

Lecture Notes in Computer Science 7351
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

FoLLI Publications on Logic, Language and Information

Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Valentin Goranko, Technical University, Lynbgy, Denmark

Erich Grädel, RWTH Aachen University, Germany

Michael Moortgat, Utrecht University, The Netherlands

Subline Area Editors

Nick Bezhanishvili, Imperial College London, UK

Anuj Dawar, University of Cambridge, UK

Philippe de Groote, Inria-Lorraine, Nancy, France

Gerhard Jäger, University of Tübingen, Germany

Fenrong Liu, Tsinghua University, Beijing, China

Eric Pacuit, Tilburg University, The Netherlands

Ruy de Queiroz, Universidade Federal de Pernambuco, Brazil

Ram Ramanujam, Institute of Mathematical Sciences, Chennai, India

Denis Béchet Alexander Dikovsky (Eds.)

Logical Aspects
of Computational
Linguistics
7th International Conference, LACL 2012
Nantes, France, July 2-4, 2012
Proceedings

13

Volume Editors

Denis Béchet
Alexander Dikovsky
Université de Nantes, LINA UMR 6241
2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
E-mail: {denis.bechet; alexandre.dikovsky}@univ-nantes.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-31261-8 e-ISBN 978-3-642-31262-5
DOI 10.1007/978-3-642-31262-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012939839

CR Subject Classification (1998): I.2, F.4.1, F.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Welcome to the proceedings of the 7th International Conference on Logical
Aspects of Computational Linguistics, which was held July 2–4, 2012, in Nantes,
France. The aim of LACL conferences is to bring together active researchers
interested in all aspects concerning the use of logics in computational linguis-
tics to discuss current research, new results, problems, and applications of both
theoretical and practical nature.
LACL 2012 focused on its traditional topics:

– Type logical grammars (Lambek Grammars, Abstract Categorial Grammars,
Combinatorial Categorial Grammars, Categorial Dependency Grammars)
and other formal grammars closely related to them (Minimalist Grammars,
extended TAG and other weakly context-sensitive grammars)

– Formal semantics of natural language (type and proof theoretical semantics,
intensional model theoretic semantics, dynamic semantics, lexical semantics)

– Logical models of discourse and dialogue (game theoretic models, ludics)

Amongst 24 thoroughly triply refereed submitted papers, the Program Com-
mittee consisting of 33 colleagues listed here selected 15 high-quality contri-
butions by authors from China, France, Germany, Italy, Japan, Poland, Rus-
sia, UK and USA. LACL 2012 included two invited talks: by M. Steedman
(University of Edinburg) and A. Clark (Royal Holloway University of London)
and a tutorial by C. Fouqueré and M. Quatrini (University Paris 13 and Uni-
versity of Aix Marseille II). Besides this, the technical program also included a
System Demonstration session.

We would like to thank all authors who submitted papers, the four invited
speakers and all conference participants. We are grateful to the members of the
Program Committee and of the Demo Session Committee for their thorough
efforts in reviewing and discussing submitted contributions with expertise and
carefulness. We are also grateful to our institutional sponsors and supporters:
the Association for Logic, Language and Information (FoLLI), CNRS, Ecole
des Mines of Nantes, Laboratory of Informatics of Nantes (LINA), University
of Nantes and its Faculty of Sciences and Technologies. We would also like to
express our gratitude to the Organizing Committee and all the people who made
this meeting possible.

April 2012 Denis Béchet
Alexander Dikovsky

Organization

Program Committee

Michele Abrusci Università di Roma Tre, Italy
Nicholas Asher IRIT/CNRS, France
Raffaella Bernardi University of Trento, Italy
Philippe Blache LPL/CNRS, Aix-en-Provence, France
Wojciech Buszkowski Poznan University, Poland
Denis Béchet LINA - University of Nantes, France
Phillipe De Groote LORIA/INRIA, Nancy Grand Est, France
Michael Dekhtyar University of Tver, Russia
Alexander Dikovsky LINA CNRS UMR 6241, Université de Nantes,

France
Markus Egg Humboldt Universität Berlin, Germany
Annie Foret University of Rennes 1, France
Nissim Francez Technion, Haifa, Israel
Makoto Kanazawa NII, Japan
Gregory M. Kobele University of Chicago, USA
Marcus Kracht University of Bielefeld, Germany
Alain Lecomte Université Paris 8, France
Hans Leiss Universität München, Germany
Michael Moortgat Universiteit Utrecht, UiL OTS,

The Netherlands
Richard Moot LaBRI/CNRS, France
Glyn Morrill Universitat Politècnica de Catalunya,

Barcelona, Spain
Reinhard Muskens Tilburg University, The Netherlands
Uwe Mönnich Universität Tübingen, Germany
Gerald Penn University of Toronto, Canada
Mati Pentus Moscow State University, Russia
Sylvain Pogodalla LORIA/INRIA, Nancy Grand Est, France
Carl Pollard The Ohio State University, USA
Anne Preller LIRMM/CNRS, France
Christian Retoré LaBRI/CNRS, France
Sylvain Salvati INRIA, Bordeaux Sud-Ouest, France
Chung-Chieh Shan Rutgers, The State University of New Jersey,

USA
Edward Stabler University of California, Los Angeles, USA
Mark Steedman University of Edinburgh, UK
Isabelle Tellier Université Paris 3, France

VIII Organization

Demo Session Committee

Denis Béchet LINA - University of Nantes
Florian Boudin LINA - University of Nantes
Alexander Dikovsky LINA - University of Nantes
Nicolas Hernandez LINA - University of Nantes

Organizing Committee

Ramadan Alfared LINA - University of Nantes
Denis Béchet LINA - University of Nantes
Florian Boudin LINA - University of Nantes
Alexander Dikovsky LINA - University of Nantes
Anna Even LINA - University of Nantes
Nicolas Hernandez LINA - University of Nantes
Ophélie Lacroix LINA - University of Nantes
Annie Lardenois LINA
Anne-Françoise Quin LINA - CNRS

Table of Contents

Logical Grammars, Logical Theories . 1
Alexander Clark

Ludics and Natural Language: First Approaches . 21
Christophe Fouqueré and Myriam Quatrini

The Non Cooperative Basis of Implicatures . 45
Nicholas Asher

Movement-Generalized Minimalist Grammars . 58
Thomas Graf

Toward the Formulation of Presupposition by Illative Combinatory
Logic . 74

Yuri Ishishita and Daisuke Bekki

Abstract Automata and a Normal Form for Categorial Dependency
Grammars . 86

Boris Karlov

Importing Montagovian Dynamics into Minimalism 103
Gregory M. Kobele

CoTAGs and ACGs . 119
Gregory M. Kobele and Jens Michaelis

Gapping as Like-Category Coordination . 135
Yusuke Kubota and Robert Levine

L-Completeness of the Lambek Calculus with the Reversal Operation . . . 151
Stepan Kuznetsov

Distributive Full Nonassociative Lambek Calculus with S4-Modalities
Is Context-Free . 161

Zhe Lin

Common Nouns as Types . 173
Zhaohui Luo

Extractability as the Deduction Theorem in Subdirectional
Combinatory Logic . 186

Hiroko Ozaki and Daisuke Bekki

X Table of Contents

Agnostic Possible Worlds Semantics . 201
Andrew Plummer and Carl Pollard

Abstract Machines for Argumentation . 213
Kurt Ranalter

On the Completeness of Lambek Calculus with Respect to Cofinite
Language Models . 229

Alexey Sorokin

Dot-Types and Their Implementation . 234
Tao Xue and Zhaohui Luo

Author Index . 251

Logical Grammars, Logical Theories

Alexander Clark

Department of Computer Science
Royal Holloway, University of London

Egham, TW20 0EX
United Kingdom

alexc@cs.rhul.ac.uk

Abstract. Residuated lattices form one of the theoretical backbones of
the Lambek Calculus as the standard free models. They also appear in
grammatical inference as the syntactic concept lattice, an algebraic struc-
ture canonically defined for every language L based on the lattice of all
distributionally definable subsets of strings. Recent results show that it is
possible to build representations, such as context-free grammars, based
on these lattices, and that these representations will be efficiently learn-
able using distributional learning. In this paper we discuss the use of
these syntactic concept lattices as models of Lambek grammars, and use
the tools of algebraic logic to try to link the proof theoretic ideas of the
Lambek calculus with the more algebraic approach taken in grammatical
inference. We can then reconceive grammars of various types as equa-
tional theories of the syntactic concept lattice of the language. We then
extend this naturally from models based on concatenation of strings,
to ones based on concatenations of discontinuous strings, which takes
us from context-free formalisms to mildly context sensitive formalisms
(multiple context-free grammars) and Morrill’s displacement calculus.

1 Introduction

Logic is concerned with proof; in the logical grammar tradition the role of proof
is central and well understood [1]. But logic is also concerned with truth – and
what does it mean for a grammar, such as a Lambek grammar, to be true? What
can it be true of? This is a problem not of proof theory but of model theory, and
while there has been a great deal of work on models for the Lambek calculus [2],
these are models for the calculus, not for the grammars. These models are free –
the only statements that are true in these models are things that are true of all
languages – but this seems to be inappropriate – there are things that are true
of some languages and not of others; true about English but not about French
or Dyirbal.

A Lambek grammar consists only of a finite set of type assignments: (w, T)
where w is a nonempty sequence, typically of length 1, and T is a type. Therefore
the question of the truth of the grammar reduces to the question of the truth of
the type assignments. The metatheory of Lambek grammar is explained in [3]
and [4]. Several things are clear: first the types in the grammar are intended to

D. Béchet and A. Dikovsky (Eds.): LACL 2012, LNCS 7351, pp. 1–20, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 A. Clark

refer to sets of strings in a given language, and the composite types A•B, C/B,
A\C and the associated calculus are motivated and justified by the algebraic
properties of the associated operations on these sets. The following quotes from
[4] lay out the metatheoretical assumptions. First

Sets of strings of English words will be called (syntactic) types.

Secondly, that the operations are ‘free’:

When applying this notation to a natural language . . . we are thinking
of the . . . system . . . freely generated by the words of the language under
concatenation.

Finally, that the starting point for constructing a grammar is to model an exist-
ing language. Lambek does not conceive of this as a learning problem, but as a
modeling problem in the structuralist tradition. Rather than defining a grammar
G in vacuo and then showing how that grammar defines a language L — the
generative stance — he starts with a language L∗, and constructs a grammar
G(L∗), — the descriptive approach — using a non-algorithmic method:

One can continue playing this game until every English word has
been assigned a finite number of types.

One hopes that the grammar defined in this way will define a language which is
equal to the original language L∗, a condition Lambek states as follows:

One may consider the categorial grammar to be adequate provided it
assigns type S to w if and only if the latter is a well-formed declarative
sentence according to some other standard.

Lambek’s specific proposals within this metatheoretical program include what
are now called Lambek grammars, and later, pregroup grammars. Others have
studied the relationship between types and sets of strings; specifically Buszkowski
in [5], and the possibilities of developing the informal process of construction of
a grammar into an algorithmically well-defined learning procedure [6,7].

In this paper we will take a different tack, motivated again by a focus on
learnability. We are interested in identifying formalisms that are not only de-
scriptively adequate but that also can be learned from the data in a principled
way – in Chomskyan terms, in achieving explanatory adequacy. Defining the
types as sets of strings seems a reasonable first step. We can in a similar vein
consider nonterminal symbols in a context-free grammar to be sets of strings:
namely the set of strings that can be derived from that nonterminal. For a cfg

G, with a nonterminal N we define as usual L(G,N) = {w | N ∗⇒G w}. A sym-
bol NP which represents noun phrases can be considered as the set of strings
that can be noun phrases; the start symbol S corresponds to the language L
itself.

In Lambek grammars and other categorial grammars, we have the same cor-
respondence, but it is more complex. We can associate with each type, primitive

Logical Grammars, Logical Theories 3

or complex, a set of strings: say v(T), the value of that type. There is a compli-
cation because the types are no longer atomic elements but have some structure.
So a type might be of the form A/B: in this case we can ask, what is the relation-
ship between v(A/B) and v(A) and v(B)? In particular what is the relationship
between v(A/B) and v(A)/v(B)? Clearly this depends on how we define the
function v.

More fundamentally, if the primitive types are sets of strings, then what sets
of strings are they? We now have a good understanding of how learnability af-
fects the answer to this question, at least in the context of cfgs. Learnable
representations are almost invariably based on objective or empiricist represen-
tations where the structure of the representation is based on the structure of the
data: the language itself. The research program is then to identify structures of
various type in the data, and then define representations that exploit algebraic
properties of this structure. The classical example of this is the canonical deter-
ministic finite automaton being based on the Myhill-Nerode congruence, which
gives rise to the theory of regular grammatical inference [8,9,10]. When learning
cfgs, the sets of strings corresponding to each nonterminal must correspond to
distributionally definable sets. In the most basic models we define them to be
congruence classes [11] or the sets of strings that can occur in a given context
[12]. The syntactic concept lattice (scl) of a language [13] is defined by look-
ing at the relation between substrings and contexts in languages. This has now
given rise to several different learnability results and formalisms [14,15,16]. The
scl is a residuated lattice. These objects are well known as models of various
types of substructural logics [17], and as one of the foundations of the Lambek
calculus. Thus a natural question arises as to the precise nature of the relation-
ship between Lambek grammar and grammars of various types based on the
scl. It might be possible, for example, to construct efficient learning algorithms
for some subclasses of categorial grammars — [7] showed that some interesting
classes are learnable, though [18] showed that there are computational problems
with this approach. Conversely, it might be possible to adapt the elegant syntax-
semantics interface of categorial and type-logical grammars to these learnable
models.

There is an additional connection between Lambek grammars and distribu-
tional learning. Learning is in some sense the inverse of generation: learning is
an inverse problem. The slash operators /, \ are the left and right residuals (a
type of inverse) of concatenation and thus have a crucial role in the inference
process; they also correspond directly to distributional properties.

More precisely, if we have a set of strings X and a language L, the set L/X
which we define as {u|∀v ∈ X, uv ∈ L} is exactly the set of strings that has a
certain distributional property. Namely, using notation which we present later,
it is the set of all strings that can occur in all of the contexts {�v|v ∈ X}. This
is also something noted in [3] where Lambek explicitly defines the motivating
operations in distributional terms, as we shall see later.

This paper examines the relationship between the structure of this lattice,
and the structure of models of Lambek grammar. Our main claim is that we can

4 A. Clark

better meet the metatheoretical objectives of Lambek’s program by basing the
grammars we use on the scl, and that more generally we can look at grammars
as being sets of equations that describe algebraic structures associated with the
language.

2 Residuated Lattices

We will start with some standard definitions. A monoid is a simple associative
algebraic structure, 〈M, ◦, 1〉 where M is a set, ◦ is an associative binary op-
eration and 1 is a left and right unit. The standard example is the set of all
strings over a finite alphabet Σ under concatenation; which we write Σ∗, with
the empty string denoted by λ. This is the free monoid generated by Σ. In what
follows we will assume we have some fixed nonempty set Σ. A (formal) language
is a subset of Σ∗.

A context is just an ordered pair of strings that we write l�r. l and r refer to
left and right; � is a symbol not in Σ. 1 We can combine a context l�r with a
string u with a wrapping operation that we write �: so l�r� u is defined to be
lur. We will sometimes write f for a context l�r. The empty context we write
�. Clearly �� x = x.

We will fix a formal language L ⊆ Σ∗; this then defines a relation between
contexts l�r and strings w given by l�r ∼L w iff lwr ∈ L. The distribution of
a string w is defined as CL(w) = {l�r|lwr ∈ L}. We can define a congruence
relation based on distributional equivalence with respect to a language L. We say
u ≡L v iff CL(u) = CL(v). This is an equivalence relation and a congruence; we
write [u]L = {v | u ≡L v}. This gives us a second relevant example of a monoid:
the syntactic monoid which is the quotient monoid Σ∗/ ≡L, whose elements are
the congruence classes and where the natural concatenation operation, [u]L ◦
[v]L = [uv]L, is well defined as this is a congruence. This is not free: this has a
nontrivial algebraic structure that depends on the language; it can be a group,
it can be Abelian, it can be finite or infinite. Indeed this is finite iff the language
L is regular.

The second class of structures we are interested in are lattices; which are
partially ordered sets with least upper bounds (join, written ∨) and greatest
lower bounds (meet, written ∧). The classic example is the lattice of all subsets
of a given set, where meet is set intersection and join is set union. Given the
meet operation we can define the partial order as X ≤ Y iff X = X ∧ Y .

A residuated lattice is a combination of these two structures — a monoid
and a lattice — where the two structures must interact ‘nicely’. Formally we
say that it is a tuple 〈M, ◦, 1,∧,∨, /, \〉, where M is a set, ◦,∧,∨, /, \ are binary
operations and 1 is a constant, such that 〈M, ◦, 1〉 is a monoid, and 〈M,∧,∨〉 is
a lattice.

1 In previous work we have written a context as an ordered pair (l, r). This causes con-
fusion when we consider discontinuous strings, and so here we use this less ambiguous
notation.

Logical Grammars, Logical Theories 5

We can state the interaction requirement as the fact that the following three
conditions are equivalent:

X ◦ Y ≤ Z iff X ≤ Z/Y iff Y ≤ X\Z

This is a slightly stronger requirement than mere monotonicity. The classic ex-
ample of this is the set of all languages over Σ∗, which we denote by 2Σ

∗
, and

where the lattice operations are set intersection and union, and where ◦ is de-
fined to be simple concatenation M ·N = {uv|u ∈M, v ∈ N} and the residuals
are defined naturally to be

M/N = {u|∀v ∈ N, uv ∈M}
N\M = {u|∀v ∈ N, vu ∈M}

It is easy to verify that these definitions satisfy the axioms of residuated lattices.
Note that of course ◦ is not commutative. This lattice is distributive, but in
general these lattices are not. We will use for the rest of the paper this ‘result
on top’ notation, for consistency with the literature in residuated lattices.

Given the definitions it is easy to see that (X/Y) ◦ Y ≤ Y . Similarly it is
easy to establish the following identities, and many others, which will be very
familiar to those who know the Lambek calculus.

Composition (X/Y) ◦ (Y/Z) ≤ (X/Z) and (Z\Y) ◦ (Y \Z) ≤ (Z\X)
Associativity (Z\X)/Y = Z\(X/Y)
Lifting X ≤ Y/(X\Y) and X ≤ (Y/X)\Y .

However there are also identities that have no counterparts in the Lambek cal-
culus. These are ones that use the operations ∧ and ∨ such as for example the
fact that X ∧ Y ≤ X . These are however valid in the full Lambek calculus,
augmented with appropriate inference rules for these connectives.

2.1 Syntactic Concept Lattice

Given a particular language, L, we have a particular monoid, the syntactic
monoid of that language. In just the same way, there is a residuated lattice
associated with the language that we call the syntactic concept lattice. This is
the lattice of all distributionally definable subsets of strings in a language; we
will denote this B(L).

There are a number of equivalent ways of defining this; we will use a way
which emphasizes the links with Galois connections and residuated maps. As
noted above, we can consider the relation between strings and contexts defined
by a language. Given this relation we can then define two maps from sets of
strings to sets of contexts and vice-versa. These are traditionally called ‘polar’
maps and we will denote them both by the use of ′. Intuitively, given a set
of strings S, we can define the set of contexts S′ to be the set of contexts that

6 A. Clark

appear with every element of S. This is sometimes called the distribution of the
set S in the language L.

S′ = {l�r | ∀w ∈ S lwr ∈ L} (1)

If S consists of a single string w, then S′ is just the same as CL(w). If S contains
two strings, then it will be the intersection of the distribution of those two
strings. Clearly if S ⊆ T then S′ ⊇ T ′ – as we make the set of strings larger, the
intersection of their distributions will only decrease.

Dually, we can define for a set of contexts C the set of strings C′ that occur
with all of the elements of C

C′ = {w | ∀ l�r ∈ C lwr ∈ L} (2)

Consider now for any set of strings S the set of strings S′′. It is easy to verify
that S′′ ⊇ S, and furthermore that (S′′)′′ = S′′ – in other words, this is a closure
operation. We say that the set of strings S is closed iff S = S′′.

Note that for any set of contexts C, C′ is a closed set of strings. We can thus
define a closed set of strings in two ways: either by picking a set of strings S and
closing it to get S′′ or by picking a set of contexts C which defines the set C′.
We call the former method a primal method, and the latter a dual method.

It is easy to see that L itself is a closed set of strings. L′ will contain the
empty context �. As a result any string in L′′ must occur in the context � and
is thus in L; therefore L = L′′. Similarly Σ∗ is always closed.

We can consider, for a language L, the set of all closed sets of strings of the
language. Interestingly, this set is finite if and only if the language is regular.
For example, the language L = Σ∗ only has one closed set of strings, Σ∗. The
infinite regular language L = (ab)∗ has 7 closed sets of strings. These consist of
the four sets ∅, {λ}, L,Σ∗ together with 3 other sets which are bL, La and bLa.

These closed sets form a lattice – the partial order is given by set inclusion
and meet and join are defined as S ∧ T = S ∩ T and S ∨ T = (S ∪ T)′′. We
define a concatenation operation ◦ of two closed sets of strings as S ◦T = (ST)′′;
ST is not necessarily a closed set, and so to make the operation well defined
we take the closure. Note the difference between this definition and ‘normal’ set
concatenation S · T . Given the language (ab)∗, if we concatenate the two closed
sets of strings La and bL, we get the language LabL = (ab)+. This is not closed:
((ab)+)′′ = (ab)∗ = L. So La ◦ bL = L which is not equal to LabL.

While the concatenation is different from concatenation in the lattice 2Σ
∗
,

there are two residual operations which are identical. Thus if S and T are closed
then S/T and S\T are also closed. We can verify that the closed sets of strings
with respect to a language L form a residuated lattice, which we denote B(L).
See [13] for further details 2. Note that the natural map from 2Σ

∗ → B(L), given
by hL(S) = S′′ is a homomorphism of ◦,∨ and 1.

2 In that paper we present the lattice as a collection of ordered pairs of sets of strings
and sets of contexts. In this paper we will consider the mathematically equivalent
formulation just as sets of strings.

Logical Grammars, Logical Theories 7

3 Types Should Be Closed Sets of Strings

Let us now start to consider the relationship between the scl, B(L), and the
system of types that is used by Lambek grammars. This can be framed in a
number of different ways, mathematically, conceptually and empirically.

The empirical question is whether, in natural languages, the types correspond
to closed sets of strings. Lambek clearly thought so: indeed we find in [3] the
following statement:

We shall assign type n to all expressions which can occur in any
context in which all proper names can occur.

Let us look at this statement carefully. Suppose we have a language L and a set
of strings N that is the set of proper names. The set of contexts in which all
proper names can occur is just the set N ′ using the polar maps defined earlier.
The set of expressions which can occur in any of N ′ is just N ′′. So the type n
corresponds exactly to the closed set of strings N ′′; since the start symbol S
corresponds to the language L, then all product free types will correspond to
closed sets of strings.

The second way of looking at this is as a mathematical claim: is it the case that
for all Lambek grammars, the types correspond to closed sets of strings? Here we
can give a clear negative answer: it is easy to construct Lambek grammars where
the types correspond to quite arbitrary sets of strings. For example consider the
language L = {anbnc | n > 0}. The closure of {ab} is {anbn | n > 0}, but
one could write a grammar where there is a type which generates any finite or
infinite context-free subset of that closed set.

Conceptually, we can make additional arguments in favour of this represen-
tational assumption. Given that we have exactly this structure why would we
impose another structure on it? Using a Lambek grammar implicitly imposes
a residuated lattice structure on the language [5]. On grounds of general par-
simony, in the absence of a convincing reason to use a different structure, we
should use a grammar which follows the existing objectively valid empirically
based structure, rather than using some other more arbitrary one: a convincing
reason would be if the restriction affected the weak or strong generative capacity
of the formalism. We now consider this possibility.

3.1 Weak Generative Power

Lambek grammars can represent any context-free language. However if we add
the restriction that the types must correspond to closed sets of strings, then it
is natural to ask whether we lose any weak generative power. The somewhat
surprising answer is that we do not.

Suppose we have a context-free language defined by a cfg, G, which we
assume is in Greibach normal form. For each nonterminal N we define a set of
strings which is the closure of the set of strings in the yield of N : {w|N ∗⇒G w}′′.
And for each terminal symbol a we define a type A which has value v(A) = {a}′′.

8 A. Clark

For an element of (V ∪Σ)+ we extend the type function v using ◦, in the obvious
way: v(aβ) = v(a) ◦ v(β) and v(Nβ) = v(N) ◦ v(β). We can then prove that if
N → α is a production then v(N) ⊇ v(α) [15]. We can therefore construct a
categorial grammar in the standard way since if the rule is N → aM1 . . .Mk

then a ∈ v(N/Mk/ . . . /M1), and so we can assign the type N/Mk/ . . . /M1 to a.
Any derivation of a string with respect to the cfg can be turned into a valid
derivation with respect to the Lambek grammar, and, conversely, any string
generated by the Lambek grammar will be in the language by the soundness of
the Lambek calculus.

3.2 Strong Generative Capacity

In contrast, from the point of view of strong generative capacity, that is to say in
terms of the sets of structural descriptions that our grammar assigns to strings,
we do give up some modeling power. In particular we lose the ability to describe
distributionally identical strings in different ways. More precisely, we can propose
the following principle: If for two letters a, b ∈ Σ, the distribution of a is a subset
of the distribution of b, then for any strings l, r the set of structural descriptions
assigned to lar must be a subset of the set of structural descriptions assigned to
lbr, modulo some relabeling to reflect the difference between a and b.

If, for example, two letters are distributionally identical, then in this model,
they must be treated identically. In a normal Lambek grammar, or context-free
grammar, we are free to treat them as being completely different. Consider the
following example: a language L which has two different grammars which are
weakly equivalent but assign different structural descriptions to the strings. To
be concrete, suppose we have (ab)+ which admits the two cfgs, G1 which has
productions S1 → ab, S1 → abS and G2 which has the productions S2 → ab
S2 → aT b, T → ba, T → bS2a. Consider the language (c|d)(ab)+. We could have
a grammar then with two rules S → cS1 and S → dS2. This will assign different
trees to strings starting with c and strings starting with d even though c and
d are in this case completely distributionally identical. This sort of situation is
ruled out by this model – if natural languages had this sort of behaviour then
the type of distributionally motivated model that we propose here would be
clearly incorrect. If on the other hand there is this type of connection between
the distributional properties and the structural properties of the language, then
this would indicate that we are on the right track.

3.3 Consequences

Let us now proceed on the assumption that we want the types in our grammar
to correspond to closed sets of strings. We fix a target language L∗. We start by
leaving the Lambek grammar formalism completely unchanged, and making the
representational assumption that the types are closed sets of strings. We assume
a finite set of primitive types Pr, which we extend to a set of product free types
Tp(/, \) using just the two connectives /, \. We assume that we have a function
v, a valuation, from these types to closed sets of strings, v : Tp(/, \)→ B(L∗),

Logical Grammars, Logical Theories 9

which is defined on the primitive types and then extended recursively to the
complex types using v(R/T) = v(R)/v(T) and v(R\T) = v(R)\v(T). We assume
that one primitive type S is the start type such that v(S) = L∗.

Since the scl is a residuated lattice, the Lambek calculus is sound. That is to
say, if we have a sequent Γ → X that is derivable in the Lambek calculus then
v(Γ) ⊆ v(X) where we extend v to Tp+ using ◦. We then make a finite lexicon
which is a finite assignment of types to elements of Σ, and we require that it
satisfy the obvious compatibility condition that if a has type T then a ∈ v(T).
This is the condition that is called correctness in [5].

This gives us a Lambek grammar. Note that since the Lambek calculus is
sound, and because of the compatibility condition the type assignment satisfies
we have the following trivial lemma, whose proof we omit.

Lemma 1. L(G) ⊆ L∗.

Example 1. Suppose L∗ = {anbn|n > 0}. The closed sets of strings include
{a}, {b}. We assign type A to {a}, B to {b} and S to L. We then have the
infinite set of derived types A/A, S/B etc. each of which refer to closed sets
of strings. v(A/A) = {λ}, v(S/B) = {ai+1bi|i ≥ 0}, v((S/B)/S) = {a}, and
so on. Since a ∈ v(S/B) and in v((S/B)/S) we assign a the two types S/B
and (S/B)/S and to b we assign the type B. This gives us a Lambek grammar.
Clearly ab ∈ L(G) since S/B,B is a valid type assignment and we can prove
S/B,B → S. Similarly aabb ∈ L(G) through the type assignment (S/B)/S, S/
B,B,B. Indeed L(G) = L∗.

This grammar is adequate in Lambek’s sense – it defines the correct language.
Of course, we needed to manually choose which primitive types we should use.
In this case we only needed to use the ‘natural’ types – namely the closures of
the singleton sets of elements of Σ, A = {a}′′ and B = {b}′′, and the special type
S. These particularly simple types have a fixed valuation in a given language.

Contrast this to the approach taken by Buszkowski in [5]. There we start with
a fixed grammar. For a primitive type T , v(T) is defined to be the set of strings
such that there is a valid type assignment so that we can derive T from that type
assignment. Given this we then extend it to the set of all product free types.
We can then ask whether the type assignment (a, T) satisfies a ∈ v(T). Here we
already have a semantics for the types before we start defining the grammar,
and so it is easy to stipulate this correspondence as a condition.

4 Finite Representations of Closed Sets

In the preceding discussion we simply stipulated what the relevant closed sets
of strings were. This glosses over an important problem – how to identify or
refer to a closed set of strings. In the earlier example we started with some
primitive types which referred to the sets {a}′′ which are just the closed sets
of strings defined by a single element of Σ, and the language itself, L, which
is always a closed set. To avoid confusion, we will use a notational convention

10 A. Clark

from mathematical logic and use ȧ for the type (symbol in the metalanguage)
to distinguish it from the symbol a ∈ Σ in the object language. We will use
only these ‘natural’ types as our primitive types: one type ȧ for each element a
of Σ and one special type L̇, which refers to L, together with the extra type λ̇,
which denotes the closure of the empty string. In what follows we will eliminate
all other primitive types, as they are in a sense arbitrary, and rely only on these
more basic ones which have a well defined semantics.3 We will also augment our
set of connectives to include not just the two connectives /, \, but also a product
•, and the two lattice operations ∨,∧. Our set of types TpΣ is thus the closure
of these primitive types under the five binary connectives.

Given a language L, we recursively define the value of all types using a valu-
ation vL, a function from TpΣ → B(L), which is defined in Table 1.

Table 1. Interpretation of the basic types and connectives

Primitive types Lattice connectives Monoid connectives

vL(ȧ) = {a}′′ vL(R ∨ T) = (vL(R) ∪ vL(T))
′′ vL(R • T) = (vL(R) · vL(T))′′

vL(L̇) = L vL(R ∧ T) = vL(R) ∩ vL(T) vL(R/T) = vL(R)/vL(T)

vL(λ̇) = {λ}′′ vL(R\T) = vL(R)\vL(T)

Note that for any term T , vL(T) is a closed set of strings, an element of B(L).
We are interested in ways that we can use some simple finite expression to

define, or refer to, a closed set of strings in a language. There are two different
strategies we can use to define closed sets of strings. The first, which we call a
primal approach, involves specifying a finite set of strings S; this will define the
closed set S′′. Alternatively, we can pick a finite set of contexts C and use this to
define closed set C′. Using these two approaches we can express both the primal
and dual approaches using just complex types formed from these ‘natural’ types.
Suppose we have a single string of length n, w = a1 . . . an. We will write ẇ as
an abbreviation for the complex type ẇ = ȧ1 • (ȧ2 . . . ȧn). It is easy to see that
v(ẇ) = {w}′′, and so we can represent the set of strings {w}′′ using types of the
form ẇ. Similarly suppose we have a set of strings X = {u, v}. We can refer to
the closed set of strings X ′′ using the type Ẋ = u̇∨ v̇. Again it is easy to see that
v(Ẋ) = X ′′. Similarly for any finite set of stringsX we define the associated term
Ẋ. There are of course many different terms, by associativity of concatenation
and commutativity and associativity of union, which all denote the same closed
set of strings – we assume that we fix some particular one according to some
arbitrary convention.

In the dual situation we will have a finite set of contexts, C which defines a set
of strings C′. Suppose C = {l�r}; we define Ċ to be the complex type (l̇\L̇)/ṙ.
Suppose u ∈ C′. This means that lur ∈ L. Suppose l2 ∈ {l}′′ and r2 ∈ {r}′′ then
l2ur2 ∈ L so u ∈ v(Ċ). Indeed v(Ċ) = C′. If C has more than one element, then

3 We do not consider here � and ⊥ as they seem not to be necessary for syntactic
description.

Logical Grammars, Logical Theories 11

we will define a term using ∧: If C = {l1�r1, . . . , lk�rk}, we define Ċ = ((l̇1\L̇)/
ṙ1) ∧ . . . ((˙lk\L̇)/ṙk). Again it is straightforward to verify that v(Ċ) = C′.

Therefore in order to define closed sets of strings using either the primal
or dual methods, we need only use the basic natural types that refer to the
individual elements of Σ and the language itself. There is no need to use any
additional arbitrary primitive types. This comes at a price – we cannot refer
to all closed sets of strings in all languages using only finite terms of this form.
This restricts the class of languages we can define in this way in a nontrivial way.
Contrast this case with that of congruential languages [11], where the restriction
to congruence classes causes some limitation in descriptive power, but it is easy
to refer to each congruence class (simply by referring to any string in the class).
Here, we lose no descriptive power, but cannot in some cases refer to the relevant
classes of strings using only a finite description.

5 Grammars as Sets of Equations

Having eliminated all of the arbitrary symbols, we are left only with symbols
that have a clear denotation in our language. We can therefore define statements
using these symbols to say things about the language we are modeling that may
be either true or false.

We have a set of types or terms, using the primitive symbols and the binary
operations, that we call TpΣ . Each term refers to a particular closed set of
strings in a language using the valuation vL.

We then add one relation symbol, equality,
.
=, again using the dot convention

to distinguish this as a symbol in the metalanguage. We will consider equations
of the form R

.
= T for R, T ∈ TpΣ .

Definition 1. An equation R
.
= T is true in the language L, which we write

L |= R
.
= T , iff vL(R) = vL(T)

Note that we can state inequalities using only the symbol
.
= since (T ∧R) .

= R is
true iff vL(T) ⊆ vL(R). We will use S ⊆̇T as a shorthand for such an equation.

Every equality or inequality of this form is either true or false of a particular
language. The statement w ∈ L becomes the equation ẇ ⊆̇ L̇, in the sense that
L |= ẇ ⊆̇ L̇ iff w ∈ L. The statement u ≡L v becomes u̇

.
= v̇. Clearly there are

variety of statements that can be framed in this way, from ones which, for cfgs
are polynomially decidable such as the former, to those like the latter, which
are undecidable for cfgs. The lexicon in a Lambek grammar consists of type
assignments (a, T) where a ∈ Σ and T ∈ TpΣ which in this formalism can be
written as equations of the form ȧ ⊆̇T . We do not restrict ourselves only to this
sort of equation but consider for the moment any kind of equation.

We can therefore view a grammar as a set of equations that are true of the
language, or more strictly true of the syntactic concept lattice of the language.
More formally, let E be a finite set of equation; we say that L |= E iff L |= E
for all E ∈ E . If this is the case then we say that L is a model for E . Note that
there will always be at least one model: the language L = Σ∗ has a trivial scl
with only one element, and so it satisfies all sets of equations.

12 A. Clark

Example 2. Consider the grammar of Example 1. We have two nontrivial as-
signments of the word a: L̇/B and (L̇/B)/L̇. These two assignments correspond
to the inequalities ȧ⊆̇L̇/ḃ and ȧ⊆̇L̇/ḃ/L̇. These correspond to the statements
{a}′′{b}′′ ⊆ L and {a}′′L{b}′′ ⊆ L, both of which are true for the language in
question.

We can define a semantic notion of entailment: If every language L that satisfies
all of the equations in E also satisfies another equation E then E |= E. In
other words, all models of E are also models of E ∪ {E}. We could define a
language on the basis of this semantic entailment: {w ∈ Σ∗ | E |= ẇ ⊆̇ L̇},
but it is more convenient, we think, to use a syntactic notion of entailment
using a syntactic calculus. We can code the axioms of the residuated lattices
using equations and functions of various arities. We code the primitive types
ȧ, λ̇, L̇ as constant symbols, and have a countable set of variables x, y, z,
For example associativity of the monoid is defined as: x • (y • z) .

= (x • y) • z,
using implicit universal quantification as in equational logic. We assume a finite
equational basis for residuated lattices that we write RL and we write E � E for
the syntactic notion of entailment under Birkhoff’s equational deductive system
using E and RL. This gives us a slightly different definition that we will now
use.

Definition 2. A finite set of equations E defines a language over Σ, L(E) =
{w ∈ Σ∗ | E � ẇ ⊆̇ L̇}

This does not entirely coincide with the definition of semantic entailment, in
spite of Birkhoff’s completeness theorem. This is because the notion of semantic
entailment restricts the class of models to lattices that are the scls of languages,
whereas the equations that we use to define residuated lattices allow all residu-
ated lattices.

Many different formalisms can be cast in this light: they all have weak genera-
tive power properly included in the class of conjunctive grammars [19]; a context
sensitive formalism that properly includes the cfgs. The use of terms with ∧
takes us out of the class of cfls [20].

An advantage of framing things in this way is that grammar construction may
become a computationally tractable problem, because it can be decomposed into
a collection of smaller problems. Each equation is either true or false with respect
to the language being modeled. If a grammar overgenerates then this is because
at least one equation in the grammar is false. The validity of each equation can
be evaluated and tested independently of all others. This means that the learning
algorithm only has to deal with a set of independent, local problems rather than
one single global problem. As a result for these formalisms we can in general
devise computationally efficient learning procedures [21,22,11]. However, given
the undecidability of this logic in general, we will need to restrict the sorts of
equations we use in order to exploit this property efficiently.

Logical Grammars, Logical Theories 13

5.1 Lambek Grammars as Equations

We will start with Lambek grammars. We assume that all of the primitive types
in the grammar can be defined using equations, as in Section 4, and that the
grammar is adequate. If we assign the type T to a word a in a Lambek grammar,
then this is equivalent to the inequality ȧ⊆̇T . We assume that all of these type
assignments are true. Indeed if we assign to a word a the two types R, T then
this is equivalent to the single type assignment, ȧ ⊆̇R ∧ T since if a ∈ v(T) and
a ∈ v(R) then a ∈ v(R)∩v(T) = v(R∧T)[20]. We can therefore code the lexicon
of a Lambek grammar as a set of equations E , one per element of Σ. We can
then show that the language defined by the Lambek grammar is exactly equal
to L(E). The two sets of derivations though are not entirely the same for reasons
we will explain in the context of cfgs in the next section.

5.2 Context-Free Grammars

We can also frame context free grammars as a system of equations of this type.
Suppose we have some cfg G in, for simplicity, Chomsky normal form. For a
nonterminal N we can define the corresponding set of strings as the closure of
the set of yields {w|N ∗⇒G w}′′. We assume that for each nonterminal in G,
the corresponding closed set of strings can be expressed as a finite term, which
we will write as Ṅ . So vL(Ṅ) = L(G,N)′′. Clearly S can be represented as
the term L̇. Then we can convert each production of the form N → PQ to an
equation which states that the right hand side is a subset of the left hand side:
Ṗ •Q̇ ⊆̇ Ṅ . Each production of the form N → a is an equation of the form ȧ ⊆̇ Ṅ ,
and an epsilon-production is of the form λ̇ ⊆̇ L̇. Therefore we can define for each
production in the grammar an equation, giving a set of equations EG such that
S

∗⇒G w iff EG � ẇ ⊆̇ L̇
Note that the derivation process in the grammar is not exactly the same as

the proof with respect to the set of equations. For example, if a nonterminal
N is represented by a dual term, say l̇\L̇/ṙ, and we have a production N → a,
then from ȧ ⊆̇ l̇\L̇/ṙ we can deduce directly using the residuation operations that
l̇• ȧ• ṙ ⊆̇ L̇ i.e. that lar is in the language, even if, for example N is not reachable
in the grammar. This does not affect the set of strings that are generated, since
the equations are all true, and thus we will not overgenerate. Similarly, when
we consider nonterminals that are defined primally, N might correspond to the
closure of the finite set {w1, . . . , wk}. In this case we will have a direct proof
of ẇi ⊆̇ Ṅ , which might not correspond to a cfg derivation. Thus it might be
desirable to restrict the class of derivations available to exclude these ones which
though legal, fail to correspond to proper cfg derivations.

In both the case of cfgs and Lambek grammars, we cannot represent all
context free languages in this way, since there are languages where the closed
sets that we require cannot be defined using only finite terms of the types we
consider here.

14 A. Clark

5.3 Finite Automata

We can however represent all regular languages using finite automata in this
manner, since residual languages are closed sets. Recall that the residual lan-
guages are defined as u−1L = {v|uv ∈ L}, for some u ∈ Σ∗. Consider a deter-
ministic finite automaton with state set Q, initial state q0, transition function
δ and set of final states F ⊆ Q. For each state in q ∈ Q, assuming they are
all reachable, we can find a string wq such that δ(q0, wq) = q; we stipulate that
wq0 = λ.

We can therefore represent a state q by the term ẇq\L̇; under this scheme

the initial state is represented by λ̇\L̇ which will have the same value as L̇.
If there is a transition from state q to state r labelled with a then this can
be represented as the equation: ẇq\L̇⊇̇ȧ • (ẇr\L̇). If a state q is in F this is

represented by the equation ẇq⊆̇L̇ or equivalently λ̇⊆̇ ˙wqf \L̇. It is easy to verify
that if a word w is accepted by the automaton then, if we denote δ(q0, w) = qf ,

then E � L̇⊇̇ẇ • (˙wqf \L̇), and therefore, given that qf ∈ F that E � ẇ ⊆̇ L̇ iff the
automaton accepts w.

5.4 Thue Systems

We can get some more insight by considering a particularly limited form of
equation. In order to say that a string is in the language, we can use an equation
of the form ẇ ⊆̇ L̇. Clearly if we only have equations of this type, we will not
have anything other than a simple finite list of elements of the language. Let
us add a second type of rule: equations of the form u̇

.
= v̇. This states that

{u}′′ = {v}′′ which implies that u ≡L∗ v. A finite set of equations of this type
is exactly equivalent to a Thue system: the only connective we use is ◦ and the
only relation is equality. Recall that a Thue system T is just a finite set of pairs
of strings, that we will write as u↔ v. For example {ab↔ λ} is a simple Thue
system. This defines a congruence of Σ∗, which we write ≡T , as the symmetric
transitive closure of lur ≡T lvr if u ↔ v is in T . This is clearly a congruence
which is called the Thue congruence defined by T ; one of the simplest and earliest
form of rewriting systems. This is essentially the same as a finite presentation
of a finitely generated monoid: we have a finite set Σ of generators, and a finite
set of equations or relations over Σ. The combination of these two types of rules
gives us a simple way of defining languages: for example the Dyck language can
be defined using the two equations ȧḃ

.
= λ̇ and λ̇ ⊆̇ L̇.

Note that the congruence defined by the system will not in general be exactly
the same as the syntactic congruence of the language defined by the system. If
the system of equations defines the language L then clearly if E � u̇

.
= v then

u ≡L v, but not necessarily in reverse.

Example 3. Consider E to consist of ȧḃȧḃ
.
= ȧḃ and ȧḃ ⊆̇ L̇. This defines the

language (ab)+ which is regular. This has a syntactic monoid where aa ≡L bb.
But it is not the case that E � ȧȧ .

= ḃḃ.

Logical Grammars, Logical Theories 15

5.5 Distributional Lattice Grammars

Distributional lattice grammars (dlgs) are a learnable grammatical formalism
explicitly based on a model of the scl [23]; it is therefore straightforward to
convert them into a set of equations that describe it. For reasons of space we
will not present them in full; one of their advantages is that they can compactly
represent an exponential number of equations using only a polynomial amount
of data. The dlg models a partial lattice that considers only a finite set of
contexts We assume that we have a set of k contexts, F = {l1�r1, . . . , lk�rk},
which include the empty context �. We denote this partial lattice by B(L, F);
which consist only of the finite collection of closed sets of strings defined by
subsets of F , together with a concatenation operation defined by

M ◦N = ((MN)′ ∩ F)′

We can finitely represent this partial lattice using the set of contexts, a suffi-
ciently large set of substrings K, and some amount of information about L. In
particular we need to know which elements of F � KK are in L. There is a
map f∗ from B(L, F)→ B(L), which embeds the finite collection of closed sets
defined by subsets of F into the full lattice, which satisfies

f∗(M ∧N) = f∗(M) ∧ f∗(N) (3)

f∗(M ◦N) ⊇ f∗(M) ◦ f∗(N) (4)

These equations therefore justify the following conversion of relations in the
finite lattice into statements about the scl. We use subsets of F to define closed
sets of strings; if C ⊆ F is a set of contexts, we use Ċ for the term that we
use to refer to the closed set of strings C′. We then have the following types of
equations, where X,Y, Z are subsets of F .

ȧ ⊆̇ Ẋ if a ∈ X ′

Ẋ • Ẏ ⊆̇ Ż if X ′Y ′ ⊆ Z ′

Ẋ ∧ Ẏ ⊆̇ Ż if X ′ ∩ Y ′ ⊆ Z ′

The dlg specifies a subset of these equations E and there is a simple cubic time
algorithm for computing for any string w, the maximal set of these contexts C
such that E � ẇ ⊆̇ Ċ. Language membership is then determined by the presence
of the empty context �, equivalent to L̇ in the set C.

6 Discontinuity

So far we have considered continuous individual strings and models based on
simple concatenation. There are three related systems: distributional learning
based on the relation between contexts and strings; Lambek calculus and Lambek
grammars which we can view as the logic of these structures, and context free
grammars.

16 A. Clark

Given the inadequacies of context-free formalisms in general, it is natural to
extend this approach to mildly context sensitive formalisms, which are directly
or indirectly based on modeling discontinuous strings. The formalism most direct
analogous to cfgs is the class of multiple context free grammars [24] (mcfgs) and
we can think of the displacement calculus [1] as its logic. Distributional learning
has also made the same transition [25]. For simplicity, we will just consider the
generalisation to strings with one gap (two components); the generalisation to k
components is straightforward but requires a more elaborate notation.

We define a 2-word to be a pair of strings (an element of Σ∗ × Σ∗) that we
write (v1, v2). We define a 2-context to be a string with 2 gaps: which we can
write u0�u1�u2. We can combine this with a pair of strings to get a string:
u0�u1�u2 � (v1, v2) = u0v1u1v2u2. Given a particular language, this defines a
relation between 2-contexts and 2-words. We again define the polar maps given
sets of 2-contexts C2 and 2-words S2.

C′
2 = {(v1, v2)|∀f ∈ C2, f � (v1, v2) ∈ L}

S′
2 = {f |∀(v1, v2) ∈ S2, f � (v1, v2) ∈ L}

Again we say that a set of 2-words, S2 is closed if S′′
2 = S2. The set of all closed

sets of 2-words in a language forms a lattice, which we call B2(L). These closed
sets have an interesting structure, and are closely related, as one would expect,
to the elements of B(L), which we will now write B1(L). Indeed suppose X2 is
a closed set of 2-words (an element of B2(L)). Suppose X2 ⊇ Y1 × Z1, for sets
of strings Y1, Z1, then X2 ⊇ Y ′′

1 × Z ′′
1 ; in other words we can write any element

of B2(L) as
⋃

i Y
i
1 ×Zi

1, as a union of products of the order-1 lattice. Therefore
there is a natural map fromB(L)×B(L) to B2(L) given by h(X,Y) = (X×Y)′′.
Indeed we can consider these elements to define a relation between two closed
sets of strings: it may be the case that an element of B2(L) is equal to X×Y for
some X,Y ∈ B1(L), in which case the relation is trivial and there is no gain in
using the order 2 lattice. In the interesting cases of non-context-free languages,
this relation in general will be infinite in the sense that it can only be defined
as an infinite union of products. In linguistically interesting cases this relation
will often correspond to the relation between a displaced constituent (e.g. a
wh-phrase in English) and the constituent that it has been displaced out of.

We can define a number of concatenation operations, and their associated
residuals. For two 2-words, there are a number of ways that they can be con-
catenated to form another 2-word or a word. For example, (u1, v1) and (u2, v2)
could be combined to form (u1u2, v1, v2), (u1, u2v1v2), (u1u2, v2v1) and many
others. For brevity we will only consider some of these. Given sets of 2-words
X2, Y2, we can define a family of concatenation operations of which we just
show two: X2 ⊕ Y2 = {(u1u2, v1v2)|(u1, v1) ∈ X2, (u2, v2) ∈ Y2}′′, X2 � Y2 =
{(u1u2, v2v1)|(u1, v1) ∈ X2, (u2, v2) ∈ Y2}′′. We have taken the closure of the re-
sulting set of multiwords, giving in these cases associative binary operations on
B2(L). The operation � corresponds to the mcfg production Z(u1v1, v2, u2) :=
X(u1, u2), Y (v1, v2) in Horn clause notation. Indeed {(λ, λ)}′′ is a left and right

Logical Grammars, Logical Theories 17

identity for both operations. Unsurprisingly we can again define the left and right
residuals of the operations which will give us some more residuated structures.

These operations are

X2/�Y2 = {(v1, v2) | ∀(u1, u2) ∈ Y2(v1u1, u2v2) ∈ X2} (5)

Y2\�X2 = {(v1, v2) | ∀(u1, u2) ∈ Y2(u1v1, v2u2) ∈ X2} (6)

The sets defined here are closed, and satisfy the equations X2 � Y2 ⊆ Z2 iff
X2 ⊆ Z2/�Y2 iff Y2 ⊆ X2\�Z2.

At this level of the hierarchy again we have the same metatheoretical issues.
We can represent the tuples of strings directly using a mcfg; the same arguments
that we used in the case of cfgs suggest that the nonterminals of dimension 2
should represent closed sets of 2-words. We can view the logic, in this case Mor-
rill’s discontinuous calculus, as the equational theory of this algebraic structure.
Finally, these can be learned using an extension of the distributional techniques
we discussed earlier [25,26] .

7 Discussion

The standard model theory for the Lambek calculus uses free models of various
types. In particular we have the standard models: the free semigroup models
2Σ

+

(or 2Σ
∗
if we allow empty antecedents). It is easy to verify that the Lambek

calculus is sound with respect to these free models, and it can also be proved to
be complete [2]. Morrill [1] says:

Since language in time appears to satisfy the cancellation laws, the
free semigroup models appear to be the most ontologically committed
and therefore scientifically incisive models.

The cancellation laws are of the form u • v = u • w implies v = w. Clearly
if equality here just means equality of strings, then this law is true, since the
strings are part of a free semigroup. But if = refers to linguistic/distributional
equality, then this is not true: for example, words can be ambiguous in isolation
and unambiguous in context. “the can” might be distributionally identical to
“the jug” but “can” and “jug” are very different.

Lambek’s stipulation that the algebraic structures must be free is thus, from
our point of view partially correct. The strings are generated freely giving us the
free monoid Σ∗; but the subsets of these are not – we do not have the free join
semilattice but only the lattice of closed sets.

7.1 Proof Theory

In general the relation of syntactic entailment is undecidable. Post [27] showed
that in general determining whether x ≡T y is undecidable with respect to a
Thue system. Nonetheless there are subclasses of these sets of equations which
have inference procedures that are efficient for certain classes of conclusions.
Recall that in order to parse, we are only interested in proving equations of the
form ẇ⊆̇L̇.

18 A. Clark

Lexicalisation is one solution. By requiring all the equations to be of the form
ȧ⊆̇T , we can reduce the problem to one which is decidable since it is, approxi-
mately, the equational theory of residuated lattices. This solves that part of the
problem. But this is only one solution. For suitable other classes of equations
the required proofs can be solved efficiently: indeed in polynomial time, rather
than the NP-hardness of the Lambek calculus.

7.2 Conclusion

The main claim of this paper is that since languages have an intrinsic residuated
lattice structure, grammatical formalisms that use residuated lattices, such as
Lambek grammars should be based on this structure. The crucial consequence
of this is that we can then learn these grammars efficiently under various differ-
ent learning paradigms. We deviate in two important respects from Lambek’s
metaprogram – we abandon the free models, and we may abandon lexicalisation.
Lambek says:

If we take such a program seriously we are not allowed to state a rule
such as Ns ⊆ S/(N\S) which although plausible4 is neither listed in the
dictionary nor derivable from general principles. . . .

We might say that we are not concerned with rules that are ‘plausible’, but
rather with rules that are true or correct in a given language. If they are true,
and we can reason efficiently with them using a sound logical calculus, and in
addition learn them, then there seems little reason to forbid them.

Pereira [28] in his review of Morrill’s 1994 book on logical grammar says:

Types and allowed type inferences are not arbitrary formal machinery
but instead reflect precisely the combinatory possibilities of the under-
lying prosodic algebra.

Here our prosodic algebra is much simpler than the one Pereira is discussing, but
the observation is very apt. Grammars are theories and languages (or algebras
associated with them) are models. Substructural logics can be viewed as the
equational theories of certain types of lattices; logical grammars then can be
viewed as theories of syntactic concept lattices. We can view this as a principled
misinterpretation of Chomsky’s dictum [29],

A grammar of the language L is essentially a theory of L.

Of course, Chomsky meant a scientific theory. We, in contrast, propose viewing a
grammar as a finite set of equations whose deductive closure defines the language:
as a logical theory in other words.

This reduces the arbitrariness of grammars – there is a single specific alge-
braic object that we are trying to model, be it the syntactic concept lattice, the
syntactic monoid, or some multisorted algebra of discontinuous strings as in Sec-
tion 6. Many different formalisms can be framed in this way, that depend on the

4 Ns here refers to a mass noun like ‘water’.

Logical Grammars, Logical Theories 19

type of algebra that we are modeling. For suitable restricted sets of equations
we can perform the relevant inferences efficiently.

Learnability has always been a central concern of modern linguistics, and
the uniformity of the syntax semantics interface as conceived in the categorial
grammar tradition is very appealing from this perspective. As Pereira says:

. . . uniformity must also go backwards, if the use and meaning of a
sign is to be induced from its appearance with other signs of appropriate
type.

By basing the logic on a well defined observable structure, we can learn the use
cleanly; and perhaps ultimately the meaning as well.

Acknowledgments. I am grateful to Glynn Morrill, Shalom Lappin, Hans
Leiss, Ryo Yoshinaka, Zhaohui Luo and Robin Adams for helpful discussions.
Any errors are of course my own.

References

1. Morrill, G.: Categorial grammar: Logical syntax, semantics and processing. Oxford
University Press (2011)

2. Pentus, M.: Models for the Lambek calculus. Annals of Pure and Applied
Logic 75(1-2), 179–213 (1995)

3. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65(3), 154–170 (1958)

4. Lambek, J.: Categorial and categorical grammars. In: Oehrle, R.T., Bach, E.,
Wheeler, D. (eds.) Categorial Grammars and Natural Language Structures, vol. 32,
pp. 297–317. D. Reidel (1988)

5. Buszkowski, W.: Compatibility of a categorial grammar with an associated category
system. Mathematical Logic Quarterly 28(14-18), 229–238 (1982)

6. Buszkowski, W., Penn, G.: Categorial grammars determined from linguistic data
by unification. Studia Logica 49(4), 431–454 (1990)

7. Kanazawa, M.: Learnable classes of categorial grammars. PhD thesis, Stanford
University (1994)

8. Angluin, D.: Inference of reversible languages. Journal of the ACM 29(3), 741–765
(1982)

9. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

10. de la Higuera, C.: Grammatical inference: learning automata and grammars. Cam-
bridge University Press (2010)

11. Clark, A.: Distributional Learning of Some Context-Free Languages with a Mini-
mally Adequate Teacher. In: Sempere, J.M., Garćıa, P. (eds.) ICGI 2010. LNCS,
vol. 6339, pp. 24–37. Springer, Heidelberg (2010)

12. Shirakawa, H., Yokomori, T.: Polynomial-time MAT Learning of C-Deterministic
Context-free Grammars. Transactions of the Information Processing Society of
Japan 34, 380–390 (1993)

13. Clark, A.: A Learnable Representation for Syntax Using Residuated Lattices. In:
de Groote, P., Egg, M., Kallmeyer, L. (eds.) FG 2009. LNCS (LNAI), vol. 5591,
pp. 183–198. Springer, Heidelberg (2011)

20 A. Clark

14. Clark, A.: Learning Context Free Grammars with the Syntactic Concept Lat-
tice. In: Sempere, J.M., Garćıa, P. (eds.) ICGI 2010. LNCS, vol. 6339, pp. 38–51.
Springer, Heidelberg (2010)

15. Yoshinaka, R.: Towards Dual Approaches for Learning Context-Free Grammars
Based on Syntactic Concept Lattices. In: Mauri, G., Leporati, A. (eds.) DLT 2011.
LNCS, vol. 6795, pp. 429–440. Springer, Heidelberg (2011)

16. Yoshinaka, R.: Integration of the Dual Approaches in the Distributional Learning
of Context-Free Grammars. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012.
LNCS, vol. 7183, pp. 538–550. Springer, Heidelberg (2012)

17. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated lattices: an algebraic
glimpse at substructural logics. Elsevier (2007)

18. Costa Florêncio, C.: Learning categorial grammars. PhD thesis, Utrecht University
(2003)

19. Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Com-
binatorics 6(4), 519–535 (2001)

20. Kanazawa, M.: The Lambek calculus enriched with additional connectives. Journal
of Logic, Language and Information 1(2), 141–171 (1992)

21. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

22. Clark, A.: Towards General Algorithms for Grammatical Inference. In: Hutter, M.,
Stephan, F., Vovk, V., Zeugmann, T. (eds.) ALT 2010. LNCS (LNAI), vol. 6331,
pp. 11–30. Springer, Heidelberg (2010)

23. Clark, A.: Efficient, correct, unsupervised learning of context-sensitive languages.
In: Proceedings of the Fourteenth Conference on Computational Natural Language
Learning, Uppsala, Sweden, pp. 28–37. Association for Computational Linguistics
(July 2010)

24. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoretical Computer Science 88(2), 229 (1991)

25. Yoshinaka, R.: Efficient learning of multiple context-free languages with mul-
tidimensional substitutability from positive data. Theoretical Computer Sci-
ence 412(19), 1821–1831 (2011)

26. Yoshinaka, R., Clark, A.: Polynomial time learning of some multiple context-free
languages with a minimally adequate teacher. In: Proceedings of the 15th Confer-
ence on Formal Grammar, Copenhagen, Denmark (2010)

27. Post, E.: Recursive unsolvability of a problem of Thue. The Journal of Symbolic
Logic 12(1), 1–11 (1947)

28. Pereira, F.: Review of Type logical grammar: categorial logic of signs by Glyn
Morrill. Computational Linguistics 23(4), 629–635 (1997)

29. Chomsky, N.: Syntactic Structures. Mouton (1957)

Ludics and Natural Language: First Approaches�

Christophe Fouqueré1 and Myriam Quatrini2

1 LIPN, Université Paris 13 and CNRS,
christophe.fouquere@lipn.univ-paris13.fr
2 IML, Université d’Aix-Marseille and CNRS

quatrini@iml.univ-mrs.fr

Abstract. Ludics is a rebuilding of Linear Logic from the sole concept
of interaction on objects called designs, that abstract proofs. Works have
been done these last years to reconsider the formalization of Natural Lan-
guage: a dialogue may be viewed as an interaction between such abstrac-
tions of proofs. We give a few examples taken from dialogue modeling
but also from semantics or speech acts to support this approach.

1 Introduction

Ludics is a rebuilding of Linear Logic from the sole concept of interaction on
objects called designs that abstract proofs. Works have been done these last years
to reconsider the formalization of Natural Language: a dialogue may be viewed
as an interaction between such abstractions of proofs. Among the domains that
have been explored, one may cite formal semantics [1] and pragmatism: speech
acts [2] and figures of dialogue [3]. The approach follows what have been done
initially for dialogues [4] where dialogues are modeled in proof theory using
Ludics.

Ludics [5] is a logical framework developed by J.-Y. Girard around 2000. The
motto underlying Ludics is: interaction is a central concept in logic. This motto
may be considered as following the fruitful paradigm between logic and computer
science, namely the Curry-Howard isomorphism. Recall that this isomorphism
establishes a perfect correspondence between programs and their execution on
one side, and formal proofs and cut elimination on the other side. A cut between
conclusions of proofs enables an interaction between these proofs, when one of
the formulas is the conclusion of one proof, whereas the other is a hypothesis of
the other proof. Called modus ponens, it is the main ingredient of reasoning; one
of the main results of proof theory states that it is always possible to normalize
a proof, i.e. to transform a proof with cuts to an equivalent proof without cuts.
The dynamics of computation may therefore be considered as the heart of logic.

After decades of work studying the properties of this dynamics and expanding
its scope of relevance, Ludics reverses priorities of concepts. Traditionally, formu-
las and proofs are first set, the cut being one of the rules used in the definition of
� This work was completed with the support of the ANR project LOCI number 0212

02.

D. Béchet and A. Dikovsky (Eds.): LACL 2012, LNCS 7351, pp. 21–44, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

22 C. Fouqueré and M. Quatrini

what is a correct proof. The cut elimination procedure completes the picture by
adding a dynamics. Then, progressively, to ensure dynamic properties, formulas
and proofs have been refined. Linear Logic [6] illustrates these changes: conjunc-
tion and disjunction connectives are each replaced by two versions, additive and
multiplicative, and the framework of proofnets gives a geometrical presentation
to proofs where the cut elimination property still appears as a property given
a posteriori, i.e. as a reduction of such graphs. A contrario, in Ludics, cut, i.e.
interaction, is a primitive concept. Neither formulas nor proofs are considered
primitive but designs, whose sole purpose is that they carry on the interaction.
In fact, interaction takes place between two designs as a step-by-step travel
through two dual paths, one path in each design. A design is then nothing else
but a set of potential paths where interaction may take place. Moreover, a design
is essentially defined by its counter-designs: those with whom it interacts.

The concrete basic steps of interaction (called actions in Ludics) correspond
to the basic steps of cut elimination. They allow for the exploration of a design as
one may explore a formula through its main connective to its subformulas, and
so on. However, a design abstracts from the notion of formula: a design has only
loci, i.e. adresses, where interaction goes through. When a set of designs is given,
the space where interaction with these designs may take place is also given. This
space is defined by all the counter-designs of each design of this set. This gives an
external viewpoint on designs, from which one may observe regularities. Formulas
may then be retrieved as sets of designs closed relatively to these counter-designs.
Indeed, exploring a set of designs reduces to exploring each design of this set.
When it is closed, a set of designs describes all the ways to explore the object
it represents, until its undecomposable elements. This has to be related to the
concept of a formula, defined inductively by its connectives and subformulas that
compose it until obtaining propositional variables or constants. Moreover, and
this is an essential property of Ludics, some designs associated with a formula
may be proofs (of this formula): those designs that satisfy suitable properties,
among which, precisely, the fact that the exploration can always continue until
a suitable term. So, truthness of a formula requires the existence of some proof
belonging to the set of designs associated to this formula.

The formalization of Natural Language uses these “primitive” objects of the
interaction, upstream of a reconstruction of logic. The fact that interaction is the
fundamental concept of Ludics justifies its relevance to the study of dialogues,
hence also to Natural Language. Remark that Ludics has also been used in the
same spirit for formalizing web processes [7].

Section 2 is devoted to a presentation of Ludics. We describe first what is an
action and what conditions should satisfy a tree of actions to be a design. We give
the definition of interaction between nets of designs and give the main steps for
rebuilding logic. In particular, we recall the main theorems that Ludics satisfies,
i.e. internal completeness. Then we present a sequent calculus that mimics the
structure of designs. Finally, we summarize works that have been done to extend
Ludics.

Ludics and Natural Language: First Approaches 23

Section 3 is an introduction to the formalization of dialogues in Ludics. We
consider short dialogues to show how Ludics may be used. In particular, we
express how to represent a divergent dialogue, and how to represent presuppo-
sitions. Works concerning the modeling of meaning are presented in section 4.
Contrarily to standard semantics, the meaning of an utterance is given by the
way this utterance may be justified, explored in dialogues. Hence a set of designs
may be associated with an utterance. We show with one example that classical
semantics may be retreived thanks to the reconstruction of logic available with
Ludics. Finally we present a few schemas that may be used for representing
simple speech acts.

2 Ludics: Basic Notions

In this section we present the basic concepts of Ludics. The reader may find
thorough presentations of Ludics obviously in [5] but also in [8,9,10,11].

2.1 Actions, Designs, Interaction: An Informal Description

In Ludics, primitive elements of interaction are actions. Actions are polarized
and appear as dual pairs: for each positive action (resp. negative) κ, there ex-
ists a dual negative action (resp. positive) κ and κ = κ. As in game theory, a
justification relation between actions is given. Actions are organized in alter-
nate sequences called chronicles in Ludics. These sequences should satisfy the
following conditions: (i) a positive action can be either initial or justified by a
negative action that precedes it in the sequence, (ii) a negative action, except
the first which may be initial, is justified by the positive action immediately pre-
ceding. Following the metaphor of games, these alternate sequences of actions
can be seen as plays that can be grouped to form strategies named designs in
Ludics [12]. Thus, designs are sets of chronicles that may be interleaved to give
rise to what is travelled during an interaction. Not all sets of chronicles can be
designs: in particular a design should be organized as a forest, with only one
root when the root is a positive action.

An interaction occurs between two designs when each of them contains a
path dual of the other path (e.g. example 1 on the left). It is a travel through
these two designs, which runs as follows:

- It starts with the object that contains as root a positive action (hence unique).
- Every time it goes through a positive action κ of one of the two designs, the
travel continues in the other design on the negative action that is dual κ (when
it exists), then continues on the only positive action that follows this negative
action in the same design.

This process continues as long as positive actions that are visited have a dual
negative action in the other design. If such a negative action is not found, the
process diverges, i.e. fails.

24 C. Fouqueré and M. Quatrini

The trace of an interaction is given by the sequence of pairs of dual actions
followed during this interaction (e.g. example 1 on the right). Conversely, it is
possible, from the trace of an interaction, to recover the minimal designs whose
interaction gives this trace.

Example 1. In figure on the left, circled actions are positive. In figure on the
right, the name of the action is noted in place of the pair of dual actions for
easiness of reading, an arrow from action κ to action κ′ denotes that κ is justified
by κ′.

κ9

κ9

κ8

κ8

κ7

κ6 κ6

κ5 κ5

κ4 κ4

κ3 κ3 κ7

κ2 κ2

κ1 κ1

Interaction between two designs

κ1

κ2

κ3

κ4

κ5

κ6

κ7

κ8

κ9

Trace of the interaction
with justification between

actions.

2.2 Actions, Designs, Interaction: A Formal Presentation

The definition of actions in Ludics is precisely defined by means of the concept of
locus or address. This concept plays a very special role in Ludics as the intended
use consists in replacing logical formulas as designs should replace proofs.

Definition 1 (Action). A proper action κ is a triple (ε, ξ, I) where:
- ε ∈ {+,−} is the polarity of κ,
- the finite sequence of integers ξ is the focus (the address) of κ,
- the finite set of integers I is the ramification of κ.
Besides proper actions, there exists also a special positive action, the daïmon,
noted †.
In the following, we note ξ.i the sequence of integers ξ followed by the integer
i. We note also ε the dual polarity of ε, e.g. if ε = + then ε = −. Finally, if I =
{i1, i2, . . . , in}, then ξ.I is the set of sequences of integers {ξ.i1, ξ.i2, . . . , ξ.in}.
The ramification of an action determines the loci that may be used as continua-
tions during an interaction. Relations of justification and duality follow from the
previous definition. An action (ε, ξ.i, J) is justified by the action (ε, ξ, I) when
i ∈ I. The dual action of the action (ε, ξ, I) is the action (ε, ξ, I).

Ludics and Natural Language: First Approaches 25

The main objects of Ludics are the designs, i.e. sets of chronicles satisfy-
ing specific conditions. A chronicle is a sequence of actions that satisfies also
conditions to ensure in particular justification and linearity.

Definition 2 (Chronicle). A chronicle c is a non-empty, finite, alternate
sequence of actions such that

– Proper positive action: A proper positive action is either justified, i.e. its
focus is built from one of the previous actions in the sequence, or is called
an initial action.

– Negative action: A negative action may be initial, in that case it is the first
action of the chronicle. Otherwise, this action is justified by the positive
action that precedes it immediately.

– Linearity: Actions have distinct foci.
– Daïmon: If the action daïmon is present, this action is the last one of the

chronicle.

Definition 3 (Coherence between chronicles). Two chronicles c1 and c2

are coherent, i.e. c1 ¨ c2, when the following conditions are satisfied:

– Comparability: Either one chronicle extends the other, or they differ first on
negative actions, i.e. if wκ1 ¨ wκ2 then either κ1 = κ2 or κ1 and κ2 are
negative actions.

– Propagation: If the two chronicles diverge on negative actions with distinct
foci, then ulterior actions in one chronicle are distinct from ulterior actions
in the other i.e. if w(−, ξ1, I1)w1σ1 ¨ w(−, ξ2, I2)w2σ2 with ξ1 �= ξ2 then σ1

and σ2 have distinct foci.

A base is associated to each chronicle. A base is a sequent of loci denoted Γ � Δ
such that Δ is a finite set of loci and Γ contains at most one locus. Furthermore,
loci of Γ ∪Δ are pairwise disjoint, i.e. there does not exist a locus that is a sub-
locus of another one. If Γ is empty, the base is positive, otherwise it is negative.
A chronicle c has a base Γ � Δ as soon as either Γ is not empty and its locus
is the focus of the first (negative) action of the chronicle, or Γ is empty and the
first action of c is positive and Δ contains all the foci of initial positive actions
of the chronicle.

Definition 4 (Design, Net)

• A design D, of base Γ � Δ, is a set of chronicles of base Γ � Δ, such that
the following conditions are satisfied:
- Forest: The set is prefix-closed.
- Coherence: The set is a clique of chronicles, i.e. ∀c1, c2, c1 ¨ c2.
- Positivity: A chronicle without extension in D ends by a positive action.
- Totality: D is not empty when the base is positive, in that case each chron-
icle begins with a (unique) positive action.

• A net is a finite set of designs of disjoint bases.

26 C. Fouqueré and M. Quatrini

Designs may also be presented in a sequent-like style: it is a tree whose nodes
are sequents made of loci in place of formulas. An action specifies the relation
between a node and its daughters: loci that are present in nodes are subloci of
ancestors in the tree. The root of the tree contains initial loci that may be used
in an interaction. As the framework is linear, a locus that is initial cannot be a
sublocus of other initial loci.

Definition 5 (Designs in a sequent-style)

– A sequent Γ � Δ is given with two finite sets of addresses or loci Γ and Δ,
i.e. finite sequences of integers, such that Γ contains at most one element
and there is no address of Γ ∪ Δ is an initial sequence of another one.

– A sequent-design (simply called design), with base the sequent Γ � Δ is a
tree of sequents built from the three following rules:

- Daimon
� Δ

†

- Positive rule
. . . ξ.i � Δi . . .

� Δ, ξ
(+, ξ, I)

for i ∈ I, Δi are pairwise disjoint and included in Δ.
- Negative rule

. . . � ξ.I, ΔI . . .

ξ � Δ
(−, ξ, R)

R is a set (that may be empty or infinite) of ramifications. For all I ∈ R,
ΔI , non necessarily disjoint, are included in Δ.

Example 2 (example 1 ctd)

κ9

†κ8

κ6

κ5

κ4

κ3 κ7

κ2

κ1

0.0.1.0.0.0.0 �
� 0.0.1.0.0.0

κ6

0.0.1.0.0 � κ5

� 0.0.1.0
κ4

0.0.1 � κ3

0.0.2.0.0 �
� 0.0.2.0

κ8

0.0.2 � κ7
� 0.0.3.0

†
0.0.3 � κ9

� 0.0
κ2

0 � κ1

a design in a sequent-style

We provide in subsection 2.3 a brief presentation of a sequent calculus related
to Ludics. We already may give intuitions to interpret logically a design. In a
bottom-up reading, a design corresponds to a proof search. To recover a proof in

Ludics and Natural Language: First Approaches 27

Linear Logic, one tries to substitute formulas to addresses. The action specifies
the principle generalized connective of the formula, combining connectives ⊗ and
⊕ for a positive action, or connectives ` and & for a negative action. Subformulas
are found by iterating this operation on premisses of the rule. If this process ends
in specific cases1, without using the daïmon, then the result is an explicit proof
of a formula.

Example 3

– The simplest design consists in a unique positive action, the daimon. It is

noted Dai+: � Γ
†
. It is a positive design. We note later that it interacts

with all negative designs of the same base: the action daïmon ends an inter-
action.

– The fax noted Faxξ,ξ′ is a design recursively defined in the following way:

...

...

Faxξ′.i,ξ.i

ξ′.i � ξ.i ...

� ξ.I,ξ′ (+,ξ′,I)
...

ξ � ξ′ (−,ξ,Pf (N))

The set of finite sets of integers is noted Pf(N). We note later that it allows
for delocalizing a design from a locus ξ to another locus ξ′.

Interaction, i.e. cut elimination, is the process of normalization of specific nets
of designs called cut nets. In a cut net, addresses that appear in the bases of
designs are either distinct, or present once in the positive part of a base and once
in the negative part of a base, such pairs are the cuts of the net. Hence, in a cut
net, the graph made of bases and cuts is acyclic and connex. We give below the
definition of interaction in case of a closed cut net, i.e. addresses in bases are all
part of cuts. The reader may find a definition of interaction for general cut nets
in [5]. Remark that in a closed cut net, there must exist a positive design, i.e.
a design whose base has an empty left part. Such a design is called a principal
design.

Definition 6 (Interaction for closed cut nets). Let R be a closed cut net,
the result of the interaction is a design noted [[R]] and defined in the following
way: let D be the principal design of R, with first action κ,

– if κ is a daïmon, then [[R]] = Dai+,
– otherwise κ is a proper positive action (+, σ, I) such that σ is part of a cut

with another design, whose first action is (−, σ,N) (where N aggregates the
ramifications of the negative actions of same focus σ):
• If I �∈ N , then interaction fails (diverges).
• Otherwise, interaction continues with the connected part of the subde-

signs we get with I and the remainder of R.

Hence either an interaction of a closed cut net diverges, or it does not end, or
the result is the design Dai+.
1 Empty sets of ramifications, empty ramifications, recursive configurations, . . .

28 C. Fouqueré and M. Quatrini

Example 4

– Consider the design D of base � ξ and with unique action (+, †), and E of
base ξ �, then [[D, E]] = D.

– Let D be a design of base � ξ then normalization with the fax Faxξ,ξ′ is the
design D′ we get from D by substituting ξ with ξ′ in each chronicle of D. For
example, if we consider that the first action of D is (+, ξ, I), the interaction
goes as follows:

D1
ξ.1 � ...

Dn

ξ.n �
� ξ

(+,ξ,I)
...

...

Faxξ′.i,ξ.i

ξ′.i � ξ.i ...

� ξ.I,ξ′ (+,ξ′,I)
...

ξ � ξ′ (−,ξ,Pf (N))

After two steps, we get:

[[D1,Faxξ′1,ξ1
]]

ξ′.1 � ...

[[Dn,Faxξ′n,ξn
]]

ξ′.n �
� ξ′ (+,ξ′,I)

The process follows in a recursive manner.

Orthogonality is defined in the following way:

Definition 7 (Orthogonal, Behaviour)

– Let D be a design of base ξ � σ1, . . . , σn (resp. � σ1, . . . , σn), the net of
designs R = (A, B1, . . . , Bn) (resp. R = (B1, . . . , Bn)), where A has the
base � ξ and Bi has the base σi �, belongs to the orthogonal of D noted D⊥

if [[D, R]] = Dai+.
– Let E be a set of designs of same base, E⊥ =

⋂
D∈E D⊥.

– E is a behaviour if E = E⊥⊥. A behaviour is positive (resp. negative) if the
base of its designs is positive (resp. negative).

Among remarkable facts of Ludics, let us note that designs are completely
defined by their interactions, as affirmed by the separation theorem: two designs
D and D′ of same base are different iff there exists a design E such that the
results of interaction [[D, E]] and [[D′, E]] differ. Other main properties are the
following ones [5]:

Theorem 1. Normalization is stable by intersection, is associative and
monotonous with respect to the order induced by duals:

– If K is not empty and for all k ∈ K, Rk ⊂ R then [[
⋂

k∈K Rk]] =
⋂

k∈K [[Rk]].
– Let {R0, . . . , Rn} be a net of nets, [[R0 ∪ · · · ∪ Rn]] = [[[[R0]], . . . , [[Rn]]]].
– If D⊥

0 ⊂ E⊥
0 , . . . , D⊥

n ⊂ E⊥
n then [[D0, . . . , Dn]]⊥ ⊂ [[E0, . . . , En]]⊥

Operations on behaviours are defined hereafter. Two behaviours are considered
disjoint when the sets of ramifications of their first action are disjoint. Two
designs, two behaviours of same polarity are alien when the intersection of the

Ludics and Natural Language: First Approaches 29

unions of the ramifications of their first actions is empty. Finally two positive
behaviours G and H are independent when, if I and I ′ are two ramifications of
first actions of designs in G (resp. J and J ′ in H) such that I ∪J = I ′ ∪J ′ then
I = I ′ and J = J ′.

Definition 8

– Let Gk be a family of behaviours of positive base pairwise disjoint,
⊕

k Gk =
(
⋃

k Gk)⊥⊥

– Let Gk be a family of behaviours pairwise disjoint,
˘

k Gk =
⋂

k Gk

– Let A and B be two positive alien designs, one defines A⊗B in the following
way: if A or B is Dai+, then A ⊗ B = Dai+. Otherwise A and B have as
first action respectively (+, 〈〉, I) and (+, 〈〉, J), let us define A′ by replacing
in the chronicles of A the first action (+, 〈〉, I) by (+, 〈〉, I ∪ J), one defines
in the same way B′, then A ⊗ B = A′ ∪ B′

– Let G and H be two positive alien behaviours, G ⊗ H = {A ⊗ B ; A ∈
G, B ∈ H}⊥⊥

– Let G and H be two negative alien behaviours, G` H = (H⊥ ⊗ G⊥)⊥

Theorem 2

– (internal additive completeness) Let K �= ∅, ⊕k∈K Gk =
⋃

k∈K Gk

– A behaviour of positive base (resp. negative base) is always decomposable as
a
⊕

(resp. a
˘

) of connected behaviours.
– (adjunction) Let F, A, B be three designs, F negative, A and B positive,

there exists a unique negative design (F)A (that does not depend on B) such
that [[F, A ⊗ B]] = [[(F)A, B]].

– (internal multiplicative completeness) Let G and H be two independent pos-
itive behaviours, then G⊗ H = {A ⊗ B ; A ∈ G, B ∈ H}

Theorem 3 (Full soundness and completeness). Ludics is fully sound and
complete with respect to second-order multiplicative-additive Linear Logic.

2.3 Back to a Sequent Calculus

Hypersequentialized calculi have been proposed for various fragments or the full
Linear Logic (e.g. [13,14,1]). Designs may there be considered as (para)proofs of
such calculi. The key ingredient to specify what kind of structure should be given
to sequents comes from works on focalization in logical programming: Andreoli
states in [15] that a proof in Linear Logic can be organized in such a way that
decomposition of clustered deterministic (say negative, i.e. ` and &) and non-
deterministic (say positive, i.e. ⊗ and ⊕) connectives in a formula alternate:
designs may then be viewed as abstracting such concrete and focalized proofs,
and taking into account infinity, e.g. η-expansion, and failures, i.e. at most one of
two dual formulas has a proof. Furthermore, although every negative formulas2
may be concurrently and immediately decomposed, one positive formula may be
2 A negative formula has a negative connective as the main one.

30 C. Fouqueré and M. Quatrini

chosen when a positive step occurs. Such a positive formula is the focus of the
application of the rule. Following focalization, we can consider that a sequent
contains at most one negative formula and we put its dual on the left part
of the sequent (using implicitly De Morgan rules). Hence the right part of a
sequent contains only positive formulas. A decomposition step, i.e. a bottom-up
application of a rule in a sequent calculus, consists in

– either choosing a positive formula to be decomposed, to give rise to a set
of (negative) subformulas, hence a set of sequents (one for each negative
subformula),

– or decomposing the negative formula to give rise to a set of sets of (positive)
subformulas, hence a set of sequents (one for each set of positive subformu-
las).

The calculus contains then three rules: one for the axiom, and one for the de-
composition of each polarity, using synthetic connectives of various arity. A cut
rule may be added that does not change the calculus. Positive formulas which
are considered in such a sequent calculus are built from a set X of positive atoms
according to the following schema:

F := X | (F⊥ ⊗ · · · ⊗ F⊥) ⊕ · · · ⊕ (F⊥ ⊗ · · · ⊗ F⊥)

The rules are the following ones:

Axiom rule x � x,Γ where x ∈
X.

Cut rule
B � A, Γ A � Δ

B � Γ, Δ

Negative rule

� A11, . . . , A1n1 , Γ . . . � Ap1, . . . , Apnp , Γ

(A⊥
11 ⊗ · · · ⊗ A⊥

1n1) ⊕ · · · ⊕ (A⊥
p1 ⊗ · · · ⊗ A⊥

pnp
) � Γ

Positive rule
Ai1 � Γ1 . . . Aini

� Γp

� (A⊥
11 ⊗ · · · ⊗ A⊥

1n1
) ⊕ · · · ⊕ (A⊥

p1 ⊗ · · · ⊗ A⊥
pnp

), Γ

where ∪Γk ⊂ Γ and for k, l ∈ {1, . . . p},
Γk ∩ Γl = ∅.

