modify the letters at the
selected positions. By definition, we are allowed to select at most b positions and
the selected positions have to be in Q = {hxi �≡ s(i)} \ P ; so no solution exists if
� > min{b, |Q|}. The correctness of Step 7 is guaranteed by Lemma 4. This can be
seen by viewing |Z| in Algorithm 1 as z in Lemma 4, and viewing b′ in Lemma 4 as
the number of positions (outside P∪{hxi �≡ s(i)} = P∪Q) of s(i) where the letters
can be modified in order to transform s(i) into t(i). That is, min{b− |Z|, |Z| − �}
in Step 7 corresponds exactly to min{b− z, z − �} in Lemma 4.

The execution of Algorithm 1 on input (s, P, b) can be modeled by a tree
T in which the root corresponds to (s, P, b), each other node corresponds to a
recursive call, and a recursive call A is a child of another call B if and only if B
calls A directly. We call T the search tree on input (s, P, b). By the construction
of Algorithm 1, each non-leaf node in T has at least two children. Thus, the
number of nodes in T is at most twice the number of leaves in T . Consequently,
we can focus on how to bound the number of leaves in T . For convenience, we
define the size of T to be the number of its leaves.

448 Z.-Z. Chen, L. Wang, and W. Ma

Algorithm 2

Input: A triple (s, P, b), where s is a string of length L, P is a subset of
[1..L], and b is a nonnegative integer less than or equal to d− dp.

Output: A string t obtained by modifying at most b positions of s in
U \P such that for each gi ∈ D, there is an integer xi ∈ {1, . . . ,m} with
dist(t(i), hxi) ≤ d, if such a t exists; nothing, otherwise.

1. If for every gi ∈ D, there is a string hj ∈ H such that dist(hj , s(i)) ≤ d,
then output s and stop immediately.

2. Select a gi ∈ D such that for every hj ∈ H , dist(hj , s(i)) > d.

3. If all hj ∈ H satisfy dist(s(i), hj) − d > min{b, |{s(i) �≡ hj} \ P |}, then
return.

4. Guess an hxi ∈ H such that dist(s(i), hxi)−d ≤ min{b, |{s(i) �≡ hxi}\P |}.
5− 7. Same as Steps 4, 5, and 6 in Algorithm 1, respectively.
8. Recursively call the algorithm on input (s′, P ∪Q,min{b− |Z|, |Z| − �}).

Let T1(d, d − dp) be the size of the search tree of Algorithm 1 on input
(sp, U, d− dp). Similar to Theorem 3.4 in [1], we can prove the next lemma:

Lemma 5. T1(d, d− dp) ≤ (6
√
3)

d

(√
3· 3
√

4
)dp

.

In the general case, we do not know the integer xi for each gi ∈ D in Condi-
tion C2. To extend Algorithm 1 so that it works for the (general) SC problem,
the idea is to guess xi in Step 4. That is, we do not guess all of x1, . . . , xk in
advance. Rather, we guess xi dynamically. The algorithm is called Algorithm 2.

Obviously, if we do not guess hxi in Step 4 of Algorithm 2 but rather choose
an arbitrary hxi in H there, then the search tree of Algorithm 2 on input (s, P, b)
has the same size as the search tree of Algorithm 1 on input (s, P, b) does. So, to
estimate the size of the search tree of Algorithm 2 on input (s, P, b), it suffices to
find out how the guesses in Step 4 of Algorithm 2 expand the size of the search
tree of Algorithm 1 on input (s, P, b). Clearly, the “guess” operation in Step 4
requires Algorithm 2 to try all hj ∈ H with dist(s(i), hj) − d ≤ min{b, |{s(i) �≡
hj} \ P |}. A single “guess” expands the size of the search tree by a factor of at
most m. Because of Lemma 4, the recursion depth of Algorithm 2 is at most
�log2(b + 1)�. Thus, the size of the search tree of Algorithm 2 on input (s, P, b)
is at most m�log2(b+1)� times that of the search tree of Algorithm 1 on input
(s, P, b).

Now, let T2(d, d − dp) be the size of the search tree of Algorithm 2 on input
(sp, U, d− dp). Then,

Lemma 6. T2(d, d− dp) ≤ (6
√
3)

d

(√
3· 3
√

4
)dp

·m�log2(d−dp+1)�.

The Shared Center Problem 449

Theorem 2. Algorithm 2 takes O

(
kmL+ kmd · (6

√
3)d(√

3· 3
√

4
)dp

·m�log2(d−dp+1)�

)
time.

Proof. Obviously, excluding the recursive calls, each step of Algorithm 2 takes
O(kmL) time. To improve this time bound to O(kmd), the idea is to perform
an O(kmL)-time preprocessing. In the preprocessing, for each pair (i, j) with
i ∈ {1, . . . , k} and j ∈ {1, . . . ,m}, we compute Δi,j = {sp(i) �≡ hj} and discard
it if |Δi,j | > 2d − dp. Note that we modify only O(d) letters of sp at Step 7 of
Algorithm 2 on input (sp, U, d− dp) and hence we can accordingly update each
remaining Δi,j within O(d) time. This is also true in subsequent recursive calls.
So, by Lemma 6, the total time complexity of Algorithm 2 is as stated in the
theorem.

By Lemma 3 and Theorem 2, we have the following corollary immediately:

Corollary 2. The SC problem can be solved in time

O

⎛⎜⎝m3L(n− k) +m2Lk + kd ·
(
6
√
3
)d(√

3 · 3
√
4
)d′ ·m�log2(d−d′+1)�+2

⎞⎟⎠ ,

where d′ = minp∈{1,...,m} dist(sp|U , hp|U).

As observed in [14], Algorithm 1 can be made faster by replacing Step 2 with
the following step:

2’. If b = d−dp, then select a gi ∈ D such that dist(hxi, s(i)) ≥ dist(hxj , s(j))

for all gj ∈ D. Otherwise, select an arbitrary gi ∈ D with dist(hxi , s(i)) >
d.

We call the modified algorithm Algorithm 3. The intuition behind Algorithm 3
is as follows. By Lemma 4, the larger � is, the smaller b′ is. Note that b′ means
the number of letters of s(i) we need to further modify. Thus, by maximizing �,
we can make the algorithm run faster.

Let T3(d, d − dp) be the size of the search tree of Algorithm 1 on input
(sp, U, d− dp). Similar to Theorem 4.3 in [1], we can prove the next lemma:

Lemma 7. T3(d, d− dp) ≤ 8d

2dp
.

We next obtain a slower version of Algorithm 3 by replacing Step 2’ with the
following step:

2”. If b = d − dp, then guess a gi ∈ D and make a copy s0 of s and a copy

i0 of i. Otherwise, select an arbitrary gi ∈ D with dist(hxi , s(i)) > d and
dist(hxi0

, s0(i0)) ≥ dist(hxi , s0(i)).

450 Z.-Z. Chen, L. Wang, and W. Ma

We call the modified algorithm Algorithm 4. Algorithm 4 will be useful later
in this paper when we consider the general case where x1, . . . , xk are not known.
Basically, if b = d − dp, a string gi ∈ D in Step 2’ is hard to find when x1, . . . ,
xk are not known. In this case, our idea is to guess this gi ∈ D and use i0 and
s0 to memorize i and s (for later use), respectively. Note that Algorithm 4 does
not verify that for all gj ∈ D, dist(hxi0

, s0(i0)) ≥ dist(hxj , s0(j)). Indeed, only
for those gi selected in Step 2” of subsequent recursive calls, Algorithm 4 verifies
that dist(hxi0

, s0(i0)) ≥ dist(hxi, s0(i)).

Algorithm 4 on input (sp, U, d−dp) is clearly correct, because (1) it performs
the guess operation for b = d− dp by trying all gi ∈ D and (2) when trying the

gi ∈ D with dist(hxi , sp(i)) ≥ dist(hxj , sp(j)), it does the same as Algorithm 3.

To estimate the running time of Algorithm 4 on input (sp, U, d−dp), let T4(d, b)
be the size of the search tree of Algorithm 4 on input (sp, U, d− dp).

Lemma 8. T4(d, d− dp) ≤ k · 8d

2dp
.

Proof. Suppose that we modify Algorithm 4 on input (sp, U, d − dp) by not
guessing gi ∈ D but rather choosing a particular gi ∈ D. Let Ti be the search
tree of the modified algorithm on input (sp, U, d− dp). Obviously, T4(d, d− dp)
does not exceed the total size of T1, . . . , Tn. So, it suffices to show that for each
i ∈ {1, . . . , k}, the size of Ti is at most 8d/2dp .

