
Chapter 9

Nanoscale Phononic Crystals and Structures

N. Swinteck, Pierre A. Deymier, K. Muralidharan, and R. Erdmann

Abstract The objective of this chapter is to explore advances in the development

of phononic crystals and phononic structures at the nanoscale. The downscaling of

phononic structures to nanometric dimensions requires an atomic treatment of the

constitutive materials. At the nanoscale, the propagation of phonons may not be

completely ballistic (wave-like) and nonlinear phenomena such as phonon–phonon

scattering occur. We apply second-order perturbation theory to a one-dimensional

anharmonic crystal to shed light on phonon self-interaction and three-phonon

scattering processes. We emphasize the competition between dispersion effects

induced by the structure, anharmonicity of the atomic bonds, and boundary scatter-

ing. These phenomena are illustrated by several examples of atomistic models of

nanoscale phononic structures simulated using the method of molecular dynamics

(MD). Special attention is also paid to size effects.

9.1 Introduction

Nanofabrication techniques can be used to structure matter in a way that affects the

propagation of phononic excitations such as high frequency (short wavelength)

thermal phonons. Modulating the thermal properties of materials by creating a

nanoscale composite structure is an approach that has been extensively studied in

the case of superlattices [1–3]. These stacks of nanoscale layers have been shown

experimentally and theoretically [4, 5] to impact thermal transport due to scattering

effects of phonons.
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While superlattices are actually one-dimensional phononic structures, only a few

studies have investigated 2D and 3D nanophononic structures. Most studies on

2D and 3D phononic crystals (PCs) have focused on macroscopic elastic systems.

However this large body of knowledge suggests a possibility of designing disper-

sive properties by downscaling PCs to nanodimensions to affect the propagation

characteristics of phonons with frequencies exceeding the THz range [6]. Recently,

Gillet et al. [7] have reported simulations of atomic-level phononic structures made

of three-dimensional lattices of Ge quantum dots in a Si matrix. They have shown

a decrease of the thermal conductivity by several orders of magnitude due to the

periodic structure of the system. Davis and Hussein [8] have considered three-

dimensional nanoscale phononic crystals formed from silicon and cubic voids of

vacuum. The voids are arranged on a simple cubic lattice with a lattice constant an

order of magnitude larger than that of the bulk crystalline silicon primitive cell.

This study showed that dispersion at the phononic crystal unit cell level plays a

noticeable role in determining the thermal conductivity and that boundary scatter-

ing can also be a dominant factor. Control of high-frequency thermal phonons via

structural periodicity requires preserving elastic Bragg scattering and is a signifi-

cant challenge because of the possible loss of phonon coherence due to inherent

inelastic scattering resulting from the anharmonicity of interatomic bonds. Band-

structure effects will be highest at low temperatures where there is less anharmonic

scattering [5] but one has to operate at often undesirably low temperatures [9]. For

applications at ambient temperature and phononic crystal dimensions that can be

fabricated with relative ease, the transition between Bragg- and inelastic-dominated

scattering depends on the characteristic length of the phononic crystal and the

Debye temperature of the constitutive material. This latter quantity relates directly

to the phonon coherence length. Two-dimensional materials such as graphene or

boron nitride (BN) sheets are therefore particularly suited for such applications due

to their high phonon coherence length. Atomistic computational methods have been

employed to shed light on the transport behavior of thermal phonons in models of

graphene antidot super-lattice structures composed of periodic arrays of holes [10].

The phonon lifetime and thermal conductivity as a function of the crystal filling

fraction and temperature were calculated in this study. These calculations indicated

coherent phononic effects even at room temperature.

The first section of this chapter focuses on the relationship between wave

interactions and dispersion in one-dimensional anharmonic crystals. This is done

using second-order pertubation theory as well as numerial simulations of molecular

dynamics (MD) models of nanoscale phononic systems. Details on the perturbation

theory approach are given for pedagogical reasons. Subsequent sections show that

coherent phononic effects due to period arrays of scatterers and/or asymmetric

scatterers are achievable in nanostructured two-dimensional high-Debye tempera-

ture materials such as graphene and BN sheets. Attention is also paid to the

competition between phonon–phonon scattering and boundary scattering.
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9.2 Anharmonic One-Dimensional Atomic Structures

9.2.1 Perturbation Theory of the Mono-Atomic
Anharmonic Crystal

In a harmonic crystal, the vibrational modes do not interact. Anharmonic

lattice dynamics methods have been applied to introduce phonon interactions in

three-dimensional crystals as perturbations to the harmonic solution [11–13].

Anharmonic forces lead to mode-dependent frequency shifts and introduce finite

phonon life-time (i.e., line-width). In this section, we consider the anharmonic one-

dimensional monoatomic crystal as a simple model to shed light on the effect of

nonlinear interatomic forces on the vibrational modes that this medium can support.

Amplitude-dependent self-interaction of a wave in a monoatomic and diatomic

chain of masses and springs with nonlinear cubic forces has been studied [14].

It was shown that the dispersion curves undergo frequency shifts dependent on the

amplitude of the wave. The interaction between two different waves in a nonlinear

monoatomic chain results in the formation of different dispersion branches that are

amplitude and frequency dependent [15]. Here, we employ second-order perturba-

tion theory based on multiple time scale analysis [16, 17] and provide a detailed

derivation of the anharmonic modes.

A schematic illustration of the 1D monoatomic crystal is shown in Fig. 9.1a. The

potential energy function detailing the interaction between neighboring masses in

the 1D crystal is shown in Fig. 9.1b. The parameter (e) characterizes the strength of
nonlinearity in the springs connecting the masses. As e increases in magnitude a

region of instability emerges in the potential energy function.

The equation of motion for the quadratically nonlinear monoatomic chain is

represented by (9.1):

m
d2unðtÞ
dt2

¼ bðunþ1 � 2un þ un�1Þ þ e ðunþ1 � unÞ2 � ðun � un�1Þ2
h i

; (9.1)

where m is mass, un(t) is the displacement from equilibrium of the nth mass, b is

linear stiffness, and e is a small parameter characterizing quadratic nonlinearity.

The time variable (t) is replaced by a collection of variables t ¼ (t0, t1, t2)
whereby: t0 ¼ t, t1 ¼ et, t2 ¼ e2t. Under this condition, (9.1) becomes

d2unðt0; t1; t2Þ
dt2

¼ on
2ðunþ1 � 2un þ un�1Þ þ e

m
ðunþ1 � unÞ2 � ðun � un�1Þ2
h i

;

(9.2)

where on ¼
ffiffiffi
b
m

q
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The dependent variable in (9.2), un(t), is expressed as an asymptotic expansion

at multiple time scales:

unðtÞ ¼ uð0Þn ðtÞ þ euð1Þn ðtÞ þ e2uð2Þn ðtÞ þ higher order terms (9.3)

With this (9.2) is decomposed into equations for each order of expansion of

e, namely, the following set of equations:

Oðe0Þ : @
2u

ð0Þ
n

@t02
¼ on

2 u
ð0Þ
nþ1 � 2uð0Þn þ u

ð0Þ
n�1

� �

Oðe1Þ : @
2u

ð1Þ
n

@t02
þ 2

@2u
ð0Þ
n

@t0@t1
¼ on

2 u
ð1Þ
nþ1 � 2uð1Þn þ u

ð1Þ
n�1

� �
þ 1

m
u
ð0Þ
nþ1u

ð0Þ
nþ1 � 2u

ð0Þ
nþ1u

ð0Þ
n þ 2u

ð0Þ
n�1u

ð0Þ
n � u

ð0Þ
n�1u

ð0Þ
n�1

h i

Fig. 9.1 (a) Schematic representation of 1D crystal with linear stiffness b and quadratic nonline-

arity parameter e. (b) The potential energy function describing the 1D crystal
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Oðe2Þ : @2u
ð2Þ
n

@t02
þ 2

@2u
ð1Þ
n

@t0@t1
þ 2

@2u
ð0Þ
n

@t0@t2
þ @2u

ð0Þ
n

@t12
¼ on

2 u
ð2Þ
nþ1 � 2uð2Þn þ u

ð2Þ
n�1

� �
þ 2

m
u
ð1Þ
nþ1u

ð0Þ
nþ1 � u

ð1Þ
nþ1u

ð0Þ
n � u

ð0Þ
nþ1u

ð1Þ
n þ u

ð1Þ
n�1u

ð0Þ
n þ u

ð0Þ
n�1u

ð1Þ
n � u

ð1Þ
n�1u

ð0Þ
n�1

h i

9.2.1.1 Self-Interaction

We first address the self-interaction of a vibrational mode, that is, the effect of the

lattice deformation on itself. To solve the e0-equation, a general solution of the

following form is proposed:

u
ð0Þ
n;Gðt0; t1; t2Þ ¼ A0ðt1; t2Þ eiknae�io0t0 þ �A0ðt1; t2Þ e�iknaeio0t0 ; (9.4)

where

A0ðt1; t2Þ ¼ aðt1; t2Þ e�i’ðt1;t2Þ

�A0ðt1; t2Þ ¼ aðt1; t2Þ ei’ðt1;t2Þ

A0(t1,t2) is a complex quantity that permits slow time evolution of amplitude

and phase and a t1; t2ð Þ and ’ðt1; t2Þ are real-valued functions. Inserting (9.4)

into the e0-order equation yields the well-known dispersion relationship for the

harmonic system (9.5):

o0
2 ¼ on

2 2� eika � e�ika
� � ¼ b

m
2� 2 cos kað Þ½ � (9.5)

Equation (9.4) is now utilized in the e1-order equation to resolve the general

solution for u
ð1Þ
n . The e1-order equation is written as follows:

@2u
ð1Þ
n

@t02
þ on

2 2uð1Þn � u
ð1Þ
nþ1 � u

ð1Þ
n�1

� �
¼ 2io0

@A0

@t1
eiknae�io0t0 � @ �A0

@t1
e�iknaeio0t0

� �

þ 1

m
ei2ka � 2eika þ 2e�ika � e�i2ka
� �

A0A0e
i2knae�i2o0t0 � �A0

�A0e
�i2knaei2o0t0

� �	 

It is assumed that the solution to the homogeneous equation of the e1-order

equation takes similar form to the general solution of the e0-order equation. Under
this assumption, terms on the RHS of the e1-order equation with functional form

eio0t0 or e�io0t0 contribute to secular behavior. These terms are eliminated by setting

them equal to zero. Accordingly, A0 and �A0 are considered to be independent

functions of t1. This modifies the form of the general solution to the e0-equation:
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u
ð0Þ
n;Gðt0; t2Þ ¼ A0ðt2Þ eiknae�io0t0 þ �A0ðt2Þ e�iknaeio0t0 ; (9.6)

where

A0ðt2Þ ¼ aðt2Þe�i’ðt2Þ

�A0ðt2Þ ¼ aðt2Þ ei’ðt2Þ

The homogeneous solution to the e1-order equation takes the following form:

u
ð1Þ
n;Hðt0; t2Þ ¼ B0ðt2Þeiknae�io0t0 þ �B0ðt2Þe�iknaeio0t0 (9.7)

The particular solution to the e1-order equation is of the form:

u
ð1Þ
n;Pðt0; t2Þ ¼ C0ðt2Þei2knae�i2o0t0 þ �C0ðt2Þe�i2knaei2o0t0 (9.8)

Inserting (9.8) into the e1-order equation and relating like terms reveals

relationships for the exponential pre-factors C0ðt2Þ and �C0ðt2Þ . Equation (9.8)

becomes

u
ð1Þ
n;Pðt0;t2Þ¼

2i sinð2kaÞ�2sinðkaÞð Þ
b 2�2cosð Þ�4 2�2cosðkaÞð Þð Þ A0

2ei2knae�i2o0t0 � �A0
2
e�i2knaei2o0t0

h i
:

The general solution to the e1-order equation is a sum of the homogeneous (u
ð1Þ
n;H)

and particular solutions (u
ð1Þ
n;P):

u
ð1Þ
n;Gðt0; t2Þ ¼ B0e

iknae�io0t0 þ �B0 e
�iknaeio0t0

þ 2i sin ð2kaÞ � 2 sin ðkaÞð Þ
b 2� 2 cos ð2kaÞð Þ � 4 2� 2 cos ðkaÞð Þð Þ

� A0A0e
i2knae�i2o0t0 � �A0

�A0e
�i2knaei2o0t0

	 

The values for B0 and �B0 are found from initial conditions. With the general

solutions to the e0-equation and the e1-equation, the e2-order equation is developed.
Inserting u

ð0Þ
n;G and u

ð1Þ
n;G into the e

2-order equation, utilizing the expressions forA0ðt2Þ
and �A0ðt2Þ, and noting that uð0Þn and u

ð1Þ
n are independent functions of t1; the e

2-order

equation is written as

@2u
ð2Þ
n

@t02
þ on

2 2uð2Þn � u
ð2Þ
nþ1 � u

ð2Þ
n�1

� �
¼
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eiknae�io0t0 2o0a
@’

@t2
e�i’ þ 2io0e

�i’ @a
@t2

� �

þ e�iknaeio0t0 2o0a
@’

@t2
ei’ � 2io0e

i’ @a
@t2

� �

þ 2

m
f ei2ka � 2eika þ 2e�ika � e�i2ka
� �

A0B0e
i2knae�i2o0t0 � �A0

�B0e
�i2knaei2o0t0

� �	 

þ ei3ka � ei2ka � eika þ e�ika þ e�i2ka � e�i3ka
� �	

� A0C0e
i3knae�i3o0t0 � �A0

�C0e
�i3knaei3o0t0

� �

þ ei2ka � 2eika þ 2e�ika � e�i2ka
� �

A0
�C0e

�iknaeio0t0 � �A0C0e
iknae�io0t0

� �	 
g
The homogeneous solution to the e2-order equation is similar in form to the

general solution of the e0-equation and the homogeneous solution of the e1-equation.
Accordingly, terms on the RHS of the e2-order equation with functional form eio0t0

or e�io0t0 contribute to secular behavior and must be eliminated. Setting exponential

pre-factors equal to zero yields the following relationships for aðt2Þ and ’ðt2Þ:

aðt2Þ ¼ a0 (9.9)

’ðt2Þ ¼ � a2

o0bm
� 4 sinð2kaÞ � 2 sinðkaÞð Þ2
2� 2 cosð2kaÞð Þ � 4 2� 2 cosðkaÞð Þ t2 þ ’0; (9.10)

where a0 and ’0 are constants determined from initial plane wave conditions. The

general solution to the e0-equation [(9.6)] is considered again with (9.9) and (9.10)

utilized in expressions for A0 and �A0. Here, the constant ’0 can be set equal to zero

without loss of generality.

u
ð0Þ
n;Gðt0; t2Þ ¼ a0e

i kna� o0�e2 a2
o0bm

� 4 sinð2kaÞ�2 sinðkaÞð Þ2
2�2 cosð2kaÞð Þ�4 2�2 cosðkaÞð Þ

� �
t0

� �

þ a0e
�i kna� o0�e2 a2

o0bm
� 4 sinð2kaÞ�2 sinðkaÞð Þ2

2�2 cosð2kaÞð Þ�4 2�2 cosðkaÞð Þ
� �

t0

� �

This result shows that the 0th order term in the asymptotic expansion ofun shows
the harmonic dispersion curve to be shifted by a quantity that has quadratic

dependence on the strength of the nonlinearity parameter e.

9.2.1.2 Three-Wave Interactions

Here we consider the interaction between three waves with different wave vectors

and frequencies. The analysis begins with the equation of motion [(9.1)] from the

single-wave dispersion analysis. The displacement of the nth mass is represented by

a superposition of wave modes each with a unique, time and wave vector-dependent

amplitude factor [(9.11)]:
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unðtÞ ¼
X
k

Aðk; tÞeikna (9.11)

Here we use a discrete summation over the wave numbers instead of an integral

over a continuum of wave vectors. This is done to help the reader to conceptualize

the interactions between specific phonons and to facilitate the comparison with the

MD models presented subsequently. Indeed, MD simulations are limited to finite

size systems for which the phonon modes do not form a continuum but a discrete set

of possible wave vectors. Inserting (9.11) into the equation of motion for the 1D

monoatomic crystal yields a modified equation of motion [(9.12)].

¼�4b
X
k

Aðk; tÞeiknasin2 ka

2

� �
þ e

X
k0

X
k00

A k0; tð ÞA k00; tð Þei k0þk00ð Þnaf ðk0;k00Þ
" #

;

ð9:12Þ

where f k0; k00ð Þ ¼ �8isin k0a
2

� �
sin k00a

2

� �
sin

k0þk00ð Þa
2

� �
. Equation (9.12) is multiplied by

e�ik�na and a summation over all n masses is imposed. This procedure selects the

mode k�as reference wave vector. With o2
n ¼ 4b

m , (9.12) becomes

d2Aðk�; tÞ
dt2

þ o2
nsin

2 k�a
2

� �
Aðk�; tÞ ¼ e

m

X
k0

X
k00

A k0; tð ÞA k00; tð Þf ðk0; k00Þdk0þk00;k�

(9.13)

dk0þk00;k� imposes the wave vector conservation rule k� ¼ k0 þ k00 þ mG where m
is an integer and G is a reciprocal lattice vector of the periodic structure. We do not

label G in the delta function for the sake of simplicity of the notation. For m ¼ 0,

one has the so-called normal three phonon scattering process. The case of m 6¼ 0

corresponds to umklapp processes where k0 + k00 is located outside the first

Brillouin zone. In (9.13), the variable t is introduced, where t ¼ ont. Single time

variables (t) are replaced by a collection of variables t ¼ (t0, t1, t2) whereby:
t0 ¼ t, t1 ¼ et, t2 ¼ e2t. Additionally, A(k*, t) is replaced by an asymptotic

expansion whereby:

Aðk�; tÞ ¼ A0ðk�; tÞ þ eA1ðk�; tÞ þ e2A2ðk�; tÞ
Aðk�; t0; t1; t2Þ ¼ A0ðk�; t0; t1; t2Þ þ eA1ðk�; t0; t1; t2Þ þ e2A2ðk�; t0; t1; t2Þ

With these considerations, (9.13) is separated into expressions at order e0, e1,
and e2:

O(e0):

@2A0ðk�; tÞ
@t20

þ sin2
k�a
2

� �
A0ðk�; tÞ ¼ 0

O(e1):
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@2A1ðk�; tÞ
@t20

þ 2
@2A0ðk�; tÞ
@t1@t0

þ sin2
k�a
2

� �
A1ðk�; tÞ

¼ 1

mo2
n

X
k0

X
k00

f ðk0; k00Þdk0þk00;k� A0ðk0; tÞA0ðk00; tÞ½ �

O(e2):

@2A2ðk�; tÞ
@t20

þ 2
@2A1ðk�; tÞ
@t1@t0

þ 2
@2A0ðk�; tÞ
@t2@t0

þ @2A0ðk�; tÞ
@t21

þ sin2
k�a
2

� �
A2 k�; tð Þ

¼ 1

mo2
n

X
k0

X
k00

f ðk0; k00Þdk0þk00;k� A0ðk0; tÞA1ðk00; tÞ þ A1ðk0; tÞA0ðk00; tÞ½ �

To solve the e0-equation, a general solution of the following form is proposed:

A0ðk�; t0; t1; t2Þ ¼ a0ðk�; t1; t2Þeio�
0
t0 þ �a0ðk�; t1; t2Þe�io�

0
t0 (9.14)

Inserting (9.14) into the e0-equation offers the expected relationship betweeno�
0

and k�:o�2
0 ¼ sin2 k�a

2

� �
. Inserting (9.14) into the e1-equation offers an expression to

solve for A1(k
*,t). After rearranging and utilizing the following definitions

A0ðk0; t0; t1; t2Þ ¼ a0ðk0; t1; t2Þeio0
0t0 þ �a0ðk0; t1; t2Þe�io0

0t0

A0ðk00; t0; t1; t2Þ ¼ a0ðk00; t1; t2Þeio00
0t0 þ �a0ðk00; t1; t2Þe�io00

0t0

the e1-equation becomes

@2A1ðk�; tÞ
@t20

þ o�2
0 A1ðk�; tÞ ¼ �2io�

0

@a�0
@t1

eio
�
0
t0 � @�a�0

@t1
e�io�

0
t0

� �

þ 1

mo2
n

X
k0

X
k00

f ðk0; k00Þdk0þk00;k� ½a00a000eiðo
0
0þo00

0Þt0 þ a00�a
00
0e

iðo0
0�o00

0Þt0

þ �a00a
00
0e

�iðo0
0�o00

0Þt0 þ �a00�a
00
0e

�iðo0
0þo00

0
Þt0 �

where terms like a�0; a
0
0; a

00 . . . etc:are compact representations for a0ðk�; t1; t2Þ;
a0ðk0; t1; t2Þ; a0ðk00; t1; t2Þ . . . etc: A homogeneous solution to the e1-equation is

proposed:

A1;Hðk�;t0;t2Þ ¼ a1ðk�;t2Þeio�
0
t0 þ �a1ðk�;t2Þe�io�

0
t0 ¼ a�1e

io�
0
t0 þ �a�1e�io�

0
t0 (9.15)

The forcing terms on the right hand side (RHS) of the e1-equation with functional
form eio

�
0
t0 or e�io�

0
t0 contribute to secular behavior. These terms must be eliminated

such that the final representation of A(k*, t) is well behaved (e.g.contains no terms

that temporally growwithout bound). These terms are set to zero bymakinga0 and �a0
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functions of k* and t2 only. With this stipulation, an appropriate form of the

particular solution to the e1-equation is:

A1;Pðk�; tÞ ¼ 1

mo2
n

X
k0

X
k00

f ðk0; k00Þdk0þk00;k�

� b1e
iðo0

0þo00
0Þt0 þ �b1e

�iðo0
0þo00

0Þt0 þ c1e
iðo0

0�o00
0Þt0 þ �c1e

�iðo0
0�o00

0Þt0
h i

(9.16)

The exponential pre-factors b1; �b1; c1; �c1 have dependency on k0; k00; t2;o�
0;o

0
0;

o00
0 . Substituting (9.16) into the e1-equation and relating like terms reveals the

exponential pre-factors: b1; �b1; c1; �c1

b1 ¼ a0ðk0; t2Þa0ðk00; t2Þ
o�

0
2 � ðo0

0 þ o00
0Þ2

; �b1 ¼ �a0ðk0; t2Þ�a0ðk00; t2Þ
o�

0
2 � ðo0

0 þ o00
0Þ2

c1 ¼ a0ðk0; t2Þ�a0ðk00; t2Þ
o�

0
2 � ðo0

0 � o00
0Þ2

; �c1 ¼ �a0ðk0; t2Þa0ðk00; t2Þ
o�

0
2 � ðo0

0 � o00
0Þ2

In the long wavelength limit, angular frequency has nearly linear dependence on

wave vector. In considering the stipulated wave vector relationship inside the double

summation in (9.16), ðk0 þ k00 ¼ k�Þ, it is conceivable thato0ðk0Þ þ o0ðk00Þ ¼ o0ðk�Þ
or o0ðk0Þ � o0ðk00Þ ¼ o0ðk�Þ . In this instance, the denominator terms in the

expressions for b1; �b1; c1; �c1 will go to zero. To avoid this complication, following

the procedure stipulated by Khoo et al. [17], a small imaginary part ’ is introduced in

the denominator.At thefinal result of the calculation a limitwill be taken as’ ! 0. The

general solution to the e1-equation is a sum of the homogeneous and particular

solutions:

A1ðk�;t0;t2Þ¼a�1e
io�

0
t0 þ �a�1e

�io�
0
t0 þ 1

mo2
n

X
k0

X
k00

f ðk0;k00Þdk0þk00;k�

� a00a
00
0

g�1
eiðo

0
0þo00

0Þt0 þ �a00�a
00
0

g�1
e�iðo0

0þo00
0Þt0 þa00�a

00
0

g�2
eiðo

0
0�o00

0Þt0
�

þ�a00a
00
0

g�2
e�iðo0

0�o00
0Þt0
�
; ð9:17Þ

where g�1 ¼ o�2
0 � ðo0

0 þ o00
0Þ2 þ i’; g�2 ¼ o�2

0 � ðo0
0 � o00

0Þ2 þ i’
The e2-equation is reduced to the following expressions because A0(k

*,t) and
A1(k

*,t) are independent of t1:
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@2A2ðk�; t0; t1; t2Þ
@t20

þ o�2
0 A2ðk�; t0; t1; t2Þ

¼ �2io�
0

@a0ðk�; t2Þ
@t2

eio
�
0
t0 þ 2io�

0

@�a0ðk�; t2Þ
@t2

e�io�
0
t0

þ 1

mo2
n

X
k0

X
k00

f ðk0; k00Þdk0þk00;k� A0ðk0; t0; t2ÞA1ðk00; t0; t2Þ½

þA1ðk0; t0; t2ÞA0ðk00; t0; t2Þ�

As before, the solution to the homogeneous equation of the e2-equation is of

the form:

A2;Hðk�; t0; t2Þ ¼ a2ðk�; t2Þeio�
0
t0 þ �a2ðk�; t2Þe�io�

0
t0

Terms on the RHS of the e2-equation with functional form eio
�
0
t0 or e�io�

0
t0

contribute to secular behavior. Using equations (9.14) and (9.17) to develop the

RHS of the e2-equation gives (9.18):

@2A2ðk�; t0; t1; t2Þ
@t20

þ o�2
0 A2ðk�; t0; t1; t2Þ

¼ �2io�
0

@a0ðk�; t2Þ
@t2

eio
�
0
t0 þ 2io�

0

@�a0ðk�; t2Þ
@t2

e�io�
0
t0

þ 1

mon
2

X
k0

X
k00

f ðk0; k00Þdk0þk00;k� a00a001ei o
0
0þo00

0ð Þt0 þ a00�a001ei o0
0�o00

0ð Þt0�

þ �a00a001e�i o0
0�o00

0ð Þt0 þ �a00�a001e�i o0
0þo00

0ð Þt0
�

þ 1

mon
2

X
k0

X
k00

f ðk0; k00Þdk0þk00;k� a000a01ei o
00
0þo0

0ð Þt0 þ a000�a01ei o
00
0�o0

0ð Þt0
�

þ �a000a01e�i o00
0�o0

0ð Þt0 þ �a000�a01e�i o00
0þo0

0ð Þt0
�

þ 1

mo2
n

X
k0

X
k00

f ðk0; k00Þdk0þk00;k�
1

mo2
n

X
k1

X
k2

f ðk1; k2Þdk1þk2;k00

"(

a00a
ð1Þ
0 a

ð2Þ
0

g001
eiðo

ð1Þ
0
þoð2Þ

0
þo0

0Þt0þ
"

a00 �a
ð1Þ
0 �a

ð2Þ
0
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e�iðoð1Þ

0
þoð2Þ

0
�o0

0Þt0

þ a00a
ð1Þ
0 �a

ð2Þ
0
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eiðo

ð1Þ
0
�oð2Þ

0
þo0

0Þt0 þ a00 �a
ð1Þ
0 a

ð2Þ
0
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e�iðoð1Þ

0
�oð2Þ

0
�o0

0Þt0

�a00a
ð1Þ
0 a

ð2Þ
0

g001
eiðo

ð1Þ
0
þoð2Þ

0
�o0

0Þt0 þ �a00 �a
ð1Þ
0 �a

ð2Þ
0

g001
e�iðoð1Þ

0
þoð2Þ

0
þo0

0Þt0

þ �a00 a
ð1Þ
0 �a

ð2Þ
0

g002
eiðo

ð1Þ
0
�oð2Þ

0
�o0

0Þt0 þ �a00�a
ð1Þ
0 a

ð2Þ
0

g002
e�iðoð1Þ

0
�oð2Þ

0
þo0

0Þt0
##
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þ 1

mo2
n

X
k1

X
k2

f ðk1; k2Þdk1þk2;k0

"

� a000 a
ð1Þ
0 a

ð2Þ
0

g01
eiðo

ð1Þ
0
þoð2Þ

0
þo00

0Þt0 þ a000�a
ð1Þ
0 �a

ð2Þ
0

g01
e�iðoð1Þ

0
þoð2Þ

0
�o00

0Þt0
"

þ a000a
ð1Þ
0 �a

ð2Þ
0

g02
eiðo

ð1Þ
0
�oð2Þ

0
þo00

0Þt0 þ a000�a
ð1Þ
0 a

ð2Þ
0

g02
e�iðoð1Þ

0
�oð2Þ

0
�o00
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þ �a000a
ð1Þ
0 a

ð2Þ
0

g01
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ð1Þ
0
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0
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0
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0Þt0

þ �a000a
ð1Þ
0 �a

ð2Þ
0

g02
eiðo

ð1Þ
0
�oð2Þ

0
�o00

0Þt0 þ �a000�a
ð1Þ
0 a

ð2Þ
0

g02
e�iðoð1Þ

0
�oð2Þ

0
þo00

0Þt0
##)

ð9:18Þ
There is notable similarity between the terms on the RHS of the e1-equation that

was solved to yield (9.17) and the third and fourth terms on the RHS of (9.18).

These terms are treated with the same procedure as that used for the e1-equation.
Accordingly, they will not contribute to secular terms.

The objective is to identify terms in the e2-equation with eio
�
0
t0 or e�io�

0
t0

dependency. This will be done by systematically evaluating all wave vector pairs

k1; k2f g that satisfy the wave vector constraints stipulated by (9.18). Specifically,

dk0 þ k00;k�dk1þk2;k00 ! k0 þ k1 þ k2 ¼ k�

dk0 þ k00;k�dk1þk2;k0 ! k00 þ k1 þ k2 ¼ k�:

If a certain pair of wave vectors satisfies the above-mentioned wave vector

constraints, then an analysis will be carried through to see if these wave vectors

give rise to terms with eio
�
0
t0 or e�io�

0
t0 dependence. As before, terms with eio

�
0
t0 or

e�io�
0
t0 dependence will be removed.

In (9.18), inside the summation over k0; k00, there are two summations over k1; k2.
For the first summation over k1; k2 , two conditions must be met: (1) k0 þ k00 ¼ k�

and (2) k1 þ k2 ¼ k00.
The only possible combinations for k1; k2 that give wave vector relationships that

are compatible with dk0þk00;k� are shown as Condition A and Condition B:

Condition A : k1 ¼ �k0; k2 ¼ k�and� k0 þ k� ¼ k00

ConditionB : k1 ¼ k�; k2 ¼ �k0; and k� � k0 ¼ k00

Now that wave vector constraints are satisfied, an analysis is carried out to see if

any terms with eio
�
0
t0 or e�io�

0
t0 dependence arise in the first summation over k1; k2.
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The following frequency relationships are present in the first summation over k1; k2
in (9.18):

(i). oð1Þ
0 þ oð2Þ

0 þ o0
0

(ii). oð1Þ
0 þ oð2Þ

0 � o0
0

(iii). oð1Þ
0 � oð2Þ

0 þ o0
0

(iv). oð1Þ
0 � oð2Þ

0 � o00
Applying Condition A to these frequency relationships show two relationships

that offer terms with eio
�
0
t0 or e�io�

0
t0 dependence:

Condition A : k1 ¼ �k0 ! oð1Þ
0 ¼ o0

0 and k2 ¼ k� ! oð2Þ
0 ¼ o�

0

Applying Condition A to frequency relationships leads to:

(i). oð1Þ
0 þ oð2Þ

0 þ o0
0 ! o0

0 þ o�
0 þ o0

0 ¼ o�
0 þ 2o0

0

(ii). oð1Þ
0 þ oð2Þ

0 � o0
0 ! o0

0 þ o�
0 � o0

0 ¼ o�
0

(iii). oð1Þ
0 � oð2Þ

0 þ o0
0 ! o0

0 � o�
0 þ o0

0 ¼ �o�
0 þ 2o0

0

(iv). oð1Þ
0 � oð2Þ

0 � o0
0 ! o0

0 � o�
0 � o0

0 ¼ �o�
0

As a result, with Condition A, the following terms in the first summation over

k1; k2 contribute to secular terms:

a00�a
ð1Þ
0 �a

ð2Þ
0

g001
e�iðoð1Þ

0
þoð2Þ

0
�o0

0Þt0 ¼ a00�a
0
0�a

�
0
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e�iðo0

0þo�
0
�o0

0Þt0 ¼ a00�a
0
0�a

�
0

g001
e�iðo�

0
Þt0
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ð1Þ
0 a

ð2Þ
0

g001
eiðo
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0
þoð2Þ

0
�o0

0Þt0 ¼ �a00a
0
0a

�
0

g001
eiðo

0
0þo�

0
�o0

0Þt0 ¼ �a00a
0
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�
0
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eiðo

�
0
Þt0
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ð1Þ
0 a
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0
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�oð2Þ

0
�o0

0Þt0 ¼ a00�a
0
0a

�
0

g002
e�iðo0

0�o�
0
�o0

0Þt0 ¼ a00�a
ð1Þ
0 a

ð2Þ
0

g002
eiðo

�
0
Þt0

�a00a
ð1Þ
0 �a

ð2Þ
0
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eiðo

ð1Þ
0
�oð2Þ

0
�o0

0Þt0 ¼ �a00a
0
0�a

�
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0
0�o�

0
�o0

0Þt0 ¼ �a00a
ð1Þ
0 �a

ð2Þ
0

g002
e�iðo�

0
Þt0

Applying Condition B to these frequency relationships show two different

relationships that offer terms with eio
�
0
t0 or e�io�

0
t0 dependence:

Condition B : k1 ¼ k� ! oð1Þ
0 ¼ o�

0; k2 ¼ �k0 ! oð2Þ
0 ¼ o0

0

Applying Condition B to frequency relationships leads to:

(i). oð1Þ
0 þ oð2Þ

0 þ o0
0 ! o�

0 þ o0
0 þ o0

0 ¼ o�
0 þ 2o0

0

(ii). oð1Þ
0 þ oð2Þ

0 � o0
0 ! o�

0 þ o0
0 � o0

0 ¼ o�
0

(iii). oð1Þ
0 � oð2Þ

0 þ o0
0 ! o�

0 � o0
0 þ o0

0 ¼ o�
0

(iv). oð1Þ
0 � oð2Þ

0 � o0
0 ! o�

0 � o0
0 � o0

0 ¼ o�
0 � 2o0

0
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As a result, with Condition B, the following terms in the first summation over

k1; k2 contribute to secular terms:

a00�a
ð1Þ
0 �a

ð2Þ
0

g001
e�iðoð1Þ

0
þoð2Þ

0
�o0
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�
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�
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0
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�
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0
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�
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0Þt0 ¼ a00a

�
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0
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g002
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�
0
Þt0
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ð1Þ
0 a
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0

g002
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0
�oð2Þ

0
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�
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0
0
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0
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�
0a

0
0

g002
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For the second summation over k1; k2 , two conditions must be met:

(1) k0 þ k00 ¼ k�

(2) k1 þ k2 ¼ k0

The only possible combinations for k1; k2 that give wave vector relationships that
are compatible with dk0þk00;k� are shown as Condition C and Condition D:

Condition C : k1 ¼ �k00; k2 ¼ k�; and� k00 þ k� ¼ k0

Condition D : k1 ¼ k�; k2 ¼ �k00; and k� � k00 ¼ k

Now that wave vector constraints are satisfied, an analysis is carried out to see

if any terms with eio
�
0
t0 or e�io�

0
t0 dependency arise in the second summation over

k1; k2. The following frequency relationships are present in the second summation

over k1; k2 in (9.18):

(v). oð1Þ
0 þ oð2Þ

0 þ o00
0

(vi). oð1Þ
0 þ oð2Þ

0 � o00
0

(vii). oð1Þ
0 � oð2Þ

0 þ o00
0

(viii). oð1Þ
0 � oð2Þ

0 � o00
0

Applying Condition C to these frequency relationships show two relationships

that offer terms with eio
�
0
t0 or e�io�

0
t0 dependence:

Condition C : k1 ¼ �k00 ! oð1Þ
0 ¼ o00

0 and k2 ¼ k� ! oð2Þ
0 ¼ o�

0

Applying Condition C to frequency relationships leads to

(v). oð1Þ
0 þ oð2Þ

0 þ o00
0 ! o00

0 þ o�
0 þ o00

0 ¼ o�
0 þ 2o00

0

(vi). oð1Þ
0 þ oð2Þ

0 � o00
0 ! o00

0 þ o�
0 � o00

0 ¼ o�
0

(vii). oð1Þ
0 � oð2Þ

0 þ o00
0 ! o00

0 � o�
0 þ o00

0 ¼ �o�
0 þ 2o00

0

(viii). oð1Þ
0 � oð2Þ

0 � o00
0 ! o00

0 � o�
0 � o00

0 ¼ �o�
0
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As a result, with Condition C, the following terms in the second summation over

k1; k2 contribute to secular terms:
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ð1Þ
0 �a
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Applying Condition D to these frequency relationships show two different

relationships that offer terms with eio
�
0
t0 or e�io�

0
t0 dependence:

Condition D : k1 ¼ k� ! oð1Þ
0 ¼ o�

0and k2 ¼ �k00 ! oð2Þ
0 ¼ o00

0

Applying Condition D to frequency relationships leads to
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0 þ oð2Þ
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0 þ o00
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0 þ 2o00
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0 þ oð2Þ
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0 ¼ o�
0 � 2o00

0

As a result, with Condition D, the following terms in the second summation over

k1; k2 contribute to secular terms:
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In assuming that terms a0 k0ð Þ; �a0 k0ð Þ; a0 �k0ð Þ; �a0 �k0ð Þ; . . . ; etc:½ �in (9.18) behave
as follows:

a0 k0; t2ð Þ ¼ a0 k0; 0ð Þeibðk0Þt2

�a0ðk0; t2Þ ¼ �a0ðk0; 0Þe�ibðk0Þt2

a0ð�k0; t2Þ ¼ a0ð�k0; 0Þeibð�k0Þt2

�a0 �k0; t2ð Þ ¼ �a0 �k0; 0ð Þe�ibð�k0Þt2

..

.

etc.

Additionally,

a0ðk0; 0Þ ¼ a0ð�k0; 0Þ

�a0ðk0; 0Þ ¼ �a0ð�k0; 0Þ

bðk0Þ ¼ bð�k0Þ

Equation (9.18) can be rewritten in the form of (9.19):

@2A2ðk�; t0; t1; t2Þ
@t20

þ o�2
0 A2ðk�; t0; t1; t2Þ

¼ �2io�
0
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a0ðk�; 0Þeibðk�Þt2 1
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� �2X
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� 2f ð�k0; k�Þd�k0þk�;k00a0ðk0; 0Þ�a0ðk0; 0Þ 1

g001
þ

��
1

g002

�
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� 1

g001
þ

�
1

g002

�
þ 2f ð�k00; k�Þd�k00þk�;k0a0ðk00; 0Þ�a0ðk00; 0Þ 1

g01
þ 1

g02

� ���
e�io�

0
t0

þ other terms which will not give eio
�
0
t0 or e�io�

0
t0 dependence ð9:19Þ

The terms in front of eio
�
0
t0 and e�io�

0
t0 are set to zero. This is shown by equations

(9.20) and (9.21):
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mo2
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� �2X
k0

X
k00

f ðk0; k00Þdk0þk00;k�
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2f ð�k0; k�Þd�k0þk�;k00a0ðk0; 0Þ�a0ðk0; 0Þ

� 1
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g01
þ 1
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� ��
¼ �2o�

0bðk�Þa0ðk�; 0Þeibðk
�Þt2

(9.20)
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mo2
n

� �2X
k0

X
k00

f ðk0; k00Þdk0þk00;k� 2f ð�k0; k�Þd�k0þk�;k00a0ðk0; 0Þ�a0ðk0; 0Þ
	

� 1

g001
þ

�
1

g002

�
þ 2f ð�k00; k�Þd�k00þk�;k0a0ðk00; 0Þ�a0ðk00; 0Þ 1

g01
þ 1

g02

� ��
¼ �2o�

0bðk�Þ�a0ðk�; 0Þe�ibðk�Þt2

(9.21)

From (9.20) and (9.21), the same expression for b* results [(9.22)]:

bðk�Þ ¼ � 1

2o�
0

1

mo2
n

� �2X
k0

X
k00

f ðk0; k00Þdk0þk00;k� 2f ð�k0; k�Þd�k0þk�;k00a0ðk0; 0Þ�a0ðk0; 0Þ
	

� 1

g001
þ

�
1

g002

�
þ 2f ð�k00; k�Þd�k00þk�;k0a0ðk00; 0Þ�a0ðk00; 0Þ 1

g01
þ 1

g02

� ��
(9.22)

Recall that ’ appears in the terms containing g001 ; g
00
2; g

0
1; g

0
2 The limit of (9.22) is

taken as ’ ! 0. The following definition is utilized [17]:

lim
y!0

1

ðx� iyÞ ¼
1

x

� �
pp

� ipdðxÞ

where pp denotes principle part. The real and imaginary parts of (9.22) are shown as

(9.23) and (9.24), respectively.
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Imðb�Þ ¼ Gk� ¼ 32p
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In the above expressions for the real and imaginary parts of b*

a00�a
0
0 ¼ a0ðk0; 0Þ�a0ðk0; 0Þ

a000�a
00 ¼ a0ðk00; 0Þ�a0ðk00; 0Þ

From here, the general solution to the e0-equation [(9.14)] is considered with the
new found results for a0ðk�; t2Þ and �a0ðk�; t2Þ :

a0ðk�; t2Þ ¼ a0ðk�; 0Þeibðk�Þt2

�a0ðk�; t2Þ ¼ �a0ðk�; 0Þe�ibðk�Þt2

Equation (9.14) is written as follows:

A0ðk�; t0; t2Þ ¼ a0ðk�; t2Þeio�
0
t0 þ �a0ðk�; t2Þe�io�

0
t0

Utilizing the new found results for a0ðk�; t2Þ and �a0ðk�; t2Þ, one arrives at the

following expression:

A0ðk�; t0; t2Þ ¼ a0ðk�; 0Þei o�
0
t0þbðk�Þt2ð Þ þ �a0ðk�; 0Þe�i o�

0
t0þbðk�Þt2ð Þ
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Writing the above expression strictly in terms of t0, where t2 ¼ e2t0 gives the

following representation for A0ðk�; t0Þ

A0ðk�; t0Þ ¼ a0ðk�; 0Þei o�
0
t0þe2bðk�Þt0ð Þ þ �a0ðk�; 0Þe�i o�

0
t0þe2bðk�Þt0ð Þ

b* is expressed in terms of its real and imaginary parts to yield the final

representation for A0ðk�; t0Þ:

bðk�Þ ¼ Dk� þ iGk�

A0ðk�; t0Þ ¼ a0ðk�; 0Þei o�
0
t0þe2 Dk�þiGk�ð Þt0ð Þ þ �a0ðk�; 0Þe�i o�

0
t0þe2 Dk�þiGk�ð Þt0ð Þ

A0ðk�; t0Þ ¼ a0ðk�; 0Þei o�
0
þe2Dk�ð Þt0ð Þe�e2Gk� t0

þ �a0ðk�; 0Þe�i o�
0
þe2Dk�ð Þt0ð Þee2Gk� t0 (9.25)

Three-wave interaction leads therefore to an additional frequency shift propor-

tional to the square of the strength of the nonlinearity. Moreover, three-wave

interaction leads to a damping of each wave, that is, a finite lifetime. This result

is the classical mechanics equivalent of that reported within the framework of

quantum mechanics [11–13, 17].

9.2.2 Molecular Dynamics Simulation and Spectral Energy
Density Approach

In this section we shed additional light on the three phonon scattering processes in

one-dimensional anharmonic crystals using the numerical method of MD. MD is a

simulation technique for computing the thermodynamic as well as kinetic

properties of a classical many-body system [18]. Classical MD methods consist

of solving numerically Newton’s equations of motion of a collection of N

interacting particles or atoms. The most critical component of an MD simulation

is the interatomic potential from which interatomic forces may be derived. The

equation of motion of each individual atom is solved numerically in time to obtain

the trajectories of the system, namely, the time evolution of the positions and

momenta of every particle. In some systems the computational task of solving the

equations of motion scales at best linearly with the number of particles, N, and more

generally as N2. Periodic boundary conditions (PBC) are often used to reduce the

computational problem size. PBC consist of repeating periodically in all directions

of space a “small” simulation cell. One allows interaction between the N atoms

within the simulation cell and also between atoms inside the simulation cell and

atoms in the periodically repeated “image” cells. Interactions are cut-off to less than

half the minimum characteristic length of the simulation cell to avoid spurious
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effects such as interaction of an atom with its own image. This method effectively

reduces the effects that may be associated with surfaces associated with a finite size

system. However, while trying to mimic the behavior of an infinite system, the

simulated system still possesses the characteristics of a finite system. For instance,

the finiteness of an MD system with PBC leads to a discretization of the phonon

modes and a suppression of the modes with wavelength longer than the simulation

cell length. This is easily seen by considering a 1D monoatomic system composed

of N atoms interacting via a nearest neighbor harmonic (or anharmonic) potential.

In this case, imposing PBC leads to atom N interacting with atom 1 thus forming a

ring. Modes with wavelengths exceeding the length L ¼ Na, where a is the

interatomic spacing, are not compatible with the constraint of the ring geometry

and cannot be supported by that structure. The finite number of modes will also

impact the number of three phonon interactions that may take place in a finite

simulation cell. The discrete phonon modes may not allow the requirement of

frequency conservation. These points will be illustrated with numerical simulations

of the 1D anharmonic monoatomic crystal.

For the present discussion, the equation of motion [(9.1)] for a toy system is

integrated by MD techniques with PBC using the velocity Verlet algorithm under

the microcanonical ensemble (constant energy)[18]. This scheme ensures that

energy is conserved within 0.5%. Harmonic MD simulations of the 1D monoatomic

crystal utilize b ¼ 1.0 N/m and e ¼ 0.0 N/m2 whereas anharmonic simulations

utilize b ¼ 1.0 N/m and e ¼ [0.9�3.7] N/m2. The 1D crystal consists of a chain of

1.0 kg masses spaced periodically 1.0 meter apart. These parameters can be easily

scaled down to represent an atomic system. To initiate a simulation, every mass in

the MD simulation cell is randomly displaced from its equilibrium position. The

maximum value in which a mass can be displaced is constrained such that

instabilities do not emerge in the potential energy function. MD simulations are

run for 221 time steps with a timestep of 0.01 s. For post-processing spectral energy

density (SED) calculations, velocity data is collected for each mass in the simula-

tion cell over the entire simulation time.

The SED method is a technique for predicting phonon dispersion relations and

lifetimes from the atomic velocities of the particles in a crystal generated by

classical MD [19]. The SED method offers a comprehensive description of phonon

properties because individual phonon modes can be isolated for analysis and is

computationally affordable for the systems that will be examined in this section.

