
Chapter 7

Nonlinear Periodic Phononic Structures

and Granular Crystals

G. Theocharis, N. Boechler, and C. Daraio

Abstract This chapter describes the dynamic behavior of nonlinear periodic

phononic structures, along with how such structures can be utilized to affect the

propagation of mechanical waves. Granular crystals are one type of nonlinear

periodic phononic structure and are the focus of this chapter. The chapter begins

with a brief history of nonlinear lattices and an introduction to granular crystals.

This is followed by a summary of past and recent work on one-dimensional (1D)

and two-dimensional (2D) granular crystals, which is categorized according to the

crystals’ periodicity and dynamical regime. The chapter is concluded with a

commentary by the authors, which discusses several possible future directions

relating to granular crystals and other nonlinear periodic phononic structures.

Throughout this chapter, a richness of nonlinear dynamic effects that occur in

granular crystals is revealed, including a plethora of phenomena with no linear

analog such as solitary waves, discrete breathers, tunable frequency band gaps,

bifurcations, and chaos. Furthermore, in addition to the description of fundamental

nonlinear phenomena, the authors describe how such phenomena can enable novel

engineering devices and be applied to other nonlinear periodic systems.

7.1 Introduction

7.1.1 Nonlinearity in Periodic Phononic Structures

The effect of structural periodicity on wave propagation has been studied in a wide

array of fields. This includes vibrations in spring-mass systems, electrons in

crystalline lattices, light waves in photonic periodic structures, cold atoms in optical

lattices, and plasmons in networks of Josephson junctions or metal surfaces [1–4].
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The preceding chapters of this book have considered, in particular, the effect of

structural discreteness and periodicity on the propagation of phonons, sound, and

other mechanical waves. Phononic crystals and acoustic metamaterials are

examples of materials designed for this purpose. By studying the linear response

of these systems, many common properties are revealed, such as the existence of

band gaps. However, as the amplitude of the wave excitation is increased, the

response of the material can become nonlinear and the wave propagation becomes

more complex. As a result, the study of nonlinearity in periodic structures has

revealed unique phenomena with no analogs in linear theory. Such phenomena

include nonlinear resonances, bifurcations, chaos, self-trapping, and intrinsic local-

ization. Nonlinear devices thus have potential for novel applications such as

frequency conversion, energy harvesting, and switching, among others.

Although the role of nonlinearity has been extensively studied in non-phononic

periodic structures and metamaterials, such as photonic periodic structures, optical

metamaterials, and atomic Bose-Einstein Condensates in optical lattices [5], there

are thus-far few examples of nonlinear phononic crystals or nonlinear acoustic

metamaterials. Potential sources of nonlinearity in phononic/acoustic materials can

be categorized into (1) intrinsic and (2) extrinsic. The former derives from

nonlinearities in the material constitutive response (i.e., interatomic forces, nonlin-

ear elasticity, plasticity, or ferroelasticity) [6]. The latter derives from the geometry

or topology of the fundamental building blocks (i.e., contact forces between

particles [7], deformation of micro-nano mechanical oscillators [8], or the nonline-

arity related to geometrical instabilities [9]).

Homogenous materials with nonlinear elastic [6] or nonlinear acoustic responses

[10] have long been studied. Nonlinear bulk and surface waves, resulting from the

interplay between the intrinsic nonlinearity and geometrical dispersion, have also

been studied and observed in solids [11–13]. However, until recently, this research

has not been combined with the new capabilities of linear phononic crystals and

acoustic metamaterials, as described in the previous chapters of this book. The far

most studied nonlinear periodic phononic structures within the sonic regime

(0–20 kHz) are granular crystals. Granular crystals are arrays of elastic particles

in contact [14] whose nonlinearity results from the geometry of adjacent particles.

In addition to granular crystals, some of the few studied examples of nonlinear

periodic phononic structures are as follows. In the ultrasonic regime (greater than

1 MHz), nonlinear energy localization has been observed in micromechanical

oscillator arrays [15]. Moreover, recent work by Liang B et al. suggested theoreti-

cally [16] and later demonstrated experimentally [17] the ability to use nonlinear

acoustic materials, e.g., a contrast agent micro-bubble suspension, coupled to a

linear superlattice to obtain acoustic rectification. Finally, at much higher

frequencies (greater than 1 GHz), several studies have explored mechanical wave

propagation in periodic nonlinear structures, focusing on high-amplitude stress

wave and thermal phonon propagation. Several studies by Maris and collaborators

investigated the propagation of high-amplitude picosecond pulses in crystalline

solids, which are a type of naturally occurring nonlinear periodic structure [18, 19].

With respect to the propagation of high-frequency thermal phonons, many studies
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have focused on the use of nonlinear lattices for thermal rectification. The earliest

of these studies were conducted by Terraneo et al. in 2002 [20] and then by Li et al.

in 2004 [21]. Later, an experimental study by Chang et al., 2006, also demonstrated

thermal rectification using mass-loaded carbon and boron-nitride nanotubes, and

attributed the rectification to nonlinear processes [22]. Based on these studies,

several following works have extended this concept further to suggest that nonlin-

ear lattices could be used as thermal transistors [23], logic gates [24], and memory

[25]. Several computational studies have also investigated and suggested multiple

device concepts for thermal rectification building blocks, including carbon nano-

cones [26] and graphene ribbons [27].

One of the most common ways to model the behavior of granular crystals, and

many other types of nonlinear periodic structures, is to describe them as nonlinear

lattices. The study of nonlinear lattices can thus offer many potential lessons and

insights into the behavior of nonlinear periodic phononic structures. As such, the

section directly following gives a brief history of the major types of nonlinear

lattices. The review of nonlinear lattices is then followed by an introduction to

granular crystals, which is one of the most widely studied types of nonlinear

periodic phononic structures and is the subject matter that comprises the focus of

this chapter.

7.1.2 Nonlinear Lattices

Since the first computational experiments in nonlinear mass-spring lattices by

Fermi, Pasta, and Ulam in 1955 [28], there has been a wealth of interest in the

dynamics of nonlinear lattices. Using one of the first modern computers, Fermi,

Pasta, and Ulam (FPU) studied a system where the restoring (spring) force between

two adjacent masses was nonlinearly related to the relative displacement between

masses, and investigated how long would it take for long-wavelength oscillations to

transfer their energy (thermalize) into an equilibrium distribution between all the

modes of the system. Instead of the predicted thermalization, they found that over

the course of the simulation, most of the energy had returned to the mode with

which they had initialized the system in coherent form [29].

This discovery initiated whole fields of research relating to the study of nonlin-

ear waves in discrete lattices [30–32]. This includes many different types of

nonlinear lattices inspired by physical systems (in addition to the FPU lattice),

and the study of physical phenomena occurring in them. As described in the review

by Kevrekidis, P. G. [32], three of the most commonly studied types of nonlinear

lattices are the discrete nonlinear Schrödinger (DNLS), the Klein-Gordon (KG),

and the FPU lattices. The 1D forms of these lattice equations are as follows:

The DNLS can be written as

j _ui ¼ �Eðuiþ1 þ ui�1Þ � juij2ui;
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the KG as

€ui ¼ Eðuiþ1 � 2ui þ ui�1Þ � V0ðuiÞ;

and the FPU as

€ui ¼ V0ðuiþ1 � uiÞ � V0ðui � ui�1Þ;

where ui is the dynamical variable of interest at site i, E is a coupling parameter

(constant), j ¼ ffiffiffiffiffiffiffi�1
p

, and V is a nonlinear potential function [32]. The DNLS

equation has been used to describe nonlinear waveguide arrays and Bose-Einstein

condensates, among others [32]. Additionally, under small-amplitude assumptions,

it is interesting to note that the DNLS can be derived from either the KG or the FPU

lattices [33]. The KG system has been used to model systems of coupled pendula,

electrical systems, and metamaterials with split ring resonators, among others [32].

In contrast to the KG system, the FPU has no onsite potential term, and instead

involves a nonlinear potential based on nearest neighbor interactions (nonlinear

springs). The FPU system has been used to describe the behavior of crystalline

solids and structures, including granular crystals.