Fix an i0 ∈ {1, . . . , k}. To show that the size of Ti0 is at most 8d/2dp , first note
that for each non-root node μ of Ti0 , the recursive call (of the modified algorithm)
corresponding to μ selects a gi ∈ D in Step 2” such that dist(hxi , s(i)) > d and
dist(hxi0

, s0(i0)) ≥ dist(hxi , s0(i)). Because of these two inequalities, we can use
similar arguments to those in the proofs of Lemmas 4.1 and 4.2 and Theorem 4.3
in [1] to prove that the size of Ti0 is at most 8d/2dp. Q.E.D.

We next extend Algorithm 4 so that it works for the general case. The idea is the
same as that used to obtain Algorithm 2 from Algorithm 1. So, as in Algorithm 2,
we guess xi dynamically in Step 4. The resulting algorithm is called Algorithm 5.

Let T5(d, d − dp) be the size of the search tree of Algorithm 5 on input
(sp, U, d− dp). Then,

Lemma 9. T5(d, d− dp) ≤ k · 8d

2dp
·m�log2(d−dp+1)�.

Using Lemma 9, we can prove the next theorem (whose proof is similar to
that of Theorem 2):

Theorem 3. Algorithm 5 takes O
(
kmL+ k2md · 8d

2dp
·m�log2(d−dp+1)�

)
time.

By Lemma 3 and Theorem 3, we have the following corollary immediately:

Corollary 3. The SC problem can be solved in time

O

(
m3L(n− k) +m2Lk + k2d · 8

d

2d′ ·m�log2(d−d′+1)�+2

)
,

where d′ = minp∈{1,...,m} dist(sp|U , hp|U).

The Shared Center Problem 451

Algorithm 5

Input: A triple (s, P, b), where s is a string of length L, P is a subset of
[1..L], and b is an integer less than or equal to d− dp.

Output: A string t obtained by modifying at most b positions of s in
U \P such that for each gi ∈ D, there is an integer xi ∈ {1, . . . ,m} with
dist(t(i), hxi) ≤ d, if such a t exists; nothing, otherwise.

1. If for every gi ∈ D, there is a string hj ∈ H such that dist(hj , s(i)) ≤ d,
then output s and stop immediately.

2. If b = d−dp, then guess a gi ∈ D and make a copy s0 of s and a copy i0 of i.

Otherwise, select a gi ∈ D such that for every hj ∈ H , dist(hj , s(i)) > d.

3. If all hj ∈ H satisfy dist(s(i), hj) − d > min{b, |{s(i) �≡ hj} \ P |}, then
return.

4. If b = d − dp, guess an hxi0
∈ H such that dist(s(i0), hxi0

) − d ≤
min{b, |{s(i0) �≡ hxi0

} \ P |}. Otherwise, guess an hxi ∈ H such that

dist(s(i), hxi) − d ≤ min{b, |{s(i) �≡ hxi} \ P |} and dist(s0(i0), hxi0
) ≥

dist(s0(i), hxi).
5− 7. Same as Steps 4, 5, and 6 in Algorithm 1, respectively.
8. Recursively call the algorithm on input (s′, P ∪Q,min{b− |Z|, |Z| − �}).

Roughly speaking, Algorithm 5 is faster than Algorithm 2 if and only if d ≥
logb k, where b = 3

√
3

4 .

6 Concluding Remarks

We have presented two asymptotically optimal parameterized algorithms for
the SC problem. It remains to implement the algorithms in a programming
language and apply them to linkage analysis of real biological data. Although
the algorithms are asymptotically optimal, their complexity still looks high and
they can be very slow when applied to real data. Thus, an interesting question
is to ask if we can design faster algorithms for the SC problem. If no faster exact
algorithms can be designed for the problem, then another question is to ask if
we can design faster heuristic algorithms for the problem that works well for real
biological data.

Acknowledgments. This work is supported by a grant from the Research
Grants Council of the Hong Kong Special Administrative Region, China [Project
No. CityU 121608].

