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Abstract. There are innumerable situations where the data observed
from a non-stationary random field are collected with missing values. In
this work a consistent estimate of the evolutionary spectral density is
given where some observations are randomly missing.
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1 Introduction

Spectral analysis for stationary processes has been extensively studied in re-
cent years. However, in many applications the signals must be modeled as non-
stationary processes. This has motivated several authors to study non-stationary
processes assuming that they are locally stationary. Priestley ([14], [15]) estab-
lished the theory of the evolutionary spectrum generalizing spectral analysis for
stationary processes. The evolutionary spectrum is time-dependent and describe
the local power-frequency distribution at each instant of time. Other studies
based on the Wold-Cramér decomposition have contributed to the development
of the evolutionary spectrum [10], [17], [16],[18]. The applications of the evolu-
tionary spectrum cover various scientific fields: signal and image processing [3],
[1] , seismic [20], oceanography, music [4]. The estimation of the evolutionary
spectral density is studied in [15], [10], [8], [19], [9].

On the other hand, Jones [6] is the first to consider the missing data prob-
lems in spectral analysis. More precisely he studied the case where a block of
observations is periodically unobtainable. In parallel, the theory of amplitude-
modulated stationary processes was developed by Parzen [12], he applied this
theory to solve periodic missing data problems. Bloomfield [2] has considered
stationary processes with randomly missing data. He gives an asymptotically
unbiased estimator of the spectral density and shows under suitable conditions
that its variance converges to zero. We cite in this paper a few works that have
contributed to find solutions to problems of missing observations: [21], [13],[7].

The aim of the present paper is to consider the problem of the randomly
missing data for the class of non-stationary oscillatory random fields. Using the
same techniques introduced by Bloomfield [2] for stationary processes, we give a
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consistent estimate of the evolutionary spectral density. The paper is organized
as follows. In section 2, we give some notations, assumptions and the amplitude
modulating function Yt1,t2 . In section 3, we construct a periodogram and we
show that it is an asymptotically unbiased estimator. Since, we smooth the
periodogram in the neighborhood of the time-instant t via a weight function
and we show that it is a consistent estimate of the (weighted) average value
of ht1,t2(ω01, ω02) in the neighborhood of the time-instant (t1, t2). Section 4 is
reserved to prove the theorems. In section 5, we study numerical results and
simulation. Concluding comments are given in section 6.

2 The Amplitude Modulating Function, Yt1,t2

As in Priestley ([14], [15]), we consider a non-stationary centred oscillatory ran-
dom field Xt1,t2 , t1, t2 ∈ Z i.e.

Xt1,t2 =

∫ +π

−π

∫ +π

−π

ei(t1ω1,t2ω2)At1,t2(ω1, ω2)dZ1(ω1, ω2); t1, t2 ∈ Z, (1)

where the function At1,t2(ω1, ω2) is given by

At1,t2(ω1, ω2) =

∫ +∞

−∞

∫ +∞

−∞
ei(θ1t1,θ2t2)dFω1,ω2(θ1, θ2),

t1, t2 ∈ Z and ω1, ω2 ∈ [−π, π] ,

where Fω1,ω2 is a measure satisfying:
∫ +∞
−∞

∫ +∞
−∞ |dFω1,ω2(θ1, θ2)| = 1 and Z1

is a processus with orthogonal increments defined on the interval [−π,+π]
2
and

E |dZ1(ω1, ω2)|2 = dμ1(ω1, ω2) where μ1 is a positive measure. The evolutionary
spectral measure is defined by Priestley ([14], [15]) at each (t1, t2) by

dHt1,t2(ω1, ω2) = |At1,t2(ω1, ω2)|2 dμ (ω) . (2)

Our choice of oscillatory random field is motivated by the fact that it has
a physical interpretation and the variance of the process is interpreted as a
measure of the total power of the process at time t, because V ar(X(t1, t2)) =∫ +∞
−∞ dHt1,t2(ω1, ω2). The evolutionary spectral density of the process {X(t1, t2)}
is given by ht1,t2(ω1, ω2) and defined as follows:

ht1,t2(ω1, ω2) =
dHt1,t2(ω1, ω2)

dω1dω2
, ω1, ω2 ∈ R. (3)

Assume that the process {Xt1,t2} is observed with randomly missing observa-
tions. As Bloomfield [2], we consider the process Lt1,t2 defined as the product of
the process {Xt1,t2} and an other process {Yt1,t2} defined as follows:

Lt1,t2 = Xt1,t2Yt1,t2 where Yt1,t2 =

{
1 if Xt1,t2 is observed

0 otherwise.
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The process Lt1,t2 is equal to a modified version of the original process {Xt1,t2}
by replacing the missing observations by E(Xt1,t2) their mean value, which is
zero because {Xt1,t2} is centred.