Formally, the expression for SED is written as follows:

Fð~k;oÞ ¼ 1

4pt0N

X
a

XB
b

mb

ðt0
0

XN
nx;y;z

va
nx;y;z
b

; t

� �
� eði~k�r0

!�iotÞdt

������
������
2

where t0 represents the length of time over which velocity data is collected from a

given MD simulation, N is the total number of unit cells represented in the MD

simulation, and va

�
nx;y;z
b

; t
�
represents the velocity of atom b (of mass mb in unit

cell nx;y;z) in the a-direction. For a specified wave vector (~k), the spectrum relating
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SED to frequency is found by adding the square of the absolute value of the Fourier

transform of the discrete temporal signal f ðtÞ ¼ PNT

nx;y;z

va

�
nx;y;z
b

; t
�
� eði~k�r0

!Þ for every

½a; b� pair. A SED value represents the average kinetic energy per unit cell as a

function of wave vector and frequency. A peak in the spectrum relating SED to

frequency signifies a vibrational eigenmode for wave vector (~k). The shape of the

frequency spread for eigenmode (~k) is represented with the Lorentzian function:

Fð~k;oÞ ¼ I

1þ ðo� ocÞ=g½ �2

where I is the peak magnitude, ocis the frequency at the center of the peak, and g is
the half-width at half-maximum. The lifetime for phonon mode (~k) is defined as

t ¼ 1=2g[19]. Nondegenerate wave vector modes are dependent on the size of the

MD simulation cell and are written as follows: ki ¼ 2pni=aNi, where a is the lattice
constant, Ni is the total number of unit cells in the i-direction, and ni is an integer

ranging from –Ni+1 to Ni. The robust nature of the SED method is used to quantify

specific phonon modes in several configurations of the 1D anharmonic crystal in the

following subsections.

9.2.3 One-Dimensional Anharmonic Monoatomic Crystal

To begin with, the band structure generated by the SED method is shown for the 1D

harmonic monoatomic crystal (Fig. 9.2). Figure 9.2 shows contours of constant

SED over the wave vector-frequency plane.

There are 101 discrete, nondegenerate wave vectors resolved between the center

of the irreducible Brillouin Zone and the zone edge at k ¼ p=a . In the band

structure, there is a nearly linear region that accounts for the propagative

characteristics of long wavelength excitations in the 1D harmonic crystal. At larger

wave vector values, a departure from the linear behavior is apparent and the phase

velocity of propagative phonon modes is markedly different from the group veloc-

ity. This is similar to the expected dispersion behavior of the infinite monoatomic

harmonic crystal. At the edge of the irreducible Brillouin zone, a SED-frequency

plot is reported. A peak in the spectrum shows this vibrational mode contributing

significantly to the average kinetic energy per unit cell. A Lorentzian function is fit

to this peak and shows a finite value for half-width at half-maximum (g) because the
fast Fourier transform scheme used in the SED calculation involves a signal

sampled over a finite time window. This value for half-width at half-maximum is

subsequently used as a lower bound for the error on lifetime estimated with the SED

method. This error amounts to one interval in the discrete frequency scale. The band

structure of the harmonic system is highlighted in the long wavelength regime;

Fig. 9.3 zooms in on a region of the dispersion curve near k ¼ p=10a.
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In Fig. 9.3 on the right hand side, four SED-frequency plots are shown (plots a–d).

Each plot represents a different MD simulation of the 1D harmonic monoatomic

crystal. Each MD simulation begins with a random starting configuration for atomic

displacements in the 1D crystal. It is observable from these four plots that for a given

wave vector, the SED takes on different values. This is due to the fact that for a

harmonic crystal, energy contained within a particular mode cannot be passed to

Fig. 9.2 (Left) Band Structure of 1D harmonic monoatomic crystal. (Right) SED-frequency plot

showing wave vector mode k ¼ p=a

Fig. 9.3 (Left) Band Structure (constant SED contours) for 1D harmonic monoatomic crystal near

k ¼ p=10a. (Right) SED-frequency plots for four MD simulations differing in their initial random

configurations
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other modes of vibration. This highlights the sensitivity of the vibrational modes of

the harmonic crystal on the initial configuration. Consequently, to obtain a nonbiased

band structure, multiple MD simulations must be run such that an average can be

taken of the different SED values for each discrete, nondegenerate wave vector mode.

An average of plots (a–d) is shown on the left hand side of Fig. 9.3 with the color of

the contours signifying SED intensity. A Lorentzian function is fit to each of the

peaks in the left hand figure and shows the same value for half-width at half-

maximum as that calculated in Fig. 9.2. For comparison, the band structure of the

1D anharmonic monoatomic crystal near k ¼ p=10ais shown in Fig. 9.4. Here the

parameter characterizing the degree of anharmonicity in the 1D crystal is e ¼ 3.0

(see Fig. 9.1b).

Similar to Fig. 9.3, the four plots on the right hand side of Fig. 9.4 represent

SED-frequency plots generated from four different MD simulations. The SED

intensity for a given mode varies from simulation to simulation, which indicates

that energy does not easily exchange between modes of vibration in the 1D

anharmonic crystal. In contrast, though, there are some peaks in the SED-frequency

spectra that show slightly larger values for half-width at half-maximum. However,

it is critical that averages be taken for SED data extracted from several MD

simulations such that an accurate quantification of phonon lifetime can be realized.

The contour map on the left hand side of Fig. 9.4 represents an average over plots

(a–d). Lorentzian functions are fit to the peaks in this figure. The half-width at half-

maximum for all peaks is found to be comparable to the harmonic case. With a

Fig. 9.4 (Left) Band Structure (constant SED contours) for 1D anharmonic monoatomic crystal

near k ¼ p=10a. (Right) SED-frequency plots for four MD simulations differing in their initial

random configurations
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random initial displacement of the masses of at most 10 % of the lattice spacing “a,”

the total energy of the anharmonic system is only 1.3 % higher than that of the

harmonic system. Under this condition, the system can be considered to be weakly

anharmonic and second order perturbation theory is applicable. In other words, the

system studied here belongs to the category of weak coupling and is not expected to

behave like the Fermi-Pasta-Ulam model where strong nonlinearity leads to persis-

tent recurring vibrational modes[20]. Considering the final expression forA0ðk�; t0Þ
in Sect. 9.2.1 (9.25), which represents the 0th order term in the asymptotic expan-

sion of Aðk�; tÞ describing three-wave interactions, Gk� (9.24) corresponds to a

decay constant for mode k�. Half-width at half-maximum calculations of peaks in

SED-frequency spectra embody Gk� . In the long wavelength regime, Gk� is small

because of squared sinusoidal terms inside the double summation over k0 and k00 .
Accordingly, one should not expect large values for half-width at half-maximum in

the long wavelength limit. The complete band structure for the 1D anharmonic

monoatomic crystal is shown in Fig. 9.5. The band structure is generated from SED

averages taken from four MD simulations.

In Fig. 9.5, it seems that each nondegenerate wave vector is associated with

multiple eigenfrequencies due to the fact that multiple peaks appear in the SED. At

the edge of the irreducible Brillouin zone, an intense central peak is seen along with

multiple, less intense symmetrical satellite peaks. These satellite peaks emerge

when the anharmonicity of the system is adequately sampled (i.e., large amplitudes

of vibration). Equation (9.17) of Sect. 9.2.1 is utilized to explain the appearance of

these satellite peaks. This equation represents the 1st order term in the asymptotic

expansion of Aðk�; tÞ describing three-wave interactions. Inside the double summa-

tion over ðk0; k00Þ in (9.17), conservation of wave vectors is imposed: dk0þk00;k� ! k0

þk00 ¼ k�. If the mode of interest is k� ¼ p=a, then conservation of wave vector can
be satisfied by adding nondegenerate wave vector pairs that yieldk�. With N ¼ 400,

nondegenerate wave vectors are limited to the following: ki ¼ ni
400

� 2pa . If only wave

Fig. 9.5 (Left) Band Structure for 1D anharmonic monoatomic crystal. (Right) SED-frequency
plot showing wave vector mode k ¼ p=a. e ¼ 3:0 and initial random displacement does not exceed

10 % of a
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vectors contained between the center of the irreducible Brillouin zone and the zone

edge are considered, then ni ranges from 0 to 200. As a first example, to satisfy wave

vector conservation, consider two wave vectors: (1) the first nondegenerate

wave vector before the zone edge at ðk ¼ p=aÞ and (2) the first nondegenerate

wave vector after the center of the irreducible Brillouin zone at (k ¼ 0). This pair of

wave vectors is shown as Case I and satisfies wave vector conservation: (Case I)

k0 ¼ 199
400

� 2pa , k00 ¼ 1
400

� 2pa , k� ¼ 200
400

� 2pa .
As a second example, consider (1) the second nondegenerate wave vector before

the zone edge at (k ¼ p=a) and (2) the second nondegenerate wave vector after the

center of the irreducible Brillouin zone at (k ¼ 0). This pair of wave vectors is

defined as Case II and satisfies wave vector conservation: (Case II) k0 ¼ 198
400

� 2pa , k00
¼ 2

400
� 2pa , k� ¼ 200

400
� 2pa . We note that both cases do not conserve frequency. In both

cases, since the dispersion relationship for the 1D anharmonic monoatomic crystal is

not strictly linear, the frequency of mode k0 plus (or minus) the frequency of mode k00

will not exactly equal the frequency of modek�. Instead, the addition (or subtraction)
of the frequencies associated with modes k0 and k00 will be slightly greater than (or

less than) the frequency of mode k� . This forces the denominator of the pre-

exponential factors in (9.17) to become small, thereby contributing to a large

value ofA1ðk�; t0; t2Þ. The presence of nonzeroA1ðk�; t0; t2Þ indicates that discrete,
near-resonance modes are initiated for short wavelength phonons (k0 ) interacting
with long wavelength phonons (k00 ). On the left hand side of Fig. 9.6, we show

nondegenerate wave vector modes k0 and k00 corresponding to Case I (top) and

Case II (bottom). On the right hand side, Fig. 9.6 shows the modes at k� ¼ p=a.

Fig. 9.6 (Top, left) SED-frequency plots for wave vector modes k and k corresponding to Case I.

(Bottom, left) SED-frequency plots for wave vector modes k and k corresponding to Case II. (Right)
SED-frequency plot corresponding to k� ¼ p=a. For Cases I and II, wave vectors k and k satisfy

wave vector conservation for mode k�. The frequencies of modes k and k add (or subtract) to yield
near-resonance peaks near o�ðk�Þ. Notice the frequency scale difference between short and long

wavelength modes
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In this image the satellite peaks coincide with discrete, near-resonance modes.

The central peak frequencies of modes k0 and k00 add (or subtract) to yield satellite

peaks to the central peak for k� ¼ p=a. The primary satellite peaks at 1.999 and

1.969 rad/s come from Case I. The secondary satellite peaks at 2.015 and 1.951 rad/

s come from Case II. Tertiary, quaternary, and other higher order satellite peaks

exist and are revealed if the scale on the right hand SED plot were adjusted. The

magnitude of the satellite peaks depends upon the “distance” from the central peak

at k ¼ p=a in accordance with their near resonant character. This distance depends

upon the size of the MD simulation. For an MD simulation with N ¼ 100 atoms,

there are 51 discrete, nondegenerate wave vector modes available between the

center of the irreducible Brillouin zone and the zone edge. For N ¼ 1,000 atoms,

there are 501 available modes. The resolution in wave vector-space is finer for

larger MD systems as is the resolution in frequency-space. Higher frequency

resolution results in smaller spacing between satellite peaks. This is shown in

Fig. 9.7. As the number of atoms (N) increases, the satellite peaks congregate

around the central peak and increase in relative amplitude. In the limit of an infinite

system all satellite peaks merge into the central peak.