452 Z.-Z. Chen, L. Wang, and W. Ma

References

1. Chen, Z.-Z., Wang, L.: Fast exact algorithms for the closest string and substring
problems with application to the planted (L,d)-motif model. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics 8(5), 1400–1410 (2011)

2. Chen, Z.-Z., Ma, B., Wang, L.: A three-string approach to the closest string prob-
lem. Journal of Computer and System Sciences 78, 164–178 (2012)

3. Doi, K., Li, J., Jiang, T.: Minimum Recombinant Haplotype Configuration on
Tree Pedigrees. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI),
vol. 2812, pp. 339–353. Springer, Heidelberg (2003)

4. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monogr. Comput. Sci.
Springer, New York (1999)

5. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for clos-
est string and related problems. Algorithmica 37, 25–42 (2003)

6. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. System Sci. 63, 512–530 (2001)

7. Leykin, I., Hao, K., Cheng, J., Meyer, N., Pollak, M.R., Smith, R.J.H., Wong,
W.H., Rosenow, C., Li, C.: Comparative linkage analysis and visualization of high-
density oligonucleotide snp array data. BMC Genetics 6, 7 (2005)

8. Li, J., Jiang, T.: An exact solution for finding minimum recombinant haplotype
configurations on pedigrees with missing data by integer linear programming.
In: Proceedings of Symposium on Computational Molecular Biology (RECOMB),
pp. 20–29 (2004)

9. Li, J., Jiang, T.: Computing the minimum recombinant haplotype configuration
from incomplete genotype data on a pedigree by integer linear programming. Jour-
nal of Computational Biology 12(6), 719–739 (2005)

10. Ma, W., Yang, Y., Chen, Z.-Z., Wang, L.: Mutation region detection for closely
related individuals without a known pedigree. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics 9, 499–510 (2012)

11. Ma, B., Sun, X.: More efficient algorithms for closest string and substring problems.
SIAM Journal on Computing 39, 1432–1443 (2009)

12. Marx, D.: Closest substring problems with small distances. SIAM Journal on Com-
puting 38, 1382–1410 (2008)

13. Sellick, G., Longman, C., Tolmie, J., Newbury-Ecob, R., Geenhalgh, L., Hughes,
S., Whiteford, M., Carrett, C., Houlston, R.: Genomewide linkage searches for
mendelian disease loci can be efficiently conducted using high-density snp geno-
typing arrays. Nucleic Acids Res 32(20), e164 (2004)

14. Wang, L., Zhu, B.: Efficient Algorithms for the Closest String and Distinguishing
String Selection Problems. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009.
LNCS, vol. 5598, pp. 261–270. Springer, Heidelberg (2009)

15. Xiao, J., Liu, L., Xia, L., Jiang, T.: Fast elimination of redundant linear equa-
tions and reconstruction of recombination-free mendelian inheritance on a pedi-
gree. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 655–664 (2007)

16. Zhao, R., Zhang, N.: A more efficient closest string algorithm. In: Proceedings of
the 2nd International Conference on Bioinformatics and Computational Biology
(BICoB), pp. 210–215 (2010)

Author Index

Abouelhoda, Mohamed I. 243
AitMous, Omar 110
Akutsu, Tatsuya 360
Amit, Mika 306

Backofen, Rolf 306, 321
Bannai, Hideo 220
Bassino, Frédérique 110
Belazzougui, Djamal 280
Beller, Timo 243
Bille, Philip 293
Blin, Guillaume 138
Blokh, Dima 70
Boucher, Christina 427
Breslauer, Dany 83
Bruckner, Sharon 56
Bulteau, Laurent 138

Chen, Zhi-Zhong 439
Cicalese, Ferdinando 149
Clifford, Raphaël 97
Condon, Anne 159
Crochemore, Maxime 27

Dinu, Liviu P. 413
Dondi, Riccardo 399

El-Mabrouk, Nadia 399

Ferguson, Michael P. 208
Fernández-Baca, David 373
Fukagawa, Daiji 360

G ↪asieniec, Leszek 83
Gawrychowski, Pawe�l 232
Ge, Ling 334
Gørtz, Inge Li 293
Goto, Keisuke 220
Grossi, Roberto 83
Guillemot, Sylvain 373

Heyne, Steffen 306
Hon, Wing-Kai 173, 185, 257
Hüffner, Falk 56
Hundt, Christian 124

Iliopoulos, Costas S. 27
Inenaga, Shunsuke 220

Jalsenius, Markus 97
Jansson, Jesper 385
Jiang, Haitao 349
Jiang, Minghui 138

Kociumaka, Tomasz 27
Komusiewicz, Christian 56
Ku, Tsung-Han 257
Kubica, Marcin 27
Kucherov, Gregory 196

Laber, Eduardo 149
Landau, Gad M. 306, 427
Levy, Avivit 427
Li, Shuai Cheng 334
Lingas, Andrzej 385
Lu, Chen-Hua 257

