

Lecture Notes in Computer Science 7338
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Anastasia Ailamaki Shawn Bowers (Eds.)

Scientific and Statistical
Database Management
24th International Conference, SSDBM 2012
Chania, Crete, Greece, June 25-27, 2012
Proceedings

13

Volume Editors

Anastasia Ailamaki
Ecole Polytechnique Federale de Lausanne
Computer Science, EPFL IC SIN-GE
Batiment BC 226, Station 14, 1015 Lausanne, Switzerland
E-mail: anastasia.ailamaki@epfl.ch

Shawn Bowers
Gonzaga University, Department of Computer Science
502 E. Boone Avenue, Spokane, WA 99258-0026, USA
E-mail: bowers@gonzaga.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-31234-2 e-ISBN 978-3-642-31235-9
DOI 10.1007/978-3-642-31235-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012939731

CR Subject Classification (1998): H.2.7-8, H.2.4-5, H.2, H.3.3, H.3, H.4, E.1, G.2.2,
C.2, F.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Welcome from the General Chair

The 24th SSDBM conference has a special meaning for me. It was an honor to
preside this conference for the second time. Having the conference in Greece in
such a short time (the 16th SSDBM was on the island of Santorini in 2004) is an
appreciation of the contribution of Greek researchers in the area of databases. I
am also proud of organizing SSDBM 2012 in the historical and beautiful city of
Chania, the “Venice of the East” as it is known.

The 2012 24th International Conference on Scientific and Statistical Database
Management was held June 25–27 in Chania, Greece. The conference brought
together researchers, practitioners, and developers for the presentation and ex-
change of current research on concepts, tools, and techniques for scientific and
statistical database management.

I would like to thank first of all the authors who submitted, whether accepted
or rejected, papers or proposed demos and panels. Without them it would be
impossible to assemble such a technical program. I would also like to thank the
54 Program Committee members that had to work hard to meet short deadlines,
and participated in electronic discussions to resolve conflicts, as well as the ex-
ternal referees. I also would like to thank the sponsors of SSDBM 2012, which
included Piraeus Bank and the University of Athens. I would also like to express
my appreciation to Springer for publishing the SSDBM 2012 proceedings.

Finally, I would like to express special thanks to the Program Chair,
Anastasia Ailamaki. She organized the Program Committee and the entire re-
view procedure. Besides this, she assisted in the organization and was always
there to resolve any problems.

I believe all the participants had a wonderful and productive time. The first
was guaranteed by the beauty of Chania and the second by the quality of the
invited talks and the technical program.

M. Chatzopoulos

Message from the Program Chair

It is a real pleasure to welcome you to the proceedings of the 24th edition of
SSDBM, which include work presented at the conference in beautiful Chania,
Crete, Greece. As scientific datasets explode in size, turning data into informa-
tion permanently influences the scientific method. SSDBM 2012 presented pio-
neering research on scientific and statistical data management, thereby bridging
computer science with other domains. It comes as no surprise, therefore, that the
favorite topics this year centered around innovative techniques for scientific data
mining and scientific query evaluation, as well as targeted challenging scientific
applications.

We were fortunate to attract three internationally known researchers to open
each of the three days of the conference. David Maier from Portland State Uni-
versity gave a keynote on lessons and experiences from managing data coming
from various data sources in scientific observatories. Ricardo Baeza-Yates from
Yahoo! Research gave a keynote analyzing Web Search and discussed techniques
to meet the ever-demanding user requirements. Finally, Yannis Ioannidis from
the University of Athens called a controversial panel with different views on
global data infrastructures. There is an invited paper describing each keynote as
well as the panel in the proceedings.

SSDBM 2012 offered 25 full and ten short paper contributions, meticulously
synthesized into a proceedings volume by Shawn Bowers and Springer. This rich
collection of scientific work is selected from 68 submissions,with the invaluable
organizational help by Dimitra Tsaoussi-Melissargos, a reviewing marathon by
53 reviewers and several additional external referees. Each paper had at least
three reviews; most had four, and in some cases five. Most papers were exhaus-
tively discussed, and as a result nine generous reviewers (Val Tannen, Apostolos
Papadopoulos, Mario Nascimento, Tore Risch, Amelie Marian, Thomas Heinis,
Zografoula Vagena, Gultekin Ozsoyoglu, and Mohamed Mokbel) further served
as shepherds for 11 papers, to ensure a high-quality program.

In addition to the main track papers, we present nine posters and five system
demonstrations (selected from 20 and nine submissions, respectively).The selec-
tion was made by to Ioana Manolescu, Bill Howe, Miguel Branco, and Thomas
Heinis. All papers are featured on the SSDBM website along with extensive
information about the conference thanks to the webmaster Sadegh Nobari.

VIII Welcome from the General Chair

I would like to cordially thank the excellent team of SSDBM 2012 for their
dedication and hard work. Special thanks go to the General Chair, Mike Chat-
zopoulos, for his immediate responsiveness to all questions and emergencies dur-
ing the process. Most importantly, all of us in the Program Committee express
our sincere gratitude to all the authors who submitted their work in the form of
a paper, poster, or demo to the conference. They are the reason for SSDBM’s
continued success!

June 2012 Anastasia Ailamaki

SSDBM 2012 Conference Organization

General Chair

Mike Chatzopoulos University of Athens, Greece

Program Committee Chair

Anastasia Ailamaki EPFL, Switzerland

Proceedings Editor

Shawn Bowers Gonzaga University, USA

Webmaster

Sadegh Nobari NUS, Singapore

Program Committee

Foto Afrati National Technical University of Athens,
Greece

Gagan Agrawal Ohio State University, USA
Walid G. Aref Purdue University, USA
Magdalena Balazinska University of Washington, USA
Roger Barga Microsoft Research, USA
Carlo Batini University of Milano Bicocca, Italy
Elisa Bertino Purdue University, USA
Paul Brown SciDB, USA
Peter Buneman University of Edinburgh, UK
Randal Burns John Hopkins University, USA
Stefano Ceri Politechnico di Milano, Italy
Judith Cushing The Evergreen State College, USA
Alfredo Cuzzocrea ICAR-CNR and University of Calabria, Italy
Lois Delcambre Portland State University, USA
Alex Delis University of Athens, Greece
Jim Dowling Swedish Institute of Computer Science, Sweden
Johann Gamper Free University of Bozen-Bolzano, Italy
Wolfgang Gatterbauer Carnegie Mellon University, USA
Michael Gertz Heidelberg University, Germany
Theo Haerder TU Kaiserslautern, Germany
Thomas Heinis EPFL, Switzerland

X SSDBM 2012 Conference Organization

Panos Kalnis KAUST, Saudi Arabia
Vana Kalogeraki Athens University of Economics and Business,

Greece
Verena Kantere Cyprus University of Technology, Cyprus
Martin Kersten CWI Amsterdam, The Netherlands
George Kollios Boston University, USA
Hans-Peter Kriegel Ludwig-Maximilians-Universität München,

Germany
Alex Labrinidis University of Pittsburgh, USA
Wolfgang Lehner Technische Universität Dresden, Germany
Ulf Leser Humboldt University of Berlin, Germany
Julio Lopez Carnegie Mellon University, USA
Paolo Manghi Istituto di Scienza e Tecnologie

dell’Informazione, Italy
Amelie Marian Rutgers University, USA
Mohamed Mokbel University of Minnesota, USA
Mario Nascimento University of Alberta, Canada
Silvia Nittel University of Maine, USA
Gultekin Ozsoyoglu Case Western Reserve University, USA
Apostolos Papadopoulos Aristotle University of Thessaloniki, Greece
Olga Papaemmanouil Brandeis University, USA
Thanasis Papaioannou EPFL, Switzerland
Tore Risch Uppsala University, Sweden
Domenico Sacca University of Calabria, Italy
Heiko Schuldt University of Basel, Switzerland
Thomas Seidl RWTH Aachen University, Germany
Timos Sellis Research Center “Athena” and National

Technical University of Athens, Greece
Myra Spiliopoulou Otto von Guericke University Magdeburg,

Germany
Julia Stoyanovich University of Pennsylvania, USA
Val Tannen University of Pennsylvania, USA
Nesime Tatbul ETH Zürich, Switzerland
Martin Theobald Max Planck Institute for Informatics, Germany
Agma Traina University of Sao Paulo, Brazil
Peter Triantafillou University of Patras, Greece
Zografoula Vagena Rice University, USA
Jeffrey Yu Chinese University of Hong Kong, China

Posters and Demonstrations Committee

Ioana Manolescu INRIA, France
Miguel Branco EPFL, Switzerland
Bill Howe University of Washington, USA

SSDBM 2012 Conference Organization XI

Additional Reviewers

Lory Al Moakar Periklis Andritsos
Brigitte Boden Leonardo Candela
Gianpaolo Coro Kyriaki Dimitriadou
Christopher Dorr Tobias Emrich
Sergej Fries Filippo Furfaro
Gayatree Ganu Antonella Guzzo
Thomas Jörg Philipp Kranen
Hardy Kremer Peer Kroeger
Elio Masciari Massimiliano Mazzeo
Mohamed Nabeel Panayiotis Neophytou
Nikos Ntarmos Irene Ntoutsi
Pasquale Pagano Thao N. Pham
Andrea Pugliese Matthias Renz
Matthias Schubert Erich Schubert
Silvia Stefanova Salmin Sultana
Nikolaos Triandopoulos Minji Wu
Arthur Zimek Andreas Zuefle

SSDBM Steering Committee

Michael Gertz University of Heidelberg, Germany
Judith Cushing The Evergreen State College, USA
James French CNRI and University of Virginia, USA
Arie Shoshani Lawrence Berkeley National Laboratory, USA

(Chair)
Marianne Winslett University of Illinois, USA

SSDBM 2012 Conference Sponsors

Bank of Piraeus
University of Athens

Table of Contents

Keynote Address I

Navigating Oceans of Data . 1
David Maier, V.M. Megler, António M. Baptista, Alex Jaramillo,
Charles Seaton, and Paul J. Turner

Uncertain and Probabilistic Data

Probabilistic Range Monitoring of Streaming Uncertain Positions in
GeoSocial Networks . 20

Kostas Patroumpas, Marios Papamichalis, and Timos Sellis

Probabilistic Frequent Pattern Growth for Itemset Mining in Uncertain
Databases . 38

Thomas Bernecker, Hans-Peter Kriegel, Matthias Renz,
Florian Verhein, and Andreas Züfle

Evaluating Trajectory Queries over Imprecise Location Data 56
Xike Xie, Reynold Cheng, and Man Lung Yiu

Efficient Range Queries over Uncertain Strings . 75
Dongbo Dai, Jiang Xie, Huiran Zhang, and Jiaqi Dong

Continuous Probabilistic Sum Queries in Wireless Sensor Networks
with Ranges . 96

Nina Hubig, Andreas Züfle, Tobias Emrich, Mario A. Nascimento,
Matthias Renz, and Hans-Peter Kriegel

Parallel and Distributed Data Management

Partitioning and Multi-core Parallelization of Multi-equation Forecast
Models . 106

Lars Dannecker, Matthias Böhm, Wolfgang Lehner, and
Gregor Hackenbroich

Integrating GPU-Accelerated Sequence Alignment and SNP Detection
for Genome Resequencing Analysis . 124

Mian Lu, Yuwei Tan, Jiuxin Zhao, Ge Bai, and Qiong Luo

Discovering Representative Skyline Points over Distributed Data 141
Akrivi Vlachou, Christos Doulkeridis, and Maria Halkidi

XIV Table of Contents

SkyQuery: An Implementation of a Parallel Probabilistic Join Engine
for Cross-Identification of Multiple Astronomical Databases 159

László Dobos, Tamás Budavári, Nolan Li, Alexander S. Szalay, and
István Csabai

Efficient Filtering in Micro-blogging Systems: We Won’t Get Flooded
Again . 168

Ryadh Dahimene, Cedric Du Mouza, and Michel Scholl

Graph Processing

Regular Path Queries on Large Graphs . 177
André Koschmieder and Ulf Leser

Sampling Connected Induced Subgraphs Uniformly at Random 195
Xuesong Lu and Stéphane Bressan

Discovery of Top-k Dense Subgraphs in Dynamic Graph Collections 213
Elena Valari, Maria Kontaki, and Apostolos N. Papadopoulos

On the Efficiency of Estimating Penetrating Rank on Large Graphs 231
Weiren Yu, Jiajin Le, Xuemin Lin, and Wenjie Zhang

Towards Efficient Join Processing over Large RDF Graph Using
MapReduce . 250

Xiaofei Zhang, Lei Chen, and Min Wang

Panel

Panel on “Data Infrastructures and Data Management Research:
Close Relatives or Total Strangers?” . 260

Yannis Ioannidis

Mining Multidimensional Data

Efficient Similarity Search in Very Large String Sets 262
Dandy Fenz, Dustin Lange, Astrid Rheinländer,
Felix Naumann, and Ulf Leser

Substructure Clustering: A Novel Mining Paradigm for Arbitrary Data
Types . 280

Stephan Günnemann, Brigitte Boden, and Thomas Seidl

BT* – An Advanced Algorithm for Anytime Classification 298
Philipp Kranen, Marwan Hassani, and Thomas Seidl

Table of Contents XV

Finding the Largest Empty Rectangle Containing Only a Query Point
in Large Multidimensional Databases . 316

Gilberto Gutiérrez and José R. Paramá

Sensitivity of Self-tuning Histograms: Query Order Affecting Accuracy
and Robustness . 334

Andranik Khachatryan, Emmanuel Müller, Christian Stier, and
Klemens Böhm

Provenance and Workflows

Database Support for Exploring Scientific Workflow Provenance
Graphs . 343

Manish Kumar Anand, Shawn Bowers, and Bertram Ludäscher

(Re)Use in Public Scientific Workflow Repositories 361
Johannes Starlinger, Sarah Cohen-Boulakia, and Ulf Leser

Aggregating and Disaggregating Flexibility Objects 379
Laurynas Šikšnys, Mohamed E. Khalefa, and Torben Bach Pedersen

Fine-Grained Provenance Inference for a Large Processing Chain with
Non-materialized Intermediate Views . 397

Mohammad Rezwanul Huq, Peter M.G. Apers, and
Andreas Wombacher

Automatic Conflict Resolution in a CDSS . 406
Fayez Khazalah, Zaki Malik, and Brahim Medjahed

Processing Scientific Queries

Tracking Distributed Aggregates over Time-Based Sliding Windows 416
Graham Cormode and Ke Yi

Hinging Hyperplane Models for Multiple Predicted Variables 431
Anca Maria Ivanescu, Philipp Kranen, and Thomas Seidl

Optimizing Notifications of Subscription-Based Forecast Queries 449
Ulrike Fischer, Matthias Böhm, Wolfgang Lehner, and
Torben Bach Pedersen

Minimizing Index Size by Reordering Rows and Columns 467
Elaheh Pourabbas, Arie Shoshani, and Kesheng Wu

Data Vaults: A Symbiosis between Database Technology and Scientific
File Repositories . 485

Milena Ivanova, Martin Kersten, and Stefan Manegold

XVI Table of Contents

Keynote II

Usage Data in Web Search: Benefits and Limitations 495
Ricardo Baeza-Yates and Yoelle Maarek

Support for Demanding Applications

Functional Feature Extraction and Chemical Retrieval 507
Peng Tang, Siu Cheung Hui, and Gao Cong

Scalable Computation of Isochrones with Network Expiration 526
Johann Gamper, Michael Böhlen, and Markus Innerebner

A Dataflow Graph Transformation Language and Query Rewriting
System for RDF Ontologies . 544

Marianne Shaw, Landon T. Detwiler, James F. Brinkley, and
Dan Suciu

Sensitive Label Privacy Protection on Social Network Data 562
Yi Song, Panagiotis Karras, Qian Xiao, and Stéphane Bressan

Trading Privacy for Information Loss in the Blink of an Eye 572
Alexandra Pilalidou and Panos Vassiliadis

Demonstration and Poster Papers

Extracting Hot Spots from Satellite Data . 581
Hideyuki Kawashima, Chunyong Wang, and Hiroyuki Kitagawa

A Framework for Enabling Query Rewrites when Analyzing Workflow
Records . 587

Dritan Bleco and Yannis Kotidis

Towards Enabling Outlier Detection in Large, High Dimensional Data
Warehouses . 591

Konstantinos Georgoulas and Yannis Kotidis

Multiplexing Trajectories of Moving Objects . 595
Kostas Patroumpas, Kyriakos Toumbas, and Timos Sellis

On Optimizing Workflows Using Query Processing Techniques 601
Georgia Kougka and Anastasios Gounaris

Optimizing Flows for Real Time Operations Management 607
Alkis Simitsis, Chetan Gupta, Kevin Wilkinson, and
Umeshwar Dayal

Table of Contents XVII

(In?)Extricable Links between Data and Visualization:
Preliminary Results from the VISTAS Project . 613

Judith Cushing, Evan Hayduk, Jerilyn Walley, Lee Zeman,
Kirsten Winters, Mike Bailey, John Bolte, Barbara Bond,
Denise Lach, Christoph Thomas, Susan Stafford, and
Nik Stevenson-Molnar

FireWatch: G.I.S.-Assisted Wireless Sensor Networks for Forest Fires . . . 618
Panayiotis G. Andreou, George Constantinou,
Demetrios Zeinalipour-Yazti, and George Samaras

AIMS: A Tool for the View-Based Analysis of Streams of Flight
Data . 622

Gereon Schüller, Roman Saul, and Andreas Behrend

TARCLOUD: A Cloud-Based Platform to Support miRNA Target
Prediction . 628

Thanasis Vergoulis, Michail Alexakis, Theodore Dalamagas,
Manolis Maragkakis, Artemis G. Hatzigeorgiou, and Timos Sellis

SALSA: A Software System for Data Management and Analytics in
Field Spectrometry . 634

Baljeet Malhotra, John A. Gamon, and Stéphane Bressan

Incremental DNA Sequence Analysis in the Cloud . 640
Romeo Kienzler, Rémy Bruggmann, Anand Ranganathan, and
Nesime Tatbul

AITION: A Scalable Platform for Interactive Data Mining 646
Harry Dimitropoulos, Herald Kllapi, Omiros Metaxas,
Nikolas Oikonomidis, Eva Sitaridi, Manolis M. Tsangaris, and
Yannis Ioannidis

Author Index . 653

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 1–19, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Navigating Oceans of Data

David Maier1, V.M. Megler1, António M. Baptista2, Alex Jaramillo2,
Charles Seaton2, and Paul J. Turner2

1 Computer Science Department, Portland State University
2 Center for Coastal Margin Observation & Predication, Oregon Health & Science University

{maier,vmegler}@cs.pdx.edu,
{baptista,jaramilloa,cseaton,pturner}@stccmop.org

Abstract. Some science domains have the advantage that the bulk of the data
comes from a single source instrument, such as a telescope or particle collider.
More commonly, big data implies a big variety of data sources. For example,
the Center for Coastal Margin Observation and Prediction (CMOP) has multiple
kinds of sensors (salinity, temperature, pH, dissolved oxygen, chlorophyll A &
B) on diverse platforms (fixed station, buoy, ship, underwater robot) coming in
at different rates over various spatial scales and provided at several quality le-
vels (raw, preliminary, curated). In addition, there are physical samples ana-
lyzed in the lab for biochemical and genetic properties, and simulation models
for estuaries and near-ocean fluid dynamics and biogeochemical processes. Few
people know the entire range of data holdings, much less their structures and
how to access them. We present a variety of approaches CMOP has followed to
help operational, science and resource managers locate, view and analyze data,
including the Data Explorer, Data Near Here, and topical “watch pages.” From
these examples, and user experiences with them, we draw lessons about
supporting users of collaborative “science observatories” and remaining
challenges.

Keywords: environmental data, spatial-temporal data management, ocean
observatories.

1 Introduction

The growth in the variety and numbers of sensors and instrument platforms for envi-
ronmental observation shows no signs of abating. In the past, measuring an environ-
mental variable (such as the chlorophyll level in water) might have required collection
of a physical sample, followed by laboratory analysis (say on a monthly basis). Now
an in-situ sensor can monitor the variable continuously. Laboratory analysis of sam-
ples still occurs, but some tests now generate gigabytes of data, such as high-
throughput DNA sequencing. Observational and analytic data is itself dwarfed by
outputs of simulation models. Oceans of data are upon us.

An equally important trend is a change in how science is performed. Traditionally,
for much of ocean science, data collection was on a per-investigation basis, with the
same researcher or group analyzing the data as gathered it. That data might be shared

2 D. Maier et al.

with other scientists, but typically months or years after initial collection. Answering
questions about human effects on the environment, or influences of climate change,
require data collection on spatial and temporal scales beyond the abilities of any indi-
vidual or small group. Thus we are seeing shared environmental observatories (much
like in astronomy [15]), such as that operated by the NSF-sponsored Center for
Coastal Observation and Prediction (CMOP, www.stccmop.org). In such observato-
ries, those planning and carrying out the data collection are often different from those
using the data, and the common pool of data supports a “collaboratory” in which
scientists from disparate disciplines work together on complex environmental ques-
tions. This shift in the nature of the scientific enterprise presents challenges for data
dissemination and analysis. It is no longer reasonable to expect an individual scientist
to have comprehensive knowledge of the complete type and extent of data holdings in
an observatory such as CMOP’s. Moreover, with an expanded base of users, provid-
ing display and analysis tools for each type of user separately would be challenging.
Thus it is important to have a common base of capabilities that can help investigators
locate and judge datasets relevant to their work, as well as carry out initial graphing
and analysis tasks on line, without having to download and work locally with that data
(though that mode of interaction must also be supported).

The cyber-infrastructure team of CMOP is charged with managing the storage and
dissemination of data assets associated with observation and modeling activities, as
well as producing web-based interfaces for navigating, accessing and analyzing those
assets. We begin by surveying the main user groups that CMOP supports (Section 2),
then briefly describe the data-collection and management process (Section 3), along
with several of the tools that support these groups (Section 4). We touch on some of
the techniques we are investigating to meet the performance demands of one of these
tools, Data Near Here (Section 5) and recount some of our lessons learned (Section
6). Section 7 concludes by laying out current issues and challenges that could be the
basis for future research on scientific data management.

2 The User Base

There are broadly three classes of users of CMOP systems.

Operations: This class consists of internal users with responsibility for the day-to-
day operation of the CMOP observatory, from sensors and telemetry to data ingest to
quality assurance to data download and display services. The needs of this class con-
cern detecting problems in the data chain, such as fouled or failed sensors, records
corrupted in transmission, failed loads and inoperative interfaces. In many cases, such
problems are currently exposed via the tools used by “regular” users, such as the pag-
es that display recent observations from sensor stations. However, this
time-intensive approach can lead to delays in problem detection and in data quality
assurance. Sometimes specialized interfaces are needed for status reporting, station
viewing and quality-assessment tasks. In addition, recording information on collection
of water and other samples, and the results of laboratory analyses, is also needed to
support observatory operations.

 Navigating Oceans of Data 3

Science: This class consists of researchers internal and external to CMOP. The data
holdings of CMOP are becoming extensive enough that few scientists are aware of
their totality, in terms of time, location and type of observation. Even when someone
might know where a sensor station is located, and when it first became operational, he
or she might be unaware for exactly what times data is available – some instruments
are deployed only seasonally, some may be removed temporarily for repairs, some
segments of data might be dropped during quality assurance. Thus, there need to be
tools to help a scientist find data that is potentially relevant to his or her research
question, and also to get a quick view of temporal coverage of a specific observation
station. Once a dataset of possible interest has been identified, a scientist often wants
a simple plot of it, to assess its suitability. She might be checking if there are dropouts
during the period of particular interest, or if it contains some event she is seeking, say,
unusually low dissolved-oxygen levels. Once a dataset is deemed useful, she might
want to download all or part of it in a form suitable for use in a desktop tool, such as
Excel or Matlab. However, there should be some capability to analyze the data online,
such as charting several variables on the same graph, or plotting one variable against
another. Finally, scientists want to comment on or annotate data or products of analy-
sis, to point out suspected problems or to highlight interesting subsets.

While this paper focuses on observed data, there are places where observed data
and simulated data intersect. One is in comparing observed and modeled behavior of
an environmental variable, such as salinity. To judge model skill (a model’s ability to
reproduce real-world physical phenomena), it is useful to plot observed and model
data together. Since the model data has much denser coverage than observed data, it
must be sub-sampled to a dataset that matches the location and times of a correspond-
ing sensor dataset. Such sub-sampling is essentially a “virtual sensor” operating in the
simulated environment at a place and time that matches the corresponding physical
sensor in the real environment. A second interaction between observed and modeled
data is when the latter provides a context for sensed and sampled observations. To this
end, climatologies are useful for comparing current conditions to historical trends. A
climatology is an aggregation of a particular variable, generally over both time and
space. Examples are the monthly average of maximum daily plume volume (the por-
tion of the ocean at a river mouth with reduced salinity), and the average weekly tem-
perature of the estuary. A scientist can then see, for example, if water samples were
taken when temperatures were relatively high for the time of year.

Education: An important subset of science use is educational use. For students pur-
suing undergraduate or graduate research, the needs for data access and analysis
largely match those of scientific staff. For classrooms and science camps, the user
base is quite different in motivation and sophistication. Currently, we do not have
interactive tools specifically for K-12 use. However, this class of users is considered
in the design of interactive tools, particularly in choosing default settings that are
likely to yield viewable results on initial encounter.

Resource Management: There is a growing class of users who use observatory data
in reaching decisions, both in day-to-day resource management as well as for longer-
range policy making. For example, the Quinault Indian Nation is highly interested in
the timing and spatial extent of hypoxic (low-oxygen) conditions near their tribal

4 D. Maier et al.

lands, to understand the possible effects on the shellfish harvest. A second example is
a manager at a fish hatchery deciding when to release juvenile fish to the estuary.
Research points to a correlation between estuary conditions (properties of the fresh-
water plume extending into the ocean from the river’s mouth) with survivability of
hatchlings [3]. Comparing predicted conditions for the coming week against the typi-
cal range of conditions at the same time in past years might help optimize the release
time. In general, for such users, it helps to organize data thematically, bringing to-
gether data from a range of sources related to a theme (such as hypoxia) on a single
web page, preferably with accompanying commentary that highlights important cur-
rent trends or conditions. Such thematic pages are also useful to scientists studying a
particular phenomenon or condition. For example, the Columbia River often exhibits
red-water blooms in the late summer. It is useful to collect information that indicates
the onset of such events so that, for example, additional sampling can take place.

Our Goal: The data and environment we support are complex (and our resources are
bounded); the users have a wide spectrum of skill sets (K-12 students, resource man-
agers, ocean scientists); and we have a huge range of scales of analysis and processing
that we must deal with (models of the entire coastal shelf versus RNA in one water
sample; decades of data versus phenomena that manifest in a few seconds). Further, a
given line of research can require different levels of detail at different stages. We do
not want to require people to learn (nor expend the resources to build) different, spe-
cialized tools for each of these combinations (which has often been the norm in the
past). We also do not want to enforce simplicity by dictating a single workflow or by
limiting the user to only one set of data or analysis. Thus our goal is to find simple,
consistent abstractions that expose the complexity in the data (which is relevant to
scientists) while hiding the complexity in the infrastructure (generally not of
concern).

3 The CMOP Observatory

CMOP is funded by the National Science Foundation’s Science and Technology Cen-
ters program, along with matching contributions from center participants. It studies
conditions and processes in the estuary, plume (the jet of fresher water that protrudes
from a river’s mouth into the ocean) and near-ocean systems, trying, in particular, to
anticipate and detect the influences of human activity and climate change. A major
component of CMOP’s common infrastructure is an environmental observatory fo-
cused on the Columbia River Estuary, but also extending up river as well as to the
near ocean off the Oregon and Washington coasts. (See Figure 1.) The observatory
collects measurements of environmental variables (henceforth just variables) via sen-
sors for physical (temperature, salinity), geochemical (turbidity, nitrate) and biologi-
cal (chlorophyll, phycoerythrin) quantities [12]. These sensors are mounted on fixed
(pier, buoy), profiling (moving through the water column) and mobile platforms. The
mobile platforms include staffed research vessels as well as autonomous vehicles. The
readings from many of the sensors are immediately relayed back, via wired and wire-
less links, to CMOP servers. However, some information, particularly from mobile

 Navigating Oceans of Data 5

platforms, is downloaded in bulk, for example, at the end of a cruise or mission. Sen-
sor readings are supplemented with laboratory tests of water and other samples for
chemical and biological properties, including RNA and DNA assays. (However, tech-
nology is developing to allow in-situ performance of some of these tests [6].) While
most sensors deliver a few floating-point numbers per reading, others can produce
vectors of values (e.g., density profiles) or 2-D images (for example, of surface waves
or micro-organisms [8]). Observation frequencies can be as often as every few micro-
seconds, or as few as tens per year for DNA assays.

In terms of volume and growth, CMOP collected about 75K observations of physi-
cal variables in 1996 from fixed stations. A decade later, the rate was about 10M ob-
servations per year, and rising to 42M observations in 2011. Collection of biogeo-
chemical variables began in 2008, with 38M observations collected in 2011. In 2002,
total observations from mobile platforms was just 5K. Since then, it has been as high
as 17M observations (2008), though it dropped off last year because of fewer cruises.

Fig. 1. An overview of the CMOP observation network, including both current and past posi-
tions of sensor stations. This map also serves as an interface for navigating to the information
pages for specific stations.

6 D. Maier et al.

While observational data is our main focus here, another major component of the
shared CMOP infrastructure is a modeling capability for the Columbia estuary and
other coastal systems. These simulation codes are used both to prepare near-term
(days) forecasts of future conditions as well as long-term (decades) retrospective runs,
called hindcasts [2]. Historically, these models have addressed the 4-D hydrodynam-
ics of the river-ocean system, including velocity, temperature, salinity and elevation
over time. More recently, the models are being extended to include geochemical and
biological aspects. Currently, each forecast run produces almost 20GB of data, mostly
as time series of values on a 3-D irregular mesh, but also including pre-generated
images and animations. The hindcast databases are approaching 20TB of data.

Fig. 2. The daily status page for fixed observatory stations. It indicates deployment and opera-
tional status for various instrument types at various CMOP stations.

 Navigating Oceans of Data 7

Fig. 3. The station page for SATURN03, plotting salinity offerings for two different depths

CMOP makes as much data as it can available online as soon as possible. The pre-
ponderance of the sensor data is routed into a relational DBMS. Ingest processes work
directly with network feeds or through frequently polled remote files to get sensor
records, which are parsed and inserted into database tables. The unit of designation
for time-series observational data is the offering, which generally refers to the data for
a particular environmental variable coming from a specific instrument at a particular
position (often given as a station name, e.g., SATURN04, and a depth, e.g., 8.2 me-
ters). There are also offerings from mobile platforms, where position is itself captured
as a time series. A physical dataset can give rise to multiple offerings: a raw stream,
as well as one or more corresponding streams that are the output of quality assurance
and calibration procedures. High-frequency (multiple readings per second) data can
be “binned” down to a coarser time step (1 minute, 5 minutes), and registered to a
common time scale. Offerings also exist for derived variables (for example, conduc-
tivity and temperature used to compute salinity) and “virtual” observations from the
simulation models. A few offerings provide monitoring information about the obser-
vatory infrastructure, such as the status of pumps, for use by operations staff.

4 CMOP Interfaces and Tools

While observed data are often available on CMOP database servers within minutes (if
not seconds), they have little value if they are not easily accessible to CMOP scien-
tists and other users. CMOP endorses the vision of a “collaboratory” where there is
open sharing of data, and scientists of multiple disciplines can easily interact with
each other and CMOP information resources. Often the easiest way for a scientist to
get an initial impression of data is through a plot or graph. Thus, a key strategy is

8 D. Maier et al.

making plot production a basic service in the cyber-infrastructure. The CMOP offe-
ringPlot service is available via a RESTful API, where a URL details both the offer-
ings of interest and the plot parameters (kind of plot, extent of axes, aspect ratio, etc.).
For example, the URL
http://amb6400a.stccmop.org/ws/product/offeringplot.py
?handlegaps=true&series=time,saturn03.240.A.CT.salt.PD0
&series=time,saturn03.820.A.CT.salt.PD0&series=time,
saturn03.1300.R.CT.salt.PD0&width=8.54&height=2.92
&days_back=2&endtime=2012-03-09
produces a scatter plot of two salinity offerings at the SATURN03 station versus time.
The plot will be generated at a particular width and height, and will cover data going
back two days from 9 March 2012.

Fig. 4. The first configuration screen for Data Explorer, where the offerings to be plotted are
selected

Plotting as a service is used heavily by CMOP interfaces, but supporting interac-
tive response times was a bit of a challenge. In theory, the plotting service could get
its data directly from the RDBMS. However, our experience was that direct access
often resulted in significant latency, likely influenced by the fairly constant load of
ingest tasks. Also, users are often interested in the most recent data from a station, so

 Navigating Oceans of Data 9

as use increases, redundant access to the same data is likely. Thus, we moved to an
information architecture where we maintain a cache of extracts from the database,
and, in fact, pre-populate the cache. The cache consists of about 36GB of files in
netCDF format [13], arranged in a directory structure with a file for each offering for
each month. (We may switch to individual days in the future, to avoid regenerating
files for the current month and to support extra detail in some of our tools.) While an
interface can access the database directly—and some do—the netCDF caches satisfies
much of the read load. As a side benefit, the cache also supports programmatic data
download, via a THREDDS [5] server using the OpenDAP protocol [4].

We now turn to some of our existing interfaces, plus one under development.
Figure 2 shows the observatory status page, as used for fixed and profiling stations. It
reflects daily reports by field staff on the dispositions of various instruments installed
at CMOP observation stations. Operations users record and report overall status,
which CMOP management monitors via this page.

Operations staff and resource managers coordinate many of their day-to-day activi-
ties using the station pages, which are also a starting point for researchers with specif-
ic instruments supporting their studies. These pages provide immediate display of
data transmitted from instruments. Figure 3 shows an example of a station page, for
the station named SATURN03. Shown is a 15-day plot of the salinity offerings at the
station for 2.4 meters and 8.2 meters. Such pages are designed to be easy to interact
with, so present a limited set of choices for configuration. Along the right side are
different offerings associated with the station, such as temperature at 2.4 meters and
turbidity (cloudiness) at 8.2 meters, grouped by variable type; a user can quickly dis-
play other instruments’ data using the checkboxes. For each offering, the time and
value of the latest available measurement is shown. The colors over the time indicate
if new data has appeared in the past day (green), last two days (yellow) or longer ago
(red). Along the bottom are time periods. It is also possible to obtain all offerings in a
single page of plots (a stack plot). The station pages are intentionally limited in their
capabilities, to keep them simple to work with and give fast response times.

The simple plots of the station pages are limited in many ways: no arbitrary time
periods, no combination of offerings for different variables or different stations in one
plot, only plots of variables against time (as opposed to plotting one against another).
The Data Explorer, accessible directly from this page, is a more sophisticated tool,
that allows control of these aspects (and more), but with a more complicated interface.
It supports both variable-time and variable-variable plots, optionally coloring the plot
by an additional variable. The configuration process in Data Explorer involves se-
quencing through several set-up screens. The first screen (shown in Figure 4) is used
to select the offerings to include in the plot. Here Chlorophyll and Salinity from sta-
tion Saturn03 at 8.2m are selected for a scatter plot, to be colored by Turbidity at the
same depth, perhaps to contrast the influences of the river and the ocean on the
estuary.

Additional screens allow selection of a time period, axes limits, and aspect ratio of
the plot. Figure 5 shows the requested plot. The Data Explorer supports saving and
annotating plots, as well as downloading the underlying data. This powerful tool is
used by researchers for everything from exploratory research to producing diagrams
for publication. Operations staff use it as well, to identify the onset of instrument
malfunctions, for further annotation and analysis during quality-control processing.

10 D. Maier et al.

Fig. 5. The resulting plot from Data Explorer

Fig. 6. Specialized plots for a glider mission, showing the trajectory for the glider, colored by
temperature in this case, superimposed on the sea-bottom topography

 Navigating Oceans of Data 11

The design of the plot-specification interface for Data Explorer has been challeng-
ing. One issue is avoiding creating plots where there is no data, usually due to select-
ing a time period before a sensor was deployed or during an outage, or choosing a
data-quality level that has not yet been produced. Once an offering is selected, one
can see an inventory of data for it (the “Availability” button). However, it might be
helpful to default the time selection on the next screen to the most recent period with
data.

A related issue is the order in which plot aspects are specified. Currently, the con-
figuration interface aims at a work pattern where a user is first interested in one or
more stations, then selects offerings from those stations, followed by choosing a time
period. But there are certainly other patterns of work. A scientist might be interested
in a particular variable, say dissolved oxygen, at a particular time (say corresponding
to field work), and want any stations that have an offering for that variable at the time.
We have not yet devised a means to simultaneously support a variety of work patterns
with the Data Explorer interface.

Some of the data-collection platforms have specialized displays related to particu-
lar properties of the platform. For example, CMOP’s underwater glider, called
Phoebe, runs multi-day missions over a pre-programmed trajectory. The gathered data
are time series, hence can be used with time-series oriented interfaces such as the
Data Explorer However, because of the nature of the glider path (repeated dives from
the sea surface to near the bottom), it often makes more sense to plot depth versus
time, with the plot colored by the variable of interest, such as salinity. Thus we pro-
vide a special interface for specifying such plots (which are generated by the plot
service). As shown in Figure 6, there are also renderings that depict the 3-dimensional
trajectory of the glider. These plots are pre-computed for each glider mission and
variable.

For resource managers (and scientists), CMOP provides watch pages for particular
interest areas. A watch page has a selection of plots connected to the interest area,
along with commentary. Figure 7 shows the Oxygen Watch page, which targets hy-
poxic (low-oxygen) conditions [14]. It contains a plot of dissolved oxygen from mul-
tiple observation stations, along with reference lines that reflect different definitions
of hypoxic conditions from the literature. Additional plots show environment condi-
tions (river discharge, north-south wind speed) that are often correlated with oxygen
levels in the estuary. Commentary in the “Blog” tab interprets current conditions.

Other watch pages under development include one for Myrionecta rubra (a micro-
organism) causing red-water bloom in the river [9], and one directed at steelhead
survivability. The latter features displays that compare predicted plume area, volume
and distance off shore to historical conditions for the same day of year, which could
provide hatchery managers with guidance on the best time to release young steelhead
(a fish related to salmon) [3].

12 D. Maier et al.

Fig. 7. The Oxygen Watch page, showing conditions during August 2010

5 Supporting Ranked Search for Datasets

One challenge for CMOP scientists is knowing what datasets might be relevant to
their current work. Database and basic spatial search techniques (contains, overlaps)
often prove unsatisfactory, in that it is easy to get answers that return no datasets or
thousands of them, requiring iterative tweaking of search conditions to get a candidate
set of answers. As an alternative, we are developing an interface that applies Informa-
tion Retrieval approaches to give ranked search of datasets. Data Near Here (inspired
by the “search nearby” in map services) makes use of similarity search over spatial-
temporal “footprints” that are computed from the datasets. Our initial work [10] fo-
cused on identifying a similarity measure that would balance geospatial and temporal
search conditions in a way that resonated with our user community. At scientists’
request, we have since added “dimensions” of depth, variable existence and variable

 Navigating Oceans of Data 13

values to our search capabilities. Figure 8 shows the results of a Data Near Here
query, with the top few matching datasets shown.

Most data in the archive treats depth as a separate field; also, the currently used
version of spatial tools (PostGIS 1.5) does not fully support three-dimensional spatial
functions. As a result, depth is currently treated as a separate search condition, and the
search condition is given the same weight as geospatial location. An alternate ap-
proach is to treat the geospatial locations, including depth, as true three-dimensional
locations. The current spatial distance metric does not change if given fully three-
dimensional data, although some implementation details will need to change.

Scientists may also wish to search for data based on variable values; for example,
all places and times where low oxygen conditions occurred. A scientist may even be
searching for places and times where a variable was collected, irrespective of the
variable’s values. We added the capability to search over variables and their values
into the same metadata extraction and search framework. The metadata extraction
tools were extended to identify and store the variable names for each dataset. The
variables are generally represented by column names, and so we assume that each
column represents a variable. For netCDF files, this information is available in the
header; for comma-separated value files it is often in the first row, and for data served
from CMOP’s relational database, it is in the database catalog. If available, we also
capture the data type and units for each variable. If the units for a variable cannot be
inferred, they are shown in the catalog as “unknown”. Data types are treated the same
way; alternately, techniques exist (such as those used in Google Fusion Tables [7]) to
infer likely data types from the data itself. We also read the data and store the maxi-
mum and minimum values found for each variable, handling character and numeric
data similarly. We intend to provide search capabilities over the modeled data.

Fig. 8. The Data Near Here prototype, showing a search based on a particular X-Y region, with
no constraint on depth, seeking datasets that contain salinity in a certain range. Results are
ranked on a weighted combination of similarity to the search conditions, rather than on exact
match. Data can be directly downloaded, or plotted in the Data Explorer.

14 D. Maier et al.

Once we have extracted metadata for each dataset to identify contained variables
and their values, we are able to search over it using extensions of the techniques and
formulae we use for geospatial-temporal search. We provide two types of search con-
ditions for variables. The first specifies a variable name and a desired range of values,
in some specified units. For each dataset that contains the desired variable in the spe-
cified units, the range of values is compared to the desired range and a similarity
score computed; the computed score contributes to the overall dataset similarity score.
A dataset that does not contain the desired variable can still be returned in the query
results if it has high scores on the other query conditions. However, a dataset that
contains the desired variable with values similar to the desired data range is likely to
receive a higher overall score, even if its scores on the geospatial and temporal query
conditions are lower. Unit translation is possible in many cases, and we are experi-
menting with approaches to this problem. If the units for a dataset are unknown, we
assume the values are in the desired units but substantially discount the score.

The second type looks for datasets that contain a certain variable but does not spe-
cify a range. In concept, this condition specifies a variable with an infinite range of
values; thus, any dataset that contains a column of that name, with any values at all, is
considered “closer” to that query condition than a dataset that lacks that variable. In
effect, the resulting score is binary: a dataset is a perfect match to the query condition
if the desired variable is found in that dataset, or a complete non-match if it does not.

At present, we only match on exact variable names; a search for “temperature” will
not match “air temperature” or “airtemp”. In a large archive built over more than a
decade, inconsistencies and changes in variable names are common. We are consider-
ing methods to match on “close” variable names, as these inconsistencies frustrate our
scientists. One possibility is to extend our approach to variable existence, so that the
existence of a variable with a similar name is given a score reflecting the higher simi-
larity, converting variable existence from a binary to a continuous similarity score.

We are finding that as Data Near Here queries become more sophisticated, it be-
comes expensive to apply the similarity function to the footprints of all the data sets.
Figure 9 illustrates the problem for queries with increasing numbers of search condi-
tions on variables. The “cast variables” are those typically measured by lowering an
instrument package from a cruise vessel, whereas “station variables” are those typi-
cally seen at fixed stations. The alternating line is for queries that include queries
asking for datasets containing both kinds of variables, which none of the existing
datasets will match very closely. As can be seen, response times start to grow out of
the interactive range rather quickly for this last category of query.

One technique we are investigating starts by selecting a cut-off on minimal similar-
ity score, and incorporating a pre-filter into the query that can quickly rule out certain
datasets being over that score without applying the full (and more expensive) similari-
ty calculation. As can be seen in Figure 9, incorporating the cut-off does improve
response times on the more expensive searches. An area for further work is determin-
ing how to initially set the cut-off threshold for a given query and limiting the number
of expensive geospatial comparisons by using cheaper pre-filters.

Fig. 9. The effect of incorpora
Here Queries

Data Near Here current
fixed stations, glider, cruis
preliminary and verified). T
one. The mean dataset size

6 General Lessons

While the development of
on-going process, we can id

1. Don’t make users repe
selection process in ord
the specification to do
vested time in configur
line tool, there should
image should be savabl
back into the same stat
cases a user must re-sp
ing to reduce such case

2. Default to where the d
have default settings se
way. For example, eve
tion for the past two da
played, because there i
data. In such cases we
for display–for examp

Navigating Oceans of Data

ating an initial cut-off threshold on similarity score in Data N

ly provides access to more than 750B observations fr
es, casts, and water samples, at three quality levels (r

The largest dataset indexed has 11.5M values, the small
is about 33K entries.

s

CMOP information access and analysis capabilities is
dentify some important guidance for similar endeavors.

eat work. For example, if a user has gone through a d
der to specify a plot or chart, do not make him or her rep
ownload the underlying data. Similarly, if a user has
ring a graph of an interesting segment of data using an
be a way to share the result. At a minimum, the result
le, but much better is providing a URL that can put the t
te. We are not perfect on avoiding repeated work–in so
pecify some aspect of a plot to change it–but we are wo
es.
data is. Upon initially coming to an interface it is usefu
elected. It is tempting to choose these settings in a unifo
ery station page could be set to display salinity at that
ays. However, such settings can result in no data being d
is a problem with the salinity sensor or transmission of
find it preferable to adjust the settings so data is availa

ple, expanding the time period or selecting a differ

15

Near

rom
raw,
lest,

s an

ata-
peat

in-
on-
ting
tool
ome
ork-

ul to
orm
sta-
dis-
f its
able
rent

16 D. Maier et al.

variable. More generally, we try to not offer the user selections in the interface
where no data is available. For instance, in Data Explorer, if the user has selected
an observation station in Figure 4, only variables for that station are then listed to
select from. (We could go further in this direction. For example, if a station and
an offering are selected, then offer only choices of date range where data is
present.)

3. Give access to underlying data. Any display of data should provide a ready
means to download that data. While we hope in most cases a user can meet his or
her data-location and analysis needs through our interfaces, in many cases a user
will want to view the data using a plot style our tools do not provide, or carry out
more advanced computation, say in Matlab. Thus, whenever a tool displays a da-
ta set it should be possible to download the underlying data, preferably in a
choice of formats. Currently, data can be downloaded from any station page, such
as shown in Figure 3 (via the “Inventory” tab), or from the other tools we discuss.

4. Integrate the tools. Each of the tools provided has a place in the scientists’
workflows. A scientist can quickly search for or browse to a likely source of data
using Data Near Here, use Data Explorer to plot some variables to confirm its re-
levance, and download data in a variety of formats directly from these tools. Such
workflows are inherently iterative. By allowing multiple tools to operate over the
same data and, where possible, pass settings and selections from tool to tool, we
allow the scientists to focus on the research and not on the complexities of the
tooling and infrastructure.

5. Balance pre-computation with production on demand. Ideally, we could provide
any possible data display with zero delay. The realities are that there is a bounded
amount of processing that has to support data ingest, quality assurance, model
evaluation and servicing of analysis and retrieval requests. If the last grows to
consume too great a share of resources, the observation system cannot keep up
with the other functions. Even if we could upgrade to meet all these demands to-
day, the continuing increasing volume and density of the data being collected
would make this goal unattainable tomorrow. Obviously we can control the cost
of analysis and display requests by how complex of processing we support in in-
teractive mode. To do more resource-intensive operations, the user needs to
download data and compute locally. We also pre-compute and cache display
plots that are likely to be requested by multiple users, such as the plots displayed
upon entering the station pages, as that shown in Figure 3. We also pre-compute
and cache plots that are hard to produce at interactive speeds, for example the
track plots for glider missions shown in Figure 6. The output of the simulation
model is handled similarly. For forecast simulations we pre-compute various data
products at the time of model generation. Many of these products are animations
of a particular variable along a 2-D horizontal or vertical slice. (In fact, these
animations can be computed incrementally as the model runs, and provide a
means for diagnosing computations going awry.) However, it is also possible to
produce map layers from model data (via a WMS [11]) on demand.

 Navigating Oceans of Data 17

7 Issues and Challenges

While the various CMOP information interfaces described here have gone a long way
towards meeting the needs of the various user groups, there are still areas that could
be expanded and enhanced. Here are list of areas of work, ranging from ones where
we are fairly certain how to handle to ones that will require extensive research.

1. With the wide range of interfaces, there can of course be inconsistencies. We
have discussed how we try to use common components, such as the plot service,
across interfaces for uniformity. We also try to drive menus and choices (such as
available offerings from a station) out of a common database of metadata. How-
ever, there can still be variations in grouping or ordering of options, which could
possibly become more table-driven.

2. While we have various means of showing the inventory (for different time pe-
riods) of holdings for a given offering, we lack means to depict “joint availabili-
ty”. For example, a scientist might want to know for what time periods is temper-
ature available at both SATURN03 and SATURN04, in order to cross-compare
them.

3. Our current plotting facility can deal with datasets spanning many months. How-
ever, we are only beginning to develop representations for multiple years of data
that allow short-term trends and events to be discerned. Simple plots and aggre-
gates can lose the fine detail.

4. As mentioned in Section 2, fault diagnosis and quality assurance are often han-
dled with general purpose interfaces, requiring a fair amount of manual effort.
We need more automated methods to allow limited staff to support continued
growth in the sensor arrays. We have had some success in the past applying ma-
chine-learning techniques to detecting biofouling of sensors [1], but there
remains a wide range of approaches to explore in specifying or learning normal
reporting patterns and detecting divergence from them.

5. Another open area is the display and indication of uncertainty. While we are cur-
rently expanding our capabilities for flagging and suppressing problem data, we
do not know of good methods to portray the inherent systemic uncertainty of our
various datasets, nor can we propagate such knowledge through analysis and
charting tools. We welcome the suggestions of other researchers here.

6. We have over a decade of historical simulated data, and one chief use for these
“hindcasts” is climatology queries. Such a query aggregates possibly the whole
hindcast database over time and space, for example, daily maximum temperatures
over the estuary averaged by month, or fresh-water plume volume on a daily
basis. A variety of these queries are pre-computed and constitute the CMOP Cli-
matological Atlas [16], but given the size of the hindcast database (tens of
terabytes), we do not support climatological queries on demand. The size of the
hindcasts similarly makes download of the database for local use generally in-
feasible. This problem will become more challenging as we include chemical and
biological quantities in our models. We also contemplate producing hindcast da-
tabases for “what-if” scenarios, such as different river-discharge levels and

18 D. Maier et al.

changes in bathymetry (bottom topography) of the estuary. While reduced-
resolution databases might address on-demand climatologies for quick compari-
sons, detailed analysis of differences will require computation at full resolution.
Putting the hindcast databases in the cloud, and having users pay for their
processing is an intriguing possibility; especially as most climatology queries are
easily parallelizable. However, current cost schedules for cloud storage are pro-
hibitive for the amount of data contemplated. One issue is that even the “cheap”
option at such services has availability guarantees (99.9%) beyond what we really
require. (Even 90% availability would probably satisfy most of our demands.)

Going forward, the ocean of data will continue to swell and present greater challenges
for navigation. On one hand, we want to minimize both the complexity of interfaces
and their need for manual support. On the other, the questions scientists are trying to
answer, and their processes for investigating them, are becoming more complicated. It
will be a balancing act not to constrain them by making interfaces too limited to han-
dle their needs or too difficult to work with efficiently.

Acknowledgments. This work is supported by NSF award OCE-0424602. We would
like to thank the staff of CMOP for their support.

References

1. Archer, C., et al.: Fault detection for salinity sensors in the Columbia estuary. Water Re-
sources Research 39(3), 1060 (2003)

2. Burla, M., et al.: Seasonal and Interannual Variability of the Columbia River Plume: A
Perspective Enabled by Multiyear Simulation Databases. Journal of Geophysical Re-
search 115(C2), C00B16 (2010)

3. Burla, M.: The Columbia River Estuary and Plume: Natural Variability, Anthropogenic
Change and Physical Habitat for Salmon. Ph.D. Dissertation. Beaverton, OR: Division of
Environmental and Biomolecular Systems, Oregon Health & Science University (2009)

4. Cornillon, P., et al.: OPeNDAP: Accessing Data in a Distributed, Heterogeneous Environ-
ment. Data Science Journal 2, 164–174 (2003)

5. Domenico, B., et al.: Thematic Real-time Environmental Distributed Data Services
(THREDDS): Incorporating Interactive Analysis Tools into NSDL. Journal of Digital In-
formation 2(4) (2006)

6. Ghindilis, A.L., et al.: Real-Time Biosensor Platform: Fully Integrated Device for Impe-
dimetric Assays. ECS Transactions 33(8), 59–68 (2010)

7. Gonzalez, H., et al.: Google Fusion Tables: Data Management, Integration and Collabora-
tion in the Cloud. In: Proceedings of the 1st ACM Symposium on Cloud Computing, pp.
175–180. ACM, New York (2010)

8. Haddock, T.: Submersible Microflow Cytometer for Quantitative Detection of Phytoplank-
ton (2009), https://ehb8.gsfc.nasa.gov/sbir/docs/public/
recent_selections/SBIR_09_P2/SBIR_09_P2_094226/briefchart.pdf

9. Herfort, L., et al.: Myrionecta rubra (Mesodinium rubrum) bloom initiation in the Colum-
bia River Estuary. Estuarine, Coastal and Shelf Science (2011)

 Navigating Oceans of Data 19

10. Megler, V.M., Maier, D.: Finding Haystacks with Needles: Ranked Search for Data Using
Geospatial and Temporal Characteristics. In: Bayard Cushing, J., French, J., Bowers, S.
(eds.) SSDBM 2011. LNCS, vol. 6809, pp. 55–72. Springer, Heidelberg (2011)

11. Open Geospatial Consortium, Inc.: OpenGIS® Web Map Server Implementation Specifi-
cation Version: 1.3.0 (2006)

12. Plant, J., et al.: NH 4-Digiscan: an in situ and laboratory ammonium analyzer for estuarine,
coastal and shelf waters. Limnology and Oceanography: Methods 7, 144–156 (2009)

13. Rew, R., Davis, G.: NetCDF: an interface for scientific data access. IEEE Computer
Graphics and Applications 10(4), 76–82 (1990)

14. Roegner, G.C., et al.: Coastal Upwelling Supplies Oxygen-Depleted Water to the Colum-
bia River Estuary. PLoS One 6(4), e18672 (2011)

15. Szalay, A.S., et al.: Designing and mining multi-terabyte astronomy archives: the Sloan
Digital Sky Survey. In: Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data, vol. 29(2), pp. 451–462 (2000)

16. Climatological Atlas, Center for Coastal Margin Observation & Prediction,
http://www.stccmop.org/datamart/virtualcolumbiariver/simulat
iondatabases/climatologicalatlas

Probabilistic Range Monitoring of Streaming

Uncertain Positions in GeoSocial Networks

Kostas Patroumpas1, Marios Papamichalis1, and Timos Sellis1,2

1 School of Electrical and Computer Engineering
National Technical University of Athens, Hellas

2 Institute for the Management of Information Systems, R.C. ”Athena”, Hellas
{kpatro,timos}@dbnet.ece.ntua.gr, papamixmarios@gmail.com

Abstract. We consider a social networking service where numerous sub-
scribers consent to disclose their current geographic location to a central
server, but with a varying degree of uncertainty in order to protect their
privacy. We aim to effectively provide instant response to multiple user
requests, each focusing at continuously monitoring possible presence of
their friends or followers in a time-varying region of interest. Every con-
tinuous range query must also specify a cutoff threshold for filtering out
results with small appearance likelihood; for instance, a user may wish to
identify her friends currently located somewhere in the city center with a
probability no less than 75%. Assuming a continuous uncertainty model
for streaming positional updates, we develop novel pruning heuristics
based on spatial and probabilistic properties of the data so as to avoid
examination of non-qualifying candidates. Approximate answers are re-
ported with confidence margins, as a means of providing quality guar-
antees and suppressing useless messages. We complement our analysis
with a comprehensive experimental study, which indicates that the pro-
posed technique offers almost real-time notification with tolerable error
for diverse query workloads under fluctuating uncertainty conditions.

1 Introduction

Over this decade, we have been witnessing the rising popularity of social net-
works. Connecting people who share interests or activities has an all-increasing
impact on communication, education, and business; their role even in politics and
social movements is indisputable. One of the latest trends heads for GeoSocial
Networking Services [13,15], allowing location-aware mobile users to interact rel-
ative to their current positions. Platforms like Facebook Places, Google Latitude,
or FireEagle1, enable users to pinpoint friends on a map and share their where-
abouts and preferences with the followers they choose. Despite their attraction,
such features may put people’s privacy at risk, revealing sensitive information
about everyday habits, political affiliations, cultural interests etc. Hence, there
has been strong legal and research interest on controlling the level of location
precision, so as to prevent privacy threats and protect user anonymity.

1 http://facebook.com/about/location; http://google.com/latitude;

http://fireeagle.yahoo.net

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 20–37, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Probabilistic Range Monitoring of Streaming Uncertain Positions 21

Respecting privacy constraints, we turn our focus to real-time processing of
continuous range queries against such imprecise user locations. In our proposed
framework, a subscriber may receive instant notifications when a friend appears
with sufficient probability within her area of interest. Mobile users are aware of
their own exact location thanks to geopositional technologies (e.g., GPS, WiFi,
Bluetooth), but they do not wish to disclose it to third parties. Instead, they
consent to relay just a cloaked indication of their whereabouts [6] abstracted as
an uncertainty region with Gaussian characteristics, enclosing (but apparently
not centered at) their current position. Hence, the service provider accepts a
geospatial stream of obfuscated, time-varying regions sent from numerous users
at irregular intervals. Based on such massive, transient, imprecise data, the server
attempts to give response to multiple search requests, which may also dynami-
cally modify their spatial ranges and probability thresholds.

This query class may prove valuable to GeoSocial Networking and Location-
based services (LBS). A typical request is ”Notify me whenever it is highly likely
(more than 75%) that any friends of mine are located somewhere in my neighbor-
hood” just in case one wants to arrange a meeting. A micro-blogging enthusiast
could be traveling or walking, and while on the move, may wish to post messages
to followers nearby. Even virtual interactive games on smartphones could take
advantage of such a service, e.g., assessing the risk of approaching ”unfriendly
territory” with several adversaries expectedly present in close proximity.

In a geostreaming context, identifying mobile users with varying degrees of
uncertainty inside changing areas of interest poses particular challenges. Faced
with strict privacy preferences and intrinsic positional inaccuracy, while also
pursuing adaptivity to diverse query workloads for prompt reporting of results,
we opt for an approximate evaluation scheme. We introduce optimizations based
on inherent probabilistic and spatial properties of the uncertain streaming data.
Thus, we can quickly determine whether an item possibly qualifies or safely
skip examination of non-qualifying cases altogether. Inevitably, this probabilis-
tic treatment returns approximate answers, along with confidence margins as a
measure of their quality. Our contribution can be summarized as follows:

– We model uncertainty of incoming locations as a stream of moving regions
with fluctuating extents under a Bivariate Gaussian distribution.

– We develop an online mechanism for evaluating range requests, employing
lightweight, discretized verifiers amenable to Gaussian uncertainty.

– We introduce pruning criteria in order to avoid examination of objects most
unlikely to fall inside query boundaries, with minimal false negatives.

– We empirically demonstrate that this methodology can provide approximate,
yet timely response to continuous range queries with tolerable error margins.

The remainder of this paper proceeds as follows: Section 2 briefly reviews related
work. Section 3 covers fundamentals of positional uncertainty and outlines appli-
cation specifics. In Section 4, we develop an (ε, δ)-approximation algorithm for
continuous range search against streaming Gaussian regions. In Section 5, we
introduce heuristics for optimized range monitoring. Experimental results are
reported in Section 6. Finally, Section 7 concludes the paper.

22 K. Patroumpas, M. Papamichalis, and T. Sellis

2 Related Work

Management of uncertain data has gained particular attention in applications
like sensor networks, market surveillance, biological or moving objects databases
etc. In terms of processing [14], besides range search, a variety of probabilistic
queries have been studied: nearest-neighbors [10], reverse nearest neighbors [1],
k-ranked [11], continuous inverse ranking [2], similarity joins [9,12], etc.

In contrast to traditional range search, a probabilistic one requires its answer
to be assessed for quality. Among related techniques in uncertain databases, the
notion of x-bounds in [5] clusters together one-dimensional features with similar
degrees of uncertainty in an R-tree-like index. U-tree [16] is its generalization
for multiple dimensions and arbitrary probability distributions. U-tree employs
probabilistically constrained regions to prune or validate an object, avoiding
computation of appearance probabilities. U-tree can be further useful for ”fuzzy”
search, when the query range itself becomes uncertain [17]. We utilize a pruning
heuristic with a similar flavor, but our proposed minimal areas correspond to dis-
tinct threshold values and are independent of uncertainty specifications for any
object. For predicting the location distribution of moving objects, an adapted
Bx-tree [18] has been used to answer range and nearest neighbor queries. Espe-
cially for inexact Gaussian data, the Gauss-tree [3] (also belonging to the R-tree
family) models the means and variances of such feature vectors instead of spatial
coordinates. Such policies may be fine for databases with limited transactions,
but are not equally fit for geostreaming uncertain data; the sheer massiveness
and high frequency of updates could overwhelm any disk-based index, due to
excessive overhead for node splits and tree rebalancing.

Note that spatial ranges may be uncertain as well, e.g., modeled as Gaussians
[8], or due to query issuer’s imprecise location when checking for objects within
some distance [4]. In our case, spatial ranges are considered typical rectangles,
yet subject to potential changes on their placement, shape and extent.

Privacy-aware query processing in LBS and GeoSocial networks has also at-
tracted particular research interest. For exact and approximate search for near-
est neighbors, the framework in [7] uses Private Information Retrieval protocols,
thus eliminating the need for any trusted anonymizer. Shared processing for mul-
tiple concurrent continuous queries in [6] handles cloaked user areas independent
of location anonymizers, offering tunable scalability versus answer optimality. A
privacy-aware proximity detection service is proposed in [15], so that two users
get notified whenever the vicinity region of each user includes the location of the
other. Encryption and spatial cloaking methods enable the server to perform a
blind evaluation with no positional knowledge. More sophisticated protocols [13]
offer controllable levels of location privacy against the service provider and third
parties, essentially trading off quality of service against communication cost.
Nonetheless, such techniques principally address privacy concerns and assume
uniform uncertainty distribution. Thus, they lack any probabilistic treatment of
spatial queries and user whereabouts, as we attempt in this work. We stress that
our approach is orthogonal to privacy preservation policies, focusing entirely on
swift processing of continuous range requests at the service provider.

Probabilistic Range Monitoring of Streaming Uncertain Positions 23

3 Managing Uncertain Moving Objects

3.1 Capturing Positional Uncertainty

Typical causes of data uncertainty [14,16] include communication delays, data
randomness or incompleteness, limitations of measuring instruments etc. Apart
from inherent imprecision of location representations, in this work we assume
that mobile users have purposely sent an ”inflated” positional update so as to
conceal their precise coordinates from the server. Any anonymization technique
that cloaks users’ locations into uncertainty regions can be employed (e.g.,[6]).
Typically, the larger the size of the region, the more the privacy achieved.

Positional uncertainty can be captured in a discrete or continuous fashion. A
discrete model uses a probability mass function (pmf) to describe the location
of an uncertain object. In essence, a finite number of alternative instances is
obtained, each with an associated probability [10,14]. In contrast, a continuous
model uses a probability density function (pdf), like Gaussian, uniform, Zipfian
etc., to represent object locations over the space. Then, in order to estimate
the appearance probability of an uncertain object in a bounded region, we have
to integrate its pdf over this region [16]. In a geostreaming scenario, a discrete
model should be considered rather inappropriate, as the cost of frequently trans-
mitting even a small set of samples per object could not be affordable in the long
run. Hence, we adopt a continuous model, which may be beneficial in terms of
communication savings, but it poses strong challenges in terms of evaluation.
Table 1 summarizes the notation used throughout the paper.

Table 1. Primary symbols and functions

Symbol Description

ε Error margin for appearance probability of qualifying objects
δ Tolerance for reporting invalid answers
N Total count of moving objects (i.e., users being monitored)
M Total count of registered continuous range queries

μx, μy Mean values of uncertainty pdf per object along axes x, y
σx, σy Standard deviations of uncertainty pdf per object along axes x, y

Σ Set of discrete uncertainty levels {σ1, σ2, . . . , σk} for regulating location privacy
N (0, 1) Bivariate Gaussian distribution with mean (0,0) and standard deviation σx = σy = 1

rq Time-varying 2-d rectangular range specified by query q
ro Time-varying uncertainty area of moving object o

MBB(ro) Minimum Bounding Box of uncertainty area ro with center at (μx, μy) and side 6σ
V (ro) Verifier for uncertainty area ro, comprised of elementary boxes with known weights
Lq Set of objects monitored by query q (i.e., Contact list of q)
Cq Set of candidate objects that might qualify for query q
Qq Final set of objects estimated to qualify for query q

pT , pF , pU Total cumulative probability of elementary boxes marked with T, F, U respectively
λ Granularity of subdivision for every discretized verifier along either axis x, y

β(i, j) Weight (i.e., estimated cumulative probability) of elementary box V (i, j)
Pin(o, q) Estimated probability that object o appears within range of query q

θ Cutoff threshold for rejecting objects with insufficient appearance probability
Θ A set {θ1, θ2, . . . , θm} of m typical threshold values
α̃θ Minimal uncertainty area representing cumulative probability barely less than θ
A Set of minimal areas {α̃1, α̃2, . . . , α̃m} corresponding to indicative thresholds θi ∈ Θ

24 K. Patroumpas, M. Papamichalis, and T. Sellis

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
0

0.05

0.1

0.15

x
y

pdf(x,y)

(a) Probability density

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

(b) Scatterplot of samples (c) Truncated region ro

Fig. 1. Standard Bivariate Gaussian distribution N (0, 1)

3.2 Object Locations as Bivariate Gaussian Features

Locations of mobile users are modeled with Bivariate Gaussian random variables
X , Y over the two dimensions of the Euclidean plane. Intuitively, the resulting
uncertainty region implies higher probabilities closer to the mean values (i.e., the
origin of the distribution), as illustrated with the familiar ”bell-shaped” surface
in Fig. 1a. For privacy preservation, the origin of the distribution should not
coincide with the precise coordinates, known only by the user itself.

More specifically, let a Bivariate Gaussian (a.k.a. Normal) distribution with

mean

[
μx

μy

]
and covariance matrix

[
σ2
x ρσxσy

ρσxσy σ2
y

]
,

where μx, μy are the mean values and σx, σy the standard deviations along axes
x, y respectively, whereas ρ is the correlation of random variables X and Y .
Assuming that objects are moving freely, X and Y are independent, hence ρ = 0.
Of course, location coordinates may spread similarly along each axis, so σx =
σy = σ. Thus, the joint probability density function (pdf) is simplified to:

pdf(x, y) =
1

2πσ2
· e−

(x−μx)2+(y−μy)2

2σ2 (1)

As in the univariate case, we can define random variables X ′ = X−μx

σ and

Y ′ =
Y−μy

σ and derive the standard bivariate Gaussian distribution N (0,1)
with

pdf(x′, y′) =
1

2π
e−

r2

2 (2)

where r =
√

x′2 + y′2 denotes the distance from the origin of the derived distri-
bution at (0, 0) with standard deviations (1, 1). Figure 1b depicts a scatterplot
of random samples under this distribution. As illustrated in Fig. 1c, there is
99.73% probability that the location is found within a radius 3σ from the origin.
Depending on the variance, the density of a Gaussian random variable is rapidly
diminishing with increasing distances from the mean. Thanks to its inherent sim-
plicity, the uncertainty region can be truncated in a natural way on the server
side, so the user itself does not need to specify a bounded area explicitly.

Probabilistic Range Monitoring of Streaming Uncertain Positions 25

3.3 System Model

We consider a social networking service with a large number N of location-aware
subscribers, each moving over the Euclidean plane and communicating with the
provider. Messages transmitted from mobile users concern either cloaked posi-
tions or spatial requests. By convention, the former (termed objects) are being
searched by the latter (queries). So, objects and queries alike represent mobile
users of the service, but with distinct roles (passive or active) in terms of mon-
itoring. All messages are timestamped according to a global clock at distinct
instants τ (e.g., every minute).

Every object o relays to the centralized server its uncertainty region ro, i.e.,
an imprecise indication of its current location. The server is not involved in the
cloaking process, but passively receives vague positional information according
to a privacy preserving protocol. Updates may be sent over at irregular intervals,
e.g., when an object has gone far away from its previously known position or
upon significant change at its speed. Although the server knows nothing about
the exact (x, y) coordinates of a given object o, it can be sure that o is definitely
found somewhere within its uncertainty region until further notice.

Each uncertainty region ro follows a Bivariate Gaussian distribution, so an
object o must sent the origin (μx, μy) of its own pdf and the standard deviation
σ (common along both dimensions). Upon arrival to the server from numerous
objects, these items constitute a unified stream of tuples 〈o, μx, μy, σ, τ〉, ordered
by their timestamps τ . Note that μ, σ are expressed in distance units of the
coordinate system (e.g., meters). Larger σ values indicate that an object’s lo-
cation can be hidden in a greater area around its indicated mean (μx, μy). As
object o is moving, it relays (μx, μy) updates. We prescribe k uncertainty levels
Σ = {σ1, σ2, . . . , σk}, so any object can adjust its degree of privacy dynamically.

A set of M continuous queries are actually registered at the server, each spec-
ifying a rectangular extent rq and a cutoff threshold θ ∈ (0, 1). During their
lifetime, ranges rq may be moving and also vary in size, whereas a query may
arbitrarily change its own θ. Therefore, the server accepts query updates speci-
fying 〈q, rq, θ, τ〉, replacing any previous request with identifier q. As is typical
in social networking [13], each query issuer states its contact list Lq declaring its
friends, fans, or followers. Hence, the server retains a table with entries 〈q, o〉,
which specifies that query q has an interest on monitoring object o, provided
that the latter is consenting. Evaluation takes place periodically with execution
cycles at each successive τ , upon reception of the corresponding updates. Query
q identifies any object o from its contact list Lq currently within specified range
rq with appearance probability Pin(o, q) at least θ. Analogously to [16,18]:

Definition 1. A probabilistic range query q, at any timestamp τ reports objects
{o ∈ Lq | Pin(o, q) ≥ θ} with:

Pin(o, q) =

∫
rq∩ro|y

∫
rq∩ro|x

pdf(x, y)dxdy (3)

where rq ∩ ro|x denotes the interval along x-axis where areas rq and ro spatially
overlap (notation similar for the y-axis). For the example setting in Fig. 2a,

26 K. Patroumpas, M. Papamichalis, and T. Sellis

(a) Example setting (b) Verifier for Pin(c, q3)

Fig. 2. Probabilistic range search over uncertain objects

object c qualifies for query q2, but not for q3 since Pin(c, q3) < 0.8, assuming
that c belongs to the contact list of both queries.

The problem is that Gaussian distributions cannot be integrated analytically,
so we need to resort to numerical methods like Monte-Carlo to get a fair esti-
mation for Eq. (3). Yet, Monte-Carlo simulation incurs excessive CPU cost as it
requires a sufficiently large number of samples (at the order of 106 [16]). Given
the mobility and mutability of objects and queries, such a solution is clearly
prohibitive for processing range requests in online fashion.

4 Approximation with Discretized Uncertainty Regions

4.1 Probing Objects through Probabilistic Verifiers

An object never specifies a bounded uncertainty region; still, the server may
safely conjecture that its location is within a truncated density area of radius 3σ
around its mean (μx, μy), as exemplified in Fig. 1c. To simplify computations,
instead of such a circle, its rectilinear circumscribed square of side 6σ can stand
for uncertainty region just as well. In fact, the cumulative probability of this
Minimum Bounding Box (MBB) is greater than 99.73% and tends asymptotically
to 1, although its area is π/4 times larger than the circle of radius 3σ.

Now suppose that for a known σ, we subdivide this MBB uniformly into λ×λ
elementary boxes, λ ∈ N∗. Boxes may have the same area, but represent diverse
cumulative probabilities, as shown in Fig. 3. Once precomputed (e.g., by Monte-
Carlo), these probabilities can be retained in a lookup table V . If λ is odd, the
central box V (�λ2 �, �

λ
2 �) is the one with the highest density. Anyway:

Lemma 1. The cumulative probability in each of the λ× λ elementary boxes is
independent of the parameters of the applied Bivariate Gaussian distribution.

In other words, for a fixed λ, the contribution of each particular box in Fig. 3
remains intact for any σ value. The spatial area of a box is (6σ/λ)2, so it expands
quadratically with increasing σ. Yet, as a measure of its probability density, each

Probabilistic Range Monitoring of Streaming Uncertain Positions 27

(a) Box weights for λ = 5 (b) Box weights for λ = 6 (c) Box weights for λ = 7

Fig. 3. Diverse subdivisions of the same uncertainty region into λ×λ elementary boxes

box V (i, j) maintains its own characteristic weight β(i, j), which depends entirely
on λ and fluctuates with the placement of V (i, j) in the MBB.

The rationale behind this subdivision is that it may be used as a discretized
verifier V when probing uncertain Gaussians. Consider the case of query q3
against object c, shown in detail in Fig. 2b. Depending on its topological relation
with the given query, each elementary box of V can be easily characterized by
one of three possible states: (i) T is assigned to elementary boxes totally within
query range; (ii) F signifies disjoint boxes, i.e., those entirely outside the range;
and (iii) U marks boxes partially overlapping with the specified range.

Then, summing up the respective cumulative probabilities for each subset of
boxes returns three indicators pT , pF , pU suitable for object validation:

(i) In case that pT ≥ θ, there is no doubt that the object qualifies.
(ii) If pF ≥ 1 − θ, then the object may be safely rejected, as by no means can

its appearance probability exceed the query threshold. This is the case for
object c in Fig. 2, since its pN = 0.72815 ≥ 1− 0.8.

(iii) Otherwise, when pT + pU ≥ θ, eligibility is ambiguous. To avoid costly
Monte-Carlo simulations, the object could be regarded as reservedly qual-
ifying, but along with a confidence margin [pT , 1 − pF) as a degree of its
reliability.

Because pT + pF + pU 	 1, only indicators pT , pF need be calculated. Still, in
case (iii) the magnitude of the confidence margin equals the overall cumulative
probability of the U -boxes, which depends entirely on granularity λ. The finer the
subdivision into elementary boxes, the less the uncertainty in the emitted results.
In contrast, a small λ can provide answers quickly, which is critical when coping
with numerous objects. As a trade-off between timeliness and answer quality,
next we turn this range search problem into an (ε, δ)-approximation one.

4.2 Towards Approximate Answering with Error Guarantees

Let p̄ the exact2 Pin(o, q) appearance probability that object o of uncertainty
region ro lies within range rq of query q. Also, let p̂ the respective approximate

2 p̄ cannot be computed analytically, but can be estimated with numerical methods.

28 K. Patroumpas, M. Papamichalis, and T. Sellis

probability derived after probing the elementary boxes of verifier V (ro). Given
parameters ε and δ, we say that object o qualifies for q, if approximate estimation
p̂ deviates less than ε from exact p̄ with probability at least 1− δ. Formally:

P (|p̄− p̂| ≤ ε) ≥ 1− δ. (4)

Intuitively, ε ∈ (0, θ) is the error margin of the allowed overestimation in Pin(o, q)
when reporting a qualifying object. In fact, ε relates to the size of the elemen-
tary boxes and controls the granularity of V (ro). On the other hand, δ ∈ (0, 1)
specifies the tolerance that an invalid answer may be given (i.e., a false positive).
But in practice, given the arbitrary positions and extents of objects and queries,
as well as the variability of threshold θ which determines qualifying results, it is
hard to verify whether (4) actually holds for specific ε, δ values.

As it is difficult to tackle this problem, we opt for a relaxed approach with
heuristics. Without loss of generality, we assume that extent rq is never fully
contained within uncertainty region ro of any object o. According to the ab-
straction of uncertainty with MBB’s, it suffices that any side of rectangle rq is
never less than 6σ, which is quite realistic. Thus, a query range either contains or
intersects or is disjoint with an uncertainty region. In cases of full containment
or clear separation, there is no ambiguity; the object is qualified or rejected with
100% confidence, respectively. As for intersections, among all cases discussed in
Section 4.1, the trouble comes from partial overlaps of type (iii) that may lead
to considerable overestimation. Indeed, rectangle rq may only cover a tiny slice
of elementary boxes marked as U , as it occurs with the three vertical U -boxes
in Fig. 2b. The redundancy in the estimated cumulative probability owed to the
non-covered area of U -boxes is evident.

Let us take a closer look at partial overlaps of type (iii) between a query rect-
angle rq and the elementary boxes of an uncertainty region ro, assuming a fixed
λ. As illustrated in Fig. 4, there are three possible cases that rq may intersect
V (ro) and leave uncovered a particular stripe of the verifier. Of particular con-
cern are horizontal, vertical or L-shaped stripes, comprised of consecutive slices of
U -boxes (the red hatched bars in Fig. 4), which amplify the confidence margin.
There are eight combinations in total, classified into two groups: (a) four cases
concern a straight (horizontal or vertical) stripe, depending on which side of the
verifier remains uncovered, and (b) other four create an L-shaped stripe touching
the enclosed query corner (�, �, �, �). Due to the square shape of verifiers and the
underlying symmetry of Gaussian features, the horizontal and vertical cases are
equivalent; it also does not matter which corner of MBB(ro) is enclosed in range
rq. Hence, it suffices to examine an indicative combination from either group.

The worst case happens when rq has just a tiny overlap with each U -box, hence
overestimation |p̄− p̂| becomes almost pU . In contrast, when just a small area of
all U -boxes is left uncovered, overestimation is minimized and upper bound pT +
pU of the margin is fairly reliable. In between, since objects and queries are not
expected to follow any specific mobility pattern, there are infinitely many chances
for such partial overlaps, leading to a variety of stripes with diverse cumulative
probability. Each case has equal likelihood to occur, but incurs varying errors

Probabilistic Range Monitoring of Streaming Uncertain Positions 29

Fig. 4. Horizontal, Vertical and L-shaped stripes of U -box slices beside query boundary

in probability estimation. Nevertheless, for increasing λ values, each elementary
box of the verifier steadily gets less and less weight, so the overestimation effect
weakens drastically. In the average case, and for sufficiently large λ, we may
approximately consider that each U -box contributes half of its density to the
confidence margin. In other words, we assume that the query boundary crosses
each U -box in the middle (especially for a corner box, it encloses a quarter of
its area), as exemplified in Fig. 4c.

Under this discretized relaxation of the problem, we could evaluate the ex-
pected superfluous density for all possible arrangements of straight or L-shaped
overlaps and estimate the chances that Formula (4) gets fulfilled. For a fixed
subdivision of MBB’s, there are 4λ possible instantiations for a straight stripe,
considering that each side of the query rectangle rq may be crossing a horizontal
or vertical series of U -boxes (Fig. 4a, 4b). Similarly, any corner of rq may be
centered in any elementary box, giving 4λ2 potential instantiations of L-shaped
stripes (Fig. 4a). In total, we consider 4λ+ 4λ2 equiprobable instantiations, yet
each one causes a varying overestimation. Suppose that for a given λ, it turns
out that ν out of those 4λ(λ+ 1) cases incur an error less than ε. Then, if

P (|p̄− p̂| ≤ ε) =
ν

4λ(λ+ 1)
≥ 1− δ, (5)

we may accept that the object approximately qualifies under the aforementioned
assumptions.

Since the quality of the approximate answer strongly depends on granularity
λ of verifier V (ro), we wish to select the minimal λ∗ value so that the result-
ing probabilities could fulfill inequality (5). In a brute-force preprocessing step
based on Monte-Carlo simulation, we can estimate the cumulative probabilities
of problematic stripes, starting from a small λ and steadily incrementing it until
(5) eventually holds. Then, for the given ε, δ values, these fine-tuned λ∗ × λ∗ el-
ementary boxes are expected to provide reliable results that only rarely digress
from the given confidence margins, as we experimentally verify in Section 6.

30 K. Patroumpas, M. Papamichalis, and T. Sellis

Algorithm 1. Probabilistic Range Monitoring

1: Procedure RangeMonitor (timestamp τ)
2: Input: Stream items 〈oj , μj

x, μ
j
y, σ

j , τ 〉 from j = 1..N Bivariate Gaussian objects.
3: Input: Specification updates 〈qi, riq, θi, τ 〉 from i = 1..M continuous range queries.
4: Output: Qualifying results Q = {〈qi, oj , θmin, θmax, τ 〉 :

⋂
(rjo, r

i
q) �= ∅ with confi-

dence (θi ≤ θmin < θmax) ∨ (θmin < θi ≤ θmax)}.
5: Q← {} ; //Inital result set for all queries at execution cycle τ
6: for each qi do
7: α̃∗ ← minimal area looked up from A, corresponding to maximal θ∗ ∈ Θ, θ∗ ≤ θi

8: Ci
q ← {oj ∈ Li

q | MBB(rjo) ∩ riq �= ∅}; //Candidates only from contact list of qi

9: for each oj ∈ Ci
q do

10: if (oj is unchanged ∧ qi is unchanged) then
11: continue; //Skip evaluation for unmodified entities
12: else if MBB(rjo) ⊂ riq then
13: Q← Q ∪ 〈qi, oj , 1, 1, τ 〉 ; //Certain object due to full containment
14: else if ‖MBB(rjo) ∩ riq‖ < σj · σj · α̃∗ then
15: continue; //Pruning with respective minimal area of overlap
16: else
17: 〈θmin, θmax〉 ← ProbeVerifier (riq, MBB(rjo), θ

i) ; //Approximate indicators
18: if θi ≤ θmin then
19: Q← Q ∪ 〈qi, oj , θmin, θmax, τ 〉; //Object qualifies, margin [θmin, θmax)
20: else if θmin < θi ≤ θmax then
21: Q← Q ∪ 〈qi, oj , θmin, θmax, τ 〉; //Reservedly qualifying object
22: end if
23: end if
24: end for
25: end for
26: Report Q; //Disseminate results to each query for execution cycle τ
27: End Procedure

28: Function ProbeVerifier (query range riq, object region MBB(rjo), threshold θi)
29: V (rjo)← verifier with symbols {T, F, U} stating any overlap of riq over MBB(rjo);
30: pT ← 0; pF ← 0; //Initialize indicators for appearance probability Pin(o

j , qi)
31: for each box bk ∈ V (rjo) by spiroid (or ripplewise) visiting order do
32: if bk = ’T’ then
33: pT ← pT + β(k); //kth elementary box of verifier V is completely inside riq
34: else if bk = ’F’ then
35: pF ← pF+β(k); //kth elementary box of verifier V is completely outside riq
36: end if
37: if pF ≥ 1− θi then
38: return 〈0, 0〉 ; //Eager rejection for non-qualifying objects
39: end if
40: end for
41: return 〈pT , 1− pF 〉 ; //Bounds for appearance probability Pin(o

j , qi)
42: End Function

Probabilistic Range Monitoring of Streaming Uncertain Positions 31

5 Online Range Monitoring over Streaming Gaussians

5.1 Evaluation Strategy

The pseudocode for the core range monitoring process is given in Algorithm
1. Implicitly, query q does not wish to find every object in range rq; searching
concerns only those enrolled in its contact list Lq. During query evaluation at
timestamp τ , the spatial predicate is examined first against items from contact
list Lq, offering a set of candidate objects Cq(τ) = {o ∈ Lq | MBB(ro)∩ rq �= ∅}
with uncertainty regions currently overlapping with rq (Line 8). At a second
stage described next, candidates with a likelihood above θ to lie within range
should be returned as qualifying objects Qq(τ) = {o ∈ Cq(τ) |Pin(o, q) ≥ θ}.

In case that MBB(ro) is fully contained in rectangle rq, object o clearly
qualifies with confidence 100%, irrespective of any threshold θ the query may
stipulate (Lines 12-13). Similarly, if MBB(ro) and rq are spatially disjoint, then
object o is rejected also with confidence 100%. Both cases involve no probabilistic
reasoning, as simple geometric checks can safely determine eligible objects.

But as already pointed out, evaluation is mainly complicated because of par-
tial overlaps between MBB(ro) and rq. Since this is expectedly a very frequent
case, employing indicators over discretized verifiers with precomputed cumula-
tive probabilities can provide a tolerable approximation, instead of unaffordable
Monte-Carlo simulations as analyzed in Section 4. Even so, probing a few hun-
dred or maybe thousand elementary boxes per candidate object may still incur
excessive CPU time. Moreover, such a task must be repeatedly applied at each
execution cycle τ against changing query specifications and mutable uncertainty
regions. Next, we propose heuristics that may substantially reduce processing
cost, effectively filtering out improbable candidate objects (i.e., true negatives)
and avoiding exhaustive investigation of discretized verifiers.

5.2 Pruning Candidates Using Indicative Minimal Areas

Suppose that we could identify the smallest possible area α̃θ inside an uncer-
tainty region, such that α̃θ represents a cumulative probability barely less than
threshold θ of a given query q. If ‖rq ∩MBB(ro)‖ < α̃θ, object o cannot qualify
for query q, as its appearance probability Pin(o, q) is definitely below θ. Then,
estimating Pin(o, q) is not necessary at all, because α̃θ indicates the minimal
area of overlap between object o and query q in order for o to qualify.

Ideally, this observation could eliminate candidate objects substantially, as
no further examination is required for those of overlapping areas less than α̃θ

with the given query q. However, applying such a pruning criterion, necessitates
precomputation of the respective α̃θ values for every possible threshold θ ∈ (0, 1)
a query could specify. A second issue relates to the density of uncertainty regions.
Let query q equally overlap two objects o1, o2 with uncertainty regions ro1 , ro2 of
diverse standard deviations σ1 �= σ2. Notwithstanding that ‖rq ∩MBB(ro1)‖ =
‖rq∩MBB(ro2)‖, it does not necessarily hold that these overlaps represent equal
appearance likelihood, since Pin(o1, q) and Pin(o2, q) are derived from Eq. (3)

32 K. Patroumpas, M. Papamichalis, and T. Sellis

according to different pdf parametrization. Thus, even for a fixed θ, a single
minimal value α̃θ cannot be used against every uncertainty region.

To address issues concerning computation of such minimal areas α̃θ, let us
start with a specific threshold θ, stipulating a Standard Bivariate Gaussian dis-
tribution N (0,1) for the uncertainty region. Because the density of Gaussians is
maximized around the mean and then decreases rapidly for increasing distances
across all directions (Fig. 1a), the sought minimal area is always a circle centered
at the origin (μx, μy) of the pdf with a radius R ∈ (0, 3) that depends on the
given θ. To discover that R value and hence compute α̃θ = πR2, we can perform
successive Monte-Carlo simulations, increasing R by a small step until the cumu-
lative probability inside the circle becomes only just below θ. For other σ �= 1,
it turns out that the respective area is α̃θ = π(σR)2, as standard deviation σ
actually dictates the spread of values, and hence the magnitude of the circle.

Due to the variety of possible thresholds specified by user requests, it makes
sense to discover minimal areas only for a small set Θ = {θ1, θ2, . . . , θm} of m
typical values, e.g., Θ = {10%, 20%, . . . , 100%}. CatalogueA = {α̃1, α̃2, . . . , α̃m}
of respective area magnitudes can be computed offline by the aforesaid Monte-
Carlo process assuming a distribution N (0,1). Having Θ readily available during
online evaluation, when a query specifies an arbitrary threshold θ �∈ Θ, we can
easily identify the maximal θ∗i ∈ Θ, θ∗i ≤ θ and safely choose its corresponding
minimal area α̃∗

i from the precomputed setA (Line 7). For the pruning condition,
it suffices to compare whether ‖MBB(ro) ∩ rq‖ < σ2 · α̃∗

i , so as to account for
the magnitude of an uncertainty region ro with any particular σ (Lines 14-15).

5.3 Optimized Examination of Elementary Boxes

As pointed out in Section 4.1, a discretized verifier can provide a fairly reliable
approximate answer in case of partial overlaps between query rectangles and
circumscribed uncertainty regions. Essentially, after iterating through each ele-
mentary box bi and having updated indicators pT , pF , we can safely determine
whether an object qualifies (if pT ≥ θ) or must be rejected (when pF ≥ 1 − θ).
In addition, reservedly qualifying objects could be reported with a confidence
margin [pT , 1− pF), in case that 1− pF ≥ θ (Lines 16-21).

However, for finer subdivisions of verifiers, probing at each execution cycle τ
an increasing number λ∗×λ∗ of elementary boxes could incur considerable cost,
especially for objects having little chance to qualify. Note that elementary boxes
towards the center have much more weight (i.e., greater cumulative probabilities)
than peripheral ones. Therefore, we had better start visiting boxes from the
center and progressively inspect others of less and less importance. Updating
pT and pF accordingly, we can resolve object qualification much faster, since
peripheral boxes have practically negligible weight (Fig. 3). Such eager rejections
can be decided as soon as a (yet incomplete) pF exceeds 1− θ, thus avoiding an
exhaustive investigation of the entire verifier, particularly when θ > 0.5. Since pF
for a given object could never decrease with further box examinations at current
τ , continuing calculation of indicators is pointless as the result cannot be altered.
Considering that a query range might overlap many uncertainty areas only by a

Probabilistic Range Monitoring of Streaming Uncertain Positions 33

(a) Box rankings (b) Ripplewise inspection (c) Spiroid inspection

Fig. 5. Visiting order of elementary boxes for λ = 7

small fringe, the savings can be enormous, as rejections could be resolved soon
after inspecting just a few boxes around the center. A similar argument holds
when issuing qualifying objects, especially for relatively lower thresholds.

Based on this important observation, we could take advantage of the inher-
ent ranking of elementary boxes for visiting them by decreasing weight, so as
to progressively update indicators pT and pF . In Fig. 5, graduated gray color
reflects a ranking (Fig. 5a) of elementary boxes classified by their inferred cu-
mulative probability for the verifier depicted in Fig. 3c. Intuitively, we may opt
for a ripplewise order regarding box inspections, distantly reminiscent of rain-
drops rippling on the water surface. But instead of forming circles, groups of
perhaps nonadjacent, yet equi-ranked boxes are arranged as vertices of squares,
diamonds, octagons etc. Inspection starts from the central box and continues in
rippling waves (depicted with alternating solid and dashed lines in Fig. 5b) rush-
ing outwards across the underlying uncertainty region. An alternative choice is
the simplified visiting order illustrated in Fig. 5c, which takes a squarish spiroid
pattern. Occasionally violating the strict succession of rankings, it follows a con-
tinuous meander line that again starts from the central box (or next to the
center, in case of even subdivisions) and traverses the rest in rings of increasing
radius and gradually diminishing weight.

Both orderings aim to give precedence to boxes with potentially significant
contribution to appearance probabilities. Assuming a θ = 0.6 and following a
spiroid visiting order for the example shown in Fig. 4b, we can easily conclude
that the object qualifies for query q after examining the nine central boxes only,
which account for a pT 	 0.6457 ≥ θ based on cumulative probabilities (Fig. 3c).
Function ProbeVerifier in Algorithm 1 outlines this optimized verification step.

6 Experimental Evaluation

6.1 Experimental Setup

Next, we report results from an empirical validation of our framework for proba-
bilistic range monitoring against streams of Gaussian positional uncertainty. We

34 K. Patroumpas, M. Papamichalis, and T. Sellis

generated synthetic datasets for objects and queries moving at diverse speeds
along the road network of greater Athens in a spatial Universe U of 625 km2.
By calculating shortest paths between nodes chosen randomly across the net-
work, we were able to create samples of 200 concurrent timestamps from each
such route. In total, we obtained a point set representing mean locations for
N = 100 000 objects, and similarly, the centroids of M = 10 000 query ranges.
Spatial range of queries is expressed as percentage (%) of the entire U . However,
ranges are not necessarily squares with the given centroid, because we randomly
modify their width and height in order to get arbitrarily elongated rectangles of
equal area. Each object updates its uncertainty area regularly at every times-
tamp. Concerning query ranges, their agility of movement is set to 0.1, so a
random 10% of them modify their specification at each timestamp.

However, contact list Lq per user must not be specified at random; otherwise,
probabilistic search would hardly return any meaningful results with synthetic
datasets. Thus, for each query we computed a preliminary list of all objects in its
vicinity for the entire duration (200 timestamps). Only for data generation, we
considered exact locations of N objects within circular areas of 1% of U centered
at each query centroid. After calculating object frequencies for each query, we
created two sets of contact lists nicknamedMOD and POP, respectively retaining
the top 50% and top 75% of most recurrent objects per query. Indicatively, a
query in MOD on average has a modest number of 87 subscribers (i.e., monitored
objects) with a maximum of 713, whereas a POP list typically has 693 and at
most 5911 members, i.e., is almost an order of magnitude more popular.

Evaluation algorithms were implemented in C++ and executed on an Intel
Core 2 Duo 2.40GHz CPU running GNU/Linux with 3GB of main memory. Typ-
ically for data stream processing, we adhere to online in-memory computation,
excluding any disk-bound techniques. We ran simulations using different param-
eter settings for each experiment. Due to space limitations, we show results just
from some representative ones. All results are averages of the measured quan-
tities for 200 time units. Table 2 summarizes experimentation parameters and
their respective ranges; the default value (in bold) is used for most diagrams.

6.2 Experimental Results

Verifiers for uncertainty areas should strike a balance between approximation
quality and timely resolution of appearance probabilities. So, we first attempt to

Table 2. Experiment parameters

Parameter Values

Number N of objects 100 000
Number M of range queries 10 000
Range area (% of universe U) 0.01, 0.1, 1, 2, 5, 10
Standard deviation σ (meters) 50, 100, 200, 300, 500

Cutoff threshold θ 0.5, 0.6, 0.7, 0.75, 0.8, 0.9, 0.99
Error margin ε 0.02, 0.03, 0.05, 0.1
Tolerance δ 0.01, 0.02, 0.03, 0.05, 0.1

Table 3. Fine-tuning λ∗

ε δ λ∗ ε δ λ∗

0.02 0.01 103 0.05 0.02 38
0.02 0.02 97 0.05 0.03 37
0.03 0.01 67 0.05 0.05 35
0.03 0.02 65 0.1 0.02 19
0.03 0.03 63 0.1 0.05 18
0.05 0.01 41 0.1 0.1 17

Probabilistic Range Monitoring of Streaming Uncertain Positions 35

50100 200 300 500
0

50

100

150

σ (m)

E
xe

cu
tio

n
tim

e
(s

ec
)

MOD
POP

Fig. 6.

50 100 200 300 500
0

5

10

15

20

25

30

σ (m)

E
xe

cu
tio

n
tim

e
(s

ec
)

Ripplewise
Spiroid

MOD

Fig. 7.

18 37 65
0

2

4

6

8

10

λ

E
xe

cu
tio

n
tim

e
(m

in
)

Optimized
Naive

MOD

Fig. 8.

0.5 .6 .7 .75 .8 .9 0.99
0

10

20

Threshold θ

E
xe

cu
tio

n
tim

e
(s

ec
) σ=100 σ=200 σ=300

MOD

Fig. 9.

determine a fine-tuned subdivision according to the desired accuracy of answers.
Table 3 lists the minimal granularity λ∗ of verifiers so as to meet the bounds for
tolerance δ and error ε, using a brute-force preprocessing step (Section 4.2). But
a large λ around 100, would create verifiers with 10 000 tiny elementary boxes
of questionable practical use, considering the numerous spatial arrangements of
queries and objects. For our experiments, we have chosen three moderate values
(in bold in Table 3) that represent distinct levels of indicative accuracy. Unless
otherwise specified, we mostly set λ = 37, which dictates that qualifying objects
must not deviate above ε = 5% from their actual appearance likelihood, and
these results can be trusted with 1− δ = 97% probability at least.

Next, we examine the total query evaluation cost per timestamp for each of
the two query workloads MOD and POP, assuming diverse sizes of Gaussian
uncertainty regions. In fact, standard deviation σ controls the density as well
as the extent of the region; e.g., a σ = 200 meters prescribes a square area of
side 6σ = 1200 meters, which is large enough for urban settings. Quite pre-
dictably, execution cost deteriorates with σ as plotted in Fig. 6, because larger
uncertainty regions intersect more frequently with multiple query ranges. De-
spite the increasing number of such overlapping cases, the pruning heuristics
can quickly discard improbable candidates, hence the total cost for all queries
mostly remains at reasonable levels, particularly for the MOD workload. It only
exacerbates for larger uncertainty regions with the POP dataset, but mainly due
to the disproportionate size of its contact lists.

The choice of inspection order for elementary boxes is not critical, provided
that they are visited by descending weight. Thanks to its simplicity, a spiroid or-
dering gives response slightly faster than its ripplewise counterpart (Fig. 7). Still,
Fig. 8 demonstrates that such optimizations economize enormously by first ex-
amining important boxes as opposed to a näıve strategy. With more restrictions
on accuracy (i.e., larger λ), execution time escalates linearly, but always remains
under 30 sec per cycle for answering all queries. In contrast, blindly examining
all boxes and employing expensive Monte-Carlo simulations for ambiguous cases
incurs execution times utterly incompatible with online monitoring.

With respect to threshold values, Fig. 9 shows the effectiveness of pruning for
diverse uncertainty levels. Clearly, the higher the threshold, the more frequent
the cases of eager rejections, as examination of objects terminates very early.
This trend gets even more pronounced with greater uncertainty (σ = 300m).

When specifying diverse areas of query range, execution cost fluctuates, as
illustrated in Fig. 10. However, this phenomenon depends on the extent and
spread of the uncertainty regions that may cause a mounting number of partial

36 K. Patroumpas, M. Papamichalis, and T. Sellis

0.01 0.1 1 2 5 10
0

5

10

Range area (% of U)

E
xe

cu
tio

n
tim

e
(s

ec
)

σ=100
σ=200

MOD

Fig. 10.

0.01 0.1 1 2 5 10
0

20

40

60

80

100

%
 c

an
di

da
te

 o
bj

ec
ts

Range area (% of U)

qualifying objects
MOD

Fig. 11.

18 37 65
0

20

40

60

80

100

λ

%
 c

an
di

da
te

 o
bj

ec
ts

qualifying
pruned
rejected
missing

MOD

Fig. 12.

18 37 65
0

10

20

30

λ

E
st

im
at

ed
 M

em
or

y
(G

B
yt

es
)

MOD
POP

Fig. 13.

overlaps with the query rectangles, which require verification. For smaller query
areas, such intersections are rare, so they incur negligible cost. Similarly, with
ranges equal to 10% of the entire universe U , many more objects fall completely
within range and get directly qualified with less cost. This is also confirmed with
statistical results in Fig. 11 regarding the fraction of candidate objects that
finally get qualified for σ = 200m. For ranges with extent 1% of U , about 60%
of candidates are reported, so a lot many of the rest 40% have been disqualified
after verification, which explains the respective peak in Fig. 10.

Concerning the quality of the reported results, Fig. 12 plots a breakdown of
the candidates for varying accuracy levels. Compared with an exhaustive Monte-
Carlo evaluation, about 15% of candidates are eagerly rejected, while another
25% is pruned. Most importantly, false negatives are less than 0.1% at all cases,
which demonstrates the efficiency of our approach. Although qualitative results
are similar for varying λ, they still incur differing execution costs (Fig. 8).

The astute reader may have observed that our approach is not incremental;
at every cycle, each candidate must be examined from scratch for any query, no
matter its previous state regarding the given query. This is a deliberate choice,
if one considers the extreme mutability of both objects and queries. Apart from
their continuous free movement and features that change in probabilistic fashion,
there are also practical implications. Figure 13 plots the estimated memory con-
sumption for maintaining states of every verifier for all combinations of queries
and members of their contact lists. This cost may seem reasonable for fair ac-
curacy constraints (λ = 18), but becomes unsustainable with stricter quality
requirements, especially for query workloads with excessively large membership.
Considering its maintenance overhead, a stateful approach would clearly become
more a burden rather than an assistance in terms of probabilistic evaluation.

7 Conclusion

In this work, we proposed a probabilistic methodology for providing online re-
sponse to multiple range requests over streams of Gaussian positional uncertainty
in GeoSocial networks. Abiding to privacy preserving protocols, we introduced
an (ε, δ)-approximation framework, as a trade-off between quality guarantees
and timeliness of results. We also developed optimizations for effective pruning
and eager rejection of improbable answers. Our evaluation strategy drastically
reduces execution cost and offers answers of tolerable error, confirmed by an
extensive experimental study over massive synthetic datasets.

Probabilistic Range Monitoring of Streaming Uncertain Positions 37

References

1. Bernecker, T., Emrich, T., Kriegel, H.-P., Renz, M., Zankl, S., Züfle, A.: Effi-
cient Probabilistic Reverse Nearest Neighbor Query Processing on Uncertain Data.
PVLDB 4(10), 669–680 (2011)

2. Bernecker, T., Kriegel, H.-P., Mamoulis, N., Renz, M., Zuefle, A.: Continuous In-
verse Ranking Queries in Uncertain Streams. In: Bayard Cushing, J., French, J.,
Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp. 37–54. Springer, Heidelberg
(2011)

3. Böhm, C., Pryakhin, A., Schubert, M.: Probabilistic Ranking Queries on Gaussians.
In: SSDBM, pp. 169–178 (2006)

4. Chen, J., Cheng, R.: Efficient Evaluation of Imprecise Location-Dependent Queries.
In: ICDE, pp. 586–595 (2007)

5. Cheng, R., Xia, Y., Prabhakar, S., Shah, R., Vitter, J.S.: Efficient Indexing Meth-
ods for Probabilistic Threshold Queries over Uncertain Data. In: VLDB, pp. 876–
887 (2004)

6. Chow, C.-Y., Mokbel, M.F., Aref, W.G.: Casper*: Query Processing for Location
Services without Compromising Privacy. ACM TODS 34(4), 24 (2009)

7. Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.-L.: Private Queries
in Location Based Services: Anonymizers are not Necessary. In: SIGMOD, pp. 121–
132 (2008)

8. Ishikawa, Y., Iijima, Y., Xu Yu, J.: Spatial Range Querying for Gaussian-Based
Imprecise Query Objects. In: ICDE, pp. 676–687 (2009)

9. Kriegel, H.-P., Kunath, P., Pfeifle, M., Renz, M.: Probabilistic Similarity Join on
Uncertain Data. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006.
LNCS, vol. 3882, pp. 295–309. Springer, Heidelberg (2006)

10. Kriegel, H.-P., Kunath, P., Renz, M.: Probabilistic Nearest-Neighbor Query on
Uncertain Objects. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajee-
warawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 337–348. Springer, Hei-
delberg (2007)

11. Lian, X., Chen, L.: Ranked Query Processing in Uncertain Databases. IEEE
TKDE 22(3), 420–436 (2010)

12. Lian, X., Chen, L.: Similarity Join Processing on Uncertain Data Streams. IEEE
TKDE 23(11), 1718–1734 (2011)

13. Mascetti, S., Freni, D., Bettini, C., Wang, X.S., Jajodia, S.: Privacy in Geo-social
Networks: Proximity Notification with Untrusted Service Providers and Curious
Buddies. VLDB Journal 20(4), 541–566 (2011)

14. Pei, J., Hua, M., Tao, Y., Lin, X.: Query Answering Techniques on Uncertain and
Probabilistic Data: Tutorial Summary. In: SIGMOD, pp. 1357–1364 (2008)

15. Šikšnys, L., Thomsen, J.R., Šaltenis, S., Yiu, M.L.: Private and Flexible Proximity
Detection in Mobile Social Networks. In: MDM, pp. 75–84 (2010)

16. Tao, Y., Cheng, R., Xiao, X., Ngai, W., Kao, B., Prabhakar, S.: Indexing Multi-
Dimensional Uncertain Data with Arbitrary Probability Density Functions. In:
VLDB, pp. 922–933 (2005)

17. Tao, Y., Xiao, X., Cheng, R.: Range Search on Multidimensional Uncertain Data.
ACM TODS 32(3), 15 (2007)

18. Zhang, M., Chen, S., Jensen, C.S., Ooi, B.C., Zhang, Z.: Effectively Indexing Un-
certain Moving Objects for Predictive Queries. PVLDB 2(1), 1198–1209 (2009)

Probabilistic Frequent Pattern Growth
for Itemset Mining in Uncertain Databases

Thomas Bernecker, Hans-Peter Kriegel, Matthias Renz,
Florian Verhein, and Andreas Züfle

Institute for Informatics, Ludwig-Maximilians-Universität München, Germany
{bernecker,kriegel,renz,verhein,zuefle}@dbs.ifi.lmu.de

Abstract. Frequent itemset mining in uncertain transaction databases
semantically and computationally differs from traditional techniques ap-
plied on standard (certain) transaction databases. Uncertain transaction
databases consist of sets of existentially uncertain items. The uncertainty
of items in transactions makes traditional techniques inapplicable. In this
paper, we tackle the problem of finding probabilistic frequent itemsets
based on possible world semantics. In this context, an itemset X is called
frequent if the probability that X occurs in at least minSup transactions is
above a given threshold τ . We make the following contributions: We pro-
pose the first probabilistic FP-Growth algorithm (ProFP-Growth) and
associated probabilistic FP-tree (ProFP-tree), which we use to mine all
probabilistic frequent itemsets in uncertain transaction databases with-
out candidate generation. In addition, we propose an efficient technique
to compute the support probability distribution of an itemset in linear
time using the concept of generating functions. An extensive experimen-
tal section evaluates our proposed techniques and shows that our ap-
proach is significantly faster than the current state-of-the-art algorithm.

1 Introduction

Association rule analysis is one of the most important fields in data mining. It is
commonly applied to market-basket databases for analysis of consumer purchas-
ing behavior. Such databases consist of a set of transactions, each containing the
items a customer purchased. The most important and computationally intensive
step in the mining process is the extraction of frequent itemsets – sets of items
that occur in at least minSup transactions. It is generally assumed that the items
occurring in a transaction are known for certain. However, this is not always the
case. For instance;

– In many applications the data is inherently noisy, such as data collected by
sensors or in satellite images.

– In privacy protection applications, artificial noise can be added deliberately
[20]. Finding patterns despite this noise is a challenging problem.

– By aggregating transactions by customer, we can mine patterns across cus-
tomers instead of transactions. This produces estimated purchase probabil-
ities per item per customer rather than certain items per transaction.

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 38–55, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Probabilistic Frequent Pattern Growth 39

TID Transaction
1 (A, 1.0), (B, 0.2), (C, 0.5)
2 (A, 0.1), (D, 1.0))
3 (A, 1.0), (B, 1.0), (C, 1.0), (D, 0.4)
4 (A, 1.0), (B, 1.0), (D, 0.5)
5 (B, 0.1), (C, 1.0)
6 (C, 0.1), (D, 0.5)
7 (A, 1.0), (B, 1.0), (C, 1.0)
8 (A, 0.5), (B, 1.0)

Fig. 1. Uncertain Transaction Database (running example)

In such applications, the information captured in transactions is uncertain
since the existence of an item is associated with a likelihood measure or existen-
tial probability. Given an uncertain transaction database, it is not obvious how
to identify whether an item or itemset is frequent because we generally cannot
say for certain whether an itemset appears in a transaction. In a traditional
(certain) transaction database on the other hand, we simply perform a database
scan and count the transactions that include the itemset. This does not work in
an uncertain transaction database. An example of a small uncertain transaction
database is given in Figure 1, where for each transaction ti, each item x is listed
with its probability of existing in ti. Items with an existential probability of zero
can be omitted. We will use this dataset as a running example.

Prior to [6], expected support was used to deal with uncertain databases [8,9].
It was shown in [6] that the use of expected support had significant drawbacks
which led to misleading results. The proposed alternative was based on comput-
ing the entire probability distribution of itemsets’ support, and achieved this in
the same runtime as the expected support approach by employing the Poisson
binomial recurrence relation. [6] adopts an Apriori-like approach, which is based
on an anti-monotone Apriori property [3] (if an itemset X is not frequent, then
any itemset X ∪ Y is not frequent) and candidate generation. However, it is
well known that Apriori-like algorithms suffer a number of disadvantages. First,
all candidates generated must fit into main memory and the number of candi-
dates can become prohibitively large. Secondly, checking whether a candidate is
a subset of a transaction is non-trivial. Finally, the entire database needs to be
scanned multiple times. In uncertain databases, the effective transaction width is
typically larger than in a certain transaction database which in turn can increase
the number of candidates generated and the resulting space and time costs.

In certain transaction databases, the FP-Growth Algorithm [12] has become
the established alternative. By building an FP-tree – effectively a compressed
and highly indexed structure storing the information in the database – candidate
generation and multiple database scans can be avoided. However, extending this
idea to mining probabilistic frequent patterns in uncertain transaction databases
is non-trivial. It should be noted that previous extensions of FP-Growth to
uncertain databases used the expected support approach [1,13]. This is much
easier since these approaches ignore the probability distribution of support.

40 T. Bernecker et al.

In this paper, we propose a compact data structure called the probabilistic
frequent pattern tree (ProFP-tree) which compresses probabilistic databases and
allows the efficient extraction of the existence probabilities required to compute
the support probability distribution and frequentness probability. Additionally,
we propose the novel ProFPGrowth algorithm for mining all probabilistic fre-
quent itemsets without candidate generation.

1.1 Uncertain Data Model

The uncertain data model applied in this paper is based on the possible worlds
semantic with existential uncertain items.

Definition 1. An uncertain item is an item x ∈ I whose presence in a trans-
action t ∈ T is defined by an existential probability P (x ∈ t) ∈ (0, 1). A certain
item is an item where P (x ∈ t) ∈ {0, 1}. I is the set of all possible items.

Definition 2. An uncertain transaction t is a transaction that contains uncer-
tain items. A transaction database T containing uncertain transactions is called
an uncertain transaction database.

An uncertain transaction t is represented in an uncertain transaction database
by the items x ∈ I associated with an existential probability value 1 P (x ∈ t) ∈
(0, 1]. An example of an uncertain transaction databases is depicted in Figure
1. To interpret an uncertain transaction database we apply the possible world
model. An uncertain transaction database generates possible worlds, where each
world is defined by a fixed set of (certain) transactions. A possible world is
instantiated by generating each transaction ti ∈ T according to the occurrence
probabilities P (x ∈ ti). Consequently, each probability 0 < P (x ∈ ti) < 1 derives
two possible worlds per transaction: One possible world in which x exists in ti,
and one possible world where x does not exist in ti. Thus, the number of possible
worlds of a database increases exponentially in both the number of transactions
and the number of uncertain items contained in it. Each possible world w is
associated with a probability that that world exists, P (w).

Independence between items both within the same transaction, as well as in
different transaction is often assumed in the literature [9,8,1]. This can often be
justified by the assumption that the items are observed independently.

In this case, the probability of a world w is given by:

P (w) =
∏
t∈I

(
∏
x∈t

P (x ∈ t) ∗
∏
x/∈t

(1 − P (x ∈ t)))

Note that this assumption does not imply that the underlying instantiations of
an uncertain transaction databases will result in uncorrelated items, since the
set of items having non-zero probability in a transaction may be correlated.

1 If an item x has an existential probability of 0, it does not appear in the transaction.

Probabilistic Frequent Pattern Growth 41

Example 1. In the database of Figure 1, the probability of the world existing in
which t1 contains only items A and C and t2 contains only item D is P (A ∈
t1)∗(1−P (B ∈ t1))∗P (C ∈ t1)∗(1−P (A ∈ t2)∗P (D ∈ t2) = 1.0·0.8·0.5·0.9·1.0 =
0.36. For simplicity we omit the consideration of other customers in this example.

1.2 Problem Definition

An itemset is a frequent itemset if it occurs in at least minSup transactions,
where minSup is a user specified parameter. In uncertain transaction databases
however, the support of an itemset is uncertain; it is defined by a discrete prob-
ability distribution function (p.d.f). Therefore, each itemset has a frequentness
probability2 – the probability that it is frequent. In this paper, we focus on the
two distinct problems of efficiently calculating this p.d.f. and efficiently extract-
ing all probabilistic frequent itemsets;

Definition 3. A Probabilistic Frequent Itemset (PFI) is an itemset with a fre-
quentness probability of at least τ .

The parameter τ is the user specified minimum confidence in the frequentness
of an itemset.

We are now able to specify the Probabilistic Frequent Itemset Mining (PFIM)
problem as follows; Given an uncertain transaction database T , a minimum sup-
port scalar minSup and a frequentness probability threshold τ , find all proba-
bilistic frequent itemsets.

1.3 Contributions

We make the following contributions:

– We introduce the probabilistic Frequent Pattern Tree, or ProFP-tree, which
is the first FP-tree type approach for handling uncertain or probabilistic
data. This tree efficiently stores a probabilistic database and enables efficient
extraction of itemset occurrence probabilities and database projections.

– We propose ProFPGrowth, an algorithm based on the ProFPTree which
mines all itemsets that are frequent with a probability of at least τ without
using expensive candidate generation.

– We present an intuitive and efficient method based on generating functions
for computing the probability that an itemset is frequent, as well as the
entire probability distribution function of the support of an itemset, in O(|T |)
time3. Using our approach, our algorithm has the same time complexity as
the approach based on the Poisson Binomial Recurrence (denoted as dynamic
programming technique) in [6], but it is much more intuitive and thus offers
various advantages, as we will show.

2 Frequentness is the rarely used word describing the property of being frequent.
3 Assuming minSup is a constant.

42 T. Bernecker et al.

The remainder of this paper is organized as follows; Section 2 surveys related
work. In Section 3 we present the ProFP-tree, explain how it is constructed and
briefly introduce the concept of conditional ProFPTrees. Section 4 describes how
probability information is extracted from a (conditional) ProFP-tree. Section
5 introduces our generating function approach for computing the frequentness
probability and the support probability distribution in linear time. Section 6
describes how conditional ProFPT-rees are built. Finally, Section 7 describes
the ProFP-Growth algorithm by drawing together the previous sections. We
present our experiments in Section 8 and conclude in Section 9.

2 Related Work

There is a large body of research on Frequent Itemset Mining (FIM) but very lit-
tle work addresses FIM in uncertain databases [8,9,15]. The approach proposed
by Chui et. al [9] computes the expected support of itemsets by summing all
itemset probabilities in their U-Apriori algorithm. Later, in [8], they addition-
ally proposed a probabilistic filter in order to prune candidates early. In [15], the
UF-growth algorithm is proposed. Like U-Apriori, UF-growth computes frequent
itemsets by means of the expected support, but it uses the FP-tree [12] approach
in order to avoid expensive candidate generation. In contrast to our probabilis-
tic approach, itemsets are considered frequent if the expected support exceeds
minSup. The main drawback of this estimator is that information about the un-
certainty of the expected support is lost; [8,9,15] ignore the number of possible
worlds in which an itemset is frequent. [22] proposes exact and sampling-based
algorithms to find likely frequent items in streaming probabilistic data. However,
they do not consider itemsets with more than one item. The current state-of-
the-art (and only) approach for probabilistic frequent itemset mining (PFIM)
in uncertain databases was proposed in [6]. Their approach uses an Apriori-like
algorithm to mine all probabilistic frequent itemsets and the poisson binomial
recurrence to compute the support probability distribution function (SPDF).
We provide a faster solution by proposing the first probabilistic frequent pattern
growth approach (ProFP-Growth), thus avoiding expensive candidate genera-
tion and allowing us to perform PFIM in large databases. Furthermore, we use
a more intuitive generating function method to compute the SPDF.

Existing approaches in the field of uncertain data management and mining
can be categorized into a number of research directions. Most related to our work
are the two categories “probabilistic databases” [5,17,18,4] and “probabilistic query
processing” [10,14,21,19].

The uncertainty model used in our approach is very close to the model used
for probabilistic databases. A probabilistic database denotes a database com-
posed of relations with uncertain tuples [10], where each tuple is associated with
a probability denoting the likelihood that it exists in the relation. This model,
called “tuple uncertainty”, adopts the possible worlds semantics [4]. A probabilis-
tic database represents a set of possible “certain” database instances (worlds),
where a database instance corresponds to a subset of uncertain tuples. Each

Probabilistic Frequent Pattern Growth 43

instance (world) is associated with the probability that the world is “true”. The
probabilities reflect the probability distribution of all possible database instances.
In the general model description [18], the possible worlds are constrained by rules
that are defined on the tuples in order to incorporate object (tuple) correlations.
The ULDB model proposed in [5], which is used in Trio[2], supports uncertain
tuples with alternative instances which are called x-tuples. Relations in ULDB
are called x-relations containing a set of x-tuples. Each x-tuple corresponds to a
set of tuple instances which are assumed to be mutually exclusive, i.e. no more
than one instance of an x-tuple can appear in a possible world instance at the
same time. Probabilistic top-k query approaches [19,21,17] are usually associated
with uncertain databases using the tuple uncertainty model. The approach pro-
posed in [21] was the first approach able to solve probabilistic queries efficiently
under tuple independency by means of dynamic programming techniques. Re-
cently, a novel approach was proposed in [16] to solve a wide class of queries in
the same time complexity, but in a more elegant and also more powerful way us-
ing generating functions. In our paper, we adopt the generating function method
for the efficient computation of frequent itemsets in a probabilistic way.

3 Probabilistic Frequent-Pattern Tree (ProFP-tree)

In this section we introduce a novel prefix-tree structure that enables fast detec-
tion of probabilistic frequent itemsets without the costly candidate generation
or multiple database scans that plague Apriori style algorithms. The proposed
structure is based on the frequent-pattern tree (FP-tree [12]). In contrast to the
FP-tree, the ProFP-tree has the ability to compress uncertain transactions. If a
dataset contains no uncertainty it reduces to the (certain) FP-tree.

Definition 4 (ProFP-tree). A probabilistic frequent pattern tree is composed
of the following three components:

1. Uncertain item prefix tree: A root labeled “null” pointing to a set of prefix
trees each associated with uncertain item sequences. Each node n in a prefix
tree is associated with an (uncertain) item ai and consists of five fields:
– n.item denotes the item label of the node. Let path(n) be the set of items

on the path from root to n.
– n.count is the number of certain occurrences of path(n) in the database.
– n.uft, denoting “uncertain-from-this”, is the set of transaction ids (tids).

A transaction t is contained in uft if and only if n.item is uncertain in
t (i.e. 0 < P (n.item ∈ t) < 1) and P (path(n) ⊆ t) > 0.

– n.ufp, denoting “uncertain-from-prefix”, is a set of transaction ids. A
transaction t is contained in ufp if and only if n.item is certain in t
(P (n.item ∈ t) = 1) and 0 < P (path(n) ⊆ t) < 1.

– n.node− link links to the next node in the tree with the same item label
if there exists one.

44 T. Bernecker et al.

(a) Uncertain item prefix tree with item header table.

(1, B) → 0.2 (1, C) → 0.5 (2, A) → 0.1
(3, D) → 0.4 (4, D) → 0.5 (5, B) → 0.1
(6, C) → 0.1 (6, D) → 0.5 (8, A) → 0.5

(b) Uncertain-item lookup table.

Fig. 2. ProFPTree generated from the uncertain transaction database given in Figure 1

2. Item header table: This table maps all items to the first node in the Un-
certain item prefix tree

3. Uncertain-item lookup table: This table maps item, tid pairs to the prob-
ability that item appears in ttid for each transaction ttid contained in a uft
of a node n with n.item = item.

The two sets, uft and ufp, are specialized fields required in order to handle the
existential uncertainty of itemsets in transactions associated with path(n). We
need two sets in order to distinguish where the uncertainty of an itemset (path)
comes from. Generally speaking, the entries in n.uft are used to keep track
of existential uncertainties where the uncertainty is caused by n.item, while
the entries in ufp keep track of uncertainties of itemsets caused by items in
path(n) − n.item but where n.item is certain.

Figure 2 illustrates the ProFP-tree of our example database of Figure 1. Each
node of the uncertain item prefix tree is labeled by the field item. The labels
next to the nodes refer to the node fields count: uft ufp. The dotted lines denote
the node-links.

The ProFP-tree has the same advantages as a FP-tree, in particular: It avoids
repeatedly scanning the database since the uncertain item information is effi-
ciently stored in a compact structure. Secondly, multiple transactions sharing
identical prefixes can be merged into one with the number of certain occurrences
registered by count and the uncertain occurrences reflected in the transaction
sets uft and ufp.

Probabilistic Frequent Pattern Growth 45

(a) After inserting t1 and t2 (b) After inserting t1, t2 and t3

Fig. 3. Uncertain item prefix tree after insertion of the first transactions

3.1 ProFP-Tree Construction

For further illustration, we refer to our example database of Figure 1 and the
corresponding ProFP-tree in Figure 2. We assume that the (uncertain) items in
the transactions are lexicographically ordered, which is required for prefix tree
construction.

We first create the root of the uncertain item prefix tree labeled ”null ”. Then
we read the uncertain transactions one at a time. While scanning the first trans-
action t1, the first branch of the tree can be generated leading to the first path
composing entries of the form (item,count,uft,ufp,node-link). In our example, the
first branch of the tree is built by the following path:

<root,(A,1,[],[],null),(B,0,[1],[],null),(C,0,[1],[],null)>.
Note that the entry "1" in the field uft of the nodes associated with B and C

indicate that item B and C are uncertain in t1.
Next, we scan the second transaction t2 and update the tree structure ac-

cordingly. The itemset of transaction t2 shares its prefix with the previous one,
therefore we follow the existing path in the tree starting at the root. Since the
first item in t2 is existentially uncertain, i.e. it exists in t2 with a probability of
0.1, count of the first node in the path is not incremented. Instead, the current
transaction t2 is added to uft of this node. The next item in t2 does not match
with the next node on the path and, thus, we have to build a new branch leading
to the leaf node N with the entry (D,0,[],[2],null). Although item D is existen-
tially certain in t2 count of N is initialized with zero, because the itemset A,D
associated with the path from the root to node N is existentially uncertain in t2
due to the existential uncertainty of item A. Hence, we add transaction t2 to the
uncertain-from-prefix (ufp) field of n. The resulting tree is illustrated in Figure
3(a).

46 T. Bernecker et al.

The next transaction to be scanned is transaction t3. Again, due to match-
ing prefixes we follow the already existing path <A,B,C>4 while scanning the
(uncertain) items in t3. The resulting tree is illustrated in Figure 3(b). Since the
first item A is existentially certain, count of the first node in the prefix path is
incremented by one. The next items, item B and C, are registered in the tree
in the same way by incrementing the count fields. The rational for these count
increments is that the corresponding itemsets are existentially certain in t3. The
final item D is processed by adding a new branch below the node C leading to
a new leaf node with the fields: (D,0,[3],[],ptr), where the link ptr points to the
next node in the tree labeled with item label D. Since item D is existentially
uncertain in t3 the count field is initialized with 0 and t3 is registered in the
uft set. The uncertain item prefix tree is completed by scanning all remaining
transactions in a similar fashion.

For details of the ProFP-tree construction algorithm, please refer to Algorithm
1 in the extended version of this paper [7].

3.2 Construction Analysis

The construction of the ProFP-tree requires a single scan of the uncertain trans-
action database T . For each processed transaction we must follow and update
or construct a single path of the tree, of length equal to the number of items in
the corresponding transaction. Therefore the ProFP-tree is constructed in linear
time w.r.t. to size of the database.

Since the ProFP-tree is based on the original FP-tree, it inherits its compact-
ness properties. In particular, the size of a ProFP-tree is bounded by the overall
occurrences of the (un)certain items in the database and its height is bounded by
the maximal number of (un)certain items in a transaction. For any transaction
ti in T , there exists exactly one path in the uncertain item prefix tree starting
below the root node. Each item in the transaction database can create no more
than one node in the tree and the height of the tree is bounded by the number
of items in a transaction (path). Note that as with the FP-tree, the compression
is obtained by sharing common prefixes.

We now show that the values stored at the nodes do not affect the bound
on the size of the tree. In particular, in the following Lemma we bound the
uncertain-from-this (uft) and uncertain-from-prefix (ufp) sets.

Lemma 5. Let T be the uncertain item prefix tree generated from an uncertain
transaction database T . The total space required by all the transaction-id sets
(uft and ufp) in all nodes in T is bounded by the the total number of uncertain
occurrences5 in T .

The rational for the above lemma is that each occurrence of an uncertain item
(with existence probability in (0, 1)) in the database yields at most one
transaction-id entry in one of the transaction-id sets assigned to a node in the
4 For illustration purposes, we use the item fields to address the nodes in a path.
5 Entries in transactions with an existential probability in (0, 1).

Probabilistic Frequent Pattern Growth 47

tree. In general there are three update possibilities for a node N : If the current
item and all prefix items in the current transaction ti are certain, there is no
new entry in uft or ufp as count is incremented. ti is registered in N.uft if and
only if N.item is existentially uncertain in ti while ti is registered in N.ufp if
and only if N.item is existentially certain in in ti but at least one of the prefix
items in ti is existentially uncertain. Therefore each occurrence of an item in T
leads to either a count increment or a new entry in uft or ufp.

Finally, it should be clear that the size of the uncertain item lookup table is
bounded by the number of uncertain (> 0 and < 1) entries in the database.

In this section we showed that the ProFP-tree inherits the compactness of the
original FP-tree. In the following Section we show that the information stored
in the ProFP-tree suffices to retrieve all probabilistic information required for
PFIM, thus proving completeness.

4 Extracting Certain and Uncertain Support
Probabilities

Unlike the (certain) FP-Growth approach, where extracting the support of an
itemset X is easily achieved by summing the support counts along the node-
links for X in a suitable conditional ProFPTree, we are interested in the support
distribution of X in the probabilistic case. For that however, we first require both
the number of certain occurrences as well as the probabilities 0 < P (X ∈ ti) < 1.
Both can be efficiently obtained using the ProFP-tree. To obtain the certain
support of an item x, follow the node-links from the header table and accumulate
both the counts and the number of transactions in which x is uncertain-from-
prefix. The latter is counted since we are interested in the support of x and by
construction, transactions in ufp are known to be certain for x. To find the set
of transaction ids in which x is uncertain, follow the node-links and accumulate
all transactions that are in the uncertain-from-this (uft) list.

Example 2. By traversing the node-list, we can calculate the certain support for
item C in the ProFP -tree in Figure 2 by: 2+ |∅|+ |{t5}|+ |∅| = 3. Note there is
one transaction in which C is uncertain-from-prefix (t5). Similarly, we find that
the only transactions in which C is uncertain are t1 and t6. The exact appear-
ance probabilities in these transactions can be obtained from the uncertain-item
lookup table. By comparing this to Figure 1 we see that the tree allows us to
obtain the correct certain support and the transaction ids where C is uncertain.

To compute the support of an itemset X = {a, ..., k}, we use the conditional tree
for items b, ..., k and extract the certain support and uncertain transaction ids for
a. Since it is somewhat involved, we defer the construction of conditional ProFP-
trees to Section 6. By using the conditional tree, the above method provides
the certain support of X and the exact set of transaction ids in which X is
uncertain (utids). To compute the probabilities P (X ∈ ti) : ti ∈ utids we use
the independence assumption and multiply, for each x ∈ X the probability that
x appears in ti. Recall that the probability that X appears in ti is an O(1)

48 T. Bernecker et al.

lookup in the uncertain-item lookup table. Recall that if additional information
is given on the dependencies between items, this can be incorporated here.

We have now described how the certain support and all probabilities P (X ∈
t) : X uncertain in t can be efficiently computed from the ProFPTree (Algorithm
2 in the extended version of this paper [7]). Section 5 shows how we use this
information to calculate the support distribution of X .

5 Efficient Computation of Probabilistic Frequent
Itemsets

This section presents our linear-time technique for computing the probabilistic
support of an itemset using generating functions. The problem is as follows:

Definition 6. Given a set of N mutually independent but not necessarily iden-
tical Bernoulli (0/1) random variables P (X ∈ ti), 1 ≤ i ≤ N , compute the
probability distribution of the random variable Sup =

∑i=1
N Xi

A naive solution would be to count for each 0 ≤ k ≤ N all possible worlds in
which exactly k items contain X and accumulate the respective probabilities.
This approach however, shows a complexity of O(2N). In [6] an approach has
been proposed that achieves an O(N) complexity using Poisson Binomial Recur-
rence. Note that O(N) time is asymptotically optimal in general, since the com-
putation involves at least O(N) computations, namely P (X ∈ ti)∀1 ≤ i ≤ N .
In the following, we propose a different approach that, albeit having the same
linear asymptotical complexity, has other advantages.

5.1 Efficient Computation of Probabilistic Support

We apply the concept of generating functions as proposed in the context of
probabilistic ranking in [16]. Consider the function: F(x) =

∏n
i=1(ai + bix).

The coefficient of xk in F(x) is given by:
∑

|β|=k

∏
i:βi=0 ai

∏
i:βi=1 bi, where

β = 〈β1, ..., βN 〉 is a Boolean vector, and |β| denotes the number of 1‘s in β.
Now consider the following generating function:

F i =
∏

t∈{t1,...ti}
(1 − P (X ∈ t) + P (X ∈ t) · x) =

∑
j∈{0,...,i}

cjx
j

The coefficient cj of xj in the expansion of F i is exactly the probability that X
occurs in exactly j if the first i transactions; that is, the probability that the
support of X is j in the first i transactions. Since F i contains at most i + 1
nonzero terms and by observing that

F i = F i−1 · (1 − P (X ∈ ti) + P (X ∈ ti)x)

we note that F i can be computed in O(i) time given F i−1. Since F0 = 1x0 = 1,
we conclude that FN can be computed in O(N2) time. To reduce the complexity
to O(N) we exploit that we only need to consider the coefficients cj in the
generating function F i where j < minSup, since:

Probabilistic Frequent Pattern Growth 49

– The frequentness probability of X is defined as P (X is frequent)=P (Sup(X)
≥ minSup)) = 1 − P (Sup(X) < minSup) = 1 −

∑minSup−1
j=0 cj

– A coefficient cj in F i is independent of any ck in F i−1 where k > j. That
means in particular that the coefficients ck, k ≥ minSup are not required to
compute the ci, i < minSup.

Thus, keeping only the coefficients cj where j < minSup, F i contains at most
minSup coefficients, leading to a total complexity of O(minSup ·N) to compute
the frequentness probability of an itemset.

Example 3. As an example, consider itemset {A, D} in the running example
database in Figure 1. Using the ProFP-tree (c.f. Figure 2(a)), we can efficiently
extract, for each transaction ti, the probability P ({A, D} ∈ ti), where 0 <
P ({A, D} ∈ ti) < 1 and also the number of certain occurrences of {A, D}.
Itemset {A, D} certainly occurs in no transaction and occurs in t2,t3 and t4
with a probability of 0.1, 0.4 and 0.5 respectively. Let minSup be 2:

F1 = F0 · (0.9 + 0.1x) = 0.1x1 + 0.9x0

F2 = F1 · (0.6 + 0.4x) = 0.04x2 + 0.42x1 + 0.54x0 ∗
= 0.42x1 + 0.54x0

F3 = F2 · (0.5 + 0.5x) = 0.21x2 + 0.48x1 + 0.27x0

∗
= 0.48x1 + 0.27x0

Thus, P (sup({A, D}) = 0) = 0.27 and P (sup({A, D}) = 1) = 0.48. We get that
P (sup({A, D}) ≥ 2) = 0.25. Thus, {A,D} is not returned as a frequent itemset
if τ is greater than 0.25. Equations marked by a * exploit that we only need to
compute the cj where j < minSup.

Note that at each iteration of computing F i, we can check whether 1 −∑
i<minSup ci ≥ τ and if that is the case, we can stop the computation and

conclude that the respective itemset (for which F is the generating function)
is frequent. Intuitively, the reason is that if an itemset X is already frequent
considering the first i transactions only, X will still be frequent if more transac-
tions are considered. This intuitive pruning criterion corresponds to the pruning
criterion proposed in [6] for the Poisson Binomial Recurrence approach.

We remark that the generating function technique can be seen as a variant of
the Poisson Binomial Recurrence. However, using generating functions instead of
the complicated recursion formula gives us a much cleaner view on the problem.
In addition, using generating functions, the support probability density func-
tion (sPDF) can be updated easily if a transaction ti changes its probability of
containing an itemset X . That is, if the probability p = P (X ∈ ti) changes to
p′, then we can simply obtain the expanded polynomial from the old sPDF and
divide it by px + (1 − p) (using polynomial division) to remove the effect of ti
and multiply p′x+(1−p′) to incorporate the new probability of ti containing X .
That is, F i′(x) = F i(x) : (px+1−p)× (p′x+1−p′), where F i′ is the generating
function of the sPDF of X in the changed database containing t′i.

50 T. Bernecker et al.

6 Extracting Conditional ProFP-Trees

This section describes how conditional ProFP-trees are constructed from other
(potentially conditional) ProFP-trees. The method for doing this is more in-
volved than the analogous operation for the certain FPGrowth algorithm, since
we must ensure that the information capturing the source of the uncertainty
remains correct. That is, whether the uncertainty at that node comes from the
prefix or from the present node. Recall from Section 4 that this is required in
order to extract the correct probabilities from the tree. A conditional ProFP-tree
for itemset X (treeX) is equivalent to a ProFP-tree built on only those trans-
actions in which X occurs with a non-zero probability. In order to generate a
conditional ProFP-tree for itemset X ∪ i (treeX∪i) where i occurs lexicograph-
ically prior to any item in X , we first begin with the conditional ProFP-tree
for X . When X = ∅, treeX is simply the complete ProFP-tree. We construct
treeX∪i by propagating the values at the nodes with item = i upwards and ac-
cumulating these at the nodes closer to the root (cf. Algorithm 3 in the extended
version of this paper [7]) . Let Ni be the set of nodes with item = i (These are
obtained by following the links from the header table). The values for every node
n in the resulting conditional tree treeX∪i are calculated as follows:

– n.count =
∑

ni∈Ni
ni.count since these represent certain transactions.

– n.uft = ∪ni.uft|ni ∈ Ni since we are conditioning on an item that is uncer-
tain in these transactions and hence any node in the final conditional tree
will also be uncertain for these transactions.

– When collecting transactions for n that are uncertain from the prefix (i.e. t ∈
ufp), we must determine whether the item n.item caused this uncertainty.
If the corresponding node in treeX contained transaction t in ufp, then t
is also in n.ufp (n.item was not uncertain in t). If n.item was uncertain in
t, then the corresponding node in treeX would have t listed in uft and this
must also remain the case for the conditional tree. If t ∈ n.ufp is neither in
the corresponding ufp nor uft in treeX , then it must be certain for n.item
and n.count is incremented. Thus, we can avoid storing all transactions for
which an item is certain. This is a key idea in our ProFP-tree.

7 ProFP-Growth Algorithm

We have now described the three fundamental operations of the ProFP-Growth
Algorithm; building the ProFPTree (Section 3); efficiently extracting the certain
support and uncertain transaction probabilities from it (Section 4); calculating
the frequentness probability and determining whether an item(set) is a proba-
bilistic frequent itemset (Section 5); and construction of the conditional ProF-
PTrees (Section 6). Together with the fact that probabilistic frequent itemsets
possess an antimonotonicity property (Lemma 17 in [6]), we can use a similar
approach to the certain FPGrowth algorithm to mine all probabilistic frequent
itemsets. Since, in principle, this is not substantially different from substituting
the corresponding steps in FP-Growth, we omit further details.

Probabilistic Frequent Pattern Growth 51

(a) Total runtime (b) Tree generation

(c) Tree size (Synthetic) (d) Tree size (ACC)

Fig. 4. Scalability w.r.t. the number of transactions

8 Experimental Evaluation

In this section, we present performance experiments using our proposed ProFP-
Growth algorithm and compare the results to the Apriori-based solution (denoted
as ProApriori) presented in [6]. We also analyze how various database charac-
teristics and parameter settings affect the performance of ProFP − Growth.

All experiments were performed on an Intel Xeon with 32 GB of RAM and
a 3.0 GHz processor. For the first set of experiments, we used artificial datasets
with a variable number of transactions and items. Each item x has a probability
P1(x) of appearing for certain in a transaction, and a probability P0(x) of not
appearing at all in a transaction. With a probability 1 − P0(x) − P1(x) item x
is therefore uncertain in a transaction. In this case, the probability that x exists
in a transaction is picked randomly from a uniform (0, 1) distribution.

For our scalability experiments, we scaled the number of items and transac-
tions and chose P0(x) = 0.5 and P1(x) = 0.2 for each item. We measured the run
time required to mine all probabilistic frequent itemsets that have a minimum
support of 10% of the database size with a probability of a least τ = 0.9.

52 T. Bernecker et al.

(a) Runtime (b) Tree size

Fig. 5. Scalability with respect to the number of items

8.1 Scalability

We scaled the number of transactions and used 20 items (cf. Figure 4(a)). In this
setting, our approach significantly outperforms ProApriori [6]. The time required
to build the ProFP-tree w.r.t. the number of transactions is depicted in Figure
4(b). The observed linear run time indicates a constant time required to insert
transactions into the tree. This is expected since the maximum height of the
ProFP-tree is equal to the number of items. Finally, we evaluated the size of the
ProFP-tree for this experiment, shown in Figure 4(c). The number of nodes in the
ProFP-tree increases and then plateaus as the number of transactions increases.
This is because new nodes have to be created for those transaction where a suffix
of the transaction is not yet contained in the tree. As the number of transactions
increases, the overlap between transaction prefixes increases, requiring fewer new
nodes to be created. It is expected that this overlap increases faster if the items
are correlated. Therefore, we evaluate the size of the ProFP-tree on subsets
of the real-world dataset accidents6, denoted by ACC. It consists of 340, 184
transactions and a reduced number of 20 items whose occurrences in transactions
were randomized; with a probability of 0.5, each item appearing for certain in a
transaction was assigned a value drawn from a uniform distribution in (0, 1]. We
varied the number of transactions from ACC up to the first 300, 000. As can be
seen in Figure 4(d), there is more overlap between transactions since the growth
in the number of nodes used is slower (compared to Figure 4(c)).

Next, we scaled the number of items using 1, 000 transactions. The run times
for 5 to 100 items can be seen in Figure 5(a), which shows the expected ex-
ponential runtime inherent in FIM problems. It can be clearly seen that the
ProFP-Growth approach vastly outperforms ProApriori. Figure 5(b) shows the
number of nodes used in the ProFP-tree. Except for very few items, the number
of nodes in the tree grows linearly.

6 The accidents dataset [11] was derived from the Frequent Itemset Mining Dataset
Repository (http://fimi.cs.helsinki.fi/data/)

Probabilistic Frequent Pattern Growth 53

(a) Varying the probability of certain oc-
currences (uncertain occurrences are fixed)

(b) Varying the probability of uncertain
occurrences (certain occurrences are fixed)

Fig. 6. Effect of (un)certainty on the ProFP-tree size and uncertain item lookup table

8.2 Effect of Uncertainty and Certainty

In this experiment, we set the number of transactions to 1, 000 and the number
of items to 20 and varied the parameters P0(x) and P1(x).

First, we fixed the probability that items are uncertain (1 − P0(x) − P1(x))
at 0.3 and successively increased P1(x) from 0 (which means that no items exist
for certain) to 0.7 (cf. Figure 6(a)). It can be observed that the number of nodes
initially increases. This is what we would expect, since more items existing in
the database increases the nodes required. However, as the number of certain
items increases, an opposite effect reduces the number of nodes in the tree. This
effect is caused by the increasing overlap of the transactions – in particular, the
increased number and length of shared prefixes. When P1(x) reaches 0.7 (and
thus P0(x) = 0), each item is contained in each transaction with a probability
greater than zero, and thus all transactions contain the same items with non-zero
probability. In this case, the ProFP-tree degenerates to a linear list containing
exactly one node for each item. Note that the size of the uncertain item lookup
table is constant, since the expected number of uncertain items is constant at
0.3 · |T | · |I| = 0.3 · 1, 000 · 20 = 6, 000. In Figure 6(b) we fixed P1(x) at 0.2 and
successively decreased P0(x) from 0.8 to 0, thus increasing the probability that
items are uncertain from 0 to 0.8. We see a similar pattern as in Figure 6(a)
for the number of nodes, for similar reasons. As expected here, the size of the
lookup table increases as the number of uncertain items increases.

8.3 Effect of minSup

Here, we varied the minimum support threshold minSup using an artificial
database of 10, 000 transactions and 20 items. Figure 7 shows the results. For
low values of minSup, both algorithms have a high run time due to the large
number of probabilistic frequent itemsets. It can be observed that ProFP-Growth
significantly outperforms ProApriori for all settings of minSup.

54 T. Bernecker et al.

Fig. 7. Effect of minSup

9 Conclusion

The Probabilistic Frequent Itemset Mining (PFIM) problem is to find itemsets
in an uncertain transaction database that are (highly) likely to be frequent.
This problem has two components; efficiently computing the support probability
distribution and frequentness probability, and efficiently mining all probabilistic
frequent itemsets. To solve the first problem in linear time, we proposed a novel
method based on generating functions. To solve the second problem, we proposed
the first probabilistic frequent pattern tree and pattern growth algorithm. We
demonstrated that this significantly outperforms the current state of the art
approach to PFIM.

References

1. Aggarwal, C.C., Li, Y., Wang, J., Wang, J.: Frequent pattern mining with uncertain
data. In: Proceedings of the 15th ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD), Paris, France (2009)

2. Agrawal, P., Benjelloun, O., Sarma, A.D., Hayworth, C., Nabar, S., Sugihara, T.,
Widom, J.: Trio: A system for data, uncertainty, and lineage. In: Proceedings of the
32nd International Conference on Very Large Data Bases (VLDB), Seoul, Korea
(2006)

3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceed-
ings of the ACM International Conference on Management of Data (SIGMOD),
Minneapolis, MN (1994)

4. Antova, L., Jansen, T., Koch, C., Olteanu, D.: Fast and simple relational processing
of uncertain data. In: Proceedings of the 24th International Conference on Data
Engineering (ICDE), Cancun, Mexico (2008)

5. Benjelloun, O., Sarma, A.D., Halevy, A., Widom, J.: ULDBs: Databases with un-
certainty and lineage. In: Proceedings of the 32nd International Conference on Very
Large Data Bases (VLDB), Seoul, Korea, pp. 1249–1264 (2006)

6. Bernecker, T., Kriegel, H.-P., Renz, M., Verhein, F., Züfle, A.: Probabilistic fre-
quent itemset mining in uncertain databases. In: Proceedings of the 15th ACM
International Conference on Knowledge Discovery and Data Mining (SIGKDD),
Paris, France, pp. 119–128 (2009)

Probabilistic Frequent Pattern Growth 55

7. Bernecker, T., Kriegel, H.-P., Renz, M., Verhein, F., Züfle, A.: Probabilistic fre-
quent pattern growth for itemset mining in uncertain databases (technical report).
Computing Research Repository, abs/1008.2 (2010)

8. Chui, C.-K., Kao, B.: A Decremental Approach for Mining Frequent Itemsets
from Uncertain Data. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.)
PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 64–75. Springer, Heidelberg (2008)

9. Chui, C.-K., Kao, B., Hung, E.: Mining Frequent Itemsets from Uncertain Data.
In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426,
pp. 47–58. Springer, Heidelberg (2007)

10. Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. The
VLDB Journal 16(4), 523–544 (2007)

11. Geurts, K., Wets, G., Brijs, T., Vanhoof, K.: Profiling high frequency accident lo-
cations using association rules. In: Proceedings of the 82nd Annual Transportation
Research Board, Washington, DC, USA, January 12-16, p. 18 (2003)

12. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
SIGMOD Rec. 29(2), 1–12 (2000)

13. Leung, M.M.K., Brajczuk, D.: A Tree-Based Approach for Frequent Pattern Mining
from Uncertain Data. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.)
PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 653–661. Springer, Heidelberg (2008)

14. Kriegel, H.-P., Kunath, P., Pfeifle, M., Renz, M.: Probabilistic Similarity Join on
Uncertain Data. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006.
LNCS, vol. 3882, pp. 295–309. Springer, Heidelberg (2006)

15. Leung, C.K.-S., Carmichael, C.L., Hao, B.: Efficient mining of frequent patterns
from uncertain data. In: ICDMW 2007: Proceedings of the Seventh IEEE Interna-
tional Conference on Data Mining Workshops, pp. 489–494 (2007)

16. Li, J., Saha, B., Deshpande, A.: A unified approach to ranking in probabilistic
databases. Proceedings of the VLDB Endowment 2(1), 502–513 (2009)

17. Ré, C., Dalvi, N., Suciu, D.: Efficient top-k query evaluation on probalistic
databases. In: Proceedings of the 23rd International Conference on Data Engi-
neering (ICDE), Istanbul, Turkey (2007)

18. Sen, R., Deshpande, A.: Representing and querying correlated tuples in proba-
bilistic databases. In: Proceedings of the 23rd International Conference on Data
Engineering (ICDE), Istanbul, Turkey (2007)

19. Soliman, M.A., Ilyas, I.F., Chang, K.C.-C.: Top-k query processing in uncertain
databases. In: Proceedings of the 23rd International Conference on Data Engineer-
ing (ICDE), Istanbul, Turkey, pp. 896–905 (2007)

20. Xia, Y., Yang, Y., Chi, Y.: Mining association rules with non-uniform privacy
concerns. In: DMKD 2004: Proceedings of the 9th ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery, pp. 27–34 (2004)

21. Yi, K., Li, F., Kollios, G., Srivastava, D.: Efficient processing of top-k queries in
uncertain databases. In: Proceedings of the 24th International Conference on Data
Engineering (ICDE), Cancun, Mexico (2008)

22. Zhang, Q., Li, F., Yi, K.: Finding frequent items in probabilistic data. In: Proceed-
ings of the ACM International Conference on Management of Data (SIGMOD),
Vancouver, BC, pp. 819–832 (2008)

Evaluating Trajectory Queries
over Imprecise Location Data

Xike Xie1,�, Reynold Cheng2, and Man Lung Yiu3

1 Aalborg University, Denmark
xkxie@cs.aau.dk

2 University of Hong Kong, Pokfulam Road, Hong Kong
ckcheng@cs.hku.hk

3 Hong Kong Polytechnic University, Hung Hom, Hong Kong
csmlyiu@comp.polyu.edu.hk

Abstract. Trajectory queries, which retrieve nearby objects for every point of a
given route, can be used to identify alerts of potential threats along a vessel route,
or monitor the adjacent rescuers to a travel path. However, the locations of these
objects (e.g., threats, succours) may not be precisely obtained due to hardware
limitations of measuring devices, as well as the constantly-changing nature of
the external environment. Ignoring data uncertainty can render low query quality,
and cause undesirable consequences such as missing alerts of threats and poor re-
sponse time in rescue operations. Also, the query is quite time-consuming, since
all the points on the trajectory are considered. In this paper, we study how to ef-
ficiently evaluate trajectory queries over imprecise location data, by proposing a
new concept called the u-bisector. In general, the u-bisector is an extension of bi-
sector to handle imprecise data. Based on the u-bisector, we design several novel
filters to make our solution scalable to a long trajectory and a large database
size. An extensive experimental study on real datasets suggests that our pro-
posal produces better results than traditional solutions that do not consider data
imprecision.

1 Introduction

Given a set P of points, the Trajectory Nearest Neighbor Query (TNNQ in short) [1],
retrieves the closest object in P for every query point on the given trajectory T . As
an example, consider the trajectory T = {[q1, q2], [q2, q3], [q3, q4]} and objects P =
{o1, o2, o3}, shown in Figure 1(a). The TNNQ’s answer is as Figure 1(b). It means for
all points on [s′0, s

′
1], the nearest neighbor is o1, etc. The TNNQ can find applications in

location-based service (LBS in short), such as “what is the nearest gas station along the
travel route”.

Unfortunately, the measured location of an object is often imprecise because of: (i)
limited resolution of the measure device, (ii) infrequent measurement, (iii) environmen-
tal factors. For example, the shipping industries regard safety as their top priority. They
hope to identify alerts of potential threats along the route of a vessel in advance, and
take appropriate actions if necessary. People in the US and Northern Europe detect the

� This work was done in the University of Hong Kong.

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 56–74, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Evaluating Trajectory Queries over Imprecise Location Data 57

icebergs by remote sensors and satellite imaging [2], which have limited measurement
accuracy and frequency. Sensors have limited battery capacity whereas satellite imag-
ing incurs expensive deployment cost. This causes infrequent measurements, rendering
the measured location of an object stale. Furthermore, as time passes by, icebergs may
move according to the temperature and the ocean current / wind speed. In the LBS ex-
ample, what if the objects being queried are not static but moving constantly (e.g. rescue
vehicles positioned by GPS devices)? Again, locations obtained by GPS devices can be
contaminated with measurement error, which can be further deteriorated by terrain and
climate conditions [3]. Also, the positions could be tracked only periodically due to the
limited battery powers [4].

Segment Result

[s′0, s
′
1] o1

[s′1, s
′
2] o2

[s′2, s
′
3] o3

(a) precise objects (b) result

o3

o2

o1 s1

q1

q2
q3

q4

s2 s3
s4

(s0)
(s5)

Segment Result

[s0, s1] o1
[s1, s2] o1, o2
[s2, s3] o2
[s3, s4] o2, o3
[s4, s5] o3

(c) imprecise objects (d) result

Fig. 1. Example Trajectory Query

A common way to represent an imprecise location or a moving object is to model
the position by an area called imprecise region [4,5,6,7,8,9,10]. The possible location
of the object is assumed to be within this region. Figure 1(c) shows a query trajectory
T = {[q1, q2], [q2, q3], [q3, q4]} and some imprecise objects o1, o2, o3. The result (Fig-
ure 1(d)) can be represented in a compact way by partitioning the query trajectory into
segments such that all locations within the same segment share the same result set. For
example, o2 is definite nearest neighbor to the segment [s2, s3]. On the other hand, o1
and o2 are possible nearest neighbors (PNNs) to the segment [s1, s2] because both of
them have potential to be the closest object. We define this query as Trajectory Possi-
ble Nearest Neighbor Query (TPNNQ in short). Note that [1] is a special case of our
problem, where the objects being queried are precise points.

Determining the TPNNQ answer can be technically challenging, since the imprecise
regions are considered. A simple solution is to replace the imprecise region of each
object with a center point (shown as a grey dot), as illustrated in the scenario in Fig-
ure 1(a) and (b). The result consists of three segments, each associated with the closest
object. For instance, the closest object to location q2 appears to be o1 only. The object
o2 is missing from the result. Recall from Figure 1(c) and (d) that o2 also has possi-
bility to become a closest object to location q2. This “center simplification” approach

58 X. Xie, R. Cheng, and M.L. Yiu

causes undesirable consequences such as missing alerts of threats and poor response
time in our applications. In the vessel/rescuer example, the ignorance of the imprecise
region could cause potential danger. Thus, it is important to augment each threat with
an imprecise region, in order to foresee the worst-case scenario. In the rescuer example,
a rescue vehicle seemingly close to / far from the travel path may be actually far from /
close to it. Thus, it would take longer time to respond. It is better to call up all rescuers
likely to be the closest, in order to handle the emergency as soon as possible.

Another attempt to simplify the problem is to use a “sampling approach”, which con-
siders positions at every fixed length on the query trajectory, and compute the potential
nearby objects at each position. However, if the sampling rate is high, it incurs a huge
computation cost; on the other hand, a low sampling rate can result in many answers
missing. Notice that a query trajectory consists of infinite number of possible locations,
and it is not easy to determine the sampling rate. As shown in Figure 1(c), the result
set changes only at a few positions (s1, s2, s3, s4). It is not clear how to determine the
correct sampling rate to in order to get these answers. In fact, our experimental results
show that replacing imprecise regions with points or sampling the trajectory cannot pro-
vide an accurate solution. Hence, we develop a solution that can accurately compute a
trajectory query on imprecise objects.

The techniques of [1] cannot be readily applied to evaluate TPNNQ. [1]’s idea is to
use the (perpendicular) bisectors of every pair of points to derive the query answer. For
example, in Figure 1(a), the point s′1 is the intersection between the query trajectory
and the bisector of objects o1 and o2, which are shown as dashed lines. Similarly, s′2 is
derived by o2 and o3’s bisector. However, the bisector, which forms the basis of [1], is
limited to precise points.

We extend the concept of “bisectors” to support imprecise objects, called u-bisector.
Figure 2 illustrates the corresponding u-bisectors for circular and rectangular imprecise
regions. From this figure, we can see that the u-bisector is not a straight line anymore.
It becomes a pair of lines, which partition the domain space into three parts: (1) the
left area, containing points q where Oi is absolutely closer to q than Oj ; (2) the right
partition, consisting of points q′ where Oj is absolutely closer to q′ than Oi; and (3)
the middle part, having points q′′ where both Oi and Oj can be the nearest to q′′. We

Fig. 2. u-bisector for imprecise regions

Evaluating Trajectory Queries over Imprecise Location Data 59

demonstrate how to use conceptually the intersection points of the query trajectory and
the u-bisectors to answer a trajectory query.

In practice, it is expensive to compute the intersections points between the query tra-
jectory and the u-bisectors. As shown in Figure 2, these u-bisectors can be hyperbolic
curves (Figure 2(a)), or segments of straight lines/curves (Figure 2(b)). Even for one u-
bisectors, they can intersect the query trajectory at more than one point. We first design
a Basic solution, which answers the query in O(ln2logn) (n:database size; l:trajectory
length). To make our solution scalable to large datasets and long trajectories, we de-
sign a filter-refinement framework. In the filtering phase, candidate objects that may
be the closest to each answer line-segment are obtained. In the refinement phase, we
develop a novel technique called ternary decomposition, which can derive the final an-
swers accurately. We show theoretically and experimentally that our solution is efficient
and scalable. It is also more accurate than the center simplification and the sampling
approaches. We assume the imprecise regions are of circular shapes for simplicity. Ac-
tually, our method is also general to other shaped objects. It would not be discussed due
to page limitations.

The rest of this paper is as follows. In Section 2 we discuss the related work. Sec-
tion 3 defines the problem and a basic solution based on the u-bisectors. We present our
solution framework in Section 4. The filtering and refinement phases are described in
Sections 5 and 6. In Section 7 we present our experiment results. Section 8 concludes.

2 Related Work

Nearest neighbor (NN) query for moving query points is a well studied
topic [11] [12] [13] [1]. These works focus on reducing the computational cost at the
server. Among these works, there are two major categories.

The first category does not require the user’s entire trajectory in ad-
vance [11] [12] [13], but processes the query online (multiple times) based on the user’s
moving location. In [11], the authors propose sampling techniques to answer the mov-
ing NN query. They study how to calculate the upper-bound distance within which the
moving point does not issue a new query to the server. [12] [13] use validity region and
validity time for the query answer of moving points. They use Voronoi cells to represent
the validity region. The query answer becomes invalid if the validity time is expired or
the user leaves the validity region.

The second category assumes that the user’s trajectory is known in advance. It evalu-
ates the query once only [1] [4]. In our application, the trajectory, such as sailing routes,
is known in advance. Thus, we elaborate the second category in details. In [1], the route
of the query point is split into sub-line-segments, such that the NN answer within the
same sub-line-segment remains unchanged. A perpendicular bisector⊥(pi, pj) between
two points pi and pj is used to partition the trajectory query into two sub-trajectories,
one being definitely closer to pi and the other being definitely closer to pj . However,
this technique is not applicable to our problem on imprecise location data. As shown in
Figure 1, some segments like [s1, s2] can have multiple PNNs and it is challenging to
derive them.

The bisector for imprecise objects has been addressed by a few works recently
[5] [6] [7]. They use bisectors to determine the dominance relationship between

60 X. Xie, R. Cheng, and M.L. Yiu

objects. Our work is different because we consider a query trajectory, but not a query
object. For the trajectory, our solution is capable of answering the query for every point
it.

The paper [4] is closely related to our problem. It also uses an imprecise region
to model the location of an object and compute the object closest to a given query
segment. Unlike our work, [4] only computes the answer for segments with the definite
nearest neighbor, such as [s0, s1] in Figure 1. It did not study how to compute objects
that might be the closest, for some segment like [s1, s2] in Figure 1. Furthermore, their
method scans the entire database to answer the query, thus it is not very scalable to data
volumes.

3 Problem and Preliminaries

In this section, we describe the query semantics in Section 3.1. We introduce the u-
bisector in Section 3.2 and propose a basic method in Section 3.3.

3.1 Problem Setting

We first introduce the definition of PNNQ (studied in [14]), which is used to define
TPNNQ, the query studied in this paper. Let q be a point, and let Oi be an imprecise
object from an object set O. We use distmin(q, Oi) and distmax(q, Oj) to denote the
minimum and maximum distances of object Oi from q, respectively.

Definition 1. Possible Nearest Neighbor Query (PNNQ): Given a set of imprecise ob-
jects O and a query point q, Oi ∈ PNNQ(q), if �Oj ∈ O, such that distmax(q, Oj) <
distmin(q, Oi).

In Figure 1(c), PNNQ(q2) = {O1, O2} implies that either O1 or O2 could be the
NN of the query point q2. A query trajectory T can be represented by a set of query
line-segments T = {L1, ..., Ll}, where Li is a query line-segment. For a query point q,
whose trajectory is T , the trajectory possible nearest neighbor query (TPNNQ) returns
PNNs for all the points in T . In other words, the query returns {〈q, PNNQ(q)〉}q∈T .
If the connected points on the trajectory have the same PNNs, we could merge them
into a segment.

Definition 2. Trajectory Possible Nearest Neighbor Query (TPNNQ): Given a set of
imprecise objects O and a query trajectory T , the answer for the TPNNQ query is a
set of tuples R = {〈Ti, Ri〉|Ti ⊆ T , Ri ⊆ O}, where PNNQ(q) = Ri(∀q ∈ Ti).

In other words, the TPNNQ splits T into a set of consecutive segments {T1, T2, ..., Tt}.
Ti is a sub-trajectory of T . For ∀q ∈ Ti, q has the same possible nearest neighbors
(PNNs), then we call each Ti a validity interval. The connection point of two consec-
utive segments, say Ti and Ti+1, is called turning point, which indicates the change of
PNNQ answers. An example for a TPNNQ over three imprecise objects {O1, O2, O3}
is shown in Figure 1(c). The trajectory query T (s, e) is split into 5 pieces of segments.
Also, point s1 is the turning point for T (s0, s1) and T (s1, s2).

Observe that there are two major differences between the results on imprecise objects
and precise objects. Comparing Figures 1 (c) and (a): (1) the imprecise case could have

Evaluating Trajectory Queries over Imprecise Location Data 61

more tuples (5 compared to 3); (2) a query point in imprecise case might return a set of
PNNs instead of a single answer.

Thus, the TPNNQ can be answered by finding the turning points. Then, how to
derive the turning points on a trajectory, given a set of imprecise objects? To address
that, we first investigate the u-bisector, for imprecise objects. In general, the u-bisector
splits the domain into several parts, such that query points on different parts could have
different PNNs. Then, the turning points can be evaluated by finding the intersections
of the u-bisectors and the query trajectory. Next, we discuss the u-bisector.

3.2 u-bisector

Definition 3. Given two imprecise objects Oi and Oj , their u-bisector consists of two
lines: bi(j) and bj(i). The u-bisector half bi(j) is a set of points satisfying

bi(j) = {z : distmax(z,Oi) = distmin(z,Oj)} (1)

The curve bi(j) splits the domain into two half-spaces: Hi(j) and Hi(j), where Hi(j)
is the half closer to Oi and Hi(j) is the complementary half.An example is shown in
Figure 3. Thus we have:

Hi(j) = {z : distmax(z,Oi) ≤ distmin(z,Oj)} (2)

Hi(j) = {z : distmax(z,Oi) > distmin(z,Oj)} (3)

Fig. 3. u-bisector Fig. 4. Verification

Generally speaking, the u-bisector half bi(j) is a curve in the domain space. If a
query point q ∈ Hi(j), q must take Oi as its nearest neighbor certainly. The u-bisector
halves bi(j) and bj(i) separate the domain into three parts: Hi(j), Hj(i), and V (i, j),
where

V (i, j) = Hi(j) ∩Hj(i) (4)

Notice that V (i, j) = V (j, i). If Oi and Oj are degenerated into precise points, V (i, j)
becomes 0. Also, bi(j) = bj(i), which becomes a straight line.

62 X. Xie, R. Cheng, and M.L. Yiu

If a query line-segment is totally covered by V (i, j) or Hi(j), it does not intersect
with bi(j). Otherwise, the intersections split the line-segment into several parts. Differ-
ent parts might correspond to different PNNs, as they are located on different sides of
bi(j).

For circular imprecise objects, it is easy to derive the closed form equations of the
u-bisector and evaluate the analytical solution for the intersection points. The number
of intersections is at most 2, since the quadratic equation has at most 2 roots (see Ap-
pendix A.1). Next, we present the basic method based on the analysis of the u-bisector’s
intersections. We focus our discussion on two dimension location data.

3.3 Basic Method

From Definition 2, the TPNNQ could be answered by deriving the turning points, which
are intersections of the query trajectory and the u-bisectors. A u-bisector is constructed
by a pair of objects. Given a set O of n objects, there can be Cn

2 u-bisectors. The Basic
method is to check the intersections of the query trajectory with the Cn

2 u-bisectors. The
intersections can be found by evaluating the equation’s roots in Appendix A.1. Here we
use FindIntersection(.) (in Step 5) to represent the process.

However, not all of the bisectors intersect with the trajectory. Even if they intersect,
not all of the intersections are qualified as turning points. Thus, we need a “verification”
process to exclude those unqualified intersectinos. For example, in Figure 4, the u-
bisector half bi(k) intersect with [s, e] at s′. For an arbitrary point q ∈ [s, e], either Oi

or Oj is closer to q than Ok, since [s, s′] ∈ Hi(k) and [s′, e] ∈ Hj(k). Then, Ok is not
PNN for p ∈ [s, e], and s′ is not a qualified turning point.

We use the si�j to represent an intersection created by bi(j) (si�j = bi(j) ∩ L), and
si�j = bj(i) ∩ L. In other words, si�j can be understood as PNNQ(q) answer that
turns from containing Oi to both Oi and Oj , if q moves from Hi(j) to Hi(j) So, Oi

should definitely be si�j ’s PNN , while Oj is not. This can be implemented by issuing
a PNNQ. Thus, we can use this for verification.

Algorithm 1. Basic
1: function BASIC(Trajectory T)
2: for all line-segment L ∈ T do
3: for i = 1 . . . n do 	 consider object Oi

4: for j = i+ 1 . . . n do 	 consider object Oj

5: I = FindIntersection(L,Oi, Oj);
6: Verify I and delete unqualified elements;

7: Evaluate PNNs for each Interval and Merge two successive ones if they have same
PNNs;

In Algorithm 1, suppose Step 5 can be done in time β, which is a constant if we call
Appendix A.1. Step 6 can be finished in O(log n). Suppose T contains l line-segments,
Basic’s total query time is O(l n2(logn+ β)). In later sections, we study several filters
which can effectively prune those unqualified objects, which cannot be PNN for any
point on the trajectory, in order to reduce the complexity.

Evaluating Trajectory Queries over Imprecise Location Data 63

4 Solution Framework

In this section, we propose the framework of the TPNNQ algorithm, which follows
the filter-refinement framework. We assume an R-tree R is built on the imprecise objects
O and it can be stored in the main memory, as the storage capabilities increase fast in
recent years.

Framework. In implementation, we organize the trajectory T = {L1, L2, ..., Ll} by
constructing a binary tree T(T). Each binary tree node Ti = {L1, ..., Ll′} has two chil-
dren: Ti.left = {L1, ..., L	 l′

2
} and Ti.right = {L� l′
2 �, ..., Ll′}. We show an example

of T = {L1, L2, L3}’s trajectory tree in Figure 5(a).
The data structure for each binary tree node Ti is a triple: Ti = 〈L,MBC,Guard〉.

L is a line-segment if Ti is a leaf-node and NULL otherwise. MBC is the minimum
bounded circle covering Ti; it is NULL for leaf-nodes. Guard is an entry which has
minimum maximum distance to Ti. As we describe later, the entry can be either an
R-tree node or an imprecise object. The Guards are not initialized until the process-
ing of TPNNQ. Since T contains l line-segments, the trajectory tree T(T) could be
constructed in O(l log l) time.

Fig. 5. Trajectory Tree T(T) and
Ternary Tree Ψ(L2)

Fig. 6. TPNNQ

Given a constructed trajectory tree T and an R-tree R, the TPNNQ algorithm,
shown in Algorithm 2, consists of two phases. Phase I is the filtering phase, which
includes two filters: Trajectory Filter and Segment Filter. Trajectory Filter is to retrieve
a set of candidates from the database (Step 3). Segment Filter prunes away unqualified
objects for each Li ∈ T (Step 4). Phase II is to evaluate all the validity intervals and
turning points for each line-segment of the trajectory (Step 5). Then, we scan the derived
validity intervals once and merge two consecutive validity intervals if they belong to
different line-segments but have the same set of PNNs (Step 7).

Example of TPNNQ. Suppose an R-tree built on objects O = {a, b, c, d, e, f} and
a trajectory T = {L1, L2, L3}, as shown in Figure 6(a). We use Trajectory Filter to

64 X. Xie, R. Cheng, and M.L. Yiu

Algorithm 2. TPNNQ
1: function TPNNQ(Trajectory T, R-tree R)
2: let φ be a list (of candidate objects);
3: φ←TrajectoryFilter(T,R); 	 Section 5.1
4: for all line-segment Li ∈ T do 	 T = {Li}i≤l

5: φi ← SegmentFilter(Li, φ); 	 Section 5.2
6: {〈L,R〉}i ← TernaryDecomposition(Li, φi); 	 Section 6

7: {〈Ti, Ri〉}ti=1 ← Merge(∪l
i=1{〈L,R〉}i);

derive T ’s trajectory filtering bound, as shown by shaded areas in Figure 6(b). The ob-
jects {c, d, e, f} overlapping with the trajectory filtering bound are taken as candidates.
During the process, object d is set to be L2’s Guard, and stored in the trajectory tree.
The segment filter is applied for each line-segment in T . Taking L2(h, t) as an exam-
ple, the segment filtering bound is shown as Figure 6(c), where f is excluded from L2’s
candidates. Because f does not overlap with the filter bound.

In the refinement phase, we call the routine TernaryDecomposition to derive the turn-
ing points. We find the u-bisector halves bd(c) and bc(d) intersects with L2 at sd�c and
sd�c, respectively. L2 is split into three sub-line-segments [h, sd�c], [sd�c, sd�c], and
[sd�c, t]. Meanwhile, the construction of a ternary tree Ψ(L2) starts, in Figure 5(b). The
root node of Ψ(L2) derives three children correspondingly.

Then, we repeat the above process for each of the three, recursively. Finally, the pro-
cess stops and we get a ternary tree Ψ(L2), in Figure 5(b). Observed from Ψ(L2),
the degree of a ternary tree node is at most 3, since a line-segment is split into at
most 3 sub-line-segments, as shown in Section 3. The query result on L2 can be
fetched by traversing the leaf-nodes of Ψ(L2). Then, we have: TPNNQ(L2) =
{〈[h, sd�c], {d}〉, 〈[sd�c, sc�e], {c, d}〉, 〈[sc�e, sd�c], {c, d, e}〉, 〈[sd�c, t], {c, e}〉}. Sim-
ilarly, the results of L1 and L3 can also be evaluated. By merging them we get the
answer of TPNNQ(T). After we get the query answer, T and Ψ are deleted.

In the following sections, we study the Trajectory Filter in Section 5.1 and Segment
Filter in Section 5.2. The refinement step is shown in Section 6.

5 Filtering Phase

The trajectory query consists of a set of consecutive query line-segments. An
intuitive way is to: (1) decompose the trajectory into several line-segments;
(2) for each line-segment Li, access R-tree to fetch candidates. Then, apply
TernaryDecomposition to construct a ternary tree Ψ(Li) to evaluate its valid-
ity intervals and turning points. We call this method TP-S, which incurs multiple R-tree
traversals.

Meanwhile, two consecutive line-segments might share similar PNNs. Also, if two
line-segments are short, they could even be located within the same validity interval.
So, considerable efficiency would be saved if the R-tree traversal for each line-segment
inside the trajectory could be shared.

Evaluating Trajectory Queries over Imprecise Location Data 65

Algorithm 3. TrajectoryFilter
1: function TRAJECTORYFILTER(Trajectory tree T, R-tree R)
2: let φ be a list (of candidate objects);
3: Construct a min-dist HeapH;
4: push heap(H, root(R), 0);
5: whileH is not empty do
6: E ← deheap(H);
7: if E is a non-leafnode of R then
8: for E’s each child e do
9: if isProbable(T, e) then

10: push heap(H, e, distmax(e,T));

11: else
12: if isProbable(T,E) then
13: insert E into φ;

14: return φ;

5.1 Trajectory Filter

To save the number of R-tree node access, we design Algorithm 3 as the Trajectory
Filter to retrieve the candidates for the entire trajectory. We start Algorithm 3 by main-
taining a heap in the ascending order of maximum distance between an entry to a tra-
jectory tree node Ti’s center. If Ti is leaf-node, it is a line-segment. Ti’s center is its
mid-point. Otherwise, the center is MBC(Ti)’s circle center. Then, the top element
is popped to test if it/its children could be qualified to be the candidate objects. The
process is repeated until the heap is empty.

To determine if an entry is qualified or not, we use Algorithm 4. Let Ti be a T’s node
and G be Ti.Guard. G is initialized in Step 4. Given an R-tree node E, if Ti ⊆ HG(E),
then ∀Oj ∈ E, Oj cannot be Ti’s PNNs. Thus, ∀Oj ∈ E can be rejected. This helps
pruning those unqualified objects in a higher index level.

Algorithm 4. isProbable
1: function ISPROBABLE(Trajectory tree node Ti, R-tree node E)
2: Let G be MBC(Ti).Guard; 	 Initialize Guard Obj.
3: if G is NULL then
4: G← E;
5: elseif Ti is leaf-node and Ti ∈ HG(E) then
6: return false; 	 If E can be rejected, return false
7: elseif Ti is non-leaf-node and MBC(Ti) ∈ HG(E) then
8: return false; 	 If E can be rejected, return false
9: elseif distmax(E,MBC(Ti).c) < distmax(G,MBC(Ti).c) then

10: G← E; 	 If G can be updated

11: if Ti is not leaf-node then
12: return isProbable(Ti.left, E)‖isProbable(Ti.right, E);
13: else return true;

66 X. Xie, R. Cheng, and M.L. Yiu

In order to check whether E can be rejected, we consider two cases: (i) if Ti is a
leaf-node; (ii) if Ti is a non-leaf-node.

(i) When Ti is a leaf-node, we can draw a pruning bound to test whether E is quali-
fied. If we denote �(c,G) as a circle centered at c and internally tangent with object G,
and �(c, r) as a circle centered at c with radius r, then:

�(c,G) = �(c, distmax(c,G)) (5)

The pruning bound is written as: �(s,G) ∪ �(e,G). The correctness is guaranteed by
Lemma 1.

Lemma 1. Given two imprecise objects Oi, Oj and a line-segment L(s, e), Oj can not
be p ∈ L’s PNN if Oj does not overlap with �(s,Oi) ∪�(e,Oi).

Proof. To judge if Oj is L’s PNN , we first prove it is sufficient to check L’s two end
points s and e. Then, we show how the pruning bound can be derived by s and e.

Since bi(j) is a hyperbola half, it has at most two intersections with an arbitrary line.
Thus, Hi(j) is convex [15]. So, if s and e are in Hi(j), p ∈ L must be in Hi(j). It
means if Oj is not s and e’s PNN given Oi, it is not a PNN for all the points on L.

Next, s ∈ Hi(j)⇔ distmax(s,Oi) < distmin(s,Oj)

⇔ �(s,Oi) ∩Oj = ∅
�(e,Oi) ∩Oj = ∅

}
⇔ Oj

⋂
�(s,Oi) ∪�(e,Oi) = ∅

So, the lemma is proved.

If another object Oj does not overlap with the pruning bound defined by Lemma 1, it
can not be the PNN of any p ∈ L, since Oi will be always be closer. We also use
Lemma 1 as the base to derive other pruning bounds in Section 6.

(ii) When Ti is a non-leaf-node, if MBC(Ti) ∈ HG(E), then E can be rejected
from candidates. Since MBC(Ti) ∈ HG(E), Ti must be in HG(E). In other words,
Equation 6 is satisfied when the condition below is true:

distmax(MBC(Ti), G) ≤ distmin(MBC(Ti), E) (6)

Since MBC(Ti) is a circle, Equation 6 can be rewritten as (�.c and �.r are�’s center
and radius):

distmax(MBC(Ti).c, G) +MBC(Ti).r ≤ distmin(MBC(Ti).c, E)−MBC(Ti).r

5.2 Segment Filter

After the trajectory filtering step of TPNNQ, we get a set φ of candidates. Before
passing φ to each line-segment Li in the refinement phase, we perform a simple filtering
process to shrink φ into a smaller set φi for Li. Notice that while deriving the trajectory
tree T(T), we also derive an object called “Guard” for each node Ti. Then, for a T ’s
line-segment Li(si, ei), we can reuse the “Guard” Og to build the pruning bound. Ac-
cording to Lemma 1, the pruning bound is set to �(si, Og)∪�(ei, Og). An example is
shown in Figure 2(c), where the pruning bound for L2(h, t) is �(h, d) ∪�(t, d). After
that, we get φi. Empirically, the pruned candidates set φi is much smaller than φ.

Evaluating Trajectory Queries over Imprecise Location Data 67

6 Trajectory Refinement Phase

For trajectory T , the refinement is done by applying Algorithm 5 Ternary Decomposi-
tion for each line-segment Li ∈ T . Essentially, Algorithm 5 is to construct a ternary
tree Ψ(Li) for Li.

6.1 Trajectory Refinement

Ψ is constructed in an iterative manner. At each iteration, we select two objects from
the current candidate set φcur as seeds to divide the current line-segment Lcur into
two/three pieces.

To split Li, we have to evaluate a feasible u-bisector, whose intersections with Li

are turning points. Then, to find the u-bisector, we might have to try C(C−1)
2 pairs of

objects, C = |φi|. In fact, the object with minimum maximum distance to Li, say O1,
must be one PNN . The correctness is shown in Lemma 2. Thus, it is often that the
turning points on Li is derived by O1 and another object among the C candidates. So,
in Algorithm 5, the candidates are sorted first.

Lemma 2. If S = {O1, O2, ...} are sorted in the ascending order of the maximum
distance to the line-segment L, then O1 ∈ TPNNQ(L).

Proof. Suppose p is a point of L, such that distmax(p,O1) = distmax(L,O1). If O1

is definitely one PNN of p ∈ L, O1 must be one PNN of L. Thus, it is sufficient to
show O1 ∈ PNNQ(p).

To show O1 ∈ PNNQ(p) is equivalent to prove distmin(p,O1) < distmax(p,Oi)
(Oi ∈ S). Then, it is sufficient to show distmax(p,O1) < distmax(p,Oi)(Oi ∈ S), as
distmin(p,O1) < distmax(p,O1).

Notice that distmax(p,Oi) must be no less than distmax(L,Oi). Then,

distmax(p,O1) = distmax(L,O1) ≤ distmax(L,Oi)(Oi ∈ S)

≤ distmax(p,Oi)(Oi ∈ S)

So, O1 definitely belongs to TPNNQ(L).
Then, Lcur is split into 2 (or 3) pieces (or children). For Lcur’s children Li, we

derive a pruning bound Bi for Li and select a subset of candidates from φcur , as
shown in Step 9 to Step 12.

Notice that for each leaf-node Li of the ternary tree Ψ(L(s, e)), Li’s two end points
must be s, e, or the turning points on L. If we traverse Ψ in the pre-order manner, any
two successively visited leaf-nodes are the successively connected validity intervals in
L. Suppose we have m turning points, we would have m+ 1 validity intervals, which
corresponds to m+ 1 Ψ ’s leaf-nodes.

Algorithm 5 stops when any pair of objects in φ
[L]
cur does not further split L. The com-

plexity depends on the size of the turning points in the final answer. Recall the splitting
process of Ternary Decomposition, a ternary tree node Ti splits only if one or two inter-
sections are found in Ti’s line-segment. If no intersections found in its line-segment, Ti

becomes a leaf-node. Given the final answer containing m turning points, there would

68 X. Xie, R. Cheng, and M.L. Yiu

Algorithm 5. TernaryDecomposition

1: function TERNARYDECOMPOSITION(Segment L(s, e), Candidates set φ[L]
cur)

2: Sort φ[L]
cur in the ascending of maximum distance to L

3: for i = 1 . . . |φcur| do 	 consider object Oi

4: for j = i+ 1 . . . |φcur| do 	 consider object Oj

5: I = FindIntersection(L,Oi, Oj);
6: Verify I and delete unqualified elements;
7: if |I| �= 0 then
8: Use I to split L(s, e) into |I|+ 1 pieces
9: for each piece of line segment Li do

10: Use Lemma 3, 4, and 5 to derive pruning bound Bi

11: φ
[Li]
cur ← Bi(φ

[L]
cur)

12: release φ
[L]
cur

13: for each piece of line segment Li do

14: TernaryDecomposition(Li , φ[Li]
cur)

be at most 2m nodes in the ternary tree Ψ(T). At least, there are �1.5m� nodes. So,
Algorithm 5 will be called (1.5m, 2m] times. Step 5 is done in β and Step 6 is in
O(logC). If the candidate answers returned by Phase I contains C objects, the com-
plexity of Phase II is O(mC2(logC + β)). Next, we study how to derive the pruning
bound Bi mentioned in Step 11.

6.2 Pruning Bounds for Three Cases

By a u-bisectors, a query line-segment could be divided into at most 3 sub-line-
segments. The sub-line-segments fall into 3 categories according to their positions in
half spaces. There are three types of sub-line-segments: Open Case, Pair Case, and
Close Case, For example, in Figure 5, [sd�c, sd�c] belongs to the pair case. Two exam-
ples of open case are [h, sd�c] and [sd�c, t]. The Close Case means the line-segment is
totally covered by a half-space. The three cases are formally described in Table 1.

Table 1. Three cases for a line segment

Case Form Position
pair [si�j , si�j] l ∈ V (i, j)

open [s, si�j] or [si�j , e] l ∈ Hi(j)(or l ∈ Hj(i)) (s(e) is the line-segment’s start(end) point)
close [si�j , s

′
i�j] l ∈ Hi(j) and si�j , s

′
i�j ∈ bi(j)

For Pair Case and Open Case, we can derive two types of pruning bounds. Suppose
the u-bisector between O1 and O2 split the query line-segment [s, e] into sub-line-
segments: [s, s1�2], [s1�2s1�2], and [s1�2, e], which are of Open Case, Pair Case,
and Open Case, respectively. We shown the pruning bound derived for [s, s1�2] and
[s1�2s1�2] in Figure 7 (a) and (b). The bounds are highlighted by shaded areas. The
pruning bound of [s1�2, e] is similar to Figure 7(a), so it is omitted.

Evaluating Trajectory Queries over Imprecise Location Data 69

Close Case is a special case, when a line-segment has two intersections and totally
inside one half-space, say Hi(j). It could be represented by [si�j , s

′
i�j], which means

the two end-points are on the same u-bisector half bi(j). In this example, we known
[si�j , s

′
i�j] must be in Hi(j), so Oj cannot be the PNN for each point inside. Next,

we design their pruning bounds.

Lemma 3. (Pair Case) Suppose two imprecise objects Oi and Oj , whose u-bisector
bi(j) and bj(i) intersect with a straight line at si�j and si�j . For another object ∀ON ∈
O, it cannot be q ∈ [si�jsi�j]’s PNN , if ON has no overlap with the pruning bound
�(si�j , Oi) ∪�(si�j , Oj)

⋂
�(si�j , Oj) ∪�(si�j , Oi).

Proof. ∀p ∈ [si�jsi�j], both Oi and Oj have chances to be p’s PNN. According to
Lemma 1, a new object ON cannot be Oi or Oj ’s nearest neighbor if

ON

⋂
(�(si�j , Oi) ∪�(si�j , Oi)) = ∅, orON

⋂
(�(si�j , Oj) ∪�(si�j , Oj)) = ∅

So, the pruning bound is:
�(si�j , Oi) ∪�(si�j , Oi)

⋂
�(si�j , Oj) ∪�(si�j , Oj) (7)

Lemma 4. (Open Case) Given a line-segment [s, si�j], for other objects ∀ON ∈ O, it
cannot be query point q ∈ [s, si�j]’s nearest neighbor, if ON has no overlap with the
�(s,Oi) ∪�(si�j , Oi).

Lemma 5. (Close Case) Given two split points si�j and s′i�j , the pruning bound for
[si�j , s

′
i�j] is �(si�j , Oi) ∪�(s′i�j , Oi).

1 1

2

1 2 1 2 1 2

Fig. 7. Open Case and Pair Case

Since the proofs of Lemma 5 and Lemma 4 can be easily derived from Lemma 1,
they are omitted due to page limitation. The Pair Case could also be considered as
the overlap of two Open Cases. For example, a Pair Case [si�j , si�j] is equivalent to
the overlap part of [s, si�j] and [si�j , e]. Also, the Close Case could be viewed as the
overlap of [s, s′i�j] and [si�j , e]. The three cases and their combinations could cover all
the cases for each piece(validity interval) of the line segment. After Ψ ’s construction is
done, we can view the pruning bound of a validity interval. It is the intersection of all
its ascender nodes’ pruning bounds in the ternary tree Ψ .

70 X. Xie, R. Cheng, and M.L. Yiu

7 Experimental Results

Section 7.1 describes settings. We adopt a metric to measure to quality of results in
Section 7.2. Section 7.3 discusses the results.

7.1 Setup

Queries. The query trajectories are generated by Brinkhoff’s network-based mobile
data generator 1. The trajectory represents movements over the road-network of Olden-
burg city in Germany. We normalize them into 10k ×10k space. By default, the length
of trajectory is 500 units. Each reported value is the average of 20 trajectory query runs.

Imprecise Objects. We use four real datasets of geographical objects in Germany and
US2, namely germany, LB, stream and block with 30k, 50K, 199K, 550k spatial objects,
respectively. We use stream as the default dataset. We construct the MBC for each
object thus get 4 datasets with circular imprecise regions. Datasets are normalized to
the same domain as queries. To index imprecise regions, we use a packed R*-tree [16].
The page size of R-tree is set to 4k-byte, and the fanout is 50. The entire R-tree is
accommodated in the main memory.

For the turning points calculation, we call GSL Library 3 to get the analytical solu-
tion. All our programs were implemented in C++ and tested on a Core2 Duo 2.83GHz
PC.

7.2 Quality Metric

To measure the accuracy of a query result, we adopt a Error function based on the
Jaccard Distance [17], which is used in comparing the similarity between two sets.
Recall the definition of TPNNQ the query result is a set of tuples {〈Ti, Ri〉}. It can
be transformed into the PNNs for every point on the query trajectory. Formally, the
result is {〈q, PNNQ(q)〉}q∈T . Let R∗(q) be the optimal solution for the point q, where
R∗(q) = PNNQ(q). We use RA(q) to represent the PNNs derived for the point q in
algorithm A. Then, the Error for algorithm A on query T is:

Error(T , A) =
1

|T |

∫
q∈T

1− R∗(q) ∩RA(q)

R∗(q) ∪RA(q)
dq (8)

|T | is the total length of trajectory T . If T is represented by a set of line-segments
T = {Li}ti=1, the total length |T | =

∑t
i=1 |Li|.

Equation 8 captures the effect of false positives and false negatives as well. There is
a false positive when RA(q) contains an extra item not found in R∗(q). There is a false
negative when an item of R∗(q) is missing from RA(q). For a perfect method with no
false positives and false negatives, the two terms R∗(q) and RA(q) are the same, so the
integration value is 0.

In summary, the error score is a value between 0 and 1. The smaller an Error score
is, the more accurate the result is. On the other hand, if a method has many extra or
missing results, then it obtains a high Error.

1 http://iapg.jade-hs.de/personen/brinkhoff/generator/
2 http://www.rtreeportal.org/
3 http://www.gnu.org/software/gsl/

Evaluating Trajectory Queries over Imprecise Location Data 71

7.3 Performance Evaluation

The query performance is evaluated by two metrics: efficiency and quality. The effi-
ciency is measured by counting the clock time. The quality is measured by the error
score. We compare four methods: Basic, Sample, TP-S, and TP-TS. The suffixes T and
S refer to Trajectory Filter and Segment Filter, respectively. Basic does not use any
filter; TP-S does not use Trajectory Filter; TP-TS (Algorithm 2) uses all the filtering
and refinement techniques. Sample draws a set of uniform sampling points {q} from T .
Then, for all q, PNNQ(q) is evaluated. The sampling interval, denoted by ε, is set to
0.1 unit.4

������

�����

����

��

���

����

�����

���	
� � ����
	 �����

� �
��
�

�
�
����

���
�
	���
����
�����

Fig. 8. Tq(s) vs.
Datasets

���

���

���

���

���

����

	
��� �� ���
� �����

�
��
��
�	
��
�
��
��
�

 ��
��

!�"!#
!�"#

Fig. 9. Pruning Ratio
vs. Datasets

�����

������

�����

������

�����

������

�����

������

����	 ���	

�

��

������� �������

�������

��������

Fig. 10. Tq’s break-
down

�����

����

��

���

����

��� ���� ����

� �
��
�

���	
���� �
��������
���

�����

����
�����

Fig. 11. Tq vs. Query
Length

���

����

�����

������

�����	
� ����� �����

� �
��
��
��	
��
��
��
��
��
�

������

������
����
�����

Fig. 12. Tq(# of node
access) vs. Datasets

���

����

�����

�����	
� ����� �����

��
��
��
��
�	
�
�
��

�
��
��
�

��
���
�

�����
����

Fig. 13. � of Validity
Intervals vs. Datasets

Query Efficiency Tq . From Figure 8, the Basic method is the slowest method among
all the four, since it elaborates all the possible pairs of objects for turning points (but
most of them do not contribute to validity intervals). For the second slowest Sample, we
analyze it later.

The other two methods have significant improvement over Sample and Basic. One
reason is because of the effectiveness of the pruning techniques, as shown in Figure 9.
For all the real datasets, the pruning ratio are as high as 98.8%. TP-S is less efficient,
because some candidates shared by different line-segments in trajectory will be fetched
multiple times. This drawback is overcome by TP-TS.

To get a clearer picture about the efficiency of our framework, we measure the time
costs for Phase I and Phase II in Figure 10. TP-TS is faster in both phases. In Phase I,
the combined R-tree traversal in TP-TS saves plenty of extra node access, compared to

4 The sampling rate is reasonably high regarding to the trajectory’s default length. More details
about sampling rates are discussed later.

72 X. Xie, R. Cheng, and M.L. Yiu

TP-S. The number of node access is shown in Figure 12. In Phase II, TP-TS is faster,
since it has fewer candidates to handle. This observation is also consistent with the fact
that TP-TS has a higher pruning ratio, shown in Figure 9.

We also test the query efficiency by varying the query length in Figure 11. The Sam-
ple method is slower than others at least one order of magnitude. The costs of other two
methods increase slowly w.r.t. the query length.
TP-TS vs. Sample. Sample method is a straightforward solution to approximate the
TPNNQ answer. However, this solution suffers from the extensive R-tree traversals,
since every sampling point q requires accessing of R-tree. As shown in Figure 12, Sam-
ple incurs at least more than one order of magnitude node access than our method.

On the other hand, Sample could incur false negatives, even with a large sampling
rate. Because Sample only considers query points sampled on the trajectory, whereas
TPNNQ is for all the points in T . To calculate Sample’s error score, we have to infer
the PNNs for a point q ∈ T not being sampled, as required by Equation 8. With limited
sampled answers, q’s PNNs can only be “guessed” by using its closest sampling point
p. In other words, PNNQ(q) has to be substituted with PNNQ(p).

The efficiency is reflected in Figure 14, where the sampling interval ε is varied from
0.01 to 10. We can observe that TP-TS outperforms Sample in most of the cases. Sample
is faster only when ε is very large (e.g. equal to 10 units). Then, is it good if large ε is
used? The answer is NO. In Table 15, when “Sample, ε = 10, block”, the error score of
Sample is as high as 0.443!

We demonstrate the error score of Sample and TP-TS in Table 15. Since TP-TS
evaluate the exact answer, the error is always 0. The error of Sample is small when ε
is small, (e.g. equal to 0.01, block). However, the query time of that case is 100 times
slower than TP-TS. We would like to emphasize that even the error score is empirically
tested to be 0 over large sampling rates, there is no theoretical guarantee for the Sample
to contain 0 false negative.

We also test the error score of simplifying the imprecise regions into precise points,
as mentioned in the introduction. For german dataset, the error is as high as 0.76! Thus,
the simplified solution could be harmful for applications such as safety sailing.

������

�����

����

��

���

����

�����

���	
� �� ����
	 �����

� �
	�

�
�
����

�
	����������
�
	���������
�
	�������
�
	��������

����
�����

Fig. 14. TP-TS vs. Sample (Tq)

Datasets
Sample

TP-TS
ε = 0.01 ε = 0.1 ε = 1 ε = 10

german 0.00340 0.00457 0.01528 0.12310 0
LB 0.00005 0.00029 0.00257 0.02672 0

stream 0.00059 0.00090 0.00298 0.03962 0
block 0.01872 0.02541 0.08516 0.44310 0

Fig. 15. TP-TS vs. Sample(Error)

Analysis of TPNN. Observed from Figure 13, the number of validity intervals in-
creases with the size of the datasets. TP-S and TP-TS have the same number of validity
intervals, which is as expected.

In summary, we have shown that TP-TS is much more efficient than Basic, Sample,
and TP-S methods. It also achieves much better quality than Sample method.

Evaluating Trajectory Queries over Imprecise Location Data 73

8 Conclusion

In this paper, we study the problem of trajectory query over imprecise data. To tackle the
low quality and inefficiency in simplified methods, we study the geometric properties of
the u-bisector. Based on that, we design several novel filters to support our algorithm.
Extensive experiments show that our method can efficiently evaluate the TPNNQ with
high quality.

The geometric theories studied in this paper has no limitations in the dimensionality
and shape of imprecise regions. In future, we would like to evaluate the algorithm’s
performance in multi-dimensional space with different shaped imprecise regions. We
would also extend our work to support variants queries like k-PNN query, etc.

Acknowledgment. Reynold Cheng and Xike Xie were supported by the Research
Grants Council of Hong Kong (GRF Projects 513508, 711309E, 711110). Man Lung
Yiu was supported by ICRG grants A-PJ79 and G-U807 from the Hong Kong Poly-
technic University. We would like to thank the anonymous reviewers for their insightful
comments.

References

1. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB (2002)
2. U. S. C. Guard, Announcement of 2011 international ice patrol services (2011),

http://www.uscg.mil/lantarea/iip/docs/AOS_2011.pdf
3. Jesse, L., Janet, R., Edward, G., Lee, V.: Effects of habitat on gps collar performance: using

data screening to reduce location error. Journal of Applied Ecology (2007)
4. Park, K., Choo, H., Valduriez, P.: A scalable energy-efficient continuous nearest neighbor

search in wireless broadcast systems. In: Wireless Networks (2010)
5. Cheng, R., Xie, X., Yiu, M.L., Chen, J., Sun, L.: Uv-diagram: A voronoi diagram for uncer-

tain data. In: ICDE (2010)
6. Lian, X., Chen, L.: Efficient processing of probabilistic reverse nearest neighbor queries over

uncertain data. VLDBJ (2009)
7. Cheema, M.A., Lin, X., Wang, W., Zhang, W., Pei, J.: Probabilistic reverse nearest neighbor

queries on uncertain data. TKDE (2010)
8. Chen, J., Cheng, R., Mokbel, M., Chow, C.: Scalable processing of snapshot and continuous

nearest-neighbor queries over one-dimensional uncertain data. VLDBJ (2009)
9. Trajcevski, G., Tamassia, R., Ding, H., Scheuermann, P., Cruz, I.F.: Continuous probabilistic

nearest-neighbor queries for uncertain trajectories. In: EDBT, pp. 874–885 (2009)
10. Zheng, K., Fung, G.P.C., Zhou, X.: K-nearest neighbor search for fuzzy objects. In: SIGMOD

(2010)
11. Song, Z., Roussopoulos, N.: K-Nearest Neighbor Search for Moving Query Point. In:

Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121,
pp. 79–96. Springer, Heidelberg (2001)

12. Zheng, B., Lee, D.-L.: Semantic Caching in Location-Dependent Query Processing. In:
Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121,
pp. 97–113. Springer, Heidelberg (2001)

13. Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.: Location-based spatial queries. In:
SIGMOD (2003)

http://www.uscg.mil/lantarea/iip/docs/AOS_2011.pdf

74 X. Xie, R. Cheng, and M.L. Yiu

14. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Querying imprecise data in moving object en-
vironments. TKDE 16(9) (2004)

15. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)
16. Hadjieleftheriou, M.: Spatial index library version 0.44.2b,

http://u-foria.org/marioh/spatialindex/index.html
17. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to data mining (2006)

A Appendix

A.1 Intersection of a Hyperbola and a Straight Line

Given a hyperbolah1 and a straight line l1, they could have 0, 1, or 2 intersection points,
which is the roots of the following:{

h1 : x2

a2
1
− y2

b21
= 1

l1 : a2x+ b2y + c2 = 0
(9)

By solving Equation 9, we can have:

⎧⎨⎩x =
−a2

1a2c2±
√

−a2
1b

2
1b

2
2(a

2
1a

2
2−b21b

2
2−c22)

a2
1a

2
2−b21b

2
2

y =
−a2±

√
a2
1b

2
1b

2
2(−a2

1a
2
2+b21b

2
2+c22)−b21b

2
2c2

b2(b21b
2
2−a2

1a
2
2)

(10)

where ⎧⎨⎩
a21a

2
2 − b21b

2
2 �= 0

b2 �= 0
a1b1 �= 0

(11)

Notice that if any of the three pre-conditions in Equation 11 is not satisfied, there should
be no intersection point for the given curve and line.

http://u-foria.org/marioh/spatialindex/index.html

Efficient Range Queries over Uncertain Strings

Dongbo Dai1, Jiang Xie1,3, Huiran Zhang1, and Jiaqi Dong2

1 School of Computer Engineering and Science, Shanghai University, Shanghai, China
{dbdai,jiangx,hrzhangsh}@shu.edu.cn

2 School of Computer Science, Fudan University, Shanghai, China
dong jiaqi@fudan.edu.cn

3 Department of Mathematics, University of California Irvine, CA, USA

Abstract. Edit distance based string range query is used extensively in the data
integration, keyword search, biological function prediction and many others. In
the presence of uncertainty, however, answering range queries is more challeng-
ing than those in deterministic scenarios since there are exponentially many pos-
sible worlds to be considered. This work extends existing filtering techniques
tailored for deterministic strings to uncertain settings. We first design probabilis-
tic q-gram filtering method that can work both efficiently and effectively. Another
filtering technique, frequency distance based filtering, is also adapted to work
with uncertain strings. To achieve further speed-up, we combined two state-of-
the-art approaches based on cumulative distribution functions and local pertur-
bation to improve lower bounds and upper bounds. Comprehensive experiment
results show that our filter-based scheme, in the uncertain settings, is more effi-
cient than existing methods only leveraging cumulative distribution functions or
local perturbation.

Keywords: uncertain strings, range query, filtering.

1 Introduction

String data is ubiquitous in many important applications, such as customer information
management, text-rich information systems, and bioinformatics [1,2,3,4]. Range query
is an essential operation on string data. Given a set D of strings, a query string t, a
distance function dist(·, ·) which measures the similarity between two strings, and a
similarity threshold δ, the Range query returns all strings s from D such that dist(s, t) ≤
δ. Range queries have extensive applications, such as data cleaning, spell checking,
plagiarism identification and bioinformatics [5,6,7,8,9].

Edit distance (or Levenshtein distance) is a widely used similarity measure for strings.
The edit distance between two strings s1 and s2, denoted by ed(s1, s2), is the minimum
number of single-character edit operations (insertion, deletion, and substitution) that are
needed to transform s1 to s2. Edit distance ed(s1, s2) can be computed in O(|s1|·|s2|) time
and O(min{|s1|, |s2|}) space using dynamic programming [1]. In this paper, we focus on
edit distance based range query.

In many cases, the given string data often contains errors or may be incomplete, due
to entry typos, inaccurate information extraction from unstructured documents, or inher-
ent limitations of the high-throughput sequencing. For example, in DNA-sequencing, it

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 75–95, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

76 D. Dai et al.

is common that scientists have identified the values (one of letters in {‘A’,‘G’,‘C’,‘T’})
for 90% positions in a genome sequence, while there is some degree of uncertainty for
the other 10%. In this case, traditional range query performed on any one of all possible
strings can not capture the genuine similarity, hence it is necessary to extend this query
semantics to uncertain settings.

Uncertainty Model. There are two commonly used ways of modeling such uncertain
information hidden in a string s [10]: string-level model and character-level model.
Let Σ be an alphabet. In the string-level model, s has n choices to instantiate into dif-
ferent strings (termed as possible worlds) with corresponding probabilities, i.e., s =
{(s1, p1), · · · , (sn, pn)}, where si ∈ Σ∗, the associated probabilities p1, · · · , pn satisfying
the condition:

∑n
i=1 pi = 1. While the character-level model is to represent uncertain

string via its uncertain positions. Specifically, for s = s[1] · · · s[m], any uncertain po-
sition s[i] = {(τi,1, pi,1), · · · , (τi,mi , pi,mi)}, where each character τi, j from Σ appears at
position s[i] with probability pi, j independently and

∑mi
j=1 pi, j = 1. String-level model

may pose highly redundant information when the string has few uncertain positions,
which is often the case in many applications such as bioinformatics and text-rich infor-
mation systems. Thus, as a more realistic model, character-level model can concisely
represent the uncertainty in strings and will be used as the working model in this paper.

Two questions should be considered in case of uncertainty which makes the query
answering much complicated. One is how to define reasonable query semantics when
taking probabilities into account and the other is how to answer range queries efficiently.
For the first question, it may take a probability for an uncertain string to be within the
given range of query string. Consequently, a range query can be formulated in mul-
tiple ways. For instance, we can output only those strings which are absolutely (i.e.,
with probability 100%) falling into the query range. Alternatively, we can also output
those strings which have a non-zero probability to fall into the query range. Jestes et
al. [10] proposed the notion of Expected Edit Distance(EED) over all possible worlds
of two uncertain strings to perform similarity joins. The value of EED is computed as:
∑

(s1,s2) p1 · p2 · ed(s1, s2), where s1 and s2 are two instances from two uncertain strings
with the probabilities p1 and p2, respectively. As a similarity measure, EED appears to
be natural and intuitive at first sight. However, EED is a biased measure as the following
simple example shows:

query string: t = abc
uncertain strings: s1 = {(abd, 0.45), (abe, 0.45), (s′, 0.1)}

s2 = {(uvw, 0.5), (xyz, 0.5)}
s1 and s2 are two uncertain strings in the string-level model and a possible world s′ in
s1 has sufficiently large distance to the query string t. With quite large possibility value
0.9, s1 has two possible worlds abd and abe with small edit distance 1 to t, while s2 is
totally dissimilar to t. However, if we take EED as a similarity measure, s1 may be less
similar to t than s2 because of the enough large distance between t and s′. This example
shows that EED is inappropriate for range query in the string-level model.

Ge et al. [11] further pointed out that, for substring matching over uncertain strings
in the character-level model, EED may either miss real matches or has an unduly big
threshold so that many false positives may mix in. To remedy this problem, the authors
in [11] proposed (δ, γ)-matching semantics: given a pattern string t, a set D of uncertain

Efficient Range Queries over Uncertain Strings 77

text strings {si} (1 ≤ i ≤ |D|) and threshold parameters δ, γ, asking for all substrings
s′ of si’s such that Pr[ed(t, s′) ≤ δ] > γ. The semantics of (δ, γ)-matching has been
justified in [11], so we also apply a similar query semantics to our range query, i.e.,
we extend conventional query answering on deterministic strings to uncertain threshold
queries ,i.e., only those strings whose probability falling into the query range passing
the threshold are returned. In the following, we use “uncertain string ” for brevity to
mean that it is generated by the character-level model.

Problem Statement: Given a set of uncertain strings D, a deterministic query string
t, and two parameters (δ, γ) (γ > 0), a (δ, γ)-range query returns all strings s from D
such that Pr(ed(s, t) ≤ δ) ≥ γ.

