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Abstract. In this paper, we propose a new method based on texture
analysis for the early diagnosis of bone disease such as osteoporosis. Our
proposed method is based on a combination of four methods. First, bone
X-ray images are enhanced using the algorithm of Retinex. Then, the
enhanced images are analyzed using the fully anisotropic Morlet wavelet.
This step is followed by the quantification of the anisotropy of the images
using the Rényi entropy. Finally, the Rényi entropies are used as entries
for a neural network. Applied on two different populations composed of
osteoporotic (OP) patients and control (CT) subjects, a classification
rate of 95% is achieved which provides a good discrimination between
OP patients and CT subjects.

1 Introduction

Osteoporosis is considered as a major public health issue [1] due to an increase
frequency of fractures of the hip, spine, and wrist. Osteoporosis is character-
ized by a severe degradation of the bone mass and an alteration of the bone
microarchitecture. This problem is currently affecting more than 200 million
people worldwide. Epidemiological studies provide a very significant increase in
the number of osteoporotic fractures in the coming years [2]. Osteoporosis is
clinically assessed by using BMD (Bone Mass Density). Despite the effectiveness
of this technique, it does not give information about the microarchitecture of
the bone tissue. If BMD is combined to an independent technique that describes
the microarchitecture, this might enable a better and precise diagnosis [3] for
the prediction of fracture risk. Obviously, it has to be non invasive for the pa-
tient, not expensive, reproducible and efficient. The calcaneus (the bone of the
heel) is subject to forces of compression and tension produced by the gravity of
the human being, making it very suitable for the characterization of the bone
mircroarchitecture (Fig.1). For a normal subject, the compression and tensile
trabeculae are uniformly distributed . For an osteoporotic subject, the tensile
trabeculae may disappear making the structure anisotropic. The modifications
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(a) (b)

Fig. 1. (a) A typical radiography of the calcaneus with the Region Of Interest (ROI).
(b) 256 × 256 extracted ROI.

of the organization of the trabeculae and their thickness can help evaluating the
damage of the bone.

Several studies have attempted to evaluate osteoporosis to characterize the
anisotropy of textured images. Sevestre et al. [4] developed a morphological study
to establish a skeleton of the trabecular bone microarchitecture. Despite their
quite interesting results, the tool is very complex to produce.

Many methods of texture analysis have been proposed over the last three
decades [5,6]. These methods are evaluated over natural and textured surfaces
which are quite distinctive for the human vision system. The texture present in
osteoporotic and healthy bone radiographs, however, are visually close to each
other, making the discrimination task very challenging. Other methods using
fractal analysis for bone texture have been explored [7,8,9]. These methods gave
interesting results but are still under investigation for an efficient characteri-
zation of bone texture organization. More recently, some of the authors of the
present study [10] proposed a new descriptor called 1D LBP (One Dimensional
Local Binary Pattern) for bone texture characterization. Results of this study
demonstrated the importance of preprocessing the data to improve the classi-
fication rates to distinguish between CT and OP subjects. In the same way,
Pramudito et al. [11] combines the coefficients of the wavelet and the fractal di-
mension to identify the disease. Their method offers a new perspective to analyze
such kind of images.

In thiswork,wepropose amethodwhich enables characterizing the anisotropyof
an image using the entropy of Rényi and a fully anisotropic Morlets. The Rényi en-
tropy has shown its effectiveness especially to quantify the anisotropy [12]. The use
of a fully anisotropic Morlet enables settling the problem of non-uniform changes.

This paper is organized as follows. Section 2, describes the methods used to char-
acterize trabecular bone data on radiographs. Section 3 presents the experimental
results obtained on two different populations composed of osteoporotic patients
and control subjects. Finally, some concluding remarks are discussed in section 4.
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2 Methods and Materials

Our goal is to study the effect of preprocessing the data of bone radiograph
images for the diagnosis of osteoporosis. Different methods are considered. First,
images are enhanced. Then, the fully anisotropic Morlet wavelet is used to an-
alyze the images. After computing the two-dimensional histogram, the features
of the Rényi entropy are used to distinguish between the two populations(OP
and CT). Fig. 2 shows our studied Cases.

