
Chapter 4

2D–3D Phononic Crystals

A. Sukhovich, J.H. Page, J.O. Vasseur, J.F. Robillard, N. Swinteck,

and Pierre A. Deymier

Abstract This chapter presents a comprehensive description of the properties of

phononic crystals ranging from spectral properties (e.g., band gaps) to wave vector

properties (refraction) and phase properties. These properties are characterized

by experiments and numerical simulations.

4.1 Introduction

In this chapter, we focus on 2D and 3D phononic crystals, which, thanks to their

spatial periodicity, allow the observation of new unusual phenomena as compared

to the 1D crystals discussed in the previous chapter. In experimental studies, 2D

crystals usually employ rods as scattering units, while 3D crystals are realized as

arrangements of spheres. It is common in theoretical studies of phononic crystals

to investigate crystals with scattering units that are simply air voids (e.g., empty

cylinders) in a matrix. Although there are many different ways of realizing the
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phononic crystal theoretically and experimentally (by varying material of the

scattering units and the host matrix), one condition is always observed: the charac-

teristic size of a scattering unit (rod or sphere) and a lattice constant should be on

the order of the wavelength of the incident radiation to ensure that the particular

crystal features arising from its regularity affect the wave propagating through the

crystal. In other words, the frequency range of the crystal operation is set by the

characteristic dimensions of the crystal (i.e., the size of its unit scatterer and its

lattice constant). The exception from this rule, however, is resonant sonic materials,

which exhibit a profound effect on the propagating radiation, whose wavelength

can be as much as two orders of magnitude larger than the characteristic size of the

structure, as was shown by Liu et al. [1, 2].
As described in Chap. 10, the regularity of the arrangement of scattering units of

the phononic crystal gives rise to Bragg reflections of the acoustic or elastic waves

that are multiply scattered inside the crystal. Their constructive or destructive

interference creates ranges of frequencies at which waves are either allowed to

propagate (pass bands) or blocked in one (stop bands) or any direction (complete

band gaps). The width of the band gap obviously depends on the crystal structure

and increases with the increase of density contrast between the material of the

scattering unit and that of a host matrix. Switching from a liquid matrix to the solid

one, e.g., from water to epoxy, which can support both longitudinal and transverse

polarizations, results in even larger band gaps, as was shown by Page et al. [3].

As an example of a 2D phononic crystal, consider a crystal made of cylinders

assembled in a triangular Bravais lattice, whose points are located at the vertices

of the equilateral triangles. Figure 4.1 presents the diagram of the direct and

reciprocal lattices with corresponding primitive vectors ~a1;~a2 and ~b1; ