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Faculté des Sciences, Université Ibnou Zohr, BP. 8061, 80000 Agadir, Maroc

2 Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse,
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Abstract. In this paper, we propose a new method for blindly separat-
ing convolutive mixtures of non-stationary and temporally uncorrelated
sources. It estimates each source and its delayed versions up to a scale fac-
tor by Jointly Diagonalizing a set of covariance matrices in the frequency
domain, contrary to most existing second-order methods which require a
Block Joint Diagonalization algorithm followed by a blind deconvolution
to achieve the same result. Consequently, our method is much faster than
these classical methods especially for higer-order mixing filters and may
lead to better performance as confirmed by our simulation results.

1 Introduction

In this paper, we propose a new method for blindly separating convolutive mix-
tures of non-stationary and temporally uncorrelated signals. Consider M mix-
tures xi(n) of N discrete-time sources sj(n) and suppose the mixing filters are

FIR (Finite Impulse Response). Denoting by Aij(z) =
∑K

k=0 aij(k)z
−k the trans-

fer function of each mixing filter where K is the order of the longest filter, we
can write

xi(n) =

N∑

j=1

K∑

k=0

aij(k)sj(n− k), i = 1, ...,M. (1)

This convolutive mixture may be rewritten as an instantaneous mixture [1–
4] in the following manner. Considering delayed versions of the mixtures, i.e.
xi(n− l) (l = 0, 1, ..., L− 1), Eq. (1) reads

xi(n− l) =

N∑

j=1

K∑

k=0

aij(k)sj(n− (k + l)), (i, l) ∈ [1,M ]× [0, L− 1]. (2)

TheseML generalized observations xil(n) = xi(n−l), (i, l) ∈ [1,M ]×[0, L−1]
can be then considered as instantaneous mixtures of N(K + L) generalized
sources sjr(n) = sj(n − r) = sj(n − (k + l)), (j, r) ∈ [1, N ] × [0,K + L − 1].
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This mixture is (over-)determined if ML � N(K + L). It is clear that this
condition may be satisfied only if M > N i.e. if the original convolutive mixture
is strictly over-determined. In this case, by choosing the integer number L so that
L � NK

M−N , the reformulated instantaneous mixture (2) is (over-)determined. To
represent the reformulated mixture in vector form, we define

x̃(n) =
[
x10(n), x11(n), ..., x1(L−1)(n), ..., xM0(n), xM1(n), ..., xM(L−1)(n)

]T
,

s̃(n) = [s10(n), s11(n), ..., s1(K+L−1)(n), ..., sN0(n), sN1(n), ..., sN(K+L−1)(n)]
T ,

which yield using (2) :
x̃(n) = Ãs̃(n), (3)

where Ã =

⎛
⎜⎜⎝

A11 . . . A1N

...
. . .

...
AM1 . . . AMN

⎞
⎟⎟⎠ and Aij =

⎛
⎜⎜⎜⎜⎜⎝

aij(0) . . . aij(K) 0 . . . 0

. . .
. . .

. . .
. . .

0 . . . 0 aij(0) . . . aij(K)

⎞
⎟⎟⎟⎟⎟⎠
,

each block Aij being a matrix of dimension L× (K + L).
Then, Eq. (3) models an (over-)determined instantaneous mixture with M ′ =

ML observations xil(n) andN ′ = N(K+L) sources sjr(n). TheM
′×N ′ mixing

matrix Ã is supposed to admit a pseudo-inverse Ã+, called the separatingmatrix,
that we want to estimate for retrieving the generalized source vector s̃(n).

Several second-order methods, initially developed for separating Linear In-
stantaneous Mixtures (LIM), have been reformulated in this manner and used
to separate convolutive mixtures. For example, SOBI [5], BGML [6], and TF-
BSS [7] are three well-known methods proposed for separating LIM of mutually
uncorrelated sources. Since the covariance matrix of the source vector, Rs(n, τ),
is diagonal ∀n, τ for mutually uncorrelated sources, these methods jointly di-
agonalize a set of such matrices to achieve source separation. The approaches
proposed in [1], [2] and [3], called respectively SOBI-C, BGML-C and TFBSS-C
in the following, result from the generalization of these three methods to con-
volutive mixtures using the above reformulation. However, after reformulation
the diagonality property of the covariance matrix of the generalized source vec-
tor, Rs̃(n, τ), is no longer met ∀n, τ , but Rs̃(n, τ) is block-diagonal, whatever
the nature of the original sources sj(n). As a result, the convolutive methods
SOBI-C, BGML-C and TFBSS-C are based on Joint Block-Diagonalization
(JBD) of a set of covariance matrices. The JBD algorithm provides several fil-
tered versions of each initial source. Then, a blind deconvolution algorithm [3]
may be used to estimate each of the generalized sources sjr(n), and in particular
each of the initial sources sj(n), up to a scale factor.

In [4], we recently proposed a frequency-domain second-order approach for
separating convolutive mixtures of non-stationary sources, also based on the re-
formulation of the mixture as an LIM and on the JBD. Contrary to the three
methods mentioned above [1–3], our approach [4] requires neither global sta-
tionarity (supposed in [1]) nor piecewise stationarity (supposed in [2]) of the
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sources nor their sparseness (supposed in [3]). Our simulation results in [4] using
speech sources (i.e. non-stationary and temporally correlated signals) confirmed
the better performance of this approach [4] compared to the other methods [1–
3]. Nevertheless, the main drawback of all above four methods [1–4] is the high
computational cost, especially for high-order mixing filters. This cost is mainly
due to the JBD algorithm. That’s why we propose in this paper another al-
gorithm which avoids JBD and blind deconvolution. We show that when the
sources are non-stationary and temporally uncorrelated, it is possible to directly
estimate each of the generalized sources sjr(n) up to a scale factor just by jointly
diagonalizing a set of covariance matrices in the frequency domain.

2 Proposed Approach

In [8], we proposed a new method for separating LIM of non-stationary and
temporally uncorrelated signals based on the joint diagonalization of covariance
matrices in the frequency domain. The approach proposed in the current paper
is an extension of that method to convolutive mixtures and uses the same joint
diagonalization algorithm as in [8]. Like in the initial method [8], we suppose
that the initial sources sj(n) are

(H1) : real and non-stationary,
(H2) : zero-mean and temporally uncorrelated, i.e.∀j, ∀n �= m,E [sj(n)sj(m)] =

0,
(H3) : mutually uncorrelated, i.e. ∀j �= k, ∀n,m,E [sj(n)sk(m)] = 0.

Our spectral decorrelation method proposed in [8], which deals with frequency-
domain sources Sj(ω) (the Fourier transforms of temporal sources sj(n)), is
based on the following principal properties1:

(P1) : Uncorrelatedness and non-stationarity in the time domain are trans-
formed respectively into wide-sense stationarity and autocorrelation in
the frequency domain. The frequency-domain sources Sj(ω) are then
wide-sense stationary and autocorrelated.

(P2) : Since the temporal sources sj(n) are mutually uncorrelated, their Fourier
transforms Sj(ω) are mutually uncorrelated too.

Thanks to the linearity of the Fourier transform, by mapping the initial time-
domain LIM into the frequency domain, we obtain another LIM with the same
mixing matrix, but with respect to the frequency-domain sources Sj(ω) which
are wide-sense stationary and autocorrelated. Then, we can separate them using
the classical BSS algorithms initially developed for separating mixtures of time-
domain wide-sense stationary, time correlated signals like SOBI [5]. The main
advantage of our approach [8] is that thanks to the wide-sense stationarity in the
frequency domain, the expected values involved in the computation of covariance
matrices can be rigorously estimated by frequency averages. In the following, we
denote by SOBI-F the frequency-domain version of the SOBI algorithm.

1 See [8], and in particular Theorem 4, for more details.
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Note finally that the separating matrix may be estimated by jointly diagonal-
izing covariance matrices if and only if the following two conditions are satisfied
[8]:

(C1) : the covariance matrix of the source vector2 s(n), Rs(n, τ), is diagonal
∀n, τ (this condition is guaranteed by Hypothesis (H3)),

(C2) : the sources sj(n) have different normalized variance profiles.

In [8], we showed that for a given frequency shift ν1, Condition (C2) is equivalent
to the following identifiability condition:

E [Si(ω)S
∗
i (ω − ν1)]

E [|Si(ω)|2] �= E
[
Sj(ω)S

∗
j (ω − ν1)

]

E [|Sj(ω)|2] , ∀ i �= j. (4)

In the following, we present our extension of the above method to convolutive
mixtures. As mentioned in Section 1, a convolutive mixture can be reformulated
as an LIM mixture x̃(n) = Ãs̃(n). If we want to apply the above spectral decor-
relation method (using a Joint Diagonalization algorithm) to this reformulated
LIM for estimating the separating matrix Ã+, we must at first check the above
two conditions (C1) and (C2). Nevertheless, we know that the matrix Rs̃(n, τ)
is not diagonal ∀n, τ , but only block-diagonal, whatever the nature of sources
sj(n). However, using Hypothesis (H2) on the initial sources sj(n), we now show
that this matrix is diagonal for τ = 0. In fact, according to Hypothesis (H2), the
generalized sources sjr(n) satisfy the following equation:

∀ j = k, ∀ r �= d, ∀n, E [sjr(n)skd(n)] = E [sj(n− r)sj(n− d)] = 0, (5)

and using Hypothesis (H3) we can write:

∀ j �= k, ∀ r, d, ∀n, E [sjr(n)skd(n)] = E [sj(n− r)sk(n− d)] = 0. (6)

Equations (5) and (6), together yield

∀n, E [sjr(n)skd(n)] =

{
0 ∀ j �= k or r �= d
E
[
sjr(n)

2
]

for j = k and r = d
(7)

Thus, the generalized sources sjr(n) are instantaneously mutually uncorrelated,
so that the matrix Rs̃(n, τ) is diagonal for τ = 0. We now propose a trick to
transform these generalized sources sjr(n) into new sources which are mutually
uncorrelated for every time lag τ so as to satisfy Condition (C1) and to apply
our spectral decorrelation method for LIM. This trick is based on the following
theorem.

Theorem 1. Let up(n) (p = 1, ...,N ) be N real, zero-mean and instantaneously
mutually uncorrelated random signals i.e.

∀ (p, q) ∈ [1,N ]2, p �= q, ∀n, E [up(n)uq(n)] = 0. (8)

2 In LIM, the considered source vector is defined as s(n) = [s1(n), s2(n), ..., sN (n)]T .
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Suppose g(n) is a real, zero-mean, stationary, temporally uncorrelated random
signal, independent from all signals up(n). Then, the signals u′

p(n) defined by
u′
p(n) = g(n)up(n) are real, zero-mean, temporally uncorrelated and mutu-

ally uncorrelated . Moreover, each new signal u′
p(n) has the same normalized

variance profile as the original signal up(n).

Proof: See Appendix.

Multiplying each generalized observation xil(n) by a random signal g(n) sat-
isfying the conditions of the above theorem, we obtain new observations de-
noted by x′

il(n) = g(n)xil(n). These new observations are LIM of the new

sources s′jr(n) = g(n)sjr(n) with the same mixing matrix Ã, because denot-
ing x̃′(n) = g(n)x̃(n) and s̃′(n) = g(n)̃s(n) and using (3) we obtain

x̃′(n) = g(n)x̃(n) = g(n)(Ãs̃(n)) = Ã(g(n)̃s(n)) = Ãs̃′(n). (9)

Moreover, thanks to the above theorem (applied to signals up(n) = sjr(n)), the
new sources s′jr(n) = g(n)sjr(n) are:

1. real and non-stationary with the same normalized variance profiles as the
sources sjr(n),

2. zero-mean and temporally uncorrelated,
3. mutually uncorrelated for each time lag, i.e. Rs̃′(n, τ) is diagonal ∀n, τ .
Thus, the first condition (C1) for applying our spectral decorrelation method for
LIM is now satisfied because Rs̃′(n, τ) is diagonal ∀n, τ . Besides, if the sources
sjr(n) have different normalized variance profiles, then the new sources s′jr(n)
have too so that the second condition (C2) is also verified. In this case, the new
frequency-domain sources S′

jr(ω), which are the Fourier transforms of s′jr(n),
satisfy the following identifiability condition

∀ j �= k or r �= d,
E
[
S′
jr(ω)S

′∗
jr(ω − νq)

]

E
[|S′

jr(ω)|2
] �= E

[
S′
kd(ω)S

′∗
kd(ω − νq)

]

E [|S′
kd(ω)|2]

, (10)

so that our spectral decorrelation method for LIM can be used to compute an
estimate of the separating matrix Ã+, denoted Ã+

est. To this end, we start by
computing the Fourier transform of the new observation vector x̃′(n) = Ãs̃′(n)
which yields:

X̃′(ω) = ÃS̃′(ω), (11)

where S̃′(ω) =
[
S′
10(ω), ..., S

′
1(K+L−1)(ω), ..., S

′
N0(ω), ..., S

′
N(K+L−1)(ω)

]T
and

X̃′(ω) =
[
X ′

10(ω), ..., X
′
1(L−1)(ω), ..., X

′
M0(ω), ..., X

′
M(L−1)(ω)

