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Abstract. The maximum likelihood (ML) estimation approach for fractional 
Brownian motion (fBm) is explored in this communication. First, a ML based 
estimation of the H parameter is implemented on the signal itself. This approach 
on the signal itself can easily be applied on non-uniformly sampled data or 
directly useful in the case of incomplete data. Secondly, the method is extended 
to provide a ML prediction and a ML interpolation for fBm which could be of 
interest in many domains. Results also help to explain errors in other 
interpolating methods such as the midpoint displacement algorithm used to 
synthesize fBm data. 

1 Introduction 

Fractional Brownian motion (fBm) of H parameter in the range ]0 ; 1[ is defined as an 
extension of Brownian motion [1]. One of the main issues when dealing with such 
data is to estimate the H parameter [2-3]. Among the numerous methods to achieve 
such a goal, the maximum likelihood (ML) approach proposed by Lundahl et al. [4] is 
often used due to its asymptotical efficiency [5]. It is also efficient in noisy 
environments [6]. But the ML based estimation of the H parameter is performed on 
the fBm increments which may be a limiting factor in some cases. 

Here, we propose an ML estimate of the H parameter processed on the fBm itself. 
This allows direct extension of the method to include cases where there may be 
irregular sampling or incomplete data. Moreover, an ML based prediction and 
interpolation technique for a fBm signal easily result. 

This communication is organized as follow. In the next section, fBm is defined and 
its main properties are derived. Then, the ML based estimation of the H parameter is 
achieved and is tested on exact fBm data. Finally, ML interpolation and prediction are 
presented and a real data example illustrates the methods. 

2 FBm Properties 

Continuous fBm of H parameter in ]0 ; 1[, denoted BH(t), is defined as an extension of 
Brownian motion B(t) [1]:  
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Γ is the gamma function and when H=1/2, fBm reduces to Brownian motion. 
From now on, we will focus on properties of discrete processes denoted BH[i] 

where i is a discrete time index. With a starting value BH[0]=0, fBm is zero mean, 
Gaussian and second order non stationary as attested by its variance law deduced 
from (1): 

.i   [i])Var(B 2H2
H σ=                                               (2) 

Var is the variance operator, and σ2 is the variance of fBm for the time index i=1. 
From (2) the autocorrelation function of the process follows [1]:  
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E is the expectation operator. Using time-frequency tools, it was shown that the 
averaged power spectral density of fBm is proportional to ⏐ω⏐-1-2H [7]. When 
considering discrete signals, there always will be aliasing problems. 

fBm has no derivative, and thus its increments for a time lag m are of interest. 
They are named fractional Gaussian noises (fGn), denoted Gm, and defined as:  
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They are zero mean, Gaussian and stationary processes since their autocorrelation can 
be written as:  
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Without lost of generality, the case m=1 will be considered in the following. fGn for 
m=1 will be noted G1 and its autocorrelation function derived from (5) becomes:  
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The following remarks regarding this equation will be useful in section 4 to explain 
some results. 

For H=0.5, increments are uncorrelated and fGn is the white Gausssian noise 
process. For H<0.5, increments are negatively correlated. For H>0.5, they are 
positively correlated and the process is said to have long term memory since rGm[k] 
decays hyperbolically with the lag k. It should be noticed that for H≥1/2 the function 
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rG1[k] is always nonnegative. This sequence is also decreasing and convex, i. e. 
second differences are positive. Finally, for H<1/2, one gets rG1[k]<0 for any integer 
k≠0 [8]. 

3 ML H Parameter Estimation 

There exist a lot of estimators of the H parameter [2-3]. Among all of these, the ML is 
of interest because of its asymptotical efficiency [5]. A ML estimation of the H 
parameter is developed in [4] based on the fGn. Here, we propose to perform it 
directly on the fBm data. First, let us define fBm, the fBm vector composed of N 
samples. Since all the samples of fBm are jointly Gaussian distributed, their 
likelihood function LF parameterised by H and σ2 is: 
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N is the size of fBm and R is its N×N covariance matrix where each element [R]i,j 
depends on the autocorrelation function as [R]i,j=rBH[i,j] as defined in equation (3). 