������

�	
�	����

������

0

1000

2000

3000

4000

5000

6000

7000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1


��

����������

���

����������

����

������

0

1000

2000

3000

4000

5000

6000

7000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1


��


���������

���

����������

Fig. 2. Global chart of the proposed method

2.1 Preprocessing

To process the different data, first, we have used the Retinex algorithm intro-
duced by Land et al. [13]. This method improves the contrast of the images using
the reflection of light. There exist several versions of this algorithm and we have
used the one defined by Funt et al. [14]. To keep the significant information of the
trabecular bone patterns, a quantization over fewer gray levels was performed.
Only 8 gray levels were kept to provide better and more easily exploitable images
that are better suited for bone texture characterization. Figure 3 shows a sample
of an enhanced and quantized image of a bone X-ray image.

(a) (b) (c)

Fig. 3. (a) Original image of a calcaneus radiograph,(b) filtered image by the Retinex
algorithm (c) and quantized image over 8 gray levels
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2.2 A Fully-Anisotropic Morlet Wavelet

The Morlet wavelet, was formulated by Goupillaud et al. [15]. Then, Antoine et
al.[16] proposed anisotropic Morlet which is given by:

ψ(x) = eik0·xe−1/2(x.ATAx) (1)

where k0 = (0, k0) ≥ 5.5 is a wave vector and A = diag(L, 1) is an anisotropic
matrix, ”diag” denotes the diagonal matrix and L is the ratio of anisotropy. Ku-
mar et al.[17] have controlled the orientation by defining k0 = (k0cosθ, k0sinθ)
where θ is the parameter of orientation. The combination of the methods pro-
posed by Kumar et al.[17] and Antoine et al.[16] produces an anisotropic and
directional wavelet. This wavelet is not fully anisotropic. To solve this problem,
Roseanna et al. [18] proposed a fully anisotropic Morlet where both the ellipti-
cal envelope and the wave vector are rotated through an angle defined by the
orientation parameter θ. This wavelet is given by:

ψ(x, θ) = eik0.Cxe−1/2(Cx.ATACx) (2)

with k0=(0, k0), k0 � 5.5,A = diag(L, 1) and C is a linear transformation defined
by:

C =
[
cosθ sinθ
−sinθ cosθ

]
(3)

So, the Wavelet coefficients are given by the following convolution:

Wψf (b, a, θ) =
√
L

a

∫ ∞

−∞
f (x)ψ

(x− b
a

, θ
)
dx =

√
L

a
f (b) ∗ ψ(−b/a, θ) (4)

The exploitation of the fully anisotropic Morlet, enabled us solving the prob-
lem of orientation which is caused by the non-uniform changes. Fig. 4 shows a
representative example of subband of an image from the database in different
orientations.
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Fig. 4. A representative example of a sub-band for a Xray bone image in different
orientations with L = 0.2 and a = 4
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2.3 2D Histogram of Fully-Anisotropic Morlet Wavelet

To characterize the Morlet coefficients we use a two-dimensional (2D) histogram
proposed by Sahoo et al. [19]. To Compute the 2D histogram for each sub-band,
we proceed as follows. First, we calculate the average of the neighborhood for
each coefficient. Let g(x, y) be the average value of the neighborhood for the
coefficient f(x, y). Thus for a 3 × 3 neighborhood g(x, y) is calculated as:

g(x, y) =
⌊1
9

1∑
a=−1

1∑
b=−1

f(x+ a, y + b)
⌋

(5)

where�A�denotes the integer part of A. The average value is used for the con-
struction of the normalized 2D histogram as:

Hist2D(k, l) =
Prob(g(x, y) = k ∩ f(x, y) = l)

Number of Pixel
(6)

Note that (
∑N

i=1

∑M
j=1Hist2D = 1) where (M,N) is the size of the 2D his-

togram. The 2D histogram is used to compute the entropy as explained in the
next section.