Note that, as illustrated in [11], we only consider deterministic query strings as it is
more common in real applications.

Another fundamental challenge is how to answer range queries efficiently. It is well
known that in a large collection of deterministic strings, direct edit distance computa-
tion is an expensive operation, so various filters have been designed to speed up the
query processing [12,13,14,15,16,17]. For a large set of uncertain strings, even a single
uncertain string may correspond to as many as exponentially possible instances. This
huge size implies a prohibitively large processing cost if we enumerate all possible in-
stances and perform range queries one by one. Thus, efficient and effective filters are
urgently needed to avoid so many edit distance calculations.

In [11], to efficiently evaluate the (δ, γ)-matching queries, the authors first proposed
a multilevel signature filtering structure to locate a set of positions in the text strings
to be verified. Then, during the verification phase, they presented two algorithms: Cu-
mulative Distribution Function(CDF) and local perturbation to give upper bound and
lower bound of the probability of all candidate substring s′ satisfying ed(t, s′) ≤ δ for a
given pattern t. Although we take the similar (δ, γ)-range query semantics as discussed
in [11], the following two issues pose grand challenges in evaluating range queries over
uncertain strings:

1. Although filtering techniques based on CDF and local perturbation presented in
[11] can be applied to our range queries in a straightforward way, the reduction in
time cost is limited and needed to be enhanced further. The reason is that CDF and
local perturbation are not ”light” filters in terms of time cost. Computing bounds
based on CDF will incur O(δ2×|t|) time complexity in order to bound the cumulative
distribution functions at each cell of dynamic programming(DP) table. For large
error rate δ of O(|t|), the complexity is unfavorably cubic in the size of |t|. For local
perturbation method, a complete DP algorithm computation is needed to obtain
an initial adjacent possible world(the string s satisfying ed(s, t) ≤ δ). Moreover,
to get an initial remote world (the string s satisfying ed(s, t) > δ), randomized
testing algorithm is used, which needs several times of DP algorithm computation.
Note that all of these computations are performed for every single uncertain string.
Thus, for a large collection of uncertain strings, only employing these two filtering
methods will incur huge time overhead from the realistic perspective. We need
some “light” filtering approaches to avoid expensive filtering cost.

2. Since enumerating all possible worlds and performing range queries one by one
are very time-consuming, we should reduce the number of candidate strings to be

78 D. Dai et al.

Table 1. The symbols frequently used in the paper.

Symbol Meaning

s1, s2, s, t different strings
D a set of strings
δ, γ edit distance threshold and probability threshold in

range queries
q the length of q-gram

g, g′, g′′ different q-grams
ed(·, ·) edit distance function

f (·),FD(·, ·) frequency vector and frequency distance

verified as possible as we can. Filtering only based on CDF or local perturbation is
not sufficient for efficiently performing range queries, so we need to design diverse
filtering schemes to achieve high efficiency.

To overcome the above challenges, we propose a novel filter-based algorithm RQUS
(for Range Queries over Uncertain Strings) and make the following contributions:

• We propose a novel problem: (δ, γ)-range queries over uncertain strings. To the best
of our knowledge, this problem has not been explored systematically before.

• We propose two effective filtering methods, probabilistic q-gram based filtering and
frequency distance filtering, which can bound the answering probability from above
and can also be implemented efficiently compared to CDF and local perturbation
techniques.

• After above filtering, we subtly combine CDF and local perturbation to improve
lower bound and upper bound, and use the combined filtering method to further
prune away the unnecessary candidates.

• We conduct comprehensive experiments which demonstrate that, in the situations
of uncertain string queries, RQUS is more efficient than the baseline algorithm only
leveraging CDF or local perturbation techniques.

The rest of paper is organized as follows. Section 2 discusses the related work. Section
3 introduces the background and some commonly used filtering methods for determin-
istic strings. Our proposed two filtering methods and combined pruning technique are
developed in section 4 and section 5, respectively. Experimental results are presented in
section 6 and section 7 concludes the paper.

We summarize the symbols frequently used in the paper in Table 1.

2 Related Work

String range query is an important research issue and has been studied extensively
in algorithm and database communities. In the literature, approximate string search
(queries) [16,17], string selection queries [14] refer to the problem of range queries
over deterministic strings.

Efficient Range Queries over Uncertain Strings 79

Many algorithms have been proposed for answering string range queries efficiently.
Their main strategies are to use various filtering techniques to improve the perfor-
mance. Kahveci et al. [12] mapped the substrings of the data into an integer space
and defined a distance function called frequency distance which is a lower bound to the
actual edit distance between strings. Based on this, they built an index structure using
MBRs(Minimum Bound Rectangles) to efficiently filter out non-result strings. Based on
the intuition that strings with a small edit distance will share large number of common
q-grams, most algorithms employed fixed or variable length q-gram filtering schemes
to speed up the processing [18,16,17,5].

Since range queries are closely related to the similarity joins, some filtering tech-
niques designed in the context of similarity joins can also be applied to the range
queries such as count filtering [5,19], position filtering [5,20], length filtering [5,19],
mismatching q-gram based filtering and prefix filtering [19] etc.. Recently, some exten-
sions to traditional query type have been studied. Zhang et al. [21] developed a novel
all-purpose index Bed-tree that can support range queries, top-k queries and similarity
joins simultbaneously. Unlike many existing algorithms with in-memory indexes, Behm
et al. [22] explored external memory algorithm for range queries by contriving a new
storage layout for the inverted index. Combining approximate string queries and spatial
range queries have also been proposed [23]. Note that all of these algorithms focused
on deterministic strings.

Recently, there have been great interests in the query processing and mining over
uncertain data(see [24,25] for excellent surveys on research related to these problems).
However, most of these works mainly focus on range or top-k queries over numerical
data, or similarity joins over spatial datasets. To the best of our knowledge, no work has
been done in the area of range queries over uncertain strings. [10] and [11] are two
articles closely related to our work in this paper. Jestes et al. defined a new similarity
measure EED and designed q-gram based filtering techniques in relational databases to
perform similarity joins over uncertain strings. Due to aforementioned deficiencies of
EED, Ge et al. [11] proposed (δ, γ)-matching semantics and applied this to approximate
substring matching over uncertain strings. As we adopt (δ, γ)-range query semantics in-
stead of EED, the q-gram based filters in [10] are of no use to our problem. In fact, in
the settings of (δ, γ)-range qeury semantics, how to extend various filters on determin-
istic strings to uncertain settings is a non-trivial task.

3 Background on Q-grams and Frequency Distance

Let Σ = {τi} (1 ≤ i ≤ |Σ|) be a finite alphabet of symbols. A string s is an ordered list of
symbols drawn from Σ. The length of string s and the i-th element in s are denoted as
|s| and s[i], respectively.

Definition 1 (positional q-gram). Given a string s, a q-gram g is a contiguous sub-
string of length q and all its q-grams can be obtained by sliding a window of length
q over its constituent characters. The starting position of g in s is called its position.
A positional q-gram is a q-gram together with its position, usually represented in the
form of (g, pos). We use Gs to denote the set of all positional q-grams in s.

80 D. Dai et al.

Definition 2. [possible worlds] Given an uncertain string s in the character-level
model, the possible worlds Ωs of s is the set of all possible instances from s.

Since q-grams have fewer than q characters from Σ at the beginning and end of the
string s, we introduce new characters ‘#’ and ‘∗’ not in Σ to prefix it with (q−1) ‘#’ and
suffix it with (q − 1) ‘∗’. For simplicity, when there is no ambiguity, we use “positional
q-gram” and “q-gram” interchangeably.

For two q-grams (g1, p1) and (g2, p2), we define g1 =k g2 if g1 = g2 and |p1− p2| ≤ k,
i.e., two q-grams are identical and their position value differ at most k. We further define
Gs1 ∩k Gs2 = {(g1, g2) | g1 =k g2, g1 ∈ Gs1 , g2 ∈ Gs2}

Clearly, there are |s| + q − 1 q-grams in the string s. Based on the observation that
a single-character edit operation destroys at most q q-grams, the following lemma pro-
posed by [5,26] captures this intuition that a few edit operations can only have limited
destructive effect on a string.

Lemma 1. ([5,26]) Given two strings s1 and s2, if their edit distance is within δ, i.e.,
ed(s1, s2) ≤ δ, then:

|Gs1 ∩δ Gs2 | ≥ max(|s1|, |s2|) − 1 − q(δ − 1)

The frequency distance is first proposed in [12]. Let s be a string from the alphabet
Σ = {τ1, τ2, · · · , τ|Σ |}. Let ni be the number of occurrences of the character τi in string s
for 1 ≤ i ≤ |Σ|. The frequency vector f (s) of s is defined as f (s) = [n1, n2, · · · , n|Σ |].

By analyzing the relationship between the edit operations and the frequency vectors,
Kahveci and Singh [12] present an efficient algorithm to compute the frequency dis-
tance FD(f (s1), f (s2)) between two strings s1 and s2. For each dimension τi, let f (s1)i
and f (s2)i be the values of f (s1) and f (s2) on τi, respectively. We compute

posDistance =
∑

τi, f (s1)i> f (s2)i

(f (s1)i − f (s2)i) negDistance =
∑

τi, f (s1)i< f (s2)i

(f (s2)i − f (s1)i).

Then, the frequency distance

FD(f (s1), f (s2)) = max{posDistance, negDistance}.
It was proved that FD(f (s1), f (s2)) is a lower bound of the edit distance ed(s1, s2):

Lemma 2. [12] Let s1 and s2 be two strings from alphabet Σ, then:

FD(f (s1), f (s2)) ≤ ed(s1, s2)

Although Lemma 1 and Lemma 2 are exploited extensively to design filters in deter-
ministic string queries, they can’t directly used for uncertain strings due to uncertainty.
We discuss their variant for processing uncertain string queries in the next section.

Finally, we introduce a length filtering technique:

Lemma 3. ([5,26]) For two strings s1 and s2, we have ed(s1, s2) ≥ ||s1| − |s2||.
Length filtering is used in many deterministic string queries. It can also be applied
straightforwardly to uncertain strings since the length of an uncertain string is indepen-
dent of its uncertainty.

Efficient Range Queries over Uncertain Strings 81

4 Pruning Techniques

4.1 Probabilistic Q-gram based Filtering

For a q-gram in an uncertain string s, it may still contain uncertain characters, and we
can consider it as an uncertain substring and call it probabilistic q-gram. Thus, in the
(δ, γ)-range query, we have

Pr(g =δ g′) =
∑

g′′∈Ωg

Pr(g′′) · Ig′′=δg′ (1)

where g is a probabilistic q-gram from s and g′ is a deterministic q-gram from the query
string t; Ib is an indicator function, i.e., Ib = 1 if b is true, Ib = 0 otherwise.

For every uncertain string from D, a naive method by using Lemma 1 for filtering is
to enumerate all its possible strings and check whether the condition stated is satisfied.
Clearly, this approach is very expensive, since there are exponentially many possible
worlds to be checked. Thus, we propose an uncertain version of Lemma 1 to circumvent
this problem, which can perform filtering more efficiently.

Theorem 1. In the (δ, γ)-range query, for any uncertain string s from D and query
string t, let Z = max(|s|, |t|) − 1 − q(δ − 1), if (

∑
g∈Gs
g′∈Gt

Pr(g =δ g′)) < Z, we have:

Pr(ed(s, t) ≤ δ) < 1
Z

∑

g∈Gs
g′∈Gt

Pr(g =δ g′)

Proof. By Definition 2, let pw be any possible world from Ωs, i.e., pw ∈ Ωs and in pw,
g′′ be any instance of a probabilistic q-gram g in s. We first calculate the expected value
of |Gs ∩δ Gt| as follows:

E(|Gs ∩δ Gt |) =
∑

pw∈Ωs

Pr(pw) · |Gpw ∩δ Gt | =
∑

pw∈Ωs

Pr(pw)
∑

g∈Gpw
g′∈Gt

Ig=δg′ =
∑

pw∈Ωs

∑

g∈Gpw
g′∈Gt

Pr(pw) · Ig=δg′

=
∑

g∈Gs
g′∈Gt

∑

pw∈Ωs

Pr(pw) · Ig′′=δg′ =
∑

g∈Gs
g′∈Gt

∑

g′′∈Ωg

Pr(g′′) · Ig′′=δg′ =
∑

g∈Gs
g′∈Gt

Pr(g =δ g′)

Note that the last step use the equation (1).
Thus, by Markov Inequality, when (

∑
g∈Gs
g′∈Gt

Pr(g =δ g′)) < Z we have:

Pr(|Gs ∩δ Gt| ≥ Z) ≤ 1
Z

E(|Gs ∩δ Gt|) = 1
Z

∑

g∈Gs
g′∈Gt

Pr(g =δ g′)

i.e.,

1 − 1
Z

∑

g∈Gs
g′∈Gt

Pr(g =δ g′) ≤ Pr(|Gs ∩δ Gt | < Z) (2)

82 D. Dai et al.

Further, based on Lemma 1, it follows that for any possible world pw ∈ Ωs, if |Gpw ∩δ
Gt| < Z, then ed(pw, t) > δ. So,

Pr(|Gs ∩δ Gt| < Z) ≤ Pr(ed(s, t) > δ) (3)

From (2)and (3), we have:

Pr(ed(s, t) ≤ δ) ≤ 1
Z

∑

g∈Gs
g′∈Gt

Pr(g =δ g′)

	

Theorem 1 provides an upper bound on the probability of those strings falling into
query range. By comparing it with parameter γ, we can safely discard those candidates
if their upper bound is less than γ. The upper bound in theorem 1 can be computed
efficiently. First, for a given string s, the value of Z can be obtained in a constant time
since the length of s is independent of its uncertainty. Second, we can also get the value
of
∑

g∈Gs
g′∈Gt

Pr(g =δ g′) efficiently in O(δ · |t|) time.

Example 1. Consider a query string t = TGCT A and an uncertain string s =
A{(G, 0.8), (C, 0.2)}{(A, 0.9), (C, 0.1)}{(T, 0.7), (G, 0.3)}C from D. The parameters are
set as δ = 2 and q = 3. Then based on Theorem 1, the upper bound on probabil-
ity is 0.056, the same as that given by CDF method, while local perturbation method
outcomes the result of 0.902. This example demonstrates that, with less time cost, prob-
abilistic q-gram based filtering works as well as CDF but provides tighter bound than
local perturbation method.

4.2 Frequency-Distance Based Pruning

Another pruning technique is to apply frequency distance to uncertain strings. With the
increase of uncertain positions appearing in a string, its frequency distance has great
variation. As in the proof of theorem 1, we compute the expected value of all possi-
ble frequency distances, and correlate it with the probability of the corresponding edit
distance falling into the query range.

First, from the definition of posDistance and negDistance in the Section 3, it is easy
to derive the following facts for two strings s1 and s2:

|posDistance − negDistance| =
∑

τi

[f (s1)i − f (s2)i] = ||s1| − |s2|| (4)

posDistance ≤ |s1|, negDistance ≤ |s2| (5)

Next, we introduce a well-known inequality: One-Sided Chebyshev Inequality, which
will be useful for calculating upper bound on the probability of those strings falling into
the query range.

One-Sided Chebyshev Inequality: Let X be a random variable with mean E(X) = μ
and variance Var(X) = σ2. For any positive number a > 0, the following inequality
hold:

Pr(X ≤ μ − a) ≤ σ2

σ2 + a2
(6)

Efficient Range Queries over Uncertain Strings 83

Equipped with these facts and inequality, we can derive the following theorem:

Theorem 2. Let Σ = {τi} (1 ≤ i ≤ |Σ|) be a alphabet. In the (δ, γ)-range query, for any
uncertain string s from D and query string t, let frequency vectors of s and t be f (s) and
f (t), respectively, and R1 =

∑
τi, f (s)i> f (t)i

[f (s)i − f (t)i], R2 =
∑
τi, f (s)i< f (t)i

[f (t)i − f (s)i],
A = 1

2 [||t| − |s||+E(R1)+E(R2)], B2 = 1
2 (|t| − |s|)2+ 1

2 ||t| − |s|| · [E(R1)+E(R2)]+min[|s| ·
E(R2), |t| · E(R1)] − A2, if δ < A, then:

Pr[ed(t, s) < δ] ≤ B2

B2 + (A − δ)2

Proof. By the definition of frequency distance, the expected value of FD(s, t)) is:

E[FD(f (s), f (t))] = E[max(R1,R2)] = E[
R1 + R2 + |R1 − R2|

2
] (7)

Since R1 and R2 correspond to posDistance and negDistance respectively, by equation
(4), the RHS of (7) equals to:

E[
R1 + R2 + ||t| − |s||

2
] =
||t| − |s||

2
+

1
2

[E(R1) + E(R2)] = A (8)

by the linearity of expectation, we have

E[R1] =
∑

τi , f (s)i> f (t)i

E(f (s)i − f (t)i), E[R2] =
∑

τi, f (s)i< f (t)i

E(f (t)i − f (s)i) (9)

Next, we compute the variance of FD(f (s), f (t)):

Var(FD(f (s), f (t))) = E[(FD(f (s), f (t)))2] − A2 = E[(
R1 + R2 + ||t| − |s||

2
)2] − A2

=
1
4

E[(R1 + R2)2 + 2||t| − |s||(R1 + R2) + (||t| − |s||)2] − A2

=
1
4

E[|R1 − R2|2 + 4R1R2 + 2||t| − |s||(R1 + R2) + (||t| − |s||)2] − A2 (10)

by (4) and (5), the RHS of (10) equals to:

1
2

(||t| − |s||)2 +
1
2
||t| − |s||[E(R1) + E(R2)] + E(R1R2) − A2

≤ 1
2

(|t| − |s|)2 +
1
2
||t| − |s||[E(R1) + E(R2)] + min[|s| · E(R2), |t| · E(R1)] − A2 = B2

By Lemma 2, if ed(s, t) ≤ δ, then FD(f (s), f (t)) ≤ δ, so if δ < A, we have:

Pr[ed(s, t) ≤ δ] ≤ Pr[FD(f (s), f (t)) ≤ δ] = Pr[FD(f (s), f (t)) ≤ A − (A − δ)] ≤ B2

B2 + (A − δ)2
,

where the last step follows from the One-Sided Chebyshev Inequality and from the
monotone increase of the function x

x+a . 	

84 D. Dai et al.

Like probabilistic q-gram based filtering, Theorem 2 provides another upper-
bound approach for pruning out unnecessary candidates: if the probability upper-bound

B2

B2+(A−δ)2 is less than γ, the corresponding uncertain string s can be filtered out im-

mediately. The remaining issue is how to obtain the value of A and B2 efficiently. In
the proof of theorem 2, we observe that A and B2 are functions of E(R1) and E(R2).
From (9), it is very important for us to efficiently calculate E f (s)i> f (t)i (f (s)i − f (t)i) and
E f (s)i< f (t)i (f (t)i − f (s)i) for each character τi.

For each character τi from the alphabet Σ, let the maximum possible number of its
occurrences from all the uncertain positions in s be Mi, and assume that the number of
its occurrences with probability 1 is Ni. We use Prs(τi, j) to denote the probability that
τi appears exactly j number of times from uncertain positions in s, then
{

Ef (s)i> f (t)i (f (s)i − f (t)i) =
∑Mi

m= f (t)i−Ni+1 Prs(τi,m) · (m + Ni − f (t)i), i f (f (t)i − Ni + 1 ≤ Mi)

Ef (s)i> f (t)i (f (s)i − f (t)i) = 0, otherwise.
(11)

Note that in (11), f (t)i is a constant for a deterministic query string t. E f (s)i< f (t)i (f (t)i −
f (s)i) can be calculated in the same way.

To evaluate Prs(τi, j), we reduce it to the following problem: Suppose we are given r
events Ei(i = 1, · · · , r), and their existence probabilities are known: Pr[Ei] = pi. What
is the probability that at least m events (among those r events) happen? In this paper,
we call this problem as At Least m out of r Events Happen (ALEH). This problem
can be solved in time O(r · m) using dynamic programming method [11]. The basic
idea is to first define the probability that within the first i events, at least j of them
happen as Pr(i, j). Thus, Pr(r,m) is the answer of the ALEH problem. Then, a dynamic
programming algorithm is used based on the following recursive equation:

Pr(i, j) = pi · Pr(i − 1, j − 1) + (1 − pi) · Pr(i − 1, j)

Correspondingly, if we use the notation Prτi
s (k, j) to denote the probability that within

the first k character τi, at least j of them happen in s. Using dynamic programming ap-
proach, we can get the value of Prτi

s (Mi, j) (j = 0, 1, · · · ,Mi) in the last line of dynamic
programming table. With these values, we have

Prs(τi, j) = Prτis (Mi, j) − Prτis (Mi, j + 1)(j = 0, 1, · · · ,Mi − 1), Prs(τi,Mi) = Prτis (Mi,Mi)

Clearly, to perform frequency distance pruning, the running time is dominated by the
computation of all E f (s)i> f (t)i (f (s)i − f (t)i) and E f (s)i< f (t)i (f (t)i − f (s)i), which in turn is
mainly determined by all Prs(τi,m)’s from (11). Note that the computation of Prs(τi,m)
is independent of any query string t. Thus, to avoid repeated computation of Prs(τi,m)
for different query strings, we adopt a trade-space-for-time strategy. It is that we store
only the last line of dynamic programming table for every possible character τi appear-
ing at all uncertain positions:

[Prτi
s (Mi, 1), Prτi

s (Mi, 2), · · · , Prτi
s (Mi,Mi)].

With this stored information , we can obtain E(R1) and E(R2) easily by just looking up
the corresponding entries therein. In general, we compute the required information by
preprocessing D and perform queries many times; thus query performance is of primary

Efficient Range Queries over Uncertain Strings 85

concern. If we assume that the size of the alphabet is constant and let the fraction of
uncertain character in the strings be θ, then by frequency distance filtering for every
s, both the time cost and space cost are O(θ · |s|). In all practical applications, θ is
typically small. Therefore, we can execute frequency distance filtering efficiently with
small storage.

Example 2. If we take a given query string t = TCCTT, an uncertain string s =
A{(A, 0.9), (C, 0.1)}
{(A, 0.9), (C, 0.1)}{(T, 0.1), (A, 0.9)}G and the distance threshold δ = 2, then according
to Theorem 2, we obtain the upper bound on probability equal to 0.162, much smaller
than that (0.991) given by local perturbation filtering. Though CDF method can provide
tighter bound 0.001, we can still prune away s quickly under the practical probability
constraints, say γ = 0.2.

5 Combined Pruning

For those uncertain strings that have survived the “light” filters in Section 4, we can
exploit two state-of-the-art filtering techniques: cumulative distribution function (CDF)
and local perturbation [11] to perform further pruning. In substring matching task [11],
CDF and local perturbation have been used independent of each other for verification.
However, by our observation, these two techniques can be combined naturally in (δ, γ)-
range query to improve the upper bound and lower bound, which in turn can reduce the
number of candidates for final verification.
Key idea for CDF CDF method changes a standard dynamic programming(DP) algo-
rithm for two deterministic strings to accommodate uncertain characters. Specifically,
for a query string t and a candidate uncertain string s, CDF is to compute (at most) δ+1
pairs of values in each cell of DP table, i.e., {(Fl[j], Fu[j]) | 0 ≤ j ≤ δ}, where Fl[j] and
Fu[j] are the lower and upper bounds of Pr(ED ≤ j) at the cell, respectively, where ED
is the edit distance at the cell.

To fill in the DP table, the following formula give methods on how to get the cu-
mulative probability bounds of a cell D0 = {(Fl[j], Fu[j])|0 ≤ j ≤ δ} from those
of its three neighbor cells D1 = {(F(1)

l [j], F(1)
u [j])|0 ≤ j ≤ δ} (upper left), D2 =

{(F(2)
l [j], F(2)

u [j])|0 ≤ j ≤ δ} (upper), and D3 = {(F(3)
l [j], F(3)

u [j])|0 ≤ j ≤ δ} (left):

Fl[j] = pF(1)
l [j] + (1 − p)F(argminiDi)

l [j − 1] (12)

Fu[j] = pF(1)
u [j] + (1 − p)min(

3∑

i=1

F(i)
u [j − 1], 1) (13)

where p = Pr(C = c) is the probability of a match at cell D0 for uncertain characters
C from s and c from t, and argminiDi returns the index i that enables Di(1 ≤ i ≤ 3)
to has the greatest probability of being small(see [11] for details). Ge and Li [11]
has proved that the value (Fl[j], Fu[j])(0 ≤ j ≤ δ) thus evaluated are the lower bound
and upper bound of Pr(ED ≤ j) at the cell, respectively. Clearly, when CDF applied
to our (δ, γ)-range query, the last values computed in the DP table corresponding to s

86 D. Dai et al.

and t: (Fl[δ], Fu[δ]) can be used for early acceptance(if Fl[δ] > γ) or early rejection (if
Fu[δ] < γ).

From equations (12) and (13), we can see that the previous values(D1,D2 and D3)
have great effect on the current value D0. If the bounds in Di(1 ≤ i ≤ 3) are relatively
loose, so are those in D0. Similarly, these bounds in D0 will loosen the later bounds in
a cascaded way. In the end, the final result (Fl[δ], Fu[δ]) will worsen the filtering effect.
Thus, to improve the filtering capability, we should tighten the bounds as possible as
we can at every step of filling in the DP table.

Key Idea for Local Perturbation For a query string t and an uncertain string s, assume
that s contains an adjacent world (a possible world pw such that ed(t, pw) ≤ δ). By
changing a subset of the existing bindings (an assignment of an uncertain character to
a fixed value in a possible world), if the resulting possible worlds are still adjacent to
t, the sum of their possibilities is a lower bound of Pr[ed(t, s) ≤ δ]. Similarly, after
various local perturbations are performed from a remote world (a possible world pw
such that ed(t, pw) > δ), if the resulting possible worlds are still beyond the distance
δ to t, one minus the sum of their possibilities pr, i.e., (1 − pr) is an upper bound of
Pr[ed(s, t) ≤ δ].

To fill in each DP table cell with the edit distance value ed[i, j], the standard algo-
rithms is based on:

ed[i, j] = min{ed[i, j − 1] + 1, ed[i − 1, j] + 1, ed[i − 1, j − 1] + c(t[i], s[j])}

where

c(t[i], s[j] =

{
0, i f t[i] = s[j]
1, i f t[i] � s[j]

In the presence of uncertain character, one of the possible ways of computing c(t[i], s[j])
is:

c(t[i], s[j] =

{
0, i f Pr(t[i] = s[j]) > 0
1, i f Pr(t[i] = s[j]) = 0

(14)

In [11], the authors have proved that, if the rule (14) is adopted, then the value ed(t, s)
thus computed is the closet possible world distance (pw is a closet possible world if
ed(pw, t) is a minimum one amongst all possible worlds). Clearly, this closet possible
world can be served as an adjacent world (if there is one). To get an initial remote
world, a process of binding each uncertain character randomly based on its distribution
is repeated until a remote world is generated. With these adjacent and remote possible
worlds, local perturbations over crucial variable and uncertain characters are performed
to get the lower bound and upper bound of Pr(ed(t, s) ≤ δ), respectively. For each cell
indexed by (i, j) in the optimal path, a crucial variable is an uncertain character s[i]
such that one of its alternatives can match t[j]. The following two theorems give the
computation details:

Theorem 3. [11] Given a query string t and an uncertain string s in the range-(δ, γ)
query, let Δ(≥ 0) be the difference between δ and the edit distance in an adjacent world,
which has c crucial variables. Let lp = Pr(at least c − Δ crucial variables have the
same values as in the optimal path). Then Pr[ed(s, t) ≤ δ] ≥ lp.

Efficient Range Queries over Uncertain Strings 87

Theorem 4. [11] Given a query string t and an uncertain string s in the range-(δ, γ)
query, Consider a remote world that has a distance δ′ > δ and let Δ = δ′ − δ − 1. If
there are u uncertain characters in s and up = Pr(at least u − Δ crucial variables have
the same values as in the optimal path), then Pr[ed(s, t) ≤ δ] ≤ 1 − up.

In Theorem 3 and 4, the issue of how to evaluate lp and up is equivalent to the ALEH
problem mentioned in 4.2.

CDF and local perturbation are used separately in [11]. As argued above, improving
the bounds is a very important factor in terms of processing efficiency. As we will see
soon, achieving bound improvement by combining CDF and local perturbation is a
natural and feasible scheme.

First, we discuss how to tighten the lower bound of Pr(ed(t, s) ≤ δ). The basic idea
for combining goes as follows: to fill each DP table cell indexed by (x, y), besides the
lower bound value Fl[j] calculated by (12), we also consider the lower bound lp[j]
by local perturbation. Note that , like Fl[j], the value lp[j] is also corresponding to
substring s[1 . . . x] and t[1 . . . y], i.e., Pr(ed(s[1 . . . x], t[1 . . . y]) ≤ j) ≥ lp[j]. Clearly,
we can obtain an improved lower bound by:

Fl[j] = max{Fl[j], lp[j]} (15)

Repeating this combining processing at each step of CDF computation, the lower bounds
can be continuously improved in a cascaded way. In the end, the value Fl[δ] correspond-
ing to the whole strings s and t is possible to be tighter than either value derived by use
of CDF or local perturbation method.

As discussed above, the key issue of improving lower bound by combining is how
to get the lower bound of any value Pr(ed(s[1 . . . x], t[1 . . . y]) ≤ j) (0 ≤ j ≤ δ, 1 ≤
x ≤ |s|, 1 ≤ y ≤ |t|) by local perturbation. Obviously, there exists a naive method
to achieve this: for any value x and y, we compute the closet possible world distance
between two substrings s[1 . . . x] and t[1 . . . y], along with the associated crucial vari-
ables. Then, for any given distance threshold j, we can obtain the lower bound of
Pr(ed(s[1 . . . x], t[1 . . . y]) ≤ j) according to the Theorem 3. This naive method is of
very low efficiency due to many times of computation for edit distances and for crucial
variables. Below we design an efficient scheme to tackle this problem.

By observation, we find that once a local perturbation for s and t is performed,
its associated DP table for closet possible world (denoted as CPW table) and eval-
uation table for the ALEH problem may be exploited for the evaluation of lower
bound on Pr(ed(s[1 . . . x], t[1 . . . y]) ≤ j). Specifically, for each cell in CPW table
indexed by (x, y), ed(s[1 . . . x], t[1 . . . y]) is also the closet possible world distance
between s[1 . . . x] and t[1 . . . y]. Recall that in the evaluation of ALEH problem,
we use Pr(i, j) to denote the probability that within the first i events, at least j of
them happen. When we get the value Pr(i, j) using dynamic programming method
, all Pr(x, y)(1 ≤ x ≤ i, 1 ≤ y ≤ j) have also been computed as long as the first
x events is a prefix of the first i events. Let the crucial variables for CPW table be
{s[i1], s[i2], · · · , s[ik]}(1 ≤ i1 ≤ · · · ≤ ik ≤ · · · ≤ |s|). According to Theorem 3, with dis-
tance threshold j and closet world distance ed(s[1 . . . x], t[1 . . . y]), if its corresponding

88 D. Dai et al.

Fig. 1. Closet possible world DP table and crucial variables

crucial variables is a prefix of {s[i1], s[i2], · · · , s[ik]}, we can efficiently obtain the lower
bound of Pr(ed(s[1 . . . x], t[1 . . . y]) ≤ j) by just looking up the corresponding entries in
ALEH table.

Fig 1 gives an example of the CPW table and corresponding variables for string s
and t. In each cell, a value in the solid circle indicates the corresponding closet dis-
tance with prefix crucial variables. For example, the closet world distance between
s[1 . . .4] and t[1 . . . 2] is 3, and the associated crucial variables {s[2]} is a prefix of
crucial variables {s[2], s[3], s[4]} for s[1 . . .4] and t[1 . . . 4] . Thus, the lower bound of
Pr(ed(s[1 . . .4], t[1 . . .2]) ≤ j) can be immediately obtained by looking up some entry
in the ALEH table. Crucial variables can be obtained by keeping track of optimal path
for each cell, which is a trivial work when constructing CPW table. When crucial vari-
ables at some cell is not a prefix of {s[2], s[3], s[4]}, like the crucial variables {s[1]} cor-
responding to s[1] and t[1 . . . 2], we do not care about improving the lower bound from
CDF at that cell. Note that for improving the final low bound of Pr(ed(s, t) ≤ j) , we
don’t need to improve each cell’s low bound. Maybe a single cell’s improved low bound
can achieve this due to cascaded effect by (15). For instance, if we have improved the
low bound of Pr((ed(s[1 . . .2], t[1 . . .2]) ≤ j), the low bound of Pr((ed(s, t) ≤ j) can be
also improved by it through the tighter low bound of Pr((ed(s[1 . . .3], t[1 . . .3]) ≤ j).

For the upper bound Fu[j] from CDF, we can improve it whenever
ed(s[1 . . . x], t[1 . . . y]) > j as required in Theorem 4, i.e., the improved upper bound
can be computed as:

Fu[j] = min{Fu[j], up[j]}
where up[j] is the upper bound derived by local perturbation if ed(s[1 . . . i], t[1 . . . j]) >
k. Similarly, the evaluation table of corresponding ALEH problem is useful for any
up[j] computation once it is created.

Based on the proposed filtering techniques, we now present our algorithm RQUS:
We sort the dataset D by string length. This preprocessing is just executed for one-

time and the amortized cost can be ignored for continuously arriving queries. In RQUS,
we first use length filtering to get an initial candidate string set D′ based on Lemma
3(lines 2-3). Then, probabilistic q-gram filtering and frequency distance filtering are

Efficient Range Queries over Uncertain Strings 89

Algorithm. RQUS(D, t, δ, γ)
Input: uncertain string set D sorted by length, query string t, range parameter δ,

probability parameter γ(> 0)
Output: subset of D: RS = {s|s ∈ D,Pr(ed(s, t) ≤ δ) ≥ γ}
RS ← φ;1

D′ ← {s|s ∈ D,max(0, |t| − δ) ≤ |s| ≤ |t| + δ};2

for each s ∈ D′ do3

if s survives probabilistic q-gram filtering then4

if s survives frequency distance filtering then5

if improved combining lower-bound Fl[δ] ≥ γ then6

RS ← RS ∪ s;7

else if improved combining upper-bound Fu[δ] ≥ γ then8

if Pr(ed(t, s) ≤ δ) ≥ γ then9

RS ← RS ∪ s;10

Return RS ;11

employed in turn (lines 4-5). If s survives these filtering, combined filtering is used to
check wether it can be early accepted or rejected (lines 6-8). Otherwise, we have to
resort to the exact verification (lines 9-10).

We should note that as a metric, the edit distance function satisfies the property of
triangle inequality, so there exists an alternative way for us to do filtering based on this
metric property in the (δ,γ)-range queries. However, in probabilistic similarity search,
obtaining the bounds on probability of edit distance falling into query range instead of
edit distance itself is of primary concern. For example, the assertion “if ed(s1, t) > γ,
then ed(s1, s2) > 1

2γ or ed(s2, t) > 1
2γ” follows from the property of triangle inequality.

Then ,we have Pr(ed(s1, t) > γ) ≤ Pr(ed(s1, s2) > 1
2γ) + Pr(ed(s2, t) > 1

2γ). If we
pre-build index for the range of Pr(ed(s1, s2) > 1

2γ) and Pr(ed(s2, t) > 1
2γ), we can

obtain the bound on Pr(ed(s1, t) > γ)(i.e., Pr(ed(s1, t) ≤ γ)). We will study this filtering
technique in the future work.

6 Experiments

6.1 Experiment Setup

The following algorithms are implemented in the experiments.

CDF and local perturbation [11] are two filtering techniques and work originally in
uncertain substring-matching task. However, they can also serve as filers in range
queries straightforwardly. Note that, to compare performance fairly, we also incor-
porate the length filtering into CDF and local perturbation, respectively.

RQUS is proposed in this paper. RQUS uses all filtering schemes: probabilistic q-gram
filtering, frequency distance filtering and combined filtering.

RQUS1, RQUS2, RQUS3 To measure the effects of all filtering techniques, we bypass
the probabilistic q-gram filtering, frequency distance filtering, and both of them in

90 D. Dai et al.

turn from RQUS and name the resulted algorithm RQUS1, RQUS2 and RQUS3,
respectively.

All experiments are carried out on a PC with a 2.4GHz CPU and 2GB RAM. All algo-
rithms are implemented in C.

We generate a few synthetic datasets based on two real datasets:

DBLP is a snapshot of the bibliography records from the DBLP Web site
(http://www.informatik.uni-trier.de/˜ley/db/). Each record is a string
of the author name(s) and the title of a publication. An uncertain version of DBLP
dataset have been generated in similarity join research [10]. We adopt similar
approach to generate uncertain strings. Specifically, for a name χ in the DBLP
database, we find its similar set A(χ) that consists of all names in DBLP within edit
distance 3 to χ. Then, we create a character-level uncertain string s from χ as fol-
lows. We randomly pick a few characters in χ, and for each such letter at position i,
the pdf of s[i] is generated based on the normalized frequencies of the letters in the
i-th position of all strings in A(χ). The other positions of s are deterministic and the
same as in χ. In addition, we also generate different size of synthetic datasets based
on this real datasets by varying the parameter values of data (such as uncertain ratio
θ) or the size of the data. The average length of the generated uncertain strings is
10 ∼ 30.

UNIREF is the UniRef90 protein sequence data from the UniProt project
(http://www.uniprot.org/). Each string is a sequence of amino acids coded
as uppercase letters. We broke long sequences into shorter strings of controlled
length and generated uncertain strings with average length 50 ∼ 100 in the same
way as for DBLP dataset.

The default values for some parameters are: q=3, θ = 30%, and the average number σ
of choices that each probabilistic character s[i] may have is set as 5.

6.2 Performance Comparison

In all implemented algorithms, two important measures reflecting the performance of
their filtering techniques are used: (1) the size of candidate uncertain strings whose edit
distances of all possible worlds are evaluated (denoted by SCAND); and (2) running
time. On each dataset, we measured average results by running the algorithms 10 times
using different query strings.

Figures 2 shows the SCAND and the running time for RQUS, RQUS1, RQUS2,
RQUS3, and CDF on different sizes of input-sequences DBLP with parameter δ=3,
γ=0.1. As shown in Figures 2(a), although RUQS1, RUQS2, and RUQS3 do not use the
probabilistic q-gram filtering, frequency distance filtering, and both of them in turn, they
still get smaller SCAND than CDF on different datasets for two reasons. The first is that
both of probabilistic q-gram filtering and frequency distance filtering can prune away
some additional uncertain strings that CDF fails to filter out, which demonstrates that
CDF can’t provide absolutely tighter upper bound than probabilistic q-gram filtering
or frequency distance filtering. Another reason is that, due to tighter bounds obtained
by combined filtering, some strings have greater opportunity to be removed from the

http://www.informatik.uni-trier.de/~ley/db/
http://www.uniprot.org/

Efficient Range Queries over Uncertain Strings 91

candidate set. In addition, by comparing the SCAND measure of RQUS1 and RQUS2,
we find that although our algorithm can benefit from both probabilistic q-gram filtering
and frequency distance filtering, the former is slightly better in filtering capability than
the latter .

(a) SCAND (b) Running time

Fig. 2. Performance comparison against CDF: on DBLP datasets (parameter δ =3, γ=0.1)

Figure 2(b) shows that, in terms of running time, RQUS is the most efficient algo-
rithm, followed in turn by RQUS2, RQUS1, RQUS3 and CDF. Running time consists
of two parts: filtering time and verification time. Filtering time is the processing time
spent by different filtering techniques. On 500k DBLP dataset, CDF consumes more fil-
tering time than RQUS, RQUS1, and RQUS2 because it needs to test every input string
that maybe filtered out by probabilistic q-gram filter or frequency distance filter and the
latter two filters spends less time than CDF. In addition, since CDF has more candidate
strings to be verified, it need to spend much more verification time to enumerate all
possible worlds for computing exact probability of edit distance falling into the query
range, which indicate that it is very time-consuming during the verification phase. On
other DBLP datasets with different size, we also get the similar results.

(a) SCAND (b) Filtering time

Fig. 3. Performance comparison against CDF: on UNIREF datasets (parameter δ=8, γ=0.01)

Figure 3 shows the result for UNIREF datasets with parameter δ=8, γ=0.01. The
contrast of SCAND between different algorithms is similar to that for DBLP datasets.

92 D. Dai et al.

However, RQUS (also RQUS1 and RQUS2) shows big advantage over CDF in terms
of filtering time. As analyzed in the Introduction section, the time complexity of CDF
tends to be cubic in the size of query string, while probabilistic q-gram filter and fre-
quency distance filter in RQUS work at most in linear time. Thus, for long strings, these
two filters in RQUS is much more efficient than CDF filter. For instance, on the DBLP
dataset with average length 20 and UNIRF dataset with average length 60 (with the
same size of 500k), RQUS’s filtering time increases from 16s to 164s, while CDF’s
filtering time increases dramatically from 86s to 2529s. In addition, the two filters in
RQUS are competitive in filtering capability and thus most of strings can be first pruned
away by them instead of CDF filter. These two factors contribute to the high efficiency
of RQUS. Note that we do not record the verification time because more uncertain posi-
tions in long UNIREF strings incur extremely expensive calculations of edit distances.

We also compare the performance of RQUS together with its three variants against
that of local perturbation method. The results are shown in Figures 4. As opposed to
comparison with CDF, we find that: 1. local perturbation takes less time than CDF
to perform filtering. On average, CDF spends five-fold more filtering time than local
perturbation on different size of DBLP datasets. 2. CDF based bounds is better than
local perturbation based bounds. So, the improvement over local perturbation is more
notable since local perturbation method has to spend more time for verification. For
example, on DBLP dataset with size of 500k, the SCAND of RQUS is 151 less than
that of CDF, while it is 359 less than that of local perturbation, which results in 242
seconds difference in terms of running time improvement.

(a) SCAND (b) Running time

Fig. 4. Performance comparison against local perturbation: on DBLP datasets (parameter δ =3,
γ=0.1)

6.3 Effect of Parameters

As Figure 5 shows, we vary the value of δ or γ to test the effect of the similarity thresh-
old and probability threshold on the performance of the algorithms. As expected, for all
algorithms, when we fix γ=0.1 and increase δ, the total number of strings accepted as
results by lower bound also increases. This number is almost the same for all algorithms
as shown in Figure 5(a), which indicates that the lower bounds provided by CDF and
local perturbation are equally matched. In addition, with SCAND measure, we find that
the number of strings removed by upper bound of all algorithms decreases with δ.

Efficient Range Queries over Uncertain Strings 93

(a) # of strings removed by lower boud (parame-
ter γ=0.1)

(b) SCAND vs. γ (parameter δ=3)

Fig. 5. Effect of δ and γ on performance on 500k DBLP dataset

(a) Filtering time vs. θ (b) SCAND vs. q

Fig. 6. Effect of θ and q on performance

In Figure 5(b), when we fix δ=3, the general trend is that the SCAND of all algo-
rithms increases with γ going up from 0.001 to 0.2. This is because, as γ increases,
the decreased number of the accepted strings by lower bound exceeds the increased
number of the removed strings by upper bound. In addition, our proposed algorithms
outperform local perturbation by an increasingly larger margin when γ increases. In
all scenarios, RQUS and its three variants are faster than CDF or local perturbation in
terms of both SCAND and running time.

Figure 6(a) shows that another parameter, the fraction θ of uncertain positions in an
uncertain string, also has an obvious impact on the filtering time of algorithm RQUS1.
This is because only the performance of frequency distance filter is affected by θ directly
and the frequency distance filter in RQUS1 processes much more input-strings than in
RQUS. Obviously, bigger value of θ will incur exponentially more verification time for
all algorithms.

As for q, the length of q-gram, only probabilistic q-gram filtering is affected by this
parameter. In Figure 6(b), we run the algorithm RQUS on both DBLP and UNIREF
datasets and present its result of SCAND by different value of q. It indicates that too
small or too big value of q is not suitable for probabilistic q-gram filtering, so we take
q=3 in all experiments.

94 D. Dai et al.

7 Conclusion

In this paper, we study an unexplored problem of range queries over uncertain strings.
We first discuss the range query semantics and formulate an appropriate problem on
range query. With this problem, we propose two novel filtering techniques: probabilis-
tic q-gram filtering and frequency distance filtering to speed up the query processing. To
further improve the performance, we combine the two existing filtering schemes used in
substring matching task: CDF and local perturbation, to make the lower bound and up-
per bound tighter. Extensive experiments show our proposed algorithm is more efficient
than CDF or local perturbation. As future work, we plan to investigate the problem of
top-k query over uncertain strings.

Acknowledgement. The research was supported by Key Project of Science and Tech-
nology Commission of Shanghai Municipality [No.11510500300], Shanghai Leading
Academic Discipline Project [No.J50103], Innovation Program of Shanghai Municipal
Education Commission [No.11YZ03] and Ph.D. Programs Fund of Ministry of Educa-
tion of China [No. 20113108120022].

References

1. Gusfield, D.: Algorithms on strings, trees, and sequences. Cambridge University Press (1999)
2. Sarawagi, S.: Sequence Data Mining (Advanced Methods for Knowledge Discovery from

Complex Data). Spinger (2005)
3. Dong, G., Pei, J.: Sequence Data Mining (Advances in Database Systems). Springer (2007)
4. Hadjieleftheriou, M., Li, C.: Efficient approximate search on string collections. In: ICDE

Tutorial (2009)
5. Gravano, L., Ipirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S., Srivastava, D.:

Approximate string joins in a database (almost) forfree. In: VLDB, pp. 491–500 (2001)
6. Chaudhuri, S., Ganjam, K., Ganti, V., Motwani, R.: Robust and efficient fuzzy match for

online data cleaning. In: SIGMOD, pp. 313–324 (2003)
7. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity search. In: WWW, pp. 131–

140 (2007)
8. Henzinger, M.: Finding near-duplicate web pages: a large-scale evaluation of algorithms. In:

SIGIR, pp. 284–291 (2006)
9. Buhler, J.: Efficient large-scale sequence comparison by locality-sensitive hashing. Bioinfor-

matics 17(5), 419–428 (2001)
10. Jestes, J., Li, F., Yan, Z., Yi, K.: Probabilistic string similarity joins. In: SIGMOD, pp. 327–

338 (2010)
11. Ge, T., Li, Z.: Approximate substring matching over uncertain strings. In: VLDB, pp. 772–

782 (2011)
12. Kahveci, T., Singh, A.: An efficient index structure for string databases. In: VLDB, pp. 351–

360 (2001)
13. Venkateswaran, J., Kahveci, T., Jermaine, C., Lachwani, D.: Reference-based indexing for

metric spaces with costly distance measures. The VLDB Journal 17(5), 1231–1251 (2008)
14. Li, C., Lu, J., Lu, Y.: Efficient merging and filtering algorithms for approximate string

searches. In: ICDE, pp. 257–266 (2008)
15. Xiao, C., Wang, W., Lin, X., Yu, J.: Efficient similarity joins for near duplicate detection. In:

WWW, pp. 131–140 (2008)

Efficient Range Queries over Uncertain Strings 95

16. Li, C., Wang, B., Yang, X.: VGRAM: Improving performance of approximate queries on
string collections using variable-length grams. In: VLDB, pp. 303–314 (2007)

17. Yang, X., Wang, B., Li, C.: Cost-based variable-length-gram selection for string collections
to support approximate queries efficiently. In: SIGMOD, pp. 353–364 (2008)

18. Jokinen, P., Ukkonen, E.: Two algorithms for approximate string matching in static texts. In:
FOCS, pp. 240–248 (1991)

19. Xiao, C., Wang, W., Lin, X.: Ed-Join: An efficient algorithm for similarity joins with edit
distance constraints. In: VLDB, pp. 933–944 (2008)

20. Xiao, C., Wang, W., Lin, X., Yu, J.: Efficient similarity joins for near duplicate detection. In:
WWW, pp. 131–140 (2008)

21. Zhang, Z., Hadjielefttheriou, M., Ooi, B.C., Srivastava, D.: Bed-Tree: An all-purpose in-
dex structure for string similarity search based on edit distance. In: SIGMOD, pp. 915–926
(2010)

22. Behm, A., Li, C., Carey, M.: Answering approximate string queries on large data sets using
external memory. In: ICDE, pp. 888–899 (2011)

23. Yao, B., Li, F., Hadjieleftheriou, M., Hou, K.: Approximate string search in spatial databases.
In: ICDE, pp. 545–556 (2010)

24. Dalvi, N., Suciu, D.: Management of probabilistic data: foundations and challenges. In:
PODS, pp. 1–12 (2007)

25. Aggarwal, C.C., Yu, P.S.: A Survey of Uncertain Data Algorithms and Applications. IEEE
Transaction on Knowledge and Data Engineering (TKDE) 21(5), 609–623 (2009)

26. Sutinen, E., Tarhio, J.: On Using q-Gram Locations in Approximate String Matching. In:
Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 327–340. Springer, Heidelberg (1995)

Continuous Probabilistic Sum Queries in Wireless
Sensor Networks with Ranges

Nina Hubig1, Andreas Züfle1, Tobias Emrich1, Mario A. Nascimento2,
Matthias Renz1, and Hans-Peter Kriegel1

1 Ludwig Maximilians Universität, München, Germany
{hubig,zuefle,renz,kriegel}@dbs.ifi.lmu.de

2 University of Alberta, Edmonton, Canada
mn@cs.ualberta.ca

Abstract. Data measured in wireless sensor networks are inherently imprecise.
Aggregate queries are often used to analyze the collected data in order to alleviate
the impact of such imprecision. In this paper we will deal with the imprecision
in the measured values explicitly by employing a probabilistic approach and we
focus on one particular type of aggregate query, namely the SUM query.1

1 Introduction

Recent advances in sensors and wireless communication technologies have enabled the
development of small and relatively inexpensive multi-functional wireless sensor nodes.
This has lead to the concept of a wireless sensor network (WSN), i.e., a set of spatially
distributed autonomous sensors that cooperatively monitor physical or environmental
conditions in an area of interest [1]. This paper addresses efficient processing of SUM
queries in such WSNs. SUM queries are very useful for many applications, for example,
if we want to observe the overall amount of traffic in a road network in order to predict
potential traffic jams, or areas where the risk that an accident will happen due to large
volume of incoming traffic is higher. Another example is to estimate the water level of
a river by aggregating over all potential inflows observed by a sensor network, which is
very important to predict and avoid flooding. However, there are a number of challenges
sensor network applications have to cope with, including the large number of sensor
nodes used in typical sensor networks and the fact that they are prone to failures, as well
as limited in power, computational capacities, and memory. Specifically, in this paper
we assume that measurements taken by the sensors are imprecise, due to fluctuations in
the environment itself or due to hardware limitations [4].

Our main goal is to show how to efficiently perform SUM queries on uncertain sen-
sor data while focusing on providing reliable results. Thus allowing us to to answer
probabilistic SUM queries such as “Report the probability that the sum of sensor values
exceeds a given threshold τ”.

Table 1 shows a sample scenario for the SUM query. Let S = {s1, s2, s3} be a WSN
with three sensors that are installed on the tributaries of a river measuring the water level
due to rainfall. Each sensor reading contains a set of value ranges, each associated with

1 This research was partially supported by NSERC, Canada and DAAD, Germany.

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 96–105, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Continuous Probabilistic Sum Queries 97

Table 1. Example of probabilistic sensor readings (sets of (Value Range,Probability) pairs)

Sensor-ID Set of (Value Range, Probability) pairs
s1 {([0, 0], 0.5), ([0, 10], 0.3), ([10, 20], 0.2)}
s2 {([0, 20], 0.2), ([20, 30], 0.4), ([30, 40], 0.3), ([40, 60], 0.1)}
s3 {([0, 0], 0.5), ([10, 20], 0.3), ([20, 50], 0.1),([50,100],0.1)}

respective probabilities. A possible query in such a scenario is: “What is the probability
that the total water level rises above some critical level?”.

Interestingly, not much work has been done regarding the uncertainty aspect of data
when processing queries in WSNs. Some efforts have addressed top-k queries, e.g., [8]
but not as much for other types of aggregations. In [3] we investigated probabilistic
count queries, where the task is to find the probability that a given number of sensors
satisfy a query. Note that in that case a sensor either satisfies a query with a given prob-
ability or does not with a complementary probability, i.e., there is only one value and
one probability involved. It turns out that even though COUNT queries are a special
case of the SUM queries we study in this paper, the techniques presented in [3] are not
well suited for the latter. For (probabilistic) SUM queries we allow each sensor to gen-
erate an arbitrary non-binary set of value- or range-probability pairs. In the following,
we discuss in detail the probabilistic SUM queries as well as the solutions we propose
to process the same in a WSN setting.

2 Problem Definition

We consider a wireless sensor network WSN, consisting of a set S = {s1, s2, . . . , sn}
of n sensors. We assume that the network topology is fixed (i.e., it does not change
over time) and is a shortest path tree with one single sink node (the tree’s root). Instead
of a deterministic value, a sensor value of a sensor si is a random variable, specified
by a probabilistic density function (PDF) denoted as pdf(si). The function pdf(si) :
V (si) → (0, 1] maps the domain V (si) of si, i.e., each possible parameter value of
si, to a non-zero probability value. A sensor si producing such probabilistic values,
i.e., values given by a PDF, is called a probabilistic sensor. Sensor values are typically
spatially correlated. This work allows spatial correlation of sensor values, however, it is
important to note that we assume that the measurement errors (i.e., the deviation from
the true value) of different sensors are mutually independent, even if the underlying
observed events are mutually dependent. Consequently, the sensor value distributions
of two different sensors are assumed to be independent.

Based on the above probabilistic sensor model, queries are issued in a probabilis-
tic way by applying the possible worlds semantic model. However, there have been
different adaptations of the model for probabilistic databases. We use the model as
proposed in [7], specifically, a possible world w is a set w = {sw1 , . . . , swn } of instances
of sensor values, where each sensor s ∈ S is assigned to a (certain) value v ∈ V (si).
The probability P (w) denotes the probability that the world w is true, i.e., that the in-
stances in w coexist in the sensor network. The set of all possible worlds is denoted by
W = {wi, . . . , w|W|}.

98 N. Hubig et al.

We consider a wireless sensor network WSN consisting of a set of probabilistic sen-
sors S and a probability threshold τ . A probabilistic SUM query computes the probabil-
ity, that the random variable corresponding to the sum of all sensor values in the WSN
is at least τ .

Definition 1. A probabilistic sum query (PSQ) is defined as:

PSQ(WSN, τ) =
∑

w∈W,sum(Sw)≥τ

P (w), (1)

where W denotes the set of possible worlds and sum(Sw) =
∑

si∈S swi denotes the
sum of all sensor (value) instances s ∈ S in world w.

In accordance to the above definition, we can answer probabilistic sum queries by ma-
terializing all possible worlds with the corresponding probabilities and accumulate the
probabilities of all worlds w where the sum of sensor instances in w exceeds τ . How-
ever, since the number of possible worlds is exponential in the number of probabilistic
sensors, this naive method is not practical. In the following, we will show how to ef-
ficiently compute a probabilistic sum query in sensor networks. A special variant of
our approach that is only applicable to discrete data distributions cane be found in the
extended version of this paper [5]. In addition to solutions focusing on reducing the
computational overhead of probabilistic sum queries, we show how to reduce the com-
munication overhead, in terms of number of messages, in the sensor network.

3 Probabilistic Sum Queries in Probabilistic Wireless Sensor
Networks Having Discrete Data Distributions

In the following, we assume that each sensor measures a large, or infinite number of
possible values. The probability density function (PDF) of these values may be very
complex and not representable in a parametric form. Thus, we propose to discretize the
value domain into intervals and give lower and upper bounds of the aggregate probabil-
ity of these intervals. Thus, the PDF of a sensor si is partitioned into a (finite) set of

value intervals Vi = {v1i , ..., v
|Vi|
i }. Each interval vji is associated with the probability

pdf(vji) = cdf(ub(vji))− cdf(lb(vji)), where cdf(a) =
∫ a

−∞ pdf(x)dx and ub(vji) and

lb(vji) correspond to the upper and lower bound of interval vji , respectively.
In summary, a sensor node is now assumed to be characterized by a set of value

intervals, each associated with the probability that the actual value falls into the corre-
sponding interval. While information is absent regarding the probabilistic distribution
of the sensor within the interval, we aim at bounding, efficiently, the result of a proba-
bilistic SUM query based on these intervals.

To achieve this, consider the following generating function:

GF (Sn) =
n∏

i=1

|Vi|∑
j=1

pdf(vji)x
lb(vj

i)yub(v
j
i)−lb(vj

i) =
∑
i,j

ci,jx
iyj (2)

Continuous Probabilistic Sum Queries 99

Each monomial represents a class of possible worlds, having a total probability of ci,j
and a sum of at least i. Additionally, the exponent j of y corresponds to a possible
additional value of j, which may or may not exist in the worlds corresponding to ci,j ,
leading to the following lemma:

Lemma 1. Let Sn = {s1, ..., sn} be a set of probabilistic sensors. Each coefficient ci,j
of the expansion of GF (Sn) corresponds to the probability of all worlds, in which the
sum of all sensors Sn must be between i and i+ j.2

Lemma 1 allows us to compute a lower bound of the probability that the sum of Sn

exceeds τ by adding up the probabilities ci,j of all worlds where the lower bound i (i.e.,
the exponent of x) exceeds τ , as LB(PSQ(W , τ)) =

∑
i≥τ,j ci,j . The corresponding

upper bound can be computed as UB(PSQ(W , τ)) =
∑

i+j≥τ ci,j .
To allow pruning , we can use the following observation: if the sum of Sn is greater

than or equal to τ with a probability of at least (at most) p, then the probability that the
sum is less than τ can be at most (must be at least) 1 − p. This permits to rewrite the
two equations above as:

UB(PSQ(W , τ)) = 1−
∑

i+j<τ

ci,j (3)

LB(PSQ(W , τ)) = 1−
∑
i<τ,j

ci,j (4)

Now, we note that in this representation, for any monomial ci,jxiyj it holds that i ≤ τ .
This directly leads to the following corollary:

Corollary 1. Any monomial ci,jxiyj where i > τ can be pruned without loss of infor-
mation.

Furthermore, we can combine monomials ci,jxi, yj , cm,nx
m, yn where i = m, i+ j >

τ and m + n > τ . The rationale of this is, that for both classes of worlds represented
by ci,jx

i, yj and cm,nx
m, yn the only difference is a different upper bound sum, since

the lower bounds i and n are identical. Since both upper bounds i + j and m + n are
greater than τ , we can treat these worlds equivalently, since we do not care how much τ
can be exceeded, all we need to know is whether τ can be exceeded at all in the possible
worlds. This leads to the following corollary.

Corollary 2. Any two monomial ci,jxi, yj , cm,nx
m, yn where i = m, i+ j > τ repre-

sent worlds of an equivalent class of worlds. We represent this class of possible worlds
by the monomial ci+m,∞xi+my∞

In the iterative computation of Sn, 1 ≤ n ≤ |S|, Corollary 1 allows to prune, in each
iteration, monomials of GF (Sn) which cannot have influence on the sum of S. Further-
more, Corollary 2 allows to combine multiple monomials of GF (Sn) into a single one.
Both these pruning criteria reduce the number of monomials, thus decreasing the cost
of computing Sn+1.

2 Formal proofs of all lemmas and corollaries can be found in the extended version [5].

100 N. Hubig et al.

We note that the generating function we propose for the discrete case (cf. [5]) is a
special case of Equation 2, where for all coefficients ci,jx

iyj it holds that y = 0. Thus,
using Equation 2 we can handle both cases of discrete and continuous data.

Example 1. Assume a set of sensors S that estimate the expected influx of water to
a common river. Let us assume that if this influx exceeds a value of τ = 40 with a
probability of at least 10%, a flood warning should be issued. Each sensor si computes
a continuous PDF of the water influx, using appropriate water-flow and precipitation
models (e.g. [2]). Discretization of these continuous functions yields the value ranges
illustrated in the table 1, associated with respective probabilities that the true water
influx is within the interval3.

Applying Equation 2 yields the following polynomial:

G(S1) = 0.5x0y0 + 0.3x0y10 + 0.2x10y10

By definition, each monomial pxiyj corresponds to a world having a probability of p
and having a sum that is lower bounded by i, and upper bounded by i + j. For S2 we
obtain:

G(S2) = G(S1)× (0.2x0y20 + 0.4x20y10 + 0.3x30y10 + 0.1x40y20)

Here, monomials in G(S1) correspond to all possible worlds of S1, while the remaining
monomials correspond to worlds of S2. Due to the observation that the sum of two
values between [lb1, ub1] and [lb2, ub2] must be in the interval [lb1 + lb2, ub1 + ub2],
we now expand the above term to get all possible intervals of the sum of S1 and S2:

G(S2) = 0.1x0y20+0.2x20y10+0.15x30y10+0.05x40y20+0.06x0y30+0.12x20y20+

0.09x30y20 + 0.03x40y30 + 0.04x10y30 + 0.08x30y20 + 0.06x40y20 + 0.02x50y30

Each coefficient p of each monomial pxixj is the product of the probabilities of two
sensor values. Due to the assumption of independent sensor errors, this product is the
probability of observing both values. We can combine worlds of S2 having the same
lower and upper bounds

G(S2) = 0.1x0y20 + 0.06x0y30 + 0.04x10y30 + 0.2x20y10 + 0.12x20y20+

0.15x30y10 + 0.17x30y20 + 0.11x40y20 + 0.03x40y30 + 0.0250y30

Now, recall that ultimately, we want to compute the probability that P (sum(S)) > 40,
which equals 1 − P (sum(S) ≤ 40). To compute the latter probability, we can now
prune any monomial having an x-exponent of i > 40, since for the equivalent class of
worlds represented by this monomial, we can already conclude that the sum cannot be
less than 40 due to non-negativity of sensor values. We obtain:

3 For illustration purpose we use a very coarse discretization. In practice, a much larger set of
value ranges per sensor could be used.

Continuous Probabilistic Sum Queries 101

G(S2) = 0.1x0y20 + 0.06x0y30 + 0.04x10y30 + 0.2x20y10+

0.12x20y20 + 0.15x30y10 + 0.17x30y20

which will then be used in the computation of G(S3). Furthermore, we can combine
monomials ci,jx

i, yj , cm,nx
m, yn where i = m, i + j > τ and m + nτ as discussed

above, yielding:

G(S2) = 0.1x0y20 + 0.06x0y30 + 0.04x10y30 + 0.2x20y10+

0.12x20y20 + 0.15x30y10 + 0.17x30y∞

Due to space limitations, let us now assume that there is only two sensors, i.e., S = S2.
Now, in order to lower (upper) bound the probability that the sum of S is at most 40,
we simply sum up all worlds where the sum must be (can be) lower than 40. Clearly, a
world must have a sum of at most 40, if its corresponding upper bound is at most 40,
i.e., if for the corresponding monomial pxiyj it holds that i+ j is at most 40.∑

i+j<τ=40

ci,j = 0.1 + 0.06 + 0.04 + 0.2 + 0.12 + 0.15 = 0.67

A world can have a sum of 40 or less, if its corresponding lower bound is 40 or less∑
i<τ=40

ci,j = 0.1 + 0.06 + 0.04 + 0.2 + 0.12 + 0.15 + 0.17 = 0.84

Note, that this sum equals the sum of coefficients of all remaining monomials, since
any monomial which cannot have a sum of 40 or less has already been pruned.

Using Equations 3 and 4, we bound the probability that the sum of S exceeds τ :

UB(PSQ(W , τ)) = 1−
∑

i+j<τ

ci,j = 1− 0.67 = 0.33

LB(PSQ(W , τ)) = 1−
∑
i<τ

ci,j = 1− 0.84 = 0.16

Thus we can conclude that the event that the water influx exceeds 40 must have a proba-
bility of at least 16%, and in particular must be greater than 10%, thus we will broadcast
a flood warning. Note that we were able to answer this query despite a very coarse ap-
proximation of the sensor PDFs. In the general case, the probability threshold p may be
between the lower and the upper bound of PSQ(W , τ). In this case we cannot say for
certain whether the probability is greater than p or not. However, we may re-initiate the
whole query, asking each sensor for a PDF having a more refined granularity. This will
reduce the uncertainty of the query result but will come at an additional network traffic,
since for the new query, sensors will be forced to send a much more refined pdf, which
corresponds to more information, which corresponds to more data.

This filter refinement approach can be iterated until a definite answer can be given,
or until the resulting approximation is good enough. In the example, an approximation
that the probability of a flood must be between 9% and 11% may be good enough to
decide whether to broadcast a warning or not.

102 N. Hubig et al.

In this section, we showed how to reduce the CPU cost for computing the count dis-
tribution. Furthermore, we show in our technical report ([5]) how to reduce the com-
munication costs. For that purpose, we consider the typical underlying characteristics of
WSNs such as network topology, routing and scheduling. We propose two algorithms
which solve the problem of answering continuous count queries in a WSN by taking
the local distribution of data into consideration.

4 Energy Efficient Computation of Probabilistic Sum Queries

As mentioned in Section 1, it is crucial for applications on WSNs to reduce energy
cost. For that purpose, we must consider the typical underlying characteristics of WSNs
such as network topology, routing and scheduling. We assume that the nodes in S are
connected together via a logical tree where the sink node (or base-station) is the tree’s
root. The choice of the tree’s topology does matter, but is outside the scope of this paper.
For the sake of simplicity, we assume it to be a hop-based shortest path tree commonly
used in other works, e.g., [6]. In the previous Section 3, we assumed that for each sensor
si ∈ S, the distribution pdf(si) is readily available at the sink node. This requires each
pdf(si) to be iteratively propagated along the branch of the logical tree to the root.
However, we can benefit from computing intermediate results at intermediate nodes, in
order to send these condensed results to their parent node. This way, we can decrease
the number of messages sent and apply early stopping conditions if a subtree already
satisfies the query [4].

Lemma 2. Let s0 be a sensor node having (direct) children s1, ..., sn. Let Sc denote
the set of sensors in the subtree rooted at sc, including sc itself. Then

GF (S0) = GF (s0) ·
n∏

c=1

GF (Sc) (5)

Our in-network algorithm now works as follows: Each leaf node sleaf of the logical
connection tree sends its sensor readings to its parent node after using Corollary 1 to re-
move worlds of sleaf which are not required to compute PSQ(WSN, τ). Intermediate
nodes sdir, upon receiving data from their children, compute the probabilistic sum of
their respective subtree using Lemma 5 using polynomial multiplication. To facilitate
the expansion of two possibly large polynomials, we propose to use FFT (Fast-Fourier-
Transformation). It is well known that the multiplication of two polynomials of degree
O(n) can be done in O(n log n) time using FFT. Unless sdir is the root, sdir uses Corol-
laries 1 and 2 to reduce the size of its polynomial, and sends the resulting polynomial
to its parent node. If sdir is the root, then PSQ(S, τ) is bounded using Equations 3 and
Equation 4. This bound is returned and the algorithm terminates.

5 Performance Evaluation

For the experimental evaluations we used the following setup: We used a simulation
of a wireless sensor network containing between 100 and 2500 sensors (default: 1000

Continuous Probabilistic Sum Queries 103

0

1000

2000

3000

4000

5000

6000

0 500 1000 2500

To
ta

l M
es

sa
ge

s
Number of Nodes(n)

central in net

Fig. 1. Scalability w.r.t. communication cost

100

1000

10000

un
ti

m
e

(m
s)

1

10

100

1000

10000

central central (FFT) in net in net (FFT)

Ru
nt

im
e

(m
s)

4000

5000

6000

7000

8000

lM
es

sa
ge

s

0

1000

2000

3000

10 50 100 1000

central in net
To

ta

Fig. 2. a) Runtime performance. b) Scalability w.r.t. τ .

sensors). The locations of the sensors were randomly chosen within a 100m × 100m
area and each sensor node was assumed to have a fixed wireless radio range of 30m.
All generated sensor instances of the WSNs used a hop-wise shortest-path tree as the
routing topology. We assume in all experiments that messages are delivered using a
multi-hop setup. In addition, we used a synthetic sensor network tree with 1000 sensors,
a height of 5 levels and each node has a branching factor around 5. The uncertain sensor
values are simulated as follows: Each sensor measures a set of three intervals, each
uniformly selected within the interval [0, 50]. Overlaps are allowed. The corresponding
probabilities assigned to these intervals are uniformly selected and normalized such
that they sum up to one. For the message size every probability value of the transmitted
distributions was taken into account with a 8 bytes and the corresponding value intervals
with 16 bytes. For the sake of simplicity, we assumed data packages with a header size
of 0 bytes. In our experiments one message sent has a fixed number of 256 bytes. If the
amount of values that has to be sent exceeds the 256 bytes the node has to sent multiple
messages. The experimental results are averaged over 10 simulation runs where in each
run each sensor performs one measurement. Thereby we compare the following two
approaches: central sends all sensor signals to the central node and performs the query
centrally at that node whereas in net performs in-network query processing as described
in Section 4.

In the first experiment, we evaluate the performance of both approaches by varying
the size of the network. The results are shown in Figure 1. As expected, the number
of messages increases with the number n sensors in the network. As we can see, the
communication cost grow super linear to the number of sensors. The reason is, that the
number of sensors not only influences the number of nodes that have to send messages,
but also the number of messages that have to be transmitted through the network. The

104 N. Hubig et al.

in-network approach consistently improves the communication cost compared to the
simple centralized approach by around 25%.

In the next experiment we evaluate the runtime performance of the two approaches,
the central and the in-network approach, using different approaches to build the sum
distributions. In particular, for both approaches we compare the two variants of using
generating-functions for the computation of the sum probability distribution. In the first
case, we simply use straight-forward polynomial multiplication. In the second case,
we use fast-fourier transformation (FFT) which is well-known to speed up polynomial
multiplications. The results are shown in Figure 2. As we can see, if we perform FFT in-
stead of standard polynomial multiplication we can achieve a high performance gain for
both approaches. Furthermore, we can see that the in-network approaches significantly
outperform the central approach.

In the last experiment we evaluate the performance in terms of communication cost
w.r.t. the query threshold τ for the discrete sensor value approach. For this experiment
we used the synthetic sensor network with the fixed height of 5 and branching factor
around 5. Obviously the performance of the central approach is not influenced by the
parameter τ because all measurements (sensor value distributions) are sent to the central
node as they are generated by the sensors (i.e., neither cutting them at τ nor merging the
intermediate results at each non-leaf node). We can see that the in-network data process-
ing with the ability to merge intermediate sum results significantly reduces the number
of messages, in particular for lower sum threshold values (τ). With increasing threshold
τ , the number of messages increases as well. The reason for this is that larger τ values
require to transmit larger distributions that exceed the maximum message package size
such that they have to be sent using multiple packages per distribution.

6 Conclusions

Summarizing this work, we introduced the first efficient solution to efficiently answer
probabilistic count queries on continuous uncertain data by applying the concept of gen-
erating functions to build a polynomial algorithm. We adapted our solutions to wireless
sensor networks which have the additional constraint of limited energy. As future work,
we plan to develop an approach which is able to incrementally update the result of a
probabilistic sum query when a small subset of the sensors changes, without recom-
puting the result from scratch. We note that the performed set of experiments is very
limited, and we are currently evaluating our proposed techniques on a existing network
simulators, to provide more extensive scalability experiments.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a sur-
vey. Computer Networks 38(4), 393–422 (2002)

2. Clark, M.P., Slater, A.G.: Probabilistic quantitative precipitation estimation in complex terrain.
Journal of Hydrometeorology (2006)

3. Follmann, A., Nascimento, M.A., Züfle, A., Renz, M., Kröger, P., Kriegel, H.-P.: Continuous
Probabilistic Count Queries in Wireless Sensor Networks. In: Pfoser, D., Tao, Y., Moura-
tidis, K., Nascimento, M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS,
vol. 6849, pp. 279–296. Springer, Heidelberg (2011)

Continuous Probabilistic Sum Queries 105

4. Hua, M., Pei, J., Zhang, W., Lin, X.: Ranking queries on uncertain data: a probabilistic thresh-
old approach. In: Proceedings of the 2008 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2008, pp. 673–686 (2008)

5. Hubig, N., Züfle, A., Nascimento, M.A., Emrich, T., Renz, M., Kriegel, H.P.: Continuous
Probabilistic Sum Queries in Wireless Sensor Networks with Ranges (Extended Version of
this Paper). In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 96–105.
Springer, Heidelberg (2012),
http://www.dbs.ifi.lmu.de/Publikationen/Papers/Sumqueries.pdf

6. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: a tiny aggregation service for
ad-hoc sensor networks. SIGOPS Operating Systems Review 36, 131–146 (2002)

7. Sarma, A., Benjelloun, O., Halevy, A., Widom, J.: Working models for uncertain data. In:
Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006, p. 7
(2006)

8. Ye, M., Liu, X., Lee, W.C., Lee, D.L.: Probabilistic top-k query processing in distributed
sensor networkss. In: Proc. of the ICDE, pp. 585–588 (2010)

http://www.dbs.ifi.lmu.de/Publikationen/Papers/Sumqueries.pdf

Partitioning and Multi-core Parallelization
of Multi-equation Forecast Models

Lars Dannecker1, Matthias Böehm2,�, Wolfgang Lehner2,
and Gregor Hackenbroich1

1 SAP AG, SAP Research Dresden,
Chemnitzer Str. 48, 01187 Dresden, Germany

{lars.dannecker,gregor.hackenbroich}@sap.com
2 Technische Universität Dresden, Database Technology Group

Nöthnitzer Str. 46, 01187 Dresden, Germany
{matthias.boehm,wolfgang.lehner}@tu-dresden.de

Abstract. Forecasting is an important analysis technique used in many
application domains such as electricity management, sales and retail and,
traffic predictions. The employed statistical models already provide very
accurate predictions, but recent developments in these domains pose new
requirements on the calculation speed of the forecast models. Especially,
the often used multi-equation models tend to be very complex and their
estimation is very time consuming. To still allow the use of these highly
accurate forecast models, it is necessary to improve the data processing
capabilities of the involved data management systems. For this purpose,
we introduce a partitioning approach for multi-equation forecast models
that considers the specific data access pattern of these models to optimize
the data storage and memory access. With the help of our approach
we avoid the redundant reading of unnecessary values and improve the
utilization of the CPU cache. Furthermore, we utilize the capabilities of
modern multi-core hardware and parallelize the model estimation. Our
experimental results on real-world data show speedups of up to 73x for
the initial model estimation. Thus, our partitioning and parallelization
approach significantly increases the efficiency of multi-equation models.

Keywords: Forecasting, Multi-Equation, Partitioning, Parallelization.

1 Introduction

Forecasting is used as the basis for decisions in many application areas such as
electricity management, sales and retail, and, traffic predictions. Due to recent
developments in these domains the employed statistical models face additional
challenges and requirements. Typically the available time for estimating the mod-
els and providing accurate predictions is significantly decreasing, which requires
more efficient data processing capabilities in the employed data management
systems. In the energy domain, for example, the emerging smart grid technology
and the integration of more renewable energy sources (RES), require real-time
� The author is currently visiting IBM Almaden Research Center, San Jose, CA, USA.

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 106–123, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Partitioning and Parallelization of Multi-equation Models 107

capabilities for balancing the energy demand and supply. Research projects such
as MIRABEL [1], and MeRegio [2] address the issues of real-time energy bal-
ancing and improved utilization of RES by introducing new developments like
dynamic price signals, special energy storage, and demand-response systems. A
fundamental prerequisite for current approaches in this area including the bal-
ancing of energy in real-time is the availability of accurate forecasts at any time.

Forecasting employs mathematical models—known as forecast models—that
model the behavior and development of historic time series. The most important
classes of forecast models are autoregressive models [3], exponential smoothing
models [4] and models that apply machine learning [5]. Most models use a num-
ber of parameters to express specific characteristics of the time series such as
seasonal patterns or trends. These parameters are adapted to the specifics of a
time series by estimating them on a training data set, with the goal to minimize
the forecast error that is measured in terms of an error metric. Typically, each
domain exhibits specific characteristics of their time series and thus, employs
tailor-made forecast models that address these characteristics. With respect to
energy demand time series, e.g., we observe three typical seasonal patterns for
the day, the week (working days, weekend) and the year (summer, winter). While
our approach can be applied to several application domains, for the remainder
of this paper we use the energy domain as a running example.

A model class that is often used for forecasting time series with seasonal be-
havior comprises multi-equation forecast models [6,7,8,9]. In contrast to typical
single-equation models that use just one equation to describe the complete time
series behavior, multi-equation models apply an individual sub-model for each
specific time period within a selected season, often the daily season (e.g., one
model every 30 min). This partitioning of the forecast model allows each sub-
model to describe a simpler behavior of the time series, compared to describing
all seasonal patterns in one equation. However, the trade-off for using multi-
equation forecast models is that now multiple sub-models must be estimated,
with each sub-model exhibiting a multi-dimensional search space that exponen-
tially increases with the number of parameters. This leads to higher efforts for
the estimation process that typically comprises a large number of iterations per
model. In addition, changing time series characteristics caused by continuously
available new measurements require the adaptation of forecast models, which
typically involves the re-estimation of all model parameters. The re-estimation
is almost as expensive as the initial model estimation and thus, very time con-
suming, especially when using multi-equation models. This clearly contradicts
to the requirements given by the real-time balancing.

To still allow the use of highly accurate multi-equation models in the face of
real-time environments, it is necessary to optimize their calculation efficiency
and thus, decrease the time needed for the model adaptation. One direction to
overcome that performance bottleneck is to exploit modern hardware architec-
tures. In this context, we observe two major characteristics. First, modern multi-
core hardware systems offer a steadily increasing degree of parallelism, since
the performance gain from increasing the core frequency is limited by physical

108 L. Dannecker et al.

constraints such as an increasing heat loss and power consumption. Second, with
an increasing amount of available main memory, it is possible to store and pro-
cess all considered data directly within the main memory and thus, to avoid
reads from the hard disk. However, access times and bandwidth of the main
memory do not increase as fast as the computational power, for what reason
memory latency and bandwidth became new limiting factors for the reachable
performance [10,11]. Thus, to reduce the influence of the memory latency it is
important to optimize the data locality within the main memory and store the
data for sequential reading instead of random access. As shown in existing work,
the performance of algorithms and software greatly benefits from specifically
adapting their data storage and memory access to such hardware characteristics
[12]. For this purpose, we present an optimization approach that utilizes the spe-
cific time series access pattern of multi-equation forecast models to optimize the
data storage with respect to modern hardware. With the help of this framework,
we provide for each sub-model only the data it needs for its own calculations and
avoid accessing unnecessary information. In addition, our approach optimizes the
data locality and cache utilization, which greatly improves the data processing
speed. In addition, we utilize the increasing parallelization capabilities of mod-
ern multi-core hardware systems and parallelize the parameter estimation of the
involved sub-models. This helps us to further speed-up the parameter estima-
tion and to meet the requirements posed by real-time environments. The paper
makes the following contributions:

– First, we describe the background of multi-equation models in Section 2.
– Second, we present our partitioning approach that optimizes the data storage

with respect to the access pattern of multi-equation models in Section 3.
– Third, we describe parallelization strategies that exploit model inter-simi-

larities to estimate all sub-models in parallel in Section 4.
– Fourth, we present the results of our evaluation that show significant speed-

up for the parameter estimation of multi-equation models in Section 5.
– Finally, we present related work in Section 6 and conclude the paper in

Section 7.

2 Background of Multi-equation Forecast Models

There are two typical model classes used for forecasting, namely single-equation
and multi-equation models. Single-equation models describe the complete time
series behavior including all patterns and seasonalities within one equation. This
means that they consider the most recent predecessor values from the time series
as the basis for their calculation. In addition, they use further information like
seasonal values or external information (e.g., weather) to increase the forecast
accuracy. The example presented in Figure 1(a) considers the five most recent
values from the time series plus the respective value at the same time one day
and one week ago. Popular examples of single-equation models are Box-Jenkins
Models (e.g., ARMA, SARIMA) [3] and adaptations of exponential smoothing
(e.g., like introduced by Taylor et al. [13]).

Partitioning and Parallelization of Multi-equation Models 109

Time [d]

E
n

er
g

y
D

em
an

d
 [

M
W

h
]

0 1 2 3 4 5 6 7 8 9 10

20
k

30
k

40
k

50
k

������	
���

��
��

��
��

��

�

	�
��

�
 �

�

�����#�/����	� *�$��"��	���
��+��"��	���

(a) Single-Equation Model
Time [d]

E
n

er
g

y
D

em
an

d
 [

M
W

h
]

0 1 2 3 4 5 6 7 8 9 10

20
k

30
k

40
k

50
k

�����������

��
�	

�

��
��

��
��

��
�
�

�

>�??��	&��� ;9�??��	&��� ;@�??��	&���

(b) Multi-Equation Model

Fig. 1. Considered Values of Single-Equation and Multi-Equation Models

In contrast to single-equation models, multi-equation models avoid the model-
ing of complex seasonal patterns by decomposing the forecast model and assign-
ing individual sub-models to each time period within a selected season. There,
each sub-model is a separate instance of the forecast model equation, with indi-
vidual values for the comprised parameters. In the energy domain, well known
representatives of this model class are the EGRV forecast model [6], first order
stationary vector regression from Cottet and Smith [7] and, the PCA based fore-
casting method from Taylor and McSharry [8]. The reason for splitting up the
forecast model with respect to a seasonal pattern is to ease the time series behav-
ior a sub-model has to describe and thus, to increase the forecasting accuracy.
The underlying assumption is that successive time series values corresponding
to a specific time differ only slightly from season to season. Thus, the current
time series value is very similar to previous time series values at the same time.
In the energy domain, typically the models are divided with respect to the daily
season, leading to the assignment of separate sub-models to each data point
within a day. For data in hourly granularity this means that for each hour a
specific sub-model is used. Some multi-equation models also consider more than
one season in their partitioning. The EGRV model, for example, also considers
the weekly season by assigning separate models to weekends and working days
in addition to the hourly models. It is important to note that the assignment
of individual sub-models to specific time frames limits the use of multi-equation
models to time series with equidistant data points. However, this is in line with
most forecast models, which generally also require equidistant observations.

When predicting future values, each sub-model calculates a value for the next
day that corresponds to its assigned time frame. Thus, to provide a complete
one-day-ahead forecast, each sub-model produces exactly one value. Other than
single-equation models, the sub-models base their calculation on historic values
from their respective time frames; the 8:00 am sub-model, for example, considers
historic values that correspond to 8:00 am. However, some additional components
like for example lagged error values, might still use values from other time frames.
Figure 1(b) illustrates the pattern of the considered values for the sub-models
at 3:00 am, 12:00 noon and 6:00 pm. This is also the specific time series access
pattern we exploit for a more efficient physical data partitioning.

110 L. Dannecker et al.

M3 M2

�����"������

���

�A�

���

…

	
�
��
��������

M1

������
	
�
������������

M1

M2

M3

���

�A�

���

"��
���������
��� �
�
������
���
����������������

Mx

My

Mz

Δ

Δ

Δ

����
�������������

����

��A�

����

M1 M1 Mx

M1 M1 My

M1 M1 Mz

Fig. 2. Multi-Equation Model Optimization Process

An example sub-model of the EGRV forecast model is shown in Equation 1:

Hour1 = αDeterministic + βTemperature + γLoad8 + δLags
Lags = δ1yt−24 + δ2yt−48 + δ3yt−72 + δ4yt−96 + δ5yt−120.

(1)

There, the Deterministic variables represent additional calendar information and
are included as dummy variables (value 0 or 1). Typically they do not require to
read time series values. Variables from the Temperature category use values from
an external temperature time series. In this paper, we do not separately describe
the handling of this external information, since our partitioning approach works
analogous for such time series. The variables named as Load8 represent a specific
aspect of the EGRV model and correspond to the load at 8:00 am on the previous
day. Finally, the Lags variables represent the last five time series values that
correspond to the specific time of each sub-model (e.g., tx−24, tx−48, tx−72, etc.).

3 Partitioning for Multi-equation Forecast Models

The core idea underlying our approach is to physically partition the time series
in a way that reflects the model partitioning of the multi-equation model. For
this purpose we employ the process illustrated in Figure 2. There, we first par-
tition the data and assign each data partition to its corresponding sub-model.
Therefore, we ensure that each model physically accesses only the portions of the
time series it needs for its own calculations. This avoids the constant scanning
of unnecessary additional values and thus, significantly increases the calculation
speed of the complete model. In addition, modern multi-core hardware systems
offer an increasing amount of parallelism that we exploit by estimating the in-
volved sub-models in parallel. This is done in the second part of the process.
As we assume a larger number of models compared to the number of available
threads, we also optimize the thread assignment of these models. The idea is to
use similarities between the sub-models and exploit the parameters estimated
for one model as the input for the estimation of the successive model. The goal
is to reduce the number of iterations until the optimization algorithm converges.
As a last step we execute the parallel parameter estimation for all sub-models.

The estimation of forecast model parameters is typically conducted using local
(e.g., gradient descent, L-BFGS-B) or global search algorithms (e.g., Simulated
Annealing). This optimization task involves a large number of iterations, where

Partitioning and Parallelization of Multi-equation Models 111

���� ���� ���� ���� ���� ��	� ��
�� ��

� ����� ����� ���� ����� ���	� ����� ���
� �����

�����

… …

M16

M14

… ��
�

������
���
�

�������

*������������

*���
�� �

!�"�����

… ��

���
� ����� �����

Fig. 3. Initial Sub-Model Time Series Access

each iteration requires to read all necessary time series values. With respect to
single-equation models this means that the complete time series is scanned to
evaluate the error of the chosen parameter combination. For multi-equation mod-
els different parameters are assigned to each sub-model and thus, each model is
estimated separately. For each sub-model estimation only the values correspond-
ing to the assigned time frame plus potentially some commonly used variables
are required. Figure 3 illustrates the initial situation using the EGRV model.
There, the sub-models M14 (corresponds to 2:00 pm) and M16 (corresponds to
4:00 pm) are presented. Both models only require their specific time series values,
namely t−4, t−28, t−52 for M14 and t−2, t−26, t−50 for M16. In addition, both
consider the time series values corresponding to the Load8 variable and some
deterministic variables (that do not require time series access).

The issue in the non-partitioned case is that the time series is stored chrono-
logically in a single, large array and reading values from cache or memory always
requires to read a full cache line or—depending on the hardware platform—even
larger block granularities. The number of values contained in a cache line de-
pends on the system specification. Using the Intel Core i7, for example, a cache
line contains 64Byte and a double value is 8byte, which results in 8 time series
values provided per cache line. Hence, each cache line read for a required value,
will also contain time series values that do not correspond to a sub-model’s time
frame and thus, are not needed for the sub-model estimation. In particular, each
cache line will contain only a single required value. Model 16 in Figure 3 for
example only needs the value t−26, but the read cache line will also provide
the values t−25,t−27,t−28, etc. As a result, multi-equation models have a specific
time series access pattern that does not correspond to the time series storage
and hardware access pattern. Thus, the number of read time series values and
cache lines increases with the number of sub-models, where the majority of the
read values are not required for a sub-model estimation. This results in a large
overhead and a poor data locality within cache and main memory, which leads
to long estimation times when working with multi-equation models.

To allow multi-equation models to quickly adapt to new situations and thus,
to better meet the requirements posed by real-time applications, we optimize
the time series storage to reduce the number of unnecessary time series reads.
To do so, we partition the time series in a way that corresponds to the time se-
ries access pattern of multi-equation models. The number of partitions directly
matches the number of involved sub-models, which in most cases also reflects the
granularity of the time series. Each of the used partitions represents a specific

112 L. Dannecker et al.

#��� ���� ���� ���� ���� ��	� ��
�� ��

� ����� ����� ���� ����� ���	� ����� ���
� �����
… … … ��
���

���� ����� ����� ���� ���� ����� ����� ����

…

P16 P14 ��� �����������������Px
… … …

Fig. 4. Time Series Partitioning

time frame (e.g., 4:00 pm) and exclusively stores only values that pertain to this
time frame. Since multi-equation models only support equidistant time series
(compare Section 2), each partition comprises an equal number of values. Figure
4 illustrates an example partitioning for the EGRV model. There, Partition 14
contains only the values that correspond to 2:00 pm and Partition 16 only the
values that belong to 4:00 pm. In addition, we replicate the values that are com-
monly accessed by all sub-models (e.g., t−10 - Load 8) and store the replicates
in the partitions as well. This ensures the independence of the models for an
optimal further parallelization. After the partitioning is finished, the partitions
are assigned to the corresponding sub-model, i.e., the sub-model that describes
the same hour the values from a partition belong to.

Each created partition persists in a specific area of the main memory, which
means that values belonging to the same partition, i.e., values that are assigned
to the same sub-model, are stored closely together within the same memory area.
As a result, when reading the time series values, instead of jumping from value
to value and reading cache lines that contain unnecessary values, the sub-models
can sequentially process all values stored within their respective partition. This
sequential reading of time series values directly increases the processing per-
formance. In addition, the tight data storage, results in more necessary values
that are contained in a single cache line. As a result, the number of cache lines
and memory pages read during a sub-model estimation decreases and thus, the
number of cache and memory accesses. Furthermore, for currently running esti-
mations more necessary values can be stored in the different cache levels. This
greatly increases the processing speed of the CPU and decreases the number
of cache misses. Figure 5 compares the data storage within the cache for the
non-partitioned and partitioned case of sub-model M16 - 4:00 pm. There, again
we refer to the Intel Core i7 CPU, where each cache line contains 8 time se-
ries values. In the non-partitioned case this means that only one of the values

���� ���� ���� ���� ���� ���� ���� ����� ����� ����� ����� ���� ����� ����� ����� �����������"������������ 	
�� ���� 	
�� ����
���������������

	
��� 	
��� 	
��� 	
�� 	
����	
����	
���	
�� 	
���	
���� ����	
��	
� 	
���� ����
���������������� !��-�"������#�	���$�%#������#�	��

�� !��-�"�� �� !��-�"�� �� !��-�"�� ...

	
���� 	
���� �������&&�"�����

Fig. 5. Cache Organization of Non-Partitioned and Partitioned Time Series

Partitioning and Parallelization of Multi-equation Models 113

contained in a cache line is needed for the sub-model estimation. In contrast,
when using our partitioning approach, all values in a cache line are necessary for
the estimation process. Thus, our partitioning approach reduces the number of
cache lines processed by the CPU and therefore, reduces the calculation time for
each iteration of the estimation algorithm. As a result, the memory and cache
locality leads to more efficient calculations for estimating the parameters of all
sub-models. Furthermore, the cache locality and the sequential storage of val-
ues within a partition also enable the usage of compression techniques like the
patched frame of reference (PFOR). Hence, even more values could be stored
within a single cache line, which could further increase the processing speed. In
the future we will intensively evaluate the use of compression technologies in
conjunction to our time series partitioning.

Altogether, our partitioning approach ensures that during all iterations of the
optimization algorithm each sub-model only reads its necessary time series values
and therefore, reduces the amount of redundantly accessed additional values.
This also leads to an optimized memory locality of the data and thus, reduces
the number of read cache lines and the amount of cache misses. This greatly
improves the calculation performance of the optimization algorithms and greatly
decreases the time needed for the multi-equation model parameter estimation.

4 Parallelization of Independent Forecast Models

We further optimize the multi-equation model estimation, by exploiting the par-
allelization capabilities of modern multi-core hardware. Therefore, we assign all
sub-models including their respective partitions to a number of threads that ex-
ecute the parameter estimation of the sub-models in parallel. Due to the fact
that memory throughput and latency can quickly become the limiting factors
when using multi-core parallelization, the parallel estimation also profits from
the optimized storage and enhanced cache utilization provided by our partition-
ing approach. Ideally, the number of utilized threads would exactly match the
number of involved sub-models, which would also bring the greatest benefit for
the parallelization. However, in the real world the number of threads that can
be directly executed in parallel on a specific system is limited. The number of
these so called hardware threads is typically much smaller compared to the num-
ber of involved sub-models (e.g., 48, 96). A system employing a quad-core Intel
Core i7 CPU, for example, has eight threads available; one hardware thread and
one additional thread using Hyper-threading can be executed per core. Assign-
ing more threads than available hardware threads creates no additional benefit
in our scenario, but rather induces additional costs due to overhead for thread
scheduling and cache displacement issues. As a result, for the parallel execution
of the sub-model estimation, we limit the number of parallel threads to the num-
ber of hardware threads available on the executing hardware system and thus,
assign multiple sub-models to each thread for sequential estimation. The assign-
ment of the sub-models to the threads is typically conducted using a task queue,
where each thread picks the next sub-model as soon as it finished the previous

114 L. Dannecker et al.

Table 1. Test Results: Parameter Equality of Three Example Models

P1 P7 P8 P9 P12 P15 P16 P20
M11 0.5250 0.9991 0.9883 0.9990 0.3798 0.4762 0.3710 0.5355
M16 0.5511 0.9974 0.9633 0.8651 0.3445 0.3161 0.3530 0.5441
M17 0.9989 0.9078 0.9928 0.8645 0.3409 0.3857 0.3012 0.5523

parameter estimation. This leads to good load balance, even if time for estimat-
ing sub-models differs significantly. However, on average when assuming, e.g, 48
sub-models and 8 hardware threads, each thread estimates six sub-models.

Given the thread-local serial estimation of a subset of models, we want to
further optimize the sequential estimation for the sub-models assigned to one
thread. Due to the fact that some sub-models describe similar shapes, we assume
that these models should also have similar parameter combinations. In a small
experiment we compared the parameters between sub-models after their initial
estimation and the results supported our assumption for the most part. Table
1 presents some example parameters for three example models M11, M16 and
M17. While the assumption holds for most parameters, it does not for all. Some
parameters still differ for sub-models we identified as similar (marked grey in
Table 1). In our example, this concerns P1 and P7 for model M17 as well as P9
and P15 for model M11. Still, both models keep their relative similarity to model
M16. As a result, the parameter combinations of similar models are a much
better approximation of a good starting point for the parameter estimation,
compared to starting from the origin. Thus, the basic idea of our improvement
is to iteratively provide the result of the preceding parameter estimation, as the
input (i.e., the starting value) for the estimation of the subsequent sub-model.
This sequential start approach reduces the number of necessary iterations for the
subsequent optimization algorithms per thread, because only the first sub-model
in each thread needs the full effort for the parameter estimation. All subsequent
models then profit from better suited starting parameters, for what reason this
should greatly reduce the time needed for the parameter estimation.

For the parameter re-estimation we can even go one step further, because
the parameter values of the sub-models were already determined in the initial
estimation. As described above, some sub-models exhibit a large portion of very
similar parameter values. For this reason, we enhance the sequential start ap-
proach by clustering the most similar sub-models and assigning each cluster to a
single thread. To do so, we measure the distances between the individual values
of the parameters for all sub-models (e.g., dist(αM1,αM2), dist(αM1,αM3)) using
the euclidean distance measure and combine the models with the least distance
to each other into one cluster. The number of used clusters directly corresponds
to the number of involved threads. In detail, we follow the k-means clustering
approach using the following process:

1. Sub-models are estimated. Maximum model number per thread calculated.
2. Sub-models are randomly assigned as centroids.
3. Distance between centroids and sub-models is computed.

Partitioning and Parallelization of Multi-equation Models 115

Δ

Δ
Δ

M1
M2

M3

'����������	�
��� ����
������	���
��

M1 M1 M1 M1 M1 M5

M1 M1 M7

���� M1 M9 M3

��������� ������������

������

���� M5 M11 M8

��������� ������������

������

…

… …

Fig. 6. Clustered Parallelization with Sequential Start

4. Models are assigned to centroid with minimal distance unless thread is full.
5. If thread is full, model is assigned to next best thread.
6. The following steps are repeated until no sub-model changes thread anymore.

(a) Incrementally compute new centroid from all sub-models per thread.
(b) Measure distance between new centroids and all sub-models.
(c) Reorder models with respect to new distance measures.

As soon as our clustering process is finished, we assign the clusters to the respec-
tive threads and execute sequential start parameter estimation for each thread.
To avoid degeneration in the sense that one thread estimates much more models
than the other ones, we place a constraint that all threads execute the same num-
ber of models if possible. Figure 6 illustrates the parallelization process. Due to
the stronger similarity between the sub-models within one thread, we can even
further reduce the number of iterations conducted by the parameter estimation
algorithms and thus, reduce the time needed to estimate all sub-models.

To sum up, our parallelization approach further increases the efficiency of
multi-equation models. To compensate for the limited number of hardware
threads on most systems, we exploited sub-model inter-similarities to optimize
the parallelization. While we described our parallelization approach for a local
multi-core system, it is also possible to apply the approach to a distributed set-
ting. There, the partitioning approach would be of even more value, because it
would limit the amount of transmitted data between the involved systems.

5 Experimental Evaluation

In this evaluation, we substantiate the claims of our multi-equation model op-
timization approach and show that with the help of our partitioning and paral-
lelization we can greatly reduce the time needed for estimating multi-equation
forecast models. Our evaluation compares the time needed for estimating and
re-estimating all sub-models, the number of iterations necessary for the (re-
)estimation, the amount of cache misses and, the scalability of our approach.
For this purpose, we employed the EGRV forecast model as introduced in Sec-
tion 2). For the parameter estimation we used the Nelder Mead Downhill Simplex
approach [14] as a local optimization algorithm. The employed dataset is the en-
ergy demand data from the UK National Grid: National Grid Demand (publicly

116 L. Dannecker et al.

!"#�$%"�

&&�$'"�#"�&*#�

$+�$%*�

%*�$%*�

#�"'%�

$'�'*+�

&�##'�

$�

%�

"�

&�

$*�

+%�

*"�

$%&�

%!*�

!$%�

$�%"�

������	�� �
��
�������	��

��
�

�

�
��
��

������	��
��
��	��
��
��	���
����"���
��	���
����&���

(a) Runtime per Optimization

��,���

���,�

�,����

�����

�,����

������

�,����

�	����

�

�
�

�

�

��
�

�

�

��
�

	

�

	�
�

�

�

��
�

�

�

��
�

�

�

������ ������������

�
��

��
��
�

�
��

��
��

�
��

��
��

���

�
�

�������������

���������

������� !��"�

������� !��"�

(b) Iterations per Optimization

Fig. 7. Different Optimizations for Parameter Estimation

Table 2. Average Runtime per 1000 Iterations for used optimization approaches

Variant Non-Partitioned Partitioned Parallel (#4T) Parallel (#8T)
Avg. Runtime 1.2245s 0.1566s 0.0521s 0.0393s

available [15]): Electricity demand of the United Kingdom. Measures: INDO,
January 1st 2002 to December 31st 2009, 30min resolution (140256 values).

For our evaluation we used the following test system: Quad-Core Intel Core
i7 2635QM (2.0 GHz), 4GB RAM, 128GB SSD, Mac OSX 10.6.8. Our forecast-
ing test suite is written in C++ using the GCC 4.2.1, with OpenMP for the
parallelization. We configured OpenMP to use a pre-defined, static number of
threads and dynamic thread assignment. Thus, if not explicitly specified (like for
the clustering) upon finishing its job, each thread estimates the next sub-model
in the queue. All presented results are the average of 20 subsequent runs.

5.1 Parameter Estimation

In the first experiment, we evaluated the runtime necessary for the estimation
of a multi-equation model, using our optimization techniques. Thus, we com-
pared the standard, non-partitioned case with the partitioned and parallelized
versions. In addition, we also compared the use of the Sequential Start method.
Figure 7 illustrates the results. Please note the logarithmic scale that is used
in the graphs. There, in Subfigure 7(a) the most important fact is that solely
the partitioning approach reduced the time needed for the estimation of all sub-
models from 547.124s to 74.867s, even with slightly more iterations (compare
Subfigure 7(b)). This is a significant improvement over the non-partitioned case.
The parallelization then further reduces the necessary runtime. It can be seen
that the runtime improvement is much larger from 1 thread to 4 threads com-
pared to from 4 threads to 8 threads. The reason is that when using 4 threads
each of them can be directly executed on one core, while when using 8 threads
the additional 4 threads are subject to Hyper-threading. The sequential start
method further decreases the necessary runtime for all variants. The runtime

Partitioning and Parallelization of Multi-equation Models 117

of the non-partitioned version is reduced from 547.124s to 88.194s (factor 6.2)
and the runtime of the partitioned variant is reduced from 74.867s to 13.126s
(factor 5.7). The reason for the reduced runtime is illustrated in Figure 7(b).
There, we can see the reduction of the number of iterations conducted until the
optimization algorithm converges. Thus, the sequential start provides more suit-
able starting points for the parameter estimation then starting from the origin
for each sub-model. However, it is important to note that the benefit of the
sequential start method depends on the number of forecast model parameters
and the used estimator. We can further see that the number of iterations for the
parallelized methods increases with the number of threads. The reason is that a
full estimation is necessary for the first model that is estimated per thread; e.g.,
for 8 threads, 8 models cannot exploit the parameters from previous models. In
addition, when using a larger number of threads, fewer models are estimated by
one thread sequentially. Thus, the chance for having only non-similar sub-models
assigned to a single thread is higher compared to using 4 threads, where more
models are estimated in a row. As a result, the parallelization with 8 threads
needs more time using the sequential start optimization then the parallelization
with 4 threads. This means that the benefit of the hyper-threaded 4 additional
threads is of less value, then the drawback due to the increased number of itera-
tions. This leads us to the problem of automatically assigning an optimal degree
of parallelism that we will address in the future.

Table 2 presents the average runtime for all optimizations per 1000 iterations
(chosen for better readability). The sequential start and clustering approaches
are not listed, because they do not influence the runtime per iteration. The results
show a clear trend for the optimization approaches. While the non-partitioned
variant needs more than 1.2 seconds for 1000 iterations of the Nelder Mead
algorithm, all other approaches are clearly below one second, with the partitioned
version marking the maximum of the optimization approaches with 0.1566s.

Overall, we can see that with the help of our optimizations the parameter
estimation can be conducted in a few seconds compared to minutes needed for
the non-partitioned method. Especially the partitioning optimization provides
a significant speed-up. Thus, our optimizations make sure that multi-equation
models can be used in the face of the challenged posed by the market dynamics.

5.2 Parameter Re-estimation

Our second experiment is similar to the first one, but we compare the runtime
necessary for the parameter re-estimation rather than for the initial estimation.
Thus, parameters of the sub-models are not estimated from scratch, but the
local search algorithms can start from the last valid parameter combination.
Typically the parameter re-estimation is triggered after additional values were
added to the time series. Thus, we appended 1440 additional values (i.e., one
month) to the time series used for the initial parameter estimation and triggered
the re-estimation afterwards. The results are illustrated in Figure 8. There, the
results of the standard execution method in Figure 8(a) are similar to the re-
sults of the initial estimation. The partitioning greatly reduces the necessary

118 L. Dannecker et al.

,,�����
�����	� ������

���,,��

����
,� �	��	��

������
���	,� ������������ ��	,��

��	���

��

��

��

��

���

	��

���

����

������ ������������� �����	�	
�

��
�

�
	�
��
��

���������	
�
�����	
�
������	��������
������	��������

(a) Runtime per Optimization

���-�

����� �����

������

�-���
���	�

������

��
���
����	�

������

������

������

	�

�	�

�	�

�	�

�	�

�		�

��	�

��	�

��	�

��	�

�
��
��� �������
���
�� ���������

�
��
��

��
�
�

��
�
��

�
��

��
��

���
		

	�
�

�����
��������
�
��������
�
�
������ �!"�
�
�
������ �!"�

(b) Iterations per Optimization

Fig. 8. Different Optimizations for Parameter Re-Estimation

runtime, while the parallelization distributes the models to multiple threads and
thus, also speeds up the re-estimation. The sequential start reduces the time
necessary for the re-estimation, but the decrease is not as significant as for the
initial estimation. The reason is that the previous parameters are already a good
approximation of a starting point for the local optimization algorithm. For the
parallelization with 8 threads, the usage of the sequential start method even in-
creases the necessary runtime. The reason is similar to the causes presented for
the initial estimation, but additionally in some cases the parameters from the
previous sub-model are worse starting points compared to the old parameters.

For the parameter re-estimation we also used our clustering method described
in Section 4. There, the models are not sequentially assigned to the threads, but
according to the clustering result. The clustering clearly improves the results of
the parallelized version, because it provides better starting points and a more
beneficial thread assignment of the sub-models than the sequential start method.
Also, using our clustering approach, the calculated centroid is provided as start-
ing point to the first models, which turns out is also a better approximation
of a good start than the old parameters. Figure 8 again illustrates the results.
There, the decrease/increase of the iterations correspond to the measured run-
times. Especially the increased number of iterations when using the sequential
start in conjunction with the 8-thread parallelization is interesting, because it
supports the assumption that sequential model assignment is worse compared to
using just the old parameter combinations. The runtimes for the single-threaded,
partitioned and non-partitioned versions stay roughly the same. The only slight
increase is reasoned by the k-means overhead that is still conducted even for
those variants. Also, increasing the number of clusters to 4 and 8 for the single
threaded versions brings no benefit. The reason is similar to the simple sequen-
tial start method, meaning that an increasing number of clusters also increases
the number of models that cannot benefit from the sequential start.

Overall, the re-estimation exhibits similar results like the initial estimation.
However, the overall runtime for the re-estimation is lower, due to better starting
points for the local search algorithm. With the help of our optimizations we also
reduced the necessary runtime for adapting a multi-equation model significantly

Partitioning and Parallelization of Multi-equation Models 119

in all cases. The runtime stays always just roughly over 10s for the partitioning
approach and with respect to the parallelization the time further decreases.

5.3 Cache Utilization

In this experiment we compared the cache misses for the partitioned, non-
partitioned and parallelized case. For this purpose, we used the Intel Performance
Counter Monitor that evaluates the values of the Performance Management Unit
located directly on modern Intel CPUs. With the help of this tool we measured
the number of cache misses that occurred in 20 seconds while running the estima-
tion of an EGRV model. The used Intel Core i7-2635QM with 4 cores provides
a 6 MB L3 cache and 256kB L2 cache per core. Our test data set contained
122,736 values, which resulted in a size of 737kB. This means that the complete
test data set can be cached in the L3 cache and thus, we expect high L3 cache
hit rates in all cases. The results are presented in Table 3. As expected, all cases
exhibit a very high L3 cache hit rate. However, the non-partitioned case exhibits
a far higher total number of cache misses. Due to the fact that the cache hit rate
is nevertheless comparable, this means that in the non-partitioned case far more
reads were executed on the L3 cache. This supports the assumption that in the
partitioned case less cache lines must be read from the L3 cache. With regard
to the L2 cache the result is more diverse. There we see a very low L2 hit rate
of only 2% for the non-partitioned case, in comparison to almost 100% for both
partitioned cases. This means that storing the data tight together leads to far
more necessary values in the cache and thus to a low number of cache misses.
The higher total number of L2 cache misses for the parallelized case is reasoned
by the execution on 4 threads. The Intel Core i7 has one L2 cache for each CPU
core and thus, the number of cache misses roughly increases with the number
of threads. As a result, our partitioning approach greatly optimizes the cache
utilization, which results in a very high L2 cache hit rate.

5.4 Scalability

In the last experiment we evaluate the scalability of our approach regarding data
volume and number of threads. The results are presented in Figure 9. Please
note the logarithmic scale of the y-axis. We first compared the behavior of our
algorithm with an increasing data volume. For this evaluation we used synthetic
data sets with different sizes. The drawback of synthetic data sets is that the
number of iterations varies when changing the data volume, which distorts the

Table 3. Test Results: Cache Misses per Storage Approach

L3 Misses % L3 Hits # L2 Misses % L2 Hits
Non-Partitioned 206.850 Mio. 93% 8,034.0 Mio. 2%

Partitioned 237,000 99% 7.245 Mio. 96%
Partitioned (4T) 143,000 100% 22.714 Mio. 97%

120 L. Dannecker et al.

���.���

�������

����/��

���0���

����/��

���/.��

����0��

��		/.�

����/���

�/����.�

����	�

���	�

��	�

��

��

��

/�

���

���

�	�
�0��
�� ���
���/��� ���
������� ����
�.����� ����
��������

��
��

�
��

��
��

��
��

���
��

��
��

��
��

��

������� �����!���� �������������

"�������#�$��������

!��%"�������#�$��������

(a) Increasing Data Volume

&#$'�&�
#($%&&�

'������
������� �����	� �
����� �������
�������������

������
������ ����
� ��	��� ��
��� ������ ���

�

����
���
����
�	� �
���	�� �����
�� �	��	��� �������� �������� ��������

����

�
�	��	��

���
�
� ������� �
����� ����	�� �	����� �������

�

��

��

	�

��

���

���

�	�

����

�
��

� �� �� �� �� �� �� 	�

�
��

�
��

��
��

���������������

������������������� ����������� ���������
��� ������������������� ��� ����������� ���������

(b) Increasing Number of Threads

Fig. 9. Scalability of Our Optimization Framework

results. Thus, the runtime is for 1000 iterations to eliminate the dependency on
the number of iterations. In Figure 9(a)), we see a linear increase of the necessary
runtime time for the partitioned and non-partitioned estimation. Meaning that
doubling the data volume also doubles the runtime of the parameter estimation.
In addition, the development of our partitioning approach is constantly below the
non-partitioned case and both have a similar pace of increase. Thus, there won’t
be a data volume where the non-partitioned case is faster than the partitioned
case, which clearly renders the advantages of the time series partitioning.

The results for the scalability concerning an increased number of threads are
presented in Figure 9(b). Concerning all cases, we observe the greatest runtime
decrease for the parameter estimation and re-estimation, when increasing the
number of threads from one to two. When adding more threads, the runtime
benefit decreases. Furthermore, the start of the Hyper-threading clearly marks a
specific point, after this point the runtime gain is only marginal. In the case of the
used Intel Core i7, we have four cores available, meaning that the largest benefit
can be observed up to a number of 4 threads. When using more than four threads
the additional benefit decreases significantly. As a result, the number of used
threads should at least match the number of available cores on a system, because
the additional performance gain from hyper-threading is limited. Moreover, we
can see that the performance gain when increasing the number of threads is
higher for our partitioned case. When increasing the number of threads from one
to two, the runtime decreases for the partitioned case by almost one half and for
the non-partitioned case by only one third. This trend continues when further
increasing the number of threads (e.g., 2 -> 3 Threads: 26% partitioned, 17%
non-partitioned). Finally, the runtime difference between one and eight threads
is also higher for our partitioned case. The runtime decreases by almost 75%
for the partitioned case, whereas for the non-partitioned case the runtime only
decreases by around 50%. As a result, our partitioning and the optimized cache
utilization also increased the possible degree of parallelization and thus, the
performance gain from the parallelization is significantly higher.

Partitioning and Parallelization of Multi-equation Models 121

6 Related Work

Current research mostly focuses on increasing the accuracy of forecast models.
Therefore, there exists only few related work regarding the partitioning and par-
allelization of forecast models, in particular multi-equation models. Some multi-
equation models such as those introduced by Cottet and Smith [7], Soares and
Medeiros [9], and Taylor et al. [8] directly include performance optimizations
on the logical level. Taylor, for example, proposes to use Principal Component
Analysis in conjunction with his multi-equation model to reduce the number of
sub-models and thus, the time needed for model estimation. However, the intro-
duced approaches directly modify the model calculations and thus, influence the
achievable accuracy. In contrast, our optimizations only change the memory ac-
cess of the models and do not change the model’s calculations, which means that
the resulting accuracy is not influenced. In addition, our proposed optimizations
on the physical level can be used together with the optimizations on the logical
level and thus, increase the performance of these approaches even further.

However, there is also some work that—like our approach—uses optimiza-
tions on the physical level. Ge and Zedonik [16] propose to use a skip-list with
various levels to provide different data granularities and different history length
for various purposes and forecast horizons. Forecasts with a long horizon (> 1
month) use a very coarse grain granularity, while forecasts with a short hori-
zon use very fine-grained data. A similar approach is presented by Agrawal et
al. [17] where they merge similar attributes into subset and calculate forecasts
only on these subsets. These approaches can greatly reduce the amount of time
needed for the estimation of a forecast model. However, reducing the amount
of data in most cases also reduces the reachable accuracy of a forecast model.
Especially in application domains, where complex patterns are described, the
use of fine-grained data and a suitable history length is required for providing
accurate forecasts. Our approach does not reduce the number of beneficial val-
ues considered during model estimation, but reduces the amount of redundantly
read unnecessary values. This means that the accuracy is not influenced by the
optimizations proposed by our approach. Also some approaches that directly
involve data partitioning and parallelization of forecast models exist. Canas et
al. proposed a partitioning solution for neural networks that forecast river-flows
to speed up the calculations [18]. Kalaitzakis et al. propose a parallel neural
network for forecasting electric load [19]. While the first approach partitions the
values into river-flow-specific categories that are provided separately to the neu-
ral network, the second approach proposes a parallel calculation of hourly load,
similar to multi-equation models. Overall, their partitioning is rather a model
decomposition than an optimization on the physical level, especially because
the publications omit details about the storage structure and parallelization. In
addition, the proposed parallelization only provides the naive approach for cal-
culating the available neurons of the neural network in parallel. In contrast, a
massive parallelization approach is provided by Shimokawabe et al. [20]. They
propose to distribute the calculation of a weather forecast model on a super
computer that provides some thousand GPUs. However, the considered forecast

122 L. Dannecker et al.

model is a physical weather model, which means that their solution is specific
to their approach and cannot directly be applied to multi-equation models.

Overall, our approach is the first optimization approach that exploits the
specific access pattern of multi-equation models to optimize the data storage
and cache utilization for less redundant and faster data processing. With the
help of this technique we speed up the parameter estimation process significantly
and our improvement is greatly above the current state of the art. In contrast to
most related solutions, our approach does not change the calculation specifics of a
forecast model and thus, does not influence the reachable accuracy. Furthermore,
our approach can supplement the presented solutions and as a result, even further
increase their efficiency enhancements. In addition, the proposed partitioning
and parallelization approach is not limited to models from a specific application
domain, but can be applied to all kinds of multi-equation forecast models.

7 Conclusion

In this paper, we presented an optimization approach for multi-equation models
that greatly increases the efficiency of such models. Our time series partitioning
approach ensures that each sub-model only accesses time series values that are
necessary for their specific calculations, which leads to an optimized memory
locality of the stored time series values. This greatly reduces the number of
cache misses, read cache lines and thus, results in an increased data processing
efficiency. We further increase the speed of the parameter estimation, by utilizing
modern multi-core hardware systems and estimating the sub-models in parallel.
There, we addressed the issue of a limited amount of threads, by presenting
our sequential start execution and the clustered thread assignment technique. In
our evaluation we showed that our optimization framework significantly reduces
the time necessary for estimating and re-estimating an multi-equation forecast
model. Especially our partitioning approach achieved a major speed up of the
optimization calculations. As a result, with the help of our approaches multi-
equation models can be used in the face of real-time environments.

In the future we want to enhance our approach by using compression technolo-
gies that further increase the number of values read per cache line. In addition,
we want to automatically decide for which purpose to use available parallelism
most beneficially. The reason is that it is either possible to use available paral-
lelism to (1) increase the number of models estimated in parallel and thus, to
potentially increase the efficiency or (2) to simultaneously start the estimation
from different starting points and thus, to potentially increase the accuracy.

Acknowledgment. The work presented in this paper has been carried out in
the MIRACLE project funded by the EU under the grant agreement number
248195.

References

1. MIRABEL Project (2011), http://www.mirabel-project.eu
2. MeRegio Project (2011), http://www.meregio.de/en/

http://www.mirabel-project.eu
http://www.meregio.de/en/

Partitioning and Parallelization of Multi-equation Models 123

3. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and
Control. John Wiley & Sons Inc. (1970)

4. Winters, P.R.: Forecasting sales by exponentially weighted moving averages. Man-
agement Science, 324–342 (April 1960)

5. Bunnoon, P., Chalermyanont, K., Limsakul, C.: A computing model of artificial
intelligent approaches to mid-term load forecasting: a state-of-the-art- survey for
the researcher. Int. Journal of Engineering and Technology 2(1), 94–100 (2010)

6. Ramanathan, R., Engle, R., Granger, C.W., Vahid-Araghi, F., Brace, C.: Short-run
forecasts of electricity loads and peaks. International Journal of Forecasting 13(2),
161–174 (1997)

7. Cottet, R., Smith, M.: Bayesian modeling and forecasting of intraday electricity
load. Journal of the American Statistical Association 98, 839–849 (2003)

8. Taylor, J.W., de Menezes, L.M., McSharry, P.E.: A comparison of univariate meth-
ods for forecasting electricity demand up to a day ahead. International Journal of
Forecasting 22, 1–16 (2006)

9. Soares, L.J., Medeiros, M.C.: Modeling and forecasting short-term electricity load:
A comparison of methods with an application to brazilian data. International Jour-
nal of Forecasting 24(4), 630–644 (2008)

10. Wulf, W.A., McKee, S.A.: Hitting the memory wall: Implications of the obvious.
Computer Architecture News 23(1), 20–24 (1995)

11. Borkar, S.Y., Mulder, H., Dubey, P., Pawlowski, S.S., Kahn, K.C., Rattner, J.R.,
Kuck, D.J.: Platform 2015: Intel processor and platform evolution for the next
decade. Technical report, Intel Corporation (2005)

12. Kim, C., Chhugani, J., Satish, N., Sedlar, E., Nguyen, A.D., Kaldewey, T., Lee,
V.W., Brandt, S.A., Dubey, P.: Fast: Fast architecture sensitive tree search on
modern cpus and gpus. In: Proceeding of the SIGMOD 2010 (2010)

13. Taylor, J.W.: Triple seasonal methods for short-term electricity demand forecast-
ing. European Journal of Operational Research 204, 139–152 (2009)

14. Nelder, J., Mead, R.: A simplex method for function minimization. The Computer
Journal 7(4), 308–313 (1965)

15. Nationalgrid UK: Metered half-hourly electricity demands (2010),
http://www.nationalgrid.com/uk/Electricity/Data/Demand+Data/

16. Ge, T., Zdonik, S.: A skip-list approach for efficiently processing forecasting queries.
In: Proceeding of the VLDB 2008 (2008)

17. Agrawal, D., Chen, D., Ji Lin, L., Shanmugasundaram, J., Vee, E.: Forecasting
high-dimensional data. In: Proceeding of the SIGMOD 2010 (2010)

18. Cannas, B., Fanni, A., See, L., Sias, G.: Data preprocessing for river flow forecast-
ing using neural networks: Wavelet transforms and data partitioning. Physics and
Chemistry of the Earth 31(18), 1164–1171 (2006)

19. Kalaitzakis, K., Stavrakakis, G., Anagnostakis, E.: Short-term load forecasting
based on artificial neural networks parallel implementation. Electric Power Systems
Research 63, 185–196 (2002)

20. Shimokawabe, T., Aoki, T., Muroi, C., Ishida, J., Kawano, K., Endo, T., Nukada,
A., Maruyama, N., Matsuoka, S.: An 80-fold speedup, 15.0 tflops full gpu acceler-
ation of non-hydrostatic weather model asuca production code. In: Proceedings of
Super Computing 2010 (2010)

http://www.nationalgrid.com/uk/Electricity/Data/Demand+Data/

Integrating GPU-Accelerated Sequence

Alignment and SNP Detection for Genome
Resequencing Analysis

Mian Lu, Yuwei Tan, Jiuxin Zhao, Ge Bai, and Qiong Luo

Hong Kong University of Science and Technology
{lumian,ytan,zhaojx,gbai,luo}@cse.ust.hk

Abstract. DNA sequence alignment and single-nucleotide
polymorphism (SNP) detection are two important tasks in genomics
research. A common genome resequencing analysis workflow is to first
perform sequence alignment and then detect SNPs among the aligned
sequences. In practice, the performance bottleneck in this workflow is
usually the intermediate result I/O due to the separation of the two
components, especially when the in-memory computation has been ac-
celerated, e.g., by graphics processors. To address this bottleneck, we
propose to integrate the two tasks tightly so as to eliminate the I/O of
intermediate results in the workflow. Specifically, we make the following
three changes for the tight integration: (1) we adopt a partition-based
approach so that the external sorting of alignment results, which was
required for SNP detection, is eliminated; (2) we perform customized
compression on alignment results to reduce memory footprint; and (3) we
move the computation of a global matrix from SNP detection to sequence
alignment to save a file scan. We have developed a GPU-accelerated sys-
tem that tightly integrates sequence alignment and SNP detection. Our
results with human genome data sets show that our GPU-acceleration of
individual components in the traditional workflow improves the overall
performance by 18 times and that the tight integration further improves
the performance of the GPU-accelerated system by 2.3 times.

Keywords: data management for e-science, GPGPU, genomic data
analytics.

1 Introduction

The second-generation DNA sequencing devices have been widely used for the
past few years. They produce short DNA fragments, or short reads, at an ultra-
high throughput. For today’s genomics research based on short reads, two
fundamental data analysis tasks are sequence alignment and single-nucleotide
polymorphism (SNP) detection. Sequence alignment matches input reads to a ref-
erence sequence. SNP detection takes the output of alignment as input, and finds
genetic variation information. In practice, these two tasks are typically performed
in sequence as a basic workflow for genome resequencing analysis. Furthermore,

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 124–140, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

GPU-Accelerated Genome Resequencing Analysis 125

the output of this workflow is usually adopted as input for a number of higher level
applications, such as minor allele frequency (MAF) computation [4][20].

Traditionally, such a genome resequencing analysis workflow is implemented
using multiple software packages, each performing a task in isolation. For exam-
ple, 2BWT [6], SOAP2 [11], or Bowtie [9] can be used for the sequence alignment,
and SOAPsnp [10] is used to detect SNPs. Moreover, as required by the SNP
detection software, additional data processing tools are adopted between the
alignment and SNP detection to sort the alignment results. Due to the large
amount of data to process, this workflow may take an extremely long running
time, e.g., around a week for the human genome. To improve the performance,
previous studies have adopted graphics processors (GPUs) to speed up individ-
ual tasks, such as SOAP3 [13] and GSNP [14] for alignment and SNP detection,
respectively. With the GPU acceleration, the evaluation based on operational
genomics data sets have shown that the speedup is significant, e.g., up to 50
times. However, considering the alignment and SNP detection as a workflow,
few previous studies further optimize it systematically.

We observe that, with the state-of-art GPU-accelerated tools, the overall per-
formance of the workflow is dominated by the disk I/O, especially that incurred
in the intermediate data processing between the alignment and SNP detection.
Therefore, it is imperative to address the intermediate data processing in order
to improve the overall performance of the workflow. In this work, we develop
a GPU-accelerated genome resequencing analysis system tightly integrating the
alignment and SNP detection for a higher overall performance. Our focus in
this paper is on the integration techniques; details about GPU-acceleration for
individual tasks can be found in previous studies [14][13].

We propose three techniques for the integration of alignment and SNP detec-
tion. Note that, although our system is based on the GPU for high efficiency,
these techniques are applicable to both CPU- and GPU-based implementations.

1. To avoid the external sorting for SNP detection, we propose a partition-
based approach. The partitioning is integrated in the alignment component.
As a result, the intermediate result processing between the alignment and
SNP detection is eliminated.

2. We move the computation of a global matrix that is originally calculated in
the SNP detection to the component of sequence alignment. This move saves
one scan of the alignment results in the workflow.

3. To further reduce I/O, we develop customized data compression techniques
for alignment results.

With these techniques, our system is optimized for the genome resequencing
analysis. Compared with a traditional workflow with individual components ac-
celerated by the GPU, our integrated, GPU-accelerated workflow achieves a
speedup of 2.3X. As a result, the new system improves the overall performance
of a traditional CPU-based workflow by around 43 times.

126 M. Lu et al.

The remainder of the paper is organized as follows. We introduce the back-
ground and related work in Section 2. We describe our integration techniques
in detail in Section 3. We evaluate our system in Section 4 and conclude in
Section 5.

2 Background and Related Work

In this section, we first briefly introduce the sequence alignment and SNP de-
tection. Then we present the genome resequencing analysis workflow including
these two functionalities.

2.1 Sequence Alignment

The second DNA generation sequencing devices can generate short DNA frag-
ments, or reads, at an ultra-high throughput. The typical length of short reads
is up to around one hundred base-pair (bp). For a given reference sequence and
a large number of short reads, sequence alignment is to match each read against
the reference. Mismatches are allowed for the alignment, e.g., typically two mis-
matches. The output file of sequence alignment contains multiple lines, and each
line has a few attributes, such as the DNA base, the aligned position on the ref-
erence, the number of mismatches, and so on. We call such a line an alignment.
Note that, one input read may have multiple alignments, as it may be matched
to multiple positions on the reference. For the whole human genome, there are
typically tens of billions of input short reads, and can generate an even larger
number of alignments for the SNP detection.

Short read alignment algorithms can be categorized as hashing-based and
Burrows-Wheeler transform (BWT) based. A hashing-based algorithm, such as
WHAM [12], constructs a hash index containing the positions of all subsequences
of the reference. In comparison, a BWT index is constructed with all suffixes of
the reference and stored in suffix arrays. Alignment tools employing BWT index
are Bowtie [9], 2BWT [6], SOAP2 [11], and SOAP3 [13]. Overall, a hashing
based algorithm is efficient when the number of alignments is small, and the
disadvantage is that the memory consumption is high. Therefore, in practice,
the majority of sequence alignment tasks are done through the BWT index.

To improve the performance of sequence alignment, the GPU has been studied
as a hardware accelerator, such as SOAP3 [13], and shown successful to speed
up the processing significantly. When building this genome resequencing analysis
system, we adopt our home-made GPU-accelerated sequence alignment tool for a
tight integration. Our tool adopts a BWT-based sequence alignment algorithm.
Additionally, compared with SOAP3, our tool adopts GPU-CPU coprocessing
and customized data compression techniques. The measured performance of our
sequence alignment component is slightly better than SOAP3.

2.2 SNP Detection

SNP detection is to find DNA variations for a single nucleotide between differ-
ent members of a species. It calculates the likelihood and other information to

GPU-Accelerated Genome Resequencing Analysis 127

indicate whether a site (the position holding a base) is a SNP. For example, if the
corresponding DNA fragments from two persons are ATCGGC and ACCGGC,
respectively, then the second position is probably a SNP site.

A widely used SNP detection tool based on short reads is SOAPsnp [10] em-
ploying a Bayesian-based method. Due to the large size of input data, SOAPsnp
reads and processes data window by window. A window is defined as a fixed
number of consecutive sites on the reference. For a window of sites, the software
loads the data related to the window (the corresponding alignments) from disk
to memory to perform the computation and outputs SNP results.

To speed up the process of SNP detection, our previous work GSNP [14] im-
plements the same functionality as SOAPsnp but adopts the GPU acceleration.
With various optimization techniques, GSNP can achieve a speedup of around
50X over the CPU-based single-threaded SOAPsnp. This resequencing analysis
system adopts GSNP as the component of SNP detection, with modifications
for a tight integration.

2.3 The Workflow of Genome Resequencing Analysis

Overall, the genome resequencing analysis consists of the sequence alignment
and SNP detection. Although the alignment result is the input of SNP detec-
tion, in practice, an additional data processing step is required between the
alignment and SNP detection tools. This step is to sort the alignment result as
well as data format conversion for the SNP detection tool. Therefore, tradition-
ally, three separate software tools are used in the workflow, such as SOAP2 [11],
msort [2][15], and SOAPsnp [10] for the alignment, sorting, and SNP detection,
respectively. Figure 1 shows the overview of such a workflow. We describe the
input and output of each software component in detail. Note that, as they are
separate software packages, the input and output data are both stored on disk.

Alignment. The input for sequence alignment are the reference sequence and a
large number of short reads, which are stored in plain text files. In practice, as
the data size may not fit into the memory, multiple passes are performed for the
alignment. The alignment result file can be very large, e.g., tens of gigabytes.

Sorting. The alignments should be sorted according to their matched positions
on the reference before performing SNP detection. The purpose of sorting is to
make the SNP detection tool process sites window-by-window. Figure 2 illus-
trates the sorting and the process of window-based SNP detection. As the data
size is very large, this step is implemented using external sorting algorithms,
which are expensive. The GNU msort [15] can be used to sort alignments. There
are also other more efficient implementations, such as a dedicated alignment sort-
ing tool [2]. By default, in this paper, the sorting program refers to this improved
alignment sorting tool rather than GNU msort, unless otherwise specified.

SNP Detection. Overall, there are two steps in this task. The first step is to
calculate a global matrix, which requires to access all alignment results. Based
on the global matrix, the second step calculates likelihood for each site, which

128 M. Lu et al.

Reference

Reference

Alignments

Alignments Sorted alignments

SNP resultsSorted alignments

Short reads

Sequence alignment

Sorting

SNP detection

Matrix comp. Likelihood comp.

Data stored on disk
Data stored in memory

Software component

Matrix

Fig. 1. The traditional workflow of genome resequencing analysis, which consists of
sequence alignment, sorting, and SNP detection. These components adopt separate
software packages.

11

1112

1032 5

5 6 7 8

6 10

10

21 4 7 85 9

91 2 3 4

1110 325 610 21 4 7 85 9

Step 3: SNP detection
 (Window 1)

Step 3: SNP detection
 (Window 2)

Step 3: SNP detection
 (Window 3)

Step 2: External sorting

Step 1: Sequence alignment

Alignment results

Sorted alignments

Reference

Alignments, the number indicates the aligned positions.

Sites on the reference

5 2 10

Fig. 2. Sorting and window-based SNP detection. Suppose that there are three win-
dows, each of which contains four sites. A circle represents an alignment at a given
aligned position on the reference. The color of a circle indicates which window an
alignment or a site belongs to.

GPU-Accelerated Genome Resequencing Analysis 129

accesses all alignments again. Note that, in the second step, the computation
for each site is independent. Therefore, with the sorted alignment results, the
likelihood computation can adopt a window-based approach. This way, each
window of sites and its related data that can fit into memory are loaded from
disk to the main memory for the computation.

In summary, a traditional workflow employing three separate software pack-
ages contains an expensive external sorting step as well as redundant I/O ac-
cesses. Particularly, with the GPU acceleration for the in-memory computation,
the I/O dominates the overall performance. We analyze the I/O cost in de-
tail in Section 3.1. In our system, we address these issues through a tighter
integration for the sequence alignment and SNP detection components. More-
over, we eliminate the external sorting through an inexpensive partition-based
approach.

2.4 Related Work

Existing work on sequence alignment and SNP detection rarely considers inte-
gration techniques for a workflow. One exception is work by Wegrzyn et al. [19],
which proposes a sequence alignment and SNP detection pipeline that utilizes
machine learning algorithms to improve the speed and accuracy. However, their
work is not based on short reads and practical algorithms used today. To the
best of our knowledge, our study is the first to propose effective optimizations
to tightly integrate state-of-the-art alignment and SNP detection algorithms to
improve the overall performance systematically.

In addition to a single-machine solution, cloud computing solutions are in-
vestigated to improve the performance and scalability of sequence analysis.
CloudBurst [16] is a parallel short sequence alignment program developed using
Hadoop [1], whose running time scales near linearly with the number of nodes.
Myrna [7] targets at gene expression calculation from large-scale RNA data sets,
which combines Bowtie [9] and Bioconductor [3]. Crossbow [8] is a system that
is built on Bowtie [9] and SOAPsnp [10] to perform the genome resequencing
analysis in cloud computing using Hadoop. It first performs sequence alignment
in the map phase on each node, then sorts the alignment result across all nodes,
and finally detects SNPs on each node.

Compared with Crossbow as well as other cloud computing based systems,
in addition to the GPU acceleration adopted in our system, we further consider
optimizations for a tight integration on a single node. These single node opti-
mizations can be applied on each node in the cloud computing environment.
Furthermore, with our optimizations applied, the sorting phase in the MapRe-
duce framework can be avoided.

Finally, there are a few studies for the GPU-accelerated sequence alignment,
such as GPU-BLAST [18] and MUMmerGPU [17], which are designed for long
reads. For the short read alignment, both SOAP3 [13] and BarraCUDA [5] im-
plement the BWT-index based sequence alignment algorithm.

130 M. Lu et al.

3 System Implementation

In this section, we describe the details of our integration techniques. Note that,
as our system is built on the components with the GPU acceleration, by default,
the sequence alignment and SNP detection components referred to in this paper
are the GPU-based implementations, unless specified otherwise. Specifically, the
sequence alignment is our home-made implementation, and the SNP detection
is based on our previous work GSNP [14]. However, our integration techniques
are applicable to both GPU- and CPU-based systems.

3.1 Analysis on the Traditional Workflow

As described in Section 2.3, the traditional workflow consists of three separate
software packages to perform the sequence alignment, sorting, and SNP detec-
tion. Table 1 lists the time breakdown of a traditional workflow (with GPU
acceleration) using the hardware and data sets described in Section 4.1. The
three I/O intensive components, namely Output, Sorting, and Matrix Compu-
tation, take a total of 60% of the overall time. The Output component contains
disk I/O operations only. In Matrix Computation, disk I/O takes around 92%
of elapsed time. Since the source code of the sorting program is unavailable, we
estimate the I/O in Sorting to be half of the elapsed time, assuming one read and
one write for each alignment in sorting. There are two major issues through our
further analysis. First, there are redundant I/O accesses. Each alignment record
is accessed multiple times across the three software packages. Second, there is
an expensive external sorting step. In our system, our target is to address these
two issues for efficiency through a tight integration.

Table 1. Elapsed time of the traditional workflow (with GPU acceleration)

Sequence alignment
Sorting

SNP detection
Input Computation Output Matrix comput. Likelihood comput.

Time (sec) 35 213 104 550 155 298

Percentage (%) 2.3 15.9 7.8 41 10.8 22.2

For the first issue, Figure 3 illustrates the multiple data reads and writes
on alignment results. Note that, the sorting requires at least one read and one
write for each alignment. It may incur more I/O depending on the buffer size.
Additionally, as described in Section 2.3, there are two steps in the SNP detec-
tion (global matrix and likelihood computation), and each requires a full scan
on the alignment results. These two scans on the same alignment results can-
not be merged, as the likelihood computation relies on the result of the global
matrix computation. In summary, for each alignment, there are at least five
disk accesses: two reads and three writes (as shown in Figure 3). In our system,
we optimize these multiple data accesses to only two necessary accesses: one
write when generating the alignment, and one read when performing the SNP

GPU-Accelerated Genome Resequencing Analysis 131

Alignment Sort

Alignment
results

Disk

SNP Detection
1. Global mat. comp.

2. Likelihood comp.

1 2 3

4

5

Fig. 3. Five accesses for each alignment in the traditional workflow. (1) Result out-
put after the sequence alignment. (2) Input for the sorting. (3) Sorted result output.
(4) Data input for the global matrix computation. (5) Data input for the likelihood
computation.

detection. Note that, as the size of alignment file is usually large, e.g., tens of
gigabytes, and some other tools may use the alignment results, we consider it
necessary to store the alignment results as the intermediate data on disk. The
reference sequence is also accessed twice in the workflow. However, the reference
size (up to around 750 MB for the whole human genome) is much smaller than
the alignment result, and it is straightforward to eliminate the second access by
keeping it in memory.

For the second issue, we have presented the purpose of sorting in Section 2.3.
Essentially, the sorting is used to arrange the alignments in the same SNP pro-
cessing window consecutively on disk. Within a window, the order of alignments
is not important for the SNP detection program, as there is a counting step to
extract summary information for each alignment. Based on this observation, we
propose to use range partitioning to achieve the same purpose, but with a low
time cost.

3.2 System Overview

Overall, our system consists of the sequence alignment and SNP detection com-
ponents, and works as follows. First, input reads are processed window-by-
window for the sequence alignment. Within each window, when an alignment
is produced, it is used immediately to update the global matrix that is used for
detecting SNPs later. Then the partitioning function is applied to that align-
ment, and the alignment is stored in an in-memory buffer. When the buffer is
full, its alignments will be compressed and written to the disk. After the sequence
alignment for all input reads is done, we start the SNP detection component. The
SNP detection component is also executed window-by-window. The window size
depends on the partitioning function. Note that, there is no dependence between
the window sizes of sequence alignment and SNP detection. Figure 4 illustrates
the software components and the workflow in our system.

132 M. Lu et al.

Reference

Short reads

Seq. alignment

Matrix comp.

Partitioning Compression

 each alignment

Matrix

SNP results Likelihood computation

SNP detection

Data stored on disk
Data stored in memory

Software component

Partitioned alignments

Fig. 4. Components and workflow in our genome resequencing analysis system

3.3 Range Partitioning

For range partitioning, we keep a number of buffers in memory. When an align-
ment is produced, it is sent into one buffer according to its aligned position in the
reference. When a buffer is full, the alignments stored in that buffer are written
to the disk (we call the data of each buffer a block). In order to facilitate the
window-based processing in the SNP detection, the number of buffers and SNP
processing windows are the same. Specifically, we maintain B buffers in memory,
and each can hold up to m alignments. For the alignment that is matched to
site i in the reference, it will be stored in the � i

m�th buffer. If the buffer is full,
m alignments in that buffer (as a data block) are written to the disk. As one
window in the SNP detection may contain alignments from multiple data blocks,
there is an additional data structure maintaining the block IDs for each window.
Figure 5 illustrates an example of the partitioning corresponding to the sorting
example (Figure 2).

The computation complexity of such a partition-based approach is O(n),
where n is the number of alignments. Moreover, when an alignment is generated,
we can apply partitioning immediately without storing these original alignments
on disk. The memory space cost of partitioning is on the in-memory alignment
buffers and the block ID list. Suppose we have B buffers (or B SNP processing
windows), and each can hold m alignments. Suppose each alignment requires
b bytes, the total memory consumption is (B ×m × b) bytes. As the SNP de-
tection is much more expensive than the partitioning, we mainly consider the
performance of SNP detection to tune these parameters. The typical window
size in the SNP detection is 256,000 sites [14] with around 1.5 GB GPU memory
and 1 GB main memory consumed. A larger window size has little performance
impact on SNP detection but significantly increases the memory consumption.
Therefore, we set the SNP processing window size in our system as 256,000 sites
by default. This way, the number of buffers is up to 11,719 (B = 11, 719), when
evaluating the whole human genome consisting of three billion sites. If the size
of each buffer is 512 KB (m × b = 512 KB), which saturates disk bandwidth,
then each buffer can store around 2,000 alignments for 100-bp reads. As a result,
the total memory consumption for the whole human genome is around 6 GB for

GPU-Accelerated Genome Resequencing Analysis 133

Alignment results

In-memory buffers

Aligned position ranges [1,4]

Block 1

Window 1

Window 2

Window 3

1, 3

Block 2
2

Block 3 Block 4
4

[5,8] [9,12]

111

11

1010

10

32

2

5

5

6101

10

2

2

1

1

4

4

7 85

5 5

5

9

3. record block ID ‘4’

1. store the alignment in Buffer 2

2. write the bucket to the file

Partitioned alignment result file Block ID list

Alignments, the number indicates the aligned positions.5 102

Fig. 5. An example of partitioning when handling the 9-th alignment with the aligned
position 5. There are three buffers, and each can hold up to two alignments. The first
eight alignments have been finished for the partitioning. Step 1: the alignment is stored
in the second buffer for aligned positions from 5 to 8. Step 2: the second buffer is full,
thus alignments are written to the disk as Block 4. Step 3: the block ID 4 is recorded
in the list for Window 2.

in-memory buffers. This is affordable on our server. Additionally, the number of
entries in the block ID list can be estimated as n

m , thus the memory consumption
is around (4 × n

m) bytes. Based on estimation, the memory consumption of the
block ID list is around tens of megabytes for the whole human genome. Note
that, in practice, the SNP detection is usually performed for a given individual
human chromosome rather than the whole human genome, which requires less
memory, allows larger buffers for efficiency.

3.4 Alignment Result Compression

Through partitioning and moving matrix computation forward, we have elimi-
nated redundant I/O accesses, however, the size of the alignment result may still
be very large. To further improve the performance of the workflow, we develop
customized data compression techniques. Note that, we do not adopt general
data compression algorithms or tools, such as gzip, as they introduce expensive
computation cost for both compression and decompression. Additionally, the
compression is applied before writing the alignment to the disk, and then the
SNP detection component can decompress these compressed result in-memory
directly, without additional disk I/O.

Recall that alignment tools output the result as multiple lines, and each line
corresponds to an alignment with multiple attributes. Although various align-
ment tools have slightly different output formats, almost all alignment tools

134 M. Lu et al.

contain these attributes required by the SNP detection tool: the read bases, the
quality scores, the number of alignments for the given read, the read length,
the reference name, the aligned position, the number of mismatches, and the
mismatch information (including the positions of mismatches occurred and their
substitution). Specifically, the read bases and quality scores together take more
than 90% of the total size. This is because each base has one quality score, and
each alignment represents multiple bases. Suppose the read length is l, then the
read bases and quality scores attributes both have l values for an alignment.
In comparison, for other attributes, each of them only has one value for an
alignment.

For the read bases, we do not store them in the alignment result file. The
basic idea is that the read can be reconstructed based on the aligned position,
mismatch information, and the reference. Figure 6 shows an example of such
an approach. The cost of such an approach is that we need to store the refer-
ence in memory and have computation overhead when reconstructing the read
bases. However, the SNP detection requires to access the reference anyway, and
the reference size is much smaller than the alignment result. Additionally, the
computation cost is negligible compared with the saved I/O cost.

ACTGCGACGATCCG...

Aligned pos.: 3
Length: 4

TGCG

TGAG

Mis_pos: 3
Mis_sub: A

Step 1: copy the fragment.

Step 2: handle the mismatch.

Fig. 6. An example of extracting the read bases based on the aligned position and
mismatch information. Step 1: according to the aligned position and read length, we
copy the fragment from the reference. Step 2: according to the position of mismatch
occurred (mis pos) and its substitution (mis sub), we perform the mismatch on the
copied fragment.

On the compression of the quality scores, the observation is that one read
usually has multiple alignments. These alignments have the same quality score
string. Therefore, we keep a table of all unique score strings, and append an
additional ID attribute to each alignment for fetching the correct quality score
string for a given alignment. To further compress this table, we apply dictionary
encoding and run-length encoding.

4 Evaluation

In this section, we first study the performance impact of our integration tech-
niques. Then we compare the end-to-end performance of our system with the
original workflow, including the GPU- and CPU-based implementations.

GPU-Accelerated Genome Resequencing Analysis 135

4.1 Experimental Setup

Hardware Setup. We conduct the experiments on a server equipped with an
NVIDIA Tesla C2070 and two Intel Xeon E5520, 2.27 GHz quad cores (8 cores,
16 threads in total). C2070 consists of 448 cores and 6 GB GPU memory. The
server has 32 GB main memory.

Implementation Details. Our system is built using the GPU acceleration.
Specifically, the alignment component is implemented by ourselves based on the
Bi-BWT algorithm [6]. The alignment results are reported with up to two mis-
matches. The SNP detection component is modified based on our previous work
GSNP [14]. By default, the window size of the alignment and SNP detection are
fixed to 1,000,000,000 reads and 256,000 sites, respectively, and the buffer size
in the range partitioning is 1024 KB, unless otherwise specified. Additionally,
the time of loading the alignment index from the disk to the main memory is
excluded from measurement, as the index can reside in memory. We compare our
system with the traditional GPU-based and CPU-based workflows. Recall that
the traditional workflow consists of three separate software packages. The tradi-
tional GPU-based workflow adopts our home-made GPU-accelerated alignment
tool, msort developed by BGI-Shenzhen [2] (denoted as msort), and GSNP [14].
The traditional CPU-based workflow adopts 2BWT [6], msort [2], and SOAP-
snp [10]. We use 2BWT rather than other alignment software as it outperforms
other tools in our evaluation. Additionally, all CPU-based implementations are
single-threaded.

Data Sets. We use a data set for human chromosome 1 (Ch. 1), which is
provided by our collaborator, BGI-Shenzhen. This data set contains 15 million
short reads in total, and each is 100 bp long. The file of short reads is around
3.3 GB. The number of alignments for this data set is 38,584,511. Without
compression, the alignment result file is around 9.4 GB. The reference contains
around 247 million base pairs. The final SNP detection result file is around 800
MB.

4.2 Performance Impact of Integration Techniques

We first study the performance impact of three integration techniques. For each
group of experiments, we compare the implementation without a specific tech-
nique with the optimized implementation. Note that, in each group, only the
investigated technique will be removed and other optimizations are still em-
ployed. Overall, for performance comparison, we divide our system into two
components: sequence alignment, and SNP detection. Note that, for our sys-
tem, the alignment component performs alignment, global matrix computation,
partitioning, and compression, and the SNP detection component contains the
likelihood calculation step of the SNP detection (as shown in Figure 4).

Range Partitioning. If we do not use partitioning, the system works as follows:
we first perform alignment and store all alignments on disk; then we perform

136 M. Lu et al.

(a) The overall time. (b) Time of components.

Fig. 7. Performance comparison between using partitioning and using sorting

the external sorting; finally the SNP detection is used based on the sorted align-
ments stored on disk. Note that, if we use sorting, the compression becomes
inapplicable, as the sorting tool can only be used to sort the file stored in spe-
cific formats. Figure 7(a) shows that with partitioning, the system is around 2X
faster than that using the sorting. Figure 7(b) compares the elapsed time of three
components when the system adopts the partitioning and sorting. As the data
compression cannot be used when sorting is adopted, the sizes of the alignment
output and SNP input both become larger, which slows down the performance
of both components.

Data Compression for Alignment Results. Without the compression, the
alignment result that is stored on disk as intermediate data will be larger. Figure
8(a) compares the overall elapsed time of the system with and without the data
compression techniques for alignment results. The figure shows that with the
compression, the overall performance is improved by around 20%. Figure 8(b)
shows that, due to the reduced size of the alignment result file, the alignment
and SNP detection components are around 22% and 13% faster than their coun-
terparts without the compression, respectively. Figure 8(c) shows that the size
of the compressed alignment result is only around 23.4% of that without the
compression.

Move of Matrix Computation. Recall that, compared with the original work-
flow, our system eliminates a data scan on the alignment result when detecting

(a) The overall time. (b) Time of components. (c) Alignment size.

Fig. 8. Performance comparison between with and without alignment result compres-
sion

GPU-Accelerated Genome Resequencing Analysis 137

Table 2. End-to-end performance (seconds) comparison. OLD-CPU and OLD-GPU
indicate the traditional workflow using the CPU- and GPU-based software, respectively.

Alignment Sort SNP detection Overall

OLD-CPU 1562 550 22321 24433

OLD-GPU 330 550 453 1333

Our system 278 – 290 568

SNPs due to the change of matrix computation. Figure 9(a) shows the overall
elapsed time of the system with and without the move of the global matrix com-
putation. With this technique, the overall performance is improved by around
18%. This improvement is from the elimination of additional disk I/O on the
alignment result when detecting SNPs. Figure 9(b) further shows that, as the
global matrix is calculated in the alignment component in our system, this com-
ponent is slightly slowed down. However, the overall elapsed time is reduced due
to the significant performance improvement from the SNP detection component.

In summary, the range partitioning is the most significant optimization, which
can eliminate the expensive external sorting. With the range partitioning, the
system is around 2X faster than that without the optimization. The data com-
pression technique and move of matrix computation can further improve the
performance by around 20% and 18%, respectively.

4.3 End-to-End Performance Comparison

We show the end-to-end performance comparison in Table 2. Note that, in our
system, the partitioning, compression, and matrix computation are all included
in the alignment component. This table shows that, the traditional workflow with
the GPU acceleration for individual components outperforms its CPU counter-
part by around 18 times. Furthermore, with the integration techniques, our sys-
tem further improves the performance by around 2.3 times. This improvement
is from all three components. First, for the alignment, the compression reduces
the alignment size to save the I/O time. Second, the original expensive sorting is

(a) The overall time. (b) Time of components.

Fig. 9. Performance comparison between the systems with the move of global matrix
computation (new-matrix) and the original global matrix computation (old-matrix)

138 M. Lu et al.

(a) Memory consumption. (b) Elapsed time.

Fig. 10. The memory consumption and elapsed time with the buffer size in the range
partitioning varied

eliminated in our system. Third, for the SNP detection, one data scan on align-
ment results is also eliminated in our system. Compared with the traditional
CPU-based workflow (without the tight integration techniques), our system is
around 43X faster.

Finally, we investigate the performance and memory consumption impact with
the partitioning buffer size varied. The windows sizes of alignment and SNP de-
tection are set according to the performance of alignment and SNP detection
components. We only show the main memory consumption as the buffer size
does not affect the GPU processing. Figure 10(a) shows that the memory con-
sumption slightly increases when the buffer becomes larger for the alignment.
This is because another data structure (a suffix array) dominates the overall
memory usage for the alignment, which consumes around 12 GB. For the SNP
detection, a larger partitioning buffer results in a smaller block ID list, which
is insignificant in the overall memory consumption. Figure 10(b) shows that the
alignment can benefit from a larger buffer, since the disk I/O throughput is
higher when writing a larger data block. This parameter is less significant for
the performance of SNP detection.

5 Conclusion

We have developed a GPU-accelerated system with a tightly integrated work-
flow optimized for genome resequencing analysis: the sequence alignment is used
first for short reads, and then the SNPs are detected based on the alignment
result. To reduce the I/O overhead in the traditional workflow, we propose three
techniques for a tight integration of the alignment and SNP detection. We first
use range partitioning to avoid the external sorting for alignment results. We
also develop customized data compression techniques to further reduce the size
of the alignment result. Finally, we calculate the global matrix computation
when generating alignments, which is originally performed in the SNP detection
component. As a result, compared with the traditional GPU- and CPU-based
workflow consisting three separate software packages, our system can achieve a
speedup of around 2.3X and 43X, respectively.

GPU-Accelerated Genome Resequencing Analysis 139

Acknowledgment. This work was supported by grants 617509 from the Hong
Kong Research Grants Council and MRA11EG01 from Microsoft SQL Server
China R&D. We thank our collaborator BGI Shenzhen for providing us appli-
cation requirements and data sets.

References

1. Apache Hadoop, http://hadoop.apache.org/
2. Short Oligonucleotide Analysis Package, BGI-Shenzhen, China,

http://soap.genomics.org.cn

3. Gentleman, R., Carey, V., Bates, D., Bolstad, B., Dettling, M., Dudoit, S., Ellis,
B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus,
S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A., Sawitzki, G., Smith,
C., Smyth, G., Tierney, L., Yang, J., Zhang, J.: Bioconductor: open software de-
velopment for computational biology and bioinformatics. Genome Biology 5(10)
(2004)

4. Kim, S.Y., Lohmueller, K.E., Albrechtsen, A., Li, Y., Korneliussen, T., Tian, G.,
Grarup, N., Jiang, T., Andersen, G., Witte, D., Jorgensen, T., Hansen, T., Peder-
sen, O., Wang, J., Nielsen, R.: Estimation of allele frequency and association map-
ping using next-generation sequencing data. BMC Bioinformatics 12, 231 (2011)

5. Klus, P., Lam, S., Lyberg, D., Cheung, M.S., Pullan, G., McFarlane, I., Yeo, G.,
Lam, B.: BarraCUDA - a fast short read sequence aligner using graphics processing
units. BMC Research Notes 5(1) (2012)

6. Lam, T.W., Li, R., Tam, A., Wong, S., Wu, E., Yiu, S.M.: High throughput short
read alignment via bi-directional bwt. In: IEEE International Conference on Bioin-
formatics and Biomedicine, pp. 31–36 (2009)

7. Langmead, B., Hansen, K., Leek, J.: Cloud-scale RNA-sequencing differential ex-
pression analysis with myrna. Genome Biology 11(8) (2010)

8. Langmead, B., Schatz, M., Lin, J., Pop, M., Salzberg, S.: Searching for SNPs with
cloud computing. Genome Biology 10(11) (2009)

9. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.: Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biology 10(3)
(2009)

10. Li, R., Li, Y., Fang, X., Yang, H., Wang, J., Kristiansen, K., Wang, J.: SNP de-
tection for massively parallel whole-genome resequencing. Genome Research 19(6),
1124–1132 (2009)

11. Li, R., Yu, C., Li, Y., Lam, T.-W.W., Yiu, S.-M.M., Kristiansen, K., Wang, J.:
SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15),
1966–1967 (2009)

12. Li, Y., Terrell, A., Patel, J.: Wham: A high-throughput sequence alignment
method. In: Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data (2011)

13. Liu, C.-M., Lam, T.-W., Wong, T., Wu, E., Yiu, S.-M., Li, Z., Luo, R., Wang,
B., Yu, C., Chu, X., Zhao, K., Li, R.: SOAP3: GPU-based Compressed Indexing
and Ultra-fast Parallel Alignment of Short Reads. In: Third Workshop on Massive
Data Algorithmics (2011)

14. Lu, M., Zhao, J., Luo, Q., Wang, B., Fu, S., Lin, Z.: GSNP: A DNA Single-
Nucleotide Polymorphism Detection System with GPU Acceleration. In: Inter-
national Conference on Parallel Processing, ICPP (2011)

http://hadoop.apache.org/
http://soap.genomics.org.cn

140 M. Lu et al.

15. Poser, W.: GNU msort, http://billposer.org/Software/msort.html
16. Schatz, M.C.: CloudBurst: highly sensitive read mapping with MapReduce. Bioin-

formatics 25(11), 1363–1369 (2009)
17. Trapnell, C., Schatz, M.C.: Optimizing data intensive gpgpu computations for dna

sequence alignment. Parallel Computing 35, 429–440 (2009)
18. Vouzis, P.D., Sahinidis, N.V.: GPU-BLAST: using graphics processors to accelerate

protein sequence alignment. Bioinformatics 27(2), 182–188 (2011)
19. Wegrzyn, J.L., Lee, J.M., Liechty, J., Neale, D.B.: PineSAPsequence alignment and

SNP identification pipeline. Bioinformatics 25(19), 2609–2610 (2009)
20. Yi, X., Liang, Y., et al.: Sequencing of 50 Human Exomes Reveals Adaptation to

High Altitude. Science 329(5987), 75–78 (2010)

http://billposer.org/Software/msort.html

Discovering Representative Skyline Points

over Distributed Data

Akrivi Vlachou1,�, Christos Doulkeridis1,2,��, and Maria Halkidi2

1 Norwegian University of Science and Technology (NTNU), Norway
2 University of Piraeus, Greece

vlachou@idi.ntnu.no,{cdoulk,mhalk}@unipi.gr

Abstract. Skyline queries help users make intelligent decisions over
complex data. The main shortcoming of skyline queries is that the car-
dinality of the result set is not known a-priori. To overcome this limita-
tion, the representative skyline query has been proposed, which retrieves
a fixed set of k skyline points that best describe all skyline points. Even
though the representative skyline has been studied before in centralized
environments, this is the first paper that addresses efficient computa-
tion of the representative skyline in distributed systems. The distributed
nature of the environment makes the task of discovering truly repre-
sentative skyline points even more challenging. In this paper, we pro-
pose a novel framework for discovering the representative skyline over
distributed data sources. Our experimental study demonstrates the effi-
ciency and effectiveness of our framework.

1 Introduction

Skyline queries [1] constitute a powerful tool for multi-objective optimization,
especially in the case of multiple and conflicting criteria. An important short-
coming of skyline queries is that the size of the result set is not fixed, but largely
depends on various factors such as the data distribution or the dimensionality
of the data space. Thus, in contrast to other popular query types, such as top-k
queries [3,5] that return results of expected size, the cardinality of skyline set is
unrestricted and can sometimes be comparable to the size of the complete data
set. To alleviate this shortcoming, centralized approaches that select a restricted
set of representative skylines have been proposed [7,11].

As data management becomes inherently distributed due to massive content
generation at disparate locations, the importance of distributed query processing
is even more evident. Lately, this is also intensified by the advent of large-scale
distributed data centers and cloud computing infrastructures. In such setups,
servers store portions of the data set and the objective is to support efficient
and effective techniques for query processing and advanced data analysis.

In this paper, we address for the first time the problem of discovering a set of
k skyline representatives over distributed data, which is even more challenging

� A. Vlachou was partially supported by the Greek State Scholarship Foundation.
�� C. Doulkeridis was supported under the Marie-Curie IEF grant number 274063.

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 141–158, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

142 A. Vlachou, C. Doulkeridis, and M. Halkidi

than the centralized representative skyline query due to the lack of global knowl-
edge. As skyline points are equivalent by definition, any representative skyline
query uses an error metric that captures the loss in the expressiveness of the
skyline set due to the absence of the non-representative skyline points. Thus,
the representative skyline query defines an optimization problem that aims to
retrieve the k skyline points that minimize the error metric. Different error met-
rics have been proposed for representative skyline queries, such as dominance [7]
and distance-based [11] error metric. Assuming a generic distributed setup where
a set of N servers store portions of the entire data set autonomously, we intro-
duce a novel framework for distributed skyline representative algorithms which
supports any error metric and retrieves a representative skyline set of low rep-
resentation error by only considering a fraction of the distributed data.

More precisely, our framework encompasses a baseline approach as well as
two alternative efficient algorithms. The distributed skyline algorithm is used as
a baseline and incorporates representative skyline computation in a distributed
skyline query by transferring all local skyline points to the coordinating server.
In case of error metrics that are not influenced by dominated points, such as [11],
the distributed skyline algorithm returns exactly the same representative points
as if the query was executed on all data by a centralized algorithm. Furthermore,
we prove that any algorithm that transfers fewer local data than the distributed
skyline query may report non-skyline points as representative skyline points, if
only a single communication phase is employed.

Motivated by this observation, we propose the distributed skyline represen-
tative algorithm that relies on two communication phases in order to reduce
the transferred data. In the first phase, each individual server discovers its k
local representative skyline points. The local representatives are transmitted to
the coordinating server, which extracts an initial set of k global skyline rep-
resentatives. At the second communication phase, the currently defined global
representatives are forwarded back to servers, to be tested for dominance by
other local skyline points. The identified set of dominating points is then sent
to the coordinating server, which then re-applies the representative skyline al-
gorithm to extract the final set of k representative skyline points. Finally, we
introduce the distributed error-based representative algorithm that processes the
query in the same spirit as the distributed skyline representative algorithm, but
also exploits the information about the value of error metric at local level to
reduce further the induced error of the representative skyline set.

2 Related Work

Restricting the skyline cardinality is motivated by the fact that the skyline cardi-
nality increases with the data set dimensionality. To deal with this dimensionality
curse, one possibility is to restrict the cardinality of the result set, by choosing
k skyline points out of the entire set. Towards this goal, the authors in [2] pro-
pose the k-dominant skyline query. The authors relax the idea of dominance
to k-dominance, in order to increase the probability of one point dominating

Discovering Representative Skyline Points over Distributed Data 143

another point, thereby restricting the skyline cardinality. Skyline ordering [8] is
an approach that produces arbitrary size constrained skyline sets by employing
skyline-based partitioning on the data set.

Selecting representative skyline points in centralized domains has recently at-
tracted significant attention for retrieving exactly k points from the skyline set.
In [7], the authors study the problem of selecting k skyline points, so that the
number of points dominated by at least one of these k skyline points is maxi-
mized. In [11], an approach is presented for retrieving k representative skyline
points, which are defined as the set of k points that minimize the maximum
distance between a non-representative skyline point and its nearest representa-
tive. In [10], representative skylines are studied under the assumption that user
preferences are expressed as thresholds. The thresholds indicate the worst value
on each attribute that is acceptable from each user. The proposed approach
relies on the probability distribution of the user’s thresholds. Preference-based
representative skyline queries are out of the scope of this paper.

This is the first paper that studies representative skyline queries in distributed
systems. However, several approaches have been proposed for efficient skyline
processing in distributed environments; a detailed survey of distributed sky-
line processing can be found in [6]. For example, subspace skyline computation
over peer-to-peer network has been studied in [12,13]. Cui et al. [4] proposed
the PaDSkyline algorithm for skyline query processing in a generic distributed
environment. In [14], a feedback-based distributed skyline (FDS) algorithm is
proposed, which aims to minimize the bandwidth consumption. However, the
aforementioned papers focus on the efficient computation of the skyline query,
not the representative skyline query.

3 Preliminaries and Problem Statement

Preliminaries. In our system model, a set of N servers Si participate in the
distributed skyline computation, while a coordinator server SC is responsible for
communication with the servers in order to produce the desired representative
skyline set. Data is distributed in the sense of horizontal partitioning, thus each
server Si stores locally a set of points Pi. The entire data set P is the union of
all sets of points Pi stored locally at any server Si (P =

⋃
Pi, Pi

⋂
Pj = ∅). A

representative skyline query is initiated by the coordinator. In the following, we
provide the necessary definitions and preliminaries.

Given a data set P on a data space defined by a set of d dimensions
{d1, . . . , dd}, a point p ∈ P is represented as p={p[1], . . . , p[d]} where p[i] is the
value on dimension di. Without loss of generality, we assume that ∀di : p[i] ≥ 0,
and that smaller values are preferable.

Definition 1. (Skyline set) A point p ∈ P dominates another point q ∈ P ,
denoted as p ≺ q, if (1) on every dimension di, p[i] ≤ q[i]; and (2) on at least
one dimension dj, p[j] < q[j]. The skyline S(P) is a set of points that are not
dominated by any other point in P .

144 A. Vlachou, C. Doulkeridis, and M. Halkidi

Consider the example in Fig. 1, where each point represents a hotel and the
y-dimension represents the price of a room, while the x-dimension captures the
distance of the hotel to the beach. A hotel dominates another hotel because it
is cheaper and closer to the beach. Thus, the skyline points (a, i, m and k) are
the best possible trade-offs between price and distance from the beach.

Problem Statement. Unfortunately, as the dimensionality of the data set
grows, the skyline operator loses its discriminating power and returns a large
fraction of the data. The huge size of the result set hinders decision-making and
motivates the ranking of skyline points. Therefore, users prefer to retrieve k rep-
resentative points instead of the whole skyline set. The representative skyline
points are chosen to best describe the tradeoffs among different dimensions of-
fered by the full skyline. As skyline points are equivalent by definition, an error
metric is defined to capture the representativeness of a set of k skyline points.

Definition 2. (Representative skyline set) Given an integer k, the representa-
tive skyline of a data set P is a set K of k skyline points of S(P) that minimizes
the error metric Er(K).

As we will elaborate in the following, different definitions of the error metric for
the representative skyline have been proposed: dominance-based error metric [7]
and distance-based error metric [11]. Both error metrics are supported by our
distributed framework. Definition 2 leads to the following problem statement of
this paper.

Definition 3. (Distributed representative skyline set) Given a distributed data
set P =

⋃
Pi, compute its representative skyline set K of size k.

Dominance-based representative skyline. In [7], the representative skyline
set is defined based on the dominated points. More precisely, the authors quantify
the concept of representativeness by the total number of (distinct) data points
dominated by one of the k representative skyline points. In other words, the k
most representative skyline points are the ones that minimize the number of the
data points that are not dominated by any representative point. Thus, the error
metric is defined as:

Er(K) = {|{p}| : p ∈ P, p /∈ K, � ∃p′ ∈ K : p′ ≺ p}
.
For example, Fig. 2(a) depicts a data set P of hotels, along with its skyline

points S(P). This data set contains 6 skyline points depicted with circles on
a line. In addition, the representative skyline points that are derived from the
dominance-based algorithm for k=3 are depicted with squares.

The problem is shown to be NP-hard when the dimensionality is 3 or more
and it can be approximately solved by a polynomial time greedy algorithm.
The proposed greedy algorithm starts by computing the skyline set and the
representative error of each skyline point, i.e., the number of data points that are
dominated by each skyline point. The algorithm picks as the first representative
skyline point the skyline point that has the highest number of dominated points.
After removing the data points that are dominated by the first representative

Discovering Representative Skyline Points over Distributed Data 145

a c

1

1

2 3 4 5 6 7 8 9 10

2
3
4
5
6
7
8
9

10 b

i

m k

h

g

d

e

f

n
l

distance

price

Fig. 1. Skyline example

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

pr
ic

e

distance

(a) Dominance-based.

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

pr
ic

e

distance

(b) Distance-based.

Fig. 2. Example of representative skyline

skyline point, the representative error of each skyline point is re-computed and
again the skyline point with the maximum value is picked. This is repeated
until k skyline points are selected. To overcome the high memory requirements
of the greedy algorithm, a probabilistic counting technique can be applied for
estimating the number of distinctly dominated data points. This leads to an
index-based randomized algorithm for finding the representative skyline points.

Distance-based Representative Skyline. The error metric Er(K) for the
distance-based representative skyline [11] is defined as:

Er(K) = max∀p∈S(P)−K(min∀p′∈K d(p, p′)),

where d(p, p′) is the Euclidean distance between points p and p′. Intuitively, a
distance-based representative skyline set is good, if for every non-representative
skyline point, there exists a representative skyline point nearby.

Fig. 2(b) depicts an example of the distance-based representative points K for
illustrative purposes. The k=3 representative points are depicted with squares,
while the skyline points depicted with circles on a line.

For dimensionality at least 3 the problem is NP-hard, thus the authors propose
a greedy algorithm [11], namely I-greedy, to compute the distance-based repre-
sentative. I-greedy assumes a multidimensional index on the data set and uses the
concept of max-rep-dist for computing the representatives. Given a subtree in the
R-tree, its max-rep-dist is a value that upper-bounds the representative distance
of any potential skyline point p in this subtree. Initially, it takes as input an initial
setK containing an arbitrary skyline point, which is used as a representative point.
For example, this point can be the point with the smallest x-coordinate. I-greedy
maintains the entries of the R-tree in a sorted list. In each iteration, I-greedy pro-
cesses the entry E with the largest max-rep-dist. If the next entry is dominated
by at least one point retrieved so far, the entry is discarded. Otherwise, I-greedy
searches for the entry with the smallest L1 distance to the origin among all entries
in the sorted list whose min-corners dominate E. If such an entry exists, it must
be an intermediate entry, so the entries of its child node are inserted, if they are
not dominated by any point retrieved so far. If such an entry does not exist, then
E is processed. If E is a point, it is inserted to K as the next representative skyline
point. Otherwise, the entries of its child node are inserted in the list, if they are
not dominated by any point retrieved so far.

146 A. Vlachou, C. Doulkeridis, and M. Halkidi

Algorithm 1. Distributed skyline algorithm DSA

1: INPUT: k, Coordinator SC , Servers Si

2: OUTPUT: Representative skyline K
3: for (∀Si : i ∈ [1, N]) do
4: S(Pi)← Si.skyline()
5: end for
6: K ← SC .representative(

⋃
S(Pi))

7: return K

4 Distributed Representative Skyline Algorithms

In this section, we present our framework that encompasses two algorithms for
discovering the representative skyline points over distributed data. Our generic
framework is parameterized by a centralized skyline representative algorithm
that is executed locally at the participating servers. Any such algorithm for
local skyline representative computation can be plugged in our framework. Cur-
rently, we have incorporated in our framework the error metrics of two existing
skyline representative algorithms studied in the related work: distance-based
representative [11] and dominance-based representative [7].

4.1 Distributed Skyline Algorithm (DSA)

In a generic distributed system, processing the representative skyline query can
be performed by integrating the representative skyline computation in a dis-
tributed skyline algorithm. Algorithm 1, termed DSA, serves as a baseline and
adheres to this strategy to produce a representative skyline set.

DSA is processed at SC by first sending a skyline query to all servers Si, which
in turn process the query locally over their data Pi (line 4). Then, each server
Si reports its local skyline set S(Pi) to SC . Similar to the case of distributed
skyline query processing, a centralized algorithm for finding the representative
skyline set, such as [7,11], is processed at the coordinator server SC , in order to
obtain the representative skyline set K (line 6).

An important property of the skyline operator is that the skyline set of a
distributed data set P is a subset of the union of the local skyline sets of all
partitions S(P) ⊆

⋃
S(Pi). This property of the skyline set leads to an inter-

esting observation about the DSA algorithm. As long as the error metric used
for defining the representative skyline is not influenced by non-skyline points
of the data set, the retrieved representative skyline set of DSA is equivalent to
the representative skyline set of the entire data set P =

⋃
Pi. Moreover, this

is accomplished without requiring the transfer of all local data points Pi, but
only the local skyline points S(Pi). Notice that the distance-based error metric
satisfies the afore-described observation, therefore DSA produces the identical
result of the centralized distance-based representative algorithm.

However, DSA has an important drawback; it needs to transfer the complete
local skyline sets to the coordinator. Under certain circumstances, depending on

Discovering Representative Skyline Points over Distributed Data 147

1

1

2 3 4 5 6 7 8 9 10

2
3
4
5
6
7
8
9
10

p1
p2

p4
p3

p5

Y
id X Y
p1 9.0 1.5
p2 4.0 2.5
p3 3.0 3.5
p4 1.5 4.0
p5 0.5 9.0

X

q1
q2

q3
q4

q5
id X Y
q1 6.0 1.0
q2 2.5 2.5
q3 2.0 4.5
q4 1.5 5.5
q5 1.0 9.5

Skyline set of server S1 Skyline set of server S2

Fig. 3. Example of Lemma 1

the dimensionality or data distribution, the local skyline sets S(Pi) are compa-
rable in size to the local data sets Pi. Obviously, this leads to increased network
traffic, which is undesirable especially in the case of bandwidth-constrained net-
works. Motivated by this shortcoming, we introduce an algorithm that produces
the representative skyline set K by transferring only a limited number of points,
which is independent of the actual cardinality of local skyline sets.

4.2 Distributed Skyline Representative Algorithm (DSR)

In the following, we first show that any distributed approach that transfers fewer
data points than the local skyline points requires two communication phases, in
order to ensure that the representative skyline set is valid, i.e., all representative
skyline points belong to the global skyline set. Then, we describe in detail the
proposed algorithm, termed DSR.

Two Communication Phases. The design of the DSR algorithm is guided
by the observation that we do not wish to transfer local skyline sets to the
coordinator, as this would result in unrestricted size of transferred points. Con-
sequently, our premise is to transfer to the coordinator only a fraction of the
local skyline points S(Pi), namely only the local representative skyline points
Ki. However, the following lemma shows that this method does not guarantee
that the produced representative points K are actually global skyline points S.

Lemma 1. A distributed skyline representative algorithm that produces a rep-
resentative skyline set K over the union of local representative skyline sets

⋃
Ki

may result in non-skyline points p, i.e., p ∈ K
∧

p /∈ S.

Proof. It suffices to construct an example where the algorithm will falsely report
a dominated point as representative skyline point. We use the distance-based
error metric, but a similar example can be constructed for the dominance error
metric. Consider the example of Fig. 3, where the skyline sets of two servers S1

and S2 are depicted. Assume that the representative skyline set is requested for
k=3. Applying the distance-based representative algorithm on S(P1) and S(P2)
produces the sets K1={p1, p3, p5} and K2={q1, q3, q5} respectively. It is easy to

148 A. Vlachou, C. Doulkeridis, and M. Halkidi

Algorithm 2. Distributed Skyline Representative DSR

1: INPUT: k, Coordinator SC , Servers Si

2: OUTPUT: Representative skyline K
3: for (∀Si : i ∈ [1, N]) do
4: Ki ← Si.representative(Pi)
5: end for
6: K′ ← SC .representative(

⋃
Ki)

7: for (∀Si : i ∈ [1, N]) do
8: Di ← Si.dominate(K′)
9: end for
10: K ← SC .representative((

⋃
Di)

⋃
K′)

11: return K

see that q1 dominates p1, and p5 dominates q5, thus SC will take as input the set
{p3, p5, q1, q3} to produce K. Obviously, since k=3 at least one of p3, q3 belongs
to K. However, q2 dominates p3 and p4 dominates q3, therefore the algorithm
falsely reports a dominated point as representative skyline point.

Lemma 1 practically means that no algorithm that is based solely on transfer of
local representative skyline points to the coordinator can guarantee that the rep-
resentative points K belong to the global skyline set S, i.e., K ⊂ S. Consequently,
we propose the DSR algorithm that employs two communication phases in or-
der to guarantee that the representative skyline set consists of skyline points.
In the first phase, the coordinator requests from each server the representative
skyline set based on the locally stored data. Then, a centralized algorithm for
representative skyline computation is applied on the union of local representa-
tive skyline sets to produce a set of representative skyline points. In the second
phase, the produced representative skyline points are sent to all servers, and
each server sends back a set of points Di that consists of the local skyline points
that dominate at least one representative skyline point. Finally, the coordinator
applies again the skyline representative algorithm to produce the final set of
representative skyline points K. DSR improves the efficiency of DSA in terms of
communication by requesting only the local representative skyline points.

Algorithmic Description and Correctness.DSR is described in Algorithm 2.
First, each server Si (i ∈ [1, N]) executes a skyline representative query1 on the
locally stored data (Pi) to produce a set Ki of k local representative skyline
points (line 4). The coordinator assembles the sets Ki (i ∈ [1, N]) and produces
a new set of k representative skyline points (line 6), denoted as K′, by applying
the centralized skyline representative algorithm. Then, the coordinator sends the
set K′ to all servers Si. Each server Si computes all local skyline points Di that
dominate at least one of the points in K′ (line 8). The coordinator merges its
set K′ together with the union of sets of local points Di that dominate points
of K′, and applies the representative skyline algorithm (line 10) to produce the
final set K, which is reported to the user (line 11).

1 This query is performed by using any of the algorithms proposed in [7,11].

Discovering Representative Skyline Points over Distributed Data 149

One issue that needs further elaboration is the computation of the set Di at a
server Si (line 8 of DSR algorithm). To support efficient processing, the data set
Pi is indexed by a multidimensional index structure, such as an R-tree. Then, the
sets Di can be computed efficiently by applying a branch-and-bound algorithm
on the R-tree similar to a constrained skyline query [9]. For each intermediate
representative point pi ∈ K′, the constraint is defined by point pi and the origin
of the data space and entries of the R-tree that do not overlap with the constraint
are discarded. The set Di contains the union of the results for all intermediate
representative points pi ∈ K′. We emphasize that the use of the R-tree is simply
to increase the efficiency, and it is by no means a strict prerequisite of DSR.
Other non-indexed techniques for computing the sets Di can be used instead.

Finally, Lemma 2 ensures the correctness of DSR by providing guarantees
that Algorithm 2 always returns representative skyline points that belong to the
skyline set, i.e., the set of representative skyline points is valid.

Lemma 2. (Correctness) Any point p of the representative skyline set K pro-
duced by DSR belongs to the skyline set, i.e., if p ∈ K then p ∈ S.

Proof. Let us assume that p ∈ K and p /∈ S. Then, there exists a point p′ ∈ S
such that p′ dominates p. We also conclude that p′ /∈

⋃
(Ki

⋃
Di) because other-

wise p /∈ K. Let us denote as Sj the server that stores p′ locally. We distinguish
two cases: (a) p ∈

⋃
Ki, then p′ ∈ Dj which leads to a contradiction, or (b)

p /∈
⋃

Ki, then p ∈
⋃

Di, which means that there exists a point q ∈
⋃
Ki such

that p dominates q. Due to the properties of dominations we conclude that p′

dominates q, which in turn leads to p′ ∈ Dj which is a contradiction.

4.3 Distributed Error-Based Representative Algorithm (DER)

As DSA and DSR transfer only a fraction of data points to the coordinator, the
representation error of the produced skyline representative points may be higher
than in the case of the centralized skyline representative algorithm applied on
the union of the local data points (P =

⋃
Pi). Even though DSA manages to

return the same representative skyline set as the centralized algorithm on P ,
when the error metric does not depend on dominated data points, this does not
hold for all error metrics such as for example the dominance error metric. The
main reason of the higher representation error is that DSA and DSR use only
restricted knowledge about the underlying data due to its distribution. Thus,
our premise is to additionally use the information about the error metric at each
server locally (resulting from the local representative skyline query) in order to
improve the representation quality of the skyline representative set K.

In the following, we describe a generic algorithm that produces representative
skyline points for any error metric by taking into account scores of the candi-
date representative points derived from the local query processing. Then, we
demonstrate the applicability of our algorithm for both the dominance and the
distance-based error metric.

150 A. Vlachou, C. Doulkeridis, and M. Halkidi

Algorithm 3. Error-based Representative Selection

1: INPUT: k, Local representative skyline
⋃
Ki

2: OUTPUT: Representative skyline K
3: p← argmax∀p∈(

⋃
(Ki))(score(p))

4: K = {p}
5: while (|K| < k) do
6: p← argmax∀p∈(

⋃
(Ki)−K)(score(p,K))

7: K = K
⋃
{p}

8: end while
9: return K

Algorithmic Description. The distributed error-based skyline representative
algorithm (DER) processes the representative skyline query similarly to DSR. It
consists of two phases that guarantee that the resulting set is valid. Moreover,
DER produces candidate representative points by applying a skyline represen-
tative algorithm at local servers. The main difference to the previous algorithms
is that each local representative skyline point p ∈ Ki is associated with a score
of representativeness sp. Then, the coordinator does not process a plain rep-
resentative skyline query on

⋃
Ki, but instead takes into account the score of

representativeness of each point in order to minimize the error metric. In this
way, an optimization problem is defined that aims to identify the k represen-
tative skyline points that minimize the error metric, given a set of candidate
representative points

⋃
Ki each of them annotated by a score. As the represen-

tative skyline query has been shown to be NP-hard [7,11], we propose a greedy
algorithm to solve our optimization problem.

The DER algorithm assumes that each local representative point p ∈ Ki is
augmented with a numeric value (score of representativeness) that indicates its
goodness. Clearly, the definition of the score depends on the selection of the rep-
resentative skyline algorithm, which is applied at the local servers. After the repre-
sentative points Ki are collected at the coordinator, Algorithm 3 is assigned with
the task of selecting k representative points, i.e., by solving the optimization prob-
lem. For this purpose, the algorithm uses the score() function that estimates the
goodness of each candidate representative point. After selecting the first represen-
tative point (line 3), in each iteration the algorithm picks as a next representative
point the one that maximizes the estimated score (line 6). After the selection of
k representative points K′, the points are sent to all servers for the verification
step. Local skyline points Di that dominate a point in K′ are sent to the coordi-
nator. Finally, the coordinator produces the final k representative skyline points,
by solving again the same optimization problem over the union of points in sets
K′ and Di. Thus, Algorithm 3 is invoked taking as input (

⋃
Di)
⋃
K′.

The DER algorithm is generic and allows any error metric, i.e., any central-
ized representative skyline algorithm, to be plugged in our framework. DER is
parameterized by a function score() that computes the error metric. For any er-
ror metric that is plugged in (or equivalently for any centralized representative
skyline algorithm that should be supported), we need to define an appropriate

Discovering Representative Skyline Points over Distributed Data 151

p

p'

sp=5

sp'=3

q sq=4

(a) Dominance.

p'

p

rp'

rp

d(p,p')+rp

(b) Distance-based.

Fig. 4. Example of score() function

score of each representative skyline point and the implementation of the ab-
stract function score(). In the sequel, we demonstrate how the dominance and
the distance-based error metric are easily integrated and supported by DER.

Dominance Error Metric. At a local level, the score sp of a local representa-
tive skyline point p ∈ Pi is defined as the number of points q that it dominates
from the local data set Pi:

sp = |{q ∈ Pi : p ≺ q}|
Notice that this definition makes the score of a representative skyline point
dependent on the data points. Furthermore, we can accurately compute the
aggregated score of a set of representative skyline points when all belong to
different servers, as they dominate different data points.

As already mentioned, a set of representative skyline points
⋃
Ki is collected

at the coordinator, each accompanied by its score. To use the DER algorithm
to solve the optimization problem, we need to define the function score(). We
use two versions of this function. The first, score(p), computes the goodness for
a representative skyline point p individually. This is useful in order to select the
first representative skyline point. For this purpose, the most promising point is
selected, therefore the function is defined as:

score(p) = sp +
∑

∀q∈
⋃

Ki:p≺q sq

Intuitively, we select the point p that dominates points in Ki with maximum
number of dominated points in total.

The second, score(p,K), computes the error when p is selected for inclusion
in the set K. As in each step we wish to add the next most promising point to
the result set, we pick the point that maximizes the following function:

score(p,K) = sp +
∑

∀q∈
⋃

Ki:p≺q∧�∃p′∈K:p′≺q sq

Intuitively, we compute as score an upper bound of the gain in the attained rep-
resentation quality, when p is added to K. This value is an upper bound because
data points dominated by two representative skyline points are double-counted,
since computing the distinctly dominated points is not feasible in practice. In
the example of Fig. 4(a), only the scores sp and sp′ are known and not the exact
values of the dominated points, thus the exact number of local data points dom-
inated by q is not known. The score(q) is estimated as sq+s′p+sp=12, which is
an upper bound of the actual number of dominated points by q.

152 A. Vlachou, C. Doulkeridis, and M. Halkidi

Distance-based error metric The score of a local representative skyline point
p ∈ Ki is defined as the maximum distance of p to any non-representative skyline
point q for which there is no other representative p′ closer to q than p. Formally,
the score is defined as:

sp = max∀q∈S(Pi){d(p, q) :� ∃p′ ∈ Ki, d(q, p
′) < d(q, p)}

To select the first representative skyline point, we follow the same strategy
as iGreedy [11], and define the value of the first coordinate: score(p) = −p[1].
Finally, the score is defined as:

score(p,K) =
{

0, if ∃p′ ∈ K : d(p, p′) + sp < sp′

min∀p′∈K{d(p, p′) + sp}, otherwise

}
The function score sp essentially defines a covering radius rp = sp for a hyper-

sphere centered at p, as depicted in Fig. 4(b). This hypersphere represents the
region of the space with the following property: any non-representative skyline
point in this region is closer to p than to any other representative skyline p′.
The score function calculates the new radius of a hypersphere centered at p that
covers all skyline points that are closer to p or p′ than all other representative
points. The estimation of the error is an upper bound of the actual error. In
worst case, the distance between a candidate point p and its closer representa-
tive point p′ is d(p, p′) + sp. If this is smaller than sp′ , then the representation
quality does not decrease by not selecting the candidate as representative, thus
the estimated error is set to zero.

The algorithm proceeds as above; it first picks one representative skyline point.
Then, in each iteration, the error is estimated that will be introduced if the
candidate representative skyline is not selected. The point with the highest error
is selected as the next representative skyline, because otherwise the error metric
will become equal to the highest error.

5 Experimental Evaluation

In this section, we provide an extensive study of our framework. We developed all
algorithms (the baseline DSA, as well as our two proposed algorithms DSR and
DER) in Java and simulated the distributed aspects of our framework. We im-
plemented the distance-based representative algorithm (I-greedy algorithm [11]),
as well as the greedy algorithm proposed in [7].

We employed synthetic data sets to examine different distributions, namely
uniform (UN), clustered (CL) and anti-correlated (AC). For the clustered data
set (CL), each server picks 10 cluster centroids randomly and the points follow
a Gaussian distribution on each axis with variance 0.05, and a mean equal to
the corresponding coordinate of the centroid. The anti-correlated (AC) data set
was generated as described in [1]. For our experiments on synthetic data, we
report the average results over 10 different instances of the data set. In addition,
we employ another synthetic data set, called Island (IS), which is 2-dimensional
and contains 63383 points. This data set is used in [11] to demonstrate the
effectiveness of distance-based representative. We also use a real data set (NBA),

Discovering Representative Skyline Points over Distributed Data 153

which consists of 17265 5-dimensional tuples representing a player’s performance
per year. Since our setup is distributed, we distribute IS and NBA to the N
servers by choosing a server per point uniformly at random. Again, we perform
this process 10 times and report average values.

To evaluate the performance of our framework, we vary N from 5 to 15, d
from 2 to 5, the cardinality n from 250K to 3M (which is evenly distributed to
the N servers in advance), k from 10 to 50, the network speed from 1KB/sec to
100KB/sec, and we test different data distributions (UN,AC,CL,IS,NBA). We
observed that the use of larger data sets increases the total time due to increased
processing time, while the networking time is not significantly affected, since the
number of transferred data remains relatively stable. Unless explicitly mentioned,
the default setup is N=10, d=3, |ni|=100K, k=10, network speed 50KB/sec,
and we employ the UN data set. We note that when k < S(Pi), then k is set
to S(Pi). The experimental evaluation focuses on two axes; the performance of
our approach and the achieved quality of results. Our main performance metrics
include: (i) the amount of transferred data and (ii) the total time, which is the
time until the final result is produced at SC (including network transfer time).

To evaluate the quality of our algorithms, we employ the normalized error
metric. In the case of distance-based representative, the normalized error met-
ric is Er(K)/MAX DIST, where MAX DIST represents the maximum distance
of the space. Assuming a d-dimensional set of points where the value of each
dimension belongs to [0, U], then MAX DIST=U

√
d. In the case of dominance

representative, the normalized error metric is Er(K)/n. In all cases the normal-
ized error takes values that belong to the range [0, 1].

5.1 Experiments with Distance-Based Representative

Evaluation for UN. In Fig. 5, we measure the amount of transferred data
for various setups. In Fig. 5(a), we study the effect of increasing the cardinality
of the data set from 50K to 200K points per server. DSA needs to transfer all
local skyline points, thus resulting in much more traffic than DSR or DER. In
Fig. 5(b), the number of transferred data points increases rapidly for DSA, due
to the increase of each server’s skyline cardinality as the dimensionality grows.
Instead, DSR and DER show a much more stable performance, demonstrating
the merits of the approaches that transfer only representative skyline points,
rather than local skyline sets. In Fig. 5(c), we gradually increase the number
of servers N in the system. The traffic induced by DSA (Fig. 5(c)) increases
linearly with the number of servers. In contrast, DSR and DER scale gracefully.

Then, Fig. 6 shows the normalized error metric for different setups. Recall that
in the case of distance-based representative, the error of DSA is equal to the error
of the centralized distance-based representative algorithm and is greater than 0,
unless all skyline points are reported as representative skyline points. Fig. 6(a)
shows that the savings in network communication (depicted in Fig. 5(a)) cause
DSR and DER to have higher error than DSA. It is also noteworthy that the
increased cardinality does not affect the performance of the algorithms signif-
icantly. The reason is that the important factor is the skyline cardinality and

154 A. Vlachou, C. Doulkeridis, and M. Halkidi

 0

 200

 400

 600

 800

 1000

 1200

 50000 100000 150000 200000

T
ra

ns
fe

rr
ed

 p
oi

nt
s

Cardinality

DSR
DSA
DER

(a) Cardinality ni.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 2 3 4 5

T
ra

ns
fe

rr
ed

 p
oi

nt
s

Dimensionality

DSR
DSA
DER

(b) Dimensionality d.

 0
 200
 400
 600
 800

 1000
 1200
 1400

 5 10 15

T
ra

ns
fe

rr
ed

 p
oi

nt
s

Number of servers

DSR
DSA
DER

(c) Number of servers N .

Fig. 5. Transferred data vs. cardinality, dimensionality and number of servers (UN)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 50000 100000 150000 200000

E
rr

or

Cardinality

DSR
DSA
DER

(a) Cardinality ni.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2 3 4 5

E
rr

or

Dimensionality

DSR
DSA
DER

(b) Dimensionality d.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 5 10 15

E
rr

or

Number of servers

DSR
DSA
DER

(c) Number of servers N .

Fig. 6. Error vs. cardinality, dimensionality and number of servers (UN)

not the data cardinality. In Fig. 6(b), the induced normalized error is reported
for all algorithms, which increases with dimensionality. Notice that the differ-
ence between the algorithms remains practically the same. In Fig. 6(c), the error
remains relatively stable for all algorithms regardless of N .

These experimental results indicate that DER does not improve the perfor-
mance of DSR. This behavior is expected because the induced error of the
distance-based representative skyline algorithm depends only on the skyline
points. Consequently, DSR achieves results of high quality even with limited
knowledge. Therefore, in the remaining experimental study of the distance-based
representative, we omit DER from the charts.

Evaluation for CL. In Fig. 7(a), the amount of transferred data is depicted
for our algorithms for CL data. We emphasize that each server picks cluster
centroids randomly, therefore different servers have different clusters of data.
Notice that DSR is practically unaffected by the increased dimensionality, thus
demonstrating its merits when the data set is clustered. In contrast, the traffic
induced by DSA increases with dimensionality. Then, in Fig. 7(b), we depict the
normalized error metric. As in the case of UN, DSR exhibits higher error values
than DSA, however here the difference is smaller than for UN. Also, the absolute
error values are smaller than in the case of UN.

In addition, we measure the total time in Fig.7(c), which increases with dimen-
sionality for both algorithms. This is expected, as the performance of any skyline
or representative skyline algorithm deteriorates with increased dimensionality.
Both algorithms have similar performance in terms of total time. In our ex-
periments, we noticed that the processing time dominates the total execution

Discovering Representative Skyline Points over Distributed Data 155

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 2 3 4

T
ra

ns
fe

rr
ed

 p
oi

nt
s

Dimensionality

DSR
DSA

(a) Transferred data (CL).

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4

E
rr

or

Dimensionality

DSR
DSA

(b) Error (CL).

 0

 10000

 20000

 30000

 40000

 50000

 60000

 2 3 4

T
ot

al
 ti

m
e

(m
se

c)

Dimensionality

DSR
DSA

(c) Total time (CL).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10 30 50

T
ra

ns
fe

rr
ed

 p
oi

nt
s

Number of representatives

DSR
DSA

(d) Transferred data (AC).

 0

 0.05

 0.1

 0.15

 0.2

 10 30 50

E
rr

or

Number of representatives

DSR
DSA

(e) Error (AC).

Fig. 7. Experimental results for CL and AC data sets

time. This happens because the time required for transferring data is quite low,
due to the assumed network speed of 50KB/sec. For more network-constrained
networks, the transfer time is significant and affects the total time.

Evaluation for AC. In Figs. 7(d) and 7(e), we evaluate both algorithms for the
2-dimensional anti-correlated data distribution. We note that this distribution
is the most challenging for skyline computation, since it results in high skyline
cardinality, even for small dimensionality values. The aim of this experiment is
to explore the behavior of our algorithms, when the local skyline sets at servers
Si are of high cardinality. First, in Fig. 7(d), DSA is unaffected by k, as it always
transfers all local skyline sets regardless of k. Obviously, DSR needs to transfer
more data as k increases. The important finding is that DSR requires to transfer
one order of magnitude fewer data, thus demonstrating its appropriateness when
the local skyline size is significant and network resources are limited. In Fig. 7(e),
the normalized error is depicted. Notice that DSR shows marginally equal error
with DSA, which is another strong argument in favor of DSR. Both algorithms
exhibit a decreasing tendency with increased values of k. This is expected be-
cause as more representative skyline points are reported, the representative set
describes more closely the real skyline set, thereby decreasing the error.

Evaluation for IS. For the IS data set, DSR is again much more communication-
efficient than DSA as shown in Fig. 8(a), especially when the requested value
k is small. Fig. 8(b) shows that the error is practically the same for both algo-
rithms and drops for increased values of k. In Fig. 8, we also depict the data
set and the representative skyline points discovered by the two algorithms. The
two plots share 8 common points out of the total 10. The error is identical for
both algorithms. When compared to the plot of Fig. 8(c), it is clear that both
algorithms produce representative points that capture the shape of the skyline.

156 A. Vlachou, C. Doulkeridis, and M. Halkidi

 0

 500

 1000

 1500

 2000

 2500

 10 30 50
T

ra
ns

fe
rr

ed
 p

oi
nt

s
Number of representatives

DSR
DSA

(a) Transferred data vs. k.

 0

 0.05

 0.1

 0.15

 0.2

 10 30 50

E
rr

or

Number of representatives

DSR
DSA

(b) Error vs. k.

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

(c) The Island data set.

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

(d) DSA representatives.

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

(e) DSR representatives.

Fig. 8. Experimental results for IS data set

 0

 500

 1000

 1500

 2000

 5 10 15

T
ra

ns
fe

rr
ed

 p
oi

nt
s

Number of servers

DSR
DSA

(a) Transferred data

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 5 10 15

E
rr

or

Number of servers

DSR
DSA

(b) Error vs. N .

Fig. 9. Experimental results for NBA data set

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

1 10 50 100

T
ot

al
 ti

m
e

(m
se

c)

Network speed (KB/sec)

d=2
d=3
d=4

Fig. 10. Varying network
speed

Evaluation for NBA. Then, in Fig. 9, we see that the conclusions drawn from
the synthetic data sets are validated also in the case of the real data set. DSR
always incurs significantly less network traffic (Fig. 9(a)), while the induced error
is practically the same for both algorithms (Fig. 9(b)).

Varying Network Speed. In Fig. 10, we vary the network speed for the DSR
algorithm. The total length of each bar corresponds to the total time, while
the colored part corresponds to processing time. Larger values of network speed
(≥50KB/sec) do not affect performance, because the total time is dominated by
the processing time, while the network transfer time is very small. In the case
of smaller values of bandwidth (1KB/sec), we see that network transfer time
increases and affects the total time.

5.2 Experiments with Dominance Representative

Evaluation for UN. Figs. 11(a) and 11(b) show the results of dominance rep-
resentative for varying dimensionality. Both DSR and DER transfer significantly
fewer data points, and the gain increases with d. An important finding is that
DER improves the performance of DSR in terms of the error metric (Fig. 11(b)).

Discovering Representative Skyline Points over Distributed Data 157

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 2 3 4 5
T

ra
ns

fe
rr

ed
 p

oi
nt

s
Dimensionality

DSR
DSA
DER

(a) Transferred data (UN).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 2 3 4 5

E
rr

or

Dimensionality

DSR
DSA
DER

(b) Error (UN).

 0
 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000

 2 3 4

T
ra

ns
fe

rr
ed

 p
oi

nt
s

Dimensionality

DSR
DSA
DER

(c) Transferred data vs. d.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4

E
rr

or
Dimensionality

DSR
DSA
DER

(d) Error vs. d.

Fig. 11. Experimental results for UN and AC data sets

 0

 500

 1000

 1500

 2000

 5 10 15

T
ra

ns
fe

rr
ed

 p
oi

nt
s

Number of servers

DSR
DSA
DER

(a) Transferred data.

 0

 0.05

 0.1

 0.15

 0.2

 5 10 15

E
rr

or

Number of servers

DSR
DSA
DER

(b) Error vs. N .

Fig. 12. Experimental results for NBA data set

 0.01

 0.1

 1

 10

 100

 2 5 10

T
ot

al
 ti

m
e

(s
ec

)

Number of servers

d=2
d=3
d=4

Fig. 13. Speed-up for
DSR algorithm

Evaluation for AC. In the next experiment, we test the performance of all
algorithms in a hard setup (AC data distribution). As expected, when the di-
mensionality increases, the size of the local skyline sets increases rapidly, and
DSA needs to transfer too many data points, thus becoming impractical. In con-
trast, both DSR and DER scale gracefully in terms of transferred data. When
the error is considered (Fig. 11(d)), all algorithms induce significant error val-
ues, but DER is better than DSR. DSA exhibits lower error values because it
transfers a significant part of the local data sets to the coordinator, thus easing
the task of selecting representative points.

Evaluation for NBA. Then, in Fig. 12, we test the performance of all algo-
rithms for the NBA data set. We vary the number of servers, in order to study
their behavior for increased network sizes. Fig. 12(a) shows that the increase
in the number transferred points as the number of servers grows is smaller for
DSR and DER than DSA. Fig. 12(b) depicts the induced error as N increases.
The error of all algorithms remains practically unaffected, which shows that our
framework is not significantly affected when more servers are employed.

158 A. Vlachou, C. Doulkeridis, and M. Halkidi

Speed-up. Finally, in Fig. 13, we perform an experiment using a data set of 1M
data points and distribute it to 2, 5, and 10 servers respectively. We test the DSR
algorithm for the dominance representative. Clearly, when a higher number of
servers is used, the data set is distributed to smaller fragments, thus each server
processes a smaller amount of data. In consequence, the processing cost of local
computation on each server is reduced. This demonstrates that in the case of
DSR runtime can be reduced by employing more servers.

6 Conclusions

In this paper, we addressed the challenging problem of discovering representative
skyline points over distributed data, which naturally arises in various application
domains, and it is mainly motivated by the unrestricted size of skyline cardi-
nality. To address the problem effectively, we introduce a novel framework for
processing the distributed skyline representative query. Our framework supports
all metrics proposed for representative skyline queries in centralized settings.

References

1. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. of ICDE
(2001)

2. Chan, C.Y., Jagadish, H.V., Tan, K.L., Tung, A.K.H., Zhang, Z.: Finding k-
dominant skylines in high dimensional space. In: Proc. of SIGMOD (2006)

3. Chaudhuri, S., Gravano, L.: Evaluating top-k selection queries. In: Proc. of VLDB
(1999)

4. Cui, B., Lu, H., Xu, Q., Chen, L., Dai, Y., Zhou, Y.: Parallel distributed processing
of constrained skyline queries by filtering. In: Proc. of ICDE (2008)

5. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
In: Proc. of PODS (2001)

6. Hose, K., Vlachou, A.: A survey of skyline processing in highly distributed envi-
ronments. VLDBJ (2011) (to appear)

7. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: the k most representative
skyline operator. In: Proc. of ICDE (2007)

8. Lu, H., Jensen, C.S., Zhang, Z.: Flexible and efficient resolution of skyline query
size constraints. IEEE TKDE 23(7), 991–1005 (2011)

9. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in
database systems. ACM TODS 30(1), 41–82 (2005)

10. Sarma, A.D., Lall, A., Nanongkai, D., Lipton, R.J., Xu, J.J.: Representative sky-
lines using threshold-based preference distributions. In: Proc. of ICDE (2011)

11. Tao, Y., Ding, L., Lin, X., Pei, J.: Distance-based representative skyline. In: Proc.
of ICDE (2009)

12. Vlachou, A., Doulkeridis, C., Kotidis, Y., Vazirgiannis, M.: SKYPEER: Efficient
subspace skyline computation over distributed data. In: Proc. of ICDE (2007)

13. Vlachou, A., Doulkeridis, C., Kotidis, Y., Vazirgiannis, M.: Efficient routing of
subspace skyline queries over highly distributed data. IEEE TKDE 22(12), 1694–
1708 (2010)

14. Zhu, L., Tao, Y., Zhou, S.: Distributed skyline retrieval with low bandwidth con-
sumption. IEEE TKDE 21(3), 384–400 (2009)

SkyQuery: An Implementation of a Parallel

Probabilistic Join Engine for Cross-Identification
of Multiple Astronomical Databases

László Dobos1,2, Tamás Budavári2, Nolan Li2,
Alexander S. Szalay2, and István Csabai1

1 Eötvös Loránd University, Department of Physics of Complex Systems,
H-1117 Budapest, Hungary
dobos@complex.elte.hu

2 The Johns Hopkins University, Department of Physics & Astronomy,
Baltimore, MD 21218, USA

budavari@jhu.edu

Abstract. Multi-wavelength astronomical studies require cross-identi-
fication of detections of the same celestial objects in multiple catalogs
based on spherical coordinates and other properties. Because of the large
data volumes and spherical geometry, the symmetric N-way association
of astronomical detections is a computationally intensive problem, even
when sophisticated indexing schemes are used to exclude obviously false
candidates. Legacy astronomical catalogs already contain detections of
more than a hundred million objects while ongoing and future surveys
will produce catalogs of billions of objects with multiple detections of
each at different times. One time, pair-wise cross-identification of these
large catalogs is not sufficient for many astronomical scenarios. Con-
sequently, a novel system is necessary that can cross-identify multiple
catalogs on-demand, efficiently and reliably. In this paper, we present
our solution based on a cluster of commodity servers and ordinary rela-
tional databases. The cross-identification problems are formulated in a
language based on SQL, but extended with special clauses. These special
queries are partitioned spatially by coordinate ranges and compiled into
a complex workflow of ordinary SQL queries. Workflows are then exe-
cuted in a parallel framework using a cluster of servers hosting identical
mirrors of the same data sets.

Keywords: probabilistic join, query optimization and languages, astro-
nomical catalogs, workflow, computational statistics.

1 Introduction

Increasingly large astronomical data warehouses are being built to support the
needs of scientific collaborations. The key point in the federation of astronomical
data sets is the cross-matching of detections belonging to the same physical
object. The detections are usually made by using different imaging filters or
entirely different instruments. Due to the exponential growth in the data volume,

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 159–167, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

160 L. Dobos et al.

cross-match solutions have to be scalable. Also, since the largest data sets will
be geographically distributed and data co-location might not be an option in the
future, any solution will have to be optimized for slow network.