Ma, Wenji 439
Maňuch, Ján 159
Möhl, Mathias 306

Navarro, Gonzalo 2
Nekrich, Yakov 196
Ng, Yen Kaow 334
Nicaud, Cyril 110
Niedermeier, Rolf 56

Ohlebusch, Enno 243
Ono, Hirotaka 334
Ouangraoua, Aı̈da 41

Ponty, Yann 321
Popa, Alexandru 413
Porat, Ely 97
Pritchard, David 427

Radoszewski, Jakub 27
Raffinot, Mathieu 41
Rytter, Wojciech 27

Sach, Benjamin 97, 293
Schmiedl, Christina 306
Segev, Danny 70

454 Author Index

Shah, Rahul 173, 185, 257
Shamir, Ron 1
Sharan, Roded 70
Sheikh, Saad 321
Shutters, Brad 373
Starikovskaya, Tatiana 196

Takasu, Atsuhiro 360
Takeda, Masayuki 220
Tamura, Takeyuki 360
Tejada, Pedro J. 138
Thachuk, Chris 159
Thankachan, Sharma V. 173, 185, 257
Thiel, Sven 56
Tyczyński, Wojciech 27

Uhlmann, Johannes 56

Vakati, Sudheer 373
Välimäki, Niko 269
Venturini, Rossano 280
Vialette, Stéphane 138
Vildhøj, Hjalte Wedel 293
Vitter, Jeffrey Scott 185

Waleń, Tomasz 27
Wang, Lusheng 439
Weimann, Oren 149, 427
Wendland, Florian 124
Will, Sebastian 306

Yuster, Raphael 149

Zhu, Binhai 349

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talks
	Contributed Papers
	The Maximum Number of Squares in a Tree
	Introduction
	Bounds for Combs
	Prelude to Upper Bound Proof
	(p,q)-Representations of Substrings
	General Combs and General Upper Bound
	References

	Faster and Simpler Minimal Conflicting Set Identification
	Introduction
	MCS and Forbidden Induced Subgraphs
	A Global Algorithm
	Conclusion
	References

	Partitioning into Colorful Components by Minimum Edge Deletions
	Introduction
	Computational Hardness
	Algorithms
	Formulation as Weighted Multi-Multiway Cut
	Experiments
	Outlook
	References

	Approximation Algorithmsand Hardness Results for Shortest Path Based Graph Orientations
	Introduction
	Hardness of Approximation
	The Single-Pair Gadget
	Reduction from Independent Set

	Approximation Algorithms
	Exact Shortest Paths
	Approximate Shortest Paths

	References

	Constant-Time Word-Size String Matching
	Introduction
	Basic Concepts
	Word-Size Text Search
	Implementing lmo Operation
	Word-Size Pattern Preprocessing
	Parallel Random Access Machine
	Conclusions
	References

	Pattern Matching in Multiple Streams
	Introduction
	Related Work
	Preliminaries and a New Model for Multiple Streams

	Exact Matching
	LCE Queries in a Stream
	k-Mismatch in Multiple Streams
	k-Difference in Multiple Streams
	Space Lower Bounds
	Open Problems
	References

	An Efficient Linear Pseudo-minimization Algorithm for Aho-Corasick Automata
	Introduction
	Definitions and Notations
	Probabilistic Models and Generic Properties
	Probabilistic Models with Low Correlation
	Examples of Probabilistic Models with Low Correlation
	Generic Properties of the Associated Aho-Corasick Automaton

	A Pseudo-minimization Algorithm for Aho-Corasick Automata
	Algorithm
	Complexity
	Experimental Results

	Conclusion
	References

	Efficient Two-Dimensional Pattern Matching with Scaling and Rotation and Higher-Order Interpolation
	Introduction
	Technical Preliminaries
	Algebraic Parameter Space Characterization
	A Polynomial Time Algorithm
	Conclusions and Future Work
	References

	Hardness of Longest Common Subsequence for Sequences with Bounded Run-Lengths
	Introduction
	Preliminary Results and NP-Completeness of LCS(3, 1)
	NP-Completenessof LCS(2, 2)
	Approximation
	References

	Near Linear Time Construction of an Approximate Index for All Maximum Consecutive Sub-sums of a Sequence
	Introduction
	The Approximate Index
	Warm-Up: A Golden Ratio Approximation in O(n3/2)
	As Close to 1 as Wished
	The Last Piece: A Recursive Argument

