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Abstract. This paper deals with nonlinear Blind Source Separation
(BSS) applied to a simple bijective “toy” model. Our objective is to bet-
ter understand the difficulties encountered in nonlinear BSS, especially
when estimating the parameters of mixing or separating structures. The
results of this study and the proposed solutions may then be used by
the BSS researchers dealing with actual nonlinear physical models. The
simulation results confirm the usefulness of our proposed solutions.

1 Introduction

Blind Source Separation (BSS) aims at restoring source signals from their mix-
tures when the mixing parameters are unknown. While linear BSS has been
widely studied, little work is available about nonlinear BSS. It is well known
that the independence hypothesis is not sufficient for separating general nonlin-
ear mixtures because of the very large indeterminacies which make the problem
ill-posed [1]. A natural idea for reducing these indeterminacies is to constrain
the structure of mixing and separating models to belong to a certain set of
transformations [2]. Thus, the problem should be studied separately for each
considered mixing structure. Even in this simplified case, nonlinear BSS is much
more difficult than linear BSS because of the following problems:

1. most nonlinear models are not bijective so that even in the non-blind case
when the mixing parameters are known, it is not possible to retrieve the
sources in a unique manner without supplementary assumptions,

2. even when the mixing model is known, it is not always possible to find an
analytical expression for its inverse,

3. the study of the identifiability and separability of nonlinear mixtures is a
hard task and should be done model-by-model to determine which families
of source distributions are not separable for each nonlinear model,

4. the blind estimation of the parameters in mixing (or separating) structure
is another issue which is generally more difficult than in linear BSS. In par-
ticular, the matrix-based estimation algorithms can no longer be used.
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The goal of our paper is the last issue, i.e. parameter estimation. The papers
addressing this problem may be classified in the following categories1:

– the papers considering the models which may be reduced to a linear model
using some transformations (e.g. [1], [5]). The estimating methods proposed
in these papers are especially developed for the particular considered model
and cannot be generalized to other models,

– the papers studying non-bijective mixing models (e.g. [6], [7]). Since in this
case there are several difficult problems to handle simultaneously, these pa-
pers do not focus especially on parameter estimation,

– the papers addressing this issue in general, without considering practical
examples (e.g. [8]).

In this paper, we address the problem in the case of bijective models with known
inverse and study in particular a simple “toy” model. Thus, we can focus our
efforts on the parameter estimation. Although this model does not fit any known
physical system, we believe this study will be useful for the BSS researchers
dealing with other actual nonlinear physical models.

2 Problem Statement

Consider the mixing equation x = F(s, θ∗) where s = [s1, · · · , sK ]T is the
vector of K independent unknown sources, x = [x1, · · · , xK ]T is the vector of K
observations and F is a bijective parametric function, defined by the unknown
parameter vector θ∗. Denote G the inverse of F so that s = G(x, θ∗). BSS may
possibly be achieved by constructing the separating model

y = G(x, θ) (1)

and looking for a parameter vector θ which makes the components of y =
[y1, · · · , yK ]T independent. It is clear that θ∗ is one of the solutions which
provides the original sources. The other possible solutions depend on the in-
determinacies involved in the problem. To make the components of y inde-
pendent, we can minimize the mutual information criterion defined as I =
E[log fy(y)] −

∑K
k=1E[log fyk

(yk)] where fy and fyk
are respectively the joint

and the marginal probability density functions (pdf) of the variables yk. Since
the model is supposed bijective, (1) yields fy(y) = fx(x)/|J | where J is the
Jacobian of the separating model. Then, we obtain

I = E[log fx(x)] − E[log(|J |)]−
K∑

k=1

E[log fyk
(yk)] (2)

To minimize this criterion using an optimization algorithm we need to compute
its gradient and possibly its Hessian with respect to the parameter vector θ. As
shown in [1], the gradient reads

1 In this classification, we do not consider the non model-based papers like [3] and [4].
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dI

dθ
= −E

[
1

J

dJ

dθ

]

+

K∑

k=1

E

[

ψyk
(yk)

dyk
dθ

]

(3)

where ψyk
(yk) = −d log fyk

(yk)/dyk is the score function of yk. Then, the element
(i, j) of the Hessian matrix H can be obtained as follows:

Hij =
d

dθj

dI

dθi
= −E

[
d

dθj
(
1

J

dJ

dθi
)

]

+

K∑

k=1

E

[
dψyk

(yk)

dyk

dyk
dθj

dyk
dθi

+ ψyk
(yk)

d

dθj

dyk
dθi

]

(4)

The mutual information may be minimized using e.g. the gradient descent algo-
rithm θnew = θold − μ dI

dθ or the Newton algorithm θnew = θold −H−1 dI
dθ . The

online (stochastic) version of the gradient descent algorithm may be obtained by
removing the expected values in (3).

The score functions required in the equations must be estimated from the
outputs y1 and y2 and be updated at each iteration of the optimization algorithm.
They may be estimated for example using the approach proposed in [9] which

consists in writing ψyk
(yk) =

∑M
m=1 ckmφm(yk) where φm(yk) are some basis

functions and in computing the coefficients ckm by solving the following equation

Gk[ck1, · · · , ckM ]T = gk (5)

where Gk = E[φ(yk)φ(yk)
T ], gk = E[φ′(yk)] with φ(yk) =

[φ1(yk), · · · , φM (yk)]
T and φ′(yk) its derivative with respect to yk. This deriva-

tive may also be used for estimating the score function derivatives required in
(4).

An online estimate of the score functions may be obtained [10] at each time
t by updating the matrices Gk and the vectors gk using

Gk(t) = ρGk(t−1)+(1−ρ)φ(yk)φ(yk)T , gk(t) = ρgk(t−1)+(1−ρ)φ′(yk) (6)

where ρ is a “forgetting factor” (for example equal to (t− 1)/t), then solving
Gk(t)[ck1(t), · · · , ckM (t)]T = gk(t) to find the coefficients ckm(t).

In the following sections, we study a simple toy problem to show the different
practical aspects of nonlinear BSS.

3 A Simple Bijective Model

We consider the following inverse structure

s1 = a∗x31 + b∗x2 , s2 = −b∗x1 + a∗x2. (7)

This model, which is defined by the parameter vector θ∗ = [a∗, b∗]T is bijective

if b∗ �= 0 (and if b∗ = 0 but a∗x1 �= 0) : in this case its Jacobian 3a∗
2

x21 + b∗
2

is

always positive. The above equations yield a∗x31+(b∗
2

/a∗)x1+(b∗/a∗)s2−s1 = 0
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which can be solved using Cardan’s formula with respect to x1 to obtain one of
the two mixing equations

x1 =

(−q
2

+
√
Δ

)1/3

+

(−q
2

−
√
Δ

)1/3

(8)

where Δ = q2

4 + p3

27 , q = ((b∗/a∗)s2 − s1) /a
∗ and p = (b∗/a∗)2. The other

mixture may then be obtained using

x2 = (s2 + b∗x1)/a∗. (9)

BSS may be achieved by constructing the separating structure

y1 = ax31 + bx2 , y2 = −bx1 + ax2 (10)

and minimizing the mutual information of y1 and y2 with respect to θ = [a, b]T .
This model yields J = 3a2x21 + b2, dJ/dθ = [6ax21, 2b]

T , dy1/dθ = [x31, x2]
T ,

dy2/dθ = [x2,−x1]T . Using (3) and (4), we obtain the following expressions for
the gradient and the Hessian

dI

dθ
= E

[ −1

3a2x21 + b2
[6ax21, 2b]

T + ψy1(y1)[x
3
1, x2]

T + ψy2(y2)[x2,−x1]T
]

H = E

[
1

J2

(−6x21J + (6ax21)
2 12abx21

12abx21 −2J + (2b)2

)]

+ E

[
dψy1(y1)

dy1

(
x61 x31x2
x31x2 x22

)]

+ E

[
dψy2(y2)

dy2

(
x22 −x1x2

−x1x2 x21

)]

. (11)

From (7) and (10), it is evident that if θ = k[a∗, b∗]T , then y1 = ks1 and
y2 = ks2 so that y1 and y2 are independent and minimize the criterion. One
of the solutions to fix this indeterminacy consists in defining s′i = si/a

∗ and
c∗ = b∗/a∗ which yields the inverse model

s′1 = x31 + c∗x2 , s′2 = −c∗x1 + x2 (12)

and the corresponding separating structure

y1 = x31 + cx2 , y2 = −cx1 + x2 (13)

In this case, there is only one parameter to estimate so that the gradient and

the Hessian are scalars: dI
dc = E

[
−2c

3x2
1+c2

+ ψy1(y1)x2 − ψy2(y2)x1

]
, H = dI2

d2c =

E
[−6x2

1+2c2

(3x2
1+c2)2

+ ψ′
y1
(y1)x

2
2 + ψ′

y2
(y2)x

2
1

]
.