In this paper, we present a scalable solution for on-demand cross-matching
of large catalogs hosted on a cluster of database servers. In Sec. 2, we explain
the most important properties of astronomy catalogs. The cross-identification
problem is introduced in Sec. 3. Sec. 4 describes our SQL extensions to explicitly
formulate the problem of coordinate based matching in a query. In Sec. 5 we
focus on the most important aspects of the implementation. Sec. 6 concludes
the paper, and outlines specific future work.

2 Astronomical Surveys

Today’s high-performance astronomical imaging instruments are mostly
operated in survey mode, i.e. significantly large regions of the sky are mapped
systematically. Every telescope is designed to work in a certain region of the
electromagnetic spectrum and has filter sets to further subdivide the wavelength
range. The goal of imaging sky surveys is to take snapshots of the sky in or-
der to identify all celestial objects1 in each imaging filter to a given faintness
limit. With the advance of detector technology and growth of the mirror sur-
face of telescopes, an exponentially growing area of the sky can be surveyed
in a given amount of time. This not only helps map a larger portion of the
Universe, but also to take measurements in the time domain. Multi-wavelength
astronomy combines information from different instruments to investigate the
physical properties and to constrain theoretical models of celestial objects. Both
time-domain astronomy and multi-wavelength astronomy require reliable and
fast algorithms to cross-match multiple detections of the same celestial objects.

2.1 Astronomical Catalogs

Images taken during astronomical surveys are reduced by the so called photo-
metric or imaging pipe-line software. During the reduction process, individual
objects are identified in the images and their readily measurable properties are
determined, such as their celestial coordinates, integrated brightness, brightness
profiles, morphological parameters etc. The number of measured properties is
typically in the hundreds.

The numbers of objects detected by the surveys are all on scales, currently
topping in the hundred million range. Ongoing and future surveys will provide
information about billions of objects, about a hundred detections of each at differ-
ent times. The typical data volume of current reduced catalogs tops in the 10 TB
range, quickly moving toward hundreds of terabytes, reaching the petabyte range
by the end of the decade. The amount of raw imaging data collected and processed
during the surveys can be about ten to a hundred times more.

1 Throughout the paper we will refer to discrete physical celestial objects emitting
light as objects or sources. Individual observations of objects (using different filter-
s/instruments or just different epochs) are called detections.

SkyQuery: A Parallel Probabilistic Join Engine 161

3 Coordinate-Based Cross-Identification

When we have multiple detections of the same celestial source, the measured
coordinates will slightly differ. In order to cross-match the detections of two
catalogs, we have to measure the distance between all detection pairs, and only
accept those pairs as matches that are closer than a given threshold. The ex-
act Bayesian probabilistic join framework is based on the statistical methods
published by [Bud3].

In practice, cross-matching is done by excluding obvious false matches first.
Different indexing schemes of the sphere have been invented to find matching
candidates efficiently [Fek,Gor]. In our implementation, we use the so called zone
algorithm, which is the fastest available algorithm for Microsoft SQL Server so
far [Gra].

There are three different ways a catalog can be cross-matched with other
catalogs. One can require that certain catalogs must contain good candidate
detections of an object in order to accept a match. Additionally, some other
catalogs may contain detections and should be taken into account, if possible.
These are typically catalogs with brighter detection limits. In the third case, one
requires that a catalog must not contain any candidate detections that would
match with detections of other catalogs. This third case is called drop-out de-
tection. The first case is similar to inner joins, the second case is to outer joins,
while drop-out detection is basically an anti semi join.

Drop-out detection is particularly important in multi-wavelength astronomy
because even if a certain object is not detected by an instrument due to its too high
detection limits, an upper limit to the brightness of the object can still be given
based on the known sensitivity of the instrument. To safely detect drop-outs, it is
fundamental to know whether an object is not in the catalog because its celestial
location was not observed by the survey at all, it was missed by the instrument
because it was too faint or it was intentionally masked out and excluded from the
catalog due to other reasons. To account for this problem, a precise description of
the observed areas, the so called footprints, and masks, is necessary.

3.1 Previous Work

The first automatic cross-identification on-line service was implemented by Bu-
davári et al. as a set of XML SOAP web services [Bud1]. As it was a prototype
built to demonstrate the then new web service technology, not much atten-
tion to the performance and scaling properties was paid. Based on the idea, an
open, SOAP-web-service-based standard, Open SkyQuery was developed by the
National Virtual Observatory to federate geographically distributed data sets
[Bud2]. Both of these versions used the SQL language with some custom func-
tions as the main programming interface. Because Open SkyQuery could not
benefit from co-located data sets, and due to performance issues, the system
was limited to process only 5000 matches in a run.

162 L. Dobos et al.

The Virtual Observatory Alliance standardized the Astronomical Data Query
Language (ADQL) intended to be used as the lingua franca of astronomical cat-
alogs [Or1]. Though the ADQL language defines many new, astronomy-induced
constructs compared to SQL, including spherical region expressions that can be
used to circumscribe cross-matching problems, ADQL was not designed with
query optimizability in mind.

The new CDS xMatch service implements a high performance cross-match en-
gine that partially uses database technology, and can perform two-way joins only
[BPD1]. The current version of the service features a form-based user interface
only and no scripting support.

4 SQL for Astronomical Data Mining

Since the spread of relational databases in astronomy, the SQL language has
become an every day tool of researchers. Although several of the typical data
filtering tasks could be done with web forms or other types of custom user
interfaces, SQL gives the ability to script the operations. This is absolutely
necessary for astronomers dealing with data processing issues, as astronomical
data usually have to be reprocessed many times during a research project. Also,
being able to solve all problems using SQL makes it possible to process data
without pulling it out from the database server.

To support analysis of astronomical data, extensive libraries of scientific func-
tions have been developed, which can be accessed directly from SQL via user-
defined functions. Functions include cosmological distance calculations [TP1] and
various spherical indexing schemes for fast coordinate and region-based searches
[Bud4].

4.1 SQL Language Extensions for SkyQuery

We decided to base our SkyQuery language on SQL and extend the language
to support easy expression of cross-identification problems and spatial filtering.
Building on the basis of SQL not only makes it easy to learn the extended syntax,
but also allows for backward compatibility with traditional SQL queries.

There are some ideas that are worth considering when creating extensions to
a declarative query language. First of all, we wanted to avoid any interference
with the existing behavior of SQL clauses. This is why we introduced the new
XMATCH clause (see Sec. 4.2) instead of incorporating its functionality into the
standard FROM clause and JOIN operators.

Our language extensions were designed such a way that all queries that can
be described using the language will be executable and can be optimized effi-
ciently. This is in strong contrast, for example, with the way most GIS systems
implement spatial constraints (complex boolean expression in the WHERE clause)
where efficient optimization is an issue; or in contrast with the rather flexible
ADQL language where even query executability is a problem. Also, simple im-
plementation is always a main objective, especially in case of scientific projects
with limited budgets.

SkyQuery: A Parallel Probabilistic Join Engine 163

4.2 Defining the N-way Probabilistic Join

To explain the behavior of the new clauses, we consider Query 1. The first half
of the query (above the customized XMATCH clause) is in traditional SQL. Data
sets listed in the FROM clause are called SDSS, TwoMASS and GALEX after
three frequently used astronomical catalogs. Table names are separated from
data set identifiers by colons. Each of the listed tables contains observations
of galaxies. Each table has an integer field ObjID which is the primary key.
Spherical coordinates are stored in the RA and Dec columns2. Corresponding
unit vector coordinates are named Cx, Cy and Cz. Columns denoted with mag x
are brightness measurements of the objects in different imaging filters.

SELECT x.RA , x.Dec ,

s.ObjID , s.RA, s.Dec , s.mag_g , s.mag_r , s.mag_i ,

g.ObjID , g.RA, g.Dec , g.mag_nuv , g.mag_fuv ,

t.ObjID , t.RA, t.Dec , t.mag_J , t.mag_H , t.mag_K

INTO MyDB:NewResults

FROM SDSS:PhotoObjAll AS s

CROSS JOIN GALEX:PhotoObjAll AS g

CROSS JOIN TwoMASS:PhotoXSC AS t

WHERE s.Galaxy = 1

XMATCH BAYESIAN AS x

MUST s ON POINT(s.Cx, s.Cy, s.Cz), 0.1

MUST g ON POINT(g.Ra, g.Dec), 0.2

MAY t ON POINT(t.Ra, t.Dec), 0.5

HAVING LIMIT 1e6

Query 1. A sample cross-match query demonstrating the extended SQL syntax

The FROM clause simply produces the Cartesian product of the three catalog
tables. In traditional SQL, one would write a WHERE clause which filters the
Cartesian product leaving only matching detections. Obviously, tables of high
cardinality cannot be matched that way. One solution would be to analyze the
WHERE clause describing the cross-match criteria and optimize query execution
accordingly. Such expression analysis and optimization algorithm is way too
complicated. Instead, we introduce the new XMATCH clause that eliminates the
need for complex expression analysis and simplifies optimization a lot.

In Query 1, the BAYESIAN keyword belongs to the XMATCH clause and de-
fines the statistical framework of cross-identification. Currently only Bayesian is
supported. The AS x alias is used to make the columns calculated by the cross-
matching algorithm being able to be referenced by the rest of the query. Note the
first line of Query 1 and the x.RA and x.Dec column references. These columns

2 RA stands for right ascension, this is the angle measured around the celestial equator;
the equivalent of φ in traditional spherical coordinates. Dec stands for declination,
the angle measured from the equator toward the poles; the equivalent of θ.

164 L. Dobos et al.

will contain the best coordinate estimates computed by the Bayesian algorithm.
The HAVING LIMIT clause is required and specifies the minimum value of the
Bayes factor for a positive match.

5 Implementation Details

5.1 Hardware and Software Setup

The system is installed on a set of five identical eight-core database servers
equipped with I/O systems able to provide a sustained sequential read speed
of about 1.2 GB/s. The servers are connected with 10 Gb/s ethernet and run
Microsoft SQL Server 2008 R2.

5.2 Database Setup

Database layouts are optimized for long table scans that happen when cross-
matching entire catalogs. File groups contain multiple files split across the RAID
volumes to benefit from the underlying hardware. Databases storing catalog
data are mirrored to every cluster node to allow for parallelization and load-
balancing. For every catalog, we create a so called mini version it to support
gathering query statistics on the fly. Mini databases are uniformly sampled from
the original databases at a 10−3 sampling rate. Sampling is done such a way
that foreign key references remain intact. SkyQuery uses staging databases to
store intermediate output produced by zone algorithm [Gra]. These databases
are heavily used for both reading and writing.

As users interact with the system via SQL, the most convenient way to store
query results is to allocate a moderately sized database for each user, and save
query results there [OM1]. Users can also upload their own data tables and store
them in their so called MyDB. The final result sets can be easily downloaded
as files. In the current configuration, MyDBs are distributed among the cluster
nodes; only one copy of a database per user. A future version will give the users
restricted access to big staging databases on the cluster nodes. This is important
in cases when the results of a computation require only limited storage but
internal steps might produce larger outputs.

5.3 Query Optimization and Partitioning

The zone algorithm cross-matches catalogs pairwise. Once two catalogs have
been cross-identified, the new best estimate coordinates are calculated and passed
on to the next iteration. From the perspective of optimization, starting with cat-
alogs of the least cardinality is almost always the best choice.

Since the extended SQL syntax supports filtering the data, and spatial con-
straints can also be applied to the queries, there is not much use to store static
cardinality information about the catalogs. Instead, our system is designed to
gather statistics about each query prior to optimization. In Sec. 5.2, we men-
tioned that random subsets of the source catalogs, the so called mini databases

SkyQuery: A Parallel Probabilistic Join Engine 165

are created. We use these mini catalogs to get quick statistics about the source
tables referenced by the queries. Once the referenced tables are identified in the
queries, all criteria restricting the rows of those tables are also collected from
the ON conditions of the JOIN expressions and from the WHERE clause. From this
information we are not only able to estimate the cardinality of the source tables,
but also to determine the spatial distribution of the object detections of the
astronomical catalogs after all selection criteria have been applied.

Information about the spatial distribution of the data points is essential in
order to be able to efficiently partition the query. Based on the histogram of
coordinates, the surface of the sphere is split into disjoint partitions defined
by great circles intersecting at the poles. Partition boundaries can be chosen
anywhere as all the data is mirrored to every cluster node. This also eliminates
the need of buffer zones along partition boundaries. Boundaries are chosen such
a way that an approximately equal number of detections falls into each partition.

The number of partitions is chosen to be amultiple of the available cluster nodes.
We use more partitions than the number of available physical machines to execute
the cross-match tasks, because higher granularity makes error recovery much eas-
ier, only smaller parts of the job had to be redone when unexpected events happen.

5.4 Jobs as Parallel Workflows

Every partition of a cross-match query translates to a sequence of ordinary SQL
queries, and these query sequences run in parallel on many machines. Because
of the complexities of multi-threaded application development, we decided to
implement the cross-match jobs as workflows written for .Net Workflow Foun-
dation (WF) version 4. WF has extensive support for parallel execution of ac-
tivities (atomic components of workflows), and also for exception handling and
workflow cancellation logic.

Workflows make it sure that ordinary SQL queries performing the cross-
matching will run in the necessary order and that partitions will be processed
in parallel. All ordinary SQL queries are written such a way that they do not
return any data but write all results into the staging databases of the particular
cluster nodes. Also, all heavy computations are coded into these SQL queries.
These design constraints make it possible to build workflows that do only basic
computations and issue regular SQL queries to remote servers to do the rest. As
a result, all workflows can be run on a single head node of the cluster instead of
scheduling non-SQL user code on the worker nodes.

For each cross-match query, we create a new job (in the form of a WF work-
flow) and schedule its execution with a custom-written queueing system. The
queueing system supports execution of jobs with different time-out intervals.
This is particularly important in open access database systems, like SkyQuery,
where queries written by the users can have any complexity. Users developing
queries would submit them to the quick queue first to see if the queries work
correctly on smaller chunks of data. Once they are satisfied with the results,
they can send the queries to the long queue with much longer time-out interval
for guaranteed completion.

166 L. Dobos et al.

To avoid moving large amounts of data between servers, we schedule the
execution of an entire partition of a cross-identification job on the same cluster
node. Cluster nodes are assigned to the partitions in a round robin fashion.
We chose round robin scheduling over complex load balancing because of some
problems arising from the behavior of database servers. For instance, it is hard
to correctly measure the load on a particular database server as either CPU load
or I/O load can vary heavily during query processing. Assigning servers to tasks
in round robin seems a much simpler and reasonable way.

5.5 Performance and Scaling Considerations

Since all of the catalogs are mirrored to all nodes of the cluster, no interaction
among the servers is necessary when processing independent partitions of the
queries. This makes it an almost ideal scale-out situation as the only overhead
coming from the partitioning is that a small amount of initial data has to be
copied to the worker nodes from the users’ MyDBs, and, once the query has
finished, results have to be gathered from the nodes. The overall performance of
the system is limited by the number of available server nodes and the intrinsic
performance of the zone algorithm [Gra].

5.6 Metadata Management and Provenance from Queries

The relational data model itself only uses table names and column names to iden-
tify quantities stored in the databases. Scientific applications, on the other hand,
require detailed description of the physical quantities. The Internatinal Virtual
ObservatoryAlliance defines the ontology and metadata models to describe astro-
nomical data. In SQL Server, extended properties can be added to every database
schema object. These properties can be easily queried via special views. For Sky-
Query, we use these extended properties to store meta-information. Metadata in-
cludes description of the quantities using identifiers based on the ontology but also
human-readable text to display on web pages, etc.

All data in the system are manipulated with SQL scripts and results of the
computations are manifested as output tables stored in the users’ MyDBs. Be-
cause we parse every SQL query executed, we have complete control over the
schema and metadata of the output tables as well. It will be very convenient in
the future to derive metadata and provenance information about query outputs
directly from the SQL scripts.

6 Summary and Future Work

In this paper we have introduced a new, scalable implementation of software for
cross-identification of co-located astronomical catalogs. Compared to the earlier
reincarnations, for the third version of SkyQuery, the following improvements
have been made. a) Instead of single-server operation, queries are partitioned
and executed on a cluster of identical database servers having identical versions
of all data sets. b) An easy to optimize syntax extension to the SQL language

SkyQuery: A Parallel Probabilistic Join Engine 167

was invented to support simple formulation of cross-match problems. c) Queries
are translated into complex workflows of traditional SQL queries. Workflows are
implemented using Windows Workflow Foundation to support parallel execution.

For the next versions of the system, we are working on the following additions.
a) Right now, all queries are run from scratch, i.e. helper tables used to speed
up cross-matching are newly created every time when needed. Certain helper
tables could be cached to further speed up execution. b) We are designing a
generic framework for handling metadata which will allow extract provenance
information directly from the queries written by users. c) A lazy-join algorithm
is being designed to allow vertically partition tables. This will make it possible to
move less frequently used columns to cheaper storage. d) We will add support to
reference tables from remote data sets accessible to Virtual Observatory standard
protocols.

Acknowledgements. This work was supported by the following Hungarian
grants: NKTH: Polányi and KCKHA005. The Project is supported by the Eu-
ropean Union and co-financed by the European Social Fund (grant agreement
no. TÁMOP 4.2.1./B-09/1/KMR-2010-0003)

References

BPD1. Boch, T.: Pineau, F.X., Derriere, S.: CDS xMatch service documentation
(2011), http://cdsxmatch.u-strasbg.fr

Bud1. Budavári, T., Malik, T., Szalay, A.S., Thakar, A.R., Gray, J.: Proceedings of
the Conference Astronomical Data Analysis Software and Systems XII, vol. 295,
p. 31 (2003)

Bud2. Budavári, T., Szalay, A.S., Gray, J., et al.: Proceedings of the Conference As-
tronomical Data Analysis Software and Systems XIII, vol. 314, p. 177 (2004)

Bud3. Budavári, T., Szalay, A.S.: Astrophysical Journal 679, 301 (2008)
Bud4. Budavári, T., Szalay, A.S., Fekete, G.: Publications of the Astronomical Society

of the Pacific, vol. 122, p. 1375 (2010)
Fek. Fekete, G., Szalay, A.S., Gray, J.: Proceedings of the Conference Astronomical

Data Analysis Software and Systems XIII, vol. 314, p. 289 (2004)
Gor. Górski, K.M., Hivon, E., Banday, A.J., et al.: Astrophysical Journal 622, 759

(2005)
Gra. Gray, J., Szalay, A., Budavari, T., et al.: arXiv:cs/0701172 (2007)
OM1. O’Mullane, W., Gray, J., Li, N., et al.: Proceedings of the Conference Astro-

nomical Data Analysis Software and Systems XIII, vol. 314, p. 372 (2004)
Or1. Ortiz, I., Lusted, J., Dowler, P., et al.: arXiv:1110.0503 (2011)
TP1. Taghizadeh-Popp, M.: Publications of the Astronomical Society of the Pacific,

vol. 122, p. 976 (2010)

http://cdsxmatch.u-strasbg.fr

Efficient Filtering in Micro-blogging Systems:

We Won’t Get Flooded Again

Ryadh Dahimene, Cedric Du Mouza, and Michel Scholl

CEDRIC Laboratory - CNAM - Paris, France
firstname.lastname@cnam.fr

Abstract. In the last years, micro-blogging systems have encountered a
large success. Twitter for instance claims more than 200 million accounts
after 5 years of existence and a daily traffic of more than 200 million
tweets leading to 350 billion delivered tweets. Micro-blogging systems
rely on the all-or-nothing paradigm: a user receives all the posts from an
account he follows. A consequence for a user is the risk of flooding, i.e.,
the number of posts received implies a time-consuming scan of his list
of postings to read news that match his interests. To avoid user flooding
and to significantly diminish the number of posts to be delivered, we
propose a filtering structure for micro-blogging systems. We present an
analytical model and an experimental study on synthetical datasets and
on a real Twitter dataset which consists of more than 2.1 million users,
15.7 million tweets and 148.5 million publisher-follower relationships.

Keywords: Micro-Blogging, Filtering, Indexing.

1 Introduction

Micro-blogging systems have become a major trend over the Web 2.0 as well as
an important communication vector. In less than six years, Twitter has grown
in a spectacular manner to reach more than 200 million active users in August,
2011. In such systems, the length of a published piece of news (called by post in
the following) is generally limited to 140 characters (14.7 terms on average [3]),
so clearly smaller than RSS items [5] or blogs (250-300 terms [9]).

In micro-blogging, a user follows other accounts to be notified whenever they
publish some information. Conversely, he becomes a publisher for the accounts
that follow him, which results in the existence of a large social graph. Micro-
blogging is characterized by the heterogeneous nature of the accounts. In Twitter
for instance, there exist some high update frequency accounts and others that
publish less than one post a week. Moreover there exist very popular accounts
and others with 0 or 1 follower. For various reasons (security, advertisement,
control policy, . . .) these systems rely on a centralized architecture. Each post
published is received by the system that forwards it to all followers of the publish-
ing account. Since most active accounts are generally the ones with the highest
number of followers, the system must face a tremendous amount of posts to for-
ward. For instance Twitter, which claims more than 200 million tweets a day,

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 168–176, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Efficient Filtering in Micro-blogging Systems: We Won’t Get Flooded Again 169

must deliver daily over 350 billion tweets. On the follower’s point of view, the
amount of posts received from the accounts he follows, between 30 and 200 de-
pending on the system considered (see [8] for Twitter), lets him lost in the middle
of long feed of posts. This results in poor data readability and potentially loss
of valuable information. A direct consequence of this phenomenon is the high
dynamicity of the graph: to avoid flooding, users follow temporary an account
to cover a peculiar event, and then unsubscribe because they can’t manage the
continuous flow of posts [7].

In order to improve the user experience and reduce the network load, we have
chosen to introduce filtering in micro-blogging systems. The main underlying
idea is that a user A follows another user B for some topics, and consequently he
wants to receive only a subset of B’s posts that matches his interest, expressed
as keywords. To scale, the structure must efficiently retrieve for an incoming
post all followers of a publishing account whose filter is satisfied by the post.
While designing the filtering structures, we took a particular consideration about
specific aspects of micro-blogging systems which we can summarize as:

- Short messages: the size restriction (generally 140 characters) means that
we handle short documents (e.g. the average length of a tweet is 14.7 terms [3]);
- Graph evolution: As observed in Twitter [7], users follow and unsubscribe
often to other accounts. The filtering structure must consequently be dynamic
to face this phenomenon;
- Centralized system: The social graph is stored by the micro-blogging system.
That means the whole task is supported by the centralized system.
Therefore we must reduce the filtering process time by trying to manage the
matching in central memory. This paper is, as far as we know, the first attempt
to propose such a structure that combines the social graph and keyword-based
filters in a micro-blogging system, considering the main characteristics of such a
system.

2 Data Model

Basically a micro-blogging system like Twitter can be represented as a directed
graph G=(N, E) where the set of nodes N represent the users (accounts) of the
system and the set of edges E ⊆ N ×N represent the “following” relationships.
More precisely a directed edge e=(u, v) exists from a node u to a node v if
the user whose account is u is notified whenever the user whose account is v
publishes a piece of news (u receives v ’s updates). In the following we blur the
distinction between a user, an account and a node. For a node n, we define Γ+(n)
the set of nodes followed by n, i.e., its successors in G as

Γ+ : N → 2N , Γ+(n) = {n′|(n, n′) ∈ E}

We define similarly Γ−(n) the set of nodes that follow n (predecessors). Each
node produces micro-blog piece of information, called post in the following. A
post is defined as a sequence of terms p =< t0, t1, t2, . . . , ti >. We denote by P

170 R. Dahimene, C. Du Mouza, and M. Scholl

CNN AFP

{IT, politics,

Ryadh

Cedric

movies}
{politics}

{IT}

{sport}
{IT,movies}

Michel

⊥

Fig. 1. A filtered social graph

the set of posts and by VP the posts vocabulary. Note that we do not rely on
the terms order for matching (see Section 3) and consequently we consider the
bag of terms of the post p = {t0, t1, t2, . . . , ti} rather than the term sequence in
the following.

To improve micro-blogging systems performances we propose keyword-based
filters. A filter F in our system is represented as a set of distinct terms F =
{t1, t2, ..., tn} where each term ti belongs to the filter vocabulary denoted by
VF . The length of F , denoted by |F |, is the total number of (distinct) terms it
contains. Like [17], we make the common assumption that VF ⊆ VP . F denotes
the set of filters, excluding the filter ⊥ that matches all posts, i.e., ⊥= VP . A
labeling function label associates a filter to each edge of the social graph G:

label : E → F ∪ ⊥
We name the social graph whose edges are labeled by filters the filtered so-
cial graph (FSG). Note that the filters are associated to the edges which allows
a user to express different interests (i.e., filters) w.r.t. the source considered.
For instance the user Michel wants to retrieve all posts from CNN concern-
ing IT, politics and movies and only these ones, and from AFP only posts
about politics. Thus we have label(Michel, CNN) = {IT, politics,movies} and
label(Michel, AFP) = {politics}. Figure 1 illustrates an example of FSG .

3 Filter Indexing

Currently the indexing scheme used in widespread micro-blogging systems like
Twitter allows to efficiently retrieve for a publishing user n the set Γ−(n) of
followers in graph G. [13] reports an average query size of 1.64 terms for the
searches issued on the Twitter search engine. Assuming an average filter size
similar to this value and over 300 millions of users, the problem is how to effi-
ciently determine the set Γ−(n) of followers based now on the graph FSG. This
issue must be especially tackled for users with a large number of followers since
the notification process time largely increases due to the containment relation to
be checked. We propose an index structure to manage posts filtering. To achieve
notification at runtime, regarding the high incoming rate of posts, we consider
structures that fit in memory. This discarded tree-based solutions. Our proposal
is based on inverted lists which benefit from factorization and could be deployed
on existing systems whose graph structure is already implemented as an inverted
list. The set of parameters that impact our indexes constructions are:

Efficient Filtering in Micro-blogging Systems: We Won’t Get Flooded Again 171

politics MichelCNN

AFP

Michel

Cedric

Ryadh

directory

movies AFP Michel

politics Michel sport Cedric

IT ABC Michel

IT Ryadh

Fig. 2. The PTF-index

- N : total number of accounts
- ϕ: avg. number of followers for a user
- τ : avg. number of filter terms for a (publisher,follower) pair
- θdir, θlist and θentry: size of a directory entry, posting list and an entry
- |p|: size (distinct terms) of a post
Due to space limitation, we present only the PTF -Index. Our two other s pro-
posals (PFT & TPF) may be found in the extended version 1.

The PTF-Index. In the PTF -index, (as Publisher−Term−Follower index),
a key is an account n ∈ N , and the value is the corresponding posting list
PostingsPTF (n). We factorize the posting list on the terms, so each term t is
associated to a list of the followers of n that choose t as a filter for the posts
of n. So PostingsPTF (n) = {(t1, {n1

t1 , n
2
t1 , . . .}), (t2, {n1

t2 , n
2
t2 , . . .}), . . .}, with

ni ∈ Γ−(n) and tjni
∈ label(ni, n). Figure 2 shows an example of PTF-index

structure.

PTF-Index Memory Requirement Our index consists of N posting lists,
each posting list must store the ϕ × τ filters associated to a publisher, like
in PFT -index, with a factorization on the different terms. If we assume that
all followers of a publisher use distinct filters, the size of PostingsPTF (n) is
ϕ×τ . However we observe that followers generally express similar interests when
they decide to follow a given publisher and consequently the number of distinct
filters for a publisher is lower than this upper bound. We assume like in many
other text-based/keyword-based application that the total number of terms in a
posting list follows a Heaps’ law [1,10], i.e., |PostingsPTF (n)| = k × T β, where
k and β are constants and T is the total number of terms in the posting. Heaps’
coefficients k and β depend strongly on the characteristics of the analyzed text
corpora and their value in our micro-blogging system has to be determined in
future work. Note that β is between 0 and 1 (generally in [0.4, 0.6]), so the
higher the number of followers is, the better factorization is achieved. This is
particularly expected in our filtering system where many users filter out on the
same terms. Since the number of terms in PostingsPTF (n) is N × (ϕ× τ) and
the number of entries indexed is always N × ϕ× τ , we deduce that:

ΔPFT
memory(FSG) = N × θdir + (N × k × (ϕ× τ)β)× θlist + (N × ϕ× τ)× θentry

1 http://cedric.cnam.fr/dahime m/MicroFilterLong.pdf

172 R. Dahimene, C. Du Mouza, and M. Scholl

PTF-Index Matching Time. Consider an incoming post p published by the
user n. We access the posting list of the publisher n PostingsPTF (n). Then for
each entry (ti, {n1

ti , . . . , n
k
ti) we check if p contains ti. Whenever this happens we

notify each nj
ti from the entry ti. Thus the average matching time is:

ΔPTF
time (FSG, p) = |p| × k × (ϕ× τ)β

4 Experiments

In collaboration with Forth Institute (Heraklion, Crete)2 we gathered data on
Twitter over a four month-period using the Twitter streaming API3. We gener-
ated a complete Twitter graph + tweets dataset by merging this data with graph
structures from other datasets available on the Web. We obtained a dataset with
2.1 million users, 15.7 million tweets and more than 148,5 million graph edges.
To generate filters we make the assumption that the average filter size (number
of distinct terms that labeled an edge in the filtered social graph) corresponds
to the average number of terms used on twitter querying API [13]. We decide
to generate filter terms for a follower among the most frequent and significative
terms (we discarded urls, terms from the common language, Web shortcuts, . . .)
in the posts of the publisher he follows. Our rationale is that we usually follow
a publisher because he provides some tweets that match one of our interests.
Unless otherwise precised, this “realistic” filter set is used for our experiments.

4.1 Memory Requirement

All structures have different factorization criteria which lead to different mem-
ory requirements. TPF -index appears as the structure with the lower memory
requirements (see Fig.3 and Fig.4). Many filters are shared by a significant num-
ber of users which allows a better factorization, on the terms first. Moreover we
observe that many followers of a publisher filter out on the same terms. Con-
sequently, for a term’s entry in the TPF -index, there exists also an important
factorization on publisher’s id, especially for account with an important number
of followers. Oppositely the PFT -index benefits from a poor factorization since
all publishers have an entry in the directory and for each of them we have a list
element for each of his followers, each of them with few filter terms. We generate
synthetic datasets with a constant number of filters (τ) for each graph edge and
report results in Figure 3. The memory occupancy grows linearly with τ for PFT
and PTF indexes. Indeed, increasing τ does not impact the directory size that
depends only on the number of publishers, i.e., N . Moreover for PFT -index, the
number of elements in the posting list remains constant and equal to the number
of followers. But the number of entries follows linearly τ . For PTF -index the
number of elements depends on the number of distinct term used as filter for a
publisher. When comparing with PFT -index we observe the same gradient. This

2 We thank Vassilis Christophides for his support and helpful comments.
3 http://dev.twitter.com/

Efficient Filtering in Micro-blogging Systems: We Won’t Get Flooded Again 173

Fig. 3. Occupied memory w.r.t. τ Fig. 4. Occupied memory w.r.t. N

reveals that τ has a low impact on the number of elements for a posting list in
PTF -index. The Heaps’ law we propose in our model explains this result, since
it assumes that the sub-vocabulary of filter terms for a given publisher increases
slightly. Thus for PTF -index, like for PFT -index, the increase of τ does not
impact the structure but only the number of entries. Finally we note the low
impact of τ on the TPF -index. The rationale is (i) the directory size remains
constant and equal to VF , (ii) since filters are generated w.r.t. the publisher’s
post areas, a new filter term has a high probability to be already present for the
same publisher in the structure, so the number of posting elements remains low
and slowly increases.

Figure 4 illustrates the impact of N on the different structures. All structures
exhibit a linear growth. For PFT and PTF index, adding a new user results in
adding a new directory entry, new posting list elements and new posting entries
for his followers along their filters. However the factorization on terms’id in a
posting list is more efficient than the one on follower’s id which explains the best
gradient for PTF . For TPF after a short initialization step that corresponds to
the creation of the different entries of the directory and the different elements
of the posting list, increasing N leads only to add new posting entries. This
explains a linear growth with a lower gradient.

4.2 Matching Time

Table 1 depicts average matching times for an upcoming flow of 100,000 tweets
over the different filter indexes. We observe that the TPF -index exhibits poor
matching performances: for our realistic dataset, with around 2.5 ms a post, it
can handle less than 400 posts a second, so far from being scalable (remember
that in Twitter for instance there exist peaks with 8,000 posts a second). For
each term of the post we retrieve a large posting list with potentially as many
elements as existing publishers N . Oppositely PTF -index quickly retrieves the
followers to be notified: it handles a post in 15 μs, so is able to manage peaks
up to 66K posts a second. Here we directly access the posting list corresponding
to the publisher. Then we scan all its elements that correspond to all followers
of this account, and check for each of them if any filter term matches the post.
Observe that the number of filter terms is low (between 1 and 3) for a follower,
and that we check all terms of the post in a single scan.

174 R. Dahimene, C. Du Mouza, and M. Scholl

Table 1. Matching time for realistic dataset

Structure PFT PTF TPF

matching time (μs) 808 15 2564

Fig. 5. Matching time w.r.t. τ Fig. 6. Matching time w.r.t. N

Fig 5 illustrates the impact of τ on matching time. Like in Table 1 PTF -
index outperforms other proposals with 2 orders of magnitude. We observe that
the matching time for PFT -index linearly increases with τ while TPF -index
follows a sub-linear growth. For the former, matching implies a direct access to
the posting list of a publisher and then to scan all elements in turn for this list
to check if associated entries match the post terms. Increasing τ does not change
neither the number of entries of the directory, nor the number of elements. So
only the last step, the matching attempt against term entries requires more time.
Since the number of entries is proportional to τ , this explains this linear growth.
For the TPF -index, we observe the Zipf’s law behavior in the term frequency
distribution, so when increasing τ we generally add entries in the posting of the
most frequent terms. As a consequence the more numerous filters are indexed,
the higher probability we have to add an entry in an existing posting list element.
Since posting lists’size has a sub-linear increase and since we scan as many lists
as number of terms in the post, this justifies that the matching time increases
sub-linearly w.r.t. τ .

We report also in Fig 6 the evolution of matching time w.r.t.N . We notice that
both PFT and PTF -index have a constant matching time. Indeed, increasing N
only impact the directory by adding new directory entries, but the posting lists
keep a constant number of elements and for each element a constant number of
entries. Since for an incoming post we scan a single posting list corresponding to
the publisher, the matching time is constant with N . TPF -index exhibits better
performance than PFT -index for N lower than 900k. The matching time with
TPF -index increases sub-linearly w.r.t. N for the same reasons as with τ .

5 Related Work

The recent success of Twitter and the important amount of user-generated con-
tent it handles have attracted the interest of the researchers’ community. First

Efficient Filtering in Micro-blogging Systems: We Won’t Get Flooded Again 175

studies attempt to capture the main characteristics of micro-blogging systems
and analyzed the behavior of the users [6,8,15]. [6] presents one of the first
studies that looked inside Twitter. It shows for instance that users with simi-
lar intentions connect with each other. [8] studied the following behavior and
information diffusion patterns for a consequent snapshot of the entire Twitter-
sphere. [15] investigates the semantics of the twitter links, and finds that the
retweet relation is a strong indicator of the topical interest. We strongly rely
on these works to propose structures that exploit micro-blogging characteristics,
and to explain some experimental results. Some papers improve data presen-
tation to the users and attempt to avoid user flooding [12,16,14]. [12] presents
a clustering and classification of tweets based on the users profile. It relies on
a trained classifier to route an upcoming tweet to a predefined class. [16] pro-
pose techniques to compute the user influence in Twitter and to rank tweets
according to the user influence. [14] presents a filtering approach which takes
advantage of the retweet behavior to bring more important tweets forward. All
these approaches aim at avoiding the user flooding but do not diminish the num-
ber of delivered messaged by the centralized system. Oppositely our approach
propose a scalable structure that handle the filtering process on the server’s side
reducing drastically the number of posts delivered. More generally, the problem
of delivering Web 2.0 data over an underlying graph has also been treated in
several papers. [11] considers high frequency update feeds. Authors propose a
method to selectively materialize user events over streams in order to handle the
scalability of such systems. [2] introduce the evaluation of graph constraints in
content-based publish/subscribe systems. Authors suppose that the publishers
and subscribers are connected by a directed graph (like in micro-blogging sys-
tems) and they implemented algorithms to efficiently evaluate constraints. [4]
proposes and compares indexing schemes for a pub/sub system that scales to
millions of users and high publication rates. Our context is quite different since
we have very short messages (posts) and extremely short queries (filters) but
with a number of users and queries much more important.

6 Conclusion

In the present paper we present inverted lists-based structures that indexes fil-
ters to decrease the number of messages delivered in micro-blogging systems.
We conducted several experiments with real and synthetic datasets. PTF -index
appears to achieve the best scalability since, despite memory requirements and
insertion time twice more important than TPF -index, it outperformed with two
orders of magnitude other proposals for matching time. As future work we intend
to improve the PTF -index in several ways. First we would like to exploit the
heterogeneity of the accounts as reported in [8] (e.g. 5% of accounts with more
than 100K followers). We also envisage to rely on ontologies to perform a more
“clever” filtering (for instance considering synonymy or containment).

Acknoledgement. Michel Scholl passed away Nov, 15th 2011. We would like
to thank Michel for his devotion to the database research. We miss you.

176 R. Dahimene, C. Du Mouza, and M. Scholl

References

1. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM
Press/Addison-Wesley (1999)

2. Broder, A.Z., Das, S., Fontoura, M., Ghosh, B., Josifovski, V., Shanmugasundaram,
J., Vassilvitskii, S.: Efficiently Evaluating Graph Constraints in Content-Based
Publish/Subscribe. In: WWW, pp. 497–506 (2011)

3. Foster, J., Çetinoğlu, Ö., Wagner, J., Roux, J.L., Hogan, S., Nivre, J., Hogan, D.,
van Genabith, J.: #hardtoparse: POS Tagging and Parsing the Twitterverse. In:
AMW (2011)

4. Hmedeh, Z., Kourdounakis, H., Christophides, V., du Mouza, C., Scholl, M.,
Travers, N.: Subscription Indexes for Web Syndication Systems. In: EDBT, pp.
311–322 (2012)

5. Hmedeh, Z., Vouzoukidou, N., Travers, N., Christophides, V., du Mouza, C., Scholl,
M.: Characterizing Web Syndication Behavior and Content. In: Bouguettaya, A.,
Hauswirth, M., Liu, L. (eds.) WISE 2011. LNCS, vol. 6997, pp. 29–42. Springer,
Heidelberg (2011)

6. Java, A., Song, X., Finin, T., Tseng, B.: Why We Twitter: An Analysis of a Mi-
croblogging Community. In: Zhang, H., Spiliopoulou, M., Mobasher, B., Giles, C.L.,
McCallum, A., Nasraoui, O., Srivastava, J., Yen, J. (eds.) WebKDD/SNA-KDD
2007. LNCS, vol. 5439, pp. 118–138. Springer, Heidelberg (2009)

7. Kwak, H., Chun, H., Moon, S.B.: Fragile Online Relationship: A First Look at
Unfollow Dynamics in Twitter. In: CHI, pp. 1091–1100 (2011)

8. Kwak, H., Lee, C., Park, H., Moon, S.B.: What Is Twitter, a Social Network or a
News Media? In: WWW, pp. 591–600 (2010)

9. Ma, S., Zhang, Q.: A Study on Content and Management Style of Corporate Blogs.
In: Schuler, D. (ed.) HCII 2007 and OCSC 2007. LNCS, vol. 4564, pp. 116–123.
Springer, Heidelberg (2007)

10. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press (2008)

11. Silberstein, A., Terrace, J., Cooper, B.F., Ramakrishnan, R.: Feeding Frenzy: Se-
lectively Materializing Users’ Event Feeds. In: SIGMOD, pp. 831–842 (2010)

12. Sriram, B., Fuhry, D., Demir, E., Ferhatosmanoglu, H., Demirbas, M.: Short Text
Classification in Twitter to Improve Information Filtering. In: SIGIR, pp. 841–842
(2010)

13. Teevan, J., Ramage, D., Morris, M.R.: #TwitterSearch: a Comparison of Microblog
Search and Web Search. In: WSDM, pp. 35–44 (2011)

14. Uysal, I., Croft, W.B.: User Oriented Tweet Ranking: A Filtering Approach to
Microblogs. In: CIKM, pp. 2261–2264 (2011)

15. Welch, M.J., Schonfeld, U., He, D., Cho, J.: Topical Semantics of Twitter Links.
In: WSDM, pp. 327–336 (2011)

16. Weng, J., Lim, E.-P., Jiang, J., He, Q.: TwitterRank: Finding Topic-sensitive In-
fluential Twitterers. In: WSDM, pp. 261–270 (2010)

17. Yan, T.W., Garcia-Molina, H.: Index Structures for Selective Dissemination of
Information Under the Boolean Model. TODS 19(2), 332–364 (1994)

Regular Path Queries on Large Graphs

André Koschmieder and Ulf Leser

Humboldt-Universität zu Berlin, Germany
Department of Computer Science

{koschmie,leser}@informatik.hu-berlin.de

Abstract. The significance of regular path queries (RPQs) on graph-
like data structures has grown steadily over the past decade. RPQs are,
often in restricted forms, part of graph-oriented query languages such
as XQuery/XPath and SPARQL, and have applications in areas such as
semantic, social, and biomedical networks. However, existing systems for
evaluating RPQs are restricted either in the type of the graph (e.g., only
trees), the type of regular expressions (e.g., only single steps), and/or the
size of the graphs they can handle. No method has yet been developed
that would be capable of efficiently evaluating general RPQs on large
graphs, i.e., with millions of nodes/edges.

We present a novel approach for answering RPQs on large graphs.
Our method exploits the fact that not all labels in a graph are equally
frequent. We devise an algorithm which decomposes an RPQ into a se-
ries of smaller RPQs using rare labels, i.e., elements of the query with
few matches, as way-points. A search thereby is decomposed into a set
of smaller search problems which are tackled in a bi-directional fashion,
supported by a set of graph indexes. Comparison of our algorithm with
two approaches following the traditional methods for tackling such prob-
lems, i.e., the usage of automata, reveals that (a) the automata-based
methods are not able to handle large graphs due to the amount of mem-
ory they require, and that (b) our algorithm outperforms the automata-
based approach, often by orders of magnitude. Another advantage of our
algorithm is that it can be parallelized easily.

1 Introduction

A general regular path query (RPQ) is a regular expression R over the (edge or
node) labels of a graph G [28]. Its result is the set of all cycle-free paths in G
whose concatenation of labels (edge or node) spells out R. Different flavors of
RPQs are used in a wide range of applications. For instance, XPath supports
a restricted form of RPQs on XML documents [25]. SPARQL supports a very
simple form of RPQs for RDF graphs, and various proposals exist for enhancing
SPARQL syntax with full RPQs (e.g., [4,5,9,20]). [11] describes a restricted form
of RPQs important for graph pattern matching, and [32,33] describe languages
supporting restricted forms of RPQs for studying social networks. A particularly
important application domain for RPQs are the Life Sciences, where understand-
ing the interactions of different biological entities is of great importance. Such

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 177–194, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

178 A. Koschmieder and U. Leser

interactions are typically modeled as graphs, and RPQs are used to find specific
biochemical pathways between distant nodes [23].

None of these works support general RPQs on large graphs, but all focus on re-
stricted languages which typically allow for more efficient evaluation. Evaluating
RPQs on arbitrary graphs is an NP-hard problem [28]. We illustrate the prob-
lem and our main idea by an example. Suppose a graph of researchers (nodes),
either labeled as Professors or STudents, connected by directed edges such as
Supervised or Joint work. In this graph, the query P (JP)(JP)? finds all paths
between a professor and direct or indirect co-workers. (PS)(PS) + (P |T) finds
all paths between a professor and his doctorate descendants. Now suppose we
also model research prizes as nodes (such asNobel Prize or Sigmod Award), and
connect them to researchers with edges labeled Honored. Then, we can find the
doctorate predecessors of all Nobel Prize winners using the query (PS)+PHN ,
and those of any prize winner using the query (PS) + PH(N |A).

RPQs have been studied intensively for XML, where the predominant ap-
proach is to use automata [13]. Both the graph and the query are represented as
automata, whose intersection automaton is the subgraph specified by the query.
In this process, the graph needs to be translated into a DFA, which can be of ex-
ponential space and may need exponential construction time. Research in XML
query languages has shown that automata-based RPQ evaluation works well for
trees (XML) [30], but we will show that its space consumption is enormous on
general graphs (see Section 6). Furthermore, automata-based approaches com-
pletely disregard the fact that certain labels are much more frequent than others,
which can be exploited for speeding up query execution. For instance, to answer
the query for Nobel Laureates, it is sensible to first search for nodes labeled with
N , because (a) one such node must be in any matching path and (b) there are
much less Nobel Laureates than professors. Having all N nodes, complete paths
can be computed easily by traversing the graph.

Such reasoning is the basis of the approach we propose in this paper; however,
finding a good evaluation strategy is not always as easy as in the example, as
a query usually contains various labels with different frequencies in the graph.
To this end, we first gather all labels in the query that only occur a few times
in the graph and use these as fix points for a series of bi-directional searches.
Thus, we split the query at these rare labels into smaller queries, and answer
these individually. We search all matching paths between each two adjacent rare
labels as well as at the start and end of the query, and combine the results to
answer the original query. The main advantage of this approach is that we do not
need to consider the whole graph, but only those fractions of it that lie between
adjacent rare labels. In Section 6 we will show that this strategy, over a wide
range of small to large synthetic and real-life graphs, is considerably faster and
especially much less space-demanding than automata-based methods ([39,14]).

Figure 1 illustrates this idea. Suppose we want to answer the RPQ a+ b c+
on a graph (Fig. 1b). Since there is only one edge labeled with b, we use it as
rare label and split the query there. Now, the two smaller queries a+ and c+
have to be answered, using the b edge as end point or start point, respectively.

Regular Path Queries on Large Graphs 179

Fig. 1. a) The RPQ a+ b c+ shown as a (nondeterministic) automaton; b) a path
fulfilling the RPQ in a small exemplary graph

The result of the original query is the combination of the smaller queries and
the rare label.

Our idea can also be used for variations of the general RPQ problem, such as
finding all shortest matching paths spelling out a regular expression, or finding
all matching paths between two given nodes. Especially the latter is important
if RPQs are used as predicates in a general query language (see, for instance,
[20]), where variables for defining the start and the end of a path often already
have been bound by other predicates before RPQs are evaluated. For space
constraints, in this paper we only describe in detail the algorithm for solving
the general RPQ problem (finding all acyclic paths matching a given regular
expression) without bindings for the start and end nodes, as this is the most
complex case. Furthermore, we only consider RPQs over edge labels; extensions
to include node labels are straight-forward. Adaptations of our method targeting
such variations of the RPQ problem are described in [21], which also contains a
number of additional experiments we omit here for space constraints.

This paper is structured as follows. Section 2 gives an overview on related
work. In Section 3, we define the basic concepts. In Section 4, we describe our
novel RPQ evaluation algorithm and give implementation details in Section 5.
We evaluate our method in Section 6 using various real and synthetic graphs
and conclude in Section 7.

2 Related Work

The most common approach for answering RPQs is based on automata. One
implementation of this idea are DataGuides by Goldman and Widom [13], based
on Lorel [1]. Therein, the graph is considered as an NFA that is first converted
into a DFA and then minimized. This minimized DFA (a DataGuide) is then
used as an index. However, this index can become much larger than the original
graph, which is a problem when dealing with arbitrary graphs (but not for reg-
ularly structured XML). Goldman and Widom therefore propose “Approximate
DataGuides” [14] which reduce the index size using heuristics. As the imple-
mentation of Lorel (and DataGuides) is not supported any more since 2000, we
re-implemented the algorithms and compare them to our approach in Section 6.

180 A. Koschmieder and U. Leser

After the uptake of the semi-structured data model in XML, many propos-
als have been put forward to use automata in optimizing queries on XML (see
e.g. [25,30]). However, these works mostly use tree automata [30] and are not
applicable to arbitrary graphs. Additional index structures have been proposed,
for instance, by Milo and Suciu [29] and Kaushnik et al. [19], but, again, they
are designed to work with XML data and cannot be applied to non-tree graphs.
Fernandez and Suciu present another interesting approach to speed up graph
searching based on Graph Schemas [12]; however, these have to be created man-
ually, a step that seems unfeasible for graphs with millions of nodes.

An area where RPQ queries on graphs are important is querying RDF data.
However, SPARQL, the official W3C recommendation as an RDF query lan-
guage, does not support regular path queries, which spurred research into ex-
tending SPARQL with RPQs. Alkhateeb et al. [4] developed the query language
PSPARQL that includes RPQs, but the authors focus on formal semantics of
RPQs on RDF and do only describe a proof-of-concept implementation based
on backtracking. Detwiler et al. [9] present the GLEEN system, an extension
to SPARQL including RPQs that is implemented as an extension to the ARQ
library for SPARQL processing (see Section 6.2 for a comparison). Anyanwu
et al. [5] present another extension to SPARQL that also includes RPQs, but
no method for evaluating them is described. Zauner et al. [39] present a path
language for RDF supporting RPQs and does provide an implementation; the
system is based on automata, and we compare against it in Section 6.2. SPAR-
QLeR is another RDF querying language encompassing RPQs, again based on
automata, for which an implementation was described in [20], but is not publicly
available. Note that the runtimes reported in the paper range in the order of sec-
onds for queries with bound start and end nodes on moderately sized graphs, a
setting in which our algorithm only needs milliseconds (see [21]).

There were also a number of proposals for general graph query languages that
are not based on RDF. Leser [23] proposes a query language for querying biolog-
ical pathways, which syntactically supports RPQs, but does not describe a scal-
able resolution technique. Graphs-at-a-time is a query language based on graph
grammars that is capable of expressing RPQs, but the presented implementation
does not cover such predicates [15]. The query language proposed in [10], which
also includes a type of RPQs, is not accompanied by any implementation. Several
systems have been designed to support extremely large graphs (hundreds of mil-
lions nodes and edges), such as Pregel [26], GRAIL [38], or DEX [27], however,
none of these systems support RPQs. Finally, Sevon and Eronen [34] describe a
method for querying paths in labeled graphs using context-free grammars. They
traverse the graph breadth-first and use a context-free parser to find matches.
While context-free grammars are more powerful than regular expressions, [34]
only focus on finding paths between fix start and end nodes and do not provide
optimization techniques as we do.

Another line of related work are concerned with graph pattern matching.
Fan et al. [11] show that a language supporting reachability and a restricted
form of RPQs allows for an evaluation in cubic time. Jin et al. [18] present

Regular Path Queries on Large Graphs 181

algorithms for finding paths which only consist of labels from a predefined set of
labels. Ronen and Shmueli [32] describe a graph query language that supports
conditions on labels being contained or not contained in paths and also supports
ranking (provided that the edges are weighted) and aggregation over sets of
paths. In contrast to these works, our approach supports full RPQs.

Zou et al. introduced the Distance-join [40] as a technique to find subgraphs
with similar connections to a query pattern. The work most related to ours is
probably [7], in which Cheng et al. present algorithms for finding subgraphs that
are homeomorphic to a query graph, i.e., where each edge of the query may be
mapped to a path of unbounded length in the graph. In some sense, this can be
seen as a generalization of the RPQ problem we study in this paper; however, a
transformation would be non-trivial (mapping of edges to nodes and vice versa;
introduction of special edges which must be mapped to exactly one edge for
labels without ’?’ or ’*’ modifier etc.). Besides, the source code of [7] seems to
be not available for comparisons.

Matching regular expressions (REs) on strings is a related problem that was
recently picked up by the database community. Examples are [6,8], which both
use index structures that are similar in spirit to our method, i.e., concentrating
on rare characters in the query. Another line of related research is graph indexing.
Here, the idea of using frequencies of labels has been used extensively, especially
in mining and searching of subgraphs [36,22].

In summary, despite a large body of research around evaluating RPQs on
graphs, we are aware of only two available implementations supporting full RPQs
as we do [39,9]. In Section 6, we compare our approach to these methods and
also to a re-implementation of the DataGuide system [13] and show that, for
large graphs, they suffer from excessive memory consumption and are clearly
outperformed by our method.

3 Terms and Definitions

We use labeled directed multigraphs, i.e., a graphG is a tuple G = (V,E, f, l, Σ),
where V is a finite set of nodes, E is a finite set of edges, l : E → Σ specifies the
edge labels Σ, and f : E → V × V is the connection function, specifying which
nodes are connected by which edges.

The topological properties of a graph can be measured through node degree
and label distribution. A graph is called scale-free if the number of nodes with
degree k is P (k) ∼ k−λ for large values of k. Scale-free graphs are the likely
outcome of various random growth processes, and, indeed, many graphs discov-
ered in biological research are scale-free [24]. The label distribution in a graph
is called Zipfian if the frequency of the labels occurring in the graph follows the
power law F (k) ∼ k−δ, with δ ≈ 1.

A regular path query (RPQ) is a regular expression over Σ. We use the defini-
tion for regular expressions as in [16]. To evaluate regular path queries, a regular
expression can be converted into an automaton that can be used to match paths.
We assume definitions for deterministic (DFA) and non-deterministic automata
(NFA) as in [3].

182 A. Koschmieder and U. Leser

Several kinds of questions can be answered for a given regular expression R
and a given graph G. (1) Does G contain any path fulfilling R? (2) Which is
the shortest path in G fulfilling R? (3) Is there a path in G between two fixed
nodes fulfilling R? (4) Which paths in G fulfill R? In this paper, we discuss our
proposal using the latter problem as show case as it subsumes all other types of
queries. In Section 6, we will show that, for instance, fixing the start and end
nodes of an RPQ allows to drastically speed-up query processing compared to
the more liberal problem of returning all paths in the graph.

4 Answering RPQs Using Rare Labels

In this section, we present our novel algorithm for efficiently answering RPQs.
The basic idea is to search the graph while simultaneously advancing in the
query automaton. Compared to an approach which converts both the graph and
the query into automata, our method has several advantages: No preprocessing
of the large graph is needed, it only uses space linear in the size of the graph,
the search is easily parallelizable, and it can be enhanced with techniques that
take label frequencies into account.

4.1 Rare Labels

Definition 1. Let G be a graph and R be a RPQ. We call a label occurrence
in R mandatory iff it is not followed by a modifier other than +, i.e. it occurs
in every possible result of R in G. We call a label rare iff it occurs at most m
times in G and is mandatory in R (where m is a parameter of the method, see
Section 4.3).

For example, in the regular expression a b+ c∗ d?, a and b are mandatory, while
c and d are not. Finding all rare labels in a query is very fast if a list of all labels
in the graph together with their frequencies is stored. If this list is indexed by
labels, finding all rare labels for a given query is linear to the size of the query
pattern.

If a query contains a rare label, then any match of the query in the graph
must contain an occurrence of it. Therefore, we can use the occurrences of rare
labels as way-points during the search process. If we can find two or more rare
labels in a query, we can use a two-way search algorithm to find all matching
paths between their matches in the graph. Every additional rare label further
reduces the search space.

Note that our implementation (see Section 5.1) also treats disjunctions (regu-
lar expressions of the form (a|b|...)) as mandatory by searching for any occurrence
of the labels. A further, not yet implemented optimization would be to rewrite
expressions of the form R S∗ T , where R, S, and T are regular expressions,
as two expressions RT and R S+ T . Thus, the original expression could be
answered by evaluating two expressions, one of which is shorter and the other
contains an additional mandatory label for our optimization.

Regular Path Queries on Large Graphs 183

4.2 Searching the Graph Using Rare Labels

For queries that include at least one rare label, we split the query at these
rare labels and use them as fix points in the search. Searching the graph and
advancing in the regular expression at the same time, we search all paths between
each two adjacent rare labels, all paths from the first rare label backward to the
start of the regular expression, and from the last rare label forward to the end.
As shown above, the number of nodes that need to be visited during this search
shrinks with every additional rare label but grows with increasing numbers of
occurrences of rare labels.

Besides keeping the search space smaller, rare labels often also allow for early
stops. If there is no path between any two adjacent rare labels, then there can be
no path fulfilling the original query, and the search can be stopped immediately.

In the following, we use the term first rare nodes for all nodes that are starting
point of an edge of which the label is the first rare label, according to the regular
expression. Analogously, last rare nodes are the end nodes of all edges with the
last rare label. Answering RPQs using rare labels is done in the following 6 steps.

1. Gather all rare labels for the query in the graph.
2. If more than one rare label exists, find the paths between the first and second

rare label, the second and third etc. using a two-way search algorithm. If no
path can be found in any of these search processes, stop the search and
return an empty result for the query.

3. If more than one rare label exists: Using the results from step 2, find all
paths from the first rare nodes to the last rare nodes and remove all rare
nodes that are on no path, as these cannot be on a result path.

4. Beginning at all remaining first rare nodes, find all paths to the beginning
of the regular expression, searching backward.

5. Beginning at all remaining last rare nodes, find all paths to the end of the
regular expression (forward).

6. Using the results, enumerate all paths in the graph that fulfill the regular
expression and return the result.

Figure 2 shows the principle of the algorithm. On a sample graph (edge labels
and directions omitted), the query a+ b c+ d e+ is executed, assuming that b and

Fig. 2. Search process example for the query a+ b c+ d e+ in an arbitrary graph (edge
labels and directions omitted)

184 A. Koschmieder and U. Leser

d are rare labels. In step 1, rare label edges are gathered (b and d edges). In step
2, we search all paths between the end nodes of the b edges and the beginning of
the d edges. These paths must fulfill the regular expression between the two rare
labels, in this case c+. Here, two such paths can be found. For one rare edge, no
path could be found, thus it is removed from further consideration in step 3.

In step 4, a one-way backward search is performed, starting at the start nodes
of the b edges. The search ends once all paths have been found that fulfill the
first part of the regular expression (a+). In step 5, we search all paths from
the end of the last rare label to the end of the regular expression in forward
direction. As a last step (not shown in the picture), we enumerate all paths by
combining the results of the previous steps. In this case, there are 4 distinct
paths. The result subgraph can be gathered by enumerating all nodes and edges
of the result paths.

Our approach specifically aims at queries that include labels that do not occur
often in the graph. While most queries used in Bioinformatics are interested in
these rare labels, there are also queries in which no rare label is present. In such
cases, our algorithm automatically switches to a brute force search, starting a
search at every node in the graph (respectively at the given start/end nodes, if
specified). In Section 6 we show that our implementation is faster than other
approaches (in particular, the automata-based one) even for those cases.

4.3 Determining Rare Labels

The algorithm described above assumes a fixed value for m, the parameter de-
termining which labels are considered rare. The choice of m needs to find a
compromise between treating as many labels as rare as possible and keeping
the number of occurrences of rare labels as small as possible. If a rare label has
many occurrences in the graph, the search space increases because each occur-
rence needs to be included in the search (forward and backward). On the other
hand, multiple different rare labels in a query speed up its execution, because
partial paths that need to be searched are shorter.

We know of no simple way to determine the best value for m. It depends on
the graph as well as on the query, so using a fixed value is not the best approach.
We therefore use an adaptive heuristic for determining which labels to consider
rare for a given graph and query. The idea is that if, for a given query, there are
several possible rare labels, we set the threshold for rare labels higher than if only
very few rare labels can be found. This, on the one hand, produces less queries
without any rare labels. On the other hand, for queries with many potential rare
labels, only labels with a small number of occurrences are included.

Our proposed heuristic works as follows. We first acquire a list of all potential
rare labels for the query. We then reduce this list depending on the overall
number of paths that would need to be searched in the current configuration.
Labels that produce the most paths are removed first; we can compute the
number of paths between any two adjacent rare labels r1, r2 as |r1| · |r2|. The
overall number of paths is the sum of all paths between all adjacent pairs. For
the first and last rare labels, we also add their number of occurrences to account

Regular Path Queries on Large Graphs 185

for the search to the beginning and to the end of the path. We repeatedly remove
the rare label that produces the most paths, until the sum of all paths is below
a threshold.

5 Implementation

In this section, we give a short overview of the architecture of our system and
the data structures used. We describe the implementation of our algorithms in
some more detail and give a complexity analysis of our search algorithms.

We use a node based storage schema, which means that the nodes in the graph
are represented explicitly, while the edges only exist as attributes of the nodes
in the form of adjacency lists. Edges are stored in forward and backward direc-
tion, which enables two-way searching but almost doubles memory consumption.
Labels are always stored as integers; if the labels are given as strings, a global
mapping table is used to map them to numbers. To be able to efficiently gather
rare labels from the graph, we also use an index on the edge labels also encoding
their multiplicity. Figure 3 visualizes the architecture of our system.

Regular path queries are represented as NFAs. Converting a regular expression
into an NFA is straight-forward. The automaton is stored as states and transi-
tions, which are labeled with the number representing the label for the transition.
Transitions are stored in both directions for two-way search. To speed up query
execution, we create a list for every state with all labels that are accepted in
that state, and a list showing into which states the automaton may transition
for each label. We call these labeled follow sets as a reference to follow sets used
in compiler construction [3].

Our current implementation requires about 2 GB of memory for a graph with
10 million nodes and 20 million edges, including all additional data structures
described in the following. Thus, working with graphs even much larger than the
ones we use for evaluation (see Section 6.1) would, in the first place, not be a
problem of memory.

5.1 Search Algorithms

Answering RPQs involves several algorithms. In this section, we give an overview
of the most important ones.

Fig. 3. Storage schema and query evaluation process of our system

186 A. Koschmieder and U. Leser

Rare Label Search. The first task in executing a query is to find the rare
labels. To this end, we go through the automaton representing the query from
start to end. For every state, we check if it is mandatory (i.e., does not have
a modifier as * or ?). If it is mandatory, we look up the edge label the state
represents in the edge label index (which requires constant time). This index
gives us the number of occurrences of the label in the graph. If it is below the
given threshold, the current state is added to the list of rare states. We consider
alternatives (e.g., a|b) as rare if the sum of the number of occurrences of all
alternatives is below the threshold. Items in brackets can only be mandatory if
the bracket itself is mandatory.

Two-way Search. If two or more rare labels have been found, we use a two-
way search algorithm to find paths between each two neighboring rare labels.
Since rare labels can occur more than once, this is a many-to-many search,
starting at the end nodes of all edges with one rare label, and ending at the start
nodes of all edges with the next rare label. The search is performed breadth-first
by iterating through the graph and the query automaton at the same time. A
search state (one specific point during the search process) consists of the current
position in the graph and the current state of the automaton. Different search
states can be at the same position in the graph but in different states of the
automaton, or vice versa. When traversing an edge in the graph, we check if its
label is in the labeled follow set of the current state. In that case, new entries are
added to the end of the list of search states to be processed. One search state is
created for each entry in the follow set.

The aim of the search is to find all paths for each pair of fix start and end
nodes. A path is found if a forward and a backward search meet at a node and
are in the same state of the query automaton. We keep lists for every node where
we store in which states a search passed the node. This is used to find completed
paths as well as to prevent cycles in the result paths. The search ends once the
list of unprocessed search states is empty.

Start and End Search. Searching for the start and end of the path works
much like the two-way search algorithm. The only differences are that we search
one-way and that we do not end when finding specific nodes, but when hitting a
finish state in the query automaton (or a start state, for the backward search).

5.2 Two-Way Search Complexity

Theoretically, all nodes might need to be searched during a two-way search, and
every node could be visited in every state of the automaton, and from every
start or end node, resulting in a complexity of O(|V | · |S| · r), with S being
the states of the automaton and r the number of start plus end nodes, i.e., the
occurrences of the rare labels used for that search. In reality, however, the search
space is limited because the labels on the path must match the automaton (a
query should thus be as small as possible, e.g. not include a∗a∗ instead of a∗).
Also, the number of start and end nodes is much smaller than |V | (depending
on which labels are considered rare). Due to two-way search, the search space is

Regular Path Queries on Large Graphs 187

reduced further in most cases, since complete paths are only half as long from
both directions.

Additional checks have to be made during the search, but they do not add
to its complexity. For finish and cycle checks, we need to check for all nodes
encountered on the path whether they have already been visited in the same state
in the same direction (indicating a circle) or in the other direction (indicating a
completed path). This can be done in constant time. However, cycle checks might
be performed more than once per node, if a node has multiple incoming edges:
In the worst case, the check is performed as often as the number of edges in the
graph. Thus, the overall worst-case complexity sums up to O((|V |+ |E|) · |S| ·r).

5.3 Parallelization

The search process can be parallelized in different ways. For a query that contains
n rare labels, n+1 smaller queries have to be answered. This is performed as n+1
independent searches which are executed in parallel. Also, the search algorithm
is a many-to-many search if the rare labels occur more than once in the graph.
This can also run in parallel, with different threads processing different start
points.

6 Experimental Results

In this section, we present an experimental evaluation of our method. We com-
pare our rare-label based algorithm with other implementations available and
show results for different graphs and different kinds of queries. Further experi-
ments are devoted to scalability with regard to the size and density of graphs,
to the effects of parallelization, different query types, and different label distri-
butions. All tests were executed on a Quad-Core AMD Opteron machine with
16 GB of main memory. The execution times for queries given in the following
were gathered by executing 10,000 queries and building the average.

As threshold for the number of path combinations in the rare label optimiza-
tion (see Section 4.3), we used a value of 100; higher values did not yield any
significant changes in runtimes, while lower values lead to slower queries.

6.1 Graphs and Queries

We use real graphs (from biological research) as well as artificially created graphs
for the evaluation. We present results for two real-world graphs which we call
AliBaba and Extracts. AliBaba is a network of protein-protein-interactions ex-
tracted by text mining on all of PubMed [31]. The graph has about 50,000 nodes
and 340,000 edges. Extracts is a graph of enzymes and their relations, also ex-
tracted by text mining from biomedical abstracts, containing about 80,000 nodes
and one million edges. Note that these graphs are not toys; such networks today
are used regularly in Systems Biology, for instance to improve protein function
prediction [17] or disease-gene identification [2]. Their size is roughly comparable

188 A. Koschmieder and U. Leser

or larger to that of the largest databases of biological networks (the KEGG net-
work currently contains approximately 45.000 nodes), but their density is consid-
erably higher. Thus, they represent rather difficult cases for this domain. Results
for other biological networks we tested were similar to those on these two graphs.

To systematically study the scalability of the algorithms with regard to var-
ious parameters, we created artificial graphs with sizes between 1000 and one
million nodes, with different average degrees and different label distributions.
All real and all synthetic graphs are scale-free and roughly have a Zipfian dis-
tribution of edge label frequencies. The influence of the type of graph and the
label distribution is shown in [21].

For our evaluation, we used both real-life queries from the Bioinformatics
domain as well as large, artificially generated sets of queries with similar proper-
ties. The biological queries on the AliBaba graph are used in a Systems Biology
application analyzing networks of transcription regulation and protein-protein
interactions [37]. They consist of 4-12 labels, which may or may not be rare.
Artificial queries are used to evaluate the influence of the queries on the run-
time (see Section 6.4). The queries have been created with special properties
(e.g. number or occurrences of rare labels) and are structurally similar the the
biological queries. See the full paper [21] for more details.

6.2 Comparing with other Implementations

We are aware of just two implementations of regular path queries on graphs and
considered both as competitors of our algorithm.

RPL [39] evaluates RPQs on RDF graphs using an automata-based imple-
mentation. Using the original code provided by the authors, we observed that
the system works well on small RDF graphs. However, it cannot handle graphs of
the size we target with our work. For answering queries on a graph with approx.
10,000 nodes and 20,000 edges, the system already required 16 GB of main mem-
ory. Queries on this graph required already several seconds per query, while our
algorithm answers those queries in less than 100ms. All larger graphs, including
our real-world biological graphs, could not be handled anymore. Therefore, we
do not include this system in the following systematic evaluation.

GLEEN [9] is implemented as an extension to the ARQ library for SPARQL
processing. Thus, a comparison of runtimes would be rather unfair, as the ARQ
extension mechanism is based on an iterative load-and-verify of single edges of
a graph, which cannot be compared to our approach of loading the entire graph
into memory at once.

This leaves the re-implementation of the DataGuides system [14] (called AUT
from now on) to compare with. Automata-based methods generally work as
follows. First, the graph and the query are transformed into NFAs. Both NFAs
are then converted into DFAs that are minimized in a third step. Then, both
minimized DFAs are intersected. The result is an automaton that is equivalent to
the subgraph (of the graph) embracing all paths that match the query. Extracting
all matching paths from this subgraph is straight-forward. While this approach
works very well for evaluating RPQs on schema-based (i.e. sequences of labels

Regular Path Queries on Large Graphs 189

Fig. 4. Average runtime (log scale) to answer one query on different graphs. The left
diagram shows the results for queries without rare labels. On the right, each query
contains at least one rare label. Queries on Extracts as well as on the synthetic graph
with 100K nodes could not be executed with AUT.

follow a schema) or tree-like data (e.g. XML), it has problems with general
graphs and schemaless label distributions, as in our case. For such structures,
the DFA generated from the NFA often grows extremely in size (recall that the
DFA for an NFA can be exponential in size of the NFA in the worst case). As
we show shortly, even mid-sized graphs cannot be processed by this method.

For comparing our RLmethod with AUT, we use sets of queries with rare labels
as well as completely random queries (which may contain an arbitrary number of
rare labels or none). As we are not aware of any efficient parallelization scheme for
automaton minimization and determinization, we only compare single-threaded
versions of both implementations; the additional speed-up that is possible with
our algorithm on current (multi-core) hardware will be evaluated in Section 6.5.

Figure 4 shows the average runtime (averaged over 10,000 queries) for an-
swering an RPQ with RL and with AUT. The former is faster in all cases. For
queries without rare labels, the runtimes do not differ much for small graphs,
but differences get significant for larger graphs. For a graph of 10,000 nodes and
20,000 edges, RL already performs almost two orders of magnitude faster than
AUT. For queries that contain at least one rare label, again, RL is always faster,
and its superiority increases with graph size; differences for those queries are
larger than for queries without rare labels.

Rare labels have a considerable influence on the runtime of RL. In contrast,
we found that for AUT, the runtime for different queries on the same graph is
about equal. However, time is only one problem of this method; the other is
space. The NFA-DFA conversion in AUT incurs an exponential increase in the
number of nodes. In our implementation, the whole process requires 350 MB
for the graph with 1000 nodes and 2000 edges, but already 3.8 GB for the 10
times larger graph – which still is considerably less space than required by RPL
(see above). Running AUT on the AliBaba or Extracts real-life graphs or on the
100K synthetic graph failed due to memory overflow.

6.3 Scalability: Graph Size and Density

To test different scalability aspects of RL, we used artificially created graphs
with varying properties. All queries contain at least one rare label. For this

190 A. Koschmieder and U. Leser

Fig. 5. Average runtime for answering one query on synthetic graphs with different
numbers of nodes and edges. The left diagram shows results for a fixed node to edge
ratio of 1:2, while the number of nodes is 100,000 on the right.

evaluation, we used the multi-threaded implementation with a fixed number of
four threads. We evaluated the effect of our rare-label optimization by comparing
it to a baseline method, which performs a brute-force search starting at every
node (also in parallel) without considering label frequencies.

Figure 5 (left) shows how RL scales with the size of the graph at a fixed
node/edge ratio. The smallest graph has 10K nodes and 20K edges, and the
largest graph has 1 million nodes and 2 million edges. Clearly, the scaling of the
implementation with the rare-label optimization is much better than that of the
baseline. Even for the largest graphs we tested, RL can answer a regular path
query in few seconds on average.

Figure 5 (right) shows scalability of RL with the average graph degree. Using
multiple artificial graphs with 100,000 nodes, we increased the number of edges
(and thus the average degree), leaving all other properties equal. Again, the
increase in execution time is favorable compared to the baseline.

Both experiments also show that execution times grow super-linearly with
increasing graph size and graph density. Also, the absolute times cannot be
compared to those achieved for answering, for instance, reachability queries on
graphs of similar size [38,35]. But one should not forget that evaluating RPQs on
graphs is a NP-hard problem, whereas reachability can be answered in O(n3).

6.4 Influence of Query Types

To evaluate the influence of our optimizations on different types of queries, we
created ten sets of 1000 queries each differing in the number of occurrences
of rare labels. One set does not contain any rare labels (set 0). All other sets
contain exactly one rare label, but with an increasing number of occurrences in
the graph. The rare labels found in query set 1 appear only once in the graph,
rare labels from set 2 exactly twice, and so on. The runtimes for the different
query sets are shown in Figure 6.

Regular Path Queries on Large Graphs 191

Fig. 6. Left: average runtime for answering one query from the respective query set.
Right: Number of queries taking up to 10 ms, 100ms, 1s, and 10s to execute. The
synthetic graph that was used has 10,000 nodes and 20,000 edges.

As expected, answering queries without rare labels is considerably slower than
for queries containing rare labels. The difference between queries without rare
labels and those with one rare label appearing exactly once in the entire graph
is almost three orders of magnitude. Also, queries with a rare label that occurs
less frequently in the graph generally are executed faster. However, this trend
is partly out-weighed by noise generated through the random complexity of the
queries in the workload.

To further study how runtimes change for different queries, we categorized
the runtimes of all queries from our query set on a given graph. As Figure 6
shows, more than 90% of all queries are answered in less than 10ms, and more
than 95% are answered in less than 100ms. But a few queries take exceptionally
longer than all others. These pathological queries are queries that contain only
very frequent labels, leading to exceptionally large result sets. For instance, the
most difficult query from our set took about 4 seconds and generated a result
set of 230 million matching paths. However, we believe that such queries rarely
occur in any real application.

We also investigated the influence of query lengths, i.e., the number of labels
in the regular expression of the query. Comparing the execution times of queries
depending on their lengths, we found that the query length only has a minor
influence on execution speed (data not shown). The reason is that, although
longer queries are more complicated to answer in general, they often do not have
as many matches in the graph, which reduces the search space. For execution
speed, the number of occurrences of the labels and the number of rare labels are
much more important than the sheer number of labels in the query.

6.5 Parallelization

Figure 7 shows the effect of using multiple threads for RL. The scale-up is very
good for up to four threads, but the additional advantage of adding more threads
levels out for more than 4 threads. This behavior can be explained by the fact
that our current implementation uses additional threads only for additional rare

192 A. Koschmieder and U. Leser

Fig. 7. Average runtime for answering a query containing rare labels on a graph with
10,000 nodes and 20,000 edges against the number of threads used

labels. For example, a query containing two rare labels uses three threads: One
for searching the paths between the rare labels, one for searching to the start
and one for searching to the end of the query. Since few queries contain more
than three rare labels, the scaling diminishes. However, it would be possible to
enhance the implementation by also running the searches between two instances
of a rare label in parallel. Since most rare labels appear more than once in the
graph, finding paths between them is a many-to-many search and could use
different threads starting at different nodes.

7 Conclusion

We presented a novel approach for answering regular path queries on large
graphs. Our main idea is to structure a graph traversal along those labels from a
query that are infrequent in the graph, but guaranteed to occur in any matching
path. We use these rare labels as start-, end-, and way-points during traversal,
thus essentially breaking up a very large search space into many much smaller
ones. We compare our novel method with a traditional approach using automata
and find that the former outperforms the latter over a wide range of different
graphs and queries; furthermore, it requires only linear preprocessing and is able
to handle much larger graphs. We also showed that using the rare-label opti-
mization considerably improves scalability with regard to the size of the graph
and to graph density.

References

1. Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wiener, J.L.: The lorel query
language for semistructured data. Int. Journal on Digital Libraries 1, 68–88 (1997)

2. Aerts, S., Lambrechts, D., Maity, S., Van Loo, P., et al.: Gene prioritization
through genomic data fusion. Nat. Biotechnol. 24(5), 537–544 (2006)

Regular Path Queries on Large Graphs 193

3. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: principles, techniques, and tools.
Addison-Wesley Longman Publishing Co., Boston (1986)

4. Alkhateeb, F., Baget, J.-F., Euzenat, J.: Extending SPARQL with regular expres-
sion patterns (for querying RDF). Web Semant. 7(2), 57–73 (2009)

5. Anyanwu, K., Maduko, A., Sheth, A.: Sparq2l: towards support for subgraph
extraction queries in rdf databases. In: WWW 2007, Banff, Alberta, Canada, pp.
797–806 (2007)

6. Chan, C.-Y., Garofalakis, M., Rastogi, R.: Re-tree: an efficient index structure for
regular expressions. The VLDB Journal 12(2), 102–119 (2003)

7. Cheng, J., Yu, J.X., Ding, B., Yu, P.S., Wang, H.: Fast graph pattern matching.
In: ICDE 2008, pp. 913–922. IEEE (2008)

8. Cho, J., Rajagopalan, S.: A fast regular expression indexing engine. In: ICDE
2002, p. 0419 (2002)

9. Detwiler, L.T., Suciu, D., Brinkley, J.F.: Regular paths in sparql: Querying the
nci thesaurus. American Medical Informatics Association, 161–165 (2008)

10. Dries, A., Nijssen, S., De Raedt, L.: A query language for analyzing networks. In:
CIKM 2009, New York, NY, USA, pp. 485–494 (2009)

11. Fan, W., Li, J., Ma, S., Tang, N., Wu, Y.: Adding regular expressions to graph
reachability and pattern queries. In: ICDE, pp. 39–50 (2011)

12. Fernandez, M.F., Suciu, D.: Optimizing regular path expressions using graph
schemas. In: ICDE 1998, pp. 14–23. IEEE, Washington, DC (1998)

13. Goldman, R., Widom, J.: Dataguides: Enabling query formulation and optimiza-
tion in semistructured databases. In: VLDB 1997, pp. 436–445 (1997)

14. Goldman, R., Widom, J.: Approximate dataguides. In: Workshop on Query Pro-
cessing (1999)

15. He, H., Singh, A.K.: Graphs-at-a-time: query language and access methods for
graph databases. In: SIGMOD 2008, New York, USA, pp. 405–418 (2008)

16. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

17. Jaeger, S., Gaudan, S., Leser, U., Rebholz-Schuhmann, D.: Integrating protein-
protein interactions and text mining for protein function prediction. BMC Bioin-
formatics 9(suppl. 8), S2 (2008)

18. Jin, R., Hong, H., Wang, H., Ruan, N., Xiang, Y.: Computing label-constraint
reachability in graph databases. In: Proceedings of the 2010 International Confer-
ence on Management of Data, SIGMOD 2010, New York, NY, USA, pp. 123–134
(2010)

19. Kaushik, R., Bohannon, P., Naughton, J.F., Korth, H.F.: Covering indexes for
branching path queries. In: SIGMOD Conference, pp. 133–144 (2002)

20. Kochut, K.J., Janik, M.: SPARQLeR: Extended Sparql for Semantic Associa-
tion Discovery. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS,
vol. 4519, pp. 145–159. Springer, Heidelberg (2007)

21. Koschmieder, A., Leser, U.: Regular Path Queries on Large Graphs. In: Ailamaki,
A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 177–194. Springer, Hei-
delberg (2012)

22. Kuramochi, M., Karypis, G.: An efficient algorithm for discovering frequent sub-
graphs. IEEE Trans. on Knowl. and Data Eng. 16(9), 1038–1051 (2004)

23. Leser, U.: A query language for biological networks. Bioinformatics 21(2), 33–39
(2005)

24. Li, L., Alderson, D., Tanaka, R., Doyle, J.C., Willinger, W.: Towards a theory of
scale-free graphs: Definition, properties, and implications (ext. version). Internet
Mathematics 2(4), 431–523 (2006)

194 A. Koschmieder and U. Leser

25. Li, Q., Moon, B.: Indexing and querying XML data for regular path expressions.
In: VLDB 2001, Roma, Italy, pp. 361–370 (2001)

26. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: PODC
2009, New York, NY, USA, p. 6 (2009)

27. Mart́ınez-Bazan, et al.: Dex: high-performance exploration on large graphs for
information retrieval. In: CIKM 2007, New York, NY, USA, pp. 573–582 (2007)

28. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases.
SIAM Journal on Computing 24(6), 1235–1258 (1995)

29. Milo, T., Suciu, D.: Index Structures for Path Expressions. In: Beeri, C., Brune-
man, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 277–295. Springer, Heidelberg
(1998)

30. Neven, F.: Automata theory for xml researchers. SIGMOD Rec. 31(3), 39–46
(2002)

31. Palaga, P., Nguyen, L., Leser, U., Hakenberg, J.: High-performance information
extraction with alibaba. In: EDBT 2009, New York, USA, pp. 1140–1143 (2009)

32. Ronen, R., Shmueli, O.: SoQL: A language for querying and creating data in social
networks. In: ICDE 2009, Shanghai, China, pp. 1595–1602 (2009)

33. San Mart́ın, M., Gutierrez, C.: Representing, Querying and Transforming Social
Networks with RDF/SPARQL. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimi-
ano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E.
(eds.) ESWC 2009. LNCS, vol. 5554, pp. 293–307. Springer, Heidelberg (2009)

34. Sevon, P., Eronen, L.: Subgraph queries by context-free grammars. Journal of
Integrative Bioinformatics 5(2), 100 (2008)

35. Trißl, S., Leser, U.: Fast and practical indexing and querying of very large graphs.
In: SIGMOD 2007, New York, NY, USA, pp. 845–856 (2007)

36. Yan, X., Yu, P.S., Han, J.: Graph indexing: a frequent structure-based approach.
In: SIGMOD 2004, New York, NY, USA, pp. 335–346 (2004)

37. Yeger-Lotem, E., Sattath, S., Kashtan, N., et al.: Network motifs in integrated
cellular networks of transcription-regulation and protein-protein interaction. Proc.
Natl. Acad. Sci. USA 101(16), 5934–5939 (2004)

38. Yildirim, H., Chaoji, V., Zaki, M.J.: Grail: Scalable reachability index for large
graphs. In: VLDB 2010. VLDB Endowment (2010)

39. Zauner, H., Linse, B., Furche, T., Bry, F.: A RPL through RDF: Expressive
Navigation in RDF Graphs. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS,
vol. 6333, pp. 251–257. Springer, Heidelberg (2010)

40. Zou, L., Chen, L., Özsu, M.T.: Distance-join: Pattern match query in a large
graph database. PVLDB 2(1), 886–897 (2009)

Sampling Connected Induced Subgraphs

Uniformly at Random

Xuesong Lu and Stéphane Bressan

School of Computing, National University of Singapore
{xuesong,steph}@nus.edu.sg

Abstract. A recurrent challenge for modern applications is the pro-
cessing of large graphs. The ability to generate representative samples of
smaller size is useful not only to circumvent scalability issues but also,
per se, for statistical analysis and other data mining tasks. For such pur-
poses adequate sampling techniques must be devised. We are interested,
in this paper, in the uniform random sampling of a connected subgraph
from a graph. We require that the sample contains a prescribed number
of vertices. The sampled graph is the corresponding induced graph.

We devise, present and discuss several algorithms that leverage three
different techniques: Rejection Sampling, Random Walk and Markov
Chain Monte Carlo. We empirically evaluate and compare the perfor-
mance of the algorithms. We show that they are effective and efficient
but that there is a trade-off, which depends on the density of the graphs
and the sample size. We propose one novel algorithm, which we call
Neighbour Reservoir Sampling (NRS), that very successfully realizes the
trade-off between effectiveness and efficiency.

1 Introduction

The versatility of graphs makes them an almost universal data structure in
domains as varied as social network, transportation and bioinformatics, to cite a
few among the obvious. The challenge for modern applications is the effective and
efficient processing of very large graphs. One way to circumvent scalability issues
arising from this challenge is to replace the processing of very large graphs by
the processing of representative subgraphs of manageable size. This is sampling.
Sampling is also useful per se for statistical analysis, data mining, and simulation
as well as building block in the implementation of randomized algorithms.

We observe that the graphs of interest are often required to be connected (or
that one is interested in connected components). This is the case, for instance,
when one is looking for graphlets and motifs in applications such as graph pattern
mining (see [10,17], for example). This is also the case when one is studying
social networks where communities are characterized by their connectivity. In
this domain connected induced subgraphs are the preferred basis of studies of
network topology (see [2,11], for example) and evolution (see [19], for example),
for instance.

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 195–212, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

196 X. Lu and S. Bressan

(a) (b) (c) (d) (e)

Fig. 1. A connected graph and its connected induced subgraphs

For statistical analysis, data mining and simulation applications a common
requirement for a subgraph construction or sampling algorithm is that it main-
tains graph properties. A uniformly sampled connected induced graph has the
advantage that it naturally statistically maintains local properties such as vertex
degrees and clustering coefficients among others. In addition a strong guaran-
tee on the distribution, such as uniformity, from which the graph is sampled
is very useful for statistical analysis, simulation applications and randomized
algorithms.

Motivated by these observations, we study the uniform (or simple) random
sampling of a connected induced subgraph of a prescribed size from a graph.

For the sake of simplicity, and without loss of generality as far as the algo-
rithms discussed are concerned, we consider simple graphs of the form G =<
V,E >, where V is a set of vertices and E is a set of pairs of vertices called
edges. The size (also called order) of a graph G =< V,E > is the number of its
vertices, | V |. A subgraph of a graph G =< V,E > is a graph G′ =< V ′, E′ >
such that V ′ ⊂ V and E′ ⊂ E. A subgraph of a graph G is induced if it contains
all the edges that appear in G between any two of its vertices.

Definition 1. Let G =< V,E > be a graph. A subgraph G′ =< V ′, E′ > of G
is induced if and only if:

∀x ∈ V ′ ∀y ∈ V ′({x, y} ∈ E ⇒ {x, y} ∈ E′)

The problem we are studying in this paper is the generation of connected
induced subgraphs of size k uniformly at random from a connected
graph G of size n, where 1 ≤ k ≤ n.

Example 1. The graph in Figure 1(a) is a simple graph of size 5. It has 4 edges.
There are 4 connected induced subgraphs with 3 vertices shown in Figure 1(b),
1(c), 1(d) and 1(e), respectively. We ought to devise algorithms able to randomly
generate each of this connected induced subgraphs with equi-probability, i.e. 1

4
in this example.

In this paper, we devise, present and discuss several algorithms that leverage dif-
ferent techniques: Rejection Sampling, Random Walk and Markov Chain Monte
Carlo.

Sampling Connected Induced Subgraphs Uniformly at Random 197

The first algorithm, which we call Acceptance-Rejection Sampling (ARS) is a
trivial variation of the standard Rejection Sampling [12]. It serves as a baseline
reference as it is guaranteed to be a uniform random sampling.

The second algorithm, which we call Random Vertex Expansion (RVE), adapts
the idea of a random walk on the original graph to the gradual construction of
the sample.

The third algorithm, which we call Metropolis-Hastings Sampling (MHS), is
a Markov Chain Monte Carlo algorithm. The general idea of algorithms from
this known and generic family is a random walk on a graph of sample states.
The effectiveness of such algorithms is guaranteed provided a sufficient duration,
mixing time, of the random walk.

The fourth algorithm, which we call Neighbour Reservoir Sampling (NRS) is
our main contribution. It operates on the same Markov Chain as MHS but tries
to avoid local computation of the degrees of states and long or unbound random
walks, and adjust the bias of RVE by combining the idea of expansion from RVE
with the idea of reservoir from Reservoir Sampling [21].

The rest of this paper is organized as follows. In the next section, Section 2,
we give a brief overview of the related work. In Section 3 we present the four
algorithms and their variants. In Section 4 we comparatively and empirically
evaluate the effectiveness and the efficiency of the different algorithms and eval-
uate the performance trade-off and its relation to graph density and sample size,
and we compare with algorithms in [13] to see what properties our sampling
algorithms can preserve. Finally we conclude in Section 5.

2 Related Work

Several authors [13,9,14,18] have propose algorithms that construct small (rela-
tively to the original graph) subgraphs while trying to preserve selected metrics
and properties of the original graph such as degree distribution, component
distribution, average clustering coefficient and community structure. Although
these algorithms have a random component, they are primarily construction
algorithms and are not designed with the main concern of randomness and uni-
formity of the sampling. In general the distribution from which these random
graphs are sampled are not known (except from the obvious distribution of the
first and näıve algorithm discussed in [13].)

In their pioneering paper [13], Leskovec et al. propose several such algorithms
aiming at preserving nine graphs metrics and properties.

Hübler et al. [9] propose Markov Chain Monte Carlo algorithms that produce
sample subgraphs with smaller size and higher utility than Leskovecs.

Maiya et al. [14] focus on the construction of subgraphs preserving the com-
munity structure of the original graph.

Ribeiro et al. [18] are interested in properties such as in-degree distribution.
They construct subgraphs by sampling edges uniformly at random. They pro-
pose a m−dimensional random walk algorithm. Their algorithm improves the
performance of simple random walk algorithms when the sampled graphs are
disconnected and loosely connected.

198 X. Lu and S. Bressan

Several authors [8,10] are concerned with uniform sampling although they may
be sampling vertices, edges or subgraphs or subgraphs with specific prescribed
constraints.

Henzinger et al. [8], consider the problem of sampling connected induced sub-
graphs. They consider the World Wide Web as a graph. URLs of Webpages are
vertices. (Undirected) edges are links from one Webpage to another. The algo-
rithm that they propose is a random walk on this graph. The authors do not
consider a prescribed size of the samples.

Kashtan et al. [10] study the estimation of network motifs concentration.
Network motifs are connected subgraphs matching a prescribed pattern (and
therefore a prescribed size). The proposed algorithm is not a uniform-sampling
algorithm. The RVE algorithm that we discuss in Section 3.2 is a variant of their
work.

Random graph generation [15,20,3,16] under specific models and with pre-
scribed constraints can be seen as sampling from a virtual specific sample space.

Milo et al. [15] address the problem of generating uniformly at random graphs
with prescribed degree sequences. Viger et al. [20] address the problem of gener-
ating uniformly at random connected graphs with prescribed degree sequences.
Batagelj et al. [3] discuss efficient algorithms for generating random graphs un-
der model such as Erdős-Rényi, Watts-Strogatz and Barabási-Albert. Nobari
et at. [16] propose both sequential and parallel algorithms for the fast random
generation of Erdős-Rényi graphs.

3 Algorithms

We consider the generation of connected induced subgraphs of prescribed size
uniformly at random from a connected simple graph G. We first introduce a
baseline algorithm based on Rejection Sampling [12]. We then revisit the al-
gorithm of [10]. Finally, we propose two non-trivial algorithms for practically
sampling the subgraphs. The two algorithms leverage the idea of traversing a
Markov chain of connected induced subgraphs.

3.1 Acceptance-Rejection Sampling

The simplest algorithm to sample, uniformly at random, an induced subgraph of
size k from an original graph of size n is to select k vertices uniformly at random,
complete the induced graph by adding all the edges linking the vertices and then
check for connectivity of the induced subgraph. If the induced subgraph is not
connected then it is rejected and the selection restarts. If the induced subgraph
is connected then it is accepted.

It is a simple instance of Rejection Sampling (see [12], for instance). We call
this algorithm Acceptance-Rejection Sampling (ARS). The pseudo-code for ARS
is given in Algorithm 1.

Notice that the same approach can be applied to generate uniformly at random
an induced subgraph with any desired property other than connectivity.

Sampling Connected Induced Subgraphs Uniformly at Random 199

Algorithm 1. Acceptance-Rejection Sampling

Input: G : the original graph with n vertices, k : subgraph size
Output: a connected induced subgraph g with k vertices

1 do
2 Select k vertices uniformly at random from G;
3 Generate the induced graph g of the k vertices;

4 while g is not connected;
5 Return g

Proposition 1. Given a graph G of size n and an integer k where n > k, the
ARS algorithm generates a connected induced subgraph of size k (if it exists)
from G uniformly at random.

Proof. Let S be the set of induced subgraphs of size k in G. Let C be the set of
connected induced subgraphs of size k in G. Let g be the probability distribution
of S. Let f be the probability distribution of C. In a uniform distribution, the
probability density function (pdf) of a subgraph c ∈ C is f(c) = 1/|C| and
g(c) = 1/|S|. Let M = |S|/|C|. For each c generated from the distribution g, we
accepted it with probability f(c)/(M × g(c)) = 1 if c is connected; otherwise, we
reject c. The accepted subgraph c follows the distribution f , i.e., it is generated
uniformly at random from C.

ARS is a baseline algorithm that provides a reference for effectiveness. It is
a rather brute-force algorithm. We expect ARS to be efficient for dense graphs
but otherwise generally inefficient when connected induced subgraphs are a small
fraction of induced subgraphs.

3.2 Random Vertex Expansion

One natural method to generate connected subgraphs is to explore a graph
from a starting vertex moving gradually and randomly to neighbouring vertices.
This generalization of a random walk, which we call Random Vertex Expan-
sion (RVE) has been independently proposed and used by many authors. In
particular, Kashtan et al. in [10] use it to sample network motifs. Variants of
RVE can be implemented with different random selection of the next vertex.
We have experimented with several such selection functions and, for the sake
of simplicity, only report here the most relevant one. Namely, in the variant we
are discussing, RVE chooses the next vertex by selecting uniformly at random
one of edges connecting a vertex of the current subgraph with a vertex not yet
in the subgraph. The algorithm terminates when the subgraph has the desired
size. The pseudo-code for RVE is given in Algorithm 2.

The probability of sampling a k−vertex subgraph is then the sum of the
probabilities of the permutations of its k − 1 edges. It is given by Equation 1

200 X. Lu and S. Bressan

Algorithm 2. Random Vertex Expansion

Input: G : the original graph with n vertices, k : subgraph size
Output: a connected induced subgraph g with k vertices

1 E ← ∅;
2 Select uniformly at random an edge e of G;
3 E ← e;
4 while E contains less than k vertices do
5 EL← ∅;
6 EL← edges connecting a vertex of E with a vertex not yet in E;
7 Select uniformly at random an edge e from EL;
8 E ← e;

9 end
10 Return the induced graph g of E;

where Sm is the set of all the valid permutations of k − 1 edges to sample a
certain subgraph, Ej is the jth edge in an (k − 1)-edge permutation.

P =
∑

σ∈Sm

∏
Ej∈σ

Pr[Ej = ej|(E1, E2, . . . , Ej−1) = (e1, e2, . . . , ej−1)]. (1)

The more edges a connected induced subgraph of size k has, the more per-
mutations of its k − 1 edges, and the higher its probability to be selected. RVE
has bias to those subgraphs that are denser, i.e., have higher average clustering
coefficient. The main cost of RVE is computing the list of edges connecting a
vertex of the current subgraph with a vertex not yet in the subgraph in each
step. Suppose the maximal degree of vertices in G is D, the worst complexity
is O(Dk). The complexity can be reduced to O(k2) by maintaining an efficient
data structure [10].

3.3 Metropolis-Hastings Sampling

Another idea for catering for the requirement of connectivity is to sample on
an ergodic Markov chain whose states represent all the connected induced sub-
graphs with prescribed size of a given original graph. The approach belongs to
the Markov Chain Monte Carlo (MCMC) family [6]. An MCMC sampling al-
gorithm constructs and randomly traverses a Markov chain whose states are all
the candidate samples, starting from any initial state of the Markov chain. Af-
ter sufficiently many steps, this random walk converges and each state is visited
with probability proportional to the degree of that state. The number of random
walk steps needed for convergence is called the mixing time. The corresponding
probability distribution is called stationary distribution and the probability is
called stationary probabilities.

For the problem at hand, the states of the Markov chain are the connected
induced subgraphs g of size k of the graphG. Two states gi and gj are neighbours

Sampling Connected Induced Subgraphs Uniformly at Random 201

Algorithm 3. Metropolis-Hastings Sampling

Input: G : the original graph with n vertices, k : subgraph size, t : the number
of random walk steps

Output: a connected induced subgraph g with k vertices

1 Perform any graph traverse algorithm on G to get an initial connected induced
subgraph g of size k;

2 while t > 0 do
3 Select g′ uniformly at random from the neighbors of g;
4 Generate a random number α ∈ [0, 1);

5 if α <
dg
dg′

then

6 g = g′

7 end
8 t = t− 1

9 end
10 Return g;

of each other if and only if V (gi)−V (gj) = {vi} and V (gj)−V (gi) = {vj}, where
V (gi) is the vertex set of gi, that is, one can get gj by deleting vi from gi and
adding vj to it, and vice versa. This Markov chain is constructed while it is
traversed. The starting state of the random walk can be any connected induced
subgraph g0 of size k. In order to construct such a graph it suffices, for instance,
to start at a random vertex and to traverse, by any convenient means, the graph
G until we visit k vertices.

In each step, the random walk may select the next state uniformly at random
from the neighbours of the current state and transfers to it. We can see that
all the connected induced subgraphs can be reached from any initial state by
a sequence of replacement of the vertices, which indicates the Markov chain is
irreducible. Moreover, rejecting the transition means adding self-loops to the
states, which makes the Markov chain aperiodic. Therefore our Markov chain is
ergodic and has a stationary distribution.

However, the stationary probability of each state is proportional to its degree
in the Markov chain. Consequently for the Markov chain that we are considering,
the distribution is not necessarily uniform. One option to adjust this bias is by
using the Metropolis-Hastings algorithm [7]. Each step from gi to gj is accepted
with probability di

dj
where di is the degree of gi. This approach is actually bal-

ancing the probability of visiting the states with their different degrees. One may
notice that if di > dj the transition is accepted definitely, whereas the smaller
di compared to dj the higher the chance that the random walk stays at gi.

We call this algorithmMetropolis-Hastings Sampling (MHS). The pseudo-code
for MHS is given in Algorithm 3.

The Markov chain and the degree of the states are computed during the
traversal. At each step the algorithm only needs to compute the degree of the
selected neighbour of the current state and temporarily store the neighbour
information of that neighbour. If the transition is accepted, it moves to the next

202 X. Lu and S. Bressan

state and directly uses the information computed in previous step, and then
iteratively computes and stores the information of the next selected neighbour,
etc. In this way the memory usage is bounded by the largest degree of a state
in the Markov chain. In terms of time complexity, suppose on average each
connected induced subgraph of size k has l edges and m neighbour vertices,
MHS needs on averageO(km(k+l)) time to compute its neighbours states in the
Markov chain, whereO(k+l) is the time complexity for checking the connectivity.
Suppose on average each connected induced subgraph has d neighbour states,
then each local computation of the degree of neighbour states takesO(dkm(k+l))
time. Therefore the overall time complexity of MHS is O(tdkm(k + l)), where t
is the number of random walk steps.

One crucial issue for Markov Chain Monte Carlo algorithms is to determine
the mixing time. When the mixing time cannot be determined analytical, one
can use statistical tests of convergence [4]. One simple and practical such test
is the Geweke diagnostics [5]. The basic idea is that for a sequence of random
walk iterations, Geweke diagnostics compares the distribution of some metric
of interest between the beginning part and the ending part of the sequence. As
the random walk iterates, the correlation between the two parts decreases and
thus the distribution of the metric of interest should become identical. Geweke
diagnostics defines the z−score such that z = E(mb)−E(me)√

V ar(mb)+V ar(me)
, where mb and

me denote the metric of interest in the beginning part and the ending part of
the Markov sequence, respectively. Typically the beginning part is defined as
the first 10% part and the ending part is defined as the last 50% part. Then
multiple chains start from different initial states. The convergence is declared
when the z-scores of all the chains fall into the range [−1, 1] with a mean of
0 and a variance of 1. Below we empirically evaluate the convergence of MHS
using the Geweke diagnostics.

3.4 Neighbour Reservoir Sampling

In order to adjust the bias of RVE, we consider a method that decreases the proba-
bility to sample the induced subgraphs with higher average clustering coefficient.
We sample the first k vertices using RVE and get a subgraph gk. After that, we
continue to choose the ith vertex vi by selecting uniformly at random one of edges
connecting a vertex of gi−1 with an unprocessed vertex. Then we insert vi into gi−1

with probability k
i . In case of a success, one vertex of gi−1 is replaced by vi uni-

formly at random and we get a new subgraph gi. If gi is connected, we keep it;
otherwise, gi = gi−1. We iteratively select the new vertices until there is no such
an edge that connects a vertex of gi with an unprocessed vertex.

We call this algorithm Neighbour Reservoir Sampling (NRS) as the algorithm
samples with a reservoir and always chooses the new vertices from the neigh-
bours. The pseudo-code for NRS is given in Algorithm 4.

The algorithm begins with standard RVE and continues to select new ver-
tices using the same strategy as RVE. However, the vertices with higher local
clustering coefficient have higher probability to be replaced, because by deleting

Sampling Connected Induced Subgraphs Uniformly at Random 203

Algorithm 4. Neighbour Reservoir Sampling

Input: G : the original graph with n vertices, k : subgraph size
Output: a connected induced subgraph g with k vertices

1 V ← the vertices selected using RVE ;
2 EL← edges connecting a vertex of V with an unprocessed vertex ;
3 i = k;
4 while EL is not empty do
5 i++;
6 Select uniformly at random an edge e from EL;
7 v = the unprocessed vertex of e;
8 Generate a variable α ∈ [0, 1) uniformly at random ;
9 if α < k/i then

10 Select uniformly at random a vertex u from V ;
11 V ′ ← V \u ∪ v;
12 if the induced subgraph of V ′ is connected then
13 V ← V ′

14 end

15 end
16 Recompute EL of the current subgraph

17 end
18 Return the induced graph g of V ;

them the subgraphs have higher probability to remain connected. The bias to
the subgraphs having higher average clustering coefficient is therefore adjusted
by this mechanism. The new vertices enter the subgraph with a decreasing prob-
ability so that each selected vertex can be sampled with the same probability [21]
despite the connectivity of the graph.

In addition, Similarly to MHS, NRS traverses a Markov chain of connected
induced subgraphs of size k. However, NRS takes at most n − k steps, and
in each step, NRS checks the connectivity of the possible next state at most
once. In each step, NRS maintains a list of edges connecting one unprocessed
vertex and one vertex in the current subgraph. This process takes O(me) time,
where me is the number of edges connecting to the current subgraph. Therefore
the overall time complexity is O(Dk + (n − k)(me + k + l)), where O(Dk) is
the time to compute the first subgraph of size k, O(k + l) is the time to check
the connectivity of each subgraph.

As a result, NRS adjusts the bias of RVE as well as avoids the local compu-
tation of the degrees of Markov chain states and the long or unbound random
walks of MHS.

4 Performance Evaluation

4.1 Experimental Setup

We implement the four algorithms in C++ and run them on an Intel Core 2
Quad machine with Ubuntu 10.4 and 4GB main memory.

204 X. Lu and S. Bressan

We conduct experiments with both synthetic datasets and real life datasets.
First, we evaluate and compare the performance of the proposed algorithms with
synthetic graphs generated in the Erdős-Rényi and Barabási-Albert models. We
generate graphs of varying size and density. These properties can be controlled
directly or indirectly by the parameters of the two models. Second, we show that
induced subgraphs that are uniformly sampled can preserve significant properties
of the original graph. We collect four real life graphs from SNAP [1] and one
real life graph from arXiv.org. We sample a series of subgraphs with incremental
sizes from these real graphs using NRS and calculate average errors on multiple
graph properties between the subgraphs and the original graphs.

We preliminarily discuss the convergence of MHS using Geweke diagnostics.
We comparatively evaluate the effectiveness of the four algorithms by mea-

suring the standard deviation from the uniform distribution and by comparing
the average subgraph properties.

We comparatively evaluate the efficiency of the four algorithms by measuring
their execution time.

We comparatively evaluate the overall performance of the four algorithm in
terms of the efficiency versus the effectiveness.

We evaluate the property-preserving of uniform sampling by measuring the
Kolmogorov-Smirnov D-statistic on different graph criteria between the sub-
graphs and the original graphs. The D-statistic is used to compare two distribu-
tions, even if they are of different scalings. It is defined as D = maxx |F ′

(x)−F(x)|,
where F ′

(x) and F(x) are the empirical distribution functions and x is over the
range of random variable of the distribution. F(x) for n iid observations xi is

defined as F(x) = 1
n

∑n
i=1 Ixi≤x, where Ixi≤x is equal to 1 if xi ≤ x and equal

to 0 otherwise. A lower value of D-statistic indicates higher similarity of two
distributions.

4.2 Mixing Time

We empirically evaluate the mixing time of MHS by detecting its convergence
using Geweke diagnostics.

We evaluate the convergence of MHS with an Erdős-Rényi graph with 1, 000
vertices with p = 0.1, and with a Barabási-Albert graph with 500 vertices and
10 new links per new vertex1. We sample connected induced subgraphs with
prescribed size 10. For each graph, we run 10 chains from different starting
vertex. We compute the z-score of Geweke diagnostics for each chain after every
random walk step, using the metric of average degree and average clustering
coefficient of the subgraphs.

The results are presented in Figures 2, 3, 4 and 5.
We see that for the Erdős-Rényi graph, the z-scores have a mean 0 and a

variance less than 0.5 after 2000 random walk steps. For the Barabási-Albert
graph, this number of random walk steps is around 1500. We then use this
empirically results in the evaluation below.

1 We denote by d this parameter, i.e., d = 10. Below we use this form.

Sampling Connected Induced Subgraphs Uniformly at Random 205

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

G
e
w

e
k
e
 Z

-S
c
o
re

Number of Steps

Fig. 2. Geweke diagnostics for a Erdős-
Rényi graph with 1000 vertices and p =
0.1. The sampled subgraph size is 10. The
metric of interest is average degree.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

G
e
w

e
k
e
 Z

-S
c
o
re

Number of Steps

Fig. 3. Geweke diagnostics for a Erdős-
Rényi graph with 1000 vertices and p =
0.1. The sampled subgraph size is 10. The
metric of interest is average clustering co-
efficient.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

G
e
w

e
ke

 Z
-S

co
re

Number of Steps

Fig. 4. Geweke diagnostics for a
Barabási-Albert graph with 500 ver-
tices and d = 10. The sampled subgraph
size is 10. The metric of interest is
average degree.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

G
e
w

e
ke

 Z
-S

co
re

Number of Steps

Fig. 5. Geweke diagnostics for a
Barabási-Albert graph with 500 ver-
tices and d = 10. The sampled subgraph
size is 10. The metric of interest is
average clustering coefficient.

4.3 Effectiveness

We evaluate the effectiveness of the algorithms on small and large graphs, re-
spectively.

Small Graphs We measure the standard deviation of the four algorithms with
four Barabási-Albert graphs with 15 vertices and d = 1, 2, 3, 4, respectively. We
sample connected induced subgraphs with prescribed sizes varying from 1 to
15. For each size, we generate 10 samples on average for every distinct induced
subgraphs.

The results are presented in Figures 6, 7, 8 and 9.

206 X. Lu and S. Bressan

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14

S
ta

n
d
a
rd

 D
e
vi

a
tio

n

Subgraph Size

ARS
MHS
RVE
NRS

Fig. 6. Standard deviation from uniform
distribution. The Barabási-Albert graph
has 15 vertices and d = 1.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2 4 6 8 10 12 14

S
ta

n
d
a
rd

 D
e
vi

a
tio

n

Subgraph Size

ARS
MHS
RVE
NRS

Fig. 7. Standard deviation from uniform
distribution. The Barabási-Albert graph
has 15 vertices and d = 2.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2 4 6 8 10 12 14

S
ta

n
d
a
rd

 D
e
vi

a
tio

n

Subgraph Size

ARS
MHS
RVE
NRS

Fig. 8. Standard deviation from uniform
distribution. The Barabási-Albert graph
has 15 vertices and d = 3.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2 4 6 8 10 12 14

S
ta

n
d
a
rd

 D
e
vi

a
tio

n

Subgraph Size

ARS
MHS
RVE
NRS

Fig. 9. Standard deviation from uniform
distribution. The Barabási-Albert graph
has 15 vertices and d = 4.

We see that ARS and MHS yield the lowest overall standard deviation while
NRS remains competitive unless the graph is sparse. RVE does not perform as
well as the above three algorithms.

Large Graphs. It is impractical to generate all the connected induced sub-
graphs for large graphs. We therefore turn to compare average graph properties
of connected induced subgraphs sampled by different algorithms.

We measure the average degree and average clustering coefficient of the sub-
graphs generated by the four algorithms with the Erdős-Rényi graph of 1000
vertices with probability 0.1 and with the Barabási-Albert graph of 500 vertices
and d = 10, which are used in Section 4.2. We sample connected induced sub-
graphs with prescribed sizes varying from 10 to 100 in increments of 10. For each
size, we sample 100 connected induced subgraphs and calculate the average of
average degree and average clustering coefficient of these subgraphs.

The results are presented in Figures 10, 11, 12 and 13.

Sampling Connected Induced Subgraphs Uniformly at Random 207

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e
 D

e
g
re

e

Subgraph Size

ARS
MHS
RVE
NRS

Fig. 10. Comparison of average degree of
samples. The original Erdős-Rényi graph
has 1000 vertices and p = 0.1.

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 C

lu
s
te

ri
n

g
 C

o
e

ff
ic

ie
n

t

Subgraph Size

ARS
MHS
RVE
NRS

Fig. 11. Comparison of average clustering
coefficient of samples. The original Erdős-
Rényi graph has 1000 vertices and p =
0.1.

 2

 3

 4

 5

 6

 7

 8

 9

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e
 D

e
g
re

e

Subgraph Size

ARS
MHS
RVE
NRS

Fig. 12. Comparison of average degree
of samples. The original Barabási-Albert
graph has 500 vertices and d = 10.

 0.05

 0.1

 0.15

 0.2

 0.25

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g

e
 C

lu
st

e
ri
n

g
 C

o
e

ff
ic

ie
n

t

Subgraph Size

ARS
MHS
RVE
NRS

Fig. 13. Comparison of average cluster-
ing coefficient of samples. The original
Barabási-Albert graph has 500 vertices
and d = 10.

We see that ARS and MHS always coincide with each other on both properties
while NRS remains competitive. RVE is biased towards subgraphs with higher
average degree and higher average clustering coefficient. This is because RVE
tends to sample denser subgraphs.

4.4 Efficiency

We evaluate the efficiency of the algorithms on graphs of different densities and
with different subgraph sizes.

Varying Density. We measure the execution time of the four algorithms with
a series of Barabási-Albert graphs with 500 vertices. The number of links that
each new vertex generates for each graph varies from 1 to 10 with step 1 and
from 20 to 100 with step 10. For each graph we sample 10 connected induced
subgraphs of size 10 and calculate the average execution time.

208 X. Lu and S. Bressan

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

E
x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
o

n
d

)

Graph Density

ARS
MHS
RVE
NRS

Fig. 14. Average execution times of sam-
pling a connected induced subgraph of
size 10 from Barabási-Albert graphs with
500 vertices and different densities

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

E
x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
o

n
d

)

Subgraph Size

ARS
MHS
RVE
NRS

Fig. 15. Average execution times of sam-
pling connected induced subgraphs of dif-
ferent sizes from a Barabási-Albert graph
with 500 vertices and d = 10

The results are presented in Figures 14.
We see that the execution times of ARS and MHS are increasing rapidly as

the graph density decreases and increases, respectively. When the graph density
is below 5, ARS becomes unacceptably inefficient. However, real graphs often
display a density less than 5 so that ARS is not practical in real applications.
On the contrast, MHS caters for the sparse graph because of faster conver-
gence. However, on dense graphs MHS is inefficient as the Markov Chain has
numerous states so that the convergence is slow. Nevertheless, NRS scales well
along with the graph density as its running time is bounded by the number
of vertices. The execution time of NRS increases because, when the graph is
denser there are more candidate vertices that can be replaced, so there are more
chances to traverse a whole subgraph to confirm the connectivity. The execu-
tion time of RVE is always less than 1ms so that it cannot be displayed. RVE
is the fastest because it terminates as long as desired number of vertices are
sampled.

Varying Prescribed Size. We measure the execution time of the four algo-
rithms with a Barabási-Albert graph with 500 vertices. The graph density is
about 10. For each algorithm, the sampled subgraph size is varying from 1 to 10
with step 1 and from 20 to 100 with step 10. We compute the average execution
times of 10 runs for each sample size.

The results are presented in Figures 15.
The execution time of ARS first increases because of the growing subgraph

size, and then decreases because of fewer rejections of the samples. The execution
time of MHS, as expected, is increasing when the subgraph size grows as there
are more states in the Markov chain. NRS is slowly increasing when the subgraph
size grows. This slow increase is because when the subgraph size increases, the
test of connectivity consumes more time. RVE is still the fastest.

Sampling Connected Induced Subgraphs Uniformly at Random 209

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
o
rm

a
liz

e
d
 R

u
n
n
in

g
 T

im
e

Normalized Sum of Square Errors

ARS

MHS

RVE

NRS

Fig. 16. Normalized efficiency versus ef-
fectiveness of sampling connected induced
subgraphs of size 10 from Barabási-Albert
graphs with 500 vertices and different
densities

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
o
rm

a
liz

e
d
 R

u
n
n
in

g
 T

im
e

Normalized Sum of Square Errors

ARS

MHS

RVE

NRS

Fig. 17. Normalized efficiency versus ef-
fectiveness of sampling connected in-
duced subgraphs of different sizes from a
Barabási-Albert graph with 500 vertices
and d = 10

4.5 Efficiency versus Effectiveness

We measure the overall performance of the four algorithms in terms of the effi-
ciency versus the effectiveness.

For efficiency, we compute the average execution time for each algorithm of
all the settings of graph density in Figure 14 and all the settings of subgraph
size in Figure 15, respectively. We normalize the execution time in [0, 1]. A lower
value corresponds to higher efficiency.

For effectiveness, we consider ARS as the most effective algorithm because
it produces a true uniform distribution. For each algorithm, we compute the
average value of average degree and clustering coefficient for each setting and
measure the difference from ARS by computing the sum of square errors (SSE)
of all the values. We normalize the SSE in [0, 1]. A lower value corresponds to
higher effectiveness.

The results are presented in Figure 16 and Figure 17.
We see that the effectiveness of ARS, MHS, and NRS are very close to each

other. However, the efficiency of ARS and MHS depends highly on the graph
density and the sampled subgraph size. RVE has the best efficiency but the worst
effectiveness.

4.6 Sampling Graph Properties

We measure the D-statistic for six of the nine properties used in [13] for scale-
down sampling (the authors of [13] also consider back-in-time sampling). The
three remaining properties concern the distribution of component size and, there-
fore, do not apply to connected subgraph sampling.

The first three properties, the in-degree distribution, out-degree distribution,
and clustering coefficient, are properties local to vertices.

210 X. Lu and S. Bressan

Table 1. Measuring D-statistic on six graph properties

in-deg out-deg clust sng-val sng-vec hops

RN 0.084 0.145 0.327 0.079 0.112 0.231

RPN 0.062 0.097 0.243 0.048 0.081 0.200

RDN 0.110 0.128 0.256 0.041 0.048 0.238

RE 0.216 0.305 0.525 0.169 0.192 0.509

RNE 0.277 0.404 0.709 0.255 0.273 0.702

HYB 0.273 0.394 0.670 0.240 0.251 0.683

RNN 0.179 0.014 2 0.398 0.060 0.255 0.252

RJ 0.132 0.151 0.235 0.076 0.143 0.264

RW 0.082 0.131 0.243 0.049 0.033 0.243

FF 0.082 0.105 0.244 0.038 0.092 0.203

NRS 0.048 0.074 0.059 0.060 0.012 0.401

2 We suspect this number is a typo.

The next two properties, the distribution of singular values of the graph adja-
cency matrix versus the rank and the distribution of the first left singular vector
of the graph adjacency matrix versus the rank, are spectral properties of the
graph.

The sixth property, the distribution of the number of reachable pairs of nodes
at distance h or less, is a global property of the sample.

We run NRS on the same datasets and using the same experimental settings
as [13], and compare the results with the corresponding ones published in [13].
The results are presented in Table 1. Remember that a lower value of D-statistic
indicates higher similarity of two distributions.

The results suggest that sampling connected induced subgraphs uniformly
at random can preserve significant properties such as degree distribution and
clustering coefficient distribution. This is because connected induced subgraphs
naturally contain the information of local graph properties such as vertex degree
and clustering coefficient. Also, our sampling algorithm can preserve relatively
well the spectral properties such as singular values and the first left singular
vector of graph adjacency matrix. The overall performance of NRS is much
better than the two outperforming algorithms reported in [13], FF and RW.

4.7 Discussion

ARS, MHS and NRS are effective. They sample almost uniformly at random a
connected induced subgraph with a prescribed number of vertices from a graph.
NRS is slightly less effective than ARS and MHS. RVE has bias towards denser
subgraphs.

RVE is more efficient than the other three algorithms. NRS is practical on
all graphs but slower than RVE. MHS is efficient on sparse graphs and small
prescribed sizes. ARS is only efficient for very dense graphs.

Sampling Connected Induced Subgraphs Uniformly at Random 211

The newly proposed algorithm NRS very successfully realizes the compromise
between effectiveness and efficiency for which it was designed.

5 Conclusion

In this paper, we study the uniform random sampling of connected induced
subgraphs of a prescribed size from a graph.

We present and discuss four algorithms that leverage several ideas such as
rejection sampling, random walk and Markov Chain Monte Carlo.

The first algorithm, Acceptance-rejection Sampling (ARS), provides a refer-
ence for effectiveness. It is generally not efficient.

The second algorithm, Random Vertex Expansion (RVE), illustrates the
performance of a selection of vertices without replacement but has limited effec-
tiveness.

The third algorithm, Metropolis-Hastings Sampling (MHS), demonstrates the
practicality and the effectiveness of Markov Chain Monte Carlo.

The main contribution of this paper is the Neighbour Reservoir Sampling
(NRS) algorithm that tries and finds a compromise between the effectiveness of
a random walk on a Markov chain of connected induced subgraphs, as in MHS,
with the performance of a sampling of vertices with no replacement, as in RVE.

Acknowledgement. This research was partially funded by the A*Star SERC
project “Hippocratic Data Stream Cloud for Secure, Privacy-preserving Data
Analytics Services” 102 158 0037, NUS Ref: R-702-000-005-305.

References

1. Stanford Network Analysis Project, http://snap.stanford.edu/index.html

2. Ahn, Y.-Y., Han, S., Kwak, H., Moon, S.B., Jeong, H.: Analysis of topological
characteristics of huge online social networking services. In: WWW, pp. 835–844
(2007)

3. Batagelj, V., Brandes, U.: Efficient generation of large random networks. Physical
Review E 71 (2005)

4. Cowles, M.K., Carlin, B.P.: Markov chain monte carlo convergence diagnostics: A
comparative review. Journal of the American Statistical Association 91, 883–904
(1996)

5. Geweke, J.: Evaluating the accuracy of sampling-based approaches to the calcula-
tion of posterior moments. In: BAYESIAN STATISTICS, pp. 169–193. University
Press (1992)

6. Gilks, W., Spiegelhalter, D.: Markov chain Monte Carlo in practice. Chapman &
Hall/CRC (1996)

7. Hastings, W.K.: Monte carlo sampling methods using markov chains and their
applications. Biometrika 57(1), 97–109 (1970)

8. Henzinger, M.R., Heydon, A., Mitzenmacher, M., Najork, M.: On near-uniform url
sampling. Computer Networks 33(1-6), 295–308 (2000)

http://snap.stanford.edu/index.html

212 X. Lu and S. Bressan

9. Hübler, C., Kriegel, H.-P., Borgwardt, K.M., Ghahramani, Z.: Metropolis algo-
rithms for representative subgraph sampling. In: ICDM, Pisa, Italy, pp. 283–292
(December 2008)

10. Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for
estimating subgraph concentrations and detecting network motifs. Bioinformat-
ics 20(11), 1746–1758 (2004)

11. Kwak, H., Lee, C., Park, H., Moon, S.B.: What is twitter, a social network or a
news media? In: WWW, pp. 591–600 (2010)

12. Leon-Garcia, A.: Probability, Statistics, and Random Processes for Electrical En-
gineering. Prentice Hall (2008)

13. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: KDD, Philadelphia,
Pennsylvania, USA, pp. 631–636 (August 2006)

14. Maiya, A.S., Berger-Wolf, T.Y.: Sampling community structure. In: WWW,
Raleigh, North Carolina, USA, pp. 701–710 (April 2010)

15. Milo, R., Kashtan, N., Itzkovitz, S., Newman, M.E.J., Alon, U.: On the uniform
generation of random graphs with prescribed degree sequences (May 2004)

16. Nobari, S., Lu, X., Karras, P., Bressan, S.: Fast random graph generation. In:
EDBT, pp. 331–342 (2011)

17. Przulj, N., Corneil, D.G., Jurisica, I.: Efficient estimation of graphlet frequency
distributions in protein-protein interaction networks. Bioinformatics 22(8), 974–
980 (2006)

18. Ribeiro, B., Towsley, D.: Estimating and sampling graphs with multidimensional
random walks. In: IMC, Melbourne, Australia (November 2010)

19. Vázquez, A., Oliveira, J., Barabási, A.: Inhomogeneous evolution of subgraphs and
cycles in complex networks. Physical Review E (2005)

20. Viger, F., Latapy, M.: Efficient and Simple Generation of Random Simple Con-
nected Graphs with Prescribed Degree Sequence. In: Wang, L. (ed.) COCOON
2005. LNCS, vol. 3595, pp. 440–449. Springer, Heidelberg (2005)

21. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1),
37–57 (1985)

Discovery of Top-k Dense Subgraphs

in Dynamic Graph Collections

Elena Valari, Maria Kontaki, and Apostolos N. Papadopoulos

Data Engineering Lab., Department of Informatics, Aristotle University
54124 Thessaloniki, Greece

{evalari,kontaki,papadopo}@csd.auth.gr

Abstract. Dense subgraph discovery is a key issue in graph mining,
due to its importance in several applications, such as correlation analysis,
community discovery in the Web, gene co-expression and protein-protein
interactions in bioinformatics. In this work, we study the discovery of the
top-k dense subgraphs in a set of graphs. After the investigation of the
problem in its static case, we extend the methodology to work with dy-
namic graph collections, where the graph collection changes over time.
Our methodology is based on lower and upper bounds of the density,
resulting in a reduction of the number of exact density computations.
Our algorithms do not rely on user-defined threshold values and the
only input required is the number of dense subgraphs in the result (k).
In addition to the exact algorithms, an approximation algorithm is pro-
vided for top-k dense subgraph discovery, which trades result accuracy
for speed. We show that a significant number of exact density compu-
tations is avoided, resulting in efficient monitoring of the top-k dense
subgraphs.

1 Introduction

Many modern applications require the management of large volumes of graph
data. Graphs are very important in scientific applications such as bioinformat-
ics, chemoinformatics, link analysis in social networks, to name a few. Dense
subgraph discovery is a fundamental graph mining task [1,5] with increasing im-
portance. Density is a significant property of graphs, because it is highly related
to how well a graph is connected and can be used as a measure of the graph
coherence. Usually, the densest the graph the more likely that the connectivity
among the graph nodes will be higher.

Among the various density definitions, we adopt the one that relates the
graph density to the average degree [7]. More formally, for a graph G(V,E),
where V is the set of nodes and E the set of edges, the density of G, denoted as
den(G), is given by the number of edges over the number of nodes, i.e., den(G) =
|E|/|V |. For the rest of the work, we focus on undirected and unweighted graphs.
Generalizations to other graph classes are performed easily with appropriate
modifications. Figure 1 depicts some examples of density computation.

Algorithms for dense subgraph discovery that have been proposed in the liter-
ature require one or more constraints to be defined by the user [2]. For example,

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 213–230, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

214 E. Valari, M. Kontaki, and A.N. Papadopoulos

2v

3v

1v

4v

(a) den(G) = 5/4

2v

3v

1v

4v

5v

(b) den(G) = 8/5

2v1v

5v

4v 3v

(c) den(G) = 10/5

Fig. 1. Densities of various graphs

all subgraphs having a density value higher than a threshold are reported back
to the user. The major limitation of such an approach is that the determination
of threshold values is difficult: i) if the threshold is too low, then we risk a cum-
bersome answer set and ii) if the threshold is too high then an empty answer set
may be returned. A meaningful threshold value may be difficult to define without
at least a limited a priori knowledge regarding the nature of the data (e.g., distri-
bution of densities). To overcome this limitation, in this work, we focus on dense
subgraph discovery by taking a top-k oriented approach. More specifically, the
only input required by our methods is the number k of the dense subgraphs. The
basic benefit of this approach is that the cardinality of the answer set is always
known and is equal to k, thus, no surprises are expected regarding the number
of answers. In addition, no “wild guesses” regarding the density threshold need
to be performed by the user.

The second novelty of our research is that we focus on dynamic graph collec-
tions that take the form of a stream of graphs. More specifically, computation is
performed on a count-based sliding window of size w, defined over a stream of
graphs G1, G2, ..., Gw. New graph objects may arrive whereas old ones expire.
The value of w depends on the application. The challenge is to monitor the k
densest subgraphs induced by the graphs that are currently active in the sliding
window. This translates in performing the necessary actions when a new graph
arrives or an old one expires. Evidently, computation must be as efficient as pos-
sible to avoid significant delays during updates. Previously proposed methods
working in graph streams do not consider deletions.

There are many applications that benefit from the support of top-k dense sub-
graph discovery. In web usage mining, the links followed by users form a directed
graph. Many such graphs may be available in a streaming fashion, corresponding
to different time instances or different geographical areas. Dense subgraphs are
useful in this case because they enable community discovery. The use of the slid-
ing window enables to center our focus at the most recent data available, rather
than base the discovery process on the complete history. Mining these graphs
on-the-fly is extremely important towards continuous knowledge discovery. As a
second example, consider a large social network, where users communicate by
means of message exchange. Each graph in this case, corresponds to the inter-
actions among users for a specific time period, e.g., a day. By collecting these
graphs for a period of time, we can monitor the evolution of interactions among

Discovery of Top-k Dense Subgraphs in Dynamic Graph Collections 215

users. Dense subgraphs in these graphs correspond to communities formed at
certain instances. If these communities grow in size and density, then this could
mean that an interesting topic emerges.

We note that, to the best of our knowledge, this is the first work that addresses
the problem of top-k dense subgraph discovery and consequently, the first work
that employs this concept over a stream of graphs. The rest of the paper is
organized as follows. The next section, contains a brief discussion of related work
in the area. Section 3 presents our methods in detail. A performance evaluation
study is contained in Section 4 and finally, Section 5 concludes our work and
motivates for further research in the area.

2 Related Work and Contributions

There is a significant number of research works studying the problem of dense
subgraph discovery. Material in this subject can be found in [5], whereas an
excellent survey chapter in the area is contained in [1]. The problem is considered
important due to the numerous applications interested in dense subgraphs, such
as, community discovery, genes with significant coexpression, highly correlated
items in market basket data and many more.

The majority of the algorithms proposed so far in the literature, assume a
fairly static case. For example, in [6] shingling is used to discover dense parts in
large bipartite graphs. Dense subgraphs are also used in [8] to discover important
subgraphs in a database of graphs corresponding to gene networks. Furthermore,
[13] defines a generalization of the densest subgraph problem by adding an ad-
ditional distance restriction (defined by a separate metric) to the nodes of the
subgraphs. This method was applied to a data set of genes and their annotations.

More recently, some efforts have been performed to enable graph mining over
evolving graphs [15]. In particular, to complicate things further, in many cases
it is assumed that the graph (or graphs) form a data stream. In such a case,
usually we are allowed to see the data only once, without the ability to perform
random access. In these lines, the authors in [2] discover dense subgraphs when
the graph appears in the form of an edge stream. A similar idea is studied in [4],
where there are multiple streams, one for each graph. Our work differs from the
previous approaches in several points:

(i) We are the first to provide algorithms for dense subgraph discovery in a
top-k fashion. This is very important since the user may control the answer
set and may terminate the execution at will.

(ii) There are no magic thresholds used in the algorithms. This means that
there are no risks that the answer set will be too small or too big, since
the k best subgraphs are returned, without any explicit reference to their
density. However, our techniques may enforce constraints on the density by
simply executing the top-k algorithm and reject any subgraph that does
not satisfy the density constraint.

(iii) We support dense subgraph discovery in a set of graphs, rather than in a
single graph. In particular, graphs are presented to the system in the form

216 E. Valari, M. Kontaki, and A.N. Papadopoulos

of a stream of graphs. Since it is natural to focus on the most recent data,
we apply a count-based sliding window of size w [11,16]. This means that at
any time instance there are w active graphs that are mined in a continuous
manner and thus, both insertions and deletions must be supported.

3 Dense Subgraphs in Graph Collections

3.1 Preliminaries

In this section, we present some fundamental concepts necessary for top-k dense
subgraph discovery. Table 1 summarizes some frequently used symbols. As men-
tioned previously, in this work, the density of a graph is defined as the average
degree over its nodes [7]. In that work, an algorithm is given to determine the
densest subgraph of a graph G. The densest subgraph G(1) of G is simply an
induced subgraph with the maximum possible density among all subgraphs of
G. More formally:

G(1) = argmax{den(g) : g � G}

The algorithm proposed by Goldberg in [7] (from now on this algorithm will
be denoted as GOLD) for the computation of the densest subgraph of a graph G
requires a logarithmic number of steps, where in each step a maxflow computa-
tion is performed. The maxflow computations are performed on an augmented
graph G′ and not on the original graph G. More specifically, G is converted
to a directed graph by substituting an edge between nodes u and v by two di-
rected edges from u to v and backwards. These edges are assigned a capacity
of 1. In addition, two artificial nodes are inserted, the source s and the sink t.
Node s is connected to all nodes in G by using directed arcs emanating from
s, whereas t is connected by adding directed arcs emanating from each node
and ending at t. The capacities of these edges are carefully selected (details in

Table 1. Basic notations used

Symbol Description

Gi the i-th graph in the stream

Vi, Ei set of vertices and set of edges of Gi

ni, mi order and size of G (NG = |VG|, MG = |EG|)
d(v) the degree of a vertex v

g � G g is an induced subgraph of G

den(G) density of graph G

C(G) the maximum core subgraph of G

G(j) the j-th densest subgraph of G

w the size of the sliding window

k number of densest subgraphs monitored

TOPK the (current) result of top-k dense subgraphs

Discovery of Top-k Dense Subgraphs in Dynamic Graph Collections 217

v5

v1 v2

v3 v4

v6

v7

v8

v1 v2

v3 v4

v5

v6

v1

v2

v3 v4

v5

v6

(a) den(G(1))=9/5 (b) den(G(1))=6/4 (c) den(G(1))=7/6

Fig. 2. Densest subgraphs and their density values

[7]) in order to guarantee that the mincut computed after at most a logarithmic
number of steps, will separate the densest subgraph from the rest of the graph.
Assuming that the push-relabel maxflow algorithm is being used enhanced with
dynamic trees, the complexity for the computation of the densest subgraph is
O(log n · (2n+m) log(n2/(n+m))).

Figure 2 depicts the densest subgraph for some graphs. The edges of the dens-
est subgraph is shown bold and the nodes are gray-filled. If the density of every
subgraph of G is less than the density of G then the whole graph G is its dens-
est subgraph. Such a case is shown in Figure 2(c). Next, we state explicitly the
problem investigated in this paper:

Problem Definition: Given a dynamic stream of w graphs G1, ..., Gw and an
integer k, monitor the top-k most dense edge-disjoint subgraphs continuously,
taking into account arrivals and expirations of graph objects. �

3.2 Dense Subgraph Discovery in a Set of Graphs

In this section, we study a progressive process to determine the k densest sub-
graphs of a graph G. The usefulness of such a mechanism raises from the fact
that the user may require more dense components of the graph in a get-next fash-
ion. Consequently, the search process may terminate at any time, if adequate
and satisfactory results have been computed. This technique generalizes easily
for a set of graphs.

To compute the k densest subgraphs we proceed as follows: i) first, the densest
subgraph of G is computed, ii) the edges comprising the densest subgraph are
removed fromG, together with any nodes that become isolated, iii) if the number
of answers reported is less than k we repeat the process. According to this
process, two dense subgraphs cannot share edges. However, they may share some
nodes. To illustrate the idea, an example is given in Figure 3, where the top-2
dense subgraphs are computed. The densest subgraph G(1) of G is shown in
Figure 3(a) and its density is 9/5. By removing the edges contained in G(1)

from G (along with the isolated nodes v1, v2, v3, v4) and by applying again the
densest subgraph discovery algorithm in the reduced graph, we arrive at the
situation depicted in Figure 3(b). Therefore, the second best (densest) subgraph
is composed of the vertices v5, v6, v7, v8 and its density is 5/4.

For simplicity in the presentation, we define the operation between a graph
G and a subgraph g � G. The result G g is computed by removing from

218 E. Valari, M. Kontaki, and A.N. Papadopoulos

v5

v1 v2

v3 v4

v6

v7

v8

v5

v1 v2

v3 v4

v6

v7

v8

(a) densest subgraph (b) second densest subgraph

Fig. 3. The two densest subgraphs of a graph G

G all edges in g and also the nodes that become isolated after edge removal.
This process may be applied iteratively, until k dense subgraphs are reported.
According to this method, the densities corresponding to the densest subgraphs
are reported in a non-increasing order. This is very important towards progres-
sive computation of dense subgraphs since it enables an early termination (e.g.,
before k) if the density values become too low to be of interest to the user. Note,
however, that after a graph reduction process, the resulting graph may be dis-
connected. In such a case, the process is applied to each connected component
separately, until k results are obtained.

The only available tool we have to determine the k densest subgraphs is
the GOLD algorithm of [7]. This means that so far we do not have a pruning
mechanism at hand in order to discard a connected component before applying
the expensive sequence of maxflow computations. If this was possible, then a
significant number of maxflow operations could have been avoided, resulting in
a more efficient computation. To enable pruning, we will use the concept of the
maximum core of a graph [10,14].

Definition 1. The maximum core C(G) of a graph G is a subgraph of G con-
taining vertices with a degree at least β, where the value of β is the maximum
possible.

To illustrate the idea, an example is shown in Figure 4. A simple algorithm to
compute the maximum core performs a sequence of vertex removals, starting
with the vertices with the smallest degree. According to this process, vertices v9,
v10 and v11 will be removed first, since their degree is 1. The resulting graph is
the 2-core of G, since all vertices have a degree at least 2. Next, we remove vertex
v7, and consequently vertices v6 and v8 are also removed, because their degree
has been reduced due to the removal of v7. The resulting graph, composed of the
vertices v1, v2, v3, v4 and v5 is the 3-core of G since every vertex has a degree
at least 3. At this point, if we continue this process, we will result in an empty
graph. Therefore, the maximum core value of G is 3.

The question is how can we use the maximum core to enable pruning during
top-k dense subgraph discovery. A very interesting result has been reported in [9],
stating that the density of the maximum core of a graph G is a

Discovery of Top-k Dense Subgraphs in Dynamic Graph Collections 219

v5

v1 v2

v3 v4

v6

v7

v8

v9

v10

v11

Fig. 4. The 1-core is composed of all vertices of G. The 2-core contains the vertices v1
through v7. Finally, the 3-core, which is also the maximum core, contains the vertices
v1, v2, v3, v4 and v5 (the vertices of maxcore are shown gray).

(1/2)-approximation of the density of the densest subgraph of G. This means
that the density of the densest subgraph of G is at most twice the density of
the maximum core of G. In addition, since C(G) is an induced subgraph of G,
its density is less than or equal to the density of the densest subgraph. More
formally, we have the following inequality:

2 · den(C(G)) ≥ den(G(1)) ≥ den(C(G)) (1)

According to the previous inequality, we may use the density of the maximum
core to define an upper and a lower bound on the density of the densest subgraph
of G. The next important issue, is how fast can we compute the maximum core.
By using a binary heap enhanced with a hash table for fast decrease-key oper-
ations in the heap, the previous algorithm which is based on repetitive removal
of vertices with the lowest degree requires O(m log n) comparisons, resulting in
slow computation, especially for large graphs. A more efficient algorithm has
been studied in [3], which is based on count-sort. The algorithm requires lin-
ear additional space but runs in O(m) worst case time, resulting in a very fast
maximum core computation.

Figure 5 depicts the outline of TopkDense algorithm, which computes the k
densest subgraphs of an input graph G by using pruning based on the concept
of maximum cores. The algorithm requires a priority queue PQ which accom-
modates the current connected components produced. PQ is implemented as
a binary maxheap data structure which stores entries of the form < g, C(g),
den(C(g)) >, prioritized by the density of the maxcore (the last attribute). The
k best answers are stored in A. The algorithm uses Inequality 1 in Line 6 in
order to decide if a subgraph is promising or not. In case where the upper bound
of its density is lower than the current k-th best density, obviously it must be
discarded without any further consideration. Otherwise, we should compute the
density of its densest subgraph (invocation of FindDensest() algorithm in Line
7) and then proceed accordingly (Lines 8-15).

Lemma 1. Let g1 and g2 be induced subgraphs of G such that den(g1) = den(g2)
= d. Then, if g1 and g2 have at least a common vertex, the density den(g1 ∪ g2)
of the subgraph composed of the vertices and edges of g1 and g2 is strictly larger
than d.

220 E. Valari, M. Kontaki, and A.N. Papadopoulos

Algorithm TopkDense (G, k)
Input: G initial input graph, k number of results
Output: A, set of k densest subgraphs of G

1. initialize answer set A← ∅;
2. compute the maxcore C(G) of G;
3. initialize priority queue PQ←< G,C(G), den(C(G) > ;
4. while (PQ not empty)
5. < g,C(g), den > ← PQ.deheap(); /* get the first element of the heap */
6. if (2 · den > k-th density in A) then

7. g(1) ← call FindDensest(g); /* compute densest subgraph of g */

8. if (den(g(1))> k-th density in A) then
9. remove subgraph with the k-th density from A;

10. insert g(1) in A;

11. remove g(1) from g;

12. for each component h of g � g(1)

13. C(h)← maxcore subgraph of h;
14. den(C(h)))← density of C(h);
15. PQ.enheap(< h,C(h), den(C(h)) >);
16. return A;

Fig. 5. Outline of TopkDense algorithm

Proof. Let ni and mi denote the number of vertices and edges of gi, where
i = 1, 2. Based on the definition of the density, it holds that den(g1)=m1/n1 and
den(g2)=m2/n2. Let h be the graph composed by the union of g1 and g2, i.e.,
h = g1∪g2. For the density of h we have that den(h) = (m1+m2)/(n1+n2− ε),
where ε is the number of common vertices of g1 and g2, which is strictly larger
than zero because we have assumed that the number of common vertices is at
least one. Therefore, den(h) > d and this completes the proof. !"

Based on the previous discussion, it is not hard to verify that by using this
algorithm only maximal dense subgraphs are returned. This is an important
property, because we avoid repetitive computations to discover a large dense
subgraph. It is guaranteed that the next dense subgraph returned will be maxi-
mal with respect to the number of vertices.

3.3 Dense Subgraphs in a Stream of Graphs

In this section, we extend the idea of top-k dense subgraph discovery in order
to handle dynamic graph collections and more specifically, a stream of graphs.
We center our attention in the case of a count-based sliding window, where we
are interested only in the w most fresh graph objects. Therefore, if a new graph
object is inserted in the collection, the oldest graph object must be deleted.
Notice that the top-k dense subgraph set may contain subgraphs of different

Discovery of Top-k Dense Subgraphs in Dynamic Graph Collections 221

graphs. Without lost of generality, we assume that at each time instance only one
new graph object arrives and only the oldest one expires. Arrivals and expirations
of more graphs are handled similarly.

The monitoring process of top-k dense subgraphs consists of i) the initializa-
tion phase and ii) the maintenance phase. The initialization involves the com-
putation of the top-k dense subgraphs for the first w graphs. This is performed
only once, and the maintenance phase can be used to achieve this by disabling
expirations. For this reason, we focus only on the maintenance phase.

Assume that at time instance t we have w graphs denoted as Gt−w+1, Gt−w+2,
..., Gt. We store the active graphs (i.e., graphs belonging to the current win-
dow) in a FIFO list with respect to their timestamps. In addition, we keep the
top-k dense subgraph set separately. When an update occurs, the current time
increases by one and a new graph Gt+1 is inserted in the window. Since a count-
based sliding window is used, the graph Gt−w+1 expires. The maintenance phase
should update the top-k set in order to reflect the changes of the window.

The naive approach begins with the discovery of the densest subgraph of the

new graph Gnew and if its density den(G
(1)
new) is greater than the current k-

th best density then G
(1)
new is inserted into TOPK and the method continues

similarly for each connected component h of Gnew G
(1)
new. Next, it deletes the

expired graph Gold. Notice that the removal of Gold may reduce the number
of densest subgraphs. Assume that k′ ≤ k is the cardinality of the answer set
after the removal of Gold and its subgraphs. If k′ = k no more operations are
required. On the other hand, if k′ < k, the naive approach should scan all active
graphs to find the remaining k− k′ densest subgraphs in order to retain the size
of the answer set. Notice that, during this process the examined subgraphs may
have been computed during the insertion of the corresponding original graph,
but this does not hold for all of them. Thus, it is possible that additional densest
subgraph computations may be required.

The naive approach invokes too many unnecessary densest subgraph com-
putations. The proposed method tries to reduce the number of time consuming
operations. We examine separately the insertion of the new graph and the expira-
tion of the oldest one. Thus, our proposed method can handle different number
of insertions/expirations in each update, with minimal modifications. We can
modify the TopkDense algorithm to enable the insertion of Gnew . Instead of ini-
tializing the answer set (Line 1 of Figure 5), we give the current answer set as a
parameter in TopkDense. The proposed method reduces the number of densest
subgraph computations, because it uses as a pruning criterion the density of
the maximum core subgraph (Line 6 of Figure 5). The method is correct, i.e. if
there exists a subgraph of Gnew that has one of the highest k densities, it will
be inserted in the answer set.

For the expiration of a graph, we distinguish two cases: i) the expired graph
Gold has at least one of the k-th densest subgraphs and ii) none of its subgraphs
is part of TOPK. For the latter case, it is sufficient to remove Gold from the
list with the active graphs. However, if Gold has at least one subgraph belonging
to TOPK, further operations are needed to update correctly the answer set.

222 E. Valari, M. Kontaki, and A.N. Papadopoulos

Table 2. Last seven graphs of a stream and the density of their three densest subgraphs

G1 G2 G3 G4 G5 G6 G7

den(G
(1)
i) 18.0 25.2 20.2 30.8 22.2 26.2 17.6

den(G
(2)
i) 16.1 23.1 18.7 21.4 16.4 20.6 14.5

den(G
(3)
i) 14.5 18.4 16.3 15.6 13.2 18.5 12.7

First, we remove the subgraphs of Gold from the answer set. Assume that k− k′

densest subgraphs are deleted. A simple approach is to scan the active graphs
to find the substitute subgraphs. Remember, we reduced the number of densest
subgraph discovery during the insertion of a new graph with the invocation
of TopkDense algorithm. The cost to compute the densest subgraphs that are
missing is prohibitive. The proposed method uses again Inequality 1 to handle
this case efficiently. For a graph G, if 2 · den(C(G)) < k-th density, G can
be omitted from further consideration. More specifically, the method forces the
insertion of the first k′ subgraphs into TOPK. Next, the method tries to improve
the answer set by scanning the remaining graphs. For each graph G, if G(1) is
not available, we check if 2 · den(C(G)) < k-th density, then we omit G and we
proceed with the next graph. Otherwise, we compute G(1). If den(G(1)) ≥ k-th
density, we insert G(1) into TOPK and we proceed with the component of the
residual graph.

To clarify the proposed method, we give an example. Assume the stream of
graphs of Table 2. Moreover, assume that w = 5, k = 4 and the current time
is 5. The current window contains the first five graphs. The TOPK consists of

G
(1)
4 , G

(1)
2 , G

(2)
2 and G

(1)
5 . Assume now, that graph G6 arrives. The densities of

the three densest subgraphs of G6 are given in Table 2. The proposed method
computes the density of the maximum core subgraph den(C(G6)) = 20.2. It
holds that 2 · den(C(G6)) > k-th density, therefore the method computes the

densest subgraph G
(1)
6 of G6 and its density den(G

(1)
6) = 26.2. Thus G

(1)
6 is

included in TOPK. We proceed with the residual graph. For each component
hi, we compute the density of the maximum core subgraph. Since 2·den(C(h1)) =
2 · 10.5 < k-th density, hi is not further considered. The removal of G1 does not
affect the TOPK set and therefore it is straight-forward.

Now, assume that graph G7 arrives and den(C(G7)) = 10.0. The method
computes the maximum core subgraph and its density. Since 2 · den(C(G7)) < k
no further action are needed. However, due to arrival of G7, graph G2 expires.
We should update TOPK because now has only two densest subgraphs. The
proposed method examines the first graph G3 and includes the first two densest

subgraphs, i.e. G
(2)
3 and G

(3)
3 , to TOPK. Next, for each available graph (initial or

component of a residual) is examined the density of the maximum core subgraph.
If this density is less than the half of the k-th density, the graph is omitted. On
the other hand, the naive approach computes the densest subgraphs of every
available graph. The proposed method is denoted as StreamTopkDense. In the
sequel, we propose two enhancements in order to further improve efficiency.

Discovery of Top-k Dense Subgraphs in Dynamic Graph Collections 223

Examination Order of Candidate Graphs. The most time consuming part
of StreamTopkDense is the case where an element of TOPK expires, because
multiple densest subgraph discovery operations may be invoked. The first en-
hancement tries to reduce the number of examined graphs by means of a suitable
examination order. In the proposed method, we favor graphs that have a max-
imum core subgraph with high density. We expect that during the answer set
improvement, the number of examined graphs will be reduced. In order to achieve
this, we use a priority queue to define the examination order of active graphs.

The maximum possible density maxden(G) of a graph G is used as the key to
insert G in the priority queue. We define maxden(G) as den(G(1)) if G(1) is avail-
able or 2 · den(C(G)) otherwise. The priority queue contains entries of the form
< G,maxden(G) >. For two graphs G1 and G2, if maxden(G1) > maxden(G2),

then it is not necessary that den(G
(1)
1) > den(G

(1)
2). Therefore, if G is at the

top of the priority queue and it holds that maxden(G) ≥ k-th density, then we
should further examine G before we insert it into TOPK. If G(1) is available (i.e.,
maxden(G) = den(G(1))), we insert G to the answer set immediately. Otherwise,
we compute the subgraph G(1) and then we check its density to determine if its
inclusion in TOPK is necessary. The method extracts and examines the top of
the priority queue, until a graph G is found for which it holds that maxden(G)
is less than the current k-th best density.

Graph Pruning. The second enhancement of StreamTopkDense algorithm iden-
tifies graphs that cannot be included in TOPK and discards them in order to
reduce processing time and memory requirements. The key observation is that
a graph can be part of top-k if it belongs to the answer set of the (k-1)-skyband
query in the 2-dimensional space (time, density of densest subgraph). A similar
approach has been followed in [11].

A δ-skyband query reports all the objects that are dominated by at most
δ other objects [12]. In our case, the maximization of the expiration time and
the maximization of the density, determine the domination relationship between
graph objects, i.e., a graph H dominates another graph G if H has larger expi-
ration time and H has a more dense subgraph than G. The use of graph pruning
does not introduce false dismissals, according to the following lemma.

Lemma 2. A graph G could not be part of TOPK, if there are at least k sub-
graphs which have greater density than that of the densest subgraph of G and
their expiration times are greater than the expiration time of G.

Proof. Assume that there are k subgraphs with density greater than that of the
densest subgraph G(1) of a graph G and these subgraphs expire later than G.
Even in the case where all the current top-k graphs are expired before G, any
densest subgraph of G will never be part of TOPK since during its lifetime
always exist k subgraphs with greater density. !"

It is evident that Lemma 2 can also be used to prune computed densest subgraphs
from further consideration. In order to enable the use of δ-skyband, we keep a
counter G.c for each graph in the active window. When the initial graph is

224 E. Valari, M. Kontaki, and A.N. Papadopoulos

d
e
n
s
it
y

expiration time

G
1
 (1,3)

G
4
 (4,4)

G
3
 (3,7)

G
5
(5,1)

G
9
 (9,7)

G
2
 (2,4.5)

G
8
 (8,3)

G
10

 (10,4)

G
7
 (7,6)

G
6
 (6,5)

G
11

 (11,8)

Counters

before after

G
1

G
2

G
3

G
11

G
10

G
9

G
8

G
7

G
6

G
5

G
4

6

2

0

2

-

0

0

1

0

1

5

-

3

0

3

0

1

0

2

0

2

6

Fig. 6. Graph pruning example

inserted for the first time in the window, we initialize its counter to zero. Then,
we scan all active graphs and for each graph G we increase by one G.c, if the
density of the densest subgraph of the new graph is greater than that of G. We
preserve a graph G as long as G.c is less than k. If G.c = k then we can safely
discard G from the active window, since it does not belong to the (k-1)-skyband
set and therefore cannot be part of the answer throughout its lifetime.

Due to the use of Inequality 1 we do not have all the densest subgraphs and
therefore their corresponding densities. The question is how we can use the max-
core subgraph and its density, if the densest subgraph has not been computed?
There are two cases to study: the densest subgraph is not available either for
the new graph or for an existing active graph. To preserve the precision of the
proposed method, we use the minimum possible density of the new graph and
the maximum possible density maxden of the other existing graphs. The mini-
mum possible density, minden(G), is defined as den(G(1)), if G(1) is available,
or den(C(G)) otherwise.

Figure 6 gives an example of δ-skyband pruning. Assume that the current
time is 10, thus the most recent graph is G10. We transform each active graph,
which is not part of TOPK, to (density, expiration time)-space by using the
pair < maxden, exptime >. The values of these attributes are shown in paren-
theses in Figure 6. When a new graph arrives (graph G11), we use the pair
< minden, exptime > to update the counters of the other active graphs. The
left column shows the counters c of the graphs before update while right col-
umn shows them after update. Moreover, we discard G1 and its counter, we
set G11.c = 0 and we use the pair < maxden, exptime > to transform G11 to
(density, expiration time)-space. For k = 1, assume that G9 contains the most
densest subgraph. Due to Lemma 2, it is sufficient to store graphs G3, G7 and
G11 (i.e., graphs with G.c ≤ 0). The remaining graphs can be discarded.

Recall that the density of the densest subgraph is used to prune graphs, since
it affects the value of the counters of existing graphs. By using the minimum
possible density of the new graph and the maximum possible density for all other
existing graphs, we ensure that we do not prune graphs which are part of the

Discovery of Top-k Dense Subgraphs in Dynamic Graph Collections 225

(k-1)-skyband and therefore the proposed method does not introduce any false
dismissals. We integrate both enhancements in StreamTopkDense algorithm. The
new algorithm is denoted as StreamTopkDense*.

4 Performance Evaluation Study

In the sequel, we report some representative performance results showing the
efficiency of the proposed techniques. All algorithms have been implemented in
JAVA and the experiments have been conducted on a Pentium@3.2GHz.

To study the performance of the algorithms we have used both synthetic and
real-life data sets. The synthetic graphs have been generated by using the Gen-
Graph tool [17]. This generator produces graphs according to power law degree
distributions. In particular, GenGraph generates a set of n integers in the interval
[dmin, dmax] obeying a power law distribution with exponent a. Therefore, ac-
cording to the degree distribution produced, a random graph is generated. The
default values for the parameters of the generator are: a ∈ [1.5, 2.5], dmin = 1,
dmax = 1% of the number of vertices. The synthetic data set contains 10,000
graphs each with at most 1500 vertices. The real-life data set, AS-733, contains
733 daily instances (graphs) representing autonomous systems from University
of Oregon. The real data set is available for download by the SNAP website at
http://snap.stanford.edu/data/as.html.

We study the performance of the algorithms by varying the most important
parameters, such as the window size (w) and the number of results (k). We
examined several features of the algorithms, such as computational time, the
time required for maxflow computations, number of maxcore computations, etc.
The computational cost is represented by the running time. All measurements
correspond to the total number of updates required, and this translates to w
updates required to shift the whole window w times. The default values for the
parameters, if not otherwise specified, are: w = 2000 and k = 10. The straight-
forward approach, which performs GOLD invocations directly, is denoted as BFA
(brute-force algorithm).

4.1 Performance of Exact Algorithms

Figure 7 depicts the performance of the algorithms for the synthetic data set,
for several values of k. As expected, the straight-forward solution (BFA) shows
the worst performance due to the excessive number of GOLD invocations. Since
GOLD requires O(log n) maxflow computations, the cost is dominated by the
method implementing the maxflow. In particular, it is observed that the runtime
of BFA does not heavily depend on the number of results (k). BFA performs a
significant number of maxflow computations, as shown in 7(b). However, many
of these maxflow computations are executed on small graphs and thus, they
are fast. In contrast, a maxflow computation over a larger graph is more costly.
Note also, that the y axis is in logarithmic scale and thus, small changes are not
easily detected. On the other hand, StreamTopkDense and StreamTopkDense∗

226 E. Valari, M. Kontaki, and A.N. Papadopoulos

Table 3. Evaluation of pruning

Parameter k StreamTopkDense StreamTopkDense+ StreamTopkDense∗

k = 1 120 91 89/2040

k = 3 26 6 5/1986

k = 10 48 14 8/1984

k = 25 156 32 30/1961

k = 50 341 240 190/1962

perform much better. In particular, StreamTopkDense∗ shows the best overall
performance since the two optimizations applied have a significant impact in
cost reduction, as shown later.

This is also depicted in Figure 8 which shows the performance of the two
stream-based algorithms. Algorithm BFA is excluded from any further experi-
ment since its performance is by orders of magnitude inferior. Again, it is evident
that the optimizations applied to StreamTopkDense manage to reduce the num-
ber of maxcore computations, the number of heap operations and the number
of invocations of the GOLD algorithm. Another important feature of Stream-
TopkDense* is that it requires significantly less storage than the other algo-
rithms. This is illustrated in Figure 8(d) which shows the memory requirements
in MBytes vs. the window size. Note that in comparison to the simple version of
the stream-based algorithm, the advanced one manages to keep storage require-
ments low. Since many graphs are pruned due to the application of the skyband
technique, the number of graphs that must be kept in memory is reduced.

In addition, Table 3 shows the performance of the pruning techniques. Specifi-
cally, we can see the number of graphs which we consider to find dense subgraphs
that can participate in the Top k for each algorithm over the total number of
updates. The first column shows the pruning results of the StreamTopkDense
algorithm. In this algorithm, the computations are reduced by using the density

 10000

 100000

 10 20 30 40 50

ru
nt

im
e

(s
ec

)

k

StreamTopkDense*
StreamTopkDense

BFA

(a) runtime (sec)

 10000

 100000

 10 20 30 40 50

m

ax
flo

w
 c

om
pu

ta
tio

ns

k

StreamTopkDense*
StreamTopkDense

BFA

(b) maxflow computations

Fig. 7. Comparison of algorithms for different values of k (synthetic data set)

Discovery of Top-k Dense Subgraphs in Dynamic Graph Collections 227

0

20

40

60

80

100

120

140

1000 1500 2000 2500 3000

he

ap
 o

pe
ra

tio
ns

window size (w)

StreamTopkDense*
StreamTopkDense

(a) heap updates (sec)

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

1000 1500 2000 2500 3000

m

ax
co

re
 c

om
pu

ta
tio

ns

window size (w)

StreamTopkDense*
StreamTopkDense

(b) maxcore computations

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 1000 1500 2000 2500 3000

G

O
LD

 in
vo

ca
tio

ns

window size (w)

StreamTopkDense*
StreamTopkDense

(c) GOLD invocations

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1000 1500 2000 2500 3000

M
B

yt
es

window size (w)

StreamTopkDense*
StreamTopkDense

(d) memory requirements

Fig. 8. Comparison of algorithms wrt window size (synthetic data set)

of the maximum core subgraph as a pruning criterion. The second column shows
the pruning capabilities of StreamTopkDense+, which is the basic algorithm en-
hanced by a priotity queue to determine the examination order of active graphs.
As expected, StreamTopkDense+ examines less graphs than the basic algorithm.
Finally, the third column presents the pruning power of StreamTopkDense∗ which
uses the skyband pruning technique in addition to the priority queue. As ex-
pected, the number of examined graphs (i.e., the number of graphs that we must
apply the exact density computation) is smaller for StreamTopkDense∗ than the
other two methods. In addition, the third column represents also the number
of graphs which are pruned by the skyband pruning technique. A graph that is
pruned is also removed from the priority queue, resulting in reduced memory
requirements (as shown in Figure 8(d)).

In conclusion, StreamTopkDense∗ shows the best performance both in terms
of running time and memory requirements. The reason for this is threefold: i)
the reduction of the number of GOLD computations (which consequently reduces
the number of maxflow computations), ii) the use of an appropriate examination
order for the graphs resulting in a more effective pruning and iii) the use of the
skyband to exclude graphs and subgraphs from further consideration.

228 E. Valari, M. Kontaki, and A.N. Papadopoulos

1

10

100

1000

10000

100000

1e+006

1e+007

10 20 30 40 50

ru
nt

im
e

(s
ec

)

k

StreamTopkDense*
ApproximateCore

(a) runtime for synthetic data set

20

40

60

80

100

10 20 30 40 50

ac
cu

ra
nc

y
%

k

Approximate-Core

(b) accuracy for synthetic data set

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 20 30 40 50

ru
nt

im
e

(s
ec

)

k

StreamTopkDense*
Approximate-Core

(c) runtime for real data set

20

40

60

80

100

10 20 30 40 50

ac
cu

ra
nc

y
%

k

Approximate-Core

(d) accuracy for real data set

Fig. 9. Runtime-accuracy trade-off for synthetic and real data sets

4.2 Trading Accuracy for Speed

In many cases, it is important to get the answers as quickly as possible, even
if the accuracy of the result is not perfect. The importance of quickly answers
is more obvious when the data is from real applications.Toward this direction,
we study the performance of an approximation algorithm, which uses only the
core computation to determine the set of graphs containing the top-k dense
subgraphs. The accuracy of the algorithm is defined as the percentage of the
graphs containing the k densest subgraphs that have been reported over the set
of the correct subgraphs.

The results of this study are given in Figure 9, where both the runtime and
the accuracy are reported for the synthetic as well as the real-life data set. As
shown, the runtime of the approximation algorithm is several orders of magni-
tude smaller than that of the exact one, because the approximation algorithm
does not perform any maxflow computations, whereas each core computation is
performed in linear time with respect to the number of edges. The performance
of the algorithms is similar for the synthetic and the real-life data set. Based
on the runtime comparison, the approximate algorithm can be applied when the
arrival rate is large, and thus, each new graph must be processed as efficiently

Discovery of Top-k Dense Subgraphs in Dynamic Graph Collections 229

as possible. The quality of the approximation is at least 70% for all experiments
conducted, whereas it reaches 90% in the real-life data set as k grows to 50.

5 Concluding Remarks

Dense subgraph discovery is considered an important data mining task. Although
similar to clustering, dense subgraph discovery has evolved as a separate prob-
lem because the requirements are fairly different than clustering. In this paper,
we presented stream-based algorithms for continuous monitoring of the k dens-
est subgraphs from a dynamic collection of graphs. The proposed algorithm,
StreamTopkDense∗ is the most efficient variation, because it has the lowest run-
ning time and shows the lowest memory consumption. The key issues in the
design of our proposal have as follows: i) the maxcore is used to define an upper
bound on the density of a subgraph, ii) a priority queue is used to enforce a par-
ticular examination order of the graphs and iii) the skyband concept is applied
(as in [11]) to reduce the number of graphs that should be considered.

In addition to the study of exact algorithms, we studied the performance of an
approximation algorithm, which uses solely the concept of maxcore to determine
the set of graphs containing the top-k dense subgraphs. This algorithm offers an
accuracy of at least 70%, whereas its running time is orders of magnitude better
than that of the exact algorithms.

We point out that this is the first work that performs dense subgraph discovery
in a top-k fashion. This technique alleviates the requirement for posing density
constraints which are sometimes difficult to provide, especially when the graph
collection evolves and graph properties change over time.

There are several interesting directions for future work. The first one, involves
the use of graph summaries in order to reduce the size of the graphs. This means
that we are willing to sacrifice accuracy in favor of a more efficient computation.
A second direction is the adaptation of the methods in [2,4] to work in a top-k
scenario, without the requirement of density constraints.

References

1. Aggarwal, C., Wang, H.: Managing and mining graph data. Springer (2010)
2. Aggarwal, C., Li, Y., Yu, P.S., Jin, R.: On dense pattern mining in graph streams.

In: Proceedings of the 36th VLDB Conference, pp. 975–984 (2010)
3. Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of net-

works. CoRR, cs.DS/0310049 (2003)
4. Chen, L., Wang, C.: Continuous subgraph pattern search over certain and uncertain

graph streams. IEEE Transactions on Knowledge and Data Engineering 22(8),
1093–1109 (2010)

5. Cook, D.J., Holder, L.B. (eds.): Mining graph data. Wiley (2007)
6. Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive

graphs. In: Proceedings of the 31st VLDB Conference, pp. 721–732 (2005)
7. Goldberg, A.V.: Finding a maximum density subgraph. Technical Report CSD-84-

171, University of Berkeley (1984)

230 E. Valari, M. Kontaki, and A.N. Papadopoulos

8. Hu, H., Yan, X., Huang, Y., Han, J., Zhou, X.J.: Mining coherent dense subgraphs
across massive biological networks for functional discovery. Bioinformatics 21(1),
i213–i221 (2005)

9. Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. Journal of Algorithms 17(2),
222–236 (1994)

10. Luczak, T.: Size and connectivity of the k-core of a random graph. Discrete Math-
ematics 91(1), 61–68 (1991)

11. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous monitoring of top-k queries
over sliding windows. In: Proceedings of the ACM SIGMOD Conference, pp. 635–
646 (2006)

12. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in
database systems. ACM Transactions on Database Systems 30(1), 41–82 (2005)

13. Saha, B., Hoch, A., Khuller, S., Raschid, L., Zhang, X.-N.: Dense Subgraphs with
Restrictions and Applications to Gene Annotation Graphs. In: Berger, B. (ed.)
RECOMB 2010. LNCS, vol. 6044, pp. 456–472. Springer, Heidelberg (2010)

14. Seidman, S.B.: Network structure and minimum degree. Social Networks 5, 269–
287 (1983)

15. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: GraphScope: parameter-free
mining of large time-evolving graphs. In: Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 687–696
(2007)

16. Tao, Y., Papadias, D.: Maintaining sliding window skylines on data streams. IEEE
Transactions on Knowledge and Data Engineering 18(3), 377–391 (2006)

17. Viger, F., Latapy, M.: Efficient and Simple Generation of Random Simple Con-
nected Graphs with Prescribed Degree Sequence. In: Wang, L. (ed.) COCOON
2005. LNCS, vol. 3595, pp. 440–449. Springer, Heidelberg (2005)

On the Efficiency of Estimating Penetrating Rank
on Large Graphs

Weiren Yu1, Jiajin Le2, Xuemin Lin1, and Wenjie Zhang1

1 University of New South Wales & NICTA, Australia
{weirenyu,lxue,zhangw}@cse.unsw.edu.au

2 Donghua University, China
lejiajin@dhu.edu.cn

Abstract. P-Rank (Penetrating Rank) has been suggested as a useful measure
of structural similarity that takes account of both incoming and outgoing edges
in ubiquitous networks. Existing work often utilizes memoization to compute P-
Rank similarity in an iterative fashion, which requires cubic time in the worst
case. Besides, previous methods mainly focus on the deterministic computation
of P-Rank, but lack the probabilistic framework that scales well for large graphs.
In this paper, we propose two efficient algorithms for computing P-Rank on large
graphs. The first observation is that a large body of objects in a real graph usually
share similar neighborhood structures. By merging such objects with an explicit
low-rank factorization, we devise a deterministic algorithm to compute P-Rank
in quadratic time. The second observation is that by converting the iterative form
of P-Rank into a matrix power series form, we can leverage the random sam-
pling approach to probabilistically compute P-Rank in linear time with provable
accuracy guarantees. The empirical results on both real and synthetic datasets
show that our approaches achieve high time efficiency with controlled error and
outperform the baseline algorithms by at least one order of magnitude.

1 Introduction

Structural similarity search that ranks objects based on graph hyperlinks is a major tool
in the fields of data mining. This problem is also known as link-based analysis, and it has
become popularized in a plethora of applications, such as nearest neighbor search [26],
graph clustering [27], and collaborative filtering [9]. For example, Figure 1 depicts a
recommender system, in which person (A) and (B) purchase itemsets {egg, pancake,
sugar} and {egg, pancake, flour}, respectively. We want to identify similar users and
similar items.

Existing link-based approaches usually take advantage of graph structures to mea-
sure similarity between vertices. Each object (e.g., person, or item) can be regarded as a
vertex, and a hyperlink (e.g., purchase relationship) as a directed edge in a graph. Then a
scoring rule is defined to compute similarity between vertices. Consider the well-known
SimRank scoring rule [18] “two vertices are similar if they are referenced (have incom-
ing edges) from similar vertices” in Figure 1. We can see that the items sugar and egg
are similar as they are purchased by the same person (A). In spite of its worldwide pop-
ularity [1, 4, 6, 18, 24, 27], SimRank has the “limited information problem” — it only
takes incoming edges into account while ignoring outgoing links [26]. For instance,
person (A) and (B) have the SimRank score zero as they have no incoming edges. This

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 231–249, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

232 W. Yu et al.

(A) (B)

sugar egg pancake flour

SimRank(A,B) = 0

P-Rank(A,B) > 0

Fig. 1. Purchase Relationship in a Recom-
mender System

(A) (B)

sugar {egg,pancake} flour

Fig. 2. Merge the nodes having the same
neighborhood

is counter-intuitive since the similarity between person (A) and (B) also depends on the
similarity of their purchased products. To address this issue, Zhao et al. [26] proposed
to use P-Rank similarity to effectively incorporate both in- and out-links. Since then,
P-Rank has attracted growing attention (e.g., [2, 13, 17, 21]), and it can be widely used
to any ubiquitous domain where SimRank is applicable, such as social graphs [2], and
publication networks [13]. The intuition behind P-Rank is an improved version of Sim-
Rank: “two distinct vertices are similar if (a) they are referenced by similar vertices,
and (b) they reference similar vertices”. In contrast with SimRank, P-Rank is a general
framework for exploiting structural similarity of the Web, and has the extra benefit of
taking account of both incoming and outgoing links. As an example in Figure 1, person
(A) and (B) are similar in the context of P-Rank.

Nonetheless, existing studies on P-Rank have the following problems. Firstly, it is
rather time-consuming to iteratively compute P-Rank on large graphs. Previous meth-
ods [17, 26] deploy a fixed-point iterative paradigm for P-Rank computation. While
these methods often attain good accuracy, they do not scale well for large graphs since
they need to enumerate all n2 vertex-pairs per iteration if there are n vertices in a graph.
The most efficient existing technique using memoization for SimRank computation [18]
can be applied to P-Rank in a similar fashion, but still needs O(Kn3) time. The recent
dramatic increase in network scale highlights the need for a new method to handle large
volumes of P-Rank computation with low time complexity and high accuracy.

Secondly, it is a big challenge to estimate the error when approximation approaches
are leveraged for computing P-Rank. Zhao et al. [26] proposed the radius- and category-
based pruning techniques to improve the computation of P-Rank to O(Kd2n2), with d
being the average degree in a graph. However, this heuristic method does not warrant the
accuracy of pruning results. For certain applications like ad-hoc top-k nearest neighbor
search, fast speed is far more important than accuracy; it is desirable to sacrifice a little
accuracy (with controlled error) for accelerating the computation.

In this paper, we address the optimization issue of P-Rank. We have an observa-
tion that many real-world graphs are low rank and sparse, such as the Web [18], bib-
liographic network [9], and social graph [14]. Based on this, we devise two efficient
algorithms (a) to deterministically compute P-Rank in an off-line fashion, and (b) to
probabilistically estimate P-Rank with controlled error in an on-line fashion. For deter-
ministic computation, we observe that a large body of vertices in a real graph usually
have the similar neighborhood structures, and some may even share the same common
neighborhoods (e.g., we notice in Figure 1 that the products egg and pancake are pur-
chased by the same users—their neighborhoods are identical. Therefore, we can merge
egg and pancake into one vertex, as illustrated in Figure 2). Due to these redundancy,
we have an opportunity to “merge” these similar vertices into one vertex. To this end,

On the Efficiency of Estimating Penetrating Rank on Large Graphs 233

we utilize a low-rank factorization to eliminate such redundancy. However, it is hard to
develop an efficient algorithm and give an error estimate for low-rank approximation.
For probabilistic computation, we notice that the iterative form of P-Rank can be char-
acterized as a matrix power series form. In light of this, we adopt a random sampling
approach to further improve the computation of P-Rank in linear time with provable
guarantee.

Contributions. In summary, we make the following contributions.

(1) We characterize the P-Rank similarity as two equivalent matrix forms: The matrix
inversion form of P-Rank lays a foundation for deterministic optimization, and the
power series form for probabilistic computation. (Section 3).

(2) We observe that many vertices in a real graph have neighborhood structure redun-
dancy. By eliminating the redundancy, we devise an efficient deterministic algo-
rithm based on the matrix inversion form of P-Rank to optimize the P-Rank com-
putation, yielding quadratic-time in the number of vertices (Section 4).

(3) We base a sampling approach on the power series form of P-Rank to further speed
up the computation of P-Rank probabilistically, achieving linear-time with con-
trolled accuracy (Section 5).

(4) Using both real and synthetic datasets, we empirically show that (a) our determinis-
tic algorithm outperforms the baseline algorithms by almost one order of magnitude
in time and (b) our probabilistic algorithm runs much faster than the deterministic
method with controlled error (Section 6).

2 Preliminaries

Let G = (V , E) be a directed graph with vertex set V and edge set E . For a vertex u ∈ V ,
we denote by I(u) andO(u) the in-neighbor set and out-neighbor set of u respectively,
|I (u)| and |O (u)| the cardinalities of I (u) andO (u) respectively.

The P-Rank similarity between vertices u and v, denoted by s(u, v), is defined as
(a) s(u, u) = 1; (b) when u �= v,

s (u, v) =
λ · Cin

|I (u)| |I (v)|
∑

i∈I(u)

∑
j∈I(v)

s (i, j)

︸ ︷︷ ︸
in-link part

+
(1− λ) · Cout

|O (u)| |O (v)|
∑

i∈O(u)

∑
j∈O(v)

s (i, j)

︸ ︷︷ ︸
out-link part

, (1)

where λ ∈ [0, 1] is a weighting factor balancing the contribution of in- and out-links;
Cin and Cout ∈ (0, 1) are damping factors for in- and out-link directions, respectively.

Note that either I(·) or O(·) can be an empty set. To prevent division by zero, the
definition in Eq.(1) also assumes that (a) in-link part= 0 if I(u) or I(v) = ∅, and (b)
out-link part= 0 if O(u) or O(v) = ∅.

P-Rank Matrix Formula. Let Q be the backward transition matrix of G, whose entry
qi,j = 1/|I(i)| if ∃ an edge (j, i) ∈ E , and 0 otherwise; and let P be the forward
transition matrix of G, whose entry pi,j = 1/|O(i)| if ∃ an edge (i, j) ∈ E , and 0
otherwise. By virtue of our prior work [17], the P-Rank equation (1) then equivalently
takes the simple form

S = λ · Cin ·Q · S ·QT + (1− λ) · Cout ·P · S ·PT + In, (2)

234 W. Yu et al.

where S is the similarity matrix whose entry si,j equals the P-Rank score s(i, j), and
In is the n×n identity matrix 1, ensuring that each vertex is maximally similar to itself.

3 Two Forms of P-Rank Solution

In this section, we present two closed-form expressions of the P-Rank similarity matrix
S, with the aim to optimize P-Rank computation in the next sections.

Our key observation is that the P-Rank matrix formula Eq.(2) is a linear equation.
This linearity can be made more explicit by utilizing the matrix-to-vector operator that
converts a matrix into a vector by staking its columns one by one. This operator, denoted
vec, satisfies the basic property vec(A · X · B) = (BT ⊗ A) · vec(X) in which ⊗
denotes the Kronecker product. (For a proof of this property, see Theorem 13.26 in [12,
p.147].) Applying this property to Eq.(2) we immediately obtain x = M ·x+b, where
x = vec(s), M = λ ·Cin · (Q ⊗Q)+(1− λ) ·Cout · (P⊗P) , and b = vec(In). The
recursive form of x naturally leads itself into a power series form x =

∑∞
i=0M

i · b.
Combining this observation with Eq.(2), we deduce the following lemma.

Lemma 1 (Power Series Form). The P-Rank matrix formula Eq.(2) has the following
algebraic solution

vec (S) =

∞∑
i=0

[λ · Cin · (Q⊗Q) + (1− λ) · Cout · (P⊗P)]i · vec (In) . (3)

Lemma 1 describes the power series form of the P-Rank similarity. This result will be
used to justify our random sampling approach for estimating P-Rank (in Section 5).
One caveat is that the convergence of

∑
iM

i · b is guaranteed only if ‖M‖∞ < 1
(see [7, p.301]), where ‖ � ‖∞ is the ∞-matrix norm 2. This is true for Eq.(3) because
λ ∈ [0, 1] and Cin, Cout ∈ (0, 1) imply that

‖M‖∞ ≤ λ ·
<1︷︸︸︷
Cin ·

=1︷ ︸︸ ︷
‖Q⊗Q‖∞ +(1− λ) ·

<1︷︸︸︷
Cout ·

=1︷ ︸︸ ︷
‖P⊗P‖∞ < λ+ (1− λ) = 1.

Another explicit expression for the P-Rank similarity comes from the observation
that

∑
iM

i = (I−M)−1 whenever ‖M‖∞ < 1. Applying this observation to Lemma
1 yields the matrix inversion form of the P-Rank similarity.

Lemma 2 (Matrix Inversion Form). The P-Rank similarity matrix S in Eq.(2) can be
rewritten as

vec (S) = [In2 − λCin (Q⊗Q)− (1− λ)Cout (P⊗P)]−1 · vec (In) . (4)

The utility of Lemma 2 lies in the observation that computing S can be converted into
a matrix inversion computation. Due to the huge size, the straightforward way of com-
puting such matrix inversion is prohibitively expensive; nevertheless, optimization tech-
niques in the next section will significantly improve the computational efficiency.

1 Throughout the paper, we denote by n the number of vertices in G.
2 The∞-matrix norm is simply the maximum absolute row sum of the matrix.

On the Efficiency of Estimating Penetrating Rank on Large Graphs 235

I U1Σ1V
T
1− − U2Σ2V

T
2

= I +
[U1 U2]

VT
1

VT
2

[]−1

· ·
Σ−1

−1
n r (� n)

O(n3)

O(n2r)

2r

time
complexity

Fig. 3. Low-rank update of matrix inversion

Q UQ=

n r (� n)

O(rn2)

Rank r SVD
n

· ·
r n− r

r

n− r

ΣQ VQ

Qυ
U′

Q
=

n

υ

O(υn2)

Low Rank υ SVD
n

· ·r

n− r

r

n− rΣ′
Q V′

Q

(r % n)

(υ % r)

r

n− r υ

υ

≈

⇒ ‖Qυ −Q‖2 = συ+1

Fig. 4. Reduced SVD Process

4 An Algorithm for P-Rank Deterministic Computation

In light of the matrix inversion form in Lemma 2, we now focus on deterministic opti-
mization of P-Rank computation. In this section, we show the following result.

Theorem 1. For any graph G, given a low-rank υ (≤ r), it is in O
(
υn2 + υ6

)
time

and O(υ ·max{υ3, n}) space to compute P-Rank similarity up to an additive error of
ευ ≤ λCinσ1συ+1+(1−λ)Coutσ̄1σ̄υ+1

1−λCin−(1−λ)Cout
r, where r (% n) is the rank of the adjacency matrix,

σi and σ̄i (i = 1, υ + 1) are the i-th largest singular values of Q and P respectively.

In particular, setting υ = r gives the following corollary.

Corollary 1. The exact P-Rank similarity can be solvable in O
(
rn2 + r6

)
time and

O(r ·max{r3, n}) space.

(A sketch proof of Theorem 1 and Corollary 1 will be provided after some discussions.
See [23] for a full version of proof.)

The key observation behind P-Rank optimization is that vertices in a real graph usu-
ally have a large number of common neighborhoods (e.g., many users often have the
similar preferences in a recommender system). Hence, r is typically much smaller than
n in practice. The main idea is (a) to devise a rank-r update formula for efficiently com-
puting the matrix inversion in Eq.(4), and (b) to use a rank-r factorization for merging
the vertices that have the same neighborhoods into one vertex.

To prove Theorem 1, we first devise a low-rank update formula of matrix inversion.
We then present an algorithm for P-Rank computation with the desired properties.

Lemma 3. Let In be an n×n identity matrix, Ui and Vi be n× r matrices (r % n),
and Σi be r × r matrices (i = 1, 2). Then the following identity holds.

(
In −U1Σ1V

T
1 −U2Σ2V

T
2

)−1
= In +

(
U1 U2

)(Σ1
−1 −VT

1 U1 −VT
1 U2

−VT
2 U1 Σ2

−1 −VT
2 U2

)−1(
VT

1

VT
2

)
(5)

(For the interest of space, please refer to [23] for a detailed proof. Lemma 3 is an
extension of the Woodbury matrix identity [12, p.48].)

As opposed to O
(
n3
)
-time of the conventional matrix inversion [7], Lemma 3 pro-

vides an efficient way of computing (In −U1Σ1V
T
1 −U2Σ2V

T
2)

−1
in O(n2r+r2n+

r3) time (r % n) via the RHS of Eq.(5). As depicted in Figure 3, the performance gain
is achieved by the observation that U1Σ1V

T
1 and U2Σ2V

T
2 are low rank.

One immediate consequence of Lemma 3 is the optimization of the P-Rank matrix
inversion form. We have an observation that most real graphs are low rank (e.g., the

236 W. Yu et al.

web graph [18], bibliographic network [9], who-trusts-whom social network [14]).
By applying a reduced singular value decomposition [19] 3 (as depicted in Figure 4),
λCin (Q⊗Q) and (1− λ)Cout (P⊗P) in Eq.(4) can be factorized into the low-rank
form of U1Σ1V

T
1 and U2Σ2V

T
2 , respectively. Then combining Lemma 3, we have

vec(S)=(ŨQ ŨP)Σ
(

ṼT
Q

ṼT
P

)
vec (In)+vec (In) with Σ=

(
1

λCin
Σ̃−1

Q −ṼT
QŨQ −ṼT

QŨP

−ṼT
PŨQ

1
(1−λ)Cout

Σ̃−1
P −ṼT

PŨP

)−1

,

where a tilde denotes the self-Kronecker product of a matrix, e.g., ŨQ = UQ ⊗UQ.
Due to Σ small size, the efficiency of computing P-Rank can be greatly improved.

We next provide an algorithm for P-Rank computation, denoted by DE P-Rank.

Algorithm. In Algorithm 1, given G, λ, Cin , Cout, and a low rank υ (an optional param-
eter with a default value being the rank r of adjacency matrix), DE P-Rank outputs the
exact S if υ = r, or the approximate S with an error ευ if υ < r.

Some notations in the algorithm are elaborated below. (a) RowNorm (A) returns a
matrix by normalizing each nonzero row of A. (b) Rank (A) returns the rank of A. (c)
RSVD (Q, υ) returns a low-rank υ factorization of Q (see Figure 4). (d) Reshape(v, υ)
returns an υ × υ matrix V such that vec(V) = v.

The algorithm works as follows. (a) It first initializes the adjacency matrix A (line
1), and computes Q and P (line 2). υ is set to Rank (A) if the low rank υ is not
specified (line 3). (b) It then utilizes RSVD () to decompose Q and P into UQΣQV

T
Q

and UPΣPV
T
P, respectively (line 4). In light of these matrices together with the self-

Kronecker products, two vectors v1 and v2 can be obtained (lines 5-7). The error esti-
mate ευ is also computed if υ < Rank(A) (line 8). (c) Utilizing v1 and v2, the matrix
S can be derived, which is returned as the P-Rank similarity (lines 9-11).

Example. Figures 5(a) and 5(b) show how DE P-Rank computes P-Rank in a het-
erogenous graph G0 and a homogeneous G1, respectively. In G0, there are two types of
entities : person (A) and (B) purchase the items sugar, egg, flour. In G1, each vertex
denotes a paper, and each edge a citation. For these graphs, given Cin = 0.4, Cout =
0.6, λ = 0.5, DE P-Rank first computes Q and P. Since υ is not specified, it is set
to Rank(A). Then Q and P are decomposed into small matrices that can be used for
computing

(
Σ11 Σ12

Σ21 Σ22

)
and v1,v2. Finally, DE P-Rank computes the exact S.

To complete the proof of Theorem 1, we next show that the algorithm DE P-Rank (1)
correctly computes the similarity values; (2) it has the time complexity bound stated in
Theorem 1; (3) when υ ∈ [12r, r], the error ευ (line 8) is acceptable in practice.

(Due to space limitations, please refer to [23] for detailed analysis.)
(1) Correctness. The algorithm returns exactly the same similarity as Eq.(4) when

υ = r; and it returns the low-rank υ approximate similarity with an error ευ stated in
Theorem 1 when υ < r.

(2) Running Time. The algorithm consists of three phases: pre-processing (lines 1-
3), similarity computation (lines 4-8), and result collection (lines 9-11). One can verify

3 Given an matrix X (with its rank r) and an integer υ (≤ r), the reduced singular value decom-
position of X is the factorization Xυ = Uυ ·Συ ·Vυ

T s.t. ‖X−Xυ‖2 = συ+1 is minimal,
where Uυ and Vυ are n× υ column orthonormal matrices, and Σ � diag (σ1, σ2, · · · , συ)
is an υ × υ diagonal matrix whose entries are the singular values of X.

On the Efficiency of Estimating Penetrating Rank on Large Graphs 237

Algorithm 1: DE P-Rank
Input : web graph G = (V, E),

weighting factor λ,
damping factors Cin and Cout,
low rank υ.

Output: similarity matrix S, and
approximation error ευ .

1 initialize the adjacency matrix A of G.
2 Q← RowNorm(AT), P← RowNorm(A).
3 if υ is empty then υ ← Rank (A).
4 [UQ,ΣQ,VQ;σ1, συ+1]← RSVD (Q, υ),
[UP,ΣP,VP; σ̄1, σ̄υ+1]← RSVD (P, υ).

5 compute the small auxiliary matrices:
ΛQ,Q = VT

Q ·UQ, ΛP,P = VT
P ·UP,

ΛP,Q = VT
P ·UQ, ΛQ,P = VT

Q ·UP,
ΛQ = Σ−1

Q , ΛP = Σ−1
P .

6 compute the four blocks of the matrix Σ :
Σ11 ← 1

λCin
ΛQ ⊗ΛQ −ΛQ,Q ⊗ΛQ,Q,

Σ12 ← −ΛQ,P ⊗ΛQ,P,
Σ22 ← 1

(1−λ)Cout
ΛP ⊗ΛP−ΛP,P⊗ΛP,P,

Σ21 ← −ΛP,Q ⊗ΛP,Q.
7 compute the P-Rank similarity S :(v1

v2

)
←

(
Σ11 Σ12
Σ21 Σ22

)−1
(

vec(VT
QVQ)

vec(VT
PVP)

)
.

8 if υ < Rank (A) then

ευ ← λCinσ1συ+1+(1−λ)Coutσ̄1σ̄υ+1

1−λCin−(1−λ)Cout
Rank (A)

else ευ ← 0.
9 V1 ← Reshape(v1, υ),
V2 ← Reshape(v2, υ).

10 S← (1− λCin − (1− λ)Cout)·
(In +UQV1U

T
Q +UPV2U

T
P).

11 return S and ευ .

1 2
G0

543

(A) (B)

sugar egg flour

➀
=⇒

A =⎛⎜⎜⎜⎜⎜⎜⎝
0 0 1 1 1

0 0 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
➁
=⇒

Q =⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0

0 0 0 0 0
1
2

1
2 0 0 0

1
2

1
2 0 0 0

1
2

1
2 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠

P =⎛⎜⎜⎜⎜⎜⎜⎝
0 0 1

3
1
3

1
3

0 0 1
3

1
3

1
3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠

➂
=⇒

UQ =⎛⎜⎜⎜⎜⎝
0
0

−.577
−.577
−.577

⎞⎟⎟⎟⎟⎠
ΣQ =

(
1.225

)
VT

Q =
(
−.707 −.707 0 0 0

)

VT
P =

(
0 0 −.577 −.577 −.577

)
ΣP =

(
.817

)
UP =⎛⎜⎜⎜⎜⎝

0
0

−.577
−.577
−.577

⎞⎟⎟⎟⎟⎠

➃
=⇒

Σ11 = (3.33)

Σ12 = (−1)
Σ21 = (−1)
Σ22 = (5)

➄
=⇒

V1 =
(
.383

)
V2 =

(
.277

) ➅
=⇒ S =

⎛⎜⎜⎜⎜⎝
.569 .069 0 0 0
.069 .569 0 0 0
0 0 .564 .064 .064
0 0 .064 .564 .064
0 0 .064 .064 .564

⎞⎟⎟⎟⎟⎠

(a) Heterogenous Shopping Graph G0

1 2

G1

54

3

6

➀
=⇒

A =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0

0 1 1 0 1 1

0 1 1 0 1 1

1 0 0 1 0 0

1 0 0 1 0 0

0 1 1 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
➁
=⇒

Q =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3 0 0 1

3
1
3 0

0 1
3

1
3 0 0 1

3

0 1
3

1
3 0 0 1

3
1
3 0 0 1

3
1
3 0

0 1
3

1
3 0 0 1

3

0 1
3

1
3 0 0 1

3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

P =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 0 1

2 0 0

0 1
4

1
4 0 1

4
1
4

0 1
4

1
4 0 1

4
1
4

1
2 0 0 1

2 0 0
1
2 0 0 1

2 0 0

0 1
4

1
4 0 1

4
1
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

➂
=⇒

UQ =⎛⎜⎜⎜⎜⎜⎜⎝
0 .707
.5 0
.5 0
0 .707
.5 0
.5 0

⎞⎟⎟⎟⎟⎟⎟⎠

ΣQ =(
1.155 0
0 .817

) VT
Q =(

0 .577 .577 0 0 .577
.577 0 0 .577 .577 0

)
VT

P =(
.707 0 0 .707 0 0
0 −.5 −.5 0 −.5 −.5

) ΣP =(
1.225 0
0 .866

)

UP =⎛⎜⎜⎜⎜⎜⎜⎝
.577 0
0 −.577
0 −.577

.577 0

.577 0
0 −.577

⎞⎟⎟⎟⎟⎟⎟⎠

➃
=⇒

Σ11 =

⎛⎜⎝ 3 0 0 0
−.250 4.596 0 0
−.250 0 4.596 0
−.083 .236 −.236 6.833

⎞⎟⎠ Σ12 =

⎛⎜⎝ 0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞⎟⎠

Σ21 =

⎛⎜⎝ 0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞⎟⎠ Σ22 =

⎛⎜⎝1.556 0 0 0
.236 2.436 0 0
.236 0 2.436 0
−.083 .250 .250 3.694

⎞⎟⎠
➄
=⇒

V1 =(
.477 −.048
−.048 .275

)
V2 =(

.820 .099

.099 .432

)

➅
=⇒ S =

⎛⎜⎜⎜⎜⎜⎜⎝
.705 .025 .025 .206 .145 .025
.025 .632 .132 .025 .076 .132
.025 .132 .632 .025 .076 .132
.206 .025 .025 .706 .145 .025
.145 .076 .076 .145 .696 .076
.025 .132 .132 .025 .076 .632

⎞⎟⎟⎟⎟⎟⎟⎠

(b) Homogeneous Scientific Paper Net-
work G1

Fig. 5. How DE P-Rank computes similar-
ity

that these phases take O (m), O
(
υ2n+ υn2 + υ4 + υ6

)
and O (υ) time, respectively.

Hence, the total time is bounded by O
(
υn2 + υ6

)
with υ ≤ r.

(3) Memory Space. (a) For pre-processing, it takes O(n) space to compute Q and
P (line 3). (b) For similarity computation, the memory consumption is dominated by
O(υ · max{υ3, n}), which includes O(υn) space to decompose Q and P into low-
rank matrices (line 4), and O(υ4) for computing Σ−1 (line 7). (c) The result collection
requires O(υ2) space (line 10). Therefore, the total space can be bounded by O(υ ·
max{υ3, n}) with υ ≤ r. (see Table 1 for a detailed analysis)

(4) Error Bound. The error ευ is reasonably small in practice when υ ∈ [12r, r].
Our experimental results in Section 6 show that for such υ, the singular values συ+1

and σ̄υ+1 (in line 8) are almost zero, leading to a practically acceptable NDCG30 (see
Figure 13). As an extreme case of υ = r, συ+1 = σ̄υ+1 = 0, which implies that ευ = 0.

238 W. Yu et al.

Table 1. Running Time & Memory Space for DE P-Rank in lines 2-9

#-line time memory operation

2 O(m) O(n) row normalization of matrices

4 O(υn2 + υ2n) O(υn) low-rank υ reduced SVD
5 O(υ2n+ r) O(υ) matrix multiplications and inversions
6 O(υ4 + υ2) O(υ2) Kronecker products
7 O(υ6 + υ4 + υ2n) O(υ4 + υ2) block matrix inversion
8 O(1) O(1) constant operations

9 O(υ) O(υ2) reshape matrices

For instance, consider the WIKI (0715) data (r = 15K, σ1 = 1.12, σ̄1 = 1.08).
Setting Cin = 0.8, Cout = 0.6, and λ = 0.5 will yield

ευ ≤ 0.5×0.8×1.12+0.5×0.6×1.08
1−0.5×0.8−0.5×0.6 × 10−7 × 15K = 0.0039.

5 Probabilistic P-Rank Similarity Estimation

Although way better than cubic, the complexity bound of DE P-Rank is still too high to
compute similarity in an on-line fashion. For ad-hoc (dynamic) queries on large graphs,
the execution time is one of the most crucial metrics; it is worthwhile to drastically
accelerate the P-Rank computation with a little sacrifice in accuracy.

This motivates us to study the probabilistic P-Rank computation problem. That is,
given a graph G, a query (u, v), and a desired probabilistic accuracy, it is to estimate the
P-Rank similarity s(u, v) in a scalable manner (i.e., in worst-case linear time).

5.1 A Probabilistic P-Rank Model

In the light of the power series form of P-Rank in Lemma 1, our key observation is that
P-Rank similarity can be viewed as a geometric sum of random walks, and its score
s (u, v) qualifies how soon two surfers are expected to meet at the same vertex if they
start from vertices u and v and do random walks on a graph backwards and forwards.

The main idea is to utilize the first hitting time τ (u, v) of coalescing walks to esti-
mate sl (u, v) of length l. The underlying rationale is that τ (u, v) can be represented
in a compact way of storing only one integer (rather than a walk of length l) for each
vertex-pair. It is far less costly to estimate τ (u, v) for s(u, v) than to compute the entire
similarity matrix S. Specifically, we show the following result.

Theorem 2 (Probabilistic Model). The P-Rank similarity score between vertices u
and v, with damping factors Cin and Cout for in- and out-links, is equal to the weighted
mean of their expected meeting distances with uniform independent walks, i.e.,

s (u, v) = E(λ · C τ1(u,v)
in + (1− λ) · C τ2(u,v)

out), (6)

where E(·) denotes the expectation of the random variables; and τi (u, v) (i = 1, 2)
are the first hitting time of the random surfers starting from the vertices u and v, and

On the Efficiency of Estimating Penetrating Rank on Large Graphs 239

following the links backwards (i = 1) and forwards (i = 2), respectively; τi (u, v) =
∞ if they never hit; and τi (u, v) = 0 if u = v.

(A detailed proof of Theorem 2 will be provided after some discussions.)
Intuitively, Theorem 2 provides a stochastic model of P-Rank computation for inter-

preting the similarity score as the random walks of surfer pairs. From this perspective,
the quality of similarity score hinges on whether the random surfers that start from two
distinct vertices are close to a common “source” and meet within merely a few steps.

We first use vertex-pair graph G2 to formulate the hitting time of two surfers in G.
In G2, each vertex (u, v) represents a pair of vertices in G, and each edge from (u, v) to
(x, y) says that in G, one surfer can move from u to x, and the other from v to y. Hence,
in light of the power series form of P-Rank in Lemma 1, two surfers, in G, starting from
vertices u and v, following the links backwards (resp. forwards) and meeting within a
few steps indicate that, in G2, there exists a path t from one singleton vertex (x, x) to
(u, v) (resp. from (u, v) to (x, x)).

We then introduce the following notions to model the random surfers on G2.

a b

...

...

...

...

1 ,u v

2 ,u v

, ,u v u v

,u v ,y y

tt

...

...

......

1 ,u v

2 ,u v

, ,u v u v

,x x ,u v

t t

Fig. 6. Transformation from path t′ into t

(a) The transformation T in G2

is a mapping T : t′ → t from
one path t′ into another t by adding
(i) an edge 〈(u, v) ,Oi ((u, v))〉 to
the beginning of t′, or (ii) an edge
〈Ii ((u, v)) , (u, v)〉 to the end of t′.

(b) The length of a path t, denoted
by l (t) is the number of edges in t.
For one length of a random walk on G2, Figure 6 depicts the corresponding transforma-
tion from path t′ to t = T (t′) . Clearly,

l(t) = l(t′) + 1. (7)

(c) The probability of choosing a path T (t′) based on a path t′, denoted by p (T (t′)),
is defined to be

p
(
T
(
t′
))

=

{
1

|I((u,v))| · p (t
′) , t′ : ∃ (x, x)→ (u, v) ;

1
|O((u,v))| · p (t

′) , t′ : (u, v)→ ∃ (y, y) . (8)

We next complete the proof of Theorem 2 by showing that the probabilistic P-Rank
model Eq.(6) is equivalent to the original model Eq.(1).

As the expectations in Eq.(6) can be rewirten as the sum w.r.t. probability distribution
functions, it follows that

s (u, v) = λ ·
∑

t:∃(x,x)→(u,v)

p (t) · C l(t)
in + (1− λ) ·

∑
t:(u,v)→∃(y,y)

p (t) · C l(t)
out .

Without loss of generality, we assume that u �= v, and I (u), I (v), O (u), O (v) �= ∅.
In the above equation, we split the sums w.r.t. one step of the path t. Combing this with
Eqs.(7) and (8), we have

240 W. Yu et al.

s (u, v) = λ ·
|I((u,v))|∑

i=1

∑
t′:∃(x,x)

→Ii((u,v))

= 1
|I((u,v))| ·p

(
t′

)
︷ ︸︸ ︷
p
(
T

(
t
′)) · C

=l
(
t′

)
+1︷ ︸︸ ︷

l
(
T

(
t
′))

in + (1 − λ) ·
|O((u,v))|∑

j=1

∑
t′:Oj((u,v))

→∃(y,y)

= 1
|O((u,v))| ·p

(
t′

)
︷ ︸︸ ︷
p
(
T

(
t
′)) · C

=l
(
t′

)
+1︷ ︸︸ ︷

l
(
T

(
t
′))

out

=
λ · Cin

|I (u)| |I (v)|
·

|I((u,v))|∑
i=1

∑
t′:∃(x,x)→Ii((u,v))

p
(
t
′) · C

l
(
t′

)
in +

(1 − λ) · Cout

|O (u)| |O (v)|
·

|O((u,v))|∑
j=1

∑
t′:Oj((u,v))→∃(y,y)

p
(
t
′) · C

l
(
t′

)
out

=
λ · Cin

|I (u)| |I (v)|
·
|I(u)|∑
i=1

|I(v)|∑
j=1

s
(
Ii (u) , Ij (v)

)
+

(1 − λ) · Cout

|O (u)| |O (v)|
·
|O(u)|∑
i=1

|O(v)|∑
j=1

s
(
Oi (u) ,Oj (v)

)
.

Hence, the probabilistic model Eq.(6) agrees with the original model Eq.(1).

5.2 A Scalable Algorithm for P-Rank Estimation

In light of Theorem 2, we next devise a probabilistic algorithm for P-Rank estimation.
The main result in this subsection is the following.

Theorem 3. For any graph G, the probabilistic P-Rank similarity can be solvable in
O (N · n) time and O(n+N) space, where N is the sample size.

(The proof of Theorem 3 will be provided after a few discussions.)
As will be seen shortly, N is much smaller than n and affects the accuracy of estima-

tion. This suggests that P-Rank can be solved in linear time with controlled probabilistic
error, as opposed to the quadratic-time of its deterministic computation.

To prove Theorem 3, we first present the general idea of the P-Rank estimation. We
then devise a randomized algorithm, followed by a complexity analysis.

The central idea is to use a sampling approach to estimate s from the first hitting time
τ1 and τ2. (i) In the pre-computation phase, we utilize a tree index structure (instead of
a low-rank factorization) to represent all the first hitting time for a set of coalescing
walks in a compact way. (ii) In the query phase, we use two random surfers to estimate
the P-Rank similarity by following the path that is a function of the first hitting time τ1
and τ2, which can be justified by Theorem 2.

Algorithm. The algorithm, referred to as PR P-Rank, is shown in Algorithm 2. It takes
as input a graph G, a query vertex-pair (u, v), a sample size N , a weighting factor λ,
and two damping factors Cin and Cout, it returns the approximate similarity ŝN (u, v).

The algorithm maintains the following data structures to ensure estimation quality.
(a) A (reversed) fingerprint tree FP (resp. RFP) for vertices in G. For each vertex u in
the i-th samples FPi and RFPi, RFPi (u, l) collects candidate vertices v in G such that
each of the vertices u and v has an incoming directed path of length l that starts from
some common vertex x; and FPi (u, l

′) is the set of vertices w in G such that each of the
vertices u and w has an outcoming directed path of length l′ that ends to some common
vertex y. (b) A random sample list ŝ(i)N of size N in G for estimating P-Rank similarity
with ŝN being the mean of N independent and identically distributed (i.i.d.) samples
ŝ
(i)
N . (c) The path length, denoted by Len (v/ · · · /u), from vertex v to u in G. The path

is nonempty if Len (v/ · · · /u) ≥ 1.
The algorithm works as follows. (1) It first constructs two sample lists RFP and FP

for G by invoking Index Pre-processing procedure (lines 1-6). For each vertex

On the Efficiency of Estimating Penetrating Rank on Large Graphs 241

Algorithm 2: PR P-Rank (G, (u, v), N, λ, Cin, Cout)

Input : web graph G = (V, E), query vertex pair (u, v) ∈ V × V , sample size N ,
weighting factor λ, damping factors Cin and Cout.

Output: P-Rank similarity score ŝN(u, v).
INDEX PRE-PROCESSING

1 for i← 1, · · · , N do
2 foreach vertex u ∈ V do
3 if ∃v ∈ V − {u} s.t. u and v meet at a common vertex x along a chain of l

in-links, and Len (x/ · · · /v) = Len (x/ · · · /u) = l then
4 add v to the reversed fingerprint tree RFPi (u, l) of G.

5 else if ∃w ∈ V − {u} s.t. u and w meet at a common vertex y along a chain of l′

out-links, and Len (v/ · · · /y) = Len (w/ · · · /y) = l′ then
6 add w to the fingerprint tree FPi (u, l

′) of G.

QUERY ŝN (u, v)
7 for i← 1, · · · , N do
8 if there exists a positive integer l s.t. RFPi (u, l) = RFPi (v, l) then
9 l0 ← minl

{
l ∈ Z+ |RFPi (u, l) = RFPi (v, l)

}
.

10 else if there exists a positive integer l′ s.t. FPi (u, l
′) = FPi (v, l

′) then
11 l′0 ← minl′

{
l′ ∈ Z+ |FPi (u, l

′) = FPi (v, l
′)
}

.

12 ŝ
(i)
N ← λ · C l0

in + (1− λ) · C l′0
out .

13 ŝN ← 1
N
·
∑N

i=1 ŝ
(i)
N .

14 return ŝN .

u in G, the i-th sample RFPi (u, l) (resp. FPi (u, l
′)) collects the vertex v such that u and

v have some common vertex x along a chain of l in-links (resp. l′out-links) in G (lines
4 and 6). (2) It then computes all the samples ŝ

(i)
N by inspecting the vertices and path

lengths collected in RFP and FP (lines 7-12). More concretely, for each sample ŝ
(i)
N , PR

P-Rank identifies the minimum length l0 (resp. l0
′) of the incoming (resp. outgoing)

directed path, along which u and v may reach a common vertex (lines 9 and 11). Fur-
thermore, utilizing l0 and l0

′, it then computes ŝ
(i)
N (line 12), which can be justified by

Theorem 2. These ŝ
(i)
N (i = 1, · · · , N) constitute a sequence of i.i.d. random samples.

They are averaged to produce the final score ŝN (lines 13-14).
To complete the proof of Theorem 3, we next show that (1) PR P-Rank has linear

time complexity bound; (2) the memory requirement is bounded by O(N + n); (3)
the sample size N % n in practice; (4) the error bounds are reasonably small; (5) the
relative order of PR P-Rank scores is almost preserved.

(1) Running Time. PR P-Rank consists of three phases: (a) For pre-processing
(lines 1-6), PR P-Rank invokes the randomized algorithm [5] for FPT indexing (lines 4
and 6), which is in O (N · n) time. (b) For on-line query (lines 7-12), PR P-Rank com-

putes l0 and l0
′ for each sample ŝ

(i)
N in O (n) time, being O (N · n) time for N samples.

(c) For computing ŝN (lines 13-14), it takes O (N) time to collect all the samples.
Therefore, the total time of PR P-Rank is in O (N · n) time.

242 W. Yu et al.

(2) Memory Space. The memory requirement is totally bounded by O(N + n),
comprising three phases: (a) In the precomputation phase, FPT indexing (lines 4 and
6) needs O(n) space to maintain RFPi and FPi for every sample ŝ

(i)
N . (b) During the

online query phase, it takes O(n) space for finding the shortest meeting distance l0 and
l′0 (lines 9 and 11), and O(N) space for collecting all the similarity samples ŝ

(i)
N (line

13). (c) Computing ŝN on-the-fly requires O(N) space.
(3) Sample Size N . (a) Choosing N ≥ −2

⌈
(σ/ε)2 logα

⌉
suffices to ensure that

Pr (|ŝN − s| ≥ ε) < α (where ŝN (u, v) is the sample mean, and σ2 the variance) ,
given any accuracy ε and confidence level 1−α (α ∈ (0, 1)). This is because applying

the Bernstein’s Theorem [11] yields exp(− 1
2 (ε
√
N/σ)

2
) < α. (b) N is typically much

smaller than n in practice, which can be verified by our empirical results in Section 6
(see Figure 14. For instance, consider DBLP (98-07) graph with n = 10K vertices.
Given ε = 0.15σ and α = 0.05, we have N ≥ −2

⌈
0.15−2 log (0.05)

⌉
= 267.

(4) Error Bound. We denoted by Err � supN≥1 Pr (|ŝN − s| ≥ ε).
(a) An upper bound can be obtained from Bernstein’s Theorem [11], which gives

Err ≤ exp(−Nε2/(2σ2)),

(b) A lower bound follows from the Central Limit Theorem [10], in which

Err ≥ Pr (|ŝN − s| ≥ ε) = Pr

(∣∣∣∣∣ 1√
N

N∑
i=1

(
ŝ
(i)
N − s

σ

)∣∣∣∣∣ ≥ ε
√
N

σ

)
= 2− 2Φ

(
ε
√
N

σ

)
,

where Φ (·) is the cumulative distribution function of normal distributionN (0, 1).
(c) Both bounds of Err are reasonable because (i) exp(−Nε2/(2σ2)) is decreasing

w.r.t. N , and (ii) Φ(ε
√
N/σ) non-decreasingly approaches 1 as N increases. Hence,

limN→∞ exp(−Nε2/(2σ2)) = limN→∞ 2− 2Φ(ε
√
N/σ) = 0.

According to the Squeeze Principle [10], we have ŝN (u, v)
a.s.→ s (u, v) as N →∞.

(d) Err is typically small and acceptable in practice. For instance, Setting ε = 0.15σ

and N = 300, we have exp
(
− Nε2

2σ2

)
= exp

(
− 300×(0.15σ)2

2σ2

)
≈ 0.034 and 2 −

2Φ
(
ε
√
N

σ

)
= 2 − 2Φ

(
0.15 ×

√
300
)
≈ 0.0094. This implies that only 0.94% (at most

3.4%) of the estimated scores ŝN fall outside the interval [s− 0.15σ, s+ 0.15σ].
(5) Relative Order. The relative order of the similarity estimated by PR P-Rank is

almost preserved with the deterministic result, as shown in the following theorem.

Theorem 4. Let ŝN (·, ·) be the estimated similarity by PR P-Rank with N being the
sample size, and s(·, ·) the exact similarity. If s(u, v) > s(u,w) + ε, then

Pr(ŝN (u, v)− ŝN (u,w) > ε) ≤ exp(−Nε2/2) (∀u, v, w ∈ V).

(A detailed proof of Theorem 4 is provided in the Appendix.)
Our empirical results on DBLP will further verify that for N ≥ 350, PR P-Rank can

almost maintain the relative order of similarity (see Figure 12).

On the Efficiency of Estimating Penetrating Rank on Large Graphs 243

6 Experimental Evaluation

We conduct a comprehensive empirical study over several real and synthetic datasets
to evaluate (1) the scalability, time and space efficiency of the proposed algorithms, (2)
the approximability of DE P-Rank, and (3) the effectiveness of PR P-Rank.

6.1 Experimental Settings

Datasets. We used three real datasets (AMZN, DBLP, and WIKI) to evaluate the efficacy
of our methods, and synthetic data (0.5M-3.5M RAND) to vary graph characteristics.
The sizes of AMZN, WIKI and DBLP are shown in Tables 2-4.

Table 2. AMZN

0505 0601

|V| 410K 402K
|E| 3,356K 3,387K

Table 3. DBLP

98-99 98-01 98-03 98-05 98-07

|V| 1,525 3,208 5,307 7,984 10,682
|E| 5,929 13,441 24,762 39,399 54,844

Table 4. WIKI

0715 0827 0919

|V| 3,088K 3,102K 3,116K
|E| 1,126K 1,134K 1,142K

(1) AMZN data4 are based on Customers Who Bought This Item Also Bought feature
of the Amazon website. Each node represents a product. There is a directed edge from
node i to j if a product i is frequently co-purchased with product j. Two datasets were
collected in May 5 2003, and June 1 2003.

(2) DBLP data5 record co-authorships among scientists in the Bibliography. We ex-
tracted the 10-year (from 1998 to 2007) author-paper information, and singled out the
publications on 6 conferences (ICDE, VLDB, SIGMOD, WWW, SIGIR, and KDD).
Choosing every two years as a a time step, we built 5 co-authorship graphs.

(3) WIKI data6 contain millions of encyclopedic articles on a vast array of topics to
the latest scientific research. We built 3 graphs from the English WIKI dumps,where
each vertex represents an article, and edges the relationship that “a category contains an
article to be a link from the category to the article”.

(4) RAND data were produced by C++ boost generator for digraphs, with 2 parame-
ters: the number of vertices, and the number of edges.

Parameter Settings. To keep consistency with the experimental conditions in [26],
we assigned each of the following parameters a default value.

Notation Description Default Notation Description Default
Cin in-link damping factor 0.8 λ weighting factor 0.5
Cout out-link damping factor 0.6 υ low rank 50% × Rank
ε desired accuracy 0.001 N sample size 350

Compared Algorithms. We have implemented the following algorithms. (1) DE and
PR, i.e., DE P-Rank and PR P-Rank; (2) Naive, a K-Medoids P-Rank iterative al-
gorithm (K = 10) based on a radius-based pruning method [26]; (3) Psum, a variant

4 http://snap.stanford.edu/data/index.html
5 http://www.informatik.uni-trier.de/˜ley/db/
6 http://en.wikipedia.org/

244 W. Yu et al.

0.5M 1M 1.5M 2M 2.5M 3M 3.5M
101

102

103

104

105

#-vertices |V|

E
la
p
se
d
T
im

e
(s
ec
)

PR DE
Psum Naive
Sim

(a) |E| = 2M

0.5M 1M 1.5M 2M 2.5M 3M 3.5M
101

102

103

104

105

#-vertices |V|

E
la
p
se
d
T
im

e
(s
ec
)

PR DE
Psum Naive Sim

(b) |E| = 4M

0.5M 1M 1.5M 2M 2.5M 3M 3.5M
101

102

103

104

105

#-vertices |V|

E
la
p
se
d
T
im

e
(s
ec
)

PR DE
Psum Naive Sim

(c) |E| = 6M

Fig. 7. Scalability on Synthetic Datasets

of P-Rank, leveraging a partial sum function [18] to compute similarity; (4) Sim, an
enhanced version of SimRank algorithm [1], which takes account of the evidence fac-
tor for incident vertices. These algorithms were implemented in C++, except that the
MATLAB implementation [3] for calculating RSVD () and Rank ().

All experiments were run on a machine with a Pentium(R) Dual-Core (2.00GHz)
CPU and 4GB RAM, using Windows Vista. Each experiment was repeated over 5 times,
and the average is reported here.

6.2 Experimental Results

Scalability. We first evaluate the scalability of the five ranking algorithms, using syn-
thetic data. In these experiments, PR fingerprint tree indexing is precomputed and
shared by all vertex pairs in a given graph, and thus its cost is counted only once.

We randomly generate 7 graphs G = (V , E), with the edge size |E| varying from
2M to 6M. The results are reported in Figures 7(a), 7(b) and 7(c). We can notice that
(1) DE is almost one order of magnitude faster than the other algorithms when |V| is
increased from 0.5M to 3.5M. (2) Execution time for PR increases linearly with |V| due
to the use of finger printed trees. Varying |E|, we also see that the CPU time of DE is
less sensitive to |E|. This is because the time of DE mainly depends on the number of
vertices having the similar neighbor structures. Hence, graph sparsity has not a large
impact on DE. In light of this, DE scales well with |E|, as expected.

Time & Space Efficiency. We next compare the CPU time and memory space of the
five ranking algorithms on real datasets. The results are depicted in Figures 8 and 9. It
can be seen that the time and space of PR clearly outperform the other approaches on
AMZN, WIKI, and DBLP, i.e., the use of Monte Carlo sampling approach is effective.
In all the cases, DE runs faster than Psum, Naive and Sim with moderate memory
requirements. This is because DE uses a singular value decomposition to cluster a large
body of vertices having the similarity neighbor structures, and a low-rank approxima-
tion to eliminate the vertices of tiny singular values, which can save large amounts of
memory space, and avoid repetitive calculations of “less important” vertices. Besides,
with the increasing number of vertices on DBLP data, the upward trends of the time and
space for DE and PR match our analysis in Sections 4 and 5.

Figure 10 depicts how the total computational time and memory space are amortized
on the different phases of DE and PR, respectively, over AMZN data. We see from the
results that the similarity calculation phase of DE is far more time and space consuming

On the Efficiency of Estimating Penetrating Rank on Large Graphs 245

PR DE Psum Naive Sim

0505 0601

102

104

amzn data

E
la
p
se
d
T
im

e
(s
ec
)

0716 0827 0909

102

104

wiki data

E
la
p
se
d
T
im

e
(s
ec
)

98-99 98-01 98-03 98-05 98-07
102

104

106

#-vertices

1,557

3,274

5,416

8,147
10,901

dblp data

E
la
p
se
d
T
im

e
(m

se
c)

Fig. 8. Time Efficiency on Real Datasets

PR DE Psum Naive Sim

0505 0601
0

100

200

300

400

amzn data

M
em

o
ry

S
p
a
ce

(M
B
)

0715 0827 0919
101

102

103

wiki data

M
em

o
ry

S
p
a
ce

(M
B
)

98-99 98-01 98-03 98-05 98-07
0

2

4

6

8

#-vertices

1,557

3,274

5,416

8,147 10,901

dblp data

M
em

o
ry

S
p
a
ce

(M
B
)

Fig. 9. Memory Space on Real Datasets

amzn0505 amzn0601

pre-
comp

sim
calc

res
coll

100

102

104

3 phases of DE

A
m
o
rt
iz
ed

T
im

e
(s
ec
)

pre-
com

sim
calc

res
coll

10−1

101

103

3 phases of PR

amzn0505 amzn0601

pre-
comp

sim
calc

res
coll

100

102

3 phases of DE

M
a
x
M
em

o
ry

(M
B
)

pre-
comp

sim
calc

res
coll

10−1

101

3 phases of PR

Fig. 10. Amortized Costs

(97.4% time and 99.59% space) than the other two phases (2.3% time and 0.27% space
for preprocessing, and 0.3% time and 0.14% space for result collection), which is ex-
pected because factorizing Q and P, and computing Σ−1 yield a considerable amount
of complexity. We also notice that the total cost of PR is well balanced between off-
line pre-indexing and on-line query phases, both of which take high proportions of CPU
time and memory usage, i.e., almost 71.6% total time and 32.6% space are leveraged
on indexing phase, and 28.3% time and 67.3% space on query phase. This tells that the
use of finger printed trees can effectively reduce the overhead costs of PR.

Accuracy. We now evaluate the accuracy of the five algorithms on real data. The
Normalized Discounted Cumulative Gain (NDCG) measure [8] is adopted. The NDCG
at a rank position p is defined as NDCGp = 1

IDCGp

∑p
i=1 (2

ranki − 1)/(log2 (1 + i)),
where ranki is the average similarity at rank position i judged by the human experts,
and IDCGp is the normalization factor to guarantee that NDCG of a perfect ranking at
position p equals 1.

Figure 11 compares the accuracy of DE and PR with that of Naive, Psum and
Sim returned by NDCG30 on AMZN, WIKI and DBLP, respectively. It can be seen that
DE always achieves higher accuracy than PR. The accuracy of PR is not that good
because some valid finger printed trees may be neglected with certain probability by
PR sampling. The results on DBLP also show that the accuracy of DE and PR is insen-
sitive to |V|. Hence, adding vertices does not affect the error in estimation, as expected.

We further evaluate the ground truth calculated by DE and PR on DBLP (98-07)
dataset to retrieve the top-k most similar authors for a given query u. Interestingly,
Figure 12 depicts the top-10 ranked results for the query “Jennifer Widom” according
to the similarity scores returned by PR, DE and Naive, respectively. These members
were frequent co-authors of the 6 major conference papers with “Jennifer Widom” from
1998 to 2007. It can be noticed that the ranked results for different ranking algorithms
on DBLP (98-07) are practically acceptable and obey our common sense pretty well.

246 W. Yu et al.

PR DE Psum Naive Sim

0505 0601
0

0.2

0.4

0.6

0.8

1

amzn data

N
D
C
G

3
0

0716 0827 0909
0

0.2

0.4

0.6

0.8

1

wiki data

98-99 98-01 98-03 98-05 98-07
0

0.2

0.4

0.6

0.8

1

dblp data

Fig. 11. Accuracy on Real Datasets

Rank PR DE Naive
1 Shivnath Babu Shivnath Babu Shivnath Babu
2 Chris Olston Yingwei Cui Yingwei Cui
3 Jun Yang Chris Olston Chris Olston
4 Yingwei Cui Jun Yang Jun Yang
5 Rajeev Motwani Arvind Arasu Rajeev Motwani
6 Arvind Arasu Rajeev Motwani Arvind Arasu
7 David J. DeWitt Alon Y. Halevy Utkarsh Srivastava
8 Glen Jeh Anish Das Sarma David J. DeWitt
9 Utkarsh Srivastava Omar Benjelloun Omar Benjelloun

10 Omar Benjelloun David J. DeWitt Alon Y. Halevy

Fig. 12. Top-10 Co-authors of Jen-
nifer Widom on DBLP

20 30 40 50 60 70 80 90 100
0

1K

2K

3K

Approximation Ratio υ
r × 100%

E
la
p
se
d
T
im

e
(s
ec
) |V|=0.5M

|V|=1.5M

|V|=2.5M

|V|=3.5M

20 30 40 50 60 70 80 90
0.2

0.4

0.6

0.8

1

Approximation Ratio υ
r × 100%

N
D
C
G

3
0

|V|=0.5M

|V|=1.5M

|V|=2.5M

|V|=3.5M

Fig. 13. Effects of υ for DE

50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Sample Size N

N
D
C
G

3
0

|V|=0.5M

|V|=1.5M

|V|=2.5M

|V|=3.5M

Fig. 14. Effects of N for PR

The similarities calculated by DE and PR almost preserve the relative order of Naive.
Hence, both DE and PR can be effectively used for P-Rank similarity estimation in
top-k nearest neighbor search on real networks.

Effects of υ. For DE algorithm, we next investigate the impact of approximation rank
υ and adjacency matrix rank r on similarity estimation, using synthetic data.

We use 4 web graphs with the size |V| of the set of vertices ranging from 0.5M to
3.5M, 2|V| edges. We consider various approximation ranks υ for a given graph G. We
fix |V| while varying υ from 10% × r to 90% × r with r being the rank of adjacency
matrix for G. The results are reported in Figure 13, which visualizes the low-rank υ
as a speed-accuracy trade-off. When υ becomes increasingly close to r (i.e., the radio
υ
r approaches 1), high accuracy (NDCG30) could be expected, but more running time
needs to be consumed. This tells that adding approximation rank υ will induce smaller
errors for similarity estimation, but it will increase the complexity of computation up to
a point of the rank r when no extra approximation errors can be reduced.

Effects of N . For PR algorithm, we evaluate the impact of the sample size N of the
finger printed trees on similarity quality.

We consider 4 web graphs G with the size |V| (= 1
2 |E|) ranged from 0.5M to 3.5M.

In Figure 14, we fixed |V| while varying N from 50 to 400. In all the cases, when the
sample size is larger (N > 300), higher accuracy could be attained (NDCG30 > 0.6),
irrelevant to the size |V| of graph. The result reveals that adding samples of finger
printed trees reduces errors in estimation, and hence improves the effectiveness of PR.

Summary. We find the following. (1) DE and PR can scale well with the large size of
graphs, whereas Naive, Psum, and Sim fail to run with an acceptable time. (2) DE sig-
nificantly outperforms Psum and Sim by almost one order of magnitude with error

On the Efficiency of Estimating Penetrating Rank on Large Graphs 247

guarantees (a drop 10% in NDCG). (3) PR may run an order of magnitude faster than
DE with a little sacrifice in accuracy (5% relative error), which is practically acceptable
for ad-hoc query performed in an on-line fashion.

7 Related Work

P-Rank has become an appealing measure of similarity used in a variety of areas, such
as publication network [26], top-k nearest neighbor search [13], and social graph [2,17].
The traditional method leverages a fixed-point iteration to compute P-Rank, yielding
O(Kn4) time in the worst case. Due to the high time complexity, Zhao et al. [26] further
propose the radius- and category-based pruning techniques to improve the computation
of P-Rank to O(Kd2n2) at the expense of reduced accuracy, where d is the average
degree in a graph. However, their heuristic methods can not guarantee the similarity
accuracy. In contrast, our methods are based on two matrix forms for optimizing P-
Rank computation with fast speed and provable accuracy.

There has also been work on other similarity optimization (e.g., [5,6,15,18,20,22,24,
25]). Lizorkin et al. [18] proposed an interesting memoization approach to improve the
computation of SimRank from O(Kn4) to O(Kn3). The idea of memoization can be
applied to P-Rank computation in the same way. A notion of the weighted and evidence-
based SimRank is proposed by Antonellis et al. [1], yielding better query rewrites for
sponsored search. He et al. [6] and Yu et al. [24] show interesting approaches to paral-
leling the computation of SimRank.

Closer to this work are [15, 17, 27]. Our prior work [17] focuses on P-Rank compu-
tations on undirected graphs by showing an O(n3)-time deterministic algorithm; how-
ever the optimization techniques in [17] rely mainly on the symmetry of the adjacency
matrix. In comparison, this work further studies the general approaches to optimizing
P-Rank on directed graphs, achieving quadratic-time for deterministic computation, and
linear-time for probabilistic estimation. Extensions of SimRank are studied in [27] for
structure- and attribute-based graph clustering, but the time complexity is still cubic in
the number of vertices. Recent work by Li et al. shows an incremental algorithm for
dynamically computing SimRank; however it is not clear that extending to the P-Rank
model is possible. Besides, it seems hard to obtain an error bound for computing Sim-
Rank on directed graphs as the error bound in [15] is only limited to undirected graphs.
In contrast, the error bounds in our work may well suit digraphs.

In comparison to the work on deterministic SimRank computation, the work on
probabilistic computation is limited. Li et al. [16] exploit the block structure of link-
age patterns for SimRank estimation, which is in O(n4/3) time. Fogaras et al. [4, 5]
utilize a random permutation method in conjunction with Monte Carlo Simulation to
estimate SimRank in linear time. As opposed to our probabilistic methods, (a) these
algorithms are merely based on ingoing links; it seems hard to observe global structural
connectivity while maintaining linear time, by using only a finger printed tree struc-
ture. (b) The theoretical guarantee of choosing a moderate sample size is not mentioned
in [4, 5] as these studies ignore the central limit property of the finger printed tree by
and large.

248 W. Yu et al.

8 Conclusion

In this paper, we have studied the optimization problem of P-Rank computation. We
proposed two equivalent matrix forms to characterize the P-Rank similarity. (i) Based
on the matrix inversion form of P-Rank, a deterministic algorithm was devised to reduce
the computational time of P-Rank from cubic to quadratic in the number of vertices;
the error estimate was given as a by-product when the low rank approximation was de-
ployed. (ii) Based on the matrix power series form of P-Rank, a probabilistic algorithm
was also suggested for further speeding up the computation of P-Rank in linear time
with controlled accuracy. The experimental results on both real and synthetic datasets
have demonstrated the efficiency and effectiveness of our methods.

Acknowledgements. We greatly appreciate the constructive comments from the anony-
mous reviewers. We also thank National ICT Australia Ltd (NICTA) for their
sponsorship.

References

1. Antonellis, I., Garcia-Molina, H., Chang, C.-C.: SimRank++: query rewriting through link
analysis of the click graph. PVLDB 1(1) (2008)

2. Cai, Y., Zhang, M., Ding, C.H.Q., Chakravarthy, S.: Closed form solution of similarity algo-
rithms. In: SIGIR, pp. 709–710 (2010)

3. Cowell, W.R. (ed.): Sources and Development of Mathematical Software. Prentice-Hall Se-
ries in Computational Mathematics, Cleve Moler, Advisor (1984)

4. Fogaras, D., Rácz, B.: A Scalable Randomized Method to Compute Link-Based Similarity
Rank on the Web Graph. In: Lindner, W., Fischer, F., Türker, C., Tzitzikas, Y., Vakali, A.I.
(eds.) EDBT 2004. LNCS, vol. 3268, pp. 557–567. Springer, Heidelberg (2004)

5. Fogaras, D., Rácz, B.: Scaling link-based similarity search. In: WWW (2005)
6. He, G., Feng, H., Li, C., Chen, H.: Parallel SimRank computation on large graphs with

iterative aggregation. In: KDD (2010)
7. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press (February 1990)
8. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans.

Inf. Syst. 20, 422–446 (2002)
9. Jeh, G., Widom, J.: SimRank: a measure of structural-context similarity. In: KDD, pp. 538–

543 (2002)
10. Kallenberg, O.: Foundations of Modern Probability. Springer (January 2002)
11. Latuszynski, K., Miasojedow, B., Niemiro, W.: Nonasymptotic bounds on the estimation

error for regenerative MCMC algorithms. Technical report (2009)
12. Laub, A.J.: Matrix Analysis For Scientists And Engineers. Society for Industrial and Applied

Mathematics, Philadelphia (2004)
13. Lee, P., Lakshmanan, L.V.S., Yu, J.X.: On top-k structural similarity search. In: ICDE (2012)
14. Leskovec, J., Huttenlocher, D.P., Kleinberg, J.M.: Signed networks in social media. In: CHI,

pp. 1361–1370 (2010)
15. Li, C., Han, J., He, G., Jin, X., Sun, Y., Yu, Y., Wu, T.: Fast computation of SimRank for

static and dynamic information networks. In: EDBT (2010)
16. Li, P., Cai, Y., Liu, H., He, J., Du, X.: Exploiting the Block Structure of Link Graph for

Efficient Similarity Computation. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho,
T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 389–400. Springer, Heidelberg (2009)

On the Efficiency of Estimating Penetrating Rank on Large Graphs 249

17. Li, X., Yu, W., Yang, B., Le, J.: ASAP: Towards Accurate, Stable and Accelerative
Penetrating-Rank Estimation on Large Graphs. In: Wang, H., Li, S., Oyama, S., Hu, X.,
Qian, T. (eds.) WAIM 2011. LNCS, vol. 6897, pp. 415–429. Springer, Heidelberg (2011)

18. Lizorkin, D., Velikhov, P., Grinev, M.N., Turdakov, D.: Accuracy estimate and optimization
techniques for SimRank computation. VLDB J. 19(1) (2010)

19. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and
Applied Mathematics (April 2003)

20. Sarma, A.D., Gollapudi, S., Panigrahy, R.: Estimating PageRank on graph streams. In:
PODS, pp. 69–78 (2008)

21. Tsatsaronis, G., Varlamis, I., Nørvåg, K.: An Experimental Study on Unsupervised Graph-
based Word Sense Disambiguation. In: Gelbukh, A. (ed.) CICLing 2010. LNCS, vol. 6008,
pp. 184–198. Springer, Heidelberg (2010)

22. Xi, W., Fox, E.A., Fan, W., Zhang, B., Chen, Z., Yan, J., Zhuang, D.: SimFusion: measuring
similarity using unified relationship matrix. In: SIGIR (2005)

23. Yu, W., Le, J., Lin, X., Zhang, W.: On the Efficiency of Estimating Penetrating-Rank on
Large Graphs. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 231–
249. Springer, Heidelberg (2012),
http://www.cse.unsw.edu.au/˜weirenyu/yu-tr-ssdbm2012.pdf

24. Yu, W., Lin, X., Le, J.: Taming Computational Complexity: Efficient and Parallel SimRank
Optimizations on Undirected Graphs. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM
2010. LNCS, vol. 6184, pp. 280–296. Springer, Heidelberg (2010)

25. Yu, W., Zhang, W., Lin, X., Zhang, Q., Le, J.: A space and time efficient algorithm for
SimRank computation. World Wide Web 15(3), 327–353 (2012)

26. Zhao, P., Han, J., Sun, Y.: P-Rank: a comprehensive structural similarity measure over infor-
mation networks. In: CIKM (2009)

27. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute similarities.
PVLDB 2(1) (2009)

Appendix: Proof of Theorem 4

Proof. Let A � {|ŝN (u, v)− s(u, v)| ≥ ε}, and B � {|ŝN (u,w)− s(u,w)| ≥ ε}.
We first find an upper bound of variance σ2 for any sample ŝ

(i)
N ∈ [0, 1].

σ2 = E[(ŝ
(i)
N)

2
]− E[ŝ

(i)
N]

2
≤ E[ŝ

(i)
N]− E[ŝ

(i)
N]

2
= −(E[ŝ(i)N]− 1/2)

2
+ 1/4 ≤ 1/4.

Then, using the Bernstein’s inequality, we have

Pr(A ∩B) ≤ Pr(A) ≤ exp(−Nε2/(2σ2)) ≤ exp(−2Nε2).

Since s(u, v) > s(u,w) + ε, we have

A ∩B ⊇ {ŝN (u, v)− ŝN(u,w) > ŝN(u, v)− ŝN(u, w)−

>ε(>0)︷ ︸︸ ︷
(s(u, v)− s(u,w))

= (ŝN(u, v)− s(u, v)︸ ︷︷ ︸
≥ε

)− (ŝN(u,w)− s(u,w))︸ ︷︷ ︸
<−ε

> 2ε}

Hence, Pr{ŝN (u, v)− ŝN (u,w) > ε} ≤ exp(−Nε2/2).

http://www.cse.unsw.edu.au/~weirenyu/yu-tr-ssdbm2012.pdf

Towards Efficient Join Processing over Large

RDF Graph Using MapReduce

Xiaofei Zhang1, Lei Chen1, and Min Wang2

1 Hong Kong University of Science and Technology, Hong Kong
2 HP Labs China, Beijing

{zhangxf,leichen}@cse.ust.hk, min.wang6@hp.com

Abstract. Existing solutions for answering SPARQL queries in a
shared-nothing environment using MapReduce failed to fully explore the
substantial scalability and parallelism of the computing framework. In
this paper, we propose a cost model based RDF join processing solution
using MapReduce to minimize the query responding time as much as
possible. After transforming a SPARQL query into a sequence of MapRe-
duce jobs, we propose a novel index structure, called All Possible Join
tree (APJ-tree), to reduce the searching space for the optimal execution
plan of a set of MapReduce jobs. To speed up the join processing, we
employ hybrid join and bloom filter for performance optimization. Ex-
tensive experiments on real data sets proved the effectiveness of our cost
model. Our solution has as much as an order of magnitude time saving
compared with the state of art solutions.

1 Introduction

As a well supported computing paradigm on Cloud, MapReduce substantially
fits for large scale data-intensive parallel computations. The exploration of RDF
query processing with MapReduce has drawn great research interests. There are
a number of challenges to fit RDF query processing, especially join processing,
directly into the MapReduce framework. Though attempts were made in [1][2][3],
the following problems are not well solved: 1) How to map the implied join
operations inside a SPARQL query to a number of MapReduce jobs? 2) Given
a set of MapReduce jobs and their dependencies, how to make the best use of
computing and network resources to maximize the job execution parallelism,
such that we can achieve the shortest execution time? 3) How to organize and
manage RDF data on Cloud such that MapReduce jobs can scale along with the
data volumes involved in different queries?

To solve the above challenges, in this paper we propose a cost model based
RDF join processing solution on Cloud. We develop a deterministic algorithm for
optimal solution instead of the heuristic algorithm employed in [1]. To elaborate,
we first decompose RDF data into Predicate files and organize them according to
data contents. Then, we map a SPARQL query directly to a sequence of MapRe-
duce jobs that may employ hybrid join strategies (combination of Map-side join,
Reduce-side join and memory backed join). Finally, based on our cost model

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 250–259, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards Efficient Join Processing over Large RDF Graph Using MapReduce 251

of MapReduce jobs for join processing, we present a All Possible Join (APJ)
tree based technique to schedule these jobs to be executed in the most extended
parallelism style. Experiments over real datasets in a real Cloud environment
justified that our method has as much as an order of magnitude time saving
compared with the “variable-grouping” strategy adopted in [1]. To summarize,
we made the following contributions:

– We present a compact solution for RDF data management and join process-
ing on the Cloud platform.

– We develop a cost model based deterministic solution for the optimal query
processing efficiency.

– We propose a novel approach to model a MapReduce job’s behavior and
justify its effectiveness with extensive experiments on real data sets.

The rest of paper is structured as follows. We briefly introduce RDF and SPARQL
query in Section 2. We formally define the problem in Section 3 and present the
cost model in Section 4. We elaborate solution details in Section 5 and 6. Ex-
periments on real dataset are presented in Section 7. We discuss related works
in Section 8 and make the conclusion in Section 9.

2 Preliminaries

RDF, known as Resource Definition Framework, is originally defined to describe
conceptual procedures and meta data models. A RDF triplet consists of three
components: Subject, Predicate (Property) and Object (Value), which represent
that two entities connected by a relationship specified by the Predicate or an
entity has certain value on some property. Thus, RDF data can be visualized
as a directed graph by treating entities as vertices and relationships as edges
between entities.

SPARQL language is the W3C standard for RDF query. It is implemented
to query RDF data in a SQL-style. The syntax of SPARQL is quite simple,
with limited support on aggregation queries and no support on range queries. A
SPARQL query usually involves several triple patterns, each of which is known
as a BQP (Basic Query Pattern) and contains one or two variables. Given a
SPARQL query, data that satisfy different BQPs will be joined on the same
variable. In this work, we consider queries with the Predicate rarely appearing
as a variable as suggested in [4]. In addition, the queries we that study do not
support the “optional” join semantics [5].

3 Problem Definition

In this work, we only focus on join processing of a SPARQL query using MapRe-
duce. The “construct” and “optional” semantics are not considered. Therefore,
a SPARQL query can be simply modeled as “SELECT variable(s) WHERE
{BQP(s)}”. Intuitively, since we assume that the Predicate of BQPs is not a

252 X. Zhang, L. Chen, and M. Wang

variable [4], the above query can be answered by the following steps: 1) select
RDF triplets that satisfy a BQP; 2) join RDF triplets of different BQPs on
shared variables. Essentially, we study how to map the original query to one
or several join operations implemented by MRJs and schedule the execution of
these jobs. To address this problem, we first partition RDF data according to the
Predicate, each partition is called a Predicate file. Then for given BQPi, we de-
note its corresponding Predicate file as PF(BQPi). The statistics of Subject and
Object for each Predicate file are also computed to serve the join order selection.

Given a SPARQL query, we can derive a query pattern graph. Each vertex
represents a BQP. Two vertices are connected if the two BQPs share the same
variable. A formal definition on the query pattern graph is given as follows.

Definition 1. Graph G〈V,E, Lv, Le〉 is a query pattern graph, where V={v|v is
a BQP}, E={e|e=(vi, vj), vi ∈ V , vj ∈ V }, Lv={lv|lv=(S(v), Sel(var)), v ∈ V ,
S(v) is the size of PF(v), var is the variable contained in v, Sel(var) is the
selectivity of var in PF(v)} and Le={le|le is the variable shared by vi and vj,
vi ∈ V , vj ∈ V , (vi, vj) ∈ E}.

AMRJ can be identified by selecting any subgraph ofG, e.g., a subgraph contain-
ing BQPi and BQPj . Then the MRJ performs a join of Predicate file PF(BQPi)
and PF(BQPj). Clearly, there are many possible ways to select MRJs. Our goal
is to obtain an optimal MRJ selection strategy based on a cost model to achieve
the minimum time span of query processing. For clear illustration, we first clas-
sify MRJs into two types, PJoin (Pairwise Join) and MJoin (Multiway Join).
We define them as follows:

Definition 2. Given G〈V,E, Lv, Le〉, PJoin(V ′) is a join operation on a set of
Predicate files PF(vi), vi ∈ V ′, V ′ ⊆ V , where V ′ in G are connected by edges
labeling with the same variable(s).

Definition 3. Given G〈V,E, Lv, Le〉, MJoin(V ′) is a join operation on a set
of Predicate files PF(vi), vi ∈ V ′, V ′ ⊆ V , where V ′ in G are connected by edges
labeling with more than one variables.

Apparently, there are many possible combinations of PJoin andMJoin to answer
the query, while each combination implies an execution graph defined as follows.

Definition 4. An execution graph P is a directed graph with form P (V,E),
where V={v|v is a MRJ}, E={e|e=〈MRJi, MRJj〉, MRJi,MRJj ∈ V }.

Given P , we say MRJi depends on MRJj if and only if MRJj ’s output is a direct
input of MRJi, i.e., a directed edge is added from MRJj to MRJi in P . MRJs
are considered independent if they do not incident to the same edge in P , which
can be executed in parallel as long as their direct inputs are ready. MRJ that
has predecessor(s) must wait until its predecessor(s) is finished. We want to find
such a P that guarantees a minimum query processing time.

Problem Definition: Given a platform configuration Δ, RDF data statistics
S, a query pattern graph G obtained from a SPARQL query Q, find a function
F : (Δ,S,G)→ P (V,E) such that,

Towards Efficient Join Processing over Large RDF Graph Using MapReduce 253

1) Let MRJi’s execution time be ti. Let 〈i, j〉 denote a path from MRJi to MRJj
in P , and the weight of this path to be Wi,j =

∑
k∈〈i,j〉 tk;

3) the Max{Wi,j} is minimized.

In the problem definition, Wi,j indicates the possible minimal execution time
from MRJi to MRJj . Therefore, by minimizing the maximum of Wi,j , the overall
minimum execution time of P is achieved.

4 Cost Model

For MRJs conducting join operations, heavy costs on large scale sequential disk
scan and frequent I/O of intermediate results dominate the execution time.
Therefore, we build a model for MRJ’s execution time based on the analysis
of I/O and network cost.

Assume the total input size of a MRJ is SI, the total intermediate data copied
from Map to Reduce is of size SCP, the number of Map tasks and Reduce tasks
are m and n, respectively. Assume SI is evenly partitioned among m Map tasks.
Let JM, JR and JCP denote the total time cost of three phases respectively, T
be the total execution time of a MRJ. Then T ≤ JM+JCP+JR holds due to the
overlapping between JM and JCP. Let the processing cost for each Map task be
tM, which is dominated by the disk I/O of sequential reading and data spilling,

tM = (C1 + p× α)× SI

m
(1)

, where C1 is a constant factor regarding disk I/O capability, p is a random
variable denoting the cost of spilling intermediate data, which subjects to in-
termediate data size, and α denotes the output ratio of a Map task, which is
query dependent and can be computed with selectivity estimation. Assume m′

is the current number of Map tasks running in parallel in the system, then
JM = tM × m

m′ . Let tCP be the time cost for copying the output of single Map
task to n Reduce tasks. It includes data copying over network as well as the
overhead of serving network protocols,

tCP = C2 ×
α× SI

n×m
+ q × n (2)

where C2 is a constant number denoting the efficiency of data copying over
network, q is a random variable which represents the cost of a Map task serving
n connections from n Reduce tasks. Intuitively, there is a rapid growth of q while
n gets larger. Thus, JCP = m

m′×tCP. JR is dominated by the Reduce task with the
largest input size. We consider the key distribution in the input file is random.
Let Si

r denote the input size of Reduce task i, then according to the Central
Limit Theorem[6], for i = 1, ..., n, Si

r follows a normal distribution N ∼ (μ, σ),
where μ is determined by α×SI and σ subjects to data set properties, which can
be learned from history query logs. By employing the rule of “three sigmas”[6],
we make S∗

r = α× SI × n−1 + 3σ the biggest input size to a Reduce task, then

JR = (p+ β × C1)× S∗
r (3)

254 X. Zhang, L. Chen, and M. Wang

where β is a query dependent variable denoting output ratio, which could be
precomputed based on the selectivity estimation. Thus, the execution time T of
a MRJ is:

T =

{
JM + tCP + JR if tM ≥ tCP

tM + JCP + JR if tM ≤ tCP
(4)

In our cost model, parameters C1, C2, p and q are system dependent and need
to be derived from observations on real job execution. This model favors MRJs
that have I/O cost dominate the execution time. Due to limited space, more
details and experiments on cost model validation can be found in [7].

5 Query Processing

We solve the MRJ selection and ordering problem by introducing a novel tree
structure, namely All Possible Join (APJ) tree, which implies all possible join
plans to examine. We first introduce the Var -BQP entity concept, which shall
derive generalized MRJ types (covers both PJoin and MJoin), and further help
build the APJ-tree.

Definition 5. e|{var}|=({var} : {BQP}) is a Var-BQP entity, where {var} rep-
resents a set of edges labeled with elements of {var} in G. {BQP} represents the
set of all the vertices incident to {var} in G. If BQPi ∈ {BQP} does not only
incident to edges labeled with elements from {var}, BQPi is marked as optional
in {BQP}, denoted by capping BQPi with a wave symbol.

Definition 6. Two Var-BQP entities e
|{vari}|
i =({vari}:{BQPi}) and e

|{varj}|
j =

({varj}:{BQPj}) can be joined together if and only if {vari} ∩ {varj} �= ∅ or
{BQPi} ∩ {BQPj} �= ∅. Join result of two joinable Var-BQP entities is defined
as follows:

e
|{vari}|
i 	� e

|{varj}|
j = ({vari} ∪ {varj} : {BQPi} ∪ {BQPj}) (5)

Based on the join semantic of Var -BQP entities, we describe a top-down
approach to build an APJ-tree, as presented in Algorithm 1. By traversing G
and grouping BQPs on different variables, we can easily obtain {e1i }. Based on
the join semantics defined above, we can further obtain {e2i }...{eni }. By making
each entity an node, and drawing directed edges from ei and ej to ei �� ej, we can
obtain a tree structure representing all possible join semantics among Var -BQP
entities, i.e., APJ-tree.

Algorithm 1. Bottom-up algorithm for APJ-tree generation

Input: Query pattern graph G of m vertices and
n distinct edge labels; V ← ∅ and E ← ∅;

Output: APJ-tree’s vertex set V and edge set
E;

1: Traverse G to find e1i for each label

2: Add each e1i to V
3: for k = 1 to n − 1 do
4: if ∃eki and ekj are joinable then

5: if ∃BPQx is only optional in eki and ekj
among all ek then

6: Make BPQx deterministic in eki ��

ekj
7: end if
8: V ← V

⋃
{eki �� ekj }

9: E ← E
⋃
{eki → eki �� ekj , e

k
j → eki ��

ekj }
10: end if
11: end for

Towards Efficient Join Processing over Large RDF Graph Using MapReduce 255

Lemma 1. An APJ-tree obtained from query pattern graph G implies all possi-
ble query execution plans.

Proof. Basing on the generation of APJ-tree, {eni } gives all the possible combi-
nations that could be obtained from G. Each eni for sure contains all the variables
and all BQPs, which is exactly the final state in a query execution graph P . eni
differentiates from enj as they could be obtained from different join plans. Obvi-

ously, the join of eki and ekj , 1 ≤ k < n (if they are joinable), is exactly a PJoin;

while eki itself, 1 < k ≤ n, is a MJoin.

For each entity eki in the APJ-tree, we define its weight as the smaller one of
the two cost variables, direct cost DiC(eki) and derived cost DeC(eki). DiC(eki)
implies the cost of directly join eki .{BQPi} on eki .{vari}. DeC(eki) implies the
accumulative cost of obtaining eki from its ancestors.

Lemma 2. The minimum weight of eni indicates the minimum total cost of join-
ing all BQPs to answer the query.

Lemma 2 can be easily proved by definition. We find that it is sufficient to
generate and check only part of the APJ-tree to obtain the optimal solution.
Our top-down search Algorithm 2 can effectively prune certain parts of APJ-
tree that do not contain the optimal solution. Since we assume each BQP only
has at most two variables involved, it ensures the complexity of Algorithm 4 is
no worse than O(n2).

Algorithm 2. MRJ Identification for G with m vertices and n edges

Input: Set e for MRJ identification, e ← {e1i };
Query execution plan P ← ∅; V T ← ∅;

Output: P
1: DeC(e1i) ← DiC(e1i)
2: V T ←

⋃
e.BQP , ∀e ∈ P

3: k ← 1
4: repeat
5: sort eki ∈ E on weight in ascending order

6: while
⋃

eki .{BQP} = m and
⋃

eki .{var} =

n, eki ∈ e\{ekj }, e
k
j has the heaviest weight

in e do
7: e ← e \ {ekj }
8: end while
9: repeat
10: for any eki ∈ e

11: while ∃ekj ∈ e\{eki } that can be joined

with eki do

12: if (eki .BQP∪ekj .BQP) � V T then

13: if DiC(eki �� ekj) ≥ DeC(eki ��

ekj) then

14: P ← P∪{eki , ekj , eki �� ekj }
15: end if
16: if DiC(eki �� ekj) < DeC(eki ��

ekj) then

17: P ← P \ {eki , e
k
j }

18: P ← P∪{eki �� ekj }
19: end if
20: end if
21: e ← e ∪ {eki �� ekj }
22: update V T
23: end while
24: e ← e \ {eki }
25: until �eki ∈ e

26: k ← k + 1
27: until k = n

Theorem 1. P computed with Algorithm 2 is optimal.

Proof. First we prove that Algorithm 2 finds the entity enopt with the minimal
weight. Line 5 to 8 in the algorithm guarantees this property. e only contains
entities of minimal weight, which are sufficient to cover all the m BQPs and n
variables. Thus, when k increases to n, the first eni in e is the entity with the
minimum weight. Since we already find the optimal entity enopt, if e

n
opt’s weight is

DiC(enopt), P would only contain one MJoin that join all BQPs in one step (line

256 X. Zhang, L. Chen, and M. Wang

16-19); otherwise, enopt’s weight is derived from his parents, which would have
been added to P (line 13-15). Iteratively, P contains all the necessary entities
(equivalent to MRJs) to compute enopt, and the longest path weight of P is just
enopt’s weight, which is already the optimal.

We assume that Cloud computing system can provide as much computing re-
sources as required (the similar claim was made by Amazon EC2 service [8]).
Thus, we can make MRJs not having ancestor-descendant relationship in P be
executed in parallel. Moreover, we adopt two techniques to improve the query
efficiency: 1) Hybrid join strategy. Reduce-side join is used as the default join
strategy. When a Predicate file is small enough to be load in memory, we load
this file in several Map tasks to perform in-memory join [9]. Map-side join is
adopted on the condition that ancestor MRJs’ outputs are well partitioned on
the same number of reducers. 2). Bloom filter. If the query contains a BQP
which refers to a small Predicate file, we can always read in this file completely
into main memory and generate the bloom filter of Subject or Object variables,
which can be done quite efficiently with one Map task. Since the generated bloom
filter file is much smaller, it can be loaded in memory later on for each MRJ and
help filter out large number of irrelevant RDF triples at the Map phase.

6 Implementations

We use HDFS[10] to set up a repository of large scale RDF dataset.Figure 1
presents an system overview of our solution to RDF query processing. The whole
system is backed with well organized RDF data storage on HDFS, which offers
block level management that promises efficient data retrieval. The query engine
accepts users’ queries, and decides corresponding MRJs and an optimal execu-
tion plan for each query. Noticing the SPARQL query engine can be deployed
to as many clients as desired. Therefore, the query engine will not become a
performance bottleneck.

RDF
Data Set Preprocess

Satatistics

Predicate Oriented
Prefix-tree Structured

RDF Storage

HDFS

SPARQL
Query

MapReduce Job
Identification &

Scheduling

M-R Job
Execution Path

Hadoop MapReduce
Implementation

Query
Result

Updater

Updating

Serves

Save

Return

Fig. 1. System Design

The preprocessing of RDF data involves four steps: 1) Group by Predicate; 2)
Sort on both Subject and Object for each Predicate file, the similar strategy was
used in [11] and [12]; 3) Block-wise partition for each Predicate file; 4) Build a
B+ tree to manage all the Predicate files. More details are elaborate in [7].

Towards Efficient Join Processing over Large RDF Graph Using MapReduce 257

7 Experiments

We run all the experiments on a test bed of 16 VMs managed by xen-3.0-x86 64,
running linux kernel 2.6.32.13. Each VM is configured to have 4 cores (2.26GHz),
4GB memory and 400GB HD. We use Hadoop-0.20.0 to build up the system.
We test the system I/O performance with TestDFSIO, finding that the sys-
tem performance is stable, with average writing rate 2.38Mb/sec and reading
rate 20.09Mb/sec. System administrator reports the connection bandwidth of
32.96MB/s. We run each job 50 times and report the average execution time.
We demonstrate the improvement of our solution over the join strategy given in
[1] with benchmark queries used in [13], as shown in Fig.2.

Q2, Q3, Q5 and Q6 only have small number of Predicate files and variables
involved, therefore, different strategies for MRJ identification and scheduling will
obtain about the same result. The APJ-tree helps a lot when then query is more
complex, e.g., Q4 and Q7. With bloom filter employed, our solution saves much
time cost since large amount of network traffic is avoid as well as the workload
of Reduce tasks is reduced. We also run benchmark queries on both enlarged (by
duplication) and shrunk (uniformly sampling) datasets as shown in Fig.3 and
Fig.4. The system demonstrates a scalable performance for different input size.

Q1 Q2 Q3 Q4 Q5 Q6 Q7
10

0

10
1

10
2

10
3

10
4

Bench Queries

Q
ue

ry
 A

ns
w

er
in

g
T

im
e

(S
ec

)

Variable Grouping Join
APJ Join
APJ+Bloom Filter Join

Fig. 2. Bench query evaluation with different MRJ selection strategies

Q1 Q2 Q3 Q4 Q5 Q6 Q7
10

0

10
1

10
2

10
3

Queries

S
ec

(s
)

Input Size x 5
Input Size x 2
Input Size x 1
Input Size x 0.5

Fig. 3. APJ+Bloom Filter Join

Q1 Q2 Q3 Q4 Q5 Q6 Q7
10

0

10
1

10
2

10
3

10
4

Queries

S
ec

(s
)

Input Size x 5
Input Size x 2
Input Size x 1
Input Size x 0.5

Fig. 4. APJ Join

8 Related Work

Research efforts for RDF management and query processing from a traditional
RDBMS perspective focus on RDF decomposition (SW-Store [14]) or composi-
tion (property table [15]), index building and searching (Hexastore [12], RDF-3X

258 X. Zhang, L. Chen, and M. Wang

[11]) and query optimization [13]. However, due to the limitation of RDBMS’s
scalability, the above solutions cannot meet the demands for the management of
extremely large scale RDF data in the coming future. Researchers are trying to
incorporate NoSQL database to address the scalability and flexibility issues in
the first place. Many works, like [16][17][18][19][4][2][1][3], adopt the Cloud plat-
form to solve the RDF data management problem. However, many of them focus
on utilizing high-level definitive languages to create simplified user interface for
RDF query processing, which omit all the underlying optimization opportunities
and have no guarantees on efficiency. There are a few works directly conducting
RDF query processing within the MapReduce framework. [20] provides a plug-in
parser and simple aggregation processing of RDF data. Husain et al. [1] presents
a greedy strategy that always picks a MRJ which may produce the smallest size
of intermediate results. However, this strategy has no guarantee on the over-
all efficiency. [21] studies the general strategy of replicating data from Map to
Reduce to conduct join operations with one MapReduce job.

9 Conclusion

In this paper we study the problem of efficiently answering SPARQL queries
over large RDF data set with MapReduce. We define a transmission scheme
from an original SPARQL query to MRJs and introduce a APJ-tree based MRJ
scheduling technique that guarantees an optimal query processing time. Eval-
uations over very large real datasets in a real cloud test bed demonstrate the
effectiveness of our solution.

Acknowledgment. The work described in this paper was partially supported
by HP IRP Project Grant 2011, National Grand Fundamental Research 973
Program of China under Grant 2012CB316200, Microsoft Research Asia Theme
Grant MRA11EG0.

References

1. Husain, M.F., et al.: Data intensive query processing for large RDF graphs using
cloud computing tools. In: CLOUD 2010 (2010)

2. Farhan Husain, M., Doshi, P., Khan, L., Thuraisingham, B.: Storage and Retrieval
of Large RDF Graph Using Hadoop and MapReduce. In: Jaatun, M.G., Zhao, G.,
Rong, C. (eds.) CloudCom 2009. LNCS, vol. 5931, pp. 680–686. Springer, Heidel-
berg (2009)

3. Myung, J., et al.: Sparql basic graph pattern processing with iterative mapreduce.
In: MDAC 2010 (2010)

4. Tanimura, Y., et al.: Extensions to the pig data processing platform for scalable
RDF data processing using hadoop. In: 22nd International Conference on Data
Engineering Workshops, pp. 251–256 (2010)

5. Chebotko, A., Atay, M., Lu, S., Fotouhi, F.: Relational Nested Optional Join for
Efficient Semantic Web Query Processing. In: Dong, G., Lin, X., Wang, W., Yang,
Y., Yu, J.X. (eds.) APWeb/WAIM 2007. LNCS, vol. 4505, pp. 428–439. Springer,
Heidelberg (2007)

Towards Efficient Join Processing over Large RDF Graph Using MapReduce 259

6. Jaynes, E.T.: Probability theory: The logic of science. Cambridge University Press,
Cambridge (2003)

7. Zhang, X., et al.: Towards efficient join processing over large RDF graph using
mapreduce. Technical Report (2011)

8. http://aws.amazon.com/ec2/

9. Blanas, S., et al.: A comparison of join algorithms for log processing in mapreduce.
In: SIGMOD 2010 (2010)

10. http://hadoop.apache.org/

11. Thomas, N., et al.: The RDF-3x engine for scalable management of RDF data.
VLDB J. 19(1), 91–113 (2010)

12. Weiss, C., et al.: Hexastore: sextuple indexing for semantic web data management.
Proc. VLDB Endow. (2008)

13. Neumann, T., et al.: Scalable join processing on very large RDF graphs. In: SIG-
MOD Conference, pp. 627–640 (2009)

14. Abadi, D.J., et al.: Sw-store: a vertically partitioned dbms for semantic web data
management. The VLDB Journal 18, 385–406 (2009)

15. http://jena.sourceforge.net/

16. Newman, A., et al.: A scale-out RDF molecule store for distributed processing of
biomedical data. In: Semantic Web for Health Care and Life Sciences Workshop
(2008)

17. Newman, A., et al.: Scalable semantics - the silver lining of cloud computing. In:
ESCIENCE 2008 (2008)

18. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable Distributed Reason-
ing Using MapReduce. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,
Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 634–649. Springer, Heidelberg (2009)

19. McGlothlin, J.P., et al.: Rdfkb: efficient support for RDF inference queries and
knowledge management. In: IDEAS 2009 (2009)

20. http://rdfgrid.rubyforge.org/

21. Afrati, F.N., et al.: Optimizing joins in a map-reduce environment. In: EDBT 2010
(2010)

http://aws.amazon.com/ec2/
http://hadoop.apache.org/
http://jena.sourceforge.net/
http://rdfgrid.rubyforge.org/

Panel on “Data Infrastructures

and Data Management Research:
Close Relatives or Total Strangers?”

Yannis Ioannidis1,2

1 University of Athens, Dept. of Informatics & Telecommunications,
MaDgIK Lab, Athens, Greece

yannis@di.uoa.gr
2 “Athena” Research Center, Athens, Greece

yannis@athena-innovation.gr

In 1981 the “1st LBL Workshop on Statistical Database Management” was held
in Berkeley, CA. It was essentially the first step towards establishing the new
at the time and very important branch of the data management field that deals
with scientific data. A few years later, the third edition of the event already had
another ‘S’ added in its acronym and was named the “3rd Int’l Workshop on
Statistical and Scientific Database Management”. Eventually, the series became
the well-known annual SSDBM conference. For more than 30 years, the require-
ments for managing and analyzing the data created in the context of research
and other activities in many domain sciences have brought out several major
challenging problems that have motivated and inspired much data management
research. Through the years there have been a very large number of related re-
search papers and keynote presentations in all major database conferences and
journals, many significant contributions that have pushed the state of the art
in various directions, several dedicated funding programs around the world, and
numerous specialized and generic software systems that have been developed
targeting scientific data management. Scientists from the biological, medical,
physical, natural, and other sciences, as well as the arts and the humanities have
worked closely together with data management researchers to obtain solutions
to critical problems. All these activities have created a solid body of work that
is now considered part of the data management research mainstream, on topics
ranging, for example, from the traditional indexing and query processing to the
more specialized data mining, real-time streaming, and provenance. Scientific
data management is an area of great importance with a long history that will
continue to be at the forefront of many interesting developments in the field.

On the contrary, the concept of “data infrastructures” is relatively new.
Roughly in 2008 or 2009, it came out of several diverse efforts across the At-
lantic (and elsewhere) whose main motivation was again scientific data, e.g., the
Strategy Reports of ESFRI in Europe and the DataNet funding program in the
US. Data infrastructures follow on the footsteps of other, lower-level digital in-
frastructures, i.e., networks and distributed computation (grids or clouds), and
transfer the key ideas of those to data, promoting and facilitating data sharing

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 260–261, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Panel on Data Infrastructures and Data Management Research 261

and use. They represent common platforms that transparently offer important
functionality required by the creators and users of large amounts of scientific
data, e.g., services related to data storage, maintenance, preservation, discovery,
access, and others. There are several ongoing projects that try to build data
infrastructures of various forms, such as DataONE and Data Conservancy in the
US and OpenAIRE and more recently EUDAT in Europe.

This panel investigates the relationship between the two areas: scientific data
management and scientific data infrastructures. Is the latter a brand new area
with new challenges requiring new fundamental research and innovative solu-
tions? Or is it just an evolution of some aspects of the former, simply calling
for adaptation and good engineering of existing solutions? Would the data in-
frastructures community benefit from the involvement of the data management
research community in addressing the issues before them? Are there data infras-
tructure problems that are attractive to data management researchers and/or
easier solvable based on earlier research work? Do the policies that are necessary
for data infrastructure governance present interesting data management research
problems? These and other questions are laid before the panel, comprising ex-
perts of both backgrounds, whose answers and subsequent discussion should shed
some light on how the two areas are related.

Efficient Similarity Search

in Very Large String Sets

Dandy Fenz1, Dustin Lange1, Astrid Rheinländer2, Felix Naumann1,
and Ulf Leser2

1 Hasso Plattner Institute, Potsdam, Germany
2 Humboldt-Universität zu Berlin, Department of Computer Science, Berlin,

Germany

Abstract. String similarity search is required by many real-life appli-
cations, such as spell checking, data cleansing, fuzzy keyword search, or
comparison of DNA sequences. Given a very large string set and a query
string, the string similarity search problem is to efficiently find all strings
in the string set that are similar to the query string. Similarity is defined
using a similarity (or distance) measure, such as edit distance or Ham-
ming distance. In this paper, we introduce the State Set Index (SSI) as
an efficient solution for this search problem.

SSI is based on a trie (prefix index) that is interpreted as a nondeter-
ministic finite automaton. SSI implements a novel state labeling strat-
egy making the index highly space-efficient. Furthermore, SSI’s space
consumption can be gracefully traded against search time.

We evaluated SSI on different sets of person names with up to 170 mil-
lion strings from a social network and compared it to other state-of-the-
art methods. We show that in the majority of cases, SSI is significantly
faster than other tools and requires less index space.

1 Introduction

Many applications require error-tolerant string search. For example, consider a
search application for customer support in a company. While search queries may
contain an incorrect spelling of a name, the search application should neverthe-
less find the matching entry of the customer in the database. Another application
arises in a biomedical context. To find and compare genomic regions in the hu-
man genome, search applications need to account for individual variations or
mutations in the genes. In these and many other scenarios, the data set consists
of millions of strings, while the search application is required to answer similarity
queries in subseconds.

In this paper, we tackle the string similarity search problem, which returns
for a given query all strings from a given bag of strings that are similar to the
query with respect to a previously defined string distance measure and a given
distance threshold. This problem has been covered since the 1960s [26], and is
also known as approximate string matching [19], string proximity search [24], or
error-tolerant search [4]. Much effort has been spent by the research community

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 262–279, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Efficient Similarity Search in Very Large String Sets 263

to develop filtering techniques, indexing strategies, or fast string similarity algo-
rithms that improve the query execution time of similarity-based string searches.
However, a fast query execution is often accomplished by storing a wealth of in-
formation in huge indexes in main memory. For very large string collections with
hundreds of millions of strings, this approach often fails since indexes grow too
large.

We propose the State Set Index (SSI) as a solution for this problem. The
main advantage of SSI is that it has a very small memory footprint while pro-
viding fast query execution times on small distance thresholds at the same time.
In particular, we extend and improve TITAN [15], a trie index that is inter-
preted as a nondeterministic finite automaton (NFA), developed by Liu et al.
The contributions of this paper are:

– We introduce a novel state labeling approach, where only information on
the existence of states is stored. Different from previous approaches, state
transitions do not need to be stored and can be calculated on-the-fly.

– Using this highly space-efficient labeling strategy, SSI is capable of indexing
very large string sets with low memory consumption on commodity hard-
ware.

– SSI allows a graceful trade-off between index size and search performance by
parameter adjustment. These parameters, namely labeling alphabet size and
index length, determine the trade-off between index size and query runtime.
We comprehensively evaluate these parameter settings and derive favorable
settings such that index sizes remain small and the search performance is
still competitive.

– We evaluate SSI on several data sets of person names coming from a social
network. Our evaluation reveals that SSI outperforms other state-of-the-art
approaches in the majority of cases in terms of index size and query response
time. In particular, on a data set with more than 170 million strings and a
distance threshold of 1, SSI outperforms all other methods we compared to.

The remainder of this paper is structured as follows: Section 2 describes related
work. In Sec. 3, we cover basic definitions that are necessary for the following
sections. We describe our approach in Sec. 4 by defining the index structure
and algorithms for building the index and searching with it. We show evaluation
results in Sec. 5 and conclude the paper in Sec. 6.

2 Related Work

In the past years, the research community has spent much effort on acceler-
ating similarity-based string matching. Prominent approaches use prefiltering
techniques, indices, refined algorithms for computing string similarity, or all in
combination [19,20].

Filter methods are known to reduce the search space early using significantly
less computational effort than computing the edit distance (or another similarity
measure) directly. As a result of this so-called filter-and-verify approach [28], only

264 D. Fenz et al.

a few candidate string pairs need to be compared using edit distance. Prominent
pre-filtering approaches are based on q-grams [8,9,14], character frequencies [1],
or length filtering [2].

Tries as an index structure for strings and exact string matching in tries were
first introduced by Morrison [16] and were later extended by Shang et al. [25]
with pruning and dynamic programming techniques to enable similarity-based
string matching. Next to similarity-based string searches, tries and trie-based
NFAs are also known to perform well in other areas, such as exact pattern
matching [10], set joins [12], or frequent item set mining [7,11].

The Peter index structure [22] was designed for near-duplicate detection in
DNA data and combines tries with filtering techniques to enable similarity-based
string searches and joins. It stores additional information at each trie node for
early search space pruning. Pearl [23] is a follow-up where restrictions on small
alphabets were removed and a strategy for parallelizing similarity searches and
joins was introduced. Closely related to SSI is TITAN [15], an index structure
based on prefix trees that are converted into non-deterministic automata A, such
that the initial state of A corresponds to the root node of the originating prefix
tree, and leaf nodes correspond to accept states in A. Additionally, further state
transitions are introduced in order to enable delete, insert, and replacement
operations on edit distance-based queries.

Algorithms based on neighborhood generation were first used for similarity-
based string matching by Myers [17]. One drawback of the original algorithm
by Myers is its space requirements, that makes it feasible only for small dis-
tance thresholds and small alphabets. The FastSS index [3] captures neighbor-
hood relations by recursively deleting individual characters and reduces space
requirements by creating a so-called k-deletion neighborhood. Similar to filtering
approaches, FastSS performs search space restriction by analyzing the k-deletion
neighborhood of two strings. By adding partitioning and prefix pruning, Wang et
al. [27] significantly improved the runtime of similarity search algorithms based
on neighborhood generation.

The Flamingo package [2] provides an inverted-list index that is enriched
with a charsum and a length filter. The filter techniques are organized in a tree
structure, where each level corresponds to one filter.

We empirically compare the State Set Index to FastSS, Flamingo, Pearl, and
TITAN, and show that it often outperforms these tools both in terms of query
execution time and with respect to index size (see Sec. 5). We could not compare
to Wang et al. since no reference implementation was available.

3 Basic Concepts and Definitions

In this section, we define basic terms and concepts that we use in the subsequent
sections.

3.1 Similarity Search and Measures

Let Σ be an alphabet. Let s be a string in Σ∗. A substring of s, denoted by
s[i . . . j], starts at position i and ends at position j. We call s[1 . . . j] prefix,

Efficient Similarity Search in Very Large String Sets 265

s[i . . . |s|] suffix and s[i . . . j], (1 ≤ i ≤ j ≤ |s|), infix of s. Any infix of length q ∈
N is called q-gram. Conceptually, we ground our index structure and associated
algorithms on a similarity search operator defined as follows:

Definition 1 (Similarity search). Given a string s, a bag S of strings, a dis-
tance function d and a threshold k, the similarity search operator sSearch(s, S)
returns all si ∈ S for which d(s, si) ≤ k.

All similarity-based search operations must be based on a specific similarity
measure. Though there exist several techniques to measure the similarity of two
strings, we focus on edit distance for the scope of this paper.

Definition 2 (Edit distance [13]). The edit distance ded(s1, s2) of two strings
s1, s2 is the minimal number of insertions, deletions, or replacements of single
characters needed to transform s1 into s2. Two strings are within edit distance
k, if and only if ded(s1, s2) ≤ k.

Variations of edit distance apply different costs for the three edit operations.
While SSI is applicable to all edit distance-based measures with integer costs for
the different edit operations, we only consider the standard definition with equal
weights in this paper.

The edit distance ded(s1, s2) can be computed by dynamic programming in
Θ(|s1| ∗ |s2|). Apart from the dynamic programming algorithm with quadratic
complexity in time and space, there exist various improvements for the edit
distance computation. Bit-parallel algorithms [18] achieve a complexity of

O(|s1|∗|s2|w), where w is the size of the computer word. If a maximum allowed
distance threshold is defined in advance, the k-banded alignment algorithm [5]
computes the edit distance of two strings in Θ(k ·max{|s1|, |s2|}).

3.2 Tries and NFAs

The construction of prefix or suffix trees is a common technique for string search.
In the literature, such a tree is also called trie [6].

Definition 3 (Trie [6]). A trie is a tree structure (V,E, vr, Σ, L), where V is
the set of nodes, E is the set of edges, vr is the root node, Σ is the alphabet, and
L : V → Σ∗ is the labeling function that assigns strings to nodes. For every node
vc with L(vc) = s[1 . . . n] that is a child node of vp, it holds L(vp) = s[1 . . . n−1],
i.e., any parent node is labeled with the prefix of its children.

The trie root represents the empty string. The descendants of a node represent
strings with a common prefix and an additional symbol from the alphabet. A
trie is processed from the root to the leaf nodes. Indexed strings are attached
to the node that can be reached by processing the complete string. Tries are an
efficient method for exact string search.

For efficient similarity search, a trie can also be interpreted as a nondetermin-
istic finite automaton [15].

266 D. Fenz et al.

Definition 4 (Nondeterministic finite automaton (NFA) [21]). A non-
deterministic finite automaton is defined as a tuple (Q,Σ, δ, q0, F), where Q is
the set of states, Σ is the input alphabet, δ : Q× (Σ ∪ {ε})→ P(Q) is the state
transition function (with ε referring to the empty word), q0 is the start state,
and F is the set of accepting states.

The NFA begins processing in the start state q0. The input is processed character-
wise with the state transition function. An NFA is allowed to have several active
states at the same time. If, after processing the entire string, the NFA is in at
least one accepting state, the string is accepted, otherwise rejected.

For similarity search, we interpret a trie as an NFA. In the NFA version of the
trie, the trie root node is the start state of the NFA. The nodes with associated
result strings are marked as accepting states. The trie’s edges are interpreted as
state transitions with reading symbols. In addition, the NFA version contains for
each state transition one additional state transition for reading ε as well as one
ε-transition from each state to itself. These ε-transitions allow state transitions
that simulate deletion, insertion, and replacement of symbols as necessary for
edit distance calculation. To do similarity search with the NFA, the query string
is processed as input symbol sequence by the NFA. After the processing step,
the NFA is in zero, one, or more accepting states. The query result contains all
strings that are attached to the reached accepting states.

The NFA idea described so far generates for a large amount of indexed strings
a large automaton with many states (but there can be no false positives in the
result string set). In the next section, we describe our approach that restricts
the number of NFA states and checks the result string set for false positives.

4 State Set Index

The State Set Index (SSI) is an efficient and configurable index structure for
similarity search in very large string sets. In this section, we first describe the
key ideas of SSI before giving details on the indexing and searching algorithms.

4.1 Index Structure

SSI is based on a trie that is interpreted as an NFA. In the following, we de-
scribe the key ideas behind SSI that go beyond the basic trie and NFA concepts
described above.

State Labeling. The SSI states are labeled with numbers. Each label is cal-
culated from the history of read symbols. For this purpose, the original input
alphabet, in the following referred to as ΣI , is mapped to a labeling alphabet
ΣL = {1, 2, . . . , cmax} ⊂ N with cmax ≤ |ΣI |. A mapping function m : ΣI → ΣL

defines the mapping of characters from the two alphabets. A label for a state
with read symbols s1 . . . sn−1sn ∈ Σn

I can be calculated as follows:

l(s1 . . . sn−1sn) = l(s1 . . . sn−1) · |ΣL|+m(sn)

l(ε) = 0

with ε referring to the empty word.

Efficient Similarity Search in Very Large String Sets 267

Restriction of Labeling Alphabet Size. SSI allows to restrict the size of
the labeling alphabet ΣL. When choosing a labeling alphabet with cmax < |ΣI |
(note the strict “less than” sign), at least two symbols from the input alphabet
are mapped to the same symbol from the labeling alphabet.

This can reduce the number of existing states in the resulting NFA. For any
two prefixes p1, p2 of two indexed strings, the states l(p1), l(p2) are merged iff
l(p1) = l(p2). This is the case iff for at least one character position pos in p1
and p2, it holds p1[1 : pos − 1] = p2[1 : pos − 1] and p1[pos] �= p2[pos] and
m(p1[pos]) = m(p2[pos]), i.e., two different characters at the same position are
mapped to the same symbol in the labeling alphabet and the prefixes of the
strings before this character match.

Depending on the chosen mapping, a state may contain several different
strings. With cmax < |ΣI |, it is not possible to reconstruct a string from a
state label, as there are several different possibilities for that. Thus, we need
to store which strings are stored at which state. In addition, it is possible that
the accepting states may contain false positives, i.e., strings that are not query-
relevant. This makes it necessary to check all resulting strings by calculating the
exact distance to the query string before returning results.

Choosing a labeling alphabet size is thus an important parameter for tuning
the SSI. A too large labeling alphabet size results in a large NFA with many
states and thus large storage requirement, but few false positives. In contrast,
a too small alphabet size leads to an NFA with only few states that does not
restrict the number of result strings enough; the consequence is a large number
of false positives.

Restriction of Index Length. SSI allows to restrict the number of indexed
symbols. From each string s1 . . . sn ∈ Σn

I , only a prefix with a maximum length
of indmax is indexed. The “leaf” states contain all strings with a common prefix.

Restricting the index length can reduce the number of existing states. For any
two strings g1, g2, the two states l(g1) and l(g2) are equal iff l(g1[1 : indmax]) =
l(g2[1 : indmax]).

Similar to choosing the labeling alphabet size, we face the challenge of han-
dling possible false positives in the result string sets also for restricted index
length. The index length is thus a second parameter to tune the trade-off be-
tween a large index (large index length, high memory consumption) and a large
number of false positives to be handled (small index length, low memory con-
sumption). In our analysis of a large string data set with the Latin alphabet
(and some special characters) as input alphabet, we observed optimal results
with a labeling alphabet size of 4 and an index length of 14 (see Sec. 5.1 for a
discussion of this experiment).

Restricting the labeling alphabet size as well as the index length can signif-
icantly decrease the number of existing states. For example, in a data set with
1 million names, the mapping from the Latin alphabet to a labeling alphabet
with 4 and restricting the index length to 14 results in a state count reduction
from 5,958,916 states to 2,298,209 states (a reduction ratio of 61 %).

268 D. Fenz et al.

Storing States. Due to the history-preserving state labels, all potential suc-
cessors of a state can be calculated. With a calculated state label, it is easy to
check whether such a state exists: For any state φ, the state transition with the
character c ∈ ΣL by definition exists iff φc = φ · |ΣL|+ c exists. This is because
for any character c′ ∈ ΣL \ {c}, it holds c �= c′ and thus φc′ = φ · |ΣL|+ c′ �= φc.

To benefit from this observation, SSI only stores which states that actually
exist, i.e., only states φ for which there is at least one prefix p of a string in
the indexed string data set with l(p) = φ. This reduces the necessary storage
capacity, because it is not necessary to store state transitions. Also, during query
answering, checking the existence of state transitions is not required.

Because SSI state labels are numbers, a simple storage format can be defined.
A bitmap, where each bit combination represents a label of an existing or non-
existing state, is sufficient to store which states do exist.

Storing Data. Due to the introduced restrictions, an accepting state may refer
to multiple, different strings – the strings cannot be completely reproduced from
the state labels. Thus, it is necessary to store the strings behind the states. The
required data store has a rather simple interface: A set of keys (the accepting
states), each with a set of values (the strings referred to by the states) needs
to be stored. Any key/multi-value store is suitable for this task. Since the data
store is decoupled from the state store, the data store can be held separately.
Thus, while the state store can be configured to be small or large enough to fit
into main memory, the data store can be held in secondary memory.

4.2 Algorithms

In the following, we describe the details for indexing a large string set with SSI
and searching with the created index.

Indexing. The indexing process is shown in Algorithm 1. All strings to be in-
dexed are processed one after another. Each string is read character-by-character.
After reading a character, the current state is calculated and stored. Finally, af-
ter reading the entire string, the last state is marked as accepting state and the
string is stored at this state’s entry in the data store. After the initial indexing
process, it is also possible to index additional strings using the same steps.

Example. We illustrate the SSI index with an example. Consider the strings
Müller, Mueller, Muentner, Muster, and Mustermann and the alphabet mapping
shown in Table 1. In this example, we chose a labeling alphabet size of cmax = 4
and an index length of indmax = 6.

Table 1. Example for alphabet mapping function m : ΣL → ΣI

ΣL M u e l r ü n t s m a

ΣI 1 2 3 4 1 2 3 4 1 2 3

Efficient Similarity Search in Very Large String Sets 269

Algorithm 1. Indexing with SSI

Input: set of strings to be indexed stringSet,
labeling alphabet size cmax,
index length indmax,
mapping function m : ΣI → ΣL

Output: set of existing states stateSet,
set of accepting states acceptingStateSet,
map of states with indexed strings dataStore

1: stateSet := {}
2: acceptingStateSet := {}
3: dataStore = {}
4: for all str ∈ stringSet do
5: state := 0
6: for pos := 1→ min(indmax, |str|) do
7: state := state · cmax +m(str[pos])
8: stateSet.add(state)
9: acceptingStateSet.add(state)
10: dataStore.add(state, str)
11: return stateSet, acceptingStateSet, dataStore

Figure 1 shows all existing states of the resulting index. The accepting states
point to the indexed strings as follows:
1869→ {Müller}, 1811→ {Mueller}, 1795→ {Muenter}, 1677→ {Muster, Muster-
mann} 	

Searching. We now describe how to process a query string q ∈ Σ∗
I with edit

distance k ∈ N. The search process is shown in Algorithm 2.
First, a set S of cost-annotated states s with state φs and associated costs

λs (the number of edit distance operations required so far) is created. We write
s := 〈φs, λs〉. Initially, all states that can be reached from the start state with
at most k ε-transitions are added to S. To determine these states, the labels of
the successors of the start state are calculated and their existence is validated. If
a state s in S is associated with several different costs λs, only the record with
the lowest λs is kept; all other records are dismissed. This selection is done for
all state calculations and is not stated again in the following.

Next, the query string qI is translated into the labeling alphabet with q :=
l(qI). The characters of q are processed one-by-one. The following steps are
processed for each character c in q.

Another empty set S∗ of current cost-annotated states is created. For each
cost-annotated state 〈φs, λs〉 in S, a set S∗

c is created and processed with the
following steps:

– To simulate deletion of characters, the cost-annotated state 〈φs, λs + 1〉 is
added to S∗

c if λs + 1 ≤ k.

270 D. Fenz et al.

1869

�

1811

�

1795

�

1677

�

0

�

1
1, �

�

6
2, �

�

28

4, �

27
3, �

25

1, �

� 116
4, �

�

467
3, � 1, �

�

�
112

4, �

111

3, �

�

452
4, � 3, �

�

�

448
4, � 3, �

�

�

104

4, �
�

419
3, � 1, �

�

Fig. 1. Example for states created by SSI with cmax = 4 and indmax = 6

– To simulate matching of characters, it is checked whether the state φ∗
s :=

φs · |ΣL|+i exists. This state exists if and only if there is a transition from φs

with the character c to φ∗
s. If the state exists, then 〈φ∗

s , λs〉 is added to S∗
c .

– Next, the insertion of characters other than c is simulated. If λs+1 ≤ k, then
for each φ∗

s := φs · |ΣL| + m(c∗) with c∗ ∈ ΣL \ {c}, a new cost-annotated
state 〈φ∗

s , λs + 1〉 is added to S∗
c .

– Inserting characters is simulated using ε-transitions. For each cost-annotated
state 〈φs, λs〉 in S∗

c , all states φ∗
s are determined that can be reached from

φs with k ε-transitions. For each such state, the annotated states 〈φ∗
s , λs+ i〉

with λs ≤ i ≤ k are added to S∗
c .

Then, S is replaced by S∗ and all steps are repeated with the next character.
After processing all characters, the state set S represents the final state set.
For all states from S that are accepting, all strings stored at those states are
retrieved. This set of strings is filtered by calculating the actual edit distance to
the query string as it may contain false positives. This set of filtered strings is
the result of the search.

Example. Consider the index in Fig. 1 and the example query Mustre with
a maximum distance of k = 2. The initial state set S = {〈0, 0〉, 〈1, 1〉, 〈6, 2〉}
contains all states reachable from the start state with at most k = 2 ε-transitions.
Next, the first character c = 1 (M) is processed. The state sets S∗ = S∗

c = ∅ are
created. For all entries in S, the five above-described steps are executed. After
processing the first character, we have:

S = {〈0, 1〉, 〈1, 0〉, 〈6, 1〉, 〈28, 2〉, 〈27, 2〉, 〈25, 2〉}

Efficient Similarity Search in Very Large String Sets 271

Algorithm 2. Searching with SSI

Input: query string q, maximum edit distance k
Output: result string set R
1: S := {〈i · c, i〉 | 0 ≤ i ≤ k, c ∈ ΣL} ∩ stateSet Initial ε-transitions
2: for pos := 1→ min(indmax, |q|) do
3: S∗ := {}
4: for all 〈φs, λs〉 ∈ S do
5: S∗

c := {}
6: if λs + 1 ≤ k then Deletion
7: S∗

c := S∗
c ∪ 〈φs, λs + 1〉

8: for i := 1→ |ΣL| do Match & Substitution
9: φ∗

s := φs · |ΣL|+ i
10: if φ∗

s ∈ stateSet then
11: if i = m(q[pos]) then
12: S∗

c := S∗
c ∪ 〈φ∗

s, λs〉
13: else if λs + 1 ≤ k then
14: S∗

c := S∗
c ∪ 〈φ∗

s, λs + 1〉
15: S∗

c := S∗
c ∪ ({〈φs + i · c, i〉 | s ∈ S∗

c , λs ≤ i ≤ k, c ∈ ΣL} ∩ stateSet) Insertion
16: S∗ := S∗ ∪ S∗

c

17: S := S∗

18: R := {} Retrieve strings and filter by distance
19: for all 〈φs, λs〉 ∈ S do
20: if φs ∈ acceptingStateSet then
21: R := R ∪ {s ∈ dataStore.get(φs) | ded(s, q) ≤ k}
22: return R

After that, the character c = 2 (u) is processed. The state set after this step
is:

S = {〈0, 2〉, 〈1, 1〉, 〈6, 0〉, 〈28, 1〉, 〈27, 1〉, 〈25, 1〉, 〈116, 2〉,
〈112, 2〉, 〈111, 2〉, 〈104, 2〉}

After processing the third character c = 1 (s), we have:

S = {〈1, 2〉, 〈6, 1〉, 〈28, 1〉, 〈27, 1〉, 〈25, 0〉, 〈116, 2〉, 〈112, 2〉,
〈111, 2〉, 〈104, 1〉, 〈419, 2〉}

The next character c = 4 (t) results in:

S = {〈6, 2〉, 〈28, 1〉, 〈27, 2〉, 〈25, 1〉, 〈104, 0〉, 〈116, 1〉, 〈112, 1〉,
〈111, 2〉, 〈419, 1〉, 〈1677, 2〉, 〈467, 2〉, 〈452, 2〉}

The character c = 1 (r) is processed as follows:

S = {〈28, 2〉, 〈25, 2〉, 〈104, 1〉, 〈116, 2〉, 〈112, 2〉, 〈419, 1〉,
〈1677, 1〉, 〈1869, 2〉, 〈467, 2〉, 〈452, 2〉}

With the last character c = 3 (e), we finally have:

S = {〈104, 2〉, 〈419, 1〉, 〈1677, 2〉, 〈467, 2〉, 〈1811, 2〉}

272 D. Fenz et al.

From the set of states in S, only the accepting states 1677 and 1811 are
further processed. The strings stored at these states are Muster, Mustermann,
and Mueller. After filtering false positives, we finally have the result string set
{Muster}. 	

Complexity. To index n strings with a maximum index length indmax, at most
indmax states need to be calculated for each string. Thus, we have an indexing
complexity of O(n · indmax).

The most important size factor of SSI is the number of created states. For an
index length indmax and an indexing alphabet ΣL, the number of possible states
is |ΣL|indmax . The index size depends on the chosen parameters where indmax

is the dominant exponential parameter.
The search algorithm of SSI mainly depends on cmax, indmax, and the search

distance k. In the first step, k · |cmax| potential states are checked. For each
existing state, its successor states are created. These consist of up to one state
created by deletion, cmax states created by match or substitution, and k · |cmax|
states created by insertion of a character. This process is repeated up to indmax

times. Overall, we have up to (k · |cmax|) · (1 + k · |cmax| + k · |cmax|)indmax

steps and thus a worst-case complexity of O((k · |cmax|)indmax). Similar to the
indexing process, the complexity is bound by the parameters cmax and indmax

where indmax is the dominant exponential factor. By evaluating the existence
of states during the search process and proceeding only with existing states,
we typically can significantly decrease the number of states that are actually
evaluated.

5 Evaluation

We use a set of person names crawled from the public directory of a social
network website to evaluate the performance of SSI for parameter selection, index
creation, and for search operations. Table 2 shows some properties of our data set.
The set Dfull contains all person names we retrieved, whereas the sets Di consist
of i randomly chosen strings taken from Dfull. First, we evaluate the impact of
different parameter configurations on the performance of SSI and then choose the
best setting to compare SSI against four competitors. In particular, we compare
SSI to FastSS [3], TITAN [15], Flamingo [2], and Pearl [23], which are all main
memory-based tools for index-based similarity string operations (see Sec. 2 for
details). For Flamingo and Pearl, we use the original implementations provided
by the authors. For FastSS and TITAN, we use our own implementations of the
respective algorithms. Our evaluation comprises experiments both for indexing
time and space as well as experiments on exact and similarity-based search
queries.

All experiments were performed on an Intel Xeon E5430 processor with 48
GB RAM available using only a single thread. For each experiment, we report
the average of three runs.

Efficient Similarity Search in Very Large String Sets 273

Table 2. Evaluation data sets

Set # strings avg./min./max.
string length

input alphabet
size

exact
duplicates

Dfull 170,879,859 13.99 / 1 / 100 38 70,751,399
D200k 200,000 14.02 / 1 / 61 29 5,462
D400k 400,000 14.02 / 1 / 54 32 17,604
D600k 600,000 14.01 / 1 / 55 35 35,626
D800k 800,000 14.02 / 1 / 61 33 54,331
D1000k 1,000,000 14.01 / 1 / 64 35 77,049

5.1 Evaluation of SSI Parameters

We exemplarily used the set D1000k to evaluate the impact of different parameter
configurations on the performance of SSI on small string sets. Since the maximum
index length indmax and labeling alphabet size |ΣL| have a large influence on
the performance of SSI, we varied both indmax and |ΣL| in the range of 2 to 15.
We could not perform experiments on larger parameter ranges due to memory
constraints of our evaluation platform.

As displayed in Fig. 2(a), the average query execution time drastically de-
creases with increased labeling alphabet size and maximum index length. In
particular, a configuration of SSI with indmax = 12 and |ΣL| = 8 outperforms
a configuration using indmax = 2 and |ΣL| = 2 by three orders of magnitude
(factor 1521). On the other hand, when increasing indmax and |ΣL|, we observed
that the index size grows significantly (see Fig. 2(b)). For example, changing the
configuration from indmax = 2 and |ΣL| = 2 to indmax = 6 and |ΣL| = 13
increases memory requirements by a factor of 60. We also observed that the
number of false positives and the number of accessed keys per query decreases
both with increasing indmax and |ΣL| size (data not shown) and conclude that
this is the main reason for the positive outcome of a large labeling alphabet and
a large index length. However, we could not increase both parameters further
due to memory limitations of our platform, but we expect a further decrease of
query execution time.

We also evaluated the influence of varying parameters on query execution time
and index size on Dfull. Results are shown in Fig. 3 for selected configurations.
Similar to the experiments on D1000k, the index size grows heavily while increas-
ing indmax and |ΣL|. Particularly, choosing |ΣL| = 3 and indmax = 15 yields in
an index size of approximately 12 GB, whereas a configuration with |ΣL| = 5
and indmax = 15 needs a bit vector of 28 GB. On the other hand, the query
execution time decreases with elongating indmax and |ΣL|. Using |ΣL| = 3 and
indmax = 15, the query execution time averages to 8 milliseconds, whereas with
|ΣL| = 5 and indmax = 15 the query execution time diminishes to 2.6 millisec-
onds on average at the expense of a very large index. We also experimented with
other settings of indmax and |ΣL| in the range of 2 to 15, but these configura-
tions either did not finish the indexing process in a reasonable amount of time
or ran out of memory on our evaluation platform. Therefore, we did not consider
these settings for parameter configuration on large string sets.

274 D. Fenz et al.

�
�

�
�

��
��

��

���

�

��

���

����

�
�

�
�

��
��

��

	
��	���
	��
��� ���

�
�
��

�
�
�

��
��

��
�
�
�
�

�
�

�
�

�
�
�
��

�
��

�	
�

�
 �

�

	�
!

�
������"�
�#���	�����

(a) Average query execution time (log-
scale)

�
�

�
�

��
��

��

�

�����

�����

�����

�����

�
�

�
�

��
��

��

�
�����	
�����	� �	����

��

	
�
�
��
	

��
��

�

�
�
	���

��

���

�
	��

�	�
���

(b) Average index size in MBytes

Fig. 2. Evaluation of parameters indmax and |ΣL| for D1000k and k = 1

�� �� �� �� �� �� �� �� �� �� ��
�

�

�

�

�

	

�

�

�

��������������

�
�
�

��
�

�
�

��
��

�
�

�
�

 �
!

�
�"

�
��

�"
�
�

�#�	
�#��

�#��

�#�	

	#��

	#��

	#�	

Fig. 3. Trade-off between index size and query execution time on Dfull and k = 1 on
varying configurations of indmax ∈ {3, 4, 5} and |ΣL| ∈ {13, 14, 15}

In summary, both parameter variations of |ΣL| and indmax have a large im-
pact on the performance of SSI. While increasing |ΣL| or indmax, the number of
false positive results that need to be verified decreases, which yields in a consid-
erably fast query response time. However, our experiments also revealed that at
some point, no further improvements on query response time can be achieved by
increasing |ΣL| and indmax. This is caused by an increased effort for calculating
involved final states that outweighs the decreased amount of false-positive and
the number of lookups in this setting.

Therefore, a beneficial configuration for indexing up to one million person
names is to fix |ΣL| = 8 and indmax = 12. Using this configuration leads to a
fast query execution time with on a moderate index size. When indexing larger
string collections, a shift in favor of index length is reasonable, since an increasing
length yields larger performance enhancements with respect to query response
time. However, elongating the index length and the labeling alphabet yields also
in a vast growth of the index size, but we strive for an index structure that is
efficient both in terms of space and time. Thus, we decided to configure SSI with

Efficient Similarity Search in Very Large String Sets 275

�������
�������

�������
�������

���������
�����������

��

���

�����

������

�������
		
 ��� ���		�����

������ ����

��������

�
�
�
�
��

�
�
�
�
��

�!
��
�

$�
%

��

&

(a) Average index size in MBytes (log-
scale)

�������
�������

�������
�������

���������
�����������

���

�����

������

�������

���������

����������
		
 ��� ���		�����

������ ����

��������

�
�
�
�
�
��
�
��

��
�
�

 �
�

��
�

(b) Average index creation time in mil-
liseconds (log-scale)

Fig. 4. Index creation

|ΣL| = 4 and indmax = 14 for all following experiments using Dfull, since this
configuration gives us the best query execution time with an index size of at
most 20 GB.

5.2 Index Creation Time and Memory Consumption

We evaluated SSI in terms of index creation time and memory consumption and
compared it to other main-memory index structures, namely FastSS, TITAN,
Pearl, and Flamingo on all available data sets. For all evaluated tools, we ob-
served that both index sizes and indexing time grow at the same scale as the
data sets.

Many of the tools we compared to are not able to handle very large string
collections. Figure 4(a) displays the memory consumption of each created in-
dex in main memory. We were able to index Dfull only with SSI and Flamingo;
FastSS, Pearl, and TITAN ran out of memory during index creation. In particu-
lar, FastSS even failed to create indexes with more than 400,000 strings. Another
severe drawback of FastSS is that it needs to create a separate index for each
edit distance threshold k – in contrast to all other evaluated tools.

Clearly, SSI outperforms all other trie- or NFA-based tools in terms of memory
consumption and outperforms FastSS, Pearl, and TITAN with factors in the
range of 1.4 (Pearl on D200k) to 4.5 (Pearl on D1000k). Compared to Flamingo,
which is based on indexing strings by their lengths and char-sums, we observed
that SSI is advantageous for indexing large data sets. When indexing Dfull, SSI
needs 3.0 times less memory than Flamingo. For small data sets with up to
one million strings, Flamingo outperforms SSI with factors in the range of 2.4
(D1000k) to 5.0 (D200k).

We also evaluated SSI on the time spent for index creation. As displayed in
Fig. 4(b), SSI indexes all data sets significantly faster than the other trie- or
NFA-based methods. It outperforms FastSS with factors 3.2 to 3.7 on k = 1,
TITAN with factors 4.0 to 4.7, and Pearl with factors 7.4 to 9.6. Similar to the
memory consumption, SSI is the more superior the larger the data sets grow.
Compared to Flamingo, SSI is only slightly slower (factors in the range of 1.4
to 2.0).

276 D. Fenz et al.

�������
�������

�������
�������

���������
�����������

�

����

���

�

��

���
��� ��	
� �
	�� ��
����� ��
��

��	����

	��
��

��
��

�
���

��
�

�

��

�

(a) k=0

�������
�������

�������
�������

���������
�����������

����

���

�

��

���
��� ��	
� �
	�� ��
����� ��
��

��	����

	��
��

��
��

�
���

��
�

�

��

�

(b) k=1

�������
�������

�������
�������

���������
�����������

����

���

�

��

���

����
��� ��	
� �
	�� ��
����� ��
��

��	����

	��
��

��
��

�
���

��
�

�

��

�

(c) k=2

�������
�������

�������
�������

���������
�����������

����

���

�

��

���

����

�����
��� ��	
� �
	�� ��
����� ��
��

��	����

	��
��

��
��

�
���

��
�

�

��

�

(d) k=3

Fig. 5. Average query execution time in milliseconds (log-scale)

Efficient Similarity Search in Very Large String Sets 277

5.3 Query Answering

To evaluate the performance of SSI in query answering, we assembled a set of
1,000 example queries separately for each data set as follows: First, we randomly
selected 950 strings from the respective data set and kept 500 of these strings
unchanged. On the remaining 450 strings, we introduced errors by randomly
changing or deleting one character per string. Additionally, we generated 50
random strings and added them to the set of queries. For each query, we measured
the execution time and report the average of all 1,000 queries. We compared
SSI to all above-mentioned tools both for exact and similarity-based queries
with varying edit distance thresholds k ∈ {0, 1, 2, 3}. For all search experiments,
indexing was performed in advance and is not included in the measured times.

For exact queries, SSI outperformed all competitors independent of the data
set size (see Fig. 5(a)). Specifically, SSI outperformed FastSS with factor 2.3
on D200k and factor 1.5 on D400k, TITAN with factors varying between 1.6 on
D800k and 2.1 on D200k, Pearl with factors varying between 5.3 on D600k and
6.6 on D200k, and Flamingo with factors from 2.0 on D200k to 44.1 on Dfull.

As displayed in Fig. 5(b – d), SSI significantly outperforms the trie- and NFA-
based tools TITANandPearl on edit distance based queries. Using an edit distance
threshold of k = 1, SSI outperforms TITAN with a factor of 4, using k = 3, SSI
is 5.4 to 7.4 times faster than TITAN depending on the data set. Compared to
Pearl, SSI is faster by more than one order of magnitude, independent of the data
set and the edit distance thresholds. However, on comparatively small data sets
(D200k, D400k), FastSS is by an order of magnitude faster than SSI. This observa-
tion needs to be put into perspective, since FastSS on the one hand needs to create
a separate index for each k, and creating indexes with more than 400, 000 strings
was not possible using FastSS. In contrast, SSI does not have these limitations.

Furthermore, we acknowledge that Flamingo, which has a different indexing
and search approach (cf. Sec. 2), is significantly faster than SSI in many situ-
ations. For searches in Dfull with k = 0 and k = 1, SSI was faster by a factor
of 4.2, in all other situations, Flamingo outperformed SSI. Recall that Flamingo
uses considerably more memory than SSI for indexing Dfull to achieve this (cf.
Fig. 4(a)). We also clearly observe that the advantages of Flamingo grow the
larger edit distance thresholds get. However, future improvements of SSI could
directly address this issue, e.g., by integrating bit-parallel edit distance computa-
tion methods which provide a fast edit distance computation that is independent
of the chosen threshold k.

6 Conclusion

In this paper, we presented the State Set Index (SSI), a solution for fast similarity
search in very large string sets. By configuring SSI’s parameters, we can scale
the index size allowing best search performance given memory requirements.
Our experiments on a very large real-world string data set showed that SSI
significantly outperforms current state-of-the-art approaches for string similarity
search with small distance thresholds.

278 D. Fenz et al.

References

1. Aghili, S.A., Agrawal, D.P., El Abbadi, A.: BFT: Bit Filtration Technique for
Approximate String Join in Biological Databases. In: Nascimento, M.A., de Moura,
E.S., Oliveira, A.L. (eds.) SPIRE 2003. LNCS, vol. 2857, pp. 326–340. Springer,
Heidelberg (2003)

2. Behm, A., Vernica, R., Alsubaiee, S., Ji, S., Lu, J., Jin, L., Lu, Y., Li, C.: UCI
Flamingo Package 4.0 (2011)

3. Bocek, T., Hunt, E., Stiller, B.: Fast Similarity Search in Large Dictionaries. Tech-
nical report, Department of Informatics, University of Zurich (2007)

4. Celikik, M., Bast, H.: Fast error-tolerant search on very large texts. In: Proc. of
the ACM Symposium on Applied Computing (SAC), pp. 1724–1731 (2009)

5. Fickett, J.W.: Fast optimal alignment. Nucleic Acids Research 12(1), 175–179
(1984)

6. Fredkin, E.: Trie memory. Commun. of the ACM 3, 490–499 (1960)
7. Grahne, G., Zhu, J.: Efficiently using prefix-trees in mining frequent itemsets. In:

Proc. of the ICDM Workshop on Frequent Itemset Mining Implementations (2003)
8. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S., Sri-

vastava, D.: Approximate string joins in a database (Almost) for free. In: Proc. of
the Intl. Conf. on Very Large Databases (VLDB), pp. 491–500. Morgan Kaufmann
(2001)

9. Gravano, L., Ipeirotis, P.G., Koudas, N., Srivastava, D.: Text joins in an RDBMS
for web data integration. In: Proc. of the Intl. World Wide Web Conf. (WWW),
pp. 90–101 (2003)

10. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press (1997)

11. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: A Frequent-Pattern tree approach. Data Mining and Knowledge Dis-
covery 8(1) (2004)

12. Jampani, R., Pudi, V.: Using Prefix-Trees for Efficiently Computing Set Joins. In:
Zhou, L., Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, pp. 761–772.
Springer, Heidelberg (2005)

13. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and re-
versals. Soviet Physics Doklady (1966)

14. Li, C., Lu, J., Lu, Y.: Efficient merging and filtering algorithms for approximate
string searches. In: Proc. of the Intl. Conf. on Data Engineering (ICDE), pp. 257–
266. IEEE Computer Society (2008)

15. Liu, X., Li, G., Feng, J., Zhou, L.: Effective indices for efficient approximate string
search and similarity join. In: Proc. of the Intl. Conf. on Web-Age Information
Management, pp. 127–134. IEEE Computer Society (2008)

16. Morrison, D.R.: PATRICIA – practical algorithm to retrieve information coded in
alphanumeric. Journal of the ACM 15(4), 514–534 (1968)

17. Myers, E.: A sublinear algorithm for approximate keyword searching. Algorith-
mica 12, 345–374 (1994)

18. Myers, G.: A fast bit-vector algorithm for approximate string matching based on
dynamic programming. Journal of the ACM 46(3), 395–415 (1999)

19. Navarro, G.: A guided tour to approximate string matching. ACM Computing
Surveys 33(1) (2001)

20. Navarro, G., Baeza-Yates, R., Sutinen, E., Tarhio, J.: Indexing methods for ap-
proximate string matching. IEEE Data Engineering Bulletin 24, 2001 (2000)

Efficient Similarity Search in Very Large String Sets 279

21. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3, 114–125 (1959)

22. Rheinländer, A., Knobloch, M., Hochmuth, N., Leser, U.: Prefix Tree Indexing for
Similarity Search and Similarity Joins on Genomic Data. In: Gertz, M., Ludäscher,
B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 519–536. Springer, Heidelberg (2010)

23. Rheinländer, A., Leser, U.: Scalable sequence similarity search in main memory
on multicores. In: International Workshop on High Performance in Bioinformatics
and Biomedicine, HiBB (2011)

24. Sahinalp, S.C., Tasan, M., Macker, J., Ozsoyoglu, Z.M.: Distance based indexing for
string proximity search. In: Proc. of the Intl. Conf. on Data Engineering (ICDE),
pp. 125–136 (2003)

25. Shang, H., Merrett, T.: Tries for approximate string matching. IEEE Transactions
on Knowledge and Data Engineering (TKDE) 8, 540–547 (1996)

26. Vintsyuk, T.K.: Speech discrimination by dynamic programming. Cybernetics and
Systems Analysis 4, 52–57 (1968)

27. Wang, W., Xiao, C., Lin, X., Zhang, C.: Efficient approximate entity extraction
with edit distance constraints. In: Proc. of the ACM Intl. Conf. on Management
of Data (SIGMOD), pp. 759–770 (2009)

28. Xiao, C., Wang, W., Lin, X.: Ed-join: an efficient algorithm for similarity joins
with edit distance constraints. Proc. of the VLDB Endowment 1, 933–944 (2008)

Substructure Clustering: A Novel Mining

Paradigm for Arbitrary Data Types

Stephan Günnemann, Brigitte Boden, and Thomas Seidl

RWTH Aachen University, Germany
{guennemann,boden,seidl}@cs.rwth-aachen.de

Abstract. Subspace clustering is an established mining task for group-
ing objects that are represented by vector data. By considering subspace
projections of the data, the problem of full-space clustering is avoided:
objects show no similarity w.r.t. all of their attributes but only w.r.t.
subsets of their characteristics. This effect is not limited to vector data
but can be observed in several other scientific domains including graphs,
where we just find similar subgraphs, or time series, where only shorter
subsequences show the same behavior. In each scenario, using the whole
representation of the objects for clustering is futile. We need to find clus-
ters of similar substructures. However, none of the existing substructure
mining paradigms as subspace clustering, frequent subgraph mining, or
motif discovery is able to solve this task entirely since they tackle only
a few challenges and are restricted to a specific type of data.

In this work, we unify and generalize existing substructure mining
tasks to the novel paradigm of substructure clustering that is applicable
to data of an arbitrary type. As a proof of concept showing the feasibility
of our novel paradigm, we present a specific instantiation for the task of
subgraph clustering. By integrating the ideas of different research areas
into a novel paradigm, the aim of our paper is to inspire future research
directions in the individual areas.

1 Introduction

Clustering – the grouping of similar objects and separation of dissimilar objects
– is one of the fundamental data mining tasks for the analysis of scientific data.
For decades a multitude of clustering algorithms were introduced to handle dif-
ferent types of data including traditional vector data, graph data, time series
and many more. Considering the domain of vector data, it is well known that
in many cases not all dimensions are relevant for grouping the objects [12]: the
similarity of objects within a cluster is restricted to subsets of the dimensions.
Ignoring this fact and using all dimensions for clustering, so-called full space
clustering approaches cannot identify the hidden clusters in such data. As a so-
lution, subspace clustering methods were developed [12], which identify for each
group of objects an individual relevant subspace in which the objects are similar.
In Figure 1 two subspace clusters, which do overlap in some objects, are shown.

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 280–297, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Substructure Clustering 281

7

1

2

3

substructures in

subspace {1,2}

substructures in

subspace {3,4}

8

5

2

3

6

4

2

3

6

4

2

3

6

4

7

8

6

4

9

5
C1

C2dim. 1
dim. 2
dim. 3
dim. 4

Fig. 1. 4-d database with 2 subspace clusters

The above mentioned phe-
nomenon is not restricted to
the domain of vector data but
can be observed in many sci-
entific databases: often, objects
show dissimilarity with respect
to their whole characteristics,
thus leading to no clusters, but high similarity with respect to their substruc-
tures, resulting in meaningful substructure clusters. An example for the domain
of graph databases is illustrated in Figure 2. The given graphs are not similar
to each other. However, we can find multiple meaningful clusters that contain
similar subgraphs. These subgraphs do not need to be isomorphic but they are
clustered according to their similarity. This problem, however, cannot be solved
by any of the existing methods known in the literature.

In this work, we unify and generalize existing substructure mining tasks for
special data types to the novel paradigm of substructure clustering able to handle
data of an arbitrary type. Thus, we develop a model to find meaningful clusters
of similar substructures. This is useful for a broad range of scientific applica-
tions: Clustering similar subgraphs, as e.g. shown in Figure 2, can be used for
the analysis of bio-chemical compounds and protein structure databases. Ho-
mology detection or structural alignments can benefit from clusters of similar
subgraphs. The use of similar subgraphs for subsequent tasks, including efficient
indexing [26] and the storage in semi-structured databases [4], is also possible.
In network log data, similar subpatterns representing typical intrusions can be
used for future anomaly detection. Also for time series, substructure clustering
is beneficial. Mining similar recurrent subsequences can be used as a stand-alone
tool for the analysis of climate data and stock-data, or as a subroutine for tasks
including summarization [18] and rule discovery [11]. A cluster of similar subse-
quences is shown e.g. in Figure 3. Five similar subsequences are detected in the
database: in different times series and at different points in time.

A

A A

D

A

B

E
D

B

C

A
C

A B

E

D

D

B

C

A

A D

A

D

B

B

C

A

E

D
A

DB

G1 G2 G3 G4

A

D

B

C

A

C

A B

DD

B

C

A

B

B

C

A

D
A

A B

C

A A

D

A

A

A D

A

A

D

B

C

(Sub1,G1)

(Sub4,G1) (Sub5,G1) (Sub6,G2) (Sub7,G2) (Sub8,G3) (Sub9,G3)

(Sub2,G3) (Sub3,G4)

C1

C2

Fig. 2. Database with four graphs and two valid substructure clusters

282 S. Günnemann, B. Boden, and T. Seidl

-2

0

2

4

0 20 40 60 80 100 120
-2

0

2

4

0 20 40 60 80 100 120

(Sub1,T1) (Sub2,T1) (Sub1,T2) (Sub2,T2) (Sub3,T2)

(Sub1,T1)
(Sub2,T1)
(Sub1,T2)
(Sub2,T2)
(Sub3,T2)

C1
T2T1

DB

Fig. 3. Substructure clustering for time series data

Overall, clustering similar substructures – not just identical, isomorphic, or
equally sized substructures – is highly relevant. Therefore, we study this problem
in this work. By joining the principles of different research areas into a novel
paradigm, we try to encourage future works in the individual areas.

1.1 Challenges in Substructure Clustering

Substructure clustering is inspired by subspace clustering, which, however, is
restricted to vector data. Besides this difference w.r.t. the data type, we face
several novel challenges for the task of substructure clustering.

From Subspace Projections to Substructures. We first have to analyze
the notion of ’substructure’ on its own. In traditional subspace clustering, sub-
structures are obtained by selecting specific dimensions. Given a subspace, each
object can be projected to it. In Figure 1 for example we can select the subspace
{1, 2} and for each object we can determine the corresponding substructure.
Since the dimension 1 of one object refers to the same characteristic/attribute
as dimension 1 of another object, this is a meaningful semantics. The notion of
subspaces, however, is only valid in vector spaces and thus cannot be directly
transferred to other data spaces. Naively, in graph databases we could extract
from each graph e.g. the vertices {1, 2, 3} to determine the substructures. This
extraction, however, is usually not meaningful since the numbering of vertices
within each graph can often be chosen arbitrarily. In general, vertex 1 of one
graph does not refer to the same characteristic as vertex 1 of another graph.

Thus, for substructure clustering we must be able to select and compare ar-
bitrary substructures. In Figure 2, subgraphs of different structure and differ-
ent size are extracted and potentially grouped together in the clusters C1 or
C2. Consequently, we need a distance measure able to determine the similarity
between arbitrary substructures since clustering is based on similarity values.
While in subspace clustering only substructures of the same subspace are com-
pared – measuring similarity between objects projected to different subspaces is
not possible –, such a restriction is not suitable for substructure clustering: For
example, a subgraph with 4 vertices can be compared with one containing just
3 vertices. For time series, subsequences at different points in time and of differ-
ent length can be clustered. Thus, novel challenges for substructure clustering
include: the definition of valid substructures and the specification of distance
measures between these substructures.

Substructure Clustering 283

Redundancy within the Clusters. Assuming that we are able to measure the
similarity between arbitrary substructures (and since we do not require isomor-
phism), several further challenges are posed. If two substructures x and y are
similar to each other (as, e.g., the subgraphs Sub5 and Sub6 in Figure 2), we will
often also get a high similarity between x and y’s substructures. For example,
the subgraphs Sub4, Sub5, and Sub6 are pairwise similar. As another example,
Sub8 and Sub9 are very similar. For time series, this effect is related to the ’triv-
ial matches’ [27]. Due to the general definition of clusters, i.e. similar objects are
grouped together, in Figure 2 we should group the three substructures (Sub4,
Sub5, Sub6) in a single cluster. However, the subgraphs Sub4 and Sub5 repre-
sent nearly the same information from the original graph G1; the cluster would
contain highly redundant information. This redundancy within a single cluster
should be avoided since it hinders the interpretation of the clustering result. We
should remove either Sub4 or Sub5 from the cluster. This redundancy holds also
between Sub8 and Sub9; only one of these subgraphs should be included in the
cluster.

Nevertheless, it should be possible to include several substructures of a single
original object within a single cluster. In Figure 3, the recurrent subsequence
occurs twice in the left time series. In Figure 2, both subgraphs Sub6 and Sub7
belong to the graph G2 and are included in cluster C2. Since both subgraphs
cover completely different vertices of G2, they represent novel information and
thus do not indicate redundancy. Thus, for substructure clustering we have to
distinguish between similarity/isomorphism and redundancy of substructures. If
two substructures are similar to each other, they are not necessarily redundant
w.r.t. each other.

The redundancy within clusters is an entirely new aspect substructure clus-
tering models have to cope with. This problem cannot occur in subspace clus-
tering since different subspace projections of the same object never belong to
the same cluster. However, in other domains such as graphs or time series we
have to account for this problem. Thus, novel challenges for substructure clus-
tering include: the handling of redundancy within clusters and the definition of
appropriate cluster models.

Redundancy between the Clusters. In substructure clustering we face a
further redundancy problem: different clusters can represent similar information.
In Figure 4 e.g. we can get the clusters C1 and C2. Considering each cluster
individually we do not have redundancy. Between both clusters, however, a high
redundancy becomes apparent: the cluster C1 contains just substructures of the
cluster C2. Such a redundancy between different clusters should be avoided.

This phenomenon is known in traditional subspace clustering where clusters
in similar subspaces contain similar object sets. A frequently used solution is to
consider the intersection of the (original) objects which appear in both clusters.
If this intersection is too high, one of the clusters will be redundant [15,8,6].

This solution, however, fails for substructure clustering. In Figure 4 for ex-
ample each cluster would be classified as redundant w.r.t. every other cluster as
all of them represent the same original graphs. However, for the cluster C4 this

284 S. Günnemann, B. Boden, and T. Seidl

D A

B

D

B

DB

G1

G2

C1

C

BB

A

B

D

BC

BB

A

B C

A

B C

A

B

D

C

A

B

D

C

B

BB

B

BB

D A

B C

A

B

D

C

C2 C3 C4

∀i, j ∈ {1, 2, 3} :

Ci ≺inter
red Cj

Ci �≺inter
red C4

Fig. 4. Redundancy between different clusters

would be incorrect. Though the cluster also represents the same original graphs,
it identifies a completely novel pattern in the data and hence is not redundant.
This misclassification occurs since in substructure clustering we do not have in-
formation like similar subspaces that can be utilized between different clusters
for meaningful redundancy removal. Thus, novel challenges for substructure clus-
tering include: the redundancy removal between clusters and the identification
of properties the final clustering has to fulfill.

In the next section we develop a general model for substructure clustering that
accounts for the introduced challenges and is applicable for arbitrary data types.
A comparison with existing paradigms is done in Section 3. We introduce an
algorithm for the instantiation of our model for subgraph clustering in Section 4
and evaluate it in Section 5.

2 Substructure Clustering

Our general model for substructure clustering is introduced in three steps: In
Section 2.1 we define the actual substructures to be clustered, in Section 2.2 the
definition of single clusters is presented, and Section 2.3 introduces the overall
clustering. In addition to these general definitions, we define a specific model for
the task of subgraph clustering which acts as a proof-of-concept. More advanced
subgraph clustering approaches are left for future work.

2.1 Substructure Definition

Defining valid (sub-)structures is highly application dependent. To introduce a
unifying approach handling arbitrary data types, we therefore use the general
notion of ‘structures’ as analyzed, e.g, in the field of model theory and type
theory [10]. A (single-typed) structure is a triple A = (A, σ, I) consisting of
a universe A, a signature σ, and an interpretation function I. The signature
σ defines a set of function symbols and relations symbols (together with their
arity) that can be used in this structure. The interpretation function I assigns
actual functions and relations to the symbols of the signature. Let us consider
the example of a graph database: Each graph G ∈ DB can be described by
a structure G = (V, σ, I), where σ consists of the binary edge relation symbol
RE . The actual edges of a graph are specified by the interpretation function. A

Substructure Clustering 285

complete graph, for example, is given by the interpretation I(RE) = V ×V , while
a graph with only self-loops is given by I(RE) = {(v, v) | v ∈ V }. As seen, two
graphs (of the same type) differ only in their universe and their interpretation
function but the signature is identical.

Since the above definition of structures uses just a single universe, they are
known as single-typed structures. In real world applications, however, it is often
useful to distinguish between multiple universes (also denoted as types): a labeled
graph, for example, is defined based on the universe V of vertices and the universe
Σ of node labels. To handle such scenarios, single-typed structures were extended
to many-typed structures1 that use a set of universes [10]. By using many-typed
structures, we have the potential to define functions and relations over different
types of elements. For example, a node labeling function is a function l : V → Σ.
Formally, we have:

Definition 1 (Many-typed signature and many-typed structure).
A many-typed signature σ is a 4-tuple σ = (f,R, T, type) consisting of a set of
function symbols f , a set of relation symbols R, a set of type symbols T , and a
function type : f ∪R→ (T ∪ {×,→})∗ that maps each function and relation
symbol to a specific type (encoded as words over the alphabet T ∪ {×,→}).
As abbreviation, we denote with typei(x) the type of the ith argument of func-
tion/relation x. The sets f , R , T , and {×,→} are pairwise disjoint.

A many-typed structure S is a triple S = (U, σ, I) consisting of a set of uni-
verses U = {Ut}t∈T , a many-typed signature σ, and an interpretation function
I for the functions and relations symbols given in σ.2

Consider the example of labeled graphs: The signature σ might be given by σ =
({fl}, {RE}, {N,L}, type). Here, {N,L} denotes the different types ‘nodes’ and
‘labels’. With fl we describe the node labeling function; thus, type(fl) = N → L
(and type1(fl) = N). With RE we describe the edge relation; thus, we have
type(RE) = N × N (and type1(RE) = type2(RE) = N). A labeled graph is
now given by the structure G = ({UN , UL}, σ, I) with vertex set V = UN and
label alphabet Σ = UL. Assuming that all vertices of the graph are labeled with
a ∈ Σ, we have the interpretation I(fl) : V → Σ, v &→ a. Again, two different
labeled graphs differ only in their used universes and/or their interpretation
function but they are based on the same signature σ.

Using many-typed structures allows us to represent a multitude of data types
analyzed in scientific domains including graphs, time series, vector spaces and
strings. Based on this general definition of structures we are now also able to
formalize the notion of substructures:

Definition 2 (Substructure).
Given two many-typed structures S = ({Ut}t∈T , σ, IS) and S ′ = ({U ′

t}t∈T , σ, IS′)
over the same signature σ = (f,R, T, type). S is an induced substructure of S ′

(denoted as S ⊆ S ′) if

1 Alternatively, also denoted as many-sorted structures.
2 Note: We omit the formal definition of the interpretation function since it is straight-
forward to derive based on the function type.

286 S. Günnemann, B. Boden, and T. Seidl

– ∀t ∈ T : Ut ⊆ U ′
t

– ∀fi ∈ f : IS(fi) = IS′(fi) |X where X = Dom(IS(fi))
– ∀Ri ∈ R : IS(Ri) = IS′(Ri) ∩X where X = Ground(IS (Ri))

With Dom(IS(fi)) = Utype1(fi)× . . .×Utypen(fi) for every n-ary function symbol
and Ground(IS (Ri)) = Utype1(Ri) × . . . × Utypen(Ri) for every n-ary relation
symbol.

For the example of graph data, the induced substructures correspond to the
induced subgraphs: By considering a subset of vertices VA ⊆ VB, for the edge
relation it has to hold IA(RE) = IB(RE) ∩ (VA × VA) and the labels are simply
taken over, i.e. IA(fl) = IB(fl) |VA . For practical applications, the substructure
relation can further be restricted by additional constraints. Based on the defi-
nition of substructures, we formalize the substructure database. To enable the
redundancy elimination later on, we have to store (besides the actual substruc-
ture) also the original structure from which the substructure is extracted. Thus,
the substructures to be clustered in our case consist of tuples (Sub,O).

Definition 3 (Substructure database). Given a database DB of structures
over the same many-typed signature σ, the substructure database is defined by
SubDB = {(Sub,O) | Sub ⊆ O ∈ DB}.

Using this definition, two isomorphic but not identical substructures Sub1 and
Sub2 are two different tuples in the database; even if both originate from the same
original structure. In Figure 5 the three isomorphic subgraphs are three different
tuples in the substructure database. This is meaningful since the universes of
the substructures, e.g. their vertices, are not identical. For correctly removing
redundancy, this distinction is highly relevant.

2.2 Cluster Definition

A substructure cluster C is defined as a subset C ⊆ SubDB, fulfilling certain
characteristics. First, we have to ensure the similarity of the clustered elements.
Formally, we use a distance function dist : SubDB × SubDB → R+

0 that mea-
sures the dissimilarity between two arbitrary substructures. For our instantiation
in subgraph clustering, we use the graph edit distance [19], which is an estab-
lished similarity measure for graphs.

B

A

A

B
G1

B

A

B

D

(Sub1,G1) (Sub2,G1) (Sub3,G1)

B

A B

A

B
B

B

A

B
isomorphic

but
not

redundant

isomorphic
and
also

redundant

DB

Fig. 5. Isomorphism/similarity vs. redundancy

Substructure Clustering 287

A novel aspect is the redundancy within clusters, which has to be avoided.
Keep in mind that two substructures are not redundant w.r.t. each other if they
originate from different original structures or if they were extracted from dif-
ferent ‘regions’ of the same structure. In both cases, they represent different
patterns. Only if two substructures were extracted from ‘similar regions’ of the
same original structure, they should be denoted as redundant. In Figure 5, the
subgraphs Sub2 and Sub3 can be denoted as redundant w.r.t. each other while
Sub2 and Sub1 are not redundant to each other. The informal notion of ‘similar
regions’ is represented by the structures’ universes. For graphs the universe cor-
responds to their vertex set, whereas e.g. for time series we have the individual
points in time. If two substructures S1 and S2 are similar w.r.t. their universes,
we will get redundancy. We denote this with S1 ≺intra

red S2 and define:

Definition 4 (Intra-cluster redundancy relation).
Let (S, G), (S ′, G′) ∈ SubDB with S = (U, σ, I) and S ′ = (U ′, σ, I ′), and sim be
a similarity function on the set of universes U and U ′.
The relation ≺intra

red ⊆ SubDB × SubDB describes the redundancy between sub-
structures of a single cluster and is defined by: (S, G) ≺intra

red (S ′, G′)⇔
G = G′ ∧ sim(U,U ′) ≥ rintra with redundancy parameter rintra ∈ [0, 1]
For subgraph clustering we use:

sim(U,U ′) = |V ∩V ′|
|V ∪V ′| where U = {V,Σ} and U ′ = {V ′, Σ}.

Since we consider the Jaccard similarity coefficient between the actual vertex
sets, two very similar subgraphs (w.r.t. dist) need not to be redundant: for
substructure clustering we have to distinguish between similarity/isomorphism
and redundancy. Sub1 and Sub2 in Figure 5 are isomorphic but non-redundant.
Only if the fraction of overlapping vertices exceeds a critical value, two structures
will be redundant w.r.t. each other. Thus, in general we permit overlapping
substructures, guided by the parameter rintra. In our instantiation we just use
the first universe, i.e. the vertex sets, to compute the substructure similarity. In
general, however, all universes of the given structures might be used. The overall
cluster definition can now be formalized by:

Definition 5 (Substructure cluster). Let SubDB be a substructure database
and dist a substructure distance function. A valid substructure cluster C ⊆
SubDB fulfills

– similarity: ∀(S, G), (S ′, G′) ∈ C : dist(S,S ′) ≤ α
– redundancy-freeness: ¬∃(S, G), (S ′, G′) ∈ C : (S, G) ≺intra

red (S ′, G′)
– minimal support: |C| ≥ minSupport

Besides being redundancy free, a cluster should only contain similar substruc-
tures. Thus, the parameter α constrains the maximal pairwise distance between
the clustered substructures. Furthermore, a cluster must be sufficiently large, in-
dicated by the minimal support. The group C2 in Figure 2 is a valid substructure
cluster since the subgraphs are pairwise similar and non-redundant. If we added

288 S. Günnemann, B. Boden, and T. Seidl

A

C

G1

D

B A+

C D

B A

C D

B A

C D

B
G2 G3 G4

DB

D

B A*

D

BA*

C D

B

mining results for minmal support = 4

frequent subgraph mining subgraph clustering

support of a

substructure!

support of

a cluster!

result

depends on

allowed

dissimilarity

2 vs. 1

Fig. 6. Different notions of minimal support

Sub9, however, the redundancy-free property would be violated due to Sub8 (if,
e.g., rintra≤ 3

5). Note that C2 contains two non-redundant substructures of the
graph G2.

In the following, we highlight the minimal support: For the (existing) tasks
of frequent substructure mining (e.g. frequent or representative subgraph min-
ing [28] for graphs) the minimal support of a substructure is considered. Each
substructure has to exceed a certain minimal support, i.e. several isomorphic
substructures have to exist. In our approach, however, none of the substructures
need to be frequent – there do not need to exist isomorphic substructures –;
only the whole collection of similar substructures has to be large enough. We
consider the minimal support of a cluster. For the example of graphs, in Fig-
ure 6 four very similar graphs are illustrated (please note the different vertex
label A+ in G2). If we select a minimal support of 4 and α = 2, our approach
will successfully group all graphs into a single cluster. The support of the cluster
is large enough. Frequent subgraph mining, however, cannot detect this group
since the graphs are not isomorphic. The only frequent and isomorphic sub-
structure is the illustrated subgraph with just 2 vertices. This pattern does not
describe the clustering structure of the data very well. Even if we lower α to 1,
the detected cluster by our approach will contain more meaningful patterns. By
measuring similarity we achieve a further advantage: If we consider continuous
valued data, the equality/isomorphism of two substructures will be virtually im-
possible. While previous methods are not able to detect any (frequent) pattern,
our model handles such data.

2.3 Clustering Definition

Using Def. 5 we can determine the set of all valid clusters Clusters ⊆ P(SubDB).
This set, however, contains clusters highly redundant w.r.t. each other. The next
challenge we have to solve is to avoid redundancy between different clusters by
selecting a clustering result Result ⊆ Clusters that does not contain redundant
information. Considering the cluster C1 in Figure 4, its grouped substructures
occur similarly also in the cluster C2. The same holds between C2 and C3. Both

Substructure Clustering 289

clusters cover nearly the same information. Their substructures, however, are not
identical; thus, intersecting the clusters is not reasonable. Instead we again have
to consider the universes of the structures to also detect redundancy between
clusters. We resort to the relation ≺intra

red to identify those substructures of C3

that are redundant to at least one substructure of C2.

Definition 6 (Cover). Given two substructure clusters C1, C2, the covered
substructures of C2 due to C1 are defined by:
covered(C2|C1)= {(S, G) ∈ C2 | ∃(S ′, G′) ∈ C1 : (S, G) ≺intra

red (S ′, G′)}
The covered set of a cluster denotes the whole set of redundant substructures
w.r.t. another cluster without enforcing the equality of the substructures. Based
on this set, the redundancy relation between two clusters C1 and C2 can be
defined, i.e. C1 ≺inter

red C2 if a large fraction of substructures occurs (similarly)
in both clusters.

Definition 7 (Inter-cluster redundancy relation). Let C1, C2 ∈ Clusters
and sim2 be a similarity function on Clusters. The redundancy relation ≺inter

red ⊆
Clusters× Clusters describes the redundancy between different clusters and is
defined by: C1 ≺inter

red C2 ⇔ sim2(C1, C2) ≥ rinter with redundancy parameter
rinter ∈ [0, 1]

For subgraph clustering we use: sim2(C1, C2)=
|covered(C2|C1)|+|covered(C1|C2)|

|C1|+|C2|

In Figure 4, the clusters C1, C2 and C3 are pairwise redundant. The cluster C4,
however, is not redundant to any of the other clusters although substructures
from the same original graphs are grouped.
Using this relation we can select a set Result ⊆ Clusters containing only pair-
wise non-redundant clusters. Moreover, we want to select the most interesting
redundancy-free clustering. For example, in Figure 4 we could prefer clustering
{C2, C4} to {C1, C4} since larger subgraphs are grouped. Thus, in our general
model we need to judge the quality of each clustering:

Definition 8 (Quality of a substructure clustering).
Given a substructure clustering Result ⊆ Clusters, the quality is defined by the
function: q : P(Clusters)→ R
For subgraph clustering we use:

q(Result) =
∑

C∈Result
1
|C|

∑
(S=({VS,Σ},σ,I),Gi)∈C |VS |

The quality function enables us to determine the interestingness of a clustering
in a flexible way. In our instantiation we sum over the average subgraph sizes
for each cluster. Thus, we prefer clusters containing large substructures, which
often allow better interpretation. Overall, we are now able to define the optimal
substructure clustering that accounts for all aforementioned challenges:

Definition 9 (Optimal substructure clustering). Given the set Clusters of
all substructure clusters, the optimal substructure clustering Result ⊆ Clusters
fulfills

(1) redundancy-freeness: ¬∃C1, C2 ∈ Result : C1 ≺inter
red C2

(2) maximal quality: ∀Result′ ⊆ Clusters fulfilling (1): q(Result′) ≤ q(Result).

290 S. Günnemann, B. Boden, and T. Seidl

3 Related Work

Substructure clustering generalizes existing substructure mining tasks that were
introduced for specific data types.

Vector Data. In traditional clustering, the objects are grouped based on the
similarity of all their attributes. As in high-dimensional data it is very unlikely
that the objects of a cluster are similar w.r.t. all attributes [2], subspace cluster-
ing approaches [12,15,8,7] were introduced which cluster objects based on subsets
of their attributes. This can also be seen as clustering ‘sub-objects’, where a sub-
object consists of a subset of the attributes of an original object. However, the
sub-objects within a single cluster have to lie in exactly the same subspace. In
our approach this can be realized by restricting the distance function to objects
of the same subspace, i.e. dist(., .)=∞ for substructures located in different sub-
spaces. Our substructure clustering is more general than subspace clustering, as
it is able to cluster objects from different subspaces together. This is especially
useful if objects show missing values in some dimensions or erroneous values are
present. These errors can be suppressed by grouping based on different subspaces.

Graph Data. An overview of the various graph mining tasks is given in [1].
The term ’graph clustering’ is somewhat ambiguous: Besides finding clusters of
similar graphs where the input consists of a set of graphs [23], it also refers to
clustering the vertices of a single large graph based on their density [20]. Our
paradigm varies from both approaches as it finds clusters of similar substructures.

Another graph mining task is frequent subgraph mining (FSM) that aims at
finding subgraphs in a graph database whose frequencies (number of isomor-
phic subgraphs) exceed a given threshold. Since the whole set of freq. subgraphs
is often too large to enumerate, mining closed [25] or maximal [22] frequent
subgraphs was introduced. These results still contain high redundancy whereas
substructure clustering avoids this. To get smaller result sets, representative
FSM [28] chooses a set of frequent subgraphs such that each frequent subgraph
is ‘represented’ by one of these. The FSM methods use graphs with categorical
labels for finding frequent subgraphs. However, if some errors in the data occur,
e.g. edges are missing, or if the data is continuous valued, it is very unlikely to
find a large number of isomorphic subgraphs. However, if no frequent subgraphs
exist, no representative subgraphs can be found. In substructure clustering we
first cluster similar subgraphs together, and then retain a cluster if its support
is high enough. Therefore, substructure clustering can find meaningful clusters
even if there are no single frequent subgraphs in the data. Consequently, we can-
not use (representative) FSM to solve substructure clustering; but substructure
clustering subsumes (representative) FSM.

Transaction Data. Frequent Itemset Mining [9] is the task of determining sub-
sets of items that occur together frequently in a database of transactions. To
reduce the huge output if all frequent itemsets are determined, closed and max-
imal mining approaches were introduced [5]. The result, however, still contains
high redundancy between the itemsets; substructure clustering avoids this redun-

Substructure Clustering 291

dant information. Summarizing itemsets [24] can be seen as clustering frequent
itemsets, to reduce the number of generated patterns and thus the redundancy.
However, these approaches still use the strict notion of frequent itemsets which
correspond to isomorphic substructures. In contrast, we group based on similar-
ity values. Approaches for error-tolerant itemset mining generalize the definition
of frequent itemsets to tolerate errors in the data [17]. These approaches con-
sider an itemset as frequent if there exist many transactions in the database
that contain ‘most’ of the items in the set; this corresponds to an oversimplified
definition of similarity between itemsets. For substructure clustering we can use
arbitrary distance functions between the substructures.

Time Series Data. Another related task is the subsequence clustering, which
aims at finding sets of similar subsequences in a database of time series or within
a single streaming time series [14,3]. As stated in [14], naive subsequence clus-
tering is meaningless if not for certain conditions: trivial matches have to be
eliminated and only subsets of the data should be grouped, i.e. not any subse-
quence should belong to a cluster. Both properties are fulfilled by substructure
clustering: trivial matches are avoided with the intra-cluster redundancy and
clusters are only generated by similar substructures. Thus, substructure cluster-
ing can be used to find meaningful subsequence clusters. Related to subsequence
clustering is motif discovery [27], which detects approximately repeated subse-
quences. Both paradigms, however, are restrained to group subsequences with
the same length together. Even more, the user has to set the length w as a pa-
rameter. In our substructure clustering model, subsequences of different length
can be grouped together if they are similar (and non-redundant).

Specialized Data. Aside from the previous data types, substructure clustering
for a very specialized data type is introduced by [21]. The sCluster approach
finds clusters of similar substructures in sequential 3d objects, which are sets of
points located in a three dimensional space and forming a sequence. sCluster only
groups substructures of the same length together and redundancy is not removed
from the clustering result. Substructure clustering overcomes these drawbacks
and is applicable to arbitrary data types.

Overall, substructure clustering generalizes all presented paradigms and uni-
fies them into a single consistent model.

4 An Algorithm for Subgraph Clustering

In the following we present an overview of our algorithm SGC that implements
the instantiation of our substructure clustering model for the domain of subgraph
mining. Again, our aim is to demonstrate the principle of substructure clustering
by implementing a proof-of-concept.

Determining the exact optimal subgraph clustering is not efficiently possible.
Obviously, our model is NP-hard since it subsumes (cf. Sec. 3) the NP-hard
paradigm of (repr.) FSM. We have to tackle several challenges: Given a graph
database DB, the size of the subgraph database grows exponentially w.r.t. the

292 S. Günnemann, B. Boden, and T. Seidl

DB
Sampling of

non-redundant

subgraphs

Clustering

result

Detecting

similar

subgraphs

Optimizing

subgraph

clusters

Determine

non-redundant

clustering

cyclic processing

Fig. 7. Processing scheme of the SGC algorithm

number of vertices in the original graphs, i.e. |SubDB| ∈ O(
∑

i(2
|Vi|)). Further-

more, the number of possible clusters exponentially depends on the number of
subgraphs; |Clusters| ∈ O(2|SubDB|). Last, we have to select the final result
Result ⊆ Clusters, which again implies exponentially many combinations.

Clearly, enumerating all these combinations or even just all possible subgraphs
is not manageable. Thus, we propose an approximative algorithm that directly
extracts valid, high-quality clusters of non-redundant subgraphs from the orig-
inal graphs. Moreover, the extracted clusters should be non-redundant to each
other. Based on these considerations, the general processing of our algorithm is
illustrated in Figure 7. In a cyclic process, consisting of four successive phases,
potential clusters are generated and based on their redundancy characteristics
rejected or added to the result.

In phase 1, we randomly draw subgraph samples from the input graphs that
act as cluster centers. Therefore, any subgraph sampling method [13] can be
integrated in SGC; in this version we simply use random sampling of connected
subgraphs. Since not necessarily each sample leads to a valid cluster, we draw
several samples in each iteration hence increasing the probability to identify the
hidden clusters.

In phase 2, we identify for each sample a cluster of similar subgraphs. For each
graph of the database we determine the subgraphs whose edit-distance to the
sample is small enough. Besides similarity, we have to take care of redundancy.
Since several subgraphs of the same graph could be similar to the considered
sample, we potentially induce intra-cluster redundancy. Thus, while computing
the cluster we also remove redundancy. If the cluster’s support is large enough,
it will correspond to a valid substructure cluster. Otherwise, the sample did not
lead to a valid cluster: We store the sample to prevent its repetitive drawing and
hence ensure the termination of the algorithm.

In phase 3, we optimize the quality of the clusters. Since the final clusters
should primarily contain large subgraphs, we enlarge the clustered subgraphs by
adding further vertices. We randomly select a subgraph from the cluster, enlarge
it by a neighboring vertex, and recalculate the edit-distance to the remaining
subgraphs of the cluster. If the distance is still small enough, the subgraph will
remain in the cluster. Otherwise, it is removed. By this optimization step, the
support of a cluster decreases while the subgraph sizes increase. We enlarge the
elements until the minimal support would be violated.

In phase 4, we choose from the set of clusters a valid substructure clustering
without inter-cluster redundancy. Starting with an empty solution, we iteratively
select the cluster with the highest quality. If the cluster is redundant w.r.t. an al-

Substructure Clustering 293

ready selected cluster, we will reject it, else we add it to the new clustering. After
all clusters have been processed, we have the new redundancy-free clustering.

This result is used as background knowledge in the next iteration to prevent
the generation of redundant samples in the sampling phase and it corresponds
to the final clustering if no further clusters are generated. The effectiveness of
our SGC is analyzed in the next section.

5 Experiments

Setup. We compare SGC with four different subgraph mining paradigms: 1. We
use closed frequent subgraph mining (CFSM), considering each pattern as a
single cluster. 2. We cluster the frequent subgraphs based on their graph edit-
distances using k-medoid and thus get a kind of representative subgraph mining.
3. We use full-graph k-medoid clustering that groups the graphs based on their
whole characteristics. 4. We randomly sample subgraphs of certain sizes from
the graphs such that on average each vertex is contained in one subgraph and
we cluster the resulting subgraphs using k-medoid and graph edit-distance. We
are aware that the competitors 1-3 try to solve different (but similar) problems.
However, as there exists no method that exactly solves the same task as our ap-
proach (besides the baseline competitor 4), we think a comparison is beneficial.
We use synthetic data, by default with 1000 graphs of size 15 in the database
and with 30 hidden clusters each containing 50 subgraphs of size 6. In average,
the clustered subgraphs differ by a distance of 2. Furthermore, we use real world
data containing structures for chemical substances: the TOXCST data3 , the
NCI database4 and the roadmap dataset5 (cf. PubChem DB). Efficiency is mea-
sured by the approaches’ runtime; clustering quality via the CE measure [16] by
considering each vertex as a data object. For comparability all experiments were
run on Opteron 2.3GHz CPUs using Java6 64 bit. As the competing approaches
require the number of clusters as input, we provide them with the true number
of clusters. The clustering based on random samples is provided with the true
size of the subgraphs. The minimal support of the closed/representative min-
ing approaches is optimized such that the highest clustering quality is achieved.
Thus, these paradigms already get a huge advantage for finding the clusters. For
SGC we use rintra=rinter=0.75, α=5, minSupport=40.

Graph Sizes. The primary objective of our method is to achieve high clustering
quality. Nonetheless, we also depict runtimes. We start by varying the size of the
database graphs, i.e. we increase their number of vertices. As shown in Figure 8
(left) SGC outperforms all competing approaches and constantly gets high clus-
tering quality. Clustering based on random samples achieves good quality only
for small graphs; for larger graphs the quality drops since many samples do not

3 www.epa.gov/ncct/dsstox/sdf toxcst.html, TOXCST v3a 320 12Feb2009.sdf
4 http://cactus.nci.nih.gov/download/nci/, NCI-Open 09-03.sdf.gz
5 http://cactus.nci.nih.gov/download/roadmap/, roadmap 2008-01-28.sdf.gz

294 S. Günnemann, B. Boden, and T. Seidl

0

0.2

0.4

0.6

0.8

1

5 15 25 35

cl
us

te
ri

ng
qu

al
it

y
(C

E)

graph size

SGC Closed FSM Repres. FSM Sampling Full

0.1

1

10

100

1000

10000

100000

1000000

5 15 25 35

ru
nt

im
e

[s
ec

]

graph size

SGC Closed FSM Repres. FSM Sampling Full

Fig. 8. Varying graph size

0

0.2

0.4

0.6

0.8

1

100 1000 10000

cl
us

te
ri

ng
qu

al
it

y
(C

E)

database size

SGC Closed FSM Repres. FSM Sampling

0.1

1

10

100

1000

10000

100000

1000000

100 1000 10000

ru
nt

im
e

[s
ec

]

database size

SGC Closed FSM Repres. FSM Sampling

Fig. 9. Varying database size

belong to meaningful clusters. Random sampling is not an option for performing
subgraph clustering. Mining based on closed or representative subgraphs fails for
these data too. Since the hidden subgraphs are not isomorphic, these approaches
detect only subsets of the clusters. Representative FSM is slightly better than
CFSM. Full-graph clustering also achieves low quality. The whole graphs do not
show similarity; good clusters cannot be detected.

Another problem of full-graph clustering is its high runtime (Figure 8 (right)).
Since large graphs have to be compared, an efficient execution is not possible.
Only for graphs up to a size of 6, this method was applicable. Thus, we do
not include full-graph clustering in the following. Clustering based on random
samples is orders of magnitude slower than SGC since many - but not interesting
- samples are drawn. The runtime of SGC increases only slightly since we just
have to determine the similarity between subgraphs. Although some algorithms
have smaller runtime, SGC is still efficient and, as we believe, this aspect is
compensated by its higher clustering quality.

Database Size. Next we increase the database size, i.e. the number of graphs.
As shown in Figure 9 (left), SGC again constantly outperforms the other
paradigms. Only for very small datasets, closed and representative mining obtain
comparable quality but they drop heavily afterwards. With increasing database
size, a larger number of redundant patterns is generated leading to lower quality.
Considering the runtime - Figure 9 (right) - we observe similar behavior as in
the previous experiment. SGC is the only method with acceptable runtime that
also gets high quality.

Substructure Clustering 295

0

0.2

0.4

0.6

0.8

1

35404550

cl
us

te
ri

ng
qu

al
it

y
(C

E)

minimum support

SGC Closed FSM Repres. FSM

1

10

100

1000

10000

100000

35404550

ru
nt

im
e

[s
ec

]

minimum support

SGC Closed FSM Repres. FSM

Fig. 10. Varying minimal support

Minimal Support. A large difference between substructure clustering and the
other paradigms is the notion of the minimal support. Figure 10 analyzes this
difference by varying the minimal support parameter of the algorithms from the
true cluster size (50) to 35. SGC is robust w.r.t. this parameter: quality and
runtime are stable. If the minimal support is smaller than the true cluster size,
SGC still collects all similar subgraphs. A different effect is observed for the other
methods: If we set the minimal support to 50 only very small subgraphs fulfill this
support: the methods get very low quality. However, by decreasing the support,
too many subgraphs are frequent, leading to highly redundant results and poor
quality. Generating many redundant subgraphs also affects the runtime, which
heavily increases with decreasing support.

0

0.2

0.4

0.6

0.8

1

0 5 10

cl
us

te
ri

ng
qu

al
it

y
(C

E)

Avg. dissimilarity of subgraphs

SGC Closed FSM Repres. FSM Sampling

Fig. 11. Varying dissimilarity

Dissimilarity. Next, we highlight the
strength of our method to group similar and
not just isomorphic subgraphs. In Figure 11
we increase the dissimilarity between the
clustered subgraphs; the clusters get obfus-
cated. This effect is weakened by our ap-
proach: SGC still detects the clusters even
if the subgraphs are not perfectly similar.
Of course, if the dissimilarity is too high,
the clusters cannot and should not be de-
tected anymore. Overall, SGC is able to de-
tect clusters under the condition of non-

isomorphism, which especially occurs for continuous valued data. The other
algorithms get low quality even if the subgraphs differ only slightly.

Toxcst 320 NCI 500 NCI
5000

Road 1000 Road
10000

S
G
C

C
lo
s.

S
G
C

C
lo
s.

SGC S
G
C

C
lo
s.

S
G
C

runtime [s] 207 11 322 956 5840 465 1224 14943

cluster 20 503 13 2165 23 19 2232 19

intra-redun. 1.7 3.9 2.3 9.9 1.2 1.7 10.4 1.2

inter-redun. 1.2 48.7 1.2 430.5 1.3 1.2 253.9 1.3

∅ subgr. size 9.3 6.9 11.8 10.3 8.9 12.2 10.1 10.7

Fig. 12. Clustering properties for real world data

Real World Data. In
Figure 12 we use real
world data of different
sizes (as shown by the ad-
jacent numbers). Since no
hidden clusters are given,
we cannot determine clus-
tering quality. Besides the
runtime we thus analyze

296 S. Günnemann, B. Boden, and T. Seidl

different properties of the clustering results. We just compare SGC and CFSM
since the other methods require the number of clusters as input, which is not
known for the data. In any case, we set the minimum support to 10% of the
whole database size. SGC is applicable on all datasets; CFSM only runs for
small databases (≤ 1000 graphs). The number of clusters generated by SGC is
reasonable while CFSM generates an overwhelming result of redundant clusters.
SGC avoids redundancy as shown by two facts: First, we measure in how many
subgraphs of the same cluster a vertex appears (in avg.), corresponding to intra-
cluster redundancy. Second, we measure in how many different clusters a vertex
appears, corresponding to inter-cluster redundancy. For SGC both measures are
around 1.2–2.3. Thus, we permit overlapping clusters but avoid high redundancy.
CFSM has high redundancy in the result, especially between different clusters.
Redundancy removal as e.g. performed by our approach is essential for inter-
pretable results and incorporated in our novel paradigm. Finally, SGC groups
larger subgraphs since it is not restricted to isomorphism.

Overall, all experiments indicate that SGC achieves the highest clustering qual-
ity and acceptable runtimes. Even though our model and algorithm for subgraph
clustering are proofs-of-concept, they are already superior to related methods.
Thus, SGC is the only method of choice for analyzing the clustering structure
of subgraph patterns and confirms the strength of our substructure clustering
paradigm.

6 Conclusion

We introduced the novel mining paradigm of substructure clustering that defines
clusters of similar substructures. This paradigm unifies and generalizes existing
substructure mining tasks: the substructures of our clusters do not need to be
isomorphic or of the same size. To ensure interpretability, our model avoids
redundant information in the clustering result – between different clusters as well
as within single clusters. As a proof-of-concept we presented an instantiation of
our model for subgraph clustering. In our experiments we demonstrate that our
novel method outperforms existing approaches for subgraph mining. As future
work, we want to apply our novel paradigm to time series subsequence clustering
and to vector data containing missing values.

Acknowledgments. This work has been supported by the UMIC Research
Centre, RWTH Aachen University, Germany, and the B-IT Research School.

References
1. Aggarwal, C., Wang, H.: Managing and Mining Graph Data. Springer, New York

(2010)
2. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When Is ”Nearest Neighbor”

Meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp.
217–235. Springer, Heidelberg (1998)

3. Chen, J.: Making subsequence time series clustering meaningful. In: ICDM, pp.
114–121 (2005)

4. Deutsch, A., Fernández, M.F., Suciu, D.: Storing semistructured data with stored.
In: SIGMOD, pp. 431–442 (1999)

Substructure Clustering 297

5. Gouda, K., Zaki, M.J.: Genmax: An efficient algorithm for mining maximal fre-
quent itemsets. DMKD 11(3), 223–242 (2005)

6. Günnemann, S., Färber, I., Boden, B., Seidl, T.: Subspace clustering meets dense
subgraph mining: A synthesis of two paradigms. In: ICDM, pp. 845–850 (2010)

7. Günnemann, S., Kremer, H., Seidl, T.: Subspace clustering for uncertain data. In:
SDM, pp. 385–396 (2010)

8. Günnemann, S., Müller, E., Färber, I., Seidl, T.: Detection of orthogonal concepts
in subspaces of high dimensional data. In: CIKM, pp. 1317–1326 (2009)

9. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. DMKD 8(1), 53–87 (2004)

10. Jacobs, B.: Categorical Logic and Type Theory. Studies in Logic and the Founda-
tions of Mathematics, vol. 141. North Holland, Amsterdam (1999)

11. Jin, X., Lu, Y., Shi, C.: Distribution Discovery: Local Analysis of Temporal Rules.
In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336,
pp. 469–480. Springer, Heidelberg (2002)

12. Kriegel, H.-P., Kröger, P., Zimek, A.: Clustering high-dimensional data: A sur-
vey on subspace clustering, pattern-based clustering, and correlation clustering.
TKDD 33(1), 1–58 (2009)

13. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: KDD, pp. 631–636
(2006)

14. Lin, J., Keogh, E., Truppel, W.: Clustering of streaming time series is meaningless.
In: SIGMOD, pp. 56–65 (2003)

15. Müller, E., Assent, I., Günnemann, S., Krieger, R., Seidl, T.: Relevant subspace
clustering: Mining the most interesting non-redundant concepts in high dimensional
data. In: ICDM, pp. 377–386 (2009)

16. Patrikainen, A., Meila, M.: Comparing subspace clusterings. TKDE 18(7), 902–916
(2006)

17. Poernomo, A.K., Gopalkrishnan, V.: Towards efficient mining of proportional fault-
tolerant frequent itemsets. In: KDD, pp. 697–706 (2009)

18. Rombo, S.E., Terracina, G.: Discovering Representative Models in Large Time
Series Databases. In: Christiansen, H., Hacid, M.-S., Andreasen, T., Larsen, H.L.
(eds.) FQAS 2004. LNCS (LNAI), vol. 3055, pp. 84–97. Springer, Heidelberg (2004)

19. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs
for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics 13,
353–362 (1983)

20. Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI 22(8), 888–905
(2000)

21. Tan, Z., Tung, A.: Substructure clustering on sequential 3D object datasets. In:
ICDE, pp. 634–645 (2004)

22. Thomas, L., Valluri, S., Karlapalem, K.: Margin: Maximal frequent subgraph min-
ing. In: ICDM, pp. 1097–1101 (2006)

23. Tsuda, K., Kudo, T.: Clustering graphs by weighted substructure mining. In:
ICML, pp. 953–960 (2006)

24. Wang, C., Parthasarathy, S.: Summarizing itemset patterns using probabilistic
models. In: KDD, pp. 730–735 (2006)

25. Yan, X., Han, J.: CloseGraph: mining closed frequent graph patterns. In: KDD,
pp. 286–295 (2003)

26. Yan, X., Yu, P.S., Han, J.: Graph indexing: A frequent structure-based approach.
In: SIGMOD, pp. 335–346 (2004)

27. Yankov, D., Keogh, E.J., Medina, J., Chiu, B.Y., Zordan, V.B.: Detecting time
series motifs under uniform scaling. In: KDD, pp. 844–853 (2007)

28. Zhang, S., Yang, J., Li, S.: RING: An Integrated Method for Frequent Represen-
tative Subgraph Mining. In: ICDM, pp. 1082–1087 (2009)

BT* – An Advanced Algorithm for Anytime

Classification

Philipp Kranen, Marwan Hassani, and Thomas Seidl

RWTH Aachen University, Germany
{lastname}@cs.rwth-aachen.de

Abstract. In many scientific disciplines experimental data is generated
at high rates resulting in a continuous stream of data. Data bases of pre-
vious measurements can be used to train classifiers that categorize newly
incoming data. However, the large size of the training set can yield high
classification times, e.g. for approaches that rely on nearest neighbors or
kernel density estimation. Anytime algorithms circumvent this problem
since they can be interrupted at will while their performance increases
with additional computation time. Two important quality criteria for
anytime classifiers are high accuracies for arbitrary time allowances and
monotonic increase of the accuracy over time. The Bayes tree has been
proposed as a naive Bayesian approach to anytime classification based
on kernel density estimation. However, the employed decision process
often results in an oscillating accuracy performance over time. In this
paper we propose the BT* method and show in extensive experiments
that it outperforms previous methods in both monotonicity and anytime
accuracy and yields near perfect results on a wide range of domains.

1 Introduction

Continuous experimental data in scientific laboratories constitutes a stream of
data items that must be processed as they arrive. Many other real world applica-
tions can be associated with data streams as large amounts of data must be pro-
cessed every day, hour, minute or even second. Examples include traffic/network
data at web hosts or telecommunications companies, medical data in hospitals,
statistical data in governmental institutions, sensor networks, etc. Major tasks in
mining data streams are classification as well as clustering and outlier detection.
Optimally, an algorithm should be able to process an object in a very short time
and use any additional computation time to improve its outcome. The idea of
being able to provide a result regardless of the amount of available computation
time led to the development of anytime algorithms. Anytime algorithms have
been proposed e.g. for Bayesian classification [19,23] or support vector machines
[5], but also for anytime clustering [13] or top-k queries [2].

The Bayes tree proposed in [19] constitutes a statistical approach for stream
classification. It can handle large amounts of data through its secondary stor-
age index structure, allows for incremental learning of new training data and is

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 298–315, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

BT* – An Advanced Algorithm for Anytime Classification 299

capable of anytime classification. It uses a hierarchy of Gaussian mixture mod-
els, which are individually refined with respect to the object to be classified.
In [14] we proposed in the MC-Tree a top down construction of the mixture
hierarchy that led to an improved anytime classification performance. However,
the employed decision process yields strong oscillations of the accuracy over
time in several domains, which contradicts the assumption that the performance
increases monotonically.

In this paper we propose BT* as an advanced algorithm for anytime classifica-
tion. We investigate three methods to improve the parameters in a given Bayes
tree and propose two alternative approaches for the decision design. The goals of
the research presented in this paper are: maintain the advantages of the Bayes
tree, including the applicability to large data sets (index structure) and the in-
dividual query dependent refinement, overcome the oscillating behavior of the
anytime accuracy and achieve a monotonically increasing accuracy over time,
and increase the accuracy of the classifier both for the ultimate decision and
for arbitrary time allowances. The BT* algorithm is one approach to Bayesian
anytime classification that we investigate in this paper and whose effectiveness
is clearly shown in the experiments. Other solutions can be investigated, such as
SPODEs (see Section 2) for categorical data, which are beyond the scope of this
paper. In the following section we review related work on anytime algorithms.
In Section 3 we provide details on the BT* algorithm, Section 4 contains the
experimental evaluation and Section 5 concludes the paper.

2 Related Work

Anytime algorithms have first been discussed in the AI community by Thomas
Dean and Mark Boddy in [4] and have thereafter been an active field of research.
Recent work includes an anytime A* algorithm [16] and anytime algorithms
for graph search [15]. In the data base community anytime measures for top-k
algorithms have been proposed [2], in data mining anytime algorithms have been
discussed for clustering [13] and other mining tasks.

Anytime classification is real time classification up to a point of interruption.
In addition to high classification accuracy as in traditional classifiers, anytime
classifiers have to make best use of the limited time available, and, most notably,
they have to be interruptible at any given point in time. This point in time is
usually not known in advance and may vary greatly. Anytime classification has
for example been discussed for support vector machines [5], nearest neighbor
classification [21], or Bayesian classification on categorical attributes [23]. Bayes
classifiers using kernel density estimation [11] constitute a statistical approach
that has been successfully used in numerous application domains. Especially for
huge data sets the estimation error using kernel densities is known to be very
low and even asymptotically optimal [3].

For Bayesian classification based on kernel densities an anytime algorithm
called Bayes tree has been proposed in [19]. The Bayes tree maintains a hier-
archy of mixture densities that are adaptively refined during query processing

300 P. Kranen, M. Hassani, and T. Seidl

to allow for anytime density estimation. An improved construction methods has
been discussed in [14] that generates the hierarchy top down using expectation
maximization clustering. Our proposed BT* algorithm builds upon this work.

An important topic in learning from data streams is the handling of evolving
data distributions such as concept drift or novelty. A general approach to building
classifiers for evolving data streams has been proposed in [22]. The main idea is to
maintain a weighted ensemble of several classifiers that are build on consecutive
chunks of data and are then weighted by their performance on the most recent
test data. The approach is applicable to any classifier and can hence be combined
with our proposed method in case of concept drift and novelty.

A different line of research focuses on anytime learning of classifiers, e.g. for
Bayesian networks [17] or decision tree induction [6]. BT* allows for incremental
insertion and can thereby be interrupted at will during training. Our focus in
this paper is on varying time allowances during classification to allow processing
newly incoming data at varying rates.

3 BT*

We start by describing the structure and workings of the Bayes tree in the
following section. We recapitulate the top down build up strategy proposed in
[14] along with its performance. In Section 3.2 we develop three approaches to
improve the parameters in a given model hierarchy and Section 3.3 introduces
two alternative decision processes for anytime classification. Finally we evaluate
the proposed improvements in Section 4, individually as well as combined, to
find BT* as the best performing alternative.

3.1 Anytime Bayesian classification

Let L = {l1, . . . , l|L|} be a set of class labels, T a training set of labeled objects
and Tl ⊆ T the set of objects with label l. A classifier assigns a label l ∈ L to
an unseen object x based on its features and a set of parameter values Θ. The
decision function of a Bayes classifier is generally

fBayes(Θ, x) = argmax
l∈L

{P (l) · p(x|Θ, l)} (1)

where P (l) = |Tl|/|T | is the a priori probability of label l and p(x|Θ, l) is the class
conditional density for x given label l and Θ. The class conditional density can
for example be estimated using per class a unimodal distribution or a mixture
of distributions. The Bayes tree, referred to as BT in the following, maintains a
hierarchy of Gaussian mixture models for each label l ∈ L (see Figure 1).

Definition 1. The model M = {N1, . . . ,Nr} of a Bayes tree is a set of con-
nected nodes that build a hierarchy. Each node N = {e1, . . . , es} stores a set
of entries with 2 ≤ s ≤ maxFanout. An entry e = {pe, ne,LSe,SSe} stores a
pointer pe to the first node Ne of its subtree, the number ne of objects in the

BT* – An Advanced Algorithm for Anytime Classification 301

label label label

Example frontiers for label and

K K K

1

21 23

K
221

K K K KK K K KK K K
K

222
K

223

1

21

23

K
221

K
222

K
223

Fig. 1. The Bayes tree uses per class a hierarchy of entries that represent Gaussians
(top left). For classification, the class conditional density is computed using the entries
in the corresponding frontier (right). The initial frontier contains only the root entry;
in each refinement one frontier entry is replaced by its child entries (bottom left).

subtree and their linear and quadratic sums per dimension. The root node Nroot

stores exactly one entry elo for each label l ∈ L that summarizes all objects with
label l. Entries in leaf nodes correspond to d-dimensional Gaussian kernels.

We refer to the set of objects stored in the subtree corresponding to entry e as
T|e. Figure 1 illustrates the structure of a Bayes tree. Each entry e is associated
with a Gaussian distribution

g(x, μe, Σe) =
1

(2Π)d/2 · |Σe|
· e− 1

2 (x−μe)Σ
−1
e (x−μe)

T

(2)

where μe is the mean, Σe the covariance matrix and |Σe| its determinant. The
parameters of the Bayes tree are

Θ = {(μe, Σe) |∀e ∈
⋃r

i=1Ni } (3)

i.e. the set of parameters for all Gaussian distributions in the tree structure.
These can be easily computed from the information that is stored in the entries.
The mean values can be computed as

μe = LSe/ne (4)

Since the Bayes tree constitutes a naive Bayes approach, the covariance matrix
Σe = [σe,ij] is a diagonal matrix with σe,ij = 0 ∀i�=j and

σii = SSe[i]/ne − (LSe[i]/ne)
2 (5)

where LSe[i] is the i-th component in LSe, i, j ∈ {1, . . . , d}.
To estimate the class conditional density p(x|Θ, l), the Bayes tree maintains at

each time t one mixture model for each label l. The mixture model is composed

302 P. Kranen, M. Hassani, and T. Seidl

Gender: Anytime Classifier Weka Classifier
0,9

ra
cy

Gender: Anytime Classifier Weka Classifier

0 85

0,9

cc
ur

ac
y

Gender: Anytime Classifier Weka Classifier

0,85

0,9

ac
cu

ra
cy

Gender: Anytime Classifier

0,832

Weka Classifier

0,8

0,85

0,9

ac
cu

ra
cy

Gender: Anytime Classifier

0,832

Weka Classifier

0,8

0,85

0,9

ac
cu

ra
cy

Gender: Anytime Classifier

0,832

Weka Classifier

0,75

0,8

0,85

0,9

ac
cu

ra
cy

Gender: Anytime Classifier

0,832

Weka Classifier

0 7

0,75

0,8

0,85

0,9

ac
cu

ra
cy

Gender: Anytime Classifier

0,707

0,832

Weka Classifier

0,7

0,75

0,8

0,85

0,9

ac
cu

ra
cy

Gender: Anytime Classifier

MC Tree

0,707

0,832

Weka Classifier

0,65

0,7

0,75

0,8

0,85

0,9

ac
cu

ra
cy

Gender: Anytime Classifier

MC Tree
Bayes tree

0,707

0,832

Weka Classifier

0 6

0,65

0,7

0,75

0,8

0,85

0,9

ac
cu

ra
cy

Gender: Anytime Classifier

MC Tree
Bayes tree
Anytime NN

0,707

0,832

Weka Classifier

0,6

0,65

0,7

0,75

0,8

0,85

0,9

ac
cu

ra
cy

Gender: Anytime Classifier

MC Tree
Bayes tree
Anytime NN

0,707

0,832

Weka Classifier

0,6

0,65

0,7

0,75

0,8

0,85

0,9

ac
cu

ra
cy

Gender: Anytime Classifier

MC Tree
Bayes tree
Anytime NN

0,707

0,832

SVM (SMO) C 4.5 (J48)

Weka Classifier

0,6

0,65

0,7

0,75

0,8

0,85

0,9

ac
cu

ra
cy

time [μs]

Gender: Anytime Classifier

MC Tree
Bayes tree
Anytime NN

0,707

0,832

SVM (SMO) C 4.5 (J48)

Weka Classifier

0,6

0,65

0,7

0,75

0,8

0,85

0,9

ac
cu

ra
cy

time [μs]

Gender: Anytime Classifier

MC Tree
Bayes tree
Anytime NN

0,707

0,832

SVM (SMO) C 4.5 (J48)

Weka Classifier

0 96
0,98

1

cc
ur

ac
y

pendigits: Anytime Classifier

0,979
0,963

Weka Classifier

0,88
0,9

0,92
0,94
0,96
0,98

1

ac
cu

ra
cy

pendigits: Anytime Classifier

MC Tree

0,979
0,963

Weka Classifier

0,8
0,82
0,84
0,86
0,88

0,9
0,92
0,94
0,96
0,98

1

0 2056 4112 6168 8224

ac
cu

ra
cy

pendigits: Anytime Classifier

MC Tree
Bayes tree
Anytime NN

0,979
0,963

SVM (SMO) C 4 5 (J48)

Weka Classifier

0,8
0,82
0,84
0,86
0,88

0,9
0,92
0,94
0,96
0,98

1

0 2056 4112 6168 8224

ac
cu

ra
cy

time [μs]

pendigits: Anytime Classifier

MC Tree
Bayes tree
Anytime NN

0,979
0,963

SVM (SMO) C 4.5 (J48)

Weka Classifier

Fig. 2. MC-Tree [14] shows constantly best anytime accuracy performance against the
other Bayes tree classifier variant [19], the anytime nearest neighbor [21] and the Weka
classifier implementations of SVM and decision tree

of the most detailed entries that have been read up to that point in time such
that each training object is represented exactly once. This set of entries is called
a frontier Fl(t). Initially Fl(0) = {el0} (see Figure 1), i.e. the initial frontier
for label l contains only the root node entry {el0} corresponding to a unimodal
Gaussian distribution for that class. In each improvement step one frontier is
refined by

Fl(t+ 1) = Fl(t) \ {ê} ∪ Nê (6)

where ê = argmaxe′∈Fl(t){g(x, μe′ , σe′)} is the entry in Fl(t) that yields the
highest density for x. To decide which frontier is refined in the next improvement,
the labels are sorted according to the posterior probability with respect to the
current query. In this order the top k = log(|L|) frontiers are consecutively
refined before resorting the labels. The decision rule of the Bayes tree at time t
is then

fBT (Θ, x, t) = argmax
l∈L

{
P (l) ·

∑
e∈Fl(t)

ne

nl
g(x, μe, σe)

}
(7)

where ne/nl is the fraction of objects from class l in the subtree corresponding
to entry e. Hence, the Bayes tree can provide a classification decision at any time
t and has an individual accuracy after each refinement.

The original Bayes tree builds separate hierarchies for each class label which
are created using the incremental insertion from the R-tree [9]. In [14] we in-
vestigated combining multiple classes within a single distribution and exploiting
the entropy information for the refinement decisions. While it turned out that
separating the classes remained advisable, the novel construction method EM-
TopDown proposed in [14] yielded constantly the best performance (see Fig. 2).

However, despite the improved anytime accuracy, the resulting anytime curves
exhibit strong oscillations on several domains (see Figures 2 or 9), which does not
constitute a robust performance. The oscillation results from alternating deci-
sions between the individual refinement steps. With our proposed BT* algorithm
we achieve near perfect results in terms of monotonicity and at the same time
successfully improve the anytime accuracy performance. In our experiments we
will use both the original incremental insertion (denoted as R) as well as the EM-
TopDown construction (denoted as EM) as baselines for comparison. We use the

BT* – An Advanced Algorithm for Anytime Classification 303

(operator to denote combinations of the baselines with different optimizations,
e.g. EM (BN (see below).

3.2 Parameter Optimization

The Bayes tree determines the parameters (μe, Σe) for the Gaussians correspond-
ing to the entries according to Equations 4 and 5. In this section we develop
both discriminative and generative approaches to optimize the parameters of
the Bayes tree. The first approach works on a single inner entry of the tree,
the second approach processes an entire mixture model per class, and the third
approach considers only leaf node entries.
BN. Our first strategy constitutes a generative approach. The goal is to fit

the Gaussian distribution of an entry e better to the data in its corresponding
subtree. So far the Bayes tree only considers variances and sets all covariances to
zero, i.e. Σ constitutes a diagonal matrix of a naive Bayesian approach. Hence,
the resulting distributions functions can only reflect axis-aligned spread of the
training data. The advantage is that the space demand with respect to the di-
mensionality d is O(d) compared to O(d2) for a full covariance matrix. Using
full covariance matrices would mean that O(d2) covariances have to be stored
for every single entry. Moreover, the time complexity for the evaluation of the
Gaussian density function (see Equation 2) increases from O(d) to O(d2). How-
ever, not all covariances might be useful or necessary. Small and insignificant
correlations and corresponding rotations of the Gaussians can be neglected.

Our goal is to add important correlations at low time and space complexity.
To this end we fix a maximal block size s and constrain Σ to have a block
structure, i.e.

Σ = diag(B1, . . . , Bu) (8)

where Bi ∈ Rsi×si are quadratic matrices of block size si and si ≤ s ∀i = 1 . . . u.
The resulting space demand is in O(d · s). So is the time complexity, since the
exponent in the Gaussian distribution (see Equation 2) can be factorized as

zΣ−1zT =
∑u

i=1z[Li..Ui]B
−1
i z[Li..Ui]

T (9)

with z = (x − μ), Li = 1 +
∑i−1

j=1 sj, Ui = Li + si − 1 and z[Li..Ui] selects
dimensions Li to Ui from z.

To decide which covariances to consider and which to ignore we adapt a hill
climbing method for Bayesian network learning (as e.g. proposed in [12]) that
finds the most important correlations. We first describe how we derive a block
structured matrix from a Bayesian network and detail the learning algorithm
thereafter.

A Bayesian network B = 〈G,Θ〉 is characterized by a directed acyclic graph
G and a set of parameter values Θ. In our case G = (V,E) contains one vertex
for the class label and one vertex i ∈ V for each attribute. The class vertex is
connected to every attribute vertex. An edge (i, j) ∈ E between attribute i and
j induces a dependency between the corresponding dimensions. We derive an
undirected graph G′ from G by simply removing the orientation of the edges.

304 P. Kranen, M. Hassani, and T. Seidl

A1 A2 A3 A4 A5

C
A1 A2 A3 A4 A5

• • A1

• • • A2

• • • A3

• • • A4

• • • A5

A1 A2 A5 A3 A4

• • A1

• • A2

• • A5

• • • A3

• • • A4

,

Fig. 3. An example for deriving a block structured covariance matrix (right) from a
Bayesian network (left) performed on each inner entry

Edges (i, j) ∈ E′ between two attributes i and j are then transferred to a co-
variance σij and its symmetric counter part σji in Σ (see Figure 3). Since there
are no constraints on the dependencies in the Bayesian network, the resulting
matrix is unlikely to contain non-zero entries only in blocks along the diagonal.
To ensure a block structure, we apply a permutation P to Σ by PΣP−1 that
groups dimensions, which are connected in G′, as blocks along the diagonal. In
the resulting blocks, covariances that have not been set before are added, since
these harm neither the space nor the time complexity. During classification, P is
then also applied to z before computing Equation 9. Since P is just a reordering
of the dimensions, it can be stored in an array of size d and its application to z
is in O(1) per feature.

To create the block covariance matrix for an entry e we start with a naive
Bayes, i.e. initially (i, j) /∈ E′ ∀i, j and Σe = diag(σe,11, . . . , σe,dd). From the
edges that can be added to G′ without violating the maximal block constraint
in the resulting block matrix, we iteratively select the one that maximizes the
likelihood of e given T|e. Since all objects x ∈ T|e have the same label l, the log
likelihood is

LL(e|T|e) =
∑

x∈T|e log (p(l, x|(μe, Σe))) (10)

We stop when either the resulting matrix does not allow for further additions or
no additional edge improves Equation 10.

In general, we determine a block covariance matrix for each entry in the Bayes
tree. However, on lower levels of the Bayes tree the combination of single com-
ponents is likely to capture already the main directions of the data distribution.
This might render the additional degrees of freedom given by the covariances
useless or even harmful, since they can lead to overfitting. We therefore evaluate
in Section 4 in addition to s the influence of restricting the BN optimization to
the upper m levels of the Bayes tree.

MM. In the previously described approach we fitted a single Gaussians to the
underlying training data using a generative approach. The approach we propose
next considers an entire mixture model per class and tries to optimize the mix-
ture parameters simultaneously in a discriminative way. To this and we adapt
an approach for margin maximization that has been proposed in [18] (referred
to as MM). It seeks to improve the classification performance of Bayesian clas-
sifiers based on Gaussian mixtures and is therefore a good starting point for the
hierarchical mixtures in the Bayes tree. In the following we first describe how

BT* – An Advanced Algorithm for Anytime Classification 305

we derive the mixture models per class from the tree structure and then explain
the optimization procedure.

We need a heuristic to extract one mixture for each label l ∈ L from the Bayes
tree. The mixture models are described by a set of entries E ⊂

⋃
Ni∈M Ni and

we define

Θ(E) =
⋃
e∈E
{μe, Σe} (11)

as the corresponding set of parameter values. Initially we set E0 = Nroot, i.e. for
each label l ∈ L the unimodal model describing Tl is represented by Θ(E0). After
optimizing the parameters in Θ(E0) we update the corresponding parameters in
the Bayes tree (see Figure 4). In subsequent steps we descend the Bayes tree and
set

Ei+1 =
⋃
e∈Ei

{
Ne if pe �= null

{e} otherwise.
(12)

As above, the sets Ei are optimized and the Bayes tree parameters are updated.
Similar to the previously described BN approach we test as an additional pa-
rameter the maximal number m of steps taken in Equation 12 in our evaluation
in Section 4. For example, for m = 2 we only optimize the upper two levels of
the Bayes tree.

We explain the MM approach for a given set of entries E representing one
mixture model for each label l ∈ L. Let Θ = Θ(E) be the corresponding set of
parameter values and lx ∈ L the label of an object x. The goal is to find parame-
ters such that for each object x ∈ T the class conditional density p(lx, x|Θ) of its
own class is larger than the maximal class conditional density among the other
labels. The ratio between the two is denoted as the multi class margin dΘ(x):

dΘ(x) =
p(lx, x|Θ)

maxl �=lx p(l, x|Θ)
(13)

If dΘ(x) > 1 the object is correctly classified. The optimization then strives to
maximize the following global objective

D(T |Θ) =
∏
x∈T

h̄((dΘ(x))
λ) (14)

where the hinge function h̄(y) = min{2, y} puts emphasis on samples with a
margin dΘ(x) < 2, and samples with a large positive margin have no impact
on the optimization. The optimization steps require the global objective to be
differentiable. To this end the multi class margin dΘ(x) is approximated by

dΘ(x) ≈
p(lx, x|Θ)[∑

l �=lx
p(l, x|Θ)κ

]1/κ (15)

306 P. Kranen, M. Hassani, and T. Seidl

Input:
GMMA
GMMB
GMMC

MM Optimizer Output:
optimized
parameters BandwidthCovariances

BN MM BW

Fig. 4. Left: adding selected covariances individually to inner entries. Center: discrim-
inative parameter optimization for entire mixture models using the margin maximiza-
tion concept (MM). Right: changing the bandwidth parameter for leaf entries.

using κ ≥ 1. In the global objective the hinge function is approximated
by a smooth hinge function h(y) that allows to compute the derivative
∂ logD(T |Θ)/∂Θ:

h(y) =

⎧⎪⎨⎪⎩
y + 1

2 if y ≤ 1

2− 1
2 (y − 2)2 if 1 < y < 2

2 if y ≥ 2

(16)

The derivatives with respect to the single model parameters θi ∈ Θ are then
used in an extended Baum-Welch algorithm [8] to iteratively adjust the weights,
means and variances of the Gaussians. Details for the single derivations as well
as the implementation of the extended Baum Welch can be found in [18].
BW. In its leaves the Bayes tree stores d-dimensional Gaussian kernels (see

Definition 1). The kernel bandwidth hi, i = 1 . . . d, is a parameter that is chosen
per dimension and that can be optimized by different methods for bandwidth
estimation. A method discussed in [20,10] uses

hi =
d+4

√
4

(d+ 2) · |T | · σ̂i (17)

where σ̂i is the variance of the training data T in dimension i. A second method
[11] determines the bandwidth as

hi =
maxi −mini√

|T |
(18)

where maxi and mini are the maximal and minimal values occuring in T in
dimension i. Additionally we test a family of bandwidths

hi = α · σ̂i (19)

in Section 4, where a factor α is multiplied to σ̂i. We refer to the three methods
in Equations 17, 18 and 19 as haerdle, langley and fα respectively.

BT* – An Advanced Algorithm for Anytime Classification 307

3.3 Decision Design

In the previous section we discussed different approaches to optimize distribution
parameters in a given Bayes Tree. In this section we investigate alternatives
for making decisions over time given an optimized tree structure. The original
decision function for the Bayes tree is given in Equation 7. To estimate the
class conditional density for a class l at time t the entries that are stored in the
current frontier Fl(t) are evaluated and summed up according to their weight.
We propose two approaches that both change the set of entries that are taken
into consideration for the classification decision.

ENS. The first approach constitutes a special kind of ensemble methods. En-
sembles are frequently used both for a single paradigm, as e.g. in Random Forests
where multiple decision trees are created and employed, or for several different
paradigms. The basic concept of ensembles is simple and can easily be transferred
to any classification method. A straightforward way for the Bayes tree would be
to build several tree structures, e.g. using different samples of the training data,
and combine the individual outcomes to achieve a classification decision. The
method we propose here uses a single Bayes tree and builds an ensemble over
time.

In the Bayes tree so far only the most recent frontiers Fl(t) were used in
the decision function. To create an ensemble over time using the Bayes tree, we
combine all previous frontiers in the modified decision function

fBT�ENS(Θ, x, t) = argmax
l∈L

{
P (l) ·

t∑
s=0

∑
e∈Fl(t−s)

ne

nl
g(x, μe, σe)

}
(20)

The additional computational cost when using the ensemble decision from Equa-
tion 20 compared to the original decision from Equation 7 is only a single op-
eration per class. More precisely, we just have to add the most recent density,
which we compute also in the original Bayes tree, to an aggregate of the pre-
vious densities. Since we sum up the same amount of frontiers for each label,
we can skip the normalization without changing the decision and do not have
to account for additional operations. The ensemble approach widens the basis
on which we make our decision in the sense that it takes mixture densities of
different granularities into account for the classification decision. The approach
we propose next takes the opposite direction in the sense that it narrows the set
of Gaussian components that are used in the decision process.

NN. The NN approach is inspired by the nearest neighbor classifier. The nearest
neighbor classifier finds a decision based on the object that is the closest to
the query object x, i.e. it selects only the most promising object from T . This
concept can be transferred to the Bayes tree in a straightforward way by using
the modified decision function

fBT�NN (Θ, x, t) = argmax
l∈L

{
P (l) · max

e∈Fl(t)

{ne

nl
g(x, μe, σe)

}}
(21)

308 P. Kranen, M. Hassani, and T. Seidl

ac
cu

ra
cy

time

Area corresponding
to the measure mon
for monotonicity

name #obj d |L| name #obj d |L|
page-blocks 5473 10 5 pendigits 10992 16 10
optdigits 5620 64 10 vowel 990 10 11
letter 20000 16 26 spambase 4601 57 2

segment 2310 19 7 gender 189961 9 2
kr-vs-kp 3196 36 2 covtype 581012 10 7

Fig. 5. Left: Illustration of the monotonicity measure. The larger the area resulting
from decreasing accuracy over time, the worse the monotonicity performance. Right:
Data sets used for evaluation and their corresponding number of objects (#obj), di-
mensions (d), and classes (|L|).

The NN approach comes at no additional cost since we replace the addition by
a comparison in Equation 21. Variants of the nearest neighbor classifier use k
closest objects. The actual label can then be assigned based on a simple majority
voting among the neighbors or taking their distance or the prior probability of
the labels into account. We test the standard nearest neighbor concept with
k = 1 for fBT�NN in our experiments.

4 Experiments

We evaluate our improvements over both [19] (called R) and [14] (called EM).
Comparisons of the Bayes tree to anytime nearest neighbor, decision tree and
SVM can be found in [14] (see Section 3.1 and Figure 2).

In classifier evaluation mostly the accuracy acc or the error rate, i.e. 1−acc, is
used as a measure. Since the Bayes tree is an anytime classifier that incrementally
refines its decision, we get an individual accuracy acc(n) for each number n of
refinements (see for example Figure 7 right). In all experiments we report the
results for the first r = 200 refinements. To compare the different approaches
we use the average accuracy avg as well as the maximal accuracy max over
all refinements. As a third objective, which penalizes descending or oscillating
anytime curves, we use the monotonicity

mon = 1− 1

r

r∑
n=1

âcc(n)−min{âcc(n), acc(n)}

where âcc(n) = max1≤n′<n acc(n′) is the maximal accuracy over all n′ < n.
Figure 5 illustrates the monotonicity measure. The larger the sum of all areas
resulting from decreasing anytime accuracy, the worse the monotonicity.

When choosing best results we select according to a linear combination of all
three measures with equal weights. For the Bayes tree we set maxFanout = 7
and use the bandwidth estimation from [11] (langley) for the baselines. All exper-
iments use 10-fold cross validation. For all objects in the test set we evaluate the
classification decision after each improvement and report the average accuracy

BT* – An Advanced Algorithm for Anytime Classification 309

avg max mon avg max mon avg max mon avg max mon avg max mon avg max mon

page blocks 1.5% 1.1% 5.2% 0.6% 0.3% 9.8% 0.2% 0.3% 18.0% 0.1% 0.2% 8.9% 0.9% 0.5% 1.1% 0.5% 0.4% 4.7%

optdigits 0.7% 0.8% 2.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.0% 0.3% 8.3% 0.6% 0.3% 0.2%

letter 7.3% 9.5% 2.9% 5.5% 4.7% 3.7% 3.6% 4.0% 1.7% 1.5% 1.5% 1.1% 1.3% 0.1% 0.4% 1.5% 0.6% 1.3%

segment 3.9% 2.1% 24.8% 6.2% 3.1% 23.5% 0.0% 0.3% 10.8% 0.1% 0.1% 6.4% 5.8% 2.6% 23.9% 1.3% 0.7% 20.2%

kr vs kp 0.0% 0.0% 0.0% 1.1% 0.5% 1.4% 0.0% 0.0% 0.5% 0.0% 0.0% 0.1% 0.5% 1.1% 2.3% 18.7% 13.1% 17.4%

pendigits 2.7% 2.9% 11.4% 1.1% 0.8% 3.0% 1.8% 2.0% 3.4% 0.2% 0.1% 2.5% 0.0% 0.3% 3.3% 0.6% 0.5% 1.1%

vowel 6.0% 4.1% 8.0% 4.9% 3.8% 6.4% 0.2% 0.9% 5.1% 0.3% 0.1% 1.9% 0.8% 1.1% 4.7% 1.8% 1.5% 4.4%

spambase 0.8% 0.3% 1.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 0.1% 7.1% 5.1% 0.2% 6.3% 3.1% 1.9%

gender 2.6% 3.9% 1.2% 3.5% 3.9% 1.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 1.1% 1.3% 5.9% 4.7% 3.3% 0.7%

covtype 3.4% 5.6% 3.0% 14.3% 12.3% 5.4% 2.4% 2.4% 2.3% 0.3% 0.3% 1.7%

averages 2.9% 3.0% 6.0% 3.7% 2.9% 5.1% 0.3% 0.5% 1.5% 0.2% 0.1% 0.7% 1.8% 1.0% 4.8% 4.0% 2.6% 1.5%

diff. to R baseline diff. to EM baseline diff. to R baseline diff. to EM baseline diff. to R baseline diff. to EM baseline

Bandwidth Estimation (BT BW) Bayesian Network (BT BN) MaxMargin (BT MM)

Fig. 6. Approaches for parameter optimization.

over all folds per improvement. The employed data sets and their characteristics
are listed in Figure 5 (right). They are available at [7] (and [1] for gender) where
further details and background information can be found. We summarize the
results and our findings in Section 4.5.

4.1 Parameter Optimization

Figure 6 shows the improvements in all three measures for the three proposed
parameter optimization approaches. The numbers are absolute differences to the
corresponding baseline method, highlighted cells indicate improved performance.
The additional row contains the average values over all domains. We report the
actual values of the measures for the baselines and the final BT* in Figure 9
below. In Figure 7 (right) we show the resulting anytime accuracy plots for the
single approaches using the letter data set as an example.

The results shown for the bandwidth estimation in Figure 6 are the best
results over the three heuristics from Equations 17 to 19, where we tested for
the latter α ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}. In the 20 results (EM and R
on 10 data sets) haerdle and langley were both chosen three times, twice f0.01
was the best choice, and the remaining results were achieved by f0.05. By the
optimized bandwidth estimation all accuracy values, i.e. avg and max on both
R and EM , could be improved with the exception of max for EM on page-
blocks and max for R on spambase. The largest improvement is achieved for the
monotonicity with the single exception of EM on kr-vs-kp. The anytime plot in
Figure 7 illustrates the good performance of BT (BW in all three measures.

The performance of using block covariance matrices in the BT (BN approach
is hardly better than any of the two baselines. As above, the results shown in
Figure 6 are the best among all parameter settings for BT (BN , i.e. over all
block sizes s and numbers of levelsm (see Section 3.2). The largest improvements
are achieved on the letter data set with s = d and m = 1. The performance gain
was less for smaller block sizes (results not shown). As mentioned in Section 3.2,
the additional degrees of freedom gained through the covariances seem to be
useless or even harmful on lower levels of the tree: the displayed results, which

310 P. Kranen, M. Hassani, and T. Seidl

1%

1%

3%

5%

7%

9%

MaxMargin improvements on static mixture models

7 components 49 components

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200

ac
cu

ra
cy

refinements

BT*

R BW

R BN

R ENS

R NN

R Baseline

R MM

Fig. 7. Left: Results for MM on static mixture models of size 7 and 49. Right: Effects
of single approaches on letter.

are the best among all m and s, all use m = 1 and s = d. Nonetheless, as stated
above, the performance gain is only marginal on 9 of 10 data sets.

The margin maximization approach BT (MM does not add covariances but
only seeks to improve the weights, means and variances of the Gaussians in the
Bayes tree. The results on the 10 tested data sets are shown in Figure 6 (The
results for covtype could not be achieved with 4GB RAM). As above we show the
best results over all parameter settings where κ ∈ {1..10}, λ ∈ [0, 10] and m from
1 to the maximal tree height. On average BT (MM improves the monotonicity
over the baselines, but neither of the accuracy measures. The detailed results
show slight improvements over the R baseline on three data sets. This result
is surprising at first sight, since the original concept from [18] is designed for
improving Gaussian mixture models. We discuss possible reasons below.

To exclude the possibility that the poor performance of BT (MM is solely
due to the data set characteristics, we tested our implementation of MM on
static Gaussian mixture models. Using the same expectation maximization clus-
tering that we use for constructing the Bayes tree in the EM baseline, we created
for each data set two mixtures, each contains one model per class. In the first
mixture each model has 7 components, in the second 49 components per class
were used. We chose multiples of 7 since it corresponds to the chosen fanout of
the Bayes tree. We report the resulting absolute gain in classification accuracy
from the optimized over the initial mixtures in Figure 7. MM improves the ac-
curacy for at least one mixture on 8 data sets and for both mixtures on 5 of 10
data sets in our experiments. For the vowel data set the improvement is 3% for
the 49 components and nearly 8% for the 7 components. However, neither avg
nor max are improved by BT (MM on vowel (see Figure 6). One reason for this
is the fact that BT (MM optimizes the mixtures in the Bayes tree level by level,
but the decision fBT uses arbitrary mixtures that can contain components from
many different levels of the tree. These components, or rather these mixtures,
were never optimized together. Optimizing all possible mixtures is not feasible,
since on the one hand the sheer number of possible mixtures makes the opti-
mization computationally infeasible, and on the other hand such an approach
does not yield a single set of parameters values per Gaussian.

BT* – An Advanced Algorithm for Anytime Classification 311

avg max mon avg max mon avg max mon avg max mon

page blocks 1.2% 0.4% 10.7% 0.8% 0.2% 9.7% 0.7% 0.5% 3.8% 46.3% 0.8% 47.2%

optdigits 1.1% 2.0% 11.4% 3.2% 3.5% 1.1% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0%

letter 1.7% 0.7% 3.1% 1.6% 0.0% 3.8% 0.1% 0.2% 0.3% 0.2% 0.3% 1.5%

segment 5.9% 1.5% 37.7% 4.2% 0.5% 24.3% 0.0% 0.0% 0.1% 4.4% 2.4% 18.6%

kr vs kp 1.7% 3.4% 2.0% 2.7% 1.6% 0.7% 0.1% 0.1% 1.1% 0.1% 0.1% 0.2%

pendigits 2.0% 1.1% 12.5% 0.3% 0.1% 3.1% 0.1% 0.0% 0.8% 0.6% 0.3% 2.7%

vowel 2.4% 0.7% 8.1% 2.8% 1.1% 4.8% 4.9% 4.0% 7.4% 3.6% 3.9% 5.4%

spambase 2.1% 0.2% 12.9% 4.0% 5.7% 3.8% 0.0% 0.0% 0.0% 0.2% 0.2% 0.6%

gender 0.4% 1.5% 1.3% 2.3% 1.7% 1.4% 2.1% 1.7% 4.4% 3.4% 0.8% 17.3%

covtype 2.3% 3.4% 3.0% 6.2% 1.8% 5.4% 0.5% 0.1% 3.2% 11.9% 6.9% 37.9%

averages 1.5% 0.4% 10.3% 0.8% 0.6% 5.1% 0.3% 0.3% 0.3% 5.3% 0.2% 7.5%

diff. to R baseline diff. to EM baseline diff. to R baseline diff. to EM baseline

Ensemble (BT ENS) Nearest Neighbor (BT NN)

Fig. 8. Decision design approaches

4.2 Decision Design

For the decision design we tested fBT�ENS and fBT�NN and show the absolute
improvements for the three objectives in Figure 8. The ensemble over time in the
Bayes tree (see Equation 20) yields on average a slight increase in the accuracy
measures avg and max for the R baseline and is rather neutral on the EM
baseline. The monotonicity, however, is drastically increased by BT (ENS,
on average by more than 10% compared to the R baseline and more than 5%
compared to the EM baseline. This is underlined by the anytime accuracy plot
of BT (ENS in Figure 7 which shows a smooth and monotonically increasing
behaviour.

In contrast, the results of BT (NN hardly show any improvement over the
R baseline except for vowel. The anytime plot for BT (NN is hardly visible
in Figure 7, since it coincides with the curve of the R baseline. This is another
surprising result: it indicates that taking per label only the one single Gaussian,
which yields the highest class conditional density for the query object, results in
almost exactly the same decisions as taking the entire mixture models. As can
be seen in Figure 8, this strongly holds for 7 of the 10 tested data sets on the R
baseline. Compared to the EM baseline the performance of BT (NN is worse on
average. Summarizing the evaluation of the single approaches we can conclude
thatBW , ENS andBN successfully improve the anytime accuracy (see Figure 7
(right)). The first two additionally drastically improve the monotonicity on all
domains.

4.3 Combining Approaches

Next we study the cumulative performance gain when improving BT by more
than one concept. Figure 9 shows the anytime accuracy plots on letter for the
EM baseline and the combined versions using ENS and/or BN and/or BW .
The curve of the EM baseline exhibits a strong oscillation. EM (BN improves

312 P. Kranen, M. Hassani, and T. Seidl

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 50 100 150 200

ac
cu

ra
cy

refinements

EM BW ENS BN

EM BW ENS

EM BW

EM BN ENS

EM BN

EM ENS

EM Baseline

avg max mon avg max mon avg max mon

page blocks 94.0% 95.9% 87.0% 95.4% 96.8% 87.3% 96.6% 96.9% 98.2%

optdigits 92.9% 94.6% 87.9% 97.2% 97.8% 98.8% 96.8% 97.0% 100.0%

letter 76.1% 78.8% 96.8% 87.9% 90.5% 96.1% 93.5% 95.3% 99.9%

segment 86.3% 92.0% 59.3% 89.4% 93.6% 72.6% 94.4% 95.1% 96.4%

kr vs kp 84.4% 90.1% 96.1% 93.9% 95.2% 99.0% 93.9% 94.6% 99.3%

pendigits 93.1% 94.6% 87.3% 97.9% 98.7% 96.6% 99.0% 99.4% 99.7%

vowel 91.0% 94.4% 90.8% 90.8% 94.4% 92.5% 97.4% 98.7% 99.6%

spambase 87.4% 91.5% 81.4% 88.5% 91.4% 85.7% 91.9% 92.5% 98.5%

gender 73.1% 73.9% 98.4% 80.5% 81.8% 98.5% 84.3% 85.7% 99.9%

covtype 62.4% 63.1% 96.0% 71.4% 77.2% 94.4% 79.8% 82.7% 99.8%

averages 84.1% 86.9% 88.1% 89.3% 91.7% 92.2% 92.8% 93.8% 99.1%

R baseline EM baseline BT*

Fig. 9. Left: Anytime plots for combined approaches. Right: Baseline results for R and
EM and the results for the proposed BT*.

the accuracy throughout on this data set, but cannot diminish the oscillation.
Near perfect monotonicity is reached when using ENS, either alone (EM(ENS)
or additionally (EM (BN (ENS). The cumulation of the two positive effects, i.e.
increased accuracy and monotonicity, is clearly expressed by the corresponding
anytime plots. EM (BW pushes up the accuracy and can also improve the
monotonicity. Adding ENS yields again near perfect monotonicity (see EM (
BW (ENS). Finally, combining the three concepts with EM yields the best
results on this domain.

To find the globally best results we allowed all combinations of the proposed
improvements and selected per data set the best setting with respect to the linear
combination of all three measures. In the resulting settings ENS was used on
all data sets and f0.05 was used eight times for BW , while other parameter
optimizations were rarely employed (once BN and twice MM).

For the final setting that is used on all data sets we chose BT* = EM (
f0.05 (ENS. The results are shown in Figure 9 (right) along with the two
baselines R and EM . The values shown are the absolute values for the measures.
Highlighted cells indicate an improvement over both baselines. On all data sets
all three measures are improved by the BT* except for avg and max on optdigits
and max on kr-vs-kp, where it shows slightly worse performance compared to
EM . Overall, improving BT to BT* yields very good results on all tested data
sets. Figure 10 (left) shows the anytime accuracy plots for BT* which illustrate
the great performance with respect to all three measures. Figure 10 visually
summarizes the average results of the single concepts and BT*, underlining the
superior performance of BT*.

4.4 Scalability

To investigate the scalability of the BT* classifier we have to consider both large
training data sets and large test data sets. The former affect the construction
time and the storage of the data structure. For the latter, the classification time
is of interest. Before we discuss these issues, we introduce three final results
that are important for both training and testing. The anytime accuracy plots in

BT* – An Advanced Algorithm for Anytime Classification 313

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200

ac
cu

ra
cy

refinements

pendigits kr vs kp

vowel optdigits

page blocks segment

letter covtype

spambase gender

1%

2%

4%

6%

8%

BT BW BT BN BT MM BT ENS BT NN BT*

optimization decision combined

Average differences to R baseline

avg

max

mon

1%

2%

4%

6%

8%

BT BW BT BN BT MM BT ENS BT NN BT*

optimization decision combined

Average differences to EM baseline

avg

max

mon

Fig. 10. Top: Anytime accuracy results for BT ∗. Bottom: Average absolute differences
over all 10 data sets for single and combined approaches.

Figures 7, 9 and 10 show the accuracy values for the first 200 refinements. If even
more refinements are performed, the classification decision barely changes, since
the density estimates change only marginally with remote mixture components
being refined. Figure 11 shows for three data sets the accuracy performance for
all possible refinements.

As described in the previous section, BT* uses the EMTopDown construction.
For very large training data sets the complexity of the EM clustering algorithm
can yield high training times. However, if the data is collected over time, BT* can
be trained using the EMTopDown strategy on an initial data base and new
training data can be incrementally learned in addition. This strategy can also be
applied for large training data sets that are readily available. Another option in
this scenario is to sample the data base and perform the EM construction on the
sample. The results from Figures 10 and 11 suggest that accurate classification
decisions can be achieved based on relatively small parts of the training data.

0.6

0.7

0.8

0.9

1

0 100 200 300

Vowel

0.6

0.7

0.8

0.9

1

0 1000 2000 3000

Pendigits

0.6

0.7

0.8

0.9

1

0 2000 4000 6000

Letter

Fig. 11. Computing all possible refinements for vowel, pendigits, and letter

314 P. Kranen, M. Hassani, and T. Seidl

If the size of the resulting data structure exceeds the main memory, it can be
stored and accessed from secondary storage. One page hosts in this scenario one
node of the tree structure (as in common index structures), experiments for page
accesses and different page sizes can be found in [19].

During classification, the time that is needed for a single refinement depends
on the dimensionality d and on the number of previous refinements r. For every
entry in the newly read node a Gaussian has to be evaluated, which is in O(d).
After that the entry has to be sorted into the frontier, which can be done in
O(log22(r ·maxFanout)) using a heap (after r refinements the frontier contains
maximally r · maxFanout entries). The actual times for gender and pendigits
shown in Figure 2 correspond to 64 and 82μs per refinement, respectively. From
the results shown in Figures 10 and 11 we can derive that a rather small number
of refinement (around 200) most often suffices to achieve a classification accuracy
that is comparable to the ultimate performance. Hence, the classification time
for a single object is very low even for large training data sets, which renders
the BT* algorithm well suited for applications with very large test data sets.

4.5 Summary

We investigated three approaches for parameter optimization and two novel meth-
ods for the decision design. The margin maximization conceptMM and the near-
est neighbor like decision method NN both yielded only marginal improvements,
if any. Adding covariances using the Bayesian network approachBN improved the
performance only on very few domains and left it unchanged in most other cases.
Two approaches that together significantly improved both accuracy and mono-
tonicity are the bandwidth estimation BW and the ensemble over time ENS.
Therefore we evaluated in Section 4.3 BT* = EM (f0.05 (ENS (see Figure
10) that we suggest as the final variant of our anytime Bayesian classifier.

5 Conclusion

Applications for stream classification are numerous and anytime classifiers are
well suited for this task since they flexibly use all available time and can pro-
vide a result after any time. Two important properties of an anytime classifier
are high accuracies regardless of the available time and monotonic increase of
the accuracy with additional time allowance. In this paper we have significantly
improved both the monotonicity and the anytime accuracy of a recent anytime
classifier. The proposed BT* algorithm achieved near perfect results on all tested
data sets. It uses a special kind of ensemble that combines mixtures of different
granularities resulting from the same classifier over time. The improved perfor-
mance is achieved without sacrificing the time complexity, which is the same as
in previous approaches. In summary, the BT* algorithm constitutes an efficient
and consistent solution for anytime classification.

Acknowledgments. This work has been supported by the UMIC Research
Centre, RWTH Aachen University, Germany.

BT* – An Advanced Algorithm for Anytime Classification 315

References

1. Andre, D., Stone, P.: Physiological data modeling contest, ICML 2004 (2004),
http://www.cs.utexas.edu/sherstov/pdmc/

2. Arai, B., Das, G., Gunopulos, D., Koudas, N.: Anytime measures for top-k algo-
rithms on exact and fuzzy data sets. VLDB Journal 18(2), 407–427 (2009)

3. Bouckaert, R.R.: Naive Bayes Classifiers That Perform Well with Continuous Vari-
ables. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, pp. 1089–
1094. Springer, Heidelberg (2004)

4. Dean, T., Boddy, M.S.: An analysis of time-dependent planning. In: AAAI, pp.
49–54 (1988)

5. DeCoste, D.: Anytime query-tuned kernel machines via cholesky factorization. In:
Proc. of the 3rd SIAM SDM (2003)

6. Esmeir, S., Markovitch, S.: Anytime learning of anycost classifiers. Machine Learn-
ing, 25th Anniversary 82(3), 445–473 (2011)

7. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
8. Gopalakrishnan, P.S., Kanevsky, D., Nadas, A., Nahamoo, D.: An inequality for

rational functions with applications to some statistical estimation problems. IEEE
Transactions on Information Theory 37(1), 107–113 (1991)

9. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: ACM
SIGMOD, pp. 47–57 (1984)

10. Härdle, W., Müller, M.: Multivariate and semiparametric kernel regression. In:
Smoothing and Regression. Wiley Interscience (1997)

11. John, G., Langley, P.: Estimating continuous distributions in bayesian classifiers.
In: UAI. Morgan Kaufmann (1995)

12. Keogh, E.J., Pazzani, M.J.: Learning the structure of augmented bayesian classi-
fiers. Intl. Journal on AI Tools 11(4), 587–601 (2002)

13. Kranen, P., Assent, I., Baldauf, C., Seidl, T.: Self-adaptive anytime stream clus-
tering. In: ICDM, pp. 249–258 (2009)

14. Kranen, P., Günnemann, S., Fries, S., Seidl, T.: MC-Tree: Improving Bayesian
Anytime Classification. In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS,
vol. 6187, pp. 252–269. Springer, Heidelberg (2010)

15. Likhachev, M., Ferguson, D., Gordon, G.J., Stentz, A., Thrun, S.: Anytime search
in dynamic graphs. Artificial Intelligence 172(14), 1613–1643 (2008)

16. Likhachev, M., Gordon, G.J., Thrun, S.: ARA*: Anytime A* with provable bounds
on sub-optimality. In: NIPS (2003)

17. Liu, C.-L., Wellman, M.P.: On state-space abstraction for anytime evaluation of
bayesian networks. SIGART Bulletin 7(2), 50–57 (1996)

18. Pernkopf, F., Wohlmayr, M.: Large Margin Learning of Bayesian Classifiers Based
on Gaussian Mixture Models. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M.
(eds.) ECML PKDD 2010. LNCS, vol. 6323, pp. 50–66. Springer, Heidelberg (2010)

19. Seidl, T., Assent, I., Kranen, P., Krieger, R., Herrmann, J.: Indexing density
models for incremental learning and anytime classification on data streams. In:
EDBT/ICDT, pp. 311–322 (2009)

20. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman
& Hall/CRC (1986)

21. Ueno, K., Xi, X., Keogh, E.J., Lee, D.-Y.: Anytime classification using the near-
est neighbor algorithm with applications to stream mining. In: ICDM, pp. 623–632
(2006)

22. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using
ensemble classifiers. In: KDD, pp. 226–235 (2003)

23. Yang, Y., Webb, G.I., Korb, K.B., Ting, K.M.: Classifying under computational
resource constraints: anytime classification using probabilistic estimators. Machine
Learning 69(1) (2007)

http://www.cs.utexas.edu/sherstov/pdmc/

Finding the Largest Empty Rectangle

Containing Only a Query Point
in Large Multidimensional Databases�

Gilberto Gutiérrez1 and José R. Paramá2

1 Universidad del B́ıo-B́ıo, Departamento de Ciencias de la Computación y
Tecnoloǵıas de la Información, Chillán, Chile

ggutierr@ubiobio.cl
2 University of A Coruña, Department of Computer Science, España

jose.parama@udc.es

Abstract. Given a two-dimensional space, let S be a set of points stored
in an R-tree, let R be the minimum rectangle containing the elements
of S, and let q be a query point such that q /∈ S and R ∩ q �= ∅. In this
paper, we present an algorithm for finding the empty rectangle with the
largest area, sides parallel to the axes of the space, and containing only
the query point q. The idea behind algorithm is to use the points that
define the minimum bounding rectangles (MBRs) of some internal nodes
of the R-tree to avoid reading as many nodes of the R-tree as possible,
given that a naive algorithm must access all of them. We present several
experiments considering synthetic and real data. The results show that
our algorithm uses around 0.71–38% of the time and around 3–4% of the
main storage needed by previous computational geometry algorithms.
Furthermore, to the best of our knowledge, this is the first work that
solves this problem considering that the points are stored in an R-tree.

1 Introduction

In computational geometry, there is a research line that is aimed at finding empty
geometric figures in a space that contains a set of points. For example, one of
them is to find the largest empty axis-parallel rectangle in a space containing a
set of points (see Figure 1(a)). A variant of the previous problem is to find the
largest rectangle that only contains a given query point, assuming that the query
point does not belong to the set of points in the space (see Figure 1(b)). More
variants of this problem are those that find a circumference, a square, or a convex
hull. In addition, in the case of rectangles and squares, another alternative is to
consider figures with sides that are not parallel to the axes.

The search for empty geometric figures with the largest area, or any other
metric, has applications in several fields. Among them, we can cite data mining

� This work was supported in part by the project MECESUP UBB0704 (Chile) in
the context of a postdoctoral stay of the first author at the University of A Coruña
(Spain); and (for second author) by the Spanish Ministerio de Educación y Ciencia
[TIN2010-21246-C02-01].

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 316–333, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Finding the Largest Empty Rectangle Containing Only a Query Point 317

(a) Largest empty rectan-
gle.

(b) Largest rectangle con-
taining only a query point
(the triangle point is the
query point).

Fig. 1. The two variants of the problem

[EGLM03], geographical information systems (GIS), and very-large-scale inte-
gration design [ADM+10a].

In the case of data mining, Edmonds, et al. [EGLM03] propose the search
for empty spaces as a complementary technique for the characterization of data
patterns. More precisely, it is interesting to discover if there are certain ranges of
values that never appear together. For example, suppose a database that stores
the amounts and dates of bank deposits. Consider a graph where we have the time
in the x axis and the amount in the y axis. An empty space indicates that during
a given period of time there were not deposits within a certain range of amounts.
For example, if we find that during years 2007 and 2008, there were no deposits
of more than one million dollars, this could a symptom of a new economic crisis
that is arising. In this scenario, the query point could be defined by a time
point and a minimum deposit amount. Apart from the discovered knowledge,
the empty spaces have value by their own [EGLM03]. Another example could
be a database of a Hospital or Social Security system. Considering data about
surgery operations, it is possible to discover that there are not face transplants
in the database before 2008. This knowledge indicates that such procedure was
not possible before that year, and it can be introduced as a integrity restriction
of the database, in order to perform semantic query optimization [Kin81].

As an example of GIS application, suppose that we want to build a park in
a region, and that we have a database that stores the buildings/houses, electric
towers, and other important facilities of that region. The following queries can
be interesting: which is the largest empty rectangular space? (this gives the space
where it is cheaper to place the park) or which is the largest empty rectangular
space around a certain position q?, if we have a restriction in the position of the
park.

The spatial databases (SDB) represent an important aid for GIS to manage
large amounts of data. Yet, SBDs require the development of efficient algorithms
and data structures in order to address several query types, among others, the
window query, the intersection query, the nearest neighbor, or the pair of nearest
neighbors [GG98, SC03]. Many of those query types are problems that were first
tackled in the field of the computational geometry, where it is assumed that

318 G. Gutiérrez and J.R. Paramá

all spatial objects can be fit into main memory, and later, those problems were
faced in the field of the SBDs. Following this path, several algorithms have been
proposed considering that objects are stored in a multidimensional structure,
in most cases an R-tree [Gut84], for example; [HS98, Cor02, CMTV04] present
several algorithms that solve the k-pairs (k ≥ 1) of nearest neighbors between
two sets, [RKV95] shows an algorithm to find the nearest neighbor to a given
point, and more recently, [BK01] presents an algorithm to obtain the convex hull
of a set of points stored in an R-tree.

Given a space with a set of points stored in an R-tree, the main contribution
of this paper is an algorithm, called q−MER, that finds the largest axis-paralell
rectangle that only contains a given query point. The algorithm computes a set
of candidate maximum empty rectangles (CERs). At least one of these CERs is
either the solution or a higher bound of the solution. Instead of inspecting the
complete R-tree, we only inspect the blocks/nodes of the R-tree that intersect
with those CERs. Our approach takes advantage of the extensive use of the R-
tree in real database management systems (Oracle, PostgreSQL, etc.), extending
the usefulness of that data structure.

The results show that our algorithm requires between 0.71% and 38% of the
running time and between 3% and 4% of the storage required by the naive
approach of reading all the points from disk, storing them in main memory,
and finally running a computational geometry algorithm with those points. The
improvement of our approach comes, in part, by its filtering capability; in our
experiments, q−MER only needed to access between 10% and 55% of the blocks
of R-tree

The outline of the paper is as follows: Section 2 presents some previous related
work. Section 3 presents our algorithm. Section 4 shows the results of our experi-
ments. Finally, Section 5 shows our conclusions and directions for future work.

2 Related Work

Given a space with a set of n points, the search for the largest empty geomet-
ric figure (circumference, square, rectangle, or convex hull) has been an active
research field in last decades. Focusing on the problem of finding the largest
rectangle with sides parallel to the axes of the space, two variants have been
considered: (i) no information about the position of the figure is provided, and
(ii) information about the position is provided, typically by means of a point.

The first variant has been extensively studied. The first work is [NLH84],
where two algorithms are described: the first one takes O(n2) time and O(n)
space, the second one takes O(n log2 n) expected time considering that the points
are randomly arranged into the space. Later, in [CDL86], it is presented a divide-
and-conquer algorithm with O(n log3 n) time complexity using O(n log n) space.
An algorithm with similar time complexity is discussed in [AS87], this one using
O(n) space. In [Orl90], it is shown an algorithm that takes O(s log n) time, where
s is the number of restricted rectangles [Orl90]. Moreover, that algorithm has an
expected time O(n logn). A more recent approach [DN11] takes O(n log2 n+ s)
time and O(log n) space by using a priority search tree.

Finding the Largest Empty Rectangle Containing Only a Query Point 319

For the second variant, [ADM+10a], [ADM+10b], and [KS11] present algo-
rithms to find the largest empty rectangle that contains a query point. The
algorithm presented in [ADM+10a] and [ADM+10b] performs a preprocessing
step where the space is divided into a set of cells such that all points that fall in
the same cell produce the same maximum empty rectangle (MER). These cells
are stored in main memory organized into a data structure for objects in two
dimensions called range tree. The preprocessing stage takes time and storage
O(n2 logn) and, to retrieve the MER corresponding to a query point q, an addi-
tional O(log n) time is needed. The algorithm in [KS11] corresponds to a signifi-
cant improvement in terms of time and space with respect to those in [ADM+10a]
and [ADM+10b]. Specifically, this algorithm requires O(nα(n) log3 n) storage to
maintain the data structure (a segment tree), O(nα(n) log4 n) time to build the
structure, and O(log4 n) time to find the MER that only contains q, where the
term α(n) is the slowly increasing inverse Ackermann function.

All the algorithms commented so far assume that the objects can be fit into
main memory. Edmonds, et al. [EGLM03] face the problem of finding all the
empty spaces left by a set of objects, assuming that the main memory does
not have enough space to store all the objects. That algorithm takes O(|X ||Y |),
where X e Y are the distinct values of the coordinates of the data set. Yet, this
work does not consider the case where the objects are stored in a multidimen-
sional structure.

3 Empty Rectangle with Largest Area That Contains
only a Query Point

Given a set of points stored in an R-tree, a naive solution could be to read all of
them from the R-tree and then find the largest empty rectangle using some of
the algorithms described in Section 2. Instead of reading all nodes (disk blocks)
of the R-tree, q−MER uses the query point q and the properties of the MBRs of
the R-tree to avoid inspecting as many blocks as possible. It requires two steps:

1. First, it computes a set of CERs, where at least one of them is either the
solution or a higher bound of the solution. In order to obtain those CERs,
another two steps are needed:

(a) A set of points, called C, is generated from the query point q and the
MBRs of the R-tree. Specifically, for each MBR in parent nodes of the
leaves of the R-tree, the algorithm might add one or two points to C.
Those points correspond to the most distant points to the query point
q that could be located in the considered MBR. Therefore, it is likely
that most of the points in C do not exist in reality. Figure 2 displays
an example. From the MBRs in parent nodes of leaves (the rectangles
drawn with solid lines) and the query point q, q−MER produces the
set of points C = {p1, p2, p3, p4, p5, p6}. The MBRs in parent nodes of
leaves are processed sequentially. The process of the MBR R1 produces
the point p1, since it is the farthest point with respect to q that could be

320 G. Gutiérrez and J.R. Paramá

located in that MBR, but, as explained, p1 is probably not part of the
set of points actually stored in the R-tree. In the same way, the process
of R2 produces the point p2, R3 generates p5 and p6, and finally R4 adds
p3 and p4.

(b) A computational geometry algorithm is run using the set C as input to
finally obtain the CERs. A CER is similar to a MER, which is a rectangle
that cannot be enlarged if we want to keep only the query point inside
it. The difference between a CER and a MER is that while MERs are
computed with real points, CERs are computed using C.
Observe that a MER (CER) is not necessarily the largest empty rectangle
containing q. Figure 2 displays two CERs, labeled as A and B, which
are the rectangles with dotted lines. There are others, but they are not
shown to simplify the illustration. For example, observe that the CER
B can not be enlarged in any direction. To the south, the space ends; to
the east, the CER can not be enlarged, otherwise B would contain the
point p6; to the north, the CER founds a barrel in points p3 and p4; and
finally to the west, p5 represents an obstacle to the growth of B. This
does not mean that B is the largest empty rectangle containing q, for
instance, A is larger.

2. In the second step, the CERs are processed according to their area, from
largest to smallest. For each CER, our algorithm accesses the leaves of the
R-tree that contain the real points that intersect with such a CER. Those
real points, that we call C′, are used to obtain a candidate solution (by means
of the same computational geometry algorithm used to obtain the CERs).
This candidate solution is the real MER (since it is computed using real
points) that is equal to or contained into the processed CER. As the process
of CERs progresses, the candidate solutions may improve previous ones. For
example, when the CER B of Figure 2 is processed, it is necessary to access
the children of the entries containing the MBRs R3 and R4. Those nodes
are leaves of the R-tree, and contain the real points that caused the creation
of R3 and R4. Then q−MER inserts in C′ the points that intersect with B
and processes C′ with the computational geometry algorithm. Finally, if the
obtained candidate solution is better than the previous ones, then it passes
to be considered the best candidate solution so far.

3.1 Basic Definitions

First of all, let us present the problem more formally and some definitions that
will be used later.

Given a set of points S in a space R ⊆ R2, which is stored in an R-tree, and
a point q /∈ S that is in R, find the rectangle, also in R, with the largest area
that only includes q.

Let p be a point, vp is the vertical line that covers R from north to south
and passes through p. hp is the horizontal line that covers R from west to east
and passes through p. These two lines define four regions in R: (i) NW (p) is the

Finding the Largest Empty Rectangle Containing Only a Query Point 321

q

B

R

p
1

R1

R2

p2

R3

p5 p6

R4

p3 p4

A

Fig. 2. An example of the elements involved in the first step of q−MER

p
hp

vp
NW(p) NE(p)

SW(p) SE(p)

(a) Elements defined by a point.

NE(r)NW(r)

SE(r)SW(r)

E(r)

N(r)

W(r)

S(r)

r

(b) Elements defined by a rectan-
gle.

Fig. 3. Definitions

northwestern region of p, (ii) NE(p) is the northeast region of p, (iii) SW (p) is
the southwestern region of p, and (iv) SE(p) is the southeast region of p. Figure
3(a) displays all these elements.

The four corners of a rectangle r are denoted as: (i) NW (r), the northwestern
corner, (ii) NE(r), the northeast corner, (iii) SW (r), the southwest corner, and
(iv) SE(r) the southeast corner. In addition, a rectangle r defines four lines: (i)
W (r) is the line that connects NW (r) with SW (r), (ii) E(r) is the line that
connects NE(r) with SE(r), (iii) N(r) is the line that connects NW (r) with
NE(r), and (iv) S(r) is the line that connects SW (r) with SE(r). Figure 3(b)
shows these elements.

3.2 Obtaining the CERs

As explained, q−MER starts by computing a set of CERs. To obtain them, we
use a variant of a computational geometry algorithm that obtains the rectangle
with the largest empty area. This variant, that we call ComputeCER, produces
the set of MERs, instead of obtaining only the largest one.

322 G. Gutiérrez and J.R. Paramá

The key idea is to use ComputeCER with much fewer points than in the case
of using the computational geometry algorithm over the whole set of points.

Algorithm 1. Algorithm that processes an R-tree to obtain the CERs.
1: step1(q, T)
2: INPUT: q {the query point and T the R − tree}
3: OUTPUT: LCER {a set of CERs}
4: Let C = ∅ {a set of points}
5: for each node n parent of the leaves of T do
6: for each MBR MBRi in n do
7: if q is not inside MBRi then
8: if hq and vq do not cross N(MBRi), S(MBRi), E(MBRi), and W (MBRi) then
9: if MBRi is completely inside NW (q) then
10: add NW (MBRi) to C
11: else if MBRi is completely inside SW (q) then
12: add SW (MBRi) to C
13: else if MBRi is completely inside NE(q) then
14: add NE(MBRi) to C
15: else if MBRi is completely inside SE(q) then
16: add SE(MBRi) to C
17: end if
18: else
19: if hq or vq crosses exactly two of the lines N(MBRi), S(MBRi), E(MBRi), and

W (MBRi) then
20: if MBRi intersects with NW (q) and SW (q) then
21: add NW (MBRi) and SW (MBRi) to C
22: else if MBRi intersects with SW (q) and SE(q) then
23: add SW (MBRi) and SE(MBRi) to C
24: else if MBRi intersects with NE(q) and NW (q) then
25: add NE(MBRi) and NW (MBRi) to C
26: else if MBRi intersects with SE(q) and NE(q) then
27: add SE(MBRi) and NE(MBRi) to C
28: end if
29: end if
30: end if
31: end if
32: end for
33: end for
34: LCER = ComputeCER(C, q)

As it can be seen in Algorithm 1, the first step of q−MER obtains zero, one,
or two points from each processed MBR, depending on three cases.

The first case is when the if of line 8 is true. This means that the considered
MBRi is completely inside one of the regions defined by the query point (see
Figure 4(a)). In this case, the algorithm produces the point of the farthest corner
of MBRi with respect to the query point. In Figure 4(a), it is supposed that
MBRi is in SE(q), and therefore the point SE(MBRi) is added to the set of
points C.

Another treated case is when the if of line 19 is true. This means that MBRi

intersects with two of the regions defined by the query point (see Figure 4(b)).
In this case, two points are added to the set C, those in the farthest corners of
MBRi with respect to the query point. In Figure 4(b), MBRi intersects with
regions NE(q) and SE(q), and therefore the algorithm adds NE(MBRi) and
SE(MBRi) to C.

The last case appears when the query point is inside the considered MBRi.
For this situation, we have three options:

Finding the Largest Empty Rectangle Containing Only a Query Point 323

NE(MBRi)
NW(MBRi)

SE(MBRi)SW(MBRi)
i

SE(q)

(a) Example of first case.

NE(MBRi)NW(MBRi)

SE(MBRi)SW(MBRi)

i
q

hq

vq

SE(q)

NE(q)

(b) Example of the second case.

Fig. 4. The two cases tackled by the first step of q−MER

1. The first option is to split C in two sets of points C1 = C∪ {NE(MBRi),
SW (MBRi)} and C2 = C ∪ {NW (MBRi), SE(MBRi)}. Now each set
should continue the whole process independently. This apparently does not
represent a big issue. The problem arises when the query point is in more
than one MBR. In this case the number of set of points increases rapidly,
since for C1 two new sets should be created C11 and C12, and the same for
C2. Furthermore, since for each set of points Ci, several CERs should be
created, if the number of sets of points grows fast, the same will happen
with the number of CERs.

2. To access the leaf node corresponding to MBRi and add all the real points
it contains to C. This significantly increases the number of points in C and
thus, the number of CERs to be processed. Observe again, that the query
point might be inside several MBRs, and then all the points in the leaves
corresponding to the entries of those MBRs should be added to C.

3. No point is added to C.

We chose the third option since the other two options increase the computation
time, whereas the benefits we found in the filtering capability were not signifi-
cant.

As explained, once we have the set of points C, the algorithm runs the Com-
puteCER to obtain the CERs. Next we prove that the solution cannot be larger
than, at least, one of these CERs.

Theorem 1. Let LCER the list of CERs obtained by the first step of q-MER.
The solution or solutions can not be larger than one of the CERs in LCER.

Proof:
It is clear that the solution should be one (or more) of the real MERs. For each
real MER, we are going to prove that the first step of q−MER produces at least
one CER that is either equal or a higher bound of that MER. We prove this by
showing that the points computed by the first step of q−MER using one MBR
can not shorten a CER with respect to the corresponding real MER. Once we
prove this for the points obtained from one MBR, the proof trivially extends for
any number of MBRs.

324 G. Gutiérrez and J.R. Paramá

q

Plm
NW(Plm) NE(Plm)

SE(Plm)SW(Plm)

MBRp

(a) Example of Case 1.

Plm

Pnh

MBRp

SE(Pnh)

NE(Plm)NW(Plm)

SW(Pnh)

SE(Plm)
NE(Pnh)

SW(Plm)
NW(Pnh)

q

(b) Example of Case 2.

Fig. 5. The two cases of the proof

Let MBRp a MBR in an entry of a node of the R-tree, which is parent of leaves:

Case 1. Assume that MBRp is fully inside one of the regions defined by q, then
the first step of q−MER adds only one point to the set C. Let Plm be
that point and let us suppose without loss of generality that Plm is in
NW (q). Figure 5(a) shows an example of the four regions defined by Plm

and the MBR responsible of its creation.

Assuming no other MBR, the algorithm ComputeCER creates two CERs:
(1) the union of SW (Plm) and SE(Plm), and (2) the union of NE(Plm)
and SE(Plm). The region NW (Plm) can not be part of a CER that
contains q and does not contain Plm, by construction.

If by chance, there is a point in S (the set of real points) with the
same coordinates as Plm, we are going to show that the CERs (1) and
(2) are larger than corresponding the real MERs. It is clear that the
existence of MBRp requires the presence of more points than Plm, at
least one more. One of these two cases should occur. (i) At least the point
SE(MBRp) exists: this point would not allow the existence of MERs
with the same size as the CERs (1) and (2), given that SE(MBRp) is
closer to q than Plm, since it is more to the right and in a lower position
with respect to Plm. Thus, it would represent an obstacle that would
produce MERs shorter than (1) and (2). (ii) The existence of, at least,
another two points, one that intersects with N(MBRp) and another
one that intersects with W (MBRp). These points would be placed with
respect Plm more to the right (that lying on N(MBRp)) and in a lower
position (that lying on W (MBRp)). Therefore, again the real MERs
would be shorter than the CERs (1) and (2).

If Plm does not exist in reality, by construction, MBRp requires the
existence of at least two points; one intersecting N(MBRp) and another
one intersecting W (MBRp). Those points, once again, must be placed
more to the right and in a lower position with respect to Plm, respectively.
Therefore, the real MERs would be shorter than the created CERs, as
well.

Finding the Largest Empty Rectangle Containing Only a Query Point 325

Thus, we can conclude that the CERs (1) and (2) are higher bounds of
the real MERs.

Case 2. Now we consider that MBRp is between two regions of those defined
by q. Let Plm and Pnh be the two points produced by the first step of
q−MER. Without loss of generality, let us suppose that those points are
to the east of q (see an example in Figure 5(b)). As it can be seen in
the figure, there are only two CERs that only contain q: (1) The area
resulting from (SW (Plm)∩NW (Pnh))∪ (SE(Plm)∩NE(Pnh)), and (2)
the area resulting from NW (Plm) ∪ SW (Plm), or which is the same,
NW (Pnh) ∪ SW (Pnh).
For the CER (1), if the real points in MBRp are placed only intersecting
with N(MBRp) or S(MBRp), the obtained CER is equal to the real
MER. In any other case, the MER that contains q would be, at least, a
rectangle less high, and therefore it would have a shorter area.
In the case of CER (2), the existence of MBRp requires the existence
of, at least, one point lying on W (MBRp). That point would be more to
the west than Plm and Pnh and, at the same time, more to the east of q
(otherwise MBRp would include q), therefore that point would shorten
the real MER with respect to the CER (2).

Observe in Figure 2 that, for example, any point that do not lie on the east
and south lines of the MBR R3 would shorten the CER A. Indeed, those points
should exist, otherwise R3 would not be created. Therefore A is a higher bound
for the real MER.

Figure 6 displays a possible arrangement of the real points. As seen, the real
MER A′ is shortened with respect to the CER A, due to, among other points,
the existence of a point intersecting with N(R3). The case of the CER B is
even worse, as its corresponding MER B′ is not a MER anymore, as now B′ is
included in the MER A′.

q

R

R1

R2 R3

R4

A’ B’

Fig. 6. An example of a real MER corresponding to Figure 2

326 G. Gutiérrez and J.R. Paramá

3.3 Computing the Rectangle with the Largest Area Containing q

Algorithm 2 shows the second step of q−MER, which obtains the largest MER
containing q. The set of CERs obtained from the first step are stored in a heap
where the largest CER is at the top.

The algorithm starts by checking the largest CER. The function Get extracts
the top of the heap. Now the corresponding real MER is computed by accessing
the real points stored in the leaves of the R-tree. We run the computational ge-
ometry algorithm computeER1 with the real points that intersect the considered
CER. To obtain them, we check all the MBRs of parent nodes of leaves that
intersect with the current CER. Moreover, from the points inside those MBRs,
we only consider those that actually intersect with the considered CER.

The real MER is stored in a temporary object (TMPMER). The function
area computes the area of that MER, and if its area is greater than that of the
current MERmax, then TMPMER becomes MERmax. The process ends when
the heap becomes empty or the area of the CER at the top of the heap is shorter
than that of the current MERmax.

Algorithm 2. Algorithm that computes the rectangle with the largest area
containing a query point
1: Step2(HCER, q, T)
2: INPUT: {HCER a heap with the CERs obtained by ComputeCER, q the query point, and T

the R − tree}
3: OUTPUT:MERmax {the largest rectangle containing only q}
4: Let a = 0 {The area of the MER currently stored at MERmax}
5: repeat
6: Let C′ = ∅ {A set of points}
7: Let CER = Get(HCER) {Extracts the first CER of the heap HCER}
8: for each node n parent of leaves with MBRs intersecting with CER do
9: Let C′ = C′∪ all the points stored in the children of n that intersect with CER
10: end for
11: Let TMPMER = computeER(C′, q) {The computational geometry algorithm computes the

largest rectangle only containing q considering the points in C′}
12: if area(TMPMER) > a then
13: Let MERmax = TMPMER
14: Let a=area(TMPMER)
15: end if
16: until (HCER is empty) OR (area(CER)< a)

4 Experimental Results

We compared q−MER against a naive algorithm that retrieves all the points
stored in the R-tree by reading all the blocks and then solving the problem
in main memory with the computational geometry algorithm (computeER). We
used the algorithm of Naamad, et al. [NLH84] modified to meet our requirements,
that is, the computation of the largest rectangle containing only q. computeCER

1 computeER is similar to computeCER, with the difference that computeER only
returns the largest MER.

Finding the Largest Empty Rectangle Containing Only a Query Point 327

Fig. 7. Naamad’s Type A MERs

is also a modification of the same algorithm, which obtains all the possible MERs
containing q.

The restriction of the query point allows some improvements in the algorithm
that speed up its execution times. Naamad’s algorithm compute three types of
MERs (called A, B, and C). The MERs of Type A are obtained by drawing a
vertical line from the top to the bottom of the space passing through each point
(see Figure 7). In our case, we only have to compute the MER delimited by the
lines that intersect with points W and Z, since that MER is the only one (of
this type) that contains q. To compute this type of MERs, Naamad’s algorithm
sorts the points by the x coordinate, we take advantage of this ordering to obtain
the target MER by performing a binary search that obtains the nearest points
to q, in our example, the points W and Z. This reduces the cost from linear to
logarithmic. Similar improvements were applied to MERs of Type B and C.

We suppose that it is possible to store all the points in main memory. This
eliminates the effect of the memory over our experiments, since we provide the
computational geometry with all the memory it needs that, as we will see, it is
much more than q−MER.

The algorithms were implemented in Java and the programs were run on an
isolated Intel R©Xeon R©-E5520@2.26GHz with 72 GB DDR3@800MHz RAM with
a SATA hard disk model Seagate R© ST2000DL003-9VT166. It ran Ubuntu 9.10
(kernel 2.6.31-19-server).

The performance of both algorithms was measured comparing the number
of accessed blocks and the real time that each algorithm required to find the
solution. The time includes the time required to read the points from disk. We
recall that we assume that the R-tree is already built (that is, the time required
to build it is not included in our times) since it is the structure that stores
the points. Both q−MER and the naive approach use a stack to traverse the
R-tree. This stack is used to avoid the repetitive read of internal nodes of the
R-tree from disk. As a search traverses the R-tree downwards, the nodes are
stored in the stack, if we need to go back upwards, we already have the parent
node at the top of the stack, therefore the maximum size of the stack is the
height of the R-tree. For measurement purposes, these reads of nodes in the
stack are not counted. We do not use any other read buffer, therefore whenever
the algorithms read a node (disk block) that is not in the stack, that read is
counted regardless of whether the node comes from disk or from the operating
system cache. Therefore, the measure of accessed blocks eliminates the effect of
any type of buffer cache (excepting the simple stack).

328 G. Gutiérrez and J.R. Paramá

(a) RD1. (b) RD2.

Fig. 8. Real data sets

We considered real and synthetic set of points in a two-dimensional space
[0, 1]×[0, 1]. The synthetic data sets have uniform distribution. The real data sets
are the Tiger Census Blocks data set (RD1) from the web site rtreeportal.org
and a data set (RD2) that was given by a Chilean company provided that the
source were not published. Figure 8 shows some of the points of these data sets
(we only plot some of them in order to simplify the graphs). The sizes of the
sets were as follows: for the synthetic data, we used sets with size 200K2, 500K,
1,000K, 2,000K, and 5,000K; and the real data sets have size 556K (RD1) and
700K (RD2). In the case of the synthetic data sets, we considered block sizes of
1KB3 and 4KB. Furthermore, for all measures, we computed the average of 100
queries.

The results of the experiments using synthetic data are summarized in Figures
9–11 and Table 1. In Figures 9 and 10, we can observe the filtering capability
of the q−MER algorithm. For example, q−MER only needs to access around
between 10% and 55% (Figure 9) of the blocks of the R-tree, whereas the naive
algorithm needs to access all of them. Furthermore, we can see that when the size
of the set increases, the percentage of the blocks accessed by q−MER decreases.

Figure 10 shows the amount of blocks accessed by q−MER and the total
number of blocks that the R-tree uses to store the points. When the size of the
collection of points increases, we can see that the slope of the line that shows the
blocks accessed by q−MER to solve the problem is less pronounced than that
showing the size of the R-tree.

Figure 10 also shows the effects of the size of the blocks over the amount of
accessed blocks, which, as expected, decreases inversely proportional to the size
of the block.

As explained, we do not use any read buffer (except the stack). The effect of
any read buffer, for example the operating system buffer cache, would benefit
only the q−MER algorithm, since it might access several times the same R-tree
leaf node when processing different CERs. However, the naive approach would

2 1K = 1,000 points.
3 1KB = 1,024 Bytes.

Finding the Largest Empty Rectangle Containing Only a Query Point 329

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

%

set size (K, 1K=1,000 points)

q−MER (block size 1KB)
q−MER (block size 4KB)

Fig. 9. Percentage accessed blocks

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

bl
oc

ks

set size (K, 1K=1,000 points)

q−MER(accessed blocks)
blocks of R−tree

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

bl
oc

ks

set size (K, 1K=1,000 points)

q−MER(accessed blocks)
blocks of R−tree

(a) size of block 1KB. (b) size of block 4KB.

Fig. 10. Performance (accessed blocks) against total blocks of R-tree

not improve its performance as it reads from disk each leaf node once, since the
repetitive reads of intermediate nodes are solved by the stack.

The second step of q−MER obtains several sets of points C′, one for each
CER computed by the first step. Each set is provided as input to the algorithm
ComputeER, which solves the problem of finding the largest empty rectangle with
those points in main memory. In Table 1, we denote each run of ComputeER
with a set of points C′ (line 11 of Algorithm 2) a problem. Table 1 describes each
of those problems considering different sizes of original sets of points and sizes
of blocks. The third column shows the amount of problems solved by q−MER
to obtain the final solution. This amount also includes the run of the algorithm
ComputeCER of the first step (line 33 of Algorithm 1). Note that each CER
obtained by the first step of q−MER represents a problem, that is, the total
number of problems is the number of CERs provided by the first step of q−MER,
plus one. Observe that the naive algorithm only solves one problem, but with
many more points.

Table 1 shows that the bigger problem treated by ComputeER in the q−MER
algorithm includes a very short percentage of the total number of points, namely

330 G. Gutiérrez and J.R. Paramá

Table 1. Description of the problems

size of set size of # # points
(thousand) block(KB) problems average minimum maximum

200 1 54 928 57 5,893
4 48 2,206 217 8,464

500 1 60 1,307 90 14,520
4 54 3,002 306 12,941

1,000 1 63 1,799 81 28,893
4 58 3,601 416 17,508

2,000 1 69 2,599 89 57,555
4 66 4,774 344 32,559

5,000 1 77 4,345 82 143,402
4 74 6,782 365 53,101

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

se
co

nd
s

set size (K, 1K=1,000 points)

q−MER
Naive

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

se
co

nd
s

set size (K, 1K=1,000 points)

q−MER
Naive

(a) size of block 1 KB (b) size of block 4 KB

Fig. 11. Performance (real time) of algorithm q−MER

around 3%–4%. This means that q−MER only needs around the 3%–4% of the
main memory needed by the naive algorithm to solve the same problem.

Figure 11 compares the average execution time of a query using q−MER and
the naive algorithm when the points are retrieved from the R-tree. In all cases,
q−MER overcomes the naive approach, since q−MER uses between 7%-38% of
the time required by the naive approach. The differences get bigger as the size of
the problem increases. In order to avoid any distortion due to the arrangement
of the data in a R-tree that might increase the disk seek times, we stored all the
points in a sequential file, in such a way that the naive approach can read the
points sequentially. The results of this experiment are shown in Figure 12. As it
can be seen, q−MER also overcomes the naive approach in this scenario. Figure
12 displays the values for disk blocks of 1 KB, since the results for 4KB block
size were similar as the time required to read the points is a very small portion
of the time required to solve the problem.

With regard to the main memory consumption, each problem (as explained
each run of ComputeER or ComputeCER) needs to store in main memory the
points involved in that computation. In the worst case, a problem solved by
q−MER needs only 3%–4% of the points (or main memory), which needs the
naive approach. If the available memory is not enough for the naive approach,

Finding the Largest Empty Rectangle Containing Only a Query Point 331

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

se
co

nd
s

set size (K, 1K=1,000 points)

q−MER
Naive

Fig. 12. Experiment where the naive approach reads the points from a sequential file

Table 2. Blocks accessed by q−MER with real data

RD1 RD2

Size of R-tree(# blocks) 18,509 21,066
#Accessed blocks 1,614 2,416
% accessed blocks with respect the total 8.7 11.5

Table 3. Performance with real datasets and disk block size 1KB

RD1 RD2

Algorithm time (seconds)
Naive (read from R-tree) 62.155 32.939
Naive (read from sequential file) 62.085 32.807
q−MER 0.441 0.494

this implies a important increment of the time required to run the algorithm,
since external sorts would be required.

Tables 2 and 3 show the performance of our algorithm and the naive approach
over the real datasets. In this experiment, we used only one size of disk block
(1 KB). Table 2 summarizes the disk block accesses, whereas Table 3 shows the
time consumed to solve the queries.

As in previous data distributions, our algorithm overcome the naive approach.
In this case, differences are even bigger; q−MER needs only 0.71% and 1.5%
(for the data sets RD1 and RD2, respectively) of the time required by the naive
approach (see Table 3).

5 Conclusions

Given a space with a set points stored in spatial index R-tree, we described the
algorithm q−MER that obtains the largest rectangle containing just a query
point q. The results of the experiments with synthetic and real data show that
q−MER requires between 0.71% and 38% of the running time and between 3%

332 G. Gutiérrez and J.R. Paramá

and 4% of the storage required by the naive algorithm. In part, the performance
of q−MER can be explained by its filtering capability, since it requires to access
only around between 10% and 55% of the total blocks of the R-tree.

The experiments also show the scalability of our algorithm, which obtains
better improvements as the size of the collection grows. In addition, q−MER
would benefit from any improvement in the computational geometry algorithm
used by computeCER and computeER.

To the best of our knowledge, this is the first work that solves this problem
considering that the points are stored in a multidimensional data structure R-
tree.

As future work, we want to extend our proposal to objects with more dimen-
sions and to rectangles with sides that are not necessarily parallel to the axes of
the original space. We plan also to work in developing a cost model to predict
the time and space consumed by our approach.

Acknowledgements. We would like to thank Juan Ramón López Rodŕıguez
for his comments and suggestions.

References

[ADM+10a] Augustine, J., Das, S., Maheshwari, A., Nandy, S.C., Roy, S., Sarvat-
tomananda, S.: Recognizing the largest empty circle and axis-parallel
rectangle in a desired location. CoRR, abs/1004.0558 (2010)

[ADM+10b] Augustine, J., Das, S., Maheshwari, A., Nandy, S.C., Roy, S., Sarvat-
tomananda, S.: Querying for the largest empty geometric object in a
desired location. CoRR, abs/1004.0558v2 (2010)

[AS87] Aggarwal, A., Suri, S.: Fast algorithms for computing the largest empty
rectangle. In: Proceedings of the Third Annual Symposium on Computa-
tional Geometry, SCG 1987, pp. 278–290. ACM, New York (1987)

[BK01] Böhm, C., Kriegel, H.-P.: Determining the Convex Hull in Large Multidi-
mensional Databases. In: Kambayashi, Y., Winiwarter, W., Arikawa, M.
(eds.) DaWaK 2001. LNCS, vol. 2114, pp. 294–306. Springer, Heidelberg
(2001)

[CDL86] Chazelle, B., Drysdalet, R.L., Lee, D.T.: Computing the largest empty
rectangle. SIAM Journal Computing 15, 300–315 (1986)

[CMTV04] Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Al-
gorithms for processing k-closest-pair queries in spatial databases. Data
& Knowledge Engineering 49(1), 67–104 (2004)

[Cor02] Corral, A.: Algoritmos para el Procesamiento de Consultas Espaciales uti-
lizando R-trees. La Consulta de los Pares Más Cercanos y su Aplicación en
Bases de Datos Espaciales. PhD thesis, Universidad de Almeŕıa, Escuela
Politécnica Superior, España, Enero (2002)

[DN11] De, M., Nandy, S.C.: Inplace algorithm for priority search tree and its use
in computing largest empty axis-parallel rectangle. CoRR, abs/1104.3076
(2011)

[EGLM03] Edmonds, J., Gryz, J., Liang, D., Miller, R.J.: Mining for empty spaces
in large data sets. Theoretical Computer Science 296, 435–452 (2003)

Finding the Largest Empty Rectangle Containing Only a Query Point 333

[GG98] Gaede, V., Günther, O.: Multidimensional access methods. ACM Com-
puting Surveys 30(2), 170–231 (1998)

[Gut84] Guttman, A.: R-trees: A dynamic index structure for spatial searching.
In: ACM SIGMOD Conference on Management of Data, pp. 47–57. ACM
(1984)

[HS98] Hjaltason, G.R., Samet, H.: Incremental distance join algorithms for spa-
tial databases. In: ACM SIGMOD Conference on Management of Data,
Seattle, WA, pp. 237–248 (1998)

[Kin81] King, J.J.: Query optimization by semantic reasoning. PhD thesis, Stan-
ford University, CA, USA (1981)

[KS11] Kaplan, H., Sharir, M.: Finding the maximal empty rectangle containing
a query point. CoRR, abs/1106.3628 (2011)

[NLH84] Naamad, A., Lee, D.T., Hsu, W.-L.: On the maximum empty rectangle
problem. Discrete Applied Mathematics 8, 267–277 (1984)

[Orl90] Orlowski, M.: A new algorithm for the largest empty rectangle problem.
Algorithmica 5, 65–73 (1990)

[RKV95] Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In:
SIGMOD 1995: Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, pp. 71–79. ACM Press, New York
(1995)

[SC03] Shekhar, S., Chawla, S.: Spatial databases - a tour. Prentice Hall (2003)

Sensitivity of Self-tuning Histograms:

Query Order Affecting Accuracy and Robustness

Andranik Khachatryan, Emmanuel Müller, Christian Stier, and Klemens Böhm

Institute for Program Structures and Data Organization (IPD)
Karlsruhe Institute of Technology (KIT), Germany

{khachatryan,emmanuel.mueller,klemens.boehm}@kit.edu,
christian.stier2@student.kit.edu

Abstract. In scientific databases, the amount and the complexity of
data calls for data summarization techniques. Such summaries are used
to assist fast approximate query answering or query optimization. His-
tograms are a prominent class of model-free data summaries and are
widely used in database systems.

So-called self-tuning histograms look at query-execution results to re-
fine themselves. An assumption with such histograms is that they can
learn the dataset from scratch. We show that this is not the case and
highlight a major challenge that stems from this. Traditional self-tuning
is overly sensitive to the order of queries, and reaches only local optima
with high estimation errors. We show that a self-tuning method can be
improved significantly if it starts with a carefully chosen initial config-
uration. We propose initialization by subspace clusters in projections
of the data. This improves both accuracy and robustness of self-tuning
histograms.

1 Introduction

Histograms are a fundamental data-summarization technique. They are used
in query optimization, approximate query answering, spatio-temporal, top-k and
skyline query processing. Query optimizers use histograms to obtain accurate
size estimates for sub-queries. When the query predicate refers to more than
one attribute, a joint distribution of attributes is needed to obtain these size
estimates. There are two different paradigms of histogram construction: Static
and Self-Tuning histograms.

Static Histograms And Dimensionality Reduction. Static histograms
[11,5,1,16,10] are constructed by scanning the entire dataset. They need to be
rebuilt regularly to reflect any changes in the dataset. For large relations, build-
ing a static multi-dimensional histogram in the full attribute space is expensive,
both regarding construction time and occupied space. Dimensionality reduction
techniques try to solve the problem by removing less relevant attributes [4].

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 334–342, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Sensitivity of Self-tuning Histograms 335

These approaches leave aside that different combinations of attributes can be
correlated in different subregions of the data set.

Traditional Self-Tuning Histograms. In contrast to static histograms, self-
tuning histograms [3,15,8] use query feedback to learn the dataset. They amor-
tize the construction costs: the histogram is constructed on the fly as queries are
executed. Such histograms adapt to the querying patterns of a user. As one rep-
resentative, we consider the data structure of STHoles [3], which is very flexible
and has been used in several other histograms [15,12]. It tries to learn bounding
rectangles of regions which have close to uniform tuple density. However, similar
to traditional index structures, such as R-Trees [6], STHoles fails in high dimen-
sional data spaces (curse of dimensionality [2]) and is affected by the order of
tree construction [14].

An attempt to address the latter problem is to re-schedule queries to achieve
a better learning [8]. The central assumption behind the approach is that it is
permissible to delay the execution of queries or switch the query order.

Self-Tuning Histograms and Subspace Clustering. We consider the com-
mon scenario where the queries are executed as they arrive. The focus is on the
general assumption with self-tuning methods, i.e. that they can learn the dataset
from scratch – starting with no buckets and relying only on query feedback. We
show that this is not the case and highlight open challenges in self-tuning. In
particular, we focus on its sensitivity w.r.t. the query order.

In general, the first few queries define the top-level bucket structure of the
histogram. If this structure is bad, then, regardless of the amount of further
training, the histogram is unlikely to become good.

To solve this top-level construction problem, we initialize the histogram with
few buckets which define the top levels of the histogram. Such buckets are ob-
tained using recent subspace clustering methods [9]. In contrast to dimensionality
reduction techniques, which aim at one projection, subspace clustering methods
aim at multiple local projections. As a first step [7], we have proposed a method
to transfer arbitrary subspace clustering results into an initial histogram struc-
ture. First, we have focused on the clustering aspect and evaluated the perfor-
mance of several clustering algorithms. The main result of [7] is that Mineclus
performs best as an initializer. Thus, we take it as our basis for this paper.
We extend the discussion to the sensitivity problem, a general challenge for
self-tuning histograms. It provides the reasons why self-tuning methods without
initialization struggle to learn the dataset from scratch.

2 Self-tuning and Its Sensitivity to Learning

We use STHoles [3] as a representative for self-tuning histograms and describe
its main properties and problems. We do this in several steps. First, we describe
how the histogram partitions the data space and estimates query cardinalities.
Then we describe how new buckets are inserted into the histogram, and briefly
mention how redundant buckets are removed to free up space. Last, we derive
the open challenges in its sensitivity to learning.

336 A. Khachatryan et al.

2.1 Histogram Structure and Cardinality Estimation

STHoles partitions the data space into a tree of rectangular buckets. Each bucket
b stores n(b), the number of tuples. This number does not include the tuples in its
child buckets. Similarly, vol(b) is the volume of the rectangular space occupied by
a bucket, without its child buckets. Figure 1 shows a histogram with 4 buckets.
STHoles estimates query cardinality of query q using the Uniformity Assump-
tion. This means that it assumes the tuples inside the buckets are distributed
uniformly:

est(q,H) =
∑
b∈H

n(b) · vol(q ∩ b)

vol(b)
(1)

where H is the histogram.

Fig. 1. STHoles with 4 buckets, corresponding tree and query (dashed rectangle)

When estimating the number of tuples in q (cf. Fig. 1), STHoles computes
the intersections with histogram buckets. q intersects with br and b2. Using (1),
we estimate the number of tuples in br ∩ q to be ≈ 0. The estimated number of
tuples in b2 ∩ q is ≈ 1.5. So the overall approximated number of tuples will be a
little over 1.5. We can see that the real number of tuples is 2.

Adding Buckets. After the query is executed, the real numbers of tuples falling
into br∩q and b2∩q become known. The histogram refines itself by drilling new
buckets. The process consists of adding new buckets and updating the frequencies
of existing buckets. Figure 2 shows the histogram with two buckets added. Be-
cause the intersection of br∩q is not a rectangle, it is shrunk across dimension(s)
to become rectangular. Note that the frequencies of br and b2 are also updated
to reflect the new information about the tuple placement in the histogram.

Fig. 2. The histogram with newly added buckets b4 and b5

Sensitivity of Self-tuning Histograms 337

Removing Buckets. The histogram constantly adds buckets as new queries
are executed. When the number of histogram buckets exceeds a certain number,
some buckets need to be removed. STHoles merges buckets with close densities
to free up space. Only sibling-sibling or parent-child merges are allowed. In case
of a sibling-sibling merge, the bounding box of the new bucket is the minimal
rectangle that includes the initial buckets and does not partially intersect with
any other bucket. For a detailed discussion of the merging procedure see [3].

2.2 The Problem with Self-tuning: Sensitivity to Learning

Informally, Sensitivity to Learning is determined by the significant impact of the
query order on the estimation accuracy of self-tuning histograms.

First, let us define the underlying workload for the histogram construction.

Definition 1. A workload is a sequence of queries: W = (q1, . . . , qn)

We will call the workloads W1 and W2 permutations of each other if they consist
of the same queries, but in different order. We will write W2 = π(W1), where
π is some permutation. Given a histogram H and a workload W , we will write
H |W to indicate the histogram which results from H after it learns the query
feedback from W .

At first sight, histograms resulting from two workloads where one is a permu-
tation of the other one, H |W and H |π(W), should produce very close estimates.
However, we can show in a counter example how permutation of queries can
result in histograms which differ in structure considerably.

Example 1. Figure 3 demonstrates what happens when we change the order of
the queries. On Figure 3(a), left, we see two queries (numbered 1 and 2 by
the order at which they arrive). The histogram bucket capacity is 2 buckets.
The queries are executed and the resulting histogram is depicted on the right.
Figure 3(b), left shows the same queries, but now the insertion order is reversed.
On the right side of Figure 3(b) we see the histogram resulting from this query
order. Clearly, the histogram on Figure 3(a) is the better one. It captures the
data distribution well, while the one on Figure 3(b) misses out some tuples and
has one bucket which encloses regions of different densities. The reason why this
happens is that STHoles shrinks incoming query rectangles if the intersection
with existing buckets is non-rectangular. On Figure 3(b) we see that important
information is being discarded because of such shrinking.

Let ε be some quality measure for the histogram. For instance, we can take

ε =

∫
u∈D

|real(u)− est(u)| du

where real(u) is the real cardinality of the point-query u, and D is the attribute-
value domain. For an error measure ε we define δ-sensitivity to learning.

Definition 2. We call a histogram H δ-sensitive to learning w.r.t workload W
if, for some permutation π exists, with: |ε(H |W)− ε(H |π(W))| > δ

338 A. Khachatryan et al.

(a) The queries and the resulting histogram

(b) The queries in the reverse order and the resulting his-
togram

Fig. 3. The queries and resulting histograms for two queries

δ-sensitivity means that changing the order of learning queries changes the
histogram estimation quality by more than δ. Example 1 demonstrates Sensi-
tivity to Learning, an effect of histogram construction, which shows significantly
different histogram structures and resulting selectivity estimates for transposed
workloads. Our intuition would be: “A good histogram should not be sensitive
to workload permutations.” We discuss in the following how we can achieve this
intuitive goal.

3 Histogram Initialization by Subspace Clustering

Self-tuning is able to refine the structure of the histogram. If started with no
buckets at all, the histogram has to rely on the first few queries to determine the
top-level partitioning of the attribute-value space. If this partitioning is bad, the
later tuning is unlikely to “correct” it. The solution is to provide the histogram
with a good initial configuration. This configuration should:

1. provide a top-level bucketing for the dataset, which can be later tuned using
feedback;

2. capture the data regions in relevant dimensions, that is, it should exclude
irrelevant attributes for each bucket.

We now describe how to initialize the histogram with subspace buckets. The sub-
space clustering algorithm finds dense clusters together with the set of relevant
attributes. Then these clusters are transformed into histogram buckets.

Generally, clustering algorithms output clusters as a set of points. We need to
transform this set of points into a rectangular representation. Cell-based clus-
tering algorithms such as Mineclus [18] look for rectangular clusters. We could
take these rectangles as the STHoles buckets. However, we have found out in
preliminary experiments that this has a drawback, which is illustrated in Fig-
ure 4. Although the cluster found is one-dimensional (left), the MBR is two-
dimensional (dashed rectangle on the right). The two-dimensional MBR would

Sensitivity of Self-tuning Histograms 339

Fig. 4. On the left, the cluster found. On the right, the dashed rectangle is the MBR
of the cluster. The solid rectangle on the right is the extended BR.

introduce additional intersections with incoming query rectangles without mea-
surable difference in estimation quality. This is undesirable. We can bypass this
problem using the information produced by Mineclus. Mineclus outputs clus-
ters as sets of tuples together with the relevant dimensions. This means that
the cluster spans [min,max] on any unused dimension. To preserve subspace
information, we introduce extended BRs.

Definition 3. Extended BR. Let cluster C consist of tuples {t1, . . . , tn} and
dimensions d1, . . . , dk. The extended BR of C is the minimal rectangle that con-
tains the points {t1, . . . , tn} and spans [min,max] for every dimension not in
d1, . . . , dk.

Another characteristic of Mineclus is that is assigns importance to clusters. The
algorithm has a score function which decides whether a set of points is a cluster
or not. The clusters themselves are then sorted according to this score. We found
out that, if we use the important clusters as first queries in the initialization, we
have a better estimation quality.

4 Experiments

We have used one synthetic and one real-world data set. The synthetic dataset
(Cross) is a 2-dimensional database, which contains two one-dimensional clus-
ters. Each cluster contains 10,000 tuples. Another 2,000 tuples are random noise.
The Cross dataset is very simple, in the sense that it is possible to perfectly de-
scribe it using 5 buckets. There can still be an estimation error due to randomly
generated data, but the error should be very low. As real-world dataset (Sky), we
use one of the datasets published by the Sloan Digital Sky Survey (SDSS) [13].
It contains approximately 1,7 million tuples of observations in a 7-dimensional
data space (two coordinates in the sky and five attributes with brightness values
w.r.t. different filters). Complex data correlations exist in the Sky dataset, which
make it a hard evaluation scenario for histogram construction.

In our evaluation, we generate queries which span a certain volume in the
data space. The query centers are generated randomly. We vary the number of
histogram buckets from 50 to 250 like most others [15,12,3,17]. The quality of
estimations is measured by the error the histogram produces over a series of
queries. Given a workload W and histogram H , the Mean Absolute Error is:

340 A. Khachatryan et al.

����

����

����

���

����

����

����

����

���

	� ��� �	� ��� �	�

��

��
��
��
��
��
��
���

��
��
��

���������������� �!"�#�

$%�#�������
&%�%�#�������

(a) Cross dataset

����
���
����
���
����
���
����
���
����
��	
��	�

��
��
�� ��� ���

�
�
�
��
��
��
��

�
���

��
��
��

����������������� �!"�#�

$%�#�������
'%�%�#�������

(b) Sky dataset

Fig. 5. Errors of initialized vs uninitialized histograms

E(H,W) =
1

|W |
∑
q∈W

|est(H, q)− real(q)| (2)

where real(q) is the real cardinality of the query. In order for the results to be
somewhat comparable across datasets, we normalize this error by dividing it by
the error of a trivial histogram H0 [3]. H0 contains only one bucket which simply
stores the number of tuples in the database:

NAE(H,W) =
E(H,W)

E(H0,W)
(3)

Unless stated otherwise, the workload is the same for all histograms and contains
1,000 training and 1,000 simulation queries. The error computation starts with
with the simulation queries.

4.1 Accuracy

In the first set of experiments we show that initialization improves estimation
quality. Figures 5(a) and 5(b) show the error comparison for the Cross and
the Sky datasets. For all datasets, the initialized histogram outperforms the
uninitialized version.

As mentioned, the Cross dataset is simple and can easily be described with 5
to 6 buckets. Nevertheless, Figure 5(a) shows that initialization has a significant
effect in improving the estimation accuracy. Initialization finds the 5-6 buckets
which are essential for the good histogram structure, while a random workload
of even 1,000 training queries is not enough for the uninitialized histogram to
find this simple bucket layout. This shows that uninitialized histograms have
trouble even with the simplest datasets.

Figure 6 shows the comparison on the Sky dataset. Here, the errors are higher
than both for Cross and Gauss datasets. The benefit of initialization is again
clear: The initialized version has about half the error rate compared to the
uninitialized version.

Sensitivity of Self-tuning Histograms 341

����

���

����

���

����

���

����

���

����

�� ��� ��� ��� ���

�
��
	

�
�
��
��
��
��
���
��
�

��

��	����������������������

$%���
����
$%���
������ �!������

(%�%���
����

Fig. 6. Error comparison for Sky[1%] setting

In both cases, the initialized histogram outperforms the uninitialized version.
Moreover, for the Sky dataset, the initialized histogram with only 50 buckets is
significantly better than the uninitialized histogram with 250 buckets. On the
simple Cross dataset the uninitialized histogram with 250 buckets reaches the
quality of the initialized histogram with 50 buckets.

4.2 Robustness

We revisit the challenges described in Section 2.2. To show that STHoles is
sensitive to learning, we conducted experiments using permuted workloads. To
show the effect of changing the order of queries, recall how we initialize the
histogram. We generate rectangles with frequencies from the clustering output
and feed this to the histogram in the order of importance. This importance is
an additional output of the clustering algorithm. In the experiment in Figure 6,
we use the same set of clusters to initialize the histogram, but in a reverse
order of importance. Clearly, there is a significant difference between the normal
initialization and the reverse one. This shows two things. First, it is clear that
permuting a workload changes the histogram error significantly (Sensitivity to
Learning). Second, it shows the the importance of the order of initialization, as
the “correct order” has a noticeably lower error compared to the reversed order.

5 Conclusions

A central assumption with self-tuning histograms is that they can learn a dataset
relying solely on query feedback. We show that this is not the case. Self-tuning
methods are overly sensitive to the query order. A “bad” order can negatively
influence the histogram quality. We show that initialization by subspace clusters
can make the histogram less sensitive to learning and significantly improve the
estimation quality.

342 A. Khachatryan et al.

References

1. Baltrunas, L., Mazeika, A., Böhlen, M.H.: Multi-dimensional histograms with tight
bounds for the error. In: IDEAS, pp. 105–112 (2006)

2. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When Is ”Nearest Neighbor”
Meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp.
217–235. Springer, Heidelberg (1998)

3. Bruno, N., Chaudhuri, S., Gravano, L.: Stholes: a multidimensional workload-aware
histogram. SIGMOD Rec. 30, 211–222 (2001)

4. Deshpande, A., Garofalakis, M., Rastogi, R.: Independence is good: dependency-
based histogram synopses for high-dimensional data. SIGMOD Rec. 30, 199–210
(2001)

5. Gunopulos, D., Kollios, G., Tsotras, V.J., Domeniconi, C.: Approximating multi-
dimensional aggregate range queries over real attributes. SIGMOD Rec. 29, 463–
474 (2000)

6. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Yor-
mark, B. (ed.) SIGMOD 1984, Proceedings of Annual Meeting, Boston, Mas-
sachusetts, June 18-21, pp. 47–57. ACM Press (1984)

7. Khachatryan, A., Müller, E., Böhm, K., Kopper, J.: Efficient Selectivity Estimation
by Histogram Construction Based on Subspace Clustering. In: Bayard Cushing, J.,
French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp. 351–368. Springer,
Heidelberg (2011)

8. Luo, J., Zhou, X., Zhang, Y., Shen, H.T., Li, J.: Selectivity estimation by batch-
query based histogram and parametric method. In: ADC 2007, pp. 93–102. Aus-
tralian Computer Society, Inc., Darlinghurst (2007)

9. Müller, E., Günnemann, S., Assent, I., Seidl, T.: Evaluating clustering in subspace
projections of high dimensional data. PVLDB 2(1), 1270–1281 (2009)

10. Muthukrishnan, S., Poosala, V., Suel, T.: On Rectangular Partitionings in Two
Dimensions: Algorithms, Complexity, and Applications. In: Beeri, C., Bruneman,
P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 236–256. Springer, Heidelberg (1998)

11. Poosala, V., Ioannidis, Y.E.: Selectivity estimation without the attribute value
independence assumption. In: VLDB 1997, pp. 486–495. Morgan Kaufmann Pub-
lishers Inc., San Francisco (1997)

12. Roh, Y.J., Kim, J.H., Chung, Y.D., Son, J.H., Kim, M.H.: Hierarchically organized
skew-tolerant histograms for geographic data objects. In: SIGMOD 2010, pp. 627–
638. ACM, New York (2010)

13. SDSS Collaboration. Sloan Digital Sky Survey (August 27, 2011)
14. Sellis, T.K., Roussopoulos, N., Faloutsos, C.: The r+-tree: A dynamic index for

multi-dimensional objects. In: VLDB, pp. 507–518 (1987)
15. Srivastava, U., Haas, P.J., Markl, V., Kutsch, M., Tran, T.M.: Isomer: Consistent

histogram construction using query feedback. In: ICDE 2006, p. 39. IEEE Com-
puter Society, Washington, DC (2006)

16. Wang, H., Sevcik, K.C.: A multi-dimensional histogram for selectivity estimation
and fast approximate query answering. In: CASCON 2003, pp. 328–342. IBM Press
(2003)

17. Wang, H., Sevcik, K.C.: Histograms based on the minimum description length
principle. The VLDB Journal 17 (May 2008)

18. Yiu, M.L., Mamoulis, N.: Frequent-pattern based iterative projected clustering. In:
ICDM 2003, pp. 689–692 (2003)

Database Support for Exploring Scientific Workflow
Provenance Graphs

Manish Kumar Anand1, Shawn Bowers2, and Bertram Ludäscher3

1 Microsoft Corporation, Redmond, WA, USA
2 Dept. of Computer Science, Gonzaga University, Spokane, WA, USA
3 Dept. of Computer Science, University of California, Davis, CA, USA

Abstract. Provenance graphs generated from real-world scientific workflows
often contain large numbers of nodes and edges denoting various types of prove-
nance information. A standard approach used by workflow systems is to visu-
ally present provenance information by displaying an entire (static) provenance
graph. This approach makes it difficult for users to find relevant information and
to explore and analyze data and process dependencies. We address these issues
through a set of abstractions that allow users to construct specialized views of
provenance graphs. Our model provides operations that allow users to expand,
collapse, filter, group, and summarize all or portions of provenance graphs to
construct tailored provenance views. A unique feature of the model is that it
can be implemented using standard relational database technology, which has
a number of advantages in terms of supporting existing provenance frameworks
and efficiency and scalability of the model. We present and formalize the opera-
tions within the model as a set of relational queries expressed against an underly-
ing provenance schema. We also present a detailed experimental evaluation that
demonstrates the feasibility and efficiency of our approach against provenance
graphs generated from a number of scientific workflows.

1 Introduction

Most scientific workflow systems record provenance information, i.e., the details of a
workflow run that includes data and process dependencies [11,20]. Provenance infor-
mation is often displayed to users as a (static) dependency graph [16,13,7]. However,
many real-world scientific workflows result in provenance graphs that are large (e.g.,
with upwards of thousands of nodes and edges) and complex due to the nature of the
workflows, the number of input data sets, and the number of intermediate data sets pro-
duced during a workflow run [10,11], making them inconvenient to explore visually.

The goal of the work described here is to help users more easily explore and analyze
provenance information by allowing them to specify and navigate between different
abstractions (or views) of complex provenance graphs. Specifically, we describe a set
of abstraction mechanisms and operators for scientific workflow provenance graphs
that allow users to create, refine, and navigate between different views of the same un-
derlying provenance information. We consider the following levels of granularity: (1)
A workflow run represents the highest level of abstraction; (2) An actor dependency
graph consists of the types of processes (actors) used in a workflow run and the general

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 343–360, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

344 M.K. Anand, S. Bowers, and B. Ludäscher

flow of data between them; (3) An invocation dependency graph consists of individ-
ual processes (invocations) within a run and their implicit data dependencies; (4) A
structure flow graph consists of the actual data structures input to and output by each
invocation; and (5) A data dependency graph consists of the detailed data dependencies
of individual data items. In addition, we consider navigation operations that allow all or
a portion of each provenance view to be expanded or collapsed, grouped into compos-
ite structures, filtered using a high-level provenance query language, and summarized
through aggregation operators.

Contributions. We present a general provenance model that enables users to explore
and analyze provenance information through novel graph-based summarization, navi-
gation, and query operators. We also show how this model can be implemented using
standard relational database technology. We adopt a relational implementation for two
reasons. First, many existing workflow systems that record provenance store this infor-
mation within relational databases [11], making it relatively straightforward to adopt
the implementation described here. Second, the use of standard database technology
can provide advantages in terms of efficiency and scalability over other general-purpose
graph-based approaches (e.g., [12]) that provide only in-memory implementations. Fi-
nally, we demonstrate the feasibility of our implementation through an experimental
evaluation of the operators over real and synthetic scientific-workflow traces.

Organization. The basic provenance model and query language that our view abstrac-
tions and navigation operators are based on is presented in Section 2. The different
levels of abstraction and navigation operators supported by our model is defined in Sec-
tion 3. We show how our model can be implemented within a relational framework
in Section 4, which describes the relational schemas used to store provenance infor-
mation and the queries used to execute each of the navigation operations and views.
Our experimental results are presented in Section 5, which demonstrates the feasibility
and scalability of the implementation. Related work is discussed in Section 6 and we
conclude in Section 7.

2 Preliminaries: Provenance Model and Query Language

In our provenance model, we assume that workflows execute according to standard
dataflow-based computation models (e.g., [15,17]). In addition, the provenance model
supports processes that can be executed (i.e., invoked) multiple times in a workflow
run and can receive and produce data products that are structured according to labeled,
nested data collections (e.g., as XML). To help illustrate, consider the simple workflow
definition shown in Fig. 1a. This workflow consists of three actors a, b, and c; distin-
guished input and output nodes; and four data-flow channels. The channels constrain
how data is passed between actors within a workflow run. In paticular, the input to the
run is passed to invocations of a, the results of a’s invocations are passed to invocations
of b, and so on.

Fig. 1b shows a high-level view of an example run of this workflow, called a struc-
ture flow graph (SFG). As shown, each actor invocation receives a nested-collection
data structure, performs an update on a portion of the structure (by either adding or

Database Support for Exploring Scientific Workflow Provenance Graphs 345

a b c
(a). Example workflow description

(b). Example execution trace as a structure flow graph (SFG)

(c). Structures with fine-grained dependencies

a:1
1

2 3

1

4 7

5 6 8 9

b:1

b:2

1

10 7

8 9

1

11 4

5 6

1

10 11 c:1
1

12 13

s0

s1 s2 s3

s2 1

s2 2

1

2 3

1

4 7

5 6 8 9

1

10 11

1

12 13

s0

s1 s2 s3

a:1

a:1

b:1

b:2

c:1

c:1

a:1
b:1

b:2
c:1

(e). Invocation dependency graph (IDG)

13

12 10

11

5

6

8

9
3

2

c:1

c:1

b:1

b:1

b:2

b:2

a:1

a:1

a:1

a:1

(d). Data dependency graph (DDG)

Fig. 1. An example workflow graph (a) with a corresponding structure flow (b) and fine-grained
dependency (c) graph together with associated data (d) and invocation (e) dependency graphs

removing items), and then passes the updated version to downstream actors. An SFG
consists of the intermediate data structures si that were input to and output by actor in-
vocations, where edges denote “coarse-grained” dependencies [2]. In this example, the
first invocation a:1 of actor a takes as input s0 and produces the updated version s1. The
actor b is invoked twice to produce the modified structure s2. The first invocation b:1
removes item 6 in s1 and adds item 10, and similarly, the second invocation b:2 removes
item 7 and adds item 11. The structure s2 is the result (union) of the two independent
modifications s1

2 and s2
2. Finally, invocation c:1 modifies s2 to produce the output of

the run s3. This use of nested data collections within scientific workflows is supported
within both Kepler [7] and Taverna [18] as well as more recent approaches such as [2].
These systems also often support independent invocations as in Fig. 1, where actor b
is “mapped” over its input structure such that each invocation of b is applied indepen-
dently to a specific sub-collection of b’s input. Workflow systems that support these and
other types of iterative operations (e.g., [17,5]) typically require each of the indepen-
dent invocations to process a non-overlapping portion of the input to avoid downstream
structure conflicts.

346 M.K. Anand, S. Bowers, and B. Ludäscher

a

a:1 1

s0

a:2 2

s1

a:3 3

s2

4

s3

2 1

a:1

3

a:2

4

a:3

Fig. 2. A cyclic workflow graph (a) with a corresponding SFG (b) and data dependency graph (c)

In addition to coarse-grained dependency information, many applications of prove-
nance [2,17,4] also require “fine-grained” dependencies. For instance, invocation a:1 in
Fig. 1b resulted in two new collections (items 4 and 7). However, without also captur-
ing fine-grained dependencies, it is unclear which items in the input of a:1 were used to
derive these new collections. Fig. 1c shows the fine-grained (or explicit) dependencies
for each structure in our example run. For example, the arrow from data item 2 in s0

to collection item 4 in s1 states that 4 (including its containing items) was created from
(i.e., depended on) 2 via invocation a:1, whereas item 7 was introduced by a:1 using
item 3. As another example, the dependency from item 4 in s1 to item 10 in s2 states
that item 10 was created by invocation b:1 using item 4 and its containing items 5 and
6. Note that from Fig. 1c it is possible to recreate the SFG in Fig. 1b as well as the other
views including the standard data and invocation dependency graphs of Fig. 1d and 1e.

A workflow execution trace is represented as a fine-grained dependency graph, i.e.,
the trace stores the information shown in Fig. 1c. Each trace stores the data structures
input to and produced by the workflow run and the corresponding fine-grained depen-
dencies among structures. The parameter values supplied for each invocation are also
stored within a trace (not shown in Fig. 1). A trace can be represented in a more con-
densed form by only storing data and collection items shared by intermediate struc-
tures once together with special provenance annotations for item insertions (including
dependency information) and deletions [5]. This approach is similar to those for XML-
based version management (based on storing “diffs”). The provenance model is able to
represent a large number of workflow patterns and constructs, including iteration and
looping. Fig. 2 gives a simple example of a trivial iterative calculation in which an actor
a is invoked repeatedly until it reaches a fixed point (the output value computed is the
same as the input value).

The provenance model supports queries expressed using the Query Language for
Provenance (QLP) [4]. In QLP, queries are used to filter traces based on specific data or
collection items, fine-grained dependencies, and the inputs and outputs of invocations.
QLP is similar in spirit to tree and graph-based languages such as XPath and generalized
path expressions [1]. Unlike these approaches, however, QLP queries are closed under
dependency edges. That is, given a set of dependency edges (defining a fine-grained
dependency graph), a QLP query selects and returns a subset of dependencies denoting

Database Support for Exploring Scientific Workflow Provenance Graphs 347

the corresponding subgraph. This approach provides advantages in terms of supporting
incremental querying (e.g., by treating queries as views) and for query optimization [4].

As an example of QLP, the query “ ∗ .. 10 ” returns the set of dependency edges
within a fine-grained dependency graph that define paths starting from any item in a data
structure and ending at item 10.1 Expressed over the trace graph in Fig. 1c, this query
returns the dependencies (2,a:1,4), (4,b:1,10), (5,b:1,10), and (6,b:1,10). Similarly,
the query “ ∗ .. 4 .. ∗ ” returns all dependencies defining paths that start at any data-
structure item, pass through item 4, and end at any item in the trace. For Fig. 1, this
query returns the same dependencies as the previous query plus the additional depen-
dency (10,c:1,12). In addition to items in data structures, QLP allows paths to be fil-
tered by invocations. For example, the query “#a .. #b:1 ..∗” returns dependencies that
define paths starting at input items of any invocation of actor a, contain a dependency
edge labeled by invocation b:1, and end at any data-structure item. Applied to the ex-
ample in Fig. 1, this query returns the same set of dependencies as the previous query.
QLP uses “@in” and “@out” to obtain the inputs and outputs, respectively, of invo-
cations or runs. For example, the query “∗ ..@in b:1” returns dependencies defining
paths from any item in a structure to an input item of the first invocation of actor b.
Similarly, the query “@in .. 10” returns the dependencies defining paths that start at
any item within an input data structure of the run and that end at item 10.

3 Operators for Exploring Workflow Provenance Graphs

While languages such as QLP can help users quickly access and view relevant parts
of large provenance graphs, doing so requires knowledge of the graph prior to issuing
a query. When a user does not know ahead of time the parts of the graph that are of
interest, or would like to create summarized views of only certain parts of a provenance
graph to place the relevant portions in context, additional techniques beyond basic query
languages are required. Here we describe extensions to the provenance model of the
previous section to help support users as they explore provenance graphs. We consider
both specific operations for transforming a provenance graph as well as a set of default
views. Using these extensions, a user can switch (or navigate) to different views of
all or a portion of the provenance graph by applying the transformation operators, or
by navigating directly to any of the default views (bringing the current view to the
same level of granularity). Given a transformation operator, a new view is constructed
using the navigate function. If vi is the current provenance view, t is the underlying
trace, and op is a transformation operator, navigate(t,vi,op) = vi+1 returns the new
provenance view vi+1 that results from applying op to vi under t.

Fig. 3 shows the default views and their relationship to the transformation operators.
In addition to the operators shown, we also consider operations for filtering views us-
ing QLP queries and for accessing summary data on current views. The rest of this
section defines the default views of Fig. 3 and the various operations supported by the
provenance model.

1 In QLP, “ ..” specifies a fine-grained dependency path of one or more edges, “ ∗” specifies any
item in the trace, “#” specifies invocations, and “@” specifies data structures.

348 M.K. Anand, S. Bowers, and B. Ludäscher

Actor Dependency Graph (ADG)

Invocation Dependency Graph (IDG)

Structure Flow Graph (SFG) Data Dependency Graph (DDG)

Workflow Run

expand(*) collapse(*)

expand(*) collapse(*)

expand(*)

show(@*) hide(@*) expand(*) collapse(*)

Fig. 3. Default views supported by the provenance model and corresponding navigation operators

Default Provenance Views. Navigation begins at a workflow run (e.g., see the top of
Fig. 4). Expanding the run gives an actor dependency graph (ADG), which is similar in
structure to a workflow graph, but where only actors that were invoked within the run
are shown. Expanding an ADG produces an invocation dependency graph (IDG). An
IDG consists of invocations and the implicit data dependencies between them, e.g., as in
Fig. 1e. A structure flow graph (SFG) can be obtained from an IDG by showing all input
and output structures of the trace, e.g., Fig. 1b. Expanding either an SFG or IDG results
in a data dependency graph (DDG), e.g., Fig. 1d. It is also possible to navigate from a
DDG to an IDG, an IDG to an ADG, and so on, by collapsing the current view (or in
the case of an SFG, by hiding all structures). We provide transformation operations that
allow a user to directly navigate to any of the graphs in Fig. 3 from any other graph. In
particular, the operators ADG, IDG, SFG, and DDG can be used to go directly to the ADG,
IDG, SFG, or DDG view, respectively.

Expand and Collapse. In general, the expand and collapse operators allow users to
explore specific portions of a provenance view at different levels of detail. We consider
three versions of the expand operator based on the type of entity being expanded. For
a run r, expand(r) = {a1,a2, . . .} returns the set of actors a1,a2, . . . that were invoked
as part of the run. Similarly, given an actor a, expand(a) = {i1, i2, . . .} returns the set
of invocations i1, i2, . . . of a. For an invocation i, expand(i) = {d1,d2, . . .} returns the
set of fine-grain dependencies d1,d2, . . . introduced by i, where each d j is a depen-
dency edge of the form (x, i,y) for data items x,y. The collapse operator acts as the
inverse of expand. Given a set of of dependencies {d1,d2, . . .} generated by an invoca-
tion i, collapse({d1,d2, . . .}) = i. Note that a user may select a single dependency to
collapse, which will result in all such dependencies of the same invocation to also col-
lapse. Given a set of invocations {i1, i2, . . .} of an actor a, collapse({i1, i2, . . .}) = a.
In a similar way, if a user selects only a single invocation to collapse, this operation
will cause all invocations of the corresponding actor to also collapse. Finally, for a set

Database Support for Exploring Scientific Workflow Provenance Graphs 349

a b c

r

expand(r)

expand(b)

a c
b:1

b:2

collapse(b:*)

show(@out b:1)

hide(@out b:1)
a c

b:1

b:2

1

10 7

8 9

expand(b:2) collapse(b:2)

a c
b:1

1

10 7

8 9

8

9

b:2

b:2
11

Fig. 4. Applying expand, collapse, show, and hide operators to only a part of each view

of actors {a1,a2, . . .} of run r, collapse({a1,a2, . . .}) = r. Again, collapsing any one
actor will result in setting the current view to the run view.

Example 1. The top left of Fig. 4 shows an initial expand step to the corresponding actor
dependency graph for the example run of Fig. 1 (labeled r in the figure). The second
navigation step expands only actor b in the ADG. Similarly, the right of the figure
shows invocation b:2 being expanded, resulting in the portion of the data-dependency
graph associated with invocation b:2 (i.e., with dependency edges labeled by b:2). The
final view shown contains each level of granularity, namely, actors, invocations, data
structures, and fine-grain dependencies. Fig. 4 also shows each of the corresponding
collapse operations. Note that the actor dependency graph is reconstructed by calling
collapse on the expression b:∗ which denotes all invocations of b in the current view.

Show and Hide. The show operator displays data structures within the current view.
The structures displayed depend on the type of entity selected (either a run, actor, or
invocation) and whether the input or output of the entity is chosen. We use the QLP
“@” construct within show to select both the entity and whether the input or output
is desired. The expression “@∗” denotes all inputs and outputs of each entity in the
view. The hide operator acts as the inverse of show by removing the specified struc-
tures. As an example, the show operator is used in the third navigation step of Fig. 4 to
display the output structure of invocation b:1 (s1

2 in Fig. 1b). Note that in this example,
show(@in c :1) would additionally display structure s2 from Fig. 1b.

Group and Ungroup. The group and ungroup operators allow actors and invocations
to be combined into composite structures. The group operator explicitly allows users to
control which items should be grouped and supports both actor and invocation granular-
ity. We consider two versions of group and ungroup. Given a set of actors {a1,a2, . . .},
group({a1,a2, . . .}) = g{a1,a2,...} returns a composite actor g{a1,a2,...} over the given set.

350 M.K. Anand, S. Bowers, and B. Ludäscher

a b
expand(*)

a:1 b:1

a:2 b:2
group(a:*)
group(b:*)

a:1 b:1

a:2 b:2

g1:1 g2:1

1

g1:1

2

3 5

6 4

g1:1

g2:1

g2:1

expand(*)

(a). Invocations grouped by actor (b). Invocations grouped by order

a b
expand(*)

a:1 b:1

a:2 b:2
group(*:1)
group(*:2)

a:1 b:1
g1:1

1

g1:1

2

5

6

g2:1

expand(*)

a:1 b:1
g2:1

(c). Grouping by actor

a b
group(*)

expand(*)

a:1 b:1
g1:1

1

g1:1

2

5

6

g1:2

expand(*)

a:1 b:1
g1:2

a b
g1

Fig. 5. Actors and invocations combined into composite structures

For a composite actor g{a1,a2,...}, ungroup(g{a1,a2,...}) = {a1,a2, . . .} simply returns the
set of actors corresponding to the group (i.e., ungroup is the inverse of group). Similarly,
for a set of invocations {i1, i2, . . .}, group({i1, i2, . . .}) = g{i1,i2,...} returns a composite
invocation g{i1,i2,...}, and ungroup(g{i1,i2,...}) = {i1, i2, . . .} returns the original set.

Example 2. Fig. 5 shows three examples of using the group operator. Here we con-
sider only a portion of a workflow showing two actors a and b such that both were
invoked twice resulting in the actor dependency graph shown in the second navigation
step of Fig. 5a. Each invocation of a and b consume and produce one data item, where
the output of invocation a : i is used by invocation b : i. In Fig. 5a, invocations of the
same actor are grouped such that a:1 and a:2 form one group and b:1 and b:2 form a
different group. The result of the grouping is shown in the third view of Fig. 5a, and
the corresponding data dependency graph is shown as the fourth view. In Fig. 5b, in-
vocations with the same invocation number are grouped such that a:1 and b:1 form
one group, and a:2 and b:2 form a different group. Finally, in Fig. 5c, actors a and b

are first grouped, resulting in a composite actor with two distinct invocations. Unlike
in Fig. 5b, these invocations are of the same actor group and have different invocation
numbers, whereas in Fig. 5b two distinct groups are created. In general, forming invoca-
tion groups explicitly, as opposed to first forming actor groups and then expanding actor
groups, supports grouping at a finer-level of granularity by allowing various patterns of
composite invocations that are not possible to express at the actor level.

As shown in Fig. 5, composites created by the group operator are assigned special iden-
tifiers. In addition, the inputs, outputs, and dependencies associated with grouped items

Database Support for Exploring Scientific Workflow Provenance Graphs 351

are inferred from the underlying inputs, outputs, and dependencies of the invocations
of the groups. For showing dependencies in particular, this often requires computing
the transitive dependency closure associated with invocations of the group, e.g., as in
Fig. 5b and 5c (since items 3 and 4 are “hidden” by the grouped invocation). When a
group is created at the actor level, expanding the group results in a correspondingly
grouped set of invocations (as in Fig. 5c). These invocations are constructed based on
the invocation dependency graph. In particular, each invocation group of the actor group
contains a set of connected invocations, and no invocation within an invocation group is
connected to any other invocation in a different invocation group. Thus, the portion of
the invocation graph associated with the actor group is partitioned into connected sub-
graphs, and each such subgraph forms a distinct invocation group of the actor group.
When an invocation group is expanded, this composite invocation is used in structure
flow and data dependency graphs, resulting in provenance views where dependencies
are established between input and output items, without intermediate data in between.
This approach allows scientists to continue to explore dependencies for grouped invo-
cations (since fine-grain dependencies are maintained through groups, unlike, e.g., the
approach in [11]).

Filter. The filter operation allows provenance views to be refined using QLP query
expressions. Issuing a query using filter results in only the portion of the current
provenance view corresponding to the query answer to be displayed. Given a QLP query
q, filter(q) = {d1,d2, . . .} returns the set of fine-grain dependencies that result from
applying the query to the trace graph. These dependencies are used to remove or add
entities to the current view. In general, items can be added to a view when the current
view is based on a more selective query.

Aggregation. It is often convenient to see summary information about entities (actors,
invocations, etc.) when exploring provenance information. We provide standard aggre-
gate operators (count, min, max, avg) to obtain statistics for a user’s current prove-
nance view. The “count entity type of scope” operator returns the number of enti-
ties of entity type within a given scope expression. Entity types are either actors,
invocations, or data, which count the number of actors, invocations, or data items,
respectively. For the actors entity type, the scope is either ∗, denoting the entire view,
or a group identifier. For example, “count actors of ∗” returns two for each view in
Fig. 5, whereas “count actors of g1 : 1 returns one for the third view in Fig. 5. For
the invocations entity type, the scope is either ∗ (the entire view) or an actor or group
identifier. For instance, in the first view of Fig. 5a “count invocations of ∗” returns
four whereas “count invocations of a” returns two. The count operation is also
useful for exploring workflow loops, e.g., the expression “count invocations of a”
can be used to obtain the number of iterations of a in Fig. 2. For the data entity type,
the QLP “@” syntax is used to define the scope. For instance, for the invocation de-
pendency graph of Fig. 1e, “count data of @in” returns two (since two data items
are input to the workflow), and “count data of @out a:1” returns four (the num-
ber of data items output by invocation a:1). The min, max, and avg operations re-
turn the minimum, maximum, and average number of entity types within a view, re-
spectively. These operations can be used to compute the number of actors by group

352 M.K. Anand, S. Bowers, and B. Ludäscher

(e.g., “min actor by group”), the number of invocations by actors or groups (e.g.,
“min invocations by actor”), and the number of input or output data items by ac-
tor, group, or invocation (e.g., “min input data by actor”). Both the min and max

operators return the entity with the minimum or maxiximum count value, respectively,
as well as the number of corresponding entities. Finally, the params operation returns
the set of parameter values used in invocations of the current view. This operation can
also be restricted to specific actors, invocations, or groups, e.g., params(a:1) returns the
parameter settings for invocation a:1 whereas params(∗) returns the parameter settings
for all invocations in the current view.

4 Implementation

In this section we describe an implementation using standard relational database tech-
nology for the operators presented in Section 3. As mentioned in the introduction, this
approach has benefits for efficiency and scalability (see Section 5). We first describe a
set of relational schemas for representing traces and default views, and then show how
the navigation operators can be implemented as relational queries over these schemas.

We consider three distinct schemas: (1) a trace schema T for representing the trace
information corresponding to a workflow run; (2) a dependency schema D for represent-
ing the result of executing QLP queries expressed through filter operations; and (3)
a view schema V for representing the user’s current provenance view. The trace schema
T consists of the following relations: Run(r,w) denotes that r was a run of workflow
w; Invoc(r, i,a, j) denotes that invocation i was the j-th invocation of actor a in run
r; Node(r,n, p, t, l, iins, idel) denotes that n was an item (node) in run r such that p is
the parent collection of n, t is the type of the item (either data or collection), l
is the label of n (e.g., XML tag name), and that n was inserted by invocation iins and
deleted by idel; DDep(r,n,ndep) denotes a dependency from item ndep to item n in run
r; DDepc(r,n,ndep) stores the transitive closure of DDep; IDep(r, i, idep) denotes an in-
vocation dependency from invocation i to idep; and IDepc(r, i, idep) stores the transitive
closure of IDepc. In general, storing the transitive closure improves query time for more
complex path-expression queries and simplifies a number of the operations presented
here. We show in [5] an approach for efficiently compressing the transitive closure re-
lations that only marginally affect the response time of basic queries (adding only an
additional join in many cases), and adopt this approach in Section 5 when describing
our experimental results. In [4] we extend this approach for efficiently answering QLP
queries, which we assume here for implementing filter operations. We also assume
the following views (expressed using Datalog) as part of T .

ADep(r,a,adep) :- IDep(r, i, idep), Invoc(r, i,a, j1),Invoc(r, idep,adep, j2).

ADepc(r,a,adep) :- IDepc(r, i, idep), Invoc(r, i,a, j1),Invoc(r, idep,adep, j2).

The dependency graph schema D consists of the single relation DepView(n f rom, i,nto)
denoting a dependency edge from item n f rom to nto labelled by invocation i. Simi-
larly, the view schema V consists of the single relation CurrView(e f rom, t f rom, l,eto, tto)
for e f rom and eto entites connected via an edge label l such that each entity’s type

Database Support for Exploring Scientific Workflow Provenance Graphs 353

is denoted by tto and t f rom, respectively. The entity type can be either a run, actor,
invoc (invocation), data, coll (collection), or struct (structure). A structure is de-
noted by a QLP expression of the form @in [i | a] or @out [i | a] where invoca-
tion i and actor a are optional. The following are examples of possible tuples stored
within the current view relation: CurrView(r,run,⊥,⊥,⊥) stores a run view (⊥ de-
notes a null value); CurrView(a1,actor,⊥,a2,actor) stores an edge in an actor de-
pendency graph; CurrView(i1,invoc,⊥, i2,invoc) stores an edge in an invocation
dependency graph; CurrView(@out i1,struct,⊥, i2,invoc) stores an edge in a struc-
ture flow graph; and CurrView(n1,data,a:1,n2,data) stores an edge in a data depen-
dency graph.

When a user begins navigating a trace, the instance D of the dependency schema D
consists of the entire set of dependencies. After applying a navigation operation, the in-
stance D of the dependency schema D and V of the current view schema V are updated
as needed. For example, after applying an initial filter operation, the dependencies
of D are updated (denoted as D1) to store the result of the given QLP query over the
instances T of the trace schema T. The instance V of the view schema V is also updated
(denoted as V1) based on D1. Similarly, after applying an expand, collapse, show,
or hide operator, a new view V2 is created from D1, V1, and T . This process contin-
ues for each navigation step performed by the user, where only the current view and
dependency graph is stored together with the initial trace.

Queries to Generate Default Views. We can implement the default view operators
as queries over a trace instance T and dependency instance D as follows. First, we
define the following notation as shorthand for filtering relations in T by D. Given a
trace relation R, we write R(D) to denote the filtered version of R with respect to the
dependencies in D. For instance, IDep(D) is the invocation dependency relation (IDep)
containing only invocations that participate in dependency edges within D. Given a
dependency relation D, we define the following:

IDep(D)(r, i, idep):-IDep(r, i, idep),DepView(n1, i,n2),DepView(n2, idep,n3).

ADep(D)(r,a,adep):-IDep(D)(r, i, idep),Invoc(r, i,a, j1),Invoc(r, idep,adep, j2).
Node(D)(r,n, p, t, l, iins, idel):-Node(r,n, p, t, l, iins, idel),DepView(n, i,n2).

Node(D)(r,n, p, t, l, iins, idel):-Node(r,n, p, t, l, iins, idel),DepView(n1, i,n).

These relations are used to compute the default view operators for a run r (each of
which follow the same relation structure as CurrView):

ADG(a,actor,⊥,adep,actor) :- ADep(D)(r,a,adep).

IDG(i,invoc,⊥, idep,invoc) :- IDep(D)(r, i, idep).
DDG(n1, t1, i,n2, t2) :- DepView(n1, i,n2),Node(r,n1, p1, t1, iins1 , idel1),

Node(r,n2, p2, t2, iins2 , idel2).

Each of these operators returns a new view that replaces the current view. In a similar
way, we can define the structure flow graph for run r, which is similar to computing the
invocation dependency graph.

SFG(i,invoc,⊥,@out i,struct) :- IDep(D)(r, i, idep).

SFG(@out i,struct,⊥,@in idep,struct) :- IDep(D)r, i, idep).

SFG(@in idep,struct,⊥, idep,invoc) :- IDep(D)(r, i, idep).

354 M.K. Anand, S. Bowers, and B. Ludäscher

Queries to Generate Input-Output Structures. Given a trace T and a dependency
D, we compute the input and output structures of runs r, actors a, and invocations i as
follows. The input of a run r includes all data and collection items in the trace that were
not inserted by any invocation:

RunInput(n, p) :- Node(D)(r,n, p, t, l,⊥, idel).

The output items of r include those that (1) were either input to the run or inserted by
an invocation, and (2) were not deleted by an invocation:

RunOutput(n, p) :- Node(D)(r,n, p, t, l, iins,⊥).

The input of an invocation i includes all nodes not deleted by an invocation that i de-
pends on such that either the item (1) was inserted by an invocation that i depended on
or (2) was not inserted by an invocation and thus was an input to the run. The output of
i is computed similarly, i.e., by removing from the input of i the nodes deleted by i and
adding the nodes inserted by i. The following rules compute the input and output of a
given invocation i and a run r.

InvocInput(n, p):-Node(D)(r,n, p, t, l,⊥,⊥).
InvocInput(n, p):-Node(D)(r,n, p, t, l, iins,i).

InvocInput(n, p):-Node(D)(r,n, p, t, l,⊥, idel),Invoc(r, idel ,a, j),¬IDepc(r, idel ,i).

InvocInput(n, p):-Node(D)(r,n, p, t, l, iins, idel),IDepc(r, iins, i),Invoc(r, idel ,a, j),
¬IDepc(r, idel ,i).

Note that the first rule selects input items that were neither inserted or deleted within a
run, and the second rule selects input items that were deleted by the given invocation i.
The last two rules ensure the item was not deleted by an invocation that i depended on.
The output of invocations are defined similarly:

InvocOutput(n, p) :- Node(D)(r,n, p, t, l,⊥,⊥).
InvocOutput(n, p) :- Node(D)(r,n, p, t, l,i, idel).

InvocOutput(n, p) :- Node(D)(r,n, p, t, l,⊥, idel),Invoc(r, idel ,a, j),
¬IDepc(r, idel ,i), idel �= i.

InvocOutput(n, p) :- Node(D)(r,n, p, t, l, iins, idel),IDepc(r, iins,i),
Invoc(r, idel ,a, j),¬IDepc(r, idel ,i), idel �= i.

The input and output structures of actors (as opposed to invocations) are computed
by first retrieving the invocations that are in the current view, and then for each such
invocation, unioning the corresponding structures.

Queries to Group and Ungroup Actors and Invocations. To implement the group

and ungroup operators, we store the set of entities supplied to the group operator in
a temporary relation Group(e, t,n,g) where e is one of the entities being grouped, t is
the entity type (either actor or invoc), n is the group identifier, and g is the grouping
type. For example, to group invocations b : 1 and b : 2 into a group g1 : 1 we store the
tuples Group(b : 1,invoc,g1 : 1,invoc group) and Group(b : 2,invoc,g1 : 1,

Database Support for Exploring Scientific Workflow Provenance Graphs 355

invoc group). The new view with grouped entities is generated as follows: (1) re-
trieve those tuples from the current view relation CurrViewi where e f rom and eto are
not entities to be grouped and store these in the new view CurrViewi+1; (2) if e f rom

is an entity to be grouped, then retrieve the tuple from CurrViewi and modify e f rom

and t f rom with the group identifier n and group type g, respectively; and similarly (3)
if eto is an entity to be grouped, perform a similar operation as in (2). These steps are
performed by the following queries. Note that we assume for each entity e of type t that
is not involved in a group within the current view, there exists a tuple Group(e, t,⊥,⊥).

CurrViewi+1(e f rom, t f rom, l,eto, tto) :- CurrViewi(e f rom, t f rom, l,eto, tto),
Group(e f rom, t f rom,⊥,⊥),
Group(eto, tto,⊥,⊥),

CurrViewi+1(n,g, l,eto, tto) :- CurrViewi(e f rom, t f rom, l,eto, tto),
Group(e f rom, t f rom,n,g),
Group(eto, tto,⊥,⊥).

CurrViewi+1(e f rom, t f rom, l,n,g) :- CurrViewi(e f rom, t f rom, l,eto, tto),
Group(tto,eto,n,g),
Group(e f rom, t f rom,⊥,⊥).

CurrViewi+1(n1,g1, l,n2,g2) :- CurrViewi(e f rom, t f rom, l,eto, tto),
Group(e f rom, t f rom,n1,g1),
Group(tto,eto,n2,g2).

Grouping has implications on how inputs, outputs, and data dependencies across
grouped entities are displayed. Inputs of grouped entities are computed by performing
the union of all the inputs of those entities that are a source node in the graph with re-
spect to entities to be grouped. Similarly, the outputs of grouped entities are computed
by performing the union of all the outputs of those entities that are sink nodes with
respect to the entities to be grouped. Also, as discussed in the previous section, data de-
pendency views over grouped entities require computing the transitive dependency clo-
sure of inputs and outputs of grouped entities. We denote the source entities of a group
as Groupsrc and the sink entities of a group as Groupsink. These relations are computed
by first deriving the dependency relations between the entities of the group and then
checking which one has no incoming edges (for Groupsrc), and similarly, which one
has no outgoing edges (for Groupsink).

The ungroup operator for the current view CurrViewi is performed as follows: (1)
for all invocations of the group, we retrieve their invocation dependencies; (2) for all
source invocations of the group (with respect to the invocation dependencies), we add
an edge to CurrViewi+1 from the eto to the source invocation; and (3) for all sink
invocations of the group, we add an edge to CurrViewi+1 from the sink invocation to
e f rom. Ungrouping of an actor is done in a similar way.

CurrViewi+1(i,invoc, l, idep,invoc) :- IDep(D)(r, i, idep),
Group(i,invoc,n,invoc group),
Group(idep,invoc,n,invoc group).

CurrViewi+1(e f rom, t f rom, l,e, t) :- CurrViewi(e f rom, t f rom, l,n,g),
Groupsrc(n,g,e, t).

CurrViewi+1(e, t, l,eto, tto) :- CurrViewi(n,g, l,eto, tto),Groupsink(n,g,e, t).

356 M.K. Anand, S. Bowers, and B. Ludäscher

Trace Data Dependency

DDEP

0

100000

200000

300000

400000

0 1000 2000 3000 4000 5000 6000 7000

Data Nodes on Different Traces

N
o

. o
f T

u
p

le
s

DDEPC

DDEP

Trace Actor Execution Dependency

IDEPC

IDEP

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80 90 100

Actors on Different Traces

N
o

. o
f T

u
p

le
s

IDEPC

IDEP

(b)(a)

Fig. 6. (a) Data dependency and (b) actor invocation complexity of synthetic traces

Expand, Collapse, and Aggregates. We expand a given invocation i to show
the dependency relationship between its inputs and outputs using the relation
DepView(n f rom, i,nto) in D. We collapse an invocation i by showing the actor cor-
responding to the invocation via the Invoc relation in T . We expand a given actor a
by obtaining the invocations of a that are in D. The current view is constructed directly
from these operations in a similar way as for grouping and ungrouping (i.e., by inserting
the corresponding relations in the new current view CurrViewi+1). Finally, the aggre-
gate operations are straightforward to compute using standard relational aggregation
queries over the current view, dependency, and group relations.

5 Experimental Results

Here we evaluate the feasibility, scalability, and efficiency of executing the navigation
operators over the approach in Section 4 on both real and synthetic traces. Real traces
were generated from existing workflows implemented within the Kepler scientific work-
flow system. Our experiments were performed using a 2.8GHz Intel Core 2 duo PC
with 4 GB RAM and 500 GB of disk space. Navigational operators were implemented
as SQL queries (views over the schema), which were executed against a PostgreSQL
database where all provenance traces were stored. The QLP parser was implemented in
Java using JDBC to communicate with the provenance database.

We evaluated the feasibility of executing the navigation operator queries using the
following real traces from scientific workflows implemented within Kepler: the GBL
workflow [7] infers phylogenetic trees from protein and morphological sequence data;
the PC1 workflow was used in the first provenance challenge [19]; the STAP and CYC
workflows are used in characterizing microbial communities by clustering and identify-
ing DNA sequences of 16S ribosomal RNA; the WAT workflow characterizes microbial
populations by producing phylogenetic trees from a list of sequence libraries; and the
PC3 workflow was used within the third provenance challenge2. These traces ranged
from 100–10,000 immediate data dependencies and 200–20,000 transitive data depen-
dencies. We also evaluated our approaches to determine the scalability of executing
navigation operators queries using synthetic traces ranging from 500–100,000 imme-
diate data dependencies, 1,000–108 transitive data dependencies, and data dependency

2 see http://twiki.ipaw.info/bin/view/Challenge/

http://twiki.ipaw.info/bin/view/Challenge/

Database Support for Exploring Scientific Workflow Provenance Graphs 357

Direct View Operators

0

10

20

30

40

50

60

70

80

ADG IDG DDG

T
im

e(
m

s)
GBL

PC1

STAP

WAT

CYC

PC3

Structure Operators

0

10

20

30

40

50

60

70

80

IN-R OUT-R IN-I OUT-I IN-A OUT-A

T
im

e
(m

s)

GBL

PC1

STAP

WAT

CYC

PC3

Group/ungroup Operators and Operations over Groups

0

10

20

30

40

50

60

70

80

G-I G-A IN-G OUT-G DDG-G U-I U-A

Ti
m

e(
m

s)

GBL

PC1

STAP

WAT

CYC

PC3

Expand/collapse Operators

0

20

40

60

80

100

E-I E-A C-I
T

im
e(

m
s)

GBL

PC1

STAP

WAT

CYC

PC3

(b)

(c) (d)

(a)

Fig. 7. Average query time for operators over real traces: (a) QD; (b) QS; (c) QG; and (d) QE

paths of length 10–100. These traces also contained 10–100 actors, 10–100 immediate
invocation dependencies, and 10–6,000 transitive invocation dependencies. The syn-
thetic traces were taken from [5], and represent typical dependency patterns of com-
mon scientific workflows [5,7,19]. Fig. 6a shows the complexity of data dependencies
(immediate and transitive) as the number of nodes in the synthetic traces increase, and
Fig. 6b shows the the complexity of invocation dependencies (immediate and transitive)
as the number of actors in the synthetic traces increase.

We use four types of operators in our evaluation: (QD) queries to generate default
ADG, IDG, and DDG views; (QS) queries to generate data structures (run, actor, and
invocation inputs and outputs); (QG) queries to group and ungroup actors and invo-
cations, and to retrieve their inputs, outputs, and fine-grained dependencies; and (QE)
queries to expand and collapse actors and invocations. Section 4 details the underlying
datalog queries for each operator type.

Feasibility and Efficiency Results. Fig. 7 shows timing results of the navigation op-
erators over real traces. The time to execute DDG operations (Fig. 7a) is smaller since
we store the result of previous QLP queries in the dependency instance D, which is
used to generate the result of DDG calls, whereas ADG and IDG operations need addi-
tional queries over provenance schema tables. The time to retrieve the input and output
structures of a run is less expensive than for an invocation (Fig. 7b). However, the time
to retrieve input and output structures for an invocation is less expensive for an actor.
This is because an actor can be invoked many times, which requires computing the
union of structures for all such invocations. Grouping invocations and actors is also less

358 M.K. Anand, S. Bowers, and B. Ludäscher

group/ungroup Operators

G-I

G-A

IN-G

OUT-G
DDG-G

U-I

U-A

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

Actors on Different Traces

T
im

e(
m

s)

G-I

G-A

IN-G

OUT-G

DDG-G

U-I

U-A

(c)

Direct Views Operators

ADG

IDG

DDG

0

10

20

30

40

50

10 20 30 40 50 60 70 80 90 100

Actors on Different Traces

T
im

e(
m

s)

ADG

IDG

DDG

(a)

Structure Operators

in R

out R

IN-I
OUT-IIN-A

OUT-A

0

10

20

30

40

50

10 20 30 40 50 60 70 80 90 100

Actors on Different Traces

T
im

e(
m

s)

IN-R

OUT-R

IN-I

OUT-I

IN-A

OUT-A

(b)

expand/collapse Operators

E-I

E-A

C-I

0

100

200

300

400

500

10 20 30 40 50 60 70 80 90 100

Actors on Different Traces

T
im

e(
m

s)

E-I

E-A

C-I

(d)

Fig. 8. Average query time for operators over synthetic traces: (a) QD; (b) QS; (c) QG; and (d) QE

expensive than their inverse ungrouping operations (see Fig. 7c), since ungrouping has
to perform many conditional joins with the current view to reconstruct the ungrouped
invocations, actors, and their relations to other items within the current view. Expanding
an actor is more expensive than expanding an invocation (see Fig. 7d) since expanding
an invocation involves dependencies that are already materialized as QLP query results,
but expansion of an actor must execute queries against schema tables through additional
conditional joins. Despite the complexity involved in executing such queries, our exper-
imental results show that each type of operation takes less then 1 sec, demonstrating the
feasibility and efficiency that can be obtained using a purely relational approach.

Scalability Results. Fig. 8 shows the results of executing navigation queries over the
synthetic traces. As shown, most of the queries are still executed in less than 1 sec (100
ms) for larger trace sizes, suggesting that a purely relational approach can scale to larger
trace sizes (compared with those obtained from the real traces used above). Note that
queries for implementing the expand and collapse operators (i.e., of type QE) take
more time than the other operator types, which is due to the number of conditional joins
(as discussed earlier) that are required. Overall, however, the results for synthetic traces
confirm those discussed in the case for real traces above.

6 Related Work

Current approaches for exploring workflow provenance are based on statically visu-
alizing entire provenance graphs [16,14,13,7]. In these approaches, provenance graphs

Database Support for Exploring Scientific Workflow Provenance Graphs 359

are typically displayed at the lowest level of granularity (e.g., fine-grain dependencies).
In the case of [14], query results are viewed independently of the rest of a provenance
trace. Some systems divide provenance information into distinct layers, e.g., VisTrails
divides provenance information into workflow evolution, workflow, and execution lay-
ers [8], and PASS divides provenance into data and process layers [21]. In all these
approaches, however, these levels are largely either orthogonal or hierarchical, whereas
the provenance views supported by our model (i) combine both hierarchical abstrac-
tions (i.e., ADGs, IDGs, and SFGs) with (ii) the ability to seamlessly navigate between
these different levels of granularity, while (iii) allowing users to summarize, group, and
filter portions of these views to create new views for further exploration of relevant
provenance information. The Zoom*UserViews system [6] (extended in [2] to work
with a fine-grained database provenance model for Pig Latin) provides a mechanism for
defining composite actors to abstract away non-relevant provenance information. Com-
posites are constructed over “relevant” actors to maintain certain dataflow connections,
thereby generating a view over the composites that is similar to the original. However,
unlike in our approach, users of the Zoom*UserViews system cannot explicitly define
their own composites, and composition is defined only at the actor level (where each
actor is assumed to have at most one invocation). Our approach also maintains group-
ing across views, maintains the original data dependencies for composites (unlike in
the Zoom*UserViews approach, which switches to coarse-grain dependencies), and we
support a more general provenance model that explicitly handles structured data.

Our navigation approach is inspired by and has similarities to those proposed previ-
ously for exploring object-oriented [9] and XML databases, where graphical environ-
ments allow users to “drill-down” from schema to instances and navigate relationships
among data. For example, [9] provides an integrated browsing and querying environ-
ment that allows users to employ a “query-in-place” paradigm where navigation and
query can be mixed. In contrast, provenance information is largely schema-free, i.e.,
the information contained within an ADG, IDG, and SFG is not constrained by an ex-
plicit schema, and queries in our model are posed directly against the items contained
within these views (or generally, the fine-grain dependency graph).

7 Conclusion

We have presented a general model to help users explore provenance information
through novel graph-based summarization, navigation, and query operators. The work
presented here extends our prior work [7,3] by providing a significantly richer model for
navigation (adding additional views, the show and hide constructs, and aggregation) as
well as an implementation using standard relational database technology. We also pro-
vide experimental results demonstrating the feasibility, scalability, and efficiency of our
approach. Because of the size and complexity of real-world scientific workflow prove-
nance traces [10,4], providing users with high-level navigation operations and views for
abstracting and summarizing provenance information can provide a powerful environ-
ment for scientists to explore and validate the results of scientific workflows.

Acknowledgements. Work supported through NSF grants IIS-1118088, DBI-0743429,
DBI-0753144, DBI-0960535, and OCI-0722079.

360 M.K. Anand, S. Bowers, and B. Ludäscher

References

1. Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wiener, J.L.: The Lorel query language for
semistructured data. IJDL (1997)

2. Amsterdamer, Y., Davidson, S.B., Deutch, D., Milo, T., Stoyanovich, J., Tannen, V.: Putting
lipstick on pig: Enabling database-style workflow provenance. PVLDB 5(4) (2011)

3. Anand, M.K., Bowers, S., Ludäscher, B.: A navigation model for exploring scientific work-
flow provenance graphs. In: Proc. of the Workshop on Workflows in Support of Large-Scale
Science, WORKS (2009)

4. Anand, M.K., Bowers, S., Ludäscher, B.: Techniques for efficiently querying scientific work-
flow provenance graphs. In: EDBT, pp. 287–298 (2010)

5. Anand, M.K., Bowers, S., McPhillips, T.M., Ludäscher, B.: Efficient provenance storage over
nested data collections. In: EDBT (2009)

6. Biton, O., Boulakia, S.C., Davidson, S.B., Hara, C.S.: Querying and managing provenance
through user views in scientific workflows. In: ICDE (2008)

7. Bowers, S., McPhillips, T., Riddle, S., Anand, M.K., Ludäscher, B.: Kepler/pPOD: Scientific
Workflow and Provenance Support for Assembling the Tree of Life. In: Freire, J., Koop, D.,
Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272, pp. 70–77. Springer, Heidelberg (2008)

8. Callahan, S., Freire, J., Santos, E., Scheidegger, C., Silva, C., Vo, H.: VisTrails: Visualization
meets data management. In: SIGMOD (2006)

9. Carey, M.J., Haas, L.M., Maganty, V., Williams, J.H.: PESTO: An integrated query/browser
for object databases. In: VLDB (1996)

10. Chapman, A., Jagadish, H.V., Ramanan, P.: Efficient provenance storage. In: SIGMOD
(2008)

11. Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges and opportuni-
ties. In: SIGMOD (2008)

12. He, H., Singh, A.K.: Graphs-at-a-time: Query language and access methods for graph
databases. In: SIGMOD, pp. 405–418 (2008)

13. Hunter, J., Cheung, K.: Provenance explorer-a graphical interface for constructing scientific
publication packages from provenance trails. Int. J. Digit. Libr. 7(1) (2007)

14. Lim, C., Lu, S., Chebotko, A., Fotouhi, F.: Opql: A first opm-level query language for scien-
tific workflow provenance. In: IEEE SCC, pp. 136–143 (2011)

15. Ludäscher, B., et al.: Scientific workflow management and the Kepler system. Concurr. Com-
put.: Pract. Exper. 18(10) (2006)

16. Macko, P., Seltzer, M.: Provenance map orbiter: Interactive exploration of large provenance
graphs. In: TAPP (2011)

17. Missier, P., Paton, N.W., Belhajjame, K.: Fine-grained and efficient lineage querying of
collection-based workflow provenance. In: EDBT, pp. 299–310 (2010)

18. Missier, P., Soiland-Reyes, S., Owen, S., Tan, W., Nenadic, A., Dunlop, I., Williams, A.,
Oinn, T., Goble, C.: Taverna, Reloaded. In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010.
LNCS, vol. 6187, pp. 471–481. Springer, Heidelberg (2010)

19. Moreau, L., et al.: The first provenance challenge. Concurr. Comput.: Pract. Exper. 20(5)
(2008)

20. Moreau, L., et al.: The open provenance model core specification (v1.1). Future Generation
Computer Systems 27(6), 743–756 (2011)

21. Muniswamy-Reddy, K.K., et al.: Layering in provenance systems. In: USENIX Annual Tech-
nical Conference (2009)

(Re)Use in Public Scientific

Workflow Repositories

Johannes Starlinger1, Sarah Cohen-Boulakia2, and Ulf Leser1

1 Humboldt-Universität zu Berlin, Department of Computer Science,
Unter den Linden 6, 10099 Berlin, Germany

{starling,leser}@informatik.hu-berlin.de
2 Université Paris-Sud, Laboratoire de Recherche en Informatique,

CNRS UMR 8623 and INRIA AMIB, France
cohen@lri.fr

Abstract. Scientific workflows help in designing, managing, monitor-
ing, and executing in-silico experiments. Since scientific workflows often
are complex, sharing them by means of public workflow repositories has
become an important issue for the community. However, due to the in-
creasing numbers of workflows available in such repositories, users have
a crucial need for assistance in discovering the right workflow for a given
task. To this end, identification of functional elements shared between
workflows as a first step to derive meaningful similarity measures for
workflows is a key point. In this paper, we present the results of a study
we performed on the probably largest open workflow repository, myEx-
periment.org. Our contributions are threefold: (i) We discuss the critical
problem of identifying same or similar (sub-)workflows and workflow el-
ements, (ii) We study, for the first time, the problem of cross-author
reuse and (iii) We provide a detailed analysis on the frequency of re-use
of elements between workflows and authors, and identify characteristics
of shared elements.

Keywords: scientific workflows, similarity measures, workflow reuse.

1 Introduction

Scientific workflow management systems (SWFM) recently gained increasing at-
tention as valuable tools for scientists to create and manage reproducible in-silico
experiments. Nowadays, several SWFM, each with its particular strengths and
weaknesses, are freely available, such as Taverna [1], Kepler [2], VisTrails [3], or
Galaxy [4]. Yet, creating scientific workflows using an SWFM is still a laborious
task and complex enough to prevent non computer-savvy researchers from us-
ing these tools [5]. On the other hand, once designed, a scientific workflow is a
valuable piece of knowledge, encoding a (usually proven) method for analysing
a given data set. Sharing such workflows between groups is a natural next step
towards increasing collaboration in research which may have a large impact
on research, in the same manner as the increased sharing of data sets across

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 361–378, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

362 J. Starlinger, S. Cohen-Boulakia, and U. Leser

the Internet was important for advancing science [6]. As a consequence, online
repositories, such as myExperiment.org [7] or CrowdLabs [8], have emerged to
facilitate reusing and repurposing of scientific workflows. Such repositories, to-
gether with the increasing number of workflows uploaded to them, raise several
new research questions [5,9,10]. Among them, the question of how to find the
workflow(s) that best match a given analysis need is of particular interest due
to the rapidly growing size of the repositories.

Since one cannot expect that workflows perfectly match such needs, searching
best matches must be based on meaningful similarity measures. In turn, similar-
ity measures between complex objects, such as workflows, typically first require
a method for identifying shared elements, e.g., shared analysis tools [11]. Only
then we can identify similar workflows in a repository, making similarity search
worth while. Therefore, an important step towards the investigation of workflow
similarity searching is the analysis of the workflows contained in a repository,
in particular to find elements that are shared across workflows. For web-services
such an analysis is presented in [12], who found that only few web-services are
used in more than one workflow. Yet, another analysis of processors contained in
the workflows stored in myExperiment [13], revealed that the majority of basic
tasks are local processors and not web services. In [14], functional properties of
several types of processors, including local ones, are used as features to classify
workflows. Yet, no differentiation is made between single types of processors after
extraction, hindering fine-grained analysis of shared elements. Processor labels
are used for identification in [15] in order to match a very limited set of workflows
using subgraph-isomorphism. From our experience, this label-based approach is
not generally applicable to large public collections of scientific workflows: The
broad author base results in substantially heterogeneous labels.

We believe that all the above studies failed to give a comprehensive account
on the degree of sharing between workflows in a repository. In particular, three
key aspects were not adequately considered.

(1) To determine elements shared by different workflows, one needs to estab-
lish a method to test the identity of (or similarity between) two elements from
different workflows. While the identity of web-services is determined by service
name and operation, this approach is not generalizable to arbitrary processors.
In [14], the authors build such a method by extracting features from processors,
yet omit important information; for instance, local processors are only identified
by their respective class, disregarding their actual instantiation parameters.

(2) From a structural perspective, workflows can be described at three lev-
els of functionality: single processors (typically treated as black boxes), groups
of processors organized as dataflows, and whole workflows. A workflow always
consists of one top-level dataflow which contains processors and potentially in-
cludes subworkflows, that is, further, nested dataflows. However, previous work
only considered sharing at the level of processors, although sharing of more
coarse-grained functional units such as dataflows is equally important.

(3) Another important aspect of studying workflow connectivity is authorship.
We argue that true sharing of workflow elements is only achieved if elements

(Re)Use in Public Scientific Workflow Repositories 363

(processors or dataflows) are shared between workflows authored by different
persons; however, authorship has, to the best of our knowledge, not been con-
sidered in any of the prior repository analyses. Mere statistics for web-service
usage across workflows, for instance, leave the question unanswered, whether
preferences in service usage vary between authors, or which services are used by
the broadest author base.

This paper presents results on all of these three issues. We describe the method
and the results of performing a comprehensive study on reuse in the largest
open scientific workflow repository to-date, myExperiment.org. We discuss and
evaluate different methods to establish element identity at all three levels of
workflows, i.e., at the processor level, the dataflow level, and the workflow level,
and further refine the results based on classes of processors. Overall, we find that
elements are shared at all levels, but that most sharing only affects ”trivial”
elements, e.g., processors for providing input parameters or type conversions.
Furthermore, we provide a detailed analysis of cross-author reuse and show that
much of the previously identified reuse is by single authors. Still, a significant
number of non-trivial elements are shared cross-author, and we present first
results on how these can be used to identify clusters of related workflows.

The remainder of this paper is structured as follows. We first describe in Sec-
tion 2 the data sets and the methods used for identifying workflow elements.
In Section 3 we present the results of our analysis on each of the aforemen-
tioned levels. Section 4 discusses our findings, and provides an outlook on future
research.

2 Materials and Methods

2.1 Data Sets

We study the reuse of elements in myExperiment.org, which, to our knowledge,
is the public scientific workflow repository containing the highest number of pub-
licly available workflows. myExperiment allows upload of workflows from several
systems, but approximately 85% of its content are workflows for Taverna [1].
Taverna workflows can appear in two different formats, namely scufl (used by
Taverna 1) and t2flow (used by Taverna 2). In this work, we only consider Tav-
erna workflows, yet, in either format.

For these two types, figure 1 shows the number of workflows submitted to
myExperiment per month. The first Taverna 2 workflows appeared in January
2009 when the new version of Taverna was released. But, even in recent times,
still a sizable number of Taverna 1 workflows are being uploaded. Note that
Taverna 2 can load and process both scufl and t2flow. Figure 1 also shows a
steady overall growth in total available workflows. This growth of the repository
is accompanied by an increase in duplicate workflows. Most but not all of these
apparent redundancies are caused by the format change (the same workflow
uploaded once as a scufl and once as a t2flow workflow). We get back to this
point in section 3.3.

364 J. Starlinger, S. Cohen-Boulakia, and U. Leser

Fig. 1. Taverna workflows uploaded to myExperiment by month (left hand scale), and
the numbers of overall and distinct workflows in the myExperiment repository the
uploads amount to (right hand scale)

498 workflows in scufl format, and 449 in t2flow format were downloaded
from myExperiment.org. Of the 498 scufl files, 449 could be converted to t2flow
by manually loading them into the Taverna 2 Workbench and storing them in
the new format. 49 files showed format inconsistencies and were removed from
further analysis. Altogether, our analysis is comprised of 898 workflows.

Objects of Study. Figure 2 provides an example workflow from our study set.
This workflow has two global inputs and four global outputs; it is composed of
one top-level dataflow and one nested dataflow named EBI InterProScan poll job.
In general, a Taverna workflow is defined by one top-level dataflow and may con-
tain nested dataflows. Each dataflow has its own main inputs and outputs and
consists of one or more processors representing activities operating on data.
Processors are connected by datalinks, describing the flow of data from one pro-
cessor’s output(s) to the next processor’s input(s). Each processor has a type and
a configuration, where the type denotes the executable class and the configura-
tion contains the parameters passed to the class for instantiation. For example,
the configuration of a WSDLActivity processor denotes the url of the WSDL
document to enact and the operation to call with each piece of data received by
the processor via its input ports. Taverna’s workflow model is presented in more
detail in [1].

The 898 workflows used in our analysis contain a total of 1,431 dataflows,
including both 898 top-level and 533 nested dataflows, and a total of 10,242
processors. On average, each workflow uses 1.6 dataflows and 11.4 processors,
where the largest workflow has 455 processors and the smallest has 1 processor.
In terms of dataflows, the largest workflow contains 19 nested dataflows.

In myExperiment, each workflow is further accompanied by metadata pro-
vided in RDF-format including title, description, author and version information,

(Re)Use in Public Scientific Workflow Repositories 365

Fig. 2. Example of workflow (myExperiment id 204)

and creation and modification dates. For each workflow in our set, we downloaded
its accompanying metadata and specifically extracted the workflows author.

2.2 Identifying Shared Workflow Elements

Investigating interconnections between (parts of) workflows and cross-author
reuse necessitates precise methods for identifying elements. At first glance, ele-
ments can be deemed identical if they are functionally equivalent, i.e, if they, for
every possible input, always produce the same output. However, such a stringent
definition is not possible as it is fundamentally undecidable if two programs are
identical in this sense. Also, this definition of identity is not advisable for us
because we ultimately work in a retrieval setting: Imagine a user has chosen a
workflow X for analyzing her data set and is interested in exploring workflows
that perform similar analyses to learn about alternatives; such a user is natu-
rally interested in elements (and workflows) implementing a similar method, not
an identical one [5]. In the following, we discuss various methods to account for
this fuzzyness in comparing workflow elements at each of the three levels, i.e.,
at processor level, at dataflow level, and at workflow level.

366 J. Starlinger, S. Cohen-Boulakia, and U. Leser

Identifying Processors. The configuration of each processor specified in the
t2flow workflow definition file contains both the type of processor and the code
it is to be instantiated with. After having cleansed from whitespace all the con-
figurations, we used them as the way to identify identical processors. We thus
assume processors to be identical if their cleansed configurations match exactly.
Clearly, this is a very strict definition of identity: however, please note that it
still leads to a meaningful definition of workflow similarity as workflows typi-
cally contain multiple (identical or not) processors. We shall explore the impact
of relaxing this definition in Section 4.

Identifying Dataflows. Both myExperiment and Taverna provide identifiers
for dataflows: while myExperiment assigns an integer to each workflow uploaded,
Taverna assigns a 36 character, alphanumeric string value to each dataflow cre-
ated. When a dataflow is included in a workflow as a subworkflow, the Taverna
id is used to reference the dataflow. The way this id is determined is not defined
by Taverna; although it seems to be meant to be able to uniquely identify a
dataflow across systems (like a checksum), we found this id to be not sufficient
for this task. We both found the same Taverna id to be assigned to different
dataflows (e.g., workflows 1702 and 1703) as well as identical dataflows hav-
ing different Taverna ids (e.g., workflows 359 and 506). Furthermore, using an
id would restrict our analysis to identity of dataflows. Not relying on identifiers
provided by Taverna has the additional advantage of making our methods trans-
ferable to other workflow systems. Therefore, we devised three alternative ways
to compare two dataflows:

– Method 1: We consider two dataflows as shared if the sets of processors are
identical;

– Method 2: We consider two dataflows as shared if the sets of processors and
the numbers of datalinks are identical;

– Method 3: We consider two dataflows as shared if their sets of processors, the
numbers of datalinks, and the numbers of global inputs and global outputs
are identical.

Note that we use multisets here: if two processors contained in a dataflow’s pro-
cessor set have identical cleansed configurations, they are still both included in
the set. Figure 3 gives an overview of the dataflow occurrences found using Tav-
erna ids and each of our three methods. A first observation is that the number of
dataflows occurring (i.e. used) only once is just above 80% of the total number
of distinct dataflows when identification is based on method 1, 2, or 3 while
it is 95% when the identification is based on Taverna ids. Assuming that two
dataflows must be highly similar already if they consist of the same set of pro-
cessors, we conclude that any of the three methods appear more suitable than
Taverna ids to study reuse across workflows. Second, while method 1 assimilates
several dataflows which do not share a Taverna id, the addition of datalinks by
method 2 - not surprisingly - re-adds some distinction. However, the fact that the
total number of distinct dataflows only increases slightly (from 1,071 to 1,081)

(Re)Use in Public Scientific Workflow Repositories 367

Fig. 3. Occurrences of distinct dataflows in the analysis set for several methods of
identification

when going from method 1 to method 2 shows that almost every identical set of
processors is connected by the same number of datalinks.

To gain more insight into this finding, we looked more closely into the
dataflows which had the same set of processors but were connected by different
numbers of links. We found that those only differ in the way they deal with
outputs (use of additional processor outputs to propagate results to the final
output). We further studied the difference in results between methods 2 and 3
which affect only a group of three dataflows (contained in workflows 1214, 1512
and 1513) which method 3 splits into two groups of one and two dataflows, re-
spectively. However, the differences in these dataflows, again, only affects the
number of inputs and outputs, but not the analysis performed by the workflow
itself.

Based on these observations, we decided to continue our study using only
method 1. In the following, when we speak of ’distinct’ dataflows, we thus mean
them to differ by their respective sets of processors.

Identifying Workflows. We follow the same thoughts for comparing workflows
as for comparing dataflows. We consider two workflows as identical if they are
built from the exact same set of dataflows and processors.

Note that we did not include the textual descriptions of processors and
dataflows in the process of identification. We did find workflows that are deemed
related when using the identification scheme established above but differ in the
names assigned to some of their processors. This difference does, however, not
cause any structural or functional divergence.

3 Results

Using method 1 outlined before, we found 3,598 of 10,242 processors (30%),
1,071 of 1,431 dataflows (75%), and 792 of 898 workflows (88%) to be distinct.

368 J. Starlinger, S. Cohen-Boulakia, and U. Leser

Fig. 4. Usage of processors overall, in workflows and by authors

In the following, we look at workflow interconnections and cross-author reuse
on each of these structural levels separately and also break up our analysis by
different processor categories.

3.1 Processors

We first looked at the general usage of processors by comparing the total numbers
of processor occurrences with the number of distinct processors, and their use
across workflows and authors. On average, each processor is used 2.85 times in
2.24 workflows by 1.31 authors. Figure 4 shows the relative usage frequencies
for all processors in our set. Overall reuse of processors and cross-workflow reuse
of processors closely correlate (Pearson Correlation Coefficient > 0.99, p-value
% 0.01). The slight difference is caused by single processors being used more
than once in single workflows. Cross-author reuse, on the other hand, is much
lower, indicating that workflow authors reuse their own workflow components
more often than those created by others.

Maxima1 of 314 usages, 177 workflows and 39 authors and minima of 1 for
single processor usage call for a more detailed investigation. To this end, we used
the categorization established in [13], organizing Taverna processors into the four
main categories local, script, subworkflow, and web-service. Note that subwork-
flows are nested dataflows which will be discussed in more detail in Section 3.2.
Within these categories, processors are further divided into subcategories based
on functional or technological characteristics. The authors of [13] showed that
overall usage of processors varies greatly between these categories and subcat-
egories. Here, we extend their analysis by considering the reuse frequencies of
processors within each category.

Usage statistics by category and by subcategory are shown in Table 1, listing
total and distinct numbers of processors for each subcategory, together with the
numbers of workflows and authors using processors from these subcategories.

1 Usage maxima not shown in Figure 4 for better visualization.

(Re)Use in Public Scientific Workflow Repositories 369

Table 1. Statistics on processor usage by subcategory

Processors Times used Workflows Authors
(Sub)category total distinct reused avg stddev max avg stddev max avg stddev max

local 6518 1786 777 3.65 13.91 314 2.71 7.30 177 1.47 2.16 39
cdk 63 56 7 1.12 0.33 2 1.08 0.28 2 1.00 0.00 1

conditional 109 2 2 54.50 19.50 74 38.50 13.50 52 10.50 3.50 14
string constant 2817 844 387 3.33 9.83 173 2.71 6.21 114 1.44 1.81 28
data conversion 2979 771 307 3.86 17.84 314 2.56 8.27 177 1.43 2.34 39
user interaction 62 9 8 6.88 6.40 22 5.55 4.59 16 2.22 1.54 6

operation 5 2 2 2.50 0.50 3 2.50 0.50 3 1.50 0.50 2
database access 81 13 10 6.23 7.94 28 4.69 5.01 20 2.92 4.21 16

testing 13 6 3 2.16 1.21 4 2.16 1.21 4 1.33 0.47 2
util 389 83 51 4.68 11.25 84 3.73 8.49 63 1.79 3.16 25

script 1393 753 227 1.85 3.69 83 1.60 2.03 30 1.07 0.46 8
beanshell 1333 701 220 1.90 3.81 83 1.63 2.09 30 1.07 0.47 8

r 60 52 7 1.15 0.41 3 1.03 0.19 2 1.01 0.13 2

subworkflow 533 358 91 1.48 1.23 11 1.38 1.01 9 1.03 0.19 2
subwf only 380 279 54 1.36 0.95 9 1.27 0.85 9 1.03 0.17 2

subwf + top 153 79 32 1.93 1.82 11 1.75 1.38 7 1.05 0.21 2

web-service 1798 701 309 2.56 4.27 47 2.14 3.32 36 1.29 1.28 21
biomart 79 49 12 1.61 1.49 7 1.61 1.49 7 1.16 0.50 3
biomoby 58 44 9 1.31 0.66 3 1.31 0.66 3 1.11 0.31 2

cagrid 9 8 1 1.12 0.33 2 1.12 0.33 2 1.00 0.00 1
rest 6 6 0 1.00 0.00 1 1.00 0.00 1 1.00 0.00 1
sadi 5 5 0 1.00 0.00 1 1.00 0.00 1 1.00 0.00 1

soaplab 332 81 46 4.09 5.50 31 3.41 4.69 22 1.53 1.34 8
wsdl 1304 503 241 2.59 4.41 47 2.11 3.33 36 1.29 1.39 21

xmpp 5 5 0 1.00 0.00 1 1.00 0.00 1 1.00 0.00 1

Fig. 5. Exemplary usage distributions for beanshell and data conversion processors
showing relative overall, cross-workflow and cross-author usage frequencies

370 J. Starlinger, S. Cohen-Boulakia, and U. Leser

Figure 5 exemplifies total, workflow-based, and author-based relative usage dis-
tributions in subcategories beanshell and data conversion.

For the local category 27% of processors are distinct with a reuse rate of 44%.
Processors from this category access functionality provided and executed by the
SWFM. This category is particularly interesting for workflow interconnections,
as all of its subcategories show comparably high reuse rates, overall as well as
across workflows and authors. This is especially true for conditional, user inter-
action, operation, database access, testing and util : These subcategories exhibit
a much broader usage distribution than the other processor subcategories whose
distributions are similar to the distributions shown in Figure 5. The reason for
this fact is that many of the respective processors are from the standard set that
Taverna provides for building workflows, and used without further modification
by the author. Table 2, listing the top five most frequently used processors, un-
derpins this finding: These processors provide very common functionality which
is likely to be widely used.

54% of all script processors are distinct, of which 30% are reused. Within
this categroy, R scripts are far less often used than beanshell scripts and hardly
used more than once. Beanshell scripts, on the other hand, are the third most
popular type of processor with only 53% of its instances being distinct. 31% of
them are reused. This seems remarkable, as we would expect these processors
to contain user-created functionality for data processing. Yet, looking at the
author-based distribution of these processors reveals that almost 96% of them
are used only by single authors. It appears that users of beanshell processors have
personal libraries of such custom-made tools which they reuse quite frequently,
while usage of others’ tools is rare.

Web-service processors show 39% distinctiveness, and 44% reuse. By far the
most popular types of web-service invocations are soaplab and wsdl processors.
24% of soaploab processors and 39% of wsdl processors are distinct, and reuse
is at 57% and 48%, respectively. As for scripts, reuse across authors is low,
with single author usage rates of 78% and 87%, respectively. This gap between
overall and cross-author reuse shows quite clearly that authors use and reuse
certain web-services preferentially, while these preferences are not too widely
shared between workflow authors. An exception to this are some rather popular,
well-known web-services, such as Blasts SimpleSearch.

Returning from the categorized to the global view, Figure 6 shows the 300
most frequently used processors and their cross-workflow and cross-author reuse.
Overall usage counts clearly follow a Zipf-like distribution. Zipf’s law [16] states
that when ranking words in some corpus of natural language by their frequency,
the rank of any word in the resulting frequency table is inversely proportional to
its frequency. Carrying over this distribution to processors in scientific workflows,
it means that only few processors are used very often, while usage of the vast
majority of processors is very sparse. The corresponding counts for reuse across
workflows and authors exhibit the same trend. Yet, they show peaks of increased
reuse which mostly are synchronized between the two. These peaks are caused
by the aforementioned Taverna built-in processors.

(Re)Use in Public Scientific Workflow Repositories 371

Table 2. Top 5 most used processors (T: times used; W: workflows used in; A: authors
used by)

Category Subcategory Description T W A
local data conversion Regular expression splitter taking an optional

regex as input (default ’,’) and splitting an input
string into a list of strings.

314 177 39

local data conversion String list merger taking an optional string sepa-
rator (default newline character) and merging an
input list of strings into one new string with the
original strings separated by the given separator

309 87 25

local string constant string constant newline character 173 114 28
local string constant string constant ’1’ 157 82 22
local data conversion string concatenator for two input strings 118 66 28

Fig. 6. Usage counts of the 300 most used processors showing a Zipf-like distribution

3.2 Dataflows

As shown in Figure 7, the pattern of usage for dataflows closely follows that
of single processors. In contrast, overall reuse is lower by 20%: Over 80% of
dataflows are used only once, and only 5% used more than twice. Usage across
workflows is slightly lower, implying that some workflows use single dataflows
multiple times. 1,038 dataflows are used by single authors, 29 by two authors,
and 1 each by 3,4,6 and 7 authors, resulting in an overall of only 3% cross-author
reuse for dataflows.

As described in section 2.1, dataflows can be either top-level or nested. A
top-level dataflow is the same as the entire workflow, while a nested dataflow
is a subworkflow. Due to this dual nature of dataflows, three different cases of
reuse may occur: (a) Reuse of whole workflows as whole workflows; (b) Reuse
of subworkflows as subworkflows; (c) Reuse of whole workflows as subworkflows
and vice versa.

Case (a) can be deemed undetectable when looking only at a repository, as
re-using a workflow does not mean re-uploading it (the reason why myExperi-
ment still contains duplicates is investigated in the next section). To distinguish
cases (b) and (c), we grouped all dataflows in our analysis by their appearance

372 J. Starlinger, S. Cohen-Boulakia, and U. Leser

Fig. 7. Dataflow occurrences in total, in workflows and by authors

as workflows or subworkflows. 380 (75% distinct) dataflows are only present as
nested, but not as top-level dataflows. 153 (55%) nested dataflows are also pub-
lished as standalone top-level dataflows. For the second group we identified a
total of 86 standalone workflows which are used as subworkflows in these 153
cases. Numbers of reuse for the two groups are also shown in Table 1.

We did not find significant differences in cross-author reuse between these
groups. For cross-workflow and overall reuse, on the other hand, major differ-
ences exist: Numbers are as high as 40% for those subworkflows which have a
corresponding standalone workflow published2, while for those that don’t they
are at only 19%. This can be interpreted in two ways. First, it indicates that
authors publish the dataflows they use most often as standalone workflows. This
eases their inclusion as nested, functional components inside other workflows.
On the other hand, the finding that such dataflows are, for the most part, not
used by different authors in derivative work shows that modular extension of
existing workflows created by others is still uncommon.

3.3 Workflows (Top-Level Dataflows)

Of the 898 workflows, 83 appear more than once in the repository, 19 of which
where uploaded by more than one user. This indicates that there are users which
upload workflows which are equal (by our definition of identity) to already exist-
ing ones. Figure 8 shows author contributions of workflows and their dataflows,
both total and distinct. It reveals that a single user (the one with the highest
overall number of workflows uploaded) is responsible for the majority of the cases
of duplicate workflows. By looking into this in more detail, we found that all of
this user’s duplicates are caused by equivalent workflows being uploaded in both
scufl and t2flow formats. Figure 8 also shows that this user alone has authored
23% of all workflows analyzed. Communication with the respective author, who
is part of the Taverna development team, revealed that most of his workflows

2 The standalone workflow itself was not included in reuse computation.

(Re)Use in Public Scientific Workflow Repositories 373

Fig. 8. Authors grouped by the total number of workflows they have created. To-
tal amounts of workflows, and averages of distinct workflows, and total and distinct
dataflows shown for each group.

serve the purpose of testing the functionality of Taverna-provided processors and
giving examples for their usage. The remainder of duplicate workflows is largely
due to users following tutorials including uploads of workflows to myExperiment:
They upload an unmodified workflow.

As another interesting finding, the top 10 single authors (groups 14 through
23) have created 554 worfklows, i.e., app. 62% of all workflows in our analysis
set. Conversely, 43% of all 124 authors have only created one workflow.

4 Discussion

We studied reuse of elements in scientific workflows using the to-date largest
public scientific workflow repository. In contrast to previous work, our analy-
sis covers all types of processors and looks into reuse not only at the general
level, but also by author and by processor category. In this section, we discuss
our results and some of the decisions we took when defining our methods. We
also point to how our findings should influence next steps towards meaningful
similarity measures for scientific workflows.

Processor identification. In this paper, we use exact matching of the processors’
configurations to determine processor identity. Thus, we only identify verbatim
syntactic reuse. To assess the impact of this limitation, we computed pairwise Lev-
enshtein edit distance between all processors3. We compared the level of reuse us-
ing our strict definition of processor identity with one that assumes processors as
identical if their edit distance is below a given threshold. Results are shown in Fig-
ure 9. Clearly, relaxing the threshold even until 20% difference does not have a sig-
nificant impact on the number of distinct processors. On the other hand, relaxing

3 15 processors with configurations longer that 20,000 characters were excluded from
computation. Results were normalized using the lengths of the compared processor
configurations. Only processors from equal functional subcategories where compared.

374 J. Starlinger, S. Cohen-Boulakia, and U. Leser

Fig. 9. Change in overall usage frequencies for processors when matched by 95, 90, 85,
and 80 percent similarity regarding their Levenshtein edit distance

syntactic similarity comes with the risk of assimilating processors with different
functionality, and thus, different usage intent; a problem also present in [14].

Of course, string similarity is a purely syntactic measure, while processor
identity in reality is a semantic issue. Thus, more differentiated solutions could
be explored. [17] additionally compares the numbers and types of input/output
ports, while [18] suggested to use semantic or functional information provided by
catalogues of tools. However, both approaches have their problems. Regarding
the former, one must consider that the majority of processors in our data set
only have a single input and a single output port, mostly of type String. On
the other hand, the latter depends on the existence of well-curated ontologies
for describing the function of a processor, and on authors using these ontologies
to tag their processors4. Another option would be to exploit provenance traces
to infer functional similarity between processors. If two sets of provenance data
can be mapped onto each other, so might the processors responsible for the cor-
responding changes in the data. Unfortunately, repositories specifically targeted
at collecting provenance are just starting to emerge [19], and provenance data is
currently not available for large groups of workflows.

Reuse characteristics. As shown in this paper, the most commonly used pro-
cessors are generic string operations and string constants. More generally, the
main glue points of workflows are processors with non-specific functionality, pro-
vided by the system and used as-is. As such, these processors provide neither
specialized, nor author-created functionality, limiting their usefullness for de-
tecting both cross-workflow and cross-author reuse. Other types of processors
are most often only used across workflows created by single authors, and their
reuse frequencies are lower than those of unspecific ones. Yet, these processors
are especially interesting: The custom-made nature of processors from the script
category differentiates them from other processors in terms of their highly user-
provided functionality. Thus, if such a processor is found more than once, it is

4 Note that myExperiment allows tagging of workflows, but does not enforce a fixed
vocabulary for this purpose.

(Re)Use in Public Scientific Workflow Repositories 375

Fig. 10. Excerpt of a network of workflow-workflow interconnections by at least 3
mutual processors. Labels are myExperiment workflow ids.

an indication of non-trivial reuse. The case is similar for web-services. On the
other hand, even apparently trivial operations should not be ignored completely.
For instance, a string constant containing a complex XML configuration file is
highly specific and its reuse a strong indicator for functional similarity.

Thus, the suitability of processors or groups of processors to determine func-
tional reuse needs further investigation. For scalability and practicability, a gen-
eral and automated approach has to be found to distinguish such cases. One
solution could use TF/IDF scores [20] to assign weights to processors based
on their usage frequencies. The Zipf-like distribution of processor frequencies
suggests such an approach.

Workflow Interconnections. Our analysis focussed on characterizing processors
that are re-used. An equally valid view is to ask how large the overlap in

376 J. Starlinger, S. Cohen-Boulakia, and U. Leser

processors is between two workflows. 769 of our 898 workflows share one or
more processors with at least one other workflow. On average, each workflow
is thus connected to 92.12 other workflows by the use of at least one common
processor, averaging at 7.23 distinct processors being shared between two work-
flows. This is remarkable given the findings from Section 3.1, as the majority
of processors is shown to only be present in single workflows. Apparently, the
remaining one third of processors interconnect workflows quite densely.

Figure 10 shows how workflows cluster by shared processors. In the figure,
two workflows are connected if they share at least three processors. The figure
clearly shows clusters of highly interconnected workflows. We manually studied
a sample of these clusters and found them to be highly similar in function.

User assistance. The fact that processor reuse is uncommon across authors
could be interpreted in several ways. One explanation could be that authors
are simply not aware (enough) of other people’s dataflows and workflows. This
situation could be alleviated by using the repository for providing better support
for designing scientific workflows [5]. Some work has started already in this
direction; for instance, [21] presents a system which recommends web-services
for use during workflow design. Accomplishing such functionality for other types
of processors and even for subworkflows is highly desirable.

5 Summary

This paper introduces the first study performed on reuse of scientific workflows
which has considered reuse at various levels of granularity (processor, dataflows,
and workflows), at various categories of processors, and also differentiated by
workflow authorship. Thereby, we provided three major contributions.

First, we introduced and compared different methods to identify proces-
sors, dataflows, and whole workflows which we deem suitable for detection of
reuse. Our methods allows us to provide fine-grained analyses, and to distin-
guish functionally important cases of reuse from trivial ones.

Second, our study is the first to consider authorship. This allowed us to
characterize different kinds of users depending on their usage of the repository,
ranging from single time ’authors’ uploading duplicate workflows when following
a tutorial, to advanced authors creating many functionally interlinked workflows.
An important observation obtained by entering this level of detail is that while
36% of workflow elements are reused, only 11% of workflow elements are used
by more than one author. Cross-author reuse for dataflows is even lower at 3%.
This calls for actions to make authors more aware of the repository contributions
by others.

Third, our study investigated reuse and duplication of workflow ele-
ments in more detail than ever before. Using a categorization of processors
helped to better characterize re-use in terms of the types of processors that are
reused. Furthermore, it showed that the appearance of single processors in mul-
tiple workflows is not per se an indication of functional similarity, and that not

(Re)Use in Public Scientific Workflow Repositories 377

all processors are equally well suited for deriving information about functional
workflow similarity.

We believe that our findings are important for future work in scientific work-
flow similarity.

References

1. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, R., Carver, K.,
Pocock, M.G., Wipat, A., Li, P.: Taverna: a tool for the composition and enactment
of bioinformatics workflow. Bioinformatics 20(1), 3045–3054 (2003)

2. Bowers, S., Ludäscher, B.: Actor-oriented design of scientific workflows. In: 24th
Int. Conf. on Conceptual Modeling (2005)

3. Freire, J., Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E., Vo, H.T.:
Managing Rapidly-Evolving Scientific Workflows. In: Moreau, L., Foster, I. (eds.)
IPAW 2006. LNCS, vol. 4145, pp. 10–18. Springer, Heidelberg (2006)

4. Goecks, J., Nekrutenko, A., Taylor, J.: Galaxy: a comprehensive approach for sup-
porting accessible, reproducible, and transparent computational research in the life
sciences. Genome Biology 11, R86 (2010)

5. Cohen-Boulakia, S., Leser, U.: Search, Adapt, and Reuse: The Future of Scientific
Workflow Management Systems. SIGMOD Record 40(2) (2011)

6. Berners-Lee, T., Hendler, J.: Publishing on the Semantic Web. Nature, 1023–1025
(2001)

7. Roure, D.D., Goble, C.A., Stevens, R.: The design and realisation of the myexper-
iment virtual research environment for social sharing of workflows. Future Gener-
ation Computer Systems 25(5), 561–567 (2009)

8. Mates, P., Santos, E., Freire, J., Silva, C.T.: CrowdLabs: Social Analysis and Vi-
sualization for the Sciences. In: Bayard Cushing, J., French, J., Bowers, S. (eds.)
SSDBM 2011. LNCS, vol. 6809, pp. 555–564. Springer, Heidelberg (2011)

9. Goderis, A., Sattler, U., Lord, P., Goble, C.A.: Seven Bottlenecks to Workflow
Reuse and Repurposing. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A.
(eds.) ISWC 2005. LNCS, vol. 3729, pp. 323–337. Springer, Heidelberg (2005)

10. Xiang, X., Madley, G.: Improving the Reuse of Scientific Workflows and Their
By-products. In: IEEE Int. Conf. on Web Services (2007)

11. Tversky, A.: Features of Similarity. Psychological Review 84, 327–352 (1977)

12. Tan, W., Zhang, J., Foster, I.: Network Analysis of Scientific Workflows: a Gateway
to Reuse. IEEE Computer 43(9), 54–61 (2010)

13. Wassink, I., Vet, P.E.V.D., Wolstencroft, K., Neerincx, P.B.T., Roos, M., Rauw-
erda, H., Breit, T.M.: Analysing Scientific Workflows: Why Workflows Not Only
Connect Web Services. In: IEEE Congress on Services (2009)

14. Stoyanovich, J., Taskar, B., Davidson, S.: Exploring repositories of scientific work-
flows. In: 1st Int. Workshop on Workflow Approaches to New Data-centric Science
(2010)

15. Goderis, A., Li, P., Goble, C.: Workflow discovery: the problem, a case study from
e-Science and a graph-based solution. In: IEEE Int. Conf. on Web Services (2006)

16. Zipf, G.: The Psycho-Biology of Language. MIT Press, Cambridge (1935)

17. Silva, V., Chirigati, F., Maia, K., Ogasawara, E., Oliveira, D., Braganholo, V.,
Murta, L., Mattoso, M.: Similarity-based Workflow Clustering. J. of Computational
Interdisciplinary Science (2010)

378 J. Starlinger, S. Cohen-Boulakia, and U. Leser

18. Gil, Y., Kim, J., Florez, G., Ratnakar, V., Gonzalez-Calero, P.A.: Workflow match-
ing using semantic metadata. In: 5th Int. Conf. on Knowledge Capture (2009)

19. Missier, P., Ludaescher, B., Dey, S., Wang, M., McPhillips, T., Bowers, S., Agun,
M.: Golden-Trail: Retrieving the Data History that Matters from a Comprehensive
Provenance Repository. In: 7th Int. Digital Curation Conf. (2011)

20. Salton, G., McGill, M. (eds.): Introduction to Modern Information Retrieval.
McGraw-Hill (1983)

21. Zhang, J., Tan, W., Alexander, J., Foster, I., Madduri, R.: Recommend-As-You-
Go: A Novel Approach Supporting Services-Oriented Scientific Workflow Reuse.
In: IEEE Int. Conf. on Services Computing (2011)

Aggregating and Disaggregating Flexibility

Objects

Laurynas Šikšnys, Mohamed E. Khalefa, and Torben Bach Pedersen

Department of Computer Science, Aalborg University
{siksnys,mohamed,tbp}@cs.aau.dk

Abstract. Flexibility objects, objects with flexibilities in time and
amount dimensions (e.g., energy or product amount), occur in many
scientific and commercial domains. Managing such objects with existing
DBMSs is infeasible due to the complexity, data volume, and complex
functionality needed, so a new kind of flexibility database is needed. This
paper is the first to consider flexibility databases. It formally defines the
concept of flexibility objects (flex-objects), and provide a novel and ef-
ficient solution for aggregating and disaggregating flex-objects. This is
important for a range of applications, including smart grid energy man-
agement. The paper considers the grouping of flex-objects, alternatives
for computing aggregates, the disaggregation process, their associated
requirements, as well as efficient incremental computation. Extensive ex-
periments based on data from a real-world energy domain project show
that the proposed solution provides good performance while still satis-
fying the strict requirements.

1 Introduction

Objects with inherent flexibilities in both the time dimension and one or more
amount dimensions exist in both scientific and commercial domains, e.g., energy
research or trading. Such objects are termed flexibility objects (in short, flex-
objects). Capturing flexibilities explicitly is important for smart grid domain, in
order to consume energy more flexibly. In the ongoing EU FP7 research project
MIRABEL project [2], the aim is to increase the share of renewable energy
sources (RES) such as wind and solar, by capturing energy demand and supply,
and the associated flexibilities. Here, flex-objects facilitate planning and billing of
energy. First, consumers (automatically) specify the flexible part of their energy
consumption, e.g., charging an electric vehicle, by issuing flex-objects to their
energy company. A flex-object defines how much energy is needed and when,
and the tolerated flexibilities in time (e.g., between 9PM and 5AM) and energy
amount (e.g. between 2 and 4 kWh). In order to reduce the planning complexity,
similar flex-objects are aggregated into larger “macro” flex-objects. Then, the
energy company tries to plan energy consumption (and production) such that
the desired consumption, given the macro flex-objects plus a non-flexible base
load, matches the forecasted production from RES (and other sources) as well as
possible. During the process, the flex-objects are instantiated (their flexibilities

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 379–396, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

380 L. Šikšnys, M.E. Khalefa, and T.B. Pedersen

are fixed), resulting in so-called fix-objects, where fixed concrete values are as-
signed for time and amounts, within the original flexibility intervals. Finally, the
“macro” fix-objects are disaggregated to yield “micro” fix-objects corresponding
to the instantiation of the original flex-objects issued by the consumers, which are
then distributed back to the consumers. The consumers are rewarded according
to their specified flexibility.

For typical real world and scientific applications (e.g., MIRABEL), there ex-
ists, hundreds of millions of flex-objects have to be managed efficiently. This is
infeasible using existing DBMSs. First, due to the complexity of flex-objects,
queries over flex-objects are also complex and cannot be formulated efficiently, if
at all, using standard query languages. Second, the number of flex-objects can be
very large and timing restrictions are tight. Third, incremental processing must
be supported natively. In order to efficiently evaluate queries over flex-objects,
a new tailor-made database for handling flex-objects is needed.

Contributions. This paper is the first to introduce the vision of flex-object
databases by discussing their functionality, queries, and application. As the most
important operations of a flex-object database, the paper focuses on flex-object
aggregation and disaggregation, which are analogous to a roll-up and drill-down
queries in an OLAP database. As will be shown later, the aggregation of even
just two flex-objects is non-trivial as they can be combined in many possible
ways. The paper formally defines flex-objects, how to measure the flexibility of
a flex-object, aggregation and disaggregation of flex-objects. Our flex-object ag-
gregation approach takes a set of flex-objects as input and, based on the provided
aggregated parameters, partitions the set of flex-objects into disjoint groups of
similar flex-objects. This partitioning is performed in two steps - grid-based
grouping and bin-packing. The grouping of flex-objects ensures that flex-objects
in a group are sufficiently similar (in terms of chosen flexibility attributes). The
bin-packing ensures that the groups themselves conform to the given (aggre-
gate) criteria. After bin-packing, an aggregation operator is applied to merge
similar flex-objects into aggregated flex-objects. In one possible scenario, when
the flexibilities of the aggregated flex-objects are fixed, e.g., in the planning
phase, our disaggregation approach takes the respective fix-objects as input and
disaggregate them into fix-objects that correspond to the original flex-objects.
Our solution inherently supports efficient incremental aggregation, which is es-
sential to handle continuously arriving new flex-objects. An extensive set of
experiments on MIRABEL data shows that our solution scales well, handling
both aggregation and disaggregation efficiently.

The remainder of the paper is structured as follows. Section 2 outlines the
functionality of envisioned flex-object databases. Section 3 formally defines the
concept of flex-object and the problem of aggregating and disaggregating flex-
objects. Section 4 describes how to aggregate several flex-objects into one. Sec-
tion 5 generalizes the approach to aggregate a set of input flex-objects into a
set of output flex-objects. Section 6 considers incremental aggregation. Section 7
describes the experimental evaluation, while Section 8 discusses related work.
Finally, Section 9 concludes and points to future work.

Aggregating and Disaggregating Flexibility Objects 381

2 Flex-object Databases

Although the paper focuses on two specific operations on flex-objects, aggrega-
tion and disaggregation, in this section, we provide a broader context by outlining
our vision for the functionality of flex-object databases. A flex-object database
is a database storing flex-objects, possibly of several different types and with
different types of flexibilities. Thus, flex-objects must be first-class citizens in
such a database and the associated complex functionality must be supported. In
some application scenarios, the flex-object database will be stand-alone and fo-
cused only on flexibility management, in other scenarios, the flex-object database
will be part of a larger database storing also other kinds of objects and with a
mixed query workload. Support for dimensions and hierarchies is important to
be able to view flex-objects at the desired level of granularity, however, the
dimension hierarchies must be more complex than in current systems to sup-
port complex real-world hierarchies such as energy distribution grids. Similarly,
spatio-temporal support is essential, as many flex-object applications have strong
spatial and/or temporal aspects. Several options for query languages are pos-
sible. For standalone flex-object-specific applications, a JSON-style declarative
language like that used by MongoDB would be effective. For more general mixed
databases, an extension of SQL with specific syntax and operators for flexibility
manipulation is desirable.

The storage of flex-objects is not a trivial issue. A flex-object database should
be able to store massive amounts of flex-objects while still ensuring very fast
response time. Due to their complex internal structures (to be detailed in the
next section), flex-offers cannot be directly stored as atomic objects in standard
relational databases. Here, accessing flex-objects becomes an expensive operation
requiring joins and aggregations over two or more large tables. Alternatives
include nested object-relational storage and or dedicated native storage, where
it is important to strike the right balance between efficiency and the ability to
integrate easily with other types of data. The storage issue is beyond the scope
of this paper, and will be addressed in future work. We now present at the most
important types of queries to be supported by a flex-object database.

Flexibility availability queries provide an overview over the amount flexibilities
that are available at given time intervals. For example, such a query may retrieve
the min, max, and average amounts available, or build a time series with the
(expected) distribution of amounts at every time instance. Such queries are used
in feasibility/risk analysis where nominal or peak values are explored, e.g., to
see how much energy consumption can be increased or decreased at a given time
to counter unexpected highs or lows in the RES production.

Adjustment potential queries computes the distribution of amounts that can
be potentially injected into (or extracted away from) a given time interval, tak-
ing into account the amounts which are already fixed with fix-objects. Several
options for the amount injection (or extraction) are possible, including adjusting
amounts within amount flexibility ranges, shifting amounts within available time
flexibility ranges, or a combination.

382 L. Šikšnys, M.E. Khalefa, and T.B. Pedersen

Fixing queries alter (or create) fix-objects (the plan), based on user selected
amounts to inject or extract. Fixing queries are used in the analysis and plan-
ning phase, to interactively explore flexibility potentials (the first two types of
queries), followed by modifying the existing plan (fix-objects) if needed.

Flex-object aggregation queries combine a set of flex-objects into fewer, “larger”
flex-objects. In some sense, this is analogous to a roll-up query in an OLAP
database (going from finer to coarser granularities), although considerably more
complex (as will be discussed in the next sections). The aggregation usually re-
duces flexibilities, so it is important to quantify and minimize how much of the
original flexibilities are lost due to aggregation. The aggregation of flex-objects
can substantially reduce the complexity of the above-mentioned analysis queries
as well as the complexity of various flex-object-based planning processes. For
example, a very large number of flex-objects must be scheduled in MIRABEL.
Since scheduling is NP-complete problem, it is infeasible to schedule all these
flex-objects individually within the (short) available time. Instead, flex-objects
can be aggregated, then scheduled (not considered in this paper), and finally
disaggregated (see below) into fix-objects.

Flex-object disaggregation queries go the opposite way, “exploding” a large
“macro” fix-object into a set of smaller “micro” fix-objects corresponding to
the instantiation of the original flex-objects. This yields the refinement of the
“macro” plan necessary for carrying out the plan in practice. In some sense,
this is like a drill-down query in an OLAP database (going from coarser to finer
granularities), but more complex.

Flex-object aggregation and disaggregation queries are particularly important
and more challenging. In the next section, we formulate the problem of aggre-
gating and disaggregating flex-objects.

3 Problem Formulation

We now formalize our proposed problem of aggregating and disaggregating flex-
ibility objects. Our formalization includes (1) a definition of flex-object, (2) a
measure to quantify flex-object flexibility, and (3) aggregation and disaggregation
functions and their associated constraints.

The introduced flex-object is a multidimensional object capturing two aspects:
(1) the time flexibility interval, and (2) a data profile with a sequence of consec-
utive slices each defined by (a) its start and end time and (b) the minimum and
maximum amount bounds for one or more amount dimensions. We can formally
define a flex-object as follows:

Definition 1: A flex-object f is a tuple f = (T (f), profile(f)) where T (f) is
the start time flexibility interval and profile(f) is the data profile. Here, T (f) =
[tes, tls] where tes and tls are the earliest start time and latest start time, re-
spectively. The profile(f) = s(1), . . . , s(m) where a slice s(i) is a tuple ([ts, te],

[a
(1)
min, a

(1)
max], . . . , [a

(D)
min, a

(D)
max]) where [a

(i)
min, a

(i)
max] is a continuous range of

the amount for dimension i = 1..D and [ts, te] is a time interval defining the
extent of s(i) in the time dimension. Here, tes ≤ s(1).ts ≤ tls and ∀j = 1..m :

Aggregating and Disaggregating Flexibility Objects 383

s(j).te > s(j).ts, s
(j+1).ts = s(j).te. We use the terms profile start time to denote

s(1).ts, duration of the slice to denote sdur(s) = s.te − s.ts, duration of pro-
file to denote pdur(f) =

∑
s∈profile(f) s.te − s.ts, and latest end time to denote

tle(f) = f.tls + pdur(f).

For simplicity and without loss of generality, time is discretized into equal-sized
units, e.g., 15 minute intervals, and we have only one amount dimension (i.e.,
D = 1). Figure 1 depicts the example of a flex-object having a profile with
four slices: s(1), s(2), s(3), and s(4). Every slice is represented by a bar in the
figure. The area of the light-shaded bar represents the minimum amount value
(amin) and the combined area of the light- and dark-shaded bars represents the
maximum amount value (amax). The left and the right sides of a bar represent
te and ts of a slice, respectively.

Time

Earliest
start time

(tes)

Time flexibility interval

Latest
start time

(tls)

Profile

Maximum Amount

s(1)

Slice

Latest
End time

(tle)

T(f)

s(2) s(3) s(4)

A
m

ou
nt

/s
lic

e
du

ra
tio

n

A possible Fix

FlexObject Profile Minimum Amount

Fig. 1. A generic flex-object

We distinguish two types of flexibility asso-
ciated with f . The time flexibility, tf (f), is
the difference between the latest and earli-
est start time. Similarly, the amount flex-
ibility, af (s), is the sum of amount flexi-
bility of all slices in the profile of f , i.e.,

af (f)=
∑

s∈profile(f)

(s.te−s.ts)·(
∑D

j=1 s.a
(j)
max−

∑D
j=1 s.a

(j)
min). Based on these notations, the

total flexibility of f is defined as follows:

Definition 2: The total flexibility of an
flex-object f is the product of the time flexi-

bility and the amount flexibility, i.e., flex (f) = tf(f) · af(s).

Consider a flex-object f=([2, 7], s(1), s(2)) where s(1) = ([0, 1], [10, 20]) and
s(2) = ([1, 4], [6, 10]). The time flexibility of f is equal to 7− 2 = 5. The amount
flexibility af (f) is equal to (1 − 0)(20 − 10) + (4 − 1)(10 − 6) = 22. Hence, the
total flexibility of f is equal to 110.

A flex-object with time and profile flexibilities equal to zero is called a fix-
object. In this case, the fix-object f = ([tes, tls], s

(1), . . . , s(m)) is such that tes =

tls and s.a
(d)
min = s.a

(d)
max ∀s ∈ profile(f), ∀d = 1..D.

Definition 3: An instance (instantiation) of a flex-object f = ([tes, tls], s(1),

. . . , s(m)) is a fix-object fx = ([ts, ts],s
(1)
x ,. . . ,s

(m)
x) such that tes ≤ ts ≤ tls and

∀i = 1..m, d = 1..D : s(i).a
(d)
min ≤ s

(i)
x .a

(d)
min = s

(i)
x .a

(d)
max ≤ s(i).a

(d)
max. We refer to

ts as the start time of the flex-object f .

There is an infinite number of possible instances (fix-objects) of a flex-object.
One possible instance is shown as the dotted line in Figure 1. We can now define
aggregation and disaggregation as follows:

Definition 4: Let AGG be an aggregate function which takes a set of flex-
objects F and produces a set of flex-objects A. Here, every fa ∈ A is called an
aggregated flex-object, and |A| ≤ |F |.

384 L. Šikšnys, M.E. Khalefa, and T.B. Pedersen

Definition 5: Let DISAGG be a function which takes a set of A instances and
produces a set of F instances. We denote these sets of fix-objects as AX and
FX , respectively, and assume that A = AGG(F), ∀f ∈ F ⇔ ∃fx ∈ FX and
∀fa ∈ A⇔ ∃fx

a ∈ AX . Moreover, to ensure the balance of amounts at aggregated
and non-aggregated levels, for all time units T = 0, 1, 2, · · · and all dimensions
d = 1..D, the following equality must hold:

T∑
t=0

[
s.a

(d)
min|∀fx

a ∈ AX , ∀s ∈ profile(fx
a), s.te ≤ t

]
=

T∑
t=0

[
s.a

(d)
min|∀fx ∈ FX , ∀s ∈ profile(fx), s.te ≤ t

]
.

Evaluation of the functions AGG and DISAGG is called flex-object aggrega-
tion and disaggregation, respectively. Due to the amount balance requirement,
disaggregation is, however, not always possible for any arbitrary AGG function.
Depending on whether disaggregation is possible or not for all instances of aggre-
gated flex-objects, we identify two types of flex-object aggregation: conservative
and greedy, respectively. Aggregated flex-objects resulting from greedy aggrega-
tion might define more time and amount flexibilities compared to the original
flex-objects. Obviously, instances of such flex-objects might not be disaggregated
using DISAGG. Nevertheless, this type of aggregation is still important in fea-
sibility/risk analysis where extreme amount values are explored (see flexibility
availability queries in Section 2). On the contrary, aggregated flex-objects re-
sulting from conservative aggregation always define less (or equal) flexibilities
compared to the original flex-objects. Consequently, it is always possible to disag-
gregate instances of such flex-objects using DISAGG. Conservative aggregation
is important in use-cases where planning is involved, e.g., in MIRABEL. The
flex-object database has to support both types of aggregation, however, in this
paper, we focus on conservative aggregation only.

The following requirements for the aggregation originate from the MIRABEL
use-case, but they are also important for general flex-object aggregation:

Compression and Flexibility Trade-off Requirement. It must be possible
to control the trade-off between (1) the number of aggregated flex-objects and
(2) the flexibility loss, i.e., difference between the total flex-object flexibility (see
Definition 2) before and after aggregation.

Aggregate Constraint Requirement. Every aggregated flex-object fa ∈
AGG(F) must satisfy a user-defined so-called aggregate constraint C, which
is satisfied if the value of a certain flex-object attribute, e.g., total maximum
amount, is within the given bounds. For example, such constraints can ensure
that aggregated flex-objects are “properly shaped” to meet energy market rules
and power grid constraints.

Incremental Update Requirement. Flex-object updates (addition/removal)
should be processed efficiently and cause minimal changes to the set of aggre-
gated flex-objects. Thus functionality is vital in scenarios, e.g., MIRABEL, where
addition/removal of flex-objects are very frequent.

Aggregating and Disaggregating Flexibility Objects 385

In the following sections, we present a technique to perform flex-object aggre-
gation and disaggregation while satisfying all requirements.

4 Aggregation and Disaggregation

In this section, we first propose a basic N-to-1 flex-object aggregation algorithm
and explain how to generalize it for a large set of flex-objects. Additionally, we
explain how disaggregation can be performed.

According to the flex-object definition, the profile start time (s(1).ts) of a
flex-object f is not pre-determined, but must be between the earliest start time
f.tes and the latest start time f.tls. Hence, the aggregation of even two flex-
objects is not straightforward. Consider aggregating two flex-objects f1 and f2
with time flexibility values equal to six and eight, respectively. Thus, we have 48
(6∗8) different profile start time combinations, each of them realizing a different
aggregated flex-object. Three possible profile start time parameter combinations
are shown in Figure 2(a-c).

In general, to aggregate a set of flex-objects F into a single aggregated flex-
object fa, we follow these three steps:
1. Choose a profile start time value f.s(1).ts = sf ∀f ∈ F such that f.tes ≤

sf ≤ f.tls. Later, we will refer to this choice of profile start time as profile
alignment.

2. Set the time flexibility interval for fa such that fa.tes = minf∈F (sf) and
fa.tls = fa.tes +minf∈F (f.tls − sf).

3. Build a profile for fa by summing the corresponding amounts for each slice
across all profiles.

There are many ways to align profiles (by choosing the constants sf1 , sf2 , . . . ,
sf|F |). Each of these alignments determine where amounts from individual flex-
objects are concentrated within the profile of fa. We focus only on the three
most important alignment options: start-alignment, soft left-alignment, and soft
right-alignment. Start-alignment spreads out amounts throughout the time ex-
tent of all individual flex-objects, making larger amounts available as early as
possible. On the contrary, soft left-/right-alignment builds shorter profiles with
amounts concentrated early (left) or late (right) in the profile. In the context
of MIRABEL, start-alignment is suitable for the near real-time balancing of elec-
tricity, where energy has to be available as early as possible; and soft left/right
alignment allows the consumption of anticipated wind production peaks with
steep rises (left-alignment) or falls (right-alignment). The three alignment op-
tions are illustrated in Figure 2. Here, the crossed area in the figure represents
the amount of time flexibility that is lost due to aggregation when different
profile alignment options are used. The alignment option are elaborated below:

Start-alignment. We set sf1 , sf2 , . . . , sf|F | so that ∀f ∈ F : sf = f.tes. This
ensures that profiles are aligned at their respective earliest start time values (see
f1 and f2 in Figure 2(a)).

Soft Left-Alignment. We set sf1 , sf2 ,..., sf|F | so that ∀f ∈ F : sf = min(f.tls
− ming∈F (g.tls− g.tes),maxg∈F (g.tes)). Figure 2(b) illustrates the effect of soft

386 L. Šikšnys, M.E. Khalefa, and T.B. Pedersen

f2

f3

f1
3

3

3

Soft left-aligning profiles Soft right-aligning profiles

f2

f3

f1
4

3

3

Δ=2
Δ=1

f2

f3

f1
5

3

4

Start aligning profiles

Aggregation Aggregation Aggregation

a1
3 3 3

a2 a3

(a) Start-alignment (b) Soft left-alignment (c) Soft right-alignment

f3
3 3.5

4.5

1

6 2

4 8

2.5

s(1) s(2) s(3) s(4)

f2

2
3

1.5 4
2

5

f1
2

1.51.5

2

2.5 2.5

22

s(1) s(2) s(3)

s(1) s(2) s(3) s(4)

f1

f2

3

4

2
3

1.5 8
2

10

s(1) s(2)

s(1) s(2) Segmentation Addition

(d) Aggregating profiles

Fig. 2. Profile alignment and aggregation

left-alignment. Here, f1 and f2 are left-aligned, meaning that their profile start
times are equal. However, the profile of f3 cannot be left-aligned with respect
to the profiles of f1 and f2 as that would shorten the remaining time flexibility
range of the aggregate. f3 lacks one time unit (Δ = 1) for its profile to left-align.

Soft Right-Alignment.We set sf1 , sf2 , ..., sf|F | so that ∀f ∈ F : sf = min(f.tls−
ming∈F (g.tls − g.tes),maxg∈F (g.tes + pdur(g))− pdur(f). Figure 2(c) illustrates
the effect of soft right-alignment. Here, f1 and f2 are right-aligned, meaning
that their profiles align at the right hand side (i.e., have equal tes+pdur values).
However, the profile of f3 cannot be right-aligned with respect to the profiles
of f1 and f2 as this would shorted the remaining time flexibility range of the
aggregate.

After the alignment, the time flexibility interval is computed for the aggre-
gated flex-object. As illustrated in Figure 2(a-c), for all three alignment options,
the time flexibility of fa is equal to that of the flex-object with the smallest time
flexibility in the set F , i.e., fa.tls − fa.tes = minf∈F (f.tls − f.tes). However,
other types of alignment, e.g., hard left or hard right where all profiles are forced
to align at the left or right hand side, might reduce the time flexibility of the
aggregated flex-object.

Aggregating and Disaggregating Flexibility Objects 387

Finally, the minimum and maximum amounts of adjacent slices in the aligned
profiles are summed to construct the profile of the aggregated flex-object. If
adjacent slices at any time unit have different durations, those slices are parti-
tioned to unify their durations. During the partitioning, minimum and maximum
amounts are distributed proportionally to the duration of each divided slice. This
step is called segmentation. The segmentation step reduces the amount flexibility,
af (f), as it imposes more restrictions on the amount for each divided segment.
For example, consider the slice s(1) of f1 in Figure 2(d), which illustrates the
segmentation for two flex-objects. Originally, the minimum amount is 3 and the
maximum amount is 4 over two time units. Thus, we can supply one amount
unit in the first time unit, and three units in the second time unit. However, this
supply is not acceptable after dividing the slice into two equal-sized slices s(1)

and s(2) with minimum and maximum amount of 1.5 and 2, respectively. Af-
ter the segmentation, the addition of profiles is performed. During the addition,

a
(1)
min and a

(1)
max amounts are added for every corresponded profile slice.

It is always possible to disaggregate a flex-object produced by this aggregation
approach. Consider the following disaggregation procedure. For a given instance
fx
a of flex-object fa, we produce the set of fix-objects {fx

1 , f
x
2 , ..., f

x
|F |} such that

∀i = 1..|F | : fx
i .tes = fx

i .tls = sfi + (fx
a .tes − fa.tes). It is always possible to

fix the start time of every fx
i , i = 1..|F | because the time flexibility range of

the aggregate fa is computed conservatively, and the aligned profiles of f ∈ F
can always be shifted within this range (see Figure 2). Also, the amount values
from every slice sxa ∈ profile(fx

a) are distributed proportionally to the respective
slices of fx

i , i = 1..|F | so that minimum and maximum amount constraints are
respected for every f ∈ F . This can always be achieved, and consequently, for
any instance of fa, it is always possible to build instances of flex-objects from
F . Moreover, the newly built fix-objects will collectively define a total amount
which is equal to that of the initial fix-object fa

x .
To summarize, the N-to-1 aggregation approach can be used to aggregate

flex-objects in F . However, the time (and total) flexibility loss depends on the
flex-object with smallest time flexibility in the set F . Due to this issue, much of
the flexibility will be lost when aggregating flex-objects with distinct time flexi-
bilities. To address this, we will now propose an N-to-M aggregation approach.

5 N-to-M Aggregation

As discussed in Section 4, aggregating “non-similar” flex-objects results in an
unnecessary loss of time flexibility. This loss can be avoided, and the profile
alignments can be better enforced, by carefully grouping flex-objects and thus
ensuring that their time flexibility intervals overlap substantially. We now de-
scribe an (N -to-M) approach to aggregate a set of flex-objects, F , to a set of
aggregated flex-objects, A, while satisfying all requirements (see Section 3). The
algorithm consists of three phases: grouping, bin-packing, and N-to-1 aggregation:

Grouping Phase. We partition the input set F into disjoint groups of similar
flex-objects. Based on the application scenario, the user specifies which attributes

388 L. Šikšnys, M.E. Khalefa, and T.B. Pedersen

to use in the grouping. For example, the user may choose the earliest start
time, latest start time, time flexibility, and/or amount flexibility as grouping
attributes. Two flex-objects are grouped together if the values of the specified
attributes differ no more than a user-specified threshold. The thresholds and the
associated grouping attributes are called grouping parameters. As shown later,
the choice of grouping parameters yields a trade-off between compression and
flexibility loss. In the example in Figure 3, flex-objects f1, f2, ..., and f5 are
assembled in two groups g1 and g2 during the grouping phase.

Bin-Packing Phase. This phase enforces the aggregate constraint (see Sec-
tion 3). Each group g produced in the grouping phase is either passed to the
next phase (if g satisfies the constraint already) or further partitioned into the
minimum number of bins (groups) such that the constraint wmin ≤ w(b) ≤ wmax

is satisfied by each bin b. Here, w(b) is a weight function, e.g., w(b) = |b|, and
wmax and wmin are the upper and lower bounds. We refer to wmin, wmax,
and w as bin-packing parameters. By adjusting these parameters, groups with a
bounded number of flex-objects or a bounded total amount can be built. Note
that it may be impossible to satisfy a constraint for certain groups. For exam-
ple, consider a group with a single flex-object, while we impose a lower bound of
two flex-objects in all groups. These groups are discarded from the output (see
g22 in Figure 3), and, depending on the application, these flex-objects can be
either: (1) excluded from the N-to-M aggregation output, or (2) aggregated with
another instance of the N-to-M aggregation with less constraining grouping or
bin-packing parameters.

N-to-1 Aggregation Phase. We assemble the output set A by applying N-to-
1 aggregation (see Section 4) for each resulting group g. The alignment option
is specified as the aggregation parameter. Every aggregated flex-objects satisfies
the aggregate constraint enforced in the bin-packing phase.

The complete N-to-M aggregation process is visualized in Figure 3. Here,
given the initial flex-object set {f1, f2, ..., f5} and grouping, bin-packing, and
aggregation parameters, two aggregated flex-objects, fa1 and fa2, are produced.
The grouping parameters are set so that the difference between the earliest start
time (tes) is at most 2. The bin-packing parameters require that the number

f1

f2

f3

f4

f5

g1

g2
Grouping Bin-packing

f1

f3

f2

f4

f5

g1

g21

f1

f3

f2

f4

f5

g22

N-to-1
aggregation

fa1

fa2

Omitted as it does not satisfies the
bin-packing constraints

Grouping
parameters

Bin-packing
parameters

Aggregation
parameters

fa1

Fig. 3. Aggregation of flex-objects in the N-to-M aggregation approach

Aggregating and Disaggregating Flexibility Objects 389

of flex-objects in resulting groups are 2, i.e., wmin = wmax = 2, w(g) = |g|.
In the aggregation phase, the start-aligned option is used. In practice, the user
will choose from a number of meaningful pre-defined parameter settings, e.g.,
short/long profiles or amount as early as possible.

6 Incremental N-to-M Aggregation

In this section, we present an incremental version of the N-to-M aggregation
approach. The set of flex-objects F is updated with a sequence of incoming
updates: u1, u2,...,uk. Each update ui is of the form (f, ci), where f is a flex-
object and ci ∈ {+,−} indicates insertion (‘+’) or deletion (‘−’) of f to/from
F . The incremental approach outputs a sequence of aggregated flex-object up-
dates which correspond to u1, u2,...,uk. The approach has four phases: grouping,
optimization, bin-packing, and aggregation.

Grouping Phase. We map each flex-object into a d-dimensional point. This
point belongs to a cell in a d-dimensional uniform grid. Users specify the extent
of each cell in each dimension using thresholds T1, T2, ..., Td from the grouping
parameters. Every cell is identified by its coordinates in the grid. We only keep
track of populated cells, using an in-memory hash table, denoted as the group
hash. This table stores key-value pairs, where the key is the cell coordinates
and the value is the set of flex-objects from F mapped to this cell. We combine
adjacent populated cells into a group. A group can be either created, deleted,
or modified. Group changes are stored in a list, denoted as the group changes
list. Figure 4 visualizes the effect of adding a flex-object f1. f1 is mapped to a
2-dimensional point which lies in the grid cell c2. The coordinates of c2 are used
to locate a group in the group hash. The found group is updated by inserting f1
into its list of flex-objects. Finally, a change record indicating that the group was
modified is inserted into the group changes list. In the cases when a group is not
found in the group hash, a new group with an unique id and a single populated
cell c2 is created. Also, if the group changes list already contains a change record
for a particular group, the record is updated to reflect the combination of the
changes.

Optimization Phase. This phase is only executed when aggregation is trig-
gered, either (1) periodically, (2) after a certain number of updates, or (3) when

Grid Group hash Group
changes list

….
….
….

-modified

Flex-object
f1

c2
c2

Stores all groups with all
objects from F

Probing/
addingMapping

Group
updating

c2: f5,f2,f1
c4: f6,f7,f8

Change
tracking

Group with
populated cells

f1 g2

g2:

g2

…
…
…

Fig. 4. Processing the addition of a flex-object in the grouping phase

390 L. Šikšnys, M.E. Khalefa, and T.B. Pedersen

the latest aggregates are requested. During this phase, we consolidate the group
changes list. For each update of a group g in the list, we identify its adjacent
groups ga1 , g

a
2 , . . . by probing the group-hash. Then, for each adjacent group gai ,

a minimum bounding rectangle (MBR) is computed over all points that contains
flex-objects from the groups g and gai . If the extent of the MBR in all dimen-
sions are within the user-specified thresholds, we combine the groups g and gai
(see merge in Figure 5). Otherwise, if the MBR of g in any dimension is larger
than the size of a grid cell, we perform a group split (depicted in Figure 5). Any
over-sized group is partitioned into groups of a single grid cell, and, for every
individual group, an MBR is computed. Then, the two groups with the closest
MBRs are merged until the grouping constraint is violated. Then, g is substi-
tuted the with newly built groups. Groups changes incurred during merging and
splitting are added to the group change list.

Group merge

g1 g2

g3

g2

g5 g5

Group split

Group
changes list

g6

Group Hash

0 1 2

7

8

9

0 1 2

7

8

9

0 1 2

4

5

6

0 1 2

4

5

6c04
c05
c07
c08
c15
c18

Before optimization After optimization

g5
g5
g3
g1
g5
g2......

g2
g5

-modified
-modified......

Group Hash
c04
c05
c07
c08
c15
c18

g6
g5
g2
g2
g5
g2......

g2
g5
g1
g3
g6

-modified
-modified
-deleted
-deleted
-added......

due to
merge

opportunity

due to
oversized

group

Group
changes list

Fig. 5. Flow of data in the optimization phase

Bin Hash

g7
b71: f7
b72: 2f4

......

Group
changes list
g7 -modified

......

Bin Hash

g7

......

�Find
Integrate into

sub-groups
Generate
changes

wmin wmax

b71
b72

0

w(f4)w(f2)

w(f1)

wmin wmax

b71
b72

0

w(f2)w(f1)

w(f3)

w(f5)b73

b71: f1f2
b72: f3
b73: f5

Changes to the
aggregation phase

Before bin-packing After bin-packing
(b71, -modified)
(b72, -modified)
(b73, -created)

add={f3,f5}� � delete ={f4}

Fig. 6. Flow of data in the bin packing phase

Aggregating and Disaggregating Flexibility Objects 391

Bin-Packing Phase. We maintain a hash table, denoted the bin hash, which
maps from each group, produced in the grouping phase, to its bins (as described
in Section 5). In this phase, we propagate updates from the group change list
to bins. We first compare existing bins with an updated group to compute the
deltas to obtain added and deleted flex-objects, Δadded and Δdelete, respectively.
Then, we discard from the bins the flex-objects that are in Δdelete. Groups with
total weight less than wmin are deleted and flex-objects from these groups as well
as from Δadded are included into other existing bins using the first fit decreasing
strategy [22]. New bins are created, if needed.

Figure 6 shows how the bins of the group g7 are updated when lower and
upper bounds wmin and wmax are set. Finally, all bins changes are pipelined
to the aggregation phase. Flex-objects that did not fit to any bin (due to their
weight being lower than wmin or higher than wmax) are stored in a separate list.

Aggregation Phase. We maintain a hash table, denoted as the aggregate hash,
whichmaps from each individual bin to an aggregated flex-object. Each aggregated
flex-object has references to the original flex-objects. Thus, for every bin change,
added and deleted non-aggregated flex-objects (see Δadd and Δdelete in Figure 7)
are found and used to incrementally update an aggregate flex-object. If there are
no deletes, N-to-1 aggregation is applied for every added object. Otherwise, an
aggregate is recomputed from scratch by applying N-to-1 aggregation on all object
in a bin. Finally, all changed aggregated flex-objects are provided as output.

7 Experimental Evaluation

In this section, we present the experimental evaluation of the full incremental
N-to-M aggregation approach. As there are no other solutions for flex-object
aggregation and disaggregation, we propose two rival implementations: Hierar-
chical Aggregation and SimGB. In Hierarchical Aggregation, we use agglomera-
tive hierarchical clustering for the grouping phase. First, the approach assigns
each flex-object to individual clusters. Then, while no grouping constraints are
violated, it incrementally merges the two closest clusters. The distance between
two clusters is calculated based on the values of the grouping parameter flex-
object attributes. For SimGB, we apply the similarity group-by operator [19]
for one grouping parameter at a time, thus partitioning the input into valid

Aggregate Hash
b72 a72: f2f4

......

�Find
Apply N-to-1
aggregation

incrementaly

Generate
changesChanges from the

bin-packing phase

Before aggregation After aggregation

(a72, -modified)(b72:f3, -modified)

� Apply N-to-1
aggregation
for 2 objects

a72={f3}

Aggregate Hash
b72 a72: f3

......

i=1..n
����������������delete n=|b72|
����������������delete n=| |add�

add=b72-a72={f3}

�delete=a72-b72={f2f4}

Fig. 7. Aggregation phase

392 L. Šikšnys, M.E. Khalefa, and T.B. Pedersen

0 2 4 6 8 10

x 10
5

0

0.5

1

1.5

2

2.5
x 10

5

Flex−object count

A
g

g
re

g
a

te
d

 f
le

x−
o

b
je

ct
 c

o
u

n
t

EST=0, TFT=0

EST=250, TFT=0

EST=0, TFT=6

EST=250, TFT=6

0 2 4 6 8 10

x 10
5

0

5

10

15

20

25

30

35

Flex−object count

A
g

g
re

g
a

tio
n

 t
im

e
,

s

EST=0, TFT=0

EST=250, TFT=0

EST=0, TFT=6

EST=250, TFT=6

0 10 20 30 40
−5

0

5

10

15

20

Aggregation time, s

D
is

a
g

g
re

g
a

tio
n

 t
im

e
,

s y = 0.47*x − 0.43

Experiment points

 linear fit

(a) Compr. perf. (b) Aggregation time (c) Disagg./agg. time

BP−off BP−on
0

0.5

1

1.5

2

2.5

P
ro

ce
ss

in
g

 t
im

e
,

s

BP−off BP−on
0

200

400

600

800

1000

1200

M
e

m
o

ry
 u

sa
g

e
,

M
B

Grouping

Bin−packing

Aggregation

500k obj.

182k agg. obj

Work space

500 1k 2k 4k 8k 16k 32k 64k128k256k
0

1

2

3

4

Flex−object additions and removals

In
cr

e
m

e
n

ta
l a

g
g

re
g

a
tio

n
 t

im
e

,
s

Incremental aggregation time

500k objects aggregation time

0 2 4 6 8 10

x 10
5

0

5

10

15

20

25

30

35

Flex−object count

A
g

g
re

g
a

tio
n

 t
im

e
,

s

Hier. Agg.,EST=250,TFT=6

SimGB,EST=250,TFT=6

Our Inc. Approach,EST=250,TFT=6

(d) Time/memory usage (e) Incr. agg. time (f) Diff. approaches

Fig. 8. Results of the scalability and incremental behavior evaluation

groups of similar flex-objects. For the evaluation, we use a synthetic flex-object
dataset from the the MIRABEL project. The dataset contains one million energy
consumption request flex-objects. The earliest start time (tes) is distributed uni-
formly in the range [0, 23228]. The number of slices and the time flexibility values
(tls − tes) follow the normal distributions N (8, 4) and N (20, 10) in the ranges
[10, 30] and [4, 12], respectively; the slice duration is fixed to 1 time unit for all
flex-objects, thus profiles are from 2.5 to 7.5 hours long. Experiments were run
on a PC with Quad Core Intel R©Xeon R©E5320 CPU, 16GB RAM, OpenSUSE
11.4 (x86 64), and Java 1.6. Unless otherwise mentioned, the default values of the
experiment parameters are: (a) The number of flex-objects is 500k. (b) EST = 0
(Earliest Start Time Tolerance) and TFT = 0 (Time Flexibility Tolerance) are
used as the grouping parameters. They apply on the Earliest Start Time (tes)
and Time Flexibility (tls−tes) flex-object attributes, respectively. (c) The aggre-
gate constraint is unset (bin-packing is disabled). We also perform experiments
with bin-packing enabled (explicitly stated).

Scalability. For evaluating flex-object compression performance and scalability,
the number of flex-offers is gradually increased from 50k to 1000k. Aggregation
is performed using two different EST and TFT parameter values: EST equal
to 0 or 250, and TFT equal to 0 or 6. Disaggregation is executed with ran-
domly generated instances of aggregated flex-objects. The results are shown
in Figure 8(a-d). Figure 8(a-b) shows that different aggregation parameter val-
ues lead to different compression factors and aggregation times. Disaggregation
is approx. 2 times faster than aggregation (see Figure 8(c)) regardless of the flex-
object count and grouping parameter values. Most of the time is spent in the
bin-packing (if enabled) and N-to-1 aggregation phases (the 2 left bars in Fig-
ure 8(d)). Considering the overhead associated with incremental behavior, the

Aggregating and Disaggregating Flexibility Objects 393

10
0

10
1

10
2

10
2

10
3

10
4

10
5

10
6

Eearliest start time tolerance (EST)

A
g

g
re

g
a

te
d

 o
b

je
ct

 c
o

u
n

t

10
0

10
1

10
2

10
0

10
1

10
2

A
g

g
re

g
a

tio
n

 t
im

e
,

s

Aggregated flex−object count

Aggregation time

0 1 2 3 4 5 6
0

0.5

1

1.5

2
x 10

5

Time flexibility tolerance (TFT)

A
g

g
re

g
a

te
d

 f
le

x−
o

b
je

ct
 c

o
u

n
t

0 1 2 3 4 5 6
0

10

20

F
le

xi
b

ili
ty

 lo
ss

,
%

Flexibility loss

Aggregated flex−object count

0 2 4 6 8 10

x 10
5

2

2.5

3

3.5

4

4.5

5
x 10

4

Flex−object count

A
g

g
re

g
a

te
d

 f
le

x−
o

b
je

ct
 c

o
u

n
t

Group opt. − on,EST=0,TFT=6

Group opt. − off,EST=0,TFT=6

(a) Effect of EST (b) Effect of TFT (c) Grp. opt. effect

0 2 4 6 8 10

x 10
5

0

1

2

3

4

5

6

7

Flex−object count

E
xe

cu
tio

n
 t

im
e

,
s

Total time,Grp.opt−on,EST=0,TFT=6

Total time,Grp.opt−off,EST=0,TFT=6

Grp. time,Grp.opt−on,EST=0,TFT=6

Grp. time,Grp.opt−off,EST=0,TFT=6

0 2 4 6 8 10

x 10
5

5

10

15

20

25

Flex−object count

F
le

xi
b

ili
ty

 lo
ss

,
%

BP−off,EST=0,TFT=6

BP−off,EST=250,TFT=6

BP−on,EST=0,TFT=6

BP−on,EST=250,TFT=6

0 2 4 6 8 10

x 10
5

0

20

40

60

80

100

120

140

Flex−object count

A
g

g
re

g
a

tio
n

 t
im

e
,

s

BP−off,EST=0,TFT=6

BP−off,EST=250,TFT=6

BP−on,EST=0,TFT=6

BP−on,EST=250,TFT=6

(d) Grp. opt. cost (e) Bin-packing effect (f) Bin-packing cost

Fig. 9. Results of the grouping, optimization, and bin-packing evaluation

amount of memory used by the approach is relatively small compared to the
footprint of the original and aggregated flex-objects. Memory usage increases
when bin-packing is enabled.

Incremental Behavior. When evaluating incremental aggregation performance,
we first aggregate 500k flex-objects. Then, for different k values ranging from
500 to 256k, we insert k new flex-objects and remove k randomly selected flex-
objects. The total number of flex-objects stays at 500k. For every value of k, we
execute incremental aggregation. As seen from Figure 8(e), the updates can be
processed efficiently so our approach offers substantial time savings compared
to the case when all 500k flex-objects are aggregated from scratch (the line in
the figure). We then compare the total time to process flex-objects with our
incremental approach to the other two (inherently non-incremental) approaches
- Hierarchical Aggregation and SimGB. As seen in Figure 8(f), our incremental
approach is competitive to SimGB in terms of scalability. The overhead associ-
ated with the change tracking in our approach is not significant in the overall
aggregation time. Additionally, the hierarchical clustering-based approach (Hier.
Agg.) incurs very high processing time even for small datasets (due to a large
amount of distance computations), and is thus not scalable enough for the flex-
object aggregation problem.

Grouping Parameters Effect. As seen in Figure 9(a), the EST significantly
affects the flex-object compression factor. For this dataset, increasing EST by a
factor of two leads to a flex-object reduction by approximately the same factor.
However, the use of high EST values results in aggregated flex-object profiles
with more slices. Aggregating these requires more time (see “aggregation time”
in Figure 9(a)). The TFT parameter has a significant impact on the flexibility

394 L. Šikšnys, M.E. Khalefa, and T.B. Pedersen

loss (see “flexibility loss” in Figure 9(b)). Higher values of TFT incur higher
flexibility losses. When it is set to 0, aggregation incurs no flexibility loss, but
results in a larger amount of aggregated flex-objects. When the number of dis-
tinct time flexibility values in a flex-object dataset is low (as in our case), the
best compression with no flexibility losses can be achieved when TFT = 0 and
the other grouping parameters are unset (or set to high values). However, due
to the long durations of profiles and high total amount values, the produced
aggregated flex-object might violate the aggregate constraint.

Optimization and Bin-packing. We now study the optimization and bin-
packing phases. As seen in Figure 9(c-d), the optimization phase is relatively cheap
(Figure 9(d)), and it substantially contributes to the aggregated flex-object count
reduction (Figure 9(c)). For bin-packing evaluation, the aggregate constraint was
set so that the time flexibility of an aggregate is always at least 8 (wmin = 8,
equiv. to 2 hours). By enabling this constraint, we investigate the overhead asso-
ciated to bin-packing and its effect on the flexibility loss. As seen in Figure 9(e), by
bounding the time flexibility for every aggregate, the overall flexibility loss can be
limited. However, bin-packing introduces a substantial overhead that depends on
the number of objects in flex-object groups after the optimization phase (see Fig-
ure 9(f)). When this number is small (EST = 0, TFT = 6), the overhead of bin-
packing is insignificant. However, when groups are large (EST = 250, TFT = 6),
bin-packing overhead becomes very significant.

In summary, we show that our incremental aggregation approach scales
linearly in the number of flex-object inserts. The overhead associated with incre-
mental behavior is insignificant. Our approach performs aggregation incremen-
tally just as fast as efficient non-incremental grouping approaches (SimGB). The
trade off-between flex-object compression factor and flexibility loss can be con-
trolled using the grouping parameters. The compression factor can be further
increased efficiently by group optimization. Disaggregation is approx. 2 times
faster than aggregation.

8 Related Work

Related research fall in several categories.

Clustering. Many clustering algorithms have been proposed, including den-
sity-based (e.g., BIRCH [24]), centroid-based (e.g., K-Means [13]), hierarchical
clustering (e.g., SLINK [18]), and incremental algorithms such as incremental
K-means [25] and incremental BIRCH [10]. In comparison to our approach, clus-
tering solves only the grouping part of the problem, which is a lot simpler than
the whole problem. For grouping alone, the closest work is incremental grid-
based clustering [16,9,12], where we, in comparison, improve the clusters across
the grid boundaries and limit the number of items per each cluster.

Similarity Group By. SimDB [20] groups objects based on the similarity be-
tween tuple values, and is implemented as a DBMS operator in [19]. However,
SimDB again only solves the grouping part of the problem, and is (unlike our
approach) not incremental, which is essential for us.

Aggregating and Disaggregating Flexibility Objects 395

Complex objects. Complex objects with multidimensional data exists in many
real-world applications [14] and can be represented with multidimensional data
models [17]. Several research efforts (e.g., [5] and [23]) have been proposed to
aggregate complex objects. However, these efforts do not consider the specific
challenges related to aggregating flex-objects.

Temporal Aggregation. Several papers have addressed aggregation for tempo-
ral and spatio-temporal data including: instantaneous temporal aggregation [3],
cumulative temporal aggregation [21,1,11], histogram-based aggregation [6] and
multi-dimensional temporal aggregation [4]. These techniques differ in the way
how a time line is partitioned into time intervals and how an aggregation group
is associated with each time instant. The efficient computation of these time in-
tervals poses a great challenge and therefore various techniques that allow com-
puting them efficiently are proposed [8,7,15]. Unfortunately, these techniques
only deal with simple data items without flexibilities, making them unsuitable
for aggregation of flex-objects.

9 Conclusion and Future Work

Objects with inherent flexibilities, so-called flexibility objects (flex-objects), oc-
cur in both scientific and commercial domains. Managing flex-objects with ex-
isting DBMSs is infeasible due to their complexity and data volume. Thus, a
new tailor-made database for flex-objects is needed. This paper was the first
to discuss flex-object databases, focusing on the most important operations of a
flex-object database: aggregation and disaggregation. The paper formally defined
the concept of flexibility objects and provided a novel and efficient grid-based
solution considering the grouping of flex-objects, alternatives for computing ag-
gregates, the disaggregation process, and the requirements associated to these.
The approach allowed efficient incremental computation. Extensive experiments
on data from a real-world energy domain project showed that the apporach
provided very good performance while satisfying all entailed requirements.

As future work, other challenges related to the flex-object database have to
be addressed. These include flex-object storage and visualization, as well as
support for other types of queries (flexibility availability, adjustment potential,
etc.). Another interesting topic is aggregation and disaggregation techniques for
flex-objects with flexibility in the profile slices durations.

References

1. Arasu, A., Widom, J.: Resource sharing in continuous sliding-window aggregates.
In: Proc. of VLDB, pp. 336–347 (2004)

2. Boehm, M., Dannecker, L., Doms, A., Dovgan, E., Filipic, B., Fischer, U., Lehner,
W., Pedersen, T.B., Pitarch, Y., Siksnys, L., Tusar, T.: Data management in the
mirabel smart grid system. In: Proc. of EnDM (2012)

3. Böhlen, M.H., Gamper, J., Jensen, C.S.: How would you like to aggregate your
temporal data? In: Proc. of TIME, pp. 121–136 (2006)

396 L. Šikšnys, M.E. Khalefa, and T.B. Pedersen

4. Böhlen, M.H., Gamper, J., Jensen, C.S.: Multi-dimensional Aggregation for Tem-
poral Data. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopou-
los, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS,
vol. 3896, pp. 257–275. Springer, Heidelberg (2006)

5. Cabot, J.,Mazón, J.-N., Pardillo, J., Trujillo, J.: SpecifyingAggregation Functions in
Multidimensional Models with OCL. In: Parsons, J., Saeki, M., Shoval, P., Woo, C.,
Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 419–432. Springer, Heidelberg (2010)

6. Chow, C.Y., Mokbel, M.F., He, T.: Aggregate location monitoring for wireless
sensor networks: A histogram-based approach. In: Proc. of MDM, pp. 82–91 (2009)

7. Gao, D., Gendrano, J.A.G., Moon, B., Snodgrass, R.T., Park, M., Huang, B.C.,
Rodrigue, J.M.: Main memory-based algorithms for efficient parallel aggregation
for temporal databases. Distributed Parallel Databases 16(2), 123–163 (2004)

8. Gordevičius, J., Gamper, J., Böhlen, M.: Parsimonious temporal aggregation. In:
Proc. of EDBT, pp. 1006–1017 (2009)

9. Hou, G., Yao, R., Ren, J., Hu, C.: A Clustering Algorithm Based on Matrix over
High Dimensional Data Stream. In: Wang, F.L., Gong, Z., Luo, X., Lei, J. (eds.)
WISM 2010. LNCS, vol. 6318, pp. 86–94. Springer, Heidelberg (2010)

10. Jensen, C.S., Lin, D., Ooi, B.C.: Continuous clustering of moving objects. IEEE
Trans. Knowl. Data Eng. 19(9), 1161–1174 (2007)

11. Jin, C., Carbonell, J.G.: Incremental Aggregation on Multiple Continuous Queries.
In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS
(LNAI), vol. 4203, pp. 167–177. Springer, Heidelberg (2006)

12. Lei, G., Yu, X., Yang, X., Chen, S.: An incremental clustering algorithm based on
grid. In: Proc. of FSKD, pp. 1099–1103. IEEE (2011)

13. Macqueen, J.B.: Some methods of classification and analysis of multivariate ob-
servations. In: Proc. of 5th Berkeley Symposium on Math. Stat. and Prob., pp.
281–297 (1967)

14. Malinowski, E., Zimnyi, E.: Advanced Data Warehouse Design: From Conventional
to Spatial and Temporal Applications, 1st edn. Springer (2008)

15. Moon, B., Fernando Vega Lopez, I., Immanuel, V.: Efficient algorithms for large-
scale temporal aggregation. TKDE 15(3), 744–759 (2003)

16. Park, N.H., Lee, W.S.: Statistical grid-based clustering over data streams. SIG-
MOD Rec. 33(1), 32–37 (2004)

17. Pedersen, T.B., Jensen, C.S., Dyreson, C.E.: A foundation for capturing and query-
ing complex multidimensional data. Information Systems 26(5), 383–423 (2001)

18. Sibson, R.: SLINK: An optimally efficient algorithm for the single-link cluster
method. The Computer Journal 16(1) (January 1973)

19. Silva, Y.N., Aly, A.M., Aref, W.G., Larson, P.A.: SimDB: A similarity-aware
database system. In: Proc. of SIGMOD (2010)

20. Silva, Y.N., Aref, W.G., Ali, M.H.: Similarity group-by. In: Proc. of ICDE, pp.
904–915 (2009)

21. Yang, J., Widom, J.: Incremental computation and maintenance of temporal ag-
gregates. VLDB 12(3), 262–283 (2003)

22. Yue,M.: A simple proof of the inequality FFD(L) ≤ 11
9
OPT (L)+1,∀L for the FFD

bin-packing algorithm. Acta Mathematicae Applicatae Sinica 7(4), 321–331 (1991)
23. Zhang, D.: Aggregation computation over complex objects. Ph.D. thesis, University

of California, Riverside, USA (2002)
24. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering

method for very large databases. In: Proc. of SIGMOD, pp. 103–114 (1996)
25. Zhang, Z., Yang, Y., Tung, A.K.H., Papadias, D.: Continuous k-means monitoring

over moving objects. IEEE Trans. Knowl. Data Eng. 20(9), 1205–1216 (2008)

Fine-Grained Provenance Inference for a Large

Processing Chain with Non-materialized
Intermediate Views

Mohammad Rezwanul Huq, Peter M.G. Apers, and Andreas Wombacher

University of Twente, 7500AE, Enschede, The Netherlands
{m.r.huq,p.m.g.apers,a.wombacher}@utwente.nl

Abstract. Many applications facilitate a data processing chain, i.e. a
workflow, to process data. Results of intermediate processing steps may
not be persistent since reproducing these results are not costly and these
are hardly re-usable. However, in stream data processing where data
arrives continuously, documenting fine-grained provenance explicitly for
a processing chain to reproduce results is not a feasible solution since
the provenance data may become a multiple of the actual sensor data.
In this paper, we propose the multi-step provenance inference technique
that infers provenance data for the entire workflow with non-materialized
intermediate views. Our solution provides high quality provenance graph.

1 Introduction

Stream data processing involves a large number of sensors and a massive amount
of sensor data. To apply a transformation process over this infinite data stream,
a window is defined considering a subset of tuples. The process is executed
continuously over the window and output tuples are produced. Applications
take decisions as well as control operations using these output tuples. In case
of any wrong decision, it is important to reproduce the outcome for validation.
Reproducibility refers to the ability of producing the same output after having
applied the same operation on the same set of input data, irrespective of the
operation execution time. To reproduce results, we need to store provenance
data, a kind of metadata relevant to the process and associated input/output
dataset.

Data provenance refers to the derivation history of data from its original
sources [1]. It can be defined either at the tuple-level or at the relation-level
[2] also known as fine-grained and coarse-grained data provenance respectively.
Fine-grained data provenance can achieve reproducibility because it documents
the used set of input tuples for each output tuple and the transformation pro-
cess as well. On the other hand, coarse-grained data provenance cannot achieve
reproducibility because of the updates and delayed arrival of tuples. However,
maintaining fine-grained data provenance in stream data processing is challeng-
ing. If a window is large and subsequent windows overlap significantly, the size of
provenance data becomes a multiple of the actual sensor data. Since provenance

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 397–405, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

398 M.R. Huq, P.M.G. Apers, and A. Wombacher

data is ’just’ metadata and less often used by the end users, this approach seems
to be infeasible and too expensive [3].

In addition, researchers often facilitate scientific workflows consisting of mul-
tiple processing elements to produce results. Some of these processing elements
are intermediary steps and produce intermediate results. The source and output
tuples are stored persistently since they are the basis for the processing and
the result used for the analysis. However, the intermediate results may not be
persistent due to the lack of their reuse. It is possible to document provenance
information explicitly for these intermediate processing steps. However, explicit
documentation is expensive in terms of storage requirements and it can be sig-
nificantly reduced by inferring provenance data. Since intermediate results are
transient, provenance inference in presence of non-materialized views is different
than what has been proposed in [4].

In this paper, we propose the multi-step provenance inference technique which
can infer provenance for an entire processing chain with non-materialized in-
termediate views. To accomplish this, we facilitate coarse-grained provenance
information about the processing elements as well as reproducible states of the
database enabled by a temporal data model. Moreover, the multi-step inference
technique only needs to observe the processing delay distribution of all pro-
cessing elements as a basis of inference, unlike the work reported in [5], which
requires to observe more specific distributions. The multi-step algorithm provides
an inferred provenance graph showing all the contributing tuples as vertices and
the relationship between tuples as edges. This provenance graph is useful to
researchers for analyzing the results and validating their models.

2 Motivating Scenario

RECORD1 is one of the projects in the context of the Swiss Experiment2, which
is a platform to enable real-time environmental experiments. Some sensors mea-
sure electric conductivity of water which refers to the level of salt in the water.
Controlling the operation of a nearby drinking water well by using the available
sensor data is the goal.

Fig. 1 shows the workflow. This workflow is used to visualize the fluctuation
of electric conductivity in the selected region of the river. Three sensors are
deployed, known as: Sensor#1, Sensor#2 and Sensor#3. For each sensor, there
is a corresponding source processing element named PE1, PE2 and PE3 which
provides data tuples in persistent views S1, S2 and S3 respectively. Views hold
data tuples and processing elements are executed over views. S1, S2 and S3 are
the input for the Union processing element which produces a view V1 as output.
Each data tuple in the view V1 is attached with an explicit timestamp referring
to the point in time when it is inserted into the database, i.e. transaction time.
Next, V1 is fed to the processing element P1 which calculates the average value
per window and then generates a new view V2. V2 is not materialized since

1 http://www.swiss-experiment.ch/index.php/Record:Home
2 http://www.swiss-experiment.ch/

http://www.swiss-experiment.ch/index.php/Record:Home
http://www.swiss-experiment.ch/

Fine-Grained Provenance Inference for a Large Processing Chain 399

Fig. 1. Example workflow

it holds the intermediate results which are not interesting to the researchers
as well as the results are easy to reproduce. The task of P2 is to calculate
the maximum and minimum value per input window of view V2 and store the
aggregated value in view V3 which is not persistent. Next, V3 is used by the
processing element P3, calculating the difference between the maximum and
minimum electric conductivity. The view V4 holds these output data tuples and
gives significant information about the fluctuation of electric conductivity over
the region. Since this view holds the output of the processing chain which will be
used by users to evaluate and interpret different actions, view V4 is materialized.
Later, Visualization processing element facilitates V4 to produce a contour map
of the fluctuation of the electric conductivity. If the map shows any abnormality,
researchers may want to reproduce results to validate their model. We consider
the shaded part in Fig. 1 to explain and evaluate our solution later in this paper.

3 Proposed Multi-step Provenance Inference

3.1 Overview of the Algorithm

At first, we document coarse-grained provenance information of all processing
elements which is a one-time action. Next, we observe the processing delay dis-
tributions δ of all processing elements which allow us to to make an initial tuple
boundary on the materialized input view. This phase is known as backward com-
putation. Then, for each processing step, processing windows are reconstructed,
i.e. inferred windows, and we compute the probability of existence of an inter-
mediate output tuple at a particular timestamp based on the δ distributions and
other windowing constructs documented as coarse-grained provenance. Our al-
gorithm associates the output tuple with the set of contributing input tuples and
this process is continued till we reach the chosen tuple for which provenance in-
formation is requested. This phase is known as forward computation. It provides
an inferred provenance graph for the chosen tuple. To explain these phases, we
consider the shaded processing chain in Fig. 1 and focus on time-based windows.

3.2 Documenting Coarse-Grained Provenance

The stored provenance information is quite similar to process provenance re-
ported in [7]. Inspired from this, we keep the following information of a process-
ing element specification based on [8] as coarse-grained data provenance.

400 M.R. Huq, P.M.G. Apers, and A. Wombacher

– Number of input views: indicates the total number of input views.
– View names: a set of input view names.
– Window types: a set of window types; one element for each input view. The

value can be either tuple or time.
– Window Size: a set of window size; one element for each input view. The

value actually represents the size of the window.
– Trigger type: specifies how the processing element will be triggered for exe-

cution (e.g. tuple or time based)
– Trigger rate: specifies when a processing element will be triggered.

3.3 Backward Computation: Calculating Initial Tuple Boundary

We apply a temporal data model on streaming data to retrieve appropriate
tuples based on a given timestamp. The temporal attributes are: i) valid time
or application timestamp represents the point in time when a tuple is created and
ii) transaction time or system timestamp represents the point in time when a
tuple is entered into the database. A view Vi contains tuples tk

i where k indicates
the transaction time. We define a window wj

i based on tuples’ transaction time
over the view Vi which is an input view of processing element Pj . The window
size of wj

i is referred to as WSj
i. The processing element Pj is triggered after

every TRj time units defined as trigger rate. The processing delay distribution
of Pj is referred to as δj distribution.

To calculate the initial tuple boundary, δj distributions of all processing ele-
ments and window size of all input views are considered assuming that the view
Vj is the input of Pj . Fig. 2 shows a snapshot of all the associated views during
the execution. It also shows the original provenance information represented by
solid edges for a chosen output tuple t46

4. It means that the chosen tuple is in
view V4 and the transaction time is 46 which is our reference point. To calcu-
late the upper bound of the initial tuple boundary, the minimum delays of all
processing elements are subtracted from the reference point. The lower bound is
calculated by subtracting the maximum delays of all processing elements along
with the associated window sizes from the reference point. Thus:

upperBound = reference point −
n∑

j=1

(min(δj)) (4.1)

lowerBound = reference point −
n∑

j=1

(max(δj))−
n∑

j=1

(WSj
j) (4.2)

where n = total number of processing elements. In the formula, the upper bound
is always exclusive and the lower bound is inclusive.

For the chosen tuple t46
4, according to Eq. 4.1 and Eq. 4.2, upperBound =

46− 3 = 43 and lowerBound = 46− 6− 24 = 16 respectively based on the given
parameters mentioned in Fig. 2. Therefore, the initial tuple boundary is [16, 43).
This boundary may contain some non-contributing input tuples to the chosen
output tuple which will be removed during the next phase of inference.

Fine-Grained Provenance Inference for a Large Processing Chain 401

Fig. 2. Snapshot of views during the execution

3.4 Forward Computation: Building Provenance Graph

In this phase, the algorithm builds the inferred provenance graph for the chosen
tuple. Our proposed algorithm starts from the materialized input view V1. Since
V1 is materialized, all the tuples in V1 with transaction time k have been assigned
with probability, P (tk

1) = 1. Fig. 2 shows that V1 has 5 different triggering points
in it’s initial tuple boundary which are at time 20, 25, 30, 35 and 40 based on
the trigger rate of P1. Since the output view of P1, V2 is not materialized, the
exact transaction time of the output tuple of each of these 5 executions is not
known. Therefore, we calculate the probability of getting an output tuple at a
specified transaction time k based on the δ1 distribution. We call these output
tuples as prospective tuples. Assume that, for all Pj , P (δ(wj

j) = 1) = 0.665 and
P (δ(wj

j) = 2) = 0.335. For all the triggering points at l of P1, the probability of
getting a prospective tuple at k in V2 can be calculated based on the following
formula.

P (tk
j) = P (δ(wj−1

j−1) = k − l) [j = 2] (4.3)

Therefore, based on Eq. 4.3 the probability of getting an output tuple at time
26 and at time 27 for the triggering at time 25 is 0.665 and 0.335 respectively.
For the triggering point at 40, the output tuple could be observed either at 41
or 42. Since both of these timestamps fall outside the last triggering point of P2,
these tuples are not considered in the provenance graph. The same pruning rule
also applies to the output tuple observed due to the triggering at time 20. In this
case, the output tuple falls outside the window of the last processing element
P3. The associations among these pruned tuples are shown as dotted edges in
Fig. 2.

Next, we move to view V2 which is the input view of intermediate processing
element P2. In an intermediate processing step, the input tuples are produced

402 M.R. Huq, P.M.G. Apers, and A. Wombacher

Fig. 3. The inferred provenance graph for both options

by different triggering points of the previous processing element and they might
fall within the same window of the current processing element. In P2, there is a
triggering point at 32 and the window contains tuples within the range [24, 31)
which are the output tuples produced by triggering points at 25 and 30 of P1.
We define this as contributing points, cp and here cp = 2. Moreover, the possible
timestamps to have the output tuple due to a particular triggering point might
fall in two different input windows which results into different choice of paths to
construct the provenance graph. Suppose, for the triggering point at 32 of P2,
there are two options: i) inclusion of t31

2 and ii) exclusion of t31
2. Fig. 3 shows

provenance graph for both options. The probability of the existence of a tuple
at transaction time k produced by a triggering point at time l of Pj where j > 2
can be calculated as:

P (tk
j) =

cp∏
x=1

(
∑

P (prospective tuples))× P (δ(Wj−1
j−1) = k − l) [j > 2]

(4.4)

Assuming aforesaid option i), the probability of getting an output tuple at time
33 due to the triggering at time 32 is:

P (t33
3) = [{P (t26

2) + P (t27
2)} × {P (t31

2)}]× P (δ(W2
2) = 1) = 0.442

where as in option ii) which excludes t31
2:

P (t33
3) = [{P (t26

2) + P (t27
2)}]× P (δ(W2

2) = 1) = 1× 0.665 = 0.665

Eq. 4.4 is slightly modified while calculating the probability of the chosen tu-
ple. Since this output view is materialized, the existence of the chosen tuple at
reference point is certain. Therefore, δj distribution does not play a role in the
formula. Assuming option i) which indicates the inclusion of t31

2, the probability
of getting an output tuple at time 46 for the execution at time 44 is:

P (t46
4) = [{P (t33

3) + P (t34
3)} × {P (t41

3) + P (t42
3)}]× 1

= [{0.442 + 0.223} × {0.665 + 0.335}]× 1 = 0.665

Fine-Grained Provenance Inference for a Large Processing Chain 403

Assuming option ii), P (t46
4) is 0.335. Fig. 3 shows the inferred provenance graph

for both options. The probability of each tuple is shown by the value within paren-
thesis. Since the provenance graph using option i) provides maximum probability
for the chosen tuple, our algorithm returns the corresponding provenance graph.
Comparing it with the original provenance graph shown in Fig. 2 by solid edges,
we conclude that the inferred provenance graph provides accurate provenance.