The complete decomposition of connectives of the same polarity may be broken
by using shift connectives ↓ and ↑, that correspond to unary versions of the
previous connectives. Let ↓ (resp. ↑) change the negative (resp. positive) polarity
into the positive (resp. negative) one. Then two following rules may be added to
the system:

Shift rules
A � Γ

�↓ A⊥, Γ

� A, Γ

↓ A⊥ � Γ

Example 5. Let A, B and C be negative formulas, formulas A ⊗ B ⊗ C and
A⊗↑(B ⊗C) are positive. Their decomposition using the previous rules are the
following ones:

A⊥ � B⊥ � C⊥ �
� A ⊗ B ⊗ C

A⊥ �

B⊥ � C⊥ �
� B ⊗ C

↓(B ⊗ C)⊥ �
A⊗↑(B ⊗ C)

Ludics and Natural Language: First Approaches 31

2.4 Extensions of Ludics

Works have been done to extend Ludics beyond the multiplicative-additive frag-
ment of Linear Logic. These works are of particular interest as linearity or se-
quentiality is no more a constraint. In current use of Ludics in Natural Language,
this has not been considered. However, it may be useful in some cases.

First, Ludics nets were developed as a game model for concurrent interaction
by F. Maurel and C. Faggian [16] and more thoroughly analyzed by P.-L. Curien
and C. Faggian in [13]: in some way, Ludics nets are abstract proof-nets, hence
graphs, in the same way as designs are abstract proof trees.

K. Terui proposed in [17] a reformulation of Ludics more suitable from a
computational point of view. c-designs are built as Girard’s designs except that
(i) variables may occur as generic addresses (possibly in an infinite number),
(ii) positive nodes may be explicit internal cuts or serve to model divergence
of interaction, (iii) c-designs may not be linear. The syntax of c-designs is such
that they may be more easily used for programming purposes, and a grammar
allows for a finite specification of them by means of generators. K. Terui uses this
model for characterizing word languages where the acceptance relation between
a word and a grammar is expressed w.r. to orthogonality between c-designs. Its
main results relate automata and c-designs:
- Girard’s finite designs recognize exactly regular languages.
- Cuts are necessary (hence the use of c-designs) to recover the full expressive
power of Turing machines.

M. Basaldella and C. Faggian in [12] extended Ludics to be able to deal with
exponentials. Contrarily to the works of Terui, they only extend the language
with neutral actions to represent exponentials. They obtain a full completeness
result with respect to an hypersequentialized calculus for Linear Logic.

3 Dialogues and Argumentation

Ludics has been used in a series of papers for representing several aspects of
Natural Language. This section is devoted to the representation of dialogues
(e.g. [4,3]). Shortly speaking, a dialogue may be considered as the trace of the
interaction between two designs, one for each locutor. In elementary cases, an
utterance of a locutor is a positive action in her design that has to be present
as a negative action in her interlocutor for the dialogue to continue3. Gener-
ally, an utterance is not as simple as a unique action: an utterance may be a
complex sentence including several propositions, it may make use of presupposi-
tion, . . . , or it may correspond to a misunderstanding or an end of the dialogue.
The formalization of dialogues in Ludics considers that an intervention in a dia-
logue conveys one or several dialogue acts, that Landragin [18] defines as “the
minimal unit of communication in a dialogical context”. A dialogue act is a com-
municational fact whose role is to fuel the dynamics and determine the shape of
3 Note that the duality positive/negative does not correspond to a duality ques-

tion/answer as in game semantics but to a duality production/reception in dialogue
modeling.

32 C. Fouqueré and M. Quatrini

the dialogue. It may be explicit or implicit, verbal or not (e.g. an acknowledg-
ment given as a gesture). It may appear as one or more propositions, but also
as part of a proposition (word, adverb, . . .). It expresses an entitlement or a
decision of the speaker, and also its acknowledgment by the addressee. In some
sense, it is quite close to a speech act. However a speech act may correspond to
several dialogue acts as shown in following examples. Dialogue acts are indeed
more elementary than speech acts. They can be seen as the basic blocks from
which one builds interpretation for dialogical interventions or even utterances.
Formally, a dialogue act may be defined as an action in Ludics together with the
expression that reveals the dialogue act in the intervention. Such an expression
may be a proposition, a word (e.g. a single adverb, a noun), a prosodic feature,
a non verbal sign (a nod, a shake, a slap, . . .). In trivial cases, an intervention
is a unique dialogue act. Otherwise a turn of speech has to be decomposed into
sequences of dialogue acts, hence may correspond to a complex design. Note that
the representation of an utterance in terms of dialogue acts is dependent of the
context of the dialogue, and in particular of past interventions that occurred.

Let us give a small example of a dialogue, its rudimentary interpretation in
terms of dialogue acts and the way interaction is done with Ludics.

Example 6. Let us consider the following example between a traveller T and an
employee E:
– T : What time does the next train to Paris leave?
– E: 7:45 p.m.
– T : Thanks.

In a first approximation, each intervention is interpreted as a unique dialogue
act:

– dual actions κ1/κ1 = (+/−, ξ, {0}) and an expression that is the proposition
“What time does the next train to Paris leave?”; ξ is a locus arbitrarily chosen
on which this act is localized; this act offers a unique opening on which E
may anchor her answer.

– dual actions κ2/κ2 = (+/−, ξ.0, ∅) and an expression that is the proposition
“the next train to Paris leaves at 7:45 p.m.” ; ξ.0 is the locus of this dialogue
act, justified by κ1; there is no opening created by this act as it is simply a
given fact.

– an action κ3 = (+, †) with the expression “Thanks”; with this dialogue act,
T informs E that the dialogue went well and is finished.

Actions κ1 and κ2 are positive from the point of view of the locutor that produces
them: positive for T for the first, for E for the second, and negative for the locutor
that receives them. The action κ3, positive, is produced by T . The interaction
between the two (really simple) designs is depicted in the following figure. It
converges as it ends with †.

Ludics and Natural Language: First Approaches 33

†
κ2 κ2

κ1 κ1

Point of view of the traveller Point of view of the employee

In the following subsections, we present first the approach by means of a simple
dialogue extracted from a novel of C. Dickens. Then we illustrate specific forms
of dialogues in terms of designs.

3.1 First Use in Dialogue

The following dialogue is extracted from the novel “David Copperfield” of C.
Dickens.

Example 7. (C. Dickens, David Copperfield) The dialogue takes place between
a coachman (C) and David (D), the coachman brings David to London:

C I1 : You are going through, sir?
D I2 : Yes, William. I am going to London.

I shall go down into Suffolk afterwards.
C I3 : Shooting, sir?
D I4 : I don’t know.
C I5 : Birds is got wery shy, I’m told
D I6 : So I understand
C I7 : Is Suffolk your county, sir?
D I8 : Yes, Suffolk’s my county.
C I9 : The dumplings is uncommon fine down there . . .

As a first approximation, a dialogue act is associated with each utterance with
actions κ1, . . . , κ9 and respective espressions I1, . . . , I9. The justification between
actions is given by the figure on the right in example 1. The first action κ1 is
initial: with this dialogue act C initiates the dialogue. Actions κ3, κ7 and κ9

are justified by the second intervention κ2: in the three cases, the corresponding
dialogue acts refer to ‘Suffolk’, entity present in the second intervention that
may introduce topics concerning hunting, native soil, gastronomy, . . .

Ludics allows for rebuilding the designs whose interaction produces as a trace
this alternate sequence of interventions. The dialogue acts may be given with a
positive polarity for the interventions of C: in that way, the dialogical interaction
is represented with the point of view of C. Reversing the polarities, one gets the
point of view of D. This produces two designs that interact and whose trace is
the dialogue. In figures given in example 1, the design on the left is the point of
view of C, and the design on the right is the point of view of D.

More generally, actions of Ludics are interpreted in terms of dialogue in the
following way: a positive action in a design corresponds to an active role of the
locutor when the design is her point of view. On the contrary, a negative action
in the same design reports a passive role (e.g. receiving an intervention of her

34 C. Fouqueré and M. Quatrini

interlocutor). Viewing the dialogue as a trace makes explicit the fact that there
are two points of view. Moreover it allows to observe the success or the failure
of these two points of view, i.e. the fact that the dialogue may fail or end with
a drop.

3.2 Divergent Dialogues, Presupposition in Dialogues

Dialogues may badly end because of misunderstandings, disagreements,. . . and
it is necessary to be able to represent such situations. Ludics interaction distin-
guishes two cases. An interaction is convergent when it ends with a daimon, it is
divergent when a positive focus has no dual counterpart. These two cases allow
for interpreting two standard final situations in dialogues: either it finishes well
or there is a misunderstanding between the two locutors. The following example
is given by M. Chemillier [19] to illustrate the difficulties that arise when one
wants to isolate the logical part of a dialogue in a field survey.

Example 8. A person P conducting a survey gives to a native the following
informations: All the Kpelle cultivate rice. Mister Smith does not cultivate rice.
The person P asks the following question to the native N:
- P: “Is Mister Smith a Kpelle?” (κ1)
- N: “I do not know Mister Smith, I have never seen him.” (κ2)

Here we consider only the question and its answer that we represent each by
a single dialogue act (resp. with actions κ1 and κ2). The person P expects a
logically correct answer, e.g. “No”, with action κ3. He plans also to receive an
incorrect answer, e.g. “Yes” or “It may be the case”, with action κ4. Hence the
design for the person P may be either κ1 followed by κ3, or κ1 followed by κ4.
The interaction in Ludics is given below: it is divergent as there is no negative
action dual to κ2 in what is expected in the design of P. The dialogue cannot
continue.

κ3 κ4 κ2

κ1 κ1

?

Viewpoint of the person P conducting the survey Viewpoint of the native N

The previous modeling is simplistic: a turn of speech may be more complex than
a simple action. In fact, to each intervention may be associated a set of dialogue
acts that complements the current design of the locutor. The result should still
be a design. In particular, the first dialogue act should be anchored in some
previous intervention: the dialogue continues normally if each person answers
(in some way) a previous intervention. Furthermore, an intervention must be
represented by a sequence of dialogue acts beginning and ending with a positive
action: if the last action is not the daimon, the interlocutor may continue the
dialogue. Dually, the design of the interlocutor is increased by what comes from
the locutor. The result should be such that one of the chronicles ends with a

Ludics and Natural Language: First Approaches 35

negative action: the interlocutor initiates her own intervention by a dialogue act
anchored on this negative action.

Dialogues with presuppositions are examples of such more complex situations.
A presupposition is an implicit assertion concerning the world, whose validity is
accepted in the dialogue.

Example 9. Let us consider this well known example due to Aristotle; a judge
asks a young delinquent this question: “Have you stopped beating your father?”.
Answering this question by ‘Yes’ or ‘No’ supposes that the answer of an implicit
question is ‘Yes’:
– “Did you beat your father?”
– “Yes.”
– “Have you stopped beating him?”

The question asked by the judge, “Have you
stopped beating your father?” displays three suc-
cessive dialogue acts κ1, κ2 and κ3 that refer re-
spectively to interventions : “Did you beat your
father?”; “Yes”; “Have you stopped beating him?”.
If the young adult continues the dialogue, he im-
plicitly assumes that the interaction between the
two (partial) designs do not diverge. Hence he ac-
cepts to justify his next intervention on the neg-
ative dialogue act dual to κ3, this dialogue act
being anchored on the positive dialogue act dual
to κ2: he assumes he would have answered “Yes”
to the implicit question.

κ4

κ3κ3

κ2 κ2

κ1 κ1

Viewpoint
of the judge

Viewpoint
of the delinquent

3.3 Argumentation

Argumentative dialogues show some peculiarities. In particular speech acts that
compose them are limited in number: assertions, arguments, denial, concessions,
. . . In addition, a notion of winnings appears, which seems specific to argumen-
tative dialogues. In a dialogue whose aim is to exchange information, to share
knowledge or a feeling, the question of whether one of the speakers wins is quite
irrelevant. But to know who is right after a controversy is essential. An argumen-
tative dialogue is distinguished from (common) dialogues in the sense that two
arguments are opposed, each party having his thesis to defend or advance. The
dialogue is then mainly an exchange of arguments and counter-arguments with
the sole purpose that the dialogue ends when a thesis is considered winning. In
L’Art d’avoir toujours raison [20], Schopenhauer means to define dialectics as
“the art of winning controversies”. Ideally, the easiest way to win a controversy
is to have a strategy, winning against adversaries. This corresponds to a proof
in Ludics. Several Schopenhauer’s stratagems have been studied by Quatrini
in [21], we reproduce below an example of retorsio argumenti or turning of the
tables, by which your opponent’s argument is turned against himself:

36 C. Fouqueré and M. Quatrini

Example 1 The opponent O declares, for instance, “So-and-so is a child, you
must make allowance for him.” The proponent P retorts, “Just because he is a
child, I must correct him; otherwise he will persist in his bad habits.”

The controversy between P and O is analyzed in the following way:
- O justifies his implicit thesis (“You might be wrong correcting this child”) by

two premisses: “He is a child” and “you must make allowance for children”.
This is represented by a unique dialogue act with action (+, ξ, {1, 2}), and
expression noted np. The ramification contains two elements as the argu-
mentation has two premisses.

- P accepts this intervention with an action dual to the previous one. Then
he replies: he explicitly concedes the first premisse and contradicts implic-
itly the second premisse (“you must make allowance for him” = “you must
correct him”) by giving a counter-argument “otherwise he will persist in his
bad habits”. This gives rise to several dialogue acts (see figure 1 on the left):
- The first sentence: “Just because he is a child” contains a concession :
(+, ξ.1, {0})(−, ξ.1.0, ∅). The first action is expressed by “he is a child” (noted
child) and the second action is expressed with the word “Just” (noted jus).
- The intervention of P continues with a negation of the assertion of O. This
is represented by an action (+, ξ.2, {0}) expressed with “I must correct him”
(noted cor);
- The counter-argumentation conveys two dialogue acts: the first one
(−, ξ.2.0, {0}), expressed by “otherwise” (noted oth), lets P resuming his
intervention, and the second one (+, ξ.2.0.0, ∅) establishes his argument, ex-
pressed with “he will persist in his bad habits” (noté bad). The ramification
of this last action is empty as this final argument cannot be contradicted.

- The situation after the opponent O accepts this intervention of P is depicted
in figure 1 on the right, there are no more loci where O may continue the
dialogue hence either he refuses it (divergence) or he “plays a daimon” (to
keep the dialogue convergent). In any case, he looses.

ξ.1 � ξ.2 �
� ξ

np

�
� ξ.2.0.0

bad

ξ.2.0 � oth

� ξ.2
cor

ξ.1.0 � ξ.2
jus

� ξ.1,ξ.2
child

ξ �

O P

Situation after the intervention of P

� ξ.1.0

ξ.1 �

� †

ξ.2.0.0 �
� ξ.2.0

ξ.2 �
� ξ

np

�
� ξ.2.0.0

bad

ξ.2.0 � oth

� ξ.2
cor

ξ.1.0 � ξ.2
jus

� ξ.1,ξ.2
child

ξ �

O P

Situation after O accepts the intervention
of P

Fig. 1. Schopenhauer - stratagem 26

4 Meaning in Ludics

Resting on the formalization of dialogues in Ludics as it is presented in the previ-
ous section, propositions have been done for modeling various aspects of Natural

Ludics and Natural Language: First Approaches 37

Langage analysis, especially meaning. In this section we show how Ludics has
been used for semantics and speech acts. Furthermore, we precise how inferential
issues may be tackled with such a formalization. We illustrate these propositions
by analysing further example 8 we reproduce below.

Example 10. (example 8 ctd)
- P: “All the Kpelle cultivate rice. Mister Smith does not cultivate rice. Is Mister
Smith a Kpelle?”
- N: “I do not know Mister Smith, I have never seen him.”

4.1 Semantics of Utterances

In [1,4], Lecomte and Quatrini propose a conception of interactive meaning based
on Ludics where the Ludics frame is at the same time used as a metaphor and as
a formal device able to elaborate this metaphor. At a metaphoric level, a design
being defined by its orthogonal4, they postulate that the meaning of a sentence
is given by its dual sentences. Moreover, they claim that Ludics offers also a
framework to model the “meaning” of a sentence.

Precisely, the dual sentences of a given sentence u are utterances v which both:
- correctly interact with u: a speaker S claims the sentence u, her interlocutor
expresses such an utterance v, and S is able to continue the dialogue.
- directly concern the contain of u: the utterance v is a question or a negation
which may be considered as a test against u.
In this way, a set of designs is associated with the meaning of the sentence u:
such designs are the carriers of the dialogues during which a speaker S affirms
and justifies the statement u against an interlocutor.

Let us look at the utterance E and some of its dual sentences:

(a) “But Mr. Durand does not cultivate rice.”
(E) “All the Kpelle cultivate rice.” (b) “Even the children?”

(c) “Was it the case twenty years ago?”

We consider the formalization in Ludics of one of these starting dialogues. Sup-
pose that a speaker S claims the utterance E and her addressee answers saying
(a). From the point of view of S, the first intervention is a positive dialogue act
which corresponds to the assertion of E by S. The ramification of this dialogue
act is a singleton: only one locus is created on which the interaction may continue
(w.r. to this asserted sentence), and its expression is the utterance E. The second
intervention is represented also by a unique dialogue act. The speaker receives
a counter-argument from her addressee. According to the view of S, this dia-
logue act is a negative one whose expression is the sentence (a). Its ramification
contains two elements: the dialogue may continue questioning the fact that Mr.
Durand is or is not a Kpelle, or the fact that he does or does not cultivate rice.
When she asserts the utterance E, the speaker has to be ready to receive such
counter-arguments that concerns individuals about whom the addressee may
4 According to the separation theorem.

38 C. Fouqueré and M. Quatrini

argue that they are Kpelle, but that they do not cultivate rice. The design as-
sociated with the project of dialogue of the speaker S when she asserts E must
contain such possibilities. It is represented in figure 2.

....
� ξ.0.1d, ξ.0.2d

....
� ξ.0.1d′ , ξ.0.2d′ . . .

ξ.0 �
� ξ

Fig. 2. The project of dialogue of a speaker asserting E

After the dialogue act corresponding to the assertion of E, this design contains
as many branches as individual Kpelle (denoted by d, d′ . . .). Moreover, for each
such Kpelle d, the speaker has to be ready to continue the dialogue by giving
some argument to justify that d cultivates rice: each branch indexed by d may
have ulterior actions. In fact, there is not a unique such design, but a more precise
specification of these designs should be relative to contextual considerations. In
order to interact with other utterances, for example with questions like (b) or
(c), designs would have some longer branches in order to explicit which Kpelle
are concerned by the claim (for example the adults) or in order to precise the
historical context of the fact.

Nevertheless, we may observe that all such designs share the same starting
actions. Then, interpreting actions as logical operations, we may associate with
these designs the beginning of a logical proof, represented in figure 3.

....
�↓ K(d)⊥, C(d)

....
�↓ K(d′)⊥, C(d′) . . .

(∀x(↑ K(x) −◦ C(x)))⊥ �
�↓ (∀x(↑ K(x) −◦ C(x)))

Fig. 3. A logical reading of the assertion of E

Let us sum up the methodology that we sketched above. As “meaning” of an
utterance, we associate with the utterance a set of designs, namely the designs
which are the supports of dialogues that the claim of this utterance initiates. And
we remark that, since these designs share their first actions, we may organize
them in a set of designs built by means of operations of Ludics. Namely, we
associate as meaning of E the set:

E =↓ (&d(↑ K(d) −◦ C(d)))

where K(d) and C(d) are also sets of designs. In particular, provided that K(d)
and C(d) are behaviours associated with logical formulas, the set E is a be-
haviour associated with a logical formula. In this way, we retrieve the semantical
notion of a “logical form”, thus also its nice properties: vericonditional seman-
tics, quantifiers scope . . . , in the same time we retrieve a more proof theoretical

Ludics and Natural Language: First Approaches 39

approach of semantics, hence transposing to Natural Language semantics the
following motto: the meaning of a logical formula is the set of its proofs.

At a first glance, this does not seem very different from the way formal se-
mantics usually proceeds. Nevertheless, let us underline some points which are
slightly different and new and which could favorably extend the usual models of
semantics:

– Recall that formulas are not primitive objects in Ludics: interaction is first
defined on designs. It may be relevant to associate as meaning of a sentence
an object which is not a priori closed, i.e. a set of designs that is not neces-
sarily a behaviour. It may also be relevant to associate designs that are not
completely defined, i.e. that may be more and more refined. For example, the
formula K(d) may be either an atomic one but may also be decomposable,
say in k(d) ⊗ A(d) to give an account that the Kpelle, the claim is about,
are adults.

– Another result is that the logical interpretation of the quantifier ‘All the’ is
not a priori fixed. Depending on the context and on the kind of justifications
of the claim E, the quantifier may be either interpreted by a generalized
additive conjunction in case the justification is relative to each individual,
what was used to define E, or interpreted by a universal first order quantifier,
provided that the justifications are the same for each individual, i.e. do not
depend on the individuals. We recall that, in a study on first-order quantifiers
in Ludics [22], Fleury and Quatrini show that the family of designs associated
with a first order universal quantifier has to satisfy a uniformity property:
roughly speaking the designs should be in some way ‘the same’ (and should
represent the same proof).

4.2 Speech Acts

The framework brought by the formalization of dialogues in Ludics has also been
used to give an account for speech acts. In [2], Fleury and Tronçon transpose the
characterization of speech acts given by Searle [23] in ludical terms. A speech
act may be associated with a design which is able to interact with designs asso-
ciated with the preconditions of this speech act. The normal form we get after
interaction gives an account of the effects of the speech act. In [3], Lecomte and
Quatrini characterize some figures of dialogue according to the form of their
associated designs. In particular they focus on elementary speech acts. Let us
recall the cases of assertions and interrogations.

As proposed by Walton in [24], asserting is “willing to defend the proposition
that makes up the content of the assertion, if challenged to do so”. This remark
was the core for defining the meaning of an utterance (see previous subsection).
When a speaker asserts some utterance, she must have in mind all justifications
for predictable objections, hence the design associated with an assertion starts
with a positive dialogue act, followed by a set of negative dialogue acts, each of
them being the basis for justifications against predictable objections. Note that
an assertion is not represented as a simple (logical) proposition. Indeed a design

40 C. Fouqueré and M. Quatrini

associated with a proposition takes into account just its logical behaviour, say
an atomic proposition, a decomposable formula. Although the design associated
with the assertion of this proposition should contain the fact of asserting and the
proposition itself. This difference is pointed in figure 4 which gives the designs
for ‘Mr. Smith is/is not a Kpelle’. Designs concerning the negative cases finish
with a daimon to indicate that this position is given up: this enables to express
a logical negation. Note finally that our representation is extremely simplified
with respect to what could be a general assertion. We consider only the logical
feature of utterances, and we suppose that its logical form is univocally fixed.

Propositions Assertions

∅
� K(s)

is

†
�

∅
K(s) �

�↓ K(s)⊥

is not

∅
� K(s)

P⊥ �
�↓ P

is

†
�

∅
K(s) �

�↓ K(s)⊥

↓ P �
�↓↑ P⊥

is not

Fig. 4. Proof-like designs associated with the propositions/assertions ‘Mr. Smith is/is
not a Kpelle’.

Unlike other speech acts, it is relevant to associate with questions designs
with more than one locus in the base. Indeed, viewed as a speech act, an interro-
gation consists in asking a question and being ready to register the answer. Thus
it is necessary to associate with an interrogation a design with base � τ, σ, where
τ is the locus of the question and σ is the locus where the answer is registered:
such a design ends with a Fax so that the answer to the question is moved to σ
when interacting with a dual design.

Let us consider for example the question: “Is Mr. Smith a Kpelle?”, that we
denote by q. The design associated with this question is represented in figure 5.
The speaker who asks this question is ready to receive three answers:
- either an assertion, say ‘Mr. Smith is/is not a Kpelle’. In such a case, she
registers the answer: the fax after the action on the locus τ.0.1 is dedicated to
copying this assertion (from τ.0.1.0 to σ).
- or the word ‘Yes’. In such a case, the speaker rebuilds the information: it uses
the structure of the design for the proposition ‘Mr. Smith is a Kpelle’ (figure 4).
- or the word ‘No’. This case is similar to the previous one: it uses the structure
of the design for the proposition ‘Mr. Smith is not a Kpelle’ (figure 4).

If the answer is ‘Yes’, i.e. represented by the design

τ.0.2 �
� τ.0
τ � , the normal form of

the net defined by the designs associated to the question and the answer is then

Ludics and Natural Language: First Approaches 41

Fax
τ.0.1.0 � σ

� τ.0.1, σ
∅

� τ.0.2, σ

†
� τ.0.3

∅
σ.0 � τ.0.3

� τ.0.3, σ

τ.0 � σ

� τ, σ

Fig. 5. The design associated with the question q.

� σ
∅. In other words, the result is a design localized on σ that corresponds to

the proof of the proposition ‘Mr Smith is a Kpelle.’

4.3 Inferences

Designs that represent independent parts of a dialogue or independent dialogues
may be used in order to do inferences: when they form a net of designs, they
may normalize. We illustrate this point by considering again example 8 where we
suppose that the Native answers ‘Yes’. We focus first on the overall intervention
of the investigator:

– She provides a first information ‘All the Kpelle cultivate rice’. This
utterance is given as a true proposition. Even more, the investigator suggests
to her addressee to use it in a logical reasoning. That is a full proof is provided
by her intervention. This part of the intervention is naturally associated with
the design corresponding to this proof. Proof and design are both represented
below. For simplification issue, we consider an axiom rule (and a fax in the
design) in place of a development of a justification for the fact that a Kpelle
cultivates rice, in other words being a Kpelle implies cultivating rice and also
having other properties that characterize a Kpelle: we abstract from these
other properties hence we get an axiom.

K(d) � C(d)
ax

�↓ K(d)⊥, C(d)

K(d′) � C(d′)
ax

�↓ K(d′)⊥, C(d′) . . .

(∀x(↑ K(x) −◦ C(x)))⊥ �
�↓ (∀x(↑ K(x) −◦ C(x)))

Fax
ξ.0.1d .0 � ξ.0.2d

� ξ.0.1d, ξ.0.2d

Fax
ξ.0.1d′ .0 � ξ.0.2d′
� ξ.0.1d′ , ξ.0.2d′ . . .

ξ.0 �
� ξ

- She provides a second information: ‘Mr. Smith does not cultivate rice’.
This information is a priori independent from the previous one, hence is rep-
resented as another design:

� †
β � ∅ i.e. the proof:

� †
C(s) � ∅

- She asks a question: ‘Is Mr. Smith a Kpelle?’. This corresponds to the
design given in the previous subsection in figure 5.

42 C. Fouqueré and M. Quatrini

We have then four designs at disposal:

– the design associated to a proof of the proposition ‘All the Kpelle cultivate
rice’, based on � ξ, that we will denote Dξ;

– the design associated to a proof of the proposition ‘Mr Smith does not cul-
tivate rice.’ based on β �, that we will denote Dβ ;

– the design noted Dα obtained by means of a shift and a delocation (from σ
to α.0) of the design that results from the interaction of the question q and
the answer ‘Yes’ and which is associated to a proof of the proposition ‘Mr
Smith is a Kpelle.’ (end of last subsection). The design Dα is then associated
with a proof of ↓ K⊥(s) �.

– The following design associated with a proof which enables one to perform
the interaction between the proposition ‘All the Kpelle cultivate rice’ and
some propositions about one Kpelle, that we denote by Fξ,α,β:

Fax
α.0 � ξ.0.1s.0

� ξ.0.1s.0, α

ξ.0.1s � α
Fax

ξ.0.2s � β

� ξ.0, α, β

ξ � α, β

K(s) � K(s)

� K(s), ↓ K⊥(s)

↓ K⊥(s) �↓ K⊥(s) C(s) � C(s)

� ∃x((↑ K(x))⊥ ⊗ C(x), ↓ K⊥(s), C(s)

↓ (∀x(↑ K(x) −◦ C(x))) �↓ K⊥(s), C(s)

Then, the cut-net [[Fξ,α,β,Dξ,Dα,Dβ]] normalizes, its normal form is the design

which encodes the logical contradiction � †
.

5 Conclusion

In the previous sections, we present Ludics and its current uses in modeling
Natural Language. It should be clear that this is an ongoing research that changes
largely the way Natural Language may be analyzed, as Ludics changes radically
the point of view we may have on logics. In Ludics, the fundamental operation
concerns interaction between objects called designs. Such objects may clearly be
interpreted in a certain sense as “proofs”. However, two main differences exist
with what is generally called a proof that should be considered. First, a design
may include daimon actions, this allows for considering proofs and counter-
proofs in the same language. Second, a design may be infinite (depth as well as
height), hence such an object may include enough information to interact with
an infinite number of counter-objects. We recall also that Ludics is a rebuilding

Ludics and Natural Language: First Approaches 43

of Linear Logic: formulas may be denoted by closed sets of designs. In that way,
one recovers standard concepts of logics, say truth, proof,. . .

If we summarize the modeling of language by means of Ludics, the most
important point is that it is the interaction in dialogue (explicitly or not) that
provides content to the language, and not a relation to some external reality,
hence assuming an “inferentialist” position [25]. In the previous sections, we
presented a few domains where this principle has begun to be applied, namely
dialogue, speech acts, semantics. Works of Terui [17] about automata and formal
language show that syntax may be also studied in that perspective. However,
this approach has to be carried on to improve the propositions and to tackle
other questions in Natural Language modeling.

References

1. Lecomte, A., Quatrini, M.: Ludics and its applications to natural language se-
mantics. In: Ono, H., Kanazawa, M., de Queiroz, R. (eds.) WoLLIC 2009. LNCS,
vol. 5514, pp. 242–255. Springer, Heidelberg (2009)

2. Fleury, M.-R., Tronçon, S.: Speech Acts in Ludics. In: Lecomte, A., Tronçon, S.
(eds.) PRELUDE 2010. LNCS (LNAI), vol. 6505, pp. 1–24. Springer, Heidelberg
(2011)

3. Lecomte, A., Quatrini, M.: Figures of Dialogue: a View from Ludics. Synthese 183,
59–85 (2011)

4. Lecomte, A., Quatrini, M.: Pour une étude du langage via l’interaction: dialogues
et sémantique en Ludique. Mathématiques et Sciences Humaines 189(1), 37–67
(2010)

5. Girard, J.Y.: Locus solum: From the rules of logic to the logic of rules. Mathemat-
ical Structures in Computer Science 11(3), 301–506 (2001)

6. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
7. Fouqueré, C.: Ludics and Web: Another Reading of Standard Operations. In:

Lecomte, A., Tronçon, S. (eds.) PRELUDE 2010. LNCS (LNAI), vol. 6505, pp.
58–77. Springer, Heidelberg (2011)

8. Girard, J.Y.: From foundations to ludics. Bulletin of Symbolic Logic 9(2), 131–168
(2003)

9. Girard, J.Y.: Le Point Aveugle: vers l’imperfection. Visions des Sciences, vol. 2.
Hermann (2007)

10. Curien, P.L.: Introduction to linear logic and ludics, part i. CoRR abs/cs/0501035
(2005)

11. Curien, P.L.: Introduction to linear logic and ludics, part ii. CoRR abs/cs/0501039
(2005)

12. Basaldella, M., Faggian, C.: Ludics with repetitions (exponentials, interactive types
and completeness). In: LICS, pp. 375–384. IEEE Computer Society (2009)

13. Curien, P.-L., Faggian, C.: L-Nets, Strategies and Proof-Nets. In: Ong, L. (ed.)
CSL 2005. LNCS, vol. 3634, pp. 167–183. Springer, Heidelberg (2005)

14. Fouqueré, C., Mogbil, V.: Rewritings for polarized multiplicative and exponential
proof structures. Electr. Notes Theor. Comput. Sci. 203(1), 109–121 (2008)

15. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. J. Log.
Comput. 2(3), 297–347 (1992)

16. Faggian, C., Maurel, F.: Ludics nets, a game model of concurrent interaction. In:
LICS, pp. 376–385. IEEE Computer Society (2005)

44 C. Fouqueré and M. Quatrini

17. Terui, K.: Computational ludics. Theor. Comput. Sci. 412(20), 2048–2071 (2011)
18. Landragin, F.: Vers l’identification et le traitement des actes de dialogue compos-

ites. In: Traitement Automatique du Langage Naturel (TALN), pp. 460–469 (2008)
19. Chemillier, M.: Eléments pour une ethnomathématique de l’awélé. Mathématiques

et Sciences Humaines 181(Varia), 5–34 (2008)
20. Schopenhauer, A.: L’art d’avoir toujours raison. Circé (1830)
21. Quatrini, M.: In: Une relecture ludique des stratagèmes de Schopenhauer. Presses

de la Sorbonne (to appear)
22. Fleury, M.R., Quatrini, M.: First order in ludics. Mathematical Structures in Com-

puter Science 14(2), 189–213 (2004)
23. Searle, J.: Speech Acts. Cambridge University Press (1969)
24. Walton, D.: The place of dialogue theory in logic, computer science and communi-

cation studies. Synthese 123, 327–346 (2000)
25. Brandom, R.: Articulating Reasons: An Introduction to Inferentialism. Harvard

University Press (2000)

The Non Cooperative Basis of Implicatures�

Nicholas Asher

IRIT, CNRS
nicholas.asher@irit.fr

Abstract. This paper presents and addresses a problem in pragmatics
concerning the inference of implicatures within a Gricean framework. I
propose a model in which implicatures are reasonable even in the absence
of the sort of strong cooperativity supposed by Griceans.

1 Introduction

According to Grice [1975], conversation is a biproduct of rational behavior, to
be analyzed in terms of beliefs, desires, and intentions. In addition, Grice makes
specialized cognitive hypotheses about conversational agents—in particular that
they are highly cooperative. Grice’s conversational maxims of quantity quality
and relevance encode this cooperativity in a highly informal fashion, but since the
work of Cohen and Perrault [1979], Allen and Litman [1987], Grosz and Sidner
[1990], Lochbaum [1998] and others, researchers have formalized these principles
in terms of BDI (belief, desire, intention) logics.

There are two problems with this sort of formalization. The first is that propo-
sitional attitudes like belief, desire and intention are private attitudes, not com-
mon knowledge or even part of the mutual beliefs of dialogue agents. The link
between what agents say or dialogue content and their private beliefs, prefer-
ences and intentions is much less robust than what Griceans and Neo-Griceans
have postulated for content cooperative conversation. Any model of dialogue
must infer information about mental states from the observed dialogue actions
and vice versa. So we must interpret those actions—in other words, we must
provide a representation of dialogue content and a procedure for constructing it
during dialogue processing. The current mentalist approaches to dialogue con-
tent, couched within bdi logics, all equate dialogue interpretation with updating
mental states: for instance interpreting an assertion that p and updating the
model of the speaker’s mental state to one that includes a belief in p are treated
as equivalent. But they clearly are not equivalent in even in cooperative dia-
logue. If I am having a bad day, then my wife may say something to make me
feel better even though she does not believe it.

With dialogue content separated from the agents’ mental states, we need a
term for what a speaker engages in when he or she makes a conversational move:
following Hamblin [1987], say that a speaker makes a public commitment to
some content—exactly what content he commits to depends on the nature of the

� Thanks to LACL 2012 reviewers for helpful comments.

D. Béchet and A. Dikovsky (Eds.): LACL 2012, LNCS 7351, pp. 45–57, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

46 N. Asher

speech act he’s performed. In fact, Lascarides and Asher [2009] make speakers
publicly commit to the illocutionary effects of their speech acts and not just
to the locutionary content so as to accurately predict implicit agreement and
denial.

In cooperative conversation, most of the time people say or commit to what
they believe. So we can offer one informal precisification of some of Grice’s
maxims by appealing to defeasible generalizations like the following.

– Sincerity: Normally agents who commit to φ believe φ
– Quantity: say as much as you can say to achieve conversational goals.
– Competence: Normally if B believes that A believes that φ, then B should

believe that φ
– Strong Competence: Normally if B believes that A doesn’t believe φ, then

B should not believe that φ
– Sincerity about Intentions: Normally if A publicly commits to the intention

that φ, then A intends that φ
– Strong cooperativity : Normally if A publicly commits to the intention that
φ, then B should intend that φ

Defeasible rules link various sorts of speech acts to intentions, beliefs and actions
of their agents; for instance, if an agent asks a question, then he normally intends
to know the answer to it.

2 Implicatures and the Problem

Such rules provide the basis of an account of implicatures, and inter alia scalar
implicatures. Implicatures are defeasible inferences that involve the following
problem: under what conditions can one reasonably infer from a speakers not
committing to φ that he commits to ¬φ? Consider (1).

(1) a. A: Did all of the students pass?
b. B: Some passed.

In (1) A does not commit to the claim that all of the students passed, and most
speakers would reasonably infer that A in fact commits to the claim that not all
the students passed. Here is a sketch of the kind of reasoning that one can adduce
as a Gricean in favor of such an inference. Suppose a set of alternative moves,
that the move chosen normally conforms to all the constraints above, and those
that do not deviate from one of the constraints. Suppose also as given, either
by discourse structure or by the lexicon, a set of alternatives for some, {some,
all}. We can now sketch an informal derivation of the scalar implicature that B
believes that not all the students passed.

– Sincerity: implies B believes his response to A’s question. Competence im-
plies that A should believe it.

– Cooperativity: B wants A to know an answer to his question—that either
all the students passed or they didn’t.

The Non Cooperative Basis of Implicatures 47

– So B’s response should provide A an answer. (rationality)
– He didn’t say all the students passed, which would have implied an answer.
– Choosing the alternative would not have violated Cooperativity (since it

clearly provides an answer), so it must violate Sincerity.
– So B doesn’t believe the all the students passed. And by Strong Competence,

A shouldn’t believe it either.

Rather than fully formalize this reasoning in a particular nonmonotonic logic,1

let’s step back and consider what this kind of approach does and doesn’t do. First
it requires a strong form of cooperativity—that interlocutors adopt each other’s
conversational goals and that speakers tell the truth. Second, it doesn’t account
for why B provides an ”over-answer” to the question; with the implicature, B’s
answer not only provides a direct answer to A’s question but tells him more by
picking out a subset of the worlds that constitute the direct negative answer to
the question. Neither these axioms nor any Gricean account of which I am aware
provides an account of why didn’t B just give a direct answer to A’s question.
It’s clearly not a matter of the Gricean maxim of Quantity, since the over answer
provides more information and is longer and more complex than a simple ”No”
answer! Yet over answers are very common in dialogue; for instance in the Verb-
mobil corpus Wahlster [2000], for instance, there is a far higher proportion of over
answers than direct answers to questions. Are we following a maxim of being as
informative as possible? If so, then people would never shut up (of course some
people don’t)!

None of these reflections show that the Gricean account of the implicature is
wrong, only that it is incomplete. But the real problem is that when these defeasi-
ble generalizations don’t apply, no implicatures should be drawn. Let me explain.
Real conversations can have many purposes, not just information exchange. Peo-
ple talk to bargain, to bluff, to mislead, to show off or promote themselves, to put
others down, to persuade others what they want them to do regardless of the facts.
They often misdirect or conceal crucial information. In other words, conversation
is often, even largely, non cooperative in the Gricean sense.

Consider the cross-examination in (2) of a defendant by a prosecutor, from
Solan and Tiersma [2005] (we thank Chris Potts for pointing us to this example):

(2) a. Prosecutor: Do you have any bank accounts in Swiss banks, Mr. Bron-
ston?

b. Bronston: No, sir.
c. Prosecutor: Have you ever?
d. Bronston: The company had an account there for about six months,

in Zurich.

The locutionary content of (2d) is true. But Bronston succeeds in deflecting the
prosecutor’s enquiry by exploiting a misleading implicature, or what one might
call a misdirection: (2d) implicates that Bronston never had any Swiss bank
account and this is false.

1 See Asher [2012] for details.

48 N. Asher

Misdirections can happen outside the courtroom too. Dialogue (3) occurred in
a context where Janet and Justin are a couple, Justin is the jealous type, and
Valentino is Janet’s former boyfriend (from Chris Potts andMatthew Stone (pc)).

(3) a. Justin: Have you been seeing Valentino this past week?
b. Janet: Valentino has mononucleosis.

Janet’s response implicates that she hasn’t seen Valentino, whereas in fact Valentino
has mononucleosis but she has seen him. Clearly, neither Janet nor Bronston are
abiding by Gricean maxims: they’re not trying to help their interlocutors achieve
the intention behind their questions—to know an answer.

Gricean maxims also don’t apply when a speaker simply opts out of quite basic
conversational requirements. Consider dialogue (4) (from Chris Potts (pc)):

(4) a. Reporter: On a different subject is there a reason that the Senator
won’t say whether or not someone else bought some suits for him?

b. Sheehan: Rachel, the Senator has reported every gift he has ever re-
ceived.

c. Reporter: That wasn’t my question, Cullen.
d. Sheehan: The Senator has reported every gift he has ever received.
e. We are not going to respond to unnamed sources on a blog.
f. Reporter: So Senator Coleman’s friend has not bought these suits for

him? Is that correct?
g. Sheehan: The Senator has reported every gift he has ever received.

(Sheehan says “The Senator has reported every gift he has ever re-
ceived” seven more times in two minutes.
http://www.youtube.com/watch?v=VySnpLoaUrI)

This is different from misdirection. Sheehan’s utterances cannot be interpreted
as implying an answer, and so contrary to Bronston’s utterance (2d) this exposes
that Sheehan hasn’t adopted the reporter’s intention. Dialogue (5) is another real
life example of an ‘opting out’ move that happened to one of the authors in New
York City:

(5) a. N: Excuse me. Could you tell me the time please?
b. B: Fuck you!

These examples show us two sorts of conversational strategies that fall outside
completely outside the Gricean framework: misdirection and opting out. In mis-
direction the response is intended to thwart asker’s goals, though the response
appears cooperative. In opting out, no cooperative response is given.

These incompletenesses or silences on the part of Griceans concerning these
conversational strategies are troubling. But there is worse ahead. Misdirections
like that in (2) pose severe problems for extant accounts of scalar implicature
that are based on strong cooperativity. To investigate this in detail, we need
some some background. For one thing we must take into account the fact that
there are different responses to questions, something which discourse theories
like SDRT Asher and Lascarides [2003] have investigated. SDRT has different

The Non Cooperative Basis of Implicatures 49

sorts of responses to questions. One is labelled QAP, or Question-Answer-Pair.
QAP(π1, π2) entails Kπ2 is a true direct answer to the question Kπ1 according to
the compositional semantics of questions and answers. Another is called IQAP or
Indirect Question Answer Pair. IQAP(π1, π2) entails Kπ2 defeasibly implies, via
default rules that the questioner and respondent both believe, a direct answer to
the question Kπ1. Moreover, IQAP entails that the answer is true.2 This is the
relation that holds between Bronston’s response and the prosecutor’s question.
Bronston’s response implies a direct answer via a quantity implicature.

We now come to the real problem for Gricean accounts. We all attach Bron-
ston’s answer with IQAP. The derivation of IQAP in SDRT is triggered simply
by sentence mood. But its soundness as explained in Asher and Lascarides [2003]
and the quantity implicature the IQAP is based on rely on cooperativity prin-
ciples that are not sound in this scenario. Clearly, Bronston does not share the
prosecutor’s goal of finding out whether Bronston had an illegal bank account
in Switzerland. But then how do we conclude IQAP? Are we all irrational? Or
perhaps there is another type of derivation of the implicature given by IQAP.

There are two possible strategies to rescue the situation. We could argue
that implicatures rely on Gricean cooperativity but have become fossilized. We
might try to account for them as an “evolutionary adaptation: over repeated
interactions where cooperativity is present, implicatures become automatic and
thus are calculated even when the conditions of cooperativity that validate the
implicatures are not present. While this is an appealing possibility to some, it
is not so easy to provide a formal framework in which this intuition is borne
out. Asher et al. [2001] attempt to model strongly cooperative principles of the
sort mentioned above using evolutionary game theory. They show, however, that
strong Gricean cooperative principles do not form an evolutionarily stable strat-
egy unless rather strong initial assumptions are made. The other strategy is to
search for an alternative foundation for implicatures. This is what I propose to
do in the next sections.

3 The Model

I propose to look at our interpretation of Bronston’s response from the per-
spective of game theory. Conversation involves moves that are calculated via an
estimation of best return given what other participants say, and this is a natural
setting for game theoretic analyses. We will assume that the meanings of all
moves are fixed and look at the payoffs for different conversational strategies.
A crucial feature of the model, however, is that payoffs are fixed not simply
by coordination on meanings or interpretations (and as such this is not a type
of signaling game but something different) but by effects of politeness, broadly
speaking. Importantly, there are facets of language and linguistic usage not di-
rectly related to truth conditional content. According to Brown and Levinson
[1978]’s strategic theory of politeness, language does not have the role merely to
convey or ask for propositional content. Language also serves a second role in

2 In SDRT terms, IQAP is right veridical.

50 N. Asher

negotiating the relationships between speakers and hearers, in particular what
they call their “positive” and “negative” face. Positive face involves an agent’s
reputation and image from the perspective of his interlocutors, while negative
face involves the agent’s “distance” from his interlocutors, his freedom from
constraints imposed by them on his possible actions. While these terms aren’t
precisely defined, they define relatively intuitive dimensions of an agent’s social
status in a community. Face is the medium throughwhich conversational partici-
pants recognize and negotiate their partner’s potential status/ needs/ autonomy.

Following Asher and Quinley [2011], I use the notion of an exchange game,
which is a formal model of two or more agents sending goods to one another.
Moves are dialogue speech acts, and information and face are the goods ex-
changed. Asher and Quinley [2011]’s model is asymmetric because the speaker
places his fate in the hands of the hearer when making a request, or asking a
question. Such conversational moves place one participant in the position of ask-
ing another to do something for him—this something is the speech act related
goal or sarg of the speaker’s move. Thus, the exchange game I use is a variant
of a trust game. Trust games depict a scenario where Player X has an initial
option to defer to Player Y for a potentially larger payoff for both. Similar to
the Prisoner’s Dilemma, Player Y could defect on Player X and get a reward
while Y fares badly. For a one-shot game, this act of deference will not occur
for a rational Player X. However, reputation and observation effects and the
possibility of repeated games make deference rational (Quinley 2011).

X

0,0

¬ A

Y

-1,2

D

1,1

H

A

Fig. 1. Extensive Form

Player X

Player Y
H D

A 1;1 -1;2
¬A 0;0 0;0

Fig. 2. Normal Form

Trust Games in Normal and Extensive Form: Player X has the option
to Ask(A) Player Y for Help. Y can Help(H) or Defect(D).

The question is whether a conversation as I have conceived it is just a one
shot game or can the conversational game be continued with new moves. Clearly,
conversations are not just one shot games, though this is seldom recognized in
formal game theoretic models. They are extended and dynamic, with an open
ended sequence of conversational moves (though exactly the same move is almost
never an option). There are natural endings to conversations but they have
to do with a mutual agreement on facts, an exchange or that a disagreement
exists with no resolution. It’s not clear when this mutual agreement will take
place. So reputation effects are always an issue in conversation. Discourse theories

The Non Cooperative Basis of Implicatures 51

like SDRT model this flexibility of conversation: one can always attach to the
discourse structure with new information.

While in principle any conversation may always be continued with further dis-
course moves, these moves have costs. They induce commitments by the speaker
in the case of assertions; a speaker who asserts that p incurs the cost of poten-
tially being challenged and having to defend his assertion. Not to do so leads to
a loss of positive face. For questions and requests, the cost involves both a threat
to the other’s face (being too forward) and inviting a retaliatory attack on the
speaker’s reputation. Politeness theory following Brown and Levinson [1978] has
studied the relative politeness of various types of speech acts, but these speech
acts only characterize individual sentences. My proposal here is to look at the
costs of relational speech acts, discourse moves that not only characterize the
current utterance but affect the structure of the discourse context. A choice of
a particular discourse move at stage m by participant i of an extensive game
modeling a dialogue may make it very costly for a move of a certain type by
participant j at m+1, effectively ending the conversation or turning it in a new
direction. The reason for this has to do with already incurred costs. Suppose
a speaker i makes a move that involves a particular sarg with a certain cost.
Costs of turns by i that continue to develop or help realize that sarg, once such
a development is started but not completed, are intuitively lower than the cost
of turns that incur a new sarg, ceteris paribus. This will be a key feature in
accounting for implicatures.

3.1 Questions and Their Responses in the Model

The next thing to specify is how to model questions and their answers. I un-
derstand questions as a dynamic operation on an information state, following
the outlines of SDRT. The input information state for a question is a set of sets
of possibilities, and a question’s semantic effect on this set of possibilities is to
introduce further structure to this set of sets by regrouping the elements of those
sets into possibly overlapping subsets, where each one of the subsets corresponds
to a direct answer of the question. The linguistically encoded continuations are:
eliminate some of the subsets by providing a direct answer or indirect answer
(which implicates a direct answer), leave the structure as it is either by doing
nothing or with a statement to the effect that the addressee is not in a position
to provide any information, or ask a follow up question.

Let’s now look at the costs of questions and their responses, in particular
the face threatening or saving nature of responses to questions. To make it
concrete let us investigate the details of the conversation between Bronston (B)
and the prosecutor (P). Let us assume that B does not wish to converse with
P and does not, in particular, does not want to dwell on the topic of his bank
accounts. If B gives an obvious non answer, he doesn’t even commit to the
question or address P’s sarg to get an answer to his question. He affronts P’s
face, with potential retaliation and an unpleasant discourse move in subsequent
turns, perhaps forcing him under oath to perjure himself or to admit damaging
information. But this is rational if B were playing a one shot game (this is akin

52 N. Asher

to the defect move in the Prisoner’s Dilemma). If B responds with QAP, he does
address P’s sarg, at least as P has so far developed it. But B opens himself up to
an explicit admission of guilt or explicit commitment to something purjureable.
An IQAP answer that supplies additional information besides a direct answer, i.e.
an IQAP that is an over answer, is more polite and increases the positive face of
P. As such it is a lower cost move for B. More importantly, IQAP also increases
probability of no further negotations on P’s sarg, as the added information
supplied in the IQAP anticipates follow up questions, answering them and so
providing a more complete closure with respect to the questioner’s sarg. This
also increases the positive face of the interlocutor, making the move less costly.
But, and importantly in this case, IQAP makes a continuation on the same topic
by P more costly, because it forces him to introduce a new sarg or take the costly
step of saying that his interlocutor hasn’t answered the question (this is a direct
attack on B’s face and carries with it reputation effects). As it is in B’s interest
to avoid further questioning on this topic in particular, IQAP is the dominating
strategy for him. If B answers IQAP, he avoids the potential face-threat and the
politeness looks good to a judge and jury too. For P, IQAP is also an acceptable
move by B to his question, and reputation effects make it less costly for him to
accept it. Notice though that QAP is also an acceptable move for P : B gives
him the information he was seeking and in a way that attends to P’s reputation.
B also gives additional information anticipating follow up questions, and this is
information that could be of value to P. So it is in the interest of all to take a
discourse move that is not a direct answer to be an indirect answer. A trust game
model for conversation implies dominance of IQAP over QAP in most situations,
but in this case in particular.

3.2 Complex Structures in Discourse and Costs of Discourse Moves

There is a close connection between sarg satisfaction and discourse structure in
dialogue. Roughly, a move that satisfies a previously unsatisfied sarg forces a
discourse “pop”; new material is no longer attached locally but to some higher
constituent. Higher attachments incur new sargs and in general incur higher
costs, unless they are discourse closing moves or acknowledgments of a previous
move or moves. By looking at discourse structure, we can examine in more
detail at how IQAP, other discourse moves and their possible continuations
have different costs.

To make these assumptions explicit, we need to clarify some findings about
discourse structure in the literature. Discourse structures are graphs, where the
nodes are discourse units and the arcs represent links between discourse units
that are labelled with discourse relations. Discourse constituents may be ele-
mentary or complex. Elementary discourse units (EDUs), the atomic elements
of a discourse structure, which correspond typically to clauses but also sub sen-
tential constituents like appositions, non restrictive relative clauses inter alia
[Afantenos et al., 2012], may be linked together via (one or more) discourse re-
lations and form complex discourse units (CDUs) that are themselves arguments
of discourse relations. CDUs in the ANNODIS corpus come in all sizes but the

The Non Cooperative Basis of Implicatures 53

majority are relatively small (less than 10 EDUs in total [Asher et al., 2011]).
In SDRT discourse graphs have a recursive structure with two sorts of edges in
order to represent CDUs, one for the discourse relations and one to encode the
relation between CDUs and their constituents. Consider the figure below for (6).

(6) a. Max had a great evening last night.
b. He had a great meal.
c. He ate salmon.
d. He devoured lots of cheese.
e. He then won a dancing competition.

Here is the discourse structure:

π0

a

π1

b

π2

c d

e

elaboration

narration

elaboration

narration

Discourse structure for texts, in particular the presence of CDUs, have inter-
pretive effects. For example, the event described in (6e) comes after the events in
(6b,c,d), as detailed in Asher and Lascarides [2003]. CDUs allow us to give a dis-
course relation scope over several EDUs, which is especially useful in cases where
the relation cannot be ”factored” or distributed over the constituents inside the
CDU. This occurs for right arguments with relations like Explanation:

(7) James is sick. [He drank too much last night and he smoked too much.]

The part in brackets describes a CDU with two EDUs both of which contribute
to an explanation of why James is sick. But we cannot distribute this explanation
across the constituent EDUs; both EDUs contribute to cause James’s sickness
but neither one might be sufficient to cause the sickness on its own.

CDUs are also important for dialogue. The opening and closure of CDUs, or
their boundaries, have to do with sargs of conversational turns. Many dialogue
actions, like asking a question for example, are defeasibly associated with an
associated speech act goal—for instance, the asking of a question is associated
with the goal of knowing the answer of the question. However, the sarg involve
more information than just a direct answer to an explicit question. A sarg

development provides the grounds of a single local dialogue structure, which
consists of a head or superordinate element, which gives rise to the sarg together
with a subordinate part, that develops the sarg. If a question is an opening

54 N. Asher

move in a CDU, the closure of that CDU will occur when an answer goal of that
question is either satisfied or known not to be satisfiable and related follow up
questions have similarly been answered or are known not to be answerable.

An IQAP response to a question like that in (2) answers the question but also
typically provides an “over answer”. An IAQP answer provides a higher proba-
bility termination of that discourse structure: the sarg underlying the original
question is satisfied and follow up questions are anticipated. Continuations in
this situation are more likely to be on the whole structure. For example, if P
pursues this line of questioning in (??) it will be with a higher cost move—
e.g. ”challenge” or a request for elaboration. (??e’) is a simple example of an
elaboration

(2e’) Can you elaborate?

which sounds silly, given the extended answer. A challenge would be something
like

(2e) Would you please answer the question, yes or no.

Either one of these moves is a higher cost move. IQAP thus raises the probability
of a move by P to another topic or to exit the conversation.

Here’s a picture of the IQAP scenario:

π0

π1 e

c

d

challenge

iqap

Let’s now look at the alternative moves, either QAP or an obvious non-answer.
On the other hand, the QAP response is dispreferred for strategic reasons by B. A
short answerQAP invites follow up questions, and somakes it easy forP to stay on
this topic and get more information. It also leads to an explicit admission of guilt
in this case or clear perjury. For B, a non answer, which I label here with ¬ And, is
a good one shot move, but in an extended game with further moves, it invites a low
cost restatement of the question (since the sarg is not satisfied). It also invites a
retaliation since it does not address the sarg of the questioner and so is attack on
his positive fact. The low cost move by P looks like this:

Here is the game tree for the different moves of B, where the costs of the
different moves are motivated by the discussion above. I abstract from details
and hypothesize three different discourse actions of B. The utilities provided are
motivated by the preceding discussion:

The Non Cooperative Basis of Implicatures 55

1a

¬Ans

��

Elab/restatement

���
��

��
��

��
��

��
��

�

.

b
Result*

�� 5

P

Q

����
��
��
��
��
��
��
��

¬Q

���
��

��
��

��
��

��
��

.

B

IQAP

����
��
��
��
��
��
��
�

QAP

��

¬Ans

���
��

��
��

��
��

��
��

� (0, 0)

.

(1, 1) (1,−1) (−1,−1)

The game over responses to questions is sub-tree compatible with a sequential
trust game McCabe et al. [2003], as is its solution concept. While IQAP and Not
Answer are equally rational for B in a one shot game, Not Answer puts P at a
disadvantage. This disadvantage may lead to an unpleasant conversational turn,
and reiteration of the question; the utilities on the ¬ Ans reflect this. In this
case QAP is dispreferred by Bronston for reasons having to do with extra lin-
guistic issues (the problem of explicit perjury); notice though that P is indifferent
between QAP and IQAP since they both satisfy the SARG underlying the ques-
tion. Whether he should be indifferent is another matter. Asher and Lascarides
[forthcoming] argue that P should be indifferent between QAP and IQAP only
if IQAP remains an equilibrium in a larger game arena, in which facts about B’s
player type that might distinguish between these IQAP and QAP are taken into
account in the interpretation of B’s response to the question. But I will not go
into the lengthy discussion that this engenders here.

4 Back to Implicatures

So far, I’ve developed a game theoretic model based on politeness and on as-
sumptions of costs of continuations of certain discourse structures. I’ve shown
that it’s reasonable to suppose that certain kinds of responses to questions are
preferred in non cooperative conversations—in effect over answers to questions
are preferred for strategic reasons. Thus, the account fills a gap in the Gricean

56 N. Asher

account. But what about our puzzle about implicatures in non cooperative con-
texts?

Given the model, IQAP is strategically favored as a response. When the move
doesn’t entail a direct answer, we have to engage in defeasible reasoning to
get a direct answer. Sometimes this reasoning depends on a set of alternatives
generated lexically or by the discourse context (see Asher [2012] for a discussion
of this issue and a proposal). The counterfactual reasoning goes as follows for P .
B would know whether he had a bank account and so, given this presumption,
would have said so; this would have been a natural and relevant issue to include
in an IQAP. The IQAP move is designed to anticipate follow up questions, and
a natural one in this case would be the question of whether Bronston himself
had a bank account. In fact, it’s the question that P asked! P can reasonably
assume that since B doesn’t want the questioning to go on, he says all that is
relevant to P ’s question—he is anticipating follow-up questions. Since B didn’t
say that he had a bank account, he commits to not having one, given the type of
discourse turn. So in this case ¬ Commit(φ) > Commit¬φ. The scalar inference
to the conclusion that Bronston doesn’t have a bank account can be justified
without appealing to any theses about cooperativity. We’ve substituted utility
of IQAP and its semantics for cooperativity to get a similar effect.

Nevertheless, misdirection is still possible. P’s assumption though reasonable
is not sound in this case. The problem lies, as I intimated above in the inter-
pretation of B’s signal. Is it really an IQAP or is it in fact an evasion? Normal
speakers do anticipate follow up questions, especially ones directly relevant to
the issue. Were Bronston a normal uncooperative speaker, the inference to IQAP
and the commitment to not having a bank account would have been sound. That
is, B would in fact commit to not having a bank account (note that the ques-
tion as to whether he commits to not having a bank account is a very different
question from whether this information is credible). But B in fact did claim
that he did not say that he had a bank account. He was just giving some back-
ground information about the bank and his firm. So P in fact misinterpreted
him. course in this case the prosecutor P is also at fault as Asher and Lascarides
[forthcoming] argue. He should have realized that Bronston’s commitment here
is in some sense less strong than one based just on compositional semantics;
it relies on reasoning about normal speakers and about discourse moves, which
are ambiguously signalled. He should have realized that Bronston might try to
weasel out of his commitment, and the attendant charge of perjury. In fact, this
is what happened.

5 Conclusions

I proposed a model and an argument for supporting implicatures without as-
sumptions about Gricean cooperativity. The model also explains why over an-
swers are so frequent. The model makes clear on a hidden reputation effect that
is constant in extended conversation. The foundation of this model rests on
ideas from politeness theory. And thus face and reputation emerge as important

The Non Cooperative Basis of Implicatures 57

factors in the evolution of discourse structure for conversation. Which perhaps
points to a new role for expressive meaning.

References

Afantenos, S., Asher, N., Benamara, F., Bras, M., Fabre, C., Ho-dac, M., Le
Draoulec, A., Muller, P., Pery-Woodley, M., Prevot, L., Rebeyrolle, J., Tanguy, L.,
Vergez-Couret, M., Vieu, L.: An empirical resource for discovering cognitive prin-
ciples of discourse organisation: the annodis corpus. In: Proceedings of LREC 2012
(2012)

Allen, J., Litman, D.: A plan recognition model for subdialogues in conversations.
Cognitive Science 11(2), 163–200 (1987)

Asher, N., Lascarides, A.: Logics of Conversation. Cambridge University Press (2003)
Asher, N., Lascarides, A.: Strategic conversation. Draft copy available from the authors

(forthcoming)
Asher, N., Quinley, J.: Begging questions, their answers and basic cooperativity. In:

Proceedings of the 8th International Conference on Logic and Engineering of Natural
Language Semantics (LENLS), Japan, (2011)

Asher, N., Sher, I., Williams, M.: Game theoretic foundations for pragmatic defaults.
In: Amsterdam Formal Semantics Colloquium, Amsterdam (December 2001)

Asher, N.: Implicatures in discourse. Lingua (2012) (forthcoming)
Asher, N., Venant, A., Muller, P., Afantenos, S.D.: Complex discourse units and their

semantics. In: Contstraints in Discourse (CID 2011), Agay-Roches Rouges, France
(2011)

Brown, P., Levinson, S.C.: Politeness: Some Universals and Language Usage. Cam-
bridge University Press (1978)

Cohen, P.R., Raymond Perrault, C.: Elements of a plan-based theory of speech acts.
Cognitive Science 3, 177–212 (1979)

Grice, H.P.: Logic and conversation. In: Cole, P., Morgan, J.L. (eds.) Syntax and Se-
mantics. Speech Acts, vol. 3, pp. 41–58. Academic Press (1975)

Grosz, B., Sidner, C.: Plans for discourse. In: Morgan, J., Cohen, P.R., Pollack, M.
(eds.) Intentions in Communication, pp. 365–388. MIT Press (1990)

Hamblin, C.: Imperatives. Blackwells (1987)
Lascarides, A., Asher, N.: Agreement, disputes and commitment in dialogue. Journal

of Semantics 26(2), 109–158 (2009)
Lochbaum, K.E.: A collaborative planning model of intentional structure. Computa-

tional Linguistics 24(4), 525–572 (1998)
McCabe, K., Rigdon, M., Smith, V.: Positive reciprocity and intentions in trust games.

Journal of Economic Behavior & Organization 53 (2003)
Solan, L.M., Tiersma, P.M.: Speaking of Crime: The Language of Criminal Justice.

University of Chicago Press, Chicago (2005)

Wahlster, W. (ed.): Verbmobil: Foundations of Speech-to-Speech Translation. Springer

(2000)

Movement-Generalized Minimalist Grammars

Thomas Graf

Department of Linguistics,
University of California, Los Angeles

tgraf@ucla.edu

http://tgraf.bol.ucla.edu

Abstract. A general framework is presented that allows for Minimalist
grammars to use arbitrary movement operations under the proviso that
they are all definable by monadic second-order formulas over derivation
trees. Lowering, sidewards movement, and clustering, among others, are
the result of instantiating the parameters of this framework in a certain
way. Even though weak generative capacity is not increased, strong gen-
erative capacity may change depending on the available movement types.
Notably, TAG-style tree adjunction can be emulated by a special type of
lowering movement.

Keywords: Minimalist Grammars, Movement, Monadic Second-Order
Logic, Tree Languages, Transductions, Tree Adjunction Grammar.

Introduction

Ever since Joshi’s conjecture that natural language is mildly context-sensitive
[8], a lot of research has been devoted to characterizing this class in various ways.
One of them pertains to multiple context-free languages (MCFLs; [18]) and states
that they coincide with the string yield of the class of tree languages that are
the image of regular tree languages under tree-to-tree transductions definable in
monadic second-order logic (MSO; see [14] and the literature cited there). This
result meshes well with recent approaches that decompose Minimalist grammars
(MGs) — which have the same weak generative capacity as MCFLs — into an
MSO-definable (= regular) tree language L and a transduction from L to the
intended phrase structure trees ([12, 14] and references therein).

From a linguistic perspective, an MG’s set of well-formed derivation trees
provides the most natural encoding of this underlying tree language L, and [12]
demonstrated that this is indeed a workable solution. In [4], however, it is shown
that recognizing Minimalist derivation trees does not require the full power of
MSO. In a sense, then, MGs still have some wiggle room insofar as one can in-
crease the complexity of their derivation trees and still stay inside the confines
of MSO-definability that limit the formalism to MCFLs. One way to exploit this
gap is by adding MSO-definable constraints to MGs. Even though this greatly
increases their linguistic usefulness, weak and strong generative capacity remain
the same [3, 11]. I explore another option in this paper: allowing for derivationally
more complex variants of Move, yielding Movement-GeneralizedMGs (MGMGs).

D. Béchet and A. Dikovsky (Eds.): LACL 2012, LNCS 7351, pp. 58–73, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://tgraf.bol.ucla.edu

Movement-Generalized Minimalist Grammars 59

My endeavour starts with another insight of [4], namely that the distribution
of Move nodes in a derivation tree can be regulated by a few simple constraints
stated in terms of proper dominance. To create new movement types, for in-
stance sidewards movement [7, 15], one merely has to replace proper dominance
by some other binary relation R. As long as R is MSO-definable, the deriva-
tion tree language will still be regular and weak generative capacity does not
increase. Some parameters of Move, though, must be expressed directly in the
mapping from derivation trees to derived trees. Fortunately, all of them are
MSO-definable and thus pose no risk of taking us out of the class of MCFLs.
The result is a general, mildly context-sensitive framework that accommodates
almost all aspects of Move: directionality (raising, lowering, sideward), size of
the moved constituent (head, phrase, pied-piped phrase), overt versus covert,
and linearization (left or right specifier).

The paper is laid out as follows. After a few technical preliminaries, I define
standard MGs in Sec. 2, focusing foremost on the constraints that ensure the
well-formedness of Minimalist derivation trees. I then proceed with generalizing
Move; Sec. 3.2 stays at the level of derivation trees, whereas Sec. 3.3 and 3.4 are
devoted to transduction parameters. The final definition of MGMGs is given in
Sec. 3.5. In the last section, I analyze the relationship between TAGs and MGs
with lowering, conjecturing that their derived tree languages are identical given
certain assumptions.

1 Preliminaries and Notation

Let Σ and Γ be alphabets. A directed graph with labeled nodes and edges over
(Σ,Γ) is a triple G(Σ,Γ) := 〈V,E,
〉, with V a finite set of nodes, E ⊆ V ×Γ×V
the set of labeled edges, and
 : V → Σ the node labeling function. An edge
〈u, γ, v〉 is an edge from u to v with label γ; it is an outgoing edge of u and
an incoming edge of v. In this case, u is called a mother of v, or equivalently, v
is a daughter of u. A path from u to v is a (possibly empty) sequence of nodes
u0 · · ·un such that u = u0, v = un and ui is a mother of ui+1 for all 0 ≤ i ≤ n.
A path is a cycle iff u0 = un and n ≥ 1. A graph is cycle-free iff it contains no
cycles. A node with no incoming edges is a root, a node with no outgoing edges
a leaf. A graph is rooted iff it has exactly one root.

Let Σ be a ranked alphabet, i.e. every σ ∈ Σ has a unique non-negative
rank ; Σ(n) is the set of all n-ary symbols in Σ. A Σ-term graph is a cycle-
free rooted graph G(Σ,Γ) such that Σ is a ranked alphabet, Γ := {i | 1 ≤
i ≤ n and n the largest integer such that Σ(n) �= ∅} and every node with label
σ ∈ Σ of rank i has i outgoing edges with pairwise distinct labels. The integers on
the outgoing edges of a node are interpreted as linear order. A Σ-tree is a Σ-term
graph in which every node except the root has exactly one incoming edge. Let
Πn := {�i | 0 < i ≤ n} be a set of distinguished nullary symbols called ports.
A (Σ,n)-context is a (Σ ∪ Πn)-tree such that all ports have pairwise distinct
indices. Given a (Σ,n)-context C and a sequence s := t1, . . . , tn of (Σ,m)-
contexts, m ∈ N, the n-fold tree concatenation of C and s replaces each �i in C
(if it exists) by ti.

60 T. Graf

My definition of MSO transductions follows [1] very closely. I assume that
the reader is already familiar with monadic second-order logic (MSO) and write
MSO(Σ,Γ) to denote the MSO language of (Σ,Γ)-graphs. A finite-copying MSO
graph transducer from (Σ1, Γ1) to (Σ2, Γ2) is a triple MSOgr := 〈C, Ψ,Θ〉, where
C is a finite set of copy names, Ψ := {ψσ,c(x) ∈ MSO(Σ1, Γ1) | σ ∈ Σ2, c ∈ C} a
set of node formulas, and Θ := {θγ,c,c′(x, y) ∈ MSO(Σ1, Γ1) | γ ∈ Γ2, c, c

′ ∈ C}
a set of edge formulas.

The graph transduction τ defined by MSOgr is as follows. For every graph
G(Σ1, Γ1), its image under τ is G′(Σ2, Γ2) such that

– VG′ := {〈c, u〉 | c ∈ C, u ∈ VG, and G, u |= ψσ,c(x) for exactly one σ ∈ Σ2},
– EG′ := {〈〈c, u〉 , γ, 〈c′, u′〉〉 | 〈c, u〉 , 〈c′, u′〉 ∈ VG′ , γ ∈ Γ2 and G, u, u′ |=
θγ,c,c′(x, y)},

–
G′ := {〈〈c, u〉 , σ〉 | 〈c, u〉 ∈ VG′ , σ ∈ Σ2, and G, u |= ψσ,c(x)}.

An MSO term graph transducer is a graph transducer from trees to term graphs.
An MSO tree transducer is a graph transducer from trees to trees. Unless a
transducer is explicitly designated to be finite-copying, C is assumed to be a
singleton and thus superfluous.

2 Minimalist Grammars

The material covered in this paper presupposes a high level of familiarity with
MGs. Unfortunately, space restrictions force me to proceed at a brisk pace, so
that readers unacquainted with the formalism must be referred to [21] for a
gentle introduction.

While MGs are usually defined in terms of the derived trees they generate
[21] or in the chain-based format of [22], it makes more sense for our purposes to
define them via Minimalist derivation tree languages (MDTLs). To this end, I
adopt the approach taken by [4], which builds on the notion of slices (introduced
in [4] and [11]). The slice of a lexical item (LI) l consists of l itself and those
interior nodes which denote an operation checking a licensor or selector feature
of l. Intuitively, then, the slice of l is the derivation tree equivalent of the phrase
projected by l in the derived tree (cf. Fig. 1). Since every node in a well-formed
derivation tree belongs to exactly one slice, MDTLs can be regarded as the
result of combining a finite number of slices in all possible ways such that all
conditions imposed by the feature calculus are obeyed. Consequently, every MG
is fully specified by some finite set of slices. Slices can be obtained from LIs via
a simple recursive procedure.

Definition 1. Let Base be a non-empty, finite set of feature names. Fur-
thermore, Op := {merge,move} and Polarity := {+,−} are the sets of
operations and polarities, respectively. A feature system is a non-empty set
Feat ⊆ Base×Op× Polarity.

Note that this is merely a different notation for the familiar system of category
features f := 〈f,merge,−〉, selector features = f := 〈f,merge,+〉, licensee fea-
tures −f := 〈f,move,−〉, and licensor features +f := 〈f,move,+〉. In cases

Movement-Generalized Minimalist Grammars 61

move

merge

move

merge

merge

John :: d − nom merge

merge

man :: n the :: = n d − top

killed :: = d =d v

ε :: = v + nom t

ε :: = t + top c
>

<

the man

<

ε >

John <

ε >

<

killed

Fig. 1. Left: derivation tree of The man, John killed, with slices indicated by color;
Right: corresponding derived tree, dashed arrows indicate movement

where only the name, operation, or polarity of f is of interest, ν(f), ω(f) and
π(f) will be used, respectively.

Definition 2. Given a string alphabet Σ and feature system Feat, a (Σ,Feat)-
lexicon is a finite subset of Σ × {::} × Feat∗.

Definition 3. Let Lex be a (Σ,Feat)-lexicon, Lex � := {σ :: f1 · · · fn� | σ ::
f1 · · · fn ∈ Lex}, and Ω the ranked alphabet {l(0) | l ∈ Lex}∪{move(1),merge(2)}.
Then the slice lexicon of Lex is slice(Lex) := {ζ(l) | l ∈ Lex�}, where ζ : Lex � →
TΩ is given by

ζ(σ :: f1 · · · fi � fi+1 · · · fn) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ :: f1 · · · fn
if f1 · · · fi = ε

ζ(σ :: f1 · · · fi−1 � fi · · · fn)
if π(fi) = −

move(ζ(σ :: f1 · · · fi−1 � fi · · · fn))
if τ(fi) = move and π(fi) = +

merge(�i, ζ(σ :: f1 · · · fi−1 � fi · · · fn))
if τ(fi) = merge and π(fi) = +

I follow [4] in stipulating that slices are right branching, but this is merely a
matter of convenience — linear order is irrelevant in derivation trees.

Despite its totality, ζ yields the intended result only for LIs of the form γcδ,
where γ is a (possibly empty) string of selector and licensor features, c a category
feature, and δ a (possibly empty) string of licensee features. As was shown in both
[3] and [11], all LIs occurring in a well-formed derivation satisfy this condition.

62 T. Graf

In anticipation of subsequent modifications of the formalism, though, I explicitly
require this feature order.

F-Order. Every LI is an element of Σ × {::} × {f | π(f) = +}∗ × {c | ω(f) =
merge, π(f) = −}× {f | ω(f) = move, π(f) = −}∗.

Given a slice lexicon slice(Lex), let |γ| be the maximum of positive polarity
features on a single LI. The closure of slice(Lex) under |γ|-fold tree concatenation
is the free slice language FSL(slice(Lex)). Obviously this is not a well-formed
MDTL (for instance, some trees still contain ports). Hence certain constraints
must be enforced, which in turn requires additional terminology.

The slice root of LI l := σ :: f1 · · · fn is the unique node of ζ(l) reflexively
dominating every node in ζ(l). An interior node of ζ(l) is associated to feature fi
on l iff it is the root of ζ(σ :: f1 · · · fi � fi+1 · · · fn). Two features f and g match
iff they have identical names and operations but opposite feature polarities. An
interior node m matches a feature g iff the feature m is associated to matches g.
For every t ∈ FSL(slice(Lex)) and LI l in t with string −f1 · · · − fn of licensee
features, the occurrences of l in t are defined as follows:

– occ0(l) is the mother of the slice root of l in t (if it exists).
– occi(l) is the unique node m of t labeled move such that m matches −fi,

properly dominates occi−1, and there is no node n in t that matches −fi,
properly dominates occi−1, and is properly dominated by m.

I also refer to occ0(l) as the zero occurrence of l, while all other occurrences of l
are positive occurrences. The ith positive occurrence of l is simply the first Move
node m one encounters when moving upwards through the derivation tree such
that m is capable of checking the ith licensee feature fi of l after all preceding
licensee features have already been checked. Given a well-formed derivation, m
will always coincide with the node that actually checks fi. In other words, the
notion of occurrences provides a tree-geometric encoding of some parts of the
Minimalist feature calculus pertaining to Move.

The remainder of the feature calculus can also be expressed tree-geometrically.
For every t ∈ FSL(slice(Lex)), node m of t, and LI l with licensee features
−f1 · · · − fn, n ≥ 0:

Final. For F ⊆ Base a distinguished set of final categories, if the slice root
of l is the root of t, then the category feature c of l is a final category, i.e.
ν(c) ∈ F .

Merge. If m is associated to selector feature = f , then its left daughter is the
slice root of an LI with category feature f .

Move. There exist distinct nodes m1, . . . ,mn such that mi (and no other node
of t) is the ith positive occurrence of l, 1 ≤ i ≤ n.

SMC. If m is labeled move, there is exactly one LI for which m is a positive
occurrence.

As expressed in Lemma 1 of [4], L is an MDTL iff it is the biggest subset of
FSL(slice(Lex)) satisfying the four constraints above. Let us step back for a

Movement-Generalized Minimalist Grammars 63

second and reflect on why this is the case. The first two constraints are easy
to fathom. MGs require that the head of a derived tree must belong to some
final category (usually c), and Final expresses this requirement in derivational
parlance. Similarly, Merge ensures that an LI only selects LIs with matching
category features. Move captures one half of MG’s resource sensitivity with
respect to Move: every licensee feature must be checked. For if an LI l has fewer
occurrences than licensee features, some feature must remain unchecked because
no Move node can check more than one of l’s features. The other half of resource
sensitivity is enforced by SMC: every Move node is responsible for checking
exactly one licensee feature in the entire derivation. On the one hand, this rules
out derivations with more licensor features than licensee features. On the other
hand, it makes Move deterministic and rules out SMC violations. In a standard
MG, the SMC guarantees for every step of a derivation that if −fi is the first
licensee feature of an LI that still needs to be checked, it is not the first currently
unchecked licensee feature of any other LI. If the SMC is violated, then the
corresponding derivation tree must contain some node m properly dominating
two LIs l and l′ that both have −fi as their first unchecked feature. But then
the lowest matching Move node reflexively dominating m will be an occurrence
for both l and l′, which is ruled out by SMC.

As all the constraints above can be stated in first-order logic with predicates
for equality, proper dominance and right sister [4], we can view them as regular
tree languages (i.e. as the sets of trees satisfying the respective constraints) and
enforce them using regular control as described in [3]. The result is the desired
MDTL — a regular set of derivation trees, each of which can be converted into
the corresponding derived tree using the multi bottom-up transducer (mbutt)
described in [12]. As is well-known, the string yield of an MG’s derived tree
language is an MCFL; in fact, MGs and MCFG are weakly equivalent [6, 13].

Definition 4. A Minimalist Grammar is a 5-tuple G := 〈Σ,Feat ,Lex ,F ,R〉
such that

– Lex is a (Σ,Feat)-lexicon, and
– F ⊆ Base is the set of final features, and
– R is a finite set of regular tree languages containing F-Order, Final,Merge,

Move, SMC, and nothing else.

The MDTL of G is FSL(slice(Lex))∩
⋂

R∈RR. The tree language L(G) generated
by G is the image of its MDTL under the mbutt of [12]. Its string language is
the string yield of L(G).

3 New Movement Types

3.1 General Strategy

By regulating Move purely via structural conditions on the distribution of occur-
rences, we have successfully decoupled the SMC and the resource-sensitivity of

64 T. Graf

MGs from the specifics of Move. Crucially, both Move and SMC hold indepen-
dently of how occurrences are defined. In the previous section, proper dominance
was used to capture raising, i.e. phrasal movement to a c-commanding position
(not to be confused with raising constructions in the syntactic literature). How-
ever, if proper dominance was replaced by its inverse, the result would be lower-
ing instead, which moves a phrase to a position it c-commands. As Move and
SMC are unaffected by this change, the MDTL of an MG with lowering rather
than raising would still be regular. In fact, regularity is preserved as long as the
relation replacing proper dominance in the definition of occurrences is rational.

The mapping from derivation trees to derived trees, however, increases in com-
plexity as the number of Move operations proliferates. Even if the mbutt of [12]
were powerful enough to compute the mapping for any given rational relation,
it would quickly become prohibitively complex. A better transduction model is
provided by MSO-transductions. First, limiting ourselves to MSO-transductions
guarantees that the string yield of the derived tree language is an MCFL (see [14]
and references therein). Second, the MSO-transduction makes it very easy to cap-
ture other parameters of Move such as the size of the moved subtree. With respect
to both expressivity and elegance, then, MSO-transductions are the ideal choice.

In order to avoid the complexities brought about by finite-copying MSO-
transductions (which are necessary for the insertion of traces), I opt to decom-
pose the transduction into two simpler steps. The derivation tree is first mapped
to a term graph, also known as a multi-dominance tree in the syntactic litera-
ture. This first step handles differences in linearization and the size of the moved
constituent. The term graph is then unfolded into a tree. Depending on how this
unfolding is specified, one can allow for copying and covert movement.

Working with MSO-transductions obviously requires the introduction of some
logical machinery. Due to space restrictions — and because it has already been
accomplished in [4] — I refrain from giving a full model-theoretic formaliza-
tion of MDTLs. I am also confident that the reader is sufficiently familiar with
MSO to see that all constraints and definitions presented in the following sec-
tions are MSO-definable (keep in mind that a Minimalist lexicon is finite, so
disjunctions, conjunctions and the recursive definitions given here are always
finitely bounded). Where MSO-formulas are used, I follow the syntax of L2

K,P

[16], writing � for immediate dominance.

3.2 Step 1: Derivations and Occurrences

Generalizing the MG formalism at the level of derivation trees is quite simple.
First the feature system is extended by another set M-Type of movement types,
which represent various kinds of movement, for instance raising, lowering and
sidewards movement; the movement type of a feature will usually be indicated
as a superscript to avoid confusion. Each � ∈ M-Type in turn is associated
with a pair

〈
R�

0 , R
�〉 of rational relations. The first one determines the zero

occurrence of an LI (e.g. the mother of its slice root for raising), while the second
one assumes the role previously played by proper dominance in determining the

Movement-Generalized Minimalist Grammars 65

LI’s positive occurrences. These pairs are called movement specifications, and I
will often refer to them by the movement type they specify.

New movement types do not always behave as expected, though. With raising
movement, competition between potential occurrences is eliminated by stipu-
lating that only the closest (i.e lowest dominating) movement node counts as
an occurrence. No such safeguard exists for lowering, though, and as a result
many configurations are ambiguous and thus blocked by Move and SMC, which
jointly ensure that Move is deterministic.

Consider the configuration in Fig. 2. From a linguistic perspective, the intended
result is clear: b and d should lower into the specifiers of a and c, respectively.
Given the current conception of occurrences, however, this configuration is in fact
illicit. The LI d has not one but two occurrences, namely the Move nodes of c and
a. Neither properly dominates the other, so neither blocks the other, either. Fur-
thermore, the Move node of a is an occurrence for both b and d. So both Move
and SMC are violated. Note, however, that the zero occurrence of b is the Merge
node immediately dominating it and that this Merge node intervenes between the
zero occurrence of d and the Move node of a. It seems, then, that the derivation
can be salvaged by stipulating that LIs and their occurrences may act as interven-
ers, too. To this end, movement specifications are modified to comprise another
rational relation P�, and occurrences are defined in two steps.

– For all i ≥ 1 and � ∈ M-Type, node m is a potential i-occurrence pocci(l)
of l iff

• m matches −f�
i , and

•
〈
m, pocci−1(l)

〉
∈ R�, and

• there is no node z distinct from m such that
∗ z matches −f�

i , and
∗
〈
z, pocci−1(l)

〉
∈ R�, and

∗ 〈m, z〉 ∈ R�.

merge

d :: d − f lo merge

merge

move

c :: +f lo c

merge

b :: b − f lo merge

move

a :: +f lo a

y :: = a =b =c y

z :: = y =d z

Fig. 2. The move node of LI b is a potential occurrence for both c and e, and e has
two occurrences, the move nodes of b and d

66 T. Graf

– For all i ≥ 1 and � ∈M-Type, node m is an i-occurrence occi(l) of l iff
• m is a potential i-occurrence of l, and
• there is no node l′ distinct from l such that m is a potential j-occurrence
of l′, j ≥ 1, and 〈occj−1(l

′), occi−1(l)〉 ∈ P�.

– Both occ0(l) and pocc0(l) hold of node m iff 〈m, l〉 ∈ R�
0 .

As multiple movement types may be realized in the same grammar, I will some-
times say thatm is a�-occurrence of l to express that m is a positive occurrence
of l and matches some −f�

i .
The reader is encouraged to verify for himself that this new definition yields

the same result as the previous one on page 62 if R� = P� is taken to be proper
dominance (as far as I can tell, the equivalence of R� and P� holds for all
movement operations in the syntactic literature). Restricting proper dominance
to paths containing at most k+ 1 left branches, on the other hand, gives rise to
k-local movement in the sense of [4]. And as expected, lowering can be captured
by using inverse proper dominance.

Sidewards movement [15, 20] is another prominent kind of movement. It does
away with the c-command requirement on raising so that, for instance, com-
plements and specifiers of specifiers are viable landing sites. For this reason,
sidewards movement is heavily relied on in movement-based analyses of control
and various extraction phenomena [cf. 7]. One conceivable formalization of side-
wards movement is (inverse) slice containment: x slice contains y iff the slice
containing a node immediately dominating x contains a node properly dominat-
ing y. If the zero occurrence of LI l is fixed to be the mother of the slice root of
l, slice containment allows for locally restricted sidewards movement. The choice
of slice might be freely altered to increase the locality domain, e.g. to the low-
est slice of an LI of category c that properly dominates x. Minor modifications
of this kind allow for sidewards movement to subsume previously implemented
variants of Move such as Across-the-Board extraction [10] and clustering [2].

One peculiarity brought about by non-standard movement types is that the
linguistic conception of derivation trees as a temporally ordered record of how
derived trees are assembled in a step-wise fashion loses most of its intuitiveness.
Going back to Fig. 2, for example, we see that b enters the derivation later than
its last occurrence, the move node licensed by a (and similarly for d). Under
the standard construal of derivation trees, this would entail that before b was
inserted into the derived tree it had already lowered into the specifier of a. This
apparent contradiction can be resolved by viewing derivation trees as a relative of
proof nets (see [17, 19] and references therein): they are merely a graph-theoretic
representation of the Minimalist feature calculus and its checking requirement,
with movement types corresponding to specific rules of inference in this calculus.

3.3 Step 2: Mapping to Term Graphs

The next step is the mapping from derivation trees to the derived structures
posited by linguists. Recent Minimalist reasoning maintains that derived trees
are actually multi-dominance trees — tree-like structures in which a node may

Movement-Generalized Minimalist Grammars 67

have multiple mothers. Movement of a phrase XP to YP no longer involves
displacement of XP into the (newly created) specifier of YP, with a trace or copy
of XP being left behind in the original position. Instead, only a new dominance
branch is added between YP and XP, making the latter a specifier of the former.
The derived tree in Fig. 1, for instance, may be converted into this new format by
interpreting the movement arrows as dominance branches. More importantly, the
multi-dominance tree can also be obtained from the derivation tree by adding
branches from the slice root of an LI to all its positive occurrences (ignoring
linearity and labels, for now).

The mathematical analog of converting derivation trees into multi-dominance
trees is transducing trees into term graphs. For the simple mapping required for
MGs, MSO term graph transductions [1] are more than sufficient. Recall that
such a transduction is specified by a pair 〈Ψ,Θ〉. The first component, Ψ , is a set
of formulas determining which nodes of the input tree are present in the term
graph and what their label is, while Θ consists of formulas defining the relations
that hold between the nodes of the term graph. Crucially, those formulas may
only use predicates from the MSO-language used to define the input tree.

In our case, all nodes of the input tree are present in the term graph, so we
only need to worry about changing the label and defining precedence ≺ and
immediate dominance �. The latter is readily stated in terms of occurrences
and immediate dominance in the derivation tree (occi(x, l) holds iff x is the ith

occurrence of l, and |δ| is the maximum of licensee features occurring on a single
LI in the grammar’s lexicon).

x � y ↔ x � y ∨ ∃l
[∨
1≤i≤|δ|

occi(x, l) ∧ sliceroot(y, l)
]

The predicate sliceroot ensures that the dominance branch is added between the
occurrence and the root of the slice whose LI is undergoing movement. In other
words, it enforces phrasal movement. But we can of course replace sliceroot by a
different predicate to yield other kinds of movement. For instance, if y and l are
identical, the result is head movement. For pied-piping, y is the slice root of some
slice containing the slice of l. Wee see, then, that sliceroot can be freely exchanged
for other MSO-definable predicates to alter the size of the moved subtree.

More precisely, movement specifications are extended to
〈
R�

0 , R
�, P�, root�

〉
,

where root� is an MSO formula with two free variables that picks out a unique
node to serve as the root of the subtree carried along by �-movement. Then � is
defined as follows (occ�i (x, l) holds iff both occi(x, l) and x is a �-occurrence):

x � y ↔ x � y ∨ ∃l
[∨

1≤i≤|δ|
�∈M-Type

(
occ�i (x, l) ∧ root�(y, l)

)]

Certain restrictions must be put in place, though, to ensure that the output
of the transduction is indeed a term graph and in line with certain Minimalist
intuitions. For all t ∈ FSL(slice(Lex)), nodes x, y, l of t, �, ◦ ∈ M-Type, and
string δ of licensee features:

68 T. Graf

Containment. If −f� precedes −f◦ in δ and both root�(x, l) and root◦(y, l)
hold, then x reflexively dominates y.

Dominance. If root�(x, l) holds, then x reflexively dominates l.
Exocentricity. Ifm is a positive occurrence of l,m is not associated to a feature

of l.
No Cycle. If x �+ y holds, then y �+ x does not.

The first three conditions are linguistically motivated. They prevent LIs from
triggering displacement of unrelated subtrees, stop moved subtrees from seem-
ingly recombining with material that had previously been left behind, and pro-
hibit LIs from licensing their own movement. The last one ensures that no cycles
are present in the output graph. Keep in mind that the transitive closure of �
is MSO-definable, so No Cycle is indeed an MSO formula.

Besides dominance, one must also take care of precedence and the output
labels. This offers another opportunity to reign in a variant of Move, namely
rightward movement (also known as extraposition). The feature system is en-
riched by yet another component, Headedness := {left , right}. Headedness
information simplifies the task of defining predicates for left daughter �1, right
daughter �2, and precedence ≺ (which isn’t necessarily a strict order in term
graphs). Only the headedness of positive polarity features is taken into account.
This is formally expressed by restricting the predicates left(x) and right(x) to
interior nodes associated to features of the respective headedness. Furthermore
x ∼ y iff x and y are nodes of the same slice.

x �1 y ↔ x � y ∧
(
(x ∼ y ∧ left(x)) ∨ (x �∼ y ∧ right(x))

)
x �2 y ↔ x � y ∧

(
(x ∼ y ∧ right(x)) ∨ (x �∼ y ∧ left(x))

)
x ≺ y ↔ ∃x′∃y′∃z

[
(x′ ≈ x ∨ x′ �+ x) ∧ (y′ ≈ y ∨ y′ �+ y) ∧ z �1 x

′ ∧ z �2 y
′]

Relabeling the interior nodes based on headedness is just as simple.

< (x)↔ (merge(x) ∨move(x)) ∧ left(x)

> (x)↔ (merge(x) ∨move(x)) ∧ right(x)

Finally, LIs must lose all their features but keep their string exponents. In prin-
ciple one would have to ensure that the LI of the highest slice keeps its category
feature, but this requirement needlessly complicates the transduction and is itself
merely an artefact of the original MG formalism.∧

σ∈Σ

(
σ(x)↔

∨
l:=σ::f1···fn∈Lex

l(x)
)

3.4 Step 3: Unfolding into Derived Trees

The usual way to unfold a term graph into a tree requires unbounded copying:
given a subtree t whose root has n mothers m1, . . . ,mn, create n copies ti of t

Movement-Generalized Minimalist Grammars 69

such thatmi is the mother of ti. While this is a feasible strategy to accommodate
MGs with copying [9], it increases weak generative capacity. I therefore restrict
my attention to unfoldings without unlimited copying.

Let us first consider the case of standard MGs. Suppose LI l has n occurrences,
so that the nodes m1 := occ1(l), . . . ,mn = occn(l),mn+1 all dominate the slice
root of l; mn=1 is the unique Merge node that introduced l into the derivation.
Then the unfolding just has to create n − 1 traces and replace the dominance
branches between the slice root of l and each mi, i < n, by a dominance branch
between a trace and mi. As a result, only the last occurrence of l immediately
dominates its slice root, which is tantamount to saying that the constituent
headed by l moved into the specifier immediately dominated by mn.

In the syntactic literature, a distinction is made between overt and covert
movement, however, and only the former is visible. For the purposes of unfolding
this means that the branch to l’s slice root should not be preserved for the
last occurrence of l, but the occurrence with the highest index that licensed
overt movement. To this end, the feature system is once again modified so as to
indicate overtness via the diacritics o and c. The matching relation also needs to
be extended accordingly to ensure that licensor and licensee features agree on
(c)overtness.

This system is still unsatisfactory, though, as MGMGs allow for the size of the
moved constituent to vary with feature type. This entails that more than just
one occurrence of an LI l may dominate parts of the material that was displaced
by moving l. The challenge is to find the last occurrence for each of these parts.
Given LI l, derivation tree t and �, ◦ ∈M-Type, � ∼= ◦ iff t contains a node x
such that root�(x, l) = root◦(x, l) = 1. Now for every LI l, �, ◦ ∈M-Type, and

j > i ≥ 1, occ�i (l) is a landing site iff occ�i is associated to an overt feature and
there is no occ◦j (l) such that � ∼= ◦. The unfolding then turns the term graph

into a tree such that if occ�i (l) is a landing site, it immediately dominates the
�-root of l. All branches originating from a Merge node immediately dominating
the root of a displaced subtree or from an occurrence of l that is not a landing
site are replaced by branches immediately dominating a trace.

Clearly the number of traces per term graph cannot exceed the total number
of nodes in the graph, wherefore the unfolding is of linear size increase. It follows
immediately that the composition of our MSO term transduction and unfolding
is an MSO-definable tree transduction (with finite copying). Let τ be this tree
transduction. As MDTLs are still regular, it must be the case for every single
one of them that the string yield of its image under τ is an MCFL.

3.5 Defining Movement-Generalized Minimalist Grammars

Now we are finally in a position to define MGMGs.

Definition 5. LetBase andM-Type bedisjoint, non-empty,finite sets of feature
names and movement types, respectively. Furthermore, Op := {merge,move},
Polarity := {+,−}, Headedness := {left , right}, and Overt := {o, c}, are
the sets of operations, polarities, headedness parameters, and overtness markers,

70 T. Graf

respectively. A feature system is a non-empty set Feat ⊆ Base×Op×Polarity×
M-Type×Headedness×Overt.Two featuresmatch iff theyagreeon their name,
operation, movement type, and overtness but have opposite polarities.

Definition 6. Given � ∈ M-Type, the movement specification of � is given
by a 4-tuple

〈
R�

0 , R
�, P�, root�

〉
of binary rational relations.

Definition 7. A Movement-Generalized Minimalist grammar G over alphabet
Σ and feature system Feat is a 6-tuple G := 〈Σ,Feat ,Lex ,F ,R,M〉, where

– Lex is a (Σ,Feat)-lexicon, and
– F ⊆ Base is a set of final categories, and
– R is a finite set of regular tree languages containing at least Containment,

Dominance, Exocentricity, F-Order, Final, Merge, Move, No Cycle,
SMC, and

– M is an M-Type-indexed family of movement types.

Its MDTL is FSL(slice(Lex))∩
⋂

R∈RR. The tree language L(G) generated by G
is the image of its MDTL under the MSO transduction τ , and its string language
is the string yield of L(G).

Theorem 1. MGs and MGMGs have the same weak generative capacity.

4 Tree Adjunction ≡ Reset Lowering

Even though MGs properly subsume TAGs with respect to weak generative ca-
pacity [13, 18], the two formalisms are incomparable at the level of tree languages
[12, 14]. This result does not hold for MGMGs. In fact, TAGs with strictly bi-
nary branching and X′-like projection are equivalent to MGs with a limited kind
of lowering, as I will briefly sketch now (for a full proof see [5]).

Consider the following scenario. The tree α consists of subtrees t(op) and
b(ottom), with b rooted in the node V′ of t, which is a projection of LI lα in
b. The auxiliary tree β, whose foot node is V′ and whose root is a projection
of LI lβ , adjoins into α at V′, yielding γ. It should be easy to see that γ can
be approximated via lowering. First, β is selected by lα immediately after the
subtree immediately dominated by V′ in b. After that, the foot node of β is
replaced by an empty category with licensor feature +f�, and −f� is inserted
after the category feature of lα. The �-root of lα is the sister of the root of β.
The derived tree corresponding to this lowering step only differs from γ in the
presence of two superfluous interior nodes immediately above the �-root of b
and the root of β, respectively; both can easily be detected and removed.

The procedure carries over to the general case without major problems, but
it hinges on a particular definition of lowering. For example, if another auxiliary
tree β′ was to adjoin immediately above V′ in t, the algorithm would add the
requisite nodes and features as intended (now using a new movement type ◦ to
pick out the correct root). But since the Move nodes in β and β′ are not related by
inverse proper dominance, defining lowering in these terms is insufficient — only

Movement-Generalized Minimalist Grammars 71

the first occurrence could ever be reached. Note, though, that each u ∈ {β, β′}
contains exactly one �-occurrence of lα, where the �-root of lα is the sister of
the root of u. In a sense then, we do not want occurrences to be computed in
sequence, but rather independently of each other using inverse proper dominance
and picking the �-root of l as the zero-occurrence for computing �-occurrences.
Emulating this behavior in the MGMG system is slightly cumbersome: for all
� �= ◦ ∈M-Type, 〈x, y〉 ∈ R� iff either y is a�-root c-commanding x or there is
a�-root x′ and a ◦-root y′ such that y′ properly dominates x, no ◦-root properly
dominated by y′ properly dominates x′, y′ c-commands y, and x′ c-commands
x. In conjunction with Containment, this always yields a well-defined relation
that exhibits the desired behavior. I call this relation reset lowering.

Although many technical details are missing, it should nonetheless be clear
that the translation described above can be carried out by a linear tree trans-
ducer. Since TAG derivation tree languages are regular, the output language L
of the transducer is too. In order to convert L into an MDTL, one only needs
to employ the label refinement algorithm given in [3]. The end result is an MG
with reset lowering that generates the same tree language as the original TAG
(under a simple homomorphism that removes the redundant interior nodes).

As for the translation in the other direction, I presuppose that all licensee
features are built from the same feature name f , that is to say, there are no
two distinct features −f�, −g� for any � ∈ M-Type. The reader may verify
for himself that the MGs created by the algorithm above satisfy this condition.
From Containment and the definition of reset lowering it further follows that
no LI has more than one feature of a specific movement type. Now we only have
to apply the spirit of the previous translation in reverse. Suppose we are given
subtrees t, b, β and a node u that is immediately dominated by a leaf v of t and
immediately dominates the roots of b and β. Let α be the composition of t and
b such that v immediately dominates the root of b. Then lowering of b into β
corresponds to adjunction of β into α at the root of b.

Hopefully the reader can appreciate now why L is a tree adjoining language
iff it is the derived tree language of some MGMG with reset lowering and only
one feature name per movement type. For MGMGs with normal lowering, the
translation must fail because for every i > 1 there is such an MGMG G with
Base = {f} that generates the language an1 · · · ani . The lexicon of G contains

– aj :: aj for all j < i,
– ai :: = a1 · · ·=aj ai (−fa1 · · · − fai),
– ai :: = ai + fa1 =a1 · · ·+ fai ai (−fa1 · · · − fai),

where the aj-root of an LI is either the Merge node immediately dominating aj
or the Move node immediately above that (if it exists).

5 Conclusion

MGs can easily be generalized to MGMGs once we view them in terms of their
derivation trees. The notion of occurrence, which is used to regulate the distribu-
tion of Move nodes, can be redefined to allow for variants of Move with different

72 T. Graf

directionality (lowering, sidewards movement etc.). The mapping from deriva-
tion trees to derived trees, on the other hand, furnishes parameters to determine
linearization, the size of the moved subtree, and the overt/covert distinction.
As all these modifications are required to be MSO-definable, MGMGs have the
same weak generative capacity as MGs despite their greatly increased strong
generative capacity.

Acknowledgments. I would like to thank the LACL reviewers, Ed Stabler,
and all the members of the UCLA MathLing Circle; without their questions and
suggestions, this paper would have been even less approachable. Furthermore,
several discussions with Michael Freedman during ESSLLI 2011 on an earlier
version of the TAG-to-MG translation improved my understanding of the TAG
formalism in various ways.

References

[1] Bloem, R., Engelfriet, J.: A comparison of tree transductions defined by monadic
second-order logic and attribute grammars. Journal of Computational System
Science 61, 1–50 (2000)

[2] Gärtner, H.-M., Michaelis, J.: On the treatment of multiple-wh-interrogatives in
minimalist grammars. In: Hanneforth, T., Fanselow, G. (eds.) Language and Lo-
gos, pp. 339–366. Akademie Verlag, Berlin (2010)

[3] Graf, T.: Closure Properties of Minimalist Derivation Tree Languages. In:
Pogodalla, S., Prost, J.-P. (eds.) LACL 2011. LNCS (LNAI), vol. 6736, pp. 96–111.
Springer, Heidelberg (2011)

[4] Graf, T.: Locality and the complexity of minimalist derivation tree languages. In:
Proceedings of the 16th Conference on Formal Grammar (2011) (to appear)

[5] Graf, T.: Tree adjunction as lowering in minimalist grammars (2012), ms., UCLA
[6] Harkema, H.: A Characterization of Minimalist Languages. In: de Groote, P.,

Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 193–211.
Springer, Heidelberg (2001)

[7] Hornstein, N.: Movement and control. Linguistic Inquiry 30, 69–96 (1999)
[8] Joshi, A.: Tree-adjoining grammars: How much context sensitivity is required to

provide reasonable structural descriptions? In: Dowty, D., Karttunen, L., Zwicky,
A. (eds.) Natural Language Parsing, pp. 206–250. Cambridge University Press,
Cambridge (1985)

[9] Kobele, G.M.: Generating Copies: An Investigation into Structural Identity in
Language and Grammar. Ph.D. thesis, UCLA (2006)

[10] Kobele, G.M.: Across-the-board extraction and minimalist grammars. In: Pro-
ceedings of the Ninth International Workshop on Tree Adjoining Grammars and
Related Frameworks (2008)

[11] Kobele, G.M.: Minimalist Tree Languages Are Closed Under Intersection with
Recognizable Tree Languages. In: Pogodalla, S., Prost, J.-P. (eds.) LACL 2011.
LNCS (LNAI), vol. 6736, pp. 129–144. Springer, Heidelberg (2011)

[12] Kobele, G.M., Retoré, C., Salvati, S.: An automata-theoretic approach to mini-
malism. In: Rogers, J., Kepser, S. (eds.) Model Theoretic Syntax at 10, pp. 71–80
(2007)

Movement-Generalized Minimalist Grammars 73

[13] Michaelis, J.: Transforming Linear Context-Free Rewriting Systems into Minimal-
ist Grammars. In: de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS
(LNAI), vol. 2099, pp. 228–244. Springer, Heidelberg (2001)

[14] Mönnich, U.: Grammar morphisms (2006), University of Tübingen
[15] Nunes, J.: The Copy Theory of Movement and Linearization of Chains in the

Minimalist Program. Ph.D. thesis, University of Maryland, College Park (1995)
[16] Rogers, J.: A Descriptive Approach to Language-Theoretic Complexity. CSLI,

Stanford (1998)
[17] Salvati, S.: Minimalist Grammars in the Light of Logic. In: Pogodalla, S., Quatrini,

M., Retoré, C. (eds.) Logic and Grammar. LNCS, vol. 6700, pp. 81–117. Springer,
Heidelberg (2011)

[18] Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free gram-
mars. Theoretical Computer Science 88, 191–229 (1991)

[19] Stabler, E.P.: Remnant movement and complexity. In: Bouma, G., Kruijff,
G.-J.M., Hinrichs, E., Oehrle, R.T. (eds.) Constraints and Resources in Natu-
ral Language Syntax and Semantics, pp. 299–326. CSLI Publications, Stanford
(1999)

[20] Stabler, E.P.: Sidewards without copying. In: Penn, G., Satta, G., Wintner, S.
(eds.) Proceedings of the Conference on Formal Grammar 2006, pp. 133–146.
CSLI Publications, Stanford (2006)

[21] Stabler, E.P.: Computational perspectives on minimalism. In: Boeckx, C. (ed.)
Oxford Handbook of Linguistic Minimalism, pp. 617–643. Oxford University Press,
Oxford (2011)

[22] Stabler, E.P., Keenan, E.: Structural similarity. Theoretical Computer Science 293,
345–363 (2003)

Toward the Formulation of Presupposition

by Illative Combinatory Logic

Yuri Ishishita and Daisuke Bekki

Ochanomizu University,
Graduate School of Humanities and Sciences,

Division of Advanced Sciences, Department of Computer Science
{ishishita.yuri,bekki}@is.ocha.ac.jp

1 Introduction

1.1 Proof-Theoretic Semantics of Natural Language

Model-theoretic semantics, which originates with Tarski, and proof-thoretic se-
mantics, which originates with Gentzen, are two views in semantics of logic that
are distinct from but closely related to each other. Each has advantages over the
other in investigating a certain aspect of logic, and it is more or less commonly
accepted that rather than being a matter of methodological choice, utilizing
them gives us diversified standpoints on various issues. A good example of this
is the two proofs of the consistency of LK: one proof is based on soundness and
the other on cut-elimination, which makes use of different resources but also
together reveals what the consistency of predicate calculus indeed depends on.

The same consideration may apply to formal semantics of natural language as
well, where the model-theoretic view has been dominant for almost forty years
since Montague’s PTQ [10] first appeared. Recently, the proof-theoretic view
of natural language semantics has been pursued [12][19][6]. During its history,
formal semantics has extended its theory in model-theoretic ways in order to
formulate and explain various phenomena with regard to the meaning of natural
language, which otherwise cannot be formulated or explained by any simple
predicate calculi. Then the natural question that arises is: “Is there a proof-
theoretic counterpart for each of such extensions?” For example, is a proof-
theoretic explanation of presuppositions [18] possible?

1.2 Proof-Theoretic Analyses of Presupposition

The aim of this paper is to propose a new proof-theoretic analysis of presup-
position. The mainstream analyses of presupposition (filtering analyses [8][16],
cancellation analyses [15][7], PIA analyses [14][13], and dynamic analyses [2],
among others) have been model-theoretic, but there are a small number of proof-
theoretic approaches [4][9] based on Martin-Löf type theory.

Mineshima’s theory [9] adopts a version of Martin-Löf type theory extended
with the ε operator (of ε-calculus) which he uses for representing presupposition
triggers. The presuppositions are regarded as the well-formedness conditions

D. Béchet and A. Dikovsky (Eds.): LACL 2012, LNCS 7351, pp. 74–85, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Toward the Formulation of Presupposition by Illative Combinatory Logic 75

(in the formation rules in terms of Martin-Löf type theory) for ε-terms. In the
following set of (classical) puzzles, (2) is required as a premise in the proof of
both (1a) and (1b).

(1) a. The king of France is bald.

b. The king of France is not bald.

(2) There is a king of France.

Meanwhile Martin-Löf type theory adopts a natural deduction style system for
both the proof of semantic validity and the well-formedness of an inference.
When applied to natural languages, it means that we use a natural deduction
style system for both the proof of semantic validity and the grammaticality
of a sentence. However, a logical grammar of a natural deduction style has a
problem in properly describing the constraint on wh-movement/extractions [11].
This problem can be solved by adopting CCG [17] as a syntactic theory, which
corresponds to a type theory of Hilbert-sytle, namely a combinatory logic [3].
Thus we are led to the use of ICL, which is a higher-order dependent type
theory that corresponds to a combinatory logic, which enables us to inherit
what Mineshima has achieved with Martin-Löf type theory and what CCG has
achieved as a syntactic theory at the same time.

In this paper, we propose an analysis of presupposition based on Illative Com-
binatory Logic (ICL) [1][5], a logic that consists of the combinators and the
lambda terms.

2 Illative Combinatory Logic

ICL is a type-free lambda calculus (Combinatory Logic) extended with the terms
that behave as logical operators of first-order predicate logic. It has been known
that the simple addition of the logical operators leads to a paradox. In order to
avoid the paradox, a strategy to distinguish the terms representing propositions
from those representing others has been adopted since Curry. This setting makes
it possible to represent the meta-logical notions, such as “X is a proposition/X
is a type”, as object-level terms (e.g. combinators or lambda terms). This point
is crucial to formulate presuppositions.

ICL corresponds to a minimal predicate logic which lacks a notion of negation.
It has four variant systems, called IP, IF, IΞ, IG, because there are two trans-
lations from propositional logic and predicate logic to ICL, respectively. Their
use for the two kinds of interpretation is as follows. Let []1 be the direct and []2

the propositions-as-types translation. For example, []2: PRED→ IG. The latter
concept is just a concept of higher-order dependent type theory. Considering the
similarities to previous studies [4][9], we focus on the system IG in this paper.

In this section, we will briefly introduce the definition of PRED and IG given
in [1], and the two translations []1 and []2, in order to give a basis for our
proposal.

76 Y. Ishishita and D. Bekki

Table 1. Systems of ICL

[]1 []2

PROP IP IF

PRED IΞ IG

2.1 PRED

The system PRED is a many-sorted predicate logic, defined as follows.

Definition 1 (Signature of PRED). A many-sorted signature Σ = 〈S, F, P 〉
consists of:

1. An enumerable set S called sorts.
2. An S∗ × S-indexed family of sets of function symbols (Fa,c)a∈S∗,c∈S.
3. An S∗-indexed family of sets of predicate symbols (Pa)a∈S∗ .

where a is called an arity and c is called a co-arity.

Example 2. For example, let s = 〈S, F, P 〉 be a signature specified as follows:

S ≡ {A}
F ≡ (F(),A)

F(),A ≡ {a1, a2} a1, a1 are constants.

P ≡ (PA)

PA ≡ {P1,P2} P1,P2 are unary relations.

Definition 3 (Variables of PRED). Given a signature Σ = 〈S, F, P 〉, an S-
indexed family of sets of variables (Vs)s∈S over Σ is a family of sorted variables
xs (s ∈ S).

Definition 4 (Terms of PRED). Given a signature Σ = 〈S, F, P 〉 and a family
of sorted variables V , the S-indexed family of well-sorted terms (Ts)s∈S over Σ
and V is defined as follows.

1. if xs ∈ Vs, then xs ∈ Ts.
2. if f ∈ F(),s, then f ∈ Ts.
3. if t1 ∈ Ts1 , . . . , tn ∈ Tsn and f ∈ F(s1,...,sn),t, then f(t1, . . . , tn) ∈ Tt.

Definition 5 (Formulae of PRED). Given a signature Σ = 〈S, F, P 〉 and a
family of sorted variables V , the set of well-sorted formulae FormPRED over Σ
and V is defined as follows:

1. if t1 ∈ Ts1 , . . . , tn ∈ Tsn and p ∈ F(s1,...,sn), then p(t1, . . . , tn) is a well-formed
formula.

2. if φ, ψ are well-formed formulae, then φ ⊃ ψ is a well-formed formula.
3. if xs ∈ Vs and φ is a well-formed formula, then ∀xsφ is a well-formed formula.

The natural deduction system for PRED has the following inference rules:

Toward the Formulation of Presupposition by Illative Combinatory Logic 77

Definition 6 (Natural deduction system for PRED)

φ ∈ Γ
Γ � φ

Γ � φ ⊃ ψ Γ � φ
Γ � ψ

Γ, φ � ψ
Γ � φ ⊃ ψ

Γ � ∀xAφ t ∈ TA

Γ � φ[xA := t]

Γ � φ xA /∈ FV (Γ)

Γ � ∀xAφ

2.2 IG
The system IG is a type-free lambda calculus extended with the combinators Ξ
(“subsumes”) and L (“is a type”). [1]

Definition 7 (Syntax of IG). The set of terms T = Λ(Ξ, L) in IG is defined
by the following BNF grammar, where Var is a set of variables, x ∈ Var , and
c ∈ {Ξ, L}.

T ::= x | c | TT | λx.T
Remark 8.

– The term X has an assertive value.
– The term XZ is interpreted as a statement “Z is of type X ,” “Z ∈ X”, or

“Z satisfies the predicate X .”
– The term λζ.X corresponds to the class {ζ | X}.
– The term ΞXY is interpreted as “X ⊆ Y ” or “(∀x ∈ X)Y x.”
– The term LX is interpreted as a statement “X is a type”, or “X is a well-

formed formula (wff).”

Definition 9 (Combinators). The combinators F and G are defined as follows,
where S ≡ λpqr.pr(qr),M ◦N ≡ λx.M(Nx).

F ≡ λxyz.Ξx(y ◦ z)
G ≡ λxyz.Ξx(Syz)

The intuitive meaning of FXY Z and GXY Z are “a term Z has a type X ⊃ Y
and “a term Z has a type Y for all objects of a type X”, respectively.

Definition 10 (Inference rules of IG)

(∈e)
X ∈ Γ
Γ � X (βη)

Γ � X X =βη Y
Γ � Y

(Ge)
Γ � GXY Z Γ � XV

Γ � Y V (ZV)
(Gi)

Γ,Xx � Y x(Zx) Γ � LX
Γ � GXY Z

(x ∈/ FV (Γ,X,Y,Z))

(GL)
Γ,Xx � L(Y x) Γ � LX

Γ � L(GXY)
(x ∈/ FV (Γ,X,Y))

The βη reduction rules are defined in the standard way. The rules with the
subscript e, i, L are the elimination rule, the introduction rule, and the well-
formedness rule, respectively.

78 Y. Ishishita and D. Bekki

Theorem 11 (The combinator F). The following rules are derivable in IG.

(Fe)
Γ � FXY Z Γ � XV

Γ � Y (ZV)
(Fi)

Γ,Xx � Y (Zx) Γ � LX
Γ � FXY Z

(x ∈/ FV (Γ,X,Y,Z))

(FL)
Γ,Xx � LY Γ � LX

Γ � L(FXY)
(x ∈/ FV (Γ,X,Y))

Proof. By replacing Y in Definition 10 with KY , where K ≡ λpq.p. �

Example 12. The judgment �PRED ∀xA(Px ⊃ Px) is translated into the follow-
ing judgment in IG:

LA,FALP � L(GA(λx.F(Px)(Px))),

which is interpreted as “if A is a type and P is of type A→ L, then GA(λx.F(Px)
(Px)) is a type.” In this case, the fact that GA(λx.F(Px)(Px)) is a wff is derived
from LA and FALP .

On the other hand, the fact that ∀xA(Px ⊃ Px) is tautology is interpreted
in IG as the inhabitation of the type GA(λx.F(Px)(Px)) as follows.

LA,FALP � GA(λx.F(Px)(Px))(λx.λy.y)

Here, the lambda term λx.λy.y is a proof for GA(λx.F(Px)(Px)).

2.3 Translation from PRED to IG
As mentioned in Table 1, the map []2 translates a judgment of PRED to a judg-
ment of IG. According to the signature Σ = 〈S, F, P 〉 of PRED, we consider
the system IG extended with the set of constants which has a one-to-one corre-
spondence to the set S ∪ (

⋃
F) ∪ (

⋃
P). Let ΛΣ(Ξ, L) be the set of well-formed

formulae defined in this extended system.

Definition 13 (Translation to IG)
The following map [−]2 and Γ (−) are defined by Table 2 and Table 3. [1]

[−]2 : FormPRED → ΛΣ(Ξ, L)
Γ : FormPRED → illative contexts

Moreover, the following two maps Γ 2− and Γ 2,+
− are introduced, which map a

signature to illative contexts. We show it by the following examples, which are
the translations of the signature in Example 2. These maps can be easily gener-
alized for arbitrary signatures.

Γ 2
Σ = 〈LA,FALP1,FALP2, . . . , Aa1, Aa2, . . .〉

Γ 2,+
Σ = Γ 2

Σ , Ax where x ∈ Var .

Toward the Formulation of Presupposition by Illative Combinatory Logic 79

Table 2. Translations of terms

t [t]2 Γ (t)

xA x Ax

f(t1 . . . tn) f [t1]
2 . . . [tn]

2 Γ (t1), . . . , Γ (tn)

Table 3. Translations of formulae

φ [φ]2 Γ (φ)

P(t1 . . . tn) P [t1]
2 · · · [tn]2 Γ (t1), . . . , Γ (tn)

ψ ⊃ χ F[ψ]2[χ]2 Γ (ψ), Γ (χ)

∀xAψ GA(λx.[ψ]2) Γ (ψ)− {Ax}

Lemma 14. Let φ ∈ FormPRED.
1

(1) If t ∈ TA, then in IG one has Γ (t), Γ 2
Σ � A[t]2.

(2) Γ 2
Σ , Γ (φ) �IG L[φ]2.

Theorem 15 (Soundness of the interpretation for PRED). Let Δ∪{φ} ⊆
FormPRED, then the following holds.2

Δ �PRED φ ⇒ Γ 2,+
Σ , [Δ]2, Γ (Δ,φ) �IG [φ]2M for some M.

3 Proposals

ICL is a combinatory version of higher-order minimal predicate logic which lacks
a negation operator. However, the notion of negation is important when it comes
to semantics of natural language. Therefore, we propose a new system IexG,
which is IG extended with an operator of negation and the combinator ε for
presuppositions.

3.1 Extension of PRED(exPRED)

We add the new symbols ⊥ and ε to PRED.

Definition 16 (Syntax of exPRED). Given a signature Σ = 〈S, F, (P(), . . .)〉
of PRED, the signature Σ′ of exPRED is obtained by adding a operator ⊥ to
P() in P , i.e. Σ′ = 〈S, F, (P() ∪ {⊥} , . . .)〉.

Definition 17 (Variables and Terms of exPRED). Given a signature Σ′, a
family of sorted variables are defined in the same way as Definition 3. The family
of well-formed terms over Σ′ and V are defined as in Definition 4.

1 Lemma 2.13 (i)(iii) in [1].
2 Proposition 2.14 (ii) in [1].

80 Y. Ishishita and D. Bekki

Definition 18 (Formulae of exPRED). Given a signature Σ′ = 〈S, F, P ′〉 and
a family of sorted variables V , the set of well-sorted formulae over Σ′ and V is
defined as follows:

1. if t1 ∈ Ts1 , . . . , tn ∈ Tsn and p ∈ F(s1,...,sn), then p(t1, . . . , tn) is a well-formed
formula.

2. if φ, ψ are well-formed formulae, then φ ⊃ ψ is a well-formed formula.
3. if xs ∈ Vs and φ is a well-formed formula, then ∀xsφ is a well-formed formula.
4. if xs ∈ Vs and φ is a well-formed formula, then εxsφ ∈ Ts.

Definition 19 (Natural deduction system for PRED). The natural deduc-
tion system for exPRED is obtained by adding the following inference rules to
that of PRED in Definition 6.

Γ � ⊥ ⊃ φ
or + � P(εxP(x))

Γ � ((φ ⊃ ⊥) ⊃ ⊥) ⊃ φ

As for the two axioms on the left side of Definition 19, if we add the upper one
(EFQ) to PRED, exPRED becomes intuitionistic logic. If we instead add the
lower one (DNE) to PRED, exPRED becomes classical logic.

Definition 20 (Logical operators). In exPRED, the logical operators ¬,∧,∨,
∃ are defined as follows.

¬φ def≡ φ ⊃ ⊥
φ ∧ ψ def≡ (φ ⊃ (ψ ⊃ ⊥)) ⊃ ⊥
φ ∨ ψ def≡ (φ ⊃ ⊥) ⊃ ψ

∃xφ def≡ ∀x(φ ⊃ ⊥) ⊃ ⊥

3.2 Extension of IG(IexG)

Now, it is also necessary to extend IG to translate PRED on it. We add new
combinators and rules to the definition of IG.

Definition 21 (Syntax of IexG). T = Λ(Ξ, L,⊥, ε), the set of type-free
lambda terms extended by the constants Ξ, L,⊥, ε, is defined as follows. Let
Var be a set of variables.

T ::= x | c | TT | λx.T
(x ∈ V ar, c ∈ {Ξ, L,⊥, ε})

Definition 22 (Operators). Define the operators in IexG as follow.

¬φ def≡ Fφ⊥
φ ∧ ψ def≡ F(Fφ(Fψ⊥))⊥
φ ∨ ψ def≡ F(Fφ⊥)ψ
∃xφ def≡ F(GA(λx.(Fφ⊥)))⊥

Toward the Formulation of Presupposition by Illative Combinatory Logic 81

Definition 23 (Rules of ε)

(εL)
Γ � (∃xX)Y

Γ � A(ε(λx.X))
(Gε)� P (εP)E

Definition 24 (Rules of IexG). Among the following rules, if we add (GEFQ)
to IG, IexG becomes intuitionistic logic, and if we add (GDNE), IexG becomes
classical logic.

(GEFQ)
Γ � LX

Γ � (F⊥X)A
(GDNE)

Γ � LX
Γ � (F(¬¬X)X)D

3.3 Translation from exPRED to IexG
Translation rules from exPRED to IexG are defined by extending the translation
rules from PRED to IG. We will show that the judgment in exPRED is sound
in IexG with respect to this translation.

Definition 25 (Translation to IexG)
ΛΣ(Ξ, L,⊥, ε) is the extension of Λ(Ξ, L,⊥, ε) by the signature Σ. As with Defi-
nition 13, the following maps are defined by Table 4 and Table 5.

[−]2 : FormexPRED → ΛΣ(Ξ, L,⊥, ε)
Γ : FormexPRED → illative contexts

Table 4. Translation of terms

t [t]2 Γ (t)

xA x Ax

f(t1, . . . , tn) f [t1]
2 . . . [tn]

2

εxAψ ε(λx.[ψ]2)

Table 5. Translation of formulae

φ [φ]2 Γ (φ)

P(t1, . . . , tn) P [t1]
2 · · · [tn]2 Γ (t1), . . . , Γ (tn)

ψ ⊃ χ F[ψ]2[χ]2 Γ (ψ), Γ (χ)

∀xAψ GAi(λx.[ψ]
2) Γ (ψ)− {Ax}

⊥ ⊥

The following example are the translations of the signature in Example 2.

Γ 2
Σ = 〈LA,FALP1,FALP2, . . . , Aa1, Aa2, . . . , L⊥〉

Γ 2,+
Σ = Γ 2

Σ , Ax where x ∈ Var .

Lemma 26. Let φ ∈ FormexPRED.

(1) If t ∈ TA, then in IG one has Γ (t), Γ 2
Σ � A[t]2.

(2) Γ 2
Σ , Γ (φ) �IexG L[φ]2.

82 Y. Ishishita and D. Bekki

Theorem 27 (Soundness of the interpretation for exPRED). Let Δ ∪
{φ} ⊆ FormexPRED, then the following holds.

Δ �exPRED φ ⇒ Γ 2,+
Σ , [Δ]2, Γ (Δ,φ) �IexG [φ]2M for some M

Proof. The soundness of interpretation for PRED was already proved in [1].
Therefore, we show only the cases for new rules, EFQ and DNE. Before proving
these, for that purpose we need the weakening rule, which is described as follows.

(w)
Γ � X
Γ, Y � X

This rule is admissible in IexG (the proof is obvious) and we use it in the fol-
lowing proof of the soundness of EFQ, DNE, and the rule of ε.

EFQ
Δ �exPRED ⊥ ⊃ φ

⇒ Γ 2,+
Σ , [Δ]2, Γ (Δ, (⊥ ⊃ φ)) �IexG [⊥ ⊃ φ]2M for some M (∵ Theorem 27)

⇒ Γ 2,+
Σ , [Δ]2, Γ (Δ), Γ (φ) �IexG (F⊥[φ]2)M for some M (∵ Definition 25)

(GEFQ)

(w)

(Lemma2(2))

Γ 2,+
Σ , Γ (φ) �IexG L[φ]2

Γ 2,+
Σ , [Δ]2, Γ (Δ), Γ (φ) �IexG L[φ]2

Γ 2,+
Σ , [Δ]2, Γ (Δ), Γ (φ) �IexG (F⊥[φ]2)A

DNE
Δ �exPRED ((φ ⊃ ⊥) ⊃ ⊥) ⊃ φ

⇒ Γ 2,+
Σ , [Δ]2, Γ (Δ, (((φ ⊃ ⊥) ⊃ ⊥) ⊃ φ)) �IexG [((φ ⊃ ⊥) ⊃ ⊥) ⊃ φ]2M for some M

⇒ Γ 2,+
Σ , [Δ]2, Γ (Δ), Γ (φ) �IexG (F(¬¬[φ]2)[φ]2)M for some M

(GDNE)

(w)

(Lemma26(2))

Γ 2,+
Σ , Γ (φ) �IexG L[φ]2

Γ 2,+
Σ , [Δ]2, Γ (Δ), Γ (φ) �IexG L[φ]2

Γ 2,+
Σ , [Δ]2, Γ (Δ), Γ (φ) �IexG (F(¬¬[φ]2)[φ]2)D

Rule of ε

�exPRED P(εxP(x))

⇒ Γ 2,+
Σ , Γ (P(εxP(x))) �IexG [P(εxP(x))]2M for some M

⇒ Γ 2,+
Σ �IexG (P (ε(λx.P (x))))M for some M

(βη)

(w)

(Gε)�IexG (P (εP))E

Γ 2,+
Σ �IexG (P (εP))E P =βη λx.P (x)

Γ 2,+
Σ �IexG (P (ε(λx.P (x))))E �

4 Verification of the Proposed System

To show that proposition A is a presupposition of sentence S, we first show that
A holds true in the proof that S is a wff.

Example 28. The king of France is not bald.

Toward the Formulation of Presupposition by Illative Combinatory Logic 83

Firstly, we translate this sentence to the formula of exPRED, and let the semantic
representation of “the king of France,” a noun phrase including a presupposition
trigger, be ε(λx.koF (x)).

�exPRED bald(ε(λx.koF (x))) ⊃ ⊥
Secondly, we translate this formula to the formula of IexG by Lemma 26(2) and
Definition 25.

Γ 2
Σ , Γ (bald(ε(λx.koF (x))) ⊃ ⊥) �IexG L[bald(ε(λx.koF (x))) ⊃ ⊥]2

⇒ Γ 2
Σ �IexG L(F(bald(ε(λx.koF (x))))(⊥))

If we try to prove it first without adding anything to the left-side sequence, then
the proof goes as follows:

(FL)

(∈e)

L(⊥) ∈ Γ
2
Σ, (bald(ε(λx.koF (x))))y

Γ
2
Σ, (bald(ε(λx.koF (x))))y � L(⊥)

(Fe)

(∈e)

FAL(bald) ∈ Γ
2
Σ

Γ
2
Σ � FAL(bald)

(εL)

∗

Γ
2
Σ

� (∃x(koF (x)))Y

Γ
2
Σ � A(ε(λx.koF (x)))

Γ
2
Σ � L(bald(ε(λx.koF (x))))

Γ
2
Σ

� L(F(bald(ε(λx.koF (x))))(⊥))

If we take a look at the part (*), where a failure occurs, it seems that the illative
context Γ 2

Σ has to contain some information from which (∃x(koF (x)))Y in the
right-side sequence can be deduced. So, we add (∃x(koF (x)))Y to the left-side
sequent and try to prove it once again.

(Fe)

(∈e)

FAL(bald) ∈ Γ
2
Σ, (∃x(koF (x)))Y

Γ
2
Σ

, (∃x(koF (x)))Y � FAL(bald)

(εL)

(∈e)

(∃x(koF (x)))Y ∈ Γ
2
Σ

, (∃x(koF (x)))Y

Γ
2
Σ

, (∃x(koF (x)))Y � (∃x(koF (x)))Y

Γ
2
Σ

, (∃x(koF (x)))Y � A(ε(λx.koF (x)))

Γ
2
Σ, (∃x(koF (x)))Y � L(bald(ε(λx.koF (x))))

. . . (♥)

(FL)

(∈e)

L(⊥) ∈ Γ
2
Σ

, (∃x(koF (x)))Y, (bald(ε(λx.koF (x))))y

Γ2
Σ

, (∃x(koF (x)))Y, (bald(ε(λx.koF (x))))y � L(⊥) (♥)

Γ
2
Σ

, (∃x(koF (x)))Y � L(F(bald(ε(λx.koF (x))))(⊥))

This time it can be proved the proof diagram completes. A series of these op-
erations the proof diagram completes. That the sentence does not hold true
without a presupposition. In other words, it can be seen that “there is a unique
king of France” is a presupposition of “the king of France is bald”. On the other
hand, the following sentence is an example where “there is a king of France”
is not a presupposition. This is predicted in our theory since we can prove it
without including (∃x(koF (x)))Y in the left-sideof the sequent in this case, as
demonstrated in Example 3.

Example 29

If there is a unique king of France, then the king of France is bald.

This sentence is translated into the following judgment of exPRED.

�exPRED (∀x(koF (x) ⊃ ⊥) ⊃ ⊥) ⊃ (bald(ε(λx.koF (x))))

Then we apply Lemma 26(2) and Definition 25 to this formula.

84 Y. Ishishita and D. Bekki

Γ 2
I,s, Γ ((∀x(koF (x) ⊃ ⊥) ⊃ ⊥) ⊃ (bald(ε(λx.koF (x)))))

�IexG L[(∀x(koF (x) ⊃ ⊥) ⊃ ⊥) ⊃ (bald(ε(λx.koF (x))))]2

⇒ Γ 2
I,s �IexG L(F(F(GA(λx.(F(koF (x))(⊥))))(⊥))(bald(ε(λx.koF (x)))))

(∈e)

(F(GA(λx.(F(koF (x))(⊥))))(⊥))y ∈ Γ
2
Σ

, (F(GA(λx.(F(koF (x))(⊥))))(⊥))y, Ax

Γ
2
Σ

, (F(GA(λx.(F(koF (x))(⊥))))(⊥))y, Ax � (F(GA(λx.(F(koF (x))(⊥))))(⊥))y
. . . (�1)

(εL)

(βη)

(�1)
(def∃)

F(GA(λx.(F(koF (x))(⊥))))(⊥) = ∃x(koF (x))

Γ
2
Σ

, (F(GA(λx.(F(koF (x))(⊥))))(⊥))y, Ax � (∃x(koF (x)))y

Γ
2
Σ, (F(GA(λx.(F(koF (x))(⊥))))(⊥))y � A(ε(koF (x)))

. . . (�2)

(λx.(F(koF (x))(⊥)))w =βη F(koF (w))(⊥) . . . (�3)

(βη)

(FL)

(∈e)

L(⊥) ∈ Γ
2
Σ

, Aw, (koF (w))v

Γ
2
Σ

,Aw, (koF (w))v � L(⊥)

(Fe)

Aw ∈ Γ
2
Σ

, Aw

Γ
2
Σ

,Aw � Aw

Γ
2
Σ

, Aw � L(F(koF (w))(⊥)) (�3)

Γ
2
Σ,Aw � L((λx.(F(koF (x))))w)

. . . (�4)

(FL)

(∈e)

L(⊥) ∈ Γ
2
Σ

, (GA(λx.(F(koF (x))(⊥))))z

Γ
2
Σ, (GA(λx.(F(koF (x))(⊥))))z � L(⊥)

(GL)

(�4)
(∈e)

LA ∈ Γ2
Σ

Γ
2
Σ

� LA

Γ
2
Σ � L(GA(λx.(F(koF (x))(⊥))))

Γ
2
Σ

� L(F(GA(λx.(F(koF (x))(⊥))))(⊥))
. . . (�5)

(FL)

(Fe)

(∈e)

FAL(bald) ∈ Γ
2
Σ

, (F(GA(λx.(F(koF (x))(⊥))))(⊥))y

Γ
2
Σ, (F(GA(λx.(F(koF (x))(⊥))))(⊥))y � FAL(bald) (�2)

Γ
2
Σ

, (F(GA(λx.(F(koF (x))(⊥))))(⊥))y � L(bald(ε(λx.koF (x)))) (�5)

Γ
2
Σ

� L(F(F(GA(λx.(F(koF (x))(⊥))))(⊥))(bald(ε(λx.koF (x)))))

5 Conclusion

In this paper, we defined the system IexG, which is an extension of ICL with the
symbol⊥ and the operator ε, in our analysis of presupposition in natural language.
We also extended the language of many-order predicate calculus PREDwith ε and
use the resulting language exPRED to represent the meaning of sentences that in-
cludes presupposition triggers. Moreover, we extended the translation rules from
PRED to ICL to the translation rules from exPRED to IexG, and showed the
soundness of the translation. Some empirical predictions were also demonstrated
in which the presuppositions are properly projected or filtered.

The resulting theory is a proof-theoretic semantics of natural language frag-
ments through the analysis of presupposition. We expect that the theory not only
covers the empirical phenomena which have been explained in previous frame-
works, but also has an advantage over them with respect to the computational
aspect, which remains to be shown in the future work.

Toward the Formulation of Presupposition by Illative Combinatory Logic 85

References

[1] Barendregt, H., Bunder, M., Dekkers, W.: Systems of illative combinatory logic
complete for first-order propositional and predicate calculus. The Journal of Sym-
bolic Logic 58(3), 769–788 (1993)

[2] Beaver, D.I.: Presupposition and Assertion in Dynamic Semantics. Studies in
Logic, Language and Information. CSLI Publications & folli. (2001)

[3] Bekki, D.: Combinatory categorial grammar as a substrutural logic - preliminary
remarks -. In: The Seventh International Workshop on Logic and Engeneering of
Natural Language Semantics (LENLS 7), pp. 70–83 (2010)

[4] Carlström, J.: Interpreting descriptions in intensional type theory. Journal of Sym-
bolic Logic 70(2), 488–514 (2005)

[5] Curry, H.B., Feys, R.: Combinatory logic, vol. 1. North-Holland, Amsterdam
(1958)

[6] Francez, N., Dyckhoff, R.: Proof-Theoretic Semantics for a Natural Language Frag-
ment. In: Ebert, C., Jäger, G., Michaelis, J. (eds.) MOL 10/11. LNCS (LNAI),
vol. 6149, pp. 56–71. Springer, Heidelberg (2010)

[7] Gazdar, G.: Pragmatics: Implicature, Presupposition, and Logical Form. Academic
Press, London (1979)

[8] Karttunen, L.: Presuppositions and liguistic contexxt. Theoretical Linguistics 1,
181–193 (1974)

[9] Mineshima, K.: A Presuppositional Analysis of Definite Descriptions in Proof
Theory. In: Satoh, K., Inokuchi, A., Nagao, K., Kawamura, T. (eds.) JSAI 2007.
LNCS (LNAI), vol. 4914, pp. 214–227. Springer, Heidelberg (2008)

[10] Montague, R.: The proper treatment of quantification in ordinary english. In:
Hintikka, J., Moravcsic, J., Suppes, P. (eds.) Approaches to Natural Language,
pp. 221–242. Reidel, Dordrecht (1973)

[11] Ozaki, H., Bekki, D.: Extractability as deduction theorem in subdirectional com-
binatory logic. In: The Eighth International Workshop on Logic and Engeneering
of Natural Language Semantics (LENLS 8), pp. 80–93 (2011)

[12] Ranta, A.: Type-Theoretical Grammar. Oxford University Press (1994)
[13] van der Sandt, R.: Presupposition projection as anaphora resolution. Journal of

Semantics 9, 333–377 (1992)
[14] van der Sandt, R., Geurts, B.: Presupposition, Anaphora, and Lexical Content.

In: Herzog, O., Rollinger, C.-R. (eds.) LILOG 1991. LNCS, vol. 546, pp. 259–296.
Springer, Heidelberg (1991)

[15] Soames, S.: A projection problem for speaker presuppositions. Linguistic In-
quiry 10, 623–666 (1979)

[16] Stalnaker, R.: Pragmatic presupposition. In: Munitz, M.K., Unger, D.K. (eds.)
Semantics and Philosophy, pp. 197–213. New York University Press (1974)

[17] Steedman, M.J.: The Syntactic Process (Language, Speech, and Communication).
The MIT Press, Cambridge (2000)

[18] Strawson, P.F.: On referring. Mind, New Series 59(235), 320–344 (1950)
[19] Sundholm, G.: Proof theory and meaning. In: Gabbay, D., Guenthner, F. (eds.)

Handbook of Philosophical Logic, 2nd edn., vol. 9, pp. 165–198. Kluwer Academic
Publishers (2002)

Abstract Automata and a Normal Form

for Categorial Dependency Grammars

Boris Karlov�

Tver State Universty, Tver, Russia, 170000

Abstract. Categorial Dependency Grammars (CDG) studied in this
paper are categorial grammars expressing projective and discontinuous
dependencies, stronger than cf-grammars and presumably nonequivalent
to mild context-sensitive grammars. We define a normal form of CDG
similar to Greibach normal form for cf-grammars and propose an effective
algorithm which transforms any CDG into an equivalent CDG in the
normal form. A class of push-down automata with independent counters
is defined and it is proved that they accept the class of CDG-languages.
We present algorithms that transform any CDG into an automaton and
vice versa.

Keywords: categorial grammars, dependency grammars, projective
and discontinuous dependencies, normal form of categorial dependency
grammars, push-down automata with independent counters

1 Introduction

The theories of natural language syntax based on the notion of dependency have
an old tradition. Tesnière [10] was the first who systematically described the
structure of the sentence in terms of named relations between the words. When
two words w1 and w2 are connected in the sentence with the dependency d (de-

noted w1
d→ w2), w1 is the governor, and w2 is the subordinate word. Informally,

the dependency d places restrictions on the grammatical and lexical properties of
w1 and w2, on their order, context etc. In a whole this means that “w1 governs
w2”. In most usual sentences of English or Russian the dependency structure
is projective. In particular, this means that the dependencies do not intersect.
Most of the grammars generating dependency trees only deal with projective
structures. On the other hand, the sentences with nonprojective dependency
structures are not uncommon.

The classical cf-grammars ([1,8]) as well as usual categorial grammars ([2,8])
are unable to find in the sentences the discontinuous dependencies. In [7]
A.Dikovsky proposed to specify long distance discontinuous dependencies by
polarized dependency types (valencies). In [5] a new type of grammars was de-
fined — categorial dependency grammars (CDG). Their peculiarity is that they

� This work was sponsored by the Russian Fundamental Studies Foundation (Grants
10-01-00532a and 12-01-00244).

D. Béchet and A. Dikovsky (Eds.): LACL 2012, LNCS 7351, pp. 86–102, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Abstract Automata and a Normal Form 87

can find discontinuous dependencies using the valencies. A positive valency spec-
ifies the name and the direction of an outgoing discontinuous dependency. The
corresponding negative valency with the same name has the opposite direction
and specifies the end of this incoming dependency. In the mentioned papers
results on the expressivity of CDGs were obtained and an analysis algorithm
was developed. In [6] some extension of CDG was studied. In particular, it was
proved that the set of languages generated by the extended CDG is an abstract
family of languages.

This paper continues the research of the properties of the CDG. In Sect. 2
we give the exact definitions of CDG and CDG-languages. In Sect. 3 we define
the normal form of the CDG, analogous to the Greibach normal form ([1,8,9])
for cf-grammars. It is shown how one can build for every CDG an equivalent
CDG in normal form. In Sect. 4 we introduce the notion of the push-down
automaton with independent counters. Informally, the push-down automaton
with independent counters is a usual push-down automaton that also has several
counters. These counters serve to process the polarized valencies. We prove that
the push-down automata with counters accept exactly the CDG-languages.

2 Main Definitions

In order to formalize the linguistic notion of syntactic type, we use the notion of
category. Let C be a nonempty finite set of elementary categories (e.g. subject,
predicate, complement). The elementary categories can be iterated: for C ∈ C,
C∗ means a corresponding iterated category. The set of all iterated categories
will be denoted C∗. Elementary and iterated categories are combined in local
categories with the constructors \ and /.

Definition 1. The set of local categories LCat(C) is a minimal set, such that:
1) C ∪ {ε} ⊆ LCat(C), where ε is an empty symbol;
2) if α ∈ LCat(C), A ∈ C ∪C∗, then [A\α], [α/A] ∈ LCat(C).

We suppose that the constructors \ and / are associative, e.g. [B\[A/C]] =
[[B\A]/C] = [B\A/C]. Therefore every local category γ can be represented in
the form γ = [Lk\ . . . \L1\C/R1/ . . . /Rm].

To describe the discontinuous dependencies between the words in the sentence
the notions of polarity and polarized valency were introduced in [7]. A polarity
v is an element of the set V = {↘,↙,↖,↗}. For every polarity v there exists
a dual polarity v̆:

↗̆ =↘, ↖̆ =↙, ↙̆ =↖, ↘̆ =↗

A polarized valency β is an expression of the form vC, where v ∈ V,C ∈ C.
We denote the set of all polarized valencies V (C). The following subsets can be
considered according to the types of the polarities:

↖C = {↖C | C ∈ C }, ↗C = {↗C | C ∈ C },
↘C = {↘C | C ∈ C },

88 B. Karlov

↖C = {↖C | C ∈ C },
V −(C) =↘C ∪ ↙C, V +(C) =↖C ∪↗C,
V l(C) =↗C ∪ ↙C, V r(C) =↖C ∪ ↘C.

A potential is a sequence of polarized valencies. A potential θ is balanced, if
each of its projection on { v, v̆ }, where v ∈ V l(C), is a correct bracketed
sequence. The following string is an example of a balanced potential: ↗ A
↗B ↘A↘B. The set of all potentials is denoted Pot(C).

The categories are built from local categories and potentials.

Definition 2. A category γ is an expression of the form αθ, where α ∈ LCat(C),
θ ∈ Pot(C). The set of all categories is denoted Cat(C).

The dependency calculus is defined on the set of categories. It consists of the
following rules.

Definition 3. Let Γ1, Γ2 be strings of categories Cat(C)∗, θ, θ1, θ2, θ3 be poten-
tials, α be a local category from LCat(C).

Local dependency rules:

Ll : Γ1[C]θ1 [C\α]θ2Γ2 � Γ1[α]
θ1θ2Γ2

Lr : Γ1[α/C]θ1 [C]θ2Γ2 � Γ1[α]
θ1θ2Γ2,

where C ∈ C ∪ {ε}
Iterated dependency rules:

I l : Γ1[C]θ1 [C∗\α]θ2Γ2 � Γ1[C
∗\α]θ1θ2Γ2

I l0 : Γ1[C
∗\α]θΓ2 � Γ1[α]

θΓ2

Ir : Γ1[α/C
∗]θ1 [C]θ2Γ2 � Γ1[α/C

∗]θ1θ2Γ2

Ir0 : Γ1[α/C
∗]θΓ2 � Γ1[α]

θΓ2,

where C ∈ C.

Discontinuous dependency rule:

D : Γ1α
θ1βθ2β̆θ3Γ2 � Γ1α

θ1θ2θ3Γ2,

where the valencies (β, β̆) form a correct pair and θ2 does not contain β, β̆.

When one of these rules is applied, an edge is added into the dependency struc-
ture. This edge goes form the governor to the subordinate word and it is labeled
with the name of the cancelled category.

This calculus induces the provability relation on the strings of dependency
types. We denote this relation �R, where R is the name of one of the rules, or
simply �, if the name of the rule is not important. If Γ2 is obtained from Γ1 in
n steps, then we write Γ1 �n Γ2. �∗ denotes reflexive transitive closure of the
relation � on the set Cat(C)∗.

Definition 4. A categorial dependency grammar (CDG) is a system
G = 〈W,C, S, δ〉, where:

Abstract Automata and a Normal Form 89

W is a finite set of symbols,
C is a finite set of elementary categories,
S is the selected from C main category,
δ is the lexicon, a function on W , that maps each symbol w ∈ W on the finite
set δ(w) ⊆ Cat(C) of its possible categories.

Let s = w1w2 . . . wn be a word. Let us denote δ(s) = δ(w1)δ(w2) . . . δ(wn).

Definition 5. The CDG G generates the language L(G), consisting of all the
words s ∈ W ∗, such that there exists a string of categories Γ ∈ δ(s) such that
Γ �∗ S.

Example 1. Let us consider the language L = { anbncn | n > 0 }. It is well known
that this language is not context-free ([1,8]). But this language is generated by
the following CDG ([4,5]):

a %→ [A]↙A, [A\A]↙A

b %→ [B/C]↖A, [A\S/C]↖A

c %→ [C], [B\C].

The following string of categories can be assigned to the word aaabbbccc:
[A]↙A[A\A]↙A[A\A]↙A[A\S/C]↖A [B/C]↖A[B/C]↖A[C][B\C][B\C]. It can be
cancelled to S (see [5]).

The dependency structure for the word aaabbbccc is shown on Fig. 1.

Fig. 1. Dependency structure for aaabbbccc

It is not difficult to see that local rules of cancellation Ll, Lr, I l, I l0, I
r, Ir0 affect

only the local part of the category, and the rule of cancellation for the potential
D changes only the potential. This allows to separate the analysis of words in the
CDG into two independent tests: the first one in terms of the local categories and
the local rules of cancellation, and the second one in terms of balanced potential.
The analysis theorem for CDG was proved in [5].

Theorem 1. The word s = w1w2 . . . wn belongs to the language L(G), gener-
ated by the CDG G = 〈W,C, S, δ〉,iff there exists a string of categories Γ =
αθ1
1 . . . αθn

n , where αθi
i ∈ δ(wi), such that α1 . . . αn �∗ S and θ1 . . . θn is balanced.

90 B. Karlov

3 Normal Form of CDG

It is known that for cf-grammars there are different special forms (Chomsky
normal form, Greibach normal form ([1,8,9])) which simplify the analysis of the
languages generated by them. In this section we define a normal form for the
CDG which is analogous to Greibach normal form and we show how to build for
an arbitrary grammar a weakly equivalent, i.e. generating the same language,
grammar in this normal form.

Definition 6. (Greibach normal form) A cf-grammar G = 〈Σ,N, S,R〉 is
in Greibach normal form if each rule from R is of one of the following forms:
1) S → ε if S is not present in the right parts of the rules,
2) A→ xα, where x ∈ Σ, A ∈ N , α ∈ N∗, |α| ≤ 2.

It is known that it is possible for each cf-grammar to build an equivalent cf-
grammar in Greibach normal form. Let us define the normal form for the CDG
in the following way.

Definition 7. We shall say that a CDG G = 〈W,C, S, δ〉 is a grammar in
normal form if all its categories have one of the forms [X]θ, [X/Y]θ, [X/Y/Z]θ,
where X, Y, Z are elementary categories, θ is a potential.

It is not difficult to see that the categorial grammar built from the cf-grammar in
Greibach normal form satisfies Definition 7 in which the potentials are omitted
(cf. Definition 10).

Example 2. Let us consider the language L = { anbncn | n > 0 }. The CDG for
this language from Sect. 2 is not in normal form because it has the category
[B\C]. The following grammar is the CDG for L in normal form.

a %→ [S/A]↗A, [A/A]↗A, [A/B]↗A

b %→ [B/C/B]↘A, [B/C]↘A

c %→ [C]

In order to transform an arbitrary CDG into a CDG in the normal form we
define an auxiliary cf-grammar and we prove that the eliminations performed by
the CDG can be modeled by this grammar.

Definition 8. Let G = 〈W,C, S, δ〉 be a CDG. We denote the cf-grammar G′ =
〈Σ,N, S,R〉 as CF (G), where:

Σ = {wθ | w %→ [α]θ ∈ δ for some α } ;

N is the set of all local subcategories from δ ;

R is defined in the following way:

[α]→ wθ ∈ R⇔ w %→ [α]θ ∈ δ
[α]→ [A][A\α] ∈ R⇔ [A\α] ∈ N
[α]→ [α/A][A] ∈ R⇔ [α/A] ∈ N
[α]→ [A∗\α] ∈ R⇔ [A∗\α] ∈ N

Abstract Automata and a Normal Form 91

[A∗\α]→ [A][A∗\α] ∈ R⇔ [A∗\α] ∈ N
[α]→ [α/A∗] ∈ R⇔ [α/A∗] ∈ N
[α/A∗]→ [α/A∗][A] ∈ R⇔ [α/A∗] ∈ N

The words in the new alphabet Σ can be divided into two parts: the word in the
original alphabet W and the potential.

Definition 9. Let u = wθ1
1 . . . wθn

n be a word in Σ. Then word(u) = w1 . . . wn

and pot(u) = θ1 . . . θn.

The connection of the original CDG with the cf-grammar built from it is ex-
pressed in the following lemma.

Lemma 1. Let G be a CDG, G′ = CF (G), α ∈ N . Then α ⇒∗
G′ a

θ1
1 . . . aθnn ∈

Σ∗ iff there exist categories γ1 = αθ1
1 ∈ δ(a1), . . . , γn = αθn

n ∈ δ(an) such that
γ1 . . . γn �∗G αθ1...θn .

Proof. The lemma is proved by induction on the length of the derivation. '(

Corollary 1. Let G be a CDG, G′ = CF (G). Then w1 . . . wn ∈ L(G) iff
wθ1

1 . . . wθn
n ∈ L(G′) and the potential θ1 . . . θn is balanced.

Proof. Let a word u ∈ Σ∗ be so that pot(u) is balanced. By Lemma 1 S ⇒∗
G′ u

iff there exists a string of categories Γ ∈ δ(word(u)) such that Γ �∗G [S]pot(u).
The latter means by the analysis theorem that the word word(u) belongs to the
language generated by the grammarG. Thus the word w belongs to the language
L(G) iff it can be derived in G′ with balanced potential. '(

Now we describe the “inverse” procedure which builds a CDG from a cf-grammar.

Definition 10. Let G′ = 〈Σ,N, S,R〉 be a cf-grammar in Greibach normal
form, where the elements of Σ are of the form wθ. We denote by CDG(G′)
the CDG G = 〈W,N, S, δ〉, where W = {w | wθ ∈ Σ for some θ } and δ is
defined in the following way:

w %→ [X]θ ∈ δ ⇔ X → wθ ∈ R,
w %→ [X/Y]θ ∈ δ ⇔ X → wθY ∈ R,
w %→ [X/Z/Y]θ ∈ δ ⇔ X → wθY Z ∈ R.

A property analogous to Lemma 1 holds.

Lemma 2. Let G = CDG(G′). Then X ⇒∗
G′ a

θ1
1 . . . aθnn ∈ Σ∗ iff there exist cat-

egories γ1 = αθ1
1 ∈ δ(a1), . . . γn = αθn

n ∈ δ(an) such that γ1 . . . γn �∗G [X]θ1...θn .

Proof. The lemma is proved by induction on the length of u. '(

Corollary 2. Let G′ be a cf-grammar in Greibach normal form, G = CDG(G′).
Then w1 . . . wn ∈ L(G) iff wθ1

1 . . . wθn
n ∈ L(G′) and the potential θ1 . . . θn is

balanced.

92 B. Karlov

Proof. Let the word u ∈ Σ∗ be such that pot(u) is balanced. By Lemma 2
[S] ⇒∗

G′ u iff there exists a string of categories Γ ∈ δ(word(u)) such that
Γ �∗G [S]pot(u). The latter means by the analysis theorem that the word word(u)
belongs to the language generated by the grammar G. '(

Now we can prove the theorem about the possibility of transformation of each
CDG to normal form.

Theorem 2. For each CDG G = 〈W,C, S, δ〉 there exists a CDG
G′ = 〈W,C′, S, δ′〉 in normal form such that L(G) = L(G′) and G′ is of polyno-
mial size relatively to the size of G.

Proof. Firstly we build from the original grammar G the cf-grammar G1 =
CF (G). Then we build the cf-grammar G2 in Greibach normal form which is
equivalent to G1. As G

′ we take CDG(G2). The three following assertions hold.

1) w1 . . . wn ∈ L(G) ⇔ wθ1
1 . . . wθn

n ∈ L(G1) and the potential θ1 . . . θn is bal-
anced (by Corollary 1)

2) wθ1
1 . . . wθn

n ∈ L(G1)⇔ wθ1
1 . . . wθn

n ∈ L(G2)

3) w1 . . . wn ∈ L(G′) ⇔ wθ1
1 . . . wθn

n ∈ L(G2) and the potential θ1 . . . θn is bal-
anced (by Corollary 2)

It follows from these assertions that w1 . . . wn ∈ L(G)⇔ w1 . . . wn ∈ L(G′), i.e.
L(G) = L(G′). According to the construction the grammar G′ is in normal form.

In [3] it was established that for every cf-grammar Γ there exists an equivalent
cf-grammar Γ ′ in Greibach normal form of size O(|Γ |4). Therefore G2 has a
size O(|G1|4). It is easy to see that the construction of CF (G) and CDG(G2)
increases the size polynomially. Therefore, |G′| is of polynomial size relatively to
the size of G. '(

Let us notice that there are two types of equivalence: strong and weak. Two
grammars are strongly equivalent if they generate the same set of dependency
structures. They are weakly equivalent if they generate the same language, but
possibly different sets of structures. The normalization described in Theorem 2
changes the dependency structures. Indeed, a grammar in normal form cannot
generate projective dependencies of the form v1 ← v2. Thus, a grammar in
normal form is only weakly equivalent to the initial grammar.

4 Push-Down Automata with Independent Counters

In this section we show that CDG-languages can be accepted with special ex-
tensions of push-down automata.

Definition 11. A push-down automaton with independent counters is a 7-tuple
M = 〈Σ,Q,Z, q0, z0, P, n〉, where:
Σ is an input alphabet,
Q is an alphabet of states,

Abstract Automata and a Normal Form 93

Z is a stack alphabet,
q0 ∈ Q is an initial state,
z0 ∈ Z is an initial symbol of the stack,
P is a set of rules,
n is a number of counters.

The rules are of the form 〈q, a, z, 〈q′, α, v̄〉〉, where q, q′ ∈ Q, a ∈ Σ∪{ ε }, z ∈ Z,
α ∈ Z∗, v̄ = (v1, . . . , vn) is a vector of integers.

Informally speaking, this is a push-down automaton additionally augmented
with a finite number of counters. It uses its stack to check the elimination of
local categories, and the counters correspond to different types of valencies.

Definition 12. A configuration of the push-down automaton with independent
counters M = 〈Σ,Q,Z, q0, z0, P, n〉 is a quadruple 〈q, w, γ, ū〉, where q ∈ Q,
w ∈ Σ∗, γ ∈ Z∗, ū = (u1, . . . , un) is a vector of nonnegative integers.

We define a one-step transition: 〈q, w, γ, ū〉 �1M 〈q′, w′, γ′, ū′〉 iff there exists a
rule 〈q, a, z, 〈q′, α, v̄〉〉 ∈ P such that the following three conditions are satisfied:

1) w = aw′,
2) γ = zγ′′, γ′ = αγ′′,
3) ū′ = ū+ v̄.

If γ = ε or some component of ū′ is negative, then the step cannot be made.
The relations �nM and �∗M are defined as usual.

In fact, the numbers in the counters are the numbers of unpaired left valen-
cies. The positive numbers in the rules correspond to the left valencies, and
the negative numbers correspond to the right ones. The automaton works like
a push-down automaton. Additionally it changes the values of the counters on
every step, but the step itself is not influenced by these values, which means that
the counters are independent.

The language accepted by the automaton M can be defined by emptying the
stack and zeroing the counters.

Definition 13. The word w is accepted by the push-down automaton with in-
dependent counters M iff there exists q ∈ Q such that 〈q0, w, z0, (0, . . . , 0)〉 �∗M
〈q, ε, ε, (0, . . . , 0)〉.
The language accepted by the automaton is the set of all the words accepted by
the automaton.

In this article we shall consider a special subclass of automata without empty
loops.

Definition 14. The push-down automaton with independent counters M is an
automaton without empty loops if there are no states q1, . . . qk (k > 1) such that
〈qi, ε, zi, 〈qi+1, γi, v̄i〉〉 ∈ P for 1 ≤ i < k, 〈qk, ε, zk, 〈q1, γk, v̄k〉〉 ∈ P .

Without this restriction a possible can occur, when the automaton performs
ε-commands in a cycle and changes the counters. Then it can increase the coun-
ters by an unbounded amount without reading new symbols. But all potentials

94 B. Karlov

in the CDGs have finite length. The definition of an automaton without empty
loops allows one to avoid this situation.

Example 3. Let us consider the language from Sect. 2: L = { anbncn | n > 0 }.
It is accepted by the following automaton M = 〈W,Q,Z, qa, z0, P, k〉:
W = { a, b, c }, Q = { qa, qb, qc }, Z = { z0, a }, k = 1.

〈qa, a, z0, 〈qa, az0, (1)〉〉 〈qb, c, z0, 〈qc, z0, (−1)〉〉
〈qa, a, a, 〈qa, aa, (1)〉〉 〈qc, c, z0, 〈qc, z0, (−1)〉〉
〈qa, b, a, 〈qb, ε, (0)〉〉 〈qc, c, z0, 〈qc, ε, (−1)〉〉
〈qb, b, a, 〈qb, ε, (0)〉〉
When the automaton reads the block of the symbols ’a’, it counts their number
in the stack and in the counter. When it reads the symbols ’b’, it empties the
stack and thus verifies that there are as many ’b’ as ’a’. After this the automaton
checks that the number of symbols ’c’ is the same using the counter. The sequence
of configurations for the word aaabbbccc is the following:

〈qa, aaabbbccc, z0, (0)〉 � 〈qa, aabbbccc, az0, (1)〉 � 〈qa, abbbccc, aaz0, (2)〉 �
〈qa, bbbccc, aaaz0, (3)〉 � 〈qb, bbccc, aaz0, (3)〉 � 〈qb, bccc, az0, (3)〉 �
〈qb, ccc, z0, (3)〉 � 〈qc, cc, z0, (2)〉 � 〈qc, c, z0, (1)〉 � 〈qc, ε, ε, (0)〉.

Now we prove that every automaton without empty loops can be transformed
in such a way that it does not change its counters on ε-steps.

Lemma 3. For every push-down automaton with independent counters and
without empty loops M there exists an automaton without empty loops N , such
that L(M) = L(N) and N has no commands of the form 〈q1, ε, z, 〈q2, γ, v̄〉〉,
v̄ �= 0̄.

Proof. Let us consider an arbitrary push-down automaton without empty loops
M = 〈Σ,Q,Z, q0, z0, P, n〉. We may suppose that the initial state q0 cannot be
revisited by the automaton. We build an auxiliary graph G = (V,E), where V =
{ 〈q, ε, z, 〈q′, γ, v̄〉〉 | 〈q, ε, z, 〈q′, γ, v̄〉〉 ∈ P }, E = { (〈q, ε, z, 〈q′, γ, v̄〉〉, 〈q′, ε, z′,
〈q′′, γ′, v̄′〉〉) | 〈q, ε, z, 〈q′, γ, v̄〉〉, 〈q′, ε, z′, 〈q′′, γ′, v̄′〉〉 ∈ V for some z, γ and v̄.

Let p1, p2, . . . , pk be all paths in G. G is an acyclic graph, so the number of
paths is finite. Let pi = 〈q1, ε, z1, 〈q2, γ1, v̄1〉〉, . . . , 〈qm−1, ε, zm−1, 〈qm, γm, v̄m〉〉
be one of these paths. Now we extend this path in the following way. We take all
rules of the form 〈q′, a, z′, 〈q1, γ′, v̄′〉〉, 〈qm, b, z′′, 〈q′′, γ′′, v̄′′〉〉 ∈ P , where a, b �= ε,
q′, z′, γ′, v̄′, z′′, q′′, γ′′, v̄′′ are arbitrary. We add in all possible ways a rule of the
first form in the beginning of the path and a rule of the second form in the end
of the path. In particular, it is possible not to add any rules. The original path
also remains. Thus, we obtain a finite set of “extended paths” { r1, . . . , rk }. Now
we can build the automaton N = 〈Σ,QN , Z, q0, z0, PN , n〉. Qn is a set of states
of N . It contains all states of the automaton M and some new states that are
described below. First of all we add to N all the non-ε-rules from M . Let ri be
an “extended path”. Four cases are possible.

1) rl = 〈q′, a, z′, 〈q1, γ′, v̄′〉〉, 〈q1, ε, z1, 〈q2, γ1, v̄1〉〉, . . . , 〈qm, ε, zm, 〈qm+1, γm, v̄m〉〉,
〈qm+1, b, z

′′, 〈q′′, γ′′, v̄′′〉〉. For every j = 1, . . . ,m we calculate the vector s̄j =

Abstract Automata and a Normal Form 95∑j
t=1 v̄t. s̄j shows the change of the counters after the first j ε-commandswere per-

formed. s̄m is the total change of the counters after performing all ε-commands.

Let s̄j = (s
(1)
j , . . . , s

(n)
j). Let xi = min{ s(i)j | s(i)j < 0 and j = 1, . . . , n }, and

xi = 0 if all s
(i)
j are nonnegative. |xi| is the necessary number in the i-th counter

for succefully using the ε-rules of rl. On the other hand it is also sufficient be-
cause xi is the biggest decrease of the i-th counter. Now we take the two vectors

x̄ = (x1, . . . , xn) and ȳ = (s
(1)
m − x1, . . . , s

(n)
m − xn). The following rules are added

toN : 〈q′, a, z′, 〈ql1, γ′, v̄′+x̄〉〉, 〈qlm+1, b, z
′′, 〈q′′, γ′′, v̄′′+ȳ〉〉, 〈qlj , ε, zj, 〈qlj+1, γj , 0̄〉〉

for j = 1, . . . ,m.

2) rl = 〈q1, ε, z1, 〈q2, γ1, v̄1〉〉, . . . , 〈qm, ε, zm, 〈qm+1, γm, v̄m〉〉, 〈qm+1, b, z
′′, 〈q′′, γ′′,

v̄′′〉〉. If the state q1 is not initial, then the state q1 cannot be reached by the
automaton M immediately after reading a symbol. Then this path can only be
a part of longer path and all rules are added for this long path. But if the state
q1 is the initial state q0, then this sequence of commands can be performed in
the very beginning of the work of M , before it reads any symbol. As in the
previous case we calculate the vectors x̄ and ȳ. But in the beginning all the
counters contain zeros, so if x̄ �= 0̄, then the automaton is unable to perform
this sequence of commands. Therefore if x̄ �= 0̄, we do not add new commands.
And if x̄ = 0̄, then we add the following commands: 〈qlm+1, b, z

′′, 〈q′′, γ′′, v̄′′+ ȳ〉〉,
〈qlj , ε, zj, 〈qlj+1, γj, 0̄〉〉 for j = 1, . . . ,m.

3) rl = 〈q′, a, z′, 〈q1, γ′, v̄′〉〉, 〈q1, ε, z1, 〈q2, γ1, v̄1〉〉, . . . , 〈qm, ε, zm, 〈qm+1, γm, v̄m〉〉.
This case is similar to the previous one. If an ε-rule can be applied after 〈qm, ε, zm,
〈qm+1, γm, v̄m〉〉, then this path is a part of a longer one and all necessary con-
structions are performed for this longer path. If no rule can be applied in the end,
then this means that the automaton reached the end of the word and now finishes
its work. Again we calculate the vectors x̄ and ȳ. But for the automaton to ac-
cept the word, all the counters must be zeros. It is impossible if ȳ �= 0̄. In this
case no commands are created. And if ȳ = 0̄, then we add the following rules:
〈q′, a, z′, 〈ql1, γ′, v̄′ + x̄〉〉, 〈qlj , ε, zj, 〈qlj+1, γj , 0̄〉〉 for j = 1, . . . ,m.