2.4 Rényi Entropy for 2D Histogram

The Rényi entropy [20] is widely used for the description of anisotropic textures.
The Rényi entropy results from the generalization of the Entropy of Shannon. It
is an efficient tool which has shown good performances [12]. The Rényi entropy,
Hα, of order α (α ≥ 0, α �= 1) is defined as:

Hα(X) =
1

1 − α
log (

n∑
i=1

pαi ) (7)

where pi represents the probability density of X = {x1 · · ·xn}. In the literature
and for most cases, the Rényi entropy refers to case α = 2. In our case, the Rényi
entropy was used as a feature for the description of each image. To this end, we
have used the 2D histogram and the Rényi entropy, Entro2D, as follows:

Entro2D =
1

1 − α
log (

N∑
i=1

M∑
j=1

Hist2Dα(x, y)) (8)

where Hist2D is the Histogram 2D of each subband and M is the maximum
gray level for the Histogram of sub-band and N is the maximum gray level for
the Histogram of average of the same sub-band.

3 Experimental Results

For this study, we considered a population composed of 77 postmenopausal
women suffering from osteoporotic vertebral crush fractures and control sub-
jects. Among these subjects, there were 38 control (CT) cases and 39 patients
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with osteoporotic (OP) fractures. As age has an influence on bone density and
on trabecular bone microarchitecture, the control cases were age-matched with
the vertebral crush fracture cases.

To realize calcaneus X-ray images a standardized procedure was followed. An
X-ray clinical equipment was used. Focal-calcaneus distance was set at 1 m.
The region of interest (ROI; Fig. 1a) was defined by a physician who marked
anatomical markers on the calcaneus images. This way, we ensure that the ROI
be acquired in the same area as well as in the same orientation from each bone
radiography, since the effect of the orientation on the analysis is part of this
study. This ROI of 2.7 × 2.7 cm2 was located in a region that contains only
trabecular bone. The pixel size was 105 μm.

The preprocessing as well as the orientation of analysis were evaluated. We
have also compared the results obtained using either the two-dimensional or the
one-dimensional histogram in the Rényi entropy.

Our method is based on a 4-step algorithm.First, the image content is enhanced.
Then, each image is analyzed using the fully anisotropic Morlet wavelet in dif-
ferent orientations. Follows, the computation of the 2D histogram on each sub-
band. Finally, the entropy from Rényi is estimated using each two-dimensional his-
togram. Namely, for the orientations, we used a range of θ = [−180,−135,−90,
−45, 0, 45, 90, 135, 180]. Thus, for each image, we choose 1 � N � 9 for this range
of orientations.

For the parameters of the Morlet wavelet, we chose L = 0.2 to take advantage
of fully-anisotropique anisotropy [18] . For the scale, we use a = 4. Since, the
purpose of this paper is take advantage for fully-anisotropic wavelet, the influence
of the scales will be considered in a future work.

As a classifier, we used the neural networks with N as the size of the input
vector with 30 nodes for the hidden layer and output. For the distribution of
the data, we used 50% for learning, 25% for the test and 25% for the validation.
Moreover, the Receiver Operating Characteristics curves (ROC) [21] were used
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Fig. 5. AUC values depending on Number of Orientation using the Rényi entropy: (a)
OP Class,(b) CT Class for 4 studied Case (Fig.2)
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to measure the influence of N on the rate of the classification. All the procedures
were executed 100 times and the mean value was retained as a representative
result.

Figure 5 shows the evolution of the Area Under Curve (AUC) of the ROC
curves while varying the parameter N. Each graph corresponds to one of the
proceeded data, raw or enhanced images using either the 1D or 2D histogram.
As can be seen on figure 5, the enhancement improves the classification rates.
The best classification rate is obtained for the enhanced image using the 2D
histogram. N = 4 gives a good classification rate and seems to be a good trade
off between efficiency and computation time.

4 Conclusion

In this work, we have proposed an original approach based on a fully-anisotropic
Morelet and Rényi entropy for texture characterization with an application
to bone X-ray images for the diagnosis of bone disease such as osteoporo-
sis. Our technique combining image preprocessing and the entropy shows that
it is possible to achieve better classification rates to distinguish between two
different populations composed of osteoporotic patients and control subjects.
The fully-anisotropic Morlet, helped us estimating non-uniform changes due to
anisotropy variations induced by osteoporosis. The Neural Network classifier and
the Receiver Operating Characteristics curves were used to distinguish between
osteoporotic and control subjects. Combining our technique to Bone Mineral
Density we can offer a new perspective for precise studies of bone disease such as
osteoporosis.
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12. Gabarda, S., Cristóbal, G., Rodŕıguez, P., Miravet, C., Del Cura, J.M.: A new
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