Studies of these lattices have helped to predict and understand the existence of

localized nonlinear coherent structures and other nonlinear phenomena in many natu-

rally occurring and artificial nonlinear (not necessarily discrete) systems. Two

examples of nonlinear coherent structures, which are particularly applicable to the

study of granular crystals are solitary waves and discrete breathers. Solitary waves were

first observed by Russel in a shallow water-filled canal in 1844 [34]. Since then they

were shown to be a solution of the Korteweg-de Vries (KdV), a nonlinear partial

differential equation, and have been discovered in myriad systems and discrete nonlin-

ear lattices of all the above types [35, 36]. Discrete breathers are a type of intrinsic (not

tied to any structural disorder) localized mode, and have been the subject of many

theoretical and experimental investigations [33, 36, 37]. Discrete breathers have been

demonstrated in charge-transfer solids, superconducting Josephson junctions, photonic

crystals, biopolymers, micromechanical cantilever arrays, and more [33]. In addition to

nonlinear localized structures, the presence of nonlinearity in dynamical lattices makes

available an array of useful phenomena including quasiperiodic and chaotic states, sub-

and superharmonic generation, bifurcations, the breaking of time-reversal symmetry,

and frequency conversion [38–43].

7.1.3 Introduction to Granular Crystals

Granular crystals, which can be defined as ordered aggregates of elastic particles in

contact with each other, are a type of nonlinear periodic phononic structure

(Fig. 7.1). Their nonlinearity emerges from two characteristics: (1) the geometry
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of the particles is such that the force at the contact between neighboring elements is

nonlinearly related to the displacement of the particle centers, as can be described

by Hertzian contact [7] and (2) in an uncompressed state, granular crystals cannot

support tensile loads, effectively creating an asymmetric potential between neigh-

boring elements. An unusual feature of granular crystals that results from these

nonlinearities is the negligible linear range of the interaction forces between

neighboring particles in the vicinity of a zero compression force. This results in

nonexistent linear sound speed in the uncompressed material. This phenomena has

led to the term “sonic vacuum,” which describes a medium where the traditional

wave equation does not support a characteristic speed of sound [14].

The study of granular crystals emerged in 1983 with work by Nesterenko that

showed analytically, numerically [44], and later experimentally [45], the concept of

“sonic vacuum” and the formation and propagation of highly nonlinear solitary

waves in one-dimensional granular crystals. Granular crystals have since been

shown to support many other unique dynamic phenomena. This wide array of

phenomena supported by granular crystals is enabled by a tunable nonlinear

response that encompasses linear, weakly nonlinear, and highly nonlinear

behaviors, and can be controlled by essentially linearizing the system through the

application of a variable static load [14, 46–48].

In their linear and weakly nonlinear dynamic regime, granular crystals have

shown the ability to support tunable acoustic band gaps [49, 50] and discrete

breathers [51, 52]. In the strongly nonlinear regime, they have been shown to

support compact solitary waves [44–46, 48], nonlinear normal modes [53] anoma-

lous reflections [54], and energy-trapping phenomena when interacting with defects

Fig. 7.1 Granular crystals in one, two, and three dimensions composed by metallic particles

confined by supporting walls or confined in a matrix [The three-dimensional image has been

adapted from (Daraio, C.; Nesterenko, V.F.; Jin, S.; “Strongly Nonlinear Waves in 3D Phononic
Crystals” APS – Shock Compression of Condensed Matter, 197–200, American Institute of

Physics, Conference Proceedings, Portland (OR), 2003)]
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and interfaces [55]. Because of this array-rich dynamics, which has been confirmed

by theory, numerical simulations, and simple experiments, granular crystals have

become one of the most studied examples of nonlinear lattices. Granular crystals

have also been proposed and designed for use in numerous engineering applications

including tunable vibration filters [50, 56], optimal shock protectors [57], nonde-

structive evaluation devices [58], acoustic lenses [59], and acoustic rectifiers [60].

As previously described, the nonlinearity of the interaction law results from the

Hertzian contact between particles with elliptical contact area [7, 61, 62]. The

Hertzian contact relates the contact force Fi,i+1 between two particles (i and i+1)
to the relative displacement Di,i+1 of their particle centers, as shown in the following

equation:

Fi;iþ1 ¼ Ai;iþ1½Di;iþ1�ni;iþ1

þ :

Values inside the bracket [s]+ only take positive values, which denotes the

tensionless characteristic of the system (i.e., there is no force between the

particles when they are separated). For Di,i+1 ¼ 0 the particles are just touching,

Di,i+1 > 0 the particles are in compression, and Di,i+1 < 0 the particles are

separated. This tensionless characteristic is one part of the nonlinearity of the

Hertzian contact.

For two spheres (or a sphere and a cylinder), the coefficient Ai,i+1 in the Hertz

relationship is defined as:

Ai;iþ1 ¼
4EiEiþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RiRiþ1

Ri þ Riþ1

r
3Eiþ1ð1� n2i Þ þ 3Eið1� n2iþ1Þ

; ni;iþ1 ¼ 3

2
; (7.1)

where Ei, ni, and Ri are the elastic modulus, the Poisson’s ratio, and the radius of

the i-th particle, respectively. The ni;iþ1 ¼ 3=2 comes from the geometry of the

contact between two linearly elastic particles with elliptical contact area, as can

be seen in [61]. In addition to assuming that the contact area is elliptical and that

both particles remain linearly elastic, the derivation of Hertzian contact assumes

that [61]: (1) the contact area is small compared to the dimensions of the particle,

(2) the contact surface is frictionless with only normal forces between them, and

(3) the motion between the particles is slow enough that the material responds

quasi-statically. Variation of the contact geometry will result in a variation of the

interaction law stiffness and/or nonlinearity, and ultimately in a variation of the

acoustic properties of the crystals. Several recent works have studied this varia-

tion theoretically, numerically, and experimentally, by exploring the dynamic

response of chains of particles composed of grains with different geometries

[63–65] (see Sect. 7.3.5).

The remainder of this chapter describes past and recent work in one-dimensional

(1D) and two-dimensional (2D) granular crystals, categorized according to periodicity

and dynamical regime.
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7.2 One-Dimensional Granular Crystals

The dynamic properties of one-dimensional (1D) granular crystals have been

extensively studied, using analytical, numerical, and experimental methods. The

following sections describe some of the most interesting physical phenomena

supported by these nonlinear systems.

If the stiffness of the contact between two adjacent particles is very low

compared to the bulk stiffness of the particles composing the crystal and the contact

area small compared to the particle size, 1D granular crystals can be modeled as a

system of nonlinear springs and point masses (FPU-like nonlinear lattices). Another

perspective from which to approach this same idea is that the characteristic

(resonant) frequencies of the particles themselves must be very high compared to

the modal frequencies of the granular crystal involving the rigid body-like motion

of the particles in the system. Neglecting any dissipation, a statically compressed

1D array of elastic granules can be described by the following system of coupled

nonlinear differential equations:

mi€ui ¼ Ai�1;i½d0;i�1;i þ ui�1 � ui�ni�1;i

þ � Ai;iþ1½d0;i;iþ1 þ ui � uiþ1�ni;iþ1

þ : (7.2)

For spherical particles we recall that ni;iþ1 ¼ 3
2
and Ai,i+1 is defined as in (7.1).

Here, the static overlap d0;i;iþ1 ¼ F0

Ai;iþ1

� �2=3
, and F0 is the homogeneous static

compression force. mi is the mass of the ith particle and ui is the dynamic dis-

placement of the ith particle from its equilibrium position in the initially statically

compressed chain. The bracket ½s�þ of (7.2) takes the value s if s> 0 and the value

0 if s � 0; which signifies that adjacent beads are not in contact. Within this

framework, the dynamic of the system can be tuned to encompass linear, weakly

nonlinear, and strongly nonlinear regimes of dynamic behavior, as will be

demonstrated for the mono-atomic case in the following section.

7.3 One-Dimensional Monoatomic Granular Crystals

This section focuses on the nonlinear dynamic behavior of a statically compressed

1D monoatomic granular crystal (all particles are the same). A granular crystal

composed of identical elastic spherical granules is considered, as shown in Fig. 7.2.

For this crystal, Ri ¼ R,mi ¼ m ¼ 4
3
pR3r0, and Ai,i+1 of (7.2) is reduced to Ai;iþ1 ¼

A ¼ E
ffiffiffiffi
2R

p
3 1�n2ð Þ , where m is the mass of the sphere, E and r0 are the Young’s modulus

and density of particle material, R is the particle radius, and n is the Poisson’s ratio.
Moreover, it is assumed that the chain is subjected to constant static force F0

applied to both ends, resulting in an initial displacement d0 between neighboring

particle centers, d0;i;iþ1 ¼ F0

A

� �2=3 ¼ d0. The particle equations of motion, shown in

(7.2) thus reduce to:
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m€ui ¼ A½d0 þ ui�1 � ui�3=2þ � A½d0 þ ui � uiþ1�3=2þ ; (7.3)

where ui is the displacement of the ith bead from its equilibrium position in the

initially compressed chain, as shown in Fig. 7.2, and i 2 f2; � � � ;N � 1g.

7.3.1 Near-Linear Regime

To approximate the fully nonlinear equations of motion shown in (7.3), a power

series expansion of the forces can be taken. For dynamical displacements with

amplitude much less than the static overlap, i.e. ui�1�uij j
d0;i

� 1, one can keep only the

harmonic term of the expansion. In this case, the granular crystal can be considered

as a linear lattice with spring constant K2 ¼ 3
2
Ad1=20 , where the equations of motion

are reduced to:

mi€ui ¼ K2ðui�1 � uiÞ � K2ðui � uiþ1Þ: (7.4)

The spectral band of the ensuing linear chain (see Chap. 2 for more details) has

an upper cutoff frequency of om ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K2=m

p
. As a consequence of the nonlinear

relation F0 / d3=20 , for the case of the spherical granules, the cutoff frequency (as

well as the sound velocity of the 1D monoatomic granular crystal) scales as F
1=6
0 .

These results have been confirmed experimentally [47, 66].

7.3.2 Weakly Nonlinear Regime

If the dynamic displacements have small amplitudes
jui�1�uij

d0;i
<1 relative to those due

to static load, a power series expansion of the forces (up to quartic displacement

terms) can be calculated to yield the K2 � K3 � K4 model:

m€ui ¼
X4
k¼2

Kk½ðuiþ1 � uiÞk�1 � ðui � ui�1Þk�1�; (7.5)

where K2 ¼ 3
2
Ad1=20 ; K3 ¼ � 3

8
Ad�1=2

0 ; K4 ¼ � 3
48
Ad�3=2

0 .

Fig. 7.2 One-dimensional monoatomic crystal compressed by a static force F0 . The crosses
represent the initial positions of the particle centers in a statically compressed chain while the

black circles denote the current positions [14]
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This model is an example of the celebrated FPU model. Many theoretical studies

have focused on the dynamical properties of this type of nonlinear lattice, revealing

the existence of coherent nonlinear structures such as nonlinear periodic waves,

solitary waves [67], and discrete breathers [68].

Seeking traveling waves with a characteristic spatial size L that is much larger

than the inter-particle distance a ¼ 2R � d0, one can apply the so-called long-

wavelength or continuum approximation.

Using the replacement:

ui ¼ uðxÞ; ui�1 � u� aux þ 1

2
a2uxx � 1

6
a3uxxx þ 1

24
a4u4x; (7.6)

equation (7.5) is transformed into the nonlinear Boussinesq equation and into the

Korteweg-de Vries equation (see for example [69]). In (7.6), ux ¼ ∂u/∂x, and the

number of subscripts x denotes the order of the derivative of u. Nesterenko applied

this method (taking into account only up to the K3 term) to a strongly compressed

granular chain, and derived the following KdV equation [14]:

xt þ c0xxx þ gxxxx þ
s
2c0

xxx ¼ 0; x ¼ �ux

c20 ¼
Ad1=20 6R2

m
; g ¼ c0R

2

6
; s ¼ c20R

d0
:

(7.7)

In (7.7), x ¼ �ux, xx ¼ ∂x /∂t, and c0 is the linear sound speed. The solutions of
(7.7) are well known, and include nonlinear periodic waves and solitary waves.

On the other hand, to investigate how quasi-monochromatic plane waves or

narrow-band packets evolve by nonlinear effects, one can derive another well-

known nonlinear wave equation—the Nonlinear Schrödinger (NLS) equation. This

equation predicts many nonlinear phenomena, including second harmonic genera-

tion, modulation instability, and the existence of bright and dark solitons [35]. The

derivation of the NLS from (7.5) is possible using the method of multiple scales

combined with a quasi-discreteness approximation (see [70] for an application of

this method to a generic FPU lattice in the form of (7.5) and [71] for a recent

application of this method to a monoatomic strongly compressed granular crystal).

Another generic feature of nonlinear lattices is the existence of nonlinear localized

modes called discrete breathers (DBs). DBs have been studied extensively in

monoatomic FPU chains [68]. One of the mechanisms for the generation of such

nonlinear localized modes is the modulational instability (MI) of a plane wave at the

band edge. A detailed analysis of this instability (bifurcation) shows that the MI of

the upper cutoff mode manifests itself when the coefficients of the FPU lattice are

such that 3K2K4 � 4K2
3>0 (see Sect. 4.3 of [33] and references therein). In the

monoatomic granular crystal setting, one can show that this inequality does not hold.

This is an indication that small-amplitude DBs bifurcating from the upper band mode

do not exist in monoatomic granular crystals. However, the existence of dark discrete

breathers or large-amplitude DBs remains an interesting open question.
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Another interesting weakly nonlinear effect, self-demodulation, was studied

by Tournat and collaborators in compressed 1D granular crystals [72]. In this

work, they explored how, in a nonlinear medium, two primary frequencies can

mix to form a propagating wave with frequency that is the difference of the two

primaries.

7.3.3 Highly Nonlinear Regime: Long-Wavelength Approach

A very interesting, non-classical wave behavior appears if the granular material is

weakly compressed and the particle displacements are larger than the initial relative

displacement d0 resulting from the static compression. This regime is termed the

highly nonlinear regime. Most of the studies in 1D monoatomic granular crystals

have been devoted to this dynamical regime. This section summarizes the basic

steps of the long-wavelength method that Nesterenko applied [14]. A review of

alternate analytical approaches and experimental observations will also be

presented in the following sections.

Including d0 in displacement ui which is calculated from the particle positions in

the uncompressed system (see Fig. 7.3 and [14] for more details), (7.3) becomes:

m€ui ¼ A½ui�1 � ui�3=2þ � A½ui � uiþ1�3=2þ (7.8)

In the long-wavelength approximation, the displacements ui-1, ui+1 can be

expanded in a power series according to a small parameter e ¼ a/L up to the fourth

order [see (7.6)]. By substituting (7.6) into (7.8), and conducting some additional

calculation, a new wave equation is obtained [14]:

utt ¼ �c2 ð�uxÞ3=2 þ a2

12
ð�uxÞ3=2
� �

xx
� 3

8
ð�uxÞ�1=2
� �

u2xx

� �	 

x

;�ux>0;

c2 ¼ 2E

pr0ð1� n2Þ : ð7:9Þ

Despite the complex nature of the presented strongly nonlinear wave equation,

the stationary solutions of (7.9), such as nonlinear periodic and solitary waves, can

be found in the form u(x � Vt) [14]. The waveform of a periodic wave with speed

V ¼ Vp is given by the following expression:

x ¼ 5V2
p

4c2

 !2

cos4
ffiffiffiffiffi
10

p

5a
x

� �
: (7.10)

The dependence of the speed of the periodic wave, Vp, on the minimal and

maximum strains is presented in [14].
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The solitary shape (for the case when the initial prestrain x0 approaches 0) is one
hump of the periodic solution of (7.10), with a finite wave length equal to about five
particle diameters. This solitary wave is a supersonic one, similarly to the KdV

soliton, but differs from the KdV soliton in other fundamental properties. A unique

feature of this solitary wave is the independence of its width on amplitude.

Accordingly, this property is quite different from the property of weakly nonlinear

KdV solitary wave. Here, the speed of the solitary wave Vs has a nonlinear

dependence on maximum strain xm (and particle velocityum):

Vs ¼ 2ffiffiffi
5

p c x1=4m ¼ 16

25

� �1=5

c4=5u1=5m ¼ 8E

5pr0 1� n2ð Þ
� �2=5

u1=5m : (7.11)

This result shows that the speed of the strongly nonlinear solitary wave Vs does

not depend on particle size in the granular material. At the same time it does depend

on the elastic properties of the particles (E and v) and their density. The presented

theoretical results allow us to design strongly nonlinear granular materials with

exceptionally low velocity of signal propagation. Simple estimation based on (7.11)

shows that it is possible to create materials with nonlinear impulse speed in the

interval 10–100 m/s.

7.3.4 Review of Alternate Strongly Nonlinear Wave Theoretical
Approaches

The solitary wave solution (or a soliton with compact support, known also as

compacton [73]) presented in the previous section describes well the solitary

wave that an impulsive excitation generates in a weakly compressed or uncom-

pressed granular crystal. This was verified in simulations and experiments by

different authors (see references below). The rigorous proof of the existence of

solitary waves in a monoatomic granular crystal composed of spherical particles

was done by MacKay [74], who applied the existence theorem for solitary waves on

lattices by Friesecke and Wattis [75]. Ji and Hong extended the proof given by

MacKay to the general case of an arbitrary power-law type contact force [76].