4 Local Minima and Separability of the Model

In a first experiment, we mixed two 10000-sample independent, zero-mean and
unit-variance, uniformly distributed sources s1 and s2 using the mixing model
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Fig. 1. Estimation of mutual information (up to an additive constant) (a) with pdf
shape re-estimated for each value of c. (b) with pdf shape estimated for c = 1.
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Fig. 2. scatter plots of (a) mixtures, (b) output components corresponding to the good
local minimum, (c) output components corresponding to the bad local minimum

(8-9) and the parameters a∗ = 1 and b∗ = 1.5 which is equivalent to the inverse
model (12) with c∗ = 1.5 and s′i = si. Then, we constructed the separating model
(13), varied the parameter c between -3 and 3, and for each value of c estimated
the mutual information of the outputs (up to the additive constant E[log fx(x)]).
The result is shown in Fig. 1.a. As can be seen, this function has two local
minima but only one of them (which is also the global minimum) corresponds
to the actual value of the parameter and provides the independent components
corresponding to the actual sources2. When initialized with negative values of c,
the optimization algorithms like gradient descent or Newton converge towards
this “bad” local minimum. However, this value may be rejected a posteriori using
an independence test. Fig. 2 shows the scatter plots of the mixtures and of the
output components corresponding to these minima.

Note also that in practice, at each iteration of an optimization algorithm, one
first estimates (using the current value of the parameter c) the coefficients ckm
in (5) which determine the shape of score functions and related pdf, then freezes
them and performs a minimization step for the mutual information related to
these pdf with respect to c. Since the estimated pdf change during successive
iterations, the shape of the function to be minimized changes too. For example,
Fig. 1.b shows the mutual information as a function of c in the above example

2 Note that replacing x3
1 by x1 in (12) and (13) yields a linear model for which

the criterion has two good local minima at c∗ and −1/c∗ leading respectively to
[y1, y2]

T = [s1, s2]
T and [y1, y2]

T = [−s2, s1]
T /c∗.
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(with c∗= 1.5) corresponding to the coefficients ckm estimated using the value
c = 1. As can be seen this function is not the same as in Fig. 1.a. The practical
optimization is then more difficult than what is suggested by Fig. 1.a. This exam-
ple also shows the sensitivity of the method to the estimation of score functions:
if the estimated score functions are not updated in the following iterations, the
optimization algorithm converges towards the minimum of Fig. 1.b, i.e. c= 1.07.

The separability of our one-parameter model may be formulated as follows:
are there a family of source distributions and a value of the parameter c in
the separating model (13) for which y1 and y2 are independent but contain
mixtures of s1 and s2? To answer this question, one has to solve an independence
conservation functional equation [8]. Here, we only try to respond partially to
this question by the following experiment: we consider the generalized Gaussian
distribution family defined by the parameter α. For the values of α between 0.5
and 20 we generated the mixtures x1 and x2 for a∗ = 1 and b∗ = 1.5 (so that
c∗ = 1.5), then the outputs y1 and y2 using (13) for the values of c between -20
and 20. For each value of α, we estimated the mutual information I as a function
of c (like in Fig. 1.a) and verified if there was a value of c different from c∗ for
which I � 0. Since we did not find such values, we can say “experimentally”
that the model is separable for generalized Gaussian distributions.

5 Simulation Results

The first two lines of Table 1 compare the batch versions of the gradient descent
(with a constant learning rate μ = 0.02) and Newton methods applied to the
mixtures generated as in Section 4. The algorithms were run 100 times corre-
sponding to 100 different source signals and 100 different initial random values
of the parameter c (uniformly distributed over [0.1, 2.1]). The score functions
were estimated using the method described in Section 2 with φm(yk) = ym−1

k for
m = 1, · · · , 5. In each simulation, the algorithm was stopped if |cnew − cold| <
10−6 and the performance was measured using the Signal to Interference Ra-

tio (SIR) criterion defined by SIR = 1
2

∑2
i=1 10 log10

E[s2i ]
E[(si−ŝi)2]

where ŝi is the

estimate of si computed using the final estimate of the parameter c. We also
tested the initial model with two parameters (Eq. 7-10) using a∗ = 4, b∗ = 6
(so that b∗/a∗ = 1.5) and the parameters a and b initialized with positive ran-
dom values. In this case, we estimate the two parameters simultaneously. The
sources may be then estimated only up to a scaling factor. The last two lines of

Table 1. Comparing batch versions of gradient and Newton algorithms

Mean(SIR) Std(SIR) Iterations per simulation time per simulation

Gradient (1 param) 52.6 dB 9.6 dB 1208 17.87 sec

Newton (1 param) 52.6 dB 9.6 dB 111 1.7 sec

Gradient (2 param) 60.5 dB 7.8 dB 75 1.7 sec

Newton (2 param) 60.5 dB 7.8 dB 4 0.2 sec
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Table 1 show the results. The SIR was computed after normalizing the estimated
sources so that they had the same variances and signs as the actual sources. Note
that in the Newton method, the Hessian H may be badly conditioned and even
negative-definite. To avoid this problem, after the eigenvalue decomposition of
H = QΛQT , the eigenvalues smaller than a positive value δ (chosen equal to
10−4 in our experiments) are replaced by δ [11].

As can be seen, this separating model leads to better results. This is probably
because the parameters space defined by two parameters has a better shape so
that the optimization algorithms converge better towards its minimum. In all
the experiments, the Newton algorithm is much less time consuming than the
gradient algorithm while providing the same performance.

Then, we tested the stochastic gradient algorithm. When using this algorithm,
we have two principal problems: carefully choosing the learning rate (because
the algorithm is extremely sensitive to this choice), and carefully estimating
the score functions. The choice of learning rate μ is widely discussed in the
neural networks literature [12]. We found that the following adaptation rule for
updating the learning rate gives good results

μi(t) = μi(t− 1).max

(

0.5, 1 + q∇i(t)
∇i(t− 1)

∇2
i (t)

)

(14)

where∇i =
dI
dθi

, ∇i(t−1) = ρ∇i(t−2)+(1−ρ)∇i(t−1) and ∇2
i (t) = ρ∇2

i (t−1)+

(1−ρ)∇2
i (t) with ρ a forgetting factor. The main idea is to increase the learning

rate when the new gradient points in the same direction as the average past
gradient ∇i(t−1) (normalized by the average of the squared gradient to make it
better conditioned), and to decrease it otherwise. The multiplier is limited below
by 0.5 to guard against very small (or even negative) factors. In our experiments,
we used ρ = t−1

t , q = 1.5 and μ(0) = 0.02.
We also need a new estimation of the score functions at each time t. Our

experiments show that the approach proposed at the end of Section 2 and based
on Eq. (6) does not give good results because at the first stages of the algo-
rithm the estimation of c and consequently the estimation of the score func-
tions are bad. Using (6), this bad estimation of the score functions does not
change significantly afterwards. Hence, we propose another approach which con-
sists in updating the score functions at each time t from all the past data, using
Gk(t) =

1
t

∑t
n=1 φ(yk(n))φ(yk(n))

T and gk(t) =
1
t

∑t
n=1 φ

′(yk(n)).
We repeated the experiment with the one-parameter model using the stochas-

tic gradient algorithm and the signals containing 10000 samples. The mean and
the standard deviation of the SIR using 10 simulations were 42.0 dB and 15.2
dB with a runtime of about 90 seconds for each simulation. Figure 3 shows the
evolution of the parameter c and the learning rate μ in one of the simulations.
The same experiment using the two-parameters model led to an average SIR of
46.9 dB with a standard deviation of 6.3 dB and about 140 sec per simulation.
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Fig. 3. Evolution of (a) the parameter c and (b) the learning rate µ in the stochastic
algorithm versus sample index t

6 Conclusion

In this paper, we studied the BSS problem for one of the simplest bijective
nonlinear models. Even for this simple model, the problem is much more difficult
than linear BSS because of the existence of spurious local minima, the high
sensitivity of the optimization algorithms to the estimation of score functions, the
importance of parameter tuning in these algorithms, etc. We proposed solutions
to cope with these problems which may be helpful for the future works using more
realistic models. More experiments using constrained optimization algorithms
are required for treating the case of non-bijective models.
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