	Applying the Index to the Parikh Vector Matching Problem
	Some Final Observations and Open Problems
	References

	The Complexity of String Partitioning
	Introduction
	Preliminaries
	The String Partition Problems
	Equality-Free String Partition Problems
	Equality-Free Multiple String Partition with Unbounded Alphabet
	Equality-Free String Partition with Unbounded Alphabet
	Equality-Free Multiple String Partition with Binary Alphabet
	Equality-Free String Partition with Binary Alphabet

	Factor-, Prefix- and Suffix-Free String Partition Problems
	Conclusion
	References

	Towards an Optimal Space-and-Query-Time Index for Top-k Document Retrieval
	Introduction and Related Work
	Preliminaries
	Top-k Using Range Maximum/Minimum Queries

	A Brief Review of Hon et al.'s Index
	Query Answering

	Our Linear-Space Index
	Space-Efficient Encoding of Our Index
	Saving More Space
	References

	Document Listing for Queries with Excluded Pattern
	Introduction and Related Work
	Preliminaries
	Suffix Trees and Suffix Arrays
	Wavelet Tree
	Weight-Balanced Wavelet Tree

	Data Structures for Document Counting
	Data Structures for Document Listing
	Concluding Remarks
	References
	Proof of Lemma 1
	Space of a WBT

	Cross-Document Pattern Matching
	Introduction
	Preliminaries
	Basic Data Structures
	Weighted Level Ancestor Problem

	Cross-Document Pattern Counting and Reporting
	Counting
	Reporting

	Variants of the Problem
	Dynamic Counting and Reporting
	Document Counting and Reporting
	Compact Counting, Reporting and Document Reporting

	References
	Appendix:

	FEMTO: Fast Search of Large Sequence Collections
	Introduction
	Background
	The FEMTO Index
	High Throughput with External Memory
	Bi-directional Locate
	Improving Document Search Time
	Regular Expression Search
	Parallel External Memory Index Construction

	Experimental Methods
	Results
	Approximate Search
	FEMTO Index Space
	Reporting Results

	Conclusion
	References

	Speeding Up q-Gram Mining on Grammar-Based Compressed Texts
	Introduction
	Preliminaries
	Intervals, Strings, and Occurrences
	Straight Line Programs

	O(qn) Algorithm goto11:fastmininslpcomprstrin
	New Algorithm
	q-Gram Neighbor Graph
	Weighted q-Gram Frequencies over a Trie

	Preliminary Experiments
	References

	Simple and Efficient LZW-Compressed Multiple Pattern Matching
	Introduction
	Preliminaries
	Overview of the Algorithm
	Multiple Pattern Matching in a Sequence of Snippets
	Conclusions
	References

	Computing the Burrows-Wheeler Transform of a String and Its Reverse
	Introduction
	Preliminaries
	The Burrows-Wheeler Transform of the Reverse String
	The LCP-Array of the Reversed String
	Parallelization and Experimental Results
	References

	Efficient Algorithm for Circular Burrows-Wheeler Transform
	Introduction
	Preliminaries
	Construction of Circular Burrows-Wheeler Transform
	Constructing Ψ◦ for All Short Patterns
	Updating for Long Patterns

	References

	Least Random Suffix/Prefix Matches in Output-Sensitive Time
	Introduction
	Preliminaries
	Finding Exact Overlaps

	Related Work on Approximate String Matching
	Output-Sensitive Algorithms
	Method for Short Strings
	Method for Long Strings
	Sets of Mixed Length Strings

	Least Random Overlaps
	Discussion
	References

	Compressed String Dictionary Look-Up with Edit Distance One
	Introduction
	Related Work
	Background
	A Compressed and Fast Solution
	A More Compressed Solution
	Conclusion
	References

	Time-Space Trade-Offs for Longest Common Extensions
	Introduction
	Our Results
	Techniques
	Applications

	The Deterministic Data Structure
	Difference Covers
	The Data Structure

	The Monte-Carlo Data Structure
	Rabin-Karp fingerprints
	The Data Structure

	The Las-Vegas Data Structure
	The Algorithm

	Longest Common Extensions on Two Strings
	The Data Structure

	References

	Local Exact Pattern Matching for Non-fixed RNA Structures
	Introduction
	Our Results