4) rl = 〈q1, ε, z1, 〈q2, γ1, v̄1〉〉, . . . , 〈qm, ε, zm, 〈qm+1, γm, v̄m〉〉. Like in the previous
cases we only need to consider the situation when q1 is the initial state and the
automaton finishes its work. But then we can directly perform the commands
of rl and see if M accepts ε. If ε ∈ L(M), then we add the new command
〈q0, ε, z0, 〈q0, ε, 0̄〉〉, otherwise we do nothing.

Now we prove that L(M) = L(N).
It follows from the fourth case of construction that ε ∈ L(M) iff ε ∈ L(N).

Let w be nonempty.

1) L(M) ⊆ L(N). Let w = a1 . . . ak ∈ L(M). Then there exists a sequence of
configurations 〈q1, w1, γ1, v̄1〉, . . . , 〈ql, wl, γl, v̄l〉, where q1 = q0, w1 = w, γ1 = z0,
wl = ε, v̄l = 0̄. We replace every “ε-segments” in this sequence like we did while
building the automaton N . Since the new rules differ from the old ones only
in the way they handle the counters, the automaton will empty the stack. But
the blocks of the new rules change the counters exactly like the old rules did.

96 B. Karlov

This means that after the automaton N reads w the counters will be zeros.
Therefore w ∈ L(N).

2) L(N) ⊆ L(M). Let w = a1 . . . ak ∈ L(N). Then there exists a sequence of
configurations 〈q1, w1, γ1, v̄1〉, . . . , 〈ql, wl, γl, v̄l〉, where q1 = q0, w1 = w, γ1 =
z0, wl = ε, v̄l = 0̄. We can replace each “ε-segment” with the sequence it
was obtained from. This is always possible because different “ε-segments” have
different states. Therefore the sequences of ε-rules considered while building N
are all possible sequences. Then w ∈ L(M). '(

Now we prove a simple auxiliary lemma which will be useful later.

Definition 15. A potential θ is simple if it is of the form (↘ A1)
k1 . . .

(↘An)
kn(↗A1)

l1 . . . (↗An)
ln .

Lemma 4. For every CDG G = 〈W,C, S, δ〉 there exists a CDG G′ such that
L(G) = L(G′) and all categories in G′ have simple potentials.

Proof. Let C = {C1, . . . , Cn }. Firstly we replace each valency↙Ci by a valency
↗C′

i and each valency ↖Ci by a valency ↘C′
i, where C

′
i is a new elementary

category. This transformation will not change the language of the grammar G.

The only difference is that the dependencies of the form u
Ci← v will be replaced

by dependencies u
C′

i→ v in the new dependency structures.
Let αθ be an arbitrary category in the new grammar. Some of the valencies

of its potential θ may form correct pairs. We remove all correct pairs from all
categories of the grammar. This transformation does not affect the possibility
of eliminating the potential, thus, the language of the grammar will remain
the same. We denote this grammar G1. No potential in G1 can be of the form
θ1 ↗ Aθ2 ↘ Aθ3 because all correct pairs were removed. This means that we
can put all the left valencies in the end of the potential keeping their order.
And finally we can rearrange the left valencies and the right valencies so the
potential will take on form (↘ A1)

k1 . . . (↘ An)
kn(↗ A1)

l1 . . . (↗ An)
ln . The

resulting grammar G′ is the desired one. '(

We introduce two notations.
Let the potential θ be a prefix of a correct bracket word. We denote the vector

of the numbers of unpaired left brackets as c(θ): c(θ) = (|θ|↗A1 − |θ|↘A1 , . . . ,
|θ|↗An − |θ|↘An). Since θ is a prefix of a correct bracket word, all components
of the vector c(θ) are nonnegative.

Let ū be a vector of integers. Then θ(ū) will mean the potential, “correspond-
ing” to the vector ū: θ(ū) = θ1 . . . θn, where

θi =

⎧⎪⎨⎪⎩
(↗Ai)

ui if ui > 0,

(↘Ai)
−ui if ui < 0,

ε if ui = 0.

Theorem 3. Every CDG-language is accepted by some push-down automaton
with independent counters and without empty loops.

Abstract Automata and a Normal Form 97

Proof. Let L = L(G), where G = 〈W,C, S, δ〉. By Lemma 4 we may suppose
that G is a grammar in normal form with simple potentials. We shall build an
automaton M = 〈W, { q },C, q, S, P, k〉, where q is a state of the automaton,
k = |C| is the number of valency types in G. We define the rules as following.

1) a %→ [X]θ ∈ δ, where θ = (↘A1)
k1 . . . (↘An)

kn(↗A1)
l1 . . . (↗An)

ln .

a) For every i ki = 0 or li = 0. Then 〈q, a,X, 〈q, ε, ū〉〉 ∈ P . Here ui = −ki if
li = 0, and ui = li if ki = 0.

b) For some i ki �= 0 and li �= 0. Then 〈q, ε,X, 〈q′, X, ū〉〉 ∈ P , 〈q′, a,X, 〈q, ε, v̄〉〉 ∈
P . Here ui = −ki, vi = li for i = 1, . . . , k.

2) a %→ [X/Y]θ ∈ δ, where θ = (↘A1)
k1 . . . (↘An)

kn(↗A1)
l1 . . . (↗An)

ln .

a) For every i ki = 0 or li = 0. Then 〈q, a,X, 〈q, Y, ū〉〉 ∈ P . Here ui = −ki if
li = 0, and ui = li if ki = 0.

b) For some i ki �= 0 and li �= 0. Then 〈q, ε,X, 〈q′, X, ū〉〉 ∈ P , 〈q′, a,X,
〈q, Y, v̄〉〉 ∈ P . Here ui = −ki, vi = li for i = 1, . . . , k.

3) a %→ [X/Y/Z]θ ∈ δ, where θ = (↘A1)
k1 . . . (↘An)

kn(↗A1)
l1 . . . (↗An)

ln .

a) For every i ki = 0 or li = 0. Then 〈q, a,X, 〈q, ZY, ū〉〉 ∈ P . Here ui = −ki if
li = 0, and ui = li if ki = 0.

b) For some i ki �= 0 and li �= 0. Then 〈q, ε,X, 〈q′, X, ū〉〉 ∈ P , 〈q′, a,X,
〈q, ZY, v̄〉〉 ∈ P . Here ui = −ki, vi = li for i = 1, . . . , k.

The states q′ are different for different categories of the grammar G. Let Γ =
CF (G) = 〈Σ,N, S, P 〉.

Lemma 5. i) If S ⇒∗
Γ aθ11 . . . a

θj
j Z1 . . . Zs and θ = θ1 . . . θj is a prefix of a

correct bracket word, then 〈q, a1 . . . ajw, S, (0, . . . , 0)〉 �∗M 〈q, w, Z1 . . . Zs, c(θ)〉.

ii) Let aθii ∈ Σ for 1 ≤ i ≤ j, 〈q, a1 . . . ajw, S, (0, . . . , 0)〉 �∗M 〈q, w, Z1 . . . Zs, c(θ)〉.

Then S ⇒∗
Γ aθ11 . . . a

θj
j Z1 . . . Zs and θ = θ1 . . . θj is a prefix of a correct bracket

word.

Proof. i) Induction on the length j of the derivation in Γ .

Base case. j = 0

By the definition 〈q, w, S, (0, . . . , 0)〉 �0M 〈q, w, S, (0, . . . , 0)〉.

Inductive step. Let S ⇒j
Γ aθ11 . . . a

θj
j Z1 . . . Zs, then by the inductive hypoth-

esis 〈q, a1 . . . ajaj+1w, S, (0, . . . , 0)〉 �∗M 〈q, aj+1w,Z1 . . . Zs, c(θ)〉, where θ =
θ1 . . . θj . Then a rule of one of the following forms was used.

1) Z1 → a
θj+1

j+1 , θj+1 = (↘A1)
k1 . . . (↘An)

kn(↗A1)
l1 . . . (↗An)

ln

Then S ⇒j+1
Γ aθ11 . . . a

θj
j a

θj+1

j+1 Z2 . . . Zs. If the case (a) took place in the con-

struction of the automaton, then 〈q, aj+1w,Z1 . . . Zs, c(θ)〉 �1M 〈q, w, Z2 . . . Zs,

98 B. Karlov

c(θθj+1)〉. If the case (b) took place, then let θ′ = (↘ A1)
k1 . . . (↘ An)

kn ,
θ′′ = (↗ A1)

l1 . . . (↗ An)
ln . By the construction 〈q, aj+1w,Z1 . . . Zs, c(θ)〉 �1M

〈q′, aj+1w,Z1 . . . Zs, c(θθ
′)〉 �1M 〈q, w, Z2 . . . Zs, c(θθ

′θ′′)〉. In both cases
〈q, a1 . . . ajaj+1w, S, (0, . . . , 0)〉 �∗M 〈q, w, Z2 . . . Zs, c(θθj+1)〉.

2) Z1 → a
θj+1

j+1 X

Then S ⇒j+1
Γ aθ11 . . . a

θj
j a

θj+1

j+1 XZ2 . . . Zs and 〈q, aj+1w,Z1 . . . Zs, c(θ)〉 �∗M
〈q, w,XZ2 . . . Zs, c(θθj+1)〉 (the latest property is proved exactly like before
by studying two possible cases). Therefore 〈q, a1 . . . ajaj+1w, S, (0, . . . , 0)〉 �∗M
〈q, w,XZ2 . . . Zs, c(θθj+1)〉.

3) Z1 → a
θj+1

j+1 XY

Then S ⇒j+1
Γ aθ11 . . . a

θj
j a

θj+1

j+1 XY Z2 . . . Zs and 〈q, aj+1w,Z1 . . . Zs, c(θ)〉 �∗M
〈q, w,XY Z2 . . . Zs, c(θθj+1)〉, therefore, 〈q, a1 . . . ajaj+1w, S, (0, . . . , 0)〉 �∗M 〈q, w,
XY Z2 . . . Zs, c(θθj+1)〉.
ii) Induction on the number of steps of the automaton.

Base case. There are no steps. By definition S ⇒0
Γ S.

Inductive step. Let 〈q, a1 . . . ajaj+1w, S, (0, . . . , 0)〉 �∗M 〈q, aj+1w,Z1 . . . Zs, c(θ)〉,
then by the inductive hypothesis S ⇒∗

Γ aθ11 . . . a
θj
j Z1 . . . Zs and θ1 . . . θj is a prefix

of a correct bracket word. Let us suppose firstly that the automaton used a non-
ε-rule. There are three types of such rules.

1) 〈q, aj+1, Z1, 〈q, ε, ū〉〉

Then there is a rule Z1 → a
θj+1

j+1 in Γ , where θj+1 is the potential corresponding to
ū. Then 〈q, a1 . . . ajaj+1w, S, (0, . . . , 0)〉 �∗M 〈q, w, Z2 . . . Zs, c(θθj+1)〉, and S ⇒∗

Γ

aθ11 . . . a
θj
j Z1 . . . Zs ⇒1

Γ aθ11 . . . a
θj
j a

θj+1

j+1 Z2 . . . Zs. θ1 . . . θj+1 is a prefix of a correct
bracket word, because θj+1 does not have both left and right valencies of the
same type.

2) 〈q, aj+1, Z1, 〈q,X, ū〉〉

Then there is a rule Z1 → a
θj+1

j+1 X in Γ . Then 〈q, a1 . . . ajaj+1w, S, (0, . . . , 0)〉 �∗M

〈q, w,XZ2 . . . Zs, c(θθj+1)〉, and S ⇒∗
Γ aθ11 . . . a

θj
j Z1 . . . Zs ⇒1

Γ aθ11 . . . a
θj
j a

θj+1

j+1

XZ2 . . . Zs.

3) 〈q, aj+1, Z1, 〈q,XY, ū〉〉

Then there is a rule Z1 → a
θj+1

j+1 XY in Γ . Then 〈q, a1 . . . ajaj+1w, S, (0, . . . , 0)〉
�∗M 〈q, w,XY Z2 . . . Zs, c(θθj+1)〉, and S ⇒∗

Γ aθ11 . . . a
θj
j Z1 . . . Zs ⇒1

Γ

aθ11 . . . a
θj
j a

θj+1

j+1 XY Z2 . . . Zs.

Now let us consider the case, when the automaton used the ε-rule 〈q, ε, Z1,
〈q′, Z1, ū1〉〉. After this rule the automaton used a non-ε-rule. This rule is

Abstract Automata and a Normal Form 99

unambiguously defined by the state q′, because according to the construction
all such states are unique.

Let the rule be of the form 〈q′, aj+1, Z1, 〈q, ε, ū2〉〉. There is a rule Z1 → aθ
′θ′′

j+1

in Γ , where θ′ corresponds to ū1, and θ′′ corresponds to ū2. Then S ⇒∗
Γ

aθ11 . . . a
θj
j Z1 . . . Zs ⇒1

Γ aθ11 . . . a
θj
j a

θj+1

j+1 Z2 . . . Zs. θ
′ contains only the right va-

lencies and θ′′ contains only the left valencies, therefore the potentials θθ′ and
θθ′θ′′ are prefixed of correct bracket word. The cases of the rules 〈q′, aj+1, Z1,
〈q,X, ū2〉〉 and 〈q′, aj+1, Z1, 〈q,XY, ū2〉〉 are analogous. '(

It follows from this lemma that S ⇒∗
Γ aθ11 . . . aθnn iff 〈q, a1 . . . an, S, (0, . . . , 0)〉

�∗M 〈q, ε, ε, c(θ)〉.

a1 . . . an ∈ L(G)⇔ aθ11 . . . aθnn ∈ L(Γ) and the potential θ1 . . . θn is balanced ⇔
〈q, a1 . . . an, S, (0, . . . , 0)〉 �∗M 〈q, ε, ε, (0, . . . , 0)〉 ⇔ a1 . . . an ∈ L(M)

This means that L(G) = L(M). '(
Remark 1. If the grammar G has no potentials with both ↗ A and ↘ A for
all A ∈ C, then the case (b) in the construction is impossible. Therefore the
equivalent automaton will have no ε-rules.

The push-down automata with independent counters possess properties analo-
gous to the properties of the push-down automata.

Lemma 6. Let 〈q, w, α1 . . . αk, ū〉 �nM 〈q′, ε, ε, ū′〉.Then w = w1 . . . wk, and
〈q, w1, α1, ū〉 �n1

M 〈q1, ε, ε, ū1〉, . . . , 〈qk−1, wk, αk, ūk−1〉 �nk

M 〈q′, ε, ε, ū′〉, where
n = n1 + · · ·+ nk.

Lemma 7. Let 〈q0, w1, α1, ū0〉 �n1

M 〈q1, ε, ε, ū1〉, . . . , 〈qm−1, wm, αm, ūm−1〉 �nm

M

〈qm, ε, ε, ūm〉. Then 〈q0, w1 . . . wm, α1 . . . αm, ū0〉 �n1+···+nm

M 〈qm, ε, ε, ūm〉.
Now we prove the theorem inverse to Theorem 3.

Theorem 4. If a language L is accepted by a push-down automaton with inde-
pendent counters and without empty loops, then L− { ε } is a CDG-language.

Proof. Let the language L be accepted by the automaton M = 〈Σ,Q,Z, q0, z0,
P, k〉. By Lemma 3 we may suppose that ε-rules ofM do not change the counters.
We build a cf-grammar Γ = 〈Σ,N, S,R〉 from M :

Σ = { aθ(ū) | 〈q, a, z, 〈q′, α, ū〉〉 ∈ P } N = { [qzq′] | q, q′ ∈ Q, z ∈ Z } ∪ {S }
R is defined in the following way:

S → [q0z0q] for all q ∈ Q
[qzq′]→ aθ(ū) ∈ R iff 〈q, a, z, 〈q′, ε, ū〉〉 ∈ P , a �= ε
[qzqs] → aθ(ū)[q′z1q1][q1z2q2] . . . [qs−1zsqs] ∈ R for all q1, . . . , qs ∈ Q iff
〈q, a, z, 〈q′, z1 . . . zs, ū〉〉 ∈ P , a �= ε
[qzq′]→ ε ∈ R iff 〈q, ε, z, 〈q′, ε, 0̄〉〉 ∈ P
[qzqs] → [q′z1q1][q1z2q2] . . . [qs−1zsqs] ∈ R for all q1, . . . , qs ∈ Q iff 〈q, ε, z,
〈q′, z1 . . . zs, 0̄〉〉 ∈ P , a �= ε

The following property holds.

100 B. Karlov

Lemma 8. i) Let θ(ū)θ1 . . . θj be a prefix of a correct bracket word. If [qzq′]⇒∗
Γ

aθ11 . . . a
θj
j , then 〈q, a1 . . . aj , z, ū〉 �∗M 〈q′, ε, ε, ū+ c(θ1 . . . θj)〉.

ii) Let aθii ∈ Σ for 1 ≤ i ≤ j. If 〈q, a1 . . . aj , z, ū〉 �∗M 〈q′, ε, ε, ū + c(θ1 . . . θj)〉,
then [qzq′]⇒∗

Γ aθ11 . . . a
θj
j .

Proof. i) Induction on the length of the derivation in Γ .

Base case. Let the derivation be [qzq′] ⇒1
Γ aθ11 . Then there is a rule 〈q, a1, z,

〈q′, ε, c(θ1)〉〉 in the automaton. Therefore 〈q, a1, z, ū〉 �1M 〈q′, ε, ε, ū + c(θ1)〉.
If the derivation is [qzq′] ⇒1

Γ ε, then there is a rule 〈q, ε, z, 〈q′, ε, 0̄〉〉 in the
automaton. Therefore 〈q, ε, z, ū〉 �1M 〈q′, ε, ε, ū〉.

Inductive step. Let [qzq′]⇒k
Γ aθ11 . . . a

θj
j for some k〉1.

1) The derivation is of the form [qzq′] ⇒1
Γ aθ11 [q1z1q2][q2z2q3] . . . [qszsqs+1] ⇒∗

Γ

aθ11 . . . a
θj
j , where qs+1 = q′. Therefore for all i = 1, . . . , s [qiziqi+1]⇒ki

Γ vi ∈ Σ∗,

where v1v2 . . . vs = aθ22 . . . a
θj
j , and k1 + · · · + ks = k, 0〈ki〈k. By the induc-

tive hypothesis 〈qi, word(vi), zi, ū+ c(θ1pot(v1) . . . pot(vi−1))〉 �∗M 〈qi+1, ε, ε, ū+
c(θ1pot(v1) . . . pot(vi))〉. Instead of just ū the first configuration contains ū =
c(θ1pot(v1) . . . pot(vi−1)). This is correct, because this vector is also a prefix of
a correct bracket word. Then by Lemma 7 〈q, a1word(v1) . . . word(vs), z, ū〉 �1M
〈q1, word(v1) . . . word(vs), z1 . . . zs, ū + c(θ1)〉 �kM 〈q′, ε, ε, ū + c(θ1pot(v1) . . .
pot(vs))〉, i.e. 〈q, a1 . . . aj , z, ū〉 �∗M 〈q′, ε, ε, ū+ c(θ1 . . . θj)〉.
2) The derivation is of the form [qzq′] ⇒1

Γ [q1z1q2][q2z2q3] . . . [qszsqs+1] ⇒∗
Γ

aθ11 . . . a
θj
j , where qs+1 = q′. The proof is analogous to the previous case. The

only difference is that the first step of the automaton is 〈q, a1 . . . aj , z, ū〉 �1M
〈q′, a1 . . . aj , z1 . . . zs, ū〉.
ii) Induction on the length of the derivation for the automaton.

Base case. If the derivation is of the form 〈q, a1, z, ū〉 �1M 〈q′, ε, ε, ū+c(θ1)〉, then
the command 〈q, a1, z, 〈q′, ε, c(θ1)〉〉 was used. Then there is a rule [qzq′] → aθ11
in Γ , and [qzq′]⇒1

Γ aθ11 . If the derivation is of the form 〈q, ε, z, ū〉 �1M 〈q′, ε, ε, ū〉,
then the command 〈q, ε, z, 〈q′, ε, 0̄〉〉 was used. Then there is a rule [qzq′]→ ε in
Γ , and [qzq′]⇒1

Γ ε.

Inductive step. Let us consider a sequence of configurations of length k.

1) Firstly let us suppose that on the first step a non-ε-rule 〈q, a1, z, 〈q1, z1 . . . zs,
v̄〉〉 was used. Then the sequence of configurations is of the form
〈q, a1 . . . aj , z, ū〉, 〈q1, a2 . . . aj , z1 . . . zs, ū + c(θ1)〉, . . . , 〈q′, ε, ε, ū+
c(θ1 . . . θj)〉, and there is a rule [qzq′]→ aθ11 [q1z1q2] . . . [qszsq

′] in Γ (here c(θ1) =
v̄). By Lemma 6 the word a2 . . . aj can be represented in the form w1 . . . ws, so

that 〈q1, w1, z1, ū+ c(θ1)〉 �k1

M 〈q2, ε, ε, ū+ c(θ1θ
′
1)〉, . . . , 〈qs, ws, zs, ū+ c(θ1θ

′
1 . . .

θ′s−1)〉 �ks

M 〈q′, ε, ε, ū+c(θθ′1 . . . θ′s)〉, where θ1θ′1 . . . θ′s = θ1 . . . θj , k1+· · ·+ks = k,

0 < ki < k. By the inductive hypothesis [qiziqi+1] ⇒ji
Γ vi (qs+1 = q′), and

Abstract Automata and a Normal Form 101

word(vi) = wi, pot(vi) = θ′i. Therefore there exists a derivation [qzq′] ⇒1
Γ

aθ11 [q1z1q2][q2z2q3] . . . [qszsq
′]⇒∗

Γ aθ11 v1 . . . vs = aθ11 . . . a
θj
j .

2) Now let us suppose that the rule 〈q, ε, z, 〈q1, z1 . . . zs, 0̄〉〉 was used on the first
step. Then there is a rule [qzq′]→ [q1z1q2] . . . [qszsq

′] in Γ . This case differs from
the previous one in the first rule used in the derivation for Γ . The derivation is

of the form [qzq′]⇒1
Γ [q1z1q2] . . . [qszsq

′]⇒∗
Γ aθ11 . . . a

θj
j . '(

Now we build the grammar in Greibach normal form, equivalent to Γ . If it has
the rule S → ε, we omit it. Let Γ ′ be the resulting grammar. Let G = CDG(Γ ′).

a1 . . . an ∈ L(M)⇔ 〈q0, a1 . . . an, z0, (0, . . . , 0)〉 �∗M 〈q, ε, ε, (0, . . . , 0)〉 ⇔
[q0z0q]⇒∗

Γ aθ11 . . . aθnn and the potential θ1 . . . θn is balanced ⇔
S ⇒∗

Γ aθ11 . . . aθnn and the potential θ1 . . . θn is balanced ⇔
S ⇒∗

Γ ′ a
θ1
1 . . . aθnn and the potential θ1 . . . θn is balanced ⇔ a1 . . . an ∈ L(G)

This means that L(M) = L(G). '(
Remark 2. In the built grammar G no potential contains both left and right
valencies of the same type.

Corollary 3. For every push-down automaton with independent counters and
without empty loops there exists an equivalent automaton without ε-commands.

Proof. Let M be a push-down automaton without empty loops. We can build
a grammar G, such that L(G) = L(M) and no potential contains both left and
right valencies of the same type (Remark 2). Then we build an automaton M ′

from the grammar G.M ′ is equivalent toM and it does not contain ε-commands
(Remark 1). '(

5 Conclusion

In this paper we studied some properties of the CDG-languages. In Sect. 3 we
defined a normal form of CDG analogous to the Greibach normal form of cf-
grammars. It was proved that for every CDG there exists a weakly equivalent
CDG in this normal form. In Sect. 4 we introduced push-down automata with
counters. They are usual push-down automata which also have several indepen-
dent counters. We proved that the class of CDG-languages is equal to the class
of languages accepted by these automata without the empty loops. There are
some interesting open problems concerning CDGs.

1. Can the normal form be further simplified? For example, can all categories
be represented in the form of [A/B]θ?

2. Is the restriction placed on the ε-commands of the automata essential? Can
the automata without restrictions accept non-CDG-languages?

3. Does the number of counters influence the expressivity of the automata?
We conjecture that there is a hierarchy on the number of counters, i.e. for
every k there exists a language which is accepted by some automaton with
k counters, but cannot be accepted by automata with a fewer number of
counters.

102 B. Karlov

4. The automata studied in this paper are nondeterministic. The deterministic
automata with counters and the deterministic CDG-languages can be defined
in a usual way. A study of deterministic languages is needed, in particular,
their comparison with general CDG-languages.

Acknowledgements. The author is grateful to M. Dekhtyar and A. Dikovsky
for useful discussions and the anonymous referees whose detailed comments
helped greatly to improve the presentation of this paper.

References

1. Aho, A.V., Ullman, J.D.: The theory of parsing, translation and compiling. Parsing,
vol. 1. Prentice-Hall, Inc., Englewood Cliffs (1972)

2. Bar-Hillel, Y., Gaifman, H., Shamir, E.: On categorial and phrase structure gram-
mars. Bull. Res. Council Israel 9F, 1–16 (1960)

3. Blum, N., Koch, R.: Greibach Normal Form Transformation, Revisited. In: Reis-
chuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 47–54. Springer,
Heidelberg (1997)

4. Dekhtyar, M., Dikovsky, A.: Categorial Dependency Grammars. In: Moortgat, M.,
Prince, V. (eds.) Proc. of Int. Conf. on Categorial Grammars, Montpellier, pp.
76–91 (2004)

5. Dekhtyar, M., Dikovsky, A.: Generalized Categorial Dependency Grammars. In:
Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Trakhtenbrot/Festschrift. LNCS,
vol. 4800, pp. 230–255. Springer, Heidelberg (2008)

6. Dekhtyar, M., Dikovsky, A., Karlov, B.: Iterated dependencies and Kleene iteration.
In: Proc. of the 15th Conference on Formal Grammar (FG 2010), Copenhagen,
Denmark. LNCS (2010) (to appear),
http://www.angl.hu-berlin.de/FG10/fg10_list_of_papers

7. Dikovsky, A.: Grammars for Local and Long Dependencies. In: Proc. of the Intern.
Conf. ACL 2001, Toulouse, France, pp. 156–163. ACL & Morgan Kaufman (2001)

8. Gladkij, A.V.: Formal Grammars and Languages, Moscow, “Nauka” (1973) (in
Russian)

9. Greibach, S.A.: A new normal-form theorem for context-free phrase structure gram-
mars. J. Assoc. Computing Machinery 12(1), 42–52 (1965)

10. Tesnière, L.: Éléments de syntaxe structurale. Librairie C. Klincksieck, Paris (1959)

http://www.angl.hu-berlin.de/FG10/fg10_list_of_papers

Importing Montagovian Dynamics

into Minimalism

Gregory M. Kobele

University of Chicago
kobele@uchicago.edu

Abstract. Minimalist analyses typically treat quantifier scope interac-
tions as being due to movement, thereby bringing constraints there-
upon into the purview of the grammar. Here we adapt De Groote’s
continuation-based presentation of dynamic semantics to minimalist
grammars. This allows for a simple and simply typed compositional in-
terpretation scheme for minimalism.

1 Introduction

Minimalist grammars [33] provide a mildly context sensitive perspective on
mainstream chomskyian linguistic theory. Although semantic interpretation in
chomskyian linguistics is traditionally viewed as operating on derived struc-
tures [17], this was faithfully reformulated in terms of a compositional semantics
over derivation trees in [23]. There, in keeping with the treatment of pronouns
as denoting variables, the standard semantic domains (of individuals E and of
propositions T) were paramaterized with the set G of assignment functions, and
a function � :

[
EG → TG → EG → TG

]
which behaves in a manner similar to

lambda abstraction was defined. Around the same time, a continuation-based
reinterpretation of dynamic semantics using the simply typed lambda calcu-
lus was presented [8]. Instead of being variables, pronouns are treated there
as (lifted) choice functions over contexts, which parameterize the type o of
propositions.1

In this paper, we adopt the choice function treatment of pronouns [8], and
reformulate the non-canonical semantics of minimalist grammars [23] in these
terms. This allows for a simply typed and variable free (§3.3) presentation of
minimalist semantics, within which constraints on quantifier scoping are most
naturally formulated syntactically. This constrasts with a previous semantic in-
terpretation scheme for (a logical reconstruction of) minimalist grammars [2,27],
which, using the lambda-mu calculus [29] to represent the meanings of sentences,
treated scope taking as a consequence of different reduction orders. (And which,
as a consequence, was not able to account for the various seemingly syntactic
constraints on scope.)

1 A greater similarity with [23] emerges if we do not lift the pronouns of [8], but
instead treat them as denoting functions from contexts to individuals. Then both
propositions and individuals must be parameterized by contexts.

D. Béchet and A. Dikovsky (Eds.): LACL 2012, LNCS 7351, pp. 103–118, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

104 G.M. Kobele

The main ‘data’ to be covered include the following sentences.

1. Every boy believed that every man believed that he smiled.
2. Some man believed that every woman smiled.
3. Some man believed every woman to have smiled.

The interest in these sentences is as follows. Sentence 1 has a reading in which the
pronoun he is bound by the matrix subject every boy. This can be ‘straightfor-
wardly’ dealt with if he denotes a variable, as long as this variable has a different
name than the one bound by the embedded subject. If we identify variable names
with movement features (as we will here), this cannot be done. Sentences 2 and
3 differ in the scope taking behavior of the quantified noun phrase every woman.
In 2, this QNP must scope under the matrix subject, while in 3 either scope
order is possible.

The remainder of this paper is structured as follows. Section §2 introduces the
minimalist grammar formalism. Section 3 presents a semantics for this formalism
in terms of the simply typed lambda calculus. In §4, a grammar fragment is
presented which allows for quantifiers to scope out of arbitrarily many non-finite
clauses, but not past a tense clause boundary, as is the received wisdom in the
linguistic literature [21]. Section 5 is the conclusion.

2 Minimalist Grammars

Minimalist grammars make use of two syntactic structure building operations;
binary merge and unary move. Merge acts on its two arguments by combining
them together into a single tree. The operation move rearranges the pieces of its
single and syntactically complex argument. The generating functions merge and
move are not defined on all objects in their domain. Whether a generating func-
tion is defined on a particular object in its domain (a pair of expressions in the
case of merge, or a single expression in the case of move) is determined solely
by the syntactic categories of these objects. In minimalist grammars, syntactic
categories take the form of ‘feature bundles’, which are simply finite sequences
of features. The currently accessible feature is the feature at the beginning (left-
most) position of the list, which allows for some features being available for
checking only after others have been checked. In order for merge to apply to
arguments Γ and Δ, the heads of both expressions must have matching first
features in their respective feature bundles. These features are eliminated in the
derived structure which results from their merger. In the case of move, the head
of its argument Γ must have a feature matching a feature of the head of one of
its subconstituents’ Δ. In the result, both features are eliminated. Each feature
type has an attractor and an attractee variant (i.e. each feature is either positive
or negative), and for two features to match, one must be positive and the other
negative. The kinds of features relevant for the merge and move operations
are standardly taken for convenience to be different. For merge, the attractee
feature is a simple categorial feature, written x. There are two kinds of attrac-
tor features, =x and x=, depending on whether the selected expression is to be

Importing Montagovian Dynamics into Minimalism 105

merged on the right (=x) or on the left (x=). For the move operation, there is
a single attractor feature, written +y, and two attractee features, -y and �y,
depending on whether the movement is overt (-y) or covert (�y).

A lexical item is an atomic pairing of form and meaning, along with the
syntactic information necessary to specify the distribution of these elements in
more complex expressions. We write lexical items using the notation 〈σ, δ〉, where
σ is a lexeme, and δ is a feature bundle.

Complex expressions are written using the notation of [33] for the ‘bare phrase
structure’ trees of [5]. These trees are essentially X-bar trees without phrase and
category information represented at internal nodes. Instead, internal nodes are
labeled with ‘arrows’ > and <, which point to the head of their phrase. A tree
of the form [< α β] indicates that the head is to be found in the subtree α, and
we say that α projects over β, while one of the form [> α β] that its head is in
β, and we say that β projects over α. Leaves are labeled with lexeme/feature
pairs (and so a lexical item 〈α, δ〉 is a special case of a tree with only a single
node). The head of a tree t is the leaf one arrives at from the root by following
the arrows at the internal nodes. If t is a bare phrase structure tree with head
h, then I will write t[h] to indicate this. (This means we can write lexical items
〈α, δ〉 as 〈α, δ〉[〈α, δ〉].) The merge operation is defined on a pair of trees t1, t2
if and only if the head of t1 has a feature bundle which begins with either =x

or x=, and the head of t2 has a feature bundle beginning with the matching x

feature. The bare phrase structure tree which results from the merger of t1 and
t2 has t1 projecting over t2, which is attached either to the right of t1 (if the first
feature of the head was =x) or to the left of t1 (if the first feature of the head
was x=). In either case, both selection features are checked in the result.

merge(t1[〈α, =xδ〉], t2[〈β, xγ〉]) =
<

t1[〈α, δ〉] t2[〈β, γ〉]

merge(t1[〈α, x=δ〉], t2[〈β, xγ〉]) =
>

t2[〈β, γ〉] t1[〈α, δ〉]

If the selecting tree is both a lexical item and an affix (which I notate by means
of a hyphen preceding/following the lexeme in the case of a suffix/prefix), then
head movement is triggered from the head of the selected tree to the head of the
selecting tree.

merge(〈-α, =xδ〉, t2[〈β, xγ〉]) =
<

〈β-α, δ〉 t2[〈ε, γ〉]

The operation move applies to a single tree t[〈α, +yδ〉] only if there is exactly
one leaf
 in t with matching first feature -y or �y.2 This is a radical version of

2 Other constraints have been explored in [12].

106 G.M. Kobele

the shortest move constraint [5], and will be called the SMC – it requires that an
expression move to the first possible landing site. If there is competition for that
landing site, the derivation crashes (because the losing expression will have to
make a longer movement than absolutely necessary). If it applies, move moves
the maximal projection of
 to a newly created specifier position in t (overtly,
in the case of -y, and covertly, in the case of �y), and deletes both licensing
features. To make this precise, let t{t1 %→ t2} denote the result of replacing all
subtrees t1 in t with t2, for any tree t, and let
Mt denote the maximal projection
of
 in t, for any leaf
.

move(t[〈α, +yδ]) =
>

t′[〈β, γ〉] t[〈α, δ〉]{t′ �→ 〈ε, ε〉}
(where t′ = 〈β, -yγ〉Mt)

move(t[〈α, +yδ]) =
>

〈ε, γ〉 t[〈α, δ〉]{t′ �→ t′[〈β, ε〉]}
(where t′ = 〈β,�yγ〉Mt)

2.1 The Shortest Move Constraint

Minimalist grammars with the shortest move constraint were proven [28] to
be weakly equivalent to multiple context free grammars [31]. The proof that
minimalist languages are contained in the MCFLs proceeds by constructing an
equivalent MCFG whose derivation trees are identical to those of the minimalist
grammar (modulo a projection). Each component of a derived tuple of strings
in the target MCFG corresponds to either a moving subexpression in the MG
or to the fixed head and non-moving material around it. The shortest move
constraint ensures that there is a finite upper bound on the number of possible
moving subexpressions, and thus on the dimension of the target MCFG.

The derived trees of Minimalist Grammars, while not corresponding to so nat-
ural a class due to non-logical restrictions (such as the distribution of traces), are
contained [26] in the tree languages derivable by multiple regular tree grammars,
which are MCFGs where the derived tuples contain trees instead of strings [10].

These observations motivate the idea that, at least in the context of the SMC,
the natural data structure for the objects derived by minimalist grammars are
tuples, where all positions but the first are indexed by feature types. An alter-
native presentation of this data structure is as a store, in the sense of [6], which
is a pair of an object and a finite map from feature types to objects. In the case
of syntax, the objects are trees. In the case of semantics, they will turn out to
be simply typed lambda terms, as explained next.

2.2 Derivations

A derivation tree is an element of the term language over the ranked alphabet
A0 ∪ A1 ∪ A2, where A0 = Lex is the set of nullary symbols, A1 = {move}

Importing Montagovian Dynamics into Minimalism 107

is the set of unary symbols, and A2 = {merge} the set of binary symbols. As
a consequence of the translation of minimalist grammars into multiple context
free grammars [28,16], and as described in [26], the set of derivation trees in a
minimalist grammar of an expression with unchecked feature string γ at the root
and no features anywhere else is regular.

For reasons of space (and because the derivation tree is more informative than
any single derived tree), we will present only derivation trees for the expressions
in this paper.

3 Minimalist Semantics

Here we present a rule-by-rule semantic interpretation scheme for minimalist
grammars. The denotation of a syntactic object t is a pair of a simply typed
lambda term and a quantifier store. A quantifier store is a partial function from
feature types to simply typed terms. The idea is that a syntactic object t with
a moving subexpression t′ = 〈β, -yγ〉Mt has a quantifier store Q such that Q(y)
is the stored meaning of t′.

We use lower case greek letters (α, β, . . .) to stand for denotations of syn-
tactic objects (pairs of simply typed lambda terms and quantifier stores), and
the individual components of these denotations will be referred to with the cor-
responding roman letters in lowercase for the lambda term component, and in
uppercase for the store component.3 Thus, α = 〈a,A〉.

We treat lexical items as being paired with the empty store.

Quantifier Stores. With ∅ we denote the empty quantifier store, such that
for all feature types f, ∅(f) is undefined. If two quantifier stores Q1,Q2 have
disjoint domains,4 then Q1 ∨ Q2 denotes the store such that:

Q1 ∨ Q2(f) :=

{
Q1(f) if defined
Q2(f) otherwise

Let Q be a quantifier store, and f,g feature types. Then Q/f is the quantifier
store just like Q except that it is undefined on f, Q[f := α] is the store just like
Q except that it maps f to α, and Qf←g is the store just like Q/g except that
it maps f to whatever Q mapped g to.

Variable Naming. Our approach to variable naming is from [32], and is based
on the observation that, in the context of the SMC, the type of the next feature
of a moving expression uniquely identifies it. We will thus need no free individual
variables (those of type e) other than these, and thus we subscript them with
feature types.

3 Lower case greek letters also have been used to stand for feature sequences, lexemes,
etc. This overloading is hoped to be clear from context.

4 If this is not the case, then the syntactic expressions they correspond to cannot be
syntactically merged, as this would result in a violation of the SMC.

108 G.M. Kobele

3.1 Merge

There are two possible semantic reflexes of syntactic merger. The first case is
function application from one argument to the other (in a type driven manner).
In the second case one of the arguments is a moving expression, and the other
denotes a function from individuals. Here we insert it into the store indexed
by the next licensee feature type it will move to check. The other argument is
applied to a variable of the same name as the index under which the moving
argument was stored. We denote these two semantic operations mergeApp and
mergeStore.5

mergeApp(α, β) =

⎧⎨⎩
〈a(b), A ∪B〉

or
〈b(a), B ∪ A〉

mergeStore(α, β) = 〈a(xf), A ∪B[f := b]〉
(where β’s next feature is -f)

3.2 Move

There are multiple possible semantic reflexes of syntactic movement as well.6

The first, moveEmpty, is used when the moving expression has previously
taken scope. The second, moveLater, will be used when the moving expression
is going to take scope in a later position. The third, moveNow, is used when the
moving expression is going to take scope in this position. Here, the appropriate
variable is abstracted over, and the resulting predicate is given as argument to
the stored expression. In the below, we assume -f to be the feature checked by
this instance of move.

moveEmpty(α) = 〈a,A〉
where A is undefined at f

moveLater(α) = 〈(λxf .a)(xg), Ag←f 〉
for -g the next feature to check

moveNow(α) = 〈A(f)(λxf .a), A/f〉

5 Note that the condition on mergeStore refers to the features of the moving expres-
sion. This information is present in the categories used in the MCFG translation of
a minimalist grammar, and is a finite state bottom up relabeling of the standard
minimalist derivation tree. Thus while not a homomorphic interpretation of mini-
malist derivations, it is a homomorphic interpretation of a finite state relabeling of
minimalist derivations, or a transductive interpretation of minimalist derivations.

6 [24] argues for the inclusion of function composition, in order to account for inverse
linking constructions, which are beyond the scope of this paper.

Importing Montagovian Dynamics into Minimalism 109

3.3 Going Variable Free

As observed in [23], remnant movement wreaks havoc with the interpretation
of movement dependencies presented here. The problem is that we can end up
with a term in which variables remain free, with the lambda which was supposed
to have bound them to their right. The reason this problem exists is that the
semantics presented here treats each moving expression independently of all
others, while the existence of remnant movement forces us to ‘coordinate’ the
interpretations of two moving expressions where one contains the base position of
the other. There are various strategies for resolving this difficulty [23], however,
the one which suggests itself in the present simply typed context is nice because
it simply eliminates free variables (named after features or not).

The basic idea is straightforward: an expression α = 〈a,A〉 ‘abbreviates’ an
expression α′ = 〈λxf1 , . . . , xfn .a, A〉, where the domain of A is exactly the set of
features f1, . . . , fn. In other words, we take the ‘main denotation’ of an expression
to have the variables expressions in the store may have introduced in it already
and always bound. For any store A, define var(A) to be a fixed enumeration of
the domain of A (viewed as variables), and Λ(A). φ to be a prefix of lambda
abstractions over the domain of A viewed as variables. Then the mergeApp
rule can be given as follows:

mergeApp(α, β) =

⎧⎨⎩
Λ(A ∪B). a(var(A))(b(var(B))), A ∪B〉

or
〈Λ(B ∪ A).b(var(B))(a(var(A))), B ∪ A〉

The rules moveEmpty and moveLater are also simply recast in these terms.

moveEmpty(α) = 〈Λ(A).a(var(A)), A〉
moveLater(α) = 〈Λ(Aj←i).(λxi.a(var(A)))(xj), Aj←i〉

Not everything is so straightforward, unfortunately. What are we to do with
the mergeStore rule, when the expression whose denotation is to be stored
itself contains moving pieces? An example is verb phrase topicalization (in a
sentence like “Use the force, Luke will”). In a typical minimalist analysis of this
construction, the lexical item will merges with the verb phrase tk use the force,
which itself contains a moving expression, the subject Lukek. Thus, under our
‘variable free’ view, we have a VP with main denotation of type et (because its
store contains the denotation of Luke), but will is of type tt. There is a natural
resolution to this (self-inflicted) problem, which implements the transformational
observation that ‘remnant movement obligatorilly reconstructs’ [4]. We split the
mergeStore rule into mergeStoreMB,7 which simply stores expressions with
empty stores, and mergeStoreHO,8 which stores the denotation of a merging
expression with moving pieces, and inserts a higher order variable.

7 For ‘Monadic Branching’ [22].
8 For ‘Higher Order’.

110 G.M. Kobele

mergeStoreMB(α, 〈b, ∅〉) = 〈Λ(X). a(var(A))(xi), X〉
(for X = A[i := b], and ty(b) = (ty(xi)→ γ)→ δ.)

mergeStoreHO(α, β) = 〈Λ(X). a(var(A))(xi(var(B))), X〉
(for X = A ∪B[i := b], and ty(xi) = ty(b).)

The quantifier store holds both generalized quantifiers, as before, as well as
relations like λx.x uses the force. This latter type of expression seems to be
used as an argument of some operator (such as a focus operator). Accordingly,
we adjust the moveNow rule to allow a type driven retrieval scheme:

moveNowFunc(α) = 〈Λ(X). A(i)(λxi.a(var(A)), X〉 (for X = A/i)

moveNowArg(α) = 〈Λ(X). λxi.a(var(A))(A(i)), X〉 (for X = A/i)

This is not a particularly interesting semantic treatment of remnant movement,
as it simply implements obligatory ‘semantic reconstruction’ [7]. To properly im-
plement linguistic analyses, it seems that some lexical items need access to the
stores of their arguments. This would allow us to assign the following interpreta-
tion to a topicalization lexical item, which checks the topic feature of a moving
expression, and returns a bipartite structure of the form top(φ)(ψ), which asserts
that ψ is the topic of φ: [[〈ε, =t +top c〉]](α) = Λ(A).top(λxtop.a(v(A)))(xtop).
This and alternatives need to be worked out further.

3.4 Determining Quantifier Scope

It is natural to view theminimalist grammar operations as pairs of syntactic and se-
mantic functions.Thus, for example,wehaveboth 〈merge,mergeApp〉andmerge,
mergeStore〉. The semantic interpretation rules implement a reconstruction the-
ory of quantifier scope [19], according to which the positions in which a quantified
noun phrase can take scope are exactly those through which it has moved.

A shortcoming of this proposal as it now stands is that the yield language of
the well formed derivation trees is ambiguous (in contrast to the uninterpreted
minimalist grammar system [15]). Because minimalist grammar derivation tree
languages are closed under intersection with regular sets [14,25], any regular
strategy for determining which of the possible positions a quantified noun phrase
should be interpreted in can be used to give control over scope taking back to the
lexicon. A simple such strategy is to assign to a licensee feature which may be
used at moveNow a particular diacritic. A moving expression is then required
to take scope at the highest (derivational) position permitted in which it checks
its features, or in its merged position, should no other possibility obtain. We
will adopt this proposal here, writing a licensee feature of type f which requires
scope taking with a hat (-f̂ or �f̂), and one which does not without (-f or �f).
This move restores the functionality of the relation between sequences of lexical
items and well-formed derivations, at the cost of increasing the size of the lexicon
(by an additive factor).

Importing Montagovian Dynamics into Minimalism 111

3.5 Lexical Interpretations

A model is given by a set of atomic individuals E, a set of propositional interpre-
tations T , and an interpretation function I assigning to each lexical item a model
theoretic object in a set built overE and T . We assume throughout that I assigns
to lexical items denotations of the ‘standard’ type; common nouns denote func-
tions from individuals to propositions, n-ary verbs functions from n individuals
to propositions, determiners relations between common noun denotations, etc.

We call the type of atomic individuals e, and that of propositions as o. Follow-
ing [8], let the type of a (discourse) context be γ, and a sentence (to be revised
shortly) to evaluate to a proposition only in a context (i.e. to be a function
from contexts to propositions). Contexts will serve here to provide the input to
pronoun resolution algorithms. For simplicity, we will treat them as lists of indi-
viduals (with [8], but see [3] for a more sophisticated treatment). The operation
of updating a context c ∈ γ with an individual a is written a :: c. Pronoun res-
olution algorithms select individuals from contexts, and are generically written
sel.9 We will assume that the individual selected from the context is actually
present in the context (sel(γ) ∈ γ), leaving aside the question of empty contexts,
and more precise conditions on the identity of the selected individual.

To deal with dynamic phenomena in his system, [8] lifts the type of a sentence
once again to be a function from contexts (of type γ) and discourse continuations
(functions of type γo) to propositions; an expression of type γ(γo)o, which we
will abbreviate as t. The idea is that a sentence is interpreted as a function from
both its left context c and its right context φ to propositions.

With the exception of verb denotations, and expressions (such as relative pro-
nouns) which are analysed there as taking verb denotations as arguments, we are
able to simply take over the denotations assigned to lexical items from [8].

The style of analysis popular in the minimalist syntactic literature (and fol-
lowed here), makes less straightforward a homomorphic relation between syn-
tactic and semantic types. For example, the subject of a sentence is typically
selected by a ‘functional head’, i.e. a lexical item other than the verb.

Relations. We first look at the denotations of n-ary relation denoting lexical
items, such as nouns and verbs. While nouns are treated here just as in [8], we
treat verbs as on par with nouns, not, as does [8], as functions which take gen-
eralized quantifier denotations as arguments. This is because, in the minimalist
grammar system, scope is dealt with by movement, not by modifying the verbal
denotation (as is standard in categorial approaches to scope [18]).

A common noun, such as monkey, which is interpreted in the model as a
function monkey of type eo mapping entities to true just in case they are
monkeys, denotes a function of type et:

[[monkey]](x)(c)(φ) := monkey(x) ∧ φ(c)

9 [9] gives pronoun resolution algorithms an additional property argument, and pro-
poses that they select an individual with that property from the context.

112 G.M. Kobele

Similarly, a transitive verb, such as eat, interpreted as a function eat : eeo
mapping pairs of entities to true just in case the second ate the first, denotes a
function of type eet:

[[eat]](x)(y)(c)(φ) := eat(x)(y) ∧ φ(c)

In general, given a function f : e · · · e︸ ︷︷ ︸
n times

o, we lift it to lift(f) : e · · · e︸ ︷︷ ︸
n times

t:

lift(f)(x1) · · · (xn)(c)(φ) := f(x1) · · · (xn) ∧ φ(c)

The conjunction and conjunct φ(c) common to all such predicates cashes out the
empirical observation that propositions in a discourse combine conjunctively [30].

We adopt the following convention regarding arguments of type o (propo-
sitions): they are lifted to arguments of type t, and are passed as arguments
the left and right context parameters of the lifted lexical item. As an example,
take believe to be interpreted as a function of type oeo; a relation between a
proposition (the belief) and an individual (the believer).

lift(believe)(S)(x)(c)(φ) := believe(S(c)(φ))(x) ∧ φ(c)

This illustrates a difficulty with the dynamic aspects of the system; it is not
obvious how to allow a context to pick up referents contained in a different branch
(here the propositional argument to believe) than which the continuation is
(here in a position ‘c-commanding’ this argument). Should the propositional
argument to believe contain a proper name, for example, this should be able
to be found in the context of the remainder of the sentence. We do not dwell
further on this difficulty here (though see footnote 11).

Noun Phrases. Traditional noun phrases (which are here, in line with [1],
called ‘determiner phrases’, or DPs) such as Mary, he, or every monkey, denote
functions g : (et)t. Proper names are interpreted as generalized quantifiers of
type (eo)o, which are then lifted to the higher type via the operation gq:

gq(G)(P)(c)(φ) = G(λxe. P (x)(c)(λd.φ(x::d)))

Note that the individual ‘referred to’ by the generalized quantifier is incorporated
into the context (x::c) of the continuation of the sentence (φ). This permits
future pronouns to pick up this individual as a possible referent. As an example,
Mary = λPeo.P (m). And so gq(Mary) = λc, φ.P (m)(c)(λd.φ(m::d)).

As mentioned above, we interpret pronouns, not as variables, but as noun
phrase denotations involving pronoun resolution algorithms: sel : γe.

[[pro]](P)(c)(φ) := P (sel(c))(c)(φ(c))

Importing Montagovian Dynamics into Minimalism 113

Determiners. The system presented in [8] is limited to quantifiers of type
〈1〉.10,11 Accordingly, we restrict ourselves to the standard universal and exis-
tential quantifiers ∀, ∃ : (eo)o. Determiners every and some are of type (et)(et)t,
and denote the following functions.

[[every]](P)(Q)(c)(φ) := ∀(λx.¬P (x)(c)(λd.¬Q(x)(x :: d)(λd.*)) ∧ φ(c))
[[some]](P)(Q)(c)(φ) := ∃(λx.P (x)(c)(λd.Q(x)(x :: d)(φ)))

As explained by De Groote, the negations inside of the lambda term representing
the denotation of every make the conjunctive meanings of the properties P and
Q equivalent to the desired implication. As an example, take P = [[man]] =
λx, c, φ.man(x) ∧ φ(c) and take Q = [[smile]] = λx, c, φ.smile(x) ∧ φ(c). Then
[[every]]([[man]])([[smile]])(c)(φ) β-reduces to the following lambda term, taking
A→ B as an abbreviation for ¬(A ∧ ¬B).

∀(λx.man(x)→ smile(x) ∧ *) ∧ φ(c)

Finally, * stands for the always true proposition. As it always occurs as part of
a conjunction, we simply and systematically replace A ∧* everywhere with the
equivalent A.

Everything Else. All other lexical items are interpreted as the identity function
of the appropriate type. While some (such as auxiliaries) should be assigned a
more sophistiated denotation in a more sophisticated fragment, others (such as
most of the ‘functional’ lexical items) play no obvious semantic role, and are
there purely to express syntactic generalizations.

4 A Fragment

There are two main constructions addressed in this section. First (in §4.1), we
show the necessity of de Groote’s discourse contexts (or something like them)
for the variable naming scheme adopted here. Then (in §4.2), as advertised in
the abstract, we illustrate the ‘tensed-clause boundedness’ of quantifier raising.

We draw lexical items mostly unchanged from [23] (see figure 1). The fragment
derives the following sentences, with the indicated scope relations.

4. Some man believed that every woman smiled. (∃ > ∀)
5. Some man believed every woman to have smiled. (∃ > ∀, ∀ > ∃)

Although the number of lexical items (especially in the verbal domain) may
look at first blush imposing, there are two things to bear in mind. First, most of
them are (intended to be) ‘closed class’ items, meaning that they needn’t ever

10 A quantifier of type 〈n1, . . . , nk〉 takes k predicates of arities n1,. . . , nk respectively,
and returns a truth value.

11 The extension to quantifiers of type 〈n〉 for any n is straightforward, but how it
should be extended to handle binary quantifiers (of type 〈1, 1〉) is non-obvious.

114 G.M. Kobele

name features pronunciation meaning

that =s t “that” id

-ed =p +k +q s “-ed” id

to =p t “to” id

have =en p “have” id

-en =v en “-en” id

Asp =v p “ε” id

Qv =v +q v “ε” id

v =V =d v “ε” id

AgrO =V +k V “ε” id

smile =d v “smile” lift(smile)
praise =d V “praise” lift(praise)
believe =t V “believe” lift(believe)

(a) verbal elements

name features pronunciation meaning

dD =D d -k �q “ε” id

dQ =D d -k �q̂ “ε” id

every =n D “every” [[every]]
some =n D “some” [[some]]
man n “man” lift(man)
woman n “woman” lift(woman)
pro D “he” [[pro]]
j D “John” gq(John)
b D “Bill” gq(Bill)

(b) nominal elements

Fig. 1. Lexical items

R(a)(b) = merge(a, b)
V (a) = move(a)

ObjK(v) = V (R(AgrO)(v))
ObjQ(v) = V (R(Qv)(v))
Sub(s)(v) = R(R(v)(v))(s)

tv(s)(v)(o) = ObjQ(Sub(s)(ObjK(R(v)(o))))

iv(s)(v) = R(v)(s)
to(v) = R(to)(R(have)(R(-en)(v)))

pst(v) = V (V (R(-ed)(R(Asp)(v))))
c = R(that)
d = R(dD)
q = R(dQ)

Fig. 2. Abbreviations

be added to as more novel words are encountered. Second, these closed class
items in fact participate in a very regular way in derivations. We introduce some
abbreviations (figure 2), so as to be able to concisely describe derivations of
sentences.12

The sentence in 6 has the two (semantically equivalent) derivations repre-
sented in 7, and interpretation as in 8.

6. Some man smiled.
7. pst(iv(f(some)(man))(smile)), for f ∈ {D,Q}
8. λc, φ. ∃(λx. man(x) ∧ smile(x) ∧ φ(c))

The transitive sentence in 9 has the derivation in 10, which corresponds to
the object wide scope reading in 11, and the derivation in 12 which corresponds
to the subject wide scope reading in 13.

9. Some woman praised every man.
10. pst(tv(d(some)(woman))(praise)(q(every)(man)))
11. λc, φ.∀(λx.man(x)→ ∃(λy.woman(y) ∧ praise(x)(y))) ∧ φ(c)
12. pst(tv(q(some)(woman))(praise)(q(every)(man)))
13. λc, φ.∃(λy.woman(y) ∧ ∀(λx.man(x)→ praise(x)(y)) ∧ φ(y :: c))

12 The ‘abbreviations’ in figure 2 are λ-terms over derivation trees. The naming of
bound variables is purely mnemonic, as they are all of atomic type.

Importing Montagovian Dynamics into Minimalism 115

4.1 Pronouns Are Not Variables

The idea that pronouns are to be rendered as variables in some logical language is
widespread in the semantic literature (though see [11,20] for some alternatives).
However in the present system, where possible binders (DPs) bind variables
according to the reason for their movement (of which there are only finitely
many), sentences like the below prove an insurmountable challenge to this näıve
idea.

14. Every boy believed that every man believed that he smiled.

In sentence 14, the pronoun can be bound either by every boy or by every man.
However, if it ‘denotes’ a variable, it must be one of xk or xq, and both of these
are bound by the closer DP, every man, leaving no possibility for the reading
in which every boy smiles.13 Here we see that treating pronouns as (involving)
pronoun resolution algorithms provides a simple way to approach a resolution
to this problem.14

Sentence 14 has its equivalent derivations in 15, with meaning representation
in 16.

15. pst(iv (f(every)(boy))
(R(believe)(c(pst(iv (g(every)(man))

(R(believe)(pst(iv(h(pro)(smile))))))))))
for f, g, h ∈ {d, q}

16. λc, φ.∀(λx. boy(x)→
believe(∀(λy. man(y)→

believe(smile(sel(y :: x :: c)))(y))(x)) ∧ φ(c)

Crucially, in every context, the input to the pronoun resolution algorithm in-
cludes the (bound) variables x and y, the choice of which would result in the
bound reading of the pronoun for every boy and every man respectively.

4.2 The Tensed-Clause Boundedness of QR

Now we present derivations for sentences 4 and 5 (repeated below as 24 and 17).
We begin with 17, which has two surface scope readings which correspond to de
re (19) and de dicto (21) beliefs, and an inverse scope reading (in 23).

17. Some man believed every woman to have smiled.
18. pst(tv(f(some)(man))(believe)(to(iv(d(every)(woman))(smile)))),

where f ∈ {d, q}
19. λc, φ.∃(λx.man ∧ believe(∀(λy.woman(y)→ smile(y)))(x) ∧ φ(x :: c))
20. pst(tv(q(some)(man))(believe)(to(iv(q(every)(woman))(smile))))

13 In response to this problem, [23] abandons the idea of [32] that variables are named
after movement dependencies, and with it the simply typed lambda calculus.

14 It is not in itself an answer to this problem, as it introduces an unanalyzed ‘unknown’
in the form of a pronoun resolution algorithm.

116 G.M. Kobele

21. λc, φ.∃(λx.man ∧ ∀(λy.woman(y)→ believe(smile(y))(x)) ∧ φ(x :: c))
22. pst(tv(d(some)(man))(believe)(to(iv(q(every)(woman))(smile))))
23. λc, φ.∀(λy.woman→ ∃(λx.man(x) ∧ believe(smile(y))(x))) ∧ φ(c)

Now we turn to 24. Here the inverse scope reading is not available for the simple
reason that a tensed clause (one with the lexical item -ed) forces a q feature to be
checked. Thus the embedded DP every woman does not enter into a movement
relationship with anything after the matrix subject is present.

24. Some man believed that every woman smiled.
25. pst(iv(f(some)(man))(R(believe)(c(pst(iv(g(every)(woman))(smile)))))),

for all f, g ∈ {q, d}
26. λc, φ.∃(λx.man ∧ believe(∀(λy.woman(y)→ smile(y)))(x) ∧ φ(x :: c))

The tensed-clause boundedness of quantifier scope is a fragile and analysis de-
pendent property; a simple ‘splitting’ of the -ed lexical item into one of the form
〈−ed, =p +k s〉 and another of the form 〈ε, =s +q s〉 suddenly makes the inverse
scope reading in sentence 24 derivable. There are two things to say at this point.
First, the ‘actual’ generalization about scope taking inherent in (this version of)
the minimalist grammar framework is that an expression may take scope over
only those others dominated by a node in the derivation tree with which it enters
into a feature checking relationship. This happens to coincide in our fragment
with tensed clauses. Second, the intuitive generalizations this fragment is mak-
ing are (1) that scope can be checked at the VP and at the S level, and (2) that
scope must be checked as soon as possible. If this latter condition is formulated
as a transderivational constraint [13], and applied to derivations in the alterna-
tive fragment (in which the -ed lexeme is ‘split’ as per the above remarks), the
present fragment can be viewed as the result of ‘compiling out’ the effect of the
constraint on the alternative fragment.

5 Conclusion

We have shown how De Groote’s simply typed account of dynamic phenomena
can be used in a minimalist grammar. This allows us to maintain Stabler’s
ideas about variables in movement dependencies, as well as to use nothing but
the simply typed lambda calculus to deliver the same meanings as the more
standard ‘LF’ interpretative accounts of semantics in the chomskyian tradition
(modulo pronouns). What is doing the work here is the rejection of the pronouns-
as-variables view, in favor of a pronouns-as-functions-from-contexts view. This
latter seems to be a novel perspective on the the pronouns-as-definite-description
view [11] (especially in the light of [9]).

In order to preserve the functional relation between derivations and meanings,
we have incorporated information into the feature system (whether or not a
licensee feature has a hat diacritic). However, this strategy seems non-ideal, as
it results in cases of spurious ambiguity (the worst offender in this paper was
example 1, with six equivalent derivations).

Importing Montagovian Dynamics into Minimalism 117

Finally, we have noted that there are open questions regarding the best way of
incorporating sentential complement embedding verbs and type 〈1, 1〉 quantifiers
into the dynamism-via-continuation framework used here [8].

References

1. Abney, S.P.: The English Noun Phrase in its Sentential Aspect. Ph.D. thesis, Mas-
sachusetts Institute of Technology (1987)

2. Amblard, M.: Calculs de représentations sémantiques et syntaxe générative: les
grammaires minimalistes catégorielles. Ph.D. thesis, Université Bordeaux I (2007)

3. Asher, N., Pogodalla, S.: A montagovian treatment of modal subordination. In: Li,
N., Lutz, D. (eds.) Semantics and Linguistic Theory (SALT), vol. 20, pp. 387–405.
eLanguage (2011)

4. Barss, A.: Chains and Anaphoric Dependence: On Reconstruction and its Implica-
tions. Ph.D. thesis, Massachusetts Institute of Technology (1986)

5. Chomsky, N.: The Minimalist Program. MIT Press, Cambridge (1995)
6. Cooper, R.: Quantification and Syntactic Theory. D. Reidel, Dordrecht (1983)
7. Cresti, D.: Extraction and reconstruction. Natural Language Semantics 3, 79–122

(1995)
8. de Groote, P.: Towards a montagovian account of dynamics. In: Gibson, M., Howell,

J. (eds.) Proceedings of SALT 16, pp. 1–16 (2006)
9. De Groote, P., Lebedeva, E.: Presupposition accommodation as exception handling.

In: Fernandez, R., Katagiri, Y., Komatani, K., Lemon, O., Nakano, M. (eds.) The
11th Annual Meeting of the Special Interest Group on Discourse and Dialogue
- SIGDIAL 2010, pp. 71–74. Association for Computational Linguistics, Tokyo
(2010)

10. Engelfriet, J.: Context-free graph grammars. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages. Beyond Words, vol. 3, ch.3, pp. 125–213. Springer
(1997)

11. Evans, G.: Pronouns. Linguistic Inquiry 11(2), 337–362 (1980)
12. Gärtner, H.M., Michaelis, J.: Some remarks on locality conditions and minimalist

grammars. In: Sauerland, U., Gärtner, H.M. (eds.) Interfaces + Recursion = Lan-
guage?, Studies in Generative Grammar, vol. 89, pp. 161–195. Mouton de Gruyter,
Berlin (2007)

13. Graf, T.: A tree transducer model of reference-set computation. UCLA Working
Papers in Linguistics 15, Article 4 (2010)

14. Graf, T.: Closure Properties of Minimalist Derivation Tree Languages. In: Pogo-
dalla, S., Prost, J.-P. (eds.) LACL 2011. LNCS (LNAI), vol. 6736, pp. 96–111.
Springer, Heidelberg (2011)

15. Hale, J.T., Stabler, E.P.: Strict Deterministic Aspects of Minimalist Grammars. In:
Blache, P., Stabler, E.P., Busquets, J., Moot, R. (eds.) LACL 2005. LNCS (LNAI),
vol. 3492, pp. 162–176. Springer, Heidelberg (2005)

16. Harkema, H.: Parsing Minimalist Languages. Ph.D. thesis, University of California,
Los Angeles (2001)

17. Heim, I., Kratzer, A.: Semantics in Generative Grammar. Blackwell Publishers
(1998)

18. Hendriks, H.: Studied Flexibility: Categories and types in syntax and semantics.
Ph.D. thesis, Universitaet van Amsterdam (1993)

19. Hornstein, N.: Movement and chains. Syntax 1(2), 99–127 (1998)

118 G.M. Kobele

20. Jacobson, P.: Towards a variable-free semantics. Linguistics and Philosophy 22(2),
117–184 (1999)

21. Johnson, K.: How far will quantifiers go? In: Martin, R., Michaels, D., Uriagereka,
J. (eds.) Step by Step: Essays on Minimalist Syntax in Honor of Howard Lasnik,
ch.5, pp. 187–210. MIT Press, Cambridge (2000)

22. Kanazawa, M., Michaelis, J., Salvati, S., Yoshinaka, R.: Well-Nestedness Properly
Subsumes Strict Derivational Minimalism. In: Pogodalla, S., Prost, J.-P. (eds.)
LACL 2011. LNCS (LNAI), vol. 6736, pp. 112–128. Springer, Heidelberg (2011)

23. Kobele, G.M.: Generating Copies: An investigation into structural identity in lan-
guage and grammar. Ph.D. thesis, University of California, Los Angeles (2006)

24. Kobele, G.M.: Inverse linking via function composition. Natural Language Seman-
tics 18(2), 183–196 (2010)

25. Kobele, G.M.: Minimalist Tree Languages Are Closed Under Intersection with
Recognizable Tree Languages. In: Pogodalla, S., Prost, J.-P. (eds.) LACL 2011.
LNCS (LNAI), vol. 6736, pp. 129–144. Springer, Heidelberg (2011)

26. Kobele, G.M., Retoré, C., Salvati, S.: An automata theoretic approach to minimal-
ism. In: Rogers, J., Kepser, S. (eds.) Proceedings of the Workshop Model-Theoretic
Syntax at 10; ESSLLI 2007, Dublin (2007)

27. LeComte, A.: Semantics in minimalist-categorial grammars. In: de Groote, P. (ed.)
FG 2008, pp. 41–59. CSLI Press (2008)

28. Michaelis, J.: On Formal Properties of Minimalist Grammars. Ph.D. thesis, Uni-
versität Potsdam (2001)

29. Parigot, M.: λμ-Calculus: An Algorithmic Interpretation of Classical Natural De-
duction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer,
Heidelberg (1992)

30. Pietrowski, P.M.: Events and Semantic Architecture. Oxford University Press
(2005)

31. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoretical Computer Science 88, 191–229 (1991)

32. Stabler, E.P.: Computing quantifier scope. In: Szabolcsi, A. (ed.) Ways of Scope
Taking, ch. 5, pp. 155–182. Kluwer, Boston (1997)

33. Stabler, E.P.: Derivational Minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS
(LNAI), vol. 1328, pp. 68–95. Springer, Heidelberg (1997)

CoTAGs and ACGs

Gregory M. Kobele1 and Jens Michaelis2

1 University of Chicago, Chicago, Illinois, USA
2 Bielefeld University, Bielefeld, Germany

Abstract. Our main concern is to provide a complete picture of how
coTAGs, as a particular variant within the general framework of tree ad-
joining grammars (TAGs), can be captured under the notion of abstract
categorial grammars (ACGs). coTAGs have been introduced by Barker
[1] as an “alternative conceptualization” in order to cope with the ten-
sion between the TAG-mantra of the “locality of syntactic dependencies”
and the seeming non-locality of quantifier scope. We show how our for-
malization of Barker’s proposal leads to a class of higher order ACGs.
By taking this particular perspective, Barker’s proposal turns out as a
straightforward extension of the proposal of Pogodalla [11], where the
former in addition to “simple” inverse scope phenomena also captures
inverse linking and non-inverse linking phenomena.

1 Introduction

In [1], Barker sketches an alternative approach to semantics in the tree adjoin-
ing grammar (TAG)-framework,1 which he refers to as coTAG-approach, after
the extension of the modified substitution operation, cosubstitution. The presen-
tation in [1] is simple and intuitive, tying the scope of a quantificational noun
phrase together with its position in the derivation. The approach is presented
via examples, however, and is not formalized. As far as the syntactic component
is concerned, it does, interestingly, preserve the weak and strong generative ca-
pacity of “classical” TAGs, though, clearly, not the derivation sets, as we will
make precise here.

Our contribution in this paper is to formalize coTAGs. We use the formalism
of abstract categorial grammars (ACGs) [3], which has already been used to
formalize TAGs in, e.g., [4,10,11]. We present a mapping from coTAG-lexica
to ACGs, and demonstrate that it coincides with the informal examples from
Barker’s paper. The mapping has as a special case the one of de Groote and
Pogodalla for TAGs. Of particular interest is the fact that our mapping reveals
Barker’s treatment of scope taking in coTAGs to be largely identical to the
TAG-inspired ACG-analysis of Pogodalla [11].

The paper is structured as follows. We begin with an (informal) introduction
to coTAGs in Sec. 2. Then, in Sec. 3, we present abstract categorial grammars,
which we use to formalize coTAGs in Sec. 4. Section 5 is the conclusion.

1 We assume the reader to be familiar with the basics of the TAG-framework. See e.g.
[6] or [7] for an introduction to TAGs.

D. Béchet and A. Dikovsky (Eds.): LACL 2012, LNCS 7351, pp. 119–134, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

120 G.M. Kobele and J. Michaelis

2 CoTAGs

For A a set of atomic types, T (A) is the set of types over A, the smallest superset
of A closed under pair formation, i.e., A ⊆ T (A), and if α, β ∈ T (A) then (αβ) ∈
T (A). We sometimes omit outer parentheses when writing types. We sometimes
write α1 α2 α3 instead of α1(α2 α3), and α1 · · ·αk+1 instead of α1(α2 · · ·αk+1)
for k ≥ 2 and types α1, . . . , αk+1 ∈ T (A), where α1(α2 · · ·α3) = α1(α2 α3). We
write αk+1 β instead of ααkβ for k ≥ 1 and types α, β ∈ T (A), where α1 = α.

For Cat a set of categories, i.e., a set of non-terminals in the sense of a classical
TAG, let τCat : Cat → T (ACat) be a type assigning function with ACat a set
of atomic types. τCat uniquely determines the function τ̂Cat given next, which
assigns a type from T (ACat) to each δ ∈ Cat ({↑}Cat)∗{↓}?, where ↑ and ↓ are
two distinct new symbols not appearing in Cat .2 For each δ ∈ Cat ({↑}Cat)∗{↓}?,
we use its boldface variant, δ, to denote τ̂Cat (δ): if δ ∈ Cat , we have δ = τCat (δ).
If δ = ζ↓ for some ζ ∈ Cat ({↑}Cat)∗, we have δ = ζ. If δ = ζ↑γ for some
ζ ∈ Cat ({↑}Cat)∗ and γ ∈ Cat , we have δ = ((ζ γ)γ), and we often write ζ↑γ
instead of ((ζ γ)γ) in this case.

A coTAG can be defined as an octuple 〈VT , Cat , ACat , τ̂Cat , I×I ′,A×A′,� , S〉,
where VT , Cat and ACat are a set of terminals, a set of categories and a set of
atomic types, respectively. τ̂Cat is the extension to the domain Cat ({↑}Cat)∗{↓}?
of a type assigning function τCat : Cat → T (ACat) in the above sense. S is a
distinguished category from Cat , the start symbol. The set (I × I ′)∪ (A×A′) is
a finite set of pairs of finite labeled trees which supplies the lexical entries of G.

The first component of a pair 〈αsyn, αsem〉 ∈ (I × I ′) ∪ (A × A′) provides
the syntactic, the second component the semantic representation of the corre-
sponding lexical entry. Nodes in αsyn are linked to nodes in αsem by the relation
�. An operation applying to some node in αsyn must be accompanied by a
parallel operation applying to the linked node(s) in αsem. Regarding the pro-
jection to the first component of this general connection between syntactic and
semantic representations, coTAGs are nearly identical to classical TAGs: labels
of inner nodes are always from Cat . The labels of the root and the foot node
of a syntactic coTAG-auxiliary tree are, as in the regular TAG-case, from Cat

and Cat {�}, respectively, and up to the foot node indicating �-suffix both labels
coincide. But whereas the root nodes of TAG-initial trees and the substitution
nodes of arbitrary TAG-trees are labeled with elements from Cat and Cat {↓},
respectively, the root nodes of syntactic coTAG-initial trees and the substitution
nodes of arbitrary syntactic coTAG-trees have labels from the sets Cat ({↑}Cat)∗
and Cat ({↑}Cat)∗{↓}, respectively.3 That is to say, except for the differences
with respect to the possible labeling of roots and substitution nodes, the 5-tuple
〈VT , Cat , I,A, S〉 constitutes a classical TAG, in particular providing a set of
initial elementary trees, I, and a set of auxiliary elementary trees, A.
2 For any set A, A∗ is the set of all finite strings over A, including ε, the empty string.
We identify A with the set of strings of length 1 over A, and take A? to denote an
optional occurrence of an element from A (in a string), i.e., the set of strings A∪{ε}.

3 For δ ∈ Cat ({↑}Cat)∗ and γ ∈ Cat , we write δ↑ instead of δ↑γ, and δ↑ instead of
δ↑γ in case γ = S.

CoTAGs and ACGs 121

In a somewhat relaxed sense, the projection to the second component provides
a TAG as well. Given a lexical entry 〈αsyn, αsem〉 ∈ (I × I ′) ∪ (A × A′) , the
relation � links the root node of αsyn to the root node of αsem, terminal nodes
to terminal nodes, substitution nodes to substitution nodes and, in case αsyn is
an auxiliary tree, the foot node to the foot node. For these nodes it holds that,
if δ ∈ Cat ({↓}Cat)∗{↑}? is the syntactic label then δ = τ̂Cat (δ) is the semantic
label of the linked node, if w ∈ VT is the syntactic label then w ∈ VT is the
semantic label too. More concretely, up to a certain extent, we may think of the
5-tuple 〈V ′

T , T (ACat), I ′,A′,S〉 as a TAG, where V ′
T = VT ∪X ∪Con∪ {λ} with

X being a denumerable set of variables, and Con being a set which consists at
least of the “usual” logical connectives and quantifiers of FOL.

For each αsem ∈ I ′∪A′ the node-labeling is constrained via τ̂Cat by the relation
linking nodes of αsem to those of the syntactic tree paired to αsem in the lexicon.
The “plain” yield of a αsem is a string over V ′

T ∪ T (ACat). By definition we ad-
ditionally demand the hierarchical tree structure to uniquely determine a closed
well-typed lambda-term associated with the yield: if ν is an interior node in αsem

then the label of ν, label(ν) is a type from T (ACat), and ν has either one, two or
three children. We distinguish these cases as i.1), i.2) and i.3), respectively.

i.1) Let μ be the single child of ν. μ’s label, label(μ), is always in V ′
T . label(ν)

is virtually determining the type of label(μ), and for each node ν′ of some
α′ ∈ I ′ ∪A′ with a child of ν′ labeled label(μ), label(ν) = label(ν′) holds.

i.2) Both children have a label from T (ACat). Say, the first child, μ1, has label
label(μ1), and the second, μ2, label label(μ2). The labels are compatible
with functional application in the sense that label(μ1) = label(μ2)label(ν)
holds.

i.3) The first child, μ0, is labeled λ. The second child, μ1, and the third child,
μ2, are labeled by label(μ1) and label(μ2), respectively. As in i.2), label(μ1)
and label(μ2) are from T (ACat), but now they virtually cope for lambda
abstraction, i.e., label(ν) = (label(μ1)label(μ2)) holds. In addition, μ1, is
necessarily dominating a single node labeled by a variable x ∈ X . The
logical scope of the thus virtually instantiated lambda abstraction over x
is given by the subtree of ν.

If ν is a terminal node in αsem ∈ I ′ ∪ A′ and ν’s label, label(ν), is from V ′
T , ν is

always the leftmost child of its parent node. In case label(ν) = λ, ν has exactly two
sister nodes. In case label(ν) ∈ V ′

T −{λ}, ν is the unique child of its parent. If ν is a
terminal node in αsem and its label is not from V ′

T , then its label is from T (ACat).
In order to arrive at a closed well-typed lambda-term associated with the yield

of some αsem ∈ I ′ ∪A′, we have to replace each leaf-label from T (ACat) (i.e., each
label of some substitution node and, if existing, the foot node) by a fresh variable
of the corresponding type, and to lambda-abstract over this variable again.

As a “consequence” of the parallels between a TAG- and a coTAG-lexicon,
the metaphor of constructing expressions in a coTAG is very similar to how it
is in regular TAGs with one important difference. More concretely, we have the
operations of substitution and adjunction in the “classical” sense, cf. Fig. 1 and

122 G.M. Kobele and J. Michaelis

〈 γ

δ↓
,

γ

δ
〉

+ �
〈 δ

,
δ 〉

〈
γ

δ ,

γ

δ 〉

Fig. 1. Substitution schematically: syntactically, tree with root-label δ is substituted at
leaf labeled δ↓ in tree with root-label γ; while semantically, the corresponding tree with
root-label δ is substituted at leaf labeled δ in the corresponding tree with root-label γ.

〈
γ

δ ,

γ

δ 〉
+ �

〈 δ

δ�
,

δ

δ
〉

〈
γ

δ

δ
,

γ

δ

δ
〉

Fig. 2. Adjoining schematically: syntactically, tree with root-label δ and foot node-label
δ� is adjoined at interior node labeled δ in tree with root-label γ; while semantically,
the corresponding tree with root-label δ and foot node-label δ is adjoined at interior
node labeled δ in the corresponding tree with root-label γ.

2. But in addition a derived structure with syntactic root-label δ↑γ for some
δ ∈ Cat ({↑}Cat)∗ and γ ∈ Cat , can be cosubstituted into a derived structure
with syntactic root-label γ at a leaf labeled δ↓ at any point in the derivation.
Within the resulting semantic representation, new terminal leaves are introduced
labeled by λ and a variable x. The operation is set up such that x is chosen to
be “fresh,” cf. Fig. 3.

The semantic result of applying two cosubstitution steps depends on the or-
der in which those steps are applied, no matter whether the two steps do not
derivationally depend on each other. Accordingly, we require a novel notion of
derivation to represent this “timing” information. An ACG-based representation

〈 γ

δ↓
,

γ

δ
〉

+ �
〈 δ↑γ

,
δ↑γ 〉

〈
γ

δ ,

γ

δ↑γ (δ γ)

λ δ

x

γ

δ

x

〉

Fig. 3. Cosubstitution schematically: syntactically, tree with root-label δ↑γ is cosub-
stituted at leaf labeled δ↓ in tree with root-label γ ∈ Cat ; while semantically, the
corresponding tree with root-label δ↑γ is “quantified in” at the root of the correspond-
ing tree with root-label γ.

CoTAGs and ACGs 123

(αevery)

〈
1 ↑DP↑ 1

3 ↓NP↓ 32D 2

every

,

1 ((e t) t) 1

3 (e t) 32 ((e t)((e t) t)) 2

every

〉
(αsome)

〈
1 ↑DP↑ 1

3 ↓NP↓ 32D 2

ysome

,

1 ((e t) t) 1

3 (e t) 32 ((e t)((e t) t)) 2

ysome

〉
(αboy) (αgirl)〈 1NP 1

boy

,
1 (e t) 1

boy
〉 〈 1NP 1

girl

,
1 (e t) 1

girl
〉

(αloves)

〈
1S 1

3VP 3

5 ↓DP↓ 54V 4

lovesy

2 ↓DP↓ 2

,

1 t 1

2(e 23 (e t) 3

5(e 54 (e (e t)) 4

lovesy

〉

Fig. 4. The example coTAG Gscope (part 1)

of this notion we will be concerned with in Sec. 4. We defer a somewhat more
detailed semantic analysis to that section, but emphasize that—in the same way
as outlined above for elementary semantic trees—for any given derived semantic
tree, closed well-typed lambda-terms may be read off “left to right” from the
yield taking into account the hierarchical tree structure.

As a concrete example, consider the grammar Gscope presented in Fig. 4 and
5, where S is supposed to be the start symbol, and e and t the atomic types.4

Part 1 of Gscope, as given in Fig. 4, allows deriving the sentence every boy loves
some girl. One can start deriving this sentence either by substituting boy into
every, and then cosubstituting every boy into the subject position of loves as
shown in Fig. 6, or by substituting girl into some, and then cosubstituting some
girl into the object position of loves as shown in Fig. 7. Both complete derived
pairs of structures for the sentence are given in Fig. 8. As desired, the derived
syntactic surface trees are identical.

Part 2 of Gscope, as given in Fig. 5, would in principle allow us to derive an NP
with an embedded PP like, e.g., senator from every city in two different ways
providing us with the two different scope readings in a sentence like a senator
from every city sleeps : the inverse linking-reading and the linear scope-reading.
Note that, though not strictly linear, the lambda-terms (implicitly) associated

4 Links will usually be marked with diacritics of the form n for some n ≥ 1. We may
occasionally avoid explicitly mentioning the links between nodes of the syntactic
and the semantic representation, when we think the canonical linking is obvious.
Also recall our convention to write δ↑ instead of δ↑S, and δ↑ instead of δ↑S for
δ ∈ Cat ({↑}Cat)∗ and the start symbol S.