4 Evaluation

4.1 Evaluating Criteria and Test cases

We evaluate our proposed multi-step provenance inference algorithm using i) ac-
curacy and ii) precision and recall. The accuracy compares the inferredmulti-step
fine-grained data provenance with explicit fine-grained provenance information,
that is used as a ground truth. The precision and recall assess the quality of
the provenance graph. The simulation is executed for 10000 time units for the
entire processing chain. Based on queuing theory, we assume that tuples arrive
into the system following Poisson distribution. The processing delay δ for each
processing element also follows Poisson distribution. The δ-column for each pro-
cessing element in Table 1 represents avg(δj) and max(δj). The test cases are
chosen carefully based on the different types of window (e.g. overlapping/non-
overlapping, sliding/tumbling) and varying processing delay. Specially, test case
2 involves longer processing delay than the others.

4.2 Accuracy

Accuracy of the proposed technique is measured by comparing the inferred prove-
nance graph with the original provenance graph constructed from explicitly doc-
umented provenance information. For a particular output tuple, if these two
graphs match exactly with each other then the accuracy of inferred provenance
information for that output tuple is 1 otherwise, it is 0. We calculate the aver-
age of the accuracy for all output tuples produced by a given test case, called
as average accuracy which can be expressed by the formula: Average accuracy

= (
∑n

i=1 acci
n × 100)% where n = number of output tuples.

Table 1 shows the average and expected accuracy for different test cases. The
avg. accuracy of test case 1 is 81%. The 100% average accuracy has been achieved

Table 1. Different test cases used for evaluation and Evaluation Results

Test P1 P2 P3 Exp. Avg. Avg. Avg.
case WS TR δ WS TR δ WS TR δ Accuracy Accuracy Precision Recall

1 5 5 (1,2) 8 8 (1,2) 11 11 (1,2) 83% 81% 87% 98%
2 5 5 (2,3) 8 8 (2,3) 11 11 (2,3) 75% 61% 78% 89%
3 10 5 (1,2) 15 10 (1,2) 20 15 (1,2) 100% 100% 100% 100%
4 5 10 (1,2) 10 15 (1,2) 15 20 (1,2) 100% 100% 100% 100%
5 7 5 (1,2) 13 11 (1,2) 23 17 (1,2) 91% 90% 94% 97%

404 M.R. Huq, P.M.G. Apers, and A. Wombacher

for test cases 3 and 4. However, for test case 2, we achieve only 61% accuracy
due to the longer processing delay. If the processing delay is longer and new
tuples arrive before finish the processing, it increases the chance of failure of the
inference method.

Expected accuracy is calculated by taking the average of the probability of
being accurate of an inferred provenance graph generated for all output tuples.

It can be expressed as: Expected accuracy = (
∑n

i=1 P (acci=1)

n × 100)%. For the
given test case 1 and 5, expected and average accuracy are similar. For test case
3 and 4, they are the same. However, we see a notable difference in test case 2
where average accuracy is smaller than the expected one.

4.3 Precision and Recall

To calculate precision and recall of an inferred provenance graph, we consider
the edges between the vertices which represent the association between input
and output tuples, i.e. provenance information and then we compare the set of
edges between the inferred and original graph. Assume that, I is the set of edges
in the inferred graph and O is the set of edges in the original graph. Therefore,

precision = (
|I ∩O|
|I| × 100)% recall = (

|I ∩O|
|O| × 100)%

We calculate precision and recall for each output tuple and then compute the
average precision and average recall. In most of the cases, recall is higher than
precision. It means that the inferred provenance graph may contain some extra
edges which are not present in the original one. However, high values of both
precision and recall in all test cases suggest that the probability of an inferred
provenance graph to be meaningful to a user is high.

5 Related Work

In [10], authors described a data model to compute provenance on both relation
and tuple level. However, it does not address the way of handling streaming
data and associated overlapping windows. In [11], authors have presented an
algorithm for lineage tracing in a data warehouse environment. They have pro-
vided data provenance on tuple level. LIVE [12] is an offshoot of this approach
which supports streaming data. It is a complete DBMS which preserves explic-
itly the lineage of derived data items in form of boolean algebra. Since LIVE
explicitly stores provenance information, it incurs extra storage overhead.

In sensornet republishing [13], the system documents the transformation of
online sensor data to allow users to understand how processed results are derived
and support to detect and correct anomalies. They used an annotation-based
approach to represent data provenance explicitly. However, our proposed method
does not store fine-grained provenance data rather infer provenance data.

A layered model to represent workflow provenance is introduced in [14]. The
layers presented in the model are responsible to satisfy different types of prove-
nance queries including queries about a specific activity in the workflow.

Fine-Grained Provenance Inference for a Large Processing Chain 405

A relational DBMS has been used to store captured provenance data. The au-
thors have not introduced any inference mechanism for provenance data.

6 Conclusion and Future Work

The multi-step provenance inference technique provides highly accurate prove-
nance information for an entire processing chain, if the processing delay is not
longer than the sampling time of input tuples. Our evaluation shows that in
most cases, it achieves more than 80% accuracy. Our solution also provides an
inferred provenance graph with high precision and recall. In future, we will try
to extend this technique to estimate the accuracy beforehand.

References

1. Simmhan, Y.L., et al.: A survey of data provenance in e-science. SIGMOD
Rec. 34(3), 31–36 (2005)

2. Buneman, P., Tan, W.C.: Provenance in databases. In: International Conference
on Management of Data, pp. 1171–1173. ACM SIGMOD (2007)

3. Huq, M.R.: et al.: Facilitating fine grained data provenance using temporal data
model. In: Proc. of Data Management for Sensor Networks (DMSN), pp. 8–13
(2010)

4. Huq, M.R., Wombacher, A., Apers, P.M.G.: Inferring Fine-Grained Data Prove-
nance in Stream Data Processing: Reduced Storage Cost, High Accuracy. In:
Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011, Part
II. LNCS, vol. 6861, pp. 118–127. Springer, Heidelberg (2011)

5. Huq, M.R., Wombacher, A., Apers, P.M.G.: Adaptive inference of fine-grained data
provenance to achieve high accuracy at lower storage costs. In: IEEE International
Conference on e-Science, pp. 202–209. IEEE Computer Society Press (December
2011)

6. Bishop, C.M.: Patter Recognition and Machine Learning. Springer Sci-
ence+Business Media LLC (2006)

7. Simmhan, Y.L., et al.: Karma2: Provenance management for data driven workflows.
International Journal of Web Services Research, 1–23 (2008)

8. Wombacher, A.: Data workflow - a workflow model for continuous data processing.
Technical Report TR-CTIT-10-12, Centre for Telematics and Information Tech-
nology University of Twente, Enschede (2010)

9. Gebali, F.: Analysis of Computer and Communication Networks. Springer Sci-
ence+Business Media LLC (2008)

10. Buneman, P., Khanna, S., Tan, W.-C.: Why and Where: A Characterization of
Data Provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS,
vol. 1973, pp. 316–330. Springer, Heidelberg (2000)

11. Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations.
VLDB Journal 12(1), 41–58 (2003)

12. Das Sarma, A., Theobald, M., Widom, J.: LIVE: A Lineage-Supported Versioned
DBMS. In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp.
416–433. Springer, Heidelberg (2010)

13. Park, U., Heidemann, J.: Provenance in Sensornet Republishing. In: Freire, J.,
Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272, pp. 280–292. Springer,
Heidelberg (2008)

14. Barga, R., et al.: Automatic capture and efficient storage of e-science experiment
provenance. Concurrency and Computation: Practice and Experience 20(5) (2008)

Automatic Conflict Resolution in a CDSS

Fayez Khazalah1, Zaki Malik1, and Brahim Medjahed2

1 Department of Computer Science
Wayne State University, MI 48202
{fayez,zaki}@wayne.edu

2 Department of Computer & Information Science
University of Michigan - Dearborn, MI. 48128

brahim@umd.umich.edu

Abstract. A Collaborative Data Sharing System (CDSS) allows groups
of scientists to work together and share their data in the presence of dis-
parate database schemas and instances. Each group can extend, curate,
and revise its own database instance in a disconnected mode. At some
later point, the group may publish the updates it made for the benefit of
others and to get updates from other groups (if any). Any conflicting up-
dates are handled by the reconciliation operation which usually rejects
such updates temporally and marks them as “deferred”. The deferred
set is then resolved manually according to pre-defined data reconcilia-
tion policies, priorities, etc. for the whole group. In this paper, we present
an approach to resolve conflicts in an automatic manner. The focus is
to resolve conflicts in the deferred set by collecting feedbacks about the
quality of conflicting updates from local users, and then weighing, and
aggregating the different feedbacks to assess the most “trusted” update.

1 Introduction

A collaborative data sharing system facilitates users (usually in communities) to
work together on a shared data repository to accomplish their “shared” tasks.
Users of such a community can add, update, and query the shared repository [1],
and may thus contain inconsistent data at a particular time instance [2]. While
a relational DBMS can be used to manage the shared data, RDBMSs lack the
ability to handle such conflicting data [1]. Traditional integration systems (using
RDBMSs) usually assume a global schema, where autonomous data sources are
mapped to this global schema, and data inconsistencies are solved by applying
conflict resolution strategies [3] [4]. However, these systems only support queries
on the global schema and do not support update exchange. To remedy this
shortcoming, peer data management systems support disparate schemas [5] [6],
but they are also not flexible in terms of update propagation between different
schemas, and handling data inconsistency issues. Therefore, the concept of a
“multi-versioned database” has been proposed that allows for conflicting data
to be stored in the same database [7] [8]. Other similar approaches allow users to
annotate data items to express their positive or negative beliefs about different

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 406–415, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Automatic Conflict Resolution in a CDSS 407

data items, and each user is shown a consistent instance of the shared database
according to his own beliefs [1][9].

While the above mentioned collaborative data sharing approaches fulfill the
need of some scientific communities for data sharing, it is not the case with
others [6]. Collaborative data sharing systems (CDSSs) have been defined to
support the collaboration needs in such type of communities [6]. In a CDSS,
groups of scientists normally work on disparate schemas and database instances
in a disconnected mode, and at some later point, may decide to publish the
data updates publicly to other peers and/or get the updates from other peers.
The reconciliation operation in the CDSS engine imports the updates, and then
filters them based on trust policies and priorities for the current peer. It then
applies the non-conflicting and accepted updates on the local database instance,
while conflicting updates are grouped into individual conflicting sets of updates.
Each update of a set is assigned a priority level according to the trust policies of
the reconciling peer, and the update with the highest priority is selected to be
applied on the local database instance and the rest are rejected. When multiple
updates having the same preference or with no assigned preferences are found, it
marks those updates as “deferred”. The deferred updates are not processed and
not considered in future reconciliations until a user manually resolves the de-
ferred conflicts. We propose a conflict resolution approach that uses community
feedbacks to handle the conflicts that may arise in collaborative data sharing
communities, with potentially disparate schemas and data instances. The focus
is to allow the CDSS engine to automatically utilize community feedback for
the purpose of handling conflicting updates that are added to the deferred set
during the reconciliation operation and minimize (or omit altogether) the user
intervention.

2 Automated Conflict Resolution in CDSS

A CDSS only applies semi-automatic conflict resolution by accepting the highest-
priority conflicting updates, but it leaves for individual users the responsibility of
resolving conflicts for the updates that are deferred. In our proposed approach,
after the reconciliation operation adds a new conflict group to the deferred set,
the following steps are taken:

1. Local users are informed to rate the updates in the conflict group. When a
predefined number of user ratings are received, then it is marked as closed.

2. When a conflict group is closed, then the credibilities of the raters are
(re)computed based on the majority rating and the aggregation of the previ-
ously computed locally assessed reputations of this particular provider peer.
The reported ratings are then weighted according to the new credibilities.

3. The weighted aggregated value represents the locally assessed reputation of
the update’s provider peer as viewed by the reconciling peer.

4. Finally, the update which is imported from the provider peer with the high-
est assessed reputation value is applied to the reconciling peer’s instance
(making sure it does not violate any local constraints).

408 F. Khazalah, Z. Malik, and B. Medjahed

Local Reputation of a Provider Peer (LRPP). When a new conflict group
is added to the deferred set of a peer, it needs to resolve the conflict by choosing
a single update from the group and rejecting others. The decision is based on
the feedbacks of the local community.

Rating Updates. The reconciliation operation in a consumer peer pi notifies
local users when a new conflict group of updates (Gc) is inserted into the deferred
set Deferred(pi), along with a closing time for the rating process. Local users
of pi rate the updates of unresolved Gc in Deferred(pi). A user x (pxi) of pi
assigns a rating in the interval[0, 1] to each update of a provider peer pj in
Gc, where 0 identifies the rater’s extreme disbelief and 1 identifies the rater’s
extreme belief in an update. If the number of users who rate this Gc exceeds
percentage threshold (σi), the reconciliation operation marks this Gc as “closed”
and users cannot rate this Gc anymore. Otherwise, the reconciliation operation
extends the rating period.

Computing the Assessed LRPP . We assume that each participant peer
keeps records of all previously computed LRPPs for each provider peer. Let
pj be a provider peer and pxi be a rater user. Rep(pj, p

x
i) represents the rating

assigned by pxi to the update of pj in Gc. Formally, the LRPP of a provider peer
pj as viewed by a consumer peer pi, computed post closing a conflict group Gc,
is defines as:

LRPP (pj , pi) =

∑L
x=1(Rep(pj , p

x
i) ∗ Cpx

i
)∑L

x=1 Cpx
i

(1)

where L denotes the set of local users who have rated pj ’s update in Gc,
Rep(pj, px) is the last personal evaluation of pj as viewed by px, and Cpx

i
is

the credibility of pxi as viewed by pi. In the above equation, the trust score of
the provider peer is calculated according to the credibility scores of the rater
peers, such that ratings of highly credible raters are weighed more than that of
raters with low credibilities. The credibility of a rater lies in the interval [0,1]
with 0 identifying a dishonest rater and 1 an honest one. We adopt a similar
notion as in [10][11] to minimize the effects of unfair or inconsistent ratings.
The basic idea is that if the reported rating agrees with the majority opinion,
the rater’s credibility is increased, and decreased otherwise. We use the k -mean
clustering algorithm to compute the majority rating (denotedMR) by grouping
current similar feedback ratings together. The Euclidean distance between the
majority rating (MR) and the rating (R) is used to adjust the rater credibil-
ity. The change in credibility due to majority rating, denoted by MRΔ is then
defined as:

MRΔ =

⎧⎨
⎩ 1 −

√∑n
k=1

(MR−Rk)2

σ , if
√∑

n
k=1(MR − Rk)2 < σ;

1 − σ√∑n
k=1

(MR−Rk)2
, otherwise.

(2)

where σ is the standard deviation in all the reported ratings. Note that MRΔ

does not denote the rater’s credibility (or the weight), but only defines the ef-
fect on credibility due to aggrement/disagreement with the majority rating. We
supplement the majority rating scheme by adjusting the credibility of a rater

Automatic Conflict Resolution in a CDSS 409

based on its past behavior as well. The historical information provides an esti-
mate of the trustworthiness of the raters [11]. We believe that under controlled
situations, a consumer peer’s perception of a provider peer’s reputation should
not deviate much, but stay consistent over time. We assume the interactions
take place at time t and the consumer peer already has record of the previously
assessed LRPP (denoted LRPP), which is defined as:

LRPP =

t−k∏
t−1

LRPP (pj , pi)
t (3)

where LRPP (pj, pi) is the assessed LRPP of pj by pi for each time instance t,
∏

is the aggregation operator and k is the time duration defined by pi. It can vary
from one time instance to the complete past reputation record of pj . Note that
LRPP is the “local assessed reputation” calculated by pi at the previous time
instance(s). If pj does not change much from the previous time instances, then
LRPP and the present rating R should be somewhat similar. Thus, the effect
on credibility due to agreement or disagreement with the aggregation of the last
k assessed LRPP values (denoted LRPPΔ) is defined in a similar manner as
Equation (2). We just put LRPP instead of MR in the equation to compute
LRPPΔ.

In real-time situations it is difficult to determine the different factors that
cause a change in the state of a provider peer. A user may rate the same provider
peer differently without any malicious motive. Thus, the credibility of a rater
may change in a number of ways, depending on the values of R, MRΔ , and
LRPPΔ. The general formula is:

Cpx
i

= Cpx
i
± Φ ∗ Ψ (4)

where Φ is the credibility adjustment normalizing factor, while Ψ represents
amount of change in credibility due to the equivalence or difference of R with
MR and LRPP . The signs ± indicate that either + or − can be used, i.e., the
increment or decrement in the credibility depends on the situation.

We place more emphasis on the ratings received in the current time instance
than the past ones, similar to previous works as [10] and [11]. Thus, equivalence
or difference of R withMR takes a precedence over that of R with LRPP . This
can be seen from Equation (4), where the + sign with Φ indicates R 	 MR
while − sign with Φ means that R �=MR. Φ is defined as:

Φ = Cpx
i
∗ (1 − |Rx − MR|) (5)

Equation (5) states that the value of the normalizing factor Φ depends on the
credibility of the rater and the absolute difference between the rater’s current
feedback and the majority rating calculated. Multiplying by the rater’s credibil-
ity allows the honest raters to have greater influence over the ratings aggregation
process and dishonest raters to lose their credibility quickly in case of a false or
malicious rating. Ψ is made up ofMRΔ and/or LRPPΔ, and a “pessimism fac-
tor” (ρ). The exact value of ρ is left at the discretion of the consumer peer, with
the exception that its minimum value should be 2. The lower the value of ρ, the

410 F. Khazalah, Z. Malik, and B. Medjahed

more optimistic is the consumer peer and higher value of ρ are suitable for pes-
simistic consumers. We define a pessimistic consumer as one that does not trust
the raters easily and reduces their credibility drastically on each false feedback.
Moreover, honest rater’s reputations are increased at a high rate, meaning that
such consumers make friends easily. R,MR, and LRPP can be related to each
other in one of four ways, and each condition specifies how MRΔ and LRPPΔ

are used in the model.
1. The reported reputation value is similar to both the majority rating and the

aggregation of the previously computed LRPP values (i.e., R 	MR 	 LRPP).
The equalityMR 	 LRPP suggests that majority of the raters believe that the
quality of updates imported from a provider peer pj has not changed. The rater
peers credibility is updated as:

Cpx
i

= Cpx
i
+ Φ ∗

(
|MRΔ + LRPPΔ|

ρ

)
(6)

Equation (6) states that since all factors are equal, the credibility is incremented.
2. The individual reported reputation rating is similar to the majority rating

but differs from the previously assessed reputation, i.e. (R 	 MR) and (R �=
LRPP). In this case, the change in the reputation rating could be due to either of
the following. First, the rater peer may be colluding with other raters to increase
or decrease the reputation of a provider peer. Second, the quality of updates
imported from the provider peer may have actually changed since LRPP was
last calculated. The rater peer’s credibility is updated as:

Cpx
i

= Cpx
i
+ Φ ∗

(MRΔ

ρ

)
(7)

Equation (7) states that since R 	MR, the credibility is incremented, but the
factor R �= LRPP limits the incremental value to (MRΔ

ρ).
3. The individual reported reputation value is similar to the aggregation of the

previously assessed LRPP values but differs from the majority rating (reasons
omitted here due to space restrictions), i.e. (R �=MR) and (R 	 LRPP). Thus,
the rater peer’s credibility is updated as:

Cpx
i

= Cpx
i
− Φ ∗

(
LRPPΔ

ρ

)
(8)

Equation (8) states that since R �=MR, the credibility is decremented, but here

the value that is subtracted from the previous credibility is adjusted to (LRPPΔ

ρ).
4. The individual reported reputation value is not similar to both the majority

rating and the calculated aggregation of assessed LRPP values, i.e. (R �=MR)
and (R �= LRPP). R may differ from the majority rating and the past aggrega-
tion of LRPP values due to either of the following. First, R may be the first one
to experience the provider peer’s new behavior. Second, R may not know the
actual quality of the provider peer’s imported updates. Third, R may be lying
to increase/decrease the provider peer’s reputation. In this case, the rater peer’s
credibility is updated as:

Cpx
i

= Cpx
i
− Φ ∗

(
|MRΔ + LRPPΔ|

ρ

)
(9)

Automatic Conflict Resolution in a CDSS 411

Equation (9) states that the inequality of all factors means that rater peer’s
credibility is decremented, where the decremented value is the combination of
both the effects MRΔ and LRPPΔ.

3 Example Scenario

Consider a CDSS of three participant peers (p1, p2, and p3) that represent three
bioinformatics warehouses (example adapted from [12]). The three peers share
a single relation F (organism, protein, function) for protein function, where the
key of the relation is composed of the fields organism and protein. Peer p1
accepts updates from both p2 and p3 with the same trust priority level. For
illustration, we also assume that there are 10 other participant peers (p4 through
p13), and we assign different roles for the participant peers.
We consider peers p2 and p3 as provider peers for the rest of peers, peer pi as
a consumer peer who imports updates from the provider peers and needs to
reconcile its own instance though, and the rest of peers (p4 through p13) play
the role of the raters which interacted with the provider peers in the past and are
willing to share their experience with other consumer peers. Similar to [12], we
illustrate the reconciliation operation of this CDSS example as shown in Table
1, taking into consideration our proposed modification for the system.

In the beginning, we assume that the instance of relation F at each participant
peer pi, denoted by Ii(F)|0, is empty (i.e., at time 0). At time 1, p3 conducts two
transactions T3:0 and T3:1. It then decides to publish and reconcile its own state
(to check if other peers made any changes). Since the other two participant peers
have no updates, the operation is completed, I3(F)|1 denotes the result. At time
2, p2 conducts two transactions T2:0 and T2:1. It then publishes and reconciles its
own state. Note that the resulting instance I2(F)|2 of p2 contains only its own
updates. Although there is a recently published update by p3, which is trusted
by it, p2 does not accept p3’s published update because it conflicts with its own
updates. At time 3, p3 reconciles again. It accepts the transaction T2:0 that is
published by p2 and rejects p2’s second update T2:0 because it conflicts with its

Table 1. Reconciliation of F(organism, protein, function)

t p3 p2 p1

0 I3(F)|0={} I2(F)|0 = {} I1(F)|0 = {}
T3:0 :{+F(rat,prot1,cell-metab;3)}
T3:1 :{F(rat,prot1,cell-metab →

rat,prot1,immune;3)}
1 <publish and reconcile>

I3(F)|1 :{(rat,prot1,immune)}
T2:0 :{+F(mouse,prot2,immune;2)}
T2:1 :{+F(rat,prot1,cell-resp;2)}

2 <publish and reconcile>
I2(F)|2 :{(mouse,prot2,immune),

(rat,prot1,cell-resp)}
3 <reconcile>

I3(F)|3 :{(mouse,prot2,immune),
(rat,prot1,immune)}

4 <reconcile>
I1(F)|4 :{(mouse,prot2,immune)}
DEFER: {T3:1, T2:1}

412 F. Khazalah, Z. Malik, and B. Medjahed

own state. At time 4, p1 reconciles. It gives the same priority for transactions of
p2 and p3. Thus, it accepts the non-conflicting transaction T2:0, and it defers both
the conflicting transactions T2:1 and T3:1. p1’s reconciliation operation forms a
conflict group G1 (shown in Table 2) that includes both deferred transactions
that are added to the deferred set of p1 during the reconciliation. p1 then notifies
its local users that a new conflict group is added to Deferred(p1), so they can
start rating updates in this particular conflict group.

Computing the LRPP . The local peer p1 maintains a table of all the previ-
ously assessed LRPP values of provider peers that it interacts with. For instance,
the last 5 LRPP values for p2 and p3 are {0.41, 0.43, 0.58, 0.52, 0.38} and {0.90,
0.89, 0.89, 0.94, 0.90}, respectively.

Table 2. The deferred set of peer p1

Deferred(p1)

Gc Trans p11 p21 p31 p41 p51 p61 p71 p81 p91 p101 Status σi

G1
T3:1 0.95 0.65 1.00 0.60 0.97 1.00 0.95 0.90 0.95 1.00

Closed 100%
T2:1 0.45 0.80 0.45 0.75 0.40 0.40 0.45 0.40 0.45 0.43

1. p1 computes the values ofMR,MRΔ, LRPP , and LRPPΔ factors for each
provider peer in G1. The computed values for p2 are (0.50, 0.67, 0.47, .68)
and for p3 are (0.90, 0.67, 0.90, 0.67), respectively.

Table 3. The result of computation for local users who rated the update of p2 in G1

p2 Local Users

Factor p11 p21 p31 p41 p51 p61 p71 p81 p91 p101
Cpx

i
(old) 0.96 0.70 0.90 0.85 0.97 0.95 0.95 0.90 0.94 0.90

Φ 0.91 0.49 0.86 0.64 0.87 0.86 0.90 0.81 0.89 0.84

V � MR 0.05 0.30 0.05 0.25 0.10 0.10 0.05 0.10 0.05 0.07

MR � LRPP 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

V � LRPP 0.02 0.34 0.02 0.29 0.07 0.07 0.02 0.07 0.02 0.04

Case(1 − 4) 1 4 1 4 1 1 1 1 1 1

Cpx
i
(new) 0.96 0.65 0.90 0.80 0.98 0.96 0.95 0.91 0.94 0.90

Vw 0.43 0.52 0.41 0.60 0.39 0.38 0.43 0.36 0.42 0.39

2. p1 computes the new credibility values for each rater user, as shown in Table
3, who has participated in rating the update of p2 in G1. We provide more
details about the computations done in Table 3 in the following sub-steps:
(a) The first row of Table 3, titled (Cpx

i
(old)), shows the current credibility

values for rater users (p11, p
2
1, ..., p

10
1).

(b) In the second row of Table 3, the values of Φ variable are shown after
Equation (5) is applied.

(c) The rows (3-5) show the equalities between the factor pairs (R 	MR),
(MR 	 LRPP), and (R 	 LRPP), for each rater user. Here, we as-
sume that the two compared factors are equal if the amount of difference
between them is equal or less than 0.20. Otherwise, they are considered
not to be equal. The values are then adjusted using Equations 6-9.

(d) The rows (6-8) of Table 3 show the matched case, the value of Ψ , and
the new computed credibility value (Cpx

i
(new)), for each rater user.

Automatic Conflict Resolution in a CDSS 413

(e) The last row, titled (Rw), shows the weights of reputation ratings, pro-
vided by local users of p1, as shown in Table 2.

(f) Based on the last two rows, p1’s reconciling operation computes the
LRPP for p2 (LRPP (p2, p1) = 0.49) by applying Equation (1).

3. Step 2 is repeated to compute the LRPP for p3 (LRPP (p3, p1) = 0.91).

Conflict Resolution. After the conflict group G1 is closed, p1’s reconciliation
operation computes LRPP for each provider peer in G1. Because p3 has the
highest reputation value (i.e., the highest LRPP), the transaction T3:1 of p3 is
then accepted and applied to the local instance of peer p1 as it does not violate
its local state, while the transaction T2:1 of p2 is rejected.

Experimental Evaluations. We simulated (using Java code) a CDSS with
three participants peers. p1 is the reconciling peer, whereas p2 and p3 are the
provider peers. p1 has 100 local users. The provider peers are assigned degrees
of quality or behavior randomly; between 0.1 and 0.7 for p2, and between 0.7
and 1.0 for p3. We conducted two sets of experiments: In the first one, 80%
of users are high-quality users, and 20% are low-quality. Both groups of users
randomly generate rating values with qualities in the range (0.8-1) and (0.1-
0.4), respectively. In the second set, we keep the quality level of rating for both
groups of users the same as in the first set, but we only increase the percentage
of dishonest raters and decrease the percentage of honest ones (50% of users
are high quality users, and 50% are low quality users). At the beginning of the
simulation, we assume that all local users of the reconciling peer have credibility
of 1. Each time during the simulation, p2 and p3 generate identical tuples (i.e.,
tuples that have the same key but differ in values of the non-key attributes) and
then publish their updates. When p1 reconciles (i.e., imports the newly published
updates from both p2 and p3), a conflict is found in the pair of updates with the
same key but imported from different providers. The conflict is resolved by either
accepting the update of p2 or p3, according to the weighted ratings of users. The
simulation ends when p1 resolve the conflict numbered 3600. Figure 1 shows the
results for the above experimental sets. The shown results represent the average
of 10 rounds of experiments. In the first set, honest raters out-number dishonest
ones. Fig. 1(a) shows the effect of this inequality in calculating raters’ credibilities
and number of accepted updates per each provider. The average credibility of
each group of users is shown in Fig. 1(a.1) with increasing number of conflicts,
while Fig. 1(a.2) represents the number of accepted updates from each provider.
Because there are more honest raters we can see that all the accepted updates
comes from the provider with the highest-quality generated updates. We also can
see that the average credibility of honest raters is always high compared to that
of dishonest group where it is drastically decreasing for the consecutive conflicts.
The result of the second set where the number of honest and dishonest raters are
equal is shown in Fig. 1(b). In this set, it may happen that the dishonest raters’
ratings form the majority rating. This causes a degradation in the credibility
of honest raters since their opinion now differs from the majority opinion, and

414 F. Khazalah, Z. Malik, and B. Medjahed

Average credibilities of low and high quality users

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

100 800 1500 2200 2900 3600

Conflicts
C

re
di

bi
lit

y

Low

High

Number of conflicting updates accepted from
each provider

0

500

1000

1500

2000

2500

3000

3500

4000

P2 P3

Providers

N
um

be
r

of
 u

pd
at

es
 a

pp
lie

d
to

 P
1's

 in
st

an
ce

Number of conflicting updates accepted from
each provider

0

500

1000

1500

2000

2500

3000

3500

4000

P2 P3

Providers

N
um

be
r

of
 u

pd
at

es
 a

pp
lie

d
to

 P
1's

 in
st

an
ce

Average credibilities of low and high quality users

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

100 800 1500 2200 2900 3600

Conflicts

C
re

di
bi

lit
y

Low

High

a.1 b.1

a.2 b.2

Fig. 1. Simulation results of the two experimental sets (a and b)

an increment in the dishonest raters’ credibilities (Fig. 1(b.1)). Therefore, some
updates that come from the provider with the lowest-quality generated updates
are accepted (Fig. 1(b.2)).

4 Conclusion and Future Work

We presented an approach to resolve conflicts in the deferred set of a CDSS’s
reconciling peer by collecting feedbacks about the quality of conflicting updates
from local community. We plan to extend our proposed work in the future, to
also deploy community feedbacks for the purpose of automatically defining trust
policies for the local peer, thereby omitting the role of the administrator.

References

1. Gatterbauer, W., Balazinska, M., Khoussainova, N., Suciu, D.: Believe it or not:
adding belief annotations to databases. Proc. VLDB Endow. 2, 1–12 (2009)

2. Gatterbauer, W., Suciu, D.: Data conflict resolution using trust mappings. In: Proc.
of SIGMOD 2010, pp. 219–230. ACM (2010)

3. Motro, A., Anokhin, P.: Fusionplex: resolution of data inconsistencies in the in-
tegration of heterogeneous information sources. Information Fusion 7(2), 176–196
(2006)

4. Bleiholder, J., Draba, K., Naumann, F.: Fusem: exploring different semantics of
data fusion. In: Proc. 33rd VLDB 2007, pp. 1350–1353. VLDB Endowment (2007)

5. Bernstein, P.A., Giunchiglia, F., Kementsietsidis, A., Mylopoulos, J., Serafini, L.,
Zaihrayeu, I.: Data management for peer-to-peer computing: A vision. In: Proc. of
the 5th WebDB 2002, pp. 89–94 (2002)

6. Ives, Z.G., Green, T.J., Karvounarakis, G., Taylor, N.E., Tannen, V., Talukdar,
P.P., Jacob, M., Pereira, F.: The orchestra collaborative data sharing system. SIG-
MOD Rec. 37, 26–32 (2008)

7. Snodgrass, R.T.: Developing time-oriented database applications in SQL. Morgan
Kaufmann Publishers Inc., San Francisco (2000)

Automatic Conflict Resolution in a CDSS 415

8. Cudre-Mauroux, P., Kimura, H., Lim, K.-T., Rogers, J., Simakov, R., Soroush, E.,
Velikhov, P., Wang, D.L., Balazinska, M., Becla, J., DeWitt, D., Heath, B., Maier,
D., Madden, S., Patel, J., Stonebraker, M., Zdonik, S.: A demonstration of scidb:
a science-oriented dbms. Proc. VLDB Endow. 2, 1534–1537 (2009)

9. Pichler, R., Savenkov, V., Skritek, S., Hong-Linh, T.: Uncertain databases in col-
laborative data management. In: Proc. 36st VLDB 2010. VLDB Endow. (2010)

10. Buchegger, S., Le Boudec, J.-Y.: A robust reputation system for p2p and mobile
ad-hoc networks. In: Proc. of 2nd Workshop on Economics of P2P Sys. (2004)

11. Whitby, A., Josang, A., Indulska, J.: Filtering out unfair ratings in bayesian rep-
utation systems. Science 4(2), 106–117 (2004)

12. Taylor, N.E., Ives, Z.G.: Reconciling while tolerating disagreement in collaborative
data sharing. In: Proc. of the SIGMOD 2006, pp. 13–24. ACM (2006)

Tracking Distributed Aggregates

over Time-Based Sliding Windows�

Graham Cormode1 and Ke Yi2,��

1 AT&T Labs–Research
graham@research.att.com

2 Hong Kong University of Science and Technology
yike@cse.ust.hk

Abstract. The area of distributed monitoring requires tracking the
value of a function of distributed data as new observations are made.
An important case is when attention is restricted to only a recent time
period, such as the last hour of readings—the sliding window case. In this
paper, we introduce a novel paradigm for handling such monitoring prob-
lems, which we dub the “forward/backward” approach. This view allows
us to provide optimal or near-optimal solutions for several fundamental
problems, such as counting, tracking frequent items, and maintaining or-
der statistics. The resulting protocols improve on previous work or give
the first solutions for some problems, and operate efficiently in terms of
space and time needed. Specifically, we obtain optimal O(k

ε
log(εn/k))

communication per window of n updates for tracking counts and heavy
hitters with accuracy ε across k sites; and near-optimal communication
of O(k

ε
log2(1/ε) log(n/k)) for quantiles. We also present solutions for

problems such as tracking distinct items, entropy, and convex hull and
diameter of point sets.

1 Introduction

Problems of distributed tracking involve trying to compute various aggregates
over data that is distributed across multiple observing sites. Each site observes
a stream of information, and aims to work together with the other sites to
continuously track a function over the union of the streams. Such problems
arise in a variety of modern data management and processing settings—for more
details and motivating examples, see the recent survey of this area [6]. To pick
one concrete example, a number of routers in a network might try to collaborate
to identify the current most popular destinations. The goal is to allow a single
distinguished entity, known as the “coordinator”, to track the desired function.
Within such settings, it is natural to only want to capture the recent behavior—
say, the most popular destinations within the last 24 hours. Thus, attention is
limited to a “time-based sliding window”.

� These results were announced at PODC’11 as a ‘brief announcement’, with an ac-
companying 2 page summary.

�� Ke Yi is supported by an RPC grant from HKUST and a Google Faculty Research
Award.

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 416–430, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Tracking Distributed Aggregates over Time-Based Sliding Windows 417

For these problems, the primary goal is to minimize the (total) communication
required to achieve accurate tracking. Prior work has shown that in many cases
this cost is asymptotically smaller than the trivial solution of simply centralizing
all the observations at the coordinator site. Secondary goals includeminimizing the
space required at each site to run the protocol, and the time to process each new
observation. These quantities are functions of k, the number of distributed sites, n,
the total size of the input data, and ε, an a user-supplied approximation parameter
to tolerate some imprecision in the computed answer (typically, 0 < ε < 1).

Within this context, there has been significant focus on the “infinite window”
case, where all historic data is included. Results have been shown for monitoring
functions such as counts, distinct counts, order statistics, join sizes, entropy, and
others [1,4,7,14,19,20]. More recently there has been interest in only tracking
a window of recent observations, defined by all those elements which arrived
within the most recent w time units. Results in this model have been shown for
tracking counts and frequent items [4], and for sampling [8].

The most pertinent prior work is that of Chan et al. [4], which established
protocols for several fundamental problems with sliding windows. The analysis
used quickly becomes quite complicated, due to the need to study multiple cases
in detail as the distributions change. Perhaps due to this difficulty, the bounds
obtained are not always optimal. Three core problems are studied: basic counting,
which is to maintain the count of items observed within the window; heavy
hitters, which is to maintain all items whose frequency (within the window) is
more than a given fraction; and to maintain the quantiles of the distribution.
Each problem tolerates an error of ε, and is parametrized by k, the number of
sites participating in the computation, and n, the number of items arriving in
a window. [4] shows (per window) communication costs of O(kε log

εn
k) bits for

basic counting, O(kε log
n
k) words

1 for frequent items and O(k
ε2 log

n
k) words for

quantiles. Our main contributions in this paper are natural protocols with a more
direct analysis which obtain optimal or near optimal communication costs. To do
this, we outline an approach for decomposing sliding windows, which also extends
naturally to other problems in this setting. We call this the “forward/backward”
framework, and provide a general claim, that the communication complexity for
many functions in the model with a sliding window is no more than in the infinite
window case (Section 2). We instantiate this to tracking counts (Section 3), heavy
hitters (Section 4) and quantiles (Section 5) to obtain optimal or near optimal
communication bounds, with low space and time costs. Lastly, we extend our
results to functions which have not been studied in the sliding window model
before, such as distinct counts, entropy, and geometric properties in Section 6.

Other Related Work. Much of the previous work relies on monotonic prop-
erties of the function being monitored to provide cost guarantees. For example,
since a count (over an infinite window) is always growing, the cost of most
approximate tracking algorithms grows only logarithmically with the number
of updates [7]. But the adoption of a time-based sliding window can make a

1 Here, words is shorthand for machine words, in the standard RAM model.

418 G. Cormode and K. Yi

previously monotonic function non-monotonic. That is, a function which is mono-
tonic over an infinite window (such as a count) can decrease over a time-based
window, due to the implicit deletions. Sharfman et al. [19] gave a generic method
for arbitrary functions, based on a geometric view of the input space. This ap-
proach relies on keeping full space at each monitoring site, and does not obviously
extend to functions which do not map on to single values (such as heavy hitters
and quantiles). Arackaparambil et al. [1] study (empirical) entropy, which is
non-monotonic. The protocols rely on a slow changing property of entropy: a
constant change in the value requires a constant factor increase in the number
of observations, which keeps the communication cost logarithmic in the size of
the input. This slow-changing property does not hold for general functions. Dis-
tributed sliding window computations have also received much attention in the
non-continuous-tracking case [3,11], where the goal is to keep a small amount of
information over the stream at each site, so that the desired aggregate can be
computed upon request; here, we have the additional challenge of tracking the
aggregate at all times with small communication.

· · ·S1 S2 S3 Sk

time

Ccoordinator

sites

Fig. 1. Schematic of the distribute streaming model

1.1 Problem Definitions and Our Results

Now we more formally define the problems studied in this paper. Figure 1 shows
the model schematically: k sites each observe a stream Si of item arrivals, and
communicate with a single distinguished coordinator node to continuously com-
pute some function of the union of the update streams.

The basic counting problem is to track (approximately) the number of items
which have arrived across all sites within the last w time units. More precisely,
let the stream of items observed at site i be Si, a set of (x, t(x)) pairs, which

Tracking Distributed Aggregates over Time-Based Sliding Windows 419

indicates that an item x arrives at time t(x). Then the exact basic count at time
t is given by

C(t) =
∑

1≤i≤k

|{(x, t(x)) ∈ Si | t− t(x) ≤ w}|.

TrackingC(t) exactly requires alerting the coordinator every time an item arrives
or expires, so the goal is to track C(t) approximately within an ε-error, i.e., the
coordinator should maintain a C̃(t) such that (1 − ε)C(t) ≤ C̃(t) ≤ (1 + ε)C(t)
at all times t. We will assume that at each site, at most one item arrives in one
time unit. This is not a restriction, since we can always subdivide the time units
into smaller pieces so that at most one item arrives within one unit. This rescales
w but does not fundamentally change our results, since the bounds provided do
not depend on w.

The heavy hitters problem extends the basic counting problem, and generalizes
the concept of finding the mode [15]. In the basic counting problem we count the
total number of all items, while here we count the frequency of every distinct
item x, i.e., the coordinator tracks the approximate value of

nx(t) =
∑

1≤i≤k

|(x, t(x)) ∈ Si | t− t(x) ≤ w}|.

Since it is possible that many nx(t) are small, say 0 or 1 for all x, requiring a
multiplicative approximation for all x would require reporting all items to the
coordinator. Consequently, the commonly adopted approximation guarantee for
heavy hitters is to maintain a ñx(t) that has an additive error of at most εC(t),
where C(t) is the total count of all items. This essentially makes sure that the
“heavy” items are counted accurately while compromising on the accuracy for
the less frequent items. In particular, all items x with nx(t) ≤ εC(t) can be
ignored altogether as 0 is considered a good approximation for their counts.2

This way, at most 1/ε distinct items will have nonzero approximated counts.
The quantiles problem is to continuously maintain approximate order statis-

tics on the distribution of the items. That is, the items are drawn from a total
order, and we wish to retain a set of items q1, . . . , q1/ε such that the rank of
qi (number of input items within the sliding window that are less than qi) is
between (i− 1)εC(t) and (i+1)εC(t) [18]. It is known that this is equivalent to
the “prefix-count” problem, where the goal is to maintain a data structure on
the sliding window such that for any given x, the number of items smaller than
x can be counted within an additive error of at most εC(t).

Figure 2 summarizes our main results. The communication cost is measured
as the total amount of communication between all k sites and the central co-
ordinator site, as a function of n, the number of observations in each window,
and ε, the approximation parameter. All communication costs are optimal or
near-optimal up to polylogarithmic factors. We also list the space required by
each site to run the protocol.

2 We may subsequently drop the (t) notation on variables when it is clear from the
context.

420 G. Cormode and K. Yi

Problem Communication Cost Communication lower bound Space Cost

Basic Counting O(k
ε
log(εn/k)) bits Ω(k

ε
log(εn/k)) bits O(1

ε
log εn)

Heavy Hitters O(k
ε
log(εn/k)) Ω(k

ε
log(εn/k)) bits O(1

ε
log εn)

Quantiles O(k
ε
log2(1/ε) log(n/k)) Ω(k

ε
log(εn/k)) bits O(1

ε
log2(1/ε) log n)

Fig. 2. Summary of Results. All bounds are in terms of words unless specified otherwise.

t2w 3ww0 t−w

Fig. 3. Item arrivals within fixed windows

2 The Forward/Backward Framework

To introduce our framework, we observe that the problems defined in Section 1.1
all tolerate an error of εC(t), where C(t) is the total number of items in the
sliding window from all k sites. If we can track the desired count for every site
within an error of εC(i)(t), where C(i)(t) is the number of items at site i in the

sliding window, then the total error will be
∑k

i=1 εC
(i)(t) = εC(t). So we can

focus on accurately tracking the data of one site, and combine the results of all
sites to get the overall result.

Next, assuming the time axis starts at 0, we divide it into fixed windows of
length w: [0, w), [w, 2w), . . . , [jw, (j + 1)w), Then at at time t, the sliding
window [t − w, t) overlaps with at most two of these fixed windows, say [(j −
1)w, jw) and [jw, (j + 1)w). This splits the sliding window into two smaller
windows: [t−w, jw) and [jw, t). We call the first one the expiring window and the
second the active window. Figure 3 shows this schematically: item arrivals, shown
as dots, are partitioned into fixed windows. At the current time, t, which in this
example is between 3w and 4w, it induces the expiring window [t−w, 3w) (with
two items in the example) and the active window [3w, t) (with a further three
items). As the window [t − w, t) slides, items expire from the expiring window,
while new items arrive in the active window. The problem is again decomposed
into tracking the desired function in these two windows, respectively. Care must
be taken to ensure that the error in the approximated count is with respect to the
number of items in the active (or expiring) window, not that of the fixed window.
However, a key simplification has happened: now (with respect to the fixed time
point jw), the counts of items in the expiring window are only decreasing, while
the counts of items in the active window are only increasing. As a result we make
an (informal) claim about the problem:

Claim. For tracking a function in the sliding window continuous monitoring
setting, the asymptotic communication complexity per window is that of the
infinite window case.

Tracking Distributed Aggregates over Time-Based Sliding Windows 421

To see this, observe that, using the above simplification, we now face two sub-
problems: (i) forward: tracking the active window and (ii) backward: tracking
the expiring window. Tracking the active window is essentially the same as the
infinite window case, hence the cost (per window) is that of running a protocol
for the infinite window case. However, for the expiring window we also face essen-
tially the same problem: we need a protocol which ensures that the coordinator
always knows a good approximation to the function for the window as items
expire instead of arrive. When we view this in the reverse time direction, the
expirations become arrivals. If we ran the infinite window protocol on this time-
reversed input, we would meet the requirements for approximating the function.
Therefore, we can take the messages that are sent by this protocol, and send
them all to the coordinator in one batch at the end of each fixed window. The
site can send a bit to the coordinator at each time step when it would have sent
the next message (in the time-reversed setting). Thus, the coordinator always
has the state in the forward direction that it would have had in the time-reversed
direction. !"

This outline requires the site to record the stream within each window so it
can perform this time-reversal trick. The problem gets more challenging if we
also require small space at the site. For this we adapt small-space sliding window
algorithms from the streaming literature to compactly “encode” the history. Next
we show how to instantiate the forward/backward framework in a space efficient
way for each of the three problems defined earlier. The forward problem (i.e., the
full stream case) has been studied in prior work (for example, [20] gave results for
heavy hitters and quantiles), but we are able to present simpler algorithms here.
The lower bounds for the forward problem apply to the forward/backward case,
and so we are able to confirm that our solutions are optimal or near-optimal.

3 Warm-Up: Basic Counting

The Forward Problem. For basic counting, the forward problem is to track
the number of items that have arrived since a landmark t0, up to a multiplicative
error of (1+ε). This is straightforward: the site simply sends a bit every time this
number has increased by a (1 + ε) factor. This results in a communication cost
of O(1/ε · logn(i)) bits, where n(i) is the number of items in the fixed window at
the site i when this forward tracking problem takes place. This can be tightened
to O(1/ε · log(εn(i))) by observing that the site actually sends out 1/ε bits for
the first 1/ε items. Summing over all k sites and using the concavity of the
log function gives O(kε log

εn
k), matching the bound of [4]. The space required is

minimal, just O(1) for each site to track the current count in the active window.

The Backward Problem. As noted above, if we can buffer all the input, then
we can solve the problem by storing the input, and compute messages based on
item expiries. To solve the backward problem with small space (without buffering
the current window) is more challenging. To do so, we make use of the exponential
histogram introduced in [9]. Let the active window be [t0, t). Besides running the
forward algorithm from t0, each site also maintains an exponential histogram

422 G. Cormode and K. Yi

starting from t0. It records the ε−1 most recent items (and their timestamps),
then every other item for another stored ε−1 items, then every fourth item, and
so on. This is easily maintained as new items arrive: when there are more than
ε−1 + 1 items at a particular granularity, the oldest two can be “merged” into
a single item at the next coarser granularity. Let t be the current time. When
t = t0 + w, the site freezes the exponential histogram. At this time, we set
t0 ← t0 + w, and the active window becomes the expiring window while a new
active window starts afresh. It follows from this description that the size of the
exponential histogram is O(ε−1 log(εn(i))).

With an exponential histogram for the window [t0 − w, t0), one can approx-
imately count the items in the interval [t − w, t0), i.e., the expiring window at
time t. We find in the exponential histogram two adjacent timestamps t1, t2 such
that t1 < t − w ≤ t2. Note that from the data structure we can compute the
number of items in the time interval [t2, t0) exactly, which we use as an estimate
for the number of items in [t− w, t0). This in the worst case will miss all items
between t1 and t2, and there are 2a of them for some a. The construction of the
exponential histogram ensures that Ci(t2, t0) ≥ ε−12a, where Ci(t2, t0) denotes
the number of items that arrived between time t2 and t0. So the error is at most
εCi(t2, t0) ≤ εCi(t− w, t0), as desired.

There are two ways to use the exponential histogram in a protocol. Most
directly, each site can send its exponential histogram summarizing [t0 − w, t0)
to the coordinator at time t0. From these, the coordinator can approximate
the total count of the expiring window accurately. However, this requires the
coordinator to store all k windows, and is not communication optimal. Instead,
the space and communication cost can be reduced by having each site retain
its exponential histogram locally. At time t0, each site informs the coordinator
of the total number of timestamps stored in its histogram of [t0 − w, t0). Then
each site sends a bit to the coordinator whenever any timestamp recorded in
the histogram expires (i.e., reaches age w). This information is sufficient for the
coordinator to recreate the current approximate count of the expiring window
for each site. The communication cost is the same as the forward case, i.e.,
O(1/ε · log(εn(i))) bits.

Theorem 1. The above protocol for basic counting has a total communication
cost of O(1ε log(εn

(i))) bits for each site, implying a total communication cost of

O(kε log
εn
k) per window. The space required at each site is O(1ε log(εn

(i))) words,
and O(k) at the coordinator to keep track of the current estimates from each site.

This bound is optimal: the lower bound for an infinite window is Ω(kε log
εn
k)

bits of communication. We see the power of the forward/backward framework:
the analysis matches the bound in [4], but is much more direct. The dependence
on O(log n) is unavoidable, as shown by the lower bounds. However, note that
we do not require explicit knowledge of n (or an upper bound on it). Rather, the
communication used, and the space requires, scales automatically with logn, as
the stream unfolds.

Tracking Distributed Aggregates over Time-Based Sliding Windows 423

Algorithm 1. HeavyHittersArrivals

1 ∀x, n(i)
x = 0 ;

2 A(i) = 1;
3 foreach arrival of x do

4 n
(i)
x ← n

(i)
x + 1 ;

5 n(i) ← n(i) + 1 ;

6 if n
(i)
x modA(i) = 0 then

7 Send (x,n
(i)
x) to coordinator;

8 if n(i) ≥ 2ε−1A(i) then

9 A(i) ← 2A(i);

4 Heavy Hitters

The Forward Problem. For simplicity, we first present an algorithm for the
forward problem that assumes that each site has sufficient space to retain all
“active” (non-expired) items locally. Then we discuss how to implement the al-
gorithm in less space below.

Starting from time t0, each site executes HeavyHitterArrivals (Algorithm
1) on the newly arriving items until t = t0 + w. This tracks counts of each item

in the active window (n
(i)
x for the count of item x at site i), and ensures that

the coordinator knows the identity and approximate count of any item with an
additive error of at most A(i) − 1. Note that A(i) is always at most εn(i), where
n(i) is the total number of items in the active window at site i, so correctness
follows easily from the algorithm.

We next bound the communication cost. While n(i) is between 2aε−1 and
2a+1ε−1, A(i) = 2a. For each distinct x, line 7 of the algorithm is called whenever
A(i) new copies of x have arrived, except possibly the first call. Ignoring the first
call to every distinct x, line 7 is executed at most 2aε−1/A(i) = ε−1 times. Note

that for an item x to trigger line 7 at least once, n
(i)
x has to be at least A(i), and

there are at most 2a+1ε−1/A(i) = O(ε−1) such distinct items, so the number
of first calls is at most O(ε−1). Hence, the total amount of information sent
during this phase of the algorithm is O(ε−1) items and counts. In total, there
are O(log(εn(i))) such phases corresponding to the doubling values of A(i), and
the total communication cost is O(ε−1 log(εn(i))). Summed over all sites the
protocol costs O(kε−1 log(εn/k)) per window.

The Backward Problem. In the case where we can afford to retain all the
stream arrivals during the current window, we use a similar algorithm to solve
the backward problem. Each site executes HeavyHitterExpiries in parallel
on the expiring window (Algorithm 2). Conceptually, it is similar to running the
previous algorithm in reverse. It maintains a parameter B(i) which denotes the
local tolerance for error. The initial value of B(i) is equivalent to the final value

424 G. Cormode and K. Yi

Algorithm 2. HeavyHittersExpiries

1 Send n(i) to the coordinator;

2 B(i) ← 2log εn(i)� ;

3 while n(i) > 0 do
4 foreach x do

5 if n
(i)
x ≥ B(i) then send x,n

(i)
x

6 while n
(i)
x > ε−1B(i) or (B(i) ≤ 1 and n(i) > 0) do

7 foreach expiry of x do

8 n(i) ← n(i) − 1 ;

9 n(i) ← n
(i)
x − 1;

10 if n
(i)
x modB(i) = 0 then

11 Send x,n
(i)
x to the coordinator

12 B(i) ← B(i)/2 ;

of A(i) from the active window which has just concluded. Letting n(i) denote
the number of items from [t−w, t0) (i.e., those from the expiring window which
have not yet expired), B(i) remains in the range [12εn

(i), εn(i)]. Whenever B(i)

is updated by halving, the algorithm sends all items and counts where the local
count is at least B(i). Since B(i) is O(εn), there are O(ε−1) such items to send.
As in the forward case, these guarantees ensure that the accuracy requirements
are met.

The communication cost is bounded similarly to the forward case. There are
log(εn(i)) iterations of the outer loop until B(i) reaches 1. In each iteration, there
are O(1ε) items sent in line 5 that exceed B(i). Then at most O(1ε) updates can

be sent by line 11 before B(i) decreases. When B(i) reaches 1, there are only 1/ε
unexpired items, and information on these is sent as each instance expires. This
gives a total cost of O(1ε log(εn

(i))), which is O(kε log(εn)) when summed over
all k sites.

At any time, the coordinator has information about a subset of items from
each site (from both the active and expiring windows). To estimate the count
of any item, it adds all the current counts for that item together. The error
bounds ensure that the total error for this count is at most εn. To extract the
heavy hitters, the coordinator can compare the estimated counts to the current
(estimated) value of n, computed by a parallel invocation of the above basic
counting protocol.

Reducing the Space Needed at Each Site. To reduce space used at the site
for the forward problem, it suffices to replace the exact tracking of all arriving
items with a small space algorithm to approximate the counts of items. For ex-
ample, the SpaceSaving algorithm [17] tracks O(1/ε) items and counts, so that
item frequencies are reported with error at most εn(i). This adds another εn(i)

to the error at the coordinator side, making it 2εn(i), but a rescaling of ε suffices

Tracking Distributed Aggregates over Time-Based Sliding Windows 425

to bring it back to εn(i). The communication cost does not alter: by the guar-
antee of the algorithm, there can still be only O(ε−1) items whose approximate
count exceeds A(i). While these items exceed A(i), their approximate counts are
monotone increasing, so the number of messages does not increase.

For the backward part, the details are slightly more involved. We require
an algorithm for tracking approximate counts within a window of the last w
time steps with accuracy εn(i). For each site locally, the data structure of Lee
and Ting can track details of the last W arrivals (for a fixed parameter W)
using O(ε−1) space [16]3. We begin the (active) window by instantiating such
a data structure for W = 2(ε/3)−1. After we have observed n(i) = 2a items,
we also instantiate a data structure for W = 2a(ε/3)−1 items, and run it for
the remainder of the window: the omitted n(i) = O(εW) items can be ignored
without affecting the O(εW) error guarantee of the structure. Over the life of the
window, O(log n(i)/ε) = O(log n(i)) (since n(i) > ε−1) such data structures will
be instantiated. When the window is expiring, during the phases where n(i) is in
the range 2a(ε/3)−1 . . . 2a−1(ε/3)−1, the local site uses the instance of the data
structure to monitor items and approximate counts, accurate to εn(i)/3. The
structure allows the identification of a set of items which are frequent when this
range begins (lines 4-5 in Algorithm 2). The structure also indicates how their
approximate counts decrease as old instances of the items expire, and so when
their (approximate) counts have decreased sufficiently, the coordinator can be
updated (line 11). In this case, the estimated counts are monotone decreasing,
so the communication cost does not alter. The space at each site is therefore
dominated by the cost of these data structures, which is O(ε−1 logn(i)).

Theorem 2. The above protocol for heavy hitters has a total communica-
tion cost of O(kε log

εn
k) words per window. The space required at each site is

O(1ε logn(i)), and O(kε) at the coordinator to keep track of the current heavy
hitters from each site.

This protocol is optimal: it meets the communication lower bound for this prob-
lem stated in [4], and improves the upper bound therein. It similarly improves
over the bound for the infinite window case in [20].

5 Quantiles

In this section, we study the problem of tracking the set of quantiles for a dis-
tribution in the sliding window model. Yi and Zhang [20] study this problem
in the infinite window model, and provide a protocol with communication cost
O(kε logn log2 1

ε). As a byproduct, our solution slightly improves on this. The
improvement over the best known solution for the sliding window model is more
substantial.

In order to achieve small space and communication, we make use of the data
structure of Arasu and Manku [2], referred to as the AM structure. The AM

3 The λ-counter data structure defined therein can be extended to store timestamps
in addition to items, which makes it sufficient for our purpose.

426 G. Cormode and K. Yi

structure stores the ε-approximate quantiles over a sequence of W items, for
W fixed in advance. The W items are divided along the time axis into blocks
of size εW , and summaries are built of the blocks. Specifically, at level 0, an
ε0-approximate quantile summary (of size 1/ε0) is built for each block, for some
ε0 to be determined later. An ε-approximate quantile summary for a set of m
items can be computed by simply storing every tth item in the sorted order,
for t = εm: from this, the absolute error in the rank of any item is at most t.
Similarly, summaries are built for levels � = 1, . . . , log(1/ε) with parameter ε� by
successively pairing blocks in a binary tree: level � groups the items into blocks of
2�εW items. Using this block structure, any time interval can be decomposed into
O(log(1/ε)) blocks, at most two from each level, plus two level-0 blocks at the
boundaries that partially overlap with the interval. Ignoring these two boundary
level-0 blocks introduces an error of O(εW). The blocks at level � contribute an
uncertainty in rank of ε�2

�εW . Hence if we choose ε� = 1/(2� log(1/ε)), the total
error summed over all L = log(1/ε) levels is O(εW).

The total size of the structure is
∑

�(1/ε�·1/(2�ε)) = O(1/ε·log2(1/ε)). Rather
than explicitly storing all items in each block and sorting them to extract the
summary, we can instead process the items in small space and a single pass
using the GK algorithm [12] to summarize the active blocks. This algorithm
needs space O(1/ε� · log ε22�W) for level �. When a block completes, i.e., has
received 2�εW items, we produce a compact quantile summary of size 1/ε� for
the block using the GK summary, and discard the GK summary. The space
required is dominated by the GK algorithm at level � = log(1/ε), which is
O(1/ε · log(1/ε) log(εW)).

The Forward Problem. Recall that in the forward problem, the coordinator
needs to estimate ranks of items from site i with error at most εn(i), where n(i)

is the current number of items received since time t0. To achieve this, we build
multiple instances of the above structure for different values of W . When the
n(i)-th item arrives for which n(i) is a power of 2, the site starts building an AM
structure with W = n(i)/ε. Whenever a block from any level of any of the AM
structures completes, the site sends it to the coordinator. This causes communi-
cation O(1/ε·log2(1/ε) logn(i)) for the entire active window (the communication
is slightly less than the space used, since only summaries of complete blocks are
sent). After the n(i)-th item has arrived, all AM structures with W < n(i) can
be discarded.

We argue this is sufficient for the coordinator to track the quantiles of the
active window at any time. Indeed, when the n(i)-th item arrives, the site has
already started building an AM structure with some W that is between n(i) and
2n(i),4 and the completed portion has been communicated to the coordinator.
This structure gives us quantiles with error O(εW) = O(εn(i)), as desired. Note
that the site only started building the structure after εW items passed, but
ignoring these contributes error at most εW .

4 The special case n(i) ≤ 1/ε is handled by simply recording the first 1/ε items exactly.

Tracking Distributed Aggregates over Time-Based Sliding Windows 427

The Backward Problem. To solve the backward problem, we need a series
of AM structures on the last W items of a fixed window so that we can extract
quantiles when this fixed window becomes the expiring window. Fortunately the
AM structure can be maintained easily so that it always tracks the last W items.
Again for each level, new items are added to the latest (partial) block using the
GK algorithm [12]; when all items of the oldest block are outside the last W , we
remove the block.

For the current fixed window starting from t0, we build a series of AM struc-
tures, as in the forward case. The difference is that after an AM structure is
completed, we continue to slide it so as to track the last W items. This remains
private to the site, so there is no communication until the current active win-
dow concludes. At this point, we have a collection of O(log(n(i))) AM structures
maintaining the last W items in the window for exponentially increasing W ’s.
Then the site sends the summaries for windows of size between ε−1 and 2n(i)

to the coordinator, and the communication cost is the same as in the forward
case. To maintain the quantiles at any time t, the coordinator finds the smallest
AM structure (in terms of coverage of time) that covers the expiring window
[t−w, t0), and queries that structure with the time interval [t−w, t0). This will
give us quantiles with error O(εW) = O(εCi(t−w, t0)) since W ≤ 2Ci(t−w, t0).

Theorem 3. The above protocol for quantiles has a total communication cost
of O(k/ε log2(1/ε) log(n/k)) words per window. The space required at each site
is O(1ε log

2(1/ε) log(εn(i))), and O(kε log
2(1/ε) log(εn/k)) at the coordinator to

keep copies of all the data structures.

Yi and Zhang [20] show a lower bound of Ω(kε log
εn
k) messages of communication

(for the infinite window case), so our communication cost is near-optimal up
to polylogarithmic factors. Meanwhile, [4] provided an O(k/ε2 · log(n/k)) cost
solution, so our protocol represents an asymptotic improvement by a factor of
O(1

ε log2(1/ε)
). We leave it open to further improve this bound: removing at least

one log(1/ε) term seems feasible but involved, and is beyond the scope of this
paper.

6 Other Functions

The problems discussed so far have the nice property that we can separately
consider the monitored function for each site, and use the additivity properties
of the function to obtain the result for the overall function. We now discuss some
more general functions that can also be monitored under the same model.

Distinct Counts. Given a universe of possible items, the distinct counts prob-
lem asks to find the number of items present within the sliding window (count-
ing duplicated items only once). The summary data structure of Gibbons and
Tirthapura can solve this problem for a stream of items under the infinite win-
dow semantics [10]. A hash function maps each item to a level, such that the
probability of being mapped to level j is geometrically decreasing. The algorithm

428 G. Cormode and K. Yi

tracks the set of items mapped to each level, until O(1/ε2) distinct items have
been seen there, at which point the level is declared “full”. Then the algorithm
uses the number of distinct items present in the first non-full level to estimate
the overall number of distinct items.

This leads to a simple solution for the active window: each site independently
maintains an instance of the data structure for the window, and runs the algo-
rithm. Each update to the data structure is echoed to the coordinator, ensuring
that the coordinator has a copy of the structure. The communication cost is
bounded by O(1/ε2 logn(i)). The coordinator can merge these summaries to-
gether in the natural way (by retaining the set of items mapped to the same
level from all sites) to get the summary of the union of all streams. This sum-
mary therefore accurately summarizes the distinct items across all sites.

The solution for the expiring window is similar. Each site retains for each level
the O(1/ε2) most recent distinct arrivals that were mapped to that level, along
with their timestamps. This information enables the distinct count for any suffix
of the window to be approximated. This data structure can then be shared with
the coordinator, who can again merge the data structures straightforwardly. The
total communication required is O(k

ε2 log
n
k) over all k sites.

Entropy. The (empirical) entropy of a frequency distribution is
∑

j
fj
n log n

fj
,

where fj denotes the frequency of the jth token. As more items arrive, the
entropy does not necessarily vary in a monotone fashion. However, the amount by
which it can vary is bounded based on the number of arriving items: specifically,
for m new arrivals after n current arrivals, it can change by at most m

n log(2n) [1].
This leads to a simple protocol for the forward window case to track the entropy
up to additive error ε: given n current items, each site waits to see εn

log(2n) new

arrivals, then communicates its current frequency distribution to the coordinator.
Within a window of ni arrivals, there are at most O(1ε log

2 ni) communications.
For the backward case, the protocol has to send the frequency distribution

when the number of items remaining reaches various values. This can be ar-
ranged by use of the exponential histogram outlined in Section 3: for each times-
tamp stored, it keeps the frequency distribution associated with that timestamp.
When a timestamp is “merged”, and dropped, the corresponding distribution is
dropped also. Thus, the space required is O(1ε log(εn

(i))) entries in the histogram.
The histogram introduces some uncertainty into the number of items remaining,
but after rescaling of parameters, this does not affect the correctness.

When the domain is large, the size of the frequency distributions which must
be stored and sent may dominate the costs. In this case, we replace the exact
distributions with compact sketches of size Õ(1

ε2) [13]. The coordinator can com-
bine the sketches from each site to obtain a sketch of the overall distribution,
from which the entropy can be approximated.

Geometric Extents: Spread, Diameter and convex Hull. Given a set of
points in one dimension pi, their spread is given by (maxi pi − mini pi). The
forward case is easy: send the first two points to the coordinator, then every
time a new point causes the spread to increase by a 1 + ε/2 factor, send the

Tracking Distributed Aggregates over Time-Based Sliding Windows 429

new point to the coordinator. This ensures that spread is always maintained
up to a (1 + ε) factor, and the communication is O(1ε logR), where R is the
ratio between the closest and furthest points in the input, a standard factor in
computational geometry. For the backward case, we can use the algorithm of
Chan and Sadjad [5] to build a summary of size O(1ε logR) as the points arrive
in the active window, and communicate this to the coordinator to use for the
expiring window. Lastly, observe that spread of the union of all points can be
approximated accurately from the union of points defining the (approximate)
spread for each site.

The diameter of a point set in two (or higher) dimensions is the maximum
spread of the point set when projected onto any line. A standard technique is
to pick O(1/ε(d−1)/2) uniformly spaced directions in d dimensions, and project
each input point onto all of these directions: this preserves the diameter up
to a (1 + ε) factor, since there is some line which is almost parallel to the line
achieving the diameter. This immediately gives a protocol for diameter with cost

O(1ε
(d+1)/2

logR), by running the above protocol for each of the O(1/ε(d−1)/2)
directions in parallel. A similar approach also maintains the approximate convex
hull of the point set, by observing that the convex hull of the maximal points in
each direction is approximately the convex hull of all points.

7 Concluding Remarks

The forward/backward framework allows a variety of functions to be monitored
effectively within a sliding window, and improves over the results in prior work
[4]. The underlying reason for the complexity of the the analysis of the protocols
previously proposed is that they focus on the current count of items at each
site. This count rises (due to new arrivals) and falls (due to expiry of old items).
Capturing this behavior for heavy hitters and quantiles requires the analysis
of many cases: when an item becomes frequent through arrivals; when an item
becomes frequent because the local count has decreased; when an item becomes
infrequent due to arrivals of other items; when an item becomes infrequent due to
expiry; and so on. By separating streams into streams of only arrivals and streams
of only expirations, we reduce the number of cases to consider, and remove any
interactions between them. Instead, we just have to track the function for two
different cases. This allowed a much cleaner treatment of this problem, and opens
the door for similar analysis of other monitoring problems.

References

1. Arackaparambil, C., Brody, J., Chakrabarti, A.: Functional Monitoring without
Monotonicity. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 95–106. Springer, Heidelberg
(2009)

2. Arasu, A., Manku, G.S.: Approximate counts and quantiles over sliding windows.
In: ACM Principles of Database Systems (2004)

430 G. Cormode and K. Yi

3. Busch, C., Tirthapura, S., Xu, B.: Sketching asynchronous streams over sliding
windows. In: ACM Conference on Principles of Distributed Computing (PODC)
(2006)

4. Chan, H.-L., Lam, T.-W., Lee, L.-K., Ting, H.-F.: Continuous monitoring of dis-
tributed data streams over a time-based sliding window. In: Symposium on Theo-
retical Aspects of Computer Science, STACS (2010)

5. Chan, T.M., Sadjad, B.S.: Geometric Optimization Problems Over Sliding Win-
dows. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 246–
258. Springer, Heidelberg (2004)

6. Cormode, G.: Continuous distributed monitoring: A short survey. In: Algorithms
and Models for Distributed Event Processing, AlMoDEP (2011)

7. Cormode, G., Muthukrishnan, S., Yi, K.: Algorithms for distributed, functional
monitoring. In: ACM-SIAM Symposium on Discrete Algorithms (2008)

8. Cormode, G., Muthukrishnan, S., Yi, K., Zhang, Q.: Optimal sampling from dis-
tributed streams. In: ACM Principles of Database Systems (2010)

9. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over
sliding windows. In: ACM-SIAM Symposium on Discrete Algorithms (2002)

10. Gibbons, P., Tirthapura, S.: Estimating simple functions on the union of data
streams. In: ACM Symposium on Parallel Algorithms and Architectures (SPAA),
pp. 281–290 (2001)

11. Gibbons, P., Tirthapura, S.: Distributed streams algorithms for sliding windows.
In: ACM Symposium on Parallel Algorithms and Architectures (SPAA) (2002)

12. Greenwald, M., Khanna, S.: Space-efficient online computation of quantile sum-
maries. In: ACM SIGMOD International Conference on Management of Data
(2001)

13. Harvey, N.J.A., Nelson, J., Onak, K.: Sketching and streaming entropy via approx-
imation theory. In: IEEE Conference on Foundations of Computer Science (2008)

14. Keralapura, R., Cormode, G., Ramamirtham, J.: Communication-efficient dis-
tributed monitoring of thresholded counts. In: ACM SIGMOD International Con-
ference on Management of Data (2006)

15. Kuhn, F., Locher, T., Schmid, S.: Distributed computation of the mode. In: ACM
Conference on Principles of Distributed Computing (PODC), pp. 15–24 (2008)

16. Lee, L., Ting, H.: A simpler and more efficient deterministic scheme for finding
frequent items over sliding windows. In: ACM Principles of Database Systems
(2006)

17. Metwally, A., Agrawal, D., Abbadi, A.E.: Efficient computation of frequent and
top-k elements in data streams. In: International Conference on Database Theory
(2005)

18. Patt-Shamir, B.: A note on efficient aggregate queries in sensor networks. In: ACM
Conference on Principles of Distributed Computing (PODC), pp. 283–289 (2004)

19. Sharfman, I., Schuster, A., Keren, D.: A geometric approach to monitoring thresh-
old functions over distributed data streams. In: ACM SIGMOD International Con-
ference on Management of Data (2006)

20. Yi, K., Zhang, Q.: Optimal tracking of distributed heavy hitters and quantiles. In:
ACM Principles of Database Systems, pp. 167–174 (2009)

Hinging Hyperplane Models

for Multiple Predicted Variables

Anca Maria Ivanescu, Philipp Kranen, and Thomas Seidl

RWTH Aachen University, Germany
{lastname}@cs.rwth-aachen.de

Abstract. Model-based learning for predicting continuous values in-
volves building an explicit generalization of the training data. Simple
linear regression and piecewise linear regression techniques are well suited
for this task, because, unlike neural networks, they yield an interpretable
model. The hinging hyperplane approach is a nonlinear learning tech-
nique which computes a continuous model. It consists of linear submod-
els over individual partitions in the regressor space. However, it is only
designed for one predicted variable. In the case of r predicted variables
the number of partitions grows quickly with r and the result is no longer
being compact or interpretable.

We propose a generalization of the hinging hyperplane approach for
several predicted variables. The algorithm considers all predicted vari-
ables simultaneously. It enforces common hinges, while at the same time
restoring the continuity of the resulting functions. The model complex-
ity no longer depends on the number of predicted variables, remaining
compact and interpretable.

1 Introduction

Researchers from various fields (e.g. engineering, chemistry, biology) deal with
experimental measurements in form of points. For example in sensor network
applications, measurements are performed at spatially and temporally discrete
positions. In engineering sciences test benches are build and measurements per-
formed at discrete operating points. This data representation though is incom-
plete since it is only a discretization of the underlying process. For understanding
this set of measurement points, researchers model these points by mathematical
functions. These models offer a compact and intuitive representation of the un-
derlying process. Hence sensor measurements can be predicted for spatial and
temporal points where no measurements were performed, and measurements pre-
dicted at operating points which were not tested. Database systems like Func-
tionDB [14] and MauveDB [6] embed an algebraic query processor, which allows
the user to handle and query data in form of mathematical functions.

The problem we address in this paper is that of learning a generalized mathe-
matical model from a given set of data. The goal is to obtain a compact, intelli-
gible description of the data and to accurately predict continuous values. Often
linear models are not sufficient to accurately describe the data. In this case

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 431–448, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

432 A.M. Ivanescu, P. Kranen, and T. Seidl

x1

x2

x1

x2

Fig. 1. Increasing number of partitions

nonlinear models are used. We focus our attention on approximating nonlinear
data with several linear functions. An arbitrarily high approximation accuracy
is obtained at the expense of a sufficiently large number of linear submodels.

Having the task of describing the output as a linear or piecewise linear func-
tion of the input, the main challenge is to partition the input space such that
the corresponding fitted linear functions have a high approximation accuracy.
Both regression trees [7,17] and correlation clustering methods [2,15,1] are well
suited for clustering linearly dependent points. However, the resulting piecewise
affine functions are not guaranteed to be continuous. This is a severe drawback,
since most systems or processes represent continuous dynamics and require the
continuity of the piecewise affine functions.

The hinging hyperplanes (HH) model introduced by Breiman in [4] is a tech-
nique for continuous approximation of nonlinear data. The HH model is defined
as a sum of basis functions, called hinge functions, each consisting of two contin-
uously joined hyperplanes. The contained hinges can also be used to determine
splits in the input space for the construction of regression trees. This way an
interpretable model of the data is built which offers a better understanding of
the underlying process.

The hinge finding algorithm (HFA) is only designed to deal with one dimen-
sional output variables. In the case of r output dimensions r independent models
are built, one for each output. Since the input and output dimensions are corre-
lated and describe the same process, our goal is to model their relationship in a
single multivariate regression tree. While the leafs of univariate regression trees
contain a linear model, the leafs of multivariate regression trees contain several
linear models, one for each output. The challenge is to find a partitioning of
the input space, such that in each leaf of the resulting regression tree all linear
models are as accurate as possible.

The most straight-forward way to construct a multivariate regression tree
is to construct for each output a univariate regression tree and combine their
partitionings. Note that in this case the number of partitions grows quickly with
K, the number of hinges in the HH model, and with r, the number of output
variables. Figure 1 illustrates this for a 2-dimensional input space. The left image
shows one partitioning generated by Γf , and one partitioning generated by Γg.
Combining the two yields 4 partitions. The right image illustrates a possible
result in the case of 2 output dimensions and 2 hinges for each output. For

Hinging Hyperplane Models for Multiple Predicted Variables 433

3 predicted variables 3 hinges can amount to 46 partitions which is in strong
contrast to maximally 7 for a shared partitioning. With such a high number of
leafs, the resulting multivariate regression tree looses its property of being easily
interpretable. Moreover, the increased model size induces performance losses
during the algebraic query processing.

We propose the mHFA approach that extends the estimation of HH models
to the multivariate case. The output of our approach is a multivariate regression
tree that represents a single partitioning of the input space for all predicted
variables. Despite the common partitions, the continuity of the hinge functions
is guaranteed for all predicted variables. An intuitive and compact model of
the underlying process is constructed, which can be used for both gaining a
deeper understanding of the process and performing efficient algebraic queries
in function-based database systems.

The structure of the paper is as follows: We discuss related work in the fol-
lowing section and provide preliminaries as well as the hinge finding algorithm
(HFA) for a single output in Section 3. In Section 4 we present our hinge finding
algorithm for multiple outputs (mHFA) which generates a shared partitioning
of the input space. Section 5 contains the experimental evaluation and Section 6
concludes the paper.

2 Related Work

Different approaches for approximating a nonlinear function from a set of points
by fitting several linear segments were proposed in the literature. Algebraic pro-
cedures [16] and bounded-error procedures [3] proved not to be robust against
noise and parameter settings [12]. More robust are clustering based procedures
[9]. However these approaches do not deliver continuous models and are only
designed to deal with 1-dimensional outputs. Correlation clustering algorithms
are well suited to cluster linearly correlated points, and are not bounded to any
output dimension. A shared partitioning in the input space can be computed, as
described in [11]. Still, the resulting models are not guaranteed to be continuous.

Methods for nonlinear regression, classification, and function approximation
often use expansions into sums of basis functions. Widely adopted are neural net-
works [8] which use sigmoidal functions as basis functions. A major drawback
is that these produce black box models, while in many applications understand-
ing the model is as important as an accurate prediction. Regression trees, like
CART [5] and MARS [10], build interpretable models but are limited to axis par-
allel partitionings. More flexible are the hinging hyperplanes (HH) introduced
by Breiman in [4]. They allow arbitrary oriented partitions in the input space.
All these approaches are restricted to deal with one output dimension.

We extend the HH model to deal with the multivariate case by applying
hinge finding algorithm for each output in an interleaved manner. Each hinge is
conjointly computed to fit all outputs. We thus obtain a single partitioning of
the input space.

434 A.M. Ivanescu, P. Kranen, and T. Seidl

3 The Hinging Hyperplane Model

We introduce notations and preliminaries in the next section an describe the
hinge finding algorithm from [4] in Section 3.2.

3.1 Preliminaries

An m− 1-dimensional hyperplane in the m-dimensional Euclidean space Rm in
its Hessian normal form is described by a normal vector n = [n1, . . . , nm]T ∈ Rm

with ‖n‖ = 1 and the distance d ∈ R to the origin as

xTn− d = 0, (1)

Alternatively, an m−1-dimensional hyperplane can be described by a parametric
equation:

xm = a1x1 + . . .+ am−1xm−1 + b, (2)

where β = [a1, . . . , am−1, b]
T is the parameter vector describing the hyperplane,

β ∈ Rm. This form is encountered e.g. in linear regression, where the predicted
variable is described as a parametric equation of the predictor variables. One
representation can easily be converted into the other:

(1) ⇒ (2) : ai = −
ni

nm
, i = 1 . . .m− 1, b =

d

nm

(2) ⇒ (1) : ni = ai, i = 1 . . .m− 1, nm = −1, d = −b

Throughout the paper we consider a data set D ⊂ Rm+r where an observation
(x, y) ∈ D consists of an m-dimensional input vector x = [x1, . . . , xm]T and an
r-dimensional output y = [y1, . . . , yr]

T . For the simple case of r = 1, linear re-
gression fits a hyperplane to all observations in D. Using the notation x = [x, 1]T

the hyperplane can be expressed as ŷ = xTβ, and the residuals as y[1] = y − xTβ.
Let X ∈ R|D|×m be the matrix that contains as rows all input vectors x

and Y ∈ R|D|×1 the vector that contains all corresponding output values of the
observations in D, then the residual sum of squares is

‖Y −Xβ‖22 =
∑

(x,y)∈D
(y − xTβ)2.

A solution to the unconstrained least squares problem

min
β
‖Y −Xβ‖22 (3)

is found by solving the equation β = (XTX)−1XTY .

Hinging Hyperplane Models for Multiple Predicted Variables 435

. .

. . .
.. .

.. . .
. .

x

y

Fig. 2. A set of observations approximated by two regression models of a hinge function

3.2 The Hinge Finding Algorithm for a Single Output

Let D ⊂ Rm+1 be a data set as defined above. A hinge function h(x) approx-
imates the unknown function ŷ = f(x) by two hyperplanes: xTβ+ and xTβ−,
that are continuously joined together at their intersection {x : xTΔ = 0},
where Δ = (β+ − β−) is called hinge. The hinge Δ separates the data set
in S+ = {x : xTΔ ≥ 0} and S− = {x : xTΔ < 0}. The explicit form of the
hinge function h(x) is either h(x) = min(xTβ+,xTβ−) in the case of concave
functions, or h(x) = max(xTβ+,xTβ−) in the case of convex functions. Figure
2 shows an example for h(x) = max{xTβ+,xTβ−} for a set of observations with
a single input.

The hinge finding algorithm (HFA) is described by Breiman in [4] as follows:
start with an arbitrary initial hinge Δ(0) and partition the dataset into the two
sets S+ and S−. Use least squares regression to fit a hyperplane xTβ+ to the
observations in S+ and another hyperplane xTβ− to the observations in S−.
The new hinge is Δ(1) = β+ − β−. Update the sets S+ and S− and repeat the
steps until the hinge function converges.

Pucar et al. proposed in [13] a line search strategy in order to guarantee
convergence to a local minimum. In each iteration i a weighted average of the
previous hinge Δ(i−1) and the new suggestion β+ − β− is used. The next hinge
Δ(i) is set to

Δ(i) = λ ·Δ(i−1) + (1 − λ) · (β+ − β−) (4)

with λ being the first value that decreases the residual error in the sequence
λ = 2−τ for τ = 1, . . . , τmax.

For a better approximation of the observations in D several hinge functions
h[k](x) can be combined yielding ŷ =

∑K
k=1 h[k](x). The first hinge h[1](x) is

computed as described above. To compute the second hinge h[2](x) a temporary
data set D[2] is generated that contains for each observation (x, y) ∈ D an ob-
servation (x, y[2]), where y[2] = y − h[1](x) is the residuum that is not fitted by
h[1](x). After computing h[2](x) the first hinge is refitted on a temporary data
set with output values y[1] = y − h[2](x). The general procedure for finding K
hinges is as follows: Initially h[k](x) = 0 ∀k = 1 . . .K. To compute the k-th hinge

436 A.M. Ivanescu, P. Kranen, and T. Seidl

x1

x2

Fig. 3. Left: Two hinging hyperplanes and the corresponding separator Γ . Right: Three
separators Γ1, Γ2, Γ3 in the input space and the consensus separator Γ̂ .

a temporary data set

D[k] =
{
(x, y[k])

∣∣∣ (x, y) ∈ D} with y[k] = y −
K∑

i=1,i�=k

h[k](x) (5)

is generated and used in the hinge finding algorithm. After computing a new
hinge h[k](x), all hinges h[i](x) from i = 1 to k are refitted by running the HFA
on D[i] according to Equation 5 using the current h[i](x) as initialization.

4 Hinge Regression for Multiple Outputs

Before we describe our method, we first discuss the geometric interpretation of
the hinges (cf. Figure 3). We denote the intersection of the two m-dimensional
hyperplanes β+ and β− as g. Of special interest is the orthogonal projection of
g onto the input space, which is the intersection of the hinge Δ with the input
space obtained by setting xTΔ = 0. We denote this intersection as Γ and refer
to it as the separator, since it separates the m-dimensional input space into two
half spaces.

Let Δ = (δ1, . . . , δm+1) be the parameters of the hinge for an output y:

y = x1δ1 + ...+ xmδm + δm+1.

By setting this equation equal to 0, we obtain for Γ in the input space the
following equation in Hessian form:

x1δ1 + ...+ xmδm + δm+1 = 0.

with normal vector [δ1, ..., δm]T and offset d = −δm+1.
For a given data set D ⊂ Rm+r, with r > 1, our goal is to find hinge func-

tions for each output with identical separators, which simultaneously minimize

Hinging Hyperplane Models for Multiple Predicted Variables 437

x1

x2

x1

x2

a)

b)

c)

x1

x2

Fig. 4. Finding the best consensus separator Γ̂

the residual error in all output dimensions. The basic idea is to compute one
hinge per output yj and to combine the corresponding separators Γj to a single

consensus separator Γ̂ (cf. Figure 3 right). Combining several separators in a
meaningful manner in arbitrary dimensions is not straight forward. Moreover,
by imposing a hinge on a hinge function, the continuity property of hinge func-
tions gets lost. Hence, we additionally force the regression models β+

j and β−
j

for each output yj to join continuously on ĝj whose projection onto the input

space is Γ̂ . The main steps of the procedure are

1. Generate separate data sets Dj per output yj , i.e. ∀(x, y) ∈ D : (x, yj) ∈ Dj

2. Compute one hinge Δj per output yj using Dj

3. Combine all separators Γj , j = 1 . . . r to a consensus separator Γ̂
4. Force the regression models for each output yj to join continuously at ĝj

Step 1 generates r temporary data sets, Step 2 finds a hinge for each output
as described in Section 3.2. Step 3 is described in the following Section, details
on Step 4 are provided in Section 4.2. The entire hinge finding algorithm for
multiple outputs is provided in Section 4.3.

4.1 Finding the Consensus Separator Γ̂

A naive solution to combine the individual separators to a consensus separator
Γ̂ = (γ̂1, . . . , γ̂m) is to use a linear combination of the parameters as

γ̂i =
1

r

r∑
j=1

γj,i , i = 1 . . .m (6)

This solution does not necessarily find the best consensus separator as depicted in
Figure 4. Part a) illustrates an example in a 2-dimensional input space where two
separators Γ1 and Γ2 are combined to consensus separator Γ̂ using Equation 6.
Γ̂ is the bisector of the smaller angle between Γ1 and Γ2. Part b) shows that

438 A.M. Ivanescu, P. Kranen, and T. Seidl

Γ̂ according to Equation 6 yields the bisector of the larger angle between Γ1

and Γ2, which does not represent the best consensus. The normal vectors of the
two different solutions result from adding the individual normal vectors with
different orientations, i.e. either n1 + n2 or n1 − n2. We denote the two possible
orientations of a normal vector nj as ξjnj with ξj ∈ {−1, 1}, j = 1 . . . r and
define the normal vector of the consensus separator as a sum of these oriented
normals

n̂ =

∑r
j=1 ξjnj

‖
∑r

j=1 ξjnj‖
(7)

In general we search for the separator Γ̂ , defined by its normal n̂ and its offset
d̂, with minimal deviation from the r separators. The normal n̂ with minimal
orientation deviation is found by minimizing the sum of angles αj between Γ̂
and each Γj , where αj < π/2 is the smaller angle between the two separators.
This is the same as maximizing the sum of all cosines of the αj . The offset with

minimal deviation is found by constraining Γ̂ to include the point with minimal
distance to all Γj . Figure 4 c) illustrates a consensus separator in a 2-dimensional
input space.

Definition 1. Consensus separator. In an m-dimensional input space let
Γj, j = 1 . . . r, be separators defined by xTnj − dj = 0. The consensus separator

Γ̂ is defined by the following normal vector:

r∑
j=1

|n̂Tnj | −→ max (8)

and contains the point p with

r∑
j=1

(pTnj − dj)
2 −→ min (9)

Lemma 1. Let Ξ = (ξ1, . . . , ξr) with ξj ∈ {−1, 1}, j = 1 . . . r. The normal
according to Equation 7 that maximizes Equation 8 is the one that maximizes
the sum of cosines of all angles between oriented normals ξini and ξjnj

max
Ξ

⎛⎝ r∑
i=1

r∑
j=1

ξin
T
i ξjnj

⎞⎠ (10)

The proof is provided in appendix A. We determine Ξ using binary integer
programming.

To find the point p that minimizes the sum of squared distances to all hyper-
planes (cf. Equation 9) we use the notation p = (p, 1), nj = (nj , dj) and define
the matrix N ∈ Rr×(m+1) as the matrix that contains as rows all nj , j = 1 . . . r.
Equation 9 can then be rewritten as

min
p

(
(Np)2

)
= min

p

(
(pTNT)(Np)

)
= min

p

(
pTAp

)
(11)

Hinging Hyperplane Models for Multiple Predicted Variables 439

Fig. 5. Enforcing the regression planes to continuously join on Γ̂⊥

where A = NTN is an (m + 1) × (m + 1) matrix. A solution can be found by
computing an eigenvalue decomposition of A or solving

∂

∂p
pTAp = 0 ⇔

[
A1 · · ·Am

]
p =

[
−Am+1

]
(12)

where Ai is the i-th column of matrix A.

4.2 Forcing Continuous Joins

Recall that the two regression models β+
j and β−

j for output yj are continuously
joined on a (m− 1)-dimensional hyperplane gj whose projection onto the input

space is the separator Γj (cf. Figure 3). To enforce the consensus separator Γ̂ we
have to ensure that the regression planes are continuously joined on an (m− 1)-
dimensional hyperplane ĝj whose projection onto the input space is Γ̂ . The idea
is depicted in Figure 5 and consists of two parts:

(a) Compute a consensus hyperplane ĝj, in which the two hyperplanes shall be
continuously joined

(b) Recompute β+
j and β−

j such that they both include ĝj (cf. Figure 5 right)

(a) We find the consensus hyperplane ĝj by computing a set of m affinely in-

dependent points p̄i that lie on ĝj. ĝj itself lies in the Γ̂⊥-plane, which is the

m-dimensional hyperplane that contains Γ̂ and that is perpendicular to the in-
put space (cf. Figure 5 left). Each point p̄i is the average between two points p+i
and p−i . p

+
i lies in the intersection of β+

j and the Γ̂⊥-plane, analogously for p−i ,

and p+i,l = p−i,l for l = 1 . . .m, i.e. they have the same input values.

To compute the points p+i we choose a set Q ⊂ Rm of points qi in the input
space, set p+i,l = qi,l, l = 1 . . .m and determine the output values as pi,m+1 =

qTi · β+. The p−i are computed analogously and p̄i = (p+i + p−i)
1
2 . Choosing Q is

done as follows: Let xi,min = min(x,y)∈D{xi} and xi,max = max(x,y)∈D{xi} be
the minimal and maximal values in D in dimension i. We define the input cube

440 A.M. Ivanescu, P. Kranen, and T. Seidl

I� ⊂ Rm as the m-dimensional cube spanned by the minimum and maximum
values

I� =
{
(x1, . . . , xm)

∣∣∣ ∃l xl,min ≤ xl ≤ xl,max ∧ ∀i �= l xi = xi,min ∨ xi = xi,max

}
We choose the set Q to be m intersection points qi of Γ̂ with the input cube I�,
which can easily be computed for arbitrary dimensions. Figure 5 (left) shows an
example for I� and the two intersection points q1 and q2.
(b) For output yj let Ŝ

+
j and Ŝ−

j be the two partitions of Dj corresponding to

the consensus separator Γ̂ . We describe how we recompute the regression plane

β+
j using Ŝ+

j , β−
j is computed analogously. Let X ∈ R|Ŝ+

j |×m be the matrix

that contains as rows all input vectors in Ŝ+
j and Y ∈ R|Ŝ+

j |×1 the vector that

contains all corresponding output values of the observations in Ŝ+
j . Similarly

we define Q ∈ R|Q|×m as the matrix that contains as rows all points qi ∈ Q
and Z ∈ R|Q|×1 as the vector that contains all corresponding values p̄i,m+1. A
regression plane that contains all points p̄i can be approximated by assigning a
high weight w to Q and Z in the unconstrained least squares problem

min
β

∥∥∥∥[X
wQ

]
β −

[
Y
wZ

]∥∥∥∥ (13)

We set w = |D| in our experiments, i.e. the weight for each point p̄i is equal to
the size of the data set.

4.3 The Hinge Finding Algorithm for Multiple Outputs

The hinge finding algorithm for multiple outputs (mHFA) has a similar process
flow as the HFA for a single output. It starts with a random hinge Δ(0) that is
iteratively improved until no significant error reduction occurs. Since the algo-
rithm does not guarantee convergence to a global optimum, we let it run for a
number of ι random initializations and retain the model yielding the smallest er-
ror. Unlike the case with a single output, each observation has several errors, one
for each output. To avoid an influence of different output ranges we normalize
the errors per output yj by the corresponding range rangej = yj,max − yj,min.
The approximation error for D over all outputs is then:

ErrD =
∑

(x,y)∈D

r∑
j=1

(∣∣∣∣∣yj −
K∑

k=1

hj [k](x)

∣∣∣∣∣ 1

rangej

)2

. (14)

When the error is no longer reduced from on iteration to the next, mHFA is
stopped.

As in the case of a single output (cf. Section 3.2), for multiple outputs the
approximation error can be reduced using K > 1 hinges and estimating output
yj as ŷj =

∑K
k=1 hj [k](x). To this end, for each hinge h[k](x) a temporary data

Hinging Hyperplane Models for Multiple Predicted Variables 441

Algorithm 1. computeHinges (D,K)

for k = 1 to K do1

create D[k];2

compute Γinit;3

Γ̂ [k] = findConsensusSeparator(D[k], Γinit);4

for i = 1 to k do5

create D[i];6

Γ̂ [i] = findConsensusSeparator(D[i], Γ̂ [i]);7

endfor8

endfor9

Algorithm 2. findConsensusSeparator (D, Γinit)

create Dj ,∀j = 1, . . . , r;1

forceJoin(Γinit) for each output j;2

compute newErr ;3

crtErr =∞; Γnew = Γinit;4

while newErr < crtErr do5

crtErr = newErr;6

call HFA(Dj, Γnew) for each output j;7

Γnew = compute Γ̂ ;8

forceJoin(Γnew) for each output j;9

compute newErr;10

endw11

return Γnew ;12

set is computed that contains as output values the residuals that are not yet
fitted by all other hinge functions:

D[k] =
{
(x1, . . . , xm, y1[k], . . . , , yr [k])

∣∣∣(x1, . . . , xm, y1, . . . , yr) ∈ D
}
, (15)

where yj [k] = yj −
K∑

i=1, i�=k

hj [i](x) for j = 1 . . . r,

and hj [i](x) is initially set to 0 for all outputs and all hinges.
The main steps of the algorithm to fit K hinges to a given data set D are

summarized in Algorithm 1. The normal form of the initial separator (cf. line 1)
is computed using a random normal vector, and the mean vector of all in-
put vectors in D is used to compute the distance to the origin. The method
findConsensusSeparator is listed in Algorithm 2. forceJoin(Γ) (cf. line 2) is
done as described in Section 4.2. HFA(Dj , Γnew) (cf. line 2) performs the hinge
finding algorithm from Section 3.2 on Dj using Γnew as initialization.

Complexity Analysis. The main building block of mHFA is the HFA, which
iterates until the error no longer decreases. Let ι1 and ι2 be the number of
random initialization for HFA and mHFA, respectively, and ιHFA and ιmHFA the

442 A.M. Ivanescu, P. Kranen, and T. Seidl

0%

1%

2%

3%

4%

1 hinge 2 hinges 3 hinges 1 hinge 2 hinges 3 hinges

TRAIN TEST

HFA mHFA
er

ro
r

0%

2%

4%

6%

1 hinge 2 hinges 3 hinges 1 hinge 2 hinges 3 hinges

TRAIN TEST

HFA mHFA

er
ro

r

0%

2%

4%

6%

8%

1 hinge 2 hinges 3 hinges 1 hinge 2 hinges 3 hinges

TEST

HFA mHFA

er
ro

r

0

0.5

1

1.5

2

2.5

3

3.5

1 hinge 2 hinges 3 hinges

HFA mHFAruntime

se
co

nd
s

/
m

H
FA

te
ra

tio
n

Fig. 6. Error measurements for the Diesel dataset, and the corresponding runtimes

corresponding number of iterations until convergence. One such HFA iteration
consists of fitting two regression hyperplanes and recomputing the two partitions
S+ and S−, and has a runtime complexity ofO(|D|2·m+m3). In total the runtime
of HFA for one hinge is O(ι1 · ιHFA · (|D|2 · m + m3)). Our mHFA algorithm
first performs the HFA for each output independently, then finds a consensus
separator and forces it to all outputs. Hence the runtime complexity is O(ι2 ·
ιmHFA ·(r ·O(HFA)+2r+ |D|2 ·m)). The exponential term is due to the binary
integer program in the computation of the consensus hinge. For the computation
we employ the highly optimized Gurobi solver (www.gurobi.com). Hence, the
scalability of mHFA depends on three factors: dataset size, input dimensionality,
and output dimensionality. All of these aspects are investigated in the Section 5.
Trade-off between Quality, Compactness, and Runtime. There are

two trade-offs which the user has to consider when intending to use HFA or
mHFA. The first one is the trade-off between the quality and the compactness of
a model. It generally holds, that the quality increases with more hinges at the cost
of a poorer compactness. The second trade-off concerns the runtime complexity
of building a model versus the quality of a model. This trade-off can be steered
by the number of random initializations. The more noise or nonlinearity the
data contains, the more probable it gets for the algorithms to get stuck in a
local optimum. With more random initializations the probability of achieving a
better result increases.

5 Experiments

In this section we investigate the mHFA algorithm compared to the HFA. First
we show that by imposing the constraint of a common partitioning in the input
space, the quality of the resulting models is not considerably affected. Second,
we investigate the scalability of mHFA w.r.t. different aspects.

Hinging Hyperplane Models for Multiple Predicted Variables 443

Fig. 7. Plots for the DIESEL dataset with 2 hinges (
∑

errors = 13.31%), 3 hinges
(
∑

errors = 11.15%), and 4 hinges (
∑

errors = 9.79%)

For evaluating the model quality we consider following two datasets: the
Diesel dataset and the Concrete Slump dataset [18]. The Diesel dataset
contains 8020 measurements from a combustion process in a Diesel engine, with
3 input dimensions (UFMI , UFMI , and UEGR), and 3 output dimensions (YIMEP ,
YIMEP , and YdPmax). The goal is to obtain a model describing the combustion
process. The Concrete Slump dataset contains 103 measured points, with 7
input dimensions and 3 output dimensions. The aim is to obtain from these mea-
surements a material workability behavior model to predict the concrete slump,
flow, and strength. To evaluate the quality of a constructed model we use the
error as defined in Equation 14. In our experiments we performed ι1 = ι2 = 100
random initializations and chose at the end the model with the lowest error. In
all our experiments we used 10-fold cross validation.

Figure 6 illustrates the error of the different outputs for the Diesel dataset,
for the model constructed with mHFA compared to the models independently
constructed with HFA. We can see that by forcing a common partitioning of the
input space, mHFA obtains only a small error increase compared with HFA. The
fourth diagram (in the lower right corner) illustrates the mean runtimes of the

444 A.M. Ivanescu, P. Kranen, and T. Seidl

0

4

8

12

16

1 hinge 2 hinges 3 hinges ANN 2.Regr 1 hinge 2 hinges 3 hinges ANN 2.Regr

TRAIN TEST

HFA mHFA

RM
SE

flow (cm)

0

2

4

6

8

10

1 hinge 2 hinges 3 hinges 1 hinge 2 hinges 3 hinges

TRAIN TEST

HFA mHFA

RM
SE

slump (cm)

0

1

2

3

4

1 hinge 2 hinges 3 hinges 1 hinge 2 hinges 3 hinges

TRAIN TEST

HFA mHFA

RM
SE

compressive strength

Fig. 8. Error measurements for the SLUMP dataset

two algorithms for one random initialization, ranging from 0.1 seconds for one
hinge up to 3 seconds for three hinges (for mHFA).

Figure 7 illustrates the fitted models for 2 input dimenisions (for UFMI = 10).
The model for each output is plotted separately, with two, three, and four hinges.
We recognize in these images, that the partitioning of the input space is the same
for each model, only the linear equations for each output differ. The more hinges
are used, the better the model fits the data.

Figure 8 compares the errors of the computed models for the Concrete

Slump dataset. For the slump flow we additionally show the RMSE results that
were reported in [18] for artificial neural networks and second order regression.
For comparability, we also use the root mean square error for our experiments

(RMSE = 1
N

√∑N
i=1(yi − ŷi)2). We see that the artificial neural network

has a smaller RMSE than both HFA and the mHFA . Although they have a
higher prediction accuracy, they do not generate intelligible models but rather
prediction functions which act as black boxes. The model built with second
order regression has a lower prediction accuracy than both hinge approaches.
This is because using piecewise linear functions an arbitrary high approximation
accuracy is obtained with enough linear pieces. Taking a closer look at the slump
output and the flow output, we see that in the test phase the RMSE is higher
for the separately computed hinges. This is because of the noisy measurements,
which are smoothed out when several outputs are considered.

Another interesting aspect is number ι of required initializations. To empir-
ically investigate the convergence of mHFA, we plotted in Figure 9 the result-
ing RMSE values for several random initializations. In the case of the Diesel

dataset, we observe that, because of its nonlinearity, the more hinges are used,

Hinging Hyperplane Models for Multiple Predicted Variables 445

0

1

2

3

4

5

6

0 400 800 1200 1600 2000

2 hinge
3 hinge
1 hinge

RM
SE

computations

0

1

2

3

4

5

6

1 hinge 2 hinges 3 hinges

0

5

10

15

20

25

0 400 800 1200 1600 2000

2 hinge

3 hinge

1 hinge

RM
SE

computations

0

5

10

15

20

25

1 hinge 2 hinges 3 hinges

Fig. 9. Convergence of RMSE

the faster mHFA converges. In the case of the Concrete Slump dataset,
mHFA converges faster even with only one hinge. Choosing ι generally depends
on the linearity of the dataset, and on the number of desired hinges.

To evaluate the scalability of mHFA w.r.t. the three different aspects men-
tioned in Section 4.3 we used synthetically generated data. These are obtained
by sampling continuous functions and adding noise. Figure 10 illustrates the
results of our experiments. In the left figure we can see that the runtime of
mHFA increases almost linearly with the size of the dataset, for a 3-dimensional
input and 3-dimensional output. For a dataset with 1000 points, one random
initialization run of mHFA requires around 1 second, and reaches 244 second on
a dataset of around 280,000 points.

The figure in the middle shows the results of our experiments made to in-
vestigate the scalability of mHFA w.r.t. the input dimensionality. Together with
the dimensionality, we also increased the dataset size, since sparse data does not
offer much flexibility for fitting the hinges. We compared the resulting runtimes
with the ones obtained on a dataset of the same size, but with 3-dimensional
inputs. The numbers in the columns represent the corresponding dataset size.
For each output dimensionality we tested the runtime on two different dataset
sizes for a better comparability. We see that with a 4-dimensional input the run-
time of mHFA is very similar to the runtime on a dataset with 3-dimensional
input, while the runtime on a dataset with a 7-dimensional input is almost twice
as high as on a dataset with a 3-dimensional input. In the right Figure we see
the runtime performance of mHFA for a growing output dimensionality for a
dataset of 8,000 points and 3-dimensional input. While the worst case runtime
complexity is exponential, we do not observe this in the experiments. One reason
is the highly optimized Gurobi solver. Another reason is that correlated output
dimensions cause the mHFA algorithm to converge faster.

446 A.M. Ivanescu, P. Kranen, and T. Seidl

0

50

100

150

200

250

300

0 100,000 200,000 300,000

runtime scalability of mHFA
w.r.t. dataset size

se
co

nd
s

/
m

H
FA

ite
ra

tio
n

dataset size

0

3

6

9

12

15

18

2 4 6 8

se
co

nd
s

/
m

H
FA

ite
ra

tio
n

output dimensionality

runtime scalability of mHFA
w.r.t. input dimensionality

0%

50%

100%

150%

200%

250%

4 dim
input

5 dim
input

6 dim
input

7 dim
input

62
5 1,

29
6

3,
12

5 7,
19

6

15
,6

25 46
,6

56

78
,1

25
27

9,
93

6

ru
nt

im
e

in
cr

ea
se

w
.r

.t
.3

di
m

in
pu

t

runtime scalability of mHFA
w.r.t. input dimensionality

Fig. 10. Scalability of mHFA

6 Conclusion

Hinging hyperplanes yield a continuous piecewise linear approximation function
for a single predicted variable. Besides prediction, the computed hinges can be
used to construct a regression tree, a compact and interpretable model of the
underlying data. In this paper we presented the mHFA approach that builds
continuous models for multiple predicted variables and use it to build a multi-
variate regression tree. In contrast to previous approaches, where the number
of partitions grows exponentially in the number of predicted variables, our ap-
proach maintains the low model complexity as in the case of a single output.
mHFA enforces common hinges and restores the continuity of the resulting func-
tions for each predicted variable. We evaluated the performance of our approach
and discussed the convergence of the RMSE over several initializations. In sum-
mary mHFA yields compact and intelligible models with continuous functions
and low approximation errors.

Acknowledgments. The authors gratefully acknowledge the financial support of the
Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center
SFB-686 ”Model-Based Control of Homogenized Low-Temperature Combustion”.

References

1. Achtert, E., Böhm, C., David, J., Kröger, P., Zimek, A.: Robust clustering in
arbitrarily oriented subspaces. In: SDM (2008)

2. Aggarwal, C., Yu, P.S.: Finding generalized projected clusters in high dimensional
spaces. In: SIGMOD, pp. 70–81 (2000)

3. Bemporad, A., Garulli, A., Paoletti, S., Vicino, A.: A bounded-error approach
to piecewise affine system identification. IEEE Transactions on Automatic Con-
trol 50(10), 1567–1580 (2005)

4. Breiman, L.: Hinging hyperplanes for regression, classification, and function ap-
proximation. IEEE Transactions on Information Theory 39(3), 999–1013 (1993)

5. Breiman, L., Friedman, J.H., Stone, C.J., Olshen, R.A.: Classification and Regres-
sion Trees. Wadsworth and Brooks, Monterey (1984)

6. Deshpande, A., Madden, S.: Mauvedb: supporting model-based user views in
database systems. In: SIGMOD, pp. 73–84 (2006)

Hinging Hyperplane Models for Multiple Predicted Variables 447

7. Dobra, A., Gehrke, J.: Secret: a scalable linear regression tree algorithm. In: KDD,
pp. 481–487 (2002)

8. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Inter-
science (2000)

9. Ferrari-Trecate, G., Muselli, M., Liberati, D., Morari, M.: A clustering technique
for the identification of piecewise affine systems. Automatica 39, 205–217 (2003)

10. Friedman, J.H.: Multivariate adaptive regression splines. The Annals of Statis-
tics 19(1), 1–67 (1991)

11. Ivanescu, A.M., Albin, T., Abel, D., Seidl, T.: Employing correlation clustering for
the identification of piecewise affine models. In: KDMS Workshop in Conjunction
with the 17th ACM SIGKDD, pp. 7–14 (2011)

12. Paoletti, S., Juloski, A.L., Ferrari-trecate, G., Vidal, R.: Identification of hybrid
systems: a tutorial. Eur. J. of Control 513(2-3), 242–260 (2007)

13. Pucar, P., Sjöberg, J.: On the hinge-finding algorithm for hinging hyperplanes.
IEEE Transactions on Information Theory 44(3), 1310–1319 (1998)

14. Thiagarajan, A., Madden, S.: Querying continuous functions in a database system.
In: SIGMOD, pp. 791–804 (2008)

15. Tung, A.K.H., Xu, X., Ooi, B.C.: Curler: Finding and visualizing nonlinear corre-
lated clusters. In: SIGMOD, pp. 467–478 (2005)

16. Vidal, R., Soatto, S., Ma, Y., Sastry, S.: An algebraic geometric approach to the
identification of a class of linear hybrid systems. In: IEEE CDC, pp. 167–172 (2003)

17. Vogel, D.S., Asparouhov, O., Scheffer, T.: Scalable look-ahead linear regression
trees. In: KDD, pp. 757–764 (2007)

18. Yeh, I.-C.: Modeling slump flow and concrete using second-order regressions and
artificial neural networks. Cement Concrete Composites 29(6), 474–480 (2007)

Appendix A

Proof. (Lemma 1). Let Ξ = (ξ1, ..., ξr) with ξj ∈ {−1, 1}, j = 1, ..., r be the set
of orientations for the normal vectors n1, ..., nr, such that following equation is
maximized:

r∑
j=1

r∑
i=1

ξjξin
T
j ni (16)

We prove that the normal n̂ according to equation 7 that uses the above orien-
tations Ξ is the one that maximizes the equation:

r∑
j=1

|n̂Tnj | (17)

We provide a proof by contradiction and assume that Equation 16 is maximal
for Ξ, but not Equation 17. This implies that ∃e ∈ {1, . . . , r} such that |n̂Tne| �=
ξen̂

Tne. Since ξe ∈ {−1, 1}, this further implies that n̂Tneξe < 0. Substituting
n̂ from Equation 7 in n̂Tneξe < 0 we obtain:

∥∥∥ r∑
j=1

ξjnj

∥∥∥(r∑
j=1

ξjnj

)T
ξene < 0⇔

(r∑
j=1

ξjnj

)T
ξene < 0 (18)

448 A.M. Ivanescu, P. Kranen, and T. Seidl

This can be further transformed to:

r∑
j=1,j �=e

ξjξen
T
j ne + ξeξen

T
e ne < 0⇔

r∑
j=1,j �=e

ξjξen
T
j ne < −1 (19)

We next split the set Ξ \ {ξe} into two sets K and L such that: ∀l ∈ L :
ξlξen

T
l ne > 0, and ∀k ∈ K : ξkξen

T
k ne < 0. We rewrite Equation 19 as:∑

l∈L

ξlξen
T
l ne +

∑
k∈K

ξkξen
T
k ne < −1⇒

∣∣∣∑
l∈L

ξlξln
T
l ne

∣∣∣− ∣∣∣ ∑
k∈K

ξkξen
T
k ne

∣∣∣ < −1
and conclude that: ∣∣∣∑

l∈L

ξlξen
T
l ne

∣∣∣ < ∣∣∣ ∑
k∈K

ξkξen
T
k ne

∣∣∣
Hence by inverting ne, i.e. setting ξ′e = (−1) · ξe, we obtain:∣∣∣∑

l∈L

ξlξ
′
en

T
l ne

∣∣∣ > ∣∣∣ ∑
k∈K

ξkξ
′
en

T
k ne

∣∣∣⇒∑
l∈L

ξlξ
′
en

T
l ne +

∑
k∈K

ξkξ
′
en

T
k ne > 0

Since ξeξen
T
e ne = ξ′eξ

′
en

T
e ne = 1 we obtain:

r∑
j=1,j �=e

ξjξ
′
en

T
j ne + ξ′eξ

′
en

T
e ne > 0 (20)

From Equation 18 and Equation 20 it follows that:

r∑
j=1

ξjξ
′
en

T
j ne >

r∑
j=1

ξjξen
T
j ne (21)

By switching ξe with ξ′e in Eq. 16 we obtain according to Eq. 21 the following:

r∑
j=1,j �=e

r∑
i=1

ξjξin
T
j ni +

r∑
i=1

ξ′eξin
T
e ni >

r∑
j=1,j �=e

r∑
i=1

ξjξin
T
j ni +

r∑
i=1

ξeξin
T
e ni (22)

Hence we obtained a higher sum than before, which is a contradiction to the
assumption that Equation 16 is maximal.

�

Optimizing Notifications of Subscription-Based

Forecast Queries

Ulrike Fischer1, Matthias Böhm1,�, Wolfgang Lehner1,
and Torben Bach Pedersen2

1 Dresden University of Technology, Database Technology Group, Dresden, Germany
{ulrike.fischer,matthias.boehm,wolfgang.lehner}@tu-dresden.de

2 Aalborg University, Center for Data-intensive Systems, Aalborg, Denmark
tbp@cs.aau.dk

Abstract. Integrating sophisticated statistical methods into database
management systems is gaining more and more attention in research
and industry. One important statistical method is time series forecast-
ing, which is crucial for decision management in many domains. In this
context, previous work addressed the processing of ad-hoc and recur-
ring forecast queries. In contrast, we focus on subscription-based forecast
queries that arise when an application (subscriber) continuously requires
forecast values for further processing. Forecast queries exhibit the unique
characteristic that the underlying forecast model is updated with each
new actual value and better forecast values might be available. However,
(re-)sending new forecast values to the subscriber for every new value is
infeasible because this can cause significant overhead at the subscriber
side. The subscriber therefore wishes to be notified only when forecast
values have changed relevant to the application. In this paper, we reduce
the costs of the subscriber by optimizing the notifications sent to the
subscriber, i.e., by balancing the number of notifications and the noti-
fication length. We introduce a generic cost model to capture arbitrary
subscriber cost functions and discuss different optimization approaches
that reduce the subscriber costs while ensuring constrained forecast val-
ues deviations. Our experimental evaluation on real datasets shows the
validity of our approach with low computational costs.

1 Introduction

Empirically collected data constitutes time series in many domains, e.g., sales
per month or energy demand per minute. Forecasting is often applied on these
time series in order to support important decision-making processes. Sophis-
ticated forecasts require the specification of a stochastic model that captures
the dependency of future on past observations. We will refer to such models
as forecast models. The creation of forecast models is typically computationally
expensive, often involving numerical optimization schemes to estimate model
parameters. Once a model is created and parameters are estimated, it can effi-
ciently be used to forecast future values, where the forecast horizon denotes the

� The author is currently visiting IBM Almaden Research Center, San Jose, CA, USA.

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 449–466, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

450 U. Fischer et al.

Database System

Subscription-Based
Forecast Query

Application (Subscriber)

Time Series

Forecast Model
Update

Models

Notify
(forecasts with horizon h)

new
time series

data

Process
Forecasts

SELECT datetime, energy
FROM customers
FORECAST 2
THRESHOLD 0.1

su
bs

cr
ib

er
 c

os
ts

notification length

Fig. 1. Overview Subscription-Based Forecast Queries

number of requested forecast values. As new data arrives, the forecast model
requires maintenance and improved forecast values might be obtained.

Integrating advanced statistical methods into database management systems
is getting more and more attention [1]. These approaches allow for improved per-
formance and additional functionality inside a DBMS. Research on integrating
time series forecasting has mainly focused on accuracy and efficiency of ad-hoc
[7] and recurring forecast queries [8,9]. However, applications might continuously
require forecast values in order to do further processing. Forecast queries incor-
porate the unique characteristic that they can provide an arbitrary number of
forecast values. However, with each new actual value the underlying model is
updated and better forecasts might be available. A dependent application could
obtain these values by repeatedly polling from the database. This is very in-
efficient if forecasts have changed only marginally, especially if the application
executes a computational expensive algorithm based on the received forecasts.

In order to tackle this problem, we introduce the concept of subscription-based
forecast queries that may be seen as continuous forecast queries associated with
constraints guiding notifications to the subscriber. A general overview of our
approach is shown in Figure 1. A subscription-based forecast query registers at
the database system given various parameters, e.g., the time series to forecast, a
continuous forecast horizon and a threshold of acceptable forecast deviations. For
example, the simple forecast query in Figure 1 requests forecasts of customer en-
ergy demand for the next two steps (two forecast values) with a threshold of 10%.
The database system itself stores time series data as well as associated forecast
models and automatically manages these models [8]. As time proceeds and new
time series values arrive models are updated and optionally maintained by the
DBMS. This results in better forecast values leading to notifications sent to the
subscriber that contain at least the forecast horizon specified by the subscriber
(further denoted as notification length). For our example query, a notification
needs to be sent if new forecasts are available that deviate by more than 10%
from old forecasts sent before. The subscriber processes all notifications, where
the processing costs of the subscriber often depend on the notification length.
These subscriber costs can be communicated to the database system to optimize
future notifications.

Optimizing Notifications of Subscription-Based Forecast Queries 451

notification length

fo
re

ca
st

 e
rr

o
r

(i
n

 %
)

0
5

1
0

1
5

0 50 100 150
notification length

#
 n

o
tif

ic
a

tio
n

s
1

0
0

0
0

3
0

0
0

0

0 50 100 150

Fig. 2. Influence of Notification Length

One important use case of notification-based forecast queries can be found
in the energy domain. Forecasting is crucial for modern energy data manage-
ments (EDM) systems to plan renewable energy resources and energy demand
of customers. In this use case, the EDM system subscribes at a forecasting com-
ponent, e.g., the DBMS, to receive forecasts on a regular basis. These forecasts
are used to balance demand and supply and are crucial to reduce penalties paid
for any kind of imbalances, i.e., remaining differences between demand and sup-
ply [2,13,17]. It is important to update the EDM system just with significant
new forecast values to ease the computational expensive job of energy balancing.

Therefore, our objective in this paper is the reduction of the processing costs
of the subscriber by trading the number of notifications against the notification
length. We distinguish two extreme cases (Figure 2). On the one hand, we can
choose a short notification length (i.e., a short forecast horizon). With this ap-
proach, we achieve a low forecast error, but we need to send notifications more
frequently (as we deal with continuous queries). On the other hand, we can
choose a large notification length, resulting in much less notifications, but in a
high error for forecasts far from current time. Both extreme cases result in a high
overhead at the subscriber side. This first one requires repeatedly processing new
notifications, the second one needs to process very long notifications as well as
reprocess many notifications containing improved forecasts. To solve this prob-
lem, we need to increase the notification length just as far as to ensure accurate
forecasts that require a small number of notifications. This poses an important
but challenging optimization problem of reducing the costs of the subscriber.

Contributions and Outline. Our primary contribution is the introduction of
the concept of subscription-based forecast queries, which include a parameter
definition, processing model, cost model and optimization objective (Section 2).
Then, in Section 3, we propose different computation approaches to minimize
the costs of the subscriber according to our optimization objectives defined in
Section 2. Our experimental study (Section 4) investigates the performance of
the computation approaches, the influence of subscription parameters, the com-
putational costs of our approach as well as the validity of the cost model using
real-world datasets. Finally, we survey related work in Section 5 and conclude
in Section 6.

452 U. Fischer et al.

fo
re

c
a

s
ts

1 24 48 72 96
time t

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

w=72

x̂[1,96]

real

x̂[25,96]

bounds

Fig. 3. Development of Forecast Values

2 Foundations of Subscription-Based Forecast Queries

In this section, we set the foundations of subscription-based forecast queries. We
start with discussing the parameters of such a query (Section 2.1), followed by
introducing our general processing model that leads to two different kind of noti-
fications to the subscriber (Section 2.2). We then explain our cost model, which
captures the costs of the subscriber depending on the number of notifications
and the notification length (Section 2.3). Finally, we sketch out our optimization
objective of reducing the overall subscriber costs (Section 2.4).

2.1 Forecast-Based Subscriptions

We start with defining the parameters of subscription-based forecast queries.

Definition 1 (Forecast-Based Subscriptions). A forecast-based subscrip-
tion S = (X,h, α, w, g, kmax) consists of a time series description X, a min-
imum continuous forecast horizon h, a threshold α, an aggregation window w,
an aggregation function g and a maximum horizon extension kmax.

The time series description X = x[1,t] can be an arbitrary SQL query that
specifies the time series to forecast [8]. The continuous forecast horizon h specifies
the minimum number of forecast values x̂[t+1,t+h] and implies that at each time
t, the subscriber holds at least h forecast values. In addition, each subscription
specifies a relative threshold α. At time t, we must notify the subscriber with
new forecast values if these new forecast values x̂[t+1,t+w] deviate more than α
from the old values sent to the subscriber, using a window w and aggregation
function g. Examples for aggregation functions are mean (average deviation in
window above threshold) or max (maximum in window above threshold), where
the decision depends on the intended sensitivity to deviations.

Example 1. Figure 3 shows a real-dataset example. A forecast model was cre-
ated up to time t = 0, using the triple seasonal exponential smoothing model
[19]. The solid line displays forecast values x̂[1,96] created at time t = 0 with a
horizon of h = 96. At each time step t+i with i > 0 new real data arrives and we

Optimizing Notifications of Subscription-Based Forecast Queries 453

0 1 2 3 4 5 6 7 8 9 t

h=6

H3 D5

k=2
m0

m3

m5

S

1+k

h k

10 11 12 13

horizon violation

threshold violation

first notification

Fig. 4. Processing Forecast-based Subscriptions

can update the forecast model. At time t = 24, we can create new forecast values
x̂[25,96] that capture the history better and now slightly differ from the original
ones (line with crosses). A subscriber wants to be notified whenever new forecast
values deviate by more than 10% from the old ones (dashed lines). We see that
at time t = 24 some forecast values x̂[25,96] are outside this threshold. Using an
aggregation window of w = 72 and the aggregation function max we would need
to send a notification.

Finally, the maximum horizon extensions kmax is specific to our processing model
and thus explained in the following.

2.2 Processing Model

At subscription registration time, we send at least h forecast values to the sub-
scriber. From that point in time, notifications are caused by one of the following
two reasons. First, new forecast values are sent whenever the subscriber has less
than h forecast values (horizon violation Ht), where we need to send at least
the missing values. However, we can additionally send k values—the horizon
extension—in order to avoid a lot of horizon violations. There, the subscriber
specifies the maximum number of additional forecast values kmax. Second, we
send a notification if the threshold is violated at time t (threshold violation Dt).
In this case, we consider all sent forecast values as invalid and we resend forecast
values with a horizon h plus the horizon extension k. A different approach might
be to resend only values that violate the threshold. However, this might lead to
systematic errors since forecast values are often based on each other.

Example 2. Figure 4 shows an example subscription. At time t = 0, we create a
subscription S = (X,h, α, w, g, kmax) with minimum horizon h = 6. The horizon
extension is set to k = 2. Initially, we send a notification m0 with h + k =
6 + 2 = 8 forecast values. At time t = 3, the subscriber has only h − 1 = 5
forecast values (horizon violation H3). Hence, we send a notification m3 with
1 + k = 3 forecast values. We do not override sent values as these are still valid
(below the subscription threshold) but send missing values (one value plus k = 2
values). Then, at time t = 5, the subscriber threshold α is violated according to
the aggregation window w and function g (threshold violation D5). We send a
notification m5 with h+ k = 8 new values, which override all sent values.

454 U. Fischer et al.

We define the total number of sent values h + k or k + 1 as notification length.
The parameter k has high influence on the number of notifications and individual
notification lengths and therefore on the subscriber costs. If we set k quite low,
we send many notifications because the horizon is violated. Thus, the subscriber
needs to repeatedly process new forecast values leading to high costs. If we set
k quite high, the notification length increases and we need to resend a lot of
values if the threshold is violated. Thus, the subscriber needs to reprocess many
updated forecast values. In the next subsection, we introduce a cost model that
allows the quantification of this influence.

2.3 Cost Model

The subscriber cost function can be arbitrary and might be unknown. We there-
fore use this as a black box function, where we can retrieve the costs for arbitrary
notification lengths. Internally, this might be a known analytical function or ex-
isting techniques might be used to learn these costs online [18]. However, the
costs might be different for h+ k new values (threshold violation) or k + 1 ad-
ditional values (horizon violation). Depending on the horizon h and the horizon
extension k, we distinguish two cost functions. First, FC denotes the costs of a
complete restart of the subscriber algorithm as necessary for threshold violations,
where all forecast values are resent. Second, FI denotes the costs of an incre-
mental version of the subscriber algorithm that is used for horizon violations,
where the subscriber only processes additional values.

These considerations lead to our cost model that calculates the costs between
two successive threshold violations Dt and Dt+i:

Definition 2 (Threshold Violation Costs). Assume a horizon extension k.
The costs in a threshold violation interval ΔD = (Dt, Dt+i) are defined as:

Ck,ΔD = FC(h+ k) +

⌊
ΔD

k + 1

⌋
· FI(k + 1). (1)

As explained before, whenever a threshold violation Dt occurs, we send h + k
values leading to complete costs of FC(h + k). Additionally, a certain number
of horizon violations occur until the next threshold violation Dt+i, each leading
to incremental costs of FI(k + 1). The number of horizon violations equals the
number of times k + 1 fits in the threshold violation interval ΔD as we send
notifications until the end of the interval. If k + 1 is smaller or equal than ΔD
no additional incremental costs occur.

Example 3. Consider again Example 2, the first threshold violation occurs at
D5, so according to our definition ΔD = 4. In this interval, we require once
complete costs FC(h+ k) at the start of the interval and once (�4/(2 + 1)� = 1)
incremental costs FI(k) until the threshold violation D5. At D5 a new threshold
violation intervals begins, which again starts with complete costs.

The total costs Ck,ΔD in one threshold violation interval strongly depend on the
subscriber cost functions FC and FI .

Optimizing Notifications of Subscription-Based Forecast Queries 455

0 20 40 60 80 100

0
2

0
0

0
6

0
0

0
1

0
0

0
0

c
o

s
ts

horizon extension k

linear
quadratic
constant

Fig. 5. Example Cost Functions

Example 4. Figure 5 illustrates the influence of different cost functions. It
shows the theoretical costs according to different horizon extensions k for a fixed
minimum horizon h = 24 and threshold violation interval ΔD = 44. We used
three different cost functions: constant (150), linear (64x + 150) and quadratic
(x2), where the same cost function is applied for FC and FI . For a quadratic cost
function, long notifications are very expensive, so it is best to send many small
notifications (k = 0). If the cost function only contains setup cost (constant),
the goal is to reduce the number of notifications. Hence, we would choose the
highest possible horizon extension in order to avoid any horizon violation. The
linear function shows a possible cost function between these two extremes. The
dips in the linear cost function arise when k + 1 is a divisor of ΔD. Thus, all
horizon violations fit exactly in the interval and no values are sent unnecessary.

The threshold violation costs formula makes the simplifying assumption that the
threshold violation interval ΔD and the horizon extension k are independent of
each other. This might not always be the case as k influences the accuracy
of the forecast values and thus also the threshold violation interval. However,
preliminary experiments have shown that the impact of k on ΔD is very low.

Based on the defined costs of a single threshold violation interval, we are now
able to calculate the total costs of a sequence of threshold violation intervals.

Definition 3 (Total Subscriber Costs). Assume a sequence of horizon ex-
tensions {k1, . . . , kn}. Then, the total costs of a sequence of threshold violation
intervals {ΔD1, . . . , ΔDn} is defined as:

Ctotal =

n∑
i=1

Cki,ΔDi . (2)

Thus, the best horizon extension depends on the cost function and frequency of
threshold violations, which leads to a hierarchy of optimization problems.

2.4 Optimization Problems

Our general optimization objective is to reduce the total subscriber costs with
regard to the introduced cost model. Furthermore, our optimization approach is

456 U. Fischer et al.

to choose the best horizon extension, which can be done for different time gran-
ularities (offline-static, offline-dynamic, online). This inherently leads to three
different optimization problems. These problems are independent of any compu-
tation approach and hence, presented separately. Furthermore, they are complete
in the sense that additional problems are conceptual composites of them.

The most coarse-grained problem is to choose a single horizon extension for
the whole time series, i.e., the sequence of threshold violation intervals (static).

Optimization Problem 1 (Offline – Static). Assume a sequence of thresh-
old violation intervals {ΔD1, . . . , ΔDn} and a maximum horizon extension kmax.
The objective is to minimize the total subscriber costs by choosing a single hori-
zon extension k:

φ1 : min
0≤k≤kmax

n∑
i=1

Ck,ΔDi . (3)

For some datasets, we observe different average threshold violation intervals at
different time intervals, where a single horizon extension might fail. For example,
often energy demand during week days can be forecasted more accurate than
during weekend days, leading to more threshold violations at the weekend. Hence,
the second optimization problem is more fine-grained (dynamic) as it aims to
find a sequence of horizon extensions for a sequence of time slices.

Optimization Problem 2 (Offline – Time Slice). Assume a sequence
of time slices {ΔT1, . . . , ΔTm} and a sequence of threshold intervals
{ΔD1, . . . , ΔDn}, where n ≥ m. Each ΔDi is assigned to exactly one ΔTj,
where lj is the total number of ΔDis in time slice ΔTj. The objective is to
minimize the total subscriber costs by choosing a sequence of horizon extensions
{k1, . . . , km}:

φ2 : min
0≤kj≤kmax

m∑
j=1

lj∑
i=1

Ckj ,ΔDi . (4)

Finally, the most-fine-grained optimization problem is an adaptive online formu-
lation.

Optimization Problem 3 (Online). Assume a history of threshold violation
intervals {ΔD1, . . . , ΔDn}, horizon extensions {k1, . . . , kn} and related costs.
The objective is to minimize the total subscriber costs by choosing the next kn+1:

φ3 : min
0≤kn+1≤kmax

Ckn+1,ΔDn+1 . (5)

As the cost function is given by the subscriber or monitored, we ”only” need
to determine ΔD in order to calculate the best horizon extension. However,
ΔD depends on many aspects, e.g., time series characteristics, model accuracy,
forecast horizon or subscription parameters. In reality, we do not know when
the next threshold violation occurs. However, we can analyze past threshold
violation intervals and use them to predict future threshold violations.

Optimizing Notifications of Subscription-Based Forecast Queries 457

3 Computation Approaches

Regarding the defined optimization problems, we now discuss related compu-
tation approaches. As a foundation, we first present our general subscription
maintenance algorithm (Algorithm 1) as a conceptual framework for arbitrary
computation approaches. This includes two major procedures:

First, RegisterSubscriber is called when creating a new subscription S. We
first add the new subscription to the list of subscribers on the requested forecast
model (line 2). Such a forecast model is stored and maintained for each time series
with at least one subscriber. The type of the model (e.g., exponential smoothing)
needs to be chosen by a domain expert or by using an heuristic algorithm [10]. To
store the list of subscribers itself, we use a simple array structure. However, more
advanced data structure can be utilized if the number of subscriber increases
(e.g., [3]). Then, we start an analysis phase (line 3). In an offline context, we
evaluate single (static) or multiple (dynamic) horizon extensions. In an online
context, we only determine the initial horizon extension. For all three cases, we
implicitly interact over a callback interface—implemented by each subscriber—
to retrieve the costs FC and FI . Finally, we send the first notification to the
subscriber with h+ k forecast values (line 4).

Second, ProcessInsert is called when a new tuple is added to the time series
of the specific model. This requires updating the model to the current state of the
time series as well as optional maintenance in form of parameter re-estimation
(line 6). For this, we use a simple, but robust, time-based strategy that triggers
maintenance after a fixed number of inserts [9]. Then, for each subscriber, we
check if the threshold is violated over the aggregation window (lines 8 - 12). If so,
we adapt the next horizon extension according to the used strategy (dynamic,
online). Finally, we notify the subscriber with h + k new forecast values. If no
threshold violation occurred, we check if the horizon is violated and we notify

Algorithm 1. Forecast Subscription Maintenance

Require: model, subList, currentT ime
1: procedure RegisterSubscriber(S)
2: subList← add(subList, S)
3: analyzeK(S)
4: notify(predict(currentT ime, S.h+ S.k))

5: procedure ProcessInsert(newtuple)
6: model← maintainModel(newtuple)
7: for S in subList do
8: pmodnew← predict(S.w)
9: div ← calculateDiv(pmodnew, S.forecasts)
10: if div > S.threshold then
11: updateK(S)
12: notify(predict(currentT ime, S.h+ S.k))
13: else if isHorizonViolated(S) then
14: notify(predict(currentT ime + S.h, S.k + 1))

458 U. Fischer et al.

k

tt
analyzeK

(a) Offline – Static

k1 k2 k1 k2

tt
analyzeK

(b) Offline – Dynamic

k1 k2 k3 k4

tt
analyzeK updateK updateKupdateK

(c) Online

Fig. 6. Comparison of Computation Approaches

the subscriber with the missing values plus the horizon extension (lines 13 - 14).
Here, the interaction with the subscriber is also done via the callback interface.

The following computation approaches are based on two observations. First,
the best horizon extension in the past can be used to determine the best horizon
extension for the future. We therefore propose predictive approaches that analyze
the history of threshold violation intervals. Second, there is the problem that
threshold violation points strongly fluctuate and we would need to predict the
trend of prediction errors. We therefore focus on robust and simple approaches
rather than highly dynamic analytical approaches. Figure 6 shows an overview
of our computation approaches, which are discussed in the following.

Offline – Static. The first computation approach addresses the coarse-grained
Optimization Problem 1, where the objective is to choose a single horizon exten-
sion. The static approach determines one horizon extension during the analysis
phase of our general algorithm (line 3) and uses this during the whole lifetime of
a subscription (Figure 6(a)). To determine the horizon extension, we empirically
monitor the threshold violation points over the whole history of the time series.
For each tuple in the time series history, we execute an adapted version of the
procedure ProcessInsert (Algorithm 1), where we do not notify the subscriber
and just monitor whenever a threshold violation occurs. Given the resulting se-
quence of threshold violation intervals {ΔD1, . . . , ΔDn}, we calculate the costs
for different k’s using our cost model (Equation 2). This leads to functions such
as shown in Figure 5. Finally, we choose the k with minimum costs.

Offline – Time Slices (Dynamic). The second approach solves Optimization
Problem 2 to find a sequence of horizon extensions for a sequence of time slices.
This approach is beneficial if (1) the time series shows periodic patterns of thresh-
old violation intervals or (2) if the cost function periodically changes over time.
During the analysis phase (line 3), we determine a sequence of horizon exten-
sions for periodic time slices (Figure 6(b)). Whenever a threshold violation oc-
curs during execution (line 11), we set the next horizon extension to the horizon
extension of the current time slice. The computation approach is similar to the
static approach. We just additionally remember in which time slice the threshold
violation occurred and compute a separate horizon extension for each time slice.

Optimizing Notifications of Subscription-Based Forecast Queries 459

To determine the granularity of the time slices, we either use domain knowledge
or we empirically evaluate different types of time slices.

Online Approach. This last computation approach solves Optimization Prob-
lem 3 of finding the best next horizon extension. An online approach is bene-
ficial if either the time series model evolves leading to different threshold vio-
lation points or the cost function evolves leading to changed costs FC and FI .
The online approach is repeatedly executed during the lifetime of a subscription
to determine the next horizon extensions (Figure 6(c)). At registration time,
we need to determine an initial k (line 3). This can be either some predefined
parameter or we can use our static approach. The main work is done in the
function updateK after each threshold violation, where we determine the next
horizon extension (line 11) online. Whenever a threshold violation occurs, we
monitor the associated ΔD over a predefined window. We then determine the
need for recalculating the horizon extension. We analyze two different strategies
to trigger recalculation within our experimental evaluation. If recalculation is
required, we again compute the costs for different horizon extensions using the
monitored sequence of ΔDs and we choose the horizon extension with minimum
costs. This requires that the subscriber costs can be retrieved efficiently or we
have a (possibly changing) known analytical cost function. Otherwise, we adapt
the best k incrementally, i.e., by trying different ks and monitoring the resulting
costs.

Computational Costs. The costs of all three approaches depend on (1) the time
series length n, to evaluate the history of threshold violations, (2) the number of
possible horizon extensions m, to retrieve the subscriber costs, and (3) the num-
ber of threshold violations d that occur, as the total costs are calculated by the
sum over the cost of one threshold violation interval. For the offline approaches,
the number of threshold violations d is calculated over the whole history (n rep-
resents the whole time series length); for the online approach only the specified
window is used (n equals the window size). Following these considerations, the
time complexity of all approaches equals O(n+m · d).

4 Experimental Evaluation

We conducted an experimental study on three real world data sets to evaluate
(1) the performance (subscriber costs) of our approaches, (2) the influence of
subscription parameters, (3) the computational costs of our approach in relation
to the subscriber costs and (4) the validity of our cost model.

4.1 Experimental Setting

Test Environment: We implemented a simulation environment using the sta-
tistical computing software environment R. It provides efficient built-in forecast

460 U. Fischer et al.

(a) Offline – Static (b) Offline – Time Slice (c) Online

Fig. 7. Performance of Computation Approaches

methods and parameter estimators, which we used to build the individual fore-
cast models. All experiments were executed on an IBM Blade (Suse Linux, 64bit)
with two processors (each a Dual Core Intel Xeon at 2.80 GHz) and 4 GB RAM.

Dataset Descriptions: We used three real-world energy demand and supply
datasets. The first dataset (UK) includes energy demand of the United Kingdom
and is publicly available [14]. It consists of total energy demand data from April
2001 to December 2009 in a 30min resolution. The second dataset (MER) was
provided by EnBW, a MIRABEL project partner. It contains energy demand
of 86 customers, from November 2009 to June 2010 in a 1 hour resolution. The
third dataset (NREL) is energy supply data in the form of the publicly available
NREL wind integration datasets [15]. It consists of aggregated wind data from
2004 to 2006 in a 10min resolution.

Forecast Methods: For all datasets, we used triple exponential smoothing with
double or triple seasonality as forecast method [19]. This method is an extension
of the robust and widely used exponential smoothing and is tailor-made for
short-term energy forecasting. We used three seasonalities (daily, weekly and
annual) for the UK and NREL datasets but only two seasonalities (daily and
weekly) for the MER dataset. We used the first 6 years for UK, 6 months for
MER and 2 years for NREL to train the forecast models. The remaining data
was used for forecasting and evaluation of our approaches.

4.2 Evaluation of Computation Approaches

In a first series of experiments, we analyze the performance of our three com-
putation approaches using fixed subscription parameters, i.e., h = 1day, w =
12 hours, α = 0.15 and g = mean. For the subscriber cost function, we use the
linear function from Example 4.

Offline – Static: We start with comparing our static approach to näıve and
adaptive approaches [11]. The first näıve approach never sends more forecast val-
ues than requested (k = 0). The second näıve approach sends as many forecast
values as possible (k = kmax), where kmax = 3h. The adaptive approach is inde-
pendent of the time series history but reacts to notification events. It therefore is

Optimizing Notifications of Subscription-Based Forecast Queries 461

a representative of an online approach. Obviously, if a notification occurred due
to a horizon violation, the horizon extension was too small. Hence, the adaptive
approach increases the horizon extension. In contrast, if a threshold violation
occurred, the horizon extension was too high and thus, the horizon extension
is decreased. We evaluated different strategies to increase/decrease the horizon
extension, where a simple strategy performed best that starts with k = 1 and
doubles or halves the horizon extension depending on the notification event.

Figure 7(a) shows the result of the four approaches for all three datasets.
As all datasets exhibit different total costs, we normalized the cost with the
estimated best cost if we would exactly know the threshold violation sequence.
We first notice that our static approach (S) always outperforms the two näıve
approaches (0 and 3h) and the adaptive approach (A). The reason is that the
static approach includes the subscriber cost function into optimization while the
other three approaches act independently from the subscriber costs. In addition,
we observe that the datasets exhibit different characteristics leading to different
performance of the näıve approaches. For the given subscription parameters, the
forecast values of the NREL datasets deviate fast from the old values, leading
to a small threshold violation interval on average and to a better performance
of small horizon extensions. In contrast, the forecast values of the other two
datasets are more accurate leading to larger optimal horizon extensions.

Offline – Dynamic (Time Slices): For our second computation approach we
only use the UK and NREL dataset as these datasets are long enough to build
meaningful time slices. We analyzed four kinds of time slices: quarter (Q), month
(M), weekday/weekend (W), and day (D). Thus, we use different horizon ex-
tensions for different time slices, e.g., for every quarter of the year. Figure 7(b)
shows the results in terms of the improvement over the static approach by sub-
tracting the estimated best costs and normalizing with the costs of the static
approach. For our best case, the UK dataset, all four time slice approaches lead
to an improvement over the static approach. We observe the highest improve-
ment for daily time slices, which cover the behavior of customers at different
days of a week. The NREL dataset does not contain a typical seasonal behavior.
It therefore represents a worst-case example and shows no improvement for all
four time slice approaches.

Online Approach: We now relax the assumption of static cost functions and
change these functions over time. We use the UK dataset and our linear cost func-
tion, where we vary the slope of the cost function [10; 1,000]. Figure 7(c) shows
the improvement of the different approaches over the static approach for differ-
ent numbers of workload shifts. A workload shift switches from the maximum
slope to the minimum slope and vice versa. We analyze two different versions of
the online approach. The first one recalculates the horizon extension only if the
cost function changes (online cost). The second online approach recalculates the
horizon extension after every threshold violation (online threshold). Both of our
online approaches clearly outperform the adaptive approach that is even worse
than the static approach as it acts independently of the subscriber costs. For

462 U. Fischer et al.

(a) Threshold (b) Aggregation Window (c) Aggregation Function

Fig. 8. Influence of Subscription Parameters

no workload shifts, the static and online (cost) approach show exactly the same
performance as the online approach is never triggered. In contrast, the online
(threshold) approach slightly improves the static approach. For higher number
of workload shifts, we yield high improvements over the static approach because
the static approach just determines one horizon extension at the beginning. The
online (cost) approach performs very similar to the online (threshold) approach
for this use case.

4.3 Influence of Subscription Parameters

In a second series of experiments, we investigate the influence of different sub-
scription parameters , i.e., h, α, w, and g. We again use a linear cost function
and set the parameters by default to h = 1day, α = 0.15, w = 12 hours, and
g = mean. In the following, we vary one parameter at a time and examine the
influence on the best horizon extension k.

Increasing the threshold α leads to longer threshold violation intervals and
thus larger horizon extensions. There is a larger increase for the UK and MER
datasets than for the NREL dataset. Both data sets constitute more robust
forecast values than NREL leading to few threshold violations with high α.

Figure 8(b) shows the influence of the aggregation window w on the horizon
extension. We see a strong increase for the MER dataset, while the horizon exten-
sions for the UK and NREL datasets stay almost constant. This is caused by the
customer-level granularity of the MER dataset with many fluctuations. Longer
aggregation windows weaken this effect and lead to smaller horizon extensions.

Figure 8(c) shows the best k for the aggregation functions mean and max,
where it is consistently larger for mean (with w > 1). The UK and NREL dataset
show only slight differences, while the MER dataset has a larger difference in
the best horizon extension because there forecasts exhibit large fluctuations and
the use of max triggers threshold violation notifications immediately.

Note that we do not show an experiment for varying horizons as it does not
influence the threshold violation interval and thus the horizon extension.

To summarize, the impact of the subscription parameters on k depends
strongly on the dataset, which validates our approach of analyzing the time
series history to determine the best horizon extension.

Optimizing Notifications of Subscription-Based Forecast Queries 463

0.0 0.1 0.2 0.3 0.4 0.5

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0

threshold

n
u

m
b

e
r

o
f

n
o

ti
fi
c
a

ti
o

n
s

NREL
UK
Meregio

(a) Number of Notifications

0.0 0.1 0.2 0.3 0.4 0.5

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

threshold

s
u

b
s
c
ri

b
e

r
c
o

s
ts

 (
in

 m
in

)

NREL
UK
Meregio

(b) Subscriber Costs

0.0 0.1 0.2 0.3 0.4 0.5

0
5

0
1

0
0

2
0

0
3

0
0

threshold

ru
n

ti
m

e
 (

s
)

NREL
UK
Meregio

(c) Runtime

Fig. 9. Computational Costs

4.4 Computational Costs

In this section, we analyze the computational costs of our approach as well as
the overall relationship to the subscriber costs. For this experiment, we use a
real cost function from our major use case, the energy domain. This real cost
function includes runtime costs of the MIRABEL energy balancing approach [2]
and shows a super linear behavior with increasing forecast horizon. We again
fix the subscription parameters to h = 1day, w = 12 hours and g = mean and
vary the subscriber threshold α. To determine the best horizon extension, we
use our static approach. Figure 9 shows the trade off between number of sent
(or received) notifications, the total resulting subscriber costs and the total time
to produce these notifications for all three data sets. Clearly, with increasing
threshold α the number of sent notifications decreases as forecasts can have a
larger deviation before a notification needs to be sent and thus the notification
length increases (Figure 9(a)). In conjunction, the subscribers costs decrease as
well as less notifications need to be processed (Figure 9(b)). The runtime of our
approach is nearly independent from the number notifications but depends on the
data set, i.e., length, granularity and general accuracy (Figure 9(c)). The MER
data exhibits the lowest runtime as it consists of hourly data over eight months.
In contrast, the NREL data set shows the longest runtime as it is available in a
10min resolution and hard to forecast. We displayed the overall time to produce
all notifications to be comparable with the total subscriber costs. As it can be
seen the runtime of our approach is much lower than the total subscriber runtime
and thus the subscriber costs form the dominant factor. Note that the average
time to produce a single notification equals less than 10ms for all data sets. This
time is measured in a local setting and includes forecast model maintenance,
subscription evaluation and sending a notification if required.

4.5 Cost Model Validation

Finally, we validate our cost model, where we use again the real world cost func-
tion described in the runtime experiments. To evaluate our cost model we divide
the MER data set into two parts of equal size (additionally to the training data

464 U. Fischer et al.

30 40 50 60 70

0
5

1
0

1
5

2
0

notification length (in hours)

to
ta

l
c
o
s
ts

 (
in

 m
in

u
te

s
)

Q3 (est)
Q3 (real)

Q2 (est)
Q2 (real)

Q1 (est)
Q1 (real

Fig. 10. Cost Model Validation

used for creating the forecast models). On the first part we estimate the to-
tal subscribers costs using our cost model defined in Equation 2. On the second
part we measure the real subscribers costs for different notification lengths h+k.
Figure 10 shows the resulting total subscriber costs for three different kind of
queries with increasing complexity (Q1 - Q3), i.e., increasing balancing time.
Note that the minimum notification length is determined by the forecast hori-
zon, which is h = 1day. For all three queries, our cost model is very accurate
for small notification lengths but deviates from the real costs with increasing
length. Small notification lengths result in many horizon violations, which are
simple to estimate as they are time dependent. With larger notification lengths
more threshold violations occurs, where our cost model can never achieve perfect
accuracy as we do not know the future. However, most importantly, for all three
queries, the minimum of the estimated and real costs are roughly the same lead-
ing to the same best horizon extension k. For the UK data set, our cost models
performs much better than for the MER data set as this time series, and thus
the threshold violation intervals, are easier to predict. In contrast, for the NREL
data set our cost model performs slightly worse than for the MER data set as
wind data is very fluctuating.

5 Related Work

Existing work has addressed the integration of time series forecasting into DBMS.
Approaches to increase speed and accuracy of ad-hoc [7] and recurring queries
[8,9] have been proposed. The Fa system [7] also processes continuous forecast
queries. However, in contrast to subscription-based forecast queries no notifica-
tion conditions can be defined and new forecasts are provided in a regular time
interval, independently of the actual changes in forecasts.

The concept of notifying users about incoming events generated by data
sources has been intensively investigated in the area of publish-subscribe sys-
tems [12,3]. Probably mostly related to our approach is the work on value-based
subscriptions [3]. There, the subscriber wishes to receive an update if a new
value (e.g., price) differs from the old one by more than a specified interval. The

Optimizing Notifications of Subscription-Based Forecast Queries 465

propose different index structures to scale to a large number of subscribers. In
contrast, we need to notify the subscriber with multiple values and our focus is
the reduction of the costs of the subscriber.

The problem of tracking a value over time is more generalized in the area
of function tracking [5,20]. An observer monitors a—possibly multi-valued—
function and keeps a tracker informed about the current function value(s) within
a predefined distance. Yi and Zhang [20] also suggest to use predictions in order
to further reduce communication costs. Our work differs in the sense that we
already deal with predictions of arbitrary horizons. Hence, in addition to the
number of notifications, we reduce the individual notification lengths in terms
of the number of forecast values.

The usage of statistical models to reduce communication between two or more
entities is applied in a wide range of areas, e.g., sensor networks [6], bounded
approximate caching [16] or mobile objects [4]. For example, within sensor net-
works energy requirements as well as query processing times are reduced by
utilizing statistical models in combination with live data acquisition. In the area
of bounded approximate caching, cached copies of data are allowed to become
out of date according to specified precision constraints. However, all these ap-
proaches significantly differ from our problem statement and solutions. First,
we consider only time series data, where future values depend on past ones,
requiring different statistical models. Second, we use statistical models to esti-
mate future values of the time series instead of missing real values, which leads
to specific notification conditions (horizon- and threshold-based) and notifica-
tion characteristics (resend all values or only additional ones). Finally, instead
of reducing the communication costs between the entities, we reduce the costs
of applications that process the forecast values.

6 Conclusion and Future Work

We introduced the concept of subscription-based forecast queries. Their main
characteristic is a twofold notification condition: horizon- and threshold-based.
This results in two different goals of increasing the notification length to avoid
horizon-based notifications and reducing the notification length to avoid resend-
ing a lot of values if a threshold-based notification occurs. In this paper, we
focused on optimizing these notifications to reduce the costs of the subscriber.
We developed different computation approaches for different optimization prob-
lems, which all use the time series history to determine a suitable notification
length. Our experimental evaluation shows the superiority of our computational
approaches over alternatives, a significant reduction of the subscriber costs with
low computational overhead as well as the validity of our cost in real world sit-
uations. In future work, we plan to extend our initial system and discuss data
structures and processing approaches to handle a large number of subscribers.

Acknowledgement. This work has been carried out in the MIRABEL project
funded by the EU under the grant agreement number 248195.

466 U. Fischer et al.

References

1. Akdere, M., Cetintemel, U., Riondato, M., Upfal, E., Zdonik, S.: The Case for
Predictive Database Systems: Opportunities and Challenges. In: CIDR (2011)

2. Boehm, M., Dannecker, L., Doms, A., Dovgan, E., Filipic, B., Fischer, U., Lehner,
W., Pedersen, T.B., Pitarch, Y., Siksnys, L., Tusar, T.: Data management in the
mirabel smart grid system. In: EnDM (2012)

3. Chandramouli, B., Phillips, J.M., Yang, J.: Value-based Notification Conditions in
Large-Scale Publish/Subscribe Systems. In: VLDB (2007)

4. Chen, S., Ooi, B.C., Zhang, Z.: An Adaptive Updating Protocol for Reducing
Moving Object Database Workload. In: VLDB (2010)

5. Cormode, G., Muthukrishnan, S., Yi, K.: Algorithms for Distributed Functional
Monitoring. In: SODA (2008)

6. Deshpande, A., Guestrin, C., Madden, S.R., Hellerstein, J.M., Hong, W.: Model-
driven Data Acquisition in Sensor Networks. In: VLDB (2004)

7. Duan, S., Babu, S.: Processing Forecasting Queries. In: VLDB (2007)
8. Fischer, U., Rosenthal, F., Lehner, W.: F2db: The flash-forward database system

(demo). In: ICDE (2012)
9. Ge, T., Zdonik, S.: A Skip-list Approach for Efficiently Processing Forecasting

Queries. In: VLDB (2008)
10. Hyndman, R.J., Khandakar, Y.: Automatic Time Series Forecasting: The forecast

Package for R. Journal of Statistical Software (2008)
11. Levis, P., Patel, N., Culler, D., Shenker, S.: Trickle: A Self-Regulating Algorithm

for Code Propagation and Maintenance in Wireless Sensor Networks. In: NSDI
(2004)

12. Liu, H., Jacobsen, H.-A.: Modeling Uncertainties in Publish/Subscribe Systems.
In: ICDE (2004)

13. MeRegio Project (2011), http://www.meregio.de/en/
14. Nationalgrid UK. Demand Dataset (2011),

http://www.nationalgrid.com/uk/Electricity/Data/Demand+Data/

15. NREL. Wind Integration Datasets (2011),
http://www.nrel.gov/wind/integrationdatasets/

16. Olston, C., Widom, J.: Offering a Precision-Performance Tradeoff for Aggregation
Queries over Replicated Data. In: VLDB (2000)

17. Peeters, E., Belhomme, R., Battle, C., Bouffard, F., Karkkainen, S., Six, D., Hom-
melberg, M.: Address: Scenarios and Architecture for Active Demand Development
in the Smart Grids of the Future. In: CIRED (2009)

18. Shivam, P.: Active and Accelerated Learning of Cost Models for Optimizing Sci-
entific Applications. In: VLDB (2006)

19. Taylor, J.W.: Triple Seasonal Methods for Short-Term Electricity Demand Fore-
casting. European Journal of Operational Research (2009)

20. Yi, K., Zhang, Q.: Multi-Dimensional Online Tracking. In: SODA (2009)

http://www.meregio.de/en/
http://www.nationalgrid.com/uk/Electricity/Data/Demand+Data/
http://www.nrel.gov/wind/integrationdatasets/

Minimizing Index Size by Reordering

Rows and Columns�

Elaheh Pourabbas1, Arie Shoshani2, and Kesheng Wu2

1 National Research Council, Roma, Italy
2 Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract. Sizes of compressed bitmap indexes and compressed data are
significantly affected by the order of data records. The optimal orders of
rows and columns that minimizes the index sizes is known to be NP-hard
to compute. Instead of seeking the precise global optimal ordering, we de-
velop accurate statistical formulas that compute approximate solutions.
Since the widely used bitmap indexes are compressed with variants of the
run-length encoding (RLE) method, our work concentrates on comput-
ing the sizes of bitmap indexes compressed with the basic Run-Length
Encoding. The resulting formulas could be used for choosing indexes to
build and to use. In this paper, we use the formulas to develop strategies
for reordering rows and columns of a data table. We present empirical
measurements to show that our formulas are accurate for a wide range of
data. Our analysis confirms that the heuristics of sorting columns with
low column cardinalities first is indeed effective in reducing the index
sizes. We extend the strategy by showing that columns with the same
cardinality should be ordered from high skewness to low skewness.

1 Introduction

Bitmap indexes are widely used in database applications [4, 16, 25, 30, 34]. They
are remarkably efficient for many operations in data warehousing, On-Line An-
alytical Processing (OLAP), and scientific data management tasks [6, 10, 22, 26,
28, 29]. A bitmap index uses a set of bit sequences to represent the positions of
the values as illustrated in Figure 1. In this small example, there is only a single
column X in the data table, and this column X has only six distinct values 0,
1, . . . , 5. Corresponding to each distinct value, a bit sequence, also known as a
bitmap, is used to record which rows have the specific value. This basic bitmap
index requires C×N bits for a column with C distinct values and N rows. In the
worst case, where every value is distinct, the value of C is N , this basic bitmap
index requires N2 bits, which is exceedingly large even for modest datasets. To
reduce the index sizes, a bitmap index is typically compressed [4, 23, 30].

� The authors gratefully acknowledge the suggestion from an anonymous referee that
clarifies Lemma 1. This work was supported by the Director, Office of Science, Office
of Advanced Scientific Computing Research, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 467–484, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

468 E. Pourabbas, A. Shoshani, and K. Wu

bitmaps
RID X b0 b1 b2 b3 b4 b5

=0 =1 =2 =3 =4 =5

1 0 1 0 0 0 0 0
2 1 0 1 0 0 0 0
3 1 0 1 0 0 0 0
4 2 0 0 1 0 0 0
5 3 0 0 0 1 0 0
6 4 0 0 0 0 1 0
7 4 0 0 0 0 1 0
8 5 0 0 0 0 0 1

Fig. 1. The logical view of a sample bitmap index with its seven bitmaps shown as the
seven columns on the right. In this case, a bit is 1 if the value of X in the corresponding
row is the value associated with the bitmap.

The most efficient compression techniques for bitmap indexes are based on
run-length encoding (RLE) [3, 30], which can be significantly affected by order-
ing of the rows [21, 28]. The best known strategy for ordering the columns is
to place the column with the lowest cardinality first [21]. However, much of the
earlier work only analyze the worst case scenario and is only applicable to uni-
form random data. In this work, we provide an analysis strategy that works for
non-uniform distributions and therefore provide more realistic understanding of
how to order the columns. We demonstrate that our formulas produce accurate
estimates of the sizes. Our analysis also leads to a new ordering strategy: for
columns with the same cardinality order the columns with high skew first.

2 Related Work

The size of a basic bitmap index can grow quickly for large datasets. The meth-
ods for controlling index sizes mostly fall in one of the following categories,
compression [3, 7, 30], binning [19, 33] and bitmap encoding [9, 27, 32]. In this
paper, we concentrate on compression. More specifically, how column and row
ordering affects the sizes of compressed bitmap indexes. In this section, we pro-
vide a brief review of common compression techniques for bitmap indexes, and
reordering techniques for minimizing these index sizes.

2.1 Compressing Bitmap Indexes

Any lossless compression technique could be used to compress a bitmap index.
However, because these compressed bitmaps need to go through complex com-
putations in order to answer a query, some compression methods are much more
effective than others. In a simple case, we could read one bitmap and return
it as the answer to a query, for example, the bitmap b1 contains the answer to
query condition “0 < X < 2.” However, to resolve the query condition “X > 2,”

Minimizing Index Size 469

we need to bring bitmaps b3 through b5 into memory and then perform two bit-
wise logical OR operations. In general, we may access many more bitmaps and
perform many more operations.

To answer queries efficiently, we need to read the bitmaps quickly and perform
the bitwise logical operations efficiently. We can not concentrate on the I/O
time and neglect the CPU time. For example, the well-known method LZ77 can
compress well and therefore reduce I/O time, however, the total time needed
with LZ77 compression is much longer than with specialized methods [17, 31].

Among the specialized bitmap compression methods, the most widely used
is the Byte-aligned Bitmap Code (BBC) [3], which is implemented in a popu-
lar commercial database management system. In tests, it compresses nearly as
well as LZ77, but the bitwise logical operations can directly use the compressed
bitmaps and therefore require less memory and less time [2,17]. Another method
that works quite well is the Word-Aligned Hybrid (WAH) code [30, 31]. It per-
forms bitwise logical operations faster than BBC, but takes up more space on
disk. This is because WAH works with 32-bit (or 64-bit) words while BBC works
with 8-bit bytes. Working with a larger unit of data reduces the opportunity
for compression, but the computations are better aligned with the capability
of CPUs. Due to its effectiveness, a number of variations on WAH have also
appeared in literature [11, 12, 14].

The key idea behind both BBC and WAH is Run-Length Encoding (RLE)
that represents a sequence of identical bits with a count. They represent short
sequences of mixed 0s and 1s literally, and BBC and the newer variants of WAH
also attempt to pack some special patterns of mixed 0s and 1s. In the literature,
each sequence of identical values is called a run. To enable a concise analysis,
we choose to analyze the bitmap index compressed with RLE instead of BBC or
WAH. In a straightforward implementation of RLE, one word is used to record
each run. Therefore, our analysis focuses on the number of runs.

The commonly used bitmap compression methods such as BBC and WAH
are more complex than RLE, and their compressed sizes are more difficult to
compute. The existing literature has generally avoided directly estimating the
compressed index sizes [18, 20, 21, 28]. In this work, we take a small step away
from this general practice and seek to establish an accurate estimation for the
sizes of RLE compressed bitmap indexes. We will show that our formulas are
accurate and amenable to analysis.

2.2 Data Reordering Techniques

Reordering can improve the compression for data and indexes [1, 21]. Some of
the earliest work on this subject was designed to minimize the number of disk
accesses needed to answer queries by studying the consecutive retrieval prop-
erty [13, 15]. Since the bitmap index can be viewed as a bit matrix, minimizing
the index sizes is also related to the consecutive ones property [8]. These proper-
ties are hard to achieve and approximate solutions are typically used in practice.

A widely used data reordering strategy is to sort the data records in lexico-
graphical order [5, 20, 24]. Many alternative ordering methods exist, one well-

470 E. Pourabbas, A. Shoshani, and K. Wu

known example is the Gray code ordering. No matter how sorting is done, a
common question is which column to use first. There is a long history of publi-
cations on this subject. Here is a brief review of a few of them.

One of the earliest publications on this subject was by Olken and Rotem [24].
In that paper, the authors investigated both deterministic and probabilistic mod-
els of data distribution and determined that rearranging data to optimize the
number of runs is NP-Complete via reduction to the Traveling Salesman Prob-
lem (TSP). Under a probabilistic model, the optimal rearrangement for each at-
tribute has the form of a double pipe organ. The key challenge for implementing
their recommendation is that the computational complexity grows quadratically
with N , the number of rows in the dataset.

Pinar et al. [28] similarly converted the problem of minimizing the number of
runs into a Traveling Salesman Problem. They suggested Gray code ordering as
an efficient alternative to the simple lexicographical ordering or TSP heuristics,
and presented some experimental measurements to confirm the claim.

Apaydin et al. considered two different types of bitmap indexes under lexi-
cographical ordering and Gray code ordering [5]. They found that Gray code
ordering gives slightly better results for the Range encoded bitmap index.

In a series of publications, Lemire and colleagues again proved that minimizing
the number of runs is NP hard and affirmed that sorting the columns from the
lower cardinality is an effective strategy [18, 20, 21].

All these analyses focus on the bit matrix formed by a bitmap index and
consider essentially the worst case scenario, therefore are mostly applicable to
uniform random data. In real word applications, the data is hardly ever uni-
form random numbers. Our work address this nonuniformity by developing an
accurate approximation that can be evaluated analytically.

3 Theoretical Analysis

To make the analysis tasks more tractable, we count the number of runs, which
is directly proportional to the size of a RLE compressed bitmap index. The
key challenge of this approach is that even though the definition of a run only
involves values of each individual column, the number of runs for one column
depends on the columns sorted before it. To address this challenge, we develop
the concept of leading k-tuple to capture the dependency among the columns. As
we show next this concept can capture the expected number of runs and allows
us to evaluate how the key parameters of data affects the expected number of
runs and the index sizes.

3.1 Counting k-tuples

Without loss of generality, we concentrate our analysis of a table of integers
with N rows and M columns. To avoid the need to construct a bitmap index
and count the number of runs, we introduce a quantity that can be directly
measured as follows.

Minimizing Index Size 471

X Y Z

10 20 30
10 22 33
11 20 31
11 21 30
11 21 32

Z Y X

30 20 10
30 21 11
31 20 11
32 21 11
33 22 10

A) Sort X first B) Sort Z first

Fig. 2. A small data table sorted in two different ways

Definition 1. A chunk is a sequence of identical values of a column in consec-
utive rows.

For the examples shown in Figure 2, in the version that sorted X first, the values
of X form two chunks, one with the value 10 and the other with the value 11. In
the version sorted Z first, the values of X form three chunks, two chunks with
the value 10 and one chunk with the value 11. Note that a chunk always includes
the maximum number of consecutive identical values. We do not break the three
consecutive values into smaller chunks.

The two tables shown in Figure 2 are sorted with different column orders and
have different number of chunks. To capture this dependency on column order,
we introduce a concept called leading k-tuple.

Definition 2. A leading k-tuple is a tuple of k values from the first k columns
of a row.

Depending how the columns are ordered, the leading k-tuples will be different.
For example, the first leading 2-tuple in Fig. 2A is (X=10, Y=20) and the
second leading 3-tuple in Fig. 2B is (Z=30, Y=21, X=11). In this paper, when
we refer to a k-tuple, we only refer to a leading k-tuple, therefore we usually use
the shorter term.

Without loss of generality, we refer to the first column in our reordering as
column 1 and the kth column as column k. In Fig. 2A, column 1 is X, while in
Fig. 2B, column 1 is Z. Similarly, we refer to the jth smallest value of column k
as the value j without regards to its actual content.

An critical observation is captured in the following lemma.

Lemma 1. The number of chunks for column k is bounded from above by the
number of distinct leading k-tuples Tk.

Typically, Tk−1 is much smaller than Tk and the number of chunks for column k
is very close to Tk. For this reason, we count the number of k-tuples instead of
counting the number of chunks. We will discuss the difference between Tk and
the number of chunks in Section 3.2.

Assume that the data table was generated through a stochastic process and
the probability of a leading k-tuple (j1, j2, . . . , jk) appearing in the data table
is pj1j2...jk . After generating N such rows, the probability that a particular k-
tuple (j1, j2, . . . , jk) is missing from the data table is (1 − pj1j2...jk)

N . Let C1

472 E. Pourabbas, A. Shoshani, and K. Wu

denote the number of possible values for column 1, and Ck denote the number of
possible values for column k. The total number of distinct k-tuples is C1C2 . . . Ck.
Summing overall all possible leading k-tuples, we arrive at the number of missing
k-tuples as

∑
j1j2...jk

(1− pj1j2...jk)
N , and the number of distinct k-tuples in the

data table as

Tk =

k∏
i=1

Ci −
∑

j1j2...jk

(1− pj1j2...jk)
N

. (1)

Note that the above formula works with the probability of k-tuples and is applica-
ble to any data set, even where the columns exhibit correlation. In most cases, the
probability of the k-tuples pj1j2...jk is harder to obtain than the probability of an
individual column. To make use of the probability distribution of the columns, we
assume the columns are statistically independent, and pj1j2...jk = pj1pj2 . . . pjk .
The above expression of Tk can be rewritten as:

Tk =
k∏

i=1

Ci −
∑

j1j2...jk

(1− pj1pj2 . . . pjk)
N (2)

Our goal is to count the number of runs in the bitmap index for each column of
the data table. For the bitmaps shown in Fig. 1, roughly each chunk in the values
of X leads to two runs in some bitmaps. We can generalize this observation as
follows.

Lemma 2. For a column with Tk chunks and Ck distinct values, the number of
runs in the bitmap index is 2Tk + Ck − 2.

Proof. For each chunk in column k, the corresponding bitmap in the bitmap
index will have a sequence of 0s followed by a sequences of 1s. This leads to the
term 2Tk runs for Tk chunks. For most of the Ck bitmaps in the bitmap index,
there is a sequences of 0s at the end of the bitmap. Altogether, we expect 2Tk+Ck

runs. However, there are two special cases. Corresponding the first chunk in the
values of column k, there is no 0 before the corresponding 1s. Corresponding to
the last chunk, there is no 0s at the end of the bitmap. Thus, there are two less
runs than expected. The total number of runs is 2Tk + Ck − 2.

3.2 Accidental Chunks

As a sanity check, we next briefly consider the case where all columns are uni-
formly distributed. This also helps us to introduce the second concept we call
the accidental chunks which captures the error of using the number of leading
k-tuples to approximate the number of chunks for column k.

Assuming the probability of each value is the same, i.e., pji = C−1
i , we can

significantly simplify the above formula as

Tk =

⎛⎜⎝1−

⎛⎝1−
k∏

j=1

C−1
j

⎞⎠N
⎞⎟⎠ k∏

j=1

Cj (3)

Minimizing Index Size 473

Table 1. Example of sorting 1 million rows (N=1,000,000) with column cardinality
from lowest to highest

C Max chunks Exp chunks Max runs Exp runs Actual runs Error (%)

10 10 10 28 28 28 0
20 200 200 418 418 418 0
40 8000 8000 16038 16038 16038 0
60 480000 420233 960058 840524 841142 0.074
80 38400000 987091 76800078 1974260 1966758 -0.38
100 3840000000 999869 7680000098 1999836 1980078 -1.00

Table 2. Example of sorting 1 million rows (N=1,000,000) with column cardinality
from highest to lowest

C Max chunks Exp chunks Max runs Exp runs Actual runs Error (%)

100 100 100 298 298 298 0
80 8000 8000 16078 16078 16078 0
60 480000 420233 960058 840524 840584 0.007
40 19200000 974405 38400038 1948848 1934192 -0.0075
20 384000000 998699 768000018 1997416 1898906 -4.93
10 3840000000 999869 7680000008 1999746 1800250 -9.976

We generated one million rows of uniform random numbers and actually
counted the number of chunks and number of runs; the results are shown in
Tables 1 and 2. The actual observed chunks include identical values appearing
contiguously crossing the k-tuple boundaries. Even though two k-tuples may be
different, the values of the last column, column k, could be the same. For ex-
ample, in Fig. 2B, the three row in the middle all have X=1, even though the
corresponding 3-tuple are different. This creates what we call accidental chunks.

Definition 3. An accidental chunk in column k is a group of identical values
for column k where the corresponding k-tuples are different.

In general, we count a chunk for column k as an accidental chunk, if the values
of the kth column are the same, but the leading (k − 1)-tuples are different.
After sorting, the leading (k− 1)-tuples are ordered and the identical tuples are
in consecutive rows. Since the column k is assumed to be statistically indepen-
dent from the first (k − 1) columns, we can compute the number of consecutive
identical values as follows.

Starting from an arbitrary row, the probability of the column k being jk is
pjk and the probability that there is only a single jk (followed by something
else) is pjk(1 − pjk). The probability that there are two consecutive rows with
jk is p2jk(1 − pjk), and the probability for q consecutive jk is pqjk(1 − pjk). The
numbers of time jk appears together is:

pjk (1− pjk) + 2p2jk (1− pjk) + 3p3jk (1− pjk) + . . .+ (N − 1)pN−1
jk

(1− pjk) +NpNjk∼= pjk (1− pjk)
∑∞

i=1 ip
i−1
jk

= pjk (1− pjk)(1− pjk)
−2 = pjk(1− pjk)

−1,

474 E. Pourabbas, A. Shoshani, and K. Wu

where1
∑∞

i=1 ip
i−1 =

∑∞
i=1

∂pi

∂p =
∂(

∑∞
i=1 pi)

∂p = ∂(1−p)−1

∂p = (1−p)−2. The average

times a value of column k repeats is μk =
∑

j1j2...jk

pjk

1−pjk

.

The set of consecutive values in column k must span beyond the group of
identical (k− 1)-tuples in order to be counted as an accidental chunk. When the
majority of the chunks for the first (k− 1) columns have only 1 row, the number
of chunks for column k is reduced by a factor 1/μk.

For uniform random data, we can estimate the values of μk and check whether
they agree with the observations from Tables 1 and 2. These tables show an
example of sorting 1 million tuples with column cardinality ordered from the
lowest to the highest and from the highest to the lowest, respectively. In Table 1,
we see that about 99% of 5-tuples are distinct, more precisely, there are 987091 5-
tuples for 1 million rows. This suggests that there might be a noticeable number
of accidental chunks for column 6 shown in the last row in Table 1. In this case,

the cardinality of column 6 is 100, pj6 = 1/100 and μ6 =
∑100

j6=1
1/100

1−1/100 = 100
99 .

The number of chunks observed should be T6/μ6, which is 1% less than the
expected value of T6. The number of runs in the bitmaps is 1% less the expected
value in Table 1, which agree with our analysis. Similarly, in Table 2 about
97% of the 4-tuples are distinct, which suggests that there might be noticeable
number of accidental chunks for columns 5 and 6. The cardinality of the last two
columns are 20 and 10 respectively, and our formula suggests that the observed
number of chunks would be 5% and 10% less than the expected value of T5, T6.
In Table 2, we again see a good agreement with the predictions2.

3.3 Asymptotic Case

Assume the value of each pj1j2...jk to be very small, say pj1j2...jk % 1/N . In this
case, we can approximate the probability that the k-tuple (j1, j2, . . . , jk) not
appearing in our dataset as (1 − pj1j2...jk)

N ≈ 1 −Npj1j2...jk . This leads to the
following approximation for the number of distinct k-tuples.

Tk ≈
∏k

i=1 Ci −
∑

j1j2...jk
(1−Npj1j2...jk)

=
∏k

i=1 Ci −
∑

j1j2...jk
1 +N

∑
j1j2...jk

pj1j2...jk
= N

∑
j1j2...jk

pj1j2...jk = N.

In other word, every k-tuple will be distinct. If the probability of each individual
k-tuple is very small, we intuitively expect all the observed tuples to be distinct.
We generalize this observation and state it more formally as follows.

Definition 4. A tuple (j1j2 . . . jk) in a dataset with N tuples is a rare tuple if
pj1j2...jk < 1/N .

1 http://mathworld.wolfram.com/PowerSum.html
2 Lemma 1 seems to suggest that the errors in Tables 1 and 2 can only be negative
or zero, however there are a few positive numbers. The reason for this is that the
number of chunks and runs given are based on the expected number of leading
k-tuples, not the number of leading k-tuple observed in the particular test dataset.

Minimizing Index Size 475

In most discussions, we will simply refer to such a tuple as a rare tuple, without
referring to the number of rows, N .

Conjecture on rare tuples: A rare tuple in a dataset will appear exactly once
if it does appear in the dataset.

In a typical case, there is a large number of possible tuples and many of them with
very small probabilities while a few tuples with larger probabilities. Therefore,
we cannot apply the above estimate to the whole dataset. The implication from
the above conjecture is that the rare tuples that do appear in a data set will be
different from others. To determine the total number of distinct tuples, we can
concentrate on those tuples that appear more frequently, which we call common
tuples.

Definition 5. A tuple (j1j2 . . . jk) in a dataset with N tuples is a common tuple
if pj1j2...jk ≥ 1/N .

In most discussions, we will simply refer to such a tuple as a common tuple,
without referring to the number of rows, N .

3.4 Zipfian Data

In the preceding sections, we have demonstrated that our formulas predict the
numbers of runs accurately for uniform data and rare tuples. Next, we consider
the more general case involving data with non-uniform distribution and a mix-
ture of rare tuples and common tuples. In order to produce compact formulas, we
have chosen to concentrate on data with Zipf distributions. We further assume
that each column of the data table is statistically independent from others.

Following the above analysis on rare tuples, we assume that all rare tuples
that do appear in a dataset are distinct. A common tuple may appear more than
once in a dataset, we say that it has duplicates. More specifically, if a k-tuple
appears q times, then it has (q − 1) duplicates. Let Dk denote the number of
duplicates, the number of distinct k-tuples in the dataset is Tk = N −Dk. This
turns the problem of counting the number of distinct values into counting the
number of duplicates. To illustrate this process, let us first consider a case of
1-tuple, i.e., one column following the Zipf distribution pj1 = α1j

−z1
1 , where

α1 =
(∑C1

j1=1 j
−z1
1

)−1

and z1 is a constant parameter known the Zipf exponent.

By definition of pj1 , the value j1 is expected to appear Npj1 times in that
dataset. The common values are expected to appear at least once, i.e., Npj1 =
Nα1j

−z1
1 ≥ 1. Since pj1 is a monotonically decreasing function of j1, common

values are smaller than rare ones. Let β1 ≡ (Nα1)
1/z1 , we see that all j1 values

less than C1 and �β1� (where �.� is the floor operator) are common values. The
number of duplicates can be expressed as

D1 =

min(C1,	β1
)∑
j1=1

(
Nα1j

−z1
1 − 1

)
. (4)

476 E. Pourabbas, A. Shoshani, and K. Wu

For the convenience of later discussions, we define two functions

s1 =

min(C1,	β1
)∑
j1=1

j−z1
1 , r1 =

C1∑
min(C1,	β1
)+1

j−z1
1 .

By the definition of α1, we have α1 = r1 + s1. Furthermore, the number of
common values is Nα1s1, the number of rare values is Nα1r1, and the number
of distinct values is T1 = min(C1, �β1�) + Nα1r1. Among all possible values of
β1, when β1 < 1, there is no common value and T1 = N ; when β1 ≥ C1, all
values are common values and T1 = C1.

In the more general case where the kth column has cardinality Ck and Zipf
exponent zk, we have αk = 1/

∑Ck

jk=1 j
−zk
k , the number of distinct k-tuples and

the number of duplicate k-tuples are given by the following expressions,

Tk = N −Dk, Dk =
∑

Npj1...jk
>1

(Npj1...jk − 1), pj1...jk =

k∏
i=1

pi =

k∏
i=1

αij
−zi
i . (5)

Since the Zipf distribution is a monotonic function, it is straightforward to
determine the bounds of the sum in Equation (5) as illustrated in the one-
column case above. Given j1, . . . , jk−1, the upper bound for jk is given by(
Nαk

∏k−1
i=1 αij

−zi
i

)1/zk
. In many cases, there are a relatively small number of

common tuples, which allows us to evaluate the above expression efficiently.
From this expression, we can compute the number of k-tuples and therefore the
number of runs in the corresponding bitmap indexes.

Theorem 1. Let C1, C2, . . . , CM denote column cardinalities of a data table.
Assume all columns have the same skewness as measured by the Zipf exponents.
To minimize the total number of runs in the bitmap indexes for all columns with
sorting, the lowest cardinality column shall be sorted first.

Proof. Let’s first consider the case of 1-tuple. Given z1, the summation
∑C1

j1
j−z1
1

increases as C1 increases. The values of α1 decreases as C1 increases (as il-
lustrated in Fig. 3A) which can be expressed as ∂α1/∂C1 < 0. This leads to

∂β1/∂C1 = 1
z1
(Nα1)

(1
z1

−1)
N ∂α1

∂C1
< 0, which means that β1 decreases as C1 in-

creases (as shown in Fig. 3B). In the expression for D1, the upper bound of the
summation is the minimal of C1 and �β1�.

When C1 ≤ �β1�, all C1 values are common values. In these cases, by definition

of the Zipfian distribution
∑C1

j1=1 Nα1j
−z1
1 = N , the number of duplicates D1 =

N − C1 (see Eq. (4)) and the number of distinct values is C1.
In cases where C1 > �β1�, the number of distinct values may be less than

C1. Because both α1 and β1 decrease with the increase of C1, each term in the
summation for D1 decreases and the number of terms in the summation may
also decrease, all causing D1 to decrease as C1 increases, as shown in Fig. 3C. In
other words, as C1 increases, there are fewer duplicates and more distinct values.
As shown in Fig. 3D, the value of T1 increases with C1.

Minimizing Index Size 477

������

�����	

�����

������

������

���
�

����

�����

��

����

������

������

������

�����	

�����

������

������

������ �����
 ������ ������ ������

���
�

����

�����

��

����

�

�	

������

������

������

������

�����

���
�

����

�����

��

����

�

������

�����

������

������

������

������

�����

������ �����
 ������ ������ ������

���
�

����

�����

��

����

�

A) α1 versus C1 B) β1 versus C1

�����

	�����

������

������

������

������

������

������

�������

���
�

����

�����

��

����

�

	

�

������

�����

	�����

������

������

������

������

������

������

�������

������ �����
 ������ ������ ������

���
�

����

�����

��

����

�
 �����

�����	

������

������

������

���
�

����

�����

��

����

�

������

������

�����

�����	

������

������

������

������ �����
 ������ ������ ������

���
�

����

�����

��

����

�

C) D1 versus C1 D) T1 versus C1

Fig. 3. How the values vary with column cardinality with fixed skewness (assuming 1
million rows)

Now, we consider the case of k-tuple. In this case, the probability for
a k-tuple is pj1j2...jk = α1α2 . . . αkj

−z
1 j−z

2 . . . j−z
k , the common tuples are

those with α1α2 . . . αkj
−z
1 j−z

2 . . . j−z
k ≥ 1/N , or alternatively, j1j2 . . . jk ≤

(α1α2 . . . αkN)1/z . Note that the values j1j2 . . . jk are positive integers.
Along with the conditions that 1 ≤ j1 ≤ C1, . . . , 1 ≤ jk ≤ Ck, the number of

duplicate tuples can be expressed as follows (βk ≡ (α1α2 . . . αkN)1/z):

Dk =

min(C1,	β1
)∑
j1=1

min(C2,	β2j
−1
1
)∑

j1=1

. . .

min(Ck,	βkj
−1
1 j−1

2 ...j−1
k−1
)∑

j1=1

(
Nα1α2 . . . αkj

−z
1 j−z

2 . . . j−z
k − 1

)
. (6)

In the above expression, the order of the column among the k-tuple does not
change the number of distinct tuples. Therefore, when all columns are considered
together, i.e., k = M , it does not matter how the columns are ordered. However,
as soon as one column is excluded, say, k = M−1, it does matter which columns
are excluded. Assume that we have two columns to choose from, say columns
A and B; and the only different between them is their column cardinalities, CA

and CB. Without loss of generality, assume CA > CB , consequently, αA < αB

and βA < βB. In the formula Dk, a smaller βA value indicates that the number
of terms in the summation would be no more than that with a larger βB. For
each term, replacing the value of αk with αA will produce a smaller value than

478 E. Pourabbas, A. Shoshani, and K. Wu

������

������

�����	

�����

������

������

���

����

������

�������

��������

����������

������

������

������

������

�����	

�����

������

������

���� ��� � ��

���

����

������

�������

��������

����������

�
��������

������

������

������

������

�����
 ���

����

������

�������

��������

����������

�
��������

�����������

������

�����

������

������

������

������

�����

���� ��� � ��

���

����

������

�������

��������

����������

�
��������

A) α1 versus z1 B) β1 versus z1

������

������

������

���

����

������

�������

��������

����������

�
 ��� ���

�����	

������

������

������

���� ��� � ��

���

����

������

�������

��������

����������

�
�������� � ���

�����	

������

������

������ ���

����

������

�������

��������

����������

�
��������

�����������

������

�����

�����	

������

������

������

���� ��� � ��

���

����

������

�������

��������

����������

�
��������

C) D1 versus z1 D) T1 versus z1

Fig. 4. How the values vary with skewness with fixed column cardinality (assuming 1
million rows)

replacing it with αB. Therefore, choosing the higher cardinality column decreases
Dk, increases the number of distinct tuples and increases the number of runs in
the corresponding bitmap index. Thus, sorting the lowest cardinality column
first reduces the number of distinct k-tuples and minimizes the number of runs.

Theorem 2. Let C1, C2, . . . , CM denote the column cardinalities of a data table.
Assume C1 = C2 = . . . = CM . To minimize the total number of runs in the
bitmap indexes by sorting, the column with the largest Zipf exponent shall be
ordered first.

Proof. Instead of giving a complete proof here, we will outline the basic strategy.
Based on the information shown Fig. 4, particularly Fig. 4B, we need to handle
the cases with C > N and z < 1 separately from the others. In the normal
cases, α1, β1, D1 and T1 are all monotonic functions and it is clear that sorting
columns with larger Zipf exponents first is beneficial.

In the special case with C > N and z < 1, where the possible values to use is
large and the differences among the probabilities of different values are relatively
small, the number of runs for a column is the same as that of a uniformly random
column. In which case, which column comes first does not make a difference, and
we can follow the general rule derived for the normal cases. Thus, we always sort
the column with the largest Zipf exponent first.

Minimizing Index Size 479

A) Columns with the same skew-
ness ordered from low cardinality
to high cardinality

B) Columns with the same skew-
ness ordered from high cardinality
to low cardinality

Fig. 5. Predicted numbers of runs (lines) and the observed numbers of runs (as sym-
bols) plotted against the column cardinality (10 million rows). The symbols are very
close to their corresponding lines indicating that the predictions agree well with the
observations.

4 Experimental Measurements

In the previous section, we took the expected number of distinct k-tuple as an
estimate of the number of chunks and therefore the number of runs in a bitmap
index. In this section, we report a series of empirical measurements designed to
address two issues: (1) how accurate are the formulas for predicting numbers of
runs for Zipf data and (2) do the reordering strategies actually reduce index sizes?
In these tests, we use a set of synthetic Zipfian data with varying cardinalities
and Zipf exponents. The column cardinalities used are 10, 20, 40, 60, 80, and
100; the Zipf exponents used are 0 (uniform random data), 0.5, 1, and 2 (highly-
skew data). The test data sets contain 10 million rows, which should be large
enough to avoid significant statistical errors.

4.1 Number of Runs

The first set of measurements are the numbers of runs predicted by Eq. (5) and
the numbers of runs actually observed on a set of Zipf data. We also collected the
expected and the actual numbers of runs with different ordering of the columns.
We first organize the synthetic data into four tables where all columns in each
table have the same Zipf exponent. In Fig. 5, we display the numbers of runs
for each bitmap index (for an individual column) with the data table sorted in
two different column orders, the lowest cardinality column first or the highest
cardinality column first. In this figure, the discrete symbols denotes the observed
values and the lines depict the theoretical predictions developed in the previous
section. The number of runs vary from tens to tens of millions. In this large
range of values, our predictions are always very close to the actual observations.

Fig. 6 shows similar predicted numbers of runs against observed values for
data tables containing columns with the same column cardinality. Again we see

480 E. Pourabbas, A. Shoshani, and K. Wu

A) Columns with the same cardi-
nalities are ordered from small Zipf
exponent to large Zipf exponent

B) Columns with the same cardi-
nalities are ordered from large Zipf
exponent to small Zipf exponent

Fig. 6. Predicted numbers of runs (lines) and observed numbers of runs (symbols)
plotted against the Zipf exponents (10 million rows). The symbols are very close to their
corresponding lines indicating that the predictions agree well with the observations.

Table 3. Total number of runs (in thousands) of columns with the same skew in two
different orders (N=10,000,000)

Skew Total numbers of runs

z Low cardinality first High cardinality first
(Small per Thm 1)

predicted observed predicted observed

0 38,559 38,382 56,281 53,545
0.5 38,506 35,266 55,904 48,988
1 25,254 22,328 35,629 29,523
2 2,065 1,639 2,557 1,892

that the number of runs vary from tens to millions, and the observed values
agree with the predictions very well.

To see exactly how accurate are our predictions, in Table 3 and 4, we listed
out the total number of runs for each of the data tables used to generate Fig. 5
and 6. In these two tables, the total numbers of runs are reported in thousands.
As we saw in Table 1 and 2 for uniform random data, the predictions are gener-
ally slightly larger than the actually observed values. The discrepancy appears
to grow as the skewness of the data grows or the column cardinality grows.
We believe this discrepancy to be caused by the accidental chunks discussed in
Section 3.2. We plan to verify this conjecture in the future.

Since the actual number of runs are different from the expected values, a
natural question is whether the predicted advantage of column ordering still
observed. In Table 3, we see that the total number of runs of tables sorted
with the lowest cardinality column first is always smaller than the same value
for the same table sorted with the largest cardinality column first. This is true
even for highly-skew data (with z = 2), where the predicted total number of

Minimizing Index Size 481

Table 4. Total number of runs (in thousands) of columns with the same column
cardinality ordering in two different ways (N=10,000,000)

Cardinality Total numbers of runs

C Low skew first High skew first
(Small per Thm 2)

predicted observed predicted observed

10 22 22 22 22
20 326 301 326 301
40 1864 1636 1860 1622
60 3767 3335 3638 3173
80 6016 5274 5472 4776

100 8706 7274 7353 6331

Table 5. The total sizes (KB) of compressed bitmap indexes produced by FastBit under
different sorting strategies. Each data table has 10 million rows and four columns with
the same column cardinality but different skewness.

C 10 20 40 60 80 100

Low skew first 168 1,540 6,911 11,188 15,146 19,487
High skew first 166 1,393 6,125 11,870 17,913 23,878

runs is nearly 35% higher than the actual observed value (2065/1639 = 1.26,
2557/1892 = 1.35). In this case, sorting the the highest cardinality column first
produces about 15% more runs than sorting the lowest cardinality column first
(1892/1639 = 1.15). The predicted advantage is about 24% (2557/1639 = 1.24).
Even though it may be worthwhile to revisit the source of error in our predictions,
the predicted advantage from Theorems 1 and 2 are clearly present.

From our analysis, we predicted that ordering the columns with the highest
skew first is the better than other choices. In Table 4, we show the total numbers
of runs from two different sorting strategies, one with the highest skew first and
the other with the least skew first. For the columns with relative low column car-
dinalities, there are enough rows to produce all possible tuples. In this case, the
prediction is exactly the same as the observed values. As the column cardinality
increases, there are larger differences between the predictions and observations.
With each column having 100 distinct values, the difference is almost 20%. How-
ever, even in this case, the predicted advantage of sorting the column with the
largest Zipf exponent first is still observable in the test.

4.2 FastBit Index Sizes

Even though commonly used bitmap compression methods are based on RLE,
they are more complex than RLE and therefore our predictions may have larger
errors. To illustrate this point, we show the sizes of a set of bitmap indexes
produced by an open-source software called FastBit [29] in Fig. 7 and Table 5.
In these tests, our test data is divided into six tables with four columns each to

482 E. Pourabbas, A. Shoshani, and K. Wu

A) Columns with the same cardi-
nalities ordered from small Zipf ex-
ponent to large Zipf exponent

B) Columns with the same cardi-
nalities ordered from large Zipf ex-
ponent to small Zipf exponent

Fig. 7. Sizes of FastBit indexes (N = 10, 000, 000)

produce the sizes shown in Fig. 6 and Table 4. According to Theorem 2, ordering
highly-skewed column first is expected to produce smaller compressed bitmap
indexes. In Table 5, we see that the prediction is true for three out of the six
data tables, those with C = 10, C = 20, and C = 40.

For data tables with high column cardinalities, the predictions are wrong and
the values shown in Fig. 7 offers some clues as why. In general, the last column to
be sorted is broken into more chunks, the corresponding bitmap index has more
runs and requires more disk space. This index typically requires significantly
more space than those of the earlier columns, and therefore dominates the total
index size. In Fig. 7B, we see that the index sizes grow steadily from the column
being sorted first to the column being sorted last. However, in Fig. 7A, we see
the index size for column sorted last did not grow much larger than the previous
columns. This is especially noticeable for C = 100, C = 80 and C = 60. More
work is needed to understand this trend.

5 Conclusions

In this paper, we developed a set of formulas for the sizes of Run-Length Encoded
bitmap indexes. To demonstrate the usefulness of these formulas, we used them
to examine how to reorder the rows and columns of a data table. Our analysis
extends the reordering heuristics to include non-uniform data. We demonstrated
that the formulas are indeed accurate for a wide range of data. We also discussed
the limitations of the proposed approach. In particular, because the practical
bitmap compression methods are not simple Run-Length Encoding methods,
their index sizes deviate from the predictions in noticeable ways. We plan to
explore options to capture these deviations in a future study.

References

1. Abadi, D., Madden, S.R., Ferreira, M.C.: Integrating compression and execution
in column-oriented database systems. In: SIGMOD. ACM (2006)

Minimizing Index Size 483

2. Amer-Yahia, S., Johnson, T.: Optimizing queries on compressed bitmaps. In:
VLDB, pp. 329–338 (2000)

3. Antoshenkov, G.: Byte-aligned bitmap compression. Tech. rep., Oracle Corp.
(1994)

4. Antoshenkov, G., Ziauddin, M.: Query processing and optimization in oracle rdb.
The VLDB Journal 5, 229–237 (1996)

5. Apaydin, T., Tosun, A.S., Ferhatosmanoglu, H.: Analysis of Basic Data Reordering
Techniques. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069,
pp. 517–524. Springer, Heidelberg (2008)

6. Bookstein, A., Klein, S.T.: Using bitmaps for medium sized information retrieval
systems. Information Processing & Management 26, 525–533 (1990)

7. Bookstein, A., Klein, S.T., Raita, T.: Simple bayesian model for bitmap compres-
sion. Information Retrieval 1(4), 315–328 (2000)

8. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using pq-tree algorithms. Journal of Computer and
System Sciences 13(3), 335 – 379 (1976),
http://dx.doi.org/10.1016/S0022-0000(76)80045-1

9. Chan, C.-Y., Ioannidis, Y.E.: Bitmap index design and evaluation. In: SIGMOD,
pp. 355–366 (1998)

10. Chaudhuri, S., Dayal, U., Ganti, V.: Database technology for decision support
systems. Computer 34(12), 48–55 (2001)

11. Colantonio, A., Pietro, R.D.: Concise: Compressed ’n’ composable integer set. In-
formation Processing Letters 110(16), 644–650 (2010),
http://dx.doi.org/10.1016/j.ipl.2010.05.018

12. Deliège, F., Pedersen, T.B.: Position list word aligned hybrid: optimizing space
and performance for compressed bitmaps. In: EDBT 2010: Proceedings of the 13th
International Conference on Extending Database Technology, pp. 228–239. ACM,
New York (2010)

13. Deogun, J.S., Gopalakrishnan, K.: Consecutive retrieval property–revisited. Infor-
mation Processing Letters 69(1), 15–20 (1999),
http://dx.doi.org/10.1016/S0020-0190(98)00186-0

14. Fusco, F., Stoecklin, M.P., Vlachos, M.: NET-FLi: on-the-fly compression, archiv-
ing and indexing of streaming network traffic. Proc. VLDB Endow. 3, 1382–1393
(2010), http://portal.acm.org/citation.cfm?id=1920841.1921011

15. Ghosh, S.P.: File organization: the consecutive retrieval property. Commun.
ACM 15, 802–808 (1972), http://doi.acm.org/10.1145/361573.361578

16. Hu, Y., Sundara, S., Chorma, T., Srinivasan, J.: Supporting RFID-based item
tracking applications in oracle DBMS using a bitmap datatype. In: VLDB 2005,
pp. 1140–1151 (2005)

17. Johnson, T.: Performance of compressed bitmap indices. In: VLDB 1999, pp. 278–
289 (1999)

18. Kaser, O., Lemire, D., Aouiche, K.: Histogram-aware sorting for enhanced word-
aligned compression in bitmap indexes. In: DOLAP 2008, pp. 1–8. ACM, New York
(2008), http://doi.acm.org/10.1145/1458432.1458434

19. Koudas, N.: Space efficient bitmap indexing. In: CIKM, pp. 194–201 (2000)
20. Lemire, D., Kaser, O., Aouiche, K.: Sorting improves word-aligned bitmap indexes.

Data & Knowledge Engineering 69(1), 3–28 (2010),
http://dx.doi.org/10.1016/j.datak.2009.08.006

21. Lemire, D., Kaser, O.: Reordering columns for smaller indexes. Information Sci-
ences 181(12), 2550–2570 (2011),
http://dx.doi.org/10.1016/j.ins.2011.02.002

http://dx.doi.org/10.1016/S0022-0000(76)80045-1
http://dx.doi.org/10.1016/j.ipl.2010.05.018
http://dx.doi.org/10.1016/S0020-0190(98)00186-0
http://portal.acm.org/citation.cfm?id=1920841.1921011
http://doi.acm.org/10.1145/361573.361578
http://doi.acm.org/10.1145/1458432.1458434
http://dx.doi.org/10.1016/j.datak.2009.08.006
http://dx.doi.org/10.1016/j.ins.2011.02.002

484 E. Pourabbas, A. Shoshani, and K. Wu

22. Lin, X., Li, Y., Tsang, C.P.: Applying on-line bitmap indexing to reduce counting
costs in mining association rules. Information Sciences 120(1-4), 197–208 (1999)

23. MacNicol, R., French, B.: Sybase IQ multiplex-designed for analytics. In: Nasci-
mento, M.A., Tamer Özsu, M., Kossmann, D., Miller, R.J., Blakeley, J.A., Bern-
hard Schiefer, K. (eds.) Proceedings of 13th International Conference on Very Large
Data Bases, VLDB 2004, August 31-September 3, pp. 1227–1230 (2004)

24. Olken, F., Rotem, D.: Rearranging data to maximize the efficiency of compression.
In: PODS, pp. 78–90. ACM Press (1985)

25. O’Neil, P.: Model 204 Architecture and Performance. In: Gawlick, D., Reuter, A.,
Haynie, M. (eds.) HPTS 1987. LNCS, vol. 359, pp. 40–59. Springer, Heidelberg
(1989)

26. O’Neil, P.: Informix indexing support for data warehouses. Database Programming
and Design 10(2), 38–43 (1997)

27. O’Neil, P., Quass, D.: Improved query performance with variant indices. In: SIG-
MOD, pp. 38–49. ACM Press (1997)

28. Pinar, A., Tao, T., Ferhatosmanoglu, H.: Compressing bitmap indices by data
reorganization. In: ICDE 2005, pp. 310–321 (2005)

29. Wu, K.: FastBit: an efficient indexing technology for accelerating data-intensive
science. Journal of Physics: Conference Series 16, 556–560 (2005),
http://dx.doi.org/10.1088/1742-6596/16/1/077

30. Wu, K., Otoo, E., Shoshani, A.: Optimizing bitmap indices with efficient compres-
sion. ACM Transactions on Database Systems 31, 1–38 (2006)

31. Wu, K., Otoo, E., Shoshani, A., Nordberg, H.: Notes on design and implementa-
tion of compressed bit vectors. Tech. Rep. LBNL/PUB-3161, Lawrence Berkeley
National Lab, Berkeley, CA (2001),
http://www-library.lbl.gov/docs/PUB/3161/PDF/PUB-3161.pdf

32. Wu, K., Shoshani, A., Stockinger, K.: Analyses of multi-level and multi-component
compressed bitmap indexes. ACM Transactions on Database Systems 35(1), 1–52
(2010), http://doi.acm.org/10.1145/1670243.1670245

33. Wu, K., Stockinger, K., Shoshani, A.: Breaking the Curse of Cardinality on Bitmap
Indexes. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069,
pp. 348–365. Springer, Heidelberg (2008); preprint appeared as LBNL Tech Report
LBNL-173E

34. Wu, M.C., Buchmann, A.P.: Encoded bitmap indexing for data warehouses. In:
ICDE 1998, pp. 220–230. IEEE Computer Society, Washington, DC (1998)

http://dx.doi.org/10.1088/1742-6596/16/1/077
http://www-library.lbl.gov/docs/PUB/3161/PDF/PUB-3161.pdf
http://doi.acm.org/10.1145/1670243.1670245

Data Vaults: A Symbiosis between Database

Technology and Scientific File Repositories

Milena Ivanova, Martin Kersten, and Stefan Manegold

Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
{M.Ivanova,Martin.Kersten,Stefan.Manegold}@cwi.nl

Abstract. In this short paper we outline the data vault, a database-
attached external file repository. It provides a true symbiosis between a
DBMS and existing file-based repositories. Data is kept in its original
format while scalable processing functionality is provided through the
DBMS facilities. In particular, it provides transparent access to all data
kept in the repository through an (array-based) query language using
the file-type specific scientific libraries.

The design space for data vaults is characterized by requirements com-
ing from various fields. We present a reference architecture for their real-
ization in (commercial) DBMSs and a concrete implementation in Mon-
etDB for remote sensing data geared at content-based image retrieval.

1 Introduction

Unprecedented large data volumes are generated by advanced observatory in-
struments and demand efficient technology for science harvesting [8]. To date,
such data volumes are often organized in (multi-tier) file-based repositories. Nav-
igation and searching for data of interest are performed using metadata encoded
in the file names or managed by a workflow system. Processing and analysis are
delegated to customized tools, which blend data access, computational analysis
and visualization.

Wide adoption of DBMSs in scientific applications is hindered by numerous
factors. The most important problems with respect to science file repositories
are i) too high up-front cost to port data and application to the DBMS; ii) lack
of interfaces to exploit standard science file formats; and iii) limited access to
external science libraries for analysis and visualization.

To illustrate the problem we describe a concrete content-based image retrieval
application over remote sensing images in the TELEIOS project1. The source
data are high-resolution TerraSAR-X images in GeoTIFF format [7] accompa-
nied by metadata specification in XML format. The processing pipeline starts
with a preparatory phase of tiling an image into smaller chunks, called patches,
and applying various feature extraction methods over the patches. The features
extracted are stored in a database and used as input for higher level image
analysis, such as classification with Support Vector Machines and content-based

1 This work is partly funded by EU project TELEIOS: www.earthobservatory.eu

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 485–494, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.earthobservatory.eu

486 M. Ivanova, M. Kersten, and S. Manegold

image retrieval. The DBMS is currently used at a relatively late stage of the
pipeline to store the image features, which are of standard data types such as
real numbers and strings. Both patching and feature extraction are carried out
by customized software tools over image files in file repositories.

Ideally, a user could simply attach an external file repository to the DBMS, e.g.
using a uri, and let it conduct efficient and flexible query processing over data
of interest. However, a state-of-the-art relational database i) requires data to be
loaded up-front in the database; ii) cannot naturally understand and support
the external format of GeoTIFF images; and iii) provides limited processing
capabilities for non-standard data types.

In this paper we outline the data vault that provides a true symbiosis between
a DBMS and existing (remote) file-based repositories. The data vault keeps the
data in its original format and place, while at the same time enables transpar-
ent (meta)data access and analysis using a query language. Without pressure to
change their file-based archives, scientists can now benefit from extended func-
tionality and flexibility. High level declarative query languages (SQL, SciQL [17])
facilitate experimentation with novel science algorithms. Scientists can combine
their familiar external analysis tools with efficient in-database processing for
complex operations, for which databases are traditionally good. Transparent,
just-in-time load of data reduces the start-up cost associated with adopting a
database solution for existing file repositories.

The data vault is developed in the context of MonetDB [11] and its scien-
tific array-query language SciQL. It enables in-database processing of arrays,
including raster images. In this work we focus on the data vault aspect and its
realization in a real-world test case.

The remainder of this article is organized as follows. We summarize related
work in Section 2. An analysis of general data vault requirements is presented in
Section 3, followed by a description of our proposal for data vault architecture.
Section 5 presents our work in progress on the design and implementation of a
remote sensing data vault as a proof of the generic concept. Section 6 concludes
the paper.

2 Related Work

Our work on data vaults is related to accessing external data from database
systems. The implementation of a remote sensing data vault is a new approach
to database support for external remote sensing data.

Access to External Data. The SQL/MED standard (Management of External
Data) [15] offers SQL syntax extensions and routines to develop applications that
access both SQL and non-SQL(external) data. The standard has limited adop-
tion for applications accessing data from other SQL-server vendors or in CSV
files. NoDB [1] proposes advanced query processing over flat data files. Dynamic
and selective load and indexing of external data provides low initialization over-
head and performance benefits for subsequent queries. A major assumption of
the above approaches is, however, that external data are straightforward mapped

Data Vaults 487

(a) File-based (b) Rasdaman (c) OR DBMS (d) Data Vault

Fig. 1. Software architectures for remote sensing data

to SQL tables. In the domain of scientific applications we take a step further by
considering array-based scientific file formats, such as GeoTIFF [7], FITS [6],
and mSEED [14] which are typically used in Earth observation, astronomy, and
seismology, respectively.

Oracle database file system (DBFS) [10] allows for storage of and access to
files with unstructured content in the database. File processing is limited to a
rudimentary, file system-like interface to create, read, and write files, and to
create and manage directory structures.

Database Support for Remote Sensing Data. Figure 1 illustrates the devel-
opment of software architectures for remote sensing applications and the role of
the database management systems. Figure 1a presents a typical file-based solu-
tion where only the metadata are kept in the database (e.g. [16]). Such solutions
have some important limitations, such as inflexibility wrt. new requirements,
inefficient access, and scalability.

The use of database systems to open the raster data archives for scientific ex-
ploration is advocated in [2]. Figures 1b and 1c present architectures where the
storage and retrieval of raster data (multi-dimensional arrays) is delegated to the
DBMS. RasDaMan [3] array middleware provides applications with database ser-
vices on multi-dimensional data structures, such as declarative query language,
indexing, and optimization. It works on top of a DBMS which provides storage
and retrieval for the array tiles and indexes in the form of BLOBs. However, the
query processing is not integrated with the database internals.

Raster data management is also offered by some object relational DBMSs
in the form of spatial data extenders: Oracle Spatial GeoRaster [12] and Post-
GIS [13]. They allow storing, indexing, querying, and retrieving raster images
and their metadata. However, more complex analysis is delegated to the appli-
cation or has to be implemented as a UDF. Images have to be loaded explicitly
and up-front into the system to enable query processing over them. We propose
just-in-time access to data of interest and white-box declarative queries over
the sensor data itself. It has been shown that the declarative query paradigm
increases productivity and offers flexibility that can be very valuable for ad-hoc
science data exploration.

488 M. Ivanova, M. Kersten, and S. Manegold

3 Data Vault Requirements

We can summarize the following requirements for the data vault design:

Enhanced Data Model. External file formats use their own specific data mod-
els to address the needs of a concrete problem domain. A core concept used in
scientific formats is the array, for instance FITS, TIFF, and HDF5 all include
arrays. Hence, the database model should be powerful enough to adequately rep-
resent the external concepts. We rely on a multi-paradigm data model in which
both tables and arrays are first class citizens.

Repository Metadata. The data vault opens up the file repository metadata,
encoded in the self-descriptive files, for browsing and sophisticated searching by
means of declarative queries. This allows fast identification of data of interest.
It is important that access to the metadata is handled separately from the data,
so that it does not require loading of the entire data set.

Just-in-Time Load. To deal with the shortcomings of up-front data ingestion,
the data vault supports dynamic, just-in-time load driven by the query needs.
This is justified by the usage patterns observed over scientific file repositories.
It is rarely the case that all raw data i) have good quality and ii) are relevant
for the current analysis. Often multiple versions of data, including low quality
ones, are kept “just in case”, but are never accessed in day-to-day operation.
Consequently, there is no big use of putting the burden of low-quality or rarely
used external data into the database.

Symbiotic Query Processing. The data vault enables several query process-
ing alternatives. Data requested by a query can be loaded in the database and
processed with pure database techniques. The data vault can also use external
tools to process files in-situ and capitalize upon the existing support libraries.
Symbiotic query processing can combine the benefits of both: use external tools,
if efficient ones exist, and carry out operations in the database when the DBMS
can perform them better.

A data vault should seamlessly integrate the available science libraries with
database query processing. This requires extensions in the query optimization
and processing layer of the database software stack. The query optimizer needs
to distinguish operations that can be executed by external tools, and, based on
a cost model, delegate such operations to be carried out in-situ over the original
files.

Cache Management. Once the data vault is set up, the scientists should be
able to easily add to and modify files in the repository. To ensure correct func-
tioning, the data vault requires users to refrain from making changes, such as
deleting or moving the repository directory. The database management system
commits itself to always present an up-to-date repository state to the user.

Data Vaults 489

4 Data Vault Architecture

Next we present the design of the MonetDB [11] data vault architecture, il-
lustrated in Figure 2. It extends MonetDB’s software architecture with three
components.

The data vault wrapper communicates with the external file repository and is
built around data model mapping. It has components to access data, metadata,
and external libraries and tools. The metadata wrapper takes care of accessing

Fig. 2. MonetDB Data Vault Architecture

the metadata of the external file repos-
itory. It populates the data vault cat-
alog in the database with a summary
of the metadata to facilitate repository
browsing, query formulation, and data
management.

The data wrapper component ac-
cesses external data and creates their
internal representation in the data
vault cache. Similarly, data from the
database can be exported to the ex-
ternal format and added to the repos-
itory. This facilitates reuse of existing
tools to inspect the data products. The
functionality wrapper provides access
to external libraries. It defines map-
pings between external functions’ in-
put parameters and results to valid database representations.

The data vault cache contains a snippet of the repository data imported into
the database. Subsequent analyses over the same external data will have it read-
ily available without the need to repeat the (potentially expensive) importing
transformations. This component leverages our work on recycling intermedi-
ates [9]. To enable caching of large data sets, the cache is augmented with
mechanisms for spilling content onto the disk. The data vault cache manager
is responsible for keeping the cache content in sync with the repository. The
cached data can also be transformed into persistent structures in the database.
This transformation can be workload-driven or induced by the user.

The purpose of the data vault optimizer is to enable symbiotic query pro-
cessing. Using the data vault catalog, it detects operations over repository data
and makes decisions about their execution locations based on a cost model. It
might delegate processing to an external tool and correspondingly inject a call
to the functional data wrapper. If in-database processing is expected to be more
efficient, the optimizer will inject a call to the cache manager to provide a fresh
copy of data under consideration. In turn, the cache manager can call the data
wrapper for just-in-time loading of the external data, if they are not already
available in the cache, or if the copy is outdated.

490 M. Ivanova, M. Kersten, and S. Manegold

Implementation Issues. Our architecture can be used for different data vault
installations and applications. The data vault cache manager and query opti-
mizer deal with generic tasks that are common for various data vaults. However,
all wrapper components require separate treatment since they are specific for
each file format and available software tools. There is an important trade-off
between generality and application usability when it comes to the wrapper com-
ponents implementation.

The most generic way would follow community-agreed specifications, often
standards, for a particular data type and its operations. Examples are the object-
relational extenders for spatial vector data. At the other end of the spectrum is a
tailored implementation for a concrete format and application. An intermediate
solution can follow a modular design where the common functionality is available
as default modules, but the architecture is easily extensible with modules specific
for the application.

To illustrate the problem, consider the design of the data vault catalog for
remote sensing data in GeoTIFF format. The application at hand uses lots of
metadata encoded in the file names and in auxiliary XML files. Only a small frac-
tion of the standard GeoTIFF tags is used. The generic approach would present
all metadata according to the format specifications, such as TIFF tags and geo-
keys. Hence, the application will have lots of needless metadata at hand, but
may miss the ones encoded in the auxiliary sources. Consequently, the burden
lies with the application developer to fill in the missing metadata. Alternatively,
an application specific approach would limit itself to just the metadata needed.
It would then, however, not be usable for other applications over the same ex-
ternal format. An implementation from scratch, including re-implementation of
common functionality, is then called for.

5 Data Vault for Remote Sensing

In this section we describe ongoing work on the implementation of the data vault
architecture for the remote sensing (RS) use case.

RS Catalog. The remote sensing data vault catalog stores metadata about the
images as required by the application. The catalog is implemented as a set of
relational tables in the rs schema. The files table describes the GeoTIFF files
in the repository with their location, status (loaded or not), and the timestamp
of the last modification. This table is generic for the file-based data vaults.

CREATE SCHEMA rs; CREATE TABLE rs.catalog (
imageid INT, fileid INT, imagewidth INT,

CREATE TABLE rs.files (imagelength INT, resvariant CHAR(4), mode CHAR(2),
fileid INT, starttime TIMESTAMP, stoptime TIMESTAMP,
location CHAR(256), sensor VARCHAR(20), absorbit INT,
status TINYINT, PRIMARY KEY (imageid),
lastmodified TIMESTAMP); FOREIGH KEY (fileid) REFERENCES rs.files(fileid));

Data Vaults 491

The catalog table describes image-specific metadata. We chose to explore
an application-specific approach. Thus, the catalog table contains image meta-
data extracted from several sources: the metadata encoded in the GeoTIFF
files (image length and width), the auxiliary data in the accompanying XML
files (sensor), and properties encoded in the image file names (resolution variant,
mode, etc.). The metadata wrapper is a procedure that takes as input parameter
the absolute path name of the directory containing the image file repository, e.g.,
rs.attach(’/data/images/geotiff’). It browses the directory, extracts the metadata
encoded in different sources, and saves it into the RS catalog.

RS Data. Each image file can be represented in the system as a 2-dimensional
array and queried with the proposed SciQL array query language [17]. The set
of images available for database processing in the data vault cache is represented
as a 3-dimensional array where the 3rd dimension is the associated imageid. The
array is pre-defined as a part of the data vault and presents the data vault cache
to the users so that they can formulate queries over images of interest in terms
of it. However, the array is empty upon attachment of the repository as a data
vault and images are not ingested up-front into the system.

DECLARE NumCols INT; SET NumCols = (SELECT max(imagewidth) FROM rs.catalog);
DECLARE NumRows INT; SET NumRows = (SELECT max(imagelength) FROM rs.catalog);
CREATE ARRAY images (

id INT DIMENSION, x INT DIMENSION [NumCols], y INT DIMENSION [NumRows], v SMALLINT);

The data wrapper is responsible for the ingestion of external images when
needed. It takes a set of image IDs as determined by the query criteria, locates
the corresponding files, and loads them into the data vault cache structure, in
this case the 3-dimensional array.

RS Query Processing. To clarify the query processing mechanism over remote
sensing images from the data vault we start with a simple SciQL query. It com-
putes image masks by simply filtering pixel values within the range [10,100]. The
images are specified through predicates over the remote sensing catalog (e.g. the
image resolution variant is spatially enhanced, imaging mode is High-resolution
Spotlight, and the start time is in a given time interval).

SELECT [id], [x], [y], v FROM images WHERE v BETWEEN 10 AND 100 AND id in
(SELECT imageid FROM rs.catalog
WHERE resvariant = ’SE__’ AND mode = ’HS’ AND starttime > TIMESTAMP ‘2011-12-08 16:30:00‘);

The data vault optimizer recognizes the cache in the form of the images array
and injects a call to the cache manager to provide the images as specified by the
predicates over the id array attribute. The cache manager checks at run time if
the images are available and issues a request to the data wrapper to ingest the
missing ones into the images array.

We continue with an example content-based image retrieval application [5].
It takes an example image provided by the user and retrieves all images in the

492 M. Ivanova, M. Kersten, and S. Manegold

database similar to it according to some similarity measure. The measure used
in our application is Fast Compression Distance (FCD) [4]. The main idea is
to extract image dictionaries by applying some compression technique and to
reason about similarities between two images based on the overlaps between
their corresponding dictionaries. The dictionary can be extracted, for instance,
with the LZW compression algorithm or by computing N-grams.

An example white-box SciQL function extracting 4-grams by row-wise pro-
cessing of a 2-dimensional array is depicted below. It is then used to extract the
4-gram dictionaries from patches of a given image imgid.

CREATE FUNCTION dict4gram (img ARRAY (x INT DIMENSION, y INT DIMENSION, v SMALLINT))
RETURNS TABLE (dict_elem STRING)
BEGIN

SELECT DISTINCT CAST(img[x][y].v AS STRING) || CAST(img[x][y+1].v AS STRING) ||
CAST(img[x][y+2].v AS STRING) || CAST(img[x][y+3].v AS STRING)

FROM img GROUP BY img[x][y:y+4];
END;

DECLARE patch_size INT; SET patch_size = 256;
SELECT id, patch_size, x, y, dict4gram(v) FROM images WHERE id = imgid
GROUP BY DISTINCT images[id][x:x+patch_size][y:y+patch_size];

The dictionaries can be stored in database tables and used to compute the
FCD similarity measure as needed by the image retrieval application. The com-
putation is illustrated with the following function that, given an image patch
number and maximum distance, calculates the FCD and returns all patches with
FCD smaller than the input parameter. We assume that the patch dictionaries
computed above are stored in a table imagedict(patch id, dict elem).

CREATE FUNCTION "FCD_1_n" (pid INT, dist FLOAT)
RETURNS TABLE (patch INT, distance FLOAT)
BEGIN

DECLARE dict_size INT;
SET dict_size = (SELECT count(*) FROM imagedicts WHERE patch_id = pid);
RETURN
SELECT inter_size.patch AS patch,

((dict_size - inter_size.cnt) / CAST(dict_size AS FLOAT)) AS distance
FROM

(SELECT d2.patch_id AS patch, count(*) AS cnt
FROM imagedicts d1 JOIN imagedicts d2 ON d1.dict_elem = d2.dict_elem
WHERE d1.patch_id = pid
GROUP BY d2.patch_id

) AS inter_size
WHERE (dict_size - inter_size.cnt) / CAST(dict_size AS FLOAT) < dist;

END;

Expressing the processing steps of image patching, feature extraction, and
similarity computation in SciQL and SQL offers greater flexibility for the user.
For instance, it is easy to experiment how a given feature extraction method per-
forms with different patch sizes by simply changing the value of the patch size

parameter and re-running the queries. Similarly, the system allows for convenient
experimentation with and comparison between different versions of feature ex-
traction methods and similarity measures.

Data Vaults 493

6 Summary and Future Work

The data vault is a symbiosis between database technology and external file-
based repositories. It keeps the data in its original format and location, while
at the same time transparently opens it up for analysis and exploration through
DBMS facilities. Scientists benefit from this functionality, flexibility, and scala-
bility by combining external analysis tools with efficient in-database processing.
Transparent, just-in-time load of data of interest reduces the start-up cost asso-
ciated with adopting a pure database solution for existing file repositories.

A reference architecture to realize data vaults has been presented. A concrete
implementation of the data vault using MonetDB has been described. It opens
up a large archive of high-quality remote sensing radar images for data mining
experiments.

The realization of the data vault provides a vista on different research chal-
lenges. Wrapping the external libraries functionality allows us to capitalize upon
existing tools for in-situ analysis, but needs careful interface design and cost
modeling. Efficient symbiotic query processing requires detection of external
data and libraries and extensible cost model and optimizer.

Acknowledgments. We wish to thank our partners in the TELEIOS and
COMMIT projects for constructive guidance on the functionality and imple-
mentation of the MonetDB Data Vault. In particular, we thank Y. Zhang for
her important work on the implementation of SciQL.

References

1. Alagiannis, I., Borovica, R., Branco, M., Idreos, S., Ailamaki, A.: NoDB: Efficient
Query Execution on Raw Data Files. In: SIGMOD (2012)

2. Baumann, P.: Large-Scale Earth Science Services: A Case for Databases. In: ER
(Workshops), pp. 75–84 (2006)

3. Baumann, P., et al.: The multidimensional database system RasDaMan. SIGMOD
Rec. 27(2), 575–577 (1998)

4. Cerra, D., Datcu, M.: Image Retrieval using Compression-based Techniques. In:
International ITG Conference on Source and Channel Coding (2010)

5. Dumitru, C.O., Molina, D.E., et al.: TELEIOS WP3: KDD concepts and methods
proposal: report and design recommendations, http://www.earthobservatory.eu/
deliverables/FP7-257662-TELEIOS-D3.1.pdf

6. FITS. Flexible Image Transport System,
http://heasarc.nasa.gov/docs/heasarc/fits.html

7. GeoTIFF, http://trac.osgeo.org/geotiff/
8. Hey, T., Tansley, S., Tolle, K.: The Fourth Paradigm: Data-Intensive Scientific

Discovery. Microsoft Research (2009)
9. Ivanova, M., Kersten, M., Nes, N., Gonçalves, R.: An Architecture for Recycling

Intermediates in a Column-store. ACM Trans. Database Syst. 35(4), 24 (2010)
10. Kunchithapadam, K., Zhang, W., et al.: Oracle Database Filesystem. In: SIGMOD,

pp. 1149–1160 (2011)
11. MonetDB (2012), http://www.monetdb.org/

http://www.earthobservatory.eu/deliverables/FP7-257662-TELEIOS-D3.1.pdf
http://www.earthobservatory.eu/deliverables/FP7-257662-TELEIOS-D3.1.pdf
http://heasarc.nasa.gov/docs/heasarc/fits.html
http://trac.osgeo.org/geotiff/
http://www.monetdb.org/

494 M. Ivanova, M. Kersten, and S. Manegold

12. Oracle. Oracle Spatial GeoRaster Developer’s Guide, 11g Release 2 (11.2)
13. PostGIS, http://www.postgis.org/
14. SEED. Standard for the exchange of earthquake data (May 2010),

http://www.iris.edu/manuals/SEEDManual_V2.4.pdf

15. SQL/MED. ISO/IEC 9075-9:2008 Information technology - Database languages -
SQL - Part 9: Management of External Data (SQL/MED)

16. Stolte, E., von Praun, C., Alonso, G., Gross, T.R.: Scientific data repositories:
Designing for a moving target. In: SIGMOD Conference, pp. 349–360 (2003)

17. Zhang, Y., Kersten, M., Ivanova, M., Nes, N.: SciQL: Bridging the Gap between
Science and Relational DBMS. In: IDEAS, pp. 124–133 (2011)

http://www.postgis.org/
http://www.iris.edu/manuals/SEEDManual_V2.4.pdf

Usage Data in Web Search:

Benefits and Limitations

Ricardo Baeza-Yates1 and Yoelle Maarek2

1 Yahoo! Research, Barcelona, Spain
rbaeza@acm.org

2 Yahoo! Research, Haifa, Israel
yoelle@ymail.com

Abstract. Web Search, which takes its root in the mature field of infor-
mation retrieval, evolved tremendously over the last 20 years. The field
encountered its first revolution when it started to deal with huge amounts
of Web pages. Then, a major step was accomplished when engines started
to consider the structure of the Web graph and link analysis became a
differentiator in both crawling and ranking. Finally, a more discrete, but
not less critical step, was made when search engines started to moni-
tor and mine the numerous (mostly implicit) signals provided by users
while interacting with the search engine. We focus here on this third
“revolution” of large scale usage data. We detail the different shapes it
takes, illustrating its benefits through a review of some winning search
features that could not have been possible without it. We also discuss
its limitations and how in some cases it even conflicts with some natu-
ral users’ aspirations such as personalization and privacy. We conclude
by discussing how some of these conflicts can be circumvented by using
adequate aggregation principles to create “ad hoc”crowds.

Keywords: Web search, usage data, wisdom of crowds, large scale data
mining, privacy, personalization, long tail.

1 Introduction

Usage data has been identified as one of the top seven challenges of the Web
search technology [2], and is probably one of the major entry barriers for new
Web search engines. In fact, usage data has been the key of the last revolution
in Web search. In the first generation of search engines, that started in 1994, the
main source of ranking signals was the page content. The second revolution came
around 1998, with the use of links and their anchor text. The third generation
came with the usage of query logs and click-through data to better understand
users and implement new functionalities, such as spelling correction, query as-
sistance or query suggestion. This revolution is covered in detail in Section 2.

This last revolution can largely be credited to progress in large scale data min-
ing and to trusting more and more the wisdom of crowds (WoC) principle [22].
The WoC is based on the notion that “the many are smarter than the few”

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 495–506, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

496 R. Baeza-Yates and Y. Maarek

and that “collective wisdom shapes business, economies, societies and nations”.
While any individual is obviously a member of the crowd, it is not trivial to
derive working solutions from this principle, as demonstrated by all the issues
inherent to democracy as a simplistic example. Closer to our topic here, basic
ranking techniques work because of this idea and simple algorithms using large
amounts of data can beat complex algorithms on small size data. Word-based
ranking formulas like BM25 can be seen as a reflection of the wisdom of writers,
while a link-based score, like PageRank, could be seen in the early days of the
Web as a reflection of the wisdom of webmasters. Similarly, usage data is a re-
flection of the wisdom of users. Exploiting usage data under its multiple forms,
from query logs to clicks, to time spent on a page, brought an unprecedented
wealth of implicit information to Web Search. This implicit information can be
processed and analyzed at the individual level, for inferring the user’s intent
and satisfaction, but it is only when it is analyzed at the collective level, that it
follows the WoC principle.

Usage data refers to a specific subset of Web data that covers the pattern
of usage of Web pages such as “IP addresses, page references and the date and
time of accesses” [21]. It is critical to studying all Web applications, yet one
application, Web search, is probably the domain for which it has been become
the most critical. It is the key source of data in the latest stage of Web search
evolution, after on-page data and web graph data [2], and is the focus of our
paper here.

We discuss here the benefits of Web search usage data, under the WoC prin-
ciple, but also its limitations. First by definition, it cannot be applied when not
enough data is available, and the poor performance of enterprise search engines
as opposed to Web search engines can partially be explained by usage data be-
ing either not sufficient or not even exploited in enterprise search settings. Other
limitations are due to personalization needs and privacy concerns. In Section 3
we explore the interdependency between these three conflicting factors: size of
data, personalization and privacy. Then, we propose a solution to reduce some
of these conflicts, by assembling different types of crowds around common tasks
or social circles in Section 4. We end with some concluding remarks in Section 5.

2 The Third Web Search Revolution

2.1 Search Usage Data

In the context of Web search, usage data typically refers to any type of infor-
mation provided by the user while interacting with the search engine. It comes
first under its raw form as a set of individual signals, but is typically mined only
after multiple signals have been aggregated and linked to the same interaction
event. Two major types of such aggregated data relate to user query and click
information that are referred to as query logs and click logs.

Usage Data in Web Search 497

– Query logs include the query string that the user issued, together with the
time-stamp of the query, a user identifier1, possibly the IP of the machine
on which the browser runs.

– Click data includes the reference to the element the user clicked on the
search page together with the timestamp, user identifier, possibly IP, the
rank of the link if it is a result, etc. The type and number of such clickable
elements vary and keep increasing as the user experience of most major Web
search engines get richer and more interactive. Such elements include the
actual organic search results (represented by a URL), or sponsored results,
a suggested related query, a next page link on the search result page, even
a preview button such as offered by some engines, etc. No matter what the
element is, a click event is a key signal that usually indicates an expression
of interest from the user, and in the best case provides relevance feedback.

One of the most famous query logs is the, now retired, AOL query log, which
does indeed include the URL and rank of the search result the user clicked on
after issuing a query. Consider the following entry from the AOL log [19]:

AnonID Query QueryTime ItemRank ClickURL

100218 memphis pd 2006-03-07 09:42:33 1 http://www.memphispolice.org

This row in the log indicates the fact that a given user, identified2 by id 100218,
issued the query ‘‘memphis pd’’ and clicked on the first result (ItemRank=1)
at 09:42 on March, 7th, which led to the URL http://www.memphispolice.org.

While search logs are rarely being, if at all, released for research anymore,
they are extensively used internally in all major commercial search engines. New
signals are constantly being considered for the same purpose of getting more
diverse feedback. An early example is the signal provided by eye-tracking de-
vices. By aggregating these over many users, researchers generated “heat maps”
that allowed them to study, for instance, the impact of changing the length of
snippets in search result pages [8]. Another example of signal is the movement of
the cursor, which has been tracked by using an instrumented browser or a dedi-
cated toolbar [11]. Signals can also be combined as done by Feild et al. [9], who
studied searchers’ frustration, correlating query log data with sensor information
provided by “a mental state camera, a pressure sensitive mouse, and a pressure
sensitive chair.” Many of these signals cannot be tracked at a large scale as they
require additional machinery on the client side and are often reserved to small
users’ studies that are out of the scope of this paper.

We focus here on usage data that are gathered at a very large scale and typ-
ically provided during regular interaction with the search engine. Note however
that one can envision that more biometrics signals be provided at a large scale,

1 The same user is usually identified by a browser cookie or a unique id in the case of
signed-in users, which are mapped into a unique identifier.

2 We will discuss in Section 3.3 why replacing a user name by a numeric identifier is
far from being sufficient for anonymizing such data.

http://www.memphispolice.org
http://www.memphispolice.org

498 R. Baeza-Yates and Y. Maarek

in the future, if the benefits overcome the cost. A very promising direction in
that direction is the study of cursor movement via instrumentation of the search
result page, which Huang et al. have demonstrated can be conducted at a large
scale [13]. Although these results were limited, if cursor movements analysis
proves to be valuable enough, it is not unrealistic to envision that major search
engines would absorb the extra cost (which does not seem to be prohibitive as
per the same study) in latency and deploy such instrumentation on every search
result page.

Even without adding more signals, query logs and click data, can already be
credited for many of the key features and improvements in the effectiveness of
today’s web search engines, as detailed next.

2.2 Benefits

One of the most visible examples of leveraging usage data at a large scale is
the query spelling correction feature embodied in “Did you mean” on Google
Search page. After years of very sophisticated spell checking research, which
modeled typos very carefully [15], Google showed that simply counting sim-
ilar queries at a small edit distance would, in most cases, surface the most
popular spelling as the correct one, a beautiful and simple demonstration of
the wisdom of crowds principle. See the now famous “Britney Spears” example
in http://www.google.com/jobs/britney.html, where on a query log sample
over a three month period, users entered more than 700 variations of Britney
Spears’ name. The surprising fact was that the correct spelling was more fre-
quent by one order of magnitude than the second most popular. Clearly the “did
you mean” feature uses more sophisticated techniques than direct counting, but
this simple example illustrates how even trivial “data crunching” over big real
data brings more value than sophisticated techniques on small datasets.

Query logs have also revolutionized query assistance tools such as related
queries and query autocomplete. Unsuccessful searches are typically attributed
to either relevant content not being available or the query not adequately ex-
pressing the user’s needs. Query assistance tools are offered to precisely address
the latter and have become more and more popular on Web search sites in
recent years. The first type of query assistance tools consists of offering “re-
lated queries” after the query is issued. These related queries can be selected
then by users who are not satisfied with the current results. A more recent and
more revolutionary query assistance tool, launched in 2007 as “Search Assist”
on search.yahoo.com and as “Suggest” on google.com, consists of offering query
completion to users as they start typing the first few letters of their queries in
the search box. Both types of assistance tools heavily rely on usage data, mostly
query logs but also click data when the service wants to add a signal of relevance.
While, in the past, query assistance tools would analyze the document corpus in
order to identify phrases that could serve as alternate queries, the tremendous
growth in Web search engine traffic allowed these tools to mostly rely on real
user-issued queries. Using query logs as the source corpus significantly improved
the quality of suggestions, at least as perceived by the user. There exists a clear

http://www.google.com/jobs/britney.html

Usage Data in Web Search 499

vocabulary gap between document and query corpora, as demonstrated in [4],
which explains why using the same type of corpus makes sense here. A great
deal of research has been conducted on query suggestion and completion, with
various approaches that leverage clicks and results in addition to the query logs
[3]. In practice, query assistance tools are now deployed on all major Web search
engines, and their quality improves as query logs grow.

An additional revolutionary benefit of usage data is to consider clicks as a
measure of satisfaction or at least of interest from the user, as if the user, by
clicking, had actually voted in favor of the clicked element. A thorough study of
the various click models and their relation to search relevance, both for organic
and sponsored search, is given in [20]. One major reason of the quick pace of
innovation in Web search can be credited to these “pseudo-votes”. Instead of
testing a new feature, or any sort of change, on a small sample of beta-users in a
controlled environment, search engines now use real users on a much larger scale.
Some percentage of the real traffic is exposed to the new feature, over a given
period of time, under what is called a “1% experiment”, “bucket test” or “A/B
testing”, depending on the terminology. Users who are part of these experiments
are, in most cases, not even aware that they are being monitored and therefore
act naturally. Various metrics are used to verify whether users react positively
or not to the change, thus helping search engines to decide whether to deploy
the change to all users. After deployment, user behavior is constantly monitored,
not only at pre-launch time, and features for which clicks or other metrics are
decreasing might be discontinued or retired as it often happens.

2.3 Today’s Entry Barrier?

Usage data at a large scale provides so much information that it is difficult to
imagine how a new Web search player could enter the market and hope to be as
relevant as its competitors from day one.

The failure of the now retired search engine Cuil, a few years ago, has actually
been attributed to the fact that it tried a new model, where instead of “ranking
[pages] based on popularity, as Google does, it focuses on the content of each
page” [12]. While Cuil’s index was reportedly huge, and its engineers and scien-
tists were clearly among the most knowledgeable in the market, it did not have
at its disposal any of the implicit signals that can be gathered only after a cer-
tain period of regular usage by a critical mass of users. Cuil was discontinued in
September 2010, only two years after its launch. Another approach was adopted
by Microsoft when it stroke a search alliance with Yahoo! in 2009. As part of
the deal, by operating the back end of Yahoo! search, Bing would immediately
start tripling search usage data leveraging it into their core ranking algorithms,
improving both, Bing and Yahoo! search. From these two examples, we believe
that usage data at a large scale now represents the main entry barrier in Web
search, and unless a drastically new kind of signal enters the arena, it is going
to be more and more difficult for newcomers to compete.

500 R. Baeza-Yates and Y. Maarek

3 Three Conflicting Factors

There are at least three major factors that pull in opposite directions when
leveraging usage data:

– Size of Data: Large-scale or big usage data is a key pre-requisite to inferring
new insights as per the WoC principle. As a consequence, the needs of the
crowd dominate long-tail needs, which are expressed by definition by very
few individuals. Averaging on the more popular needs can dominate so much,
in some cases, that it conflicts with some specific needs that personalization
should address.

– Personalization: In order for search engines to personalize its services to
a specific user, it obviously needs to know more about the persona behind
the individual, at the risk of exposing some private aspects. Hence, person-
alization in many cases might conflict with the user’s privacy.

– Privacy: One key demand of privacy-protecting activists pertains to not
accumulate too much data on a single individual over long periods of time,
as they want everyone’s past to remain private. However, big data is typically
gathered over a given window of time, the longer the window, the bigger the
data. Restricting persistence of data to short periods of time clearly reduces
the amount of data that can be mined and thus threatens the effectiveness
of the WoC principle, in particular for personalization.

In the following, we detail each of these factors, and discuss how to work around
these intrinsic conflicts, as depicted in Figure 1.

3.1 Size of Data

The wisdom of crowds principle relies on analyzing large amounts of data. As
many signals in the Web follow a power law, it works very well for the head

Fig. 1. Three conflicting factors

Usage Data in Web Search 501

of the power law distribution without needing so many users. This stops being
true however as soon as the long tail is considered. Serving long tail needs is
critical to all users, as all users have their shares of head and long tails needs as
demonstrated in [10]. Yet, it often happens that not enough data covering the
long tail is available. We address this problem in the next section.

We can always try to improve any WoC result by adding more data, if avail-
able. Doing so, however, might not always be beneficial. For example, if the
added data increases the noise level, results get worse. We could also reach a
saturation point without seeing any improvements. Adding data also can chal-
lenge the performance of the used algorithms. If the algorithm is linear, doubling
the data, without modifying the system architecture, implies doubling the time.
This might still be feasible, but for super linear algorithms mostly surely will
not. In this case, typical solutions are to parallelize and/or distribute the pro-
cessing. As all big data solutions already run on distributed platforms, increasing
the amount of data requires increasing the number of machines, which is clearly
costly. Another solution consists of developing faster algorithms, at the cost of
possibly lowering the quality of the solution. This becomes a clear option when
the loss in quality is inferior to the improvements obtained with more data. That
is, the time performance improvements should be larger than the loss in the solu-
tion quality. This opens a new interesting trade-off challenge in algorithm design
and analysis.

However, even if more data is added, there will always be cases where the key
principle behind WoC of averaging over head needs will alienate users. Take the
following example of a user searching for “shwarzeneger” on Google, s/he will
automatically be given results for “Arnold Schwarzenegger” without even being
asked to click on a “did you mean” suggestion. This will be a good initiative
in most cases (e.g. head needs), but definitely not good for a user whose family
name is weirdly spelled “shwarzeneger”. This is just one case for which big
data actually conflicts with personalization, a key requirement of Web search as
discussed next.

3.2 Personalization

Personalized search has been an open research topic since the early days of
search, even in the pre-Web era. The key challenge here is to identify the user-
dependent implicit intent behind the query. Given that no engine today can
pretend to perfectly map a human being and his/her infinite facets into an
exhaustive model, only rough approximations can be conducted, and absolute
personalization is simply impossible.

Nevertheless, there are some facets of users that are easy to capture and that
do bring obvious value when personalizing. Some of these facets are sometimes
considered as belonging to “contextualization” rather than personalization, and
include facets such as the geographical location of the user, his or her language
of choice, the browser or even the device used, etc. Two clear winning facets
among these are language and geographical location, at least at country level.
Search results or query suggestions for instance, should clearly be tailored to the

502 R. Baeza-Yates and Y. Maarek

language of choice of the user. Similarly location is critical, as it often reflects
cultural differences, see the example provided in [14], where Google explains how
“liver” would be completed to “liverpool” in UK as opposed to “liver diseases”
in the US. Geo location can also be leveraged at a finer level of granularity. In-
deed, even if ‘‘pizza in San Francisco’’ is significantly more frequent than
‘‘pizza in Little Rock’’, a user from Arkansas, would clearly consider the
first completion to his query ‘‘pizza’’, totally irrelevant. Balancing between
popularity and location personalization is however far from being trivial. Con-
sider the same example of ‘‘pizza in Little Rock’’ for a resident of El Do-
rado, Arkansas. That person would probably prefer no pizza recommendation at
all to a recommendation for a pizza place located close to 100 miles away. Model-
ing the precise geo location of every user and deciding whether or not to trigger
some query suggestions with a “geo intent” based on the distance between the
respective locations is a huge technical challenge that is still being researched.

The other more traditional facets of personalization are semantic facets. Most
search engines gather previous queries of signed-in users in order to build such
semantic profiles or preferences and tailor search results (sponsored or organic)
accordingly. Unlike the previously discussed facets, these personalization facets
present privacy risks as we will discuss below. In addition, personalization can
sometimes even confuse users, when they see different results whether they are
signed in or not. Internet activist, Eli Pariser, blames the “filter bubble” for
this and other effects of personalization, in his book [17] and blog3 of the same
name. He actually goes further and claims that personalization imposes some
“ideological frames”and influences users in seeing results more and more similar
to what they saw in the past. It is clear that abusing personalization as well
as the WoC principle has some risks not only in terms of privacy but also in
terms of diminishing serendipity. However, most Web search engines are aware
of the risk and many use use some sort of “explore/exploit” mechanism to give
a chance of exposure to new or less popular results. Such an example of ex-
plore/exploit scheme for Web content optimization was introduced by Agrawal
et al. in [1], who proposed a multi-armed bandit-based approach to maximize
click on a content module, for Web search, online advertising and articles for
content publishing. Another alternative to avoid the filter bubble in Web search
is result diversification [18].

The final type of facet that we are considering here is what we call the “social
facet” that has started to appear in some search results. One such example
is the “+1” in Google, which allows user to vote on results they prefer, in a
classical relevance feedback approach. More interestingly though, Google search
now returns to any signed-in user, content published by members of his/her
Google+ circles, such as pictures from Picasa.

While adding more facets is beneficial to personalization, it always poses a
threat to privacy. The previously mentioned social facet in particular did and
still does worry many users and Google reacted by publishing a revised privacy

3 http://www.filterbubble.com

Usage Data in Web Search 503

policy in early 2012, soon after launching its social search results. On the other
hand, it is not clear what percentage of queries really benefit from a social facet.

3.3 Privacy

One important concern of users of Web search engines is the fact that their
queries expose certain facets of their life, interests, personality, etc. that they
might not want to share. This includes sexual preferences, health issues or even
some seemingly minor details such as hobbies or taste in movies that they might
not be comfortable sharing with all. Queries and clicks on specific pages indeed
provide so much information that the entire business of computational adver-
tising rely on these. Query logs and click data reveal so much about users that
most search engines stopped releasing logs to the research community due to
the AOL incident. In this case, privacy breach in query logs was exposed by
two New York Times journalists who managed to identify one specific user in
the log, (AnonId 4417749), [5]. They spotted several queries, originating from
a same user, referring to the same last name, specific locations such as “landsca-
pers in lilburn, GA” or “homes sold in shadow lake subdivision gwinnett county
georgia”. Eventually, they could link these queries to an senior woman, who con-
firmed having issued not only these queries, but also more private ones linked to
the same AnonId, such as “60 single men” or “numb fingers”. While not all users
could necessarily be as easily identified, it revealed what many researchers had
realized a while back, namely that simply replacing a user name by a number
is not a guarantee of anonymity. Later, it was shown that a combination of few
attributes is sufficient to identify most users. More specifically, a triple such as
(ZIP code, date of birth, gender) is sufficient to identify 87% of citizens in the US
by using publicly available databases [23]. Numerous research efforts have been
dedicated to anonymization. A favored one in large repositories or databases
is the k-anonymity, introduced by Sweeney [23], which proposes to suppress or
generalize attributes until each entry in the repository is identical to at least
k − 1 other entries.

In practice, Web search engines do aggregate by conducting “data crunching”
on such a large scale in order to derive insights under the WoC principle, that
k-anonymity is de facto respected in most cases. Nevertheless, most users do not
differentiate between the exploitation of aggregated and personal usage data,
and they need some guarantee that Web search engines will not cross the line
and expose their personal usage data. The key challenge for Web Search engines
is therefore to keep the trust of their users, while retaining enough data for them
to apply large scale data mining methods. In addition, they are accountable to
regulators such as the Federal Trade Commission (FTC) in the United States
or should comply with the Data Protection Directive legislated in 1995 by the
European Union Parliament. Indeed, the FTC has defined several frameworks for
protecting consumer privacy, especially online4. Recently, the FTC commissioner

4 Protecting Consumer Privacy in an Era of Rapid Change. A Proposed Frame-
work for Business and Policymakers. Preliminary FTC Staff Report, December 2012
(http://www.ftc.gov/os/2010/12/101201privacyreport.pdf).

http://www.ftc.gov/os/2010/12/101201privacyreport.pdf).

504 R. Baeza-Yates and Y. Maarek

even threatened to go to congress if privacy policies do not “address the collection
of data itself, not just how the data is used” [16].

First, most of the terms of conditions of these systems often guarantee that
personal usage data is not shared with third parties. Second, they do employ as
much secure communication and storage as possible to promise their users that
personal information cannot be stolen away. Finally, they have devised data
retention policies to reassure US and EU regulators, the media and, naturally,
their users, that they comply with the regulations mentioned before. Indeed,
one of the problematic twists of big data is that in many cases a specific user
would prefer to forget past facts. A recent New York Times article described
how such resurgences from the past can upset users and “how a new breed of
Web specialists known as online reputation managers” specialize in erasing one’s
undesired past from Web search results [6]. Nevertheless, privacy concerns keep
rising, especially with the advent of social networks, and in our specific context,
social search, where personal content from one’s social network can be integrated
in search results, as recently done by Google.

4 The Wisdom of “Ad Hoc” Crowds

One solution to many of the previously mentioned issues is to aggregate data in
the “right” way. To illustrate the idea, let us consider personalized ranking as
an example. The typical personalization approach consists of aggregating data
around a specific user using, for instance, query history. This approach suffers
from several problems as mentioned before. In order to respect regulations and
maintain trust, the user should be aware of and accept the terms of use of the
search service, and be signed-in. More problematic, even very active users will
not show so many queries that their favorite topics or preferences dominate by
orders of magnitude more ephemeral needs. Data will be scarce and the quality
of personalization will suffer from it. The approach we advocate for here, is to
personalize around the task, around the need, and not around the user so as to
increase the amount of relevant data. In some sense, when the WoC principle
does not work because the usual straight-forward crowd (inferred by a common
query for instance) does not exist, we suggest to form “ad hoc” crowds.

If we identify a clear task behind a query for instance, such as traveling to a
remote unknown Pacific island, the idea is to form an “ad hoc” crowd of those
users who have tried in the past to travel to the same destination. While the
“ad hoc” crowd will be for sure smaller than the usual large crowds encountered
in head needs, it is still big enough to generate insights, to learn from others
and to guarantee k-anonymity, as long as the task granularity is not too fine.
This represents another sub-product of the fact that all users have their own
long tail [10]. We believe that “ad hoc” crowds can be generated in a variety of
scenarios, as the bulk of user queries belong to a few tasks: users are after all not
that different, and many tasks share similarities at some level, for example find a
home page, look for information, perform a transaction or download a resource.
The main differences among users are not with what they do, but when they do
it, how long they do it and how well they do it.

Usage Data in Web Search 505

The main challenge behind contextualization and generation of the appropri-
ate “ad hoc” crowd, is the prediction of the user’s intent that will characterize
the crowd. For that reason, in recent years many researchers have approached
this problem by using query log data [7]. The state of the art shows that this
can be done with a reasonable size training data, high precision and online per-
formance. We expect to see many types of “ad hoc” crowds arising in the future.
Indeed, even Google+ recent social search can be seen as an incarnation of an
“ad hoc” crowd, where the crowd is social and is formed by the user’s circles
rather than by a common need.

5 Final Remarks

In this paper we have shown the importance of usage data in current Web search
engines and how the wisdom of crowds was a driving principle in leveraging usage
data. However, in spite of its benefits, usage data cannot be fully leveraged due
to the conflicting demands of big data, personalization and privacy. We have
explored here these conflicting factors and proposed a solution based on applying
the wisdom of crowds in a different manner. We propose to build “ad hoc” crowds
around common tasks and needs, where a user will be aggregated to different
users in various configurations depending on the considered task or need. We
believe that more and more “ad hoc crowds” will be considered, in particular in
other Web services and inside large Intranets where this idea can impact revenue
or/and productivity.

References

1. Agarwal, D., Chen, B.C., Elango, P.: Explore/Exploit Schemes for Web Content
Optimization. In: Proceedings of the 2009 Ninth IEEE International Conference
on Data Mining, pp. 1–10. IEEE Computer Society, Washington, DC (2009)

2. Baeza-Yates, R., Broder, A., Maarek, Y.: The New Frontier of Web Search Tech-
nology: Seven Challenges, ch. 2, pp. 11–23. Springer (2011)

3. Baeza-Yates, R., Maarek, Y.: Web retrieval. In: Baeza-Yates, R., Ribeiro-Neto, B.
(eds.) Modern Information Retrieval: The Concepts and Technology behind Search,
2nd edn. Addison-Wesley (2011)

4. Baeza-Yates, R., Saint-Jean, F.: A Three Level Search Engine Index
Based in Query Log Distribution. In: Nascimento, M.A., de Moura, E.S., Oliveira,
A.L. (eds.) SPIRE 2003. LNCS, vol. 2857, pp. 56–65. Springer, Heidelberg (2003)

5. Barbaro, M., Zeller Jr., T.: A face is exposed for aol searcher no. 4417749. The
New York Times, August 9 (2006)

6. Bilton, N.: Erasing the digital past. The New York Times (April 2011),
http://www.nytimes.com/2011/04/03/fashion/03reputation.html

7. Brenes, D.J., Gayo-Avello, D., Pérez-González, K.: Survey and evaluation of query
intent detection methods. In: Proceedings of the 2009 Workshop on Web Search
Click Data, WSCD 2009, pp. 1–7. ACM, New York (2009)

8. Cutrell, E., Guan, Z.: What are you looking for?: an eye-tracking study of infor-
mation usage in web search. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI 2007, pp. 407–416. ACM, New York (2007)

http://www.nytimes.com/2011/04/03/fashion/03reputation.html

506 R. Baeza-Yates and Y. Maarek

9. Feild, H.A., Allan, J., Jones, R.: Predicting searcher frustration. In: Proceedings
of the 33rd International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR 2010, pp. 34–41. ACM, New York (2010)

10. Goel, S., Broder, A., Gabrilovich, E., Pang, B.: Anatomy of the long tail: ordinary
people with extraordinary tastes. In: Proceedings of the Third ACM International
Conference on Web Search and Data Mining, WSDM 2010, pp. 201–210. ACM,
New York (2010)

11. Guo, Q., Agichtein, E.: Exploring mouse movements for inferring query intent. In:
Proceedings of the 31st Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2008, pp. 707–708. ACM, New
York (2008)

12. Hamilton, A.: Why cuil is no threat to google. Time.com (Time Magazine Online)
(July 2008),
http://www.time.com/time/business/article/0,8599,1827331,00.html

13. Huang, J., White, R.W., Dumais, S.: No clicks, no problem: using cursor movements
to understand and improve search. In: Proceedings of the 2011 Annual Conference
on Human Factors in Computing Systems, CHI 2011, pp. 1225–1234. ACM, New
York (2011)

14. Kadouch, D.: Local flavor for google suggest. The Official Google Blog (March
2009), http://googleblog.blogspot.com/2009/03/
local-flavor-for-google-suggest.html

15. Kukich, K.: Techniques for automatically corecting words in text. ACM Computing
Surveys 24(4) (December 1992)

16. Mullin, J.: FTC commissioner: If companies don’t protect privacy, we’ll go to
congress. paidContent.org, the Economics of Digital Content (February 2011)

17. Pariser, E.: The Filter Bubble: What the Internet Is Hiding from You. Penguin
Press (2011)

18. Radlinski, F., Dumais, S.: Improving personalized web search using result diversi-
fication. In: Proceedings of the 29th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 2006, pp. 691–692.
ACM, New York (2006)

19. Shi, X.: Social network analysis of web search engine query logs. Technical report,
School of Information, University of Michigan (2007)

20. Srikant, R., Basu, S., Wang, N., Pregibon, D.: User browsing models: relevance
versus examination. In: Proceedings of the 16th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD 2010, pp. 223–232. ACM,
New York (2010)

21. Srivastava, J., Cooley, R., Deshpande, M., Tan, P.-N.: Web usage mining: discovery
and applications of usage patterns from web data. SIGKDD Explor. Newsl. 1, 12–23
(2000)

22. Surowiecki, J.: The Wisdom of Crowds: Why the Many Are Smarter Than the Few
and How Collective Wisdom Shapes Business, Economies, Societies and Nations.
Random House (2004)

23. Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal on
Uncertainty, Fuzziness and Knowledge-based Systems 10(5), 557–570 (2001)

http://www.time.com/time/business/article/0,8599,1827331,00.html
http://googleblog.blogspot.com/2009/03/local-flavor-for-google-suggest.html
http://googleblog.blogspot.com/2009/03/local-flavor-for-google-suggest.html

Functional Feature Extraction

and Chemical Retrieval

Peng Tang, Siu Cheung Hui, and Gao Cong

School of Computer Engineering,
Nanyang Technological University, Nanyang Avenue, Singapore 639798

{ptang1,asschui,gaocong}@ntu.edu.sg

Abstract. Chemical structural formulas are commonly used for pre-
senting the structural and functional information of organic chemicals.
Searching for chemical structures with similar chemical properties is
highly desirable especially for drug discovery. However, structural search
for chemical formulas is a challenging problem as chemical formulas are
highly symbolic and spatially structured. In this paper, we propose a
new approach for chemical feature extraction and retrieval. In the pro-
posed approach, we extract four types of functional features from Chem-
ical Functional Group (CFG) Graph built from a chemical structural
formula, and use them for the first time for chemical retrieval. The ex-
tracted chemical functional features are then used for similarity mea-
surement and query retrieval. The performance evaluation shows that
the proposed approach achieves promising accuracy and outperforms a
state-of-the-art method for chemical retrieval.

Keywords: Functional Feature Extraction, Chemical Structural Re-
trieval, Chemical Functional Groups.

1 Introduction

Chemical structural formulas are commonly used for presenting the structural
and functional information of organic chemicals. In many drug discovery projects,
it is often required to search for similar chemical structural formulas of drug-like
compounds that are worthy for further synthetic or biological investigation [19].
As such, there is a need to find relevant chemical structures with similar chemi-
cal properties for chemical structural queries. Over the past few decades, several
chemical structure databases such as ChemSpider [16], PubChem [20], ChEM-
BLdb [9] and eMolecules.com [2] have been developed to support structured
query retrieval of chemical structures. In addition, a number of chemical struc-
tural similarity search methods [1,4,7,8,10,12,17,18] have also been proposed for
chemical structural retrieval. The proposed methods are mainly based on the
assumption that chemicals which are globally similar in structure to each other
are more likely to have similar chemical properties and activities.

However, the current retrieval methods ignore the functional features such as
functional groups and interactions between functional groups that are hidden

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 507–525, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

508 P. Tang, S.C. Hui, and G. Cong

inside the chemical structure. Take Acetic Acid CH3COOH as an example, the
ChemSpider search engine will return CH3COO−Li+ and (CH3COO−)2Ca2+

because they have similar structures with CH3COOH . However, Propionic Acid
CH3CH2COOH will not be returned. But it has more similar chemical prop-
erties with the query CH3COOH because they have the same functional group
−COOH .

In a chemical structure, functional features are important to determine the
chemical property and activity of the chemicals. Therefore, it is important to
consider functional features for chemical structural retrieval. To the best of our
knowledge, there is no research work which focuses on extracting functional
features and uses the extracted features for similarity measurement.

In this paper, we propose a new approach for chemical feature extraction
and retrieval. It constructs Chemical Functional Group (CFG) Graph from the
SMILES [21] representation of chemical structure and extracts four types of
chemical features (namely the number of Carbons, number of Carbon Chains,
Functional Group (FG) feature, and Functional Group Interaction (FGI) feature)
for query retrieval. We also propose ctf-icf weighting and similarity measure
for chemical retrieval. Compared with the existing proposals, the advantage of
the proposed approach is that it takes functional features like FG features and
FGI features into account in retrieval, and thus the retrieved formulas are more
functionally similar to the query. Experimental results show that the proposed
approach achieves promising performance, and outperforms a state-of-the-art
chemical structural retrieval method.

The rest of the paper is organized as follows. Section 2 reviews the related
work on chemical structural retrieval. Section 3 presents our proposed approach.
Section 4 describes the method of chemical structural feature extraction and the
Chemical Functional Group (CFG) Graph construction for feature extraction.
Section 5 describes the query retrieval and ranking process. Section 6 evaluates
the performance of the proposed approach in comparison with other methods.
Finally, Section 7 concludes the paper.

2 Related Work

ChemSpider [16] is a free online aggregated chemical structure database pro-
viding fast text and structural search access to over 26 million structures from
hundreds of data sources. PubChem [20] is a free database of chemical structures
of small organic molecules and information on its biological activities. ChEM-
BLdb [9] is a manually curated chemical database of bio-active molecules with
drug-like properties. eMolecules [2] is a search engine for chemical molecules
supplied by commercial suppliers. All these publicly available chemical search
systems support database query retrieval for chemical structural formulas in-
cluding exact search, substructure search and similarity search. However, the
structured query search method may tend to overfit the chemical structures and
fail to recognize chemicals that are more similar in chemical functionalities.

Functional Feature Extraction and Chemical Retrieval 509

Apart from structured query search, similarity search methods have been un-
der development for decades to find relevant chemical structures. To compute the
similarities between chemical structures, different chemical structural represen-
tations and similarity measures have been proposed. Currently, there are three
major chemical similarity search methods, namely superposition-based similar-
ity methods, histogram-based similarity methods and descriptor-based similarity
methods.

The superposition-based similarity methods map one chemical structure onto
another. It treats two molecular structures as graphs, and aims to find the corre-
spondence between the atoms in one structure and the atoms in another structure
[10,17]. Histogram-based methods [18] transform chemical structures into one or
more spectra or histograms, and then calculate the overlapping between the his-
tograms of two chemical structures for similarity measurement. Descriptor-based
methods are most popular for chemical structural similarity search. A molecule
is represented as a set of descriptors or numbers. As such, a molecule can be con-
sidered as a point in a multidimensional descriptor space. This method is com-
putational efficient. However, in contrast to the superposition-based methods,
the equivalence of sub-structures (or parts) between one molecule and another
is lost.

In particular, the fingerprinting [1,4,7,8,12] method, which is a descriptor-
based method, uses a set of user-defined 2D substructures and their frequencies
to represent molecules. The substructures are used as the descriptors. In the
fingerprinting method, only the presence or absence of a descriptor is captured.
The substructure descriptors are considered as the fingerprints of the chemical
structure. The similarity is defined based on the number of descriptors that the
two molecules have in common and normalized by the number of descriptors in
each molecule. The fingerprinting method is efficient because it is computation-
ally inexpensive to compare two lists of pre-computed descriptors. The Daylight
Fingerprint algorithm [1] is one of the most famous fingerprinting methods and
therefore it is used for performance evaluation in this paper. It generates the pat-
terns for fingerprints from the molecule itself in the following manner: (1) it gen-
erates a pattern for each atom; (2) it generates a pattern representing each atom
and its nearest neighbors (plus the bonds that join them); and (3) it generates
a pattern representing each group of the atoms and bonds connected by paths
up to 2, 3, 4, 5, 6 and 7 bonds long. For example, the molecule Aminoethenol
(with the corresponding SMILES representation as OC=CN) would generate the
patterns as shown in Figure 1.

C C

H2N

OH

(OC CN)

2 Bond Path OC, C=C, CN

1 Bond Path O, C, N

3 Bond Path OC=C, C=CN

4 Bond Path OC=CN

Fig. 1. Daylight Fingerprints of Aminoethenol

510 P. Tang, S.C. Hui, and G. Cong

[7,4,8,12] are variants of the fingerprinting method available for chemical struc-
tural search. Some of the newer fingerprints describe the atoms not by their
elemental types but by their physiochemical characteristics. This enables the
identification of database chemical structures which have similar properties to
the query structure but with different sets of atoms in a similarity search.

The current chemical structural similarity search methods focus very much
on structural similarities between chemical structures. However, the similarity
search should retrieve structures that should have similar chemical properties
with the queried structure. Two chemical structures which have similar chem-
ical properties are mainly due to the fact that they have the same functional
groups and similar interactions between functional groups. To the best of our
knowledge, none of the current similarity search methods have considered the ex-
traction of functional group features from the chemical structures and use these
features to search for similar chemical structures in terms of functional prop-
erties. Therefore, in this research, we propose a new approach for extracting
information on functional groups and their interactions for chemical structural
similarity search.

3 Overview of Proposed Approach

Functional groups (FGs) are specific groups of atoms within molecules that deter-
mine the characteristics of chemical reactions of those molecules. As the prop-
erties and chemical reactions of a specific functional group are quite unique,
functional groups can be used for identifying chemical structures. For example,
Figure 2(a) shows the chemical structure of Benzyl Acetate which has an Ester
functional group and a Phenyl functional group.

(a) Benzyl Acetate

H2C CH2

(b) Ethylene (c) Benzene

Fig. 2. Example Chemical Structures

The same functional group will undergo the same or similar chemical re-
action(s) regardless of the size of the containing molecule. For example, both
Ethanol (CH3CH2OH) and n-Propanol (CH3CH2CH2OH) have the same Hy-
droxyl functional group ‘−OH ’. Although they have different numbers of Carbon
atoms, they can undergo similar reactions such as combustion and deprotona-
tion. They also have similar toxicity and smell, and they are good solvent to
other chemicals.

Functional Feature Extraction and Chemical Retrieval 511

However, the relative activity of a functional group can be changed due to
its interaction with a nearby functional group. For example, both Ethylene and
Benzene in Figure 2(b) and Figure 2(c) have Alkenyl functional group ‘C = C’.
But Benzene has three interconnected Alkenyl functional groups. The interac-
tions among the double bonds of three Alkenyl groups make the double bond
more difficult to be broken. Hence, the double bonds in Benzene cannot have the
addition reaction as the double bond in Ethylene, unless the reaction takes place
under a special condition such as enzyme or UV ray. In addition, the interactions
also enable Benzene to have a series of electrophilic substitutions.

The degree of interactions is affected by the distance between two functional
groups. The distance between two functional groups is measured by the number
of Carbon atoms located between them. The closer the two functional groups is,
the stronger the interaction is. If two or more functional groups are connected
directly together, they can form a complex functional group due to the strong in-
teraction. For example, connecting the Carbonyl ‘−C(= O)−’ and Ether ‘−O−’
functional groups will form the Ester functional group. On the other hand, the
Phenyl group can be decomposed into three connected double bonds ‘C = C’.
Table 1 lists some of the most common basic functional groups.

Table 1. Common Basic Functional Groups

Functional
Group

Structural
Formula

Functional
Group

Structural
Formula

Alkenyl C = C Alkynyl

Fluoro −F Iodo −I
Chloro −Cl Bromo −Br

Hydroxyl −OH Ether −O−
Carbonyl −C(= O)− Aldehyde −C(= O)H

Amine −
|
N− Primary Imine −C = NH

Secondary Imine −C = N− Nitrile

Sulfhydryl −SH Sulfide −S−

Phosphino −
|
P−

In this paper, we propose a new approach for chemical structural feature
extraction and retrieval. The proposed approach, which is shown in Figure 3,
consists of the following two main processes: Chemical Feature Extraction and
Query Retrieval.

4 Chemical Feature Extraction

We extract the following types of chemical features: (1) the number of Carbon
atoms; (2) the number of Carbon Chains; (3) Functional Groups; and (4) Func-
tional Group Interactions. It is easier to extract the first two types of chemical

512 P. Tang, S.C. Hui, and G. Cong

Chemical Structures

Database

Chemical Feature

Extraction

Query Retrieval

Chemical Structural Query

Users

Formula Chemical

Features

Query Chemical

Features

Fig. 3. Proposed Approach

features, and we mainly focus on extracting functional groups and functional
group interactions in this section.

We present the structural representation of chemicals in Section 4.1, the pro-
posed approach to extracting functional groups in Section 4.2, the proposed
method of building Chemical Functional Group (CFG) Graph that captures
chemical structural information stored inside chemical structural formulas in
Section 4.3, and the proposed method of extracting chemical features from the
CFG Graph of chemical structural formula in Section 4.4.

4.1 Structural Formula Representation

A chemical structure presents the type and spatial arrangement of each atom
and bond in the compound. Chemical structures are represented in computers for
storage and retrieval. There are two main categories of chemical structure repre-
sentations. First, chemical structures can be represented as chemical connection
table/adjacency matrix/list with additional information on bonds (edges) and
atom attributes (nodes). This representation is used by MDL Molfile [6] and
CML (Chemical Markup Language) [15]. Second, chemical structures can be
represented as a string encoded with structural information. This representation
is used by SMILES (simplified Molecular Input Line Entry Specification) [21],
InChI (The IUPAC International Chemical Identifier) [14] and InChIKey [11].

Among the five representations, the string representation used by SMILES has
the advantages on effective storage and efficient processing. Therefore, in the pro-
posed approach, SMILES is used to represent chemical structural formulas. In
SMILES [21], all Hydrogen atoms are omitted. Non-Hydrogen atoms are repre-
sented by their atomic symbols such as C, O, N, P and S. For atomic symbols
using two-letters representation, the second letter must be in lower case, e.g. Cl
and Br. Single, double and triple bonds are represented by the symbols −, = and
#, respectively. Adjacent atoms are assumed to be connected to each other by a
single bond (in this case, the single bond is always omitted).Moreover, branches in

Functional Feature Extraction and Chemical Retrieval 513

chemical structural formulas are specified by enclosing them in parentheses. The
implicit connection for a parenthesized expression (a branch) is to the left. Ta-
ble 2 shows two example SMILES representing structural formulas that involve
branches. Furthermore, in SMILES, cyclic or ring structures are represented by
breaking one bond in each ring. The broken bond is indicated by a digit number
immediately following the atomic symbol at each ring opening. Figure 4 shows the
SMILES representation for the ring structure of Cyclohexane.

Table 2. SMILES Representations of Branches

Structural Formula SMILES

H3C CH C OH

CH3 O

CC(C)C(=O)O

CH CH C

CH2

H2C

CH2

CH3CH3

CH3

CH2 CH2 CH3

C=CC(CC)C(C(C)C)CCC

CH2

H2C CH2

CH2

CH2

H2C

C

C C

C

C

C

C

C C1

C1C

C

C1CCCCC1

Fig. 4. SMILES Representation of Cyclohexane

4.2 Functional Group Identification

We present the proposed approach to identifying functional groups from the
SMILES representations of chemicals. Each functional group corresponds to a
string pattern and a SMILES representation. Table 3 gives several examples of
commonly used functional groups as well as their SMILES patterns and string
patterns.

To identify functional groups for a chemical, we map the SMILES patterns of
the functional groups with the SMILES representation of the chemical. Except C
(i.e. Carbon) and parentheses, the identified functional groups will be replaced
by the corresponding string patterns. For example, C(=O) will be identified
as Carbonyl group and ‘=O’ will then be replaced by carbonyl. The C and
parentheses are not replaced as they also contain structural information of the
chemicals in the structural formula.

In addition, functional groups are prioritized for the identification process. If
a SMILES pattern has more number of symbols (including atomic symbols and
operators), the corresponding functional group will have a higher priority. If two
SMILES patterns have the same number of symbols, they will have the same
priority. Functional groups with higher priority will be identified and replaced

514 P. Tang, S.C. Hui, and G. Cong

first. In other words, for a chemical SMILES we find its longest matching SMILES
pattern and replace the matching with the corresponding functional groups, and
we find the longest matching pattern in the replaced chemical SMILES; the
process is repeated until we cannot find more functional groups.

Table 3. SMILES and String Patterns of Some Example Functional Groups

Functional
Group

Structural
Formula

SMILES
Pattern

String Pattern Priority

Aldehyde
C H

O O=C–
or –C=O

Caldehyde
aldehydeC

High

Carbonyl
C

O

–C(=O)– C(carbonyl)

Ether O –O– ether ↓

Hydroxyl OH

O–
or –O
or –C(O)–

hydroxyl

Alkenyl CC –C=C– CalkenylC Low

We illustrate the functional group identification process using Benzyl Acetate
as an example. The corresponding SMILES representation of Benzyl Acetate
is CC(=O)OCC1=CC=CC=C1. The identification works in the following three
steps.

– In Benzyl Acetate, the Carbonyl group has higher priority because its pat-
tern ‘=O’ contains two atomic symbols. Therefore, the Carbonyl group is
identified first and ‘=O’ is replaced by carbonyl. The representation becomes
CC(carbonyl)OCC1=CC=CC=C1.

– Next, the Ether group ‘O’ is identified and replaced by ether. The represen-
tation becomes CC(carbonyl)etherCC1=CC=CC=C1.

– It follows by the identification of the Alkenyl group ‘C=C’ with its ‘=’
replaced by alkenyl. The string pattern formed will be CC(carbonyl)etherCC1
alkenylCCalkenylCCalkenylC1.

Finally, we know that Benzyl Acetate contains three types of functional groups:
Carbonyl, Ether and Alkenyl.

4.3 Chemical Functional Group (CFG) Graph

To identify the functional group interactions, we propose to construct a CFG
Graph from the SMILES representation of the chemical structural formula. We
first identify the functional groups and replace them with the corresponding
string patterns using the method presented in Section 4.2.

Functional Feature Extraction and Chemical Retrieval 515

Definition 1 (CFG Graph). Chemical Functional Group (CFG) Graph G =
(V, E) is an undirected graph which represents the chemical structure with a set
of nodes V and a set of edges E. The set of nodes V = Vc ∪Vf , where Vc is a set
of carbon nodes nc ∈ Vc and Vf is a set of functional group nodes nf ∈ Vf . Each
carbon node nc represents one Carbon atom in the chemical structural formula.
Each functional group node represents one of the basic functional groups. Each
edge e ∈ E indicates one of the following connections:

– a connection between two Carbon atoms;

– a connection between two functional groups; or

– a connection between one functional group and one Carbon atom.

Figure 5 shows the CFG Graph for Ethylene. In the CFG Graph, there are two
carbon nodes and one functional group node (i.e., the double bond).

C1 C2CH2H2C

Fig. 5. CFG Graph for Ethylene

Functional Group (FG)

Identification

Edge Creation

Chemical Structural Formula

(in SMILES)

CFG Graph

Node Creation

Tokenization

CC(=O)OCC1=CC=CC=C1

CC(carbonyl)etherCC1alkenylCCalkenylCCalkenyl

C1

C1

C2

ether

carbonyl

C3

C4

alkenyl

alkenyl

C5

C6

C7

C8

alkenyl

C9

{‘C1’, ‘C2’, ‘(’, ‘carbonyl’, ‘)’, ‘ether’, ‘C3’, ‘C4’, ‘1’,

‘alkenyl’, ‘C5’, ‘C6’, ‘alkenyl’, ‘C7’, ‘C8’, ‘alkenyl’,

‘C9’, ‘1’}

(a) Construction Process (b) Benzyl Acetate

Fig. 6. CFG Graph Construction

Figure 6(a) shows the proposed construction process for CFG Graph. In the
proposed approach, chemical structural formula is first represented using the
SMILES representation. To generate the CFG Graph, the formula is processed
by the following steps: Functional Group Identification, Tokenization, Node Cre-
ation and Edge Creation.

516 P. Tang, S.C. Hui, and G. Cong

Tokenization. In this step, the generated functional group string pattern will
be tokenized into a series of tokens.

Each functional group will become a token; each Carbon atom (capital letter
C) in SMILES will be labeled with an integer number starting with 1, and
becomes a token; each other letter will also become a token. Note that the order
of the extracted tokens will be maintained according to their occurrences in the
string. The order indicates the connections of the bonds.

Figure 6(b) shows the CFG Graph construction process for Benzyl Acetate.
After Functional Group Identification, the identified string pattern is CC(carbon
yl)etherCC1alkenylCCalkenylCCalkenyl C1. It is tokenized into the following list
of tokens: (‘C1’, ‘C2’, ‘(’, ‘carbonyl’, ‘)’, ‘ether’, ‘C3’, ‘C4’, ‘1’, ‘alkenyl’, ‘C5’,
‘C6’, ‘alkenyl’, ‘C7’, ‘C8’, ‘alkenyl’, ‘C9’, ‘1’).

Node Creation.After tokenization, all the Carbon atoms and functional groups
will be identified from the list of tokens. The nodes V = Vc ∪ Vf of the CFG
Graph will then be created. Take Benzyl Acetate as an example, the carbon
node set Vc contains carbon nodes of ‘C1’,‘C2’,...,‘C9’, whereas the functional
group node set Vf contains functional group nodes of ‘carbonyl’, ‘ether’ and
three ‘alkenyl’ groups. This is illustrated in Figure 6(b).

Edge Creation. Graph edges are determined according to the SMILES spec-
ification of chemical structures. An edge will be created for each connection
identified. It will then be added into the set of edges E of the CFG Graph. The
connections between nodes are identified based on the following ways:

(1) If two nodes are created from tokens which are next to each other in the token
list, then they are connected. This is derived from the SMILES specification
on bonds.

(2) The first node after ‘(’ and the first node after ‘)’ are connected with the
first node just before ‘(’. This is derived from the SMILES specification on
branches.

(3) If two nodes have the same numeric token following them in the token list,
then they are connected. This is derived from the SMILES specification on
cyclic structure.

Take Benzyl Acetate shown in Figure 6(b) as an example, C1 and C2 are con-
nected according to (1). C2 and Carbonyl, and C2 and Ether are connected
according to (2). C4 and C9 are connected according to (3).

Algorithm for Constructing CFG Graph. Algorithm 1 presents the al-
gorithm for the CFG Graph Construction process. The proposed CFG Graph
construction approach preserves well the structural information of the functional
groups. For example, the ring connection of the Phenyl group structure in Ben-
zyl Acetate is broken when it is represented in SMILES, i.e., the ring is opened
between C4 and C9, according to the cyclic structure specification in SMILES.
However, it is restored and preserved during the construction of the CFG Graph.
This helps capture correctly the relative distance between functional groups
which measures the degree of interactions between functional groups.

Functional Feature Extraction and Chemical Retrieval 517

Algorithm 1. Functional Group Graph Construction

Input: CSF : Chemical structural formula represented in SMILES
Output: G = (V,E): CFG Graph
Process:

CSFPattern ← FGIdentification(CSF)
tokenList ← tokenization(CSFPattern)
for token ∈ tokenList do

if token �∈ {‘(’,‘)’} ∪ ringDigit then
node ← nodeCreation(token)
if isCarbon(token) is True then

Vc ← Vc ∪ node
else

Vf ← Vf ∪ node
V ← Vc ∪ Vf

for node1, node2 ∈ V do
if connected(node1, node2) is True then

edge ← edgeCreation(node1, node2)
E ← E ∪ edge

return G

Table 4. Carbon Chains

Structural Formula SMILES
Carbon Chain

Number

H3C CH C OH

CH3 O
2

1

CC(C)C(=O)O
1

2 2

CH CH C

CH2

H2C

CH2

CH3CH3

CH3

CH2 CH2 CH3

2

1

3

4

C=CC(CC)C(C(C)C)CCC
1

2 3
4

4

4.4 Chemical Feature Extraction

Recall that we extract 4 types of chemical features: (1) the number of Car-
bon atoms; (2) the number of Carbon Chains; (3) Functional Groups; and (4)
Functional Group Interactions.

The number of Carbon atoms (NC) refers to the number of Carbon atoms
in the chemical structural formula. It can be extracted easily by counting the
number of Carbon nodes in the CFG Graph. We have presented the approach
to extracting functional groups in Section 4.2. Next, we present the extraction
of other types of features.

Definition 2 (Carbon Chain). Carbon Chain is a chain connection of atoms
with at least one Carbon atom in it. Carbon Chain can be a backbone or a branch
of the chemical structural formula. The longest Carbon Chain is the backbone of
the chemical structural formula.

518 P. Tang, S.C. Hui, and G. Cong

Table 5. Chemical Features Extracted from Benzyl Acetate

Feature Name Feature Representation

Number of Carbons 9

Number of Carbon Chains 1

Functional Group carbonyl, ether, alkenyl, alkenyl, alkenyl

Functional Group Interaction

carbonyl1ether, ether1carbonyl,
carbonyl4alkenyl, alkenyl4carbonyl,
carbonyl5alkenyl, alkenyl5carbonyl,

carbonyl7alkenyl, ...

Algorithm 2. Chemical Feature Extraction

Input: G = (V,E): CFG Graph
Output:

NC - Number of Carbon atoms
NCChain - Number of Carbon Chains
FGset - A set of Functional Group features
FGIset - A set of Functional Group Interaction features

Process:
NC ← carbonNo(G)
NCChain ← carbonChainNo(G)
for node ∈ Vf do

FG ← node.getName(node)
FGset ← FGset ∪ FG

for node1, node2 ∈ Vf do
d ← distance(node1, node2)
fg1 ← node.getName(node1)
fg2 ← node.getName(node2)
FGIset ← FGIset ∪ concat(fg1, d, fg2)
FGIset ← FGIset ∪ concat(fg2, d, fg1)

return NC , NCChain, FGset, FGIset

Table 4 gives some examples of Carbon Chains. For each chemical structural
formula, the number of Carbon Chains (NCChain) can be extracted and counted
from the CFG Graph.

For functional group (FG) features, the functional group names of the corre-
sponding functional group nodes will be extracted.

Definition 3 (Functional Group Interaction). Functional Group Interac-
tion (FGI) indicates the degree of the interaction between any two functional
groups. It can be obtained by measuring the distance (i.e. the number of atoms)
between two functional group nodes.

The FGI features are extracted in the form as a combination of the two functional
group names and the distance between the two functional group nodes. The
distance is calculated by using the A* search algorithm [5].

Functional Feature Extraction and Chemical Retrieval 519

Algorithm 2 gives the algorithm for Chemical Feature Extraction. Table 5
shows the chemical features that can be extracted from Benzyl Acetate. Although
we only identify the basic functional groups in Functional Group Identification,
calculating the shortest distance between two functional groups enables us to
capture the information on complex functional groups as all complex functional
groups can be constructed by the basic functional groups. For example, the Ester
functional group can be obtained as a combination feature ‘carbonyl1ether ’ or
‘ether1carbonyl ’.

5 Query Retrieval

When a chemical structural formula query is submitted, the query’s CFG Graph
will be constructed from its SMILES representation and its chemical features will
then be extracted from the CFG Graph. The ranking score for a chemical struc-
tural formula will be calculated based on the four types of features extracted.
The ranking score is calculated by using the ctf-icf weighting which is based on
the concept of the tf-idf weighting [13]. We proceed to define the terms used in
the ctf-icf weighting, namely chemical term frequency (ctf) and inverse chemical
frequency (icf), as follows.

Definition 4 (Chemical Term Frequency (ctf)). Chemical term frequency
ctft,c of term t in chemical structure c is defined as the number of times that t
occurs in c.

Definition 5 (Inverse Chemical Frequency (icf)). Chemical frequency cft
of term t measures the number of chemical structures containing the term t. It
is an inverse measure of the informativeness of t because frequent terms are less
informative than rare terms. Inverse chemical frequency icft is defined by icft =
log(1 +N/cft) where N is the total number of chemical structural formulas.

Definition 6 (Ctf-icf Weight). Ctf-icf weight wt,c of a chemical feature term
t in chemical structure c is defined as the product of its chemical term frequency
ctf and inverse chemical frequency icf:

wt,c = ctft,c × log(1 +N/cft)

Now, each chemical structural formula can be represented by a real-valued vector
∈ R|V | of ctf-icf weight. |V | is the number of dimensions in the vector space
with chemical terms as the axes. Each functional group feature corresponds to
a term and so does each functional group interaction feature. Similarly, we treat
“Carbons” and “Carbon Chains” as two terms. For “Carbons” feature, its ctf is
the number of Carbons; for “Carbon Chains” feature, its ctf is the number of
Carbon Chains.

We can use cosine similarity to compute the relevance of a chemical struc-
tural formula to a query using their ctf-icf weights. Cosine similarity is used to
measure the similarity between a query and a document in document retrieval.

520 P. Tang, S.C. Hui, and G. Cong

Two documents are more similar if the relative distribution of terms are more
similar. However, it is not always the case for chemical structures. Two chemical
structures are similar because they have similar number of chemical functional
groups and similar chemical functional group interactions. The absolute term
difference is important. Therefore, we use L1 norm distance of two chemical fea-
ture vectors to measure the dissimilarity. We proceed to define dissimilarity for
the four types of chemical features.

Definition 7 (FG Feature Dissimilarity). Given a query q and retrieved
chemical formula c, FG feature dissimilarity is defined as

DissimFG(q, c) =
∑

tFG∈q∪c

|wtFG,q − wtFG,c|

where tFG is a FG feature term.

Definition 8 (FGI Feature Dissimilarity). Given a query q and retrieved
chemical formula c, FGI feature dissimilarity is defined as

DissimFGI(q, c) =
∑

tFGI∈q∪c

|wtFGI,q − wtFGI,c|

where tFGI is a FGI feature term.

Definition 9 (Carbon Atom Dissimilarity). If we treat Carbon atom as a
feature term for chemical structures, the chemical term frequency ctf for Carbon
atom will be NC . The inverse chemical frequency icf will be log2 since every
organic chemical structure has at least one Carbon atom (i.e., cf for Carbon
atom is 1). Therefore, given a query q and retrieved chemical formula c, Carbon
atom dissimilarity is defined as

DissimC(q, c) = |NC(q)−NC(c)| × log2

Definition 10 (Carbon Chain Dissimilarity). Similarly, Carbon Chain can
be treated as a feature term. Given a query q and retrieved chemical formula c,
Carbon Chain dissimilarity is defined as

DissimCChain(q, c) = |NCChain(q) −NCChain(c)| × log2

Based on the four types of dissimilarity measures, we define chemical structure
similarity as follows.

Definition 11 (Chemical Structure Similarity). The similarity between a
chemical structural query q and the retrieved chemical structure c is defined as

Sim(q, c) =
1

1 +Dissim(q, c)
,

Dissim(q, c) = (1− α)× (DissimFG(q, c) +DissimFGI(q, c))

+ α× (DissimC(q, c) +DissimCChain(q, c)), where α ∈ [0, 1].

The parameter α is used to discriminate the contributions of different features to
the total dissimilarity score, and will be set empirically. The chemical structure
similarity will be in the range [0,1]. The higher the chemical structure similarity
is, the more similar the two chemical structures are.

Functional Feature Extraction and Chemical Retrieval 521

6 Performance Evaluation

Objectives The performance study has three main objectives as follows:

– We aim to study the effectiveness of the extracted structural features in
chemical retrieval.

– We aim to compare the effectiveness of four types of structural features.
– We aim to evaluate the effectiveness of the proposed retrieval method.

Data and Query. The performance is evaluated using the chemical structure
data from the open NCI database [3] which is one of the most complete collections
of chemical compounds. A total of 10,646 chemical structures are extracted from
the NCI database and converted into the corresponding Canonical SMILES for-
mat. In the experiments, 100 chemical structures are used as test queries. Each
test chemical structure may contain only single functional group or multiple
functional groups. We split the test queries into two sets. One set of the queries
is used for tuning the parameter α in the proposed approach, while the other
set of test queries is used for performance evaluation. Each set comprises 11 test
queries with single functional groups and 39 queries with multiple functional
groups. Each set of the test queries covers all the basic functional groups. Thus
the set of test queries should be sufficient for evaluating the performance of the
proposed approach.

For each method, top 10 formulas will be retrieved for each query. We mix
the top 10 results of each method, and then employ a professional to label if
the returned result is a functionally relevant formula to the query. The perfor-
mance is measured using Precision@5, Precision@10, Mean Average Precision
(MAP) [13] and retrieval time. Precision@n reports the fraction of the top-n
chemicals retrieved that are relevant. MAP is the mean of the average precisions
for a set of query chemicals; for each query, its average precision is the average
of the precision values at the points where each relevant chemical is retrieved.
MAP rewards approaches that return relevant chemicals early. Retrieval time is
used to evaluate the efficiency of the method. It is measured from the time the
query is submitted until the time the result is returned.

Method. We compare with the Daylight Fingerprint method [1]. The Daylight
Fingerprint method is one of the most popular descriptor-based methods and
a state-of-the-art method for chemical structural similarity search. In addition,
we also compare the proposed retrieval approach with the method that uses the
same types of features as the proposed approach, but uses cosine similarity to
compute the similarity for each type of features.

The experiment is conducted as follows. The functional features of the chem-
ical structures from the data set and the test queries are first extracted using
the proposed approach. The performance of the Query Retrieval process is then
measured for the proposed approach. The experiment is conducted with Python
on a Windows 7 environment running on an Intel Core 2 Duo 2.80GHz CPU
with 2.46GB of memory.

Parameter Tuning. We determine the value for the parameter α in the pro-
posed approach using the first set of test queries. The Mean Average Precision

522 P. Tang, S.C. Hui, and G. Cong

(MAP) is used as the performance measure. During the experiment, the value
of α is set from 0 to 1 in intervals of 0.1 and the performance is then measured.
Figure 7 shows the performance results based on the different values of α. Based
on the performance results, the proposed approach has the best performance of
73.17% when α is set to 0.3. Similarly, we empirically find the best parameter
α is 0 when cosine similarity is used. In the subsequent experiment, we set the
parameter α as 0.3 and 0 for the proposed method using the proposed similarity
measure and cosine similarity respectively.

40

45

50

55

60

65

70

75

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
A

P

Mean Average Precision (MAP)
Mean Average Precision (MAP)

Fig. 7. Performance Results Based on Different Values of α

Table 6. Performance Results for Different Methods

Precision@5 Precision@10 MAP Retrieval Time

Proposed Approach 97.20% 89.00% 84.53% 0.5312s

Proposed Approach

with Cosine Similarity
73.20% 68.20% 66.71% 0.5357s

Daylight Fingerprint 55.20% 47.80% 46.67% 2.546s

Effectiveness of the Proposed Approach. We evaluate the performance of
the proposed approach and other methods using the second set of test queries.
Here, we use the Mean Average Precision (MAP) and the precision as the per-
formance measures.

Table 6 gives the performance results for the proposed approach in comparison
with other methods. The performance results clearly indicate that the proposed
approach outperforms the other methods for the different measures. Specifically,
it achieves the performance of 97.20%, 89.00% and 84.53% for Precision@5, Pre-
cision@10 and MAP, respectively. This demonstrates that the proposed approach
is effective for retrieving chemical structures that have functional similarity with
the queries, and the four types of chemical features used in the proposed ap-
proach are effective for chemical retrieval. The improvement of the proposed
approach over the Daylight Fingerprint method is statistically significant using
t test, p-value < 0.01.

Functional Feature Extraction and Chemical Retrieval 523

Comparing the two versions of the proposed approach: one using the proposed
measure to compute similarity for each type of feature, and the other using cosine
similarity, we find that the proposed similarity measure is more effective than
cosine similarity for chemical retrieval.

Efficiency of the Three Approaches. The two methods of using the four
types of chemical features are faster than the one using Daylight Fingerprint
features. This is because the Daylight Fingerprint method would generate more
features than our proposed feature extraction methods.

Comparing the Four Types of Features. We also evaluate the performance
of the proposed approach using different sets of features such as functional groups
and functional group interactions. Table 7 gives the performance results of the
proposed approach based on the different types of extracted features. The results
show that when the proposed approach uses all the four types of extracted chem-
ical features, it achieves the best performance in terms of all the three measures.
We observe that MAP is low when using only NC or NCChain. It is because NC

and NCChain only capture basic structural information of the chemicals. It is dif-
ficult to find functionally relevant chemical structures for the query with these
structural features alone. However, the performance when using all four types of
features is better than the performance when using only the FG and FGI fea-
tures. The reason is that NC and NCChain help determine which chemical struc-
ture is more relevant to the query when two chemicals have the same FG and FGI
features. For example, CH3COOH , CH3CH2COOH and CH3CH2CH2COOH
have the same FG and FGI features. But CH3CH2COOH is more similar with
CH3COOH since it has less difference on NC with CH3COOH . Additionally,
we notice that using FG+FGI+NC performs close to using all four features and
it is better than using FG+FGI+NCChain. This may be due to the reason that
NC is more discriminative than NCChain for retrieval based on the data set.
In summary, the FG and FGI features enable the search of functional relevant
chemical structures, and NC and NCChain help improve the performance.

Table 7. Performance Results based on the Extracted Chemical Features

Feature Components Precision@5 Precision@10 MAP Retrieval Time

NC 50.40% 32.80% 25.75% 0.3529s

NCChain 65.20% 48.00% 41.41% 0.3541s

FG 66.80% 63.80% 64.84% 0.5080s

FGI 72.00% 62.20% 62.98% 0.1750s

FG + FGI 83.20% 74.60% 75.10% 0.5290s

FG + FGI + NC 96.80 % 87.20% 83.96% 0.5302s

FG + FGI + NCChain 85.70% 77.40% 77.51% 0.5294s

FG + FGI + NC + NCChain 97.20% 89.00% 84.53% 0.5312s

524 P. Tang, S.C. Hui, and G. Cong

7 Conclusion

This paper proposes a novel and effective approach for chemical feature ex-
traction and retrieval. The proposed approach consists of two major processes:
Chemical Feature Extraction and Query Retrieval. In the Chemical Feature Ex-
traction process, it constructs the CFG Graph from the corresponding SMILES
representation of a chemical structural formula. The chemical features can then
be extracted from the constructed CFG Graph. The Query Retrieval process
accepts a user query on a chemical structure, converts the queried structure into
the corresponding CFG Graph and extracts chemical features from the CFG
Graph. The extracted features are then compared with the extracted features of
the stored chemical structures for similarity measurement, ranking and retrieval.
In addition, the performance of the proposed approach is evaluated in compari-
son with other methods. The experimental results have shown that the proposed
approach achieves promising performance, and outperforms the state-of-the-art
Daylight Fingerprint method. This demonstrates that the extracted structural
features are indeed useful for chemical retrieval.

For future work, we are currently investigating additional chemical features
that will enhance the performance of the proposed approach. Furthermore, we
are also in the process of incorporating the proposed approach into a Web-based
Chemical Question-Answering System for supporting chemical structural search.

References

1. Daylight fingerprint,
http://www.daylight.com/dayhtml/doc/theory/theory.finger.html

2. emolecules.com, http://www.emolecules.com/
3. Nci structure database, http://cactus.nci.nih.gov/download/nci/
4. Brown, R., Martin, Y.: Use of structure-activity data to compare structure-based

clustering methods and descriptors for use in compound selection. J. Chem. Inform.
Comput. Sci. 36(3), 572–584 (1996)

5. Chow, E.: A graph search heuristic for shortest distance paths. Tech. rep., Lawrence
Livermore National Laboratory (2005)

6. Dalby, A., Nourse, J., Hounshell, W., et al.: Description of several chemical struc-
ture file formats used by computer programs developed at molecular design limited.
J. Chem. Inform. Comput. Sci. 32(3), 244–255 (1992)

7. Ewing, T., Baber, J., Feher, M.: Novel 2d fingerprints for ligand-based virtual
screening. J. Chem. Inf. Model. 46(6), 2423–2431 (2006)

8. Fechner, U., Paetz, J., Schneider, G.: Comparison of three holographic fingerprint
descriptors and their binary counterparts. QSAR & Combinatorial Science 24(8),
961–967 (2005)

9. Gaulton, A., Bellis, L., Bento, A., et al.: Chembl: a large-scale bioactivity database
for drug discovery. Nucl. Acids Res. 40(1), 1100–1107 (2012)

10. Hagadone, T.: Molecular substructure similarity searching: efficient retrieval in
two-dimensional structure databases. J. Chem. Inform. Comput. Sci. 32(5), 515–
521 (1992)

11. Heller, S., McNaught, A.: The iupac international chemical identifier (inchi). Chem-
istry International 31(1), 7 (2009)

http://www.daylight.com/dayhtml/doc/theory/theory.finger.html
http://www.emolecules.com/
http://cactus.nci.nih.gov/download/nci/

Functional Feature Extraction and Chemical Retrieval 525

12. Hert, J., Willett, P., Wilton, D., et al.: Comparison of topological descriptors
for similarity-based virtual screening using multiple bioactive reference structures.
Org. Biomol. Chem. 2(22), 3256–3266 (2004)

13. Manning, C., Raghavan, P., Schutze, H.: Introduction to information retrieval,
vol. 1. Cambridge University Press, Cambridge (2008)

14. McNaught, A.: The iupac international chemical identifier. Chemistry International
(2006)

15. Murray-Rust, P., Rzepa, H.: Chemical markup, xml, and the worldwide web. 1.
basic principles. J. Chem. Inform. Comput. Sci. 39(6), 928–942 (1999)

16. Pence, H., Williams, A.: Chemspider: an online chemical information resource. J.
Chem. Educ. (2010)

17. Rarey, M., Dixon, J.: Feature trees: a new molecular similarity measure based on
tree matching. J. Comput. Aided Mol. Des. 12(5), 471–490 (1998)

18. Schuur, J., Selzer, P., Gasteiger, J.: The coding of the three-dimensional structure
of molecules by molecular transforms and its application to structure-spectra cor-
relations and studies of biological activity. J. Chem. Inform. Comput. Sci. 36(2),
334–344 (1996)

19. Sheridan, R., Kearsley, S.: Why do we need so many chemical similarity search
methods? Drug Discovery Today 7(17), 903–911 (2002)

20. Wang, Y., Xiao, J., Suzek, T., et al.: Pubchem: a public information system for
analyzing bioactivities of small molecules. Nucl. Acids Res. 37(2), 623–633 (2009)

21. Weininger, D.: Smiles, a chemical language and information system. 1. introduction
to methodology and encoding rules. J. Chem. Inform. Comput. Sci. 28(1), 31–36
(1988)

Scalable Computation of Isochrones
with Network Expiration�

Johann Gamper1, Michael Böhlen2, and Markus Innerebner1

1 Free University of Bozen-Bolzano, Italy
2 University of Zurich, Switzerland

Abstract. An isochrone in a spatial network is the possibly disconnected set
of all locations from where a query point is reachable within a given time span
and by a given arrival time. In this paper we propose an efficient and scalable
evaluation algorithm, termed (MINEX), for the computation of isochrones in
multimodal spatial networks with different transportation modes. The space com-
plexity of MINEX is independent of the network size and its runtime is deter-
mined by the incremental loading of the relevant network portions. We show
that MINEX is optimal in the sense that only those network portions are loaded
that eventually will be part of the isochrone. To keep the memory requirements
low, we eagerly expire the isochrone and only keep in memory the minimal set
of expanded vertices that is necessary to avoid cyclic expansions. The concept
of expired vertices reduces MINEX’s memory requirements from O(|V iso|) to
O(

√
|V iso|) for grid and O(1) for spider networks, respectively. We show that

an isochrone does not contain sufficient information to identify expired vertices,
and propose an efficient solution that counts for each vertex the outgoing edges
that have not yet been traversed. A detailed empirical study confirms the ana-
lytical results on synthetic data and shows that for real-world data the memory
requirements are very small indeed, which makes the algorithm scalable for large
networks and isochrones.

Keywords: spatial network databases, isochrones.

1 Introduction

Reachability analyzes are important in many applications of spatial network databases.
For example, in urban planning it is important to assess how well a city is covered
by various public services such as hospitals or schools. An effective way to do so is
to compute isochrones. An isochrone is the possibly disconnected set of all locations
from where a query point, q, is reachable within a given time span. When schedule-
based networks, such as the public transport system, or time-dependent edge costs are
considered, isochrones depend on the arrival time at q. Isochrones can also be used as
a primitive operation to answer other spatial network queries, such as range queries,
that have to retrieve objects within the area of the isochrone. For instance, by joining an
isochrone with an inhabitants database, the percentage of citizens living in the area of
the isochrone can be determined without the need to compute the distance to individual
objects.
� This work is partially funded by the Province and the Municipality of Bozen-Bolzano.

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 526–543, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Scalable Computation of Isochrones with Network Expiration 527

Fig. 1. Screenshot of an Isochrone

Example 1. Figure 1 shows the 10 min isochrone at 09:15 pm for a query point (*) in
Bozen-Bolzano. The isochrone consists of the bold street segments that cover all points
from where the query point is reachable in less than 10 minutes, starting at 09:05 pm or
later and arriving at 09:15 pm or before. A large area around the query point is within
10 minutes walking distance. Smaller areas are around bus stops, from where the query
point can be reached by a combination of walking and going by bus. The box in the
lower left corner shows the number of inhabitants in the isochrone area.

We focus on isochrones in multimodal spatial networks, which can be classified as con-
tinuous or discrete along, respectively, the space and the time dimension. Continuous
space means that all points on an edge are accessible, whereas in a discrete space net-
work only the vertices can be accessed. Continuous time networks can be traversed at
any point in time, discrete time networks follow an associated schedule. For instance,
the pedestrian network is continuous in time and space, whereas public transport sys-
tems are discrete in both dimensions.

The paper proposes the Multimodal Incremental Network Expansion with vertex
eXpiration (MINEX) algorithm. Starting from query point, q, the algorithm expands
the network backwards along incoming edges in all directions until all space points that
are within dmax from q are covered. Since only network portions are loaded that are
part of the isochrone, the memory complexity of MINEX is independent of the network
size. This yields a solution that scales to GIS platforms where a web server must be
able to handle a large number of concurrent queries. The runtime is determined by the
incremental loading of the network portions that are part of the isochrone. Our goal
in terms of runtime is to be on a par with existing solutions for small to medium-size
isochrones.

MINEX eagerly prunes the isochrone and keeps in memory only the expanded ver-
tices that form the expansion frontier and are needed to avoid cyclic network expan-
sions. These vertices must be updated as the expansion proceeds and the frontier moves
outwards. Newly encountered vertices are added and vertices that will never be revis-
ited, termed expired vertices, are removed. The removal of expired vertices reduces the
memory requirements from O(|V iso|) to O(

√
|V iso|) for grid and to O(1) for spider

networks, respectively. Since the isochrone does not contain sufficient information to

528 J. Gamper, M. Böhlen, and M. Innerebner

identify expired vertices, we propose an efficient strategy that counts for each vertex v
the outgoing edges that have not yet been traversed. When all these edges have been
traversed, v will not be revisited and hence expires.

The technical contributions can be summarized as follows:

– We define vertex expiration, which allows to determine a minimal set of vertices
that need to be kept in memory to avoid cyclic network expansions. Since an
isochrone does not contain sufficient information to identify such vertices, we pro-
pose an efficient solution that counts the outgoing edges that are not yet traversed.

– We propose a scalable disk-based multimodal network expansion algorithm,
MINEX, that is independent of the network size and depends only on the isochrone
size. Its runtime isO(|V iso|). The eager expiration of vertices reduces the memory
requirements from O(|V iso|) to O(

√
|V iso|) and O(1) for grid and spider net-

works, respectively.
– We show that MINEX is optimal in the sense that only portions of the network are

loaded that will become part of the isochrone, and each edge is loaded only once.
– We report the results of an extensive empirical evaluation that shows the scalability

of MINEX, confirms the analytical results for the memory requirements on syn-
thetic data, and reveals an even more substantial reduction to a tiny and almost
constant fraction of the network size on real-world data.

The rest of the paper is organized as follows. Section 2 discusses related work. In Sec-
tion 3 we define isochrones in multimodal networks. Section 4 presents the MINEX
algorithm. Section 5 reports the results of the empirical evaluation. Section 6 concludes
the paper and points to future research directions.

2 Related Work

Different query types have been studied for spatial network databases, e.g., [5,6,19].
Shortest path (SP) queries return the shortest path from a source to a target vertex.
Range queries determine all objects that are within a given distance from a query point
q. kNN queries determine the k objects that are closest to q. Isochrones are different and
return the (possibly disconnected) minimal subgraph that covers all space points in the
network from where q is reachable within a given timespan dmax and by a given arrival
time t (i.e., space points with a SP to q that is smaller than dmax). By intersecting the
area covered by an isochrone with an objects relation, all objects within an isochrone
can be determined without the need to compute the distance to the individual objects.
This provides a useful instrument in various applications, such as city planning to an-
alyze the coverage of the city with public services (hospitals, schools, etc.) or market
analysis to analyze catchment areas and store locations.

Isochrones have been introduced by Bauer et al. [3]. The algorithm suffers from a
high initial loading cost and is limited by the available memory since the entire network
is loaded in memory. Gamper et al. [8] provide a formal definition of isochrones in
multimodal spatial networks, together with a disk-based multimodal incremental net-
work expansion (MINE) algorithm that is independent of the actual network size but
maintains the entire isochrone in memory. This paper proposes a new network expi-
ration mechanism that maintains the minimal set of vertices that is required to avoid

Scalable Computation of Isochrones with Network Expiration 529

cyclic network expansions. The actual memory requirements turn out to be only a tiny
fraction of the isochrone size. We conduct extensive experiments and compare our al-
gorithm with other network expansion algorithms. Marciuska and Gamper [18] present
two different approaches to determine objects that are located within the area that is
covered by an isochrone.

Most network queries, including isochrones, are based on the computation of the
shortest path (SP) among vertices and/or objects. Dijkstra’s [6] incremental network
expansion algorithm is the most basic solution and influenced many of the later works.
Its major limitations are the expansion towards all directions and its main memory na-
ture. The A∗ algorithm [10] uses a lower bound estimate of the SP (e.g., Euclidean
distance) to get a more directed search with less vertex expansions. Other techniques
have been proposed to improve the performance of SP and other network queries, in-
cluding disk-based index structures and pre-processing techniques.

Papadias et al. [19] present two disk-based frameworks for computing different net-
work queries: Incremental Euclidean Restriction (IER) repeatedly uses the Euclidean
distance to prune the search space and reduce the number of objects for which the net-
work distance is computed; Incremental Network Expansion (INE) is an adaptation of
Dijkstra’s SP algorithm. Deng et al. [5] improve over [19] by exploiting the incremental
nature of the lower bound to limit the number of distance calculations to only vertices in
the final result set. Almeida and Güting [4] present an index structure and an algorithm
for kNN queries to allow a one-by-one retrieval of the objects on an edge.

Another strategy takes advantage of partitioning a network and pre-computing all
or some of the SPs to save access and computation cost at query time. Examples are
the partitioning into Voronoi regions and pre-computing distances within and across
regions [16], shortest path quadtrees [21], and the representation of a network as a set
of spanning trees with precomputed NN lists [11]. Other works divide a large network
into smaller subgraphs that are hierarchically organized together with pre-computed
results between boundary vertices [1,13,14].

For networks that are too large for exact solutions in reasonable time, efficient ap-
proximation techniques have been proposed, most prominently based on the landmark
embedding technique and sketch-based frameworks [9,17,20,22]. For a set of so-called
landmark vertices the distance to all other vertices is pre-computed. At query time, the
precomputed distances and the triangle inequality allow to estimate the SP.

The work in [7,15] investigates time-varying edge costs, e.g., due to changing traf-
fic conditions. There is far less work on schedule-based transportation networks and
networks that support different transportation modalities [12]. Bast [2] describes why
various speed up techniques for Dijkstra’s SP algorithm are either not applicable or
improve the efficiency only slightly in schedule-based networks.

The MINEX algorithm proposed in this paper leverages Dijkstra’s incremental net-
work expansion strategy for multiple transportation modes, and it applies eager network
expiration to minimize the memory requirements. Most optimization techniques from
previous work are not applicable to isochrones in multimodal networks, mainly due to
the presence of schedule-based networks (cf. [2]) and the need to explore each individ-
ual edge, which makes search space pruning such as in the A∗ algorithm more difficult
and less effective.

530 J. Gamper, M. Böhlen, and M. Innerebner

3 Isochrones in Multimodal Networks

In this section we provide a formal definition of isochrones in multimodal spatial net-
works that support different transport modes.

Definition 1 (Multimodal Network). A multimodal network is a seven-tuple N =
(G,R, S, ρ, μ, λ, τ). G = (V,E) is a directed multigraph with a set V of vertices
and a multiset E of ordered pairs of vertices, termed edges. R is a set of transport
systems. S = (R,TID ,W, τa, τd) is a schedule, where TID is a set of trip identi-
fiers, W ⊆ V , and τa : R × TID × W &→ T and τd : R × TID × W &→ T
determine arrival and departure time, respectively (T is the time domain). Function
μ : R &→ {’csct’, ’csdt’, ’dsct’, ’dsdt’} assigns to each transport system a transport
mode, and the functions ρ : E &→ R, λ : E &→ R+, and τ : E × T &→ R+ assign to
each edge transport system, length, and transfer time, respectively.

A multimodal network permits several transport systems, R, with different modalities
in a single network: continuous space and time mode μ(.) = ’csct’, e.g., pedestrian net-
work; discrete space and time mode μ(.) = ’dsdt’, e.g., the public transport system such
as trains and buses; discrete space continuous time mode μ(.) = ’dsct’, e.g., moving
walkways or stairs; continuous space discrete time mode μ(.) = ’csdt’, e.g., regions
or streets that can be passed during specific time slots only. Vertices represent cross-
roads of the street network and/or stops of the public transport system. Edges represent
street segments, transport routes, moving walkways, etc. The schedule stores for each
discrete time (’dsdt’, ’csdt’) transport system in R the arrival and departure time at the
stop nodes for the individual trips. For an edge e = (u, v), function τ(e, t) computes
the time-dependent transfer time that is required to traverse e, when starting at u as late
as possible yet arriving at v no later than time t. For discrete time edges, the transfer
time is the difference between t and the latest possible departure time at u according
to the given schedule in order to reach v before or at time t. This includes a waiting
time should the arrival at v be before t. For continuous time edges, the transfer time
is modeled as a time-dependent function that allows to consider, e.g., different traffic
conditions during rush hours.

Example 2. Figure 2 shows a multimodal network with two transport systems, R =
{’P’, ’B’}, representing the pedestrian network with mode μ(’P’) = ’csct’ and bus
line B with mode μ(’B’) = ’dsdt’, respectively. Solid lines are street segments of the
pedestrian network, e.g., edge e = (v1, v2) with ρ(e) = ’P’. An undirected edge is a
shorthand for a pair of directed edges in opposite directions. Pedestrian edges are an-
notated with the edge length, which is the same in both directions, e.g., λ((v1, v2)) =
λ((v2, v1)) = 300. We assume a constant walking speed of 2m/s, yielding a fixed trans-
fer time, τ(e, t) = λ(e)

2 m/s . Dashed lines represent bus line B. An excerpt of the schedule is
shown in Fig. 2(b), e.g., TID = {1, 2, . . .}, τa(’B’, 1, v6) = τd(’B’, 1, v6) = 05:33:00.
The transfer time of a bus edge e = (u, v) is computed as τ(e, t) = t − t′, where
t′ = max{τd(’B’, tid , u) | τa(’B’, tid , v) ≤ t} is the latest departure time at u.

A location in N is any point on an edge e = (u, v) ∈ E that is accessible. We represent
it as l = (e, o), where 0 ≤ o ≤ λ(e) is an offset that determines the relative position of

Scalable Computation of Isochrones with Network Expiration 531

q

v0 v1 v2 v3 v4

v5v6v7v8

v9200 300

250

180 80 440

250

200

300500200

’P’

’B’

(a) Network

R TID Stop Arrival Departure
B 1 v7 05:31:30 05:32:00
B 1 v6 05:33:00 05:33:00

...
...

...
...

B 2 v7 06:01:30 06:02:00
B 2 v6 06:03:00 06:03:00
B 2 v3 06:05:00 06:05:30

(b) Schedule

Fig. 2. Multimodal Network

l from u on edge e. A location represents vertex u if o = 0 and vertex v if o = λ(e); any
other offset refers to an intermediate point on edge e. In continuous space networks all
points on the edges are accessible. Since a pedestrian segment is modeled as a pair of
directed edges in opposite direction, any point on it can be represented by two locations,
((u, v), o) and ((v, u), λ((u, v))−o), respectively. For instance, in Fig. 2 the location of
q is lq = ((v2, v3), 180) = ((v3, v2), 80). In discrete space networks only vertices are
accessible, thus o ∈ {0, λ(e)} and locations coincide with vertices.

An edge segment, (e, o1, o2), with 0 ≤ o1 ≤ o2 ≤ λ(e) represents the contiguous set
of space points between the two locations (e, o1) and (e, o2) on edge e. We generalize
the length function for edge segments to λ((e, o1, o2)) = o2 − o1.

Definition 2 (Path, Path Cost). A path from a source location ls = ((v1, v2), os) to a
destination location ld = ((vk, vk+1), od) is defined as a sequence of connected edges
and edge segments, p(ls, ld) = 〈x1, . . . , xk〉, where x1 = ((v1, v2), os, λ((v1, v2))),
xi = (vi, vi+1) for 1 < i < k, and xk = ((vk, vk+1), 0, od)). With arrival time t at ld,
the path cost is

γ(〈x1, . . . , xk〉, t) =
{
τ(xk , t) k=1,

γ(〈xk〉, t) + γ(〈x1, . . . , xk−1〉, t−γ(〈xk〉, t)) k>1.

The first and the last element in a path can be edge segments, whereas all other el-
ements are entire edges. Since isochrones depend on the arrival time at the query
point, we define the path cost recursively as the cost of traversing the last edge (seg-
ment), xk, considering the arrival time t at the destination ld, plus the cost of traversing
〈x1, . . . , xk−1〉, where the arrival time at vk (the target vertex of edge xk−1) is deter-
mined as t minus the cost of traversing xk. The cost of traversing a single edge is the
transfer time τ . Edges along a path may belong to different transport systems, which
enables the changing of transport system along a path.

Example 3. In Fig. 2, a path from v7 to q is to take bus B to v3 and then walk to q, i.e.,
p(v7, lq) = 〈x1, x2, x3〉, where x1 = (v7, v6) and x2 = (v6, v3) are complete edges
and x3 = ((v3, v2), 0, 80) is an edge segment. With arrival time t = 06:06:00, the path
cost is γ(p(v7, lq), t) = (06:03:00−06:02:00)+(06:05:20−06:03:00)+80/2 = 240 s.
To reach q at 06:06:00, the bus must arrive at v3 no later than 06:05:20. Since the latest
bus matching this constraint arrives at 06:05:00, we have a waiting time of 20 s at v3.

532 J. Gamper, M. Böhlen, and M. Innerebner

The network distance, d(ls, ld, t), from a source location ls to a destination location ld
with arrival time t at ld is defined as the minimum cost of any path from ls to ld with
arrival time t at ld if such a path exists, and∞ otherwise.

Definition 3 (Isochrone). Let N = (G,R, S, μ, ρ, λ, τ) with G = (V,E) be a mul-
timodal network, q be the query point with arrival time t, and dmax > 0 be a time
span. An isochrone, N iso = (V iso, Eiso), is defined as the minimal and possibly dis-
connected subgraph of G that satisfies the following conditions:

– V iso ⊆ V ,
– ∀l(l = (e, o) ∧ e ∈ E ∧ d(l, q, t) ≤ dmax

⇔ ∃x ∈ Eiso(x = (e, o1, o2) ∧ o1 ≤ o ≤ o2)).

The first condition requires the vertices of the isochrone to be a subset of the network
vertices. The second condition constrains an isochrone to cover exactly those locations
that have a network distance to q that is smaller or equal than dmax. Notice the use of
edge segments in Eiso to represent edges that are only partially reachable. Whenever
an edge e is entirely covered, we use e instead of (e, 0, λ(e)).

Example 4. In Fig. 3, the subgraph in bold represents the isochrone for dmax = 5min
and t = 06:06:00. The numbers in parentheses are the network distance to q. Edges
close to q are entirely reachable, whereas edges on the isochrone border are only par-
tially reachable. For instance, (v0, v1) is only reachable from offset 80 to v1. Bus edges
are not included in the isochrone since intermediate points on bus edges are not ac-
cessible. Formally, the isochrone in Fig. 3 is represented as N iso = (V iso, Eiso) with
V iso = {v0, . . . , v9} and Eiso = {((v0, v1), 80, 200), ((v8, v1), 130, 250), (v1, v2),
(v2, v1), (v2, v3), (v3, v2), (v3, v4), (v4, v3), ((v5, v4), 170, 250), ((v9, v4), 120, 200),
((v5, v6), 60, 300), ((v7, v6), 260, 500), ((v6, v7), 380, 500), ((v8, v7), 80, 200)}.

q

v0(340) v1(240) v2(90) v3(40) v4(260)

v5(360)v6(180)v7(240)v8(340)

v9(360)
80 120 300

130

120

180 80 440

170

80

80 120

6024024014012012080

Fig. 3. Isochrone in Multimodal Network

4 Incremental Network Expansion in Multimodal Networks

This section presents the multimodal incremental network expansion algorithm with
vertex expiration (MINEX) for computing isochrones in multimodal networks.

4.1 Algorithm MINEX

Consider a multimodal network N, query point q with arrival time tq, duration dmax,
and walking speed s. The expansion starts from q and propagates backwards along

Scalable Computation of Isochrones with Network Expiration 533

the incoming edges in all directions. When a vertex v is expanded, all incoming edges
e = (u, v) are considered, and the distance of u to q when traversing e is incrementally
computed as the distance of v plus the time to traverse e. The expansion terminates
when all locations with a network distance to q that is smaller than dmax have been
reached.

Algorithm 1 shows MINEX which implements this strategy. The multimodal net-
work is stored in a database, and – as the expansion proceeds – the portions of the net-
work that eventually will form the isochrone are incrementally retrieved. The algorithm
maintains two sets of vertices: closed vertices (C) that have already been expanded and
open vertices (O) that have been encountered but are not yet expanded. For each ver-
tex v ∈ O ∪ C, we record the network distance to q, dv (abbrev. for d(v, q, tq)), and
a counter, cntv, which keeps track of the number of outgoing edges that have not yet
been traversed. C is initialized to the empty set. O is initialized to v with dv = 0 and
the number of outgoing edges if q coincides with vertex v. Otherwise, q = ((u, v), o) is
an intermediate location, and O is initialized to u and v with the corresponding walking
distance to q; the reachable segments of edges (u, v) and (v, u) are output.

Algorithm 1. MINEX(N, q, tq, dmax)

C ← ∅;1
if q coincides with v then O ← {(v, 0, cntv)};2
else // q = ((u, v), o) = ((v, u), o′)3

O ← {(u, o/s, cntu), (v, o′/s, cntv)};4
Output ((u, v),max(0, (o/s−dmax)s), o) and ((v, u),max(0, (o′/s−dmax)s), o

′);5
while O �= ∅ and first element has distance ≤ dmax do6

(v, dv, cntv) ← first element from O;7
O ← O \ {v};8
C ← C ∪ {v};9
foreach e = (u, v) ∈ E do10

if u �∈ O ∪ C then O ← O ∪ {(u,∞, cntu)};11
d′
u ← τ(e, tq − dv) + dv ;12

du ← min(du, d
′
u);13

cntu ← cntu − 1;14
if u ∈ C ∧ cntu = 0 then C ← C \ {u};15
if μ(ρ(e)) ∈ {’csct’, ’csdt’} then16

if d′
u ≤ dmax then Output (e, 0, λ(e));17

else Output (e, o, λ(e)), where d((e, o), q, tq) = dmax;18

if cntv = 0 then C ← C \ {v};19

return;20

During the expansion phase, vertex v with the smallest network distance is dequeued
from O and added to C. All incoming edges, e = (u, v), are retrieved from the database
and considered in turn. If vertex u is visited for the first time, it is added to O with a
distance of∞ and the number of outgoing edges, cntu. Then, the distance d′u of u when
traversing e is computed and the distance du is updated. If e is a ’csct’ or ’csdt’ edge,
the reachable part of e is added to the result. Edges of type ’dsct’ or ’dsdt’ produce
no direct output, since only the vertices are accessible, and they are added when their
incoming ’csct’ edges are processed. Finally, cntu is decremented by 1; if u is closed
and cntu = 0, u is expired and removed from C (more details on vertex expiration are
below). Once all incoming edges of v are processed, the expiration and removal of v

534 J. Gamper, M. Böhlen, and M. Innerebner

is checked. The algorithm terminates when O is empty or the network distance of the
closest vertex in O exceeds dmax.

Example 5. Figure 4 illustrates a few steps of MINEX for dmax = 5min, tq=06:06:00,
and s = 2m/s. Bold lines indicate reachable network portions, solid black nodes are
closed, and bold white nodes are open. The numbers in parentheses are the distance
and the counter. Figure 4(a) shows the isochrone after the initialization step with C =
{} and O = {(v2, 90, 3), (v3, 40, 3)}. Vertex v3 has the smallest distance to q and is
expanded next (Fig. 4(b)). The distance of the visited vertices is dv4 = 40 + 440/2 =
260 s and d′v2 = 40+260/2 = 140 s, which does not improve the old value dv2 = 90 s.
For the distance of v6, we determine the required arrival time at v3 as t = tq − dv3 =
06:06:00 − 40 s = 06:05:20 and the latest bus departure at v6 as 06:03:00, yielding
dv6 = 40+(06:05:20−06:03:00) = 180 s. After updating the counters, the new vertex
sets are C = {(v3, 40, 3)} and O = {(v2, 90, 2), (v6, 180, 2), (v4, 260, 2)}. Next, v2 is
expanded as shown in Fig. 4(c)). Figure 4(d) shows the isochrone after the termination
of the algorithm; the gray vertex v3 is expired.

q

v0 v1 v2(90, 3) v3(40, 3)
v4

v5v6v7v8

v9200 300

250

180 80 440

250

200

300500200

(a) Initialization

q

v0 v1 v2(90, 2) v3(40, 3) v4(260, 2)

v5v6(180, 2)v7v8

v9200 300

250

180 80 440

250

200

300500200

(b) After Expanding v3

q

v0 v1(240, 2) v2(90, 2) v3(40, 1) v4(260, 2)

v5v6(180, 2)v7v8

v9200 300

250

180 80 440

250

200

300500200

(c) After Expanding v2

q

v0(340, 0) v1(240, 2) v2(90, 1) v3(40, 0) v4(260, 2)

v5(360, 1)v6(180, 1)v7(240, 1)v8(340, 1)

v9(360, 0)
80 120 300

130

120

180 80 440

170

80

80 120

6024024014012012080

(d) After Terminating

Fig. 4. Stepwise Computation of N iso for dmax = 5min, s = 2m/s, and tq = 06:06:00

Notice that an algorithm that alternates between (completely) expanding the con-
tinuous network and (completely) expanding the discrete network is sub-optimal since
many portions of the network would be expanded multiple times. We empirically eval-
uate such an approach in Sec. 5.

4.2 Expiration of Vertices

Closed vertices are needed to avoid cyclic network expansion. In order to limit the
number of closed vertices that need to be kept in memory we introduce expired ver-
tices (Def. 4). Expired vertices are never revisited in future expansion steps, hence
they are not needed to prevent cyclic expansions and can be removed (Lemma 1).
Isochrones contain insufficient information to handle vertex expiration (Lemma 2).
Therefore, MINEX uses a counter-based solution to correctly identify expired vertices
and eagerly expire nodes during the expansion (Lemma 3).

Scalable Computation of Isochrones with Network Expiration 535

To facilitate the discussion we introduce a couple of auxiliary terms. For a vertex v,
the term in-neighbor refers to a vertex u with an edge (u, v) and the term out-neighbor
refers to a vertex w with an edge (v, w). Recall that the status of vertices transitions
from open (O) when they are encountered first, to closed (C) when they are expanded,
and finally to expired (X) when they are expired; the sets O, C, and X are pairwise
disjoint.

Definition 4 (Expired Vertex). A closed vertex, u ∈ C, is expired if all its
out-neighbors are either closed or expired, i.e., ∀v((u, v) ∈ E ⇒ v ∈ C ∪X).

Example 6. Consider the isochrone in Fig. 4(d). Vertex v3 is expired since v2 and v4
are closed, and v3 has no other out-neighbors. In contrast, v2 is not yet expired since
the out-neighbor v0 is not yet closed (and the expansion of v0 leads back to v2).

Lemma 1. An expired vertex u will never be revisited during the computation of the
isochrone and can be removed from C without affecting the correctness of MINEX.

Proof. There is only one way to visit a vertex u during network expansion: u has an
out-neighbor v (that is connected via an edge (u, v) ∈ E) and v ∈ O; the expansion of
v visits u. Since according to Def. 4 all of u’s out-neighbors are closed or expired, and
closed and expired vertices are not expanded (line 11 in Alg. 1), u cannot be revisited.

The identification of expired vertices according to Def. 4 has two drawbacks: (1) it
requires a database access to determine all out-neighbors since not all of them might
already have been loaded, and (2) the set X of expired vertices must be kept in memory.

Lemma 2. If the isochrone is used to determine the expiration of a closed vertex, u ∈
C, the database must be accessed to retrieve all of u’s out-neighbors, and X needs to
be stored in memory.

Proof. According to Def. 4, for a closed vertex u to expire we have to check that all
out-neighbors v are closed or expired. The expansion of u loaded all out-neighbors v
that have also an inverse edge, (v, u) ∈ E. For out-neighbors v that are not connected
by an inverse edge, (v, u) �∈ E, we have no guarantee that they are loaded. Therefore,
we need to access the database to get all adjacent vertices. Next, suppose that X is
not maintained in memory and there exists an out-neighbor v of u without an inverse
edge, i.e., (v, u) �∈ E. If v is in memory, its status is known. Otherwise, either v already
expired and has been removed, or it has not yet been visited. In the former case, u shall
expire, but not in the latter case, since the expansion of v (re)visits u. However, with
the removal of X we loose the information that these vertices already expired, and we
cannot distinguish anymore between not yet visited and expired vertices.

Example 7. The isochrone does not contain sufficient information to determine the ex-
piration of v2 in Fig. 4(c). While v1 and v3 are loaded and their status is known, the
out-neighbor v0 is not yet loaded (and actually violates the condition for v2 to expire).
To ensure that all out-neighbors are closed, a database access is needed. Next, consider
Fig. 4(d), where v3 is expired, i.e., X = {v3}. To determine the expiration of v2, we
need to ensure that v3 ∈ C ∪X . If X is removed from memory, the information that v3
is already expired is lost. Since v3 will never be revisited, v2 will never expire.

536 J. Gamper, M. Böhlen, and M. Innerebner

To correctly identify and remove all expired vertices without the need to access the
database and explicitly store X , MINEX maintains for each vertex, u, a counter, cntu,
that keeps track of the number of outgoing edges of u that have not yet been traversed.

Lemma 3. Let cntu be a counter associated with vertex u ∈ V . The counter is ini-
tialized to the number of outgoing edges, cntu = |{(u, v) | (u, v) ∈ E}|, when u is
encountered for the first time. Whenever an out-neighbor v of u is expanded, cntu is
decremented by 1. Vertex u is expired iff u ∈ C and cntu = 0.

Proof. Each vertex v expands at most once (when it is dequeued from O), and the
expansion of v traverses all incoming edges (u, v) and decrements the counter cntu of
vertex u by 1. Thus, each edge in the network is traversed at most once. When cntu = 0,
vertex u must have been visited via all of its outgoing edges. From this we can conclude
that all out-neighbors have been expanded and are closed, which satisfies the condition
for vertex expiration in Def. 4.

Example 8. In the isochrone in Fig. 4(d), vertex v3 is expired and can be removed since
cntv3 = 0 and v3 ∈ C. Vertex v2 expires when v0 is expanded and counter cntv2 is
decremented to 0. Similar, vertex v6 expires when v5 is expanded.

Lemma 4. Vertices cannot be expired according to an LRU strategy.

Proof. We show a counter-example in Fig. 5(a), which illustrates a multimodal network
expansion that started at q. Although q has been expanded and closed first, it cannot be
expired because an edge from vertex v, which will be expanded later, leads back to q
(and would lead to cyclic expansions). In contrast, the gray vertices that are expanded
and closed after q can be expired safely.

q v

(a) LRU Strategy

q

(b) Grid

q

(c) Spider

Fig. 5. Network Expiration

4.3 Properties

Vertex expiration ensures that the memory requirements are reduced to a tiny fraction
of the isochrone. Figures 5(b) and 5(c) illustrate the isochrone size and MINEX’s mem-
ory complexity for grid and spider networks, respectively. Solid black vertices (C) and
vertices with a bold border (O) are stored in memory, whereas gray vertices are ex-
pired (X) and removed from memory. The following two lemmas provide a bound for
the isochrone size and MINEX’s memory complexity for these two types of networks.
(Only the pedestrian mode is considered, though the results can easily be extended to
multimodal networks.)

Scalable Computation of Isochrones with Network Expiration 537

Lemma 5. The size of an isochrone, |V iso|, is O(d2max) for a grid network and
O(dmax) for a spider network and a central query point q.

Proof. Consider the grid network in Fig. 5(b). Without loss of generality, we measure
the size of an isochrone as the number of its vertices (i.e., open, closed, and expired
vertices), and we assume a uniform distance of 1 between connected vertices. The size
of an isochrone with distance d = 1, 2, . . . is given by the recursive formula |V iso|d =
|V iso|d−1 + 4d with |V iso|0 = 1; 4d is the number of new vertices that are visited
when transitioning from distance d−1 to d (i.e., the number of vertices at distance d
that are visited when all vertices at distance d−1 are expanded). This forms an arithmetic
series of second order (1, 5, 13, 25, 41, 61, . . .) and can also be written as |V iso|d =

1 +
∑d

i=0 4i = 2d2 + 2d+ 1, which yields |V iso| = O(d2max).
Next, consider the spider network in Fig. 5(c). Without loss of generality, we assume

a uniform distance of 1 between all adjacent vertices along the same outgoing line from
q. It is straightforward to see that the size of the isochrone is |V iso| = deg(q) · dmax +
1 = O(dmax), where deg(q) is the degree of vertex q.

Lemma 6. The memory complexity of MINEX is |O ∪ C| = O(dmax) = O(
√
|V iso|)

for a grid network andO(1) for a spider network and a central query point q.

Proof. Recall that MINEX keeps only the open and closed vertices, O ∪ C, in mem-
ory. Consider the grid network in Fig. 5(b). By referring to the proof of Lemma 5, the
cardinality of the open vertices at distance d can be determined as |O|d = 4d and the
cardinality of the closed vertices as |C|d = 4(d − 1). Thus, the memory requirements
in terms of dmax are |O ∪ C| = O(dmax).

To determine the memory requirements depending on the size of the isochrone,
|V iso|, we use the formula for the size of an isochrone from the proof of Lemma 5 and
solve the quadratic equation 2d2 + 2d+ 1− |V iso|d = 0, which has the following two

solutions: d1,2 =
−2±

√
22−4·2·(1−|V iso|d)

2·2 =
−1±

√
2|V iso|d−1

2 . Since the result must be

positive, d =
−1+

√
2|V iso|d−1

2 is the only solution. By substituting d in the above for-

mulas for open and closed vertices we get, respectively, |O|d = 4d = 4
−1+

√
2|V iso|d−1

2

and |C|d = 4(d− 1) = 4(
−1+

√
2|V iso|d−1

2 − 1), which proves |O ∪ C| = O(
√
V iso).

Next, we consider the spider network in Fig. 5(c) with the query point q in the cent-
re. It is straightforward to see that the cardinality of the open and closed vertices is
|O ∪ C| = 2 · deg(q) = O(1), where deg(q) is the degree of vertex q.

Theorem 1. Algorithm MINEX is optimal in the sense that all loaded vertices and
’csct’/’csdt’ edges are part of the isochrone, and each of these edges is loaded and
traversed only once.

Proof. When a vertex v is expanded, all incoming edges e = (u, v) are loaded and
processed (Alg. 1, line 1). If e is a ’csct’/’csdt’ edge, the reachable portion of e (includ-
ing the end vertices u and v) is added to the isochrone (line 1). While u might not be
reachable, v is guaranteed to be reachable since dv ≤ dmax. In contrast, ’dsct’/’dsdt’
edges are not added since they are not part of the isochrone; only the end vertices u and

538 J. Gamper, M. Böhlen, and M. Innerebner

v are accessible, which are added when the incoming ’csct’/’csdt’ edges are processed.
Therefore, since each vertex is expanded at most once each edge is loaded at most once,
and all loaded edges except ’dsct’/’dsdt’ edges are part of the isochrone.

5 Empirical Evaluation

5.1 Overview

Setup and Data Sets. In the experiments we measure memory and runtime complexity
of MINEX and compare it with the following alternative approaches:

Fig. 6. Network Expansion in IER

(1) Incremental network expan-
sion INE [19], which incremen-
tally loads the network but keeps
all loaded vertices in mem-
ory. (2) Dijkstra’s algorithm [6],
which initially loads the en-
tire network in memory. (3) In-
cremental Euclidean restriction
IER [19], which instead of load-
ing the entire network, uses the
Euclidean lower bound property
to incrementally load smaller
network chunks as illustrated in
Fig. 6. First, a chunk around q is
loaded that contains all vertices
that are reachable in walking mode (i.e., within distance dmax · s). After doing network
expansion in memory, for all encountered bus stops a new (smaller) chunk is loaded,
etc. Chunks are not re-loaded again if they are completely covered by network portions
that are already in memory. (4) PGR, which is based on PostgreSQL’s pgRouting and
works similar to IER, but uses the network distance instead of the Euclidean distance.

The multimodal networks and the schedules are stored in a PostgreSQL 8.4 database
with the spatial extension PostGIS 1.5 and the PG routing extension. All experiments
run in a virtual machine (64bits) on a Dual Processor Intel Xeon 2.67 GHz with
3 GB RAM. The algorithms were implemented in Java using the JDBC API to com-
municate with the database.

We test three real-world networks that are summarized in Table 1. Size is the network
size, and |V |, |E|, |E’csct’|, |E’dsdt’|, and |S| are the number of vertices, edges, pedes-
trian edges, edges of different means of transport, and schedule entries, respectively.
The network size is given in Megabyte, whereas the other columns show the number
of tuples in K. We use also synthetic grid and spider networks like the one shown in
Fig. 5(b) and 5(c). The walking speed in all experiments is set to 1m/s. Isochrone size
(|V iso|) and the memory requirements (|V MM |) are measured in terms of number of
vertices. The other input parameters vary from dataset to dataset.

Summary of Experiments. The first experiment in Sec. 5.2 measures memory and
confirms that thanks to vertex expiration MINEX’s memory requirements are only a

Scalable Computation of Isochrones with Network Expiration 539

Table 1. Real-World Data Sets: Italy (IT), South Tyrol (ST), and San Francisco (SF)

Data Size |V | |E| |E’csct’| |E’dsdt’| |S|
IT 2,128 1, 372.0 3, 633.7 3, 633.1 0.6 1.3
ST 137 77.7 197.8 182.4 9.4 179
SF 138 33.6 96.4 90.0 6.4 1, 112

small fraction of the isochrone size in all settings, whereas all other algorithms require
significantly more. The second experiment in Sec. 5.3 shows that IER loads many edges
multiple times, whereas MINEX loads each edge in the isochrone only once. The third
experiment in Sec. 5.4 measures the runtime. For isochrones that are smaller than 9% of
the network (which is frequently the case, especially for large and skewed regional net-
works) MINEX outperforms Dijkstra, whereas the latter is better for large isochrones,
provided that the entire network fits in memory.

5.2 Memory Consumption

0k

2k

4k

6k

 0 10 20 30 40 50 60

|V
M

M
|

dmax [minutes]

INE
MINEX

0k

2k

4k

6k

0k 2k 4k 6k

|V
M

M
|

|Viso|

INE
MINEX

(a) Grid

 0

 75

 150

 225

 300

 0 10 20 30 40 50 60

|V
M

M
|

dmax [minutes]

INE
MINEX

 0

 75

 150

 225

 300

 0 75 150 225 300

|V
M

M
|

|Viso|

INE
MINEX

(b) Spider

Fig. 7. Memory Requirements in Synthetic Networks

We begin with synthetic net-
works; only the pedestrian
mode is used. The results con-
firm Lemma 5 and 6 and
are shown in Fig. 7, where
dmax and the isochrone size
vary, respectively. For grid
networks, MINEX’s memory
requirements grow linearly in
dmax and with the square root
in |V iso|; INE’s memory con-
sumption corresponds to the
isochrone size, i.e., |V MM | =
|V iso|, and grows quadrati-
cally in dmax. In spider net-
works, the memory complex-
ity is constant for MINEX and
linear in dmax for INE.

Figure 8 shows the memory complexity for the real-world data sets. We compare ad-
ditionally with Dijkstra, IER, and PGR. As expected, MINEX’s memory consumption
is only a tiny fraction of the isochrone size, and it further decreases when the isochrone
reaches the sparse network boundary. In contrast, the memory of INE, PGR and IER
grows quadratically in dmax until the isochrone approaches the network border, where
the growing slows down. For the IT data set this effect is not visible since dmax is too
small. The memory of Dijkstra is equal to the size of the entire network, including ver-
tices and edges, which can be inferred from Table 1, e.g., 2.1 GB for IT. To keep small
values visible, the memory requirements of Dijkstra are not shown.

Figure 9 shows a 90 min isochrone for the ST network. Such regional or country-
wide networks typically have an irregular network structure, varying density of

540 J. Gamper, M. Böhlen, and M. Innerebner

50K

100K

150K

200K

250K

 0 50 100 150 200 250 300 350

|V
M

M
|

dmax [minutes]

IER
PGR
INE

MINEX

50K

100K

150K

200K

250K

0K 50K 100K 150K 200K 250K

|V
M

M
|

|Viso|

IER
PGR
INE

MINEX

(a) IT

10k
20k
30k
40k
50k
60k
70k
80k

 0 50 100 150 200

|V
M

M
|

dmax [minutes]

IER
PGR
INE

MINEX

10k
20k
30k
40k
50k
60k
70k
80k

10k 20k 30k 40k 50k 60k 70k

|V
M

M
|

|Viso|

IER
PGR
INE

MINEX

(b) ST

2k
4k
6k
8k

10k
12k
14k
16k

 0 10 20 30 40 50 60

|V
M

M
|

dmax [minutes]

IER
PGR
INE

MINEX

2K
4K
6K
8K

10K
12K
14K

0K 2K 4K 6K 8K 10K 12K 14K

|V
M

M
|

|Viso|

IER
PGR
INE

MINEX

(c) SF

Fig. 8. Memory Requirements in Real-World Data

vertices and edges, and fast wide-area transport systems. In this type of skewed net-
works, isochrones are characterized by many remote islands, and the size of isochrones
is typically only a small fraction of the (comparably very large) network. Thus, Dijkstra
is difficult to apply due to its high memory complexity, whereas MINEX requires only
a tiny amount of memory (which in practice is even much smaller than the isochrone).

Fig. 9. Isochrone in the Regional ST Network

5.3 Multiple Loading of Tuples

The experiment in Fig. 10 measures the total number of tuples (i.e., network edges)
that are loaded from the database, using a logarithmic scale. MINEX and INE load the
minimal number of tuples since each edge is loaded only once. They converge towards
Dijkstra when the isochrone approaches the network size. In Fig. 10(a) IER and PGR
load approximately the same number of tuples as MINEX since there is no overlapping
in the areas that are retrieved by the range queries. This is because we have only the
high-speed trains with very few stops. In contrast, in Fig. 10(b) and 10(c) the number
of overlapping range queries is large, yielding many vertices and edges that are loaded

Scalable Computation of Isochrones with Network Expiration 541

multiple times. The reason here is the high density of public transport stops. Fig. 6
illustrates the overlapping of IER, which can be quite substantial.

0.1k

1k

10k

100k

1000k

 50 100 150 200 250 300 350

|L
oa

de
d

tu
pl

es
|

dmax [minutes]

DIJK
IER

PGR
MINEX/INE

(a) IT

0.1k

1k

10k

100k

1000k

 50 100 150 200

|L
oa

de
d

tu
pl

es
|

dmax [minutes]

DIJK
PGR
IER

MINEX/INE

(b) ST

0.1k

1k

10k

100k

1000k

 10 20 30 40 50 60

|L
oa

de
d

tu
pl

es
|

dmax [minutes]

IER
PGR
DIJK

MINEX/INE

(c) SF

Fig. 10. Number of Loaded Tuples

5.4 Runtime

Figure 11 shows the runtime depending on dmax and the isochrone size. For small val-
ues of dmax and small isochrones, Dijkstra has the worst performance due to the initial
loading of the entire network. For large dmax and isochrones, Dijkstra (though limited
by the available memory) is more efficient since the initial loading of the network using
a full table scan is faster than the incremental loading in MINEX and INE, which re-
quires |V iso| point queries. For MINEX we expect a runtime that is comparable to INE
since essentially the same expansion strategy is applied (modulo vertex expiration).

0

20

40

60

80

100

 0 100 200 300 400 500 600

ru
nt

im
e

[s
]

dmax [minutes]

DIJK
MINEX

INE
PGR
IER

20

40

60

80

100

0K 100K 200K 300K 400K 500K

ru
nt

im
e

[s
]

|Viso|

DIJK
MINEX

INE
PGR
IER

(a) IT

0

2

4

6

8

10

 0 20 40 60 80 100 120 140

ru
nt

im
e

[s
]

dmax [minutes]

PGR
IER

MINEX
INE

DIJK

0

2

4

6

8

10

0K 5K 10K 15K 20K 25K 30K 35K

ru
nt

im
e

[s
]

|Viso|

PGR
IER

MINEX
INE

DIJK

(b) ST

0

1

2

3

4

 0 10 20 30 40 50 60

ru
nt

im
e

[s
]

dmax [minutes]

PGR
IER

MINEX
INE

DIJK

0

1

2

3

4

0K 2K 4K 6K 8K 10K 12K 14K

ru
nt

im
e

[s
]

|Viso|

PGR
IER

MINEX
INE

DIJK

(c) SF

Fig. 11. Runtime in Real World Data

The first experiment in Fig. 11(a) on the IT data set runs on a large skewed net-
work with few and distantly located train stations. IER and PGR outperform Dijkstra
since there are almost no overlappings due to the sparse number of train stations. INE
and MINEX are slower than IER and PGR because of the larger number of database
accesses (one access for each vertex expansion), but they are more efficient than Di-
jkstra. The break-even point occurs after 600 minutes when the size of the isochrone
correspond to 38% of the network. Figure 11(b) shows the runtime of the regional net-
work ST. Dijkstra outperforms INE and MINEX after a dmax of 60 minutes when the

542 J. Gamper, M. Böhlen, and M. Innerebner

isochrone size corresponds to 9% of the network. IER and PGR collapse because of the
large number of overlapping loaded areas in range queries. Figure 11(c) shows the run-
time in an urban network with a duration of one hour. The break-even point is reached
at dmax = 30min, which corresponds to 11% of the entire network.

In Fig. 12(a) we further analyze the break-even point for the real-world networks and
for grid and spider networks with 2k, 6k, and 10k vertices (G2K, S2K, . . .).

 5

 10

 15

 20

 25

 30

 35

G
2K

G
6K

G
10

K

S
2K

S
6K

S
10

K IT S
T

S
F

ne
tw

or
k

si
ze

 [%
]

(a) Break-even Point

 0

5

10

15

20

IT S
T

S
F IT S
T

S
F IT S
T

S
F IT S
T

S
F IT S
T

S
F

ru
nt

im
e

[s
]

MINEX INE

DIJK

IER

PGR

(b) Network Independence

Fig. 12. Runtime

We empirically determined
that the break-even point is
reached when the size of
the isochrone is between 9–
38% of the network size.
Since the runtime of both
Dijkstra and MINEX is
dominated by the database
accesses and the loading of
the (sub)network, the break-
even point occurs when the
time for MINEX’s incremental loading and the time for Dijkstra’s initial loading cross.
In terms of dmax, the break-even point varies depending on the walking speed and the
frequency of the public transportation.

Figure 12(b) confirms that MINEX is independent of the network size. We compute
an isochrone of a fixed size |V iso| = 3.000 for the different real-world data sets. The
runtime of MINEX and INE is almost the same for all data sets. In contrast the runtime
of Dijkstra depends directly from the network size. IER and PGR depends on the density
of the public transport network.

6 Conclusion and Future Work

In this paper we introduced isochrones for multimodal spatial networks that can be
discrete or continuous in, respectively, space and time. We proposed the MINEX al-
gorithm, which is independent of the actual network size and depends only on the
isochrone size. MINEX is optimal in the sense that only those network portions are
loaded that eventually will be part of the isochrone. The concept of expired vertices
reduces MINEX’s memory requirements to keep in memory only the minimal set of
expanded vertices that is necessary to avoid cyclic expansions. To identify expired ver-
tices, we proposed an efficient solution based on counting the number of outgoing edges
that have not yet been traversed. A detailed empirical study confirmed the analytical re-
sults and showed that the memory requirements are very small indeed, which makes the
algorithm scalable for large networks and isochrones.

Future work points in different directions. First, we will investigate multimodal net-
works that include additional transport systems such as the use of the car. Second, we
will investigate the use of various optimization techniques in MINEX as well as approx-
imation algorithms to improve the runtime performance for large isochrones. Third, we
will study the use of isochrones in new application scenarios.

Scalable Computation of Isochrones with Network Expiration 543

References

1. Balasubramanian, V., Kalashnikov, D.V., Mehrotra, S., Venkatasubramanian, N.: Efficient
and scalable multi-geography route planning. In: EDBT, pp. 394–405 (2010)

2. Bast, H.: Car or Public Transport—Two Worlds. In: Albers, S., Alt, H., Näher, S. (eds.)
Efficient Algorithms. LNCS, vol. 5760, pp. 355–367. Springer, Heidelberg (2009)

3. Bauer, V., Gamper, J., Loperfido, R., Profanter, S., Putzer, S., Timko, I.: Computing
isochrones in multi-modal, schedule-based transport networks. In: ACMGIS, pp. 1–2 (2008)

4. de Almeida, V.T., Güting, R.H.: Using Dijkstra’s algorithm to incrementally find the k-
nearest neighbors in spatial network databases. In: SAC, pp. 58–62 (2006)

5. Deng, K., Zhou, X., Shen, H.T., Sadiq, S.W., Li, X.: Instance optimal query processing in
spatial networks. VLDB J. 18(3), 675–693 (2009)

6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathe-
matik 1(1), 269–271 (1959)

7. Ding, B., Yu, J.X., Qin, L.: Finding time-dependent shortest paths over large graphs. In:
EDBT, pp. 205–216 (2008)

8. Gamper, J., Böhlen, M.H., Cometti, W., Innerebner, M.: Defining isochrones in multimodal
spatial networks. In: CIKM, pp. 2381–2384 (2011)

9. Gubichev, A., Bedathur, S., Seufert, S., Weikum, G.: Fast and accurate estimation of shortest
paths in large graphs. In: CIKM, pp. 499–508. ACM, New York (2010)

10. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum
cost paths. IEEE Trans. on Systems Science and Cybernetics SSC-4(2), 100–107 (1968)

11. Hu, H., Lee, D.-L., Xu, J.: Fast Nearest Neighbor Search on Road Networks. In: Ioannidis,
Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust,
T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 186–203. Springer, Heidelberg (2006)

12. Huang, R.: A schedule-based pathfinding algorithm for transit networks using pattern first
search. GeoInformatica 11(2), 269–285 (2007)

13. Jing, N., Huang, Y.-W., Rundensteiner, E.A.: Hierarchical encoded path views for path query
processing: An optimal model and its performance evaluation. IEEE Trans. Knowl. Data
Eng. 10(3), 409–432 (1998)

14. Jung, S., Pramanik, S.: An efficient path computation model for hierarchically structured
topographical road maps. IEEE Trans. Knowl. Data Eng. 14(5), 1029–1046 (2002)

15. Kanoulas, E., Du, Y., Xia, T., Zhang, D.: Finding fastest paths on a road network with speed
patterns. In: ICDE (2006)

16. Kolahdouzan, M.R., Shahabi, C.: Voronoi-based k nearest neighbor search for spatial net-
work databases. In: VLDB, pp. 840–851 (2004)

17. Kriegel, H.-P., Kröger, P., Renz, M., Schmidt, T.: Hierarchical Graph Embedding for Efficient
Query Processing in Very Large Traffic Networks. In: Ludäscher, B., Mamoulis, N. (eds.)
SSDBM 2008. LNCS, vol. 5069, pp. 150–167. Springer, Heidelberg (2008)

18. Marciuska, S., Gamper, J.: Determining Objects within Isochrones in Spatial Network
Databases. In: Catania, B., Ivanović, M., Thalheim, B. (eds.) ADBIS 2010. LNCS, vol. 6295,
pp. 392–405. Springer, Heidelberg (2010)

19. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network
databases. In: VLDB, pp. 802–813 (2003)

20. Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path distance estimation in
large networks. In: CIKM, pp. 867–876 (2009)

21. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing in spatial
databases. In: SIGMOD Conference, pp. 43–54 (2008)

22. Thorup, M., Zwick, U.: Approximate distance oracles. In: STOC, pp. 183–192. ACM, New
York (2001)

A Dataflow Graph Transformation Language and

Query Rewriting System for RDF Ontologies�

Marianne Shaw1, Landon T. Detwiler2, James F. Brinkley2,3, and Dan Suciu1

1 Computer Science & Eng., University of Washington, Seattle WA
2 Dept. of Biological Structure, University of Washington, Seattle, WA

3 Dept. of Medical & Biological Informatics, University of Washington, Seattle, WA

Abstract. Users interested in biological and biomedical information
sets on the semantic web are frequently not computer scientists. These
researchers often find it difficult to use declarative query and view def-
inition languages to manipulate these RDF data sets. We define a lan-
guage IML consisting of a small number of graph transformations that
can be composed in a dataflow style to transform RDF ontologies. The
language’s operations closely map to the high-level manipulations users
undertake when transforming ontologies using a visual editor. To reduce
the potentially high cost of evaluating queries over these transformations
on demand, we describe a query rewriting engine for evaluating queries
on IML views. The rewriter leverages IML’s dataflow style and optimiza-
tions to eliminate unnecessary transformations in answering a query over
an IML view. We evaluate our rewriter’s performance on queries over use
case view definitions on one or more biomedical ontologies.

1 Introduction

A number of biological and biomedical information sets have been developed for
or converted to semantic web formats. These information sets include vocabu-
laries, ontologies, and data sets. They may be available in basic RDF, a data
model for the semantic web in which graphs are collections of triple statements,
or languages with higher-level semantics, such as OWL. Researchers want to
leverage the biomedical information available on the semantic web.

Mechanisms are available for scientists to manipulate RDF ontologies. Re-
searchers can manually modify a copy of the content or develop a custom pro-
gram to transform the data. Visual editors ([6][5][2]) can be used to modify and
augment a copy of the data. Extraction tools such as PROMPT [21] can ex-
tract subsets of information; these subsets can be combined and modified by
a visual editor. The high-level functionality of these visual tools maps well to
researchers’ mental model for transforming an ontology. Unfortunately, the data
must be locally acquired and the user actions repeated when the data is updated.

Declarative view definition languages such as RVL [18], NetworkedGraphs [24],
and vSPARQL [26] allow users to define views that transform an RDF informa-
tion set. These view definitions can be evaluated on-demand, avoiding stale data

� This work was funded by NIH grant HL087706.

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 544–561, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Dataflow Graph Transformation Language and Query Rewriting System 545

and expensive user actions. They can also be maintained, evolved, and used to
define complex transformations. Unfortunately, non-technical users find it diffi-
cult to create declarative view definitions that perform the high-level operations
available in visual editors. This problem is exacerbated by the need to reconstruct
the unmodified data along with the transformations. Transformation languages
enable users to specify only the modifications that need to be applied to data.

In this paper, we make two contributions. First, we present a high-level
dataflow view definition language that closely matches users’ mental model for
transforming ontologies using visual editing tools. The language consists of a
small number of graph transformations that can be composed in a dataflow
style. Instead of a single declarative query, a user specified sequence of operations
defines a transforming view over which queries can be rewritten and evaluated.

Second, we address the query processing challenge for our language. We
present a query rewriting system that composes queries with IML view defini-
tions, reducing the high cost of on-demand evaluation of queries on transformed
ontologies. The rewriter leverages IML’s dataflow style to eliminate transforma-
tions that are redundant or unnecessary for answering the query. The rewriter
incorporates a set of optimizations to streamline the generated query. It then
uses graph-specific statistics to produce an efficient query.

We evaluate our query rewriting engine on queries over a set of use case view
definitions over one or more of four biomedical ontologies [26]. We compare the
performance of our rewritten queries against the cost of first materializing and
then querying a transformed ontology. 60% of the rewritable queries have an
execution time at least 60% less than the view materialization time.

The paper is structured as follows. We present a motivating example in Sect. 2.
Section 3 presents the InterMediate Language through an example. Section 4
presents the query rewriting engine and its optimizations. After describing our
implementation in Sect. 5, we leverage IML definitions of nine use case views and
their associated queries to evaluate our query rewriting engine’s performance in
Sect. 6. We discuss related work in Sect. 7 before concluding in Sect. 8.

2 Motivating Example

A radiologist spends significant time manually inspecting and annotating medical
images. He notes normal anatomical objects and anomalous regions and growths;
these annotations are used by a patients’ doctor to suggest follow-up treatment.

To reduce the time and manual effort consumed by this task, the radiologist
wants to develop an application (similar to [1]) that provides a list of medical
terms for annotating an image. The radiologist will indicate the region of the
body (e.g. gastrointestinal tract) that the image corresponds to, and the appli-
cation should provide a set of terms that can be used to “tag” visible objects.

The radiologist needs the annotation terms that he associates with objects in
the image to be well-defined. This ensures that there will be no misunderstanding
by the doctors that read his findings. Therefore, the provided terms should
be concepts from established biomedical references. The Foundational Model

546 M. Shaw et al.

of Anatomy (FMA) [23], a reference ontology modeling human anatomy, can
be used for anatomical terms, and the National Cancer Institute Thesaurus
(NCIt) [4], a vocabulary containing information about cancer, can be used to
provide terms for anomalous growths.

A visual editor like Protege can be used to identify the objects that might be
visible in a medical image. Simply displaying all terms is impractical; the FMA
contains 75,000 classes and the NCIt contains 34,000 concepts. This identifica-
tion process is tedious, time-intensive, and error-prone. For example, identifying
visible parts of the gastrointestinal tract in the FMA requires inspection of more
than 1300 objects. This manual process must be repeated every time the FMA
and NCIt are updated – approximately yearly for the FMA, monthly for the
NCIt. Instead, a view definition can be created and evaluated on demand.

3 A Dataflow Language for Transforming RDF Ontologies

We propose the InterMediate Language (IML), a view definition language that
both 1) enables non-technical users to define transformations of RDF ontologies,
and 2) makes it possible to efficiently answer queries over those transformations.

There are many ways to transform an ontology to create a new ontology.
Facts about individual classes, properties, or restrictions can be added, deleted,
or modified. Relevant subsets or subhierachies of the ontology can be extracted
and combined, or restructured as needed. Unnecessary subsets or subhierarchies
can be removed. Multiple ontologies can be merged to create a new one.

IML has been designed to support this range of functionality. The language
consists of a small number of high-level graph transformations that correspond
to the functionality provided in visual editors. (In Sect. 7, we compare IML to
Protege/PROMPT, a popular visual ontology editor.) A sequence of operations
produce a transforming view definition where output of one operation flows as
input, via a default graph, to the next; this corresponds to making changes,
sequentially, to a local copy of an ontology in a visual editor. Transforming view
definitions are named and can be referenced by other transforming views.

3.1 IML Transforming Operations

IML contains selection, modification, addition, and utility operations. Table 1
contains the grammar for IML’s operations. In their simplest form, IML opera-
tions operate on concretely specified resources. For more advanced transforma-
tions, IML leverages the syntax of SPARQL, the query language for RDF. IML
uses the SPARQL grammar’s WhereClause for querying graph patterns in an
RDF graph and its ConstructTemplate for producing new graphs.

We discuss common IML operations in the context of a simplified IML view
for the motivating example in Sect. 2. From the FMA, 1) lines 1-7 extract the
partonomy of the gastrointestinal tract, eliminating variants of the “part” prop-
erty label; 2) lines 8-11 identify the subclasses of fma:Cardinal_organ_part
recursively (approximating visibility in images); and 3) lines 13-15 extract the
visible part hierarchy by joining the partonomy and visible organ parts.

A Dataflow Graph Transformation Language and Query Rewriting System 547

Table 1. IML Transforming Operations

extract edges ConstructTemplate OptClauses
extract cgraph { varOrTerm ImlPropertyList } OptClauses
extract reachable { varOrTerm ImlPropertyList } OptClauses
extract path { varOrTerm ImlPropertyList varOrTerm } OptClauses
extract recursive { ConstructTemplate OptClauses } { ConstructTemplate OptClauses }
add edge < varOrTerm verb varOrTerm > OptClauses
delete edge < varOrTerm verb varOrTerm > OptClauses
delete node varOrTerm OptClauses
delete property verb OptClauses
delete cgraph { varOrTerm ImlPropertyList } OptClauses
replace edge property < varOrTerm verb varOrTerm > verb OptClauses
replace edge (subject|object|literal) < varOrTerm verb varOrTerm > varOrTerm OptClauses
replace property verb verb OptClauses
replace (node|literal) varOrTerm varOrTerm OptClauses
merge nodes varOrTermList CreateNode RetainElimList MergeSourceList OptClauses
split node varOrTerm SplitNodeList OptClauses
union graph SourceSelectorList
copy graph SourceSelector
OptClauses := (graph SourceSelector)? WhereClause?
SourceSelector := IRIref
ImlPropertyList := ’[’ ImlProperty (’,’ ImlProperty)* ’]’
ImlProperty := (varOrTerm |(outgoing | incoming) (varOrTerm)?)
CreateNode := create SkolemFunction
RetainElimList := (((retain | eliminate) varOrTerm ImlPropertyList)+)?
MergeSourceList := ((merge source varOrTerm sourceSelector)+)?
SplitNodeList := CreateNamedNode RetainElimList (CreateNamedNode RetainElimList)+
CreateNamedNode := create IRIref ’,’ SkolemFunction
VarOrTermList := ’[’ varOrTerm (’,’ varOrTerm)* ’]’

1) INPUT <http://.../fma> # Extract partonomy of GI tract
2) { extract_cgraph { fma:GI_tract [outgoing(fma:regional_part), outgoing(fma:systemic_part),
3) outgoing(fma:constitutional_part)] } graph <http://.../fma>
4) replace_property fma:regional_part fma:part
5) replace_property fma:systemic_part fma:part
6) replace_property fma:constitutional_part fma:part
7) } OUTPUT <gi_part_hierarchy>

8) INPUT <http://.../fma> # Find subclasses of Cardinal_organ_part (visible on images)
9) { extract_reachable { fma:Cardinal_organ_part [incoming(rdfs:subClassOf)] }
10) graph <http://.../fma>
11) } OUTPUT <visible>

12) INPUT <gi_part_hierarchy>, <visible> # Select visible parts by joining the part hierarchy
13) { extract_edges { ?a fma:part ?c } # and the set of visible elements.
14) where { graph <gi_part_hierarchy> { ?a fma:part ?c } .
15) graph <visible> { ?x localhost:reaches ?c } . }
16) add_edge <fma:Appendix fma:part fma:Appendix_tip>
17) delete_edge <fma:Appendix fma:part fma:Tip_of_appendix>
18) } OUTPUT <visble_hierarchy>

Selection. A technique used to create a new ontology is to select subsets of
relevant information from an existing one and combine them, via join or union.
The ability to extract relevant parts of an ontology is critical because many
ontologies contain considerably more information than is needed by a scientist.

IML’s extract_edges operation enables the selection of specific relevant
edges from an ontology. For example, extract_edges { ?a fma:FMAID ?c }

where { ?a fma:FMAID ?c } selects all of the FMAIDs from the FMA. The op-
eration can also be used to join two RDF graphs. Lines 13-15 extract the visible
parts of the GI tract by joining the part hierarchy with the visible organ parts.

548 M. Shaw et al.

Commonly, users need to select an entire hierarchy from an ontology. Using
the extract_cgraph operation, a user specifies a starting resource and a set of
properties that are recursively followed to extract a connected graph. Lines 2-3

select the partonomy of the gastrointestinal tract by recursively extracting all of
its regional, systemic, and constitutional parts. Similarly, extract_reachable
produces a list of all nodes that can be reached by recursing over a set of proper-
ties. Line 9 recursively finds all of the subclasses of fma:Cardinal_organ_part
to identify anatomical elements that may be visible on a medical image.

Modification. When leveraging an existing ontology, scientists often delete,
modify or rename some of the content. The delete_edge operation can be used
to eliminate edges from an ontology; line 17 deletes the edge specifying that
fma:Appendix has part fma:Tip_of_appendix. All instances of a resource or
property in a graph can be eliminated with delete_node or delete_property.

Users may need to modify triples from an RDF graph. The replace_node

and replace_property operations replace all instances of a resource in a graph.
Lines 4-6 replace all extracted part edges in the GI tract partonomy with a uni-
form fma:part edge. For more fine-grained replacements, the replace_edge_*

operations can change the subject, property, or object of a RDF triple.

Addition. Users can add new facts to an ontology using IML’s add_edge op-
eration, which adds new triples to an RDF graph. Line 16 adds a new edge
indicating that fma:Appendix has part fma:Appendix_tip.

4 IML Query Rewriting and Optimization

A typical IML program is a dataflow diagram consisting of a sequence of IML
operations. A naive approach to evaluate an IML program is to evaluate each
operation sequentially. This is inefficient, as each operation produces an inter-
mediate result that may be comparable in size to the input RDF data.

We have developed a system for rewriting queries over IML view definitions.
The rewriter leverages IML’s dataflow style to combine operations and eliminate
transformations in the view definition that are unnecessary for answering the
query, thus reducing query evaluation time.

The query rewriting engine is depicted in Fig. 1. The IML view definition
and query are parsed into an abstract syntax tree. Individual operations are
converted into a set of Query Pattern Rules (QPRs) and combined to create
a rewritten QPR set representing the query. During this process, optimizations
eliminate unnecessary or redundant transformations. Performance optimizations
are applied before the query is converted to vSPARQL and evaluated.

vSPARQL is an extension to the SPARQL1.0 standard that enables trans-
forming views through the use of (recursive) subqueries, regular-expression styled
property path expressions, and dynamic node creation using skolem functions.
We describe a vSPARQL view definition (below) for the IML view in Sect. 3.

vSPARQL supports CONSTRUCT-style subqueries to generate intermediate re-
sults. The subquery on lines 14-17 creates an RDF graph <visible> listing all

A Dataflow Graph Transformation Language and Query Rewriting System 549

Fig. 1. Overview of IML query rewriting system

of the subclasses of fma:Cardinal_organ_part using a recursive property path
expression. Recursive subqueries consist of two or more CONSTRUCT queries, a
base case and a recursive case; the recursive case is repeatedly evaluated until
a fixed point is reached. Lines 2-13 define a recursive query that extracts the
partonomy of the gastrointestinal tract into <gi_part_hierarchy>. The results
of the two subqueries are joined on lines 19-20.

1) construct { ?a fma:part ?c . fma:Appendix fma:part fma:Appendix_tip } # Add_edge
2) from namedv <gi_part_hierarchy> [# Extract partonomy of GI tract
3) construct { fma:Gastrointestinal_tract fma:part ?c } # Base case
4) from <http://.../fma>
5) where { fma:Gastrointestinal_tract ?p ?c .
6) filter((?p=fma:regional_part)||(?p=fma:systemic_part)||(?p=fma:constitutional_part)) }
7) union
8) construct { ?prev fma:part ?c } # Recursive case
9) from <http://.../fma>
10) from namedv <gi_part_hierarchy>
11) where { graph <gi_part_hierarchy> { ?a fma:part ?prev }
12) ?prev ?p ?c .
13) filter((?p=fma:regional_part)||(?p=fma:systemic_part)||(?p=fma:constitutional_part)))}]
14) from namedv <visible> [# Find subclasses of Cardinal_organ_part (visible on images)
15) construct { fma:Cardinal_organ_part lcl:reaches ?b }
16) from <http://.../fma>
17) where { ?b rdfs:subClassOf* fma:Cardinal_organ_part }]
18) where { # Select visible parts by joining the part hierarchy
19) graph <gi_part_hierarchy> { ?a fma:part ?c } # and the set of visible elements.
20) graph <visible> { ?x lcl:reaches ?c }
21) FILTER((?a != fma:Tip_of_appendix) && (?c != fma:Tip_of_appendix)) # Delete_edge }

The working draft for SPARQL1.1 includes property path expressions, em-
bedded subqueries, and skolem functions. Many, but not all, vSPARQL recursive
subqueries can be expressed using property path expressions, including the sub-
query in lines 2-13. SPARQL1.1’s property path expressions cannot require
multiple constraints on nodes along a path, nor recursively restructure a graph.

4.1 Query Pattern Rule (QPR) Sets

During rewriting each IML operation is converted into a set of Query Pattern
Rules (QPRs). Each QPR consists of a graph pattern, a list of constraints,
and a graph template. The QPR indicates that if the constrained pattern (which

550 M. Shaw et al.

Fig. 2. Example QPR: If the default graph contains a triple matching (fma:Liver ?part
?c), where ?part is either fma:regional part or fma:systemic part, add it to our output.

may contain disallowed triples), is found in the graph to which it is applied, the
corresponding template should be added to the output. A QPR is in Fig. 2.

For each IML operation, a set of QPRs is generated. The result of an IML
operation is the union of all of the QPRs in the QPR set. Many operations
permit the optional specification of a WhereClause for defining variables via
query pattern bindings. The WhereClause is separated into graph pattern and
FILTER elements; these define a QPR’s pattern and constraints, respectively.
UNION and OPTIONAL statements inside of WhereClauses cause multiple QPR
sets to be generated, one for each combination of possible WhereClause patterns.

4.2 Query Rewriting Process

The rewriting engine starts with the last IML operation in the query and pro-
ceeds, operation by operation, towards the top of the query block. At each step,
the IML operation is first converted into a QPR set; this QPR set is then com-
bined with the working QPR set to produce a new working QPR set. If an
IML operation iml_op_x references a subquery block via the GRAPH keyword,
the rewriting engine recursively rewrites iml_op_x’s pattern over the named
subquery block to produce a QPR set for iml_op_x. The rewriter combines the
QPR set for iml_op_x with the current working set and continues to the next
preceding IML operation. After the first IML operation in the query’s subquery
block is processed (i.e. the top of the IML block is reached), the working QPR
set represents the overall rewritten query that must be evaluated.

As each IML operation iml_op_x is encountered, the rewriting engine com-
bines iml_op_x’s QPR set with the working QPR set. It does this by combining
each QPR in the working set with each of the QPRs in iml_op_x’s QPR set. If
a QPR pattern has more than one element (i.e. triple pattern), each element is
unified with each of iml op x’s QPRs.

QPRs are combined by unifying the pattern of one QPR with the template
of the other. If no unification is found, then no QPR is produced. If a unification
is found, then the unifying values are substituted in to produce a new QPR.

Unification Example: We illustrate this process with an example. Figure 3
depicts two IML operations, extract_edges and add_edge, and their QPR sets.
Each of add_edge’s two QPRs must be unified with extract_edges’ single QPR.
Unifying add_edge’s QPR1.pattern and extract_edges’ QPR1.template pro-
duces a QPR equivalent to extract_edges’ QPR1. Figure 3(c) presents the unifi-
cation found for add_edge’s QPR2.pattern and extract_edges’QPR1.template,
producing Fig 3(d)’s QPR. The final QPR set contains both of these QPRs.

A Dataflow Graph Transformation Language and Query Rewriting System 551

Fig. 3. Unifying (a) extract edge’s QPR1.template and (b) add edge’s QPR2.pattern
produces the unification set (c) and QPR (d)

More generally, for two IML operations iml_op_1 and iml_op_2, we combine
the two QPRs by finding a possible unification of pattern2 with template1.
If a unification is found, we substitute those unifying values into pattern1

and constraint1 (producing pattern1’ and constraint1’), and constraint2

and template2 (producing constraint2’ and template2’) to generate a QPR
(result_QPR) that can be added to the new working set.

iml_op_1: pattern1 + constraint1 -> template1

iml_op_2: pattern2 + constraint2 -> template2

result_QPR: pattern1’ + constraint1’ + constraint2’ -> template2’

4.3 Rewriting Optimizations

Rewriting can produce working sets that have a large number of QPRs. At every
step in the rewriting process, every QPR in the current working set is combined
with every QPR in the preceding operation’s QPR set. If a QPR’s pattern has
multiple elements, each of these elements must be combined with every QPR in
the preceding operation’s QPR set.

This rule explosion is compounded by the fact that many IML operations
generate QPR sets with multiple rules. The add_edge, union_graphs, and
replace_* operations all produce a minimum of 2 QPRs, while the merge_nodes
and split_node operations each produce a minimum of 5 QPRs. UNION and
OPTIONAL statements, as well as multiple result triples for the extract_edges

operation, can cause additional QPRs to be added to an operation’s QPR set.

552 M. Shaw et al.

Many of the QPRs in the rewritten query’s QPR set may be invalid (i.e.,
will never produce a valid result) or redundant, yet increase the cost of query
evaluation. In the next two sections, we describe optimizations to both slow this
rule explosion, by eliminating invalid or redundant rules, and make evaluation
of the generated rules more efficient. We use “QPR” and “rule” interchangeably.

4.4 Rule-Based Optimizations

Our rewriting engine applies rule-based optimizations to the working QPR set
after rewriting over an IML operation; we describe them in this section. Several
of these optimizations use RDF characteristics to eliminate invalid rules.

Constraint Simplification. The Constraint Simplification optimization iden-
tifies and eliminates those rules whose constraints will always be false. This
optimization simplifies a rule by evaluating expressions in its constraints, fo-
cusing on equality and inequality expressions.

Bound Template Variables. The Bound Template Variables optimization
eliminates rules where the variables in the template are not used in the pattern;
these rules will never produce a valid result. This scenario often occurs when an
operation’s WhereClause contains a UNION or OPTIONAL statement.

RDF Literal Semantics. RDF requires both subjects and predicates to be
URIs, not literals. The RDF Literal Semantics optimization eliminates rules that
have a pattern or template with a literal in the subject or predicate position.

Literal Range Paths. RDF Schema enables ranges to be associated with spe-
cific properties in an RDF graph. Thus, if a property p has a literal range (e.g.
integer, boolean), any triple with predicate p will have a literal as the object.
RDF restricts literals to the object position in a triple. The Literal Range Paths
optimization eliminates any QPR whose pattern tries to match a path of length
2, when the first triple in the path has a property with a literal range. Lit-
eral range properties are provided on a per-ontology basis and only applied to
WhereClauses evaluated against an unmodified input ontology.

Observed Paths. The Observed Paths optimization relies on the fact that not
all pairs of properties will be directly connected via a single resource. If a QPR
pattern contains a path that is never observed in the underlying RDF ontology,
the pattern will never match the data and the rule can be eliminated. This
optimization uses a per-ontology list of property pairs to eliminate QPRs; it is
applied to patterns that are matched against the unmodified RDF ontology.

Query Containment. The Query Containment optimization determines which,
if any, of the rules in a QPR set are redundant and eliminates them. If QPR1 is
contained by QPR2, then QPR1 will contribute a subset of the triples generated
by QPR2; QPR1 is redundant and can be removed from the QPR set.

This optimization checks if a QPR is contained by another QPR by determin-
ing if there is a homomorphism between the two QPRs. Let q1 and q2 represent
two QPRs, and let tq1 and tq2 represent triples that are produced by q1 and q2,

A Dataflow Graph Transformation Language and Query Rewriting System 553

respectively. A homomorphism f : q2 → q1 is a function f : variables(q2) →
variables(q1) ∪ constants(q1) such that: (1) f(body(q2)) ⊆ body(q1) and (2)
f(tq1) = tq2. The homomorphism theorem states that q1 ⊆ q2 iff there exists a
homomorphism f : q2→ q1.

To determine if there is a homomorphism between two QPRs, we map their
patterns to a SAT problem. If a possible solution is found by a SAT solver,
meaning that QPR1 is contained by QPR2, we substitute the values from the
homomorphic mapping into both QPRs’ constraints to determine if QPR1 is
indeed contained by QPR2.

The scenario in which one query is contained by another often occurs when an
operation’s WhereClause contains an OPTIONAL statement. The query contain-
ment optimization is only applied when rewriting over a view with this property.

4.5 Performance Optimizations

When converting the final rewritten QPR set into a vSPARQL query, we use
optimizations to reduce the cost of evaluating the rewritten query.

Query-Template Collapse. The Query Template Collapse optimization iden-
tifies QPRs with identical patterns and constraints, and produces a single
vSPARQL subquery with multiple triples in the CONSTRUCT template.

Query Minimization. Rewriting a query over a view can produce QPRs with
redundant pattern elements. This often happens when multiple elements in the
WhereClause need to be rewritten over the same IML view. The Query Mini-
mization optimization detects and eliminates redundant elements in a pattern.

This optimization builds upon our Query Containment optimization. For a
given QPR q, we remove a single pattern element wc to create q’. If q’ is
contained by the original query q, we can remove wc permanently from q; if
not, wc is not redundant and must remain in q. We repeat this process for each
element in the QPR’s pattern.

Statistics-based Query Pattern Reordering. IML’s rewriting engine con-
verts QPRs into vSPARQL subqueries. Each QPR’s pattern and constraints

are converted into a WHERE clause. During conversion, the rewriter has two goals,
to minimize the cost of evaluating: 1) individual QPRs, and 2) all QPRs.

The rewriter uses per-ontology statistics, shown in Table 2, to achieve these
two goals. These statistics are used to assign an expected triple result set size to
individual elements in a QPR pattern based upon Table 3. Elements connected
via a shared variable are grouped and then ordered with the more selective
elements first. For query patterns containing property path expressions, we es-
timate the triple set size using the estimated fan in (fan out) of the path. The
fanInPath(pE) function recursively calculates the fan in of a path expression.

fanInPath(pE): // Uses statistics in Table 2

Property(prop): FanIn(prop)

Inverse(Property(prop)): FanOut(prop)

Alternate(lpath,rpath): fanInPath(lpath) + fanInPath(rpath)

554 M. Shaw et al.

Table 2. Per RDF Graph Statistics

Overall Graph Statistics For Each Property p

Total Triples Average Fan In Degree # Total Triples Fan Out(p)
Distinct Subjects Average Fan Out Degree # Distinct Subjects Fan In(p)
Distinct Predicates Average PPlus Length # Distinct Objects Fan Out(p+)
Distinct Objects Fan In(p+)

Table 3. Query pattern vs. estimated triple set size vs. estimated variable cardinality

Query Pattern Est. Tuple Set Size Est. Variable Cardinality
?a ?b ?c TotalTriples ?a = #DistSubjects, ?b =#DistProperties

?c=#DistObjects
?a ?b z AvgFanIn ?a = AvgFanIn, ?b = AvgFanIn
?a y ?c TotalTriples(y) ?a = #DistSubjects(y), ?c = #DistObjects(y)
?a y z FanIn(y) ?a = AvgFanIn
x ?b ?c AvgFanOut ?b = AvgFanOut, ?c = AvgFanOut
x ?b z min(AvgFanIn, AvgFanOut) ?b = min(AvgFanIn, AvgFanOut)
x y ?c FanOut(y) ?c = FanOut(y)
x y z 1

?a (pE) ?c TotalTriples-1 ?a = ?c = max(#DistSubjects, #DistObjects)
?a (pE) y fanInPath(pE) ?a = fanInPath(pE)
x (pE) ?c fanOutPath(pE) ?c = fanOutPath(pE)
x (pE) y 1

Sequence(lpath, rpath): fanInPath(lpath) * fanInPath(rpath)

Modified(path): if(ZeroOrMore(path) || OneOrMore(path))

fanInModPath(path)

fanInModPath(pE): // For p+ and p* paths

Property(prop): FanInPlus(prop)

Inverse(Property(prop)): FanOutPlus(prop)

Alternate(lpath, rpath): fanInPath(lpath+)+fanInPath(rpath+)

Sequence(lpath, rpath): fanInPath(lpath+)*fanInPath(rpath+)

Modified(path): c = fanInPath(path.subpath)

if(ZeroOrMore(subPath) || OneOrMore(subPath))

c *= AvgPPlusLength

The rewriter repeatedly chooses the most selective WHERE clause element, with
preference for those containing already visited variables, and adds it to the query
pattern. Individual constraint expressions are ordered after their correspond-
ing variables have been initially bound. As elements are added to the WHERE

clause, the rewriter updates the expected cardinality of its variables. The up-
dated cardinalities are used to recalculate triple set sizes and choose the next
WHERE clause element to add to the BGP. This is similar to the algorithm in [27];
we do not use specialized join statistics.

Property Path Expression Direction Using estimated variable cardinalities and
the fanInPath(pE) routine, the rewriter estimates the number of graph nodes
that will be touched by evaluating a property path expression in the forward
and reverse directions. If the cost of evaluating a path expression is decreased
by reversing its direction, the rewriter reverses the path before adding it to the
rewritten WHERE clause.

A Dataflow Graph Transformation Language and Query Rewriting System 555

Anchored Property Path Subqueries The same property path expression may
appear multiple times in the same QPR or in many different QPRs. If these
expressions have a shared constant as either the subject or object value, we call
them anchored property path expressions. The rewriter determines if it is more
efficient to evaluate and materialize a repeated anchor property path expression
once in a subquery, or to evaluate each property path expression individually.

The rewriter creates a subquery for an anchored path expression in two sit-
uations: 1) if an anchored property path expression occurs in more than three
different QPRs; and 2) if a single QPR has multiple instances of the same an-
chored path expression and their evaluation cost is greater than three times the
cost of evaluating the anchored path expression in a subquery.

5 Implementation

Our system, developed in Java, produces vSPARQL queries that can be eval-
uated by the execution engine – an extension to Jena’s ARQ – described in
[26]. The rewriting engine converts constraints to conjunctive normal form when
they are added to a QPR, eliminating the need for refactoring during rewrit-
ing. MiniSAT [3] is used for solving the SAT problems generated for our Query
Containment optimization. To reduce the impact of repeated property path ex-
pressions in multiple QPRs, we have added a LRU path cache to the vSPARQL
query engine. The path cache stores the result of evaluating individual property
path expressions, keyed on the (source URI, property path expression) pair.

The query rewriter does not rewrite all IML operations; most notably, we
do not rewrite extract_recursive and certain property path expressions. The
operation and its dependencies are converted to nested vSPARQL subqueries.

6 Evaluation

We evaluate our query rewriting system on the use case view definitions described
in [26]. These view definitions transform one or more of four RDF biomedical on-
tologies: NCI Thesaurus [4], Reactome [7], Ontology of Physics for Biology [12],
and the Foundational Model of Anatomy [23]. Although IML can express all of
the transformations, the presence of extract_recursive operations late in two
view definitions prevent beneficial query rewriting.

Table 4 presents the RDF triple size statistics for our views and queries. We
use vSPARQL queries evaluated over on-demand, in-memory materialized views
as our baseline query performance. These queries and views incorporate the
improvements identified through query rewriting; thus rewriting performance
benefits are the result of eliminating unnecessary transformations.

For this work, all view and query combinations are executed on a Intel Xeon
dual quad core 2.66GHz 64-bit machine with 16GB of RAM. The computer runs
a 64-bit SMP version of RedHat Enterprise Linux, kernel 2.6.18. PostgreSQL
8.3.5 is used for backend storage of the Jena SDB and is accessed using Post-
greSQL’s JDBC driver version 8.3-603. We use 64-bit Sun Java 1.6.0.22.

556 M. Shaw et al.

Table 4. Use case view and query size statistics. Entries are the number of RDF triples
in the input ontology, view, or query result. Numbers in parenthesis are the number of
new triples added to the base ontology by the view. Individual queries are referred to
by their view and query number; for example, v2q1 is Craniofacial view query1.

Mitotic Cranio- Organ Neuro NCI Bio- Blood Radiol- Blood
Cell facial spatial FMA Thesaurus simulation contained ogist fluid
Cycle location Ontology Simpli- model in heart liver properties

fication editor ontology
(v1) (v2) (v3) (v4) (v5) (v6) (v7) (v8) (v9)

FMA 1.67M 1.67M 1.67M 1.67M 1.67M 1.67M
FMA* 1.7M
NCIt 3.37M

Reactome 3.6M
OPB 1,992

view 37 4,104 175 72,356 3.37M 38 72 413 3,016
(180) (1024)

query1 6 1 2 2 21 13 3 4 64
query2 4 4 3 10 9 1 1 9 16
query3 2 2 6 59 1 5 4 6 10
query4 5 24 2 17 6 3 2 3 41
query5 4 2 2 1 0 6 9 1
query6 5 3 1 1 13 5
query7 592 1 3 1
query8 520 1 1
query9 46
query10 1

subq 1 3 2 17 0 4 3 7 2
in view def
time to

materialize 3.54 23.84 23.22 254.35 392.58 5.01 25.23 110.53 4.81
view (secs)

We evaluate each view and query combination five1 times and the smallest
execution time is reported. Between each run we stop the PostgreSQL server,
sync the file system, clear the caches, 2 and restart the PostgreSQL server.

6.1 Rule Explosion and Rule Optimizations

Our optimizations reduce rule explosion during rewriting, decreasing evalua-
tion time of rewritten queries. Table 5 presents the number of rules in the
QPR set generated for each view and query combination, with and without
optimizations.3 Rule optimizations are able to curb the size of QPR sets for
many rewritten queries. For example, the Bound Template Variable, Query
Containment, and Constraint Simplification optimizations offset the impact of
OPTIONAL and multiple CONSTRUCT templates in the Organ Spatial Location’s
queries 5 and 6.

1 Due to its long execution time, the Organ Spatial Location view, optimized with no
path cache, is evaluated 3 times.

2 Caches are cleared by writing “3” to /proc/sys/vm/drop caches
3 The reported number of rules using optimizations is the number of vSPARQL
subqueries in the generated query. N/A indicates we were unable to rewrite a query.

A Dataflow Graph Transformation Language and Query Rewriting System 557

Table 5. Number of generated rules for each view and query (fewer is better). The first
number is rules generated without optimizations. The second parenthesized number is
rules generated using all optimizations. N/A indicates we could not rewrite the query.

Mitotic Cranio- Organ Neuro NCI Bio- Blood Radiol- Blood
Cell facial spatial FMA Thesaurus simulation contained ogist fluid
Cycle location Ontology Simpli- model in heart liver properties

fication editor ontology
(v1) (v2) (v3) (v4) (v5) (v6) (v7) (v8) (v9)

view 3 (1) 6 (2) 4 (2) N/A 10 (2) N/A 4 (2) 192 (72) 5 (2)
query1 4 (4) 16 (4) 20 (4) N/A 40 (3) N/A 3 (3) 256 (62) 4 (1)
query2 N/A 2 (2) 16 (4) N/A 32 (2) N/A 3 (3) 12 (6) 20 (7)
query3 N/A 2 (2) 4 (2) N/A 16 (1) N/A 4 (2) 1296 (324) N/A
query4 4 (4) N/A 64 (2) N/A 16 (1) N/A 16 (14) 2208 (300) 160 (17)
query5 2 (2) 72 (16) 8192 (3) N/A N/A 4 (3) N/A 4 (1)
query6 1 (1) 6 (4) 4096 (3) N/A 12 (12) N/A
query7 8 (4) 64 (2) N/A 64 (6)
query8 8 (4) 64 (2) 60 (18)
query9 2592 (180)
query10 2208 (300)

6.2 Best Rewritten Query Performance

The time needed to materialize each use case’s vSPARQL view definition is
presented in Table 4. We compare times for rewriting and evaluating IML queries
to the on-demand evaluation of queries over these vSPARQL views.

We evaluate each query with several different optimizations. First we rewrite
each query using all of the performance optimizations described in Section 4.5
and evaluate for path cache sizes of 0MB and 4MB. Next, for 4MB path caches,
we rewrite and evaluate the query without anchored property path subqueries,
and we rewrite and evaluate the query without Query Minimization.

Figure 4 compares the best baseline query and rewritten query execution
times. The chart displays the percentage difference from the baseline vSPARQL
execution time. If a rewritten query takes the same time as the baseline query,
it will have value 0 on the chart; a query that takes two times the baseline
execution time will have a value of 100.

Most queries are able to benefit substantially from query rewriting. 29 of
the 41 queries (71%) achieve at least a 10% improvement over the baseline
execution times; 25 of the 41 queries (60%) have execution times that are 60%
less than the baseline. These results indicate that rewriting can significantly
improve performance for a majority of our queries.

13 queries’ evaluation times do not improve by more than 10%; 10 of these
queries take longer to evaluate. 8 of these queries are over the Blood Fluid Prop-
erties (v9) and Mitotic Cell Cycle (v1) views and have baseline execution times
of less than 5 seconds; 3 of these queries have small improvements but 5 cannot
overcome the cost of rewriting. 3 of the remaining queries’ (v3q2,v8q9,v8q3) pat-
terns do not specify URIs to limit the portions of the view that they should be
applied to and must be evaluated against the entire transformed view; rewriting
introduces redundancy and increases execution time. Query v7q5 introduces a
concrete URI in a FILTER expression; our rewriter does not yet benefit from

558 M. Shaw et al.

Fig. 4. Best case rewritten query vs. vSPARQL (in-memory materialization) execution
time. We plot the rewritten query’s execution time as the percentage difference from
the baseline execution. The best query (v5q3) was 97% faster than materializing the
baseline vSPARQL view in memory. Some queries (on the right) performed worse.

URIs introduced in this manner. Query v8q1 does not benefit from rewriting.
The view extracts the subclass hierarchy of fma:Organ and replaces two direct
subclasses with their (four) children; we then extract the subclass hierarchy for
each of these four children, instead of once, thus increasing execution time.

6.3 Impact of rewriting options

We consider the impact of the rewriting options on our results. For space reasons,
we only discuss the Organ Spatial Location view’s performance, seen in Fig. 5.

Our Anchored Property Path optimization defines subqueries to prevent ex-
pensive property path expressions from being repeatedly evaluated. If a query
does not introduce a URI not seen in the view, anchored subqueries can prevent
repeated evaluation of a property path expression; this is seen with query 2.
However, in the case of selective queries like query 5 and 6, rewriting generates
rules whose WHERE clauses do not need to be completely evaluated; the first few

Fig. 5. Effect of rewriting options on the Organ Spatial Location view

A Dataflow Graph Transformation Language and Query Rewriting System 559

elements in the WHERE clause determine that it will never match the data, and
expensive path expressions are not evaluated. For these queries, anchored paths,
which are always evaluated, increase query execution time.

Query minimization can eliminate redundancy in rewritten queries. It is needed
to improve evaluation of queries 4-8. These queries contain multiple WHERE clause
elements joined by a shared variable; when the elements are rewritten over a
common view, duplicate WHERE clause elements are created. Query minimization
eliminates these duplicates and reduces execution time.

The path cache can eliminate or reduce repeated evaluation of the same prop-
erty path expression. In Fig. 5, the absence of a path cache results in a large
increased execution time for the rewritten view.

The rewriter provides significant benefits for queries that introduce URIs that
are not in the view definition. Rewriting can improve queries by determining the
most efficient direction for evaluating property path expressions. Anchored path
subqueries can be used when new URIs are not introduced by the query to
prevent expensive property path expressions from being repeatedly evaluated.
Query minimization should be used when multiple query pattern elements are
joined by a shared variable.

7 Related Work

Scripting and visual pipe transformation languages [8][17][9] allow users to spec-
ify a sequence of operations to create mashups and transform RDF. However,
users must develop modules that provide the functionality available in visual ed-
itors. Evaluating queries over these transformations can be expensive; typically
the entire transformed ontology is materialized and the query evaluated on it.

Visual editors are often used for transforming existing ontologies. Table 6
compares IML with the functionality provided by a visual ontology editor com-
monly used by bioinformatics researchers: Protege and its plug-in PROMPT.
Protege is a visual editor for creating and modifying ontologies. It centers de-
velopment around the subclass (i.e. “is a”) hierarchy, with additional properties
and values assigned to classes in this hierarchy. PROMPT provides functional-
ity for extracting information from an ontology by traversing specified paths or
combinations of paths. It also supports merging and comparing ontologies.

IML applies a sequence of transformations to a data set. These transforma-
tions can also be achieved using nested queries. Until recently SPARQL has not
included support for subqueries. Schmidt [25] has developed a set of equivalences
for operations in the SPARQL algebra that can be used for rewriting and op-
timizing queries; this work pre-dates subqueries. There has been considerable
research on optimizing nested queries for relational databases[11]. Optimiza-
tion of XQuery’s nested FLWOR statements has focused on the introduction
of a groupby operator to enable algebraic rewriting [19][22][28], including elim-
ination of redundant navigation[13]. Most related to our work is [16], which
minimizes XQuery queries with nested subexpressions whose intermediate re-
sults are queried by other subexpressions. The rewrite rules recursively prune

560 M. Shaw et al.

Table 6. Protege/PROMPT vs. IML Functionality

Protege & PROMPT IML Operations

Extract edges, hierarchies extract edges, extract cgraph
Delete resources, properties, delete node, delete property,
values, (IS A)hierarchies delete edge, delete cgraph
Move resources, (IS A) replace edge subject, replace edge property,

hierarchies replace edge object, replace edge literal
Rename resources, properties replace node, replace property
Add resource, property, value add edge

Merge resources merge nodes
Combine ontologies union graphs

extract reachable, extract path, extract recursive
split node
copy graph

nested queries, eliminating the production of unnecessary intermediate results,
and creates a simplified, equivalent Xquery query.

The XQuery Update Framework (XQUF)[10] extends XQuery with transfor-
mation operations. Bohannon[14] presents an automaton-based technique for
converting XQUF transform queries, and user queries composed with transform
queries, into standard XQuery; the generated query only accesses necessary parts
of the XML document. This work only addresses queries containing a single up-
date expression. Fegaras[15] uses XML schemas to translate XQUF expressions
to standard XQuery, relying on the underlying XQuery engine for optimization.

Several works have investigated rewriting SPARQL queries for efficient eval-
uation. Stocker[27] uses statistics on in-memory RDF data to iteratively order
query pattern edges based on their minimum estimated selectivity. RDF-3X[20]
optimizes execution plans using specialized histograms and frequent join paths
in the data for estimating selectivity of joins. Our algorithm for producing ef-
ficient SPARQL queries is similar to an approach in[27], but adds in statistics
specifically for property-path expressions.

8 Conclusions

We have presented a transforming view definition language IML for manipulating
RDF ontologies. The language consists a small set of graph transformations that
can be combined in a dataflow style. Our rewriting system for IML leverages the
language’s dataflow and compositional characteristics to rewrite queries over
transforming views. We evaluated our rewriting system by defining transforming
views over a set of use cases over RDF biomedical information sets.

References

1. Annoteimage, http://sig.biostr.washington.edu/projects/AnnoteImage/
2. Knoodl, http://knoodl.com/
3. The minisat page, http://minisat.se
4. Ncithesaurus, http://nciterms.nci.nih.gov

http://sig.biostr.washington.edu/projects/AnnoteImage/
http://knoodl.com/
http://minisat.se
http://nciterms.nci.nih.gov

A Dataflow Graph Transformation Language and Query Rewriting System 561

5. Neon toolkit, http://neon-toolkit.org/
6. The protege ontology editor and knowledge acquisition system,

http://protege.stanford.edu

7. Reactome, http://www.reactome.org
8. Sparqlmotion, http://www.topquadrant.com/products/SPARQLMotion.html
9. Sparqlscript, http://www.w3.org/wiki/SPARQL/Extensions/SPARQLScript

10. Xquery update facility 1.0, http://www.w3.org/TR/xquery-update-10/
11. Chaudhuri, S.: An overview of query optimization in relational systems. In: PODS

1998, pp. 34–43. ACM, New York (1998)
12. Cook, D.L., Mejino, J.L., Neal, M.L., Gennari, J.H.: Bridging biological ontolo-

gies and biosimulation: The ontology of physics for biology. In: American Medical
Informatics Association Fall Symposium (2008)

13. Deutsch, A., Papakonstantinou, Y., Xu, Y.: The next framework for logical xquery
optimization. In: VLDB 2004, vol. 30, pp. 168–179. VLDB Endowment (2004)

14. Fan, W., Cong, G., Bohannon, P.: Querying xml with update syntax. In: SIGMOD
2007, pp. 293–304. ACM, New York (2007)

15. Fegaras, L.: A Schema-Based Translation of XQuery Updates. In: Lee, M.L., Yu,
J.X., Bellahsène, Z., Unland, R. (eds.) XSym 2010. LNCS, vol. 6309, pp. 58–72.
Springer, Heidelberg (2010)

16. Gueni, B., Abdessalem, T., Cautis, B., Waller, E.: Pruning nested xquery queries.
In: Conf. on Information and Knowledge Management, pp. 541–550. ACM, New
York (2008)

17. Le-Phuoc, D., Polleres, A., Hauswirth, M., Tummarello, G., Morbidoni, C.: Rapid
prototyping of semantic mash-ups through semantic web pipes. In: WWW 2009,
pp. 581–590. ACM, New York (2009)

18. Magkanaraki, A., Tannen, V., Christophides, V., Plexousakis, D.: Viewing the
semantic web through rvl lenses. Web Semantics 1(4), 359–375 (2004)

19. May, N., Helmer, S., Moerkotte, G.: Strategies for query unnesting in xml
databases. ACM Trans. Database Systems 31, 968–1013 (2006)

20. Neumann, T., Weikum, G.: Rdf-3x: a risc-style engine for rdf 1, 647–659 (2008)
21. Noy, N.F., Musen, M.A.: Specifying Ontology Views by Traversal. In: McIlraith,

S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp.
713–725. Springer, Heidelberg (2004)

22. Re, C., Simeon, J., Fernandez, M.: A complete and efficient algebraic compiler for
xquery. In: ICDE 2006. IEEE Computer Society (2006)

23. Rosse, C., Mejino Jr., J.L.V.: A reference ontology for biomedical informatics: the
foundational model of anatomy. Journal of Biomedical Informatics 36(6) (2003)

24. Schenk, S., Staab, S.: Networked graphs: a declarative mechanism for sparql rules,
sparql views and rdf data integration on the web. In: WWW 2008, pp. 585–594.
ACM, New York (2008)

25. Schmidt, M., Meier, M., Lausen, G.: Foundations of sparql query optimization. In:
ICDT 2010, pp. 4–33. ACM, New York (2010)

26. Shaw, M., Detwiler, L.T., Noy, N., Brinkley, J., Suciu, D.: vsparql: A view definition
language for the semantic web. Journal of Biomedical Informatics 44(1) (February
2011)

27. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: Sparql basic
graph pattern optimization using selectivity estimation. In: WWW 2008, pp. 595–
604. ACM, New York (2008)

28. Wang, S., Rundensteiner, E.A., Mani, M.: Optimization of nested xquery expres-
sions with orderby clauses. Data Knowledge Eng. 60 (February 2007)

http://neon-toolkit.org/
http://protege.stanford.edu
http://www.reactome.org
http://www.topquadrant.com/products/SPARQLMotion.html
http://www.w3.org/wiki/SPARQL/Extensions/SPARQLScript
http://www.w3.org/TR/xquery-update-10/

Sensitive Label Privacy Protection

on Social Network Data

Yi Song1, Panagiotis Karras2, Qian Xiao1, and Stéphane Bressan1

1 School of Computing
National University of Singapore

{songyi,xiaoqian,steph}@nus.edu.sg
2 Rutgers Business School

Rutgers University
karras@business.rutgers.edu

Abstract. This paper is motivated by the recognition of the need for a
finer grain and more personalized privacy in data publication of social
networks. We propose a privacy protection scheme that not only pre-
vents the disclosure of identity of users but also the disclosure of selected
features in users’ profiles. An individual user can select which features
of her profile she wishes to conceal. The social networks are modeled
as graphs in which users are nodes and features are labels. Labels are
denoted either as sensitive or as non-sensitive. We treat node labels both
as background knowledge an adversary may possess, and as sensitive
information that has to be protected. We present privacy protection al-
gorithms that allow for graph data to be published in a form such that
an adversary who possesses information about a node’s neighborhood
cannot safely infer its identity and its sensitive labels. To this aim, the
algorithms transform the original graph into a graph in which nodes
are sufficiently indistinguishable. The algorithms are designed to do so
while losing as little information and while preserving as much utility
as possible. We evaluate empirically the extent to which the algorithms
preserve the original graph’s structure and properties. We show that our
solution is effective, efficient and scalable while offering stronger privacy
guarantees than those in previous research.

1 Introduction

The publication of social network data entails a privacy threat for their users.
Sensitive information about users of the social networks should be protected.
The challenge is to devise methods to publish social network data in a form
that affords utility without compromising privacy. Previous research has pro-
posed various privacy models with the corresponding protection mechanisms
that prevent both inadvertent private information leakage and attacks by mali-
cious adversaries. These early privacy models are mostly concerned with identity
and link disclosure. The social networks are modeled as graphs in which users
are nodes and social connections are edges. The threat definitions and protection

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 562–571, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Sensitive Label Privacy Protection on Social Network Data 563

mechanisms leverage structural properties of the graph. This paper is motivated
by the recognition of the need for a finer grain and more personalized privacy.

Users entrust social networks such as Facebook and LinkedIn with a wealth of
personal information such as their age, address, current location or political ori-
entation. We refer to these details and messages as features in the user’s profile.
We propose a privacy protection scheme that not only prevents the disclosure of
identity of users but also the disclosure of selected features in users’ profiles. An
individual user can select which features of her profile she wishes to conceal.

The social networks are modeled as graphs in which users are nodes and
features are labels1. Labels are denoted either as sensitive or as non-sensitive.
Figure 1 is a labeled graph representing a small subset of such a social network.
Each node in the graph represents a user, and the edge between two nodes
represents the fact that the two persons are friends. Labels annotated to the
nodes show the locations of users. Each letter represents a city name as a label
for each node. Some individuals do not mind their residence being known by the
others, but some do, for various reasons. In such case, the privacy of their labels
should be protected at data release. Therefore the locations are either sensitive
(labels are in red italic in Figure 12) or non-sensitive.

` j

q

{|

}

~�

�

�
�

�

�
�

�

�

�

�

�

�

�

� �

|�

|j

||

Fig. 1. Example of the labeled graph representing a social network

The privacy issue arises from the disclosure of sensitive labels. One might
suggest that such labels should be simply deleted. Still, such a solution would
present an incomplete view of the network and may hide interesting statisti-
cal information that does not threaten privacy. A more sophisticated approach
consists in releasing information about sensitive labels, while ensuring that the
identities of users are protected from privacy threats. We consider such threats
as neighborhood attack, in which an adversary finds out sensitive information
based on prior knowledge of the number of neighbors of a target node and the
labels of these neighbors. In the example, if an adversary knows that a user has
three friends and that these friends are in A (Alexandria), B (Berlin) and C
(Copenhagen), respectively, then she can infer that the user is in H (Helsinki).

We present privacy protection algorithms that allow for graph data to be
published in a form such that an adversary cannot safely infer the identity and

1 Although modeling features in the profile as attribute-value pairs would be closer to
the actual social network structure, it is without loss of generality that we consider
atomic labels.

2 W: Warsaw, H: Helsinki, P: Prague, D: Dublin, S:Stockholm, N: Nice, A: Alexandria,
B: Berlin, C: Copenhagen, L: Lisbon.

564 Y. Song et al.

sensitive labels of users. We consider the case in which the adversary possesses
both structural knowledge and label information.

The algorithms that we propose transform the original graph into a graph in
which any node with a sensitive label is indistinguishable from at least �−1 other
nodes. The probability to infer that any node has a certain sensitive label (we
call such nodes sensitive nodes) is no larger than 1/�. For this purpose we design
�-diversity-like model, where we treat node labels as both part of an adversary’s
background knowledge and as sensitive information that has to be protected.

The algorithms are designed to provide privacy protection while losing as
little information and while preserving as much utility as possible. In view of the
tradeoff between data privacy and utility [16], we evaluate empirically the extent
to which the algorithms preserve the original graph’s structure and properties
such as density, degree distribution and clustering coefficient. We show that
our solution is effective, efficient and scalable while offering stronger privacy
guarantees than those in previous research, and that our algorithms scale well
as data size grows.

The rest of the paper is organized as follows. Section 2 reviews previous works
in the area. We define our problem in Section 3 and propose solutions in Section
4. Experiments and result analysis are described in Section 5. We conclude this
work in Section 6.

2 Related Work

The first necessary anonymization technique in both the contexts of micro- and
network data consists in removing identification. This nave technique has quickly
been recognized as failing to protect privacy. For microdata, Sweeney et al.
propose k-anonymity [17] to circumvent possible identity disclosure in naively
anonymized microdata. �-diversity is proposed in [13] in order to further prevent
attribute disclosure.

Similarly for network data, Backstrom et al., in [2], show that naive anonymiza-
tion is insufficient as the structure of the released graph may reveal the iden-
tity of the individuals corresponding to the nodes. Hay et al. [9] emphasize
this problem and quantify the risk of re-identification by adversaries with ex-
ternal information that is formalized into structural queries (node refinement
queries, subgraph knowledge queries). Recognizing the problem, several works
[5,11,18,20,21,22,24,27,8,4,6] propose techniques that can be applied to the naive
anonymized graph, further modifying the graph in order to provide certain pri-
vacy guarantee. Some works are based on graph models other than simple graph
[12,7,10,3].

To our knowledge, Zhou and Pei [25,26] and Yuan et al. [23] were the first to
consider modeling social networks as labeled graphs, similarly to what we con-
sider in this paper. To prevent re-identification attacks by adversaries with imme-
diate neighborhood structural knowledge, Zhou and Pei [25] propose a method
that groups nodes and anonymizes the neighborhoods of nodes in the same group
by generalizing node labels and adding edges. They enforce a k-anonymity pri-
vacy constraint on the graph, each node of which is guaranteed to have the same

Sensitive Label Privacy Protection on Social Network Data 565

immediate neighborhood structure with other k− 1 nodes. In [26], they improve
the privacy guarantee provided by k-anonymity with the idea of �-diversity, to
protect labels on nodes as well. Yuan et al. [23] try to be more practical by
considering users’ different privacy concerns. They divide privacy requirements
into three levels, and suggest methods to generalize labels and modify structure
corresponding to every privacy demand. Nevertheless, neither Zhou and Pei, nor
Yuan et al. consider labels as a part of the background knowledge. However, in
case adversaries hold label information, the methods of [25,26,23] cannot achieve
the same privacy guarantee. Moreover, as with the context of microdata, a graph
that satisfies a k-anonymity privacy guarantee may still leak sensitive informa-
tion regarding its labels [13].

3 Problem Definition

We model a network as G(V,E, Ls, L, Γ), where V is a set of nodes, E is s set
of edges, Ls is a set of sensitive labels, and L is a set of non-sensitive labels. Γ
maps nodes to their labels, Γ : V → Ls ∪ L. Then we propose a privacy model,
�-sensitive-label-diversity; in this model, we treat node labels both as part of an
adversary’s background knowledge, and as sensitive information that has to be
protected. These concepts are clarified by the following definitions:

Definition 1. The neighborhood information of node v comprises the degree
of v and the labels of v’s neighbors.

Definition 2. (�-sensitive-label-diversity) For each node v that associates
with a sensitive label, there must be at least � − 1 other nodes with the same
neighborhood information, but attached with different sensitive labels.

` j

q

{|

}

~�

�

���
�

�

�
�

�

�

���

�

�

�

�

� �

|�

|j

||

|`|~
�

|�
|q

|{

|}

�

�

�

�
�

Fig. 2. Privacy-attaining network example

In Example 1, nodes 0, 1, 2, and 3 have sensitive labels. The neighborhood
information of node 0, includes its degree, which is 4, and the labels on nodes
4, 5, 6, and 7, which are L, S, N, and D, respectively. For node 2, the neigh-
borhood information includes degree 3 and the labels on nodes 7, 10, and 11,
which are D, A, and B. The graph in Figure 2 satisfies 2-sensitive-label-diversity;
that is because, in this graph, nodes 0 and 3 are indistinguishable, having six
neighbors with label A, B, {C,L}, D, S, N separately; likewise, nodes 1 and 2
are indistinguishable, as they both have four neighbors with labels A, B, C, D
separately.

566 Y. Song et al.

4 Algorithm

The main objective of the algorithms that we propose is to make suitable group-
ing of nodes, and appropriate modification of neighbors’ labels of nodes of each
group to satisfy the l-sensitive-label-diversity requirement. We want to group
nodes with as similar neighborhood information as possible so that we can change
as few labels as possible and add as few noisy nodes as possible. We propose an
algorithm, Global-similarity-based Indirect Noise Node (GINN), that does not
attempt to heuristically prune the similarity computation as the other two algo-
rithms, Direct Noisy Node Algorithm (DNN) and Indirect Noisy Node Algorithm
(INN) do. Algorithm DNN and INN, which we devise first, sort nodes by degree
and compare neighborhood information of nodes with similar degree. Details
about algorithm DNN and INN please refer to [15].

4.1 Algorithm GINN

The algorithm starts out with group formation, during which all nodes that have
not yet been grouped are taken into consideration, in clustering-like fashion. In
the first run, two nodes with the maximum similarity of their neighborhood
labels are grouped together. Their neighbor labels are modified to be the same
immediately so that nodes in one group always have the same neighbor labels.
For two nodes, v1 with neighborhood label set (LSv1), and v2 with neighborhood
label set (LSv2), we calculate neighborhood label similarity (NLS) as follows:

NLS(v1, v2) =
|LSv1 ∩ LSv2 |
|LSv1 ∪ LSv2 |

(1)

Larger value indicates larger similarity of the two neighborhoods.

Then nodes having the maximum similarity with any node in the group are
clustered into the group till the group has � nodes with different sensitive labels.
Thereafter, the algorithm proceeds to create the next group. If fewer than � nodes
are left after the last group’s formation, these remainder nodes are clustered into
existing groups according to the similarities between nodes and groups.

After having formed these groups, we need to ensure that each group’s mem-
bers are indistinguishable in terms of neighborhood information. Thus, neigh-
borhood labels are modified after every grouping operation, so that labels of
nodes can be accordingly updated immediately for the next grouping opera-
tion. This modification process ensures that all nodes in a group have the same
neighborhood information. The objective is achieved by a series of modification
operations. To modify graph with as low information loss as possible, we devise
three modification operations: label union, edge insertion and noise node addi-
tion. Label union and edge insertion among nearby nodes are preferred to node
addition, as they incur less alteration to the overall graph structure.

Edge insertion is to complement for both a missing label and insufficient
degree value. A node is linked to an existing nearby (two-hop away) node with
that label. Label union adds the missing label values by creating super-values

Sensitive Label Privacy Protection on Social Network Data 567

shared among labels of nodes. The labels of two or more nodes coalesce their
values to a single super-label value, being the union of their values. This approach
maintains data integrity, in the sense that the true label of node is included
among the values of its label super-value. After such edge insertion and label
union operations, if there are nodes in a group still having different neighborhood
information, noise nodes with non-sensitive labels are added into the graph so as
to render the nodes in group indistinguishable in terms of their neighbors’ labels.
We consider the unification of two nodes’ neighborhood labels as an example.
One node may need a noisy node to be added as its immediate neighbor since
it does not have a neighbor with certain label that the other node has; such a
label on the other node may not be modifiable, as its is already connected to
another sensitive node, which prevents the re-modification on existing modified
groups.

Algorithm 1: Global-Similarity-based Indirect Noisy Node Algorithm

Input: graph G(V,E, L, Ls), parameter l;
Result: Modified Graph G′

1 while Vleft > 0 do
2 if |Vleft| ≥ l then
3 compute pairwise node similarities;
4 group G ← v1, v2 with Maxsimilarity ;
5 Modify neighbors of G;
6 while |G| < l do
7 dissimilarity(Vleft,G);
8 group G ← v with Maxsimilarity ;
9 Modify neighbors of G without actually adding noisy nodes ;

10 else if |Vleft| < l then
11 for each v ∈ Vleft do
12 similarity(v,Gs);
13 GMax similarity ← v;

14 Modify neighbors of GMax similarity without actually adding noisy
nodes;

15 Add expected noisy nodes;
16 Return G′(V ′, E′, L′);

In this algorithm, noise node addition operation that is expected to make
the nodes inside each group satisfy �-sensitive-label-diversity are recorded, but
not performed right away. Only after all the preliminary grouping operations
are performed, the algorithm proceeds to process the expected node addition
operation at the final step. Then, if two nodes are expected to have the same
labels of neighbors and are within two hops (having common neighbors), only
one node is added. In other words, we merge some noisy nodes with the same
label, thus resulting in fewer noisy nodes.

568 Y. Song et al.

5 Experimental Evaluation

We evaluate our approaches using both synthetic and real data sets. All of the
approaches have been implemented in Python. The experiments are conducted
on an Intel core, 2Quad CPU, 2.83GHz machine with 4GB of main memory
running Windows 7 Operating System. We use three data sets. The first data
set [1] is a network of hyperlinks between weblogs on US politics. The second
data set that we use is generated from the Facebook dataset proposed in [14]. The
third data set that we use is a family of synthetic graphs with varying number of
nodes. The first and second datasets are used for the evaluation of effectiveness
(utility and information loss). The third data set is used to measure runtime and
scalability (running time). (Please refer to [15] for more information.)

5.1 Data Utility

We compare the data utilities we preserve from the original graphs, in view of
measurements on degree distribution, label distribution, degree centrality [19],
clustering coefficient, average path length, graph density, and radius. We show
the number of the noisy nodes and edges needed for each approach.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 10 100 1000

f
r
e
q
u
e
n
c
y

o
f

n
o
d
e
s

degree

original
l = 2
l = 4
l = 6
l = 8

l = 10

(a) DNN

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1 10 100 1000

f
r
e
q
u
e
n
c
y

o
f

n
o
d
e
s

degree

original
l = 2
l = 4
l = 6
l = 8
l = 10

(b) INN

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 1 10 100 1000

f
r
e
q
u
e
n
c
y

o
f

n
o
d
e
s

degree

original
l = 2
l = 4
l = 6
l = 8
l = 10

(c) GINN

Fig. 3. Facebook Graph Degree Distribution

Figure 3 shows the degree distribution of the Facebook graph both before
and after modification. Each subfigure in Figure 3 shows degree distributions of
graphs modified by one algorithm. We can see that the degree distributions of
the modified graphs resemble the original ones well, especially when l is small.

To sum up, these measurements (for other results please refer to [15]) show
that the graph structure properties are preserved to a large extent. The strong
resemblance of the label distributions in most cases indicates that the label infor-
mation, another aspect of graph information, is well maintained. They suggest
as well that algorithm GINN does preserve graph properties better than the
other two while these three algorithms achieve the same privacy constraint.

5.2 Information Loss

In view of utility of released data, we aim to keep information loss low. In-
formation loss in this case contains both structure information loss and label
information loss. We measure the loss in the following way: for any node v ∈ V ,

Sensitive Label Privacy Protection on Social Network Data 569

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

2 3 4 5 6 7 8 9 10

I
n
f
o
r
m
a
t
i
o
n

L
o
s
s

l

DNN
INN
GINN

Fig. 4. Information Loss

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000

R
u
n
n
i
n
g

T
i
m
e
(
s
)

number of vertices

DNN
INN
GINN

Fig. 5. Running Time

label dissimilarity is defined as: D(lv, l′v) = 1 − |lv∩l′v|
|lv∪l′v|

, where lv is the set of

v’s original labels and l′v the set of labels in the modified graph. Thus, for the
modified graph including n noisy nodes, and m noisy edges, information loss is
defined as

IL = ω1n+ ω2m+ (1 − ω1 − ω2)
∑

D(lv, l′v) (2)

where ω1 ,ω2 and 1− ω1 − ω2 are weights for each part of the information loss.
Figure 4 shows the measurements of information loss on the synthetic data set
using each algorithm. Algorithm GINN introduces the least information loss.