	Notations and Definitions
	Local Exact Pattern Matching Problem Definition

	A Simple O(n^4) Algorithm for Local Exact Pattern Matching
	Finding the Maximal Matching between Two Base Pairs
	Finding the Maximal Score Matching Inside the Base Pairs
	Extending the Match Outside the Base Pairs
	Complete O(n^ 4) Algorithm

	An O(n^3 logn) Algorithm for Local Exact Pattern Matching
	An O(n^3) Algorithm for Local Exact Pattern Matching
	Local Exact Pattern Matching for (Nested, Bounded-Unlimited) Inputs
	References

	Impact of the Energy Model on the Complexity of RNA Folding with Pseudoknots
	Introduction
	Problem Statement and Free-Energy Models
	NP-Hardness of RNA-PK-Fold(S) in Any Non-degenerate Stacking Energy Model
	Approximability of RNA-PK-Fold(S) in the Stacking Model
	Inapproximability of RNA-PK-Fold(N) in the Nearest-Neighbor Energy Model
	Conclusion/Perspectives
	References

	Finding Longest Common Segments in Protein Structures in Nearly Linear Time
	Introduction
	Preliminary
	Algorithms for ALCSRMSD
	FPTAS for ALCSdist
	Nearly Linear-Time FPTAS for ALCSdist on Protein Structures

	References

	A Linear Kernel for the Complementary Maximal Strip Recovery Problem
	Introduction
	Preliminaries
	ALinearKernel forCMSR
	Bounding the Solution Search Space for CMSR
	Computing the Linear Kernel for CMSR

	Concluding Remarks
	References

	Efficient Exponential Time Algorithms for Edit Distance between Unordered Trees
	Introduction
	Preliminaries
	Algorithm for a General Case
	Algorithm
	Improved Analysis

	Algorithm for a Case of Bounded Degree and Fixed Alphabet
	Algorithm
	Analysis

	Concluding Remarks
	References

	Fixed-Parameter Algorithms for Finding Agreement Supertrees
	Introduction
	Definitions
	The Agreement Supertree Problem
	Chararacterizing Agreement
	Finding Successor Positions and Interesting Vertices
	Testing for an Agreement Supertree

	FPT Algorithms
	An Auxiliary Algorithm
	Solving the AST-EC Problem
	Solving the AST-TR Problem

	Concluding Remarks
	References

	Computing the Rooted Triplet Distance between Galled Trees by Counting Triangles
	Introduction
	New Results

	Preliminaries
	Basic Definitions
	Galled Trees

	Counting Monochromatic and Almost-Monochromatic Triangles
	Computing the Rooted Triplet Distance between Galled Trees
	Counting the Number of Shared Rooted Fan Triplets
	Counting the Number of Shared Rooted Proper Triplets
	Computing the Rooted Triplet Distance

	Concluding Remarks
	References

	Minimum Leaf Removal for Reconciliation: Complexity and Algorithms
	Introduction
	Preliminary Definitions
	Trees
	Reconciliation
	Duplication Nodes and MD-trees

	Hardness of Minimum Leaf Removal
	Fixed-Parameter Algorithms
	MinLeafRem Parameterized by the Number of Leaves Removed
	MinLeafRem Parameterized by the Number of Labels with Multiple Copies

	Conclusion
	References

	On the Closest String via Rank Distance
	Introduction
	Motivation
	Previous Work
	Our Contributions

	Preliminaries
	Pareto Optimality

	Hardness of the Closest String via Rank Distance
	A k-Approximation Algorithm
	A Polynomial Algorithm for Binary Alphabets
	Conclusions
	References

	On Approximating String Selection Problems with Outliers
	Introduction
	Our Contributions
	Brief Description of Parameterized Complexity
	Previous Work

	Approximation Hardness of Close to Most Strings
	Non-existence of an EPTAS for Closest to k Strings
	APX-Hardness of Most Strings with Few Bad Columns
	Conclusions and Open Problems
	References

	The Parameterized Complexity of the Shared Center Problem
	Introduction
	Basic Definitions and Notations
	The SC Problem
	The Hardness of the SC Problem
	An Exact Algorithm for the SC Problem
	Decomposing $gi \in N$
	Decomposing the Strings in D

	Concluding Remarks
	References

	Gene Regulation, Protein Networks and Disease: A Computational Perspective
	Wavelet Trees for All
	Introduction
	Data Structure
	Compression
	Sequences, Reorderings, or Point Grids?
	Applications as Sequences
	Applications as Reorderings
	Applications as Grids
	Conclusions and Further Challenges
	References

	Author Index