124 G.M. Kobele and J. Michaelis

(αfrom-inverse linking)

〈
1NP 1

3PP 3

5 ↓DP↓ 54P 4

fromy

2
�NP�

2

,

1 (e t) 1

t

t

e

x

(e t) 2

(t t)

3 t 3

e

x

(e t)

5(e 5(e (e t)) 4

fromy

(t(t t))

∧

e

x

λ

〉

(αfrom-linear scope)

〈
1NP 1

3PP 3

5 ↓↑DP↑↓ 54P 4

fromy

2
�NP�

2

,

1 (e t) 1

t

t

e

x

(e t) 2

(t t)

3 t 3

(e t)

t

e

x

(e t)

5(e 5

y

(e (e t)) 4

fromy

e

y

λ

5 ((e t) t) 5

(t(t t))

∧

e

x

λ

〉

Fig. 5. The example coTAG Gscope (part 2)

with the semantic component are still almost linear, since the variables appearing
more than once are dominated by an atomic type.5

3 Abstract Categorial Grammars

An abstract categorial grammar (ACG) [3] is a quadruple 〈Σ1, Σ2,L, s〉 consist-
ing of an “alphabet” Σ1 from which underlying structures are determined, an
“alphabet” Σ2 from which possible surface structures are determined, a pair of
mappings L realizing underlying structures as surface structures, and a distin-
guished “start” symbol s provided by Σ1. Particular to ACGs is that underlying
and surface structures are given as (almost) linear terms of the simply typed
lambda calculus.6 Accordingly, the “alphabets” are higher-order signatures of
the form Σ = 〈A,C, τ〉, where A is a finite set of atomic types, C is a finite

5 More concretely, the notion of almost linear employed here is the same as used by
Kanazawa [8]: a lambda-term is almost linear if it is a lambda I -term such that any
variable occurring free more than once in any subterm has an atomic type.

6 As to the notion of an almost linear lambda-term cf. fn. 5.

CoTAGs and ACGs 125

〈
1S 1

3VP 3

5 ↓DP↓ 54V 4

loves

2DP 2

7NP 7

boy

6D 6

every

,

1S 1

(DP S)

S

()DP

x

3VP 3

5()DP 54V 4

lovesy

DP

x

λ

2↑DP↑ 2

7NP 7

boy

6D 6

5 every 5
〉

Fig. 6. Cosubstituting every boy into the subject position before filling the object
position of loves: derived syntactic and semantic tree

〈

1S 1

3VP 3

5DP 5

7NP 7

girl

6D 6

some

4V 4

loves

2 ↓DP↓ 2

,

1S 1

(DP S)

S

2()DP 23VP 3

()DP

y

4V 4

lovesy

DP

y

λ

5↑DP↑ 5

7NP 7

girl

6D 6

7 some 7
〉

Fig. 7. Cosubstituting some girl into the object position before filling the subject
position of loves: derived syntactic and semantic tree

〈

1S 1

3VP 3

5DP 5

9NP 9

girl

8D 8

some

4V 4

loves

2DP 2

7NP 7

boy

6D 6

every

,

1S 1

(DP S)

S

(DP S)

S

()DP

x

3VP 3

()DP

y

4V 4

lovesy

DP

x

λ

2↑DP↑ 2

7NP 7

boy

6D 6

every

DP

y

λ

5↑DP↑ 5

9NP 9

girl

8D 8

some 〉

〈

1S 1

3VP 3

5DP 5

7NP 7

girl

6D 6

some

4V 4

loves

2DP 2

9NP 9

boy

8D 8

every

,

1S 1

(DP S)

S

(DP S)

S

()DP

x

3VP 3

()DP

y

4V 4

lovesy

DP

y

λ

5↑DP↑ 5

7NP 7

girl

6D 6

some

DP

x

λ

2↑DP↑ 2

9NP 9

boy

8D 8

every 〉

Fig. 8. The two complete derived pairs of structures of every boy loves some girl

126 G.M. Kobele and J. Michaelis

set of constants, and τ : C → T (A) assigns a type to each constant.7 Given
a denumerably infinite set X of variables, we define a (type) environment to
be a partial, finite mapping Γ : X → T (A), which we typically write as a
list x1 : α1, . . . , xn : αn. Given environments Γ and Δ, the composite type
environment Γ,Δ is defined iff their domains are (almost) disjoint, in which case
Γ,Δ is the union of Γ and Δ.8 For Λ(Σ), the set of (untyped) lambda-terms
build on Σ,9 we say that a term M ∈ Λ(Σ) has type α ∈ T (A) in environment
Γ (written Γ �Σ M : α) just in case it is derivable using the inference rules in
Figure 9.

�Σ c : τ (c) for c ∈ C x : α �Σ x : α for x ∈ X and α ∈ T (A)

Γ, x : α �Σ M : β

Γ �Σ (λx.M) : (αβ)

Γ �Σ M : (αβ) Δ �Σ N : α

Γ,Δ �Σ (MN) : β

Fig. 9. ACG-inference rules

Given an ACG G = 〈Σ1, Σ2,L, s〉 with Σi = 〈Ai, Ci, τi〉 and s ∈ A1, the
abstract language of G, A(G), is the set {M | �Σ1 M : s}. The object language

of G, O(G), is the set {θ̂(M) |M ∈ A(G)}. More concretely, O(G) is the image
of A(G) under the pair of mappings L = 〈σ, θ〉, referred to as the lexicon from
Σ1 to Σ2, which meets the conditions:

1. σ : A1 → T (A2) is the kernel of the type substitution σ̂ : T (A1) → T (A2)
obeying σ̂ � A1 = σ, and σ̂((αβ)) = (σ̂(α)σ̂(β))

2. θ : C1 → Λ(Σ2) specifies θ̂ : Λ(Σ1)→ Λ(Σ2) by setting θ̂(c) = θ(c), θ̂(x) = x,

θ̂(MN) = θ̂(M)θ̂(N), and θ̂(λx.M) = λx.θ̂(M)
3. �Σ2 θ(c) : σ̂(τ1(c)) for all c ∈ C1

By abuse of notation, L will usually be used to denote both σ and θ, and also
their respective extensions σ̂ and θ̂.

An ACG G belongs to the class ACG(m,n) iff the maximal order of the types
of any of its abstract constants is less than or equal to m, and the maximal
order of the type assigned to any constant by the lexicon is less than or equal
to n. The order of a type α, ord(α), is given recursively: For each atomic type a,
ord(a) = 1. For each two types α and β, ord((αβ)) is the greater of ord(β) and

7 Recall that T (A) is the smallest superset of A closed under pair formation, i.e.,
A ⊆ T (A), and if α, β ∈ T (A) then (αβ) ∈ T (A).

8 Almost disjoint is meant to denote the restriction that, if x : α belongs to the Γ ∩Δ
then the type assigned to x is atomic, i.e., α ∈ A.

9 That is, Λ(Σ) is the smallest set such that C ∪ X ⊆ Λ(Σ), and such that (MN) ∈
Λ(Σ), and (λx.M) ∈ Λ(Σ) for M,N ∈ Λ(Σ) and x ∈ X . We omit outer paren-
theses when writing lambda-terms, and we write M1 M2 M3 instead of (M1 M2)M3,
and M1 · · ·Mn+1 instead of (M1 · · ·Mn)Mn+1 for n ≥ 2 and M1, . . . ,Mn+1 ∈ Λ(Σ),
where (M1 · · ·M2) = M1M2. We write λx.M N instead of λx.(M N), λx1x2.M in-
stead of λx1.λx2.M , and λx1 . . . xn+1.M instead of λx1.λx2 . . . λxn.M for n ≥ 2,
x, x1, . . . , xn ∈ X and M,N ∈ Λ(Σ), where λx2 . . . λx2.M = λx2.M .

CoTAGs and ACGs 127

ord(α) + 1. For each m, ACG(m) denotes the class of all mth-order ACGs, i.e.,
ACG(m) =

⋃
n≥1ACG(m,n).

As shown by Salvati [12], if only ACGs of the form 〈Σ1, Σ2,L, s〉 are consid-
ered whereΣ2 is a string signature,

10 ACG(2) derives exactly the string languages
generated by set-local multicomponent TAGs, or likewise, a series of other weakly
equivalent grammar formalisms. Kanazawa [9] proves that, similarly, ifΣ2 is a tree
signature,11 ACG(2) derives exactly the tree languages generated by, e.g., context-
free graph grammars [2], or likewise, hyperedge replacement grammars [5].

One of the advantages of ACGs is that they provide a logical setting in which
the abstract language can be used as a specification of the derivation set of a
grammar instantiation of some grammar formalism, and that by applying two
different lexicons to the abstract language, we can “simultaneously” obtain a
syntactic object language and a semantic object language.

4 CoTAGs as ACGs

In order to translate a coTAG into an ACG, we build on the methods previously
developed by de Groote and Pogodalla. De Groote [4] has shown how a regular
TAG can be translated into a second-order ACG on trees. Pogodalla [10,11] has
shown how those techniques can be extended in order to define a third-order
ACG which, “in parallel” to the syntactic derivation, by means of a different
semantic object language provides the two different scope readings in a sentence
like every boy likes some girl.

Let GcoTAG = 〈VT , Cat , ACat , τ̂Cat , I × I ′,A×A′,� , S〉 be a coTAG.
For expository reasons we assume that no node-label of any tree from I ∪A is

of the form S↑γ or S↑γ↓ for some γ ∈ Cat ({↑}Cat)∗. In other words, the simple
category S “is never lifted.”

First let Σabs = 〈Aabs, Cabs, τabs〉 be the higher-order signature, where

Aabs = {δ•, δ•A | δ ∈ Cat }

∪
{
ζ↑δ•, ζ•, δ•

∣∣∣ ζ ∈ Cat ({↑}Cat)∗ and δ ∈ Cat with
ζ↑δ or ζ↑δ↓ labeling a node of some α ∈ I ∪ A

}
,12

Cabs = {idX |X ∈ Cat } ∪ {α |α ∈ I ∪ A}
∪ {α |α ∈ I and α’s root-label belongs to Cat {↑}Cat ({↑}Cat)∗}

In order to make the typing function τabs more precise, consider α ∈ I ∪A with
root-label γ ∈ Cat ({↑}Cat)∗. Let ν1, . . . , νm be the interior nodes of α except for
the root, and let νm+1, . . . , νm+n be the substitution sites of α.13 Furthermore,

10 That is, Σ2 consists of the single atomic type o and assigns to each alphabet constant
a the type (o o).

11 That is,Σ2 consists of the single atomic type o and assigns to each constant a of “rank”
n the type on+1, where o1 = o and on+1 = (o on).

12 Following the notational convention introduced above, we write δ↑• instead of δ↑S•

for δ ∈ Cat ({↑}Cat)∗ and the start symbol S.
13 Regarding the tree structure, we assume the interior nodes ν1, . . . , νm to be ordered
“top-down, left-to-right,” and the substitution nodes νm+1, . . . , νm+n “left-to-right.”.

128 G.M. Kobele and J. Michaelis

let γi ∈ Cat be the label of νi for 1 ≤ i ≤ m, and let δi↓ be the label of
νm+i for 1 ≤ i ≤ n, where δi ∈ Cat ({↑}Cat)∗. The type of the constant α is
defined as follows: for α ∈ I, let τabs(α) = γ•

Aγ
•
1A · · ·γ•

mAδ
•
1 · · ·δ•nγ•. For α ∈ A,

let τabs(α) = γ•
Aγ

•
1A · · ·γ•

mAδ
•
1 · · · δ•nγ•

Aγ
•
A. If α ∈ I, and if γ = ζ↑δ for some

ζ ∈ Cat ({↑}Cat)∗ and δ ∈ Cat , the type of the additionally existing constant α
is defined in the following way:14 τabs(α) = γ•

1A · · ·γ•
mAδ

•
1 · · · δ•nγ◦.15 For each

X ∈ Cat , the type of the constant idX is defined by τabs(idX) = X•
A.

In the way the abstract constants resulting from elementary trees are typed,
adjunction at the adjunction sites of an elementary tree becomes obligatory.
The abstract constants idX for X ∈ Cat have been introduced to provide the
possibility of “vacuous” adjunction.

As to our example coTAG Gscope, the abstract typing function τabs assigns
the following types to the abstract constants resulting from the lexical entries:16

τabs(αevery) = D•
A NP• (DP• S•) S• τabs(αevery) = D•

A NP• DP↑•

τabs(αsome) = D•
A NP• (DP• S•) S• τabs(αsome) = D•

A NP• DP↑•

τabs(αboy) = NP•
A NP•

τabs(αgirl) = NP•
A NP•

τabs(αloves) = S•
A VP•

A V•
A DP• DP• S•

τabs(αfrom inverse linking) = NP•
A PP•

A P•
A DP• NP•

A NP•
A

τabs(αfrom linear scope) = NP•
A PP•

A P•
A DP↑• NP•

A NP•
A

RepresentingDerivations. Wenextgive theACGGder = 〈Σabs, Σder,Lder,S
•〉.

The higher-order signature Σabs provides us with an abstract language represent-
ing the coTAG-derivations including information on the derivational order. This is
achieved qua lambda-terms whose order are greater than 2. The higher-order sig-
natureΣder provides us, via the lexicon Lder, with the object language. In case we
stick to coTAGs in a normalized form (see below), the object language represents
the “plain” TAG-derivation trees of the coTAG, i.e., the object language provides
representations of the derivations which (without distinguishing between the oper-
ations of substitution and cosubstitution) keep track only of which operation was
applied at which node by using which trees, and which do not keep track of the
relative order in which the operations took place.

More concretely, we have Σder = 〈Aabs, {β′ |β ∈ Cabs}, τder〉, and the lexicon
Lder of the ACG Gder and the typing function τder of the higher-order signature

14 For each γ ∈ Cat ({↑}Cat)∗ such that γ = ζ↑δ for some ζ ∈ Cat ({↑}Cat)∗ and
δ ∈ Cat , we take the “circled” boldface version γ◦ to denote the type (ζ•δ•) δ•.

15 That is, we allow adjunction at the root of an initial tree only if the root-label is a
“simple” category.

16 To avoid notational overload, we use the name of a lexical entry of Gscope, when
referring to the abstract constant typed with regard to the first, i.e. the syntactic,
component of the entry.

CoTAGs and ACGs 129

Σder are given in the following way: as a mapping from types to types, Lder

functions as identity mapping. For each X ∈ Cat , the abstract constant idX
is mapped to λx. x under Lder. For α ∈ I ∪ A, we have τder(α

′) = τabs(α) and
Lder(α) = α′. For α ∈ I with root-label γ such that γ = ζ↑δ for some ζ ∈ Cat ({↑
}Cat)∗ and δ ∈ Cat , and with τabs(α) = γ•

1A · · ·γ•
mAδ

•
1 · · · δ•nγ◦, we also have

τder(α
′) = γ•

1A · · ·γ•
mAδ

•
1 · · · δ•nζ• and Lder(α) = λy1 . . . ym+nf. f(α

′y1 · · · ym+n),
where the variable f is of type (ζ• δ•). That is, in case the root-label of an
elementary tree consists of a (possibly multiple) lifted type, we “undo” the (last)
type lifting.

Put differently, the lexicon Lder is quite simple, and is based on viewing higher-
order constants as literally type lifted versions of themselves:17 accordingly, an
abstract constant as, e.g., αeveryone of type ((DP• S•) S•) would be mapped to
λP.P α′

everyone, where the variable P is of type (DP• S•), and where α′
everyone is

the object constant of typeDP• associated with the elementary tree for everyone
in the TAG-grammar obtained from the syntactic component of the corresponding
lexical entry αeveryone of the coTAG-grammar by removing all arrow annotations.
Abstract constants without arrow annotations are simply mapped to “themselves”
as is, e.g., demonstrated by Lder(αloves) = α′

loves and τder(α
′
loves) = τabs(αloves).

Applying this lexicon to a simple example is illustrative:18

Lder(αeveryone(λx. αloves xαmary))

= Lder(αeveryone)Lder(λx. αloves xαmary)

= Lder(αeveryone) (λx.Lder(αloves)Lder(x)Lder(αmary))

= (λP. P α′
everyone)(λx. α

′
loves xα

′
mary)

	β (λx. α′
loves xα

′
mary)α

′
everyone

	β α′
loves α

′
everyone α

′
mary

Semantic Representations. In Sec. 2 we have explained, how the derived
semantic trees of a coTAG determine closed well-typed lambda-terms associated
with the yields of the trees, cf. page 2. The ACG Gsem = 〈Σabs, Σsem,Lsem,S

•〉
will do nothing but making the lambda-terms of the finally derived semantic
trees concrete as its object language. Therefore, the “flat” lambda-term repre-
sentation of intermediately derived semantic trees—which takes into account
only the “open slots” of the yield provided by coTAG-nonterminals—has to
be enriched by information about those interior nodes which allow adjunction.
We have to lambda-abstract about those sites by variables of appropriate type
as well. As far as the general case is concerned, we will skip further technical

17 In the same way as, e.g., the generalized quantifier λP.P (john) with variable P of type
(e t) is the type lifted version of the individual constant john.

18 If we were more precise, we would actually be concerned with a lambda-term like
αeveryone(λx.αloves idS idVP idV xαmary). For better readability we leave out any pos-
sible instantiations of “vacuous” adjunction indicated by a functional application to a
constant idX .

130 G.M. Kobele and J. Michaelis

details how to arrive at those lambda-terms, and look at our coTAG Gscope as
an example case below. Let us assume here, that for each semantic elementary
tree αsem ∈ I ′ ∪ A′, (αsem)λ is the corresponding lambda-term.

We set Σsem = 〈ACat , {a | a ∈ VT ∪ Con}, τsem〉. In order to define τsem we
assume, without loss of generality, that each a ∈ VT ∪ Con appears as the leaf-
label of some elementary semantic tree of our coTAG-lexicon. For a ∈ VT ∪Con,
we choose a node ν of some elementary semantic tree labeled a and let label(μ)
be the label of the parent node of ν, μ. We set τsem(a) = label(μ).19

Defining the lexicon Lsem, for each abstract atomic type δ• arising from some
δ ∈ Cat ({↑}Cat)∗, we let Lsem(δ

•) = τ̂Cat (δ), and if δ ∈ Cat , we also let
Lsem(δ

•
A) = τ̂Cat (δ) τ̂Cat (δ). For each abstract constant αsyn, respectively, αsyn,

arising from some lexical coTAG-entry 〈αsyn, αsem〉 ∈ (I × I ′) ∪ (A ∪ A′) with
αsyn ∈ I ∪ A and αsem ∈ I ′ ∪ A′ , we let Lsem(αsyn) = (αsem)λ, respectively,
Lsem(αsyn) = (αsem)λ.

As an example consider the coTAG Gscope as given in Fig. 4 and 5. The
function τsem assigning types to the (semantic) object constants is given by:

τsem(every) = (e t) (e t) t

τsem(some) = (e t) (e t) t

τsem(boy) = e t

τsem(girl) = e t

τsem(∧) = t t t

τsem(loves) = e e t

τsem(from) = e e t

The lexicon, Lsem, connecting abstract atomic types with (semantic) object types
and abstract constants with (semantic) object lambda-terms is given by

Lsem(D
•) = (e t) (e t) t

Lsem(DP•) = e

Lsem(DP↑•) = (e t) t

Lsem(P
•) = e e t

Lsem(PP•) = e t

Lsem(V
•) = e e t

Lsem(VP•) = e t

Lsem(NP•) = e t

Lsem(S
•) = t

Lsem(D
•
A) = Lsem(D

•) Lsem(D
•)

Lsem(DP•
A) = Lsem(DP•) Lsem(DP•)

Lsem(P
•
A) = Lsem(P

•) Lsem(P
•)

Lsem(PP•
A) = Lsem(PP•) Lsem(PP•)

Lsem(V
•
A) = Lsem(V

•) Lsem(V
•)

Lsem(VP•
A) = Lsem(VP•) Lsem(VP•)

Lsem(NP•
A) = Lsem(NP•) Lsem(NP•)

Lsem(S
•
A) = Lsem(S

•) Lsem(S
•)

and furthermore, for

d := Lsem(D
•)

dp := Lsem(DP•)

dp↑ := Lsem(DP↑•)

p := Lsem(P
•)

pp := Lsem(PP•)

v := Lsem(V
•)

vp := Lsem(VP•)

np := Lsem(NP•)

s := Lsem(S
•)

19 By i.1) on page 2, label(μ) is uniquely determined independently of the choice of ν.

CoTAGs and ACGs 131

by20

Lsem(αevery) = Lsem(αevery) = λF (d d)xnp. (F every)x

Lsem(αsome) = Lsem(αsome) = λF (d d)xnp. (F some)x

Lsem(αboy) = λF (np np). F boy

Lsem(αgirl) = λF (np np). F girl

Lsem(αloves) = λF (s s)G(vp vp)H(v v)ydpxdp. F ((G ((H loves)x)) y)

Lsem(αfrom inverse linking) = λF (np np)G(pp pp)H(p p)P npydpxdp.
F (∧ (G ((H from) y x)) (P x))

Lsem(αfrom linear scope) = λF (np np)G(pp pp)H(p p)Qdp↑P npxdp.
F (∧ (G (Q (λydp. (H from) y x))) (P x))

while, finally, we have

Lsem(idX) = λxLsem(X•). x for X ∈ Cat

On (co)Substitution Nodes. For 〈VT , Cat , ACat , τ̂Cat , I × I ′,A × A′,� , S〉,
the coTAG GcoTAG we started with, the nodes of the derivable syntactic trees are
labeled with strings from Cat ({↑}Cat)∗{↓}?. These labels come with seemingly
implicit compositional structure by means of the occurrences of ↑ (and ↓): given
some set of atomic types ATypes, and assigning a type γ� from T (ATypes) to each
γ ∈ Cat , it is straightforward to interpret ↑ as a type lifting operation (and ↓ as
the identity function on types), thereby recursively assigning the type ζ↓� := ζ�

to ζ↓, and ζ↑δ� := ((ζ� δ�) δ�) to ζ↑δ for ζ ∈ Cat ({↑}Cat)∗ and δ ∈ Cat .21

As far as the operation of substitution is concerned, we are not exploiting this
structural potential in the translation to ACGs. Instead, given a substitution site
with syntactic node label γ↓ we are treating γ as an atomic category (label) with
regard to the coTAG, irrespective of whether γ contains any ↑ characters. We
are doing so in terms of the abstract atomic type γ• belonging to Aabs. Looking
at the example above, instances of such a γ• occur in terms of DP↑• within the
types assigned to αevery, αsome and αfrom linear scope via τabs.

As far as the operation of cosubstitution is concerned, the compositional struc-
ture potential of a syntactic node label is exploited in the translation to ACGs
only in its “simplest” non-recursive form: if there are any, only the last instance
of ↑ within a syntactic root label is interpreted as a type lifting operation. More

20 As usual a superscript connected with a variable denotes the type of that variable.
In the example, the variables F,G,H indicate potential adjunction sites. Again we
use the name of a lexical entry of Gscope, when referring to the abstract constant
typed with regard to the first component of the entry, cf. fn. 16.

21 τ̂Cat as defined on page 120 is a particular instance of such a recursively defined
function · �, assigning the types ζ and (ζ δ) δ from T (ACat) to the same ζ and ζ↑δ,
respectively.

132 G.M. Kobele and J. Michaelis

concretely, for ζ ∈ Cat ({↑}Cat)∗ and δ ∈ Cat such that ζ↑δ labels the root of a
syntactic tree, the abstract type associated with that node is (ζ• δ•) δ•, where
ζ• and δ• are atomic abstract types from Aabs. Looking at the example above,
instances of such a (ζ• δ•) δ• occur in terms of (DP• S•)S• within the types
assigned to αevery and αsome via τabs.

Technically of course, it would be straightforwardly possible to exploit “all the
way down” the compositional structure implicit in the syntactic node labels of
the coTAG in an ACG-translation: starting from our Σabs this would essentially
be achieved by

– assuming for each δ ∈ Cat , δ� and δ•A to be atomic types,

– replacing Aabs by {δ�, δ•A | δ ∈ Cat }, an d

– replacing γ• by γ� for each γ ∈ Cat ({↑}Cat)∗, where γ� ∈ T ({δ� | δ ∈
Cat }) is the type assigned to γ, recursively defined as above.

This potential alternative views a coTAG as an ACG of arbitrarily high, but
lexically fixed, order. Although rather canonical from a formal perspective, this
alternative encoding of coTAGs into ACGs is incorrect—cosubstitution as de-
fined requires exactly third-order terms. The coTAG-grammar fragment above,
e.g., is such that its alternative translation into an ACG does not preserve the
form-meaning relation. This is due to the fact that higher-order types can be
“lowered” by hypothetical reasoning, which cannot be simulated in the original
coTAG. More concretely, in the alternative ACG-encoding, a substitution site
with syntactic label DP↑↓ selects an argument of higher-order abstract type
(DP� S�) S�, and not atomic type DP↑•. Therefore, in ACG-terms, the sub-

stitution site can be given as argument a term λP (DP� S�). P y, where y is an
unbound variable of type DP�. The variable y can be abstracted over at a later
point in time, giving rise to a term of type DP� S�, which can then be the ar-
gument to the cosubstitutor of type (DP� S�) S�. Thus, the substitution for a
cosubstitutor was only “tricked” by the combinator λP. P y into “thinking” that
it had already been given the correct argument.

The lexical entry αfrom linear scope from Gscope provides a case in point. This
entry would be translated into the abstract constant αfrom linear scope of fourth-

order typeNP•
A PP•

A P•
A ((DP� S�)S�)NP•

A NP•
A, and as a consequence, the

following term would be well-typed:22

αevery αcity (λy. αsome (αboy (αfrom linear scope (λP. P y))) (λx. αleft x)) ,

where the variables x and y are of type DP�, and the variable P is of type
DP� S�. This term, however, evaluates semantically to the inverse scope reading
of the noun phrase some boy from every city, despite the fact that the elementary
tree αfrom linear scope was used.

22 We owe this example to the anonymous reviewer mentioned in the acknowledgments.
Again, for better readability we ignore “vacuous” adjunction indicated by a func-
tional application to a constant idX .

CoTAGs and ACGs 133

Thus, the alternative translation into higher-order ACGs is not faithful to
Barker’s original presentation. On the other hand, the higher-order ACG allows
for a single lexical item, αfrom linear scope, to derive both inverse and linear scope
readings, which might be seen as more elegant than the original coTAG-analysis.
This behavior seems to be obtainable in the coTAG-formalism if we alter the
definition of cosubstitution so as to also allow cosubstitution of trees with root-
label ζ↑δ into nodes labeled ζ↑δ↓.

5 Conclusion

We have shown how Barker’s ideas about coTAGs have a natural home in the
ACG-formalism. Our formalization makes explicit the graph structure of coTAG-
derivations, in particular the dependence in cosubstitution on both the substi-
tution node (in a particular elementary tree) and the derivation over which it
takes scope.

The ACG-perspective allows us to better understand the surprising fact that
coTAGs have the same strong generative capacity as regular TAGs: it is due
to the fact that the “lifted” underlying derivation is first lowered back into a
regular TAG-derivation on the syntactic side, and then interpreted to obtain a
derived tree. The crucial piece in this puzzle is our normal form theorem, which
states that every coTAG (qua ACG) has an equivalent third-order variant.

This also highlights the fact that “strong generative capacity” in the TAG-
sense, i.e. the sets of structures derivable, is not the most insightful measure of
the complexity a grammar formalism; rather it is the relation between derived
objects and derivations (which stand proxy for meanings in a compositional
system) which provides the most insight into the grammar formalism. According
to this measure, coTAGs are much more complex than regular TAGs, whose
derivation sets are regular tree languages, and therefore, second-order ACGs.

Acknowledgments. We are grateful to an anonymous reviewer for pushing us
to a much more rigorous presentation of Section 4. Any remaining lack of clarity
and errors are due to us.

References

1. Barker, C.: Cosubstitution, derivational locality, and quantifier scope. In:
Proceedings of the Tenth International Workshop on Tree Adjoining Grammars
and Related Formalisms (TAG+10), New Haven, CT, pp. 135–142 (2010)

2. Bauderon, M., Courcelle, B.: Graph expressions and graph rewriting. Mathematical
Systems Theory 20, 83–127 (1987)

3. de Groote, P.: Towards abstract categorial grammars. In: 39th Annual Meeting of
the Association for Computational Linguistics (ACL 2001), Toulouse, pp. 252–259.
ACL (2001)

4. de Groote, P.: Tree-adjoining grammars as abstract categorial grammars. In:
Proceedings of the Sixth International Workshop on Tree Adjoining Grammars
and Related Formalisms (TAG+6), Venezia, pp. 145–150 (2002)

134 G.M. Kobele and J. Michaelis

5. Habel, A., Kreowski, H.J.: Some Structural Aspects of Hypergraph Languages
Generated by Hyperedge Replacement. In: Brandenburg, F.J., Vidal-Naquet, G.,
Wirsing, M. (eds.) STACS 1987. LNCS, vol. 247, pp. 207–219. Springer, Heidelberg
(1987)

6. Joshi, A.K.: An introduction to tree adjoining grammars. In: Manaster-Ramer, A.
(ed.) Mathematics of Language, pp. 87–114. John Benjamins, Amsterdam (1987)

7. Joshi, A.K., Schabes, Y.: Tree adjoining grammars. In: Rozenberg, G., Salomaa,
A. (eds.) Handbook of Formal Languages, vol. 3, pp. 69–124. Springer, Heidelberg
(1997)

8. Kanazawa, M.: Parsing and generation as datalog queries. In: 45th Annual Meeting
of the Association for Computational Linguistics (ACL 2007), Prague, pp. 176–183.
ACL (2007)

9. Kanazawa, M.: Second-order abstract categorial grammars as hyperedge replace-
ment grammars. Journal of Logic, Language and Information 19, 137–161 (2010)

10. Pogodalla, S.: Computing semantic representation. Towards ACG abstract terms
as derivation trees. In: Proceedings of the Seventh International Workshop on Tree
Adjoining Grammars and Related Formalisms (TAG+7), Vancouver, BC, pp. 64–71
(2004)

11. Pogodalla, S.: Ambigüıté de portée et approche fonctionnelle des grammaires
d’arbres adjoints. In: Traitement Automatique des Langues Naturelles (TALN
2007), Toulouse, 10 pages (2007)

12. Salvati, S.: Encoding second order string ACG with deterministic tree walking
transducers. In: Wintner, S. (ed.) Proceedings of FG 2006: The 11th Conference
on Formal Grammar, pp. 143–156. CSLI Publications, Stanford (2007)

Gapping as Like-Category Coordination

Yusuke Kubota1 and Robert Levine2

1 University of Tokyo
yk@phiz.c.u-tokyo.ac.jp
2 Ohio State University

levine@ling.ohio-state.edu

Abstract. We propose a version of Type-Logical Categorial Grammar
(TLCG) which combines the insights of standard TLCG (Morrill 1994,
Moortgat 1997) in which directionality is handled in terms of forward
and backward slashes, and more recent approaches in the CG literature
which separate directionality-related reasoning from syntactic combina-
torics by means of λ-binding in the phonological component (Oehrle
1994, de Groote 2001, Muskens 2003). The proposed calculus recog-
nizes both the directionality-sensitive modes of implication (/ and \)
of the former and the directionality-insensitive mode of implication tied
to phonological λ-binding in the latter (which we notate here as |).

Empirical support for the proposed system comes from the fact that
it enables a straightforward treatment of Gapping, a phenomenon that
has turned out to be extremely problematic in the syntactic literature
including CG-based approaches.

Keywords: Gapping, coordination, Type-Logical Categorial Grammar,
Lambda Grammar, scope, phenogrammar, tectogrammar.

1 (Apparent) Anomalies of Gapping

The examples in (1) are instances of Gapping :

(1) a. Leslie bought a CD, and Robin, a book.

b. I gave Leslie a book, and she a CD.

c. Terry can go there with me, and Pat with you.

Gapping is a type of non-canonical coordination, but what distinguishes it from
other kinds of non-canonical coordinations is that the strings which appear to
be coordinated do not look very much like each other. For example, in cases of
nonconstituent coordination such as I told the same joke to Robin on Friday and
(to) Leslie on Sunday, or in examples of Right-Node Raising (RNR), it is possible
to identify two coordinated substrings which are parallel up to the point where
they combine with the rest of the sentence in which they appear; the problem is
only that expressions such as to Robin on Friday and (to) Leslie on Sunday are
not phrase structure constituents, nor are the partial clauses in RNR. But in the
case of Gapping, we seem to be coordinating a whole clause with a sequence of

D. Béchet and A. Dikovsky (Eds.): LACL 2012, LNCS 7351, pp. 135–150, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

136 Y. Kubota and R. Levine

words which would be a clause if a copy of the verb in the first conjunct were
introduced into the second conjunct. As they stand, however, Leslie bought a CD
has a completely different status from Robin a book.

For this reason, Gapping has continued to pose a difficult challenge in the
tradition of both phrase structure grammar and categorial grammar. In cate-
gorial grammar (CG), there have been proposals both in the tradition of CCG
(Steedman 1990) and TLCG (Morrill and Solias 1993, Morrill 1994, Hendriks
1995, Morrill and Merenciano 1996, Morrill et al. 2011). These proposals share
an important key analytic intuition (which we take to be basically correct) which
views Gapping as a case of discontinuous constituency: in Gapping, if the shared
verb is stripped off from the left conjunct, then it has the same combinatorial
property and semantic type as the right conjunct, which therefore supports co-
ordination under the law of coordination of likes. The challenge essentially lies in
characterizing precisely the status of the two coordinated conjuncts manifesting
(in this view) discontinuity. The most recent proposal by Morrill et al. (2011)
improves on previous related approaches in this respect, but it still suffers from
empirical shortcomings in not straightforwardly extending to cases in which Gap-
ping interacts with other phenomena which themselves manifest discontinuous
constituency, as we will discuss in section 3.

A further challenge for any analysis ofGapping comes from the scopal properties
of modal and negative auxiliaries, in examples like the following (Oehrle 1987):

(2) a. Kim didn’t play bingo or Sandy sit at home all evening.

b. Mrs. J can’t live in Boston and Mr. J in LA.

The only available interpretation of (2a) is ¬ϕ ∧ ¬ψ (≡ ¬(ϕ ∨ ψ)), where ϕ is
the proposition expressed by Kim played bingo and ψ the proposition expressed
by Sandy sat at home all evening. (2b) is—at least for some speakers including
one of the authors—ambiguous between the reading in which the modal can’t
scopes over the conjunction and one in which it scopes below it; the latter read-
ing can be made prominent by having an intonational break between the first
and second conjuncts. The only explicit analysis of data like (2) in CG to date is
Oehrle (1987). Oehrle’s very insightful analysis, which alone among prior treat-
ments of Gapping provides a starting point for an explanation for the apparent
scope anomaly of such examples, unfortunately falls short of a general treat-
ment of Gapping given the several non-standard assumptions about syntax that
he crucially exploits in formulating his semantic analysis (see section 3).

In short, there is as yet no analysis of Gapping in CG that captures both
the range of syntactic patterns and semantic interpretations associated with
this construction. In the next section, we propose a version of Type-Logical
Categorial Grammar utilizing a typed λ-calculus for notating the phonologies
of linguistic signs. The novelty of the proposed system consists in recognizing
both the directionality-sensitive modes of implication (/ and \) of the standard
TLCG and the directionality-insensitive mode of implication tied to phonological
λ-binding in more recent versions of CG (Oehrle 1994, de Groote 2001, Muskens
2003). In the framework we propose below, λ-binding in phonology provides a

Gapping as Like-Category Coordination 137

simple and explicit mechanism for representing constituents with missing objects
in the medial position. This plays a key role in enabling an analysis of Gapping
that overcomes the inadequacies of the previous approaches. It will be shown that
once a proper analysis of the apparent asymmetry between the two conjuncts is
formulated, the apparent anomalies related to scopal interactions with auxiliaries
in examples like (2) above immediately disappear.

2 λTLCG and Gapping

We assume a version of Type-Logical Categorial Grammar (TLCG) in the la-
belled deduction format utilizing a typed λ-calculus for notating the phonologies
of linguistic expressions, called λTLCG. We write linguistic expressions as tuples
of phonological representation, semantic interpretation and syntactic category
(written in that order). The full set of inference rules are given in (3).

(3) Connective Introduction Elimination

/

...
... [π;x;A]n

...
...

...
...

...
...

...
...

b ◦ π ;ϕ;B
/I
n

b ;λx.ϕ;B/A

a ;ϕ;A/B b ;ψ;B
/E

a ◦ b ;ϕ(ψ);A

\

...
... [π;x;A]n

...
...

...
...

...
...

...
...

π ◦ b ;ϕ;B
\In

b;λx.ϕ;A\B

b ;ψ;B a ;ϕ;B\A
\E

b ◦ a ;ϕ(ψ);A

|

...
... [π;x;A]n

...
...

...
...

...
...

...
...

b; ϕ; B
|In

λπ.b; λx.ϕ; B|A

a ;ψ;A b ;ϕ;B|A
|E

b(a) ;ϕ(ψ);B

The key difference between /,\ and | is that while the Introduction and Elimina-
tion rules for /,\ refer to the phonological forms of the input and output strings
(so that, for example, the applicability of the /I rule is conditioned on the pres-
ence of the phonology of the hypothesis p on the right periphery of the phonology
of the input b ◦ p),1 the rules for | are not constrained that way. For reasoning
involving |, the phonological terms themselves fully specify the ways in which
the output phonology is constructed from the input phonologies. Specifically, for

1 In this respect, the present calculus follows most closely Morrill and Solias (1993)
and Morrill (1994); see Moortgat (1997) and Bernardi (2002) for an alternative for-
mulation where sensitivity to directionality is mediated through a presumed cor-
respondence between surface string and the form of structured antecedents in the
sequent-style notation of natural deduction.

138 Y. Kubota and R. Levine

|, the phonological operations associated with the Introduction and Elimination
rules mirror exactly the semantic operations for these rules: function application
and λ-abstraction, respectively. We assume that the binary connective ◦ in the
phonological term calculus represents the string concatenation operation and
that ◦ is associative in both directions. For notational convenience, we implicitly
assume the axiom (π1 ◦ π2) ◦ π3 ≡ π1 ◦ (π2 ◦ π3) and leave out all the brack-
ets indicating the internal constituency of complex phonological terms.2 Thus,
the present system without the rules for | is equivalent to the Lambek calculus
(Lambek 1958), while the system with only the rules for | is essentially equivalent
to the term-labelled calculus of Oehrle (1994), λ-Grammar (Muskens 2003) and
Abstract Categorial Grammar (de Groote 2001), with some implementational
details aside, which are irrelevant for the following discussion.
λ-binding in the phonological component provides a simple and explicit way

of modelling expressions with medial gaps. Oehrle (1994) originally showed this
point by formalizing an explicit and straightforward implementation of Mon-
tague’s (1973) quantifying-in; Muskens (2003) discusses how the same technique
can be employed to solve the problem of medial extraction—a perennial problem
in TLCG, where the directionality-sensitive modes of implication / and \ are in-
herently not suited for that purpose. The analysis of Gapping we propose below
builds crucially on this analytic technique. Specifically, we treat Gapping to be
a case of coordination of like-category constituents (with standard generalized
conjunction for its semantics), where the coordinated constituents have medial
gaps of the verbal category created via phonological (and semantic) variable
binding. After the coordinate structure is built, the verb is ‘lowered’ into the
medial position (just like the treatment of quantifiers by Oehrle (1994)), but the
extra phonological property of the Gapping construction (which we encode in
the Gapping-specific lexical entry for the conjunction) dictates that it be realized
only once, in the initial conjunct of the whole coordinate structure.

In the present system, such constituents with medial verbal category gaps can
be obtained by simply hypothesizing a variable for the main verb of the sentence
and binding it by | after the whole sentence is built up:

(4)

λσ1.σ1(a ◦ book); ∃book; S|(S|NP)

robin; r; NP

[π1;P ;VP/NP]1 [π2;x;NP]
2

π1 ◦ π2; P (x); VP

robin ◦ π1 ◦ π2; P (x)(r); S

λπ2.robin ◦ π1 ◦ π2; λx.P (x)(r); S|NP
robin ◦ π1 ◦ a ◦ book; ∃book(λx.P (x)(r)); S

λπ1.robin ◦ π1 ◦ a ◦ book; λP.∃book(λx.P (x)(r)); S|(VP/NP)

2 For a more fine-grained control of surface morpho-phonological constituency, see
Kubota and Pollard (2010) (and also Muskens (2007) for a related approach), which
formalizes the notion of multi-modality from the earlier TLCG literature (Moortgat
and Oehrle 1994, Morrill 1994) by modelling the mapping from syntax to phonology
by means of an interpretation of (phonological) λ-terms into preorders.

Gapping as Like-Category Coordination 139

For coordinating such st → st functions (phonologically), we introduce the fol-
lowing Gapping-specific lexical entry for the conjunction:

(5) λσ2λσ1λπ0[σ1(π0) ◦ and ◦ σ2(ε)];λW λV .V 'W ;
((S|(VP/NP))|(S|(VP/NP)))|(S|(VP/NP))

where ε is the empty string and V and W are variables over terms of type
〈〈e, 〈e, t〉〉, t〉. Note here that syntactically the conjunction takes two arguments
of the same category S|(VP/NP), and returns an expression of the same category,
and the semantics is nothing other than the standard generalized conjunction.
This is fully consistent with the general treatment of coordination in CG in terms
of like category coordination. The only slight complication is in the phonology.
The output phonological term is of the same phonological type st → st as the
input phonologies, but instead of binding the variables in each conjunct by the
same λ-operator, the gap in the second conjunct is filled by an empty string
ε, since the verb is pronounced only once in the first conjunct in Gapping.
This is an idiosyncrasy of the construction that needs to be stipulated in any
account, and in the present approach it is achieved by a lexical specification of
the phonological interpretation of the conjunction, without invoking any extra
rule, empty operator or null lexical item.

With this entry for the conjunction, the simple Gapping sentence (6) can be
derived as in (7) (with TV an abbreviation for VP/NP).

(6) Leslie bought a CD, and Robin, a book.

(7)

bought;
buy;
TV

λπ1.leslie ◦ π1 ◦ a ◦ CD;
λQ.∃CD(λy.Q(y)(l));
S|TV

λσ2λσ1λπ0.σ1(π0) ◦ and ◦ σ2(ε);
λW λV .V � W ;
(S|TV)|(S|TV)|(S|TV)

λπ1.robin ◦ π1 ◦ a ◦ book;
λP.∃book(λx.P (x)(r));
S|TV

λσ1λπ0.σ1(π0) ◦ and ◦ robin ◦ ε ◦ a ◦ book;
λV .V � λP.∃book(λx.P (x)(r));
(S|TV)|(S|TV)

λπ0[leslie ◦ π0 ◦ a ◦ CD ◦ and ◦ robin ◦ ε ◦ a ◦ book];
λQ.∃CD(λy.Q(y)(l)) � λP.∃book(λx.P (x)(r));
S|TV

leslie ◦ bought ◦ a ◦ CD ◦ and ◦ robin ◦ ε ◦ a ◦ book;
∃CD(λy.buy(y)(l)) ∧ ∃book(λx.buy(x)(r)); S

What is crucial in the above analysis is that two conjoined gapped sentences form
a tectogrammatical constituent, to which the verb lowers into. This enables a
treatment of Gapping without any surface deletion operation or phonologically
inaudible verbal pro-form of any sort. We will see below that this is also what
enables a straightforward analysis of the scopal interactions between negative
and modal auxiliaries and Gapping.

For the analysis of cases involving modal and negative auxiliaries, we assume
an analysis of auxiliaries that treats them as quantifier-like scope-taking expres-
sions. Morpho-phonologically, auxiliaries have a distributional property of a VP
modifier of category VP/VP (which differs from VP adverbs VP\VP only in the
direction in which the argument is sought). But semantically, modals and nega-
tion are sentential operators μ which take some proposition ϕ as an argument and

140 Y. Kubota and R. Levine

return another proposition μ(ϕ). In the present approach, this syntax-semantics
mismatch can be straightforwardly captured by assigning lexical entries of the
following form to auxiliaries:

(8) λσ.σ(must); λF .�F (ϑ); S|(S|VP/VP) (where ϑ =def λf〈e,t〉.f)

That is, the auxiliary verb binds a VP/VP (i.e. forward-looking VP modifier) gap
in a sentence to return a fully saturated S. The VP modifier gap is vacuously
bound by supplying an identify function in its place, and the real semantic
contribution of the auxiliary corresponds to the modal operator that takes as its
scope the entire proposition obtained by binding that VP modifier gap.3

As an illustration, Robin must discover a solution is derived as:

(9)

λσ0.σ0(must);
λF .�F (ϑ);
S|(S|(VP/VP))

λσ.σ(a ◦ solution);
∃solution; S|(S|NP)

robin;
r; NP

π2;
f ;
VP/VP

discover;
discover;
VP/NP

π1;
x;
NP

discover ◦ π1;
discover(x);
VP

π2 ◦ discover ◦ π1;
f(discover(x)); VP

robin ◦ π2 ◦ discover ◦ π1;
f(discover(x))(r); S

λπ1.robin ◦ π2 ◦ discover ◦ π1;
λx.f(discover(x))(r); S|NP

robin ◦ π2 ◦ discover ◦ a ◦ solution;
∃solution(λx.f(discover(x))(r)); S

λπ2.robin ◦ π2 ◦ discover ◦ a ◦ solution;
λf.∃solution(λx.f(discover(x))(r)); S|(VP/VP)

robin ◦must ◦ discover ◦ a ◦ solution;
�∃solution(λx.discover(x)(r)); S

We are now ready to illustrate how the auxiliary wide-scope readings are ob-
tained for Gapping sentences. We start with a variant in (10a) in which only the
auxiliary is gapped (for which the derivation is a bit simpler), and then move on
to the case of (10b) where the whole auxiliary + verb combination is gapped.

(10) a. John can’t eat steak and Mary eat pizza.

b. John can’t eat steak and Mary pizza.

3 As it is, the analysis of auxiliaries here overgenerates. To capture the clause-
boundedness of the scope of auxiliaries, we can employ the technique proposed by
Pogodalla and Pompigne (2011) which enables formulating constraints on scope is-
lands at the tectogrammatical level with the notion of dependent types (dependent
types are used in certain logic-based grammars for the purpose of implementing
syntactic features; see de Groote and Maarek (2007)).

Gapping as Like-Category Coordination 141

As in the basic-case analysis given in (7) above, the overall strategy is straight-
forward: we coordinate two categories which are in effect clauses missing VP/VP
functors in each conjunct, forming a larger sign of the same category:

(11)

john;
j;
NP

π1;
f ;
VP/VP

eat ◦ steak;
eat(s);
VP

π1 ◦ eat ◦ steak;
f(eat(s));
VP

john ◦ π1 ◦ eat ◦ steak;
f(eat(s))(j); S

λπ1.john ◦ π1 ◦ eat ◦ steak;
λf.f(eat(s))(j); S|(VP/VP)

λσ2λσ1λπ0.σ1(π0) ◦ and ◦ σ2(ε);
λF2λF1.F1 � F2;
(S|X)|(S|X)|(S|X)

λπ2.mary ◦ π2 ◦ eat ◦ pizza;
λg.g(eat(p))(m);
S|(VP/VP)

λσ1λπ0.σ1(π0) ◦ and ◦ mary ◦ ε ◦ eat ◦ pizza;
λF1.F1 � λg.g(eat(p))(m); (S|(VP/VP))|(S|(VP/VP))

λπ0.john ◦ π0 ◦ eat ◦ steak ◦ and ◦ mary ◦ ε ◦ eat ◦ pizza;
λf.f(eat(s))(j) � λg.g(eat(p))(m); S|(VP/VP)

This coordinated ‘gapped’ constituent is then given as an argument to the aux-
iliary to complete the derivation, just as in the simpler example in (9) above.

(12) λσ0.σ0(can
′t);

λF .¬♦F (ϑ);
S|(S|(VP/VP))

λπ0.john ◦ π0 ◦ eat ◦ steak ◦ and ◦mary ◦ ε ◦ eat ◦ pizza;
λf.f(eat(s))(j) � λg.g(eat(p))(m);
S|(VP/VP)

john ◦ can′t ◦ eat ◦ steak ◦ and ◦mary ◦ ε ◦ eat ◦ pizza;
¬♦[eat(s)(j) ∧ eat(p)(m)]; S

Here, crucially, due to generalized conjunction, the proposition that the modal
scopes over is the conjunction of the propositions expressed by the first conjunct
(without the modal) and the second conjunct. Thus, we get an interpretation in
which the modal scopes over the conjunction, as desired. For the phonology, just
as in the simpler Gapping example, due to the lexical definition of the Gapping-
type conjunction, the modal auxiliary is pronounced only in the first conjunct,
resulting in the surface string corresponding to (10a).4

We now show how this same approach yields a wide scope reading for the
auxiliary where both the auxiliary and the main verb are missing in the second
conjunct, as in (10b). The derivation goes as in (13). The extra complexity
involved in this case is that we need to fill in both the verb and the auxiliary in
the first conjunct to obtain the surface form of the sentence. This is done in a
stepwise manner. First, the verb and a hypothesized forward-looking VP modifier
(to be bound by the auxiliary) form an expression of the VP/NP category via

4 See Siegel (1987) for a closely related approach in terms of wrapping in the
framework of Montague Grammar. For the auxiliary-gapping example like (10a),
our analysis can be thought of as a formally precise rendition of the basic analytic
idea prefigured in Siegel’s analysis. However, the presence vs. absence of an explicit
prosodic calculus that interacts with the combinatoric component of syntax becomes
crucial in the more complex case in (10b), where both the verb and the auxiliary
are gapped. It is not at all clear how the right pairing of meaning and surface string
can be derived for such examples in Siegel’s setup, which assumes a rather primitive
and unformalized infixation operation within Montague Grammar for dealing with
discontinuous constituency.

142 Y. Kubota and R. Levine

hypothetical reasoning. This is then given as an argument to a coordinated
gapped sentence of type S|(VP/NP). Finally, by binding the VP modifier of type
VP/VP, the sentence has the right syntactic (and phonological and semantic, as
well) type to be given as an argument to the auxiliary can’t.

(13)

π0;
f ; VP/VP

eat;
eat; VP/NP

π1;
x;NP

eat ◦ π1; eat(x); VP

π0 ◦ eat ◦ π1; f(eat(x)); VP

π0 ◦ eat; λx.f(eat(x)); VP/NP

λπ2.john ◦ π2 ◦ steak ◦ and ◦mary ◦ ε ◦ pizza;
λQ.[Q(s)(j)] � λP.[P (p)(m)];
S|(VP/NP)

john ◦ π0 ◦ eat ◦ steak ◦ and ◦mary ◦ ε ◦ pizza; f(eat(s))(j) ∧ f(eat(p))(m); S

λπ0.john ◦ π0 ◦ eat ◦ steak ◦ and ◦mary ◦ ε ◦ pizza;
λf.[f(eat(s))(j) ∧ f(eat(p))(m)]; S|(VP/VP)

λσ0.σ0(can
′t);

λF .¬♦F (ϑ);
S|(S|(VP/VP))

λπ0.john ◦ π0 ◦ eat ◦ steak ◦ and ◦mary ◦ ε ◦ pizza;
λf.[f(eat(s))(j) ∧ f(eat(p))(m)];
S|(VP/VP)

john ◦ can′t ◦ eat ◦ steak ◦ and ◦mary ◦ ε ◦ pizza;
¬♦[eat(s)(j) ∧ eat(p)(m)]; S

Again, since the auxiliary takes the coordinated sentence (after the verb is fed
to it) as its argument in the derivation, we obtain the auxiliary wide-scope in-
terpretation. In the present account, the wide-scope option for the auxiliary
in examples like (10a,b) transparently reflects the (tectogrammatical) syntax of
Gapping where sentences with missing elements are directly coordinated and the
missing element is supplied at a later point in the derivation. Thus, the avail-
ability of such a reading is not a surprise, but a naturally expected consequence.

The present analysis predicts the availability of conjunction wide-scope read-
ings for sentences like those in (10) as well. The key component of the analysis
involves deriving a VP/VP entry for an auxiliary from the more basic type as-
signed in the lexicon above in the category S|(S|(VP/VP)), which reflects their
semantic property more transparently. The derivation proceeds through a couple
of steps of hypothetical reasoning:

(14)

λσ.σ(can′t);
λF .¬♦F (ϑ);
S|(S|VP/VP)

π1; x; NP

π2; g; VP/VP π3; f ; VP

π2 ◦ π3; g(f); VP
π1 ◦ π2 ◦ π3; g(f)(x); S

λπ2.π1 ◦ π2 ◦ π3;
λg.g(f)(x);
S|(VP/VP)

π1 ◦ can′t ◦ π3; ¬♦f(x); S
can′t ◦ π3; λx.¬♦f(x); VP

can′t; λfλx.¬♦f(x); VP/VP
The derived entry in the VP/VP category is the familiar entry for auxiliaries
in non-transformational approaches like G/HPSG and categorial grammar. The
above result depends crucially on the property of the present system where

Gapping as Like-Category Coordination 143

reasoning involving the directional mode of implication can be carried out based
on the results of reasoning involving |, which allows for operations that are more
complex than string concatenation.5

With the above, derived, type assignment for the auxiliary, the conjunction
wide-scope reading for (10a) is straightforward. The derivation is identical to the
one for the auxiliary wide-scope reading up to the point that the coordinated
gapped sentence is formed, and differs only at the final step. Instead of having the
scope-taking S|(S|(VP/VP)) entry of the auxiliary take this coordinated gapped
S as an argument, we simply give the lowered VP/VP entry for the auxiliary as
an argument to the gapped sentence, as follows:

(15) can′t;
λfλx.¬♦f(x);
VP/VP

λπ.[john ◦ π ◦ eat ◦ steak ◦ and ◦mary ◦ ε ◦ eat ◦ pizza];
λh.[h(eat(s))(j) ∧ h(eat(p))(m)];
S|(VP/VP)

john ◦ can′t ◦ eat ◦ steak ◦ and ◦mary ◦ ε ◦ eat ◦ pizza;
¬♦eat(s)(j) ∧ ¬♦eat(p)(m); S

The resulting string is identical as above since the phonology of the auxiliary is
embedded in the gap site in the initial conjunct only, but the semantic interpre-
tation that is paired with it is different from the above analysis. Here crucially,
the VP-modifier meaning of the auxiliary is distributed to the two conjuncts
via the definition of generalized conjunction, which results in an interpretation
where the auxiliary takes scope separately within each conjunct which is then
conjoined by the conjunction, resulting in the conjunction wide-scope reading.

The derivation for the conjunction wide-scope reading for (10b), a sentence in
which both the auxiliary and the main verb are missing, is also straightforward.
In fact, like the previous case, the analysis just involves replacing the auxiliary
entry at the final step of the derivation for the auxiliary wide-scope reading of
the same sentence (given above in (13)) with the derived entry in (14). This
yields the conjunction wide-scope reading for the sentence for exactly the same
reason as in the previous example, as the reader can easily verify by themselves.

3 Comparison with Related Approaches

3.1 Steedman (1990)

Steedman (1990) proposes an insightful analysis of Gapping in CCG which can
be thought of as a precursor of the present proposal. The key analytic idea
of Steedman’s approach is the assumption that Gapping involves coordination
of like-category constituents. To reconcile the strictly surface-oriented syntax of
CCG with this assumption about the ‘underling’ syntax of Gapping, Steedman
invokes a syntactic rule called the Left Conjunct Revealing Rule (LCRR):6

5 So far as we are aware, interactions between the two kinds of syntactic reasoning
(or modes of composition) of this sort is a completely novel property of the present
system that is not shared by any other formal theory of syntax, whether catego-
rial, constraint-based, or transformational. This certainly opens up many questions
conceptually, technically and empirically, which we will not pursue further here.

6 We use the Lambek-style notation for slashes for consistency.

144 Y. Kubota and R. Levine

(16) The Left Conjunct Revealing Rule

S ⇒ Y Y \S

This rule ‘decomposes’ the left conjunct into two syntactic categories, one cor-
responding to the right conjunct and the other corresponding to the shared
verbal element. Once this decomposition is in place, the rest of the derivation
is straightforward with standard generalized conjunction to form a coordinate
structure which recombines with the shared verbal category as in:

(17)

Harry will buy bread

S

(NP\S)/NP ((NP\S)/NP)\S
and Barry potatoes

((NP\S)/NP)\S
((NP\S)/NP)\S

S

Simple and elegant though it might appear, this analysis is problematic for both
conceptual/technical and empirical reasons. Conceptually and technically, note
that (16) constitutes a clearcut violation of the principle of compositionality. The
key problem is that there is no way, on Steedman’s account, to guarantee that ei-
ther the Y or the Y \S can be independently assembled from the component of S
on the basis of its subcomponents that they are supposed to correspond to, and,
concomitantly, no way to ensure the existence of an actual semantic interpreta-
tion for the ‘revealed’ Y \S pseudocategory or its complement Y .7 Steedman’s
account thus seems to ride roughshod over the fundamental motivation of the
categorial approach, viz., the conception of syntactic derivations as logical proofs
(whose structure is not an object that the grammar can manipulate).8

There is also an empirical problem. In the strictly surface-oriented syntax of
CCG, there does not seem to be any straightforward account of the auxiliary
wide-scope readings of sentences with modal and negation. Like in other non-
transformational approaches to syntax, CCG assumes the VP/VP-type entry for
auxiliaries. However, as shown in the previous section, such an entry produces
only the conjunction wide-scope readings for examples like those in (2).

7 So far as we can see, the only way to ensure such a decomposition in the grammar
is by ‘appealing to the parser, or to some reification of the derivation’ (Steedman
1990, 247), a possibility which, curiously enough, Steedman rejects flatly. He instead
resorts to some vague (and what seems to us to be an ill-conceived) pragmatic
strategy of recovering the syntactic category (as opposed to just the interpretation)
of the gapped verb through the presupposition of the gapped sentence.

8 Note in this connection that the formal status of the LCRR is quite unclear. In a
labelled deduction presentation of derivations of the kind we have adopted above,
there is no way to formulate such a rule, since in (16) the pieces of linguistic ex-
pression that the decomposed categories are supposed to correspond to are entirely
unspecified. This alone makes Steedman’s whole approach to Gapping quite dubious.

Gapping as Like-Category Coordination 145

3.2 Morrill et al. (2011)

In the TLCG literature, a series of related approaches to the analysis of Gapping
have been proposed (see the references cited in section 1) that provide an explicit
solution for the problem of identifying the gap constituent that is left open in
Steedman’s analysis. These approaches all treat Gapping as a case of discontin-
uous constituency, employing the various extensions to the Lambek calculus for
handling discontinuity that they respectively propose. We review Morrill et al.’s
proposal here since it is the most recent among these related approaches and it
improves both technically and empirically on the earlier accounts.

The key analytic idea of Morrill et al.’s approach, which is due to
Hendriks (1995), and which is a formalization of the underlying idea of Steed-
man’s approach, is that Gapping can be thought of as a case of like-category
coordination by allowing the conjunction to coordinate two discontinuous con-
stituents with medial gaps of the verbal type and then infixing the missing verb
in the gap position of the initial conjunct after the whole coordinate structure
is built. Specifically, Morrill et al. assign the syntactic type ((S↑TV)\(S↑TV))/^
(S↑TV) to the conjunction. ↑ is roughly equivalent to our |. Thus, S↑TV is the
category for a sentence missing a TV somewhere inside it. ^ corresponds to an
operation that erases the ‘insertion point’ keeping track of the gap position of
a discontinuous constituent. Thus, the category of the right conjunct ^(S↑TV)
indicates that it is a sentence with a TV gap inside it like S↑TV, except that
the gap is already ‘closed off’. The whole coordinate structure inherits the gap
position from the left conjunct alone, to which the verb is infixed after the whole
coordinate structure is built.

If we limit ourselves to cases in which the gapped material is just a string,
our analysis and Morrill et al.’s can be thought of as notational variants of each
other.9 However, a difference between the two emerges when we examine more
complex examples where the missing material in the gapped clause is itself a
discontinuous constituent, such as the following:

(18) a. John gave Mary a cold shoulder, and Bill, Sue.

b. John called Mary up, and Bill, Sue.

Idiomatic expressions like give . . . the cold shoulder and verb-particle construc-
tions like call . . . up are analyzed as discontinuous constituents in CG, including
Morrill et al.’s own approach. However, their analysis of Gapping does not in-
teract properly with their analysis of these constructions to license examples
like those in (18). The difficulty essentially lies in the fact that Morrill et al.’s
system is set up in such a way that it only recognizes discontinuous constituents
with string-type gaps (whose positions are kept track of by designated symbols

9 But note that it remains to be established that the analysis of the scope ambiguity of
auxiliaries in examples like (10) in our account can be replicated in their setup—so
far as we can see, the analysis of the auxiliary-wide scope reading seems to carry
over to their setup straightforwardly, whereas the case of the conjunction-wide scope
reading is less clear.

146 Y. Kubota and R. Levine

called separators for marking insertion points in the prosodic representations of
linguistic expressions) and the only operations that one can perform on such
expressions (each tied to different syntactic rules in the calculus) are to close
off the gap with some string (including an empty string) or to pass it up to a
larger expression. Thus, there is no direct way of representing the combinatorial
property of the gapped clause Bill, Sue in (18a), which needs to be treated as
a sentence missing a VP↑NP in order to induce a like-category analysis of Gap-
ping along the above lines. It should be noted that this problem is by no means
specific to Morrill et al.’s account but is common to all previous approaches
in the TLCG literature that employ some form of wrapping operation for the
treatment of discontinuity. Such approaches fall short of extending to cases like
(18) essentially because the prosodic component is not fully independent of the
syntactic calculus and the extension to the basic concatenative system is directly
regulated by the set of additional syntactic connectives introduced in the system.
(To see this, note that in these approaches, each syntactic connective for discon-
tinuity is tied to some specific operation (such as infixation) on the propsodic
form(s) of the input expressions).

Our proposal differs from these earlier approaches precisely in this respect. In-
deed, with the flexible syntax-prosody interface enabled by having a full-blown
λ-calculus for the prosodic component—a feature that the present system in-
herits from λ-Grammar/ACG—the analysis of examples like (18) turns out to
be relatively straightforward. Assuming that the discontinuous constituency of
idioms and verb-particle constructions is treated by assigning to the relevant
expressions lexical entries of the following form (of phonological type st→ st):

(19) λπ1.gave ◦ π1 ◦ the ◦ cold ◦ shoulder; shun; VP|NP

it only suffices to generalize the lexical entry of the Gapping-type conjunction to
a higher-order (phonological) type which takes arguments of type (st→ st)→ st
(phonologically) as left and right conjuncts:

(20) λρ1λρ2λσ.ρ2(σ) ◦ and ◦ ρ1(λπ.π); λW λV .V � W ; (S|(VP|X))|(S|(VP|X))|(S|(VP|X))

Then, via hypothetical reasoning with a variable of (phonological) type st→ st,
the left and right conjuncts can be treated as discontinuous constituents of type
(st → st) → st of the following form, where the gap itself is a discontinuous
constituent of type st→ st:

(21) λσ1.john ◦ σ1(mary); λP.P (m)(j); S|(VP|NP)

It is straightforward to see that by giving such expressions to the higher-order
Gapping conjunction entry (20), the right surface string in (18) is obtained.

Thus, while the proposed analysis owes much to previous approaches to
Gapping in terms of discontinuous constituency in the TLCG literature in the
formulation of the basic analysis, it goes beyond all previous proposals in straight-
forwardly generalizing to more complex cases like (18) where Gapping interacts
with other phenomena exemplifying discontinuity. So far as we are aware, such a
systematic interaction of complex empirical phenomena is unprecedented in any
previous work.

Gapping as Like-Category Coordination 147

3.3 Oehrle (1987)

Oehrle’s analysis assumes a free Boolean algebra over the set of generators com-
prising the cartesian product NP×NP, with meet ∧ and join ∨, which Oehrle
notates L[NP×NP]. The set NP×NP is the domain of functors corresponding
to verb signs, which are taken to comprise both phonological and semantic func-
tors. An embedding from NP×NP to an algebra with meet and join operations
yields L[NP× NP], which is the closure of its atoms in NP×NP under ∨ and ∧.

For each verbal sign v , which is a function NP×NP %→ 2, Oehrle defines an
extension of that function v* L[NP×NP] %→ 2. For example, for bakes, we have
bake NP×NP %→ 2, comprising the phonological function bakeπ and the seman-
tic function bakeσ such that (here again, π1 and π2 are projection functions):

(22) a. bakeπ = λP. π1(P) ◦ bakes ◦ π2(P)

b. bakeσ = λX.bake(π1(X), π2(X))

bake* is then defined as consisting of the phonological function bake*π and the
semantic function bake*σ such that:

(23) i. For all P that are atomic, bake*π(P) = bakeπ(P)

ii. IfP = P1∧P2, thenbake*π(P)= bakeπ(P1) ◦ and ◦ π1(P2) ◦ π2(P2)

iii. If P = P1∨P2, then bake*π(P) = bakeπ(P1) ◦ or ◦ π1(P2) ◦ π2(P2)

(24) i. For all X that are atomic, bake*σ(X) = bakeσ(X)

ii. If X = X1 ∧X2, then bake*σ(X) = bakeσ(X1) ∧ bakeσ(X2)

iii. If X = X1 ∨X2, then bake*σ(X) = bakeσ(X1) ∨ bakeσ(X2)

The grammar thus admits (25), comprising the phonology and semantics in (26).

(25) bake*(〈john , bread 〉 ∧ 〈mary , cake〉)
= 〈bake*π(〈john, bread〉 ∧ 〈mary, cake〉), bake*σ(〈j,b〉 ∧ 〈m, c〉)〉

(26) a. bake*π(〈john, bread〉 ∧ 〈mary, cake〉)
= bakeπ(〈john, bread〉) ◦ and ◦mary ◦ cake
= john ◦ bakes ◦ bread ◦ and ◦mary ◦ cake

b. bake*σ(〈j,b〉 ∧ 〈m, c〉)
= bakeσ(〈j,b〉) ∧ bakeσ(〈m, c〉) = bake(j,b) ∧ bake(m,c)

The key insight that enables Oehrle to account for the scope ambiguity of neg-
ative and modal auxiliaries is that when propositional operators like negation
interact with verb meaning, there are two maps from L[NP×NP] to 2, with two
different semantic results. The first option is to compose the negation operator
neg with the lexical verb v and then extend it with the * operator to obtain
(neg ◦ v)*, which produces a function that takes arguments in the domain of
conjoined pairs of verbal arguments. This yields the conjunction wide-scope in-
terpretation since * extends verb meanings that are already negated and which

148 Y. Kubota and R. Levine

take unconjoined pairs of arguments to the domain of conjoined pairs of argu-
ments. The other option is to compose the negation operator neg with the result
of the application of *, which gives us neg ◦ v*. Since v* is the closure of v un-
der meet and join which semantically correspond to conjunction and disjunction,
this yields a function that takes conjoined pairs of arguments as input, and then
first form unnegated conjunction or disjunction of two propositions obtained by
applying the verb meaning to the each of the conjoined pair of arguments, which
is then passed on to the negation operator as an argument to produce a negated
proposition, which corresponds to the negation wide-scope interpretation.

Thus, in Oehrle’s analysis, the assumption that argument pairs of verbs can
be treated as conjoinable constituents and that the * operator that maps verb
meanings from NP×NP to L[NP×NP] which contains such conjoined argument
pairs plays a crucial role in deriving the scopal interactions between conjunction
and operators such as negation and modals. While the elegance and systematicity
by which the auxiliary wide-scope readings are derived is remarkable, Oehrle’s
analysis relies on several nonstandard assumptions about both the basic clause
structure of English and the syntax of Gapping. In particular, since the analysis
crucially hinges on the assumption that the remnants that appear in the right
conjunct are pairs of arguments of a verb, it is not clear how the analysis might
be extended to cases involving adjuncts in the remnant, such as (1c) from section
1. Since adverbs are adjuncts which are functions that take verbs as arguments
rather than themselves being arguments of the verb, it is not clear how examples
like (1c) can be licensed in Oehrle’s setup. Note furthermore that such argument-
adjunct pairs in Gapping can also induce the same kind of scopal interaction with
auxiliaries as the argument-pair examples examined above:

(27) Terry can’t go there with me and Pat with you—one and the same person
has to accompany them both.

This suggests that generating surface strings like (1c) isn’t enough and that
the mechanism for licensing the two scoping possibilities for argument pairs has
to be extended to cases involving adjuncts too. However, given the nonstandard
assumptions about syntax that Oehrle’s analysis builds on, it is not clear whether
such an extension can be worked out straightforwardly.

4 Conclusion

We have proposed a system of TLCG that models phonologies of linguistic
signs by λ-terms, allowing for higher-order abstraction over string-type entities.
The flexible treatment of linguistic expressions manifesting discontinuous con-
stituency that the present system allows for enables a straightforward treatment
of Gapping which subsumes this construction—despite its appearance—under
the law of coordination of likes. Furthermore, this analysis provides an imme-
diate solution for a seemingly separate puzzle of apparently anomalous wide-
scoping auxiliaries in Gapping, for which no explicit analysis exists except for
Oehrle (1987) (which itself suffers from a different kind of problem).

Gapping as Like-Category Coordination 149

The proposed calculus is unique among contemporary alternatives of CG-
based syntactic frameworks in that it recognizes both directionality-sensitive
modes of implication traditionally assumed in TLCG and the directionality-
insensitive mode of implication from the more recent variants of CG such as λ-
Grammar and ACG that deal with word order by enriching operations available
in the (morpho-)phonological component (in particular, by having a full-fledged
λ-calculus for it). This novel architecture of the present theory raises two related
larger questions. First, one might wonder whether the relatively elaborate theo-
retical setup of the present system is justified. Second, the formal properties of
the proposed system is as yet unexplored.

For the first, more empirical question, note that what enables subsuming
Gapping under the case of like-categorial coordination in the present approach
is its ability to analyze any substring containing a verb within a sentence as
a constituent that can be abstracted over. This requires an interaction of the
directional and non-directional slashes precisely of the kind that the present
approach provides. In a system with only one mode of implication in the syntactic
component (corresponding to our |), significant complications will arise, since in
such an approach, verb phonologies in the lexicon are not simply strings but
rather are n-place functions over strings (e.g., for transitive verbs, of the form
λπ1λπ2.π2 ◦ bought ◦ π1, of type st→ st→ st) that specify the relative positions
of their arguments purely in the phonological representation. Abstracting over
such a sign creates a higher-order phonological entity. To simulate the results of
our analysis of Gapping in such a framework, one would then need to define a
polymorphic entry for and which would yield the correct surface string for the
right conjunct from such higher-order functions for each case in which a different
type of functional phonology is abstracted over. But defining the appropriate
entry for the conjunction word that would extend to cases involving auxiliaries—
which have still more complex phonological types—is a non-trivial task, to put it
mildly. It thus seems reasonable to conclude that, however one implements it, the
kind of interaction between (tectogrammatical) syntax and surface linearization
that the present system enables (via the interactions between /,\ and |) needs
to be part of the formal calculus for dealing with natural language syntax.

And this brings up the second question: if such a mixed system is empiri-
cally motivated, what are its exact formal underpinnings? Although previous
proposals exist that propose calculi that recognize both directional and non-
directional modes of implication within a single system (cf. de Groote (1996),
Polakow and Pfenning (1999)), our system differs from these formal systems in
that it allows for the two kinds of reasoning to freely feed into one another. In
fact, this is precisely the source of the flexibility exploited in our analysis of
Gapping, and, so far as we are aware, such a system is unprecedented and its
mathematical properties are unknown. Given the linguistic motivation that we
have demonstrated in this paper, the mathematical properties of the proposed
system should be studied closely. We acknowledge this as an important issue to
be investigated in future work.

150 Y. Kubota and R. Levine

References

[Bernardi (2002)]Bernardi, R.: Reasoning with Polarity in Categorial Type Logic.
Ph.D. thesis, University of Utrecht (2002)

[de Groote (1996)]de Groote, P.: Partially commutative linear logic: sequent calculus
and phase semantics. In: Abrusci, M., Casadio, C. (eds.) Proofs and Linguistic Cat-
egories, Proceedings 1996 Roma Workshop. Cooperativa Libraria Universitaria Ed-
itrice Bologna (1996)

[de Groote (2001)]de Groote, P.: Towards abstract categorial grammars. In: Proceed-
ings of ACL 2001, pp. 148–155 (2001)

[de Groote and Maarek (2007)]de Groote, P., Maarek, S.: Type-theoretic extensions of
abstract categorial grammars. In: Muskens, R. (ed.) Proceedings of Workshop on
New Directions in Type-theoretic Grammars, pp. 19–30 (2007)

[Hendriks (1995)]Hendriks, P.: Ellipsis and multimodal categorial type logic. In: Mor-
rill, G.V., Oehrle, R.T. (eds.) Formal Grammar: Proceedings of the Conference of
the European Summer School in Logic, Language and Information, Barcelona (1995)

[Kubota and Pollard (2010)]Kubota, Y., Pollard, C.: Phonological Interpretation into
Preordered Algebras. In: Ebert, C., Jäger, G., Michaelis, J. (eds.) MOL 10/11. LNCS
(LNAI), vol. 6149, pp. 200–209. Springer, Heidelberg (2010)

[Montague (1973)]Montague, R.: The proper treatment of quantification in ordinary
English. In: Hintikka, J., Moravcsik, J.M., Suppes, P. (eds.) Approaches to Natural
Language, pp. 221–242. D. Reidel, Dordrecht (1973)

[Moortgat (1997)]Moortgat, M.: Categorial Type Logics. In: van Benthem, J., ter
Meulen, A. (eds.) Handbook of Logic and Language, pp. 93–177. Elsevier, Ams-
terdam (1997)

[Morrill and Merenciano (1996)]Morrill, G., Merenciano, J.-M.: Generalizing disconti-
nuity. Traitement Automatique des Langues 27(2), 119–143 (1996)

[Morrill and Solias (1993)]Morrill, G., Solias, T.: Tuples, discontinuity, and gapping
in categorial grammar. In: Proceedings of EACL 6, pp. 287–297. Association for
Computational Linguistics, Morristown (1993)

[Morrill et al. (2011)]Morrill, G., Valent́ın, O., Fadda, M.: The displacement calculus.
Journal of Logic, Language and Information 20, 1–48 (2011)

[Morrill (1994)]Morrill, G.V.: Type Logical Grammar: Categorial Logic of Signs.
Kluwer Academic Publishers, Dordrecht (1994)

[Muskens (2003)]Muskens, R.: Language, lambdas, and logic. In: Kruijff, G.-J., Oehrle,
R. (eds.) Resource Sensitivity in Binding and Anaphora, pp. 23–54. Kluwer (2003)

[Muskens (2007)]Muskens, R.: Separating syntax and combinatorics in categorial gram-
mar. Research on Language and Computation 5(3), 267–285 (2007)

[Oehrle (1987)]Oehrle, R.T.: Boolean properties in the analysis of gapping. In: Huck,
G.J., Ojeda, A.E. (eds.) Syntax and Semantics 20: Discontinuous Constituency, pp.
203–240. Academic Press (1987)

[Oehrle (1994)]Oehrle, R.T.: Term-labeled categorial type systems. Linguistics and Phi-
losophy 17(6), 633–678 (1994)

[Pogodalla and Pompigne (2011)]Pogodalla, S., Pompigne, F.: Controlling Extraction
in Abstract Categorial Grammars. In: FG 2010, Copenhagen, Denmark (2011)

[Polakow and Pfenning (1999)]Polakow, J., Pfenning, F.: Natural Deduction for Intu-
itionistic Non-commutative Linear Logic. In: Girard, J.-Y. (ed.) TLCA 1999. LNCS,
vol. 1581, pp. 295–309. Springer, Heidelberg (1999)

[Siegel (1987)]Siegel, M.A.: Compositionality, case, and the scope of auxiliaries. Lin-
guistics and Philosophy 10(1), 53–75 (1987)

[Steedman (1990)]Steedman, M.: Gapping as constituent coordination. Linguistics and
Philosophy 13(2), 207–263 (1990)

L-Completeness of the Lambek Calculus

with the Reversal Operation

Stepan Kuznetsov

Moscow State University
skuzn@inbox.ru

Abstract. We extend the Lambek calculus with rules for a unary op-
eration corresponding to language reversal and prove that this calculus
is complete with respect to the class of models on subsets of free semi-
groups (L-models). We also prove that categorial grammars based on this
calculus generate precisely all context-free languages without the empty
word.

1 The Lambek Calculus and L-Models

We consider the calculus L, introduced in [2]. The set Pr = {p1, p2, p3, . . . } is
called the set of primitive types. Types of L are built from primitive types using
three binary connectives: \ (left division), / (right division), and · (multiplica-
tion); we shall denote the set of all types by Tp. Capital letters (A,B, . . .) range
over types. Capital Greek letters (except Σ) range over finite (possibly empty)
sequences of types; Λ stands for the empty sequence. Expressions of the form
Γ → C, where Γ �= Λ, are called sequents of L.

Axioms: A→ A.
Rules:

AΠ → B
Π → A \B (→ \), Π �= Λ Π → A ΓBΔ→ C

ΓΠ(A \B)Δ→ C
(\ →)

ΠA→ B
Π → B /A

(→ /), Π �= Λ Π → A ΓBΔ→ C
Γ (B /A)ΠΔ→ C

(/→)

Π → A Δ→ B
ΠΔ→ A ·B (→ ·) ΓABΔ→ C

Γ (A · B)Δ→ C
(· →)

Π → A ΓAΔ→ C
ΓΠΔ→ C

(cut)

Now let Σ be an alphabet (an arbitrary nonempty set, finite or countable). By
Σ+ we denote the set of all nonempty words over Σ; the set of all words over
Σ, including the empty word, is denoted by Σ∗. The set Σ+ with the operation
of word concatenation is the free semigroup generated by Σ. Subsets of Σ+ are
called languages over Σ. The three connectives of L correspond to three natural
operations on languages (M,N ⊆ Σ+): M ·N � {uv | u ∈M, v ∈ N},M \N �

D. Béchet and A. Dikovsky (Eds.): LACL 2012, LNCS 7351, pp. 151–160, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

152 S. Kuznetsov

{u ∈ Σ+ | (∀v ∈ M) vu ∈ N}, and N /M � {u ∈ Σ+ | (∀v ∈ M)uv ∈ N}
(“�” here and further means “equals by definition”).

An L-model is a pairM = 〈Σ,w〉, where Σ is an alphabet and w is a function
that maps Lambek calculus types to languages over Σ, such that w(A · B) =
w(A) · w(B), w(A \B) = w(A) \w(B), and w(B /A) = w(B) / w(A) for all
A,B ∈ Tp. Obviously, w can be defined on primitive types in an arbitrary way,
and then it is uniquely propagated to all types.

A sequent of the form F → G is considered true in a modelM (M � F → G)
if w(F) ⊆ w(G). L-models give sound and complete semantics for L, due to the
following theorem:

Theorem 1. A sequent F → G is provable in L if and only if it is true in all
L-models.

This theorem is proved in [6]; its special case for the product-free fragment (where
we keep only types without multiplication) is much easier and appears in [1].
(The notion of truth in an L-model and this theorem can be easily generalized
to sequents with more than one type on the left, since L � F1F2 . . . Fn → G if
and only if L � F1 · F2 · . . . · Fn → G.)

2 The Lambek Calculus with the Reversal Operation (LR)

Now let us consider an extra operation on languages, the reversal. For u =
a1a2 . . . an (a1, . . . , an ∈ Σ, n ≥ 1) let uR � an . . . a2a1, and for M ⊆ Σ+ let
MR � {uR | u ∈M}. Let us enrich the language of the Lambek calculus with a
new unary connective R (written in the postfix form, AR). We shall denote the
extended set of types by TpR. If Γ = A1A2 . . . An, then ΓR � AR

n . . . A
R
2 A

R
1 .

The notion of L-model is also easily adapted to the new language by adding
an additional constraint on w: w(AR) = w(A)R.

The calculus LR is obtained from L by adding three new rules for R:

Γ → C

ΓR → CR
(R → R) ΓARRΔ→ C

ΓAΔ→ C
(RR →)E

Γ → CRR

Γ → C
(→ RR)E

It is easy to see that LR is sound with respect to L-models.

Lemma 1. The calculus LR is a conservative extension of L (if F,G ∈ Tp, then
LR � F → G if and only if L � F → G).

Proof. The “if” part is obvious. The “only if” part follows from L-completeness
of L and L-soundness of LR: if F → G is provable in LR, then it is true in all
L-models, and, therefore, is provable in L.

L-completeness for the product-free fragment of LR is proved in [4] by a mod-
ification of Buszkowski’s argument [1] (in [4] the reversal connective is called
involution and denoted by ˘ instead of R; the calculus is formulated in a differ-
ent, but equivalent way). In [4] one can also find a proof of L-completeness of
the division-free fragment (where only · and R connectives are kept). We shall
prove L-completeness of the whole calculus.

L-Completeness of the Lambek Calculus with the Reversal Operation 153

Theorem 2. A sequent F → G (F,G ∈ TpR) is provable in LR if and only if it
is true in all L-models.

A variant of this calculus that allows empty antecedents (an extension with the R

connective of L∗, the variant of L without the restrictionΠ �= Λ on the (→ \) and
(→ /) rules) is presented in [3]. The calculus L∗ itself is complete with respect to
L-models allowing empty words in the languages (free monoid models) [7], but
L-completeness of its extension with the R connective is still an open problem.

3 Equivalences in LR and Normal Form for Types

Types A and B are called equivalent in LR (denotation: A↔ B), if LR � A→ B
and LR � B → A. The relation ↔ is reflexive, symmetric, and transitive (due to
the rule (cut)). Using (cut) one can prove that if LR � F1 → G1, F1 ↔ F2, and
G1 ↔ G2, then LR � F2 → G2. Also, ↔ is a congruence relation, in the sense of
the following lemma (checked explicitly):

Lemma 2. If A1 ↔ A2 and B1 ↔ B2, then A1 · B1 ↔ A2 · B2, A1 \B1 ↔
A2 \B2, B1 /A1 ↔ B2 /A2, A

R
1 ↔ AR

2 .

The following lemma is checked explicitly by presenting the corresponding deriva-
tions in LR:

Lemma 3. The following equivalences hold in LR:

1. (A · B)R ↔ BR · AR;
2. (A \B)R ↔ BR /AR;
3. (B /A)R ↔ AR \BR;
4. ARR ↔ A.

For A ∈ TpR we define tr(A) by induction on the number of connectives in A:

1. tr(pi) � pi;
2. tr(pRi) � pRi ;
3. tr(A ·B) � tr(A) · tr(B);
4. tr(A \B) � tr(A) \ tr(B);
5. tr(B /A) � tr(B) / tr(A);
6. tr((A · B)R) � tr(BR) · tr(AR);
7. tr((A \B)R) � tr(BR) / tr(AR);
8. tr((B /A)R) � tr(AR) \ tr(BR);
9. tr(ARR) � tr(A).

The following lemma is proved by induction using Lemma 2 and Lemma 3:

Lemma 4. Any A ∈ TpR is equivalent to tr(A).

We call tr(A) the normal form of A. In the normal form, the R connective can
appear only on occurrences of primitive types.

154 S. Kuznetsov

4 L-Completeness of LR (Proof)

Now we are going to prove Theorem 2 (the “if” part) by contraposition. Let
LR �� F0 → G0. We need to construct a countermodel for F0 → G0, i.e., a model
in which this sequent is not true.

Let Pr′ � Pr∪{pR | p ∈ Pr}, and let L′ be the Lambek calculus with Pr′

taken as the set of primitive types instead of Pr. Here R is not a connective, and
pR is considered just a new primitive type, independent from p. Obviously, if
L′ � F → G, then LR � F → G.

Let F � tr(F0), G � tr(G0). Then LR �� F → G, whence L′ �� F → G. The
calculus L′ is essentially the same as L, therefore Theorem 1 gives us a structure
M = 〈Σ,w〉 such that w(F) �⊆ w(G). The structure M indeed falsifies F → G,
but it is not a model in the sense of our new language: some of the conditions
w(pRi) = w(pi)

R might be not satisfied.
Let Φ be the set of all subtypes of F → G (including F and G themselves;

the notion of subtype is understood in the sense of LR). The construction of
M (see [6]) guarantees that w(A) �= ∅ for all A ∈ Φ. This is the only specific
property of M we shall need.

We introduce an inductively defined counter f(A), A ∈ Φ: f(pi) � 1, f(pRi) �
1, f(A · B) � f(A) + f(B) + 10, f(A \B) � f(B), f(B /A) � f(B). Let
K � max{f(A) | A ∈ Φ}, N � 2K+25 (N should be odd, greater then K, and
big enough itself).

Let Σ1 � Σ × {1, . . . , N}. We shall denote the pair 〈a, j〉 ∈ Σ1 by a(j). El-
ements of Σ and Σ1 will be called letters and symbols respectively. A symbol
can be even or odd depending on the parity of the superscript. Consider a ho-
momorphism h : Σ+ → Σ+

1 , defined as follows: h(a) � a(1)a(2) . . . a(N) (a ∈ Σ),

h(a1 . . . an) � h(a1) . . . h(an). Let P � h(Σ+) = {a(1)1 . . . a
(N)
1 . . . a

(1)
n . . . a

(N)
n |

n ≥ 1, ai ∈ Σ}. Note that h is a bijection between Σ+ and P .

Lemma 5. For all M,N ⊆ Σ+ we have

1. h(M ·N) = h(M) · h(N);
2. if M �= ∅, then h(M \N) = h(M) \h(N) and h(N /M) = h(N) / h(M).

Proof

1. By the definition of a homomorphism.

2. ⊆ Let u ∈ h(M \N). Then u = h(u′) for some u′ ∈M \N . For all v′ ∈M

we have v′u′ ∈ N . Take an arbitrary v ∈ h(M), v = h(v′) for some v′ ∈ M .
Since u′ ∈ M \N , v′u′ ∈ N , whence vu = h(v′)h(u′) = h(v′u′) ∈ h(N).
Therefore u ∈ h(M) \ h(N).

⊇ Let u ∈ h(M) \h(N). First we claim that u ∈ P . Suppose the contrary:

u /∈ P . Take v′ ∈ M (M is nonempty by assumption). Since v = h(v′) ∈ P ,
vu /∈ P . On the other hand, vu ∈ h(N) ⊆ P . Contradiction. Now, since
u ∈ P , u = h(u′) for some u′ ∈ Σ+. For an arbitrary v′ ∈M and v � h(v′)
we have h(v′u′) = vu ∈ h(N), whence v′u′ ∈ N , whence u′ ∈ M \N .
Therefore, u = h(u′) ∈ h(M \N).
The / case is handled symmetrically.

L-Completeness of the Lambek Calculus with the Reversal Operation 155

We construct a new model M1 = 〈Σ1, w1〉, where w1(z) � h(w(z)) (z ∈ Pr′).
Due to Lemma 5, w1(A) = h(w1(A)) for all A ∈ Φ, whence w1(F) = h(w(F)) �⊆
h(w(G)) = w1(G) (M1 is also a countermodel in the language without R).

Now we introduce several auxiliary subsets of Σ+
1 (by Subw(M) we denote

the set of all nonempty subwords of words from M , i.e. Subw(M) � {u ∈ Σ+
1 |

(∃v1, v2 ∈ Σ∗
1) v1uv2 ∈M}):

T1 � {u ∈ Σ+
1 | u /∈ Subw(P ∪ PR)};

T2 � {u ∈ Subw(P ∪ PR) | the first or the last symbol of u is even};
E � {u ∈ Subw(P ∪PR)− (P ∪PR) | both the first symbol and the last symbol
of u are odd}.

The sets P , PR, T1, T2, and E form a partition of Σ+
1 into nonintersecting

parts. For example, a(1)b(10)a(2) ∈ T1, a
(N)b(1) . . . b(N−1) ∈ T2, a

(7)a(6)a(5) ∈ E
(a, b ∈ Σ).

Let T � T1 ∪ T2, Ti(k) � {u ∈ Ti | |u| ≥ k} (i = 1, 2, |u| is the length of u),
T (k) � T1(k) ∪ T2(k) = {u ∈ T | |u| ≥ k}.

Note that if the first or the last symbol of u is even, then it belongs to T , no
matter whether it belongs to Subw(P ∪ PR).

The index k (possibly with subscripts) here and further ranges from 1 to K.
For all k we have T (k) ⊇ T (K).

Lemma 6

1. P · P ⊆ P , PR · PR ⊆ PR;
2. TR = T , T (k)R = T (k);
3. P · PR ⊆ T (K), PR · P ⊆ T (K);
4. P · T ⊆ T (K), T · P ⊆ T (K);
5. PR · T ⊆ T (K), T · PR ⊆ T (K);
6. T · T ⊆ T ;

Proof

1. Obvious.
2. Directly follows from our definitions.
3. Any element of P · PR or PR · P does not belong to Subw(P ∪ PR) and its

length is at least 2N > K. Therefore it belongs to T1(K) ⊆ T (K).
4. Let u ∈ P and v ∈ T . If v ∈ T1, then uv is also in T1. Let v ∈ T2. If the

last symbol of v is even, then uv ∈ T . If the last symbol of v is odd, then
uv /∈ Subw(P ∪ PR), whence uv ∈ T1 ⊆ T . Since |uv| > |u| ≥ N > K,
uv ∈ T (K).
The claim T · P ⊆ T is handled symmetrically.

5. PR · T = PR · TR = (T · P)R ⊆ T (K)R = T (K). T · PR = TR · PR =
(P · T)R ⊆ T (K)R = T (K).

6. Let u, v ∈ T . If at least one of these two words belongs to T1, then uv ∈ T1.
Let u, v ∈ T2. If the first symbol of u or the last symbol of v is even, then
uv ∈ T . In the other case u ends with an even symbol, and v starts with an
even symbol. But then we have two consecutive even symbols in uv, therefore
uv ∈ T1.

156 S. Kuznetsov

Let us call words of the form a(i)a(i+1)a(i+2), a(N−1)a(N)b(1), and a(N)b(1)b(2)

(a, b ∈ Σ, 1 ≤ i ≤ N − 2) valid triples of type I and their reversals (namely,
a(i+2)a(i+1)a(i), b(1)a(N)a(N−1), and b(2)b(1)a(N)) valid triples of type II. Note
that valid triples of type I (resp., of type II) are the only possible three-symbol
subwords of words from P (resp., PR).

Lemma 7. A word u of length at least three is a subword of a word from P ∪PR

if and only if any three-symbol subword of u is a valid triple of type I or II.

Proof. The nontrivial part is “if”. We proceed by induction on |u|. Induction base
(|u| = 3) is trivial. Let u be a word of length m+1 satisfying the condition and
let u = u′x (x ∈ Σ1). By induction hypothesis (|u′| = m), u′ ∈ Subw(P ∪ PR).
Let u′ ∈ Subw(P) (the other case is handled symmetrically); u′ is a subword of
some word v ∈ P . Consider the last three symbols of u. Since the first two of
them also belong to u′, this three-symbol word is a valid triple of type I, not
type II. If it is of the form a(i)a(i+1)a(i+2) or a(N)b(1)b(2), then x coincides with
the symbol next to the occurrence of u′ in v, and therefore u = u′x is also a
subword of v. If it is of the form a(N−1)a(N)b(1), then, provided v = v1u

′v2, v1u′

is also an element of P , and so is the word v1u
′b(1)b(2) . . . b(N), which contains

u = u′b(1) as a subword. Thus, in all cases u ∈ Subw(P).

Now we construct one more model M2 = 〈Σ1, w2〉, where w2(pi) � w1(pi) ∪
w1(p

R
i)

R ∪ T , w2(p
R
i) � w1(pi)

R ∪ w1(p
R
i) ∪ T . This model is a model even in

the sense of the enriched language. To finish the proof, we need to check that
M2 �� F → G.

Lemma 8. For any A ∈ Φ the following holds:

1. w2(A) ⊆ P ∪ PR ∪ T ;
2. w2(A) ⊇ T (f(A));
3. w2(A) ∩ P = w1(A) (in particular, w2(A) ∩ P �= ∅);
4. w2(A) ∩ PR = w1(tr(A

R))R (in particular, w2(A) ∩ PR �= ∅).

Proof. We prove all the statements simultaneously by induction on type A. The
induction base is trivial. Further we shall refer to the i-th statement of the
induction hypothesis (i = 1, 2, 3, 4) as “IH-i”.

1. Consider three possible cases.
a) A = B ·C. Then w2(A) = w2(B) ·w2(C) ⊆ (P ∪PR ∪ T) · (P ∪PR ∪ T) ⊆

P ∪ PR ∪ T (Lemma 6).
b) A = B \C. Suppose the contrary: in w2(A) there exists an element u ∈ E.

Then vu ∈ w2(C) for any v ∈ w2(B). We consider several subcases and show
that each of those leads to a contradiction.

i) u ∈ Subw(P), and the superscript of the first symbol of u is not 1. Let the
first symbol of u be a(i). Note that i is odd and i > 2. Take v = a(3) . . . a(N)a(1)

. . . a(i−1). The word v has length at least N ≥ K and ends with an even symbol,
therefore v ∈ T (K) ⊆ T (f(B)) ⊆ w2(B) (IH-2). On the other hand, vu ∈
Subw(P) and the first symbol and the last symbol of vu are odd. Therefore,
vu ∈ E and vu ∈ w2(C), but w2(C) ∩ E = ∅ (IH-1). Contradiction.

L-Completeness of the Lambek Calculus with the Reversal Operation 157

ii) u ∈ Subw(P), and the first symbol of u is a(1) (then the superscript of the
last symbol of u is not N , because otherwise u ∈ P). Take v ∈ w2(B) ∩ P (this
set is nonempty due to IH-3). The first and the last symbol of vu is odd, and
vu ∈ Subw(P)− P , therefore vu ∈ E. Contradiction.

iii) u ∈ Subw(PR), and the superscript of the first symbol of u is not N
(the first symbol of u is a(i), i is odd). Take v = a(N−2) . . . a(1)a(N) . . . a(i+1) ∈
T (K) ⊆ w2(B). Again, vu ∈ E.

iv) u ∈ Subw(PR), and the first symbol of u is a(N). Take v ∈ w2(B) ∩ PR

(nonempty due to IH-4). vu ∈ E.
c) A = C /B. Proceed symmetrically.

2. Consider three possible cases.
a) A = B · C. Let k1 � f(B), k2 � f(C), k � k1 + k2 + 10 = f(A). Due

to IH-2, w2(B) ⊇ T (k1) and w2(C) ⊇ T (k2). Take u ∈ T (k). We have to prove
that u ∈ w2(A). Consider several subcases.

i) u ∈ T1(k). By Lemma 7 (|u| ≥ k > 3 and u /∈ Subw(P ∪ PR)) in u there is
a three-symbol subword xyz that is not a valid triple of type I or II. Divide the
word u into two parts, u = u1u2, such that |u1| ≥ k1+5, |u2| ≥ k2+5. If needed,
shift the border between parts by one symbol to the left or to the right, so that
the subword xyz lies entirely in one part. Let this part be u2 (the other case is
handled symmetrically). Then u2 ∈ T1(k2). If u1 is also in T1, then the proof
is finished. Consider the other case. Note that in any word from Subw(P ∪ PR)
among any three consecutive symbols at least one is even. Shift the border to the
left by at most 2 symbols to make the last symbol of u1 even. Then u1 ∈ T (k1),
and u2 remains in T1(k2). Thus u = u1u2 ∈ T (k1) · T (k2) ⊆ w2(B) · w2(C) =
w2(A).

ii) u ∈ T2(k). Let u end with an even symbol (the other case is symmetric).
Divide the word u into two parts, u = u1u2, |u1| ≥ k1+5, u2 ≥ k2+5, and shift
the border (if needed), so that the last symbol of u1 is even. Then both u1 and
u2 end with an even symbol, and therefore u1 ∈ T (k1) and u2 ∈ T (k2).

b) A = B \C. Let k � f(C) = f(A). By IH-2, w2(C) ⊇ T (k). Take u ∈ T (k)
and an arbitrary v ∈ w2(B) ⊆ P ∪ PR ∪ T . By Lemma 6, statements 4–6,
vu ∈ (P ∪ PR ∪ T) · T ⊆ T , and since |vu| > |u| ≥ k, vu ∈ T (k) ⊆ w2(C). Thus
u ∈ w2(A).

c) A = C /B. Symmetrically.

3. Consider three possible cases.
a) A = B · C.

⊇ u ∈ w1(A) = w1(B) · w1(C) ⊆ w2(B) · w2(C) = w2(A) (IH-3); u ∈ P .

⊆ Suppose u ∈ P and u ∈ w2(A) = w2(B) · w2(C). Then u = u1u2, where

u1 ∈ w2(B) and u2 ∈ w2(C). First we claim that u1 ∈ P . Suppose the contrary,
u1 /∈ P . By IH-1, u1 ∈ PR ∪ T , u2 ∈ P ∪ PR ∪ T , and therefore u = u1u2 ∈
(PR ∪ T) · (P ∪PR ∪ T) ⊆ PR ∪ T (Lemma 6, statements 1, 3–6). Hence u /∈ P .
Contradiction. Thus, u1 ∈ P . Similarly, u2 ∈ P , and by IH-3 we obtain u1 ∈
w1(B) and u2 ∈ w1(C), whence u = u1u2 ∈ w1(A).

b) A = B \C.

158 S. Kuznetsov

⊇ Take u ∈ w1(B \C). For any v ∈ w1(B) we have vu ∈ w1(C). We claim

that u ∈ w2(B \C). Take v ∈ w2(B) ⊆ P ∪ PR ∪ T (IH-1). If v ∈ P , then
v ∈ w1(B) (IH-3), and vu ∈ w1(C) ⊆ w2(C) (IH-3). If v ∈ PR ∪ T , then
vu ∈ (PR ∪ T) · P ⊆ T (K) ⊆ w2(C) (Lemma 6, statements 3 and 4, and
IH-2). Therefore, u ∈ w2(B) \w2(C) = w2(B \C); also we have u ∈ P , since
w1(B \C) ⊆ P .

⊆ If u ∈ w2(B \C) and u ∈ P , then for any v ∈ w1(B) ⊆ w2(B) we have

vu ∈ w2(C). Since v, u ∈ P , vu ∈ P . By IH-3, vu ∈ w1(C). Thus u ∈ w1(B \C).
c) A = C /B. Symmetrically.

4. Consider three cases.
a) A = B · C. Then tr(AR) = tr(CR) · tr(BR).

⊇ u ∈ w1(tr(A
R))R = w1(tr(C

R)·tr(BR))R =
(
w1(tr(C

R))·w1(tr(B
R))
)R

=

w1(tr(B
R))R · w1(tr(C

R))R ⊆ w2(B) · w2(C) = w2(A) (IH-4); u ∈ PR.

⊆ Let u ∈ PR and u ∈ w2(A) = w2(B) · w2(C). Then u = u1u2, where

u1 ∈ w2(B), u2 ∈ w2(C). We claim that u1, u2 ∈ PR. Suppose the contrary:
u1 /∈ PR. Then u1 ∈ P ∪T (IH-1), u2 ∈ P ∪PR∪T , whence u = u1u2 ∈ (P ∪T) ·
(P ∪ PR ∪ T) ⊆ P ∪ T . Contradiction (u ∈ PR). Thus, u1 ∈ PR, and therefore
u2 ∈ PR, and, using IH-4, we obtain u1 ∈ w1(tr(B

R))R, u2 ∈ w1(tr(C
R))R.

Hence u = u1u2 ∈ w1(tr(B
R))R · w1(tr(C

R))R =
(
w1(tr(C

R)) · w1(tr(B
R))
)R

=
w1(tr(C

R) · tr(BR))R = w1(tr(A
R))R.

b) A = B \C. Then tr(AR) = tr(CR) / tr(BR).

⊇ Let u ∈ w1(tr(C
R) / tr(BR))R = w1(tr(B

R))R \w1(tr(C
R))R, so for every

v ∈ w1(tr(B
R))R we have vu ∈ w1(tr(C

R))R. We claim that u ∈ w2(B \C). Take
an arbitrary v ∈ w2(B) ⊆ P ∪ PR ∪ T (IH-1). If v ∈ PR, then v ∈ w1(tr(B

R))R

(IH-4), whence vu ∈ w1(tr(C
R))R ⊆ w2(C).

If v ∈ P ∪ T , then (since u ∈ PR) we have vu ∈ (P ∪ T) · PR ⊆ T (K) ⊆ w2(C)
(Lemma 6 and IH-2).

⊆ If u ∈ w2(B \C) and u ∈ PR, then for any v ∈ w1(tr(B
R))R ⊆ w2(B)

we have vu ∈ w2(C). Since v, u ∈ PR, vu ∈ PR, therefore vu ∈ w1(tr(C
R))R

(IH-4). Thus u ∈ w1(tr(B
R))R \w1(tr(C

R))R = w1(A
R)R.

c) A = C /B. Symmetrically.

This completes the proof of Lemma 8.

Since w1(F) �⊆ w1(G), there exists an element u0 such that u0 ∈ w1(F) and
u0 /∈ w1(G). Since u0 ∈ P , u0 ∈ w2(F) and u0 /∈ w2(G). Therefore, w2(F) �⊆
w2(G). Since F0 ↔ F , G0 ↔ G, and LR is L-sound, we see that w2(F0) = w2(F),
w2(G0) = w2(G), and M2 is a countermodel for F0 → G0. This completes the
proof of Theorem 2.

Note that we have constructed a countermodel (in the sense of the extended
language) for any sequent F → G that is not provable in L′ (this could be
potentially weaker than LR �� F → G). Thus we get the following statement:

Lemma 9. LR � A1 . . . An → B if and only if L′ � tr(A1) . . . tr(An)→ tr(B).

L-Completeness of the Lambek Calculus with the Reversal Operation 159

5 LR-Grammars

The Lambek calculus and its variants are used for describing formal languages
via Lambek categorial grammars. An L-grammar is a triple G = 〈Σ,H,�〉,
where Σ is a finite alphabet, H ∈ Tp, and � is a finite correspondence between
Tp and Σ (� ⊂ Tp×Σ). The language generated by G is the set of all nonempty
words a1 . . . an over Σ for which there exist types B1, . . . , Bn such that L �
B1 . . . Bn → H and Bi� ai for all i ≤ n. We denote this language by L(G). This
class of grammars is weakly equivalent to the class of context-free grammars
(without ε-rules) in the following sense:

Theorem 3. A formal language without the empty word is context-free if and
only if it is generated by some L-grammar. [5]

By modifying our definition in a natural way one can introduce the notion of
LR-grammar. These grammars also generate precisely all context-free languages
without the empty word:

Theorem 4. A formal language without the empty word is context-free if and
only if it is generated by some LR-grammar.

Proof. The “only if” part follows directly from Theorem 3 due to conservativity
of LR over L (Lemma 1).

Let us prove the “if” part. Let M = L(G) for some LR-grammar G. Let G′ be
the grammar obtained from G by replacing all the types with their normal forms
and considering it as an L′-grammar. By Lemma 9, L(G′) = L(G) = M , and this
language is context-free due to Theorem 3 (because L′ and L are essentially the
same calculus).

Acknowledgments. I am grateful to Prof. Mati Pentus for fruitful discussions
and constant attention to my work. I am also grateful to Prof. Sergei Adian for
inspiring techniques of working with words over an alphabet given in his lectures
and papers.

This research was supported by the Russian Foundation for Basic Research
(grant 11-01-00281-a), by the Presidential Council for Support of Leading Re-
search Schools (grant NSh-65648.2010.1) and by the Scientific and Technological
Cooperation Programme Switzerland–Russia (STCP-CH-RU, project “Compu-
tational Proof Theory”).

References

1. Buszkowski, W.: Compatibility of categorial grammar with an associated category
system. Zeitschr. für Math. Logik und Grundl. der Math. 28, 229–238 (1982)

2. Lambek, J.: The mathematics of sentence structure. American Math. Monthly 65(3),
154–170 (1958)

3. Lambek, J.: From categorial grammar to bilinear logic. In: Došen, K.,
Schroeder-Heister, P. (eds.) Substructural Logics. Studies in Logic and Computa-
tion, vol. 2, pp. 128–139. Clarendon Press, Oxford (1993)

160 S. Kuznetsov

4. Minina, V. A.: Completeness of the Lambek syntactic calculus with the involution
operation (in Russian). Diploma paper, Dept. of Math. Logic and Theory of Algo-
rithms, Moscow State University (2001)

5. Pentus, M.: Lambek grammars are context free. In: 8th Annual IEEE Symposium
on Logic in Computer Science, pp. 429–433. IEEE Computer Society Press, Los
Alamitos (1993)

6. Pentus, M.: Models for the Lambek calculus. Annals of Pure and Applied Logic 75(1–
2), 179–213 (1995)

7. Pentus, M.: Free monoid completeness of the Lambek calculus allowing empty
premises. In: Larrazabal, J.M., Lascar, D., Mints, G. (eds.) Logic Colloquium 1996.
LNL, vol. 12, pp. 171–209. Springer, Berlin (1998)

Distributive Full Nonassociative Lambek

Calculus with S4-Modalities Is Context-Free

Zhe Lin1,2,�

1 Institute of Logic and Cognition, Sun Yat-sen University, Guangzhou, China
2 Faculty of Mathematics and Computer Science Adam Mickiewicz University,

Poznań, Poland
pennyshaq@gmail.com

Abstract. We study Nonassociative Lambek Calculus with additives,
satisfying the distributive law and S4-modalities. We prove that the cat-
egorial grammars based on it, also enriched with assumptions, gener-
ate context-free languages. This extends earlier results of Buszkowski [4]
for NL (Nonassociative Lambek Calculus), Buszkowski and Farulewski
[6] for DNFL (Distributive Full Nonassociative Lambek Calculus) and
Plummer [19], [20] for NLS4 (Nonassociative Lambek Calculus with
S4-modalities) without assumptions.

1 Introduction

Nonassociative Lambek Calculus NL was introduced by Lambek [13] as a nonas-
sociative version of Syntatic Calculus of Lambek [12]. NL is a complete logic of
residuated groupoids. A residuated groupoid (G, ·, \, /,≤) is an ordered algebra
such that (G,≤) is a poset and ·, \, / are binary operations on G satisfying the
residuation law:

a · b ≤ c iff b ≤ a\c iff a ≤ c/b

for all a, b, c ∈ G.
Categorial grammars based on NL generate precisely the ε-free context-free

languages, see [3], [4], [11]. Pentus [18] proves the same for Associative Lambek
Calculus. However, using FL (Full Lambek Calculus) [10], one can generate lan-
guages which are not context-free. Buszkowski and Farulewski [6] prove that the
categorial grammars based on DFNL with finitely many assumptions generate
context-free languages. and Similar results for DFNL, supplied with arbitrary
unary operations and its residuals, a boolean or Heyting negation are obatianed
in the same paper.

NL can be supplied with modal operations ♦, �↓, satisfying the adjoint law:
♦A ⇒ B iff A ⇒ �↓B. This system, denoted by NL♦, enriched with modal
postulates enables one to use certain structural postulates in a controlled way.
Such systems were introduced by Moortgat [15] in connection with Type-Logical

� The work of author is supported by the grant GD10CZX01 (Guangdong Social Sci-
ences Fund, China)

D. Béchet and A. Dikovsky (Eds.): LACL 2012, LNCS 7351, pp. 161–172, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

162 Z. Lin

Grammar. The problems of the generative capacity of the categorial grammars
based on NL♦ and L♦ were settled by Jäger [9], [8]. Both are context-free.
Plummer [19], [20] studies NLS4, the enrichment of NL♦ by S4-axioms (4: ♦♦A⇒
♦A and T: A⇒ ♦A). His results concern the context-freeness of this system.

In [14], we extend Plummer’s results for NLS4 with assumptions and prove
the polynomial time decidability of the consequence relation of NLS4 and the
context-freeness of the corresponding grammars. (We also admit an additional
axiom K: ♦(a · b) ≤ ♦a · ♦b or additional axioms K1: ♦(a · b) ≤ ♦a · b, K2:
♦(a · b) ≤ a · ♦b).

In the present paper, we combine these two lines of research and extend the
results to NLS4 with distributive lattice and finitely many non-logical assump-
tions (but we omit the extra axioms e.g. K, K1, K2). Our proof also shows that
the same results hold for NL♦ with distributive lattice without any additional
axiom or NL♦ with distributive lattice, admitting 4 or T only.

The key arguments of the proofs in [14] and the present paper are the ex-
tended subformula property for Gentzen style axiomatization and the interpo-
lation lemma (interpolation of formula-trees by formulae, following some ideas
from [6], [5]). We present a sequent system, which is complete with respect to the
class of distributive lattice ordered residuated groupoids with S4 unary resid-
uated operators. This system is an extension of Full Nonassociative Lambek
Calculus (FNL). Since the distributive law A ∧ (B ∨C)⇒ (A ∧B) ∨ (A ∧C) is
added as a new axiom, this system does not admit cut-elimination. We prove the
strong finite model property of this class of lattice ordered residuated groupoids
and the extended subformula property for the corresponding Gentzen style ax-
iomatization. Here we adopt the model-theoretic method from [6], [5] to NLS4

enriched with distributive lattice and finitely many non-logical assumptions to
prove the extended subformula property. However our proof for the interpola-
tion lemma is new and finer than in earlier papers (e.g. [6], [5], [14], [20]), which
yields a simpler description of the set of possible interpolants.

Our interest in modal extensions, additives and non-logical assumptions can
be partially motivated by linguistics application. Non-logical assumptions are
useful in linguistics, especially when we need some sequents that cannot be
derived in the logic. For instance, in the Lambek Calculus we cannot trans-
form s\(s/s) (the type of sentence conjunction) to vp\(vp/vp) (the type of verb
phrase conjunction). However, we can add the sequent s\(s/s)⇒ vp\(vp/vp) as
an assumption. A typical linguistic usage of additives is connected with lexical
ambiguity. For assignments a → Ai, i = 1, . . . , n, by using ∧, one can combine
these assignments into a rigid type assignment a → A1 ∧ . . . ∧ An, in the type
lexicon of categorial grammar. Another example was given by Kanazawa [10]. He
makes use of additives to encode feature decomposition. For instance, consider
the sentence John walks and John becomes rich. According to Kanazawa, John
is assigned sg ∧ np, where sg denote singular, walks type (np ∧ sg)\s, becomes
((np ∧ sg)\s)/(np ∨ ap), and rich ap. However, such usage of additives may
sometimes cause problems (see [16]). Now let us consider the following example
discussed in [7]. One can ambiguously assign an accusative personal np ∧ acc or

Distributive Full Nonassociative Lambek Calculus 163

a possessive np\n to a pronoun her. Combing both into a single type leads to
the assignment to her of the type (np∧ acc)∧ (np/n). Then, the problem arises
of how to prevent the acc marking to reassociate with the possessive type np/n.

A possible solution, due to the present author, looks as follows. It can be
solved by using additives and reflexive unary modalities �↓ (satisfying �↓A ⇒
A). Simply, one can replace np ∧ acc by �↓

accnp. Since �↓
accnp ⇒ np, �↓

accnp
has the same desired property as np ∧ acc. By doing so, we obtain the type
�↓

accnp∧(np/n) such that the acc marking can never reassociate with np/n. It is
more natural to treat the feature as a mark of its mother type than a individual
atomic type. Hence, using modalities to characterize the feature of type and
additives for ambiguity seems to be a better choice, because one can get rid of
some undesired property like sg ∧ np⇒ sg. Modalities with reflexive behaviour
are used for analyzing different linguistic phenomenons by many authors as well
(see Morrill[17], Versmissen [21], Heylen [7] and Bernardi [2]). This behaviour
can also be characterized by a pair of residuated modalities ♦ and �↓, since
♦�↓A⇒ A⇒ �↓♦A stands in NL♦ .

The logic with S4-modalities also has certain interesting features from the
theoretical point of view. Firstly, with axioms 4 and T, one can easily prove
♦�A ⇔ �A and �♦A ⇔ ♦A, for any formula A. Hence, such extension might
be the simplest modal extension, since there are only two distinguished modal
operations ♦ and �↓. Secondly, to the best of my knowledge, there is no evidence
of using complex modalities like �↓�↓♦�↓ in the literature. Due to the results
in [19], [20], [14] and the present paper, the generative capacity of the categorial
grammars based on logic with S4-modalities does not surpass context-freeness.
Therefore, it might be safe to consider such extension in linguistic application.
Finally, it may be helpful for identifying sufficient conditions when modal postu-
lates preserve context-freeness. For instance, the categorial grammars based on
NLS4 enriched K1 and K2 generate context-free languages (see [14]), while NL♦
with K1 and K2 is conjectured to be non-context-free ([19]).

2 Interpolation and Context-Freeness

Let us recall the sequent system of NL♦. Formulae (types) are formed out of
atomic types p, q, r . . . by means of three binary operation symbols •, \, /
and two unary operation symbols ♦, �↓. Formula trees (formula-structures) are
recursively defined as follow: (i) every formula is a formula-tree, (ii) if Γ , Δ are
formula-trees, then (Γ ◦Δ) is a formula-tree, (iii) if Γ is a formula-tree, then 〈Γ 〉
is a formula-tree. A context is a structure Γ [◦] containing a single occurrence
of special substructure ◦ (a place for subsitution): Γ [Δ] denotes the result of
substitution of Δ for ◦ in Γ [◦]. Sequents are of the form Γ ⇒ A such that Γ is
a formula tree and A is a formula. NL♦ admits the axioms

(Id) A⇒ A

and the inference rules

(\L) Δ⇒ A; Γ [B]⇒ C

Γ [Δ ◦ (A\B)]⇒ C
(\R) A ◦ Γ ⇒ B

Γ ⇒ A\B

164 Z. Lin

(/L)
Γ [A]⇒ C; Δ⇒ B

Γ [(A/B) ◦Δ]⇒ C
(/R)

Γ ◦B ⇒ A

Γ ⇒ A/B

(·L) Γ [A ◦B]⇒ C

Γ [A · B]⇒ C
(·R) Γ ⇒ A; Δ⇒ B

Γ ◦Δ⇒ A ·B

(CUT)
Δ⇒ A; Γ [A]⇒ B

Γ [Δ]⇒ B

(♦L) Γ [〈A〉]⇒ B

Γ [♦A]⇒ B
(♦R) Γ ⇒ A

〈Γ 〉 ⇒ ♦A

(�↓L)
Γ [A]⇒ B

Γ [〈�↓A〉]⇒ B
(�↓R)

〈Γ 〉 ⇒ A

Γ ⇒ �↓A

(♦L), (♦R), (�↓L) and (�↓R) are rules for unary modalities. Distributive Full
Nonassociative Lambek Calculus enriched with unary modalities DFNL♦ em-
ploys operations ·, \, /, ♦, �↓, ∧ and ∨. One admits additional rules

(∧L) Γ [Ai]⇒ B

Γ [A1 ∧ A2]⇒ B
(∧R) Γ ⇒ A Γ ⇒ B

Γ ⇒ A ∧B

(∨L) Γ [A1]⇒ B Γ [A2]⇒ B

Γ [A1 ∨A2]⇒ B
(∨R) Γ ⇒ Ai

Γ ⇒ A1 ∨ A2

and the distributive axiom

(D) A ∧ (B ∨ C)⇒ (A ∧B) ∨ (A ∧ C).

In (∧L) and (∨R), the subscript equals 1 or 2. Notice that the converse sequent
of (D) is provable in DFNL♦.

By DFNLS4, we denote the system DFNL♦ enriched with the following struc-
tural rules (4) and (T) (corresponding to axioms 4, T)

(T)
Γ [〈Δ〉]⇒ A

Γ [Δ]⇒ A
(4)

Γ [〈Δ〉]⇒ A

Γ [〈〈Δ〉〉]⇒ A

(CUT) can be eliminated from NLS4 (see [15]), but not for DFNL♦ and DFNLS4.
Notice that ♦ can be treated as usual modal operation ♦ in classical modal logic.
�↓ is the residuated operations of ♦, which is different from � in classical modal
logic. Hence, in the present paper, we call this system DNFLS4 following A. R.
Plummer.

By F (Γ), we denote the formula arising from Γ by dropping all binary and
unary operators ◦ and 〈〉, respectively, and the corresponding parentheses ().
Γ ⇒ A and F (Γ) ⇒ A are mutually deducible in DFNLS4. Let Φ be a set
of sequents of the form A ⇒ B. Hereafter, we assume that Φ is finite. By
DNFLS4(Φ), one denotes DNFLS4 enriched with finitely many assumptions Φ.
We write Φ �DNFLS4 Γ ⇒ A if Γ ⇒ A is derivable from Φ in DNFLS4 (provable
in DNFLS4(Φ)).

Distributive Full Nonassociative Lambek Calculus 165

A DNFLS4(Φ)-grammar over an alphabet Σ is a pair 〈L,D〉, where L, the
lexicon, is a finite relation between strings from Σ+ and formulae of DNFLS4(Φ),
and D is a finite set of designated formulae (types). A language L(G) generated
by a DNFLS4(Φ)-grammar G = 〈L,D〉 is defined as a set of strings a1 · · · an,
where ai ∈ Σ+, 1 ≤ i ≤ n, and n ≥ 1, satisfying the following condition:
there exist formulae A1, . . . , An, S, and a formula structure Γ such that for all
1 ≤ i ≤ n 〈ai, Ai〉 ∈ L, S ∈ D, and Φ �DNFLS4 Γ ⇒ S, where F (Γ) = A1 · · ·An.

Here below, we prove that every language recognized by a DFNLS4

(Φ)-grammar can also be generated by a context-free grammar, by showing that
every derivable sequent in DNFLS4(Φ) can be derived (by means of (CUT) only)
from some short derivable sequents containing at most three formulae, where all
of the formulae belong to a finite set of formulae. This follows from the fact that
there exists a finite set of formulae such that each structure Δ in a derivable
sequent Γ [Δ] ⇒ A has an interpolant (formula) that belongs to this set (cf.
Lemma 9).

By a T -sequent we mean a sequent such that all formulae occurring in it
belong to T . We write Φ �S Γ ⇒T A if Γ ⇒ A has a deduction from Φ (in
the given calculus S), which consists of T -sequents only (called a T -deduction).
Two formulae A and B are said to be T -equivalent in a calculus S, if and only
if �S A⇒T B and �S B ⇒T A. T -equivalence is a equivalence relation, by (Id)
and (CUT).

Lemma 1. Let T be a set of formulae closed under ∨ and ∧. If Φ �DFNLS4

Γ [〈Δ〉] ⇒T A, then there exists a D ∈ T such that Φ �DFNLS4 〈Δ〉 ⇒T D,
Φ �DFNLS4 〈D〉 ⇒T D and Φ �DFNLS4 Γ [D]⇒T A.

Proof: D is called an interpolant of 〈Δ〉 in Γ [〈Δ〉]⇒ A. The proof proceeds by
induction on T -deduction of Γ [〈Δ〉] ⇒ A. The cases of axiom and assumptions
are trivial, since there is no structure of the from 〈Δ〉 in an axiom or assumption.
Let Γ [〈Δ〉]⇒ A be the conclusion of the rule R. (CUT) is easy. Let us consider
other rules.

Firstly, we assume that 〈Δ〉 does not contain the formula or structure op-
eration, introduced by R (active formula and active structure operation). Let
R = (∧R). Assume the premise are Γ [〈Δ〉] ⇒ A1, Γ [〈Δ〉] ⇒ A2 and the
conclusion is Γ [〈Δ〉] ⇒ A1 ∧ A2. By induction hypothesis, there are inter-
polants D1, D2 such that Φ �DFNLS4 〈Δ〉 ⇒T D1, Φ �DFNLS4 〈D1〉 ⇒T D1

Φ �DFNLS4 Γ [D1] ⇒T A1, Φ �DFNLS4 〈Δ〉 ⇒T D2, Φ �DFNLS4 〈D2〉 ⇒T D2

and Φ �DFNLS4 Γ [D2] ⇒T A2. Then, one gets Φ �DFNLS4 〈Δ〉 ⇒T D1 ∧ D2 by
(∧R). By (∧L) and (∧R), we obtain Φ �DFNLS4 〈D1 ∧ D2〉 ⇒T D1 ∧ D2 and
Φ �DFNLS4 Γ [D1 ∧D2] ⇒T A1 ∧ A2. The case of (∨L) can be treated similarly.
For other cases, 〈Δ〉 must come exactly from one premise of R. One takes an
interpolant from this premise, then the thesis follows directly from the induction
hypothesis.

Secondly, we assume that 〈Δ〉 contains the active formula or the active struc-
ture operation (So the rule must be an L-rule or (♦R)). For (♦R) with the
premise Δ ⇒ A and the conclusion 〈Δ〉 ⇒ ♦A. Let the interpolant be ♦A. By
(Id), (♦R), (4) and (♦L), Φ �DFNLS4 〈♦A〉 ⇒T ♦A. This yields that Φ �DFNLS4

166 Z. Lin

〈Δ〉 ⇒T D (Φ �DFNLS4 〈Δ〉 ⇒T ♦A), Φ �DFNLS4 〈D〉 ⇒T D and Φ �DFNLS4

〈D〉 ⇒T ♦A (Φ �DFNLS4 〈♦A〉 ⇒T ♦A). For (�↓L) with premise Γ [C]⇒ A and
conclusion Γ [〈�↓C〉] ⇒ A, where 〈Δ〉 = 〈�↓C〉. It’s similar to cases (♦R). One
takes �↓C as the interpolant. Then Φ �DFNLS4 〈�↓C〉 ⇒T �↓C, by (Id), (�↓L),
(4) and (�↓R). For R=(4), assume 〈Δ〉 arises from structure Δ∗ by rule R. It
follows that the interpolant of Δ∗ can also be the interpolant of 〈Δ〉, by induc-
tion hypothesis and R. Similarly, if R is rule (·L), (∧L), (\L) or (/L) and 〈Δ∗〉
be the source of 〈Δ〉, which means that 〈Δ〉 arises from 〈Δ∗〉 by rule R, then an
interpolant of 〈Δ∗〉 is also an interpolant of 〈Δ〉. Let us consider the final case
R = (∨L). Assume the premise are Γ [〈Δ∗[B1]〉]⇒ A, Γ [〈Δ∗[B2]〉]⇒ A and the
conclusion is Γ [〈Δ∗[B1 ∨B2]〉]⇒ A, where 〈Δ〉 = 〈Δ∗[B1 ∨B2]〉. Let D1 be an
interpolant of 〈Δ∗[B1]〉 in the first premise and D2 be an interpolant of 〈Δ∗[B2]〉
in the second premise. By induction hypothesis, Φ �DFNLS4 〈D1〉 ⇒T D1 and
Φ �DFNLS4 〈D2〉 ⇒T D2. By (∨R) and (∨L) Φ �DFNLS4 〈D1 ∨D2〉 ⇒T D1 ∨D2.
Hence, D1 ∨D2 is an interpolant of 〈Δ〉 in the conclusion, by induction hypoth-
esis, (∨R) and (∨L).

Lemma 2. Let T be a set of formulae closed under ∨, ∧. If Φ �DFNLS4 Γ [Δ]⇒T

A then there exists a D ∈ T such that Φ �DFNLS4 Δ ⇒T D and Φ �DFNLS4

Γ [D]⇒T A.

Proof: If Δ is a single formula then we take D = Δ. Assume Δ is not a single
formula. If Δ is of the form 〈Δ∗〉 for some structure Δ∗ then the thesis follows
from lemma 1. Otherwise, the proof is similar to the proof of lemma 1 without
considering the additional conditions.

The following lemma is an analogue of lemma 2 in Buszkowski [6]

Lemma 3. If T is a set of formulae generated from a finite set and closed under
∧, ∨, then T is finite up to the relation of T -equivalence in DFNLS4.

Proof: Since A∧(B∨C)⇔ (A∧B)∨(A∧C) is provable in DNFLS4, A∧(B∨C)
and (A ∧ B) ∨ (A ∧ C) are T-equivalent, for any A,B,C ∈ T . Consequently,
every formula from T is T -equivalent to finite disjunction of finite conjunctions
of formulae from T . There are only finitely many formulae of latter form, if one
omits repetitions.

One can obtain an analogous interpolation lemma for the system with an addi-
tional axiom K by proving a variant of lemma 1 (replacing 〈Δ〉 by 〈Δ1〉◦. . .◦〈Δn〉,
where n ≥ 1). Similarly, let us consider the system enriched with additional ax-
ioms K1, K2. Using the above strategy, one can prove another variant of lemma
1 (replacing 〈Δ〉 by Λ ◦ 〈Δ〉 and 〈Δ〉 ◦ Λ, where Λ can be empty), which yields
the interpolation lemma for this system. If we consider some systems enriched
with distributive lattice and modalities satisfying some additional axioms (e.g.
4, T here) then we cannot prove lemma 2 by the strategies in [6], [20] and [14].
Notice that if one assumes that T is also closed under ♦ in Lemma 2, like in
[20] and [14], then T is not finite up to the relation of T -equivalence in DFNLS4,
which yields the failure of lemma 3. Hence lemma 1 is essential in the proof.

Distributive Full Nonassociative Lambek Calculus 167

A distributive lattice-ordered residuated groupoid with
S4-operators (S4-DLRG) is a structure (G,∧,∨, ·, \, /,♦,�↓) such that (G,∧,∨)
is a distributive lattice and (G, ·, \, /,♦,�↓) is a structure, where ·, \, / and ♦,
�↓ are binary and unary operations on G, respectively, satisfying the following
conditions:

a · b ≤ c iff b ≤ a\c iff a ≤ c/b (1)

♦a ≤ b iff a ≤ �↓b (2)

4 : ♦♦a ≤ ♦a T : a ≤ ♦a (3)

for all a, b, c ∈ G, where ≤ is the lattice ordering. It is easy to prove that
DFNLS4 is strongly complete with respect to S4-DLRGs. Besides by S4-LRG,
we denote a lattice-ordered residuated groupoid with S4-operators. Let G be a
S4-DLRG. We recall some basic notions. A valuation μ in G is a homomorphism
from the formula algebra into G. A sequent Γ ⇒ A is true in the model (G, μ), if
μ(Γ) ≤ μ(A). The strong completeness means the following: Φ �DFNLS4 Γ ⇒ A
if and only if, for any model (G, μ). if all sequents from Φ are true, then Γ ⇒ A
is true.

By G and G, we denote a groupoid and its universe, respectively. Let G =(G,
·, .) be a groupoid, where . is a unary operation on G. On the powerset P (G),
one defines operations: U � V = {a · b ∈ G : a ∈ U, b ∈ V }, ♦U = {.a ∈ G :
a ∈ U}, U\V = {a ∈ G : U � {a} ⊆ V }, V/U = {a ∈ G; {a} � U ⊆ V },
�↓U{a ∈ G : .a ∈ U}, U ∨ V = U ∪ V , U ∧ V = U ∩ V . P (G) with operations
�, ♦, \, /, �↓, ∨ and ∧ is a distributive lattice-ordered residuated groupoid
satisfying (1) and (2) (it is a complete lattice). The order is ⊆. An operator C :
P (G)→ P (G) is called a S4-closure operator (or: a S4-nucleus) on G, if it satisfies
the following conditions: (C1) U ⊆ C(U), (C2) if U ⊆ V then C(U) ⊆ C(V),
(C3) C(C(U)) ⊆ C(U), (C4) C(U)�C(V) ⊆ C(U �V), (C5) ♦C(U) ⊆ C(♦U),
(C6) C(♦C(♦C(U))) ⊆ C(♦U), (C7) C(U) ⊆ C(♦U). For U ⊆ P (G), U is called
C − closed if U = C(U). By C(G), we denote the family of C − closed subsets
of G. Let U ⊗ V = C(U � V), �U = C(♦U), U ∨C V = C(U ∨ V), and \, /,
�↓, ∧, be defined as above. By (C1)-(C5), C(G) = (C(G),∧,∨C ,⊗, \, /,�,�↓)
is a complete lattice-ordered residuated groupoid [5], it need not be distributive.
The order is ⊆. Using (C6)-(C7), it is easy to prove ��U ⊆ �U , U ⊆ �U . It
follows that C(G) is a S4-LRG.

Let T be a nonempty set of formulae. By T ∗, we denote the set of all formula
structures formed out of formulae in T . Similarly, T ∗[◦] denotes the set of all
contexts in which all formulae belong to T . G(T ∗) = (T ∗, ◦, 〈〉) is a groupoid
such that 〈〉 is a unary operation on T ∗. Let Γ [◦] ∈ T ∗[◦] and A ∈ T , we define:

[Γ [◦], A] = {Δ|Δ ∈ T ∗ and Φ �DFNLS4 Γ [Δ]⇒T A}

We define B(T) as the family of all sets [Γ [◦], A], defined above. One defines CT

as follows:

CT (U) =
⋂
{[Γ [◦], A] ∈ B(T) : U ⊆ [Γ [◦], A]}

We prove the following proposition.

168 Z. Lin

Proposition 1. CT is a S4 closure operator.

Proof: It is easy to see that CT satisfies (C1),(C2),(C3). For (C4), (C5) one
may see [6] and [5]. We prove that CT satisfies (C6)-(C7). Firstly, for (C6), let
U ⊆ T ∗ and Δ ∈ CT (U). We show 〈〈Δ〉〉 ∈ CT (♦U). Let [Γ [◦], A] ∈ B(T) be
such that ♦U ⊆ [Γ [◦], A]. For any 〈Π〉 ∈ ♦U , Φ �DFNLS4 Γ [〈Π〉]⇒T A, whence
Φ �DFNLS4 Γ [〈〈Π〉〉] ⇒T A, by (4). Consequently, U ⊆ [Γ [〈〈◦〉〉], A]. It follows
that CT (U) ⊆ [Γ [〈〈◦〉〉], A], by the definition of CT . Consequently, Φ �DFNLS4

Γ [〈〈Δ〉〉] ⇒T A, whence 〈〈Δ〉〉 ∈ [Γ [◦], A]. This yields that 〈〈Δ〉〉 ∈ CT (♦U).
Then, ♦♦CT (U) ⊆ CT (♦U). By (C2) and (C3), CT (♦♦CT (U)) ⊆ CT (♦U). By
(C5), ♦CT (♦CT (U)) ⊆ CT (♦♦CT (U)), whence ♦CT (♦CT (U)) ⊆ CT (♦U). It
follows that (C6) stands, by (C2) and (C3).

Secondly, let us consider the case (C7). Assume U ⊆ T ∗ and Δ ∈ CT (U). For
any [Γ [◦], A] ∈ B(T) satisfies ♦U ⊆ [Γ [◦], A]. Let 〈Π〉 ∈ ♦U , then Φ �DFNLS4

Γ [〈Π〉] ⇒T A, whence Φ �DFNLS4 Γ [Π] ⇒T A, by (T). So, CT (U) ⊆ [Γ [◦], A].
Hence Φ �DFNLS4 Γ [Δ] ⇒T A. Consequently, Δ ∈ CT (♦U), which follows (C7)
stands.
Accordingly, CT (G(T ∗)) is a S4-LRG. We define:

[A] = [◦, A] = {Γ |Γ ∈ T ∗ and Φ �DFNLS4 Γ ⇒T A}

for A ∈ T and [A] ∈ B(T). The following equations are true in CT (G(T ∗))
provided that all formulae appearing in them belong to T .

[A]⊗ [B] = [A ·B], [A]\[B] = [A\B], [A]/[B] = [A/B] (4)

�[A] = [♦A], �↓[A] = [�↓A] (5)

[A] ∩ [B] = [A ∧B], [A] ∨C [B] = [A ∨B] (6)

Such equations are also discussed in [6], [5], [1]. For the completeness of the
proof, we show parts of the proof here. We prove the equation (5) and (6). We
show the first equation (5). Let Γ ∈ ♦[A], whence Γ = 〈Δ〉 for some Δ ∈ [A].
Hence Φ �DFNLS4 Δ ⇒T A. By (♦R), Φ �DFNLS4 〈Δ〉 ⇒T ♦A. Consequently,
♦[A] ⊆ [♦A]. By (C2) and (C3), �[A] = C(♦[A]) ⊆ C([♦A]). We prove the
converse inclusion. Let ♦[A] ⊆ [Γ [◦], C], then Φ �DFNLS4 Γ [〈A〉] ⇒T C. Hence
Φ �DFNLS4 Γ [♦A] ⇒T C. Consequently, [♦A] ⊆ [Γ [◦], C]. By the definition of
CT , [♦A] ⊆ CT (♦[A]). The proof of the second equation (5) is similar.

We prove the second equation (6). AssumeΔ ∈ [A]. Then Φ �DFNLS4 Δ⇒T A,
whence Φ �DFNLS4 Δ⇒T A∨B, by(∨R). Consequently, [A] ⊆ [A∨B]. Similarly,
[B] ⊆ [A ∨ B], whence [A] ∪ [B] ⊆ [A ∨ B]. By (C2) and (C3), [A] ∨C [B] =
CT ([A] ∪ [B]) ⊆ [A ∨ B]. For the converse inclusion, let [A] ∪ [B] ⊆ [Γ [◦], C],
then Φ �DFNLS4 Γ [A] ⇒T C and Φ �DFNLS4 Γ [B] ⇒T C. By (∨L), Φ �DFNLS4

Γ [A∨B]⇒T C, which yields [A∨B] ⊆ [A]∨C [B]. The proof of the first equation
(6) is similar.

Let T be a finite nonempty set of formulae. By T , one denotes the smallest set
of formulae containing all formulae from T and closed under subformulae and
∧, ∨. By lemma 3, T is finite up to T -equivalence. Let R be a selector of the

Distributive Full Nonassociative Lambek Calculus 169

family of equivalence classes of T -equivalence. R chooses one formula from each
equivalence class. If there are some formulae of T contained in an equivalence
class then R chooses one formula from these formulae. Otherwise, R chooses an
arbitrary formula from an equivalence class. Clearly R is finite. Hereafter, by
r(T), we denote the set R generated from set T . Notice that r(r(T)) = r(T),
due to lemma 3. Lemma 4 to lemma 9 is analogous to corresponding lemmas
from [6], [5] for DFNL and DGL. Here we only provide the proof of lemma 4 and
lemma 6 in details, which are the key arguments of the proof of the extended
subformula property of DFNLS4. We skip the proofs for others. Lemma 4 is
essential for proving that CT (G(T

∗
)) is finite and satisfies distributive axiom in

lemma 5. Corollary 7 directly follows from lemma 6 and lemma 3.

Lemma 4. For any nontrivial set U ∈ CT (G(T
∗
)), there exists a formula A ∈

r(T) such that U = [A].

Proof: For any U ∈ CT (G(T
∗
)), assume U ⊆ [Γ [◦], A]. Let Δ ∈ U , then

Φ �DFNLS4 Γ [Δ] ⇒T A. By lemma 2, there exists D ∈ T such that Φ �DFNLS4

Γ [D] ⇒T A and Φ �DFNLS4 Δ ⇒T D. By lemma 3, D can be replaced by a
T -equivalent formula in r(T). Assume D ∈ r(T). For each Δ ∈ U , one obtains a
Di ∈ r(T) fulfilling above. Let u(D) be the T -equivalent formula of the disjunc-
tion of all Di (1 ≤ i ≤ n). Clearly, U ⊆ [u(D)] and [u(D)] ⊆ [Γ [◦], A], by (∨R)
and (∨L). For each [Γ [◦], A] satisfying U ⊆ [Γ [◦], A], one takes a u(Di) ∈ r(T)
fulfilling above for 1 ≤ i ≤ m. Let j(D) be the T -equivalent formula of the con-
junction of all u(Di). By (6), U ⊆ [u(D1)∩ . . .∩u(Dm)] = [j(D)]. Since for each
[Γ [◦], A] satisfying U ⊆ [Γ [◦], A], there exists a u(Di) ⊆ [Γ [◦], A], for 1 ≤ i ≤ m.
Therefore, by the definition of CT , j(D) ⊆ U , which yields U = [j(D)] and
j(D) ∈ r(T).

Lemma 5. CT (G(T
∗
)) is a finite S4−DLRG.

Lemma 6. T denotes a finite set of formulae, containing all formulae in Φ. Let
μ be a valuation in CT (G(T

∗
)) such that μ(p) = [p]. For any T -sequent Γ ⇒ A,

this sequent is true in (CT (G(T
∗
)), μ) if and only if Φ �DFNLS4 Γ ⇒T A.

Proof: Assume a T -sequent Γ ⇒ A be true in (CT (G(T
∗
)), μ). Then μ(Γ) ⊆

μ(A). Since Γ ∈ μ(Γ), we get Γ ∈ μ(A) = [A]. Hence Φ �DFNLS4 Γ ⇒T A.

Assume Φ �DFNLS4 Γ ⇒T A. We prove that Γ ⇒ A is true in (CT (G(T
∗
)), μ),

by induction on T -deductions. The axioms (Id), (D) and the assumptions from
Φ, restricted to T -sequents, are of the form E ⇒ F . By (4), (5) and (6) , we get
μ(E) = [E] and μ(F) = [F]. Assume Δ ∈ [E], we get Φ �DFNLS4 Δ⇒T E. Hence

Φ �DFNLS4 Δ⇒T F , by (CUT), which yields [E] ⊆ [F]. By lemma 5, CT (G(T
∗
))

is a finite S4-DLRG, all rules of DFNLS4 preserve the truth in (CT (G(T
∗
)), μ),

whence Γ ⇒ A is true in CT (G(T
∗
)).

Corollary 7. Let T be a finite set of formulas, containing all formulae appearing
in Γ ⇒ A and Φ. If Φ �DFNLS4 Γ ⇒ A then Φ �DFNLS4 Γ ⇒r(T) A.

Now, we can prove the strong finite model property of DFNLS4

170 Z. Lin

Theorem 8. Assume that Φ �DFNLS4 Γ ⇒ A does not hold. Then there exist
a finite distributive lattice ordered residuated groupoid with S4-operators G and a
valuation μ such that all sequents from Φ are true but Γ ⇒ A is not true in (G, μ).

Proof: Let T be the set of all formulas appearing in Φ and Γ ⇒ A. Hence
CT (G(T

∗
)) is a finite S4− DLRG, by Lemma 5. Assume Φ ��DFNLS4 Γ ⇒ A,

which yields Φ ��DFNLS4 Γ ⇒T A. Let μ(p) = [p]. By lemma 6, all sequents from

Φ are true in (CT (G(T
∗
)), μ) but Γ ⇒ A is not true.

Lemma 9. Let T be a finite set of formulas, containing all formulae appearing
in Γ [Δ]⇒ A and Φ. If Φ �DFNLS4 Γ [Δ]⇒ A, then there exists a D ∈ r(T) such
that Φ �DFNLS4 Δ⇒r(T) D and Φ �DFNLS4 Γ [D]⇒r(T) A.

Proof: Assume Φ �DFNLS4 Γ [Δ]⇒ A. By corollary 7, Φ �DFNLS4 Γ [Δ]⇒r(T) A.
Then, we apply lemma 2.

Let T be a finite nonempty set of formulae. Let ST (Φ) be the following system.
The set of axioms of ST (Φ) consists of all the sequents A ◦ B ⇒ C, 〈A〉 ⇒ B
and A ⇒ B derivable from Φ in DFNLS4, where A,B,C ∈ T . The only rule of
ST (Φ) is (CUT).

Theorem 10. Let T be a finite set of formulae, containing all formulae appear-
ing in Γ ⇒ A and Φ. Φ �DFNLS4 Γ ⇒ A iff �Sr(T)(Φ) Γ ⇒ A.

Proof: The if part is easy. The proof of the only if part proceeds by induction
on the lengths of Γ , denoted by l(Γ) (the number of structure operations ◦
appearing in Γ). If l(Γ) equals 0 or 1, then Γ contains only one or two formulae.

Hence �Sr(T)(Φ) Γ ⇒ A, by the consturction of Sr(T)(Φ). Similarly, if Γ = 〈B〉,
then by the consturction of Sr(T)(Φ), �Sr(T)(Φ) Γ ⇒ A. Assume Γ = Ξ[Γ1 ◦
Γ2]. By Lemma 9, there exist formulae D1, D2 ∈ r(T) such that Φ �DFNLS4

Γ1 ⇒r(T) D1, Φ �DFNLS4 Γ2 ⇒r(T) D2 and Φ �DFNLS4 Ξ[D1 ◦ D2] ⇒r(T) A.

Since r(r(T)) = r(T), by induction hypothesis, one gets �Sr(T)(Φ) Γ1 ⇒ D1,

�Sr(T)(Φ) Γ2 ⇒ D2, and �Sr(T)(Φ) Ξ[D1 ◦D2]⇒ A. It follows that �Sr(T)(Φ) Γ ⇒
A, by (CUT).

Theorem 11. Every language generated by a DFNLS4(Φ)-grammar is context-
free.

Proof: Let Φ be a finite set of sequents of the form A⇒ B, G1 = 〈L,D〉 be a
DFNLS4(Φ)-grammar, and T be the set of all subformulae of formulae appearing

in D, L and Φ. We construct r(T) and Sr(T)(Φ) as above. Now we construct an
equivalent CFG (context-free grammar) G2, in the following way. The terminal
elements of G2 are lexical items of G1. The non-terminals are all formulae from
r(T) and a fresh non-terminal S. Productions are {A → B | �Sr(T)(Φ) B ⇒
A}∪{A→ B | �Sr(T)(Φ) 〈B〉 ⇒ A}∪{A→ B, C | �Sr(T)(Φ) B ◦ C ⇒ A}∪{A→
v | 〈v, A〉 ∈ L}∪{S → A |A ∈ D}.

If v1 . . . vm is generated by G1, then there is a sequent Γ ⇒ B derivable from
Φ in DFNLS4, where B is a designated type, F (Γ) = A1 · · ·Am, and 〈vi, Ai〉 ∈ L

Distributive Full Nonassociative Lambek Calculus 171

for 1 ≤ i ≤ m. We get S →∗
G2

B by the construction of G2. Due to theorem
10 and the construction of G2, we obtain S →∗

G2
A1 · · ·Am which leads to

S →∗
G2

v1 . . . vm. Hence v1 · · · vm is generated by G2.
Now suppose v1 · · · vm is generated by G2, which means S →∗

G2
v1 · · · vn.

Then, there exists a B ∈ D such that B →∗
G2

A1 · · ·An, where 〈vi, Ai〉 ∈ L,
1 ≤ i ≤ m. Hence, by the construction of G2, there exists a formula structure
Γ such that F (Γ) = A1 · · ·An and �Sr(T)(Φ) Γ ⇒ B. By theorem 10, Φ �DFNLS4

Γ ⇒ B. Therefore, v1 · · · vm is generated by G1.

Obviously, we can easily obtain the same results for systems DFNL♦, DFNL4,
and DFNLT. The inclusion of the class of ε-free context free languages in the class
of DFNLS4(Φ)-recognizable languages can be easily established. Every context-
free language is generated by some NL-grammars (see [11]). Since neither the
lexicon nor designated formulae contain modal operators and additives, these
NL-grammars can be conceived of as DFNLS4(Φ)-grammars, where Φ is empty.
Hence DFNLS4(Φ)-grammars generate exactly the ε-free context-free languages.

Acknowledgements. I would like to thank Prof. Wojciech Buszkowski for the
patient supervision of my research and valuable suggestions.

References

1. Belardinelli, F., Jipsen, P., Ono, H.: Algebraic aspects of cut elimination. Studia
Logica 77, 209–240 (2004)

2. Bernardi, R.: Reasoning with Polarity in Categorial Type Logic. PhD thesis,
Utrecht (2002)

3. Buszkowski, W.: Generative Capacity of Nonassociative Lambek Calculus. Bulletin
of Polish Academy of Sciences: Math 34, 507–516 (1986)

4. Buszkowski, W.: Lambek Calculus with Nonlogical Axioms. In: Casadio, C., Scott,
P., Seely, R. (eds.) Languages and Grammars Studies in Mathematical Linguistics
and Natural Language. CSLI Lectures Notes, vol. 168, pp. 77–93 (2005)

5. Buszkowski, W.: Interpolation and FEP for logic of residuated algebras. Logic
Journal of the IGPL 19(3), 437–454 (2011)

6. Buszkowski, W., Farulewski, M.: Nonassociative Lambek Calculus with Additives
and Context-Free Languages. In: Grumberg, O., Kaminski, M., Katz, S., Wintner,
S. (eds.) Francez Festschrift. LNCS, vol. 5533, pp. 45–58. Springer, Heidelberg
(2009)

7. Heylen, D.: Types and Sorts Resource Logic for Feature Cheking. PhD thesis,
Utrecht (1999)

8. Jäger, G.: On the generative capacity of multi-modal categorial grammars. Re-
search on Language and Computation 1, 105–125 (2003)

9. Jäger, G.: Residuation, Structural Rules and Context Freeness. Journal of Logic,
Language and Informationn 13, 47–59 (2004)

10. Kanazawa, M.: The Lambek Calculus enriched with Additional Connectives. Jour-
nal of Logic, Language and Information 1(2), 141–171 (1992)

11. Kandulski, M.: The equivalence of Nonassociative Lambek Categorial Grammars
and Context-free Grammars. Zeitschrift für Mathematische Logik und Grundlagen
der Mathematik 52, 34–41 (1988)

172 Z. Lin

12. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65, 154–170 (1958)

13. Lambek, J.: On the calculus of syntactic types. In: Structure of Language and Its
Mathematical Aspects, pp. 168–178. American Mathematical Society (1961)

14. Lin, Z.: Modal Nonassociative Lambek Calculus with Assumptions: Complexity
and Context-Freeness. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.) LATA
2010. LNCS, vol. 6031, pp. 414–425. Springer, Heidelberg (2010)

15. Moortgat, M.: Multimodal linguistic inference. Journal of Logic, Language and
Information 5, 349–385 (1996)

16. Moortgat, M.: Categorial types logic. In: van Benthem, J., ter Meulen, A. (eds.)
Hand Book of Logic and Language, pp. 93–177. Elsevier (1997)

17. Morrill, G.: Categorial Grammar: Logical Syntax, Semantics, and Processing. Ox-
ford University Press (2011)

18. Pentus, M.: Lambek grammars are context free. In: Proceedings of the 8th Annual
IEEE Symposium on Logic in Computer Science, pp. 429–433 (1993)

19. Plummer, A.: S4 enriched multimodal categorial grammars are context-free. The-
oretical Computer Science 388, 173–180 (2007)

20. Plummer, A.: S4 enriched multimodal categorial grammars are context-free: corri-
gendum. Theoretical Computer Science 403, 406–408 (2008)

21. Versmissen, J.: Grammatical Composition: Modes, Models, Modalities. PhD thesis,
Universiteit Utrecht (1996)

Common Nouns as Types

Zhaohui Luo�

zhaohui.luo@hotmail.co.uk

Abstract. When modern type theories are employed for formal seman-
tics, common nouns (CNs) are interpreted as types, not as predicates.
Although this brings about some technical advantages, it is worthwhile
to ask: what is special about CNs that merits them to be interpreted as
types? We discuss the observation made by Geach that, unlike other lex-
ical categories, CNs have criteria of identity, a component of meaning
that makes it legitimate to compare, count and quantify. This is closely
related to the notion of set (type) in constructive mathematics, where a
set (type) is not given solely by specifying its objects, but together with
an equality between its objects, and explains and justifies to some extent
why types are used to interpret CNs in modern type theories. It is shown
that, in order to faithfully interpret modified CNs as Σ-types so that the
associated criteria of identity can be captured correctly, it is important
to assume proof irrelevance in type theory. We shall also briefly discuss a
proposal to interpret mass noun phrases as types in a uniform approach
to the semantics of CNs.

1 Introduction

It has been proposed that common nouns be interpreted as types, when modern
type theories (MTTs) are used to give formal semantics [25]. This is different
from the Montague semantics [21], where common nouns are interpreted as pred-
icates. For instance, consider the CN ‘book’: it is interpreted in the Montague
semantics as a predicate of type e → t, while in a modern type theory, it is inter-
preted as a type. It has been argued that, because CNs are interpreted as types
rather than predicates, many linguistic phenomena (eg, copredication), whose
formal semantic treatments involve subtyping and have been found difficult in
the Montagovian setting, can be dealt with satisfactorily in a straightforward
way in MTTs [16]. This has provided some justifications, among others, for
MTTs to be employed for formal semantics.

However, one may ask: why can CNs be interpreted as types, but not the
other lexical terms such as verbs or adjectives? In the Montagovian setting, CNs,
verbs and adjectives are all interpreted as predicates, but in a formal semantics
based on MTTs, CNs are interpreted as types and verbs and adjectives are still
interpreted as predicates, not as types. The above question may be put in another

� This work is partially supported by the research grant F/07-537/AJ of the Lever-
hulme Trust in U.K.

D. Béchet and A. Dikovsky (Eds.): LACL 2012, LNCS 7351, pp. 173–185, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

174 Z. Luo

way: what is special about CNs that merits them to be interpreted as types? This
paper attempts to answer this question and discusses some of the related issues.

We revisit the observation made by Geach and others [11,12,2] that CNs have
a special feature that they have their own criteria of identity. It is based on this
identity criterion that one can decide whether two objects of a CN are the same
and it is also based on this that counting, measuring and quantification become
possible and meaningful. We argue that it is this special feature that makes it
adequate for CNs to be interpreted as types. In constructive mathematics, a
set (or a type) is not given solely by specifying its objects, but together with
an equality between its objects. In fact, every type in MTTs is associated with
such an equality. As illustrated in the paper, when a type is used to interpret a
CN, the associated equality corresponds closely to, and formally captures, the
criterion of identity of the CN.

In order to correctly capture the criteria of identity for modified CNs in a
type-theoretical semantics, where modified CNs are formally represented as Σ-
types, one should adopt the principle of proof irrelevance (see, for instance, [28]
for a recent study). This reflects the basic intuitive idea that, for instance, two
handsome men are the same if and only if they are the same man (and it does
not matter how one demonstrates that they are handsome). Proof irrelevance
identifies the proofs of the same logical proposition and, as a consequence of
adopting such a principle, the intended criteria of identity for modified CNs,
when formalised as Σ-types, are captured correctly.

Count nouns and mass nouns are both CNs. In formal semantics, one has
mostly considered count nouns as primary examples. For mass nouns, although
there have been many proposals for their semantic interpretations either as mere-
ological sums or as sets or predicates, no consensus has been reached. In this
paper, we take the view that mass noun phrases be interpreted as types and
consider a proposal that, when a mass noun is used with a classifier (or mea-
sure word), it may be interpreted as a type whose associated equality represents
the information given by the classifier. When a mass noun is used without any
explicit classifier associated, one may regard it as underspecified in that the
criteria of identity can only be determined when more contextual information
is available. In MTTs, such underspecification can be represented by means of
overloading, as supported by coercive subtyping [17]. As for count nouns, they
can be seen as special cases where the measures are obvious and known.1 This is
only a tentative proposal and, when further developed, it may lead to a uniform
approach to interpreting CNs, either count or mass, as types.

Introducing the background, §2 contains a brief account of the type-theoretical
semantics based on MTTs. In §3, we first introduce the notion of criterion of
identity for CNs and then discuss how this is reflected in the formal semantics
based on MTTs and how it is linked to the constructive notion of set (or type).
Proof irrelevance is discussed in §4, where we show how it can be used in the

1 This is consistent with the fact that, in the languages with classifiers such as Chinese,
a count noun is also used together with a classifier.

Common Nouns as Types 175

Example Montague semantics Semantics in MTTs

CN man, human [[man]], [[human]] : e → t [[man]], [[human]] : Type

IV talk [[talk]] : e → t [[talk]] : [[human]] → Prop

ADJ handsome [[handsome]] : (e → t) → (e → t) [[handsome]] : [[man]] → Prop

MCN handsome man [[handsome]]([[man]]) Σm : [[man]] . [[handsome]](m)

S A man talks ∃m : e. [[man]](m)& [[talk]](m) ∃m : [[man]] . [[talk]](m)

Fig. 1. Examples in formal semantics

formal semantics based on MTTs to obtain adequate descriptions of modified
CNs. Type-theoretical semantics of mass nouns phrases is discussed in §5.

2 CNs as Types in Formal Semantics

In this section, we give a brief introduction to the type-theoretical semantics
based on modern type theories (MTTs) [25,16].2 It is the formal semantics in
the style of the Montague semantics [21], but in type theories with dependent
types and inductive types, among others, rather than in Church’s simple type
theory [7] as employed in the Montague semantics. Examples of MTTs include
Martin-Löf’s predicative type theory [19,20] and the impredicative type theory
ECC/UTT [14]. In an impredicative type theory like UTT, there is a type Prop
of all logical propositions, as to be used in this paper. (This is similar to the
simple type theory where there is a type t of truth values.)

In Figure 1, we give some basic examples to illustrate how linguistic categories
are interpreted in MTTs and compare them to those in the Montague semantics.
A key difference between these two is the interpretation of CNs. In the Montague
semantics whose underlying logic can be regarded as ‘single-sorted’3, CNs are in-
terpreted as predicates of type e → t (and so are verbs and adjectives). In con-
trast,MTTscanbe regardedas ‘many-sorted’ logical systemswhere there aremany
types (eg, inductive types such as the finite types as introduced in Appendix B)
that may be used to stand for the domains to be represented; in particular, CNs
are interpreted as types [25]. Similarly, modified CNs (MCNs) are interpreted as
predicates in the Montague semantics, while they are interpreted by means of Σ-
types in MTTs. For instance, in MTTs, ‘handsome man’ can be interpreted as the
type Σm : [[man]] . [[handsome]](m). (For Σ-types and their notations, see Ap-
pendix A.) Because CNs are interpreted as types, verbs and adjectives are inter-
preted as predicates over the types (eg, [[human]]) that interpret the domains in
which they are meaningful: examples are given in Figure 1.

Note that subtyping is crucial for the formal semantics in MTTs. For instance,
consider the MTT semantics of the sentence ‘A man talks’ in Figure 1: for m of type
[[man]] and [[talk]] of type [[human]] → Prop, [[talk]](m) is only well-typed because
2 One may also consult the lecture notes [18], where some informal explanations of

MTTs with subtyping are given in the context of formal semantics.
3 By ‘single-sorted’ here, we mean that there is only one type e of all entities. Strictly

speaking, there is another ‘sort’/type t of truth values in Church’s simple type theory.

176 Z. Luo

we have that [[man]] is a subtype of [[human]]. For MTTs, coercive subtyping as
studied in [15] is an adequate framework to be employed for formal semantics [16].

To employ modern type theories, instead of the simple type theory, for for-
mal semantics has many implications, some of which are philosophical, some
methodological, and some technical. Technically, for example, the powerful type
structures in MTTs give us new useful mechanisms for formal semantics of var-
ious linguistic features, examples of which include the use of the dependent
Σ-types to interpret modified CNs [25] and the introduction of a type universe
cn of the interpretations of common nouns in many linguistic interpretations,
including that of adverbs [17].

One of the most notable methodological implications comes from the fact
that CNs are interpreted as types, not as predicates. For example, in modelling
some linguistic phenomena semantically, one may introduce various subtyping
relations by postulating a collection of subtypes (physical objects, informational
objects, eventualities, etc.) of the type of entities [1]. It has become clear that,
once such subtyping relations are introduced, it is very difficult to deal with
some linguistic phenomena such as copredication satisfactorily if CNs are inter-
preted as predicates as in the traditional Montagovian setting. Instead, if CNs
are interpreted as types, as in the type-theoretical semantics based on MTTs,
copredication can be given a straightforward and satisfactory treatment [16].

The above methodological advantage may go some way to justify that CNs
be interpreted as types (and the employment of MTTs for formal semantics).
However, why should CNs be interpreted as types in the first place? Why are
they different from the other lexical categories such as verbs and adjectives? After
all, in the Montague semantics, CNs, verbs, and adjectives are all interpreted as
predicates. Put in another way:

What is special about CNs that merits them to be interpreted as types?

The rest of this paper investigates the related issues and may be regarded as a
first step to answer the above question.

3 Criteria of Identity

3.1 An Informal Account

CNs are special, as observed by Geach [11] and others, in that they have the
associated criteria of identity. Intuitively, a CN determines a concept that does
not only have a criterion of application, to be employed to determine whether
the concept applies to an object, but a criterion of identity, to be employed to
determine whether two objects of the concept are the same. It has been argued
that CNs are distinctive in this as other lexical terms like verbs and adjectives
do not have such criteria of identity (cf, the arguments in [2]).

The origin of the notion of criteria of identity can be traced back to Frege [10]
when he considered abstract mathematical objects such as numbers or lines. For
instance, in geometry, the criterion of identity for directions is the parallelism of

Common Nouns as Types 177

lines: the direction of line A is equal to that of line B if and only if A and B are
parallel. Geach has noticed that such criteria of identity exist for every common
noun and is the basis for counting. Gupta [12] has studied this systematically with
very interesting examples. For instance, consider the following two sentences:

(1) EasyJet has transported 1 million passengers in 2010.
(2) EasyJet has transported 1 million persons in 2010.

It is easy to see that the first sentence (1) does not imply the second (2), because
some people may have traveled more than once by EasyJet in 2010. It has been
argued that this is because that the CNs ‘passenger’ and ‘person’ have differ-
ent criteria of identity, which are the basis for counting and have led to such
phenomena [11,12,2].4

It may be worth noting that the notion of the criterion of identity is context
sensitive. In other words, what a CN means depends on the context in which
it is used. For instance, consider the word ‘student’. In the following sentences,
the associated criteria of identity can be different, because in (3) John may
have taught several classes and it may be reasonable to count a student in two
different classes twice, while this is not the case in (4) where one would say that
in that case ‘student’ seems to have the same criterion of identity with ‘person’.

(3) John taught 500 students last year.
(4) 1000 students have applied for campus cards last year.

A close link between the notion of criterion of identity and the constructive no-
tion of set (type) can be established. In constructive mathematics, a set is a ‘pre-
set’, which gives its application criterion, together with an equality, which gives
its criterion of identity that determines whether two objects of the set are the same
[5,4]. Modern type theories such asMartin-Löf’s type theory [19,20] were originally
developed for formalisation of constructive mathematics, where each type is asso-
ciated with such an equality or criterion of identity. In the following, we shall first
consider the formalisations in MTTs of the above example of passengers to demon-
strate how the criteria of identity are reflected in such formal representations, and
then discuss the link to constructive mathematics in more details.

3.2 Formalisation of an Example

The above example about ‘passengers’ can be formalised in the MTTs. Let T
be the type of the journeys in concern (eg, the journeys that one may make
via EasyJet in 2010). We shall consider two different formal presentations of
Passenger[T], the type of passengers in journeys of type T , one using finite
types and the other considering proof irrelevance.
4 There have been arguments against the idea of criteria of identity. For instance,

Gupta [12] mentioned that one might consider some ontological arguments and
Barker [3] has argued against it on the grounds that the linguistic phenomena could
better be explained by means of pragmatics. The author believes that the notion of
criteria of identity still offers the best explanations.

178 Z. Luo

Representation using finite types. The type Passenger[T] can be defined as the
following Σ-type:5

Passenger[T] = Σp : Person. Journey[T](p),

where Person is the type of persons and Journey[T](p) the finite type of jour-
neys in T that the person p has made. (See Appendix B for the formal defi-
nition of finite types.) In other words, a passenger is a person together with a
journey he/she made and, formally, this is represented as a pair (p, t) of type
Passenger[T], where t is a journey that the person p has made. There are two
points to note about this definition:

1. If Journey[T](p) is empty (the finite type with no object), p has not made
any journey in T and is hence not a passenger by definition (there is no
passenger (p, t) of type Passenger[T] because there is no such a t of type
Journey[T](p).)

2. Formally, (p, t) and (p′, t′) are equal passengers if, and only if, p = p′ and
t = t′.6 As passengers, ‘John at journey t’ and ‘John at journey t′’ are only
equal if t and t′ are the same journey.

This last note about equality between passengers is important. It is different from
that between persons: the same person making different journeys is regarded as
different passengers.

Representation assuming proof irrelevance. Another representation assumes proof
irrelevance:

Γ � P : Prop Γ � p : P Γ � q : P

Γ � p = q : P

which intuitively says that every two proofs of the same logical proposition are
equal. (See §4 for further discussions on proof irrelevance.) With proof irrele-
vance, the following Σ-type can be used to represent the type of passengers:

Passenger[T] = Σp : Person.Σt : T. J(p, t),

where J : Person → T → Prop is the predicate such that the predicate J(p) of
type T → Prop represents the set of journeys that p has made. It is straight-
forward to show that two passengers are the same if and only if they are the
same person on the same journey. In symbols, (p, t, v) = (p′, t′, v′) if, and only
if, p = p′ and t = t′, because by proof irrelevance, we always have v = v′ when
the other two components are the same.

5 An alternative notation for the Σ-type Passenger[T] is Σ(Person, Journey[T]). See
Appendix A for a brief introduction of Σ-types.

6 Note that, for any p : Person, Journey[T](p) is a type, not a logical proposition.
Therefore, this is the case even when we have proof irrelevance, as to be discussed
in §4.

Common Nouns as Types 179

Remark 1. Both of the above representations give the correct criterion of iden-
tity. Intuitively, they give rise to the same criterion of identity between passengers
as intended. Other formalisations are also possible. However, it is easy to arrive
at some unintended formulations. For instance, it might be tempting to say that
‘a passenger is a person who has made one or more journeys’. This would lead
to the formalisation of the type of passengers as a Σ-type

Σp : Person. T ravelled[T](p),

where Travelled[T](p) is a logical proposition expressing that p has made some
journeys inT . Sucha formulationdoesnot capture the intendedcriterionof identity
between passengers, no matter whether we assume proof irrelevance or not. For
instance, if we do, we have that two objects of the above type (‘passengers’) are the
same if and only if they are the same person who has travelled, because the proofs
that the person has travelled are identified.Therefore, such a formal representation
would not have captured the intended criterion of identity correctly. ��

3.3 Constructive Notion of Set or Type: Further Remarks

In constructive mathematics, the notion of set is associated with an equality
(an equivalence relation) [5]. As Beeson [4] puts it, it is a ‘preset’ together with
an equality. A preset X is given by its criterion of application that determines
whether an object is in X , while the associated equality determines whether
two objects of the set are the same. Unlike classical mathematics, there is no
universal equality that can be applied to all objects; instead, different sets are
associated with different equalities. When CNs are interpreted as sets, this is
directly linked to the notion of criteria of identity in that different CNs may
have different criteria of identity.

In modern type theories, a type is a constructive set.7 For instance, in Martin-
Löf’s type theory, a type is specified by making clear the following simultaneously:

1. What are the canonical objects of the type?
2. Under what conditions are two canonical objects equal?

Please note that, for completely presented types, these two are enough to deter-
mine both criterion of application and criterion of identity.

In MTTs in general, every type is associated with its own equality. For in-
stance, the equality for Σx:A. B(x) is: for any of its two objects (a, b) and (a′, b′),
they are equal only when a = a′ in type A and b = b′ in type B(a) (please note
that B is dependent on the objects of A; in this case, it is a). According to
7 We are rather imprecise here. Types in MTTs are also restricted sets with further

properties. For example, a type can be inductively defined and, if so, it hasmany special
properties that are not shared by all types. Also, in Martin-Löf’s type theory, every
type is completely presented in the sense that, informally, its criterion of application can
be evidenced by computation. The author thinks that such a requirement for objects
to be completely presented should not be imposed on linguistic interpretations when
MTTs are used for formal semantics.

180 Z. Luo

this definition of equality for Σ-types, both of the above representations for
Passenger[T] correctly capture the criterion of identity between passengers as
intended. Please note that, in the second representation above, we have to as-
sume proof irrelevance for, otherwise, the representation would not capture the
criterion of identity between passengers correctly: if we do not have proof irrel-
evance, the ‘passengers’ (p, t, v) and (p, t, v′) can be different because the proofs
v and v′ that p made the journey t are different, although they should be the
same passenger.