To simplify, we suppose, as Bloomfield [2], that {Yt1,t2} is stationary, inde-
pendent of Xt1,t2 and satisfying:

P {Yt1,t2 = 1} = p >
1

2
,

P {Yt1,t2 = 0} = 1− p,

The assumption of stationarity means that the statistical properties of the pro-
cess Y does not depend on time. This case is often encountered in practice
especially when collecting data provided by devices partially defective. Set

ξr1,r2 =
1

p
E {Yt1,t2Yt1+r1,t2+r2} (4)

νq,r,s =
1

p2
E {Yt1,t2Yt1+q1,t2+q2Yt1+r1,t2+r2Yt1+s1,t2+s2} ; qi, ri, si ∈ Z (5)

Since E(Yt1,t2) = p, we obtain

Cov {Yt1,t2 , Yt1+r1,t2+r2} = E {Yt1,t2Y+r} − E {Yt1+r1,t2+r2}E {Yt1,t2}
= pξr1,r2 − p2 = p (ξr1,r2 − p) .

This implies that ξr1,r2 is symmetric in (r1, r2). In the remainder of this paper,
we assume the following hypotheses:

H1) There exists a real number V > 0 such that
∞∑

q=−∞
|νr,q,q+s − ξr1,r2ξs1,s2 | ≤ V (||(r1, r2)||+ ||(s1, s2)||+ 1) < ∞, (6)

H2) ξ > 0 and pξr1,r2 ≥ 2p− 1 > 0 r1, r2 ∈ Z (7)

Remark 1. – The first hypothesis H1) means that the sum,

∞∑
q=−∞

Cov (Yt1,t2Yt1+r1,t2+r2 , Yt1+q1,t2+q2Yt1+q1+s1,t2+q2+s2)

is bounded by a function proportional to p2(||(r1, r2)||+ ||(s1, s2)||+ 1).
– The second hypothesis H2) implies for each (t1, t2), the probability that

Xt1,t2 is observed (not missing) is greater than 1
2 .

3 Estimation of the Evolutionary Spectral Density

We begin by given some definitions introduced by Priestley ([14], [15]). Let F the
family of oscillatory functions

{
At1,t2(ω1, ω2)e

i(t1ω1+t2ω2)
}
. For each family F , we
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define the function BF(ω1, ω2) =
∫ ||(θ1, θ2)|||dFω1,ω2(θ1, θ2)|. Let C in the class

of families F such that BF(ω1, ω2) is bounded for all (ω1, ω2). For each family F
we define the following constant BF termed the characteristic width of F :

BF =

[
sup

(ω1,ω2)

BF(ω1, ω2).

]−1

The characteristic width of the processXt1,t2 is defined by BX = supF∈C BF . For
more details about definitions see Priestley ([14], , [15]).

In this section, we propose a periodogramm constructed as follows:

It,T (ω01, ω02) =

∣∣∣∣∣
t+T∑

u=t−T

gu
Lt1−u1,t2−u2

S
e−i(ω01(t1−u1)+(t2−u2)ω02)

∣∣∣∣∣
2

, (8)

where S =

(
2π

∑
u1,u2

pξ0,0 |gu1,u2 |2
) 1

2

, and {gu1,u2}, is a filter satisfying the

following conditions:
C1 : gu1,u2 ≥ 0 ; gu1,u2 = g−u1,−u2 ,
C2 :

∑
u1,u2,v1,v2

pξu1−v1,u2−v2gu1,u2g
∗
v1,v2 < ∞, where ξ is defined in (4)

C3 :) gu1,u2 has finite “width”, defined by:

Bg �
+∞∑

u1,u2,v1,v2=−∞
p |ξu1−v1,u2−v2 | ||(u1, u2)|| |gu1,u2 |

∣∣g∗v1,v2
∣∣ < ∞, (9)

C4 : Bg << BF ,
C5 : For any real numbers k1, k2, we have

∣
∣
∣
∣

∫ ∞

−∞
Γ (s, s)ht1,t2(s1 + k1, s2 + k2)ds1ds2 − ht1,t2(k1, k2)

∫ ∞

−∞
Γ (s, s)ds1ds2

∣
∣
∣
∣
<

Bg

BF
,

where the function Γ is defined by:

Γ (s, s′) =
∑

u1,u2,v1,v2

pξu1−v1,u2−v2gu1,u2g
∗
v1,v2e

−i(u1s1−v1s
′
1+u2s2−v2s

′
2).

The function Γ1 is highly concentred relative to the function ht1,t2 .
When this condition is satisfied, we say as Priestley ([15]page 829) that the

function Γ1 is δ-function with respect to ht1,t2 in order
( Bg

BF

)
.

C6 : gu1,u2 = O
(
e−||(u1,u2)||)

The following theorem shows that the periodogram It,T (ω01, ω02) is an asymp-
totically unbiased estimator of the evolutionary spectral density ht1,t2(ω01, ω02).

Theorem 1. Let t1, t2 be an integer numbers and ω01, ω02 are real numbers,
suppose that

Bg

BX
< ε, then

E [It,T (ω01, ω02)] = ht1,t2(ω01, ω02) +O(ε).
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To prove the theorem 1, we have need the two following lemmas

Lemma 1. For any t1, t2, t
′
1, t

′
2, λ1, λ2 real numbers, we have

∣∣∣∣
∫

ei(t1s1+t2s2)e−i(t′1s
′
1+t′2s

′
2Γ (s+ k, , s′ + k′) dFλ1,λ2(s1, s2)dFλ1,λ2(s

′
1, s

′
2)−

Γ (k, k′)
∫

ei(t1s1+t2s2)e−i(t′1s
′
1+t′2s

′
2)dFλ1,λ2(s1, s2)dFλ1,λ2(s

′
1, s

′
2)

∣∣∣∣ < 2
Bg

BF

Lemma 2. Let θ1, θ2, λ1, λ2, t1, t2 and t′1, t
′
2 be real numbers, we have

∣∣∣At1,t2(λ1, λ2)A
∗
t′1,t

′
2
(λ1, λ2)

∣∣∣ ∣∣Γt1,t2,t′1,t
′
2,λ1,λ2

(θ1, θ2)− Γ (θ, θ)
∣∣ ≤ 2

Bg

BF
, where

Γt1,t2,s1,s2,λ1,λ2 (θ1, θ2) =
∑

u1,u2,v1,v2

pξu1−v1,u2−v2gu1,u2g
∗
v1,v2β(u, v, θ) (10)

where

β(u, v, θ) =
At1−u1,t2−u2 (λ1, λ2)A

∗
s1−v1,s2−v2 (λ1, λ2)

At1,t2 (λ1, λ2)A∗
s1,s2 (λ1, λ2)

e−i((u1−v1)θ1+(u2−v2)θ2 .

In order to obtain a consistent estimate of {ht1,t2(ω01, ω02)}, we smooth the pe-
riodogram in the neighborhood of the time-instant (t1, t2) via a weight function:

ĥt1,t2 (ω01, ω02) =
∑

v1,v2∈M

wT ′
1,T

′
2,v1,v2

Ît1−v1,t2−v2(ω01, ω02). (11)

where wT ′
1,T

′
2,v1,v2

is a weight-function depending on the parameters T ′
1, T

′
2 and

satisfying

a) wT ′
1,T

′
2,v1,v2

≥ 0, for all v1, v2, T
′
1, T

′
2

b) wT ′
1,T

′
2,v1,v2

= 0, v1, v2 /∈ M, where M is a set of integers surrounding zero.
c) wT ′

1,T
′
2,v1,v2

= wT ′
1,T

′
2,−v1,−v2 ,

d)
∑

v1,v2∈M

wT ′
1,T

′
2,v1,v2

= 1,

e)
∑

v1,v2∈M

w2
T ′
1,T

′
2,v1,v2

< ∞.

f) We assume that there exists a constant C such that

lim
T ′
1,T

′
2→∞

T ′
1, T

′
2

∑
u1,u2∈M

∣∣WT ′
1,T

′
2,u1,u2

∣∣2 = C, where

WT ′
1,T

′
2,u1,u2

=
∑

v1,v2∈M

e−i(u1v1+u2v2)wT ′
1,T

′
2,v1,v2

.

The following theorem show that the estimator ĥt1,t2 (ω01, ω02) is an asymptot-
ically unbiased of the (weighted) average value of ht1,t2(ω01, ω02) in the neigh-
borhood of (t1, t2).
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Theorem 2. Let −π ≤ ω01, ω02 ≤ π, suppose that
Bg

BX
< ε, then

E
[
ĥt1,t2 (ω01, ω02)

]
= ht1,t2(ω01, ω02) +O(ε)

where ht1,t2(ω01, ω02 =
∑

v1,v2∈M

wT ′
1,T

′
2,v1,v2

ht1−v1,t2−v2(ω01, ω02)

To show that the variance converges to zero, as Priestley ([14]) and Mélard [10],
we assume that the process Lt1,t2 is Gaussian.

Theorem 3. Let −π ≤ ω1, ω2 ≤ π and suppose that the process Lt1,t2 is Gaus-
sian, then we have

V ar
[
ĥt1,t2(ω01, ω02)

]
= O(

1

T ′
1, T

′
2

).

4 Numerical Studies

As in Bloomfield [2], we suppose that our process {Xt,s}t,s∈Z
is observed at the

successively instants (t1, s1), (t2, s2), ..., (tn, sn) where τi = |ti+1−ti| τ ′i = |si+1−
si| are independent random variables, each with the probability distribution
{fr1,r2 = P [(τ, τ ′) = (r1, r2)]} , and finite mean p−1. As in Feller ([5], pp 282-
283), we define a process

{
Y ′
t,s

}
which coincides with {Yt,s} except at origin

Y ′
0,0 = 1. the event ”Y ′ = 1” is termed persistent and recurrent event. Using (6)

we obtain

ξr1,r2 = p−1E {Yt1,t2Yt1+r1,t2+r2} = P {Yt1+r1,t2+r2 = 1/Yt1,t2 = 1}
= P

{
Y ′
r1,r2 = 1

}

Feller ([5], pp 282-283) has shown that

ξr1,r2 =

r1,r2∑
s=1

fs1,s2ξr1−s1,r2−s2 , ri, si = 1, 2...

The processus Lt1,t2 was obtained from Xt,s by omitting certain observations
with a renewal-type mechanism defined above with f1,1 = 8

9 , f2,2 = 1
9 , fr1,r2 = 0

otherwise.
The simulation of the process X :
Using the same method in [11] for the simulation of Markov Gauss random

field, we simulate the Gaussian random field Y = {Y (n1, n2)}n1,n2∈Z such that

RY (n1, n2) the covariance function is given by RY (n1, n2) = e−
√

(n1+n2), and
its spectral density is fY (λ1, λ2) =

1
π(1+λ2

1+λ2
2)
.

the random field Xt,s, t, s ∈ Z is given by the following model

Xt,s = ct,sYt,s, t, s ∈ Z..
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where ct,s = e−
(t+s−500)2

2∗2002 At,s(ω1, ω2) = ct,s is independent of ω. With respect
to the family F =

{
ct,se

i(ω1t+ω2s
}
, X(t, s) has evolutionary spectral density

function ht1,t2(ω1, ω2) = c2t1,t2fY (ω1, ω2).
The curve of the estimator with 5000 observations (Fig. 2) and that of the

spectral density (Fig. 1) are very similar. So the estimator is quite satisfactory. If
we take more observations (around 10000), the estimator becomes more smoother
and the curve approaches the density much.
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Fig. 1. Density h100,12 Fig.2. Estimator ĥ100,12

5 Conclusion

We have proposed in this paper some results about the estimation of the evo-
lutionary spectral density for non-stationary random fields where the data ob-
served are collected with missing values. The approach is based on the technique
used by Bloomfield [2] for stationary processes combining estimates of evolu-
tionary spectrum introduced by Priestley ([14]). This work could be applied to
several cases when the process is non-stationary as for example for:

– the segmentation of a sequence of images of a dynamic scene, detecting weeds
in a farm field.

– the study of geostatistical mapping of certain chemical factors in agricultural
soil.

This work could be supplemented by the study of optimal smoothing parameters
using cross validation methods that have proven in the field. It will also be
extended to non-Gaussian process by assuming some hypotheses as for example
the cumulants are finite.
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