5.3 Algorithm Scalability

We measure the running time of the methods for a series of synthetic graphs with
varying number of nodes in our third dataset. Figure 5 presents the running time
of each algorithm as the number of nodes increases. Algorithm DNN is faster
than the other two algorithms, showing good scalability at the cost of large noisy
nodes added. Algorithm GINN can also be adopted for quite large graphs as fol-
lows: We separate the nodes to two different categories, with or without sensitive
labels. Such smaller granularity reduces the number of nodes the anonymization
method needs to process, and thus improves the overall efficiency.

6 Conclusions

In this paper we have investigated the protection of private label information in
social network data publication. We consider graphs with rich label information,
which are categorized to be either sensitive or non-sensitive. We assume that
adversaries possess prior knowledge about a node’s degree and the labels of its
neighbors, and can use that to infer the sensitive labels of targets. We suggested
a model for attaining privacy while publishing the data, in which node labels are
both part of adversaries’ background knowledge and sensitive information that
has to be protected. We accompany our model with algorithms that transform
a network graph before publication, so as to limit adversaries’ confidence about
sensitive label data. Our experiments on both real and synthetic data sets con-
firm the effectiveness, efficiency and scalability of our approach in maintaining
critical graph properties while providing a comprehensible privacy guarantee.

570 Y. Song et al.

Acknowledgement. This research was partially funded by the A*Star SERC
project “Hippocratic Data Stream Cloud for Secure, Privacy-preserving Data
Analytics Services” 102 158 0037, NUS Ref:R-702-000-005-305.

References

1. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 U.S. election:
divided they blog. In: LinkKDD (2005)

2. Backstrom, L., Dwork, C., Kleinberg, J.M.: Wherefore art thou R3579X?:
anonymized social networks, hidden patterns, and structural steganography. Com-
mun. ACM 54(12) (2011)

3. Bhagat, S., Cormode, G., Krishnamurthy, B., Srivastava, D.: Class-based graph
anonymization for social network data. PVLDB 2(1) (2009)

4. Campan, A., Truta, T.M.: Data and Structural k-Anonymity in Social Networks. In:
Bonchi, F., Ferrari, E., Jiang, W., Malin, B. (eds.) PinKDD 2008. LNCS, vol. 5456,
pp. 33–54. Springer, Heidelberg (2009)

5. Cheng, J., Fu, A.W.-C., Liu, J.: K-isomorphism: privacy-preserving network pub-
lication against structural attacks. In: SIGMOD (2010)

6. Cormode, G., Srivastava, D., Yu, T., Zhang, Q.: Anonymizing bipartite graph data
using safe groupings. PVLDB 19(1) (2010)

7. Das, S., Egecioglu, Ö., Abbadi, A.E.: Anonymizing weighted social network graphs.
In: ICDE (2010)

8. Francesco Bonchi, A.G., Tassa, T.: Identity obfuscation in graphs through the
information theoretic lens. In: ICDE (2011)

9. Hay, M., Miklau, G., Jensen, D., Towsley, D., Weis, P.: Resisting structural re-
identification in anonymized social networks. PVLDB 1(1) (2008)

10. Li, Y., Shen, H.: Anonymizing graphs against weight-based attacks. In: ICDM
Workshops (2010)

11. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: SIGMOD
(2008)

12. Liu, L., Wang, J., Liu, J., Zhang, J.: Privacy preserving in social networks against
sensitive edge disclosure. In: SIAM International Conference on Data Mining
(2009)

13. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: �-diversity:
privacy beyond k-anonymity. In: ICDE (2006)

14. MPI, http://socialnetworks.mpi-sws.org/

15. Song, Y., Karras, P., Xiao, Q., Bressan, S.: Sensitive label privacy protection on
social network data. Technical report TRD3/12 (2012)

16. Song, Y., Nobari, S., Lu, X., Karras, P., Bressan, S.: On the privacy and utility of
anonymized social networks. In: iiWAS, pp. 246–253 (2011)

17. Sweeney, L.: K-anonymity: a model for protecting privacy. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5) (2002)

18. Tai, C.-H., Yu, P.S., Yang, D.-N., Chen, M.-S.: Privacy-preserving social network
publication against friendship attacks. In: SIGKDD (2011)

19. Tore, O., Filip, A., John, S.: Node centrality in weighted networks: generalizing
degree and shortest paths. Social Networks 32(3) (2010)

20. Wu, W., Xiao, Y., Wang, W., He, Z., Wang, Z.: K-symmetry model for identity
anonymization in social networks. In: EDBT (2010)

http://socialnetworks.mpi-sws.org/

Sensitive Label Privacy Protection on Social Network Data 571

21. Ying, X., Wu, X.: Randomizing social networks: a spectrum perserving approach.
In: SDM (2008)

22. Ying, X., Wu, X.: On Link Privacy in Randomizing Social Networks. In: Theera-
munkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS,
vol. 5476, pp. 28–39. Springer, Heidelberg (2009)

23. Yuan, M., Chen, L., Yu, P.S.: Personalized privacy protection in social networks.
PVLDB 4(2) (2010)

24. Zhang, L., Zhang, W.: Edge anonymity in social network graphs. In: CSE (2009)
25. Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood at-

tacks. In: ICDE (2008)
26. Zhou, B., Pei, J.: The k-anonymity and �-diversity approaches for privacy preserva-

tion in social networks against neighborhood attacks. Knowledge and Information
Systems 28(1) (2010)

27. Zou, L., Chen, L., Özsu, M.T.: K-automorphism: a general framework for privacy-
preserving network publication. PVLDB 2(1) (2009)

Trading Privacy for Information Loss

in the Blink of an Eye

Alexandra Pilalidou1,� and Panos Vassiliadis2

1 FMT Worldwide, Limassol,Cyprus
apilalid@gmail.com

2 Dept. of Computer Science, Univ. of Ioannina, Hellas
pvassil@cs.uoi.gr

Abstract. The publishing of data with privacy guarantees is a task typ-
ically performed by a data curator who is expected to provide guarantees
for the data he publishes in quantitative fashion, via a privacy criterion
(e.g., k-anonymity, l-diversity). The anonymization of data is typically
performed off-line. In this paper, we provide algorithmic tools that facil-
itate the negotiation for the anonymization scheme of a data set in user
time. Our method takes as input a set of user constraints for (i) sup-
pression, (ii) generalization and (iii) a privacy criterion (k-anonymity,
l-diversity) and returns (a) either an anonymization scheme that fulfils
these constraints or, (b) three approximations to the user request based
on the idea of keeping the two of the three values of the user input fixed
and finding the closest possible approximation for the third parameter.
The proposed algorithm involves precomputing suitable histograms for
all the different anonymization schemes that a global recoding method
can follow. This allows computing exact answers extremely fast (in the
order of few milliseconds).

1 Introduction

The area of privacy-preserving data publishing serves the purpose of allowing
a data curator publish data that contain sensitive information for persons in
the real world while serving the following two antagonistic goals: (a) allow well-
meaning data miners extract useful knowledge from the data, and, (b) prevent
attackers from linking the published, anonymized records to the individuals to
which they refer. Frequently, the method of choice for the anonymization method
involves the generalization of the values of the published tuples to values that
are more abstract. This creates the possibility to hide tuples in the crowd of
similar tuples. Typically, the privacy guarantee per tuple is expressed as a privacy
criterion, e.g., k-anonymity or l-diversity ([1], [2]) that quantitatively assesses
each of the groups of similar tuples (k-anonymity for its size, l-diversity also for
the variance of sensitive values within the group).

Overall, the data curator has to negotiate antagonistic goals: (a) the request to
avoid exceeding a certain threshold of deleted (suppressed) tuples, (b) maximum

� Work performed while in the Univ. of Ioannina.

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 572–580, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Trading Privacy for Information Loss in the Blink of an Eye 573

tolerated generalization heights per attributes that are acceptable by the end users,
and, (c) the curator’s constraint on the privacy value. Of course, it might not
be possible to achieve a consensus on the parameters of the problem. So, the
desideratum is that the curator interactively explores different anonymization
possibilities. If, for example, the curator sets a suppression threshold too low
for the data set to sustain while respecting the rest of the user criteria, then
the system should ideally respond very quickly with a negative answer, along
with a set of proposals on what possible generalizations, close to the one that he
originally submitted, are attainable with the specific data set. As opposed to the
state of the art methods that operate off-line, our method informs the curator
(a) in user time (i.e., ideally with no delay that a person can sense), (b) with
the best possible solution that respects all the constraints posed by the involved
stakeholders, if such a solution exists, or, (c) convenient suggestions that are
close to the original desiderata around generalization, suppression and privacy.

The research community has focused on different directions, complementary
but insufficient for the problem. We refer the interested reader to the excellent
survey of Fung et al. [3] for further probing on the state of the art. The most
related works to our problem are (a) [4] who deal with the problem of finding the
local recoding with the least suppressed cells (not tuples) without any hierarchies
in mind, and, (b) [5], where the author works in a similar setting and prove
that the probability of achieving k-anonymity tends to zero as the number of
dimensions rises to infinite; the theoretical analysis is accompanied with a study
of generated data sets (one of which rises up to 50 dimensions) that supports
the theoretical claim. Still, compared to these works, our method is the first to
simultaneously combine a focus to on-line response, generalization hierarchies,
different values of k or l, and different privacy criteria.

Our approach is based on a method that involves precomputing statistical in-
formation for several possible generalization schemes. A generalization scheme
is determined by deciding the level of generalization for every quasi-identifier –
in other words, a generalization scheme is a vector characterizing every quasi-
identifier with its level of generalization. To efficiently compute the amount of
suppression for a given pair of (i) value for the privacy criterion, and, (ii) a
generalization scheme, we resort to the precalculation of a histogram per gener-
alization scheme that allows us to calculate the necessary statistical information.
For example, in the case of k-anonymity, we group the data by the quasi identi-
fier attribute set in their generalized form and we count how many groups have
size 1, 2, . . . etc. So, given a specific value of k, we can compute how many tuples
will be suppressed for any generalization scheme. Similarly, in the case of naive
l-diversity, for each group we count the number of different sensitive values and
the size of the group too.

We organize generalization schemes as nodes in a lattice. A node v is lower
than a node u in the lattice if u has at least one level of generalization higher
than v for a certain quasi-identifier and the rest of the quasi-identifiers in higher
or equal levels. The main algorithm exploits the histograms of the nodes in the
lattice and checks whether there exists a node of height less than h that satisfies

574 A. Pilalidou and P. Vassiliadis

k (or, l) without suppressing more than MaxSupp tuples. This is performed
by first checking the top-acceptable-node vmax defined with generalization levels
h=[hc

1, . . . , h
c
n]. If a solution exists, then we exploit a monotonicity property of

the lattice and look for possible answers in quasi identifiers with less or equal
generalization levels than the ones of the top acceptable node. In the case that
no solution exists in the top acceptable node, the algorithm provides the user
with 3 complementary suggestions as answers:

– The first suggested alternative satisfies k (or, l) and h but not MaxSupp. In
fact, we search the space under the top acceptable node and provide the so-
lution with the minimum number of suppressed tuples. In typical situations,
we prove that the answer is already found in the top acceptable node and
thus, provide the answer immediately.

– The second alternative is a solution that satisfies k (or, l) and MaxSupp but
violates h. This means that we have to explore the space of quasi identifiers
that are found in generalization levels higher or equal than the top acceptable
node. We exploit the lattice’s monotonicity properties to avoid unnecessary
checks and utilize a binary search exploration of heights on the lattice.

– The third suggested alternative is a solution that finds the maximum possible
k (or, l) for which h andMaxSupp are respected for the quasi identifiers of the
top acceptable node. Similarly to the first case, this answer can be provided
immediately at the top acceptable node.

In Fig. 1 we depict the lattice for the Adult data set where we constrain the quasi
identifier set to Age, Work class and Education. Each node of the lattice is a
generalization scheme; underneath each node you can see the number of tuples
that violate the constraint of 3-anonymity. The label of each node shows the
height of the generalization for each of the QI attributes. We pose two queries
to the lattice, both constraining k to 3 and the height to level 1 for age, level 2
for Work class and level 1 for Education (coded as 121 for short). Then, the
top-acceptable-node vmax is 121 and the lattice it induces is depicted as the blue
diamond over the lattice. We hide nodes 030 and 102 from the figure as they
are not members of the sublattice induced by vmax. The first query involves a
tolerance for 20 suppressed tuples; in this case, vmax suppresses less than 20
tuples and we know that its sub-lattice will produce an exact answer. Out of
all candidates, node 111 provides the exact answer with the lowest height (and
since we have a tie in terms of height with node 120, the one with the least
suppression among the two). The second query requires a maximum suppression
of 8 tuples; in this case, since vmax fails the constraint, we provide two suggestions
concerning the relaxation of suppression and privacy directly at vmax, and, a
third suggestion for the relaxation of the height constraint by exploring the full
lattice (and ultimately resulting in node 400).

2 Anonymity Negotiation over a Full Lattice

In this section, we present Algorithm SimpleAnonymityNegotiation. The pro-
posed algorithm takes as input a relation R to be generalized, a set of hierarchies

Trading Privacy for Information Loss in the Blink of an Eye 575

Fig. 1. Example of lattice and query answers. The lattice is annotated with suppressed
tuples for |QI|= 3 and k=3. The QI is Age, Work class, Race.

H for the quasi-identifier attributes, the histogram lattice L for all possible com-
binations of the generalization levels, and the requirements for the maximum
desirable generalization level per quasi-identifier (h), the maximum tolerable
number of tuples to be suppressed (maxSupp) and the least size of a group (k or
l), as the privacy constraint. The outputs of the algorithm are (a) either a node
of the lattice (i.e., a generalization scheme) that provides the best possible exact
solution to the user requirements (with best possible being interpreted as the
one with the lowest height, and, if more than one candidate solutions have this
lowest height, the one with the minimum suppression), or, (b) three suggestions
for approximate answers to the user request, the first relaxing the number of
suppressed tuples, the second relaxing the constraints on the heights per dimen-
sion and the third relaxing the minimum acceptable privacy criterion (e.g., k in
k-anonymity).

Algorithm SimpleAnonymityNegotiation starts by identifying a reference node
in the lattice, to which we refer a vmax. The node vmax is the node that satisfies
all the constraints of h for the quasi-identifiers, at the topmost level; in other
words, vmax is the highest possible node that can obtain an exact answer to the
user’s request. We will also refer to vmax as the top-acceptable node. Then, two
cases can hold: (a) vmax is able to provide an exact solution (the if part), or
(b) it is not, and thus we have to resort to approximate suggestions to the user
(the else part). The check on whether a node can provide an exact solution is
given by function checkExactSolution that looks up the histogram of a node v
and performs the appropriate check depending on the privacy criterion.

576 A. Pilalidou and P. Vassiliadis

Fig. 2. Algorithm Simple Anonymity Negotiation and accompanying functions

Exact Answer. When an exact answer can be provided by the top-acceptable
node vmax, then we can be sure that the sublattice induced by vmax contains
an exact answer; however, we need to discover the one with the minimum pos-
sible height and, therefore, we need to descend down the lattice to discover it.
The auxiliary variable Candidates holds all the nodes that conform to the user
request, organized per height. Each time such a node is found, it is added to
Candidates at the appropriate level (Line 5) and its descendants (returned via
the function lower()) are recursively explored via the call of function ExactSub-
latticeSearch. When the lattice is appropriately explored we need to find the
lowest level with a solution in the lattice, and, among the (several candidate)
solutions of this level we must pick the one with the least suppression.

If node vmax fails to provide an answer that conforms to the user request, then
we are certain that it is impossible to derive such a conforming answer from our
lattice and we need to search for approximations. So, we provide the users with
suggestions on the possible relaxations that can be made to his criteria.

Suppression and Privacy Relaxations. Function ApproximateMaxSupp re-
spects the privacy criterion k and the max tolerable height h, and returns the

Trading Privacy for Information Loss in the Blink of an Eye 577

Fig. 3. Approximation Functions

best possible relaxation with respect to the number of suppressed tuples. Since
h is to be respected, we are restricted in the sub-lattice induced by vmax. Since
vmax has failed to provide a conforming answer, no node in the sublattice can
provide such an answer, either. So, we assess the number of tuples that have
to be suppressed if we retain k fixed and stay at the highest candidate node
vmax. Observe that any node in the sublattice of vmax will result in higher or
equal number of suppressed tuples – remember that the lower we go, the smaller
the groups are and the higher the suppression. In other words, it will either be
vmax that will give the answer or one of its descendants in the rare case that
the groups of the descendant are mapped one to one to the groups of vmax, thus
resulting in exactly the same number of suppressed tuples. The relaxation of
privacy is identical (omitted for lack of space).

Height Relaxation. Function ApproximateH retains the maximum tolerable
number of suppressed tuples MaxSupp and the privacy criterion of k and tries
to determine what is the lowest height h that can provide an answer for these
constraints. This time, we operate outside the borders of the sublattice of vmax

since h is not to be respected. The function ApproximateH performs a binary
search on the height between the height of vmax and the upper possible height

578 A. Pilalidou and P. Vassiliadis

(the top of the lattice). Every time a level is chosen, we start to check its nodes
for possible solutions via the function checkIfNoSolutionInCurrentHeight. If the
function explores a height fully and fails to find an answer, this is an indication
that we should not search lower than this height (remember: failure to find
a solution signals for ascending in the lattice). Every time the function finds a
node that can answer, then we must search in the lower heights for possibly lower
solutions. When the binary search stops, the value currentMinHeight signifies
the lowest possible height where a solution is found. Then, we explore this height
fully to determine the node with the minimum suppression.

3 Experiments

We present our results over the Adult data set [6] over two privacy criteria:
k-anonymity and naive l-diversity. We have assessed the performance in terms
of time and visited nodes as we vary the value for the privacy criterion, the
maximum tolerable generalization height and the maximum tolerable amount
of suppressed tuples. We performed 28 user requests: each time we keep the
two out of the three parameters fixed in their middle value and vary QI with
3, 4, 5, 6 attributes as well as the parameters under investigation. The values
of k range in 3, 10, 50. The values for l are smaller (3,6,9) in order to avoid
suppressing the entire data set. The values for h are: (a) low heights having
levels with heights 1 and 0, (b) middle heights having mostly 2 and few 1 level
heights and, (c) middle-low in between (remember that they vary per QI). In all
our experiments we have used a Core Duo 2.5GHz server with 3GB of memory
and 300GB hard disk, Ubuntu 8.10, and MySQL 5.0.67. The code is written in
Java.

Effectiveness and Efficiency. The increase of the privacy criterion (Fig. 14, k)
has divergent effects. When QI is small, there is an exact answer and the search is
directed towards lower heights. Consequently, as k increases the solution is found
earlier. On the contrary, for larger QI sizes and relaxations to user request, the
increase of k sublinearly increases the search space.

The increase of the maximum tolerable height (Fig 14, h) has a consistent
behavior. When the QI size is small, we can have exact solutions; in this case,
when we increase the maximum tolerable height, this increases the search space
too. In contrast, when relaxations are sought, the higher the constraint, the
faster a solution is found.

The constraint on the maximum tolerable suppression (Fig. 14, MaxSupp) is
similar: the higher the constraint is set, the faster an approximate solution is
found (except for low QI sizes where exact answers are possible and the behavior
is inverse due to the exploration of L(vmax)).

In all experiments, it is clear that the costs are dominated by the QI size.
Finally, in all experiments, the times ranged between 1 and 8 msec, thus fa-
cilitating the online negotiation of privacy with the user, in user time. The

Trading Privacy for Information Loss in the Blink of an Eye 579

Fig. 4. Number of visited nodes for different QI, k, h, MaxSupp.All times range between
1 and 8 msec. Light coloring is for exact matches and dark coloring is for approximate
matches.

experiments with l-diversity demonstrate a similar behavior as the experiments
of k-anonymity. See [7] for a detailed report of all our experiments.

The Price of Histograms. The lattice of generalization schemes and most
importantly, the histograms with which the lattice is annotated come with a
price, both in terms of space and in terms of construction time. The lattice
construction is negligible in terms of time; however, this does not hold for its
histograms: observe that as the QI size increases, the time for the histogram
construction increases exponentially (Fig. 5). The reason for this phenomenon
is depicted in Fig. 5 where the number of nodes per QI size is also depicted.
Although the time spent to construct the histograms is significant, the amount
of memory that is needed to keep the histograms in main memory is quite small
(e.g., we need approx. 3 MB for the largest QI size for k-anonymity; the value
drops to approx. 1 MB for l-diversity, since the number of discrete values that
the histograms take are much lower in this case).

QI size No. nodes Avg constr. time for k-anon (min) Avg constr. time for l-div (min)

QI=3 60 0,141 0,1858
QI=4 180 0,602 0,702
QI=5 900 3,7 4,53
QI=6 3600 19,02 21,12

Fig. 5. Lattice size in no. nodes (left); average construction time (min.) for the full
lattice and the respective histograms for k-anonymity (middle) and l-diversity (right)
over the Adult data set

580 A. Pilalidou and P. Vassiliadis

4 Summary and Pointers for Further Probing

In this paper, we report on our method that allows a data curator trade informa-
tion loss (expressed as tuple suppression and increase in generalization levels) for
privacy (expressed as the value of a privacy criterion like k-anonymity or naive
l-diversity). The full version of this paper [7] includes material that is omitted
here for lack of space. Specifically:

– We theoretically prove that our method is guaranteed to provide the best
possible answers for the given user requests.

– We provide an extensive discussion on the validity of the problem. To the
best of our knowledge, [7] is the first to perform a systematic study and
report on the interdependency of suppression, generalization and privacy in
a quantitative fashion.

– We provide extensive experimental results, in full detail for all the different
combinations of QI size, k or l. Moreover, all the experiments have also been
performed on the IPUMS data set, and the reported results demonstrate a
similar behavior with the Adult data set.

– To handle the issue of scale (as the off-line lattice-and-histogram construction
is dominated by both the QI size and the data size) we provide a method
for the selection of a small subset of characteristic nodes of the lattice to be
annotated with histograms, based on a small number of tests that rank QI
levels for the grouping power.

Acknowledgments. We would like to thank X. Xiao and Y. Tao for explana-
tions concerning the IPUMS data set.

References

1. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans.
Knowl. Data Eng. 13(6), 1010–1027 (2001)

2. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: Efficient full-domain k-
anonymity. In: Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, Baltimore, Maryland, USA, June 14-16, pp. 49–60 (2005)

3. Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: A
survey of recent developments. ACM Comput. Surv. 42(4) (2010)

4. Park, H., Shim, K.: Approximate algorithms for k-anonymity. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data, Beijing, China,
June 12-14, pp. 67–78 (2007)

5. Aggarwal, C.C.: On k-anonymity and the curse of dimensionality. In: Proceedings of
the 31st International Conference on Very Large Data Bases (VLDB), Trondheim,
Norway, August 30-September 2, pp. 901–909 (2005)

6. U.C. Irvine Repository of Machine Learning Databases: Adult data set (1998),
http://www.ics.uci.edu/~mlearn

7. Pilalidou, A.: On-line negotiation for privacy preserving data publishing. MSc
Thesis. MT 2010-15, Dept. of Computer Science, Univ. of Ioannina (2010),
http://www.cs.uoi.gr/~pvassil/publications/2012_SSDBM/

http://www.ics.uci.edu/~mlearn
http://www.cs.uoi.gr/~pvassil/publications/2012_SSDBM/

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 581–586, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Extracting Hot Spots from Satellite Data

Hideyuki Kawashima, Chunyong Wang, and Hiroyuki Kitagawa

University of Tsukuba
Tennodai, Tsukuba, Ibaraki, Japan

{kawasima,chunyong.wang,kitagawa}@kde.cs.tsukuba.ac.jp

1 Introduction

With the advances of sensing technologies, massive amount of scientific data have
been collected and analyzed in these days. LSST generates 20 TB per night, LHC
generates 15 PB per year, and an earth observation satellite sensor data related to
GEO-Grid [1] has generated more than 170 TB so far. ASTER sensor data are high
resolution image data provided GEO-Grid.

ASTER data provides three kinds of data. One of them is thermal infrared radiome-
ter, which is shortly denoted as TIR. Originally, TIR data are utilized to discover min-
eral resources and to observe status of atmosphere and the surface of ground and sea.
The size of each data is almost 800 800 pixels, and each pixel covers 90 m 90
m of area.

Unlike the above cases, we believe that TIR can be used to detect hot spots all over
the world. The meaning of “hot spots” is places that generate thermals which include
steel plants or fires. This paper proposes a threshold based method and a statistics
based method to discover hot spots from TIR data. We implement our methods with
SciDB [2]. All of procedures in our methods are implemented by array manipulation
operators which are natively supported by SciDB and UDFs. The result of experi-
ments which detect steel plants shows that statistics based method outperforms
threshold based method as for recall.

The rest of this paper is organized as follows. Section 2 describes GEO-Grid pro-
ject which provides ASTER data. Section 3 describes our proposal which includes
statistics and threshold based methods and then it describes a hot spot detection sys-
tem with SciDB. Section 4 describes evaluation of our proposal methods. Finally,
section 5 concludes this paper.

2 GEO-Grid

In this section, we describe GEO-Grid and ASTER sensor data archived in GEO-
Grid. Our research group participates in GEO-Grid project. GEO-Grid (Global Earth
Observation Grid) is a system for archiving and high-speed processing satellite large
quantities of satellite observation data by using grid technique.

GEO-Grid introduces the design concept called VO (Virtual Organization), where
necessary data or service is provided depending on a demand from a research com-
munity (e.g., disaster prevention, environmental conservation, geological research).
Our research group belongs to “BigVO”, in which we can get data sensed by MODIS
and ASTER.

582 H. Kawashima, C. Wang, and H. Kitagawa

2.1 MODIS

MODIS is the name of an optical sensor on NASA’s earth observation satellite
“TERRA/AQUA”. MODIS sensor is mounted on both TERRA satellite and AQUA
satellite, and the observation cycle is once a day. Spatial resolutions of MODIS are
250m (band 1, 2), 500m (band 3-7) and 1000m (band 8-36). MODIS can observe
waveband of 0.4-14 µm with 36 channels. From satellite images from MODIS, cloud,
radiated energy, aerosol, ground coverage, land use change, vegetation, earth surface
temperature, ocean color, snow cover, temperature, humidity, sea ice, etc., can be
observed with the use of 36 channels.

2.2 ASTER

ASTER is one of optical sensors on TERRA satellite, and can sense waveband from
visible to thermal infrared. The observation cycle of ASTER is 16 days. ASTER con-
sists of three independent sensors (VNIR, SWIR and TIR).

VNIR is an optical sensor which can sense reflected light of geosphere from visible
to near infrared, and intended to do resource survey, national land survey, vegetation,
and environment conservation. SWIR is an optical sensor which can sense short
wavelength infrared region from 1.6 µm to 2.43 µm with multiple bands, and intend-
ed to conduct resource survey, environment conservation such as vegetation, volcanic
action with a rock or mineral distinction. TIR is an optical sensor with five bands
which can sense thermal infrared radiation on earth surface. Its sensing region is from
8 µm to 12 µm. Primary purposes of TIR are to discover distinct mineral resources
or to observe air, geo sphere, or sea surface. In this paper we show that TIR data can
be utilized to discover hot spots on the earth, in reality.

3 Detecting Hot Spots

3.1 Hot Spots

In this paper we refer geographical points which have higher temperatures compared
with neighboring points to as “hot spots”. Hot spots include steel plants, cement
plants, volcanos in eruption. This paper focuses on to discover steel plants in Japan
from TIR data.

3.2 Computing Radiance Temperature

To discover hot spots such as steel plants from TIR data, we first need to compute the
temperature of ground surface from TIR data. It is because digital numbers in TIR
data do not express surface temperature. We show equations for the computations in
the following. This computation is based on Susaki’s method [3]. means spectral
radiance from a black body, T* means radiance temperature, T means temperature,
respectively. 1 (1)

 Extracting Hot Spots from Satellite Data 583

 (2)

 273.15 (3)

TIR data includes five bands. They are from band 10 to band 14. Each pixel of data

has five values which correspond to the five bands. Since band 13 has the best quality,
we use only the values of band 13. DN means digital number which is stored in each
pixel of array data. UCC means a conversion factor, and it is set to 0,005693. h means
Planck’s constant, and it is set to 6.626 10-34. c means light speed and it is set to
2.988 108. k means Boltzmann’s constant and it is set to 1.38 10-23. means
wave length. Band 13 provides wave length from 10.25 to 10.95, and we use interme-
diate wavelength 10.60.

3.3 Threshold Based Method

Hot spots should have high temperatures by its definition. Based on this simple intui-
tion, we present Algorithm 1. Inputs include point information (Pi) which has latitude
(lat), longitude (lon), and digital number (D13i). Inputs also include threshold which is
given by user. Output includes a set of hot spots. Each hot spot should have point
information. The algorithm is quite simple. It first translates digital number (DN) to
temperature data (line 3—6). Then, if an array has a pixel of which value which ex-
ceeds threshold, then the pixel is added to the set of hot spots.

1. INPUT: InputSet：{{Pos
i
,DN

13i
},…}，Threshold

2. OUTPUT: HotSpots：{Pos
i
,…}

3.

4. for all {Pos
i
,DN

13i
} InputSet do

5. Compute Temp
13i
 from DN

13i
 by equations 1-3;

6. Add Temp
13i
 to (Pos

i
,DN

13i
) in InputSet;

7. end

8. for all {Pos
i
,DN

13i
,Temp

13i
} InputSet do

9. if (Temp
13i
 Threshold) then

10. Add Pos
i
 to HotSpots;

11. end

12. end

13. return HotSpots;

Algorithm 1. Threshold based Method

3.4 Statistics Based Method

Normal distributions are widely seen in natural and social phenomenon. On normal
distribution, it is widely known that mean plus or minus 3σ is rare. We focus

584 H. Kawashima, C. Wang, and H. Kitagawa

attention on this feature, and apply it to hot spot detection. We show the statistics
based method on Algorithm 2. In the algorithm, “ σ” means a parameter given by a
user. When k is 3, the algorithm detects points with temperature which is more than µ 3σ as hot spots. It should be noted that this algorithm deletes points of which
ground height is zero since it should be in the sea.

1. INPUT: InputSet: {{Posi, DN13i, Elvi},…}, σ
2. OUTPUT: HotSpots: {Posi,…}

3.
4. TempSet ;
5. for all {Posi,DN13i,Elvi} InputSet do

6. Compute Temp13i from DN13i by equations 1-3;

7. Add Temp13i to {Posi,DN13i,Elvi}
8. if (Elvi 0 and Temp13i 0) then

9. Add {Posi,DN13i,Elvi,Temp13i} to TempSet;
10. end

11. end

12. Compute μ and σ with all of Temp13i in TempSet;
13. for all {Posi,DN13i,Elvi,Temp13i} TempSet do

14. if (Temp13i μ kσ) then
15. Add Posi to HotSpots;
16. end

17. end

18. return HotSpots;

Algorithm 2. Statistics based Method

Fig. 1. Proposed Hot Spot Detection System

 Extracting Hot Spots from Satellite Data 585

3.5 Implementation of Hot Spot Detections

We implemented the above two algorithms on SciDB [2] array database system as
shown in Figure 1. The reason why we adopted SciDB is its data model. Array data
model is appropriate to manipulate satellite image data compared with relational data
model.

Red characters mean operations: apply, project, join, avg, stddev, cross, and filter
are supported by SciDB. Brown characters mean UDF: getradiance returns radiance
by computing TIR data (band13) with equations in Section 2.1, and gethotspot returns
the locations of hotspots with Algorithm 1 and 2.

4 Evaluation

We used TIR data for eight famous steel plants in Japan. We show the details in Table
1. We used 7 to 14 TIR data for each plant from 2001 to 2011.

Table 1. Target Steel Plants for Experiment

Steel Plants # data Observation duration
Kashima 9 2002—2011

Sumitomo Yahata 9 2000—2011
Sumitomo Metal Engineering (Wakayama) 7 2002—2011

Nippon Steel Corporation (Nagoya) 9 2000—2011
Kobe Steel Group 8 2002—2011

JFE East Japan 14 2000—2011
JFE West Japan 12 2001—2009

Nisshin Steel (Kure) 9 2002—2011

We show the result of experiments in Table 2.Threshold-based method has three

patterns while statistics based method has two patterns. As for precision, threshold
based method shows better result while statistics based method shows dramatically
better result as for recall.

One of the reasons why recall shows low value is considered as seasonal change of
temperatures. We observed temperature data around JFE East Japan steel plant from
2004 to 2006. The temperature shows more than 50 degree at July 5th, 2004 while it
shows 23 degrees at December 27th , 2006. Statistics based method (algorithm 2) de-
tects points with relatively high temperatures while threshold based method (algo-
rithm 1) detects all of points which have higher temperatures. Therefore threshold
based method shows lower recalls, especially TH=60.

Table 2. Result of Hot Spot Detection Experiment

 Threshold-based Statistics-based
TH=60 TH=45 TH=30

Precision 1.000 0.835 0.701 0.684 0.832
Recall 0.052 0.195 0.597 0.935 0.870

586 H. Kawashima, C. Wang, and H. Kitagawa

5 Conclusions and Future Work

This paper described our simple algorithms to detect hot spots with ASTER TIR data
and a system for the detection with SciDB. Result of experiments that detect Japanese
steel plants showed that statistical based method outperformed threshold based meth-
od as for recall.

In future work, we plan to develop more sophisticated detection algorithms and its
scalable extension for massive satellite image data, and we also plan to detect outlier
events such as natural fire. In addition, we plan to construct an event detection infra-
structure from satellite images including digital elevation model (DEM) [4].

Acknowledgement. This work is partially supported by KAKENHI (#20240010, #
22700090). This research used ASTER data β. The data was generated by GEO-Grid
managed by The National Institute of Advanced Industrial Science and Technology
(AIST). Original ASTER data are managed by Ministry of Economy, Trade and
Industry (METI).

References

[1] GeoGRID, http://www.geogrid.org
[2] SciDB, http://www.scidb.org
[3] Susaki, J.: Remote Sensing Image Data Processing by GRASS (in Japanese),

http://www.envinfo.uee.kyoto-u.ac.jp/user/
susaki/grass/grass3.html

[4] Takagi, T., Kawashima, H., Amagasa, T., Kitagawa, H.: Providing constructed buildings
information by ASTER satellite DEM images and web contents. In: Proc. DIEW Work-
shop in Conjunction with DASFAA (2010)

A Framework for Enabling Query Rewrites
when Analyzing Workflow Records�

Dritan Bleco and Yannis Kotidis

Athens University of Economics and Business
76 Patission Street, Athens, Greece

{dritanbleco,kotidis}@aueb.gr

Abstract. Workflow records are naturally depicted using a graph model in which
service points are denoted as nodes in the graph and edges portray the flow of pro-
cessing. In this paper we consider the problem of enabling aggregation queries
over large-scale graph datasets consisting of millions of workflow records. We
discuss how to decompose complex, ad-hoc aggregations on graph workflow
records into smaller, independent computations via proper query rewriting. Our
framework allows reuse of precomputed materialized query views during query
evaluation and, thus, enables view selection decisions that are of immense value
in optimizing heavy analytical workloads.

1 Introduction

A Workflow Management application in a Customer Support Call Center manages mas-
sive collections of different trouble (issue) tickets generated daily by an Issue Tracking
System (ITS). Such an application tracks all activities from the creation of the trouble
ticket till its completion. A trouble ticket is commonly composed by different flows
of tasks that may be serviced in parallel or sequentially by distinct agencies within the
company’s domain called service points.

A natural way to depict the workflow followed by a trouble ticket is to utilize a
graph model in which service points are denoted as nodes and edges depict the flow
of processing. Figure 1 depicts the graph instance associated with a particular trouble
ticket. Numeric labels on the nodes depict processing time (in days) within the service
point. The values on the edges depict delays for propagating the associated task(s) from
one service point to another (e.g. handoffs latencies or wait times).

In this paper we consider the problem of enabling analytical queries over large-scale
graph datasets related to workflow management applications such as those serving ITS.
We describe a comprehensive framework for modeling analytical queries that range
over the structure of the graph records. For example, queries like ”find the average
ticket completion time” in an ITS application are naturally captured by our framework.

As will be explained, in our framework we decompose complex, ad-hoc aggregations
on graph workflow records into smaller, independent computations via proper query
rewriting. In the context of a large-scale data warehouse, our framework allows re-use

� This work was partially supported by the Basic Research Funding Program, Athens University
of Economics and Business.

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 587–590, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

588 D. Bleco and Y. Kotidis

Fig. 1. A sample workflow record Fig. 2. Benefits of Materialization

of precomputed materialized query views during query evaluation and, thus, enables
view selection decisions [1]. Our framework is not an attempt to provide a new algebra
for graph analytics. All computations discussed in our work, can be naturally expressed
in relational algebra, given a decomposition of the graph records in a relational back-
end. Our query rewriting framework allows us to optimize ad-hoc aggregations over
workflow records by utilizing precomputed views, independently of the technological
platform used for storing and querying such records. In our experimental evaluation,
we demonstrate that our techniques can be used to expedite costly queries via query
rewriting and available precomputations in the data warehouse.

2 Motivation and Basic Concepts

Figure 1 captures information related to a single trouble ticket workflow that we will
refer to as a record henceforth. Service point B is a special type of node called splitting
node, where processing of the ticket is split between two tasks that are processed in
parallel following different flows in particular [B,C,O] (or [BCO] for brevity) and
[BDEBMO]. These independent flows are merged (synchronized) at node O, which
is a merging node. From there, the ticket is moved to node P where it is marked as
completed. There can be recordings of different cost metrics, in addition to the time we
consider in this example. A decision maker would like to analyze data according to all
these attributes over different parts of the graph for thousands of such records. In what
follows we describe a formal way to analyze such data.

In a workflow management application a flow is simply a sequence of nodes resulting
from the concatenation of adjacent edges. When a flow is uniquely identified by its
endpoints, for brevity, we omit the internal nodes. For example flow [ABC] is depicted
as [AC]. In the record of Figure 1, flow [BDEBMO] contains a cycle, [BDEB] in
our case. This cycle shows that this flow, for some reason, goes back to node B for
further proccessing and after that to node M . On each node there is a cost related with
each input/output edge. For example, to proceed from B to M the flow was processed
locally on B for four days.

When we analyze the costs on a flow in a trouble ticket often we want to omit the
costs on the two side nodes. Borrowing notation from mathematics, we denote this

A Framework for Enabling Query Rewrites when Analyzing Workflow Records 589

”open-ended” flow similarly to an interval whose endpoints are excluded. For example
(BCO) denotes our intention to look at the processing of the flow excluding cost related
to its starting and ending points. Similarly, a flow can be opened in only one of its side
nodes, i.e. [BO).

In a large ITS application, a lot of tickets are processed daily, creating a massive
collection of such data. Given these primitive data an analyst should be able to answer
queries like

– Q1: What is the total wall-clock time for each trouble ticket from its initialization
till its completion?

– Q2: What is the total waiting time at a certain merging node?
– Q3: What are the total processing time and total delay time?
– Q4: What is the wasting time due to a non approved task (a circle during the flow

or a flag over a node depicts such a situation)?

These queries will be executed over a large collection of tickets. Primitive statistics
computed at a per-ticket basis can then be combined to compute aggregate statistcs like
average completion time per type of ticket etc. Query Q1 in this example requires us to
find the longest flow between nodes Q and P . During the computation, attention should
be paid to merging nodes that synchronize execution of parallel flows. In our running
example two flows reach merging node O; the fastest one waits for the other flow. For
the sample record of Figure 1 the longest flow is [QABDEBMOP] with a total time
of 68 days. In this example, query Q1 spans over the whole record. Depending on the
scenario being analyzed, a user may restrict the analysis over parts of the input records
(e.g. between two specific service points). Query Q2 calculates the longest and shortest
flow among tasks starting at spliting node B (including the cost(s) on this node) and
ending at the merging node O. The waiting time is the difference between the returned
values of the two subqueries. For our example this is 40-20=20 days. Query Q3 sums up
the measures on the edges (the delay time) and the values on the nodes (the processing
time). In this record, the processing is 64 days and delay time 24 days. Query Q4 first
needs to identify the non approved - circles on the ticket and then sum up the total time
of the flow related to these circles. For the depicted record the wasting time is related
with the cirlce B,D,E,B and equals to 25. Obviously the cost of the second proccess
on B is not included because this value is related with the new flow from B to M .

Our framework allows us to model such queries in an intuitive manner via a decom-
position of a record into flows and the use of two basic operators we introduce next.

3 Query Rewriting and Evaluation

In order to allow composition of flows we introduce the merge-join operator (�) that
concatenates two flows f1 and f2 that run in parallel when they have the same starting
and ending nodes. No merging node should be present in the two flows except the
starting or/and the ending node. For flows that are running sequentially, we use a second
operator called union operator (⊕) that concatenates two flows f1 and f2 when the
ending node of f1 is the same as the starting node of f2 and one of the two flows is
open-ended at the common end-point. Using the two operators the ticket depicted in
Figure 1 can be rewritten as [QP]= [QAB)⊕ {[BDEBMO] � [BCO]} ⊕ (OP].

590 D. Bleco and Y. Kotidis

To compute different statistics on these measures we can use a Flow Level Aggre-
gation function Ff (r) which takes as input a flow f and a record r. The function F is
applied on the measures of the flow and returns f along with the computed aggregate.
As an example, in the record r of Figure 1, SUM[QABD)(r) returns flow [QABD)
and its duration, i.e. 25 days (denoted as [QABD):25). In case more than one flows
are given, the function is computed over the (existing) individual flows and the result is
returned along with each respective flow.

In a subsequent step a Flow Set Level Aggregation function can be used in order to
aggregate the results of the previous step and to return a unique value for a set of flows.
As an example, function MAX(SUM[QP](r)) computes the total wall-clock time for
the ticket depicted in record r along with the longest flow. The aggregate function over
a union among two or more flows can be written also as a union among the aggregate
function results of these flows. The aggregate function over the merge join operator
among flows can be written as the aggregate function over the set of flows that were
related with the merge join. Thus, for our record r we have

MAX(SUM[QAB)⊕{[BDEBMO]	[BCO]}⊕(OP](r)) =

MAX(SUM[QAB)(r)⊕SUM SUM{[BDEBMO],[BCO]}(r)⊕SUM SUM(OP](r))

The union operator concatenates flows with common ending and starting nodes and,
additionally consolidates their measures. In this example, we need to add their mea-
sures, and this is indicated with the use of function SUM underneath the operator. In
general, the rewrites for pushing flow level aggregation (for the union and merge-join
respectively) on a flow are of the form (F ,H are appropriate aggregate functions)

Ff=f1⊕f2(r) = Ff1(r) ⊕H Ff2(r) and Ff=f1�f2(r) = Ff1,f2(r) = {Ff1(r), Ff2 (r)}
Furthermore the Flow Set Level Aggregation can be pushed inside each Flow Level

Aggregation Function and can be omitted in case the latter is executed over a sim-
ple flow. So continuing the above example we have MAX(SUM[QP](r))=[QAB) :
18⊕SUM [BDEBMO] : 45⊕SUM (OP] : 5=[QABDEBMOP] : 68.

In order to demonstrate the effectiveness of our rewrite techniques, we synthesized
a random graph consisting of 10000 nodes and 15000 edges and generated 120 million
workflow records by selecting random subgraphs from it. The records were stored in a
relational backend using a single table storing their edges and appropriate indexes. We
created 100 random queries on these records. Half of the queries used the SUM flow
level aggregation function. The rest performed, additionally, the MAX flow set level
aggregation. We used the Pick By Size (PBS) algorithm [2] for selecting materialized
views. In Figure 2 we depict the reduction in query execution cost (compared to running
these queries without rewrites) with respect to the available space budget of the views.
The results demonstrate that even a modest materialization of 10%, via the use of our
rewrites provides substantial savings (up to 90%).

References

1. Kotidis, Y., Roussopoulos, N.: A Case for Dynamic View Management. ACM Transactions
on Database Systems 26(4) (2001)

2. Shukla, A., Deshpande, P., Naughton, J.F.: Materialized View Selection for Multidimensional
Datasets. In: VLDB, pp. 488–499 (1998)

Towards Enabling Outlier Detection in Large,
High Dimensional Data Warehouses�

Konstantinos Georgoulas and Yannis Kotidis

Athens University of Economics and Business
76 Patission Street, Athens, Greece
{kgeorgou,kotidis}@aueb.gr

Abstract. In this work we present a novel framework that permits us to de-
tect outliers in a data warehouse. We extend the commonly used definition of
distance-based outliers in order to cope with the large data domains that are typ-
ical in dimensional modeling of OLAP datasets. Our techniques utilize a two-
level indexing scheme. The first level is based on Locality Sensitivity Hashing
(LSH) and allows us to replace range searching, which is very inefficient in high
dimensional spaces, with approximate nearest neighbor computations in an intu-
itive manner. The second level utilizes the Piece-wise Aggregate Approximation
(PAA) technique, which substantially reduces the space required for storing the
data representations. As will be explained, our method permits incremental up-
dates on the data representation used, which is essential for managing voluminous
datasets common in data warehousing applications.

1 Introduction

Assuring quality of data is a fundamental task in information management. It becomes
even more critical in decision making applications, where erroneous data can mislead to
disastrous reactions. The data warehouse is the cornerstone of an organization’s infor-
mation infrastructure related to decision support. The information manipulated within
a data warehouse can be used by a company or organization to generate greater under-
standing of their customers, services and processes. Thus, it is desirable to provision
for tools and techniques that will detect and address potential data quality problems in
the data warehouse.

It is estimated that as high as 75% of the effort spent on building a data warehouse
can be attributed to back-end issues, such as readying the data and transporting it into
the data warehouse [1]. This is part of the Extract Transform Load (ETL) processes,
that extract information pieces from available sources to a staging area, where data is
processed before it is eventually loaded in the data warehouse local tables. Processing
at the data staging area includes cleansing, transformation, migration, scrubbing, fusion
with other data sources etc.

In this paper, we propose a novel framework for identifying outliers in a data ware-
house. Outliers are commonly defined as rare or atypical data objects that do not behave

� This work was partially supported by the Basic Research Funding Program, Athens University
of Economics and Business.

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 591–594, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

592 K. Georgoulas and Y. Kotidis

Fig. 1. Customer dimension projected onto the
Product dimension Fig. 2. Framework’s Overview

like the rest of the data. Often, erroneous data points appear as outliers when projected
on a properly derived feature space. In our work, we exploit the dimensional modeling
used in a data warehouse and let the user examine the data under selected dimensions
of interest. This way, our definition of what constitutes an outlier has a natural inter-
pretation for the policy makers that interact with this data. Moreover, our techniques
are tailored for the massive and periodic schedule of updates that occur with each ETL
process. Clearly, techniques that require substantial pre- or post- processing of data are
not suitable for handling massive datasets such as those in a data warehouse.

2 A Framework for Detecting Outliers in a Data Warehouse

Given a data warehouse with multiple dimensions d1, d2,. . . , dn, each organized by
different hierarchy levels hk the data warehouse administrator may select a pair (daggr ,
haggr level) so as to define the requested aggregation and, similarly, a pair (dproj ,
hproj level) in order to denote the space that these aggregates should be projected
upon. For instance the aggregate dimension can be customer at the hierarchy level of
customer-type and the projected dimension product at the product-brand level. These
pairs indicate our intention to compare different customer types based on cumulative
sales of the brand of products they buy in order to search for outliers. Clearly, a data
warehouse administrator may define multiple such pairs of dimensions in order to test
the data for outliers. An example presented in Figure 1 where the customer (aggregate)
dimension is projected onto the product dimension. This projection leads to a high di-
mensional vector for each customer that summarizes all his buys over the whole list of
products.

An O(D,M) distance based outlier is defined [2] as a data item O in a dataset with
fewer than M data items within distance D from O. The definition, in our domain,
suggests that range queries need to be executed in the data space defined by the pro-
jected dimension in order to compute the number of data items that lay inside a range
of D from item O. As has been explained, the projected space can have very high di-
mensionality (i.e. equal to the number of all products in the data warehouse, which is
in the order of thousands), which renders most multidimensional indexing techniques
ineffectual, due to the well documented curse of dimensionality [3].

Towards Enabling Outlier Detection in Large, High Dimensional Data Warehouses 593

In order to address the need to compare data items on a high-dimensionality space
when looking for outliers, we adapt a powerful dimensionality reduction technique
called LSH [4]. LSH generates an indexing structure by evaluating multiple hashing
functions over each data item (the resulting vector when projecting a customer on the
space of products she buys). Using the LSH index, we can estimate the k nearest neigh-
bors of each customer and compute outliers based on the distances of each customer
from its k neighbors. We thus propose an adapted approximate evaluation of distance-
based outliers that treats a data item O as an outlier if less than M of its k nearest
neighbors are within distance M from O. Please notice that this alternative evaluation
permits us to utilize the LSH index for a k-NN query (with k > M) and restrict the
range query on the k results retrieved from the index. Thus, the use of the LSH index
permits effective evaluation of outliers, however it introduces an approximation error,
because of collisions introduced by the hashing functions. There have been many pro-
posals on how to tune and increase performance of LSH (e.g. [5,6]), however such
techniques are orthogonal to the work we present here.

The use of LSH enables computation of outliers by addressing the curse of dimen-
sionality. Still, an effective outlier detection framework needs to address the extremely
high space required for storing the resulting data vectors. The size of these vectors is
proportional to the size of a data cube slice on the selected pair of dimensions. More-
over, these vectors need to be updated whenever the data warehouse is updated with
new data. We address both these issues (space overhead, update cost) using the PAA
representation instead of the original vectors. Utilizing PAA, we store vectors of lower
dimensionality than the real ones, thus gaining in space. We can also compute the dis-
tances between each data item and its nearest neighbours through their PAA representa-
tions much faster than using the real data items without losing too much in accuracy as
we will show in our experimental evaluation. PAA [7] represents a data item of length
n in RN space (where n > N) achieving a dimensionality reduction ratio N :n. Given
that each data item X is a vector with coordinates x1, .., xn, its new representation will
be a new vector X̄ of length N and coordinates the mean values of the N equisized
fragments of vector X . So according to PAA a vector X = x1, .., xn is represented by

X̄ = x̄1, .., x̄N where x̄i =
N
n

n
N i∑

j= n
N (i−1)+1

xj .

Beside the space savings provided by PAA, its adaptation has another important
advantage in our application. Because of its definition, PAA representations are lin-
ear projections that permit incremental updates whenever new data arrives at the data
warehouse. Let PAAold denote the PAA vector of a customer and PAAdelta the PAA
representation of the customer’s buys in the newly acquired updates. Then, in order to
compute the new representation PAAnew for this customer we can simply add the two
vectors, i.e. PAAnew=PAAold+PAAdelta. This property is vital for data warehouses,
where incremental updates are of paramount importance [8].

3 Experiments and Concluding Remarks

In our experimental evaluation, we used a clustered synthetic dataset that represents or-
ders of 10,000 customers over a list of 1200 products. Each cluster contains customers

594 K. Georgoulas and Y. Kotidis

� � ��
��

���

���

���

���

��

���

���

���

���

����

������� ���

�������� ��

!

"
�
�
�
�
�
�

Fig. 3. F-Measure

�������	
�� �����
�

�

��

��

��

��

��

��

��

��

��

��������� � ���	
��

�
�
�
��
�

Fig. 4. Space for the LSH Index, the Vectors or
PAAs

with similar behavior. In particular, the customers within each cluster have a randomly
(pre)selected set of “hot” products that represent 20% of the whole product list. For
a customer in the cluster, 80% of her orders are on that 20% subset of products. Dif-
ferent clusters have different set of hot products. The frequencies of customers’ orders
follow the normal distribution with different mean values per cluster. In order to eval-
uate the performance of our method we injected in the dataset outliers in the form of
spurious orders. We created three infected datasets. In the first one, the spurious orders
add low disturbance (measured by the number of spurious orders) to the original data.
while in the second medium and in the third large. In Figure 3 we depict the f-measure
(2×recall×precision

recall+precision) in detecting the injecting outliers for the tree datasets. We compare
two variants. The first uses the LSH index and the data vectors generated by projecting
the customers on the product dimension. The second setup, instead of the original vec-
tors, it only stores their PAA representations of one quarter of the original vector length.
In the Figure we observe that the accuracy of the PAA method is quite similar to the
other method that stores the actual vectors, while the storage of PAA is much smaller,
as it shown in Figure 4. Moreover, the size of the LSH index is very small, while its
accuracy in computing distance-based outliers is at least 98%.

References

1. Kimball, R.: The Data Warehouse Toolkit. John Wiley & Sons (1996)
2. Subramaniam, S., Palpanas, T., Papadopoulos, D., Kalogeraki, V., Gunopulos, D.: Online Out-

lier Detection in Sensor Data Using Non-Parametric Models. In: VLDB (2006)
3. Korn, F., Pagel, B.U., Faloutsos, C.: On the ’Dimensionality Curse’ and the ’Self-Similarity

Blessing’. IEEE Trans. Knowl. Data Eng. 13(1), 96–111 (2001)
4. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in

high dimensions. In: FOCS, pp. 459–468. IEEE Computer Society (2006)
5. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-Probe LSH: Efficient Indexing

for High-Dimensional Similarity Search. In: VLDB, pp. 950–961 (2007)
6. Georgoulas, K., Kotidis, Y.: Distributed Similarity Estimation using Derived Dimensions.

VLDB J. 21(1), 25–50 (2012)
7. Keogh, E.J., Chakrabarti, K., Pazzani, M.J., Mehrotra, S.: Dimensionality Reduction for Fast

Similarity Search in Large Time Series Databases. Knowl. Inf. Syst. 3(3), 263–286 (2001)
8. Roussopoulos, N., Kotidis, Y., Roussopoulos, M.: Cubetree: Organization of and Bulk Updates

on the Data Cube. In: SIGMOD Conference, pp. 89–99 (1997)

Multiplexing Trajectories of Moving Objects

Kostas Patroumpas1, Kyriakos Toumbas1, and Timos Sellis1,2

1 School of Electrical and Computer Engineering
National Technical University of Athens, Hellas

2 Institute for the Management of Information Systems, R.C. ”Athena”, Hellas
{kpatro,timos}@dbnet.ece.ntua.gr, toumbask@gmail.com

Abstract. Continuously tracking mobility of humans, vehicles or mer-
chandise not only provides streaming, real-time information about their
current whereabouts, but can also progressively assemble historical
traces, i.e., their evolving trajectories. In this paper, we outline a frame-
work for online detection of groups of moving objects with approximately
similar routes over the recent past. Further, we propose an encoding
scheme for synthesizing an indicative trajectory that collectively repre-
sents movement features pertaining to objects in the same group. Prelim-
inary experimentation with this multiplexing scheme shows encouraging
results in terms of both maintenance cost and compression accuracy.

1 Motivation

As smartphones and GPS-enabled devices proliferate and location-based services
penetrate into the market, managing the bulk of rapidly accumulating traces of
objects’ movement becomes all the more crucial for monitoring applications.
Apart from effective storage and timely response to user requests, data explo-
ration and trend discovery against collections of evolving trajectories seems very
challenging. From detection of flocks [9] or convoys [4] in fleet management, to
similarity joins [1] for car-pooling services, or even to identification of frequently
followed routes [2,8] for traffic control, the prospects are enormous.

We have begun developing a stream-based framework for multiplexing trajec-
tories of objects that approximately travel together over a recent time interval.
Our perception is that a symbolic encoding for sequences of trajectory segments
can offer a rough, yet succinct abstraction of their concurrent evolution. Taking
advantage of inherent properties, such as heading, speed and current position, we
can continuously report groups of objects with similar motion traces. Then, we
may regularly construct an indicative path per detected group, which actually
epitomizes spatiotemporal features shared by its participating objects.

Overall, such a scheme could be beneficial for:

– Data compression: collectively represent traces of multiple objects with a sin-
gle ”delegate” that suitably approximates their common recent movement.

– Data discovery: find trends or motion patterns from real-time location feeds.
– Data visualization: estimate significance of each multiplexed group of trajec-

tories and illustrate its mutability across time (e.g., on maps).

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 595–600, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

596 K. Patroumpas, K. Toumbas, and T. Sellis

– Query processing: utilize multiplexed traces for filtering when it comes to
evaluation of diverse queries (range, k-NN, aggregates etc.) over trajectories.

We believe that our ongoing work fuses ideas from trajectory clustering [5]
and path simplification [7], but proceeds even further beyond. Operating in a
geostreaming context, not only can we identify important motion patterns in
online fashion, but we may also provide concise summaries without resorting
to sophisticated spatiotemporal indexing. Symbolic representation of routes was
first proposed in [1] for filtering against trajectory databases. Yet, our encoding
differs substantially, as it attempts to capture evolving spatiotemporal vectors
using a versatile alphabet of tunable object headings instead of simply compil-
ing timestamped positions in a discretized space. Finally, this scheme may be
utilized in applications that handle motion data (navigation, biodiversity, radar
etc.).

The remainder of this paper is organized as follows. In Section 2, we introduce
a framework for multiplexing evolving trajectories in real time and explain the
basic principles behind our encoding scheme. In Section 3, we report indicative
performance results from a preliminary experimental validation of the algorithm.
Section 4 concludes the paper with a brief discussion of perspectives and open
issues for further investigation.

2 A Multiplexing Framework against Trajectory Streams

In this section, we first present the specifications of the problem and then outline
a methodology for multiplexing similar trajectories, which effectively provides
almost instant, yet approximate results.

2.1 Problem Formulation

Without loss of generality, trajectory To is abstracted as a sequence of pairs
{〈p1, τ1〉, 〈p2, τ2〉, . . . , 〈pnow, τnow〉} for a given moving object o. Positions pk ∈ Rd

in Euclidean space have d-dimensional coordinates measured at discrete, totally
ordered timestamps τk ∈ T, hence o(τk) ≡ pk. Note that T is regarded as an
infinite set of discrete time instants with a total order ≤. Then:
Definition 1. Trajectories of two objects oi and oj are considered similar along
interval ω up to current time τnow ∈ T, iff L2(oi(t), oj(t)) ≤ ε, ∀ t ∈ (τnow−ω, τnow],
where ε is a given tolerance parameter and L2 the Euclidean distance norm.

Hence, pairs of concurrently recorded locations from each object should not devi-
ate more than ε during interval ω. This notion of similarity is confined within the
recent past and does not extend over the entire history of movement. However,
it can be easily generalized for multiple objects with pairwise similar trajectory
segments (Fig. 1a). Given specifications for proximity in space (within distance ε)
and simultaneity in time (over range ω), our objective is not just to identify such
groups of trajectories, but also to incrementally refresh them periodically (every
β time units) adhering to the sliding window paradigm [6]. More concretely, a
framework for online trajectory multiplexing must:

Multiplexing Trajectories of Moving Objects 597

(a) Similar trajectories

�

�

�

�

�� ��

�� ��

���

���

���

���

���

��� ���

���

(b) Compass

�

�

�

�

� �

�

�

��

���
��

�

���

����

(c) Motion signature: N-SE-ENE-SE-E-NNE

Fig. 1. Orientation-based encoding of streaming trajectories

(i) distinguish objects into groups {g1, g2, . . .}, each containing synchronized,
pairwise similar trajectories during interval ω given a tolerance ε.

(ii) create an indicative ”delegate” trajectory T̄k for each group gk with more
than n members. For any sample point ō(t) ∈ T̄k, ∀ t ∈ (τnow − ω, τnow], it
holds that L2(oi(t), ō(t)) ≤ ε, ∀ oi ∈ gk.

(iii) insert, remove or adjust groups regularly (at execution cycles with period
β) in order to reflect changes in objects’ movement.

2.2 Trajectory Encoding

Checking similarity of trajectory segments according to their timestamped po-
sitions soon becomes a bottleneck for escalating numbers of moving objects or
wider window ranges. To avoid this, we opt for an approximative representa-
tion of traces based on consecutive velocity vectors that end up at the current
location of each respective object (Fig. 1c). Every vector is characterized by a
symbol that signifies the orientation of movement using the familiar notion of
compass (Fig. 1b, for movement in d = 2 dimensions), which roughly exemplifies
an object’s course between successive position messages.

Effectively, compass resolution α determines the degree of motion smoothing;
when α = 4, orientation symbols {N, S, E, W} offer just a coarse indication,
but finer representations are possible with α = 16 symbols (Fig. 1c) or more.
Instead of original positions, only the last �ωβ � symbols and speed measures
need be maintained per trajectory thanks to the sliding window model, thus
offering substantial memory savings. Typically, once the window slides at the
next execution cycle, an additional symbol (marking motion during the latest β
timestamps) will be appended at the tail of this FIFO sequence, while the oldest
one (i.e., at the head) gets discarded.

598 K. Patroumpas, K. Toumbas, and T. Sellis

2.3 Group Detection

Symbolic sequences are more amenable to similarity checks since they act as mo-
tion signatures. Presently, we identify objects with common signatures through
a hash table. Objects with identical symbolic sequences might have almost ”par-
allel” courses, but can actually be very distant from each other. So, the crux of
our approach is this:

Proposition 1. Objects with identical signatures that are currently within ε dis-
tance from each other, most probably have followed similar paths recently.

Therefore, identifying groups of at least n objects with a common signature
can be performed against their current locations pnow through a point clustering
technique. We provisionally make use of DBSCAN [3] to detect groups of similar
trajectories with proximal current positions. Afterwards, a delegate path T̄k per
discovered cluster with sufficient membership (≥ n objects) can be easily created.
Reconstruction of T̄k starts by calculating centroid ō(τnow) of its constituent
pnow locations; apparently, this will be the point at the tail of the sequence. In
turn, preceding points are derived after successively averaging respective speeds
retained in participating motion signatures. This can be easily accomplished by
simply rewinding the symbolic sequence backwards up to its head, i.e., reversely
visiting all samples within the sliding window frame.

3 Preliminary Evaluation

To assess the potential of our framework for data reduction and timely detection
of trends, we have conducted some preliminary simulations against synthetic
trajectories. Next, we present the experimental settings and we discuss some
indicative results concerning performance and approximation quality.

Experimental Setup. We generated traces of 10 000 vehicles circulating at
diverse speeds along the road network of greater Athens (area ∼250 km2). After
calculating shortest paths between randomly chosen network nodes (i.e., origin
and destination of objects), we took point samples at 200 concurrent timestamps
along each such route. Typically, most trajectories originate from the outskirts
of the city, pass through the center and finish up in another suburb.

Table 1. Experiment parameters

Parameter Values

Number N of objects 10 000

Window range ω (in timestamps) 10 20 50
Window slide β (in timestamps) 2 4 10

Tolerance ε (in meters) 100, 200

Cluster threshold n 10, 20, 50, 100

Compass resolution α 8, 16, 32

Multiplexing Trajectories of Moving Objects 599

<10,2> <20,4> <50,10>
0

2

4

6

window <ω, β>

E
xe

cu
tio

n
tim

e
(s

ec
) Encoding

Grouping
Clustering

n=20 ε=100m α=16

Fig. 2. Per stage cost

10 20 50 100
0

10

20

30

40

n

M
ul

tip
le

xe
d

ob
je

ct
s

(%
)

α=8
α=16
α=32

ω=20 β=4 ε=100m

threshold

Fig. 3. Multiplex effect

10 20 50
0

100

200

300

400

ω (timestamps)

A
ve

ra
ge

 E
rr

or
 (

m
) ε=100m,α=8

ε=100m,α=32
ε=200m,α=8
ε=200m,α=32

Fig. 4. Result quality

Algorithms have been implemented in C++ and experiments were performed
on a conventional laptop machine with an Intel Core 2 Duo CPU at 2.4 GHz
and 4GB RAM. All figures show calculated averages of the measured quantities
over 200 time units. Table 1 summarizes experimentation parameters and their
respective ranges; the default value is shown in bold.

Experimental Results. Admittedly, the proposed algorithm performs a lossy
approximation susceptible to errors. The primary causes are crude compass res-
olutions or speed variations amongst objects placed in the same group. By and
large, our empirical validation confirms this intuition, and also expectations for
prompt detection of groups.

As Fig. 2 indicates, execution cost per cycle fulfils real-time objectives for
varying window specifications, with almost stable overhead for encoding and
grouping. Note that the encoding phase is only marginally affected when in-
creasing the window range, although more positions per object must be handled
at each execution cycle (every β timestamps). The cost of grouping remains
practically stable, as it basically depends on the total count N of monitored
objects. In contrast, the clustering overhead fluctuates, but drops sharply for
wider windows as less objects tend to share motion signatures for too long. For
shorter ω, more objects appear to move together lately and thus create more can-
didate groups; accordingly, the clustering cost escalates as it requires distance
calculations among all members of each group.

Our next experiment attempts to appraise how effective this method is. Fig-
ure 3 plots the multiplexing degree, i.e., the fraction of objects assigned into
identified groups of sufficient size. Clearly, distinguishing important trends is
sensitive to threshold n. In case that membership into a group falls below limit
n, its trajectories are not multiplexed at all. Besides, approximation gets more
pronounced with a coarser resolution α. But for finer resolutions, less trajectory
matchings are identified, as objects tend to retain particular features of their
course and cannot easily fit into larger groups.

Still, average error between a delegate path and its contributing trajectories
is tolerable (Fig. 4), especially for less smoothed signatures (larger α). When
probing longer intervals, this deviation may well exceed the desired ε. This phe-
nomenon must be attributed to the relaxed notion of ”density-reachability” in
DBSCAN [3], which does not dictate that all cluster members be within distance

600 K. Patroumpas, K. Toumbas, and T. Sellis

ε from its centroid, but only pairwise. For less detailed trajectory representations
(i.e., encodings based on small resolution α), this deviation propagates back-
wards when probing retained sequences to reconstruct a delegate path, so error
may exacerbate ever more. However, the algorithm seems to achieve more reliable
approximations in case of finer motion signatures, particularly for ε = 200m.

4 Outlook

In this work, we set forth a novel approach for multiplexing trajectory features
that get frequently updated from streaming positions of moving objects. We
have been developing a methodology for detecting groups of objects that ap-
proximately travel together over the recent past. Thanks to an encoding scheme
based on velocity vectors, this process can be carried out in almost real time
with tolerable error, as our initial empirical study indicates.

We keep working on several aspects of this technique and we soon expect
more gains in terms of scalability and robustness. In particular, we intend to take
advantage of intermediate symbolic sequences in order to improve clustering with
higher representativeness and less recalculations, even in presence of massive
positional updates. We also plan to further investigate the grouping phase with
more advanced schemes, like those used in string and sequence matching. Last
but not least, it would be challenging to study this technique as an optimization
problem, trying to strike a balance between similarity tolerance and resolution
of the encoding scheme.

References

1. Bakalov, P., Hadjieleftheriou, M., Keogh, E., Tsotras, V.J.: Efficient Trajectory Joins
using Symbolic Representations. In: MDM, pp. 86–93 (2005)

2. Chen, Z., Shen, H.T., Zhou, X.: Discovering Popular Routes from Trajectories. In:
ICDE, pp. 900–911 (2011)

3. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A Density-Based Algorithm for Dis-
covering Clusters in Large Spatial Databases with Noise. In: KDD, pp. 226–231
(1996)

4. Jeungy, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of Convoys in
Trajectory Databases. PVLDB 1(1), 1068–1080 (2008)

5. Lee, J., Han, J., Whang, K.: Trajectory Clustering: a Partition-and-Group Frame-
work. In: ACM SIGMOD, pp. 593–604 (2007)

6. Patroumpas, K., Sellis, T.: Maintaining Consistent Results of Continuous Queries
under Diverse Window Specifications. Information Systems 36(1), 42–61 (2011)

7. Potamias, M., Patroumpas, K., Sellis, T.: Sampling Trajectory Streams with Spa-
tiotemporal Criteria. In: SSDBM, pp. 275–284 (2006)

8. Sacharidis, D., Patroumpas, K., Terrovitis, M., Kantere, V., Potamias, M., Moura-
tidis, K., Sellis, T.: Online Discovery of Hot Motion Paths. In: EDBT, pp. 392–403
(2008)

9. Vieira, M., Bakalov, P., Tsotras, V.J.: On-line Discovery of Flock Patterns in Spatio-
temporal Data. In: ACM GIS, pp. 286–295 (2009)

On Optimizing Workflows

Using Query Processing Techniques

Georgia Kougka and Anastasios Gounaris

Department of Informatics, Aristotle University of Thessaloniki, Greece
{georkoug,gounaria}@csd.auth.gr

Abstract. Workflow management systems stand to significantly benefit
from database techniques, although current workflow systems have not
exploited well-established data management solutions to their full poten-
tial. In this paper, we focus on optimization issues and we discuss how
techniques inspired by database query plan compilation can enhance the
quality of workflows in terms of response time.

1 Introduction

Workflow management takes the responsibility for executing a series of inter-
connected tasks in order to fulfill a business goal or implement semi- or fully-
automated scientific processes. Typically, most workflow models emphasize the
control flow aspect employing well-established models, such as BPEL. Never-
theless, data flow plays a crucial role in the effective and efficient execution
and thus is equally significant. Data-centric workflows take a complementary
approach and regard data management as a first class citizen, along with the
control of activities within the workflow (e.g., [1,4]). An example of strong advo-
cates of the deeper integration and coupling of databases and workflow manage-
ment systems has appeared in [7]. Earlier examples of developing data-centric
techniques of manipulating workflows include the Grid-oriented prototypes in
[5,4] and the work in [3]. Those prototypes allow workflow tasks to be expressed
on top of virtual data tables in a declarative manner in order to benefit from
database technologies; however, they do not proceed to the application of query
optimization techniques with a view to speeding up the workflow execution.

The contribution of this work is as follows. We demonstrate how the per-
formance of data-centric workflows can further benefit from techniques inspired
by databases. We target workflows that either process unnecessary data or con-
tain services the relevant order of which is flexible, i.e., some activities within
the workflow can be invoked in an arbitrary order while producing the same
results; we term these services as being commutative. We discuss query opti-
mization techniques that build on top of algebraic laws and the application of
those techniques to such workflows with a view to modifying their structure
without affecting their semantics in order to improve performance. We focus on
fully automated workflows, i.e., workflows that do not require human interven-
tion; in such workflows, the execution of constituent tasks may be cast as (web)

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 601–606, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

602 G. Kougka and A. Gounaris

service calls as very commonly encountered in a wide range of workflow man-
agement systems. In summary, our proposal aims to bring in a novel dimension
in workflow optimization. Currently, the vast majority of workflow optimiza-
tion efforts deal with scheduling and resource allocation (e.g., [8]); in addition,
database-inspired proposals refer to specific applications only (e.g., [2]).

The remainder of the paper is structured as follows. The core part of our
proposal is in Section 2. Section 3 contains case studies along with initial insights
into the performance gains, and the conclusions appear in Section 4.

2 Database-Inspired Solutions to Workflow Optimization

Workflow optimizations based on structure modifications have not be analyzed
to an adequate extent to date. Query optimization techniques are well suited to
fill this gap, at least partially. Query plans consist of operators from the relational
algebra (e.g., joins, selects, projects), the commutative and associative properties
of which are well understood. The theoretic background of query optimization
is based on algebraic laws that specify equivalence between expressions. On
top of such laws, several optimization techniques can be built. Our idea is to
apply similar laws to workflow structures. In other words, we treat workflows as
query plans, and the constituent services as query operators in order to allow
the application of query optimization rules. In order to apply the techniques
suggested hereby, we assume that the precedence constraints between services
are known and the input to each invoked activity is a list of data values. Similarly,
the service output is another list of values with potentially different number of
elements and element size. Such a model is followed by systems such as [6].

Note that in arbitrary business and scientific scenarios, it is common to employ
services for data filtering, duplicate removal, transformation and remote method
calls, joining inputs, merging inputs, and so on. All those operations correspond
to operators such as selects and projects, duplicate elimination, user-defined
functions, joins, unions, respectively. More specifically, in our work, we regard
the evaluation of a selection predicate, including the case where it contains user-
defined functions, as analogous to any workflow service that process a list of
data items and produces another list with potentially different number and size
of items. Projection complements selection in the sense that selection may filter
rows, whereas projection filters columns in database tables. Duplicate elimina-
tion in query plans is analogous to services that remove duplicates from lists of
items. Grouping is analogous to services that receive a list of input elements,
group those elements into groups and process each group as a new element. The
join operator is analogous to services that accept multiple inputs and combine
them according to some criteria. Furthermore, operators such as unions and
intersections directly apply to workflow services operating on datasets.

The fact that workflow services can be mapped to operators implies that
common algebraic laws, such as selection and join reordering, commutativity
of selections and duplicate elimination, distribution of selections over joins and
unions, and pushing selections and projections to operators upstream are ap-
plicable to workflows as well. As such, two traditional optimization techniques

On Optimizing Workflows Using Query Processing Techniques 603

that we employ in a workflow context are i) to reorder workflow services so that
the services that are more selective are executed as early in the execution plan
as possible; and ii) to introduce new filtering services in a workflow, when the
data eliminated do not contribute to the result output. Reducing the size of data
that we have to process leads to much faster computations. Finally, since the
notions of selectivity and cost can be extended for services, we may apply more
sophisticated cost-based optimizations, too.

3 Case Studies

Fig. 1. A workflow that links proteins
to diseases

We present two representative case stud-
ies with real scientific workflows, and we
aim to demonstrate the performance bene-
fits when the input data is dirty in the sense
that it contains duplicates.
Case Study I: The first case study deals
with a simple workflow titled as ”Link pro-
tein to OMIM disease”, which is shown
in Fig. 11. Its purpose is to find diseases
that are related to certain user-defined key-
words. The first two services, search and
split OMIM results correspond to the pro-
cesses of searching and linking the input to
a set of diseases from the OMIM human
diseases and genes database2, and present-
ing the results as individual lists. When a
disease is found, it is extracted and then
labeled, with the help of the extract dis-
eases from OMIM and label OMIM disease
services, respectively. The labeling service
performs data transformation only, so that
XML tags are inserted. The next two services in the workflow are flatten list
and remove duplicate strings. The former removes one level of nesting, whereas
the other performs duplicate elimination. If we want to apply a string elimina-
tion service to data that appear more than once, the procedure of flattening list
is a necessary task because orders datasets. These services are very important
because of position and role they have to this workflow.

Based on the above description, we can easily deduce (even if not stated ex-
plicitly in the workflow description) that the flattening and duplicate elimination
services are commutative with the labeling one. In addition, duplicate elimina-
tion is the service that may lead to the most significant reductions in the data
set manipulated by the workflow, i.e., it is the one with the lower selectivity;
actually, the labeling service does not filter data at all and has selectivity 1. As

1 Taken from http://www.myexperiment.org/workflows/115.html
2 http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim

604 G. Kougka and A. Gounaris

10 30 50 70 90
0

5

10

15

20

% of duplicates

w
or

kf
lo

w
 e

xe
cu

tio
n

tim
e

(in
 s

ec
on

ds
)

non−optimized

optimized

10 30 50 70 90
0

0.5

1

1.5

2

2.5

3

% of duplicates

w
or

kf
lo

w
 e

xe
cu

tio
n

tim
e

(in
 m

in
ut

es
)

non−optimized

optimized

Fig. 2. Performance improvements with 100 Protein/Gene IDs as input for a local
workflow (left) and for a workflow accessing a remote service (right)

such, we can improve the execution time if we apply duplicate elimination just
before the extract diseases from OMIM, in the spirit of optimizations discussed in
Sec. 2, or even earlier, i.e., just after the input submission. More specifically, we
assume a simplified version of the workflow, where the workflow starts with the
split OMIM results service and the workflow runs locally only. We consider two
flavors, a non-optimized and an optimized one; the non-optimized one performs
labeling before duplicate elimination, whereas the optimized one reorders the ser-
vices and performs duplicate elimination at the very initial stage. Although the
modification is simple, there are tangible performance gains. We experimented
with an input of 100 OMIM records and a variable proportion of duplicates.
Fig. 2 (left) summarizes the results. We used the Taverna 2.3 workbench en-
vironment on a Intel Core(TM) 2Duo T7500 machine with 3GB of RAM. The
results correspond to the average and the standard deviation of 10 runs after
removing the two highest values as outliers to decrease standard deviations. The
main observation drawn from the figure is that, if duplicates exist in the input,
the decrease in the response time can be higher than 50%.

Case Study II: In the second case study, we experimented with a more in-
tensive subworkflow of a workflow named ”Get Kegg Gene information”3. This
sub-workflow gets as input a list of KEGG Genes IDs and according to this list
extracts from Kyoto Encyclopedia of Genes and Genomes (KEGG)4 database
information relating to these KEGG genes, such as Gene Description. For ex-
ample, an input of KEGG Gene ID could be hsa:400927 which corresponds to
the ”hsa:400927 TPTE and PTEN homologous inositol lipid phosphatase pseu-
dogene” description. The first service of this sub-workflow is split by regex and
it is necessary in order to reformulate the input data for the workflow services
that follow. The key service of this workflow is get gene description GenomeNet.
This workflow service corresponds to the process of linking KEGG Gene IDs
with KEGG Genes database and presenting a brief description for each of the
genes. The get gene description GenomeNet service is followed by other two ser-
vices, merge descriptions and remove nulls, which are responsible for merging
the nested content of the previous output and eliminating possible null outputs,

3 Taken from http://www.myexperiment.org/workflows/611.html
4 http://www.genome.jp/kegg/

On Optimizing Workflows Using Query Processing Techniques 605

respectively. This service, for each KEGG Gene ID input, connects with the
KEGG database in order to search and return the corresponding description of
each gene, which is quite time-consuming procedure. In case of having an input
data set consisting of several duplicate values, we could assume that the required
time to execute a large-scale data set is significantly high. This provides room
for optimization, since we can modify the workflow process so that get gene de-
scription GenomeNet service connects and extracts only unique values of KEGG
Gene IDS. Therefore, we can use the techniques used for inserting selections in
query plans to perform this optimization task. Specifically, we introduce a new
workflow service remove duplicate gene ids which has the role to eliminate dupli-
cate values, before the get gene description GenomeNet service. In this manner,
the service will contact the database only for unique values without repeating
the same costly requests. Fig. 3 and 4 depict the original and the optimized
version of the sub-workflow examined, respectively.

Fig. 3. A sub-workflow of ”Get Kegg
Gene information” that provides de-
scription of KEGG Genes

Fig. 4. An optimized sub-workflow
that provides description of KEGG
Genes

The results shown in Fig. 2 (right) support our intuition that the perfor-
mance benefits are far more significant and the optimized version runs several
times faster. In the second case study, we experimented with a more intensive
workflow that involves calls to a remote service, and we inserted duplicate elim-
ination before the service invocation. Specifically, the workflow execution cost
is improved gradually while the duplicates of an input data set increases. This
means that, for an input data of 100 Gene IDs, which consists of 70% and 90%
duplicated values, the optimized version of ”Get Kegg Gene information” work-
flow results in 70% and over 90% decrease on response time, respectively.

606 G. Kougka and A. Gounaris

4 Conclusions

In this paper we discussed the application of query optimization techniques
to workflow structure reformations. Our methodology can yield significant per-
formance improvements upon existing data-centric workflows; our preliminary
quantitative results in workflows that receive as input data containing duplicates
provide promising insights into this aspect.

Our work can be extended in several ways; actually we just scratched the sur-
face of the potential of query optimization techniques for workflows. The most
important directions for future work are the development of workflow manage-
ment systems that fully implement our proposal in line with the points mentioned
above, the thorough assessment of performance improvements in a wide range of
realistic scenarios, and the investigation of optimization opportunities in more
complex workflow patterns. Finally, note that query optimization techniques
that seem relevant to workflows are not limited to reordering of commutative
services and insertion of early duplicate removal. Complementary aspects include
the investigation of equivalent execution plans of different shape and the choice
of the physical implementation of logically equivalent workflow services.

References

1. Bhattacharya, K., Hull, R., Su, J.: A data-centric design methodology for business
processes. In: Handbook of Research on Business Process Modeling, ch. 23, pp.
503–531 (2009)

2. Dayal, U., Castellanos, M., Simitsis, A., Wilkinson, K.: Data integration flows for
business intelligence. In: EDBT, pp. 1–11 (2009)

3. Ioannidis, Y.E., Livny, M., Gupta, S., Ponnekanti, N.: Zoo: A desktop experiment
management environment. In: Proceedings of 22th International Conference on Very
Large Data Bases, VLDB 1996, Mumbai (Bombay), India, September 3-6, pp. 274–
285. Morgan Kaufmann (1996)

4. Liu, D., Franklin, M.: The design of griddb: A data-centric overlay for the scientific
grid. In: VLDB, pp. 600–611 (2004)

5. Narayanan, S., Catalyrek, U., Kurc, T., Zhang, X., Saltz, J.: Applying database
support for large scale data driven science in distributed environments. In: Proc. of
the 4th Workshop on Grid Computing (2003)

6. Oinn, T., Greenwood, M., Addis, M., Alpdemir, N., Ferris, J., Glover, K., Goble, C.,
Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P., Pocock, M., Senger, M., Stevens,
R., Wipat, A., Wroe, C.: Taverna: lessons in creating a workflow environment for
the life sciences. Concurrency and Computation: Practice and Experience 18(10),
1067–1100 (2006)

7. Shankar, S., Kini, A., DeWitt, D., Naughton, J.: Integrating databases and workflow
systems. SIGMOD Rec. 34, 5–11 (2005)

8. Xiao, Z., Chang, H., Yi, Y.: Optimization of Workflow Resources Allocation with
Cost Constraint. In: Shen, W., Luo, J., Lin, Z., Barthès, J.-P.A., Hao, Q. (eds.)
CSCWD. LNCS, vol. 4402, pp. 647–656. Springer, Heidelberg (2007)

Optimizing Flows for Real Time

Operations Management

Alkis Simitsis, Chetan Gupta, Kevin Wilkinson, and Umeshwar Dayal

HP Labs, Palo Alto, CA, USA
{alkis.simitsis,chetan.gupta,kevin.wilkinson,umeshwar.dayal}@hp.com

Abstract. Modern data analytic flows involve complex data computa-
tions that may span multiple execution engines and need to be optimized
for a variety of objectives like performance, fault-tolerance, freshness, and
so on. In this paper, we present optimization techniques and tradeoffs in
terms of a real-world, cyber-physical flow that starts with raw time se-
ries sensor data and external event data, and through a series of analytic
operations produces automated actions and actionable insights.

1 Modern Analytic Flows

With the ever increasing instrumentation of physical systems, real time opera-
tions management has become increasingly relevant. Real time operations man-
agement implies developing, deploying, and executing applications that mine
and analyze large amounts of data collected from multiple data sources such
as sensors and operational logs, in order to help decision makers take informed
decisions during operations management.

In our approach, these applications are specified as analytic flow graphs and
are executed over streaming and historical data to raise alerts, produce action-
able insights, and recommend actions for the operations staff. Such flows com-
prise complex event processing (CEP) operations, extract-transform-load (ETL)
operations, traditional SQL operations, advanced analytic operations, visual-
ization operations, and so on. Given the diversity of data sources and analysis
engines, creating correct, complex analytic flows can be a time-consuming and
labor-intensive task. Executing such flows efficiently such that real time response
requirements are met in a cost effective fashion, requires optimization. Optimiz-
ing these flows is a significant problem especially in an environment where the
analysis requirements and the data are evolving.

Our QoX optimizer is an in-house developed tool that optimizes analytic flows
for a variety of objectives and across multiple engines. Performance used to be the
sole objective for flows, but today, we see the need for other objectives as well, for
example, cost, fault-tolerance, freshness, energy usage, and so on. Additionally,
complex flows often access data from a variety of sources, involving different
execution engines (e.g., DBMSs, ETL like Informatica or PDI, and map-reduce
engines like Hadoop) and data centers (e.g., enterprise data warehouse, WWW
repositories, Amazon EC2).

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 607–612, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

608 A. Simitsis et al.

< t, M11 >
< t M >< t ,M12 >

< t, M1m >

…

< t, M21 >
< t, M22 >

< t, M2m >
…

…

merge

copy
splitter db

schema
change logs

analytics

(I)

(III)(IV)

M
< t, Mk1 >
< t, Mk2 >

< t, Mkm >
…

…

critical
checks

trigger
event

action
inference

()

(II)

Mi1
Mi2

Mim

…

Fig. 1. A graphical representation of a drilling well and an example analytic flow

Next, we describe optimization choices and tradeoffs through a real-world
operations management application.

2 A Cyber-Physical Flow

Figure 1 illustrates a cyber-physical flow derived from our experience with oil
and gas production [1]. The oil and gas industry collects massive amounts of data
from drilling operations via sensors installed in the oil wells, other measurement
devices, and textual operational logs that contain observations and actions taken
in free-from text. For the purpose of analysis the well may be divided into various
components where, from each component, certain physical quantities such as
temperature, pressure, and flow rate are monitored with sensors (see the left
part of Figure 1).

Assume k sensors and a set of measures M={M1,M2, . . . ,Mk}, where the
measure j for a sensor si is denoted as Mij . Then, the data from an individual
sensor at time t can be thought of as a tuple <t,Mijt>. (We skip the subscript t
for ease of notation where the context is clear.) As shown in Figure 1 (right part),
to understand the happenings across a component or across the well requires us
to build a tuple that merges sensor readings recorded at the same time (assuming
clock synchronization) to get a tuple of the form: <t,Mi1,Mi2, . . . ,Mim> or
even <t,M11,M12, . . . ,M1m,M21,M22, . . . ,M2m, . . . ,Mkm>. Next, these tuples
are routed through a copy-splitter operation to create separate data flows for
historical analysis (Phase I) and real time response (Phase II).

In Phase I, we change the schema before storage using a series of joins and
aggregations. This part resembles a typical ETL flow.

In Phase II, the measurements are checked for threshold violations and other
anomalies (‘critical checks’). In Figures 2 and 3, we describe in more detail two
fragments of the flow presented in Figure 1.

Figure 2 illustrates in more detail an example of a critical checks subflow
(it checks for threshold violations). Such a flow fragment involves the following
operations:

CMA. First, we compute a moving average for P values, where P∈M , based
on the formula: (

∑T
i=T−w Mji)/N , where the summation is over a window

Optimizing Flows for Real Time Operations Management 609

CMA TV db

CT

Fig. 2. Critical checks subflow

of size w and is over current time T to T − w and N is the number of
observations in the window from time T to T − w.

CT. Then, we compute thresholds with a user-defined function that performs a
database lookup and dynamically computes appropriate thresholds θi based
on a moving window measured in terms of hours.

TV. Finally, we perform threshold validation, for validating the measures against
threshold values; as for example in: ∀Pi∈P check if f(Pi)>θi. The validation
result is kept in the database.

A threshold violation generates an event ei, which is typically in the form
<time, component, event type>, where event types are pre-defined. The event is
stored for future reference and leads to an automated action or inference for the
operator –possibly leading to a manual action. Such inference and action require
data from historical event logs and the subsequent action (either automatic or
manual) is written to operator logs. Typically, action inference operations are
composite operations like:

Bayesian inference for predicted events (BI). It is implemented as a user-
defined function and gives a prediction of future events based on the historical
data stored in the database (a database lookup is needed too).

Automated action (AA). Based on the event type (requires a database lookup
operation) the flowmay automatically decide upon an action and the result of this
action is registered in the log files. This process typically runs inside a CEP engine.

Suggested action (SA). This composite operation results in a suggestion for
suitable actions need to be taken based on the event observed.

As a more detailed example of an action inference operation, Figure 3 shows
example user-defined functions and database operations that realize a suggested
action (SA) operation. Before suggesting an appropriate action, the flow searches
into the database (shown as db in Figures 1 and 3) for previous occurrences of
an event and also into the log files for corresponding actions to similar events.
The flow is realized as follows.

Compute states (CS). First, we need to compute the current system state. A
state is often a synopsis (that preserves distance) of the measurements at all
time points. In some scenarios, the Bayesian inference step may also require
state computation.

Find times (FT). Then, we query the database to find timestamps of previous
occurrences of an event, Tei .

610 A. Simitsis et al.

trigger
event CS FT CLT QLG suggested

action

db
logs

Fig. 3. Suggested action inference subflow

Time of closest state (CLT). Of all the times found, we identify the time t∗∈Tei

where the state was closest to the current state.
Find similar actions (QLG). Finally, we query the log files with t∗ to find if

there was a similar action; if there is one, we suggest it to the system’s
operator.

As such applications and resulting complex flows become common, we need
strategies to optimize them. Beside the need to optimize for various objectives,
such as response time and cost, a big challenge is the presence of different exe-
cution engines. We discuss these issues in the next section.

3 Optimization Techniques and Tradeoffs

We model analytic flows as the one in Figure 1 as graphs, where nodes represent
operations and data stores and edges represent data flows. In this model, an op-
eration may have multiple implementations for one or more execution engines.
For example, filtering, merging, splitting, aggregation are operations supported
by many systems. However, some operations may have only a single implemen-
tation, which limits the choices of the optimizer.

The designer may first create an analytic flow from scratch or import an
existing one from another tool (e.g., an ETL tool or a workflow management
system like Taverna [2]) and then optimize it. The latter –i.e., flow optimization–
is the focus of our work.

The optimization problem is formulated as a state space search problem.
Based on the objectives we want to satisfy (i.e., the objective function), our
QoX optimizer uses a set of transitions to create alternative designs, called states.
Example transitions for optimizing for multiple objectives include operation re-
ordering, partitioning parallelism, redundancy or adding recovery points, and
so on (e.g., see [3]). Example transitions for optimizing flows spanning different
engines are function shipping, data shipping, flow restructuring, decomposition,
and so on (e.g., see [4]). Hence, using such transitions, the optimizer creates a
state space and searches for an optimal (or near optimal) state. Obviously, an
exhaustive search of the state space is not realistic for real-world applications,
so the optimizer has to use heuristic and greedy algorithms.

The state space search algorithms are driven by a cost model. Each operation
comes with a cost formula, which is based on both operational characteristics like
the processing load and data characteristics like cardinality and data skew that

Optimizing Flows for Real Time Operations Management 611

determine the operation’s throughput. For traditional operations, like relational
operations, a cost formula is relatively easy to be defined; e.g., a sort operation
has a processing cost similar to n×log(n), for an input of size n. For user-defined
functions or operations with black-box semantics, we must inspect the code (if
it is available) and/or perform extensive micro-benchmarks, regression analysis,
and interpolation to come up with an approximate cost formula. Or, we may es-
timate their cost using their execution history (e.g., see [5,6]). We have done all
three of the above for a fairly rich set of operations currently supported by our op-
timizer. Since, the QoX optimizer is extensible to new operations and additional
implementations of existing operations, we require a cost formula during the reg-
istration of an operation implementation. Having at hand the costs of individual
operations, we are able to compute the flow cost and compare one state to another.

Example optimization choices. Next, we pinpoint tradeoffs that the optimizer
considers when it optimizes the flow of Figure 1 for performance and reliability
across multiple engines: a DBMS and an ETL tool for Phase I, a stream pro-
cessing and a CEP engines for Phase II, and a map-reduce engine for Phase III.
(The logs in our example are processed using Hadoop/Pig, but this task can be
done with Awk scripts or some other scripting method.)

- There are parallelization opportunities at several points of the flow. For
example, when we perform critical tests or in the action interference subflow. In
the latter, we could run in parallel the state computation (CS) and the event
time determination (FT).

- Analytics computations may be performed either as on-demand querying
(i.e., searching for information closer to the sources) or as computations over
materialized data (e.g., data stored in the database or in logs).

- The ‘schema changes’ subflow involves design choices, like deciding where
and how to do the schema change operations; e.g., inside or outside the database.

- Another challenge is to choose an engine to execute a flow fragment. For
an operation with implementations on multiple engines, the optimizer decides
where to execute this operation (function shipping); e.g., perform a join or a
user-defined function calculation inside the database or in Hadoop. On the other
hand, based on cost, the optimizer may choose to move data from one engine to
another and perform the operation there (data shipping).

- Different flow fragments may be optimized for different objectives. For exam-
ple, Phase II may be optimized for latency and reliability, while Phases I and III
may be optimized for cost and/or energy consumption. Similarly, Phase II may
need to be delayed if it requires more resources at a peak time (e.g., for respond-
ing to an event) and, in such a case, since the incoming data are not persistent,
they should be temporarily stored; i.e., enable or disable Phase IV. Deciding
when and where in the flow (i.e., how close to the database) to put a storage
point is an optimization choice.

- Individual operations may be optimized too. For example, the optimizer may
consider varying the degree of merging for the merge operation; i.e., less merging
means finer granularity of measures that flow through Phase II. Then, we can
optimize for accuracy too; i.e., varying accuracy with level of merging.

612 A. Simitsis et al.

Fig. 4. An example state with part of its execution code and a state space fragment

Figure 4 (left) shows a snapshot of the QoX optimizer and in particular, a
state that the optimizer picked for our example flow. The figure also shows part
of the code needed for its execution and a fragment of the state space (green
node is the initial graph state, red the optimal state, and arcs denote transitions
between states). The optimizer continuously monitors the flow and needs a few
seconds (∼30sec for this flow) to adapt to changes and to come up with an
optimal solution.

4 Conclusion

We presented a real-world, cyber-physical flow that performs critical checks and
analytics on top of data streaming from sensors placed at different depths of
drilling wells. The flow starts from raw time series sensor data and external event
data, and continues through a series of operations producing automated actions
and actionable insights. Typical challenges include the heterogeneity of data
that stream at fast rates, while expensive computations should be performed in
real-time. For dealing with such problems, we use an in-house crafted tool that
optimizes flows that span different engines for a variety of quality objectives.

Collecting, archiving, analyzing, and visualizing such data requires a compre-
hensive framework which is the focus of our on-going work.

References

1. Gupta, C., et al.: Better drilling through sensor analytics: A case study in live
operational intelligence. In: SensorKDD, pp. 8–15 (2011)

2. Missier, P., Soiland-Reyes, S., Owen, S., Tan, W., Nenadic, A., Dunlop, I., Williams,
A., Oinn, T., Goble, C.: Taverna, Reloaded. In: Gertz, M., Ludäscher, B. (eds.)
SSDBM 2010. LNCS, vol. 6187, pp. 471–481. Springer, Heidelberg (2010)

3. Simitsis, A., Wilkinson, K., Dayal, U., Castellanos, M.: Optimizing ETL workflows
for fault-tolerance. In: ICDE, pp. 385–396 (2010)

4. Simitsis, A., Wilkinson, K., Castellanos, M., Dayal, U.: Optimizing Analytic Data
Flows for Multiple Execution Engines. In: SIGMOD Conference (2012)

5. Gupta, C., Mehta, A., Dayal, U.: Pqr: Predicting query execution times for au-
tonomous workload management. In: ICAC, pp. 13–22 (2008)

6. Verma, A., Cherkasova, L., Campbell, R.H.: Aria: automatic resource inference and
allocation for mapreduce environments. In: ICAC, pp. 235–244 (2011)

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 613–617, 2012.
© Springer-Verlag Berlin Heidelberg 2012

(In?)Extricable Links between Data and Visualization:
Preliminary Results from the VISTAS Project

Judith Cushing1, Evan Hayduk1, Jerilyn Walley1, Lee Zeman1, Kirsten Winters2,
Mike Bailey2, John Bolte2, Barbara Bond2, Denise Lach2, Christoph Thomas2,

Susan Stafford3, and Nik Stevenson-Molnar4

1 The Evergreen State College, 2 Oregon State University, 3 University of Minnesota
4 Conservation Biology Institute (Corvallis OR)

judyc@evergreen.edu

1 Introduction

Our initial survey of visualization tools for environmental science applications iden-
tified sophisticated tools such as The Visualization and Analysis Platform for Ocean,
Atmosphere, and Solar Researchers (VAPOR) [http://www.vapor.ucar.edu], and Man
computer Interactive Data Access System (McIDAS) and The Integrated Data Viewer
(IDV) [http://www.unidata.ucar.edu/software]. A second survey of ours (32,279 fig-
ures in 1,298 articles published between July and December 2011 in 9 environmental
science (ES) journals) suggests a gap between extant visualization tools and what
scientists actually use; the vast majority of published ES visualizations are statistical
graphs, presenting evidence to colleagues in respective subdisciplines. Based on in-
formal, qualitative interviews with collaborators, and communication with scientists
at conferences such as AGU and ESA, we hypothesize that visualizations of natural
phenomena that differ significantly from what we found in the journals would posi-
tively impact scientists’ ability to tune models, intuit testable hypotheses, and com-
municate results. If using more sophisticated visualizations is potentially so desirable,
why don’t environmental scientists use the available tools?

We suggest two barriers to using sophisticated scientific visualization: lack of the
desired visualizations, addressed elsewhere [1, 2], and difficulty preparing data for
visualization, addressed here. As David Maier remarks in his Keynote Address to this
conference: Big data [3] “implies a big variety of data sources, e.g., multiple kinds of
sensors…on diverse platforms…coming in at different rates over various spatial
scales…. Few individuals know the complete range of data holdings, much less their
structures and how they may be accessed” [4]. In this paper, we identify two major
data issues that scientists face relevant to their use of visualization tools: (1) the com-
plexity of their own data and (2) complex input data descriptors for visualization
software and perceived (or actual) difficulty of transforming data prior to using those
tools.

We briefly describe our own project (VISTAS), articulate our collaborators’ data
structures, and report on data requirements for a subset of visualization software iden-
tified as useful for ES. We conclude that the complexity of input data formats is so
daunting for most scientists and even for visualization researchers and developers,

614 J. Cushing et al.

that visualizations that might advance science, and would certainly advance commu-
nication of research results by scientists to colleagues and the public, remain undone.
We thus strongly encourage the scientific database community to address the prob-
lems scientists face in characterizing and transforming their data.

2 VISTAS Project Overview

Our prior work suggested that visual analytics can help scientists more effectively use
large data sets and models to understand and communicate complex phenomena. We
hypothesized that cross-scale visualization of natural phenomena would enable scien-
tists to better deal with massive data stores and understand ecological processes. Vis-
ualization of ecosystem states, processes, and flows across topographically complex
landscapes should enhance scientists’ comprehension of relationships among process-
es and ecosystem services, and the posing of testable hypotheses [5]. Scientific visual-
ization is not new and much excellent work exists, but few tools easily integrate com-
plex topography with visualizing diverse data [6, 7]. Fewer still allow viewers to scale
up or down in space and time, critical to ES grand challenges [8].

The recently National Science Foundation funded VISTAS (VISualization of Ter-
restrial-Aquatic Systems) project aims to develop and test visualizations so scientists
better understand and communicate ES. Objectives include: 1) research visualization
needs for our science collaborators and develop a proof of concept tool that meets
those needs, 2) conduct ES research with the tool, 3) use social science methods to
document development processes and to assess the visualizations, answering the ques-
tions: which visualizations are most effective, for what purposes, and with which
audiences. VISTAS’ ES research focuses on one geographical area west of the crest
of the Oregon Cascades, on 3D representations of land use, and on process-based
models that simulate cycling and transport of water and nutrients, problems similar to
other ES grand challenges.

3 VISTAS Architecture and Data Structures

VISTAS’ close collaborators include Bob McKane and Allen Brookes who model the
ecohydrology of watersheds and basins with VELMA [9]; John Bolte, author of a
land use model ENVISION, a GIS-based decision support tool integrating scenarios,
decision rules, ecological models, and evaluation indices [10]; and Christoph Thomas
who collects spatially distributed point-measurements of air flow, air temperature and
humidity using SODAR across the landscape, scales from 10s to 100s of meters [11].

VELMA outputs a tiff file per simulation year, two.csv files with daily and annual
results, and files with spatial results, in ESRI Grid ASCII format with a single value
for each grid cell. File size depends on the number of variables, currently generating
38.5mb/day (10 gb/yr), but in the future to 5x variables, i.e., 50 gb/yr (64 km2).
VISTAS now handles VELMA output of 30m cells, 64 km2, 70,000 cells, 100,000
rows, 30 variables, converting csv files to a 2D contiguous grid, speeding processing
10-20x. Elevation is incorporated into each cell, avoiding the need for alignment.

 (In?)Extricable Links between Data and Visualization 615

ENVISION stores data as C++ objects, map data as a table, each column a varia-

ble, each row mapping to a polygon, and can read NetCDF and rasterize output data.
Time steps are yearly. Temporal data stored as delta arrays (map changes) are large,
e.g., 10 million elements and designate which polygon changed, start and end values,
when change occurred. The ArcGIS-like shape files (points, lines, polygons, a vector
data model) are visualized as 2D maps. VISTAS will display ENVISION 3D terrain
models, initially 30,000 km2, 180,000 polygons, 10-20 hectares/polygon, a 90m grid.

The Metek SODAR sensor [http://www.metek.de] transmits an acoustic pulse at a
specified frequency,then listens for a return signal; data are analyzed to determine
wind speed and direction and the turbulent character of the atmosphere. Measure-
ments are compiled into a 42x136 matrix per 10-min. increments. Each file contains
one 24-hour period (39,168 records). Metek provides simple visualization software,
where users can select a custom time period and defined parameters for measured
values (spectrum, potential temperature, inversion height, wind direction or speed),
but VISTAS will provide capability of overlaying SODAR with VELMA modeled
data.

4 Conclusions

This paper concludes with a synopsis of the two previously cited visualization options
for environmental science, and barriers scientists face in using such systems – the
same barriers we (and other scientific visualization developers) face as we develop
and document input data plug-ins for VISTAS.

Tailored for the astro- and geo-sciences, VAPOR provides interactive 3D visuali-
zation on UNIX and Windows systems with 3D graphics cards, handling terascale
data. VAPOR can directly import WRF-ARW output data with no data conversion,
but data must be on the same grid with the same level of nesting. Full access to fea-
tures is available if users convert data to VAPOR’s format (VDC), but VAPOR pro-
vides tools to convert common data formats.

616 J. Cushing et al.

McIDAS is an open source tool for visualizing multi- and hyper-spectral satellite
data, and handles many data formats, including Unidata's IDV and VisAD; satellite
images in AREA, AIRS, HDF, and KLM; and meteorological data in McIDAS-MS,
netCDF, or text; and gridded data in NCEP, ECMWF or GRID formats.

With so many data formats supported by these and other sophisticated packages,
why don’t more environmental scientists use them? Not surprisingly, these sophisti-
cated tools – even if data transformations are provided – require scientists to
understand both their own data structures as well as the tool’s input data structure
requirements. Our survey of information managers at Long Term Ecological Research
sites [http://www.lternet.edu] concluded that even for simple ArcGIS or MatLab visu-
alizations, such effort is beyond the time or expertise of many scientists. Alternatives
might be to send data to a visualization center, or establish collaborations with visual-
ization specialists. This works for some scientists, with the funds and time, to produce
visualizations for a particular purpose, but our collaborators want to use visualizations
interactively – to steer their computational models, help intuit new hypotheses, and
explain results to collaborators and other stakeholders.

Without software that characterizes data, scientists need to understand arcane for-
mats and many will eschew valuable tools – and developers of tools like VISTAS,
VAPOR and McIDAS will continue to spend time and money writing idiosyncratic
data transformations. What Howe et al provide for long tail science [12] is a first step
towards removing the inextricable links between data syntax and semantics that will
enable scientists to use the tools they need. We encourage the SSDBM community to
research and develop data descriptor and transformation tools that separate the charac-
terization and transformation of data from the process of creating semantically mean-
ingful analyses and visualizations.

Acknowledgements. The VISTAS project is supported by the National Science
Foundation/ BIO/DBI 1062572. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation. The authors thank the anony-
mous reviewers whose comments helped sharpen the focus of this preliminary report
of VISTAS’ findings.

References

1. Cushing, J.B., et al.: What you see is what you get? In: Data Visualization Options for En-
vironmental Scientists. Ecological Informatics Management Conference (2011)

2. Schultz, N., Bailey, M.: Using extruded volumes to visualize time-series datasets. In: Dill,
J., et al. (eds.) Expanding the Frontiers of Visual Analytics and Visualization, pp. 127–
148. Springer (2012) ISBN 978-1-4471-2803-8

3. Alexander, F., et al.: Big Data. IEEE Computing in Science & Engineering 13, 10–13
(2011)

4. Maier, D.: Navigating Oceans of Data. In: Abstracts of the Conference on Scientific and
Statistical Database Management,
http://cgi.di.uoa.gr/~ssdbm12/keynote1.html

 (In?)Extricable Links between Data and Visualization 617

5. Cushing, J.B., et al.: Enabling the Dialogue-Scientist< >Resource-Manager< > Stake-
holder: Visual Analytics as Boundary Objects. IEEE Intelligent Systems 24, 75–79 (2009)

6. Smelik, R.M., et al.: Survey of Procedural Methods for Terrain Modeling. In: Egges, A., et
al. (eds.) Proc. of the CASA Workshop on 3D Advanced Media in Gaming and Simulation
(3AMIGAS), Amsterdam, The Netherlands, pp. 25–24 (2009)

7. Thomas, C.K., et al.: Seasonal Hydrology Explains Interannual and Seasonal Variation in
Carbon and Water Exchange in a Semiarid Mature Ponderosa Pine Forest in Central Ore-
gon. Journal of Geophysical Research 114, G04006 (2009)

8. Kratz, T.K., et al.: Ecological Variability in Space and Time: Insights Gained from the US
LTER Program. BioScience 53, 57–67 (2003)

9. McKane, R., et al.: Integrated eco-hydrologic modeling framework for assessing effects of
interacting stressors on multiple ecosystem services. ESA Annual Meeting (August 2010)

10. Bolte, J.P., et al.: Modeling Biocomplexity - Actors, Landscapes and Alternative Futures.
Environmental Modelling & Software 22, 570–579 (2007)

11. Turner, D.P., Ritts, W.D., Wharton, S., Thomas, C.: Assessing FPAR Source and Parame-
ter Optimization Scheme in Application of a Diagnostic Carbon Flux Model. Remote
Sensing of Environment 113(7), 1529–1539 (2009)

12. Howe, B., Cole, G., Souroush, E., Koutris, P., Key, A., Khoussainova, N., Battle, L.: Da-
tabase-as-a-Service for Long-Tail Science. In: Bayard Cushing, J., French, J., Bowers, S.
(eds.) SSDBM 2011. LNCS, vol. 6809, pp. 480–489. Springer, Heidelberg (2011)

FireWatch: G.I.S.-Assisted Wireless Sensor

Networks for Forest Fires

Panayiotis G. Andreou, George Constantinou, Demetrios Zeinalipour-Yazti,
and George Samaras

Department of Computer Science, University of Cyprus, Nicosia, Cyprus
{panic,gconst02,dzeina,cssamara}@cs.ucy.ac.cy

Abstract. Traditional satellite and camera-based systems, are currently
the predominant methods for detecting forest fires. Our study has iden-
tified that these systems lack immediacy as detected fires must gain
some momentum before they are detected. In addition, they suffer from
decreased accuracy especially during the night, where visibility is di-
minished. In this paper, we present FireWatch, a system that aims to
overcome the aforementioned limitations by combining a number of tech-
nologies including Wireless Sensor Networks, Computer-supported Co-
operative Work and Geographic Information Systems in a transparent
manner. Compared to satellite and camera-based approaches, FireWatch
is able to detect forest fires more accurately and forecast the forest fire
danger more promptly. FireWatch is currently scheduled to be deployed
at the Cypriot Department of Forests.

1 Introduction

Traditional satellite and camera-based systems [4,5], such as MODerate reso-
lution Imaging Spectroradiometer (MODIS) [5], are currently the predominant
methods for detecting forest fires. These systems have the ability to predict
global changes in order to assist organizations in making sound decisions con-
cerning the protection of our environment from natural disasters, including fires.
Camera-based systems have been popular, especially in Europe [2,3,4], during
the past few years. These systems usually consist of terrestrial, tower-based cam-
eras that enable reliable and automated early detection of fires. In most cases,
these systems are supplemented by alarm mechanisms that alert the involved
users of potential risks thus supporting the final decisions on further actions.
Although camera-based systems provide a more fine-grained solution than satel-
lite systems, because of the smaller scanning regions and the continuous human
monitoring factor, they lack immediacy as detected fires must gain some mo-
mentum before these are detected. In addition, camera-based systems suffer like
their satellite-based counterparts from decreased accuracy, especially during the
night where visibility is diminished. Both satellite and camera-based systems rely
mainly on the human factor to analyze the findings and decide on the course of
action.

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 618–621, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

FireWatch: G.I.S.-Assisted Wireless Sensor Networks for Forest Fires 619

Notification
API

Visualizations

BACK-END

Geographical
Data

Data Fusion

Sensor
Data

Workflow Engine

Historic
Data

FRONT-END

Back-end
API

Fuel
Models

Plantation
Models

Collab.
Data

SMS

@

Fig. 1. The FireWatch architecture

In this paper, we present the FireWatch system1 that aims to overcome
the aforementioned limitations by combining a number of technologies includ-
ing Wireless Sensor Networks (WSNs), Computer-supported Cooperative Work
(CSCW) and Geographic Information Systems (GIS). The Wireless Sensor Net-
work incorporates energy efficient algorithms that continuously monitor the en-
vironment and provide real-time measurements. The Collaboration Engine em-
ploys both snapshot and historic fire detection/prediction algorithms and enables
the notification of all involved authorities. The enhanced Geographic Information
System, besides managing and presenting all types of geographical data, inserts
an additional layer that displays plantation and fuel models thus enabling fire
officers to better assess the situation.

Compared to satellite and camera-based approaches, FireWatch is able to
detect forest fires more accurately and forecast the forest fire danger more
promptly. As a result, Cypriot forest officers, who are currently relying on watch
towers and periodic patrolling of the forest, will be provided with more accurate
decision-support data, hence they will plan a more refined course of action.

2 System Architecture

An overview of the FireWatch architecture is illustrated in Figure 1. It consists
of two tiers, the Back-end, which is responsible for data collection, data analysis
and event detection/prediction, and the Front-end, which visualizes the data
as well as provides the means to contact appropriate authorities (e.g., voice
messages, sms, email) in the case of a fore fire detection. We now provide more
detail on each component of the FireWatch architecture.

– The Sensor Data component, which stores the real-time data provided by
the wireless sensor network deployed in a high risk forest area. It incorporates
energy-efficient algorithms [1], which run locally at each sensor node in order
to increase the network longevity and minimize maintenance costs.

1 The FireWatch System, http://firewatch.cs.ucy.ac.cy/

620 P.G. Andreou et al.

Fig. 2. The FireWatch interface

– TheGeographical Data component, which stores geographical information
as well as road and off-road data. Furthermore, it incorporates fuel and
plantation models for estimating fire behavior.

– TheData Fusion component, which correlates sensor and geographical data
and produces a comprehensive view of the network status. Additionally, this
data is stored in a database (Historic Data), in order to by analyzed together
with other data utilized by the organization (e.g., meteorological data).

– The Workflow Engine, which incorporates information models that ana-
lyze the real-time and historic data so as to detect/predict forest fire events.

– The Visualizations component displays all data in a visual manner (i.e.,
map view, tabular format, graphs). Additionally, it provides different inter-
faces for querying the data of each component.

– TheNotification API support different notification mechanisms for provid-
ing alerts to users (e.g., visual alerts, audio alerts) and involved authorities
(e.g., voice messages, SMS, Email).

FireWatch adopts a virtualization paradigm in order to increase flexibility in de-
ployment and provide a dynamic, scalable and robust platform. It incorporates
three individual virtual machines that can be maintained independently. The
first virtual machine manages the wireless sensor network and includes tools for
porting SQL queries to sensor nodes. Additionally, it provides APIs for trans-
lating raw measurements to real values. The second virtual machine consists of
a GIS server that provides geographical data to the platform. It includes a map
visualization component as well as APIs for creating/updating map layers. The
third virtual machine comprises the collaboration system. It maintains a dedi-
cated workflow engine where users can create new workflows or update existing
ones according to organizational requirements.

FireWatch: G.I.S.-Assisted Wireless Sensor Networks for Forest Fires 621

3 FireWatch Interface

FireWatch features an innovative web-based interface (see Figure 2) that enables
fire officers to overview the status of the network as well as query/retrieve spe-
cific information. The FireWatch interface is composed of the following primary
visualization components:

– Dashboard: Provides an overview of the whole system. Users can observe
the latest sensor measurements both in tabular format and charts. Addition-
ally, a map of the high risk forest area and the sensor locations is displayed.

– WSN Monitoring: Enables users to execute queries in order to monitor
and access real-time and historic sensor measurements (e.g., temperature,
humidity, etc.). WSN health and predicted lifetime is also available.

– Enhanced G.I.S.: Plots sensor locations on the map as well as provides
alerts to users about possible fire detection/prediction events. The map com-
ponent supports three modes: i) normal view; ii) satellite view; and iii) plan-
tation/fuel models view. Additionally, in the event of a forest fire, it can
provide alternative off-road routes to the location of the event.

– Collaboration: FireWatch users can search and retrieve appropriate gov-
ernment authorities that can aid in forest fire management. A number of
different communication techniques such as alerts, sms, emails are available.

4 Conclusions

In this paper, we have presented FireWatch, a novel fire detection/prediction
platform that combines technologies from the areas of Wireless Sensor Net-
works, Computer-supported CooperativeWork and Geographic Information Sys-
tems under a uniform framework. FireWatch virtualization mechanisms increase
flexibility in deployment and provide a dynamicity, scalability and robustness.
Finally, its multi-modal interface enables users to acquire a holistic view of the
network, take informed decisions and coordinate easily with involved authorities.

Acknowledgements. This work is partly supported by the European Union
under the project CONET (#224053), the project FireWatch (#0609-BIE/09)
sponsored by the Cyprus Research Promotion Foundation, and the third author’s
startup grant sponsored by the University of Cyprus.

References

1. Andreou, P., Zeinalipour-Yiazti, D., Chrysanthis, P.K., Samaras, G.: Towards a
Network-aware Middleware for Wireless Sensor Networks. In: 8th International
Workshop on Data Management for Sensor Networks (DMSN 2011), The Westin
Hotel, Seattle, WA, USA, August 29 (2011)

2. European Commision Joined Research Center: Forest Fires in Southern Europe.
Report No.1 (July 2001)

3. European Forest Fire Information System – EFFIS, http://effis.jrc.it/Home/
4. Hochiki Europe, http://www.hochikieurope.com/
5. NASA MODIS website, http://modis.gsfc.nasa.gov/

http://effis.jrc.it/Home/
http://www.hochikieurope.com/
http://modis.gsfc.nasa.gov/

AIMS: A Tool for the View-Based Analysis

of Streams of Flight Data

Gereon Schüller1, Roman Saul1, and Andreas Behrend2

1 Fraunhofer-Gesellschaft, Dept. FKIE-SDF, Neuenahrer Straße 20,
53343 Wachtberg, Germany

{gereon.schueller,roman.saul}@fkie.fraunhofer.de
2 University of Bonn, Institute of CS III, Römerstraße 164, 53117 Bonn, Germany

behrend@cs.uni-bonn.de

Abstract. The Airspace Monitoring System (AIMS) monitors and ana-
lyzes flight data streams with respect to the occurrence of arbitrary, freely
definable complex events. In contrast to already existing tools which of-
ten focus on a single task like flight delay detection, AIMS represents
a general approach to a comprehensive analysis of aircraft movements,
serving as an exemplary study for many similar scenarios in data stream
management. In order to develop a flexible and extensible monitoring
system, SQL views are employed for analyzing flight movements in a
declarative way. Their definition can be easily modified, so that new
anomalies can simply be defined in form of view hierarchies. The key
innovative feature of AIMS is the implementation of a stream process-
ing environment within a traditional DBMS for continuously evaluating
anomaly detection queries over rapidly changing sensor data.

1 Introduction

The continuous growth in air space traffic challenges existing monitoring systems
for air traffic control. It leads to situations where anomalies or critical events are
detected too late or remain undetected at all. Many problems are caused by local
deviations from flight plans which may induce global effects to aircraft traffic.
One effect is a considerable number of close encounters of planes in airspace
occurring every day. Another example is the violation of no-fly zones over cities
for noise protection reasons, or over power plants for preventing terrorist attacks.

The Airspace Monitoring System (AIMS) [12] is a prototype of a system for
monitoring and analyzing local and global air traffic.1 It has been developed
at the University of Bonn in cooperation with Fraunhofer FKIE and EADS
Deutschland GmbH. One aim of this prototype is the detection of anomalies
within the movements of single aircrafts (e.g., critical delays, deviations from
flight plans or critical maneuvers). Based on that, a global analysis is supported
(e.g., critical encounters, zones with high flight density, airport jams) which
allows for adjusting air traffic influenced by local phenomena. Currently, the

1 http://idb.informatik.uni-bonn.de/research/aims

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 622–627, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

AIMS: A Tool for the View-Based Analysis of Streams of Flight Data 623

system is used to monitor the complete German airspace every 4 seconds with
up to 2000 flights in peak times. The key innovative feature of AIMS is the use of
continuously evaluated SQL queries (stored in the DB as views, too) for declar-
atively specifying the situations to be detected. To this end, consistent tracks of
individual planes have to be derived and complex event occurrences within these
tracks have to be found. Our general research aim is the development of efficient
DBMS-based methods for real-time gathering and monitoring of streams of track
data. In particular we want to answer the following questions with respect to the
airspace data: Is it possible to detect aircrafts entering a critical situation like
collision course, leaving the flight path or entering bad weather zones using SQL
views? How can flights and their behaviour be classified using SQL views defined
over track data? How can tracking of aircrafts be improved by using (derived)
context information? With respect to data stream management, the following
research questions are addressed by AIMS: Which type of continuous query can
be efficiently evaluated using a conventional relational DBMS? Up to which fre-
quency/volume is it feasible to use a relational DBMS for evaluating continuous
queries over a stream of track data? To which extent can an SQL-based analysis
be used for airspace surveillance?

Using SQL queries as executable specifications has the advantage of being able
to easily extend the system by additional criteria without having to re-program
large amounts of code. In order to continuously re-evaluate the respective queries,
data stream management systems (DSMS) like STREAM[2] or Aurora [3] could
be used. However, DSMS do not provide all capabilities that are needed for a
reliable in-depth analysis, like recovery control, multiuser access and processing
of historical as well as static context data. In the practical demonstration, we
want to show how commercial data base systems in combination with intelligent
rule-rewriting can be used to processes a geospatial data stream. The proposed
approach provides insights for the implementation and performance of related
applications where geospatial or sensor data streams have to be processed.

2 System Architecture

The AIMS system consists of four main components: (1) A feeder component
which takes a geospatial data stream as an input and periodically pushes its data
into the database. This track feeder also continuously activates the re-evaluation
of the anomaly detection views. (2) A graphical user interface programmed in
Java using the NetBeans Platform library. It shows the positions of aircrafts on
an OpenStreetMap. This map can be configured in order to show the result of se-
lected queries, only. Additionally, query results are displayed in tabular form. (3)
An Oracle server which stores the stream data and performs the continuous eval-
uation of the user-defined anomaly detection views. (4) An in-memory database
that works as a cache and stores the results of selected queries on the client side.
This database system forms the basis of a time-shift and video recorder func-
tionality. A graphical representation of the architecture of the system is shown
in Fig. 1.

624 G. Schüller, R. Saul, and A. Behrend

Feeder

Cleansing

Aggregation

Enrichment

DBMS

New
tracks

Static
domain

knowledge

View
history

Client

Cache
via

HSQLDB

User Interface

push

Anomaly detection
views

pullupdate

2000 tuples
every 4
seconds

pull
Recorded
track data

Netbeans Platform
HSQLDB
OpenStreetMapOracle Database 11gSpring Framework

Oracle SQL*Loader

Map

Google
Earth

Table

Fig. 1. Architecture of the AIMS system

3 View-Based Flight Analysis

Although there are various commercial implementations of flight tracking ser-
vices (e.g., AirNav [1], FlightView [7] or FlightStats [6]), they are often limited
to a set of predefined tasks like delay detection or identification of basic flight
states such as departing, approaching or cruising. In order to develop a flexible
and extensible monitoring system, SQL views can be employed for analyzing our
track data. The advantage is that the underlying definition can be easily recov-
ered and modified while new anomalies can be simply defined in form of view
hierarchies. As a first example for an interesting event in airspace we consider
landing flights. To this end, the plane must have a negative vertical speed (i.e.,
it is descending), it has to be below a certain flight level (like 3000 ft), and it
must be in the vicinity of an airport, e.g. closer than 20mi. These criteria can
be expressed in SQL as follows:

CREATE VIEW vwLanding AS

SELECT * FROM Tracks t, airports a

WHERE t.vertSpeed<0 AND t.flightLevel<3000 AND dist(a.pos, t.pos)<20000;

where the function dist is a user defined function for calculating the Euclidic
distance between two positions on the globe. The base table airports stores
data about position and names of airports.

Critical encounters represent another interesting anomaly where two planes
come closer than the prescribed distance of security. In AIMS a critical encounter
is given if two planes are closer than 300 ft:

CREATE VIEW vwEncounter AS

SELECT * FROM Tracks t1, Tracks t2

WHERE dist(t1.pos, t2.pos)<300 AND t1.ID<>t2.ID;

Since the employed UDF-expression cannot be indexed, this implementation
leads to a quadratic run-time. A better performance can be achieved by pre-
selecting all those flights having approximate longitude and latitude values, as
the values used can be indexed.

AIMS: A Tool for the View-Based Analysis of Streams of Flight Data 625

4 Incremental Stream Analysis

It is widely believed that DBMS are not well-suited for dynamically processing
continuous queries. We believe, however, that even conventional SQL queries
can be efficiently employed for analyzing a wide spectrum of data streams using
incremental recomputation strategies.

For the incremental recomputation of our anomaly detection views, specialized
view sets are used that reflect the difference between old and new data. The
difference is represented by so-called delta views, which are denoted by X_i for
induced insertions into X and by X_d for induced deletions. For example, the
following view vwLandings_i has been derived from the original definition of
the view vwLandings and provides all new tracks identified as landing planes:

CREATE VIEW vwLanding_i AS

SELECT * FROM Tracks_i t, airports a

WHERE t.vertSpeed<0 AND t.flightLevel<3000 AND dist(a.pos, t.pos)<20000;

The original landing view is materialized and update statements such as

INSERT INTO vwLanding SELECT * FROM vwLanding_i

are used for the incremental maintenance. This kind of incremental evaluation is
well-known in literature and applied for efficient integrity checking and material-
ized view maintenance [9]. As soon as view hierarchies are considered, however,
the optimization effect of using specialized delta views may be limited if no gen-
eralized selection pushing strategy is considered. As an example consider the
following algebra expression for defining the view P (x) based on the relations
Q(x), R(x), S(x, y) and T (x, z):

P ← (Q ∪R)− πx(S �� T)

The following rule would yield the induced insertions P i of P resulting from
insertions Q i into Q:

P i← (Q i−R)− πx(S �� T)

Despite of the focus on changes with respect to Q, no optimization effect is
achieved with respect to the evaluation of the right-hand argument of the set
difference operator. A possible reordering of operations by using classical rules of
algebraic optimization cannot provide a better focus on the changes of Q either.
However, another way is to use the small number of tuples in Q i already for
determining all matching join partners by introducing two semi-joins:

P i← (Q i−R)− πx((Q i� S) �� (Q i� T))

Under the assumption that S and T are quite large in comparison to the size of
Q i and that there is a low selectivity of the tuples in Q i, the argument sizes
of the join and difference operator are considerably reduced. Thus, the resulting
incremental expression provides a much better focus on the changes to Q.

626 G. Schüller, R. Saul, and A. Behrend

This improved delta expression results from applying the Magic Sets rewriting
technique [4] which uses auxiliary relations (these are the ’Magic Sets’) in order to
store and to dynamically apply generated constants from delta views [8,10,11]. In
AIMS, we used an extension of this technique, called Magical Updates, i. e., the
application of Magic Sets to the transformed rule set for incremental evaluation.
As an example, consider the following SQL statement that defines our view for
detecting deviations from the flight plan:

CREATE RECURSIVE VIEW DELAY AS

(SELECT RealFlight.dist-(FlightPlan.dist+OldDelay.dist)

FROM RealFlight rf, FlightPlan fp, Delay as OldDelay

WHERE OldDelay.time = fp.time - 1 AND fp.time = rf.Time

AND rf.Time = max (SELECT Time FROM RealFlight)

AND rf.Code = fp.Code AND fp.Code = OldDelay.Code);

Applying our transformation would yield the following rule for computing in-
duced insertions from RealFlight:

CREATE RECURSIVE_i VIEW DELAY AS

(SELECT RealFlight.dist-(FlightPlan.dist+OldDelay.dist)

FROM RealFlight_i rf_i, FlightPlan fp, Delay as OldDelay ...

Despite of the focus on changes with respect to RealFlight, no optimization ef-
fect is achieved with respect to the evaluation of the join between RealFlight and
FlightPlan and RealFlight and old Delay, respectively. Magic Updates, however,
allows to use the small number of tuples in RealFlight_i already for determin-
ing all matching join partners by introducing the Magic Set m_Delay_b applied
in two semi-joins:

CREATE VIEW m_Delay_i AS CREATE VIEW m_FlightPlan_i AS

SELECT Delay_i.* SELECT Flightplan_i.*

FROM (m_RealFlight_b JOIN Delay_i) FROM (m_RealFlight_b JOIN FlightPlan_i)

Under the assumption that Delay and Flight plan are quite large as com-
pared to Realflight i and that there is a low selectivity of the tuples in
Realflight i, the argument sizes of the joins are considerably reduced. Thus,
the resulting incremental expression provides a much better focus on the changes
to Realflight.

5 First Results

AIMS could successfully identify critical situations like close encounters or de-
viations from flight plans. It was interesting to notice the high number of large
deviations (sometimes more than 50 mi). In addition, the high number of critical
approaches was very surprising, as there were far more close encounters than ex-
pected. We could also show violations of no-fly zones and determine zones with
a critically high number of aircraft movements. Currently we are working on the
determination of abnormal landing approaches, and even these detection views
can be efficiently evaluated.

AIMS: A Tool for the View-Based Analysis of Streams of Flight Data 627

Another result is that our incremental evaluation of SQL views provides in-
deed a suitable approach for analyzing this real world stream scenario. AIMS is
capable of monitoring the entire German airspace by processing ≈1400 tuples
(12 attributes) in real-time (every 3 - 4 seconds). For performance measure-
ments, the system has been tested with recorded data which were periodically
fed into the system with increasing update frequency. Our continuous queries
such as critical encounters, landings and region violations, etc. can be processed
in parallel in less than 0.3 seconds. The test system was a standard desktop PC
with an Intel(R) Xeon(R) W3530 (2.8 GHz) processor, 12 GB RAM, a 256GB
SSD. The software was run under Windows 7, Oracle 11g (ver. 11.2.0.10.0) and
Java 64 bit, version 1.6.0 22.

6 Demonstration

In the demonstration, we first present the monitoring of the German airspace
in real time. To this end, predefined views can be selected by the user and the
respective monitoring results are visualized on a zoomable map. We show how
the track feeder frequency can be adjusted and the respective performance of the
selected anomaly detection views. We highlight how easily users can define new
anomaly detection views in SQL without any ’traditional’ programming. To this
end, the audience may freely choose new criteria which are to be continuously
monitored. In addition, users are allowed to search for close encounters and may
switch back in time in order to see the development of this kind of anomalies.

References

1. AirNav Systems (2012), http://www.airnavsystems.com/
2. Arasu, A., et al.: STREAM: The Stanford Stream Data Manager. In: SIGMOD

2003, p. 665 (2003)
3. Abadi, D., et al.: Aurora: A Data Stream Management System. In: SIGMOD 2003,

p. 666 (2003)
4. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic sets and other strange

ways to implement logic programs. In: PODS 1986, pp. 1–15 (1986)
5. Behrend, A., Manthey, R.: Update Propagation in Deductive Databases Using Soft

Stratification. In: Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.) ADBIS 2004.
LNCS, vol. 3255, pp. 22–36. Springer, Heidelberg (2004)

6. FLIGHTSTATS (2012), http://www.flightstats.com/
7. FlightView (2012), http://www.flightview.com/
8. Grant, J., Minker, J.: The impact of logic programming on databases. CACM 35(3),

66–81 (1992)
9. Gupta, A., Mumick, I.S.: Materialized Views: Techniques, Implementations, and

Applications. MIT Press (1999)
10. Mumick, I.S., Finkelstein, S.J., Pirahesh, H., Ramakrishnan, R.: Magic is relevant.

In: SIGMOD 1990, pp. 247–258 (1990)
11. Mumick, I.S., Pirahesh, H.: Implementation of Magic-Sets in a Relational Database

System. SIGMOD Record 23(2), 103–114 (1994)
12. Schüller, G., Behrend, A., Manthey, R.: AIMS: an SQL-based system for airspace

monitoring. In: ACM SIGSPATIAL IWGS 2010, pp. 31–38 (2010)

http://www.airnavsystems.com/
http://www.flightstats.com/
http://www.flightview.com/

TARCLOUD: A Cloud-Based Platform

to Support miRNA Target Prediction

Thanasis Vergoulis1,2, Michail Alexakis2, Theodore Dalamagas2,
Manolis Maragkakis4, Artemis G. Hatzigeorgiou3, and Timos Sellis1,2

1 NTUA, Athens, Greece
2 IMIS, “Athena” R.C., Athens, Greece

3 DIANA-Lab, B.S.R.C. “Alexander Fleming”, Athens, Greece
4 University of Pennsylvania, Philadelphia, USA

Abstract. Micro RNAs (miRNAs) are small RNA molecules that tar-
get protein coding genes and inhibit protein production. Since experi-
mental identification of miRNA targets poses difficulties, computational
miRNA target prediction is one of the key means in deciphering the
role of microRNAs in development and disease. However, these compu-
tational methods are CPU-intensive. For example, the predictions for
a single miRNA molecule on the whole human genome according to a
popular target prediction method require about 30 minutes. Such per-
formance is a hindrance to the biologists’ requirement for near-real time
target prediction. In this paper, we present TARCLOUD, a Cloud-based
target prediction solution built on Microsoft’s Azure platform. TARCLOUD
is a highly-scalable solution based on distributed programming models
that provides near-real time predictions to its users through an easy and
intuitive interface. The work has been selected as one of the pilot use
cases for the VENUS-C FP7 Research Infrastructures Program.

Keywords: Cloud Computing, miRNA target prediction.

1 Introduction

For many years, biologists used to consider that only the regions of genome which
translate into proteins are important for life. This has dramatically changed
after the discovery, in the late 1990s, of regions in the “non-translated” genome
playing a key role in several life functions. Among those functions, one of the
most important is the silencing of genes by small RNA molecules, called micro
RNAs (miRNAs). In brief, each miRNA targets particular genes, destroying
their transcripts and, consequently, prohibiting the production of the encoded
protein.

Knowing the miRNAs that target a particular gene helps to understand the
causes of human diseases and searching for treatments. However, the laboratory
experiments that determine targets are costly and time-consuming. Therefore,
computational methods to predict miRNA targets have been proposed. The first
miRNA target prediction methods were developed back in 2003. During the last

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 628–633, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

TARCLOUD: A Cloud-Based miRNA Target Prediction Platform 629

����� ���

��	
����
��

������

��	
����
��
���

��������������
��

������

��������������
��
���

������
�

��
����

��

��

��

��

��

Fig. 1. The workflow of TARCLOUD jobs

decade, more than a dozen of such methods were proposed, making the field of
miRNA target prediction one of the most active in bioinformatics. An excellent
survey of the field can be found in [1].

The microT [6] method is one of the most cited and applied miRNA target
prediction techniques. Its Web interface1 provides access to the targets of the
most known miRNAs2 for two species (“Homo sapiens” and “Mus musculus”).
Furthermore, it allows users to upload miRNA sequences and apply the microT
method on the desired genome.

Unarguably, the most requested feature by microT users is near-real time tar-
get prediction. However, microT is extremely computationally intensive, and
in its current single server-based implementation requires about 30 minutes
to execute. In order to achieve near-real time performance, we have designed
and developed TARCLOUD, a Cloud-based target prediction method based on
microT. TARCLOUD utilizes Microsoft’s Azure distributed architecture to improve
efficiency, and provides an easy and intuitive interface. Moreover, it has been
selected as one of the pilot use cases for VENUS-C 3, which is a European Com-
mission’s 7th Framework Programme project with the goal to provide Cloud
computing infrastructures for scientific applications in Europe.

2 The TARCLOUD Solution

First, Section 2.1 discusses the implementation platform of TARCLOUD. Then,
Section 2.2 details its architecture, and Section 2.3 presents its user interface.

2.1 Framework

TARCLOUD is implemented using the Microsoft Azure4 Cloud platform. More
specifically, this platform consists of various services commoditized through three
product brands. These are (a) Windows Azure, an operating system providing
scalable compute and storage facilities, (b) SQL Azure, a Cloud-based version of
SQL Server, and (c) Windows Azure AppFabric, a collection of services support-
ing Cloud applications. The platform provides an API built on REST, HTTP
and XML that allows a developer to interact with the Azure services.

1 http://diana.cslab.ece.ntua.gr/microT/
2 These are stored in the current version of MirBase (http://www.mirbase.org/)
3 http://www.venus-c.eu
4 http://www.windowsazure.com

http://diana.cslab.ece.ntua.gr/microT/
http://www.mirbase.org/
http://www.venus-c.eu
http://www.windowsazure.com

630 T. Vergoulis et al.

2.2 Architecture

Before discussing the TARCLOUD components, we first present an overview of its
processes, which are based on the microT method [6].

Biologists have established that nucleotides close to the 5’-end of the miRNA
are crucial for recognizing a target gene sequence and binding to it [2,3,4,5].
We refer to the miRNA subsequence defined by these nucleotides as the seed
of the miRNA. For each miRNA, TARCLOUD locates, in the genome, approxi-
mate occurrences of its seed. We call these occurrences “miRNA recognition
elements” (MREs). Note, that as miRNA targets have been verified only in the
3’-untranslated regions (3’-UTRs) or in the coding regions (CDS s) of gene tran-
scripts5, TARCLOUD seeks MREs only in 3’-UTR and CDS regions of the genes.

After identifying MREs, TARCLOUD computes a score for each of them. This
score is computed considering many parameters, such as the alignment quality,
the binding energy, the conservation of the area in a set of species, etc. Then,
TARCLOUD aggregates these scores for the MREs of each gene (taking into con-
sideration the molecular folding) and produces a “target prediction” score for
each gene. This score indicates how possible is for each gene to be a target of a
particular miRNA molecule.

Based on the previous, a TARCLOUD task consists of five distinct jobs. Figure 1
presents the workflow showing the dependencies among these jobs. Each rectan-
gle represents one independent TARCLOUD job. The arrows depict the data flow
between the jobs. The grey vertical bars represent a fork or a join. A fork ignites
concurrent activities, while a join merges the output of concurrent activities.
These jobs, labelled J1 through J5, are performed by the following TARCLOUD

components.

Aligner (J1 and J2). The aligner component is responsible for (a) locating
the MREs, (b) computing the alignment score of the seed, and (c) computing
the binding energy of the miRNA to the gene (by using RNAhybrid [7]). For
more details about how the alignment is done see also [6]. The aligner executes
the job J1 for the 3’-UTR regions of all genes of the selected genome, and J2 for
the CDS regions. Note that these two jobs are executed concurrently.

Conservation Profiler (J3 and J4). The conservation profiler component is
responsible for checking how particular MREs are preserved in the genomes of
several species. Currently, TARCLOUD uses up to 27 species to assess the MRE con-
servation profile, taking into account both conserved and non-conserved MREs
for the estimation of the final score. Similar to the aligner, the conservation
profiler executes the job J3 for the 3’-UTR regions of all genes of the selected
genome, and J4 for the CDS regions. These jobs are also executed concurrently.

Score Aggregator (J5). The score aggregator component computes, for each
gene, the aggregated score of all its MREs. The aggregation is a weighted sum

5 CDS is the region of the gene transcript which encodes the protein, while the 3’-UTR
is the region preceded by CDS and which contain several “regulatory sequences”.

TARCLOUD: A Cloud-Based miRNA Target Prediction Platform 631

�����
��	
����������

���

Fig. 2. The TARCLOUD architecture

that also considers the molecular folding (i.e., the 3-D structure of the molecules).
The score aggregator executes the job J5.

The TARCLOUD architecture, illustrated in Figure 2, involves Virtual Machines
(VMs), called Job Workers, fully capable to perform any of the previous jobs.
Each Job Worker listens for HTTP (REST) requests and executes the TARCLOUD
jobs described by these requests. Any input and output data are stored mostly
as BLOBs in the distributed Cloud storage of Microsoft Azure. We refer to
this storage space as the BLOB storage. The number of Job Worker instances
deployed for a particular configuration of TARCLOUD, is a design parameter crucial
for the efficiency of the system. In order to distribute the HTTP requests to the
Job Worker instances, we also deploy a VM, called Balancer. Note that it is not
essential that the Balancer is located in a separate VM. One of the Job Workers
can also host the Balancer.

For each of the TARCLOUD jobs, a separate Azure application6 is implemented
and stored in the BLOB storage. These applications are just thin clients who
create HTTP (REST) requests. The requests tell the Balancer to occupy some
of the Job Workers to execute a particular TARCLOUD job. Another VM, called
Generic Worker (GW), has the responsibility to load the previous applications
from the BLOB storage, and execute them in the order determined by the work-
flow of Figure 1, after a user request. User requests are accumulated into a job
queue. To achieve synchronization, GW just checks if the input for each job is
ready. In brief, for each job, GW knows the URIs of its input files (in the BLOB
storage) and, before the job execution, performs polling to check if the input
files are complete. The execution starts only when the input files are ready. For
instance, for the workflow of Figure 1, GW will not execute J3, until the output
files of J1 (which are input for J3) are ready.

6 Azure applications are 32-bit Windows executables.

632 T. Vergoulis et al.

Fig. 3. A snapshot of the TARCLOUD search interface

2.3 User Interface

We also implemented a Web interface, to give to TARCLOUD users an easy and
intuitive way to start miRNA target prediction tasks. Figure 3 illustrates a snap-
shot of this interface. The user just selects the desired species from a drop-down
list. Then, she selects one or more miRNA sequences. She has 3 options: (a) select
already known miRNA sequences by inserting their names in the “Select miRNA
by name” field (we store all miRNAs in the latest version of miRBase), (b) se-
lect unknown miRNAs by determining their sequences in the “Select miRNA
by sequence” field, or (c) select a set of unknown miRNAs by uploading a file
containing a name and a sequence for each of them. When the user clicks on
the “Predict!” button, a request for the previously determined job is sent to the
Generic Worker.

When the output is ready and stored in the BLOB storage, the TARCLOUDWeb
interface renders a webpage containing the output. The user has two options: (a)
browse the predicted targets by using our build-in results renderer (see Figure 4),
or (b) download the output text files to his own computer.

3 Demonstration Scenarios

We demonstrate the functionality of TARCLOUD by executing queries provided
by us and by members of the audience, and by explaining the benefits of our
architecture. Next, we discuss two demonstration scenarios.

Scenario 1. In this use case, the user can test several configurations of TARCLOUD
and see in practice how do they affect the efficiency of our system. In particular,

TARCLOUD: A Cloud-Based miRNA Target Prediction Platform 633

Fig. 4. A snapshot of the TARCLOUD results renderer for miRNA “my-miRNA-1”

for the same species and miRNA sequences, the user selects to execute TARCLOUD
by deploying, each time, a different number of Job Worker instances.

Scenario 2. In this case, the user can see the efficiency of TARCLOUD in com-
parison to this of the original single server based implementation of microT.
The user selects the desired species and miRNA sequences in both systems, and,
then, she requests the predictions. This scenario demonstrates the superiority of
TARCLOUD, as it often responds within a few seconds, being the only option to
produce near-real time predictions.

References

1. Alexiou, P., Maragkakis, M., Papadopoulos, G.L., Reczko, M., Hatzigeorgiou, A.G.:
Lost in translation: an assessment and perspective for computational microrna target
identification. Bioinformatics 25(23), 3049–3055 (2009)

2. Doench, J.G., Sharp, P.A.: Specificity of microrna target selection in translational
repression. Genes Dev. 18(5), 504–511 (2004)

3. Kiriakidou, M., Nelson, P.T., Kouranov, A., Fitziev, P., Bouyioukos, C., Mourelatos,
Z., Hatzigeorgiou, A.G.: A combined computational-experimental approach predicts
human microrna targets. Genes Dev. 18, 1165–1178 (2004)

4. Krek, A., Grün, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMe-
namin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M., Rajewsky, N.: Combinatorial
microrna target predictions. Nature Genetics 37, 495–500 (2005)

5. Lewis, B.P., Burge, C.B., Bartel, D.P.: Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microrna targets. Cell 120,
15–20 (2005)

6. Maragkakis, M., Reczko, M., Simossis, V.A., Alexiou, P., Papadopoulos, G.L., Dala-
magas, T., Giannopoulos, G., Goumas, G., Koukis, K., Kourtis, K., Vergoulis,
T., Koziris, N., Sellis, T., Tsanakas, P., Hatzigeorgiou, A.G.: Diana-microt web
server: elucidating microrna functions through target prediction. Nucleic Acids Re-
search 37(suppl. 2), W273–W276 (2009)

7. Rehmsmeier, M., Steffen, P., Hochsmann, M., Giegerrich, R.: Fast and effective
prediction of microrna/target duplexes. RNA 10, 1507–1517 (2004)

SALSA: A Software System

for Data Management and Analytics
in Field Spectrometry�

Baljeet Malhotra1, John A. Gamon2, and Stéphane Bressan3

1 SAP Research, Singapore
baljeet.malhotra@sap.com

2 University of Alberta, Canada
gamon@ualberta.ca

3 National University of Singapore
steph@nus.edu.sg

Abstract. Field spectrometry is emerging as an important tool in the
study of the dynamics of the biosphere and atmosphere. Large amounts
of data are now collected from spectrometers mounted on towers, robotic
trams and other platforms. These data are crucial for verifying not only
the optical data captured by satellites and airborne systems but also
to validate the flux measurements that track ecosystem-atmosphere gas
exchanges, the “breathing of the planet” critical to regulating our at-
mosphere and climate. There is a need for readily available systems for
the management, processing and analysis of field spectrometry data. In
this paper we present SALSA, a software system for the management,
processing and analysis of field spectrometry data that also provides a
platform for linking optical data to flux measurements. SALSA is demon-
strated using real data collected from multiple research sites.

1 Introduction

Generic data management and geographical information systems are natural
candidates for the management, processing and analysis of data in earth and at-
mospheric sciences. Yet, because of the specificity of workflows and data, existing
systems do not seem to meet the researchers’ needs. The bottom-up construc-
tion of systems for particular tasks helps understand the nature of the original
requirements and shall eventually lead to the extension and tuning of generic
platforms to the specific needs of these applications. We consider here the case
of field spectrometry that is used for measuring the optical properties of ecosys-
tems. For instance, spectral reflectance (a specific form of optical measurement
that expresses a surface’s reflectance as a function of wavelength) is commonly
used to compute the Normalized Difference Vegetation Index (NDVI) [7] to cap-
ture the greenness of the vegetation being monitored. NDVI is then used to
quantify the exchanges of gasses (fluxes) between the biosphere and atmosphere,

� This research was partially funded by NSERC Canada, SAP Research, Singapore
and the A*Star SERC project ”Hippocratic Data Stream Cloud for Secure, Privacy-
preserving Data Analytics Services” 102 158 0037, NUS Ref:R-702-000-005-305.

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 634–639, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

SALSA: A Software System for Data Management in Field Spectrometry 635

i.e., the breathing of vegetation [8]. To that end large amounts of optical data are
collected from multi-angular towers, robotic trams and other systems equipped
with optical sensors. These data are then used to calibrate or validate similar
data collected from aircraft or satellite, which are then used for regional or global
estimates of carbon flux that relate to the breathing of the planet.

While NASA’s MODIS (Moderate Resolution Imaging Spectroradiometer)
project [6] allows the collection management and sharing of satellite data, less
effort has been put in resolving the data management, processing and analysis
issues for field spectrometry. Some of these issues indeed are specific and compel
the design and implementation of specific solutions. There are two main reasons
for this. First, field spectrometry is performed locally at various spatial and
temporal resolutions, and by groups of researchers that operate in isolation from
each other resulting in various systems of field spectrometry. Second, due to
the many brands and configurations in use, field spectrometry leads to unique
workflows that do not subscribe to a common set of standards, and hence produce
data in various structures and formats.

In this paper we discuss the data management issues arising for such field
spectrometry based systems and present SALSA, a software system for the pro-
cessing and analysis of field spectrometry data. SALSA provides a platform for
the linking of optical data with flux measurements that is crucial to our under-
standing of the breathing of the planet. We demonstrate the effectiveness and
efficiency of the system with large volumes of raw data collected from the robotic
trams used for field spectrometry.

2 Field Spectrometry

Spectrometry refers to the measurement of light reflectance in the visible, near
and short-wave infrared wavelengths (approx. 400–2500 nm). In ecological ap-
plications, it helps understand and quantify vegetation composition, phenology
(seasonality), changing surface albedo and biosphere-atmosphere fluxes. Field
spectrometry is done from the ground and can be compared with remote optical
sensing from scientific satellites or airborne systems that operate above ground.
The MODIS project, a part of NASA’s Earth Observing System Data and Infor-
mation System (EOSDIS), collects, store and share satellite spectroradiometer
images and data. EOSDIS is arguably the largest and most sophisticated scien-
tific database for earth observation [5].

While very consistent, satellite and airborne systems can be confounded by
changing sky conditions (e.g., clouds) in optical wavelengths. By sampling un-
der the atmosphere and correcting for changing sky conditions field spectrometry
avoids these problems, providing a valuable means of “ground truthing” satellite
and aircraft measurements. A recent trend (past 5-10 years) has been to auto-
mate the instruments from stationary (e.g. multi-angular towers [4]) and mobile
(robotic trams [2]) platforms that operate on the ground by Photosynthetically
Active Radiation (PAR) sensing. A primary reason for this development and au-
tomation is that it allows effective and efficient measurement and calculation of
various vegetation indices, which can then be used to relate to the gas exchange

636 B. Malhotra, J.A. Gamon, and S. Bressan

within individual sampling regions (“footprint”) of the eddy covariance towers
(flux towers) [1]. Automated field spectrometry is essential for the validation of
fluxes modelled from satellite [8], and can assist in scaling up from local flux
measurements to regional and global measurements. Efficient data management
is a key to successfully automate the field spectrometry workflows and processes,
which is the precise problem that we address in this paper. Before presenting
our software system, for data management in field spectrometry, next we briefly
describe a robotic tram system for field spectrometry.

2.1 A Robotic Tram System

A tram system consists of a cart with instruments riding on a rail [2], and can be
automated (robotic) to simplify field sampling. A typical robotic tram is equipped
with two spectral detectors (channels A andB), one tomeasure spectral reflectance
or simply radiance (light reflected from the vegetation on ground) and one to sam-
ple irradiance (light from the sky). The two spectrometers are mounted on the
tram, one each looking downward and upward to measure radiance and irradiance,
respectively. The tram moves (back and forth) on a fixed path (of approx. 100 m
long) while taking optical samples with the two spectrometers operating simulta-
neously. This process is repeated several times throughout a day for several weeks
or even months. Irradiance measurements are needed to correct radiance measure-
ments according to the sky conditions that may change during the operation of
the tram. Furthermore, to obtain reflectance, radiance measurements (from vege-
tation) need to be corrected by radiance measurements taken from a white panel.
Essentially, a tram has two sampling modes one each for taking measurements

from (i) target vegetation and (ii) white panel. Given ρ
(ω)
r−X and ρ

(ω)
i−X radiance

and irradiancemeasurements, respectively, corresponding to wavelength,ω, where
X represents one of the two sampling modes, i.e., target or panel, the sampling
procedure can be summarized in the following equation.

ρ(ω) =
ρ
(ω)
r−target

ρ
(ω)
i−target

×
ρ
(ω)
i−panel

ρ
(ω)
r−panel

(1)

In a typical situation, system generates raw data in a tabular format that gener-
ally contain three columns and multiple rows. The top portion of the file contains
the metadata of the captured optical data. After the metadata description, the
left column in the file contains the wavelengths (typically between 300 to 1130
nm) of the spectrum being scanned. The next two columns in the file contain
the radiance and irradiance measurements corresponding to the wavelengths
mentioned in the left column. Typically, one such file is generated per scan dur-
ing the movement of the robotic tram. A typical field study spanning several
weeks could easily contain hundreds or even thousands of scans performed by
the tram system producing that many numbers of files containing raw optical
data. One primary reason for measuring the spectral reflectance (corrected and
cross-calibrated) is to calculate vegetation indices, which are then used in models
to estimate carbon fluxes [8]. A commonly used index is NDVI [2]. Given optical
wavelengths, ω1 and ω2, NDVI is computed as follows.

SALSA: A Software System for Data Management in Field Spectrometry 637

NDV I(ω1,ω2) =
ρ(ω1) − ρ(ω2)

ρ(ω1) + ρ(ω2)
(2)

3 A Software System

One of the main functionalities of the software system that we intend to build lies
at automatically computing the corrected reflectance as mentioned in Eq. 1 and
various indices such as the one shown in Eq. 2. It is a non-trivial task not only
because large volumes of raw data are scattered in multiple files, but automation
essentially requires logical separation of data into multiple clusters representing
radiance and irradiance measurements taken from either target vegetation or
white panels. To that end a tram system poses two main challenges.

First: The column for radiance (or irradiance) measurements in raw data files
is not fixed. For instance, in one file the radiance measurements could lie in the
middle column and in another file they could be in the right column. The format
of raw data files actually depends on users’ choice of a particular detector (out
of two) for recording radiance (or irradiance) measurements. Since users may
(knowingly or unknowingly) choose different settings of a tram, the raw data
may be produced in various formats.

Second: Each raw data file may either belong to the target vegetation or white
panel. Recall that to obtain reflectance the radiance measurements from the
target vegetation need to be cross-calibrated against the radiance measurements
from the white panel as shown in Eq. 1. Though researchers take notes (e.g.,
which particular scan and the corresponding raw data file belongs to which type
of target, i.e., vegetation or white panel) during the field measurements, these
notes are susceptible to errors or misplacement.

To address the above issues, we designed and developed a software system,
SmArt Light Spectrum Analyzer or SALSA for short, that smartly detects irra-
diance and radiance measurements and also senses whether they correspond to
white panels or target vegetation. Apart from the problems discussed above data
cleaning, interpolation and noise detection are some of the other issues SALSA
addresses. Next, we present some technical details of SALSA.

3.1 Functionalities and Technicalities

SALSA’s main functionalities are grouped into three main categories: (i) raw
data processing, (ii) index generation, and (iii) visualization/reporting. Users,
first upload raw data files using “Extract Raw Data” option from the main menu
of SALSA. As raw data are extracted from multiple files several sequential steps
are performed, e.g., radiance and irradiance data are separated, noisy samples
are detected and removed from further processing based on users’ confirmation.
Users are also given choice for data interpolation to discrete (e.g. 1-nm) inter-
vals (a necessary step for calculating vegetation indices or comparing different
instruments with different calibrations).

638 B. Malhotra, J.A. Gamon, and S. Bressan

An important step toward automatically computing the corrected reflectance
is to separate the irradiance and radiance data. This is achieved by exploiting
the fact that the irradiance measurements are usually greater than the radiance
measurements, particularly in a specific wavelength range. To that end we used
a binary classification procedure that is used to detect the channels used for
irradiance and radiance measurements. The input to the procedure is a set of
samples, S. Every sample, s ∈ S, consists of two sets of measurements, i.e., ρA

(Ω)

and ρB
(Ω) recorded simultaneously on the channels A and B, respectively. The

procedure selects only a subset of the recorded measurements corresponding to
a particular set of wavelengths, Ω. For a given sample, if all the measurements
recorded (for the specified wavelengths Ω) on channel A are greater than the
measurements recorded on channel B, then the counter ccA is incremented. This
process is repeated for all the samples. Finally, channel A is classfied as irradiance
channel if majority of samples recorded by it has greater spectrum values than
the channel B; otherwise channel B is classified as irradiance channel. In our
experiments, we found that the above simple procedure classified the channels
correctly in most of the cases. In these experiments Ω typically consisted of
wavelenghts in the range of 330∼500 nm.

Through the white panel correction menu of SALSA users can complete the
cross-calibration and obtain reflectance. Users first choose a set of white panel
samples they wish to use for cross-calibration. To that end user can manually
select white panel samples, e.g., by visualization in SALSA or by referring to
their field notes. Or users can also invoke SALSA’s feature for automatically
detecting white panel samples. SALSA uses a clustering algorithm to distinguish
vegetation samples from white panel samples based on their spectral shape, which
are usually different. To be precise, after irrandiance and radiance measurements
are seperated (as described previously), the raw reflectances are computed using

the formula as follows:
ρ
(ω)
r−X

ρ
(ω)
i−X

. Note that the raw reflectance can be computed

without knowing whether measurements are actually from traget or white panel
samples, i.e., without knowing X in the above formula. A sample is classified as
white panel sample if it satisfies the following inequality.

q∑
ω=p

ρ
(ω)
r−X

ρ
(ω)
i−X

>

s∑
ω=r

ρ
(ω)
r−X

ρ
(ω)
i−X

; (3)

otherwise the sample is classified as a target sample. The typical values that
we used in our experiments for p, q, r, and s were 325, 345, 875, and 895 nm,
respectively. By exploiting the spectral shape of the samples within the above
wavelengts range, SALSA is able to distinguish the white panel samples from the
target samples in most of the cases. After detecting white panel samples, users
can choose the target samples that need to be corrected against the detected
(and chosen) white panel samples. All the choices that are made by the users
are tracked and stored using the metadata management module of SALSA. In
this way, processing steps can be traced, providing greater transparency.

SALSA: A Software System for Data Management in Field Spectrometry 639

SALSA has a data analytics module, which computes important indices in-
cluding the one mentioned in Eq. 2. One useful feature of this module is its
ability to link other forms of optical data, such as the ones produced by satel-
lites, with field spectrometry data. Oftentimes, researchers simulate satellite re-
mote sensing data using data from on or above ground sensors for crop and
resource management [3]. In SALSA, simulation of various satellites’ sensors is
provided through field spectrometry data. Currently, SALSA simulates MODIS,
LANDSAT-7, LANDSAT-MSS, QUICKBIRD, ASTER and SPOT-5 satellites.

Another useful feature of SALSA is its visualization and reporting module,
which allows users to visualize and generate various reports based on raw and
processed data. Using this menu users can plot raw radiance and irradiance
measurements as well as processed optical data, i.e., corrected reflectance and
various indices. Through the reporting menu users can generate reports in various
formats. This feature is particularly useful when researchers need to exchange
processed data for further analysis and data integration purposes.

4 Conclusions

In this paper we presented an overview of SALSA, a software system that we
designed, developed and used for efficient processing and analysis of field spec-
trometry data. SALSA software and some sample datasets are available at:
http://www.ualberta.ca/∼salsa/. SALSA offers a platform for linking optical
data from various sources such as MODIS and some other satellites as well as
with flux measurements for the better understanding of the breathing of the
planet. In future we would like to include new modules of SALSA that will fa-
cilitate the linking of flux measurements with the optical data in various forms
and structures in a cloud computing environment.

References

1. Baldocchi, D., et al.: Fluxnet: A new tool to study the temporal and spatial vari-
ability of ecosystem- scale carbon dioxide, water vapor, and energy flux densities.
Bulletin of the American Meteorological Society 82(1), 2415–2434 (2001)

2. Gamon, J.A., et al.: A mobile tram system for systematic sampling of ecosystem
optical properties. Remote Sensing of Environment 103(3), 246–254 (2006)

3. Harma, P., et al.: Detection of water quality using simulated satellite data and semi-
empirical algorithms in Finland. The Science of The Total Environment 268(1–3),
107–121 (2001)

4. Hilker, T., et al.: Tracking plant physiological properties from multi- angular tower-
based remote sensing. Oecologia 165(4), 865–876 (2011)

5. Marshall, E.: Fitting plant earth into a user-friendly database. Science 261(13),
846–848 (1993)

6. MODIS, http://modis.gsfc.nasa.gov/
7. Rouse, J.W., et al.: Monitoring vegetation systems in the great plains with ERTS.

In: 3rd ERTS Symposium, NASA, vol. 1, pp. 309–317 (1973)
8. Running, S., et al.: A continuous satellite-derived measure of global terrestrial pri-

mary production. Bioscience 54, 547–560 (2004)

http://modis.gsfc.nasa.gov/

Incremental DNA Sequence Analysis in the Cloud

Romeo Kienzler1, Rémy Bruggmann2, Anand Ranganathan3, and Nesime Tatbul1

1 Department of Computer Science, ETH Zurich, Switzerland
romeok@student.ethz.ch, tatbul@inf.ethz.ch

2 Bioinformatics, Department of Biology, University of Bern, Switzerland
remy.bruggmann@biology.unibe.ch
3 IBM T.J. Watson Research Center, NY, USA

arangana@us.ibm.com

Abstract. In this paper, we propose to demonstrate a “stream-as-you-go”
approach that minimizes the data transfer time of data- and compute-intensive
scientific applications deployed in the cloud, by making them incrementally pro-
cessable. We describe a system that implements this approach based on the IBM
InfoSphere Streams computing platform deployed over Amazon EC2. The func-
tionality, performance, and usability of the system will be demonstrated through
two DNA sequence analysis applications.

1 Introduction

In many areas of science, huge amounts of data is being generated at rates that outrun
the ability of researchers to store, transmit, and analyze it. For example, in DNA se-
quence analysis, complex workflows need to be efficiently executed over digital DNA
fragments that are now being generated much faster and cheaper owing to the re-
cently invented Next Generation Sequencing (NGS) methods [17]. For such data- and
compute-intensive scientific applications, researchers are increasingly turning to cloud
computing as a scalable and cost-effective solution. In this case, raw input data that is
generated by special scientific devices (e.g., NGS machines) outside the cloud must first
be shipped into the cloud. However, due to limited bandwidth between the client and
the cloud, transferring large data sets into the cloud can introduce significant latencies
and may even become a bottleneck that hinders the scalability advantage of the cloud.

In our recent work, we have proposed an incremental data access and processing
approach for data- and compute-intensive cloud applications that can hide data transfer
latencies while maintaining linear scalability [7], [8]. In our approach, data is accessed
in a “stream-as-you-go” fashion instead of in whole batches, making a stream-based
data management architecture a suitable base for implementation. In this demonstration,
we propose to show the functionality, performance, and usability of our approach in
action through two practical applications of DNA sequence analysis:

1. Read alignment: This application involves a very basic and common process in
DNA sequence analysis workflows: aligning digital DNA fragments, called reads,
against a reference genome. In the demo, we will show how a well-known read
aligner package (SHRiMP [13]) as part of a more complex workflow can be trans-
parently replaced with our stream-as-you-go version to incrementally run in the

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 640–645, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Incremental DNA Sequence Analysis in the Cloud 641

cloud, both producing early results as well as significantly reducing the total pro-
cessing time of the whole workflow.

2. SNP detection: This application additionally involves detecting SNPs (Single Nu-
cleotide Polymorphisms [3]) as reads are being aligned against a reference genome.
Different from the first demo, we will show how a complete workflow can be re-
placed with our stream-as-you-go version and can be pushed into the cloud through
an easy-to-use client interface. In this demo, we will use Bowtie [10] (instead
of SHRiMP) as the read alignment package and SOAPsnp [12] as the SNP de-
tection package, making our approach directly comparable to the state of the art
performance-wise (i.e., the MapReduce-based approach of Crossbow [9]). Thus,
we will also report on our performance improvements.

In the rest of this paper, we describe in more detail, our stream-as-you-go approach and
the applications that will be used to demonstrate its key features.

2 The Stream-as-you-go Approach

Our key idea to address the data upload latency of scientific applications deployed in
the cloud is to enable useful data processing as soon as the first piece of the data set hits
the cloud rather than waiting until the arrival of the whole data set. This way, the data
transfer latency can be hidden by overlapping it with data processing time. To realize
this idea, we propose to use a stream-based data management platform. Our main mo-
tivation to do so is to exploit the incremental and in-memory data processing model of
Stream Processing Engines (SPEs) (in our specific implementation, the IBM InfoSphere
Streams engine [2]). More specifically, we bring (parts of) existing scientific workflows
(algorithms/software) into the cloud in a way that they can work with their input data
in an incremental fashion. One generic way of realizing this is to use command line
tools provided by most of these software. They commonly read and write to standard
Unix pipes, which we can exploit by building custom streaming operators that wrap the
relevant Unix processes. Then the SPE essentially acts as the middleware to handle all
system-level requirements such as inter-process communication, data partitioning and
dissemination, operator distribution, and dynamic scaling.

Figure 1 illustrates our general approach. As seen, the main goal is to provide parti-
tions of the source data to the analysis processes running in parallel on different slave
cloud nodes in a streaming fashion. This way, data transfer time can be hidden and
early results can be generated. Furthermore, incremental processing of streaming data
also allows in-memory processing, eliminating the latency of disk access.

3 The DNA Sequence Analysis Use Case

Determining the order of the nucleotide bases in DNA molecules and analyzing the
resulting sequences have become very essential in biological research and applications.
With the invention of the NGS methods in 2004 [17], higher amounts of genetic data
can be read in much less time and at lower cost [7], which has led to the generation of
very large datasets to be efficiently analyzed. The output of NGS machines are random

642 R. Kienzler et al.

Fig. 1. The stream-as-you-go approach

DNA fragments (reads) of short length. Therefore, they must first be aligned into a
complete sequence by mapping them back to a reference genome [11]. The alignment
can also highlight the differences against the reference. Such a difference is called a
polymorphism. The polymorphism of a single DNA letter is called Single Nucleotide
Polymorphism (SNP). SNPs are important to identify, since they are recognized as the
main cause of human genetic variability [5]. As such, read alignment and SNP detection
are two common, computationally-intensive applications in this domain.

Researchers have recently started using cloud infrastructures for various DNA se-
quence analysis applications. The current state of the art in massively parallel analysis
of large genomic data sets is mainly based on using MapReduce [6] or other similar
frameworks [15]. Prominent examples include CloudBurst [14] and CloudAligner [16]
for read alignment, and Crossbow [9] for the complete SNP detection process. Despite
providing basic scalability, all these solutions suffer from the data transfer latency, since
the cloud frameworks that they are based on are primarily designed for batch process-
ing of data stored in a distributed file system in the cloud. In the following, we describe
how read alignment and SNP detection can be modeled and implemented using our
stream-as-you-go approach, which overcomes this bottleneck.

3.1 Read Alignment a la Stream-as-you-go

Figure 2 shows our stream-as-you-go implementation of the read alignment applica-
tion. The complete workflow consists of an input data format conversion process, the
SHRiMP read aligner process, and an output data format conversion process. Only the
SHRiMP part of the workflow is replaced with a stream-as-you-go version deployed

Incremental DNA Sequence Analysis in the Cloud 643

Fig. 2. Stream-as-you-go implementation of read alignment

in the cloud, while the original data conversion processes continue to run at the client
node. The client application sends compressed read data to the cloud. After being un-
compressed, data gets submitted to a Streams application which first splits it across
the available cluster nodes. Split reads are then aligned in parallel using the SHRiMP
read aligner package. The output from each SHRiMP instance which are incrementally
generated on each processing node in parallel are finally merged, compressed, and sent
back to client, where they are uncompressed before the final format conversion. Further
details about this implementation can be found in our earlier publication [7].

3.2 SNP Detection a la Stream-as-you-go

Figure 3 shows our stream-as-you-go implementation of the SNP detection application.
The client application sends compressed read data to the cloud. After being uncom-
pressed, data gets submitted to a Streams application which first splits it across the
available cluster nodes. Split reads are then aligned in parallel using the Bowtie read
aligner package. The output from each Bowtie instance is further partitioned by genome
position to be then sorted using a distributed in-memory insertion sort algorithm. Af-
ter some data conversion steps, the sorted data is fed into the SOAPsnp SNP detection
package for SNP calling. Results which are incrementally generated on each processing
node in parallel are finally merged and sent back to the client over a TCP connection.
Further details about this implementation can be found in our earlier publication [8],
where we also show almost an order of magnitude reduction in total processing time
compared to the state of the art (MapReduce-based Crossbow [9]).

Fig. 3. Stream-as-you-go implementation of SNP detection

644 R. Kienzler et al.

Fig. 4. Tablet-based visualization of aligned reads in comparison to the reference genome

4 Demonstration Details

In order to demonstrate the key features of our stream-as-you-go approach, we will
use the two application scenarios whose implementations are described in the previous
section.

In the read alignment demo, a partial workflow (i.e., the SHRiMP part) will be con-
verted into an incremental version and will be transparently pushed to the cloud. We
will contrast the speed of a local run of the whole workflow against its cloud-enabled
counterpart. We will show that, besides a significant speedup, nothing else changes. The
process as well as the results stay the same.

For illustration purposes, we will sniff the traffic between the client and the cloud.
On the outgoing link, we will see the raw read data, whereas on the incoming link,
already processed results will be seen. Data sets will be visualized and explained using
the Tablet assembly viewer software [4]. For example, Figure 4 displays the results of
an experiment, in which 30000 reads of Streptococcus suis (an important pathogen of
pigs) have been aligned against its reference genome. This read data set is taken from
the CloudBurst project [14].

In the SNP detection demo, a complete workflow will be converted into a Streams-
based incremental version to be deployed in the cloud. We will show an easy-to-use
graphical user interface, which allows researchers to run a complete SNP calling process
on cloud resources without worrying about the details (Figure 5). The interface allows
to select the source and the target data files (for reads and the reference genome) as
well as the predefined data analysis process to be used. They can also configure their
cloud cluster by selecting the number of nodes to be used based on a corresponding
time and price estimation. Once the analysis completes, we will display the detected
SNPs. We are planning to use the “E. Coli Small Example” dataset provided at the
Crossbow website [1]. The read file in this dataset is taken from an E. Coli experiment
and contains 8922730 reads with a total size of 1.4 GB. The process aligns these reads

Incremental DNA Sequence Analysis in the Cloud 645

Fig. 5. Easy-to-use cloud deployment interface

against the E. Coli reference genome (NC 008253.1) containing 5594158 base pairs
with a total size of 5.4 MB.

Acknowledgements. This work has been supported in part by an IBM faculty award.

References

1. Crossbow, http://bowtie-bio.sourceforge.net/crossbow/
2. IBM InfoSphere Streams,

http://www.ibm.com/software/data/infosphere/streams/
3. SNP,

http://en.wikipedia.org/wiki/Single-nucleotide_polymorphism
4. Tablet Assembly Viewer, http://bioinf.scri.ac.uk/tablet
5. Collins, F.S., Guyer, M., Chakravarti, A.: Variations on a Theme: Cataloging Human DNA

Sequence Variation. Science 278(5343) (1997)
6. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In:

OSDI Conference (2004)
7. Kienzler, R., Bruggmann, R., Ranganathan, A., Tatbul, N.: Large-Scale DNA Sequence Anal-

ysis in the Cloud: A Stream-Based Approach. In: Alexander, M., D’Ambra, P., Belloum, A.,
Bosilca, G., Cannataro, M., Danelutto, M., Di Martino, B., Gerndt, M., Jeannot, E., Namyst,
R., Roman, J., Scott, S.L., Traff, J.L., Vallée, G., Weidendorfer, J. (eds.) Euro-Par 2011, Part
II. LNCS, vol. 7156, pp. 467–476. Springer, Heidelberg (2012)

8. Kienzler, R., Bruggmann, R., Ranganathan, A., Tatbul, N.: Stream As You Go: The Case for
Incremental Data Access and Processing in the Cloud. In: ICDE DMC Workshop (2012)

9. Langmead, B., Schatz, M.C., Lin, J., Pop, M., Salzberg, S.L.: Searching for SNPs with Cloud
Computing. Genome Biology 10(11) (2009)

10. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.: Ultrafast and Memory-efficient Alignment
of Short DNA Sequences to the Human Genome. Genome Biology 10(3) (2009)

11. Li, H., Homer, N.: A Survey of Sequence Alignment Algorithms for Next Generation Se-
quencing. Briefings in Bioinformatics 11(5) (2010)

12. Li, R., Li, Y., Fang, X., Yang, H., Wang, J., Kristiansen, K., Wang, J.: SNP Detection for
Massively Parallel Whole-Genome Resequencing. Genome Research 19(6) (2009)

13. Rumble, S.M., Lacroute, P., Dalca, A.V., Fiume, M., Sidow, A., Brudno, M.: SHRiMP: Ac-
curate Mapping of Short Color-space Reads. PLoS Computational Biology 5(5) (2009)

14. Schatz, M.C.: CloudBurst: Highly Sensitive Read Mapping with MapReduce. Bioinformat-
ics 25(11) (2009)

15. Taylor, R.: An Overview of the Hadoop/MapReduce/HBase Framework and its Current Ap-
plications in Bioinformatics. BMC Bioinformatics 11(suppl. 12) (2010)

16. Tung, N., Weisong, S., Douglas, R.: CloudAligner: A Fast and Full-featured Map Reduce-
based Tool for Sequence Mapping. BMC Research Notes 4 (2011)

17. Voelkerding, K.V., Dames, S.A., Durtschi, J.D.: Next Generation Sequencing: From Basic
Research to Diagnostics. Clinical Chemistry 55(4) (2009)

http://bowtie-bio.sourceforge.net/crossbow/
http://www.ibm.com/software/data/infosphere/streams/
http://en.wikipedia.org/wiki/Single-nucleotide_polymorphism
http://bioinf.scri.ac.uk/tablet

AITION: A Scalable Platform

for Interactive Data Mining

Harry Dimitropoulos, Herald Kllapi, Omiros Metaxas, Nikolas Oikonomidis,
Eva Sitaridi, Manolis M. Tsangaris, and Yannis Ioannidis

MaDgIK Lab, Dept. of Informatics & Telecommunications,
University of Athens, Ilissia GR15784, Greece

Abstract. AITION is a scalable, user-friendly, and interactive data
mining (DM) platform, designed for analyzing large heterogeneous
datasets. Implementing state-of-the-art machine learning algorithms, it
successfully utilizes generative Probabilistic Graphical Models (PGMs)
providing an integrated framework targeting feature selection, Knowl-
edge Discovery (KD), and decision support. At the same time, it of-
fers advanced capabilities for multi-scale data distribution representa-
tion, analysis & simulation, as well as, for identification and modelling
of variable associations.

AITION is built on top of Athena Distributed Processing (ADP) en-
gine, a next generation data-flow language engine, capable of supporting
large-scale KD on a variety of distributed platforms, such as, ad-hoc
clusters, grids, or clouds. On the front end, it offers an interactive visual
interface that allows users to explore the results of the KD process. The
end result is that users not only understand the process that led to a
statistical conclusion, but also the impact of that conclusion on their
hypotheses.

In the proposed demonstration, we will show AITION in action at
various stages of the knowledge discovery process, showcasing its key fea-
tures regarding interactivity and scalability against a variety of
problems.

1 AITION Description

PGMs are a popular and well-studied framework for compact representation
of a joint probability distribution over a large number of interdependent vari-
ables, as well as, for efficient reasoning about such a distribution [5,6]. AITION
(Fig. 1) is one of the latest and most advanced systems in this area. Developed
as part of an EC project [1], AITION implements state-of-the-art algorithms
& techniques (exact or approximate) for Bayesian Network (BN) Structure &
Parameter Learning, Markov Blanket induction, and real-time inference. Fur-
thermore, ontologies and a-priori knowledge can be incorporated with the BN,
defining topological constraints, in order to automate causal discovery & feature
selection and provide semantic modelling under uncertainty. This way, AITION
presents a rich ‘natural’ framework for imposing structure and prior knowledge,
providing the domain expert with the ability to seed the learning algorithm with
knowledge about the problem at hand.

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 646–651, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

AITION: A Scalable Platform for Interactive Data Mining 647

Fig. 1. Illustration of the AITION Framework

2 KDD Workflow

Knowledge Discovery in Databases (KDD) is the non-trivial process of identify-
ing valid, novel, potentially useful, and ultimately, understandable patterns in
data [2]. In other words, KDD is the process of discovering useful information and
patterns in data, converting raw data into useful information. The KDD work-
flow consists of a series of transformation steps starting from data pre-processing
to model building, reasoning and knowledge extraction. AITION supports the
whole KDD workflow, as shown in Figure 2.

The goal of the pre-processing is to validate, curate and transform (e.g. dis-
cretize) raw data to facilitate the application of a Data Mining (DM) algorithm.
The model building step is related to the construction of a BN based on data &
prior knowledge and consists of two subtasks: (a) Structure learning (or qualita-
tive analysis), where the goal is to build a directed acyclic graph (DAG) encoding
the assertions of conditional independence between variables & (b) Parameter
learning (quantitative analysis), assessing conditional probability distributions.
Finally, the goal of inference in a BN is to answer queries about unobserved vari-
ables, given values of some observed variables targeting either the most probable
configuration - Maximum a Posteriori (MAP) - or estimating Posterior Marginal
Densities.

3 System Architecture

The AITION system consists of several components as seen in Fig. 3, including
the User Interface (UI) and the backend. The heart of the backend is the ADP
Engine [7] (providing distributed query processing) and a Relational Database
(for storing original data and knowledge models).

648 H. Dimitropoulos et al.

Fig. 2. The KDD workflow

ADP

Container

Aition

BackEnd

Aition UI

RDB

Fig. 3. AITION System Architecture

A collection of DM algorithms, most of them from WEKA [8], have been
adopted and run as ADP operators, giving us the opportunity to express them
as ADP queries. The optimizer facilitates “optimal” execution using all available
resources, or by meeting certain cost-performance objectives. AITION applica-
tions need no modification to run over grids, ad-hoc clusters or cloud platforms.

The AITION UI Engine is a thick client connecting to the backend and man-
aging all user interaction. It enables the user to execute the DM workflow. It also
provides visualisation and analysis of the Bayesian knowledge models, utilizing
the GraphViz toolkit of AT&T Research [3].

4 Demonstration Overview

In the demonstration, we will show AITION in a typical data mining session,
as a sequence of steps: examining data samples, building a knowledge model
from them, testing its validity, and finally, visualizing & exploring the end result
performing a set of interesting inference scenarios.

AITION: A Scalable Platform for Interactive Data Mining 649

Fig. 4. A typical screen of the model building process

In more detail, we will start with an introductory example illustrating the
basic notions of a KDD flow based on Bayesian Networks, as well as, familiarize
the audience with the AITION workspace. Afterwards, we will show a real-world
case from the medical domain, focusing on AITION’s knowledge extraction and
reasoning capabilities. Based on those two examples, we will cover some of the
key aspects of the system, including:

Model Building: To learn the structure of the graph, AITION first performs a
qualitative dependency analysis of the data; a repetitive process, in order to gen-
erate and evaluate several models in parallel using different training parameters.
The user can then inspect the resulting graph (where nodes correspond to data
features and the links/edges connecting the nodes indicate that there are prob-
ability relationships between them) and modify it (e.g., by adding or removing
edges between nodes), before the next stage of quantitative dependency analysis,
where AITION learns the parameters of the model (the conditional probability
distribution). A typical screen of the model building process is show in Figure 4.

Reasoning and Visualization: An interactive workspace enables the user to
perform reasoning using inference in graphs. A-posteriori probabilities can be
computed for a specific node given some evidence: e.g., in a medical application,
we can perform diagnostic, predictive, and inter-causal inference. The inference
capabilities of AITION are highly interactive, including the ability to perturbate
the values of a selected node and visually see the degree by which the other nodes
in the graph are affected. A typical screen from this analysis is shown in Figure
5, where we set a value to a specific node (RVD), and marginal distributions
for all related nodes are estimated. Finally, given a pre-computed model, the

650 H. Dimitropoulos et al.

Fig. 5. A snapshot of a Knowledge Model for a medical problem during Reasoning. By
setting the value of node RVD to Moderate, the marginal distributions for all related
nodes are estimated.

user can load another set of instances (a test dataset) to perform classification,
decision support, or predict missing values.

5 Conclusion and Future Work

We have demonstrated AITION applied on different domains. Solving these
problems required some of its key features, including the parallel processing
aspect in order to compute an appropriate PGM, and its visualization in order
to make both the model & the DM process better understood by a non-technical
audience. We plan to adopt more advanced algorithms for model learning & in-
ference, while also enhancing the analytical capabilities of the tool, including the
automatic generation of reports.

We also plan to further extend AITION incorporating advanced Statistical
Relational Learning (SRL) and Graph Mining techniques. This way, we will
create a comprehensive reasoning and simulation framework able to provide
multi-scale and multi-entity predictive models. SRL [4] is an emerging area of re-
search at the intersection of machine learning, graph mining, relational data min-
ing, and inductive logic programming, aiming at combining statistical learning
and probabilistic reasoning within logical or relational (frame-based) represen-
tations. Implementing this framework, we will be able to represent complex situ-
ations involving a variety of entities/objects, as well as, relations between them;
something not possible using the simpler propositional or feature vector based
representations.

AITION: A Scalable Platform for Interactive Data Mining 651

References

1. http://www.health-e-child.org (2010)
2. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge

discovery: An overview. In: Advances in Knowledge Discovery and Data Mining, pp.
1–34 (1996)

3. Gansner, E.R., North, S.C.: An open graph visualization system and its applications
to software engineering. Softw., Pract. Exper. 30(11), 1203–1233 (2000)

4. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press
(2007)

5. Koller, D., Friedman, N.: Probabilistic Graphical Models. MIT Press (2009)
6. Pearl, J.: Probabilistic Reasoning in Intelligent Systems, 2nd revised edn. Morgan

Kaufmann, San Mateo (1988)
7. Tsangaris, M.M., Kakaletris, G., Kllapi, H., Papanikos, G., Pentaris, F., Polydoras,

P., Sitaridi, E., Stoumpos, V., Ioannidis, Y.E.: Dataflow processing and optimization
on grid and cloud infrastructures. IEEE Data Eng. Bull. 32(1), 67–74 (2009)

8. Witten, I.H., Frank, E.: Data mining: practical machine learning tools and tech-
niques, 2nd edn. Elsevier, Morgan Kaufman, Amsterdam (2005)

http://www.health-e-child.org

Author Index

Alexakis, Michail 628
Anand, Manish Kumar 343
Andreou, Panayiotis G. 618
Apers, Peter M.G. 397

Baeza-Yates, Ricardo 495
Bai, Ge 124
Bailey, Mike 613
Baptista, António M. 1
Behrend, Andreas 622
Bernecker, Thomas 38
Bleco, Dritan 587
Boden, Brigitte 280
Böhlen, Michael 526
Böhm, Klemens 334
Böhm, Matthias 106, 449
Bolte, John 613
Bond, Barbara 613
Bowers, Shawn 343
Bressan, Stéphane 195, 562, 634
Brinkley, James F. 544
Bruggmann, Rémy 640
Budavári, Tamás 159

Chen, Lei 250
Cheng, Reynold 56
Cohen-Boulakia, Sarah 361
Cong, Gao 507
Constantinou, George 618
Cormode, Graham 416
Csabai, István 159
Cushing, Judith 613

Dahimene, Ryadh 168
Dai, Dongbo 75
Dalamagas, Theodore 628
Dannecker, Lars 106
Dayal, Umeshwar 607
Detwiler, Landon T. 544
Dimitropoulos, Harry 646
Dobos, László 159
Dong, Jiaqi 75
Doulkeridis, Christos 141
Du Mouza, Cedric 168

Emrich, Tobias 96

Fenz, Dandy 262
Fischer, Ulrike 449

Gamon, John A. 634
Gamper, Johann 526
Georgoulas, Konstantinos 591
Gounaris, Anastasios 601
Günnemann, Stephan 280
Gupta, Chetan 607
Gutiérrez, Gilberto 316

Hackenbroich, Gregor 106
Halkidi, Maria 141
Hassani, Marwan 298
Hatzigeorgiou, Artemis G. 628
Hayduk, Evan 613
Hubig, Nina 96
Hui, Siu Cheung 507
Huq, Mohammad Rezwanul 397

Innerebner, Markus 526
Ioannidis, Yannis 260, 646
Ivanescu, Anca Maria 431
Ivanova, Milena 485

Jaramillo, Alex 1

Karras, Panagiotis 562
Kawashima, Hideyuki 581
Kersten, Martin 485
Khachatryan, Andranik 334
Khalefa, Mohamed E. 379
Khazalah, Fayez 406
Kienzler, Romeo 640
Kitagawa, Hiroyuki 581
Kllapi, Herald 646
Kontaki, Maria 213
Koschmieder, André 177
Kotidis, Yannis 587, 591
Kougka, Georgia 601
Kranen, Philipp 298, 431
Kriegel, Hans-Peter 38, 96

Lach, Denise 613
Lange, Dustin 262

654 Author Index

Le, Jiajin 231
Lehner, Wolfgang 106, 449
Leser, Ulf 177, 262, 361
Li, Nolan 159
Lin, Xuemin 231
Lu, Mian 124
Lu, Xuesong 195
Ludäscher, Bertram 343
Luo, Qiong 124

Maarek, Yoelle 495
Maier, David 1
Malhotra, Baljeet 634
Malik, Zaki 406
Manegold, Stefan 485
Maragkakis, Manolis 628
Medjahed, Brahim 406
Megler, V.M. 1
Metaxas, Omiros 646
Müller, Emmanuel 334

Nascimento, Mario A. 96
Naumann, Felix 262

Oikonomidis, Nikolas 646

Papadopoulos, Apostolos N. 213
Papamichalis, Marios 20
Paramá, José R. 316
Patroumpas, Kostas 20, 595
Pedersen, Torben Bach 379, 449
Pilalidou, Alexandra 572
Pourabbas, Elaheh 467

Ranganathan, Anand 640
Renz, Matthias 38, 96
Rheinländer, Astrid 262

Samaras, George 618
Saul, Roman 622
Scholl, Michel 168
Schüller, Gereon 622
Seaton, Charles 1
Seidl, Thomas 280, 298, 431
Sellis, Timos 20, 595, 628
Shaw, Marianne 544
Shoshani, Arie 467
Šikšnys, Laurynas 379

Simitsis, Alkis 607
Sitaridi, Eva 646
Song, Yi 562
Stafford, Susan 613
Starlinger, Johannes 361
Stevenson-Molnar, Nik 613
Stier, Christian 334
Suciu, Dan 544
Szalay, Alexander S. 159

Tan, Yuwei 124
Tang, Peng 507
Tatbul, Nesime 640
Thomas, Christoph 613
Toumbas, Kyriakos 595
Tsangaris, Manolis M. 646
Turner, Paul J. 1

Valari, Elena 213
Vassiliadis, Panos 572
Vergoulis, Thanasis 628
Verhein, Florian 38
Vlachou, Akrivi 141

Walley, Jerilyn 613
Wang, Chunyong 581
Wang, Min 250
Wilkinson, Kevin 607
Winters, Kirsten 613
Wombacher, Andreas 397
Wu, Kesheng 467

Xiao, Qian 562
Xie, Jiang 75
Xie, Xike 56

Yi, Ke 416
Yiu, Man Lung 56
Yu, Weiren 231

Zeinalipour-Yazti, Demetrios 618
Zeman, Lee 613
Zhang, Huiran 75
Zhang, Wenjie 231
Zhang, Xiaofei 250
Zhao, Jiuxin 124
Züfle, Andreas 38, 96

	Title�
	Organization
	Table of Contents
	Keynote Address I
	Navigating Oceans of Data
	Introduction
	The User Base
	The CMOP Observatory
	CMOP Interfaces and Tools
	Supporting Ranked Search for Datasets
	General Lessons
	Issues and Challenges
	References

	Uncertain and Probabilistic Data
	Probabilistic Range Monitoring of Streaming Uncertain Positions in GeoSocial Networks
	Introduction
	Related Work
	Managing Uncertain Moving Objects
	Capturing Positional Uncertainty
	Object Locations as Bivariate Gaussian Features
	System Model

	Approximation with Discretized Uncertainty Regions
	Probing Objects through Probabilistic Verifiers
	Towards Approximate Answering with Error Guarantees

	Online Range Monitoring over Streaming Gaussians
	Evaluation Strategy
	Pruning Candidates Using Indicative Minimal Areas
	Optimized Examination of Elementary Boxes

	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Conclusion
	References

	Probabilistic Frequent Pattern Growth for Itemset Mining in Uncertain Databases
	Introduction
	Uncertain Data Model
	Problem Definition
	Contributions

	Related Work
	Probabilistic Frequent-Pattern Tree (ProFP-tree)
	ProFP-Tree Construction
	Construction Analysis

	Extracting Certain and Uncertain Support Probabilities
	Efficient Computation of Probabilistic Frequent Itemsets
	Efficient Computation of Probabilistic Support

	Extracting Conditional ProFP-Trees
	ProFP-Growth Algorithm
	Experimental Evaluation
	Scalability
	Effect of Uncertainty and Certainty
	Effect of minSup

	Conclusion
	References

	Evaluating Trajectory Queries over Imprecise Location Data
	Introduction
	Related Work
	Problem and Preliminaries
	Problem Setting
	u-bisector
	Basic Method

	Solution Framework
	Filtering Phase
	Trajectory Filter
	Segment Filter

	Trajectory Refinement Phase
	Trajectory Refinement
	Pruning Bounds for Three Cases

	Experimental Results
	Setup
	Quality Metric
	Performance Evaluation

	Conclusion
	References

	Efficient Range Queries over Uncertain Strings
	Introduction
	Related Work
	Background on Q-grams and Frequency Distance
	Pruning Techniques
	Probabilistic Q-gram based Filtering
	Frequency-Distance Based Pruning

	Combined Pruning
	Experiments
	Experiment Setup
	Performance Comparison
	Effect of Parameters

	Conclusion
	References

	Continuous Probabilistic Sum Queries in Wireless Sensor Networks with Ranges
	Introduction
	Problem Definition
	Probabilistic Sum Queries in Probabilistic Wireless Sensor Networks Having Discrete Data Distributions
	Energy Efficient Computation of Probabilistic Sum Queries
	Performance Evaluation
	Conclusions
	References

	Parallel and Distributed Data Management
	Partitioning and Multi-core Parallelization of Multi-equation Forecast Models
	Introduction
	Background of Multi-equation Forecast Models
	Partitioning for Multi-equation Forecast Models
	Parallelization of Independent Forecast Models
	Experimental Evaluation
	Parameter Estimation
	Parameter Re-estimation
	Cache Utilization
	Scalability

	Related Work
	Conclusion
	References

	Integrating GPU-Accelerated Sequence Alignment and SNP Detection for Genome Resequencing Analysis
	Introduction
	Background and Related Work
	Sequence Alignment
	SNP Detection
	The Workflow of Genome Resequencing Analysis
	Related Work

	System Implementation
	Analysis on the Traditional Workflow
	System Overview
	Range Partitioning
	Alignment Result Compression

	Evaluation
	Experimental Setup
	Performance Impact of Integration Techniques
	End-to-End Performance Comparison

	Conclusion
	References

	Discovering Representative Skyline Points over Distributed Data
	Introduction
	Related Work
	Preliminaries and Problem Statement
	Distributed Representative Skyline Algorithms
	Distributed Skyline Algorithm (DSA)
	Distributed Skyline Representative Algorithm (DSR)
	Distributed Error-Based Representative Algorithm (DER)

	Experimental Evaluation
	Experiments with Distance-Based Representative
	Experiments with Dominance Representative

	Conclusions
	References

	SkyQuery: An Implementation of a Parallel Probabilistic Join Engine for Cross-Identification of Multiple Astronomical Databases
	Introduction
	Astronomical Surveys
	Astronomical Catalogs

	Coordinate-Based Cross-Identification
	Previous Work

	SQL for Astronomical Data Mining
	SQL Language Extensions for SkyQuery
	Defining the N-way Probabilistic Join

	Implementation Details
	Hardware and Software Setup
	Database Setup
	Query Optimization and Partitioning
	Jobs as Parallel Workflows
	Performance and Scaling Considerations
	Metadata Management and Provenance from Queries

	Summary and Future Work
	References

	Efficient Filtering in Micro-blogging Systems: We Won’t Get Flooded Again
	Introduction
	Data Model
	Filter Indexing
	Experiments
	Memory Requirement
	Matching Time

	Related Work
	Conclusion
	References

	Graph Processing
	Regular Path Queries on Large Graphs
	Introduction
	Related Work
	Terms and Definitions
	Answering RPQs Using Rare Labels
	Rare Labels
	Searching the Graph Using Rare Labels
	Determining Rare Labels

	Implementation
	Search Algorithms
	Two-Way Search Complexity
	Parallelization

	Experimental Results
	Graphs and Queries
	Comparing with other Implementations
	Scalability: Graph Size and Density
	Influence of Query Types
	Parallelization

	Conclusion
	References

	Sampling Connected Induced Subgraphs Uniformly at Random
	Introduction
	Related Work
	Algorithms
	Acceptance-Rejection Sampling
	Random Vertex Expansion
	Metropolis-Hastings Sampling
	Neighbour Reservoir Sampling

	Performance Evaluation
	Experimental Setup
	Mixing Time
	Effectiveness
	Efficiency
	Efficiency versus Effectiveness
	Sampling Graph Properties
	Discussion

	Conclusion
	References

	Discovery of Top-k Dense Subgraphs in Dynamic Graph Collections
	Introduction
	Related Work and Contributions
	Dense Subgraphs in Graph Collections
	Preliminaries
	Dense Subgraph Discovery in a Set of Graphs
	Dense Subgraphs in a Stream of Graphs

	Performance Evaluation Study
	Performance of Exact Algorithms
	Trading Accuracy for Speed

	Concluding Remarks
	References

	On the Efficiency of Estimating Penetrating Rank on Large Graphs
	Introduction
	Preliminaries
	Two Forms of P-Rank Solution
	An Algorithm for P-Rank Deterministic Computation
	Probabilistic P-Rank Similarity Estimation
	A Probabilistic P-Rank Model
	A Scalable Algorithm for P-Rank Estimation

	Experimental Evaluation
	Experimental Settings
	Experimental Results

	Related Work
	Conclusion
	References

	Towards Efficient Join Processing over Large RDF Graph Using MapReduce
	Introduction
	Preliminaries
	Problem Definition
	Cost Model
	Query Processing
	Implementations
	Experiments
	Related Work
	Conclusion
	References

	Panel
	Panel on “Data Infrastructures and Data Management Research: Close Relatives or Total Strangers?”

	Mining Multidimensional Data
	Efficient Similarity Search in Very Large String Sets
	Introduction
	Related Work
	Basic Concepts and Definitions
	Similarity Search and Measures
	Tries and NFAs

	State Set Index
	Index Structure
	Algorithms

	Evaluation
	Evaluation of SSI Parameters
	Index Creation Time and Memory Consumption
	Query Answering

	Conclusion
	References

	Substructure Clustering: A Novel Mining Paradigm for Arbitrary Data Types
	Introduction
	Challenges in Substructure Clustering

	Substructure Clustering
	Substructure Definition
	Cluster Definition
	Clustering Definition

	Related Work
	An Algorithm for Subgraph Clustering
	Experiments
	Conclusion
	References

	BT* – An Advanced Algorithm for Anytime Classification
	Introduction
	Related Work
	BT*
	Anytime Bayesian classification
	Parameter Optimization
	Decision Design

	Experiments
	Parameter Optimization
	Decision Design
	Combining Approaches
	Scalability
	Summary

	Conclusion
	References

	Finding the Largest Empty Rectangle Containing Only a Query Point in Large Multidimensional Databases
	Introduction
	Related Work
	Empty Rectangle with Largest Area That Contains only a Query Point
	Basic Definitions
	Obtaining the CERs
	Computing the Rectangle with the Largest Area Containing q

	Experimental Results
	Conclusions
	References

	Sensitivity of Self-tuning Histograms: Query Order Affecting Accuracy and Robustness
	Introduction
	Self-tuning and Its Sensitivity to Learning
	Histogram Structure and Cardinality Estimation
	The Problem with Self-tuning: Sensitivity to Learning

	Histogram Initialization by Subspace Clustering
	Experiments
	Accuracy
	Robustness

	Conclusions
	References

	Provenance and Workflows
	Database Support for Exploring Scientific Workflow Provenance Graphs
	Introduction
	Preliminaries: Provenance Model and Query Language
	Operators for Exploring Workflow Provenance Graphs
	Implementation
	Experimental Results
	Related Work
	Conclusion
	References

	(Re)Use in Public Scientific Workflow Repositories
	Introduction
	Materials and Methods
	Data Sets
	Identifying Shared Workflow Elements

	Results
	Processors
	Dataflows
	Workflows (Top-Level Dataflows)

	Discussion
	Summary
	References

	Aggregating and Disaggregating Flexibility Objects
	Introduction
	Flex-object Databases
	Problem Formulation
	Aggregation and Disaggregation
	N-to-M Aggregation
	Incremental N-to-M Aggregation
	Experimental Evaluation
	Related Work
	Conclusion and Future Work
	References

	Fine-Grained Provenance Inference for a Large Processing Chain with Non-materialized Intermediate Views
	Introduction
	Motivating Scenario
	Proposed Multi-step Provenance Inference
	Overview of the Algorithm
	Documenting Coarse-Grained Provenance
	Backward Computation: Calculating Initial Tuple Boundary
	Forward Computation: Building Provenance Graph

	Evaluation
	Evaluating Criteria and Test cases
	Accuracy
	Precision and Recall

	Related Work
	Conclusion and Future Work
	References

	Automatic Conflict Resolution in a CDSS
	Introduction
	Automated Conflict Resolution in CDSS
	Example Scenario
	Conclusion and Future Work
	References

	Processing Scientific Queries
	Tracking Distributed Aggregates over Time-Based Sliding Windows
	Introduction
	Problem Definitions and Our Results

	The Forward/Backward Framework
	Warm-Up: Basic Counting
	Heavy Hitters
	Quantiles
	Other Functions
	Concluding Remarks
	References

	Hinging Hyperplane Models for Multiple Predicted Variables
	Introduction
	Related Work
	The Hinging Hyperplane Model
	Preliminaries
	The Hinge Finding Algorithm for a Single Output

	Hinge Regression for Multiple Outputs
	Finding the Consensus Separator
	Forcing Continuous Joins
	The Hinge Finding Algorithm for Multiple Outputs

	Experiments
	Conclusion
	References

	Optimizing Notifications of Subscription-Based Forecast Queries
	Introduction
	Foundations of Subscription-Based Forecast Queries
	Forecast-Based Subscriptions
	Processing Model
	Cost Model
	Optimization Problems

	Computation Approaches
	Experimental Evaluation
	Experimental Setting
	Evaluation of Computation Approaches
	Influence of Subscription Parameters
	Computational Costs
	Cost Model Validation

	Related Work
	Conclusion and Future Work
	References

	Minimizing Index Size by Reordering Rows and Columns
	Introduction
	Related Work
	Compressing Bitmap Indexes
	Data Reordering Techniques

	Theoretical Analysis
	Counting k-tuples
	Accidental Chunks
	Asymptotic Case
	Zipfian Data

	Experimental Measurements
	Number of Runs
	FastBit Index Sizes

	Conclusions
	References

	Data Vaults: A Symbiosis between Database Technology and Scientific File Repositories
	Introduction
	Related Work
	Data Vault Requirements
	Data Vault Architecture
	Data Vault for Remote Sensing
	Summary and Future Work
	References

	Keynote II
	Usage Data in Web Search: Benefits and Limitations
	Introduction
	The Third Web Search Revolution
	Search Usage Data
	Benefits
	Today's Entry Barrier?

	Three Conflicting Factors
	Size of Data
	Personalization
	Privacy

	The Wisdom of ``Ad Hoc" Crowds
	Final Remarks
	References

	Support for Demanding Applications
	Functional Feature Extraction and Chemical Retrieval
	Introduction
	Related Work
	Overview of Proposed Approach
	Chemical Feature Extraction
	Structural Formula Representation
	Functional Group Identification
	Chemical Functional Group (CFG) Graph
	Chemical Feature Extraction

	Query Retrieval
	Performance Evaluation
	Conclusion
	References

	Scalable Computation of Isochrones with Network Expiration
	Introduction
	Related Work
	Isochrones in Multimodal Networks
	Incremental Network Expansion in Multimodal Networks
	Algorithm MINEX
	Expiration of Vertices
	Properties

	Empirical Evaluation
	Overview
	Memory Consumption
	Multiple Loading of Tuples
	Runtime

	Conclusion and Future Work
	References

	A Dataflow Graph Transformation Language and Query Rewriting System for RDF Ontologies
	Introduction
	Motivating Example
	A Dataflow Language for Transforming RDF Ontologies
	IML Transforming Operations

	IML Query Rewriting and Optimization
	Query Pattern Rule (QPR) Sets
	Query Rewriting Process
	Rewriting Optimizations
	Rule-Based Optimizations
	Performance Optimizations

	Implementation
	Evaluation
	Rule Explosion and Rule Optimizations
	Best Rewritten Query Performance
	Impact of rewriting options

	Related Work
	Conclusions
	References

	Sensitive Label Privacy Protection on Social Network Data
	Introduction
	Related Work
	Problem Definition
	Algorithm
	Algorithm GINN

	Experimental Evaluation
	Data Utility
	Information Loss
	Algorithm Scalability

	Conclusions
	References

	Trading Privacy for Information Loss in the Blink of an Eye
	Introduction
	Anonymity Negotiation over a Full Lattice
	Experiments
	Summary and Pointers for Further Probing
	References

	Demonstration and Poster Papers
	Extracting Hot Spots from Satellite Data
	Introduction
	GEO-Grid
	MODIS
	ASTER

	Detecting Hot Spots
	Hot Spots
	Computing Radiance Temperature
	Threshold Based Method
	Statistics Based Method
	Implementation of Hot Spot Detections

	Evaluation
	Conclusions and Future Work
	References

	A Framework for Enabling Query Rewrites when Analyzing Workflow Records
	Introduction
	Motivation and Basic Concepts
	Query Rewriting and Evaluation
	References

	Towards Enabling Outlier Detection in Large, High Dimensional DataWarehouses
	Introduction
	A Framework for Detecting Outliers in a Data Warehouse
	Experiments and Concluding Remarks
	References

	Multiplexing Trajectories of Moving Objects
	Motivation
	A Multiplexing Framework against Trajectory Streams
	Problem Formulation
	Trajectory Encoding
	Group Detection

	Preliminary Evaluation
	Outlook
	References

	On Optimizing Workflows Using Query Processing Techniques
	Introduction
	Database-Inspired Solutions to Workflow Optimization
	Case Studies
	Conclusions
	References

	Optimizing Flows for Real Time Operations Management
	Modern Analytic Flows
	A Cyber-Physical Flow
	Optimization Techniques and Tradeoffs
	Conclusion
	References

	(In?)Extricable Links between Data and Visualization: Preliminary Results from the VISTAS Project
	Introduction
	VISTAS Project Overview
	VISTAS Architecture and Data Structures
	Conclusions
	References

	FireWatch: G.I.S.-Assisted Wireless Sensor Networks for Forest Fires
	Introduction
	System Architecture
	FireWatch Interface
	Conclusions
	References

	AIMS: A Tool for the View-Based Analysis of Streams of Flight Data
	Introduction
	System Architecture
	View-Based Flight Analysis
	Incremental Stream Analysis
	First Results
	Demonstration
	References

	TARCLOUD: A Cloud-Based Platform to Support miRNA Target Prediction
	Introduction
	The TARCLOUD Solution
	Framework
	Architecture
	User Interface

	Demonstration Scenarios
	References

	SALSA: A Software System for Data Management and Analytics in Field Spectrometry
	Introduction
	Field Spectrometry
	A Robotic Tram System

	A Software System
	Functionalities and Technicalities

	Conclusions
	References

	Incremental DNA Sequence Analysis in the Cloud
	Introduction
	The Stream-as-you-go Approach
	The DNA Sequence Analysis Use Case
	Read Alignment a la Stream-as-you-go
	SNP Detection a la Stream-as-you-go

	Demonstration Details
	References

	AITION: A Scalable Platform for Interactive Data Mining
	AITION Description
	KDD Workflow
	System Architecture
	Demonstration Overview
	Conclusion and Future Work
	References

	Author Index