Remark 2. It seems that the close link between CNs with criteria of identity
and types with associated equalities is one of the instances where principles in
constructive mathematics can be successfully applied to linguistic semantics in
an interesting way. This is reflected above when constructive types are used to
represent the semantics of CNs. Further studies of the use of MTTs for formal
semantics may shed more light in this respect. ��

4 Proof Irrelevance and Identity for Modified CNs

For modified CNs, it is often the case that the criteria of identity are inherited
from those before modification. For example, two ‘handsome men’ are the same
if, and only if, they are the same man. In such situations, the adjective used to
modify the CN has no effect on the resulting criterion of identity for the modified
CN. This should be captured faithfully in a semantic framework.

In MTTs, it has been proposed that modified CNs be interpreted as Σ-types
[25].8 For instance, for [[man]] : Type and [[handsome]] : [[man]] → Prop, the
interpretation of ‘handsome man’ is the following Σ-type:

[[handsome man]] = Σm : [[man]] . [[handsome]](m).

However, in type theories (as those implemented in the proof assistants such as
Agda, Coq and Lego), the notion of equality between objects of such Σ-types
does not capture the intended criteria of identity. In the above example, for the
representations (m, h) and (m′, h′) of two handsome men to be equal, we require
not only that the two men m and m′ be equal, but that the proofs h and h′ be
equal as well. But this is usually not the case (there can be more than one way
to demonstrate that a man is handsome)!

In order for such Σ-type representations to be faithful in capturing the in-
tended criteria of identity, we should employ proof irrelevance, which intuitively
says that every two proofs of the same logical proposition are equal. In an im-
predicative type theory such as UTT, the formal rule for proof irrelevance is (as
repeated from §3.2):

Γ � P : Prop Γ � p : P Γ � q : P

Γ � p = q : P

8 Gupta [12] has suggested a special form of formulae (K, x)A, called restrictions, for
modified CNs. Linking formulae to types, we can easily see the close correspondence
between (K, x)A and Σx : K. A.

Common Nouns as Types 181

Proof irrelevance has been studied for impredicative type theories. For instance,
a set-theoretic proof irrelevant model was given in [9] and one can find a recent
study on this in [28], where the author has employed the untyped notion of
conversion instead of a judgemental equality.

In the above example about handsome men, if m = m′, the two proofs h and
h′ prove the same logical proposition [[handsome]](m) and are hence equal. As
a consequence, under this representation, two handsome men are the same if,
and only if, they are the same man. In other words, under the assumption of
proof irrelevance, the proposed representations of modified CNs by Σ-types do
capture the intended criteria of identity.

It is also worth noting that, although proof irrelevance can be considered for
impredicative type theories directly as above, it is unclear how this can be done
for predicative type theories. For instance, in Martin-Löf’s type theory [19,20],
propositions are identified with types. Because of such an identification, one
cannot use the above rule to identify proofs, for it would identify the objects of
a type as well. Put in another way, proof irrelevance is incompatible with the
identification of propositions and types. In order to introduce proof irrelevance,
one has to distinguish logical propositions and types (see, for example, [14]).

Remark 3. Proof irrelevance is very interesting and has several important appli-
cations. Besides the above application in formal semantics, it is also employed in
several other fields, including dependently-typed programming (see, for example,
[28] for some relevant discussions). ��

5 Semantics for Mass Nouns with Classifiers

Common nouns include both count and mass nouns. It seems clear how to con-
sider the criteria of identity for count nouns, but less clear for mass nouns. As for
the semantics of mass nouns, scholars have rather different opinions and there
seems to be no consensus on this matter.9 The proposed semantic theories on
mass terms fall into two camps: those based on the idea that mass nouns denote
mereological sums, as advocated by Quine [24] and others, and those based on
ideas that they denote sets, as considered by people like Laycock [13] (see [6,29]
for some rather comprehensive analysis of early work on this).

Here, based on the idea that CNs denote sets/types with associated criteria
of identity, I offer a tentative proposal to suggest how some, if not all, of the uses
of mass noun phrases may be interpreted. Mass nouns are often used together
with measure words or classifiers, as in the following sentences about the mass
noun ‘water’:

(5) John drinks a glass of water.
(6) He has fetched two buckets of water from the river.

9 One may quote several references, among many, including Quine’s remarks on ‘di-
vided reference’ [24], Strawson’s on ‘individuals’ [26], Baker’s on measures [2], Bunt’s
work on ensemble theory [6] and Nicolas’ work on plural logic [22].

182 Z. Luo

The measure words such as ‘glass’ and ‘bucket’ provide information for the crite-
ria of identity in these mass noun phrases. It has been proposed [26,8] that mass
terms should be understood as elliptical for some phrases with classifiers. For
instance, ‘water’ would be elliptical for ‘drop of water’, ‘glass of water’, ‘bucket
of water’, ’body of water’, etc. These latter phrases with classifiers are seman-
tically easier to be interpreted as sets and, in particular, it is clearer what the
criteria of identity should be. In a type-theoretical semantics based on MTTs,
they can be interpreted as types. For example, the mass noun phrase ‘glass of
water’ can be interpreted as a type and the above sentence (5) can be given the
following semantics:

(7) ∃w : [[glass of water]] . [[drink]](j, w)

In such cases, the criteria of identity are provided by the measure words (see [2]
for relevant remarks).

In languages like English, count nouns are usually10 used without measure
words (we say ‘a table’ rather than ‘a classifier table’). A plausible explanation
for this is that the criterion of identity for a count noun, when it is used without
a measure word, is ‘obvious’ or already built in the noun itself. This suggests a
uniform way to approach the semantic interpretations of count and mass nouns:
they are all interpreted as types and, in the case of mass noun phrases, the
measure words in the phrase provide us the information for the criteria of identity
while, in the case of count nouns, the counting principle is usually obviously given
by the noun itself. Put in another way, this uniform approach is based on the
idea that the ‘obvious’ measures for count nouns are just special cases of the
numerals-measures-CN pattern for mass noun phrases such as ‘a glass of water’
in (5) and ‘two buckets of water’ in (6).

Such an approach is also informed by considering the languages with classifiers
such as Chinese, where every noun is usually used together with a classifier or
measure word, even for the count nouns in an English-like language. In Chinese,
instead of saying ‘a book’, one says ‘a classifier book’, where classifier is a
suitable measure word for ‘book’. Some people take the view that the Chinese
language does not have count nouns – every CN in Chinese is a mass noun
whose uses are often coupled with classifiers. This is consistent with the uniform
approach that both count and mass noun phrases are interpreted as types.

When a mass noun is not explicitly used together with a measure word, it be-
comes a context-dependent matter to determine which measure should be used.
There have been some criticisms on the proposal that mass nouns be interpreted
as sets (see, for example, [23]). One of the main criticisms is that, when a mass
noun is used without a measure word explicitly given, such context dependency
seems to amount to a difficulty in considering a ‘general translation procedure’
to give the semantics for any mass noun [23]. To deal with such potential dif-
ficulties, we consider one proposal: in many situations where a mass noun is
used without a measure word, it can be seen as underspecified and, according
10 Occasionally, measure words are also used for count nouns in, for example, ‘a deck

of cards’.

Common Nouns as Types 183

to further enrichments of the contexts, its meaning can then be determined. In
MTTs, such underspecified phrases may be given meanings by means of over-
loading, supported by coercive subtyping [17].

The proposal to interpret both count and mass CNs as types requires further
studies, both for its justification in general and for the possibility of using the
idea to implement reasoning systems that involve mass nouns on the computer.

6 Conclusion

This paper has investigated the idea that CNs have the meaning component
of criteria of identity and can be semantically represented by means of types
in MTTs. We have pointed out that, in order to interpret CNs adequately, es-
pecially to interpret modified CNs by means of Σ-types, the principle of proof
irrelevance should be adopted and, furthermore, this principle can only be prop-
erly formulated in a type theory where there is a clear distinction between logical
propositions and data types (eg, as in most of the impredicative type theories or
logic-enriched type theories), but not in those type theories such as Martin-Löf’s
type theory where there is no such a distinction.

One of the interesting issues is to study generalised quantifiers based on MTTs
(see [27] for an early investgation of this in Martin-Löf’s type theory.) In this set-
ting, the generalised quantifiers such as ‘every’ and ‘most’ have the following type:

ΠA : cn. (A → Prop) → Prop,

where cn is the type universe of the interpretations of common nouns. In other
words, a generalised quantifier takes as its arguments a type that interprets a
CN and a predicate over the type. This is rather different from the ‘symmetric’
notion of GQs in the Montagovian setting where GQs are concerned with two
predicates. This is obviously an interesting topic to study about the formal
semantics based on MTTs and requires future investigations.

Acknowledgements. Thanks to Robin Adams, Stergios Chatzikyriakidis and
members of the ‘Type Theory and Applications’ research group at RHUL for
helpful discussions.

References

1. Asher, N.: Lexical Meaning in Context: A Web of Words. Cambridge University
Press (2011)

2. Baker, M.: Lexical Categories: Verbs, Nouns and Adjectives. Cambridge University
Press (2003)

3. Barker, C.: Nominals don’t provide criteria od identity. In: Alexiadou, A., Rathert,
M. (eds.) Nominalizations across Languages and Frameworks. Intrface Explorations
(2008)

4. Beeson, M.: Foundations of Constructive Mathematics. Springer (1985)
5. Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill (1967)

184 Z. Luo

6. Bunt, H.: Mass Terms and Model-Theoretic Semantics. Cambridge University Press
(1985)

7. Church, A.: A formulation of the simple theory of types. J. Symbolic Logic 5(1)
(1940)

8. Clarke, D.: Mass terms as subjects. Philosophical Studies 21(1/2) (1970)
9. Coquand, T.: Metamathematical investigations of a calculus of constructions. In:

Oddifredi, P. (ed.) Logic and Computer Science (1990)
10. Frege, G.: Grundlagen der Arithmetik. Basil Blackwell (1884), (Translation by J.

Austin in 1950: The Foundations of Arithmetic)
11. Geach, P.: Reference and Generality. Cornell University Press (1962)
12. Gupta, A.: The Logic of Common Nouns. Yale University Press (1980)
13. Laycock, H.: Some questions of ontology. Philosophical Review 81(1) (1972)
14. Luo, Z.: Computation and Reasoning: A Type Theory for Computer Science. Ox-

ford Univ. Press (1994)
15. Luo, Z.: Coercive subtyping. J. of Logic and Computation 9(1), 105–130 (1999)
16. Luo, Z.: Type-theoretical semantics with coercive subtyping. Semantics and Lin-

guistic Theory 20 (SALT20), Vancouver (2010)
17. Luo, Z.: Contextual Analysis of Word Meanings in Type-Theoretical Semantics.

In: Pogodalla, S., Prost, J.-P. (eds.) LACL 2011. LNCS (LNAI), vol. 6736, pp.
159–174. Springer, Heidelberg (2011)

18. Luo, Z.: Type-theoretical semantics with coercive subtyping. Lecture notes at ESS-
LLI 2011 (for Lexical Semantics, a course taught together with N. Asher), Ljubljana
(2011), http://www.cs.rhul.ac.uk/home/zhaohui/ESSLLI11notes.pdf?

19. Martin-Löf, P.: An intuitionistic theory of types: predicative part. In: Rose, H.,
Shepherdson, J.C. (eds.) Logic Colloquium’73 (1975)

20. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis (1984)
21. Montague, R.: Formal Philosophy. Yale University Press (1974)
22. Nicolas, D.: Mass nouns and plural logic. Linguistics and Philosophy 31(2) (2008)
23. Pelletier, F.: On some proposals for the semantics of mass nouns. J. of Philosophical

Logic 3 (1974)
24. Quine, W.: Word & Object. MIT Press (1960)
25. Ranta, A.: Type-Theoretical Grammar. Oxford University Press (1994)
26. Strawson, P.: Individuals: An Essay in Descriptive Metaphyscis. Anchor Books

(1963)
27. Sundholm, G.: Constructive generalized quantifiers. Synthese 79(1) (1989)
28. Werner, B.: On the strength of proof-irrelevant type theories. Logical Methods in

Computer Science 4(3) (2008)
29. Zimmerman, D.: Theories of masses and problems of constitution. Philosophical

Review 104(1) (1995)

A Σ-Types

AΣ-type is an inductive typeofdependentpairs.Here are the informaldescriptions
of the basic laws governing Σ-types (see, for example, [20] for the formal rules).

– If A is a type and B is an A-indexed family of types, then Σ(A, B), or
sometimes written as Σx:A.B(x), is a type.

– Σ(A, B) consists of pairs (a, b) such that a is of type A and b is of type B(a).
– Σ-types are associated projection operations π1 and π2 so that π1(a, b) = a

and π2(a, b) = b, for every (a, b) of type Σ(A, B).

http://www.cs.rhul.ac.uk/home/zhaohui/ESSLLI11notes.pdf?

Common Nouns as Types 185

When B(x) is a constant type (i.e., always the same type no matter what x is),
the Σ-type degenerates into the product type A × B of non-dependent pairs.

B Finite Types of Journeys

Finite types are inductive types which contain finitely many objects. They were
considered in [19,20] for natural numbers: intuitively, Nn contains the natural
numbers 0, 1, ..., n − 1. Here, we introduce them as containing finitely many
journeys.

Let T be the type of the journeys in concern. Then, for n ∈ ω and ti : T
(i = 1, ..., n), Fin[t1, ..., tn] is the finite type with the journeys ti as its objects.
For instance, Fin[t1, t2, t3] contains only three journeys t1, t2 and t3, while Fin[]
is an empty type that does not contain any object. Formally, these finite types
are specified by means of the rules in Figure 2.

Now, for any p : Person, Journey[T](p) is the finite type of journeys in T
that p has made. For instance, intuitively, if Journey[T](p) = Fin[t1, t2, t3], p
has made journeys ti (i = 1, 2, 3), while if Journey[T](p) = Fin[], p has made
no journeys.11

Formation Rule

ti : T (i = 1, ..., n)

Fin[t1, ..., tn] : Type
(n ∈ ω)

Introduction Rule

Fin[t1, ..., tn] : Type

ti : Fin[t1, ..., tn]
(i = 1, ..., n)

Elimination Rule

c : Fin[t1, ..., tn] C : (Fin[t1, ..., tn])Type cj : C(tj) (j = 1, ..., n)

En(C, c1, ..., cn, c) : C(c)

Computation Rule

C : (Fin[t1, ..., tn])Type cj : C(tj) (j = 1, ..., n)

En(C, c1, ..., cn, ti) = ci : C(ti)
(i = 1, ..., n)

Fig. 2. Rules for finite types of journeys

11 The details of the formal definition of Journey[T] is not given here: to do it properly,
we need to consider the type structure of Person (eg, its inductive structure) and
employs a type universe U that contains the finite types of journeys as objects and
to define Journey[T] to be of type Person → U .

Extractability as the Deduction Theorem

in Subdirectional Combinatory Logic�

Hiroko Ozaki and Daisuke Bekki��

Ochanomizu University,
Faculty of Science, Department of Information Science,

2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan

1 Introduction: Subdirectional Combinatory Logic
and the Curry-Howard Isomorphism between
Grammars, Term Calculi and Logics

The formulation of Combinatory Categorial Grammar (CCG) [7], especially the
choice of combinatory rules and their nominatum, strongly imply connection
with a typed-version of Combinatory Logic (CL). Since typed CL is a term cal-
culus for an implication fragment of a Hilbert-style proof system, in the sense of
the Curry-Howard isomorphism, it seems plausible to regard CCG as a grammar
that corresponds to a Hilbert-style proof system, in that the associative Lambek
calculus [3] corresponds to a Gentzen-style proof system.

This correspondence was not, however, as strictly established as expected. The
main difference between CCG and CL is that the different linear orders of words
are distinguished in CCG (as a grammar), that is, the exchange rule is not fully
available in the contexts (as a proof system), which is reflected in the existence
of two functional application rules. This is also true in Lambek lambda calculus,
and gives rise to the emergence of two different lambda operators and function
application constructions, in order to maintain the parallelism between the terms
and their types. In CCG, however, this parallelism is not pursued so rigorously:
CCG adopts simply-typed lambda calculus for its semantic representations and
says nothing about the directionality of the lambda operators.

Subdirectional Combinatory Logic (SDCL) [1] is a term calculus that exactly
corresponds to CCG. It is a kind of CL with directionality-sensitive combinators.
More precisely speaking, SDCL is a class of logics containing various instances
of CCG for each individual language, and we conjectured that the language
variation can be described in terms of availability/absence of each directional

� We are grateful to Nicholas Asher, Frank Veltman, Alastair Butler, Shunsuke Yatabe
and other audience of LENLS8 for their valuable comments and suggestions for the
earlier version of this paper. We are also grateful to Kei Yura in Joint Research
Symposium 2011.

�� Daisuke Bekki is partially supported by Grant-in-Aid for Young Scientists (A),
22680013, 2010-203, from the Ministry of Education, Science, Sports and Culture,
Japan.

D. Béchet and A. Dikovsky (Eds.): LACL 2012, LNCS 7351, pp. 186–200, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Extractability as the Deduction Theorem 187

combinator. The definition of SDCL that we use throughout this paper is given
in the Appendix A.

The Curry-Howard isomorphism between a grammar and a term calculus
or logic affords many advantages in the study of formal grammar. In Lambek
calculus, for example, many results and methods of proof theory, such as cut-
elimination, subformula properties and decidability, have been utilized and have
brought about fruitful insights. As an illustration of such advantages, this paper
discusses the following issues:

1. The relation between the status of extractability in CCG and the Deduction
Theorem (DT) in Hilbert-style proof systems, with respect to the correspon-
dence obtained through SDCL.

2. The relation between DT and the structural rules in CCG.
3. The relation between the type-raising rule and the complex NP constraints

in CCG.

2 Extraction in CCG

In lexical grammars, the term extraction signifies wh-movements in generative
grammar, that is, the dislocation of a wh-NP to a non-argument position. The
following sentence is an instance of extraction of who from the object position
of loves:

a boy who John thinks that Mary loves

a

T/(T \NP)/N

boy

N

who

N\N/(S/NP)
(>B)

John

T/(T \NP)
(>B)

thinks

S\NP/S
(>B)

that

S/S
(>B)

Mary

T/(T \NP)

loves

S\NP/NP

S/NP

S/NP

S\NP/NP

S/NP

The sentence is acceptable and is also derivable in CCG. However, it is well
known that extraction from a complex NP is not allowed in English (the com-
plex NP constraint [6]), as illustrated below:

* a girl who John met a boy who loved

a

T/(T \NP)/N

girl

N

who

N\N/(S/NP)

John

T/(T \NP)

met

S\NP/NP

a

T \(T/NP)/N
∗

boy

N
(>B)

who

N\N/(S\NP)

loved

S\NP/NP

N\N/NP

This sentence is unacceptable and is not derivable in CCG. However, if we allow
a type-raising rule for CCG, the sentence becomes derivable in the following way:

* a girl who John met a boy who loved

a

T/(T \NP)/N

girl

N

who

N\N/(S/NP)
(>B)

John

T/(T \NP)
(>B)

(>T)

met

S\NP/NP

T/(T \(S\NP/NP))
(>B)

a

T \(T/NP)/N
(>B)

(>T)

boy

N

N/(N\N)
(>B)

who

N\N/(S\NP)

loved

S\NP/NP

N\N/NP

N/NP

T \(T/NP)/NP

S\NP/NP

S/NP

188 H. Ozaki and D. Bekki

Note that this unacceptable instance is also derivable in associative Lambek
caliculus L [4] as follows1:

(/R)

(<)

John⇒ NP
(<)

met⇒ S\NP/NP
(>)

a⇒ T \(T/NP)/N
(<)

boy⇒ N
(>)

who⇒ N\N/(S\NP)
(>)

loved⇒ S\NP/NP
(id)

NP ⇒ NP

loved NP ⇒ S\NP

who loved NP ⇒ N\N
boy who loved NP ⇒ N

a boy who loved NP ⇒ T \(T/NP)

met a boy who loved NP ⇒ S\NP

Jhon met a boy who loved NP ⇒ S

John met a boy who loved ⇒ S/NP

The (/R) rule of L corresponds to DT. This means that both CCG with the type-
raising rule and associative Lambek calculus do not account for the complex NP
constraint.

In general, the extraction in CCG (without type-raising) is available only in
the case where the syntactic categories of the relevant phrases match one of the
following forms:

(>B)×n
X1/X2 X2/X3 · · · Xn+1/Xn+2

X1/Xn+2

(<B)×n
Xn+1\Xn+2 · · · X2\X3 X1\X2

X1\Xn+2

In other words, we can use this rule under the condition that all the relevant
slashes have the same direction. We will show that this condition is deeply
connected with the proof of DT in SDCL, in which the directionality of the
available combinators plays an important role.

3 Abstraction in SDCL

The (/R) rule corresponds to the implication-introduction rule in natural deduc-
tion. By Curry-Howard correspondence between natural deduction and typed-
Lambda calculus, a proof that ends with the implication-introduction rule is a
lambda abstraction term. Hilbert-style proof systems do not have the implication-
introduction rule; however, DT is admissible. As a term calculus for Hilbert-style
proof systems, CL does not have lambda abstraction terms, but these terms can
be encoded solely by the combinators in CL (see [2] among others).

Definition 1 (Abstraction in CL [2]). For every term M and every variable
x, terms of the form λx.M are defined recursively as follows:

(1) λx.x
def≡ I

(2) λx.MN
def≡ S(λx.M)(λx.N) (x ∈ fv (MN))

(3) λx.M
def≡ KM (x /∈ fv (M))

Following this strategy, lambda abstraction terms in SDCL can be encoded by
means of directional combinators. Following [5], let us consider an instance of
SDCL with the combinators S and K.
1 (>) is derivable in L.

Extractability as the Deduction Theorem 189

Definition 2 (Abstraction in SDCL [1] (slightly modified)). For every

term M and every variable x, terms of the form λ
�
x.M and λ

�
x.M are defined

recursively as follows:

(1/) λ
�
x.x

def≡ I/

(1\) λ
�
x.x

def≡ I\
(2/) λ

�
x.M

�
N

def≡ S/
��
(K

��
M)

�
(λ

�
x.N) (x /∈ fv(M), x ∈ fv (N))

(2\) λ
�
x.M

�
N

def≡ S\
��
(K

��
M)

�
(λ

�
x.N) (x /∈ fv(M), x ∈ fv (N))

Note that in SDCL, lambda abstraction cannot be applied to all kinds of SDCL
terms. The following are examples of non-SDCL terms :

λ
�
x.y λ

�
p.p

�
x λ

�
x.f

�
y λ

�
x.p

�
x

η-reduction holds for the encoded lambda abstraction terms in SDCL.

Theorem 3 (η-reduction in SDCL). For every term M and variable x:

(λ
�
x.M)

�
x →

CL
M

(λ
�
x.M)

�
x →

CL
M

Proof. We prove (λ
�
x.M)

�
x →

CL
M by induction on the structure of M .

Case: M ≡ x (λ
�
x.M)

�
x ≡ I

�
x →

CL
x

Case: M ≡ U
�
V (λ

�
x.M)

�
x ≡ S/

��
(K

��
U)

�
(λ

�
x.V)

�
x

→
CL

((K
��
U)

�
x)

�
((λ

�
x.V)

�
x)

→
CL

U
�
V (by the induction hypothesis)

(λ
�
x.M)

�
x →

CL
M can be proved in the same way.

4 DT in SDCL

The encoding of lambda abstraction terms corresponds to the proof of DT in
Hilbert-style proof systems. Conversely, DT corresponds to the typing rule for
the encoded lambda abstraction terms. The fully general version of DT in SDCL
is considered to have the following forms:

(DTl)

x : A,Γ �M : B

Γ � λ�x.M : B\A
(DTr)

Γ, x : A �M : B

Γ � λ�x.M : B/A

However, each instance of SDCL adopts only a subset of directional combinators,
so each DT has a restriction on its use resulting from the combinators it adopts.
In the instance that corresponds to CCG without type raising, which is presented
in the Appendix A, a restricted version of DT holds as follows:

190 H. Ozaki and D. Bekki

Theorem 4 (DT in SDCL). In SDCL, the following rules are admissible (Γ
is an arbitrary context, x is an SDCL variable, M,N are SDCL terms and A,B
are SDCL types).

(DTl)

x : A,Γ �M : B

Γ � λ�x.M : B\A
(DTr)

Γ, x : A �M : B

Γ � λ�x.M : B/A

where (DTl)
′s and (DTr)

′s B is obtained by (<)
x : A,Γ

′ � N : C Γ
′′ �M : B\C

x : A,Γ
′
, Γ

′′ �M�N : B
(Γ ≡ Γ

′
, Γ

′′
)

and (>)
Γ

′
�M : B/C Γ

′′
, x : A � N : C

Γ
′
, Γ

′′
, x : A �M�

N : B
(Γ ≡ Γ

′
, Γ

′′
), respectively.

Proof. (⇑): If Γ � λ
�
x.M : B\A is provable, then x : A,Γ � (λ

�
x.M)

�
x : B is

provable as follows.

(<)

(V AR)
x : A � x : A Γ � λ�x.M : B\A

x : A,Γ � (λ
�
x.M)

�
x : B

Then, by the subject reduction theorem of SDCL [5] and η-reduction, x : A,Γ �
M : B is also provable. DTr can be proved via the following deduction:

(>)
Γ � λ�x.M : B/A

(V AR)
x : A � x : A

Γ, x : A � (λ
�
x.M)

�
x : B

(⇓): By induction on the depth of the proof of x : A,Γ �M : B (or Γ, x : A �M :
B). Suppose that the depth of the proof of x : A,Γ �M : B (or Γ, x : A �M : B)

is k. We will now show that Γ � λ�x.M : B\A (or Γ � λ�x.M : B/A) is provable.

(case 1 (DTl)) k = 1: The rule used to prove x : A,Γ � M : B is either
(V AR) or (CON), but the possibility of (CON) is excluded since the left side
of x : A,Γ � M : B has one or more formulas. Thus x : A,Γ � M : B must be
proved by (V AR) (i.e., x : A � x : A). In this case, the lowest sequent of (DTl)

should be � λ�x.x : A\A. So, it is sufficient if the combinator I\ is proved.

(<)

(K)
�K : (A/\A)\A

(<>)

(K\)� K\ : (A\(A/\A))/A
(S\)� S\ : (A\A)\((A/\A)\A)/\((A/\A))/A)

� S��
\ K\ : (A\A)\((A/\A)\A)

� S��
\ K�

\K : A\A

(case 2 (DTr)) k = 1: Similar to case 1, it is sufficient if the combinator I/ is

proved (i.e. � λ�x.x : A/A).

(>)

(<>)

(K/)�K/ : (A/(A/\A))\A
(S/)� S/ : (A/A)/((A/\A)/A)/\((A/(A/\A))\A)

� S��
/ K/ : (A/A)/((A/\A)/A)

(K)
� K : (A/\A)/A

� S��
/ K�

/K : A/A

Extractability as the Deduction Theorem 191

(case 3 (DTl)) k > 1: Suppose that if there exists a proof of x : A,Γ � M : B

whose depth is less than k − 1, Γ � λ�x.M : B\A is provable (IH). The proof of
x : A,Γ �M : B whose depth is k must take the following form.

(<)
x : A,Γ

′ � N : C Γ
′′ �M : B\C

x : A,Γ
′
, Γ

′′ �M�N : B
(Γ ≡ Γ

′
, Γ

′′
)

Then, Γ
′
, Γ

′′ � λ�x.(M�
N) : B\A is provable as follows:

(<)

(IH)
x : A,Γ

′
� N : C

Γ
′
� λ�x.N : C\A

(<>)

(<>)

Γ ′′ �M : B\C (K/)� K/ : (B\C/A)/\(B\C)

Γ
′′
� K��

/ M : B\C/A
(S\)� S\ : (B\A)\(C\A)/\(B\C/A)

Γ
′′
� S��

\ (K��
/ M) : (B\A)\(C\A)

Γ
′
, Γ

′′ � S��
\ (K��

/ M)�(λ�x.N) : B\A

Note that, due to the condition that x ∈ fv (N), the proofs of x : A,Γ � M : B
cannot take the following form:

(<)
� N : C x : A,Γ �M : B\C

x : A,Γ �M�
N : B

(case 4 (DTr)) k > 1: Suppose that if there exists a proof of Γ, x : A � M : B

whose depth is less than k − 1, Γ � λ�x.M : B/A is provable (IH). The proof of
Γ, x : A �M : B whose depth is k must take the following form:

(>)
Γ

′ �M : B/C Γ
′′
, x : A � N : C

Γ
′
, Γ

′′
, x : A �M�

N : B
(Γ ≡ Γ

′
, Γ

′′
)

Then Γ
′
, Γ

′′ � λ�x.M�
N is provable as follows:

(>)

(<>)

(<>)

Γ ′ �M : B/C
(K\)� K\ : (B/C\A)/\(B/C)

Γ
′ � K��

\ M : B/C\A
(S/)� S/ : (B/A)/(C/A)/\(B/C\A)

Γ
′ � S��

/ (K��
\ M) : (B/A)/(C/A)

(IH)
Γ

′′
, x : A � N : C

Γ
′′ � λ�x.N : C/A

Γ
′
, Γ

′′ � S��
/ (K��

\ M)�(λ�x.N) : B/A

Note that, due to the condition that x ∈ fv (N), the proofs of Γ, x : A � M : B
cannot take the following form:

(>)
Γ, x : A �M : B/C � N : C

Γ, x : A �M�
N : B

Theorem 5 (Complex NP constraint in SDCL). If the judgment Γk, . . . , Γ1

� λ
�
x.(Mk

�· · · �(M1
�
x)) : Xk/X1 is proved by (DTr), then it is deduced from the

following sequence of premises:

Γk �Mk : Xk+1/Xk, · · · , Γ1 �M1 : X2/X1

Proof. By induction on k.

192 H. Ozaki and D. Bekki

Case k = 1:

(>)

(<>)

(<>)

Γ1 �M1 : X2/X1
(K\)� K\ : (X2/X1\X1)/\(X2/X1)

Γ1 �K��
\ M1 : X2/X1\X1

(S/)� S/ : (X2/X1)/(X1/X1)/\(X2/X1\X1)

Γ1 � S��
/ (K��

\ M) : (X2/X1)/(X1/X1)
(I/)

� λ�x.x : X1/X1

Γ1 � S��
/ (K��

\ M)�(λ�x.N) : X2/X1 (≡ λ
�
x.M1

�
x)

In S��
/ (K��

\ M)�(λ�x.N), K��
\ M must have the type X2/X1\X1, which means

that M must be of the type X2/X1.
Case k > 1:

(>)

(<>)

(<>)

Γk �Mk : Xk+1/Xk
(K\)� K\ : (Xk+1/Xk\X1)/\(Xk+1/Xk)

Γk �K��
\ Mk : Xk+1/Xk\X1

(S/)� S/ : (Xk+1/X1)/(Xk/X1)/\(Xk+1/Xk\X1)

Γk � S��
/ (K��

\ M) : (Xk+1/X1)/(Xk/X1)
(IH)

Γk−1 �Mk−1 : Xk/Xk−1 · · · Γ1 �M1 : X2/X1

Γk−1, . . . , Γ1 � λ�x.(Mk−1
�· · · �(M1

�
x)) : Xk/X1

Γk, . . . , Γ1 � S��
/ (K��

\ Mk)
�(λ�x.(Mk−1

�· · · �(M1
�
x))) : Xk+1/X1 (≡ λ

�
x.(Mk

�· · · �(M1
�
x)))

Similar to the case of k = 1, in S��
/ (K��

\ Mk)
�(λ�x.(Mk−1

�· · · �(M1
�
x))), K��

\ Mk

must have the type Xk+1/Xk\X1, which means that Mk must be of the type
Xk+1/Xk.

Therefore, the premises must be of the form Γk−1 �Mk−1 : Xk/Xk−1· · ·Γ1 �
M1 : X2/X1: in other words, their “slashes” must have the same direction.

We claim that this is the source of the complex NP constraint. In other words, the
assumption that Universal Grammar is equipped with only a subset of directional
combinators [1] derives the consequence that the operation of extraction (i.e., the
application of lambda abstraction) is available only when the premises (i.e., the
phrases) are of functional types whose “slashes” have the same direction.

5 Structural Rules

As is implied in the proof of DT, the structural rules relying on DT in Hilbert-
style proof systems inherit its constraints.

Definition 6 (Structural rules in Hilbert-style proof systems). The fol-
lowing rules are derivable in Hilbert-style proof systems, where Γ,Δ are arbitrary
sequences and A,B are arbitrary logical formulas.

(wl)
Γ �M : B

x : A,Γ �M : B
(wr)

Γ �M : B

Γ, x : A �M : B

(cl)
x : A, x : A,Γ �M : B

x : A,Γ �M : B
(cr)

Γ, x : A, x : A �M : B

Γ, x : A �M : B

(e)
Δ, y : B, x : A,Γ �M : C

Δ, x : A, y : B,Γ �M : C

On the other hand, in SDCL, only the following rules are derivable.

Extractability as the Deduction Theorem 193

Definition 7 (Structural rules in SDCL). The following rules are deriv-
able in SDCL, where Γ,Δ are arbitrary sequences and A,B are arbitrary logical
formulas.

(wl)
Γ �M : B

x : A,Γ �M : B
(wr)

Γ �M : B

Γ, x : A �M : B

(eh)
Δ, y : B, x : A,Γ �M : C

y : B,Δ, x : A,Γ �M : C
(ee)

Δ, y : B, x : A,Γ �M : C

Δ, y : B,Γ, x : A �M : C

Proof. (Weakening)

(<)

(V AR)
x : A � x : A

(<>)

Γ �M : B
(K\)

� K\
��
M : B\A/\B

Γ � (K\
��
M)

�
x : B\A

x : A,Γ �M : B

(<)

(<>)

(K/)� K/ : B/A/\B Γ �M : B

Γ � K/
��
M : B/A (V AR)

x : A � x : A

Γ, x : A � (K/
��
M)

�
x : B

(Contraction)
Not provable because of the constraint on DT.

(Exchange)
We use the new combinator C to prove the Exchange rule. The following C is

derivable from SKB that we set currently.(C
def≡ S(BBS)(KK) in combinatory

logic)

C�
/x

�y�z
def≡ S��

/ (B��
\ B�

/S
�
/)

�(K��
/ K/)

�x�y�z

→
CL

B��
\ B�

/S
�
/x

�(K��
/ K�

/x)
�y�z

→
CL

B�
/(S

�
/x)

�(K��
/ K�

/x)
�y�z

→
CL

S�
/x

�(K��
/ K�

/x
�y)�z

→
CL

x�z�(K��
/ K�

/x
�y�z)

→
CL

x�z�(K�
/y

�z)

→
CL

x�z�y

C�
\x

�y�z
def≡ S��

\ (B��
/ B�

\S
�
\)

�(K��
\ K\)�x�y�z

→
CL

B��
/ B�

\S
�
\x

�(K��
\ K�

\x)
�y�z

→
CL

B�
\(S

�
\x)

�(K��
\ K�

\x)
�y�z

→
CL

S�
\x

�(K��
\ K�

\x
�y)�z

→
CL

x�z�(K��
\ K�

\x
�y�z)

→
CL

x�z�(K�
\y

�z)

→
CL

x�z�y

194 H. Ozaki and D. Bekki

The above proof indicates that the combinator C in SDCL with the S and K
operators in the current setting must be one of the following forms:

C/ : (X\Z/Y)/(X/Y/Z)
C\ : (X/Z\Y)\(X\Y \Z)

Then, we start the proof of the Exchange rule (the terms are omitted):

case 1 Δ
def≡ B1, · · · , Bn

(defΔ)

(DTl∗)

(<)

(DTl∗)

(defΔ)
Δ,B,A, Γ � C

B1, · · · , Bn, B,A, Γ � C
Γ � C\B1\ · · · \Bn\B\A (C\)� (C\B1\ · · · \Bn/A\B)\(C\B1\ · · · \Bn\B\A)

Γ � C\B1\ · · · \Bn/A\B
B1, · · · , Bn, B, Γ,A � C
Δ,B, Γ,A � C

case 2 Γ
def≡ A1, · · · , An

(defΓ)

(DTr∗)

(>)

(C/)� (C/An/ · · · /A1\B/A)/(C/An/ · · · /A1/A/B)

(DTr∗)

(defΓ)
Δ,B,A, Γ � C

Δ,B,A,A1, · · · , An � C
Δ � C/An/ · · · /A1/A/B

Δ � C/An/ · · · /A1\B/A
B,Δ,A,A1, · · · , An � C
B,Δ,A, Γ � C

The result indicates that we can use the Exchange rule only in the case where an
argument is moved to the head or end of the row of formulas. Thus, we cannot
exchange arguments freely.

6 Power of Type-Raising in DT

In Section 2 we compared the grammars with and without the type-raising rule
with respect to the restriction on extractability. The type-raising rules in CCG
are defined as follows.

(>T)
Γ �M : A

Γ � C∗\
��
M : B/(B\A)

(<T)
Γ �M : A

Γ � C∗/
��
M : B\(B/A)

These rules can be regarded as the application of the combinators C∗/(≡ C/
��
I/)

and C∗\(≡ C\
��
I\), which are derived in SDCL as follows:

(<>)

C/ : X\(X/Y)/Y/(X/Y/(X/Y)) I/ : (X/Y)/(X/Y)

C/
��
I/ : X\(X/Y)/Y

(<>)

C\ : (X/(X\Y)\Y)\(X\Y \(X\Y)) I\ : (X\Y)\(X\Y)

C\
��
I\ : X/(X\Y)\Y

Extractability as the Deduction Theorem 195

Now we can answer the question why the addition of the type-raising rule allows
the grammar to violate the complex NP constraint. Recall that the extraction is
blocked if the sequence of phrases contains a phrase whose “slash” has a different
direction:

John

T/(T \NP)

met

S\NP/NP

a

NP/N
∗

boy

N
(>B)

who

N\N/(S\NP)

loved

S\NP/NP

N\N/NP

However, this derivation is remedied when the combinators C∗/ and C∗\ are
available as follows:

(>B)

John

T/(T \NP)
(>B)

met

S\NP/NP
(>B)

a

NP/N
(>B)

(>T)

boy

N

N/(N\N)
(>B)

who

N\N/(S\NP)

loved

S\NP/NP

N\N/NP

N/NP

NP/NP

S\NP/NP

S/NP

Generally, the addition of C∗/ and C∗\ allows us to consider a third case in the
proof of DT in SDCL, when k > 1:
(case 5-1 (DTl))

(>)
x : A,Γ

′ �M : B/C Γ
′′ � N : C

x : A,Γ
′
, Γ

′′ �M�
N : B

=⇒ (<)

x : A,Γ ′ �M : B/C
(<T)

Γ
′′ � N : C

Γ
′′
� C∗/

��
N : B\(B/C)

x : A,Γ
′
, Γ

′′
� (C∗/

��
N)

�
M : B

(case 5-2 (DTr))

(<)
Γ

′
� N : C Γ

′′
, x : A �M : B\C

Γ
′
, Γ

′′
, x : A �M�

N : B

=⇒ (>)

(>T)
Γ

′ � N : C

Γ
′ � C∗\

��
N : B/(B\C) Γ ′′ , x : A �M : B\C

Γ
′
, Γ

′′
, x : A � (C∗\

��
N)

�
M : B

Therefore, DT that is admissible in SDCL has a restriction due to 1) the last
rule being used to prove the upper sequent and 2) the constraint on the slash-
directions. For example, when one or more formulas have only backslashes (\) in
the whole proof, the rules we can use are (<) or (DTl). Also thereafter, we can
use only (<) or (DTl) because the proof has only backslashes (the other slash
(/) is similar). In addition, we cannot use crossed composition ([2]) because of
the constraints on the slash directions.

This additional generality in the proof of DT corresponds to the additional
constraction in the encoding of lambda abstraction as follows:

196 H. Ozaki and D. Bekki

Definition 8 (Abstraction in SDCL with C∗/ and C∗\). For every termM

and every variable x, terms of the form λ
�
x.M and λ

�
x.M are defined recursively

as follows:

(1/) λ
�
x.x

def≡ I/

(1\) λ
�
x.x

def≡ I\
(2/) λ

�
x.M

�
N

def≡ S/
��
(K\

��
M)

�
(λ

�
x.N) (x /∈ fv(M), x ∈ fv (N))

(2\) λ
�
x.M

�
N

def≡ S\
��
(K/

��
M)

�
(λ

�
x.N) (x /∈ fv(M), x ∈ fv (N))

(3/) λ
�
x.M

�
N

def≡ S/
��
(K\

��
(C∗/

��
N))

�
(λ

�
x.M) (x ∈ fv(M), x /∈ fv (N))

(3\) λ
�
x.M

�
N

def≡ S\
��
(K/

��
(C∗\

��
N))

�
(λ

�
x.M) (x ∈ fv(M), x /∈ fv (N))

Therefore, the SDCL system with C∗/ and C∗\ is a different system from that
without them: in the former case, the restriction of DT, and hence extraction,
is relaxed to the point where the premises (i.e., the phrases) do not have to
have “slashes” of the same direction, nor have to be a functional type in the
first place. The only restriction is that in applying (DTl), the rightmost element
must be of the type X/Y , and in applying (DTr), the leftmost element must be
of the type X\Y . In other words, only an element on the edge of phrases can be
extracted.

7 On Adjunct and Subject Islands

We can give explanations about other kinds of wh-movement. As we mentioned
in Theorem 5, “slashes” of each words must have the same direction. In this way,
we can explain ‘Adjunct islands’ and ‘Subject islands’.

An adjunct islands is a kind of island formed from an adjunct clause. The
following sentence is an instance of the sentence including adjunct phrase:

You went home because you needed to do what?

(<)

(>)

You

T/(T \NP)
(>)

went

S\NP/NP

home

NP

S\NP

S
(>)

(>B)

because

S\S/S
(>B)

you

T/(T \NP)
(>B)

needed

S\NP/Sto

(>B)

to

Sto/(S\NP)

do

S\NP/NP

Sto/NP

S\NP/NP

S/NP

S\S/NP

what ?

NP

S\S
S

This sencence is acceptable and is also derivable in CCG. However, it is well
known that extraction from an adjunct clause is not allowed in English (Adjunct
islands), as illustrated below:

* What did you go home because you needed to do?

What

Sq/(Sinv/NP)
∗

(>)

(<)

did

Sinv/(S\NP)/NP

you

T \(T/NP)

Sinv/(S\NP)
(>)

go

S\NP/NP

home

NP

S\NP

Sinv

(>B)

because

S\S/S
(>B)

you

T/(T \NP)
(>B)

needed

S\NP/Sto

(>B)

to

Sto/(S\NP)

do ?

S\NP/NP

Sto/NP

S\NP/NP

S/NP

S\S/NP

Extractability as the Deduction Theorem 197

This sentence is unacceptable and is not derivable in CCG. However, if we allow
a type-raising rule for CCG, the sentence becomes derivable in the following way:

* What did you go home because you needed to do?

(<)

What

Sq/(Sinv/NP)
(>B)

(>T)

(>)

(<)

did

Sinv/(S\NP)/NP

you

T \(T/NP)

Sinv/(S\NP)
(>)

go

S\NP/NP

home

NP

S\NP

Sinv

T/(T \Sinv)
(>B)

because

S\S/S
(>B)

you

T/(T \NP)
(>B)

needed

S\NP/Sto

(>B)

to

Sto/(S\NP)

do ?

S\NP/NP

Sto/NP

S\NP/NP

S/NP

S\S/NP

Sinv/NP

Sq

’Subject islands ’ are another example of where wh-movement is excluded. A
subject island is a kind of island formed from a subject position. The following
example illustrates a wh-phrase in subject position:

Where is it likely that John went?

(>)

Where

Sq/(Sinv/PPto)
(>B)

(>)

(>)

is

S/Sthat/(S\Sthat)/NPit

it

NPit

S/Sthat/(S\Sthat)

likely

S\Sthat

S/Sthat

(>B)

that

Sthat/S
(>B)

John

T/(T \NP)

went ?

S\N/PPto

S/PPto

Sthat/PPto

S/PPto

Sq

This sentence is acceptable and is also derivable in CCG. However, it is well
known that extraction from a subject clause is not allowed in English (Subject
islands), as illustrated below:

* Where is that John went likely?

Where

Sq/(S/PPto)
∗

(>B)

is

S/(S\Sthat)/Sthat

(>B)

that

Sthat/S
(>B)

John

T/(T \NP)

went

S\NP/PPto

S/PPto

Sthat/PPto

S/(S\Sthat)/PPto

likely ?

S\Sthat

As we illustrated above, we can explain ’Adjunct islands’ and ’Subject islands’
if we have the constraint of Theorem 5. In general, extraction in CCG (without
type-raising) is available only when the syntactic category of the relevant phrases
match one of the following forms:

(>B)×n
X1/X2 X2/X3 · · · Xn+1/Xn+2

X1/Xn+2

(<B)×n
Xn+1\Xn+2 · · · X2\X3 X1\X2

X1\Xn+2

It has turned out that our discussion above of the complex-NP constraint applies
as an account for other restrictions on wh-movement.

198 H. Ozaki and D. Bekki

8 Conclusion

A certain instance of CCG can be re-formulated as a certain instance of SDCL
that has a subset of directional combinators (i.e., subdirectionality). This re-
formulation of CCG by means of SDCL allows us to regard extraction as DT
in the subdirectional version of a Hilbert-style proof system, and by Curry-
Howard correspondence, as abstraction in the subdirectional version of CL.
Then, the subdirectionality of CCG poses a restriction on the applicability of
DT/abstraction, which gives us a fundamental explanation as to why the com-
plex NP constraint exists, as a result of subdirectionality of the chosen combina-
tor (especially S in this setting). This is a deeper explanation than that which
merely states that NP is somehow a boundary node for a wh-movement, because
this explanation connects the notion of extractability to the primitive combina-
tors that also serves as the basis of combinatory rules (i.e., merge operations).

Moreover, we have revealed the relationship between extractability and the
presence/absence of C∗/ and C∗\, namely, the type-raising operation. In this
operation, the presence of C∗/ and C∗\ drastically relax the restriction on ex-
tractability to the extent that the complex NP constraint does not hold, and this
derives from the fact that the addition of C∗/ and C∗\ to the grammar gives
rise to the additional generality to DT/abstraction.

On the whole, we demonstrated that the re-formulation of CCG in terms of
SDCL allows us to reduce the existence of some linguistic constraints to some
formal properties of the subdirectional logic. In other words, there are linguistic
constraints that can be captured well as a formal consequence of the subdirec-
tionality of a logic we regard our grammar to correspond to. We believe that this
argument highlights another advantage of the categorial/logical view of natural
language syntax.

Appendix

A Subdirectional Combinatory Logic

In Subdirectional Combinatory Logic (SDCL), the two directions of functional
applications are distinguished. For example, the combinator K : A → (B → A)
in Combinatory Logic (CL) corresponds to the following 4 directional
combinators:

K// : (A/B)/A K\/ : (A\B)/A K/\ : (A/B)\A K\\ : (A\B)\A
(other combinators are defined in a similar way)

Thus, the logic which is expanded from CL and can describe order between
natural language by giving directions to combinators is called SDCL.

A.1 Syntax, Axioms, Type Assignment Rules and Underspecified
Notations

In SDCL, syntax, axioms, type assignment rules and underspecified notations
are defined as follows:

Extractability as the Deduction Theorem 199

Syntax:
type τ ::= γ | τ/τ | τ\τ (γ is a base type)
term Λ ::= x | c | Λ�Λ | Λ�Λ (c is a directional combinator)

Axioms:
(V AR)

x : A � x : A
(CON)

� c : A

Typing rules:

(>)
Γ �M : A/B Δ � N : B

Γ,Δ �M�N : A
(<)

Δ � N : B Γ �M : A\B
Δ,Γ �M�N : A

Underspecified notations:

τ/\σ def≡ τ/σ or τ\σ
M��N

def≡ M�N orM�N

(<>)
def≡ (<) or (>)

A.2 Dependency between Combinators

In [1], the combinators S and B are chosen as below, following [7].

S/ : (A/C)\(B/C)/\(A\B/C) S\ : (A\C)/(B\C)/\(A/B\C)
B/ : (A/C)/(B/C)/\(A/B) B\ : (A\C)\(B\C)/\(A\B)

[1] claims that Universal Grammar is not equipped with the combinator K, but
for purely theoretical reasons, we use the combinator K of the following form in
order to show the dependencies between combinators:

K/ : (A/B)/\A K\ : (A\B)/\A

In typed-CL, it is known that the combinatorB is derivable from the combinators
S and K. However, the combinator S in [1], chosen for linguistic reasons, does
not derive B above (Figure 1). Instead, again for purely theoretical reasons, we
use the combinator S of the following form:

S/ : (A/C)/(B/C)/\(A/B\C) S\ : (A\C)\(B\C)/\(A\B/C)

Then, we obtain B/ from S/and K\ (Figure 2).

(<)

K/ = ((A/B)/C)/(A/B)
(<>)

(<>)

(A/C)/(B/C)\((A/B)/C) K/ = ((A/C)/(B/C)\(A/B)/C)/(A/B)/\(A/C)/(B/C)\((A/B)/C)

((A/C)/(B/C)\(A/B)/C)/(A/B) S/ = ((A/C)/(B/C)/(A/B))\(((A/B)/C)/(A/B))\(((A/B)/C)/(A/B))/\((A/C)/(B/C)\(A/B)/C)/(A/B)

((A/C)/(B/C)/(A/B))\(((A/B)/C)/(A/B))\(((A/B)/C)/(A/B))

B/ = (A/C)/(B/C)/(A/B)

Fig. 1. Derivation of B/ (failed)

200 H. Ozaki and D. Bekki

(>)

(<>)

(<>)

S/ = (A/C)/(B/C)/((A/B)\C) K\ = ((A/C)/(B/C)/(A/B)\C)\(A/B)/\(A/C)/(B/C)/((A/B)\C)

((A/C)/(B/C)/(A/B)\C)\(A/B) S/ = ((A/C)/(B/C)/(A/B))/(((A/B)\C)/(A/B))/\((A/C)/(B/C)/(A/B)\C)\(A/B)

((A/C)/(B/C)/(A/B))/(((A/B)\C)/(A/B)) K\ = ((A/B)\C)/(A/B)

B/ = (A/C)/(B/C)/(A/B)

Fig. 2. Derivation of B/

A.3 Reduction Rules

The reduction rules in SDCL are defined as follows:

B��
/ f

�g�x →
CL

f�(g�x) B��
\ f

�g�x →
CL

f�(g�x)

S��
/ f

�g�x →
CL

(f�x)�(g�x) S��
\ f

�g�x →
CL

(f�x)�(g�x)

K��
/ x

�y →
CL

x K��
\ x

�y →
CL

x

It is proved that the reduction rules of SDCL enjoy formal properties such as
subject reduction, the Church-Rosser property and strong normalization. See [5]
for the detailed proofs.

References

1. Bekki, D.: Combinatory categorial grammar as a substructural logic — preliminary
remarks —. In: The Seventh International Workshop on Logic and Engineering of
Natural Language Semantics (LENLS 7), JSAI International Symposia on AI 2010.
pp. 70–83. Campus Innovation Center, Tokyo (2010)

2. Hindley, J.R., Seldin, J.P.: Lambda-Calculus and Combinators: an Introduction.
Cambridge University Press, Cambridge (2008)

3. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65, 154–169 (1958)

4. Morrill, G.V.: Type Logical Grammar. Kluwer Academic Publishers, Dordrecht
(1994)

5. Ozaki, H., Bekki, D.: Computational properties of subdirectional combinatory logic.
Tech. rep., Ochanomizu University, OCHA-IS 10-2, February 7 (2011)

6. Ross, J.R.: Constraints on Variables in Syntax. Unpublished ph.d. dissertation. MIT
(1967)

7. Steedman, M.J.: The Syntactic Process (Language, Speech, and Communication).
The MIT Press, Cambridge (2000)

Agnostic Possible Worlds Semantics

Andrew Plummer and Carl Pollard

The Ohio State University, Columbus, OH 43210, USA
{plummer,pollard}@ling.ohio-state.edu

Abstract. Working within standard classical higher-order logic, we pro-
pose a possible worlds semantics (PWS) which combines the simplicity
of the familiar Montague semantics (MS), in which propositions are sets
of worlds, with the fine-grainedness of the older but less well-known
tractarian semantics (TS) of Wittgenstein and C.I. Lewis, wherein
worlds are maximal consistent sets of propositions. The proposed agnos-
tic PWS makes neither montagovian nor tractarian ontological commit-
ments, but is consistent with (and easily extensible to) either alternative
(among many others). It is technically straightforward and, we believe,
capable of everything linguists need PWS to do, such as interfacing with
a logical grammar and serving as a basis for dynamic semantics.

Keywords: propositions, possible worlds, maximal consistent sets,
Montague semantics, tractarian semantics.

1 Introduction

1.1 Montague Semantics

When Montague [1974] pioneered the systematic application of mathematical
logic to the analysis of natural language meaning, he borrowed one key idea
from Kripke [1963], and another from Carnap [1947]. From Kripke came the
assumption of “an arbitrary set K of ‘possible worlds’ and a function Φ(P,H)
assigning to each proposition [= atomic formula] P a truth-value in the world
H”, in contradistinction to the earlier notion of a possible world as a maximal
consistent set of propositions (Wittgenstein [1921], C.I. Lewis [1923]) or formulas
(Carnap [1947], Kripke [1959]). And from Carnap came the idea of a linguistic
meaning as a Carnapian intension, a function whose domain is the set of possi-
ble worlds. In the case of a declarative sentence, the meaning—the proposition
expressed by the sentence—is nothing more or less than (the characteristic func-
tion) of a set of these possible worlds, because Carnap followed Frege [1892] in
assuming that the reference of a sentence is the truth value of the proposition
that it expresses.

Together, these two ideas have as consequences that the set of propositions
is a powerset algebra, the meanings of the English ‘logic words’ are just the
familiar boolean operations on sets of worlds, and the centrally important notion
of entailment is just the relation between them of subset inclusion. Because
of its sheer simplicity and familiarity (skillfully illuminated in the influential

D. Béchet and A. Dikovsky (Eds.): LACL 2012, LNCS 7351, pp. 201–212, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

202 A. Plummer and C. Pollard

textbook by Dowty et al. [1981]), and its early adoption by certain philosophers
well-known to linguists, most notably Stalnaker [1976,1984], this style of PWS
became, and remains, the mainstream framework for theorizing about natural
language meaning in the linguistic semantics community. At the same time, it
has long been recognized—at least as early as C.I. Lewis [1943] and Carnap
[1947]—that treating sentence meanings as sets of worlds also has the troubling
consequence that entailment is antisymmetric, i.e. that distinct sentences with
the same truth conditions mean the same thing, the best-known aspect of what
is more generally known as the ‘granularity problem’ (that distinct linguistic
expressions with necessarily identical denotations have the same meaning).

1.2 Structured Meanings

The (independent) responses of Lewis and Carnap to this challenge were, in
essence, that the meanings of sentences are not the intensions associated with
them, but rather ‘structured’ objects with lexical meanings as parts. Since then,
one version or other of this general approach has been embraced by a num-
ber of philosophers (e.g. D. Lewis [1970], Cresswell [1985], Soames [1987], King
[1996,2007]). The various versions differ both with respect to what kinds of lex-
ical meanings are embedded within the structures (e.g. whether they are inten-
sional or extensional) and what kinds of structure they have (e.g. tuples, phrase
markers, some version of Chomskian LF). And although structured-meaning ap-
proaches are broadly familiar to the linguistic semantics community, they seem
not to have gained much of a foothold there, perhaps for lack of a canonical and
accessible exposition with a degree of formal explicitness comparable to that of
Dowty et al. [1981].

1.3 Propositions in Themselves

However, long before Carnap, Kripke, and Montague, there were well worked out
conceptions of propositions as things in their own right (independent of sentences
that might express them or conditions under which they might be true); and of
worlds, not as unanalyzed primitives, but rather as certain sets of propositions
(the maximal consistent ones). As early as 1837, Bolzano’s notion of ‘proposition
in itself’ (Satz an sich) embodied most of the key properties that present-day
semanticists attribute to propositions:

a. They are expressed by declarative sentences.

b. They are the primary bearers of truth and falsity; a sentence is only sec-
ondarily, or derivatively, true or false, depending on what proposition it
expresses.

c. They are the objects of the attitudes, i.e. they are the things that are known,
believed, doubted, etc.

d. They are not linguistic.

e. They are not mental.

Agnostic Possible Worlds Semantics 203

f. They are not located in space or time.

g. Sentences in different languages, or different sentences in the same language,
can express the same proposition.

h. Two distinct propositions can entail each other.

1.4 Tractarian Semantics

Wittgenstein [1921] seems to have been the first to explicitly identify worlds
with maximal consistent sets of facts, a characterization which we henceforth
call tractarian. More precisely, the worlds of the Tractatus are maximal con-
sistent assemblages of positive and negative facts. A fact (Tatsache), the closest
counterpart in the Tractatus to our (or Bolzano’s) propositions, consists of the
(non)existence of a state of affairs (Sachverhalt); the term ‘proposition’ (Satz) is
reserved for the linguistic entities that express (potential) facts, or equivalently,
describe states of affairs.

More technically precise, but much less-known, is C.I. Lewis [1923], wherein
a world is defined to be a ‘system of facts’ which is maximal in the sense of
containing each fact or its ‘contradictory’. In Lewis’ terminology, ‘facts’ cor-
respond to our propositions and the ‘actual facts’ of a system are those facts
which belong to it ; while a ‘system’ is what would later come to be called a
proper filter (a proper subset of the propositions, closed under conjunction and
entailment). A significant advantage of Lewis’ theory over Wittgenstein’s is that
it is not atomistic. That is, there is no requirement that there be a collection
of ‘basic facts’, i.e. the ones expressed in the Tractatus system by elementary
propositions (Elementarsätze).

More recent tractarian characterizations of possible worlds by philosophers
include those of Adams [1974], Plantinga [1974], and Lycan [1979]. Within lin-
guistics, there have been several logical theories of natural language meaning
which take propositions to be primitives rather than sets of worlds, e.g. Thoma-
son [1980], Muskens [2005], and Pollard [2008,2011], the last of which is explicitly
tractarian.

As is the case with structured meanings, none of the propositions-as-primitives
approaches, tractarian or not, has attracted much of a following among seman-
ticists, perhaps because the philosophers in question have not been as closely
associated with the linguistic community, or perhaps for want of a sufficiently
accessible exposition of the underlying technicalia. Although we strongly believe
that this robust tradition, alternative to both montagovian PWS and structured-
meaning approaches, deserves a fuller hearing in the linguistic community, it is
not our purpose here to provide such an exposition. Instead, we will propose a
weakening of MS, a PWS which we believe possesses all the positive attributes
of MS but without the fatal identification of propositions with sets of worlds and
the concomitant antisymmetry of entailment. This agnostic PWS is a weaken-
ing in the sense that, if the type p of propositions is identified with the type
w → t of sets of worlds, then the addition of a single axiom produces a the-
ory equivalent to Montague semantics (or, more precisely, to Gallin’s ([1975])

204 A. Plummer and C. Pollard

reformulation of MS within the simple theory of types). On the other hand, by
adding different axioms instead, we can obtain TS, or a wide range of alternative
semantic theories. In practical terms, working semanticists can just use the weak
theory ‘off the shelf’, without taking on further ontological commitments that
don’t have any empirical consequences.

2 The Theory

2.1 Preliminaries

We work within the simple theory of types of Church [1940] as modified by
Henkin [1950] with the addition of the axiom of truth-value extensionality, iden-
tifying truth value equality with biimplication.

We adopt the following notational conventions. Application terms are written
(f a), not f(a). Application associates to the left, so (f a b) abbreviates ((f a) b).
Outermost parentheses are often dropped. We abbreviate multiple abstractions,
e.g. λxy .a for λx .λy .a. Functional types are written A → B; and implication
associates to the right, so A→ B → C abbreviates A→ (B → C). Some binary
function symbols are written infix without comment, e.g. p and q, p entails q.
The turnstyle ‘�’ is used both for typing judgments of terms and for assertions
of higher-order provability.

2.2 Types

Besides Church’s types o and ι, here (following Montague) called e and t, we
employ two additional basic types w (worlds) and p (propositions). We adopt
the following type abbreviations:

a. p0 =def p
b. pn+1 =def e→ pn

2.3 Constants and Axioms

In MS, being true at is the relation between propositions (qua sets of worlds)
and worlds such that p is true at w just in case w ∈ p; whereas in TS, it is
the relation between propositions and worlds (qua maximal consistent sets of
propositions) such that p is true at w just in case p ∈ w. In agnostic semantics,
hereafter AS, by contrast, we only assume that being true at, denoted by the
constant @, is some relation or other between propositions and worlds, without
committing to whether it is membership, inverse membership, or something else
altogether. Hence we have

� @ : p→ w → t (‘is true at’)

Axioms and definitions to be given below will then ensure that this relation has
the two crucial properties that, for any world w and any propositions p and q:

Agnostic Possible Worlds Semantics 205

a. the set of facts of w (i.e. the propositions which are true at w) form a maximal
consistent set; and

b. p entails q iff q is true at every world where p is true.

We begin with the following abbreviations:

facts =def λwp .p@w

entails =def λpq .∀w .p@w → q@w

≡ =def λpq .(p entails q) ∧ (q entails p) (‘equivalent to’)

Thus facts w is the set of propositions true at w; p entails q just in case q is true
at every world where p is; and p is (truth-conditionally) equivalent to q just in
case p and q are mutually entailing.

The preceding three definitions could just as well have been written as axioms:

� ∀w .(facts w) = λp .p@w
� ∀pq .(p entails q)↔ ∀w .p@w→ q@w
� ∀pq .(p ≡ q)↔ (p entails q) ∧ (q entails p)

Note that the last of these could be expressed equivalently as

� ∀pq .(p ≡ q)↔ ∀w .(p@w) = (q@w)

which will become relevant later when we generalize the notion of equivalence
from propositions to meanings of other types.

Next, we introduce constants for the usual proposition-level connectives and
quantifiers, as follows:

� truth : p (a necessary truth)

� falsity : p (a necessary falsehood)

� not : p→ p (propositional negation)

� and : p→ p→ p (propositional conjunction)

� or : p→ p→ p (propositional disjunction)

� implies : p→ p→ p (propositional implication)

� forall : (e→ p)→ p (propositional universal)

� exists : (e→ p)→ p (propositional existential)

Of these, the connectives not, and , or , and implies would be employed in a
(static) semantically interpreted grammar as translations, respectively, for the
sentential negation it is not the case that, sentential conjunction and, sentential
disjunction or, and sentence subordinator if ; and the quantifiers would be em-
ployed as expected in the translations of the quantification determiners every
and some:

every =def λPQ .forall λx .(P x) implies (Q x)
some =def λPQ .exists λx .(P x) and (Q x)

206 A. Plummer and C. Pollard

The propositional connectives and quantifiers are subject to the following ax-
ioms:

� ∀w .truth@w
� ∀w .¬(falsity@w)
� ∀pw .(not p)@w↔ ¬(p@w)
� ∀pqw .(p and q)@w↔ (p@w ∧ q@w)
� ∀pqw .(p or q)@w ↔ (p@w ∨ q@w)
� ∀pqw .(p implies q)@w ↔ (p@w→ q@w)

� ∀Pw .(forall P)@w ↔ ∀x .(P x)@w

� ∀Pw .(exists P)@w ↔ ∃x .(P x)@w

The first six of these axioms say that, in an interpretation, the propositions
form a pre-boolean algebra, i.e. an algebra that satisfies all the boolean axioms
up to the equivalence relation induced by the underlying preorder; in the present
case, that preorder is entailment and the induced equivalence is truth-conditional
equivalence. Crucially, nothing licenses the inference that entailment is antisym-
metric, and so the granularity problem does not arise. Of course there is no
shortage in the literature of solutions to the granularity problem, but we believe
that this one is by far the simplest.

The Facts of a World Are a Maximal Consistent Set

In a (pre-)boolean algebra, a maximal consistent set, also called an ultra-
filter, is a subset S which ‘settles all issues’ in the sense that for any algebra
element p, either p or its complement is in S, but not both; and which is upper-
closed relative to the underlying (pre-)order and closed under the meet operation
of the algebra.

In Lewis’ [1923] formulation of TS, worlds are easily seen to be maximal con-
sistent by definition, once we align his terminology with more a contemporary
one. Specifically: Lewis’ ‘systems’ correspond to ‘proper filters’; ‘facts’ to ‘propo-
sitions’; ‘actual facts’ to ‘facts’ simplicter ; ‘requires’ to ‘entails’, the ‘joint fact’
of two facts to their ‘propositional conjunction’; the ‘contradictory of a fact’ to
its ‘propositional negation’; and ‘p is inconsistent with q’ to ‘p entails not q’.

In MS, the facts of a world are maximal consistent because the boolean pre-
order of propositions is the powerset of the set of worlds with entailment as subset
inclusion and propositional conjunction as intersection, so that the set of facts
of a world w is just the (principal) ultrafilter consisting of all the propositions
which have w as a member.

In AS, that the set of facts of any world is maximal consistent is an (easy)
theorem of the axioms and definitions given in the previous subsection. To prove
it, we just define maximal consistency within our semantic theory in the obvious
way (here the variable s is of type p→ t):

upc =def λs .∀pq .((s p) ∧ (p entails q))→ (s q) (‘upper-closed’)

Agnostic Possible Worlds Semantics 207

cjc =def λs .∀pq .((s p) ∧ (s q))→ (s (p and q)) (‘conjunction-closed’)

sai =def λs .∀p .((s p)∨ (s (not p))∧¬((s p)∧ (s (not p))) (‘settles all issues’)

mxc =def λs .(upc s) ∧ (cjc s) ∧ (sai s) (‘maximal consistent’)

Then the theorem in question takes the form:

� ∀w .mxc (facts w)

3 From Agnostic Semantics to Montagovian Semantics

Among fine-grained approaches to natural language semantics, AS is perhaps
unique in being consistent with MS. In fact, AS becomes MS (or more precisely,
becomes Gallin’s [1975] reformulation of MS within the simple theory of types)
with the addition of the following montagovian axiom:

� ∀pw .p@w = (p w)

or, equivalently: @ = def λp .p. In order for this to be well-typed, we must con-
comitantly drop the assumption that p is a basic type and instead treat it as an
abbreviation for w → t, so that every set of worlds is a proposition. It is easily
verified that, with this addition, each proposition is identical with its own set of
facts:

� ∀p .p = λw .p@w

that entailment reduces to subset inclusion, and that the propositional connec-
tives become identified with the usual set-theoretic operations on the powerset
of the set of worlds. Other consequences include the following:

a. Entailment is antisymnmetric, i.e. equivalent propositions are identical.

b. For every set of propositions, there is a proposition which, necessarily, is true
iff every member of the set is true (namely, the intersection of the set.)

c. For every world w, there is a proposition true only at that world (namely
the singleton set whose member is w).

d. Every world is uniquely determined by its set of facts.

e. Not every maximal consistent set of propositions is the set of facts for some
world.

The first two of these consequences are explicitly defended by Stalknaker
[1976,1984]. But it appears to us that, since they are inescapable consequences of
his assumption of the montagovian axiom, he is just making a virtue of necessity.
Consequence (c), though evidently lacking empirical consequences, is perhaps an
ontological commitment that not every semanticist would wish to take on. Con-
sequence (d) is, as Kripke [1963] notes, a property of the modal semantics in
Kripke [1959] which he now wished to avoid, though again it may not have
empirical consequences for natural language semantics. Consequence (e) arises

208 A. Plummer and C. Pollard

because, for any world w, (facts w) is the principal filter over the powerset of
the set of worlds (ordered by subset inclusion) generated by the singleton of w.
But (assuming Choice), every infinite boolean algebra has a nonprincipal ultra-
filter. This leaves MS in the rather uncomfortable position of being charged with
providing an explanation for the fact that there are maximal consistent sets of
propositions which don’t correspond to any possible world.

To summarize: there is nothing in AS for an advocate of MS to take issue
with, since AS is a weaker theory than MS. Any semanticist or philosopher who
is comfortable with the additional consequences and commitments of MS is free
to add the montagovian axiom. From our perspective though, this is a rather
perverse thing to do. To put it in terms of a metaphor: AS is a house that we
invite semanticists to inhabit. Some might hesitate to accept, saying: but we are
used to living in a house with a leaky roof, and this roof doesn’t leak! To them,
we say: fine, you can punch a hole in the roof. The montagovian axioms is the
tool provided expressly for that purpose.

4 From Agnostic Semantics to Tractarian Semantics

The central tractarian tenet, that worlds are maximal consistent sets of propo-
sitions, is hard to formulate in standard higher-order logic. Intuitively, we would
like to identify each world with its set of facts:

� ∀w .w = (facts w)

Alas, this is ill-typed unless w = p → t. And we can’t just identify w with
p→ t because not every set of propositions is a set of worlds, only the maximal
consistent ones.1 What we can do, however, is to assert that there is a bijection
between worlds and maximal consistent sets of propositions. This we do with
two axioms, for injectivity and surjectivity respectively. The first of these can be
thought of as a weak tractarian axiom:

� ∀vw .((facts v) = (facts w))→ v = w

i.e. a world is uniquely determined by its set of facts (which, recall, has been
shown to be maximal consistent).2

The other axiom, for surjectivity, says that every maximal consistent set of
propositions is the set of facts for some world:

� ∀s .(mxc s)→ ∃w .s = facts w

1 This technical obstacle can be overcome by working in a version of higher-order logic
with separation-style subtyping, such as the categorical logic of Lambek and Scott
[1986]: then we identify w with the subtype of p → t whose characteristic function
is denoted by mxc.

2 Again, this is the ontological commitment that Kripke explicitly rejected in his [1963]
semantics for normal modal logic (but not in his [1959] semantics for S5).

Agnostic Possible Worlds Semantics 209

Together, these two axioms give a (strongly) TS essentially the same as Pollard’s
([2008,2011]) hyperintensional semantics (but expressed in standard HOL rather
than categorical logic).

Unlike the montagovian extension of agnostic semantics, the (weak or strong)
tractarian extensions are free of the (in our view pernicious) consequence that en-
tailment is antisymmetric.3 Of course, this is already true of agnostic semantics.
At this point, it remains unclear to us whether adopting either of the tractarian
ontological commitments (injectivity and surjectivity of the facts function) con-
fers any empirical or theoretical advantages on the working semanticist. In the
mean time, it seems that we can just go about our usual semantic business in
the agnostic setting.

5 Business as Usual in Agnostic Semantics

Here we provide a few illustrations of how to conduct the normal daily busi-
ness of Montague semantics in the absence of either montagovian or tractarian
assumptions.

5.1 Word Meanings

As usual, we introduce lots of constants for word meanings, e.g.

� p : e (Pedro)

� c : e (Chiquita)

� m : e (Maria)

� donkey : p1
� farmer : p1
� yell : p1
� kick : p2
� give : p3
� believe : e→ p→ p

� persuade : e→ e→ p→ p

� that : p1 → p1 → p1 (property conjunction)

� every : p1 → p1 → p (universal determiner)

� some : p1 → p1 → p (existential determiner)

These can be made subject to nonlogical axioms (cf. Montague’s ‘meaning pos-
tulates’ , or equivalently, be treated as abbreviations, e.g.:

that =def λPQx .(P x) and (Q x)

some =def λPQ .exists(λx .(P x) and (Q x)) = λPQ .exists(P that Q)

every =def λPQ .forall(λx .(P x) implies (Q x))

3 The framework of Jónsson and Tarski [1951] is a tractarian system with antisymme-
try of entailment, as it is an elaboration (with the addition of boolean operators) of
Stone’s [1936] duality theory of boolean (not pre-boolean) algebras.

210 A. Plummer and C. Pollard

5.2 Extensions of Meanings

We recursively define the set of meaning types as follows:

a. e is a basic meaning type.

b. p is a basic meaning type.

c. If A and B are meaning types, then A→ B is a functional meaning type.

c. Nothing else is a meaning type.

For each meaning type A, there is a corresponding type Ext(A) for the extensions
of meanings of type A.

a. Ext(e) = e

b. Ext(p) = t

c. Ext(A→ B) = A→ Ext(B) (not Ext(A)→ Ext(B))

To handle the notion of the extension of a meaning at a world, we extend the
@ function to all meaning types by introducing a family of constants

� @A : A→ w→ Ext(A)

where A ranges over meaning types. (Usually the type subscript on ‘@’ is omit-
ted.) Here a@w is read ‘the extension of a at w’. The @ functions are subject to
the axioms:

� ∀xw .x@ew = x

� ∀pw .p@pw = p@w

� ∀fw .f@w = λx .(f x)@w (A a functional type)

The first of these embodies a version of the direct referential theory of names:
that the meaning of a name coincides with its reference at whatever world. The
second captures the Fregean identification of the reference of a sentence with
the truth value of the proposition it expresses. The third, the interesting one,
defines the extension of a function meaning in terms of the extensions of the
values of the function for all possible arguments. To take a very simple example:
to say that Pedro is a farmer in the actual world w0 is to say that farmer@w0 p,
which in turn amounts to (farmer p)@w0 . That is: to be a w0 -farmer is no more
and no less than being an entity such that the proposition that that entity is a
farmer is one of the facts of w0 .

5.3 Equivalence of Meanings, Generalized

Recall that two propositions are equivalent iff they are true at the same worlds,
i.e. p ≡ q iff for every world w, p@w = q@w. More generally, we can now say
that two meanings a and b of the same type are equivalent iff, for every world
w, a and b have the same extension at w. That is, for every meaning type A, we
define meaning equivalence by:

Agnostic Possible Worlds Semantics 211

≡ A =def λxy .∀w .x@w = y@w

As with mutually entailing propositions, nothing forces equivalent functional
meanings to be equal. In the presence of the montagavian axiom, however, equiv-
alence of functional meanings reduces to identity.

6 Conclusion

We sketched the outlines of a weak PWS, of which the familiar Montague seman-
tics and the older, largely forgotten, PWS of Wittgenstein and C.I. Lewis can be
viewed as straightforward extensions. We suggested the possibility that the core
‘agnostic’ theory might replace Montague semantics as a practical framework for
the analysis of linguistic meaning. Among the work that remains to be done is a
more detailed formalization of the various schemes of PWS proposed by philoso-
phers and linguists; a consideration of the status of structured-meaning theories;
and development of a more robust agnostic fragment (covering, for example, in-
terrogatives, conditionals, and various categories of projective meaning). Some
of these tasks are taken up in Plummer and Pollard [in prep.].

References

1974. Adams, R.: Theories of actuality. Noûs 8, 211–231 (1974)
1837. Bolzano, B.: Theory of Science. Translation of Wissenschaftslehre, 1837,

edited and translated by R. George. University of California Press, Berkeley
(1972)

1837. Bolzano, B.: Theory of Science. Translation of Wissenschaftslehre, 1837,
edited by J. Berg and translated by B. Terrell. D. Reidel Publishing Com-
pany, Berkeley and Los Angeles, Dordrecht (1973)

1947. Carnap, R.: Meaning and Necessity. University of Chicago Press, Chicago
(1947)

1940. Church, A.: A formulation of the simple theory of types. Journal of Symbolic
Logic 5, 56–68 (1940)

1985. Cresswell, M.: Structured Meanings. MIT Press (1985)
1981. Dowty, D., Wall, R., Peters, S.: Introduction to Montague Semantics. D.

Reidel Publishing Company, Dordreht (1981)
1892. Frege, G.: On sense and reference. Translation of Über Sinn und Bedeutung,

1892. In: Geach, P., Black, M. (eds.) Translations from the Philosophical
Writings of Gottlob Frege, 3rd edn. Blackwell, Oxford (1980)

1975. Gallin, D.: Intensional and Higher Order Modal Logic. North-Holland, Am-
sterdam (1975)

1950. Henkin, L.: Completeness in the theory of types. Journal of Symbolic
Logic 15, 81–91 (1950)

1951. Jónsson, B., Tarski, A.: Boolean algebras with operators, part 1. American
Journal of Mathematics 73(4), 891–939 (1951)

1996. King, J.: Structured propositions and sentence structure. Journal of Philo-
sophical Logic 25, 495–521 (1996)

2007. King, J.: The Nature and Structure of Content. Oxford University Press,
Oxford (2007)

212 A. Plummer and C. Pollard

1959. Kripke, S.: A completeness theorem in modal logic. Journal of Symbolic
Logic 24, 1–14 (1959)

1963. Kripke, S.: Semantic analysis of modal logic I: normal modal propositional
calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathe-
matik 9, 67–96 (1963)

1986. Lambek, J., Scott, P.: Introduction to Higher-Order Categorical Logic. Cam-
bridge University Press, Cambridge (1986)

1923. Lewis, C.I.: Facts, systems, and the unity of the world. Journal of Philoso-
phy 20, 141–151 (1923)

1943. Lewis, C.I.: The modes of meaning. Philosophy and Phenomenological Re-
seach 4(2), 236–250 (1943)

1970. Lewis, D.: General semantics. Synthese 22, 18–67 (1970)
1979. Lycan, W.: The trouble with possible worlds. In: Loux, M. (ed.) The Possible

and the Actual, pp. 274–316. Cornell University Press, Ithaca (1979)
1974. Montague, R.: The proper treatment of quantification in ordinary English.

In: Thomason, R. (ed.) Formal Philosophy: Selected Papers of Richard Mon-
tague, pp. 247–270. Yale University Press, New Haven (1974)

2005. Muskens, R.: Sense and the computation of reference. Linguistics and Phi-
losophy 28(4), 473–504 (2005)

1974. Plantinga, A.: The Nature of Necesiity. Clarendon, Oxford (1974)
in prep.. Plummer, A., Pollard, C.: A flexible higher order framework for possible-

worlds semantics (in preparation)
2008. Pollard, C.: Hyperintensions. Journal of Logic and Computation 18(2), 257–

282 (2008)
2011. Pollard, C.: Are (Linguists’) Propositions (Topos) Propositions? In: Pogo-

dalla, S., Prost, J.-P. (eds.) LACL 2011. LNCS (LNAI), vol. 6736, pp. 205–
218. Springer, Heidelberg (2011)

1987. Soames, S.: Direct reference, propositional attitudes, and semantic content.
Philosophical Topics 15, 47–87 (1987)

1976. Stalnaker, R.: Propositions. In: MacKay, A.F., Merril, D.D. (eds.) Issues in
the Philosophy of Language, pp. 79–91. Yale University Press, New Haven
(1976)

1984. Stalnaker, R.: Inquiry. Bradford Books/MIT Press, Cambridge (1984)
1936. Stone, M.: The theory of representation for boolean algebras. Transactions

of the American Mathematical Society 40, 37–111 (1936)
1980. Thomason, R.: A model theory for propositional attitudes. Linguistics and

Philosophy 4, 47–70 (1980)
1921. Wittgenstein, L.: Tractatus Logico-Philosophicus. Translation by D.F. Pears

and B.F. McGuinness of Logisch-Philosophische Abhandlung in Annalen der
Naturphilosophie, 1921. Routledge & Kegan Paul, London and Henley (1961)

Abstract Machines for Argumentation

Kurt Ranalter

k.ranalter@gmail.com

Abstract. One of the most striking features of ludics is that it provides
us with convenient tools for the modelling of interaction. As a conse-
quence, ludics can be employed as a potential framework for the study
of dialogues. In this paper we address some of the issues that arise when
one tries to model certain types of dialogues that occur in the field of
argumentation. We shall exploit that ludics’ designs can be regarded as
abstract Böhm trees and explain how the pointer interaction of the as-
sociated geometric abstract machine relates to a notion of backtracking.

Keywords: ludics, abstract Böhm tree, dialogue, argumentation theory.

1 Introduction

One of the aims of this paper is to show how tools and techniques stemming from
investigations on the foundations of programming languages can be applied to
the field of argumentation. That interactive approaches to logic are well suited
for the modelling of dialogue and thus provide an optimal tool for their formal
study is perhaps the main lesson learnt from [3], an in-depth exploration of the
potential use of ludics in natural language semantics.

A typical area where the modelling of dialogues plays a central role is that
of argumentation. In general, the various approaches considered in the vast lit-
erature are highly formalised and hence provide a good benchmark for testing
new ideas: any serious proposal for a dialogical framework should be able to
capture the kind of dialogues considered there. We shall provide such a proof of
concept for the framework given in [4], aimed at modelling persuasion dialogues
incorporating disputes about the burden of proof.

An aspect of the dialogues in [4] that seems worth mentioning is the way in
which they are build. Roughly speaking, one starts from a given set of dialogue
moves that incorporate various options for the continuation of the exchange. For
example, a claim C made by the proponent can be either challenged or conceded
by the opponent. Even if the opponent first challenges C, it may well turn out
at a later point of the exchange that the arguments provided by the proponent
are sound, thus forcing the opponent to concede C.

Such instances of backtracking, i.e. the reconsideration or the reevaluation of
an earlier point in the exchange, seem to occur quite naturally in all kinds of
dialogues and it would thus seem appropriate to have a framework that comes
equipped with a primitive for such a pattern of behaviour. We claim that this

D. Béchet and A. Dikovsky (Eds.): LACL 2012, LNCS 7351, pp. 213–228, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

214 K. Ranalter

can naturally be achieved by the so called pointer interaction of abstract Böhm
trees [2], a formal framework that subsumes ludics.

It should be noted that the main focus of this paper is on the formalisation of
dialogues by means of ludics and abstract Böhm trees. Although insights from
the formalisation of dialogues within the field of argumentation have been more
than crucial for the development of some of the underlying ideas, we shall leave
a detailed comparison of these two strands of work for future investigations. The
paper is organised as follows: section 2 uses a simple example to point out the
cornerstones of the formalisation; section 3 deals with the use of the so called
pointer interaction for the modelling of backtracking.