Fig. 7.3 Weakly compressed chain of particles. The crosses represent the initial positions of the
particles in the statically compressed chain, the black circles correspond to the current positions of
spheres, and the open circles the initial positions of the spheres in the uncompressed [14]
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An analytical solution of the form tanh(fn) for stationary waves in discrete

chains, where fn is represented by a series, was also presented by Sen and Manciu

[77]. Their result is very close to a soliton obtained by the long-wavelength

approximation. Chatterjee studied the asymptotic description of the tail of the

soliton in an uncompressed chain and he revealed that it has a double exponential

decay [78]. He also presented a new asymptotic solution for the full solitary wave,

which is closer to the results of numerical simulations than the approximate solution

given by Nesterenko. A quite different analytic approach for the study of pulse

propagation in granular crystals was developed by Lindenberg and collaborators

[79, 80]. This method uses the binary collision approximation to reduce the problem

of propagation to collisions involving only two granules at a time.

English and Pego [81] studied the shape of the solitary wave that propagates

in a 1D granular chain without precompression (d0 ¼ 0). Their method is based

on a reformulation of the equations of motion using the difference coordinates

ri ¼ ui�1 � ui such that:

m€ri ¼ A ½riþ1�3=2þ � 2½ri�3=2þ þ ½ri�1�3=2þ
h i

: (7.12)

Seeking for traveling wave solutions, ri ¼ rðxÞ 	 rði� ctÞ , one obtains the

following advanced delay equation:

r00ðxÞ ¼ A

mc2
r3=2ðx� 1Þ � 2r3=2ðxÞ þ r3=2ðxþ 1Þ
h i

: (7.13)

By rewriting this equation in an equivalent integral form and studying its

asymptotic behavior, they proved that the solitary wave decays super-

exponentially. Moreover, they applied an iterative method for the computation of

the numerically exact shape of the solitary waves.
Later, Ahnert and Pikovksy [82] applied a different type of quasi-continuum

approximation by expanding, up to fourth order, the difference coordinate ri instead
of the displacement ui . Substituting these expansions in (7.12), they obtained a

strongly nonlinear partial differential equation (see (7.6) in [82]) that supports a

solitary wave with compact form. The analytic solution has the same form as

Nesterenko’s solution, but with slightly different amplitude and width constants.

Moreover, they presented an accurate numerical method for the numerical solution

of the advanced delay equation (7.13) and they compared the numerically obtained

solutions with those of approximated PDEs.

Recently, Starosvetsky and Vakakis [83], working directly on the nonlinear

lattice equations with no precompression, developed semi-analytical approaches

for computing different families of nonlinear traveling waves. These waves involve

both separation and compression between adjacent particles and therefore they

cannot be resolved using quasi-continuum approximations. In addition, they

showed that these wave families converge to the solitary wave in a certain
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asymptotic limit. They also solved the reduced advanced delay equation numeri-

cally, and applied the method of Pade approximations.

7.3.5 Review of Experiments with Strongly Nonlinear Solitary
Waves

The quantitative agreement of analytical and numerical predictions with

experiments, regarding solitary waves in strongly nonlinear granular crystals,

was first found by Lazaridi and Nesterenko [45]. They observed for the first time

the rapid decomposition of the initial impulse excitation into multiple solitary

waves in a distance comparable to the solitary wave width, (Fig. 7.4). Since then

there have been several experimental studies and observations of solitary waves

and other strongly nonlinear phenomena in multiple settings. Optical observations

of strongly nonlinear waves in arrays of photoelastic disks excited by a local

explosive loading were reported by Zhu, Shukla, and Sadd [84]. Coste, Falcon,

and Fauve [46], and Coste and Gilles [47] conducted a very detailed quantitative

study of the speed and shape of solitary waves at different amplitudes. They

reported a negligible decay of the solitary wave in chains composed of 50

particles, and they concluded that the solitary waves shape observed in

experiments were in very good agreement with the predictions obtained from

theoretical solutions such as (7.10).

The relatively low speed of the solitary waves detected by Coste et al. [46] is

very unusual for solid materials. In an uncompressed granular system, according to

(7.11), the minimum propagation speed of a solitary wave can be close to zero if the

amplitude of the disturbance is approaching zero (“sonic vacuum”) [13]. Using

polymeric and composite particles [85, 86], for example, one can design granular

crystals with a solitary wave speed corresponding to a signal in the interval of

10–100 m/s, an order of magnitude less than that previously observed in exper-

iments by Coste et al. [45]. In addition to the experimental observation of solitary

waves, many works relating to highly nonlinear phenomena in granular crystals

have followed. Nesterenko et al. showed experimentally the presence of anomalous

reflections when highly nonlinear waves interact with interfaces [54], effectively

demonstrating for the first time the concept of an acoustic diode. Daraio et al. [48],

described in detail the ability to tune the dynamic response of granular crystals by

controlling the static precompression and the dynamic excitation applied to the

system. Job et al. [87], investigated the behavior of solitary waves interacting with a

boundary, showing for the first time the sensitivity of solitary waves to the mechan-

ical properties of an adjacent medium. Thorough experimental, numerical, and

theoretical descriptions of the formation, propagation [88], and collision of solitary

wave trains were published a few years later [89].

Recently, several experimental works described wave propagation in granular

crystals composed of particles with elliptical and cylindrical geometries [63, 64].

Chains composed of ellipsoidal or cylindrical particles were shown to support the
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formation and propagation of highly nonlinear solitary waves similar to the solitary

waves observed in chains of spherical particles. These systems were also found to be

highly dependent not only on the particles’ geometry but also on the orientation

angles between particles in the chain. This dependence on orientation angle between

beads provides an additional free parameter to design acoustic materials with unprec-

edented transmission properties.

Experimental studies have also described the dynamic response of chains com-

posed of spherical steel particles coated with a soft polymeric material. These

studies showed that this type of system also supports the formation and propagation

of highly nonlinear solitary waves [85]. However, one interesting property of these

systems is that the contact interaction between thin-coated spheres does not follow

the classical Hertzian interaction between two solid spheres [90]. The dynamic

response of chains composed of coated spheres is governed by a quadratic power

law dependence between the contact force, F, and the displacement, d, instead of

the Hertzian, non-integer power of 3/2. This new nonlinear contact interaction

dramatically changes the dynamics of solitary wave propagation compared to its

counterpart in chains of solid spheres. Here, the spatial width of the wave becomes

shorter (3.14 particles size instead of 5), the wave speed (Vs) is relatively slower,

and its dependence on force amplitude (Fm) is also different (Vs ~ Fm
1/4 instead of

Vs ~ Fm
1/6).

Studies of chains of hollow spherical particles also presented interesting nonlinear

acoustic phenomena. Highly nonlinear solitary waves were observed to propagate

Fig. 7.4 Evolution of a soliton train excited experimentally by a striker impact (Ms ¼ 10 m,
us ¼ 0.5 m/s), after a propagation distance of N particles: (a) N ¼ 5, (b) N ¼ 10, (c) N ¼ 20, (d)

N ¼ 30, (e) N ¼ 40, (f) N ¼ 60. The vertical scale corresponds to a force of 80 N, the horizontal

scale to a total time of 50 ms (a–e) and 100 ms (f) [14]. Figure reproduced from [Nesterenko, V.F.,

Dynamics of Heterogeneous Materials. 2001, Chapter 1, pp. 70, NY: Springer-Verlag] with

permission from the publisher
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through the system, but the wave properties were different from the highly nonlinear

solitary waves in the chains of solid spheres. The spatial width of the solitary wave in

chain of hollow spheres was approximately 8 particles (larger than 5 particles, which

is the characteristic length of a solitary wave forming in a chain of uniform, solid

spheres). The wave speed was found to be proportional to the force amplitude to the

power 1/11 [65]. It was shown that such behavior resulted from the unique contact

interaction between thin hollow spheres, which for the range of wave amplitude

studied, could be approximated by a power-law type relation (F ¼ kdn). In this case,
the exponent n was found to be smaller than the value 3/2 as in the classical Hertzian

interaction between solid spheres. The contact stiffness k and the exponent n were

also found to be dependent on the thickness of the hollow sphere’s shell. This

dependence of the dynamic behavior of granular crystals on the coating and/or

shell thickness of spherical particles provides yet another free parameter to employ

in tuning the dynamics of nonlinear acoustic crystals.