]T
, withX ′

il(ω) the

Fourier transform of x′
il(n). The modified generalized sources s′jr(n) being zero-

mean, non-stationary, temporally uncorrelated and mutually uncorrelated, their
Fourier transforms S′

jr(ω) are wide-sense stationary, autocorrelated and mutu-
ally uncorrelated, thanks to Properties (P1) and (P2). Therefore, we can apply
the SOBI-F algorithm to compute Ã+

est as follows:
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1. we compute the N ′×M ′ whitening matrix W which yields a new observation
vector Z̃′(ω) = WX̃′(ω) so that E[Z̃′(ω)Z̃′H(ω)] = IN ′ , by diagonalizing the
matrix RX̃′(0) = E[X̃′(ω)X̃′H(ω)],

2. we compute the rotation matrix U by Jointly Diagonalizing (JD) several
covariance matrices RZ̃′(νq) = E[Z̃′(ω)Z̃′H (ω − νq)] (q = 1, 2, ...),

3. an estimate of the separating matrix Ã+ is given by:

Ã+
est = �{UHW} � PDÃ+, (12)

where P is a permutation matrix and D is a real diagonal matrix [5, 8].

Once Ã+
est has been computed by this method, we can directly find an estimate

of the generalized source vector s̃(n), denoted by s̃est(n), using (3) as follows:

s̃est(n) = Ã+
estx̃(n) � (PDÃ+)(Ãs̃(n)) � PDs̃(n). (13)

Thus, each generalized source sjr(n), and in particular each initial source sj(n)
(= sj0(n)), can be estimated up to a scale factor (and a permutation). In the
following, we call our method3 SOBI-F-C JD.

3 Simulation Results

In this section, we present our simulation results using M = 3 artificial FIR
convolutive mixtures of N = 2 artificial sources containing Ns = 65536 samples.
The sources are generated using sj(n) = rj(n)μj(n), where rj(n) are mutually
uncorrelated, zero-mean i.i.d. (independent and identically distributed) Gaussian
signals, μ1(n) = cos(ω0n) and μ2(n) = sin(ω0n) with ω0 = π/7. This choice
allows us to generate two non-stationary and temporally uncorrelated initial
sources s1(n) and s2(n) with different normalized variance profiles. The mixtures
are generated using FIR filters of order K ∈ {1, 3, 5}. The coefficients aij(k)

of each transfer function Aij(z) =
∑K

k=0 aij(k)z
−k are generated randomly. For

each value ofK we choose in the model (2) the integer L equal to 2K. This choice
provides M ′ = 6K generalized observations xil(n) and N ′ = 6K(∈ {6, 18, 30})
generalized sources sjr(n) so that the matrix Ã is square4.

To apply our SOBI-F-C JD method, we first multiply all generalized observa-
tions xil(n) by an i.i.d., real, zero-mean and uniformly distributed signal g(n),
independent from the generalized sources. After whitening data as explained in
the previous section, we jointly diagonalize 4 covariance matrices corresponding
to 4 different frequency shifts, yielding an estimate of each of the generalized
sources sjr(n) up to a scale factor.

We compare our results with those obtained using the time-domain method
BGML-C [2] which exploits the non-stationarity of signals without requiring

3 ‘C’ for Convolutive and ‘JD’ for Joint Diagonalization.
4 Having originally 3 FIR mixtures of 2 sources, i.e. M = 3 et N = 2, we obtain
M ′ = ML = 6K and N ′ = N(K + L) = 6K after reformulation as in (2) .
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them to be temporally autocorrelated. To apply BGML-C, we consider 128 co-
variance matrices computed over 128 adjacent frames of 512 samples. To block-
diagonalize these matrices, we use the orthogonal algorithm proposed by Févotte
et al. in [3]. After the JBD stage, we obtain K+L filtered versions of each initial
source sj(n). Then, we use a blind deconvolution method proposed in [3] which
allows us to estimate each of the generalized sources sjr(n) up to a scale factor.
Performance is measured using the Signal to Interference Ratio (SIR) defined as
SIR = 1

2 (SIR1 + SIR2) where:

SIRj = max
r

{

10 log10

[
E{sjr(n)2}

E{(ŝjr(n)− sjr(n))2}
]}

, (j, r) ∈ [1, 2]× [0,K+L− 1],

after normalizing the estimated generalized sources ŝjr(n) so that they have
the same variances and signs as the original generalized sources sjr(n). The
SIR as well as the computation time5 are given in Table 1 for our method and
the BGML-C method. We also repeat our simulations by varying the number
of samples Ns. The results for Ns ∈ {217, 218, 219} and K = 1 are shown in
Table 2.

Table 1. SIR (in dB) and computation time Tj (in minutes) versus filter order K for
Ns = 216 = 65536

K = 1 (N ′ = 6) K = 3 (N ′ = 18) K = 5 (N ′ = 30)

Method SIR Tj(mn) T2/T1 SIR Tj(mn) T2/T1 SIR Tj(mn) T2/T1

SOBI-F-C JD 40.43 T1 = 0.04 32.84 T1 = 0.20 26.28 T1 = 0.50
BGML-C 28.07 T2 = 0.06 1.50 10.18 T2 = 1.54 7.70 7.14 T2 = 13.31 26.62

Table 2. SIR (in dB) and computation time Tj (in minutes) versus number of samples
Ns for K = 1

Ns = 131072 Ns = 262144 Ns = 524288

Method SIR Tj(mn) T2/T1 SIR Tj(mn) T2/T1 SIR Tj(mn) T2/T1

SOBI-F-C JD 42.90 T1 = 0.08 46.22 T1 = 0.15 53.33 T1 = 0.31
BGML-C 32.94 T2 = 0.09 1.13 33.09 T2 = 0.18 1.20 37.86 T2 = 0.36 1.16

As can be seen:

– our method outperforms BGML-C in all of the tested configurations, espe-
cially for higher-order filters. For K = 5, it is about 26 times faster and
leads to an SIR about 20 dB higher than BGML-C. This can be justified
considering that BGML-C supposes the non-stationary signals to be piece-
wise stationary while this condition is not satisfied by our test signals, and

5 The algorithms were implemented on a 2.10 GHz Dual-Core Pentium processor with
3GB memory.
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it uses a JBD algorithm which is more time consuming than a JD algorithm,
– not surprisingly, for both methods the SIR increases with Ns and decreases

with K, while the computation time increases with Ns and K.

4 Conclusion and Perspectives

In this paper, we proposed an extension of our spectral decorrelation method, ini-
tially developed for LIM, to convolutive mixtures. The proposed method, called
SOBI-F-C JD, may be used for separating convolutive mixtures of non-stationary
and temporally uncorrelated sources. Just by using a joint diagonalization algo-
rithm, it provides an estimate of each generalized source up to a scale factor,
contrary to the existing approaches [1–4] which need a block-joint diagonaliza-
tion algorithm followed by a blind deconvolution to achieve the same result. The
first simulations confirmed the better performance of our method in terms of
both separation quality and rapidity compared to the BGML-C method. Nev-
ertheless, it would be interesting to confirm these results using more statistical
tests. For example, increasing the number of covariance matrices used in JD
algorithm would improve the performance.
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Appendix: Proof of Theorem 1

Denote u(n) = [u1(n), u2(n), ..., uN (n)]
T
and u′(n) = g(n)u(n).

1. Since g(n) is independent from all the zero-mean signals up(n), we can write

∀ p ∈ [1,N ], E
[
u′
p(n)

]
= E [g(n)up(n)] = E [g(n)]E [up(n)] = 0. (14)

Hence, the new signals u′
p(n) (p = 1, ...,N ) are also zero-mean.

2. Whatever the times n1 and n2, we have

E
[
u′(n1)u

′(n2)
T
]
= E

[
g(n1)g(n2)u(n1)u(n2)

T
]
. (15)

The independence of g(n) from all the signals up(n) yields

E
[
u′(n1)u

′(n2)
T
]
= E [g(n1)g(n2)]E

[
u(n1)u(n2)

T
]
, (16)

and since g(n) is zero-mean, stationary and temporally uncorrelated

E
[
u′(n1)u

′(n2)
T
]
= σ2

gδ(n1 − n2)E
[
u(n1)u(n1)

T
]

(17)

where σ2
g is the variance of g(n). The signals up(n) being zero-mean and

instantaneously mutually uncorrelated, the matrices E
[
u(n1)u(n1)

T
]
and so

E
[
u′(n1)u

′(n2)
T
]
are diagonal. As a result, the new zero-mean signals u′

p(n)
are mutually uncorrelated. Moreover, according to Eq. (17), the diagonal
entries of the matrix E

[
u′(n1)u

′(n2)
T
]
can be written as

E
[
u′
p(n1)u

′
p(n2)

]
= σ2

gδ(n1−n2)E [up(n1)up(n1)] = σ2
gδ(n1−n2)E

[
u2
p(n1)

]
.

(18)
Hence, the new signals u′

p(n) are temporally uncorrelated. Furthermore, by

choosing n1 = n2 = n, Eq. (18) becomes E
[
u′2
p (n)

]
= σ2

gE
[
u2
p(n)

]
which

means that the new signals u′
p(n) have the same normalized variance profiles

as the original signals up(n).


	Blind Separation of Convolutive Mixtures of Non-stationary and Temporally Uncorrelated Sources Based on Joint Diagonalization
	Introduction
	Proposed Approach
	Simulation Results
	Conclusion and Perspectives
	References