2 A Case Study

We shall now consider a simple dialogue for information seeking and show how
it can be formalised via ludics. The basic example is inspired from a recurrent
activity related to teaching: to find out whether a student has grasped a certain
concept, i.e. is able to solve a given task or problem.

2.1 Setting

The required task is to find a natural deduction proof of ϕ1 ∧ ϕ2 � ϕ2 ∧ ϕ1. Let
us assume that student s has just been given the rules (∧ i) for ∧ introduction
and (∧ e)1, (∧ e)2 for ∧ elimination, and that teacher t wants to see whether s is
able to apply them correctly. In such a situation it would seem most appropriate
for t to exhibit a partial proof in which certain information is missing and then
let s complete the proof. Assuming that, whenever possible, introduction rules
have to be applied before elimination rules, one yields the following sequences
of partial proofs in (Fitch-style) natural deduction.

Step 1

⎧⎪⎪⎨⎪⎪⎩
1. ϕ1 ∧ ϕ2 assume
2. ϕ2 . . . , 1
3. ϕ1 . . . , 1
4. ϕ2 ∧ ϕ1 . . . , 2, 3⇐=

Step 2

⎧⎪⎪⎨⎪⎪⎩
1. ϕ1 ∧ ϕ2 assume
2. ϕ2 . . . , 1 ⇐=
3. ϕ1 . . . , 1 ⇐=
4. ϕ2 ∧ ϕ1 (∧ i), 2, 3

Step 3

⎧⎪⎪⎨⎪⎪⎩
1. ϕ1 ∧ ϕ2 assume 1. ϕ1 ∧ ϕ2 assume
2. ϕ2 . . . , 1 2. ϕ2 (∧ e)2, 1 ⇐=
3. ϕ1 (∧ e)1, 1 3. ϕ1 . . . , 1 ⇐=
4. ϕ2 ∧ ϕ1 (∧ i), 2, 3 4. ϕ2 ∧ ϕ1 (∧ i), 2, 3

Step 4

⎧⎪⎪⎨⎪⎪⎩
1. ϕ1 ∧ ϕ2 assume 1. ϕ1 ∧ ϕ2 assume
2. ϕ2 (∧ e)2, 1 2. ϕ2 (∧ e)2, 1
3. ϕ1 (∧ e)1, 1 3. ϕ1 (∧ e)1, 1
4. ϕ2 ∧ ϕ1 (∧ i), 2, 3 4. ϕ2 ∧ ϕ1 (∧ i), 2, 3

Abstract Machines for Argumentation 215

Notice that the constraint on the order of application of the rules serves mainly
the purpose to reduce the number of possible cases: the arrows indicate which
options are available at a given step. To get an idea of how the formalisation in
ludics works it is worth being more specific about the interactive nature of the
process that is left implicit in the above scheme.

In a sense, what matters is that the transition from one step to the next
models s’s contribution to the dialogue. The role of t is to register the choice
made by s and to license the partial proof given at the next step. The insight of
[3] is that such interactions can be split into two strands, one in which t is either
active or passive and one in which s is either active or passive, thus providing
two points of view for one and the same dialogue.

2.2 Teacher

Let us start with t’s point of view. Obviously, t is active when it licenses partial
proofs and passive when s is about to choose rules. Indeed, at step 1, t licenses
the initial partial proof and then waits for s to choose a rule which may then lead
to t’s licensing of the partial proof shown at step 2, and so on. An interesting
feature of the above scheme is that, at step 3, t must be prepared to license
two different partial proofs, depending on the choice made by s at step 2. A
schematic representation of t’s point of view of the exchange is provided by the
uppermost tree of figure 1: it is read from bottom to top and the frames indicate
when t has an active role during the interaction.

The switch from active to passive and viceversa can be neatly modelled in
ludics. Without going into the genesis of ludics, what matters for our purpose
is that ludics is a proof-theoretic framework that provides means to distinguish
between so called negative sequents ξ � and positive sequents � ξ. Because of
the special nature of ξ, ludics only needs three rules. For t’s point of view the
following stripped down variant of the rules is sufficient.

1. Daimon rule (daimon)
� ξ

2. Positive rule
ξ.1 � · · · ξ.n �

(+, ξ, {1, . . . , n})
� ξ

3. Negative rule
� ξ.1

(−, ξ, {{1}})
ξ �

When read from bottom to top, these rules get the following intended meaning.
When the conclusion consists of a positive sequent � ξ then we can apply either
the (daimon) rule or the (+, ξ, {1, . . . , n}) rule. In both of these cases t has
an active role: whereas the daimon rule allows t to terminate the exchange, the
positive rule allows t to go on with the interaction. For a better understanding of
the positive rule it is indispensable to come clear about the role of ξ. Whereas in
standard proof-theoretic frameworks ξ stands for some logical formula, in ludics
it stands for a sequence of numbers indicating an address. In the simplified
version of the rules given above, the address ξ is in one-to-one correspondence

216 K. Ranalter

Dialogue

complete proof – step 4
···

right elimination – line 2···
partial proof – step 3

···
left elimination – line 3 . . .

complete proof – step 4
···

left elimination – line 3···
partial proof – step 3

···
right elimination – line 2···

partial proof – step 2
···

introduction – line 4···
partial proof – step 1

Ludics/1

(daimon)
� 1(3).1.1(3)

(−, 1(3).1.1(2), {{1}})
1(3).1.1(2) �

(+, 1(3).1.1, {1})
� 1(3).1.1

(−, 1(3).1, {{1}})
1(3).1 �

(daimon)
� 1(3).2.1(3)

(−, 1(3).2.1(2), {{1}})
1(3).2.1(2) �

(+, 1(3).2.1, {1})
� 1(3).2.1

(−, 1(3).2, {{1}})
1(3).2 �

(+, 1(3), {1, 2})
� 1(3)

(−, 1(2), {{1}})
1(2) �

(+, 1, {1})
� 1

Ludics/2

(daimon)
···

(−, 1(3).1.1(2), {{1}})
···

(+, 1(3).1.1, {1})
···

(−, 1(3).1, {{1}}) . . .

(daimon)
···

(−, 1(3).2.1(2), {{1}})
···

(+, 1(3).2.1, {1})
···

(−, 1(3).2, {{1}})
···

(+, 1(3), {1, 2})
···

(−, 1(2), {{1}})
···

(+, 1, {1})

Fig. 1. t’s point of view

Abstract Machines for Argumentation 217

with its actual position in the underlying proof tree. The premises of a positive
rule are negative sequents ξ � and, thus, can only be obtained by means of the
(−, ξ, {{1}}) rule. In this case t has a passive role: the negative rule allows t to
register what s has to say. It is worth pointing out that the negative rule is the
one where we have simplified the most. In its original formulation it depends
on a possibly infinite collection of sets, thus justifying the use of double curly
brackets. However, in the remainder we shall only see cases where this collection
contains exactly one set (which often will be a singleton).

We can now turn our attention to the two lowermost trees of figure 1 where
1(n) stands for a sequence of n consecutive 1’s. These are the formal analogues
of the schematic representation of t’s point of view given in the uppermost tree.
One aspect is particularly worth mentioning: the rule names of ludics are so
informative that we can actually forget about the sequents. Such a way of looking
at proofs in ludics is expressed by the lowermost tree of figure 1: notice the perfect
match between the uppermost and lowermost trees.

2.3 Student

The case of s’s point of view can be treated in a similar fashion, provided that
two simple observations are taken into account. The first thing to notice is that
s can choose the order in which the elimination rules are applied and so can
actually choose between two strategies. Their schematic representation is shown
in the uppermost forest (collection of trees) of figure 2.

The next thing to consider is that the simplified version of the rules given
above does not suffice for the formalisation. What is needed is a version in which
there can be more than one address on the right hand side of �, the main reason
being that we need a variant of the negative rule that does not just deal with
a collection containing a singleton. Fortunately, the extension is straightforward
and the new rules get only slightly more complicated.

1. Daimon rule (Ξ = ξ1, . . . , ξn) (daimon)
� Ξ

2. Positive rule (
⊎
Ξi ⊆ Ξ)

ξ.1 � Ξ1 · · · ξ.n � Ξn
(+, ξ, {1, . . . , n})

� ξ, Ξ

3. Negative rule (Ξ ′ ⊆ Ξ)
� ξ.1, . . . , ξ.n, Ξ ′

(−, ξ, {{1, . . . , n}})
ξ � Ξ

Notice that the formalisation is actually more accurate than the schematic
representation. For instance, the bottom-up application of the negative rule
(−, 1(3), {{1, 2}}) in figure 2 leads to a situation where the positive rule which is
applied next (either (+, 1(3).1, {1}) or (+, 1(3).2, {1})) can choose between 1(3).1
and 1(3).2 (the choice made is emphasised by the frame around the corresponding
address). This can be regarded as s being aware of the options that are available
to it at a given point of the exchange or interaction.

218 K. Ranalter

Dialogue

[complete proof – step 4]
···

right elimination – line 2
···

partial proof – step 3···
left elimination – line 3

···
partial proof – step 2···
introduction – line 4

···
partial proof – step 1

[complete proof – step 4]
···

left elimination – line 3
···

partial proof – step 3···
right elimination – line 2

···
partial proof – step 2···
introduction – line 4

···
partial proof – step 1

Ludics/1

···
1(3).1.1(3) �

(+, 1(3).1.1(2), {1})
� 1(3).1.1(2)

(−, 1(3).1.1, {{1}})
1(3).1.1 �

(+, 1(3).1, {1})
� 1(3).1 , 1(3).2

(−, 1(3), {{1, 2}})
1(3) �

(+, 1(2), {1})
� 1(2)

(−, 1, {{1}})
1 �

···
1(3).2.1(3) �

(+, 1(3).2.1(2), {1})
� 1(3).2.1(2)

(−, 1(3).2.1, {{1}})
1(3).2.1 �

(+, 1(3).2, {1})
� 1(3).1, 1(3).2

(−, 1(3), {{1, 2}})
1(3) �

(+, 1(2), {1})
� 1(2)

(−, 1, {{1}})
1 �

Ludics/2

···
(+, 1(3).1.1(2), {1})

···
(−, 1(3).1.1, {{1}})

···
(+, 1(3).1, {1})

···
(−, 1(3), {{1, 2}})

···
(+, 1(2), {1})

···
(−, 1, {{1}})

···
(+, 1(3).2.1(2), {1})

···
(−, 1(3).2.1, {{1}})

···
(+, 1(3).2, {1})

···
(−, 1(3), {{1, 2}})

···
(+, 1(2), {1})

···
(−, 1, {{1}})

Fig. 2. s’s point of view

Abstract Machines for Argumentation 219

2.4 Interaction

Let us briefly summarise what we have achieved up to now: we have considered
both t’s and s’s point of view of the exchange and formalised these as proofs in
ludics. As a consequence we can now take advantage of ludics and simulate their
interaction via cut elimination, a fundamental result in proof theory which was
used as a design principle in ludics. If the cut elimination procedure ends in a
proof of the empty sequent � obtained by a single application of the (daimon)
rule, then the interaction is successful. In the light of our example one might say
that s has replied to t in a satisfactory manner and this leads t to terminate the
exchange. The cut elimination procedure with respect to the rightmost of the
two strategies available to s just proceeds as follows.

1. (a) (� 1) vs (1 �)
(b) (+, 1, {1}) vs (−, 1, {{1}})

···
1(2) �

(+, 1, {1})
� 1

···
� 1(2)

(−, 1, {{1}})
1 �

(cut)
�

2. (a) (1(2) �) vs (� 1(2))
(b) (−, 1(2), {{1}}) vs (+, 1(2), {1})

···
� 1(3)

(−, 1(2), {{1}})
1(2) �

···
1(3) �

(+, 1(2), {1})
� 1(2)

(cut)
�

3. (a) (� 1(3)) vs (1(3) �)
(b) (+, 1(3), {1, 2}) vs (−, 1(3), {{1, 2}})

···
1(3).1 �

···
1(3).2 �

(+, 1(3), {1, 2})
� 1(3)

···
� 1(3).1, 1(3).2

(−, 1(3), {{1, 2}})
1(3) �

(cut)
�

4. (a) (1(3).2 �) vs (� 1(3).2)
(b) (−, 1(3).2, {{1}}) vs (+, 1(3).2, {1})

···
� 1(3).2.1

(−, 1(3).2, {{1}})
1(3).2 �

···
1(3).2.1 �

(+, 1(3).2, {1})
� 1(3).1, 1(3).2

(cut)
�

5. (a) (� 1(3).2.1) vs (1(3).2.1 �)
(b) (+, 1(3).2.1, {1}) vs (−, 1(3).2.1, {{1}})

220 K. Ranalter

···
1(3).2.1(2) �

(+, 1(3).2.1, {1})
� 1(3).2.1

···
� 1(3).2.1(2)

(−, 1(3).2.1, {{1}})
1(3).2.1 �

(cut)
�

6. (a) (1(3).2.1(2) �) vs (� 1(3).2.1(2))
(b) (−, 1(3).2.1(2), {{1}}) vs (+, 1(3).2.1(2), {1})

(daimon)
� 1(3).2.1(3)

(−, 1(3).2.1(2), {{1}})
1(3).2.1(2) �

···
1(3).2.1(3) �

(+, 1(3).2.1(2), {1})
� 1(3).2.1(2)

(cut)
�

7. (a) (� 1(3).2.1(3)) vs (1(3).2.1(3) �)
(b) (daimon) vs unspecified rule

(daimon)
� 1(3).2.1(3)

···
1(3).2.1(3) �

(cut)
�

which then leads to a successful termination of the interaction.

It should be clear that the analysis of both t’s and s’s point of view has made
heavy use of the simplifying assumption that each makes the right move at the
right moment. Whereas this sort of behaviour seems to be justified for t (at
least in the context of the setting outlined above), one can easily imagine that it
cannot be the case for s because there are various ways in which s could go wrong.
Indeed, the most immediate one is that s could try to apply an elimination rule
instead of the required introduction rule and viceversa. However, there are more
subtle situations that can be formalised in ludics. For instance, the following
variant of s’s rightmost strategy, i.e. proof, considered above illustrates that s
might want to change its mind during the exchange.

···
1(3).1.1(3) � 1(3).2.1(2)

(+, 1(3).1.1(2), {1})
� 1(3).2.1(2), 1(3).1.1(2)

(−, 1(3).1.1, {{1}})
1(3).1.1 � 1(3).2.1(2)

(+, 1(3).1, {1})
� 1(3).2.1(2), 1(3).1

(−, 1(3).2.1, {{1}})
1(3).2.1 � 1(3).1

(+, 1(3).2, {1})
� 1(3).1, 1(3).2

(−, 1(3), {{1, 2}})
1(3) �

(+, 1(2), {1})
� 1(2)

(−, 1, {{1}})
1 �

(1)

Abstract Machines for Argumentation 221

Since the rules allow one to keep formulae on the right hand side of �, we have
that, although s has opted for address 1(3).2 previously (meaning that s wants
to finish the partial proof given at step 2 by going from top to bottom), it
picks out the address 1(3).1 at a later point (meaning that s backtracks from its
previous decision and now wants to finish the partial proof given at step 2 by
going from bottom to top). Notice that such a modification suffices to make the
interaction unsuccessful: the cut elimination procedure gets stuck when it tries
to cut (−, 1(3).2.1(2), {{1}}) with (+, 1(3).1, {1}).

2.5 Discussion

This sudden breakdown of the interaction is more than undesirable and a natural
question that poses itself in such a situation is whether we can do better than
that. The solution we propose is based on the idea that proofs in ludics can be
regarded as so called abstract Böhm trees (see for instance [2]).1 In the remainder
of this section we shall provide a rough introduction to some basic concepts, the
actual solution will be presented in the next section.

Roughly speaking, abstract Böhm trees are trees that come equipped with two
types of nodes, so called queries q and replies [r, p]. As usual in such definitions,
there exist a bunch of properties that need to hold. First, on every branch there
is a strict alternation between replies and queries, i.e. there are no consecutive
occurrences of queries or replies. Second, each query has at most one reply as
child, i.e. branchings can only occur below replies. The intuition behind this
asymmetry or restriction is that there should always be just one reply that
relates to a given query. Notice that replies [r, p] come equipped with an extra
piece of information, the pointer p: it points to a query that occurs on the branch
from the root of the tree to the reply itself and serves the purpose to overcome
the limitation that replies can only relate to queries that immediately precede
them, i.e. to queries occurring at the parent node.

Our claim is that pointers provide us with the right tool for the modelling of
a change of mind such as the one mentioned above. Besides that, there is one
more reason for encoding dialogues as abstract Böhm trees. They come equipped
with a collection of abstract machines that can be exploited to implement the
cut elimination procedure. Indeed, every example interaction given in this paper
has been verified by running it on a concrete implementation of such a machine,
the so called geometric abstract machine GAM.

2.6 Encoding

The transformation of ludics proofs (seen as trees of rules) into abstract Böhm
trees is done as follows: negative rules (−, ξ.x, {{1, . . . , n}}) are mapped to queries
(x, {1, . . . , n}), positive rules (+, ξ.x, {1, . . . , n}) to replies [(x, {1, . . . , n}), p]. That
is, one forgets everything about the address ξ.x except for the last number x.

1 The same idea was exploited in [1] to provide an extension of ludics that incorporates
exponentials and thus goes way beyond the standard variant of ludics presented here.

222 K. Ranalter

[dm, 0]
···

(1, {1})
···

[(1, {1}), 0]
···

(1, {1}) . . .

[dm, 0]
···

(1, {1})
···

[(1, {1}), 0]
···

(2, {1})
···

[(1, {1, 2}), 0]
···

(1, {1})
···

[(1, {1}),−]

···
[(1, {1}), 0]

···
(1, {1})

···
[(1, {1}), 0]

···
(1, {1, 2})

···
[(1, {1}), 0]

···
(1, {1})

···
[(1, {1}), 0]

···
(1, {1})

···
[(2, {1}), 0]

···
(1, {1, 2})

···
[(1, {1}), 0]

···
(1, {1})

Fig. 3. t’s and s’s encoding

Since in all our examples the collection of sets in negative rules consists of exactly
one set we apply the notational convention to replace double curly brackets with
simple curly brackets. Figure 3 illustrates the effect of the transformation in the
case of t’s and s’s point of view, respectively.

The assignment of pointers is a nontrivial issue. Since pointers may be ex-
ploited to relate replies to queries that have occurred earlier on in the exchange,
they need to be chosen in quite a careful manner. Fortunately, the encoding of
both t’s and s’s point of view as abstract Böhm trees does not make any serious
use of the pointer structure, i.e. p takes value 0 almost all the time. By this we
mean that the reply relates to the query that immediately precedes it. The case
in which p takes no value, i.e. in which p = −, is also worth considering: p takes
no value only at the beginning of an exchange, that is when the dialogue starts
with an initial reply, i.e. whitout any query that precedes it. Examples in which
p takes values other than 0 are given in the next section.

2.7 Execution

We shall now outline how the underlying dialogue can be obtained as a product
of letting t’s and s’s point of view interact by means of the geometric abstract
machine. To get an intuition for what is actually going let us return briefly to
the cut elimination procedure discussed in subsection 2.4.

1. (a) (+, 1, {1}) vs (−, 1, {{1}})
(b) [(1, {1}), 0] −→ (1, {1})

2. (a) (−, 1(2), {{1}}) vs (+, 1(2), {1})
(b) (1, {1}) ←− [(1, {1}), 0]

3. (a) (+, 1(3), {1, 2}) vs (−, 1(3), {{1, 2}})
(b) [(1, {1, 2}), 0] −→ (1, {1, 2})

Abstract Machines for Argumentation 223

[dm, 0] [dm, 0] ...

(1, {1}) (1, {1})

��

[(1, {1}), 0]
(6b)

		

[(1, {1}), 0] [(1, {1}), 0]
(5b)

�� (1, {1})

��

(1, {1}) (2, {1})

��

[(2, {1}), 0]
(4b)

		

[(1, {1, 2}), 0]
(3b)

�� (1, {1, 2})

��

(1, {1})

��

[(1, {1}), 0]
(2b)

		

[(1, {1}),−]
(1b)

�� (1, {1})

��

Fig. 4. t’s and s’s interaction

4. (a) (−, 1(3).2, {{1}}) vs (+, 1(3).2, {1})
(b) (2, {1}) ←− [(2, {1}), 0]

5. (a) (+, 1(3).2.1, {1}) vs (−, 1(3).2.1, {{1}})
(b) [(1, {1}), 0] −→ (1, {1})

6. (a) (−, 1(3).2.1(2), {{1}}) vs (+, 1(3).2.1(2), {1})
(b) (1, {1})←− [(1, {1}), 0]

Here we have that (a)-items refer to the corresponding (b)-items provided in
subsection 2.4. In a sense, (b)-items can simply be seen as translations of the
corresponding (a)-items where we have used the convention to replace occur-
rences of “vs” with an arrow that goes from replies to queries. However, the full
meaning is best illustrated by the picture shown in figure 4 where both t’s and
s’s point of view are put next to each other.

The most fundamental feature of the GAM is that it interleaves t-moves with
s-moves. That is, after t’s initial reply [(1, {1}),−], s replies with [(1, {1}), 0] to
t’s initial reply seen as the query (1, {1}), and so on. Therefore, each single step
of the cut elimination procedure can be put in correspondence with one of the
turn takings that occur during the dialogue. As a consequence, we get partial
visits of both t’s and s’s point of view.

3 Argumentation

The purpose of our case study was to provide a yet simple but still convincing
argument in support of the claim that ludics can be employed as a framework

224 K. Ranalter

for formalising dialogue. We have argued that one can get for free a fully com-
putational approach by means of the transition to abstract Böhm trees and the
associated abstract machines. The purpose of this section is to highlight yet an-
other feature of the approach by making explicit how pointers can be exploited
to deal with the issue of backtracking.

3.1 Backtracking

Consider again strategy (1) given on page 220 above: it shows that in ludics one
can formalise that a participant may change its mind and return to an earlier
point of the exchange. Though such a change of mind might well be accepted as a
legal move in the dialogue, we have seen that the interaction between t’s and s’s
point of view actually becomes unsuccessful, i.e. does not lead to a satisfactory
termination of the cut elimination procedure. We shall now see how pointers can
help to overcome such a crucial limitation.

The fundamental issue is that we can translate rule (+, 1(3).1, {1}) of strategy
(1) into various replies, depending on the value we choose for the pointer p.
Indeed, if we transform it into the reply [(1, {1}), 1] then the encoding of the
entire proof as abstract Böhm tree is given by the graph in the top right corner
of figure 5 (the graph on its left corresponds to the usual encoding for t). Notice
that we have introduced some new notational conventions. The dots from figure
3 have been replaced by solid arrows. Whenever the pointer p of a reply takes a
value, i.e. whenever p �= −, a double arrow points to the query to which it relates.
So, the reply [(1, {1}), 1] (emphasised by a double frame) does not relate to the
query (1, {1}) that immediately precedes it but to the query (1, {1, 2}). In other
words, it counts as a reply [(1, {1}), 0] to the query (1, {1, 2}) and this reading
is symbolised by the dashed arrow. We might say that s takes back [(2, {1}), 0]
and then opts for the alternative [(1, {1}), 0].

Although the reading of the dashed arrow as some sort of counts-as definition
is rather appealing from an intuitive point of view the introduction of the reply
[(1, {1}), 0] pointed to by [(1, {1}), 1] needs some explanation. The reason is that
the definition of abstract Böhm trees makes it impossible to have two consecutive
replies, i.e. the sequence of moves [(1, {1}), 1] ; [(1, {1}), 0] is not permitted. So,
the introduction of the spurious reply [(1, {1}), 0] following [(1, {1}), 1] is best
seen as a device for improving readability.

Such an encoding of the ludics strategy (1) as abstract Böhm tree suffices
to make the interaction successful again. The trace of the execution is provided
in the second part of figure 5. As an immediate consequence of s’s change of
mind (symbolised by the dashed arrow), the GAM stops visiting the right hand
branch of t’s point of view and starts visiting its left hand branch instead. An
interesting aspect of the formalisation is that, as a side product, we obtain a neat
and convenient graphical language for representing dialogues. Although the move
names are still a bit tedious to read, we can now represent t’s and s’s point of
view and, most importantly, their interaction in quite an intuitive way. Notice
that the use of double arrows to indicate how replies relate to queries makes the
pointer p redundant in the syntax of moves.

Abstract Machines for Argumentation 225

Encoding

[dm, 0]

[dm, 0]

...

(1, {1})

��

(1, {1})

��

[(1, {1}), 0]

��

[(1, {1}), 1]

���
�
�
�
�
�
�

[(1, {1}), 0]

��

[(1, {1}), 0]

��

(1, {1})

��

(1, {1})

��

(1, {1})

��

(2, {1})

��

[(1, {1}), 0]

��

����
���

�
���

���
[(2, {1}), 0]

��

[(1, {1, 2}), 0]

��						
��

(1, {1, 2})

��

(1, {1})

��

[(1, {1}), 0]

��

[(1, {1}),−]

��

(1, {1})

��

Interaction

[dm, 0] [dm, 0] ...

(1, {1})

��

(1, {1}) [(1, {1}), 0]
��

[(1, {1}), 1]

���
�
�
�
�
�
�
�
�

[(1, {1}), 0]
��

[(1, {1}), 0] ��(1, {1})

��

(1, {1})

��

(1, {1})

��

(2, {1})

��

[(1, {1}), 0]
��

[(2, {1}), 0]��

[(1, {1, 2}), 0] �� (1, {1, 2})

��

(1, {1})

��

[(1, {1}), 0]		

[(1, {1}),−] �� (1, {1})

��

Fig. 5. Instance of backtracking

226 K. Ranalter

p1 : claim C
o2 : why C
p3 : C since says(e, C) ∧ expert(e, C)
o4 : why ¬biased(e)
p5 : why biased(e)
o6 : BoP (¬biased(e), p) since ¬biased(e) → trusted (e)
p7 : why ¬biased(e) → trusted (e)
o8 : why ¬(¬biased(e) → trusted (e))
p9 : ¬(¬biased(e) → trusted (e)) since presumed(¬biased(e))
o10 : retract ¬biased(e) → trusted (e)
o11 : biased(e) since paid(e, c) ∧ testifies(e, c)
p12 : concede biased(e)
p13 : retract C

o10 o10

��

��

�
�

�
�
�
�
�
�
�
�
�
�
�

p9

��

��

p9

��

o8

��

o8

��

��
p7

��

��

p12

��

���
�
�
�
�
�
�
�
�
�
�
�
�

p7

��

p12

o6

��

o11

���������
o6

��

��
��

��
��

�

��
��

��
� o11

����������

�� ��
��
��

��
��
��

p5

���������

���������

��

p5

�

o4

��

o4

��

��
p3

��

 !
��

��
��

��
��

��
p13

!� ��
��
��
�

��
��
��
�

p3

��

p13

o2

""

o2

���������

���������

��
p1

��

p1

��

Fig. 6. Persuasion dialogue

Abstract Machines for Argumentation 227

3.2 Persuasion

With all that in place, we can turn our attention to the formalisation of an
example taken from the field of argumentation theory. The dialogue we shall
consider is taken from section 5.1 of [4] and a synthesised version of it is provided
in the first part of figure 6. In this exchange p tries to persuade o that C is the
case. Roughly, the most interesting passages are the following ones. In move p3,
p employs an argument from expert opinion (e stands for a given individual,
the expert). In move o4, o replies to p’s argument by making appeal to a so
called critical question which provides means for o to defeat p. If we forget for
a moment the moves from o6 to o10, then this is exactly what happens: in move
o11, o provides a reason for why it is the case that e is biased (e is paid by
company c and e testifies for c) and this then leads p to retract C in move p13.
The moves from o6 to o10 represent a dialogue about the burden of proof. In
move o6, o points out that p has the burden of proof (BoP) with respect to the
claim that e is unbiased. The moves from p7 to o10 just serve the purpose to
evaluate whether the reason offered by o in move o6 is justified: in the end, o
retracts it and so terminates the BoP dialogue.

With respect to the formalisation of this dialogue in the proposed framework,
one aspect is particularly relevant. As we have just observed, move o10 indicates
the end of the BoP dialogue and so the next move (o11) can readily be seen as a
change of mind and so we have an instance of backtracking. The case is similar
with respect to move p12 where p concedes that e is biased. Here again, the next
move (p13) can be regarded as an instance of backtracking. It should now be
relatively easy to see that p’s and o’s point of views are accurately represented
by the two graphs in the second part of figure 6.

It is worth mentioning that, in contrast to the examples we have considered
previously, move names now correspond to labels used in the transcript of the
persuasion dialogue. Together with the convention to make the pointer struc-
ture explicit, this leads to a considerable improvement of the readability of the
graphical language. Notice also the special role of the moves o10 and p12 (em-
phasised by a double frame in figure 6). When regarded as components of an
abstract Böhm tree, they do not count as complete replies. Instead, they serve
the purpose to indicate that we have a pointer taking a value different from 0.
Only in combination with the moves o11 and p13 that immediately follow them
do we obtain a complete reply. That is, consecutive dialogue moves of either p or
o actually correspond to just one single reply. This relates nicely to the observa-
tion made in [4, p. 120] that “a turn of a player always consists of zero or more
surrenders followed by a single attack” where surrender/attack is a classification
for the various continuations of a dialogue move.

4 Conclusion

This paper combines ideas from [2] and [3] and shows how these can be applied to
dialogues considered in the theory of argumentation [4]. Although the technical
development is very similar to the one presented in [1], it seems worth to point

228 K. Ranalter

out the different aims of these two strands of work: whereas [1] is an in-depth
investigation of foundational issues in ludics, this paper is intended as a pointer
towards possible applications for such a framework.

We have tried to organise the paper in such a way that new concepts are
introduced step by step, trying to make the basic issues accessible to anyone
not already familiar with the general framework. In the light of this objective,
it is clear that certain aspects could be addressed only in a somehow superficial
manner. Others, such as a comparison of the analysis provided in subsection
3.2 with the framework presented in [4], have simply been omitted. What seems
clear is that an essential part of the protocol for persuasion dialogues presented
in [4] can be expressed by means of abstract Böhm trees.

It would thus seem that a framework such as the one presented in [4] could
take full advantage of the computational approach to dialogues advocated in this
paper. However, the transfer of knowledge does not just go in one direction. As
mentioned in the introduction, the dialogues in [4] are build from a finite collec-
tion of dialogue moves; the dialogue protocol just mentioned defines how these
can be combined to obtain a well-formed dialogue. This aspect is particularly
relevant if one is interested in a bottom-up or incremental approach to dialogue:
the top-down or holistic approach seen in this paper is rather well suited for an
a posteriori analysis of dialogues, but it is quite difficult to see how it could help
for the generation of dialogues. A more promising approach seems to be to start
from dialogue moves such as the ones considered in [4].

References

1. Basaldella, M., Faggian, C.: Ludics with repetitions (exponentials, interactive types
and completeness). Logical Methods in Computer Science 7(2:13), 1–85 (2011)

2. Curien, P.-L., Herbelin, H.: Abstract machines for dialogue games. In: Interactive
Models of Computation and Program Behavior. Panoramas et Sythèses, vol. 27, pp.
231–275. SMF (2009)

3. Lecomte, A., Quatrini, M.: Ludics and Its Applications to Natural Language Se-
mantics. In: Ono, H., Kanazawa, M., de Queiroz, R. (eds.) WoLLIC 2009. LNCS
(LNAI), vol. 5514, pp. 242–255. Springer, Heidelberg (2009)

4. Prakken, H., Reed, C., Walton, D.: Dialogues about the burden of proof. In:
Proceedings of the 10th International Conference on Artificial Intelligence and Law,
ICAIL 2005, pp. 115–124. ACM (2005)

On the Completeness of Lambek Calculus

with Respect to Cofinite Language Models�

Alexey Sorokin

Moscow State University, Faculty of Mechanics and Mathematics

Abstract. We give an alternative proof of the fact that the product-free
Lambek calculus is complete with respect to cofinite language models. It
was first proved by Buszkowski in 1982 by the method of barriers. We
use another method, which is also based on the technique of canonical
models, to obtain a new proof of this result.

Lambek calculus was introduced by Joachim Lambek in [7]. In the last decades
it has found different algebraic applications. In [1] it was proved, in particular,
that the product-free Lambek calculus is complete with respect to language
models. The paper [2] strengthens this result, showing that it is also complete
with respect to cofinite language models. The articles [3] and [4] prove the finite
model property for a class of logics, including the product-free Lambek calculus
and the product-free Lambek calculus with empty antecedents, both enriched
with the intersection operation. In fact, this result implies the completeness of
these calculi with respect to cofinite language models. We give another proof of
this fact for the product-free Lambek calculus. Our method involves a canonical
model and the cut-elimination theorem for some axiomatic extension of this
calculus (a similar strategy was used in [6] for proving finite model property
of MALL and in [8] for proving finite model property of related intuitionistic
logics).

Let us fix an enumerable set of primitive types p1, . . . , pn, . . . and denote it
by Pr. A set of product-free types Tp is defined as the smallest set satisfying
the following conditions: 1)Pr ⊂ Tp, 2) for any two types A and B from Tp
the types (A/B) and (B\A) are also in Tp. The sequents of the product-free
Lambek calculus have the form Γ → A, where A is in Tp and Γ is a non-empty
sequence of types. We shall use Λ to denote the empty sequence.

The product-free Lambek calculus has the only axiom A → A, A ∈ Tp. The
inference rules are the following:

ΓB → A
Γ → A/B

(→ /) Γ �= Λ Π → A ΓBΔ→ C
Γ (B/A)ΠΔ→ C

(/→)

BΓ → A
Γ → B\A (→ \) Γ �= Λ Π → A ΓBΔ→ C

ΓΠ(A\B)Δ→ C
(\ →)

Π → B ΓBΔ→ C
ΓΠΔ→ C (cut)

� This research was partially supported by the Russian Foundation for Basic Research
(grant 11-01-00958).

D. Béchet and A. Dikovsky (Eds.): LACL 2012, LNCS 7351, pp. 229–233, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

230 A. Sorokin

It can be proved that the cut rule can be eliminated from Lambek calculus
(and also in its product-free fragment). We denote the product-free Lambek
calculus by L(\, /) and the derivability of a sequent Γ → A in this calculus
by L(\, /) � Γ → A. Also we define the notion of derivability from a set D of
additional axioms, which means that we can also use the sequents from D in the
derivation. Note that the cut rule cannot be eliminated in this variant of the
calculus.

We call a language an arbitrary set of words over a given alphabet. Below we
recall some basic definitions concerning languages. A finite alphabet Σ given,
we denote by Σ+ the set of all nonempty finite sequences containing only letters
from Σ.

Definition 1. For two languages L1 and L2 their product (or concatenation) is
defined as L1 ·L2 = {u1 ·u2 | u1 ∈ L1, u2 ∈ L2}, where u1 ·u2 is the concatenation
of words u1 and u2.

Definition 2. LetL1 andL2 be languages. ThenL1/L2 = {u ∈ Σ+ | (∀u2 ∈ L2)
u · u2∈ L1} and L2\L1 = {u ∈ Σ+ | (∀u2 ∈ L2) u2 · u ∈ L1}.

Definition 3. A pair W = 〈Σ+, w〉, where Σ is a finite alphabet and w is a
function from Tp to P(Σ+), is called a language model if for every A,B in Tp
we have w(A/B) = w(A)/w(B) and w(B\A) = w(B)\w(A). A language model
is called cofinite if for every primitive type p ∈ Pr the set Σ+ − w(p) is finite.

We can extend the mapping w to finite sequences of types setting w(A1 . . . An)
= w(A1) · . . . · w(An). Note that a language model is cofinite if and only if the
images of all types are cofinite, which is easily proved by induction on the type
structure.

Definition 4. A sequent Γ → A is said to be valid in a language model 〈Σ+, w〉
if w(Γ) ⊂ w(A).

It is easy to see that each sequent derivable in Lambek calculus is valid in every
language model (which is called the soundness of Lambek calculus with respect to
language models). In [1] it is proved that the converse also holds: every sequent
that is valid in each language model is derivable in the product-free Lambek
calculus (which is called completeness). Here we want to strengthen this result
by showing that even each sequent that is valid in every cofinite language model
is also derivable in the product-free Lambek calculus, which was already proved
in [2].

To achieve this goal we need to introduce some auxiliary notions.

Definition 5. A set of types U is called downward closed if for every type of the
form A/B or B\A which belongs to U the types A and B also belong to U .

Our main purpose is to show that every underivable sequent is invalid in some
cofinite language model. In what follows T will be some downward closed set of
types and K will be a natural number. Their values will be specified in the proof
of Theorem 1. We denote by |Δ| the number of types in the sequence Δ (so,

On the Completeness of Lambek Calculus 231

|(p1/p2)p3(p4\p2)| equals 3) and by ‖Γ‖ the total number of primitive types and
connectives in the sequence Γ (for example, ‖(((p1/p2)\p3)/p2)(p3/p1)‖ = 10).
We also define for every sequence Γ → A its length ‖Γ → A‖, which is equal to
‖Γ‖+ ‖A‖.

Now we want to define a new calculus LK . Its axioms contain the standard
axioms of Lambek calculus and all sequents of the form Γ → A where |Γ | ≥
K (we call such axioms ”long”). The inference rules are the rules of Lambek
calculus.

Lemma 1. The cut rule can be eliminated from LK .

Proof. We want to show that if the last rule in the derivation is Π→B ΓBΔ→C
ΓΠΔ→C

and both premises can be derived without using the cut rule, then the conclusion
of the rule can be derived without using this rule. We use induction by ‖Π‖ +
‖Γ‖ + ‖Δ‖ + ‖B‖ + ‖C‖. There are several cases: 1) when both premises are
obtained in the last step with some inference rule of the product-free Lambek
calculus or are axioms of this calculus, 2) Π → B is a long axiom, 3) ΓBΔ→ C
is a long axiom.

In the first case the standard proof of cut elimination in Lambek calculus is
appropriate (see, e.g. [7]). In the second case |Π | ≥ K, whence |ΓΠΔ| ≥ K and
ΓΠΔ → C is an axiom of LK , so it is derivable. In the third case |ΓBΔ| ≥ K
and because Π is non-empty |ΓΠΔ| ≥ K and the conclusion is again an axiom.
The lemma is proved.

Lemma 2. If LK � Γ → A/B, then LK � ΓB → A. If LK � Γ → B\A, then
LK � BΓ → A.

Proof. Γ→A/B (A/B)B→A
ΓB→A (cut). The case of the other division is symmetric.

Lemma 3. For all sequents φ such that ‖φ‖ ≤ K the conditions LK � φ and
L(\, /) � φ are equivalent.

Proof. Assume that ‖φ‖ ≤ K and LK � φ. For every ”long” axiom its length
is greater than K. It is easy to prove by induction on the length of a cut-free
derivation that every sequent for which this axiom is used in a derivation has
length greater than K. So φ cannot have ”long” axioms in its derivation, which
means that it is derivable in L\,/.

Let us define a language modelW = 〈T +, w〉 in the following way: for a primitive
type p we set w(p) = {Γ ∈ T +|LK � Γ → p} and for other types their images
are obtained by induction. Note that W is cofinite provided that T is finite.

Lemma 4. For every type A from T w(A) = {Γ ∈ T +|LK � Γ → A}.

Proof. We proceed by induction on type A, for primitive types the statement
holds by definition of function w. We consider only the case A = B/C, the case
of other division is analogous. Assume a sequence Γ → B/C, where Γ contains
only types from T , is derivable in LK , then by Lemma 2 the sequent ΓC → B

232 A. Sorokin

is also derivable. Also by the cut rule if LK � Δ → C then LK � ΓΔ → B
and by the induction assumption this implies that for every Δ ∈ w(C) we have
ΓΔ ∈ w(B). This means that {Γ ∈ T +|LK � Γ → B/C} is a subset of w(B/C).

For the other inclusion we mention that if a sequent Γ belongs to w(B/C) =
w(B)/w(C) then ΓC belongs to w(B) because C → C is an axiom of LK . Hence
LK � ΓC → B. Then by the rule (→ /) we obtain that LK � Γ → B/C, which
was required. The lemma is proved.

Theorem 1. For every sequent Γ → A that is not derivable in the product-free
Lambek calculus, there is a cofinite language model where φ is wrong.

Proof. We choose some downward closed set of types containing all types from
Γ and A as T and assign K = ‖Γ‖+ ‖A‖. Consider the cofinite language model
W = 〈T +, w〉 defined before Lemma 4. Using this lemma it is easy to see that
Γ ∈ w(Γ), because for every type C we have C ∈ w(C). On the other hand,
Γ /∈ w(A) because in view of Lemma 3 the sequent Γ → A is not derivable in
LK . Hence we have built a model where Γ → A is not valid.

If we recall the theorem from [1], this result can be reformulated in other terms.

Corollary 1. The set of formulae of the form A ⊆ B where A and B are types
made from primitive types and the signs of left and right divisions that are valid
in every language model, coincides with the set of formulae that are valid in all
cofinite language models.

It is interesting if the full Lambek calculus L has the same completeness prop-
erties (its completeness with respect to arbitrary language models is proved in
[9]), also the analogous question can be asked for the full variant of calculus L∗

(∗ means that sequences with empty antecedents are allowed and the restrictions
Π �= Λ are omitted in the rules (→ /) and (→ \)). Farulewski proved the finite
model property for these calculi in [5], but his result cannot be translated in
terms of language models, at least directly. Similar problems can be stated if we
enrich the calculus with new connectives (such as ∩ and ∪, interpreted as the
intersection and union of languages) and structural rules for them. For example,
for the calculus L(\, /,∩) the construction used in this article is also suitable
(the completeness of this calculus with respect to cofinite language models was
already proved in [3]), but for the calculi including union the question is still
open.

I am grateful to Mati Pentus for helpful consultations during the work. Also
I want to thank the anonymous referees for very useful remarks that helped to
improve the paper.

References

1. Buszkowski, W.: Compatibility of a Categorial Grammar with an Associated Cat-
egory System. Zeitschrift für mathematische Logik und Grundlagen der Mathe-
matik 28, 229–237 (1982)

On the Completeness of Lambek Calculus 233

2. Buszkowski, W.: Some Decision Problems in the Theory of Syntactic Categories.
Zeitschrift für mathematische Logik und Grundlagen der Mathematik 28, 539–548
(1982)

3. Buszkowski, W.: The finite model property for BCI and related systems. Studia
Logica 57, 303–323 (1996)

4. Buszkowski, W.: Finite Models of Some Substructural Logics. Math. Log. Q. 48(1),
63–72 (2002)

5. Farulewski, M.: On the Finite Models of the Lambek Calculus. Studia Logica 80,
63–74 (2005)

6. Lafont, Y.: The Finite Model Property for Various Fragments of Linear Logic. Jour-
nal of Symbolic Logic 62, 1202–1208 (1997)

7. Lambek, J.: The mathematics of sentence structure. American Mathematical Jour-
nal 65(3), 154–170 (1958)

8. Okada, M., Terui, K.: The Finite Model Property for Various Fragments of Intuin-
istic Linear Logic. The Journal of Symbolic Logic 64(2), 790–802 (1999)

9. Pentus, M.: Models for the Lambek calculus. The Annals of Pure and Applied
Logic 75(1–2), 179–213 (1995)

Dot-types and Their Implementation

Tao Xue and Zhaohui Luo�

Department of Computer Science
Royal Holloway, University of London

taoxue@cs.rhul.ac.uk,
zhaohui.luo@hotmail.co.uk

Abstract. Dot-types, as proposed by Pustejovsky and studied by many
others, are special data types useful in formal semantics to describe in-
teresting linguistic phenomena such as copredication. In this paper, we
present an implementation of dot-types in the proof assistant Plastic
base on their formalization in modern type theories.

Keywords: Dot-types, Coercive Subtyping, Type-Theoretical Seman-
tics, Type Theory, Proof Assistant.

1 Introduction

Dot-types, or sometimes called dot objects or complex types, were introduced by
Pustejovsky in the Generative Lexicon Theory [19] and studied by many others,
including [3]. Intuitively, a dot-type is formed from two constituent types that
present distinct aspects of those objects in the dot-type. For example, a book
may be considered to have two aspects: one informational (eg, when it is read)
and the other physical (eg, when it is picked up). One may therefore consider
a dot-type Phy • Info whose objects, including books, have both physical and
informational aspects. In particular, such objects can be involved in the linguistic
phenomenon of copredication and dot-types play a promising role in its analysis
and formalisation.

Although the meaning of dot-types is intuitively clear, its proper formal ac-
count seems surprisingly difficult and tricky (see [2] for a discussion). Researchers
have made several proposals to model dot-types formally including, for example,
[3,4] and [6,7]. Besides discussions on whether the proposed solutions do cap-
ture and therefore give successful formal accounts of dot-types, most of these
proposals are considered in the Montagovian setting. In [13], the second author
has proposed a formal treatment of dot-types in modern type theories1 (MTTs)
with the help of coercive subtyping and it is argued that, because in the for-
mal semantics based on MTTs common nouns are interpreted as types (rather

� Partially supported by the research grant F/07-537/AJ of the Leverhulme Trust in
U.K.

1 Modern type theories may be classified into the predicative type theories such as
Martin-Löf’s type theory [16,18] and the impredicative type theories such as the
Calculus of Constructions (CC) [9] and the Unifying Theory of dependent Types
(UTT) [11].

D. Béchet and A. Dikovsky (Eds.): LACL 2012, LNCS 7351, pp. 234–249, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Dot-types and Their Implementation 235

than predicates as in the Montague semantics), the linguistic phenomena such
as copredication can be given satisfactory treatments by means of dot-types.

In this paper, we present an implementation of dot-types in the proof assistant
Plastic [5], based on the formalization of dot-types in MTTs. As far as we know,
this is the first attempt to implement the dot-types.2 It allows us to use dot-
types in the development of formal semantics in proof assistants and, at the
same time, gives us a better understanding of dot-types and their relationship
with other data types in type theory.

Dot-types are not ordinary inductive types, as found in the MTT-based proof
assistants such as Agda [1], Coq and Plastic. In particular, for A • B to be a
dot-type, the constituent types A and B should not share components (see the
main text for the formal definition). In an implementation of dot-types, this
special condition of type formation must be checked and adhered to. In order
to make sure of this, we have to implement the dot-types as special data types,
different from ordinary inductive types. We shall show how this is done in our
implementation in Plastic.

Dot-types are introduced informally in section 2, where we focus on the idea
that the constituent types of a dot-type do not share common components. In
section 3, we discuss the formal formulation of dot-types in MTTs. The im-
plementation of dot-types is presented in section 4, where we will first briefly
introduce the proof assistant Plastic and then explain how to implement dot-
types in Plastic with several examples to illustrate the use.

2 Dot-types in Formal Semantics: An Introduction

In the Generative Lexicon Theory [19], Pustejovsky has introduced the idea of
employing dot-types to model various linguistic data that involve objects with
distinct aspects. Typical examples are concerned about copredication, where
different aspects of a word are selected when predication comes into force. For
example, in the following sentences [3], the words ‘lunch’ and ‘book’ both have
two distinct aspects to be selected: in (1) a ‘lunch’ was delicious as food and
took forever as an event, and in (2) a ‘book’ was picked up as a physical object
and mastered as an informational object.

(1) The lunch yesterday was delicious but took forever.

(2) John picked up and mastered the mathematical book.

There have been studies of dot-types in various formal systems or semi-formal
systems including, for example, [3,4,19,21]. Most of these proposals are given in
the Montagovian setting where, in particular, common nouns are interpreted as

2 In [14] the second author has presented some examples in Coq [8] and, since Coq
does not support dot-types, he had to use Σ-types to mimic dot-types, although
fully aware of the fact that this is in general impossible and leads to incoherence,
since there is no guarantee that the constituent types of a dot-type do not share
components.

236 T. Xue and Z. Luo

predicates. It has been argued in [13] that the way that CNs are interpreted in
the Montagovian setting is incompatible with the subtyping postulates that the
type of entities has subtypes Event (of events), Phy (of physical objects), Info
(of informational objects), etc. This leads to unnecessary difficulties and formal
complications when formalizing dot-types. On the other hand, if we interpret
CNs as types, as in the formal semantics based on MTTs, the treatment becomes
straightforward and satisfactory [13]. (See section 3.1 for further details.)

Usually the two aspects involved in a dot-type are incompatible: in the above
examples, Food and Event are incompatible and so are the physical and infor-
mational objects. This incompatibility of the two aspects that form a dot-type
was expressed by Pustejovsky as follows:

Dot objects have a property that I will refer to as inherent polysemy. This
is the ability to appear in selectional contexts that are contradictory in type
specification. [20]

In other words, an important feature is that, to form a dot-type A • B, its
constituent types A and B should not share common parts. For instance,

– Phy • Phy should not be a dot-type because its constituent types are the
same type Phy.

– Phy • (Phy • Info) should not be a dot-type because its constituent types
Phy and Phy • Info share the component Phy.

Put in another way, a dot-type A •B can only be formed if the types A and B
do not share any components: it is a dot-type only when the constituent types
A and B represent different and incompatible aspects of the objects.

This incompatibility is one of the two key features based on which dot-types
are introduced in MTTs [13]: it is stipulated that the constituent types of a
dot-type do not share components. The other feature is that the relationships
between the dot-type and its constituent types are captured by means of coercive
subtyping so that the dot-type is the subtype of both of its constituent types.
We now turn to the type-theoretic formulation of dot-types.

3 Dot-types in Modern Type Theories

In this section, we show how dot-types can be introduced in modern type theories
with the help of coercive subtyping [13]. We will first explain informally, in the
formal semantics based on MTTs, called type-theoretical semantics henceforth,
how to use dot-types to interpret copredication in natural language. Then we
will lay down the formal rules of the dot-types in modern type theories.

3.1 Dot-types and Coercive Subtyping

Type-Theoretical Semantics. In [22] Ranta has studied various semantic
issues of natural languages in Martin-Löf’s type theory, introducing the basic

Dot-types and Their Implementation 237

ideas of type-theoretical semantics based on MTTs. Unlike Montague grammar
in which common nouns like Man and Human are interpreted as functional
subsets (or predicates) of entities, in the type-theoretical semantics based on
modern type theories, common nouns are interpreted as types. For instance, in
Montague grammar, Man and Human are interpreted as objects of type e→ t,
where e is the type of entities and t the type of propositions. In type-theoretical
semantics, the interpretations of Man, Human and Book are types:

[[man]], [[human]], [[book]] : Type

This is natural in a modern type theory, which is many-sorted in the sense that
there are many types like [[man]] and [[book]] consisting of objects standing for
different sorts of entities, while the simple type theory may be thought of as single
sorted in the sense that there is the type e of all entities. In a type-theoretical
semantics, verbs and adjectives are interpreted as predicates. For example, we
can have

[[nice]] : [[book]]→ Prop

[[read]] : [[human]]→ [[book]]→ Prop

where Prop is the type of propositions.
Let’s we consider a kind of dependent type called Σ-types. It basically means

that if A is a type and B is an A-indexed family of types, then Σ(A,B), or
sometimes written as Σx:A.B(x), is a type, consisting of pairs (a, b) such that
a is of type A and b is of type B(a).

Modified common noun phrases could be interpreted by means of Σ-types:
for instance,

[[nice book]] = Σ([[book]], [[nice]])

Coercive Subtyping. Coercive subtyping was introduced in [12]. The basic
idea of coercive subtyping is to consider subtyping as an abbreviation mechanism:
A is a subtype of B (A <c B), if there is a unique implicit coercion c from type
A to type B. If so, an object a of type A can be used in any context that expects
an object of type B, and it is equal to c(a). The formal coercive definition rule
is defined as:

Γ � f : B → C Γ � a : A Γ � A <c B : Type

Γ � f(a) = f(c(a)) : C

For instance, one may consider the type of men to be a subtype of the type of
human beings by declaring a coercion between them: [[man]] <m [[human]]. If
we assume that walk be interpreted as [[walk]] : [[human]] → Prop and Jack
as [[Jack]] : [[man]], we could interpret the sentence (3) as (4).

(3) Jack walks.

(4) [[walk]]([[Jack]])

238 T. Xue and Z. Luo

The reason that (4) is well-typed is that [[man]] is now a subtype of [[human]],
an appropriate coercion can be inserted to fill up the gap in the term in (4).

Notation. We shall adopt the following notational abbreviations, writing

– A < B for A <c B : Type for some c,
– A ≤ B for A = B : Type or A < B.

Dot-type and Coercive Subtyping. Intuitively, a dot-type should be a sub-
type of its constituent types. For instance, it is natural to think that the type
consisting of the objects with both aspects of food and event be a subtype of
Food as well as a subtype of Event. Similarly, the type consisting of objects with
both physical and informational aspects should be a subtype of the type Phy of
physical objects and a subtype of the type of informational aspect:

Phy • Info < Phy

Phy • Info < Info

Consider sentence (2) again. In a type-theoretical semantics, we may assume
that

[[book]] < Phy • Info
[[pick up]] : [[human]]→ Phy→ Prop

[[master]] : [[human]]→ Info→ Prop

Because of the above subtyping relationship (and contravariance of subtyping
for the function types), we have

[[pick up]] : [[human]]→ Phy→ Prop

< [[human]]→ Phy • Info→ Prop

< [[human]]→ [[book]]→ Prop

[[master]] : [[human]]→ Info→ Prop

< [[human]]→ Phy • Info→ Prop

< [[human]]→ [[book]]→ Prop

Therefore, [[pick up]] and [[master]] can both be used in a context where terms
of type [[human]]→ [[book]]→ Prop are required and the interpretation of the
sentence (2) can proceed as intended.

However, as we mentioned above, there are some difficulties if we do the same
thing in the Montagovian settings, we can show it with a simple case. Take the
example of “heavy book”, in Montague semantics, we should have

[[heavy]] : (Phy→ t)→ (Phy→ t)

[[book]] : Phy • Info→ t

Dot-types and Their Implementation 239

In order to interpret “heavy book” as [[heavy]]([[book]]), we need

Phy • Info→ t < Phy→ t

By contravariance, we need

Phy < Phy • Info

But this is not the case, the subtype relation is actually in another way around.

3.2 Dot-types in Type Theory: A Formal Formulation

In the following, we present a type-theoretic treatment of dot-types with the help
of coercive subtyping. There are two important ingredients in this type-theoretic
definition:

i. The constituent types of a dot-type should not share common components.
ii. A dot-type, if well-formed, should be a subtype of both of its constituent

types.

Because of (i), the first and the most important thing is to define the notion of
component and, when doing this, because of (ii), the set of components of a type
should contain those of all of its constituents and super-types. This is formally
given by means of the following definition.

Definition 1 (component). Let T :Type be a type in the empty context. Then,
C (T), the set of components of T, is defined according to the normal form3 of
T as :

C (T) =def

{
SUP (T) if the normal form of T is not of the form X • Y
C (T1) ∪ C (T2) if the normal form of T is T1 • T2

where SUP (T) = {T ′|T ≤ T ′}.
Now, we give the formal rules for the dot-types in Figure 14. Note that, in
the formation rule, we require that the constituent types do not share common
components:

C (A) ∩ C (B) = ∅
According to the rules in Figure 1, A •B is a subtype of A and a subtype of B.
In other words, an object of the dot-type A •B can be regarded as an object of
type A, in a context requiring an object of A, and can also be regarded as an
object of type B in a context requiring an object of B.

Finally, the subtyping relations are propagated through the dot-types, bymeans
of the coercions d1, d2 and d as specified in the last three rules in Figure 1.

3 Intuitively, in a modern type theory with strong normalization and Church-Rosser
properties, every process of computation starting from a well-typed term terminates
and it computes to a (unique) normal form.

4 In the formation rule of Figure 1, Γ � valid means that Γ is a valid context and
<> stands for an empty context.

240 T. Xue and Z. Luo

Formation Rule

Γ � valid <> � A : Type <> � B : Type C (A) ∩ C (B) = ∅
Γ � A •B : Type

Introduction Rule
Γ � a : A Γ � b : B Γ � A •B : Type

Γ � 〈a, b〉 : A •B

Elimination Rules
Γ � c : A •B

Γ � p1(c) : A

Γ � c : A •B

Γ � p2(c) : B

Computation Rules

Γ � a : A Γ � b : B Γ � A •B : Type

Γ � p1(〈a, b〉) = a : A

Γ � a : A Γ � b : B Γ � A •B : Type

Γ � p2(〈a, b〉) = b : B

Projections as Coercions

Γ � A •B : Type

Γ � A •B <p1 A : Type

Γ � A •B : Type

Γ � A •B <p2 B : Type

Coercion Propagation

Γ � A •B : Type Γ � A′ •B′ : Type Γ � A <c1 A′ : Type Γ � B = B′ : Type

Γ � A •B <d1[c1] A
′ •B′ : Type

where d1[c1](〈a, b〉) = 〈c1(a), b〉.

Γ � A •B : Type Γ � A′ •B′ : Type Γ � A = A′ : Type Γ � B <c2 B′ : Type

Γ � A •B <d2[c2] A
′ •B′ : Type

where d2[c2](〈a, b〉) = 〈a, c2(b)〉.

Γ � A •B : Type Γ � A′ •B′ : Type Γ � A <c1 A′ : Type Γ � B <c2 B′ : Type

Γ � A •B <d[c1,c2] A
′ •B′ : Type

where d[c1, c2](〈a, b〉) = 〈c1(a), c2(b)〉.

Fig. 1. The rules of Dot-type

Remark 1. It is worth pointing out that, under the definition of component and
rules of dot-types, there is no “universal supertype” of all types.

Propagations. To explain the propagation rules, we can think of interpreting
the phrase

pick up and read the book

Instead of simply considering book having physical and informational aspect,
we might think book contains readable information, compared to radio program

Dot-types and Their Implementation 241

which does not have a readable informational aspect. So we could interpret

[[readable]] : Info→ Prop

[[readable info]] = Σ(Info, [[readable]])

[[book]] < Phy • [[readable info]]

With the coercion relation we have for Σ-types [15],

Σ(Info, [[readable]]) < Info

we have [[readable info]] < Info and trivially we have Phy = Phy. So we could
get the following through propagation rule

[[book]] < Phy • [[readable info]] < Phy • Info

This conforms with the example we’ve explained above.

Coherence. When we consider coercive subtyping, coherence [12] is the most
important property that is required to hold. Informally, coherence means that
the coercion between any two types is unique. Put in another way, if there are
two coercions c and c′ from type A to type B, c and c′ are required to be equal.
One may intuitively understand the importance of this property like this: it
guarantees that there’s no ambiguity when we use a coercion.

Remark 2. If there are only finitely many coercions and we identify equal coer-
cions, the coercions form a forest.

Since the constituent types of a well-formed dot-type do not share components,
it is straightforward to prove the following coherence property.

Proposition 2. (coherence) The coercions p1, p2, d1, d2 and d are coherent
together.

Note that coherence is important as it guarantees the correctness of employing
the projections p1 and p2 and the propagation operator d as coercions, and hence
the subtyping relationships A •B <p1 A and A •B <p2 B.

If the constituent types of a dot-type shared a common component, coherence
would fail, like in product type. For instance, A and A •B share the component
A. If A • (A •B) were a dot-type, with the transitivity rule5 there would be the
following two coercions p1 and p2 ◦ p1:

A • (A •B) <p1 A

A • (A •B) <p2◦p1 A

5 Transitivity for the coercion means that, if we have two coercions A <c1 B andB <c2

C, then there’s coercion from A to C(A <c2◦c1 C) where c2 ◦ c1 ≡ [x:A](c2(c1(x)))
is the composition of c1 and c2 .

242 T. Xue and Z. Luo

which are between the same types but not equal, coherence would then fail.
One may find that, when a dot-type A • B is well-formed, its behavior is

similar to that of a product type A × B: intuitively, its objects are pairs and
the projections p1 and p2 correspond to the projection operations π1 and π2
in the product type, respectively. However, there are two important differences
between dot-types and product types:

1. The constituent types of a dot-type do not share components, while in a
product type the constituent parts can possibly share component. For in-
stance, A×A is a well-formed product type, but A •A is not a well-formed
dot-type.

2. It is fine for both of the projections p1 and p2 for dot-types to be coercions
(Proposition 2), but for product types, only one of them can be coercion,
otherwise, coherence would fail [10].

4 Implementation

We have shown how to formalize the dot-types in type theory in the last section.
As we have proof assistants which have implemented various data types, we
would also like to put dot-types into a proof assistant. However unlike inductive
types such as the product types or Σ-types which could be defined with inductive
schemata, dot-type cannot be simply be defined as such in a library of the proof
assistant. The main reason is that we need to check whether the constituents of
the dot-type share components. Especially in our definition of component, we
need to check all the coercion relations of the term and its constituents in the
context. This is not covered by existing approaches to define inductive types in
the libraries of proof assistants. So we have to proceed in a hard way: defining
dot-types directly in a proof assistant.

In this section, we present how we define dot-types in the proof assistant
Plastic, and show how to use it.

4.1 Proof Assistants and Plastic

A proof assistant is a piece of software to assist with the formal proofs in a man-
machine interactive way, based on constructive mathematical proofs. One can
define mathematical problems in the provided formal language, choose the right
strategy or algorithms in the library to achieve the proof. Modern type theories
have been implemented in the proof assistants such as Agda [1], Coq [8], Matita
[17] and Plastic [5] used in applications to formalization of mathematics and
verification of programs.

Plastic [5] is an implementation of the type theory UTT as presented in chap-
ter 9 of [11] with inductive families and universes. In the library of the proof
assistant, we have various predefined inductive types and an second order logic.
We also have implemented coercive subtyping in Plastic.

Dot-types and Their Implementation 243

With the help of proof assistants like Plastic, we can also implement the
formal semantics, which would help us to study the type-theoretical semantics
for linguistic issue.

Here, we do not explain the technical details of using Plastic. Instead, we
present a very simple example to show how we use Plastic to develop formal
semantics.

Example 3. Consider the example (3) ”Jack walks” in section 2. Its semantics
(4) can be presented by the last line of the following code in Plastic:

> [Man, Human :Type];

> [c : Man -> Human];

> Coercion = c;

> [Jack : Man];

> [walk : Human -> Prop];

> [Jack_walks = walk(Jack)];

In the code, “Coercion = c” makes the function c as a coercion from Man to
Human. With the help of coercion, the term Jack walks is well typed: Jack walks
= walk(Jack) = walk(c(Jack)) : Prop.

4.2 Dot-types in Plastic

As explained above, the dot-types have to be directly implemented in Plastic
and, at the same time, the associated subtyping relations have to be specified.

– In the syntax of Plastic, we use A ∗ B to present the dot-type A • B and
dot < a, b > to present dot term < a, b >.

– When we declare a new dot-type A•B, or a dot term < a, b > where a:A and
b:B, we will first check whether it is a proper dot-type. If C (A) ∩ C (B) =
∅, A • B will be a legal dot-type or < a, b > will be a legal dot term;
otherwise, they will be rejected and an error message ‘dot-type should not
share component ’ will be shown.

– Once a dot-type A •B or dot term < a, b > is considered to be well-formed
(legal), we will consider the coercions generated from the dot-type A • B.
We will add [x:A •B]p1(x) and [x:A •B]p2(x) as coercions from A •B to A
and B6.

– Furthermore, we will check the existing coercions of other dot-types to see
whether there are cases for coercion propagation, if so, Plastic will add the
new coercion generated by the coercion propagation into context.

In the implementation, we define some reductions for the computation rules for
the projections p1 and p2, and the propagation operators d, d1, and d2. Assume
A,B,C,D:Type, a:A, b:B, A <c1 C, B <c2 D, we have:

6 The system will automatically assign new metavariable names cx1, cx2, ... to the
new introduced coercions by the dot-type rules.

244 T. Xue and Z. Luo

p1(< a, b >) � a

p2(< a, b >) � b

d[c1, c2](< a, b >) � < c1(a), c2(b) >

d1[c1](< a, b >) � < c1(a), b >

d2[c2](< a, b >) � < a, c2(b) >

In the following, we present three main algorithms in our implementation. First
we need to give an algorithm to calculate the components of a type.

Algorithm 4. (checking components) Given a type A, we will calculate the com-
ponent of A, C (A), in the following way.

1. Check the form of A to see whether it is a dot-type or not.
2. If A is not a dot-type, check all the coercion relations in the context to find

out every type T which satisfies A <c T with some coercion c. C (A) is the
set of all these super type T .

3. If A is a dot-type of the form T1•T2, C (A) = C (T1)∪C (T2). (The algorithm
is called recursively.)

The second algorithm deals with the introduction of dot-types.

Algorithm 5. When defining a type to be a dot-type A •B:

1. Check the context to see whether A and B are already defined types. If so, go
to next step; otherwise alert the type is not defined and end the algorithm.

2. Calculate C (A) and C (B) to see whether the intersection of these two is
empty. If so go to the next step; if not, alert that dot-type do not share
component and end the algorithm.

3. Check the existing coercions, to see whether A•B has already been considered.
If so, simply finish the algorithm; otherwise go to the next step.

4. Add coercion from A •B to A and from A •B to B into the context, add the
coercions generated by transitivity as well.

5. Check the existing coercion of dot-type in the context to add coercions intro-
duced by propagation rules. For every existing dot-type C •D,
– if there’s a coercion c1 from A to C, and a coercion c2 from B to D, add

a new coercion [x:A •B]d[c1, c2](x) from A •B to C •D.
– if there’s a coercion c1 from A to C, and B equals to D, add a new

coercion [x:A •B]d1[c1](x) from A •B to C •D.
– if there’s a coercion c2 from B to D, and A equals to C, add a new

coercion [x:A •B]d2[c2](x)
– otherwise, do nothing.

6. Check the transitivity possibilities of the new generated coercion.

The third algorithm deals with the introduction of dot-terms (similar to that for
dot-type introduction).

Dot-types and Their Implementation 245

Algorithm 6. When defining a term to be a dot term < a, b >:

1. Check the context to see whether a and b are defined terms. If so take the
types of a and b, let say A and B, and go to the next step; otherwise alert
the term is not defined and end the algorithm.

2. Calculate C (A) and C (B) to see whether the intersection of these two is
empty. If so go to the next step; if not, alert that dot-type do not share
component and end the algorithm.

3. Check the existing coercions, to see whether A•B has already been considered.
If so, simply finish the algorithm; otherwise go to the next step.

4. Add coercion from A •B to A and from A •B to B into the context, add the
coercions generated by transitivity as well.

5. Check the existing coercion of dot-type in the context. For every existing
dot-type C •D,
– if there’s a coercion c1 from A to C, and a coercion c2 from B to D, add

a new coercion [x:A •B]d[c1, c2](x) from A •B to C •D.
– if there’s a coercion c1 from A to C, and B equals to D, add a new

coercion [x:A •B]d1[c1](x) from A •B to C •D.
– if there’s a coercion c2 from B to D, and A equals to C, add a new

coercion [x:A •B]d2[c2](x)
– otherwise, do nothing.

6. Check the transitivity possibilities of the new generated coercion.

Another part we should take care of, is that, since we need to consider the
propagation rules of dot-types, when we introduce a new coercion, it links two
existing dot-types and generates a new coercion through the propagation rules.
So when we introduce a new coercion, we should also check all the dot-types in
the context to see whether there’re types satisfy the conditions of propagation
rule, and add corresponding coercions for the propagation rules.

4.3 Examples of Dot-types in Plastic

In this subsection, we will first give some abstract examples to show how to
declare a dot-type in Plastic, what we will get from the declaration, and some
examples of illegal declaration of dot-types. Then we will give a concrete case to
interpret sentences in natural language into code in Plastic.

Example 7. We can define a dot-type or a dot-term simply in the following
way:

1. If we have two types A, B which do not share components, we could simply
define a type M of type A ∗B like this:

> [M = A*B];

The system will generate two coercions cx1 from A ∗ B to A and cx2 from
A ∗B to B.

246 T. Xue and Z. Luo

2. We can also define a dot term . If we have two terms a, b, a:A and b:B, we
can define a dot term m =< a, b > like this:

> [m = dot<a,b>];

Now m is defined to be a dot term dot < a, b > and it is of type A ∗B. The
system will generate two coercions cx1 from A ∗B to A and cx2 from A ∗B
to B.

Example 8. In the following examples, the types share components in different
ways and, therefore, none of them could be defined as a dot-type or dot term,
they fail and warnings will be shown in all the following cases.

1. The two constituents are the same

> [M = A*A];

2. A ∗ C and A ∗B have the same component A

> [M = (A*C)*(A*B)];

3. A is a subtype of B, by definition of component C (A) ∩ C (B) = {A}

> [c:A->B];

> Coercion = c;

> [M = A*B];

4. a and b are both of type A, but A ∗A is not a legal dot-type, so dot < a, b >
is not a legal dot term.

> [a,b:A];

> [ab = dot<a,b>];

5. a is of type A and b is of type B, while A is a subtype of B. As shown above,
A ∗B is not a legal dot-type, hence dot < a, b > is not a legal dot term.

> [a:A];

> [b:B];

> [c:A->B];

> Coercion = c;

> [ab = dot<a,b>];

Example 9. When we have dot-type A ∗B, A <c1 C and B <c2 D, if we claim
C ∗ D to be another dot-type, coercions from the propagation rule will also be
added.

> [c1:A->C];

> [c2:B->D];

> Coercion = c1;

> Coercion = c2;

> [M1 = A*B];

> [M2 = C*D];

Dot-types and Their Implementation 247

In this example several coercions will be added according to the dot-type rule and
transitivity. cx1 from A ∗ B to A, cx2 from A ∗ B to B, < c1, cx1 >= [x:(A ∗
B)]cx3(cx1 x) by transitivity from A∗B to C, < c2, cx1 >= [x:(A∗B)]cx4(cx1 x)
by transitivity from A ∗B to D, cx3 from C ∗D to C and cx4 from C ∗D to D.
However, we will get one more coercion from the propagation rule, there will be a
coercion cx5 from A∗B to C∗D and cx5 = [x:A∗B]d[c1, c2](x), where for any dot
term dot < a, b > of dot-type A ∗B, d[c1, c2]dot < a, b >= dot < c1(a), c2(b) >.

Now, let’s use a concrete example to show how we could interpret natural lan-
guage in Plastic:

Example 10. Let’s consider the sentence

John picked up and mastered a book

We should contain the following data:

> [PhyInfo = Phy*Info];

> [cb : Book -> PhyInfo];

> Coercion = cb;

> [John:Human];

> [b:Book];

Note that ‘b’ is an arbitrary object of type Book. The verbs ‘picked up’ and
‘mastered’ are of the following types, where “==>” is the Plastic notation for
the functional arrow:

> [pickup : Human ==> (Phy ==> Prop)];

> [master : Human ==> (Info ==> Prop)];

With the above, we could interpret the sentences “John picked up a book” and
“John mastered a book” separately and then use the predefined connective and :
Prop→ Prop→ Prop to connect them. However, this would not be correctly the
original sentence since the book picked up and that mastered must be the same
book.

We want ‘and’ to connect ‘picked up’ with ‘mastered’, so we consider ‘and’
as a generic semantic kind: for any type A, [[AND]](A) is of kind A→ A→ A.
For A being Human ==> (Book ==> Prop)7,

And = [[AND]](Human ==> (Book ==> Prop)).

In particular, the term “And pickup master” is well-typed, thanks to the coer-
cive subtyping relations and the contravariance in subtyping function types as
explained in section 2. Now, interpreting the indefinite article by means of the
existential quantifier, the above sentence is interpreted as (in a readable notation)

∃b : Book. And(pickup,master) John b.

The full code in Plastic is given in Appendix A.

7 An alternative possibility is letting A be Human ==> (PhyInfo ==> Prop)

248 T. Xue and Z. Luo

References

1. The Agda proof assistant (2008),
http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php

2. Asher, N.: A type driven theory of predication with complex types. Fundamenta
Infor. 84(2) (2008)

3. Asher, N.: Lexical Meaning in Context: A Web of Words. Cambridge University
Press (2011)

4. Asher, N., Pustejovsky, J.: Word meaning and commonsense metaphysics (2005)
5. Callaghan, P., Luo, Z.: An implementation of LF with coercive subtyping and

universes. Journal of Automated Reasoning 27(1), 3–27 (2001)
6. Cooper, R.: Copredication, Quantification and Frames. In: Pogodalla, S., Prost,

J.-P. (eds.) LACL 2011. LNCS (LNAI), vol. 6736, pp. 64–79. Springer, Heidelberg
(2011)

7. Cooper, R.: Copredication, dynamic generalized quantification and lexical innova-
tion by coercion. In: Proceedings of GL 2007, the Fourth International Workshop
on Generative Approaches to the Lexicon (2007)

8. The Coq Development Team: The Coq Proof Assistant Reference Manual (Version
8.1), INRIA (2007)

9. Coquand, T., Huet, G.: The calculus of constructions. Infor. and Computation
76(2/3) (1988)

10. Luo, Y.: Coherence and Transitivity in Coercive Subtyping. Ph.D. thesis, Univer-
sity of Durham (2005)

11. Luo, Z.: Computation and Reasoning: A Type Theory for Computer Science. Ox-
ford Univ. Press (1994)

12. Luo, Z.: Coercive subtyping. J. of Logic and Computation 9(1), 105–130 (1999)
13. Luo, Z.: Type-theoretical semantics with coercive subtyping. Semantics and Lin-

guistic Theory 20 (SALT20), Vancouver (2010)
14. Luo, Z.: Contextual Analysis of Word Meanings in Type-Theoretical Semantics.

In: Pogodalla, S., Prost, J.-P. (eds.) LACL 2011. LNCS (LNAI), vol. 6736, pp.
159–174. Springer, Heidelberg (2011)

15. Luo, Z., Luo, Y.: Transitivity in coercive subtyping. Infor. and Computation 197(1-
2) (2005)

16. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis (1984)
17. The Matita proof assistant (2008), http://matita.cs.unibo.it/
18. Nordström, B., Petersson, K., Smith, J.: Programming in Martin-Löf’s Type

Theory: An Introduction. Oxford University Press (1990)
19. Pustejovsky, J.: The Generative Lexicon. MIT (1995)
20. Pustejovsky, J.: A survey of dot objects (2005) (manuscript)
21. Pustejovsky, J.: Mechanisms of coercion in a general theory of selection (2011)
22. Ranta, A.: Type-Theoretical Grammar. Oxford University Press (1994)

A Plastic Code for Example 10

> import Sol_All;

> import FnCoercion;

> import SigmaCoercion;

> [Human, Phy, Info, Book :Type];

> [PhyInfo = Phy*Info];

http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php
http://matita.cs.unibo.it/

Dot-types and Their Implementation 249

> [cb:Book -> PhyInfo];

> Coercion = cb;

> [pickup:Human ==> (Phy ==> Prop)];

> [master:Human ==> (Info ==> Prop)];

> [John:Human];

> [b:Book];

("John picked up b and John mastered b")

> [pickup_b = ap_ Book Prop (ap_ Human (Book==>Prop) pickup John) b];

> [master_b = ap_ Book Prop (ap_ Human (Book==>Prop) master John) b];

> [sentence1 = and pickup_b master_b];

("John picked up and mastered b")

> [AND: (A:Type) (A->A->A)]

> [And = AND (Human ==> (Book ==> Prop))];

> [sentence2 = ap_ Book Prop (ap_ Human (Book==>Prop)

(And pickup master) John) b];

("John picked up and mastered a book")

> [sentence3 = Ex Book [b:Book](ap_ Book Prop (ap_ Human (Book==>Prop)

(And pickup master) John) b)];

Author Index

Asher, Nicholas 45

Bekki, Daisuke 74, 186

Clark, Alexander 1

Fouqueré, Christophe 21

Graf, Thomas 58

Ishishita, Yuri 74

Karlov, Boris 86
Kobele, Gregory M. 103, 119
Kubota, Yusuke 135
Kuznetsov, Stepan 151

Levine, Robert 135
Lin, Zhe 161
Luo, Zhaohui 173, 234

Michaelis, Jens 119

Ozaki, Hiroko 186

Plummer, Andrew 201
Pollard, Carl 201

Quatrini, Myriam 21

Ranalter, Kurt 213

Sorokin, Alexey 229

Xue, Tao 234

	Title
	Preface
	Organization
	Table of Contents
	Logical Grammars, Logical Theories
	Introduction
	Residuated Lattices
	Syntactic Concept Lattice

	Types Should Be Closed Sets of Strings
	Weak Generative Power
	Strong Generative Capacity
	Consequences

	Finite Representations of Closed Sets
	Grammars as Sets of Equations
	Lambek Grammars as Equations
	Context-Free Grammars
	Finite Automata
	Thue Systems
	Distributional Lattice Grammars

	Discontinuity
	Discussion
	Proof Theory
	Conclusion

	References

	Ludics and Natural Language: First Approaches
	Introduction
	Ludics: Basic Notions
	Actions, Designs, Interaction: An Informal Description
	Actions, Designs, Interaction: A Formal Presentation
	Back to a Sequent Calculus
	Extensions of Ludics

	Dialogues and Argumentation
	First Use in Dialogue
	Divergent Dialogues, Presupposition in Dialogues
	Argumentation

	Meaning in Ludics
	Semantics of Utterances
	Speech Acts
	Inferences

	Conclusion
	References

	The Non Cooperative Basis of Implicatures
	Introduction
	Implicatures and the Problem
	The Model
	Questions and Their Responses in the Model
	Complex Structures in Discourse and Costs of Discourse Moves

	Back to Implicatures
	Conclusions
	References

	Movement-Generalized Minimalist Grammars
	Preliminaries and Notation
	Minimalist Grammars
	New Movement Types
	General Strategy
	Step 1: Derivations and Occurrences
	Step 2: Mapping to Term Graphs
	Step 3: Unfolding into Derived Trees
	Defining Movement-Generalized Minimalist Grammars

	Tree Adjunction Reset Lowering
	Conclusion
	References

	Toward the Formulation of Presupposition by Illative Combinatory Logic
	Introduction
	Proof-Theoretic Semantics of Natural Language
	Proof-Theoretic Analyses of Presupposition

	Illative Combinatory Logic
	PRED
	IG
	Translation from PRED to IG

	Proposals
	Extension of PRED(exPRED)
	Extension of IG(IexG)
	Translation from exPRED to IexG

	Verification of the Proposed System
	Conclusion
	References

	Abstract Automata and a Normal Form for Categorial Dependency Grammars
	Introduction
	Main Definitions
	Normal Form of CDG
	Push-Down Automata with Independent Counters
	Conclusion
	References

	Importing Montagovian Dynamics into Minimalism
	Introduction
	Minimalist Grammars
	The Shortest Move Constraint
	Derivations

	Minimalist Semantics
	Merge
	Move
	Going Variable Free
	Determining Quantifier Scope
	Lexical Interpretations

	A Fragment
	Pronouns Are Not Variables
	The Tensed-Clause Boundedness of QR

	Conclusion
	References

	CoTAGs and ACGs
	Introduction
	CoTAGs
	Abstract Categorial Grammars
	CoTAGs as ACGs
	Conclusion
	References

	Gapping as Like-Category Coordination
	(Apparent) Anomalies of Gapping
	TLCG and Gapping
	Comparison with Related Approaches
	steedman:1990a
	morrill-ea:11
	Oehrle:1987

	Conclusion
	References

	L-Completeness of the Lambek Calculus with the Reversal Operation
	The Lambek Calculus and L-Models
	The Lambek Calculus with the Reversal Operation (LR)
	Equivalences in LR and Normal Form for Types
	L-Completeness of LR (Proof)
	LR-Grammars
	References

	Distributive Full Nonassociative Lambek Calculus with S4-Modalities Is Context-Free
	Introduction
	Interpolation and Context-Freeness
	References

	Common Nouns as Types
	Introduction
	CNs as Types in Formal Semantics
	Criteria of Identity
	An Informal Account
	Formalisation of an Example
	Constructive Notion of Set or Type: Further Remarks

	Proof Irrelevance and Identity for Modified CNs
	Semantics for Mass Nouns with Classifiers
	Conclusion
	References

	Extractability as the Deduction Theorem in Subdirectional Combinatory Logic
	Introduction: Subdirectional Combinatory Logic and the Curry-Howard Isomorphism between Grammars, Term Calculi and Logics
	Extraction in CCG
	Abstraction in SDCL
	DT in SDCL
	Structural Rules
	Power of Type-Raising in DT
	On Adjunct and Subject Islands
	Conclusion
	Subdirectional Combinatory Logic
	References

	Agnostic Possible Worlds Semantics
	Introduction
	Montague Semantics
	Structured Meanings
	Propositions in Themselves
	Tractarian Semantics

	The Theory
	Preliminaries
	Types
	Constants and Axioms

	From Agnostic Semantics to Montagovian Semantics
	From Agnostic Semantics to Tractarian Semantics
	Business as Usual in Agnostic Semantics
	Word Meanings
	Extensions of Meanings
	Equivalence of Meanings, Generalized

	Conclusion
	References

	Abstract Machines for Argumentation
	Introduction
	A Case Study
	Setting
	Teacher
	Student
	Interaction
	Discussion
	Encoding
	Execution

	Argumentation
	Backtracking
	Persuasion

	Conclusion
	References

	On the Completeness of Lambek Calculus with Respect to Cofinite Language Models
	References

	Dot-types and Their Implementation
	Introduction
	Dot-types in Formal Semantics: An Introduction
	Dot-types in Modern Type Theories
	Dot-types and Coercive Subtyping
	Dot-types in Type Theory: A Formal Formulation

	Implementation
	Proof Assistants and Plastic
	Dot-types in Plastic
	Examples of Dot-types in Plastic

	References

	Author Index