7.4 One-Dimensional Diatomic Granular Crystals

By increasing the degree of periodicity, from a homogenous monoatomic granular

crystal to a diatomic granular crystal composed of alternating particles, additional

interesting phenomena can be accessed. This section describes some of those

phenomena characteristic of 1D diatomic granular crystals, including tunable band

gaps, discrete breathers (DBs), and highly nonlinear solitary waves with widths up to

ten particles.

An example of a 1D diatomic granular crystal is illustrated in the bottom of

Fig. 7.1. The equation of motion for the general 1D granular crystal, shown in (7.2),

can be reduced to the 1D diatomic crystal model, as follows:

mi€ui ¼ A½d0 þ ui�1 � ui�3=2þ � A½d0 þ ui � uiþ1�3=2þ ; (7.14)

where the subscript i is the index of the ith particle, the particle masses are m2i�1

¼ m andm2i ¼ M. By convention,M is taken to be the larger of the two masses and

m to be the smaller of the two masses. Because all contacts (aside from any

boundaries) are the same, there is a single Hertzian contact coefficient A and static

overlap d0 that are used to represent the system, which have been defined in the

previous sections. Within this framework, as before, the dynamic response of the

system can be tuned to encompass linear, weakly nonlinear, and strongly nonlinear

regimes of dynamic behavior. Also as before, the K2�K3�K4 model can be applied

in the weakly nonlinear regime, and the K2 linearized model in the linear regime.

7.4.1 Near-Linear Regime: Localized Surface Modes

For dynamical displacements with amplitude much less than the static overlap

ð uiþ1 � uij j � d0Þ, the nonlinear K3 and K4 terms can be neglected, and the linear

7 Nonlinear Periodic Phononic Structures and Granular Crystals 231



dispersion relation of the system can be easily computed. This results in an

effectively linear diatomic system of springs and point masses, as was presented

in Chap. 2, but with a tunable stiffness K2.

Several previous studies explored the existence of band gaps in highly com-

pressed granular crystals. Initially, studies focused on 1D, two-particle unit cell,

arrays of glued [91], welded [92], and elastically compressed spherical particles

[49, 51, 56]. These studies demonstrated tunable vibration spectra with two bands

of propagation (called the acoustic and optical bands) separated by a band gap in the

diatomic case. Boechler et al. [50] later extended this work by investigating the

response of one-dimensional diatomic granular crystals with three-particle unit

cells, and showing their tunability based on variations of the particles geometry

and on the applied static load. In contrast to diatomic granular crystals with two-

particle unit cells, the three-particle unit cell granular crystal was shown to contain

up to three distinct pass bands and two finite band gaps.

In addition to acoustic and optical bandmodes, the diatomic semi-infinite harmonic

granular crystal also supports a gap mode, provided the crystal has a light particle at

the surface and free boundary conditions. This mode is localized at the surface (i.e., at

the first particle), and its displacements have the following form [93]:

u2iþ1 ¼ Bð�1Þi m

M

� �i
e jost (7.15)

u2iþ2 ¼ Bð�1Þiþ1 m

M

� �iþ1

e jost;

with particle number i 
 0, frequency os ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2ð1=mþ 1=MÞp

is in the gap of the

linear spectrum, and B is an arbitrary constant. This particular mode with frequency

in the band gap, that is localized around the surface, proves to have a nonlinear

counterpart and to be very closely related to the DB in the strongly discrete regime,

as will be described in the following section.

7.4.2 Weakly Nonlinear Regime: Discrete Breathers

By increasing the relative amplitude of the dynamic to static displacements ðjuiþ1

�uij<d0Þ , and thus entering the weakly nonlinear regime, a type of intrinsic

localized mode called a discrete breather (DB) can be supported by the system.

DBs have been widely studied in the realm of nonlinear lattices, as previously

described [33]. They are nonlinear modes that have frequency within the gap of the

linear spectrum and are localized in space. As such, discrete breathers have

practical importance as a mechanism to localize vibrational energy in frequency

and space without the introduction of any extrinsic disorder.

DBs were rigorously proven to exist in diatomic FPU-type lattices, with

alternating heavy and light masses, by Mackay in 1997 [94]. Furthermore, several
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studies also investigated the specific case of DBs located in the gap between the

acoustic and optical bands of anharmonic diatomic lattices [95–97].

A recent study by Theocharis et al. systematically studied the existence and

stability of DBs in diatomic granular crystals [52]. Studies in other diatomic

anharmonic lattices have shown the existence of up to two types of DBs. The

study by Theocharis et al. demonstrated that both types of DBs can arise in granular

chains. They examined both of these two families of discrete gap breathers, and

studied their existence, stability, and structure throughout the gap of the linear

spectrum. The first family was an unstable DB that is centered on a heavy particle

and characterized by a symmetric spatial energy profile, and the second family is a

potentially stable DB that is centered on a light particle, and is characterized by an

asymmetric spatial energy profile.

Although the FPU and granular crystal lattices are analogous in many respects,

there exists an important difference because of the additional nonlinearity caused

by the tensionless characteristic of the granular crystal lattice. Accordingly,

Theocharis et al., contrasted discrete breathers in anharmonic FPU-type diatomic

chains with those in diatomic granular crystals, and found that for the case when the

DB was very narrow (highly discrete), the asymmetric nature of the latter interac-

tion potential led to a form of hybrid bulk-surface localized solutions (see Fig. 7.5).

Figure 7.5 shows the two families of DB solutions at times t ¼ T and t ¼ T/2
(where T is the periodic of the DB), and the profile of a linear surface mode. This

similarity between the shapes of the two modes suggests that the temporary creation

of a new interior surface, allowed by tensionless characteristic of the system, has

contributed to a modified type of intrinsic localized mode.

The existence of DBs in diatomic granular crystals was experimentally proven in

a recent study by Boechler et al. [51]. In this study, the authors utilized the

modulational instability (MI) of the lower optical mode to generate DBs in an 80

particle diatomic granular crystal. In the weakly nonlinear regime, granular crystals

can be showed to be subject to MI when K3
2/K2K4 < 3/4. To excite the MI, they

drove the granular crystal from one boundary at the lower optical mode frequency,

at high amplitude. Upon reaching a critical amplitude for the MI to occur, the

anharmonic lattice vibration decayed into a localized DB.

Figure 7.6 shows, as per Boechler et al. [51], an experimental observation of a

DB, generated in an 80 particle diatomic granular crystal. This example shows

how the interplay of nonlinearity and discreteness/periodicity leads to the locali-

zation of vibrational energy within a narrow spatial regime (around the 14th

particle from the boundary), at a specific frequency within the gap of the linear

spectrum ( fb ¼ 8.31 kHz). In panels (a) and (b), far from the center of the DB, a

periodic response at the driving frequency ( fd ¼ 8.9 kHz) can be seen. Alterna-

tively, in panels (c) and (d), near the center of the DB, a quasiperiodic response

appears, which is characterized by the driving frequency and frequency of the

generated DB. This spatial localization is further clarified in the spatial profile of

the energy distribution shown in panel (e).
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a b

c d

Fig. 7.5 Top panels: Spatial profile of a DB in the heavy mass-centered symmetric family at times

(a) t ¼ 0 and (b) t ¼ T/2. Bottom panels: As with the top panels, but for the light mass centered

asymmetric family of DB solutions. The dashed curves correspond to the spatial profile of the

surface mode obtained using (7.15). In each panel, a visualization of particle positions is included,

along with the corresponding spatial gap openings, for the corresponding time and DB solution.

Copyright (2010) by The American Physical Society [52]

Fig. 7.6 Experimental observation of a DB, in an 80 particle granular crystal, at fb ¼ 8.31 kHz.

(a), (c) Force at particle 2 and 14, respectively. (b), (d) Power spectral density (PSD) for the

highlighted time regions in (a), (c) of the same color. Square (circular) markers denote the DB

(driving) frequency and PSD amplitude. (e) The ratio of the PSD amplitude at the discrete breather

frequency divided by the PSD amplitude of the driving frequency as a function of sensor location.

The vertical dashed line in (b) and (d) denotes the lower cutoff frequency of the optical band, and
the vertical dashed lines in (a) and (c) denote the time region for the PSD calculation. Image

reproduced from [98]
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7.4.3 Highly Nonlinear Regime: Strongly Nonlinear Solitary
Waves

In this section, the effects of increased periodicity on the propagation of solitary

waves in 1D diatomic granular crystals with no static load is described. Solitary

waves in such systems were first studied and described by Nesterenko in 2001 [14].

He found that by assuming the mass of one particle type to be much larger than the

mass of the other (m1/m2 >> 1) and by applying the long wavelength approxima-

tion, the resulting wave equation supports a solitary wave solution with a charac-

teristic spatial width of ~10 particles. This demonstrates how an increase in

periodicity (or redistribution of the monoatomic particle masses to two neighboring

particles) can result in wider solitary wave.