The maximum of the log-likelihood function (LLF, the logarithm of equation 7) is 
to be found where constant terms are neglected: 
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R is first decomposed as σ2R' and the derivative of the LLF with respect to σ2 is 
calculated. The value found by letting the derivative go to zero is inserted in the LLF 

and gives the final function to maximise with respect to H. The H estimator noted Ĥ  
is: 
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As fBm[0] is zero by convention, the first row and column of R' are all zeros and 
must not be considered, otherwise R' is singular. The Gauss-Jordan elimination 
algorithm is used to compute the inverse and determinant of R'. 

This ML based estimator is tested on synthetic signals. In 1D, there exist two 
methods theoretically exact to synthesis fractional Brownian motion. The first one is 
the method based on the Choleski decomposition of the covariance function [4]. It 
requires high computational resources due to its complexity of O(N2). The second one 
is the circulant embedding method (CEM) [9]. Since based on the fast Fourier 
transform (FFT) algorithm, its complexity is only O( Nlog N). CEM is used in our 
experimental tests. 100 signals of 100 samples each were synthesised for three typical 

H values: H=0.2, H=0.5, and finally H=0.8. Mean Ĥ values are compared to the true 
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H given during the synthesis of the reference signals. The standard deviations are also 
estimated. Results are shown in table 1. 

Table 1. Mean ± standard deviations (std) of the ML H estimators based on fBm in the first 
column. Computing are based on 100 synthetic signals of 100 samples each for H=0.2, 0.5 and 
0.8. Second column shows results when a block of 100 unknown samples (indexed from 50 to 
149) is added in the middle of each signal. 

 
True H a) Ĥ  

 
Mean ± std 

b) Ĥ  
missing data 
Mean ± std 

 
0.2 

 
0.197 ± 0.048 

 
0.205 ± 0.048 

 
0.5 

 
0.496 ± 0.060 

 
0.501 ± 0.059 

 
0.8 

 
0.796 ± 0.058 

 
0.797 ± 0.058 

 
The quality of this estimator can be studied. First, the bias of the estimates is low. 

A bilateral Student t test with a level of significance of 0.01 shows that these 
estimates are unbiased. In identical conditions, the bias could be as high as 0.3 for 
some other analysis methods [2]. The standard deviations of the estimates are close to 
the square root of the Cramer-Rao lower bound which is equal to 0.046, 0.059 and 
0.057 for respectively H = 0.2, 0.5 and 0.8 for 100 samples [6]. An unilateral 
hypothesis test with a significance level of 0.01 shows that the variances of the 
estimates are equal to the respective Cramer-Rao lower bounds. These results show 
that in this case, the ML approach is efficient for data length as short as 100 samples. 

This ML estimator can be easily used for non uniform sampling periods or when 
some samples are unknown. As an example, two blocks of 50 samples each are 
separated by 100 unknown samples for a fBm signal. The size of covariance matrix is 
100×100. Each element is computed using (3) where i and j are the position indexes 
of the known samples. Table 1 (b) shows the results. It can be noticed that the bias is 
still low and that the variance is nearly unchanged. Thus, an efficient ML estimate of 
the H parameter can be achieved for particular signals. Such cases arise when 
studying incomplete time series or for irregularly sampled 1D data. 

4 ML Prediction and Interpolation 

Two direct extensions of the above method can be derived, namely ML prediction and 
interpolation processed on the fBm signal itself. The prediction problem has been 
theoretically treated in [10] while the interpolation has not been considered. Here a 
practical study on true fBm data is carried out for prediction as well as for interpolation. 

There are now three parameters to estimate: H, σ2 and the value of the data to be 
found. The problem can be split into two parts: a ML H estimation is first carried out on 
the signal, then the value of the prediction or interpolation is computed with known H. 
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4.1 Prediction 

Let fBm[N+x] for x>0 be a sample to predict given the H parameter and the first N 
samples of the vector. The theoretical correlation r[i,N+x] between fBm[i] and 
fBm[N+x] with 1≤i≤N is deduced from (3) with j being replaced by N+x. The 
covariance matrix R of fBm is now an (N+1)×(N+1) square matrix. It is identical to the 
one for the ML H estimation problem except that there are a row and a column added 
after respectively the last row and column to take into account the correlation between 
fBm[i] and fBm[N+x]. R can be decomposed as previously in σ2 R'. The final function 
is maximised with respect to fBm[N+x]. This result can be seen as the mean prediction. 
The standard deviation easily follows based on the knowledge of the LLF. 