For a phonon mode to decay, wave vector and frequency conservation rules must

be satisfied. For short wavelength phonon modes, these constraints are pathologi-

cally difficult to satisfy because the monoatomic dispersion curve is not linear. The

central frequency peaks in Fig. 9.7 represent the resonance mode of wave vector

k ¼ p=a. The satellite peaks in Fig. 9.7 represent frequency-nonconserving near-

resonance modes spawned from nonlinear wave interactions between short wave-

length phonons and long wavelength phonons. The lifetime of phonon mode k ¼ p
=a comes from fitting a Lorentzian function to the central peak. As Fig. 9.7 shows,

the half-width at half-maximum for phonon mode k ¼ p=a is rather insensitive to

the number of atoms in the MD simulation cell. It is found that the half-width at

half-maximum for k ¼ p=a is the same order of magnitude as the error estimate

found from the harmonic case in Fig. 9.2. As a result, lifetime of high-frequency

phonon modes in the anharmonic monoatomic crystal is inherently long because

wave vector and frequency conservation constraints cannot be satisfied.

In comparing the anharmonic band structure with the harmonic band structure at

(k ¼ p=a), there is an obvious shift in frequency of the central peak. The perturba-

tion analysis of the single-wave dispersion has shown that the anharmonic disper-

sion curve is frequency-shifted (with respect to the harmonic dispersion curve) by a

quantity that has quadratic dependence on the strength of the nonlinearity parameter

e. Fig. 9.8 shows a plot mapping the frequency shift relative to the harmonic system

for several values of e for a MD simulation cell consisting of N ¼ 200 atoms. In

Fig. 9.8, three different curves are rendered. Each curve represents a different

magnitude for the initial random displacement imposed upon the masses in the

1D crystal in terms of percentage lattice spacing. The magnitude of the initial

displacement controls the amplitude of the phonon modes. For triangles, the

maximum value a mass can be displaced is 10 % of the lattice spacing. For squares
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and circles, displacement values are 5 % and 2 %, respectively. Quadratic depen-

dence is observed for values of e ranging from 0.0 to 3.7. Beyond e ¼ 3.7, the

potential energy function becomes completely unstable.

Analysis of the weakly anharmonic 1D monoatomic crystal has shown that the

lifetime of phonon modes is not significantly affected by nonlinear interaction

forces because it is pathologically difficult to satisfy the conditions for frequency

and wave vector conservation. On the contrary, there exist conditions between short

wavelength phonons and long wavelength phonons whereby near-resonance peaks

emerge in plots of SED-frequency spectra. Satellite peaks materialize when the

Fig. 9.7 SED-frequency plots for 1D anharmonic monoatomic crystal at k ¼ p=a for MD systems

of varying sizes. The parameter characterizing the degree of anharmonicity in the 1D crystal is

e ¼ 3.0
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anharmonicity of the system is adequately sampled. Lastly, nonlinear interaction

forces lead to amplitude-dependent frequency shifts.

9.2.4 Anharmonic One-Dimensional Superlattices

In this section, the insight gained from analysis of the 1D harmonic and anharmonic

crystals is extended to a series of superlattice configurations. A characteristic

feature offered by periodic media is folded phononic band structures. Band-folding

allows the conditions for wave vector and frequency conservation to be easily

satisfied thereby greatly impacting three phonon processes because a greater

number of phonon mode decay channels are available. Three direct consequences

of band folding are (1) modulated eigenfrequencies for vibrational modes,

(2) decreased phonon mode group velocities, and (3) altered phonon mode

lifetimes. The superlattice configurations considered in this section do not possess

the ability to boundary-scatter phonons because the potential describing the inter-

action between particles of differing mass is identical to the potential between

particles of the same mass. Accordingly, the discussion of phonon mode lifetime is

limited to coherent, band-folding effects. The main objective in this section is to

illustrate the role superlattice periodicity plays in modulating eigenfrequencies and

phonon mode lifetimes at a constant filling fraction. For all superlattices consi-

dered, the total number of atoms simulated with MD is N ¼ 800. Every plot

presented represents an average over a minimum of five unique MD simulations

with randomly generated initial conditions. For superlattice unit cells, the mass of

the black atom amounts to 50 % of that of the white atom.

To begin with, consider the 1D anharmonic diatomic crystal (superlattice 1:1) as

pictured in Fig. 9.9. In comparison to the 1D anharmonic monoatomic crystal, a

single fold in the phononic band structure occurs at wave vector mode k ¼ p=2a.

Fig. 9.8 Frequency-shift evaluated at k ¼ p=a for 1D anharmonic crystal relative to harmonic

case. Symbols represent different magnitudes for the maximum initial random displacement

imposed upon the masses in the 1D crystal in terms of percentage of the lattice spacing. Circle,
square, and triangle symbols represent small, intermediate, and large initial displacements,

respectively
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Similar to the monoatomic case, there is a region in the band structure where

frequency varies linearly with wave vector. In Fig. 9.9 (right), a SED-frequency

plot is highlighted at k ¼ p=a . This mode, minus a reciprocal space vector, is

identical to the mode at the center of the irreducible Brillouin zone. Two peaks are

visible in this plot: the dashed line represents a peak for the 1D harmonic diatomic

crystal whereas the solid line represents the anharmonic case. There is a noticeable

frequency shift as well as a marked difference in peak breadth. Peak broadening is

directly associated with satisfaction of conservation of wave vector and frequency

conditions; the addition of a second band in the band structure allows these

conditions to be met more easily. In the left hand plot of Fig. 9.9, two peaks are

apparent. The dashed line corresponds to the diatomic harmonic system and the

solid line represents the anharmonic case. There appears to be no significant

difference in peak position or width. This result was seen in the anharmonic

monoatomic case for long wavelength, low-frequency wave vector modes.

Larger superlattice configurations are now considered to probe the impact

superlattice periodicity has on frequency shift and phonon lifetime. In Fig. 9.10,

the band structure for a superlattice configuration consisting of a unit cell comprised

of two heavy atoms and two light atoms (superlattice 2:2) is displayed. Four distinct

bands span the irreducible Brillouin zone. The highest frequency band shows near

zero group velocity for all nondegenerate wave vector modes. A SED-frequency

plot is highlighted at k ¼ p=2a . This plot shows information for the harmonic

(dashed line) and anharmonic (solid line) cases. Similar to Fig. 9.9, there is a

noticeable shift in frequency and the anharmonic peak is significantly broader

Fig. 9.9 (Top) unit cell for diatomic crystal. (Center) band structure for 1D anharmonic diatomic

crystal. (Left) SED-frequency plot at k ¼ p=20a with peaks for harmonic (dashed line) and

anharmonic (solid line) cases. (Right) SED-frequency plot at k ¼ p=a with peaks for harmonic

(dashed line) and anharmonic (solid line) cases
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than the harmonic peak. In comparison to the diatomic case, the increased number

of bands in the irreducible Brillouin zone allows the conditions for conservation of

wave vector and frequency to be met with greater ease. That is, many more three

phonon processes satisfy those conditions. Accordingly, the anharmonic peak here

shows greater width than the anharmonic peak in the right hand plot of Fig. 9.9.

In Fig. 9.11, the band structure for a superlattice configuration comprised of

eight atoms (superlattice 4:4) is displayed. Eight distinct bands span the irreducible

Brillouin zone. Of these bands, several show wave vector modes with near zero

group velocity. The SED-frequency plot on the right hand side of Fig. 9.11 shows a

very wide peak for the anharmonic case. From Figs. 9.9–9.11 it is apparent that

anharmonic SED-frequency peaks broaden as the number of bands spanning the

irreducible Brillouin zone increases. Accordingly, phonon mode lifetime is signifi-

cantly reduced by the number of bands available. If the bands spanning the

irreducible Brillouin zone are flat bands, then this effect becomes even more

pronounced because for a flat band, the conditions for conservation of wave vector

can always be satisfied.

With this notion in mind, a final configuration is introduced (Fig. 9.12) with

superlattice periodicity 16a (superlattice 8:8). Similar to Figs. 9.9, 9.10, 9.11,

Fig. 9.12 shows a frequency shift and peak broadening for the highest frequency

anharmonic mode at k ¼ p=8a.

Fig. 9.10 (Top) four atom unit cell. (Left) anharmonic band structure corresponding to the four

atom unit cell. (Right) SED-frequency plot at k ¼ p=2a. Dashed line represents the harmonic case

whereas the solid line represents the anharmonic case
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Fig. 9.11 (Top) eight atom unit cell. (Left) anharmonic band structure corresponding to the eight

atom unit cell. (Right) SED-frequency plot at k ¼ p=4a. Dashed line represents the harmonic case

whereas the solid line represents the anharmonic case

Fig. 9.12 (Top) 16 atom unit cell. (Left) anharmonic band structure corresponding to the 16 atom

unit cell. (Right) SED-frequency plot at k ¼ p=8a . Dashed line represents the harmonic case

whereas the solid line represents the anharmonic case
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To compare all four superlattice configurations, Fig. 9.13 shows (a) SED-

frequency plots and (b) Lorentzian function fits to SED-frequency data

corresponding to the mode with highest frequency.

Qualitatively (in Fig. 9.13a) and quantitatively (in Fig. 9.13b), it is observable

that as the length of the period decreases a general narrowing occurs for anharmonic

SED-frequency peaks. Accordingly, phonon mode lifetime increases when the

period of the superlattice is decreased. This observation is consistent with the

work presented by Garg et al. [21]. In this study it was shown that the thermal

conductivity of a small period Si–Ge superlattice could be higher than that of the

constituent materials. In that model, the authors calculated the thermal conductivity

using the Boltzmann transport equation within the single mode relaxation time

(SMRT) approximation [22]. They modeled the superlattice with harmonic and

anharmonic force constants derived from density-functional theory (DFT). In that

work the interfaces were treated as perfect(no boundary scattering). It was found

that mass mismatch between Si and Ge atoms essentially controls phonon disper-

sion in the superlattices. The model also considered only three-phonon anharmonic

scattering processes. Under these conditions, an increase in lifetime of the trans-

verse acoustic (TA) modes (the majority contributors to thermal conductivity) was

responsible for the observed increase in thermal conductivity of the short-period

superlattice. This increase in lifetime was explained by the effect of a reduction in

periodicity on the band structure of the superlattice that leads to bands that do not

allow three phonon scattering events involving TA modes that satisfy the wave

vector and frequency conservation rules. Additional lengthening of the phonon

lifetime (and increase in thermal conductivity) was further demonstrated by chang-

ing the mass mismatch between the constituent materials.

Other authors have addressed the issue of boundary scattering in superlattices;

however, these investigations have included interfacial scattering phenomena in

addition to coherent band-folding effects. Experimentally and theoretically

Fig. 9.13 (a) (Left to right)
1:1, 2:2, 4:4, and 8:8 SED-

frequency plot with peaks

respectively corresponding to

the superlattice configurations

depicted in Figs. 9.9, 9.10,

9.11, and 9.12. (b) Lorentzian

function fits to the SED-

frequency spectra in (a).

Lorentzian peaks are labeled

with half-width at half-

maximum values in units of

10�6 Hz

312 N. Swinteck et al.



[23–25], it has been demonstrated that phonon–boundary collisions play a leading

role in decreasing the lifetime of thermal phonons in semiconductor superlattice

configurations.

9.3 Phonon Propagation in Two-Dimensional Systems

Having examined the phononic properties of one-dimensional systems, we now

turn our attention to two-dimensional systems. In particular, using MD we examine

thermal-phonon transport in nanostructured graphene and boron nitride (BN). Both

systems are technologically important materials and are characterized by large

Debye temperatures; consequently they display distinct harmonic (at low

temperatures) and anharmonic regimes, thereby lending themselves well to the

study of phonon propagation as a function of temperature and the underlying

nanostructure. Specifically, we focus on graphene sheets nanostructured with peri-

odic antidots and boron nitride nanoribbons with aperiodic, spatially asymmetric

nanoscale-triangular defects [26]. These contrasting 2D systems, which can also be

experimentally synthesized, provide avenues to compare and distinguish the com-

petition between coherent and incoherent phonon scattering and boundary

scattering.

The Brenner-Tersoff style potentials [27] are invoked to represent interatomic

interactions in graphene and BN as they capture the many-body, covalent nature of

the atomic-bonds well, and represent the phonon band structure of the two systems

accurately. The Brenner-Tersoff potential includes the anharmonicity of inter-

atomic bonds. The potential parameters for graphene and BN are given in Ref

[28] and [29], respectively.

In order to characterize phonon transport in nanostructured graphene and BN, we

use relative measures of material parameters such as thermal diffusivity and

thermal conductivity as indirect probes to characterize thermal-phonon propagation

and lifetimes; it should be noted that it is not our intention to quantify thermal

conductivity as well as diffusivity. While in principle the SED method can be

invoked for such studies, the mode-by-mode analysis becomes an extremely cum-

bersome task involving the identification and characterization of the many phonon

modes that appear due to the folding of bands within the mini-Brillouin zone

corresponding to the periodicity of the phononic crystal.

Strategies to evaluate thermal conductivity and diffusivity include nonequilib-

riumMD (NEMD) and equilibriumMD (EMD) methods. In the NEMD framework,

the thermal conductivity is obtained directly by solving Fourier’s law under steady-

state conditions, where a temperature gradient is maintained across the modeled

material by fixing the temperature of the two ends of the material at different

temperatures. Thermal diffusivity is evaluated under transient conditions, by solv-

ing for the second-order heat equation. The EMD method is based on the Green-

Kubo formulations[29], where NVE (i.e., the microcanonical ensemble) conditions

are imposed on the simulated system; based on the equilibrium fluctuations in the
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heat current (S), the thermal conductivity (k) is estimated from the time-dependent

heat current autocorrelation function (HCAF) as given by (9.26) and (9.27), where

V and T are the volume and temperature of the system respectively [30]. The

thermal diffusivity (DT) can then be calculated [see (9.28)], where Cp and r are

the specific heat and mass density respectively.

SðtÞ ¼
X

i
Eivi þ 1

2

X
i;j
ðFij � viÞrij þ 1

6

X
i;j;k

ðFijk � viÞðrij þ rikÞ (9.26)

k ¼ 1

3kBVT2

ð1
0

SðtÞ � Sð0Þh idt (9.27)

DT ¼ k
rCP

(9.28)

Here, vi and Ei represent the velocity and energy of an atom I respectively, while
Fij and Fijk represent two body and three-body forces on atom i, due to neighboring
atoms j and k.

EMD and NEMD methods have been routinely used to model thermal transport

in materials, but care has to be taken in their implementation; in particular, NEMD

methods impose extraordinarily large temperature gradients across the material that

may not be realized experimentally; further, as discussed by Jiang et al. [31] and as

also observed by the authors of this chapter [K. Muralidharan, unpublished work

(2011)], the thermostated ends induce spurious vibrational modes characteristic of

the size and location of the respective thermostats, which modify the injected heat

flux, leading to the possible erroneous estimation of the thermal conductivity. EMD

methods, on the other hand, can yield an accurate estimate of the thermal conduc-

tivity provided the HCAF is calculated over long time-periods (typically few

nanoseconds).

9.3.1 Graphene-Based Phononic Crystals

Here, we report on the thermal-phonon characteristics of antidote graphene

comprised of periodic arrangements of holes in a graphene matrix. This system

serves as a metaphor for nano-phononic crystal (nano-PC). The lifetime of acoustic

and optical phonons is found to be highly sensitive to the filling fraction of the holes

in the phononic structure as well as temperature. Results are interpreted in terms of

competition between elastic scattering, inelastic phonon–phonon scattering, and

boundary scattering.
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9.3.1.1 Simulation Procedure

The nano-PC system of interest is comprised of a graphene matrix with periodically

spaced holes. The holes are arranged in a triangular lattice with fixed lattice spacing

a ¼ 7.5 nm. The radius of the holes varies in size to yield a series of nano-PC unit

cells with different filling fractions. Filling fraction (ff) is defined as the atomic

fraction of number of atoms removed divided by total number of atoms available. In

this study, filling fraction values range from 0.055 % to 20 %. Over this range, EMD

calculations using the Green-Kubo method [29] are carried out to extract informa-

tion on the lifetime of acoustic and optical phonons as a function of temperature

(100, 300, 500 K). In Fig. 9.14a, several examples of unit cells for the nano-PC are

pictured. A unit cell with ff ¼ 0.0 % represents perfect graphene and contains 1,800

carbon atoms. Two-dimensional PBC are applied with no restrictions in the third

dimension. PBC for finite-sized MD simulation cells may constrain some of long-

wavelength phonon modes. For every filling fraction, a characteristic length or

minimum feature length (L) is identified and is defined as the shortest distance

between edges of the holes in the periodic array of the nano-PC. Charact-

eristic length is related to filling fraction through the following relationship: ¼
a 1� b

ffiffiffiffi
ff

p� �
; b ¼ 2

p

� �0:5 ffiffiffi
34

p
.

MD simulation cells are initially equilibrated at the temperature of interest by

integrating the equations of motion for one million time steps under isothermal

conditions using a Berendsen thermostat [32]. Next, the MD system is simulated

Fig. 9.14 (a) Three examples of unit cells for the nano-PC at different filling fraction. (b) an

extended zone representation of the nano-PC with parameter (L), characteristic length, highlighted

9 Nanoscale Phononic Crystals and Structures 315



under constant energy conditions for three million time steps, and the HCAF is

calculated over the last two million time steps. In this work, only the last two terms

in (9.26) are utilized to calculate the HCAF because these relate strictly to conduc-

tion (the convective term (first term) is neglected). Figure 9.15 shows the HCAF at

300 K for (1) perfect graphene and (2) a nano-PC with 8 % filling fraction holes.

The HCAFs exhibit two-stage decay and are, following [30], fit to the sum of two

exponential functions of the following form:

SðtÞ � Sð0Þ
3

¼ Aa e
�ðt=taÞ þ Ao e

�ðt=taÞ (9.29)

The longer relaxation time is assigned to acoustic modes (ta) and the shorter time

to optical modes (to ). In Fig. 9.15 the average lifetimes for acoustic and optical

phonons are also displayed. The decay of the HCAF is extremely rapid in compari-

son to perfect graphene. The nature of this decay is the subject of the remainder of

this section.

The lifetime of a particular phonon mode is well described by Matthiessen’s

Rule:

1

t
¼ 1

tph
þ 1

te
þ 1

td
þ 1

tB
(9.30)

Here t represents the total phonon lifetime and tph , te , td , and tB signify

characteristic decay times associated with different types of phonon collision

processes, specifically, phonon–phonon, phonon–electron, phonon–defect, and

phonon–boundary, respectively. Given the classical nature of the MD simulations,

phonon–electron contributions are not included in addition to phonon–defect terms,

since the MD simulation-cells are constructed to be defect free. Thus, MD simula-

tion results are interpreted in terms of phonon–phonon and phonon–boundary

scattering.

Fig. 9.15 Examples of

HCAFs for graphene and

nano-PC with ff ¼ 8 %. A

sum of two exponential

functions is fit to the HCAF to

yield estimates for average

acoustic and optical phonon

lifetime
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9.3.1.2 Phonon–Phonon and Phonon–Boundary Scattering

Figure 9.16 shows plots of average phonon lifetime versus filling fraction of holes

for acoustic phonons (a) and optical phonons (b).

For perfect graphene (ff ¼ 0.0 %), the average lifetime of acoustic and optical

phonons decreases with increasing temperature. For acoustic phonons, average

lifetime decreases from 78.12 ps (100 K) to 9.57 ps (300 K) to 4.69 ps (500 K).

For optical phonons, the average lifetime decreases from 11.96 ps (100 K) to

1.74 ps (300 K) to 1.10 ps (500 K). This observation highlights the phonon–phonon

collision mechanism embodied in normal and Umklapp phonon processes. The

calculated lifetime of optical phonons in perfect graphene at room temperature is

consistent with an experimental measurement of 1.2 ps using time-resolved inco-

herent anti-Stokes Raman scattering [33]. Further, the predicted trend in the

estimated acoustic phonon lifetimes matches experimental observations; specifi-

cally, using the experimentally measured phonon coherence length in suspended

graphene (approximately 800 nm at 300 K [34–37] and 330–400 nm at 400 K [38])

in conjunction with the longitudinal acoustic velocity in graphene (approximately

20,000 m/s [39]), we obtain lifetimes that range between 15 ps (at 400 K) and 40 ps

(at 300 K), which compare reasonably well with our predictions.

If a single atom is removed from the MD simulation cell, a nano-PC structure

effectively results with filling fraction equal to 0.05 %. Figure 9.16a, b show for all

temperatures that the removal of a single atom yields a dramatic decrease in

average phonon lifetime. At 100 K the average lifetime of acoustic phonons

decreases by 68 %. For 300 K and 500 K, the observed decreases in average

lifetime are 63 % and 49 % respectively. This abrupt decrease in phonon lifetime

can be attributed to two possible mechanisms: (1) The removal of a single atom

offers a superlattice configuration whereby the phononic band structure associated

with perfect graphene is folded multiple times thus allowing many more

phonon–phonon scattering processes that meet the conditions for conservation of

wave vector and frequency, a prerequisite for phonon mode decay; (2) The removal

Fig. 9.16 (a) average lifetime of acoustic phonons versus filling fraction (100 K, 300 K, 500 K).

(b) same as (a) but for optical phonons. The insets are magnifications of the regions of high filling

fractions (ff)
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of a single atom creates a boundary/surface that propagating phonons can collide

with. Isolating one mechanism from the other is inherently difficult because the two

are both present at the same time. However, one may rewrite equation (9.30) in

terms of average phonon lifetimes to highlight the dependencies of the different

contributions to the total average lifetime:

1

t
¼ 1

tphðT; LÞ þ
1

tBðLÞ (9.31)

Here, we have highlighted the dependency of phonon–phonon scattering on

temperature (T) as well as the band structure resulting from the periodicity of the

structure (L or ff). Boundary scattering depends essentially on the minimum feature

length (L) of the structure. As filling fraction increases, for all temperatures, the

average lifetime of acoustic phonon modes decreases. For optical phonons, this

behavior is less pronounced. For acoustic phonons in the 0.3–3 % filling fraction

region, strong temperature dependence suggests that phonon–phonon collisions are

the dominant scattering mechanism. The Callaway-Holland model [40, 41]

identifies the propensity of a phonon mode (of wave vector k and polarization l)
to undergo normal and Umklapp scattering processes as a function of temperature

and frequency:

1=tphðk; l; TÞ ¼ gðk; lÞTe��=T (9.32)

Here gðk; lÞ contains the frequency of the specific phonon mode and � is a

parameter used to match empirical data. For the purpose of this discussion, (9.32) is

adapted by considering average phonon lifetimes by defining tphðTÞv to represent

an average over all polarization branches. We also define a frequency independent

average, �g. Equation (9.32) becomes:

1

tphðTÞ ¼
�gTe�

�
T (9.33)

Figure 9.17a shows a plot of average lifetime (acoustic and optical) versus

temperature for perfect graphene. Equation (9.33) is fit to the data points with

ai ¼ 1=�g ; bi ¼ �. This illustrates the temperature dependence of tðTÞ 	 tphðTÞ in
the absence of a periodic array of holes. Figure 9.17b shows a plot of average

acoustic lifetime versus temperature for three different filling fractions in the

0.3–3 % range. Similar to Fig. 9.17a, (9.33) is fit to the data points and it is well

correlated. This can be interpreted as resulting from the dual dependency of

phonon–phonon scattering on temperature and periodicity (through band folding),

that is, tðT; LÞ 	 tphðT; LÞ in the case of the antidot nano-PC structures. This result

also implies that tph<tB . Therefore, in the 0.3 % - 3 % filling fraction region,

phonon–phonon processes appear to be the dominant mechanism behind the lower-

ing of phonon mode lifetimes.
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Beyond ff ¼ 3.0 %, the temperature dependency of acoustic phonon lifetime is

diminished. The inset in Fig. 9.16a shows, for all temperatures, that average

acoustic phonon lifetime follows the same, weak linear trend as filling fraction

increases. Temperature dependency of acoustic modes can be diminished if the

holes in the graphene matrix have increased in size to a point whereby the

characteristic length is such that acoustical phonons have higher probability of

getting scattering by the boundary of a hole than with another phonon. This is the

case when tB<tph and t 	 tBðLÞ . A plot of average acoustical phonon lifetime

versus characteristic length (Fig. 9.18) shows for large filling fractions (small L

values) the lifetime of acoustical phonons is linearly dependent on L.