Later, Porter et al. [99] applied the long-wavelength approximation to diatomic

granular crystals with arbitrary mass ratios by postulating a “consistency condition”

between the displacements of the two particles in the unit cell. They showed that

the diatomic chain supports a finite-width soliton-like solution, and they obtained

an analytical expression for the width of the solution as a function on the mass ratio.

This expression generalizes the previously known limiting cases, namely,

m1/m2 ¼ 1 (monoatomic) and m1/m2 >> 1 (diatomic with ~10 particle length

solitary wave width). In the same study, Porter et al. compared these analytical

predictions with simulations and experiments and found good agreement.

Recently, Vakakis et al. [100] presented an extensive numerical and theoretical

study of solitary waves in diatomic chains. They showed that in a diatomic granular

crystal, scattering at the interfaces of the dissimilar light and heavy beads will

typically cause a slow disintegration of the traveling wave and the formation of

small amplitude oscillating tails. However, they also found that for specific discrete

values of the mass ratio between heavy and light particles, the system supports

solitary waves which travel without distortion. These discrete values of the mass

ratio correspond to the case where the light beads always stay in contact with

adjacent heavy beads. For this case, the entire energy of the main pulse is conserved

and transferred without loss to the next heavy bead. These solutions can be

considered analogous to the propagation of solitary waves in monoatomic granular

crystals, in that their velocity profiles decay to zero. Finally, they also observed

that the diatomic family of solitary waves propagates faster than the corresponding

solitary waves in monoatomic systems.

7.5 One-Dimensional Monoatomic Granular Crystals

with Defects

By placing one or more defects into an otherwise perfectly periodic mono-atomic

granular crystal, disorder can be introduced into the system. The presence of

disorder, and its interplay with the nonlinearity of the system, causes interesting
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and useful phenomena throughout the granular crystal’s range of dynamic regimes.

In contrast to the case of increasing periodicity, introducing disorder adds new ways

to break the spatial-symmetry of the granular crystal. In combination with the

ability of nonlinear systems to break the time-reversal symmetry of the dynamic

response, the introduction of spatially asymmetric disorder can be particularly

useful. In the following section several recent studies are described relating

to defects in monoatomic granular crystals, including: tunability of defect modes

in the linear regime [101], localized nonlinear defect modes and spontaneous

symmetry breaking in the weakly nonlinear regime [102], the interplay of solitary

waves with defects in the highly nonlinear regime [103], and tunable bifurcation-

based acoustic rectification in a driven granular crystal [60].

7.5.1 Near-Linear Regime: Tunable Defect Modes

A strongly compressed (with respect to the dynamic displacements) homogenous

granular crystal with light-mass defects will contain exponentially localized modes

with frequencies above the acoustic band of the granular crystal, localized around

the defect sites. The frequency of these localized defect modes is tunable with

changes in static load, similar to the tunability of the linear dispersion relation of a

periodic granular crystal.

The existence and tunability of defect modes localized around one and two light-

mass defects in a strongly compressed 1D otherwise homogenous granular crystal

was investigated first numerically and analytically by Theocharis et al. [101], and

then experimentally by Man et al. [101]. In the work by Man et al., they placed one

and two light-mass defects near the edge of a 20 stainless-steel particle granular

crystal, applied white-noise excitation from the edge of the crystal, and measured

the frequency of the defect modes localized in the vicinity of the defects as a

function of defect size and relative defect position. The observed defect mode

frequencies were compared with eigen-analysis of the linearized 20 particle granu-

lar crystal (as described in Theocharis et al. [101]), and analytical expressions based

on few-site considerations [100]. They showed that, for a sufficiently small single

light mass defect in an otherwise homogenous granular crystal, the frequency of the

defect mode can be approximated as [101]:

f3bead

¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KRrMþKRRmþKRrmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�8KRrKRRmMþ ½2KRrMþðKRRþKRrÞm�2

q
2mM

vuut
:

(7.16)

This expression is obtained by solving the eigenvalue problem of the three-

particle system in the vicinity of the defect (large particle–defect particle–large

particle). Here M is the mass of the homogenous particles, m is the mass of
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the defect particle, f3bead is the frequency of the localized defect mode, KRR ¼ 3=2

ARR
2=3F0

1=3 is the linearized stiffness between two large particles, and KRr ¼ 3=2

ARr
2=3F0

1=3 is the linear stiffness of the contact between a defect-particle and a large

particle. ARr and ARR are the Hertz contact coefficients between the respective

particles. From this expression, it is clear how the defect modes are tunable with

static load, geometry, and material properties.

In both studies [101, 102], it was found that when two defects were placed

sufficiently far from each other (outside the localization length of each individual

defect mode), the granular crystal presented two isolated linear defect modes with

frequencies of a single-defect mode. The further the distance between the defects,

the closer the modes are to isolated ones with near-identical frequencies. However,

when the defects are brought sufficiently close together (within the localization

length of a single-defect mode) each defect was found to affect the other. This

caused the formation of a symmetric and anti-symmetric pair of defect modes, with

two new separate frequencies, involving both defects.

7.5.2 Weakly Nonlinear Regime: Nonlinear Localized Modes
and Symmetry Breaking

If the amplitudes of the dynamic displacements are increased, relative to the static

overlap, and thus the nonlinearity of the dynamic response is also increased, the

nonlinear localized defect modes depart from their linear counterparts and new

phenomena are introduced. In addition to exploring the near-linear behavior of one-

dimensional, strongly compressed granular crystals with one or two light-mass

defects, Theocharis et al. investigated the behavior of defects in the weakly

nonlinear regime [102]. As previously described, by analyzing the problem’s linear

limit, they identified the system eigen frequencies and the linear defect modes.

Using continuation techniques, they found localized nonlinear defect mode

solutions that bifurcate from their linear counterparts and studied their linear

stability in detail by computing the Floquet multipliers of the nonlinear periodic

solutions.

For the case of a single light-mass defect, it was found that the inherent

nonlinearity of the system leads to long-lived localized breathing oscillations,

which form robust nonlinear localized modes. Their frequency depends not only

on the static load, the geometry, and the material properties of the granular crystal

and defect particle, but also on the amplitude of the oscillations. Because of the type

of the nonlinearity in the system, the defect mode’s frequency decreases with

increasing dynamic amplitude (and nonlinearity). These are examples of two

ways where nonlinearity can be used to tune the frequency of a localized mode:

by changing the static load, and thus the stiffness of the contacts, or by changing the

relative amplitude of the dynamic displacements to the static overlap.

7 Nonlinear Periodic Phononic Structures and Granular Crystals 237



For the case of two defects, nonlinearity can create further interesting phenome-

nology when the defects are sufficiently close. A particularly intriguing example is

the case of next-nearest neighbor defects, where the two defects are separated by

one large particle. This resembles the situation of a “double well” potential, which

has been studied systematically in various settings, including nonlinear optics [104]

and atomic physics [105, 106]. In these settings, it has been predicted analytically

(via a two-mode reduction), manifested numerically, and observed experimentally

that beyond a certain nonlinearity threshold, a pitchfork bifurcation arises that

causes the spontaneous symmetry breaking of the relevant configurations, and

results in asymmetric nonlinear modes. The investigations of this phenomena in

granular crystals, by Theocharis et al., indicate that this phenomenology is more

generic. Figure 7.7 shows the bifurcation of the antisymmetric linear defect mode

as a function of the defect mode frequency and relative force between the defect

sites, for a next-nearest neighbor configuration. As the antisymmetric defect mode

(Fig. 7.7, inset A1) becomes progressively more nonlinear (and decreases in

frequency), at a critical point, the mode becomes unstable via a pitchfork-like

bifurcation. This bifurcation signals the emergence of two asymmetric modes

(Fig. 7.7, insets A2 and A3), which are mirror images of each other and predomi-

nantly centered on one of the two defect sites.

The case of the bifurcation of the antisymmetric two-defect mode is a good

example of how, through the addition of nonlinearity, sharp transitions can be

created between two acutely different states, the spatial symmetry of the dynamic

response broken, and new mechanisms accessed to control the distribution and

frequency of vibrational energy.