We have tested this method on the same synthetic signals as previously described. 
Five samples of a typical realisation for H = 0.2, 0.5 and 0.8 are represented as shown in 
figure 1. Ten regularly spaced predictions are estimated after the last sample. 

Remarks regarding equation (6) stated in section 2 are necessary to explain the 
results. For H=0.5, the ML mean estimate is equal to the last value of the signal. Indeed, 
as its increments are uncorrelated, the probability of an increase is equal to the 
probability of a decrease. For H=0.8, the ML estimate follows the trend of the past 
signal because increments are positively correlated. The shape looks similar to a 
polynomial prediction. For H=0.2, the estimate goes in the opposite direction because 
increments are negatively correlated. The standard deviation of the estimates follows a 
power law due to the fact that increments are zero mean with standard deviation 
proportional to the lag at the power H. This dependence on H is clearly seen in figure 1. 

 
Fig. 1. Mean predictions and interpolations for a typical realisation of fBm for H = 0.2, 0.5 and 
0.8. The standard deviations of the estimates are also represented. 
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4.2 Interpolation 

Given the H parameter and N samples of the observation, the value to estimate is now 

fBm[k+x] for 1≤k<N and for 0<x<1. The correlation between fBm[i] and fBm[k+x] 
is deduced from (3) with j being replaced by k+x. The covariance matrix R is a 

(N+1)×(N+1) square matrix with a row and a column added between respectively the 
k and k+1 rows and columns. The same scheme as for the prediction process is 
applied. Figure 1 shows the results of five interpolations regularly spaced between 
each of the last five samples of the data. 

For H=0.5, the ML mean interpolation is a linear interpolation. This can be 
explained from the prediction results. Indeed, interpolation can be seen as a weighted 
combination of a forward prediction (knowing the k first samples) and of a backward 
prediction (knowing the samples from the k+1 to the last one). Results for H=0.2 and 
H=0.8 can be identically explained. The standard deviations of the estimates are 
depending on H and on the distance from the nearest known sample. 

4.3 Discussion 

Prediction and interpolation for fractal signals can be applied to many real cases. One 
can mention financial domain to predict stock exchange or sub-pixel interpolation for 
fractal images. But, the above results enable a better understanding of conventional 
fBm synthesis techniques as the random midpoint displacement (MID) [11]. This 
iterative technique can be seen as a stochastic interpolation process. It consists in 
adding new points whose position along the horizontal axis is the middle of two 
adjacent points. The position on the vertical axis is given by a Gaussian random 
variable with mean equal to the average of the two adjacent points and with variance 
depending on H. It is known that it fails to provide true fBm signals when H≠0.5 [12]. 
Our results confirm this fact. For H=0.5, the mean ML position (a linear interpolation) 
is identical to the one given during the MID synthesis (an average). But, for other H 
values, it is not true. A solution to improve the MID synthesis method keeping the 
same scheme would be as follows: replace the random variable of the MID generating 
process by a new one with mean value and variance given by the ML interpolation for 
fBm as described above. 

5 Conclusion 

In this communication, we have presented ML approaches performed on the fBm 
signal itself. On reference fractal signals, it has been shown that the ML method gave 
efficient results. It also allows to measure the H aparameter even when data are 
missing or when irregular sampling is present. Two direct extensions were derived 
concerning ML prediction and interpolation for fBm signals which could be of 
interest in many real cases. Results can be analysed taking into account the behaviour 
of the process for the various H values that were studied. They also explain 
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approximations of fractal synthesis methods such as the midpoint displacement 
method. 

Future work will concern the synthesis of true 2D fBm images buy using the new 
interpolation that is presented here. In addition the prediction of 1D signal as for stock 
exchange data will be a new and interesting application. 
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