The characteristic decay time associated with boundary scattering takes the

functional form [40, 41]: tB ¼ L=v, where v represents an average speed of sound

in graphene. In the small L region of Fig. 9.18 a line is fit where v ¼ 7000 m/s (a

reasonable value for average speed of sound for acoustic phonons in graphene). In

this region, boundary scattering is the dominant scattering mechanism. Beyond

L ¼ 5 nm, this linear dependence is lost and scattering is attributed to a mix of

phonon–boundary and phonon–phonon collisions. As L increases to larger values,

the significance of boundary scattering is lost and normal and Umklapp phonon

processes dominate.

9.3.2 Phonon Transport in Boron Nitride Nano-Ribbons

Two-dimensional BN structures are isomorphic to their carbon counterparts and

capable of demonstrating equally remarkable structure–property relations. Of par-

ticular interest are the phonon propagation characteristics in single-layer BN sheets

and Boron Nitride nanoribbons (BNNR) containing triangular defects, which have

been recently fabricated by Jin et al. [42]. As pointed out by Yang et al. [43], such

Fig. 9.17 (a) Lifetime versus temperature for acoustic and optical phonons in graphene.(b)

Average acoustic phonon lifetime for three different nano-PC filling fractions versus temperature.

Symbols are calculated values and solid lines represent fits using (9.33)
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structures open up new avenues for manipulating the thermal properties of defected

BNNR, and in particular, the geometric asymmetry of the triangular vacancies/

defects can be exploited to preferentially scatter phonons in BNNR, which can, in

turn, lead to spatially dependent thermal properties. A related consequence is the

possibility of realizing thermal rectifiers as discussed by Go et al. [44], where it was

shown that the thermal conductivity of a material has to be an inseparable function

of both space and temperature to exhibit thermal rectification. To examine the

interplay between defect-orientation and phonon propagation in BNNR, we employ

(1) EMD simulations to correlate the relations between phonon transport and the

temporal evolution of spatial HCAF profiles across the simulated system, and (2) a

variant of NEMD simulations, where one end of the BNNR is suddenly quenched

and held at a fixed temperature; the time taken for the temperature of the rest of the

material to equal that of the thermostated end is taken as a measure of the thermal

diffusivity and more importantly a measure of transient thermal-phonon

characteristics. Note that, in both methods employed, we explicitly avoid

estimating heat fluxes, and thereby circumvent problems associated with NEMD

as discussed previously.

9.3.2.1 Simulation Procedure

The MD simulations of pristine and defected BNNR employ the Brenner-Tersoff

potential as developed by Albe and Moller [29] due to its success in modeling the

different hybridization states of BN, an important requirement while modeling

defected BNNR. To ensure consistency with experimental observations [42], the

arm-chair orientation of BNNR (a-BNNR) was simulated; the length of the

simulated a-BNNR was 17.5 nm, while periodic boundary conditions were applied

along its 7.1 nm width. Fixed boundary conditions were imposed on the edge atoms

(i.e., the thinnest strip consisting of boron and nitrogen atoms at each end). For the

defected system, the defect was represented by an equilateral triangle with

nitrogen-termination to ensure consistency with experimental observations. The

defect orientation is shown in Fig. 9.19, and its dimensions were chosen to be

approximately half the BNNR width (corresponding to a filling fraction of 5 %).

Fig. 9.18 Average acoustical

phonon lifetime versus

characteristic length.

Phonon–boundary collisions

are the dominant scattering

mechanism at low L values.

In this region, there is greater

probability of phonon-

scattering due to the hole-

edge than phonon-phonon

scattering
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In order to carry out EMD simulations, both pristine as well as defected BNNR

were initially equilibrated at 300 K and 900 K respectively, after which NVE

simulations were conducted for 7 ns with a time step of 1 fs. The systems were

spatially divided into 15 bins along their length to enable the calculations of spatial

variations in HCAF, which were obtained over the last 5 ns of each NVE run.

Particular attention was paid to the HCAF component along the length of the

BNNR, which was primarily used in our data analysis. To ensure better statistics,

five different equilibrated starting configurations were used for each case. In the

NEMD simulations, the thinnest possible strip of atoms (consisting of equal number

of boron and nitrogen), adjacent to the boundary atoms at the opposite ends of the

BNNR, were identified to be the thermostated regions which were governed by a

Nose-Hoover thermostat [32]. The boundary atoms were not included to avoid edge

effects as noted by Jiang et al. [31]. For the 300 K and 900 K systems, the

thermostat temperature equaled 150 K and 450 K respectively, and the time for

the rest of the unconstrained system to attain the temperature of the thermostated

region was calculated when the thermostat was placed at the (1) left and the (2) right

edge respectively.

9.3.2.2 Phonon Transport and Rectification

The 300 K spatial variation in HCAF as a function of time for pristine BNNR is

given in Fig. 9.20. Interestingly, each spatial-bin is characterized by similar,

temporally periodic peaks and valleys, which are systematically displaced with

respect to neighboring bins. Since the HCAF is a measure of the material’s ability to

dissipate thermal fluctuations, and therefore directly related to thermal-phonon

energy transport, Fig. 9.20 can be interpreted in terms of phonon propagation.

Specifically, the appearance of the first and the second valley in the HCAF for

each bin represents phonon-reflection from the nearest and farthest fixed-edge

respectively. Clearly, the time-delay between the two valleys is related to the spatial

Fig. 9.19 Illustration of the

pristine and defected BNNR
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location of the bin. Note that a single reflection from a fixed edge leads to a phase-

change as represented by the valley. At approximately 1.5 ps, we see the emergence

of a peak for all spatial bins. This corresponds to a ‘round-trip’ made by the

respective phonons, which undergo two reflections (i.e., two phase changes) from

either edge; the peak is larger in magnitude than the valley, representing the

simultaneous arrival of the two phonons. A similar peak appears at approximately

3 ps, though the magnitude of this peak is reduced as compared to the first peak,

implying the role of anharmonicity-induced scattering of phonons that eventually

leads to a finite lifetime of phonons as evidenced by the gradual diminishing of the

peaks and valleys in the HCAF.

While the spatially decomposed HCAF of pristine BNNR is symmetric (i.e.,

HCAF of nth bin and (15-n)th bin are similar), this is not observed for the 300 K

defected BNNR, as shown in Fig. 9.21.

An inspection of Fig. 9.21 reveals that additional phonon reflection is enabled by

the AB-face (see Fig. 9.19) of the triangular defect that is parallel to the BNNR

edge, leading to dissimilar HCAF profiles in the two regions that are separated by

the triangular vacancy in the defected BNNR.

In particular, consider the first two HCAF valleys/peaks in the bins between the

triangle-face AB and the near edge (i.e., bins 1–6). The bins in proximity to the

BNNR edge (bins 1–3) are characterized by valleys followed by peaks in HCAF,

while the HCAFs in bins closer to the triangle-face AB (bins 4–6) are first described

by peaks and subsequently by valleys. This is explained by the fact that the triangle-

face AB is not a fixed boundary, and does not lead to a phase change during

Fig. 9.20 (Left)- Time evolution of the spatially resolved HCAF for pristine BNNR at 300 K.

Black overlays are an aid to the eye. (Right)-Representation of the spatial decomposition of the

simulated system into 15 bins
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reflection. At approximately 0.7 ps, we see the uniform appearance of valleys for all

the bins (9.1–9.6), which is correlated to the simultaneous ‘round-trip’ arrival of

two phonons. Note that the same phenomenon is also observed in the pristine

BNNR system at 1.5 ps due to the longer path (almost twice) traversed by the

respective phonons. For the region in the defected BNNR between triangle vertex-C

and the farther edge, the spatial HCAF profile diverges from that of the other

region; all the bins corresponding to this region (9.9–9.15) are characterized by

an initial valley (reflection from the farther fixed end), but subsequent features are

not well pronounced, a direct consequence of phonon scattering from the sloped

edges of the triangle defect, which can be distinguished from the reflection that

occurs at the normal AB face. Thus, phonon propagation characteristics in the two

regions separated by the geometrically asymmetric triangular defect are indeed

different.

Figure 9.22a, b illustrate the HCAF of pristine and defected BNNR at 900 K. A

comparison with Figs. 9.20 and 9.21 indicates the role of temperature on the HCAF

profile. Clearly, the anharmonic effects become more distinct at the higher temper-

ature, as seen by the absence of higher order HCAF echoes in the respective

systems. Thus, by comparing and contrasting the HCAF characteristics of pristine

and defected BNNR, one can conclude that geometric asymmetry of the defect

leads to distinct spatial- and temperature-dependent thermal-phonon propagation

characteristics for the defected BNNR system, indicating the possibility of observ-

ing thermal rectification in such systems.

In order to study the transient response of the two systems, the quenching

procedure as described earlier was adopted. Figure 9.23a, b illustrates the rate of

Fig. 9.21 (Left)- Time evolution of the spatially resolved HCAF for defected BNNR at 300 K.

(Right)-Representation of the spatial decomposition of the simulated system into 15 bins
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temperature change for the pristine BNNR and defected BNNR (both initially at

300 K and quenched to 150 K), when in ‘forward’ bias (i.e., the thermostated

BNNR edge faces the triangle-face AB) and ‘reverse’ bias (i.e., the thermostated

BNNR edge faces the triangle vertex-C). While the pristine BNNR responds

identically under both forward and reverse bias, the temperature-time curve do

not overlap for the defected BNNR, implying that the thermal diffusivity is

position-dependent. Numerical solution of the transient heat equation shows that

the reverse-bias apparent thermal diffusivity is higher by a factor of 1.13. A similar

result was also observed when the 900 K systems were quenched to 450 K, with the

ratio of the reverse-bias to forward-bias thermal diffusivity for defected BNNR

equaling 1.07. These results when viewed in conjunction with the HCAF

observations clearly indicate that the asymmetric triangular defect plays an impor-

tant part in the ability of the defected BNNR to respond to external thermal stimuli.

Specifically, based on the orientation, specific triangular-faces can impede phonon-

energy propagation, thereby allowing defected BNNR systems to exhibit spatially

asymmetric thermal transport properties.

Importantly, these results are consistent with past theoretical and experimental

investigations, where boundary scattering from arrays of spatially asymmetric

triangular holes led to acoustic rectification in the MHz and GHz regimes [45,

46]. An important distinction between these studies and the current work is the

explicit inclusion of anharmonic interactions that arise in atomic systems;

Fig. 9.22 Time evolution of the spatially resolved HCAF for (a) pristine and (b) defected BNNR

at 900 K
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nevertheless, in each case it is clear that scattering at the triangular-hole boundary

dominates phonon propagation leading to rectification. Other related atomistic

investigations include the characterization of interface asperity on the in-plane

thermal conductivity of superlattices [47]; here the interface asperity was

represented by a series of triangles, and even the in-plane thermal-phonon

transport was dictated by the surface roughness (i.e., the size and orientation of

interface-triangles) further affirming the effect of boundary scattering on phonon

propagation.
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