7.5.3 Highly Nonlinear Regime: Transient Localized Modes

By increasing the nonlinearity of the dynamic response further, the interaction of

traveling waves with defects in a nonlinear system can be explored. The interaction

of highly nonlinear solitary waves with a mass defect placed in a 1D, unloaded

granular crystal has been investigated analytically and computationally first by Sen

[107–109] and then by Hascoet, in 2000 [110]. This work was later followed by a

more in depth numerical and experimental study by Job, in 2009 [103]. Two

different physical pictures emerge whether one considers a light or a heavy impurity

mass. The scatter of the solitary wave with a light impurity yields transient

oscillations of the defect which leads to the emission of lower amplitude solitary

waves in both directions [110]. In contrast, a heavy-mass defect is shifted by the

solitary wave, a solitary wave is reflected back, and the transmitted wave loses its

soliton characteristics and is fragmented into smaller waves of decreasing amplitude

[110]. In the work by Job, it was shown that the interaction with a light-mass defect

will also lead to the transient excitation of a localized mode [103]. They described

how the slow-timescale local compression caused by the solitary wave around the

defect site can act analogously to the linearizing static compression described in
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the previous sections, and create an oscillating localized defect mode [103].

Starosvetsky et al. also analyzed analytically and numerically the interaction of

the solitary wave with light mass defects. They used reduced models that take into

account only the interaction of the defect mass with its neighboring particles [111].

7.5.4 Driven-Damped Granular Crystals: Quasiperiodicity,
Chaos, and Acoustic Rectification

In the previous sections, the existence of linear and nonlinear localized modes

surrounding defects in an otherwise homogenous granular crystal was discussed.

The transient interaction of traveling solitary waves with defects was also explored.

Neither of these cases involved a high-amplitude continuous driving force nor

damping. Studying cases with damping and continuous driving is useful for both

real-world applications and devices, and involves interesting new phenomena.

In 2011, Boechler et al. [60] studied experimentally and computationally the

case of a 1D statically compressed granular crystal that contains a light-mass defect

close to one end, and is subject to a harmonic driving force (see left panel of

Fig. 7.8). As described in the previous section, a light mass defect will create a

localized mode with frequency above the acoustic band of the homogenous part of

the granular crystal. Boechler et al. selected the frequency of the driving force to be

close to the defect mode frequency. Because the driving force has frequency above

the acoustic band of the homogenous granular crystal, the signal cannot propagate
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Fig. 7.7 Pitchfork bifurcation illustrated by force differential between two next-nearest neighbor

defects, as a function of the mode frequency. This shows the transition from a single antisymmetric

mode to two (mirror-symmetric between them) asymmetric modes after the onset of the symmetry

breaking bifurcation. Insets: spatial profiles and locations of Floquet multipliers l in the complex

plane of solutions for different frequencies
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through the crystal at that frequency. However, at sufficiently high amplitudes, and

only from the boundary that is close to the defect, a jump phenomenon occurs from

periodic to quasiperiodic and then chaotic states, where the energy of the driver is

redistributed to different frequencies that can transmit through the system. This

example illustrates how the combination of nonlinearity, periodicity, driving, and

asymmetric disorder can create new material and device capabilities. In this case,

this combination allowed energy to propagate predominantly in one direction.

To understand the nature of the bifurcations, and the jump to the quasiperiodic

and chaotic states that allowed the asymmetric acoustic energy transmission,

Boechler et al. conducted parametric continuation using the Newton-Raphson

(NR) method in phase space [33] and numerical integration of the fully nonlinear

equations of motion that describe the granular crystal. Dissipation was taken into

account by using linear damping (see more about dissipative effects in the next

section). Applying NR, they followed the periodic family of solutions of the driven

system as a function of driving amplitude and studied its linear stability. Right

panel of Fig. 7.8 shows the maximum dynamic force amplitude (four particles from

the actuator) for each solution as a function of the driving amplitude. The stable

(unstable) periodic solutions are denoted with solid blue (dashed black) lines.

At turning points 1,2, stable and unstable periodic solutions collide and mutually

annihilate (saddle-center bifurcation [40]). At points 3,4, the periodic solution

changes stability and a new two-frequency stable quasiperiodic state emerges

(Naimark-Sacker bifurcation [38]). Following this bifurcation picture, they observed

in their experimental setup and numerical simulations that with increasing amplitude,

a progression of the system response that followed the low-amplitude stable periodic

solution up to point 1, where the system jumps past the unstable periodic solution to

the high-amplitude stable quasiperiodic state. Further increase of the driver’s ampli-

tude led to a continued cascade of double period bifurcations and resulted in the

merging of distinct frequency peaks, the formation of continuous bands, and chaotic

dynamics. As the quasiperiodic and chaotic states redistribute energy from the driver

to frequencies within the transmitting band, it is the existence of these states which

enables the previously described acoustic rectification.

Fig. 7.8 (Left) Schematic diagram of a 1D granular crystal designed for acoustic rectification and

switching. (Right) Bifurcation diagram. Right panel reproduced from [60] with permission from

the publisher
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7.6 Dissipative Granular Crystals

Most of the studies to date involving granular crystals ignore dissipative effects.

However, it is clear from the experiments that in many settings dissipation is strong

and should be included. The sources of dissipation in granular crystals are many,

including friction, plasticity, viscoelasticity, and viscous drag, among others. In the

past few years there have been a number of analytical and numerical studies that

have introduced dissipative terms into the equations of motion.

In [112], the authors studied the effects of two dissipative mechanisms on pulse

propagation in nonlinear chains. The first was an intrinsic mechanism—an incomplete

restitution mechanism that resulted in partial trapping of the impulse energy in the

internal modes of the grain. The second mechanism was extrinsic—a velocity-

dependent friction f ¼ �g _ui. In both cases, they showed that the decay of the energy
waswell approximated by an exponential function. The attenuation of traveling pulses

in 1D unloaded granular crystals due to on-site linear damping f ¼ �g _ui was also
analyzed in [113]. They found an overall exponential decay of the energy, which

depends on the exponent of the interaction potential, and causes the pulse to slow

down as it propagates. They also showed that the shape and the width of the pulse

remained unchanged.

Job and his collaborators studied the interaction of a solitary wave with

boundaries in a 1D granular crystal, considering two dissipative mechanisms:

internal viscoelasticity and solid friction of the beads due to their weight on the

track aligning the granular crystal [114]. Viscoelastic dissipation was taken into

account by considering a dissipative force at the contact of the two beads in the

form f ¼ �A@tð½ui�1 � ui�3=2þ Þ[114], where � includes unknown coefficients due to

internal friction of the material. Solid friction was included by considering a force

f ¼ mmg. These dissipative terms were also shown to produce broader solitary waves.

In [115] viscous dissipation, depending on the relative velocity between neigh-

boring particles, was included in the model as f ¼ pð _ui�1 �2 _ui þ _uiþ1Þ, where p is

the viscosity coefficient. The authors investigated its influence on the shape of a

steady shock wave. Using this type of viscous dissipation, in [116], they solved the

following system of nondimensional equations:

€ui¼½pð _uiþ1� _uiÞ�ðui�uiþ1Þn�yðui�uiþ1Þ�½pð _ui�1� _uiÞþðui�1�uiÞn�yðui�1�uiÞ;

where y is the Heaviside function. They found that the inclusion of this relative

velocity-dependent viscous damping may yield interesting effects such as the

creation of secondary pulses. A different approach was presented in [117], where

the authors provided a quantitative characterization of dissipative effects for soli-

tary wave propagation in 1D granular crystals. They incorporated a phenomeno-

logical nonlinear dissipation that depends on the particle’s relative velocities. By

using optimization schemes and experiments, they calculated a common dissipation

exponent with a material-dependent prefactor.
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Most of the above studies concern the attenuation of propagating pulses

generated by an impulsive excitation. Recent experiments in 1D compressed

granular crystals, subjected to continuous harmonic driving at one end, also

revealed a strong attenuation of the signal [60]. To account for the dissipation in

these experimental settings, a linear on-site damping term f ¼ �g _ui with a damping

coefficient g was selected to match the experimental results.

7.7 Two-Dimensional Granular Crystals

Given the richness of the nonlinear dynamic phenomena found in one-

dimensional systems, higher dimensional nonlinear systems are expected to

present a plethora of new dynamic effects. For example, two- and three-

dimensional nonlinear systems are expected to present additional families of

wave modes not realizable in the 1D case; new types of solitary waves

propagating in the axial and lateral directions (particularly interesting for wave

energy redirection and wave guiding); complex nonlinear resonance interactions

occurring between spatially extended modes and localized waves; and enhanced

possibilities for acoustic wave energy localization and trapping across spatial or

temporal scales.

The dynamic properties of 2D granular crystals have only been partially

characterized. In particular, experimental efforts are few, although such systems

are expected to present a variety of novel dynamic phenomena. Several authors

have previously proposed models to characterize the dynamic response of two-

dimensional, ordered granular media. For example, [118] described a model for a

square lattice of elastically interacting particles, which included relative particle

rotation. Tournat et al. [119] proposed a theoretical model to describe out-of-plane

elastic waves in a monolayer granular membrane consisting of a hexagonal lattice

of particles. Their model was the first one to include shear and bending rigidity at

the contact between particles, and to calculate dispersion relations that accounted

for these effects.

The simplest example of a highly nonlinear 2D granular crystal consists of a

uniform, uncompressed square packing of elastic particles in contact with each

other. When this system is excited on one side by a uniform, planar waveform, its

response is expected to be quasi-one-dimensional [14] and the response of the

system can be characterized by a “curtain solution” derived similarly to (7.10). The

first experimental characterization of the dynamic behavior of a square packing of

particles was provided in [84], using photoelastic elliptical disks, excited by an

explosive charge. The same study characterized the stress wave propagation in

arrays of elliptical disks of various geometrical packings, and concluded that it is

the contact normals and the vector-connecting particles’ centers of mass that

primarily influence wave propagation characteristics such as load transfer path
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and load attenuation. Discrete element numerical models (DEM) were also used to

analyze the dynamics of similar systems [120].

The formation and propagation of solitary waves in 2D square granular crystals

was reported and studied quantitatively for the first time by Leonard et al. [121]

using triaxial accelerometers embedded within selected particles in the crystals. A

larger number of studies also explored the dynamic behavior of hexagonal packing

under different (near-linear to highly nonlinear) loading conditions [84, 120,

122–128].One of the major difficulties in the experimental realization of acoustic

materials based on two-dimensional nonlinear granular lattices is the sensitivity of

such systems to the presence of variation in the particles’ geometry. In the ideal

configuration, all particles have an equal number of contacts and equal equilibrium

forces. The presence of small defects in experiments, however, can lead to the loss

of contact between particles or to the local compression in the surrounding

particles. Such loss of contacts or local compression ultimately results in a

disordered energy transfer between the particles. A few past works studied the

effects of imperfections in two-dimensional granular crystals and their role in the

stress wave propagation [122–125, 129]. While Hertzian behavior predicts a 1/6

power-law between maximum force and wave speed [47], it was found that the

presence of defects tends to increase the wave propagation speed to a 1/4 power

law relationship, effectively inducing deviations from the theoretical Hertzian

behavior. This deviation from Hertzian behavior was observed only for granular

crystals with low precompression. Increasing the precompression applied on

hexagonal arrays was seen to cause a transition to a fully Hertzian behavior

[122–125]. More recently, Leonard et al. experimentally characterized the

dynamic response of regular 2D square granular crystals, and showed that varia-

tion in the packing geometry/composition (Fig. 7.9, left) can dramatically vary the

directionality of wave propagation [130].

Two-dimensional arrays of particles have also been shown to form tunable

acoustic lenses (Fig. 7.9, right) that support the formation of concentrated acoustic

pulses at the focal point (“sound bullets”, [59]). The ability to redirect nonlinear

acoustic pulses in two-dimensional systems has also been studied by looking at

pulse splitting and recombination in y-shaped granular networks [131–133]. These

works showed theoretically, numerically, and experimentally the ability to bend

and split incident pulses, and redirect mechanical energy as a function of the branch

geometry.

Additional work on the dynamic behavior of ordered two-dimensional granular

crystals is needed to fully understand the dynamic response of such systems, and to

characterize how nonlinear wave formation and propagation depends on the under-

lying particle arrangement. Variations of the excitation type (impulsive or harmonic

forcing) are expected to lead to the discovery of interesting new acoustic/dynamic

phenomena including wave guiding, trapping, filtering, and localized breathing

modes.
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7.8 Future Directions and Conclusions

The preceding chapters of this book have demonstrated how structural periodicity can

be utilized to create new materials with unprecedented physical properties. In such

materials the individual building blocks are assembled in carefully designed structures,

where by working together, they cause the bulk material to present properties greater

than those of the individual components. This general concept of obtaining “materials

by design” is not new, and has been a long-term quest for chemists and material

scientists alike. For instance, chemists have long been trying to engineer crystals and

molecules by arranging atoms in specific lattices and geometries, to obtain a specific

bulk property.However, by extending this concept pastmolecules and crystal grains, to

specially designed structural building blocks—from the nano tomacroscales—awhole

new field of possibilities is enabled.

One of the main benefits of such designed materials is that they enable new

technological capabilities. New materials with multifunctional properties can be

designed, which have both structural and dynamic functionalities. Perhaps more

importantly, by creating materials with previously unseen properties, new devices

and applications are enabled. Furthermore, as such materials are “designed” by

construction, and they can be easily tailored for use in specifically targeted

applications.

The range of possible bulk responses from such designed materials depends in

part on the complexity of the interaction between the fundamental building blocks.

As described in the previous chapters, the design of these periodic structures has

historically been based on linear interactions. The presence of nonlinearity in these

systems gives added advantages through complexity. This chapter predominately

Fig. 7.9 (Left) Dynamic response of two-dimensional granular crystals formed by square-

centered packings of different material cylinders and spheres (see inset). Variation of the materials

configuration leads to dramatic changes of the wave propagation front, as shown from experiments

and numerical simulations [130]. (Right) Design concept of a tunable, nonlinear acoustic lens

obtained with a two-dimensional array of particle chains. The formation of the focal spot (i.e., the

“sound bullet”) is evident on the host medium on the right [59]. Images reproduced from [130]

and [59]
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focused on nonlinear dynamic phenomena in granular crystal systems, where the

nonlinearity was caused by the geometric inter-particle interactions between elastic

particles. As was described, nonlinear dynamics enables the existence of new useful

dynamic phenomena and coherent structures. This includes solitary waves, discrete

breathers, bifurcations, quasiperiodicity, and chaos, among others. Nonlinearity

also enables a dramatic tunability of the material responses, by providing an

unprecedented sensitivity to variations of materials and external parameters. How-

ever, because of the inherent complexity of nonlinear systems, which enables such

useful phenomena, analyzing and predicting the behavior of such systems is also

more difficult. In the future, the development of new predictive theoretical and

computational tools will be necessary to further guide the development, design, and

testing of nonlinear periodic phononic structures.

Some particular future areas of interest, with respect to the study of nonlinear

periodic phononic structures, include, but are not limited to the following. As nonline-

arity has been applied to spring-mass-like systems, in granular crystals, nonlinearity

could also further be applied to the study of nonlinear metamaterials, nonlinear

resonant structures, or phononic crystals with nonlinearly elastic components. The

study of hybrid linear-nonlinear systems, could lead to the observation of new dynamic

phenomena such as the amplitude-dependent filtering of acoustic signals [134].

New material systems where nonlinear material responses interplay with active

building blocks or other multi-physical effects is another area that could lead to the

discovery of unprecedented material responses. The ability to couple multi-physical

effects in periodic structures can also lead to the creation of tunable multifunctional

and energy-harvesting devices, such as opto-mechanical sensors [135], or phoXonic

systems [136]. For example, the generation of nonlinear modes in nonlinear acoustic

crystals could be used as a mechanism for frequency conversion, or the presence of

nonlinear localizedmodes could be exploited for energy localization and harvesting.

Because of the similarity of acoustic and elastic wave propagation to phonon

propagation, the effects studied here could also be extended to smaller scales

involving heat propagation. For instance, as described in this chapter for acoustics,

nonlinear periodic structures have been utilized to create tunable rectifiers based on

the onset of bifurcation instabilities. This type of device could provide new ways to

control the flow of acoustic energy, enable acoustic logic devices, and be used in

novel energy-harvesting systems [60]. However, these same ideas could be scaled

down to create new ways to control heat propagation, and enable materials with

direction-dependent thermal conductivities or thermal logic devices.

Furthermore, the newly explored phenomena, which occur in granular crystals

and other nonlinear periodic phononic structures, should be further explored for

their potential in engineering applications. The ability to engineer the dispersion

relation through nonlinearities could be implemented in tunable vibration filtering

devices and in noise and vibration-insulating systems. Compact solitary waves with

robust properties and large amplitudes could find use in biomedical devices

with improved resolution and signal-to-noise ratio [59], or in the nondestructive

evaluation of materials [58].
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The study of nonlinearity in engineered materials like phononic crystals and

metamaterials is still at an early stage of development. By understanding the

fundamental properties of nonlinear acoustic crystals, nonlinear phononic systems,

and nonlinear resonant structures, new physical phenomena can be discovered and

lead to a new ability to design and implement materials and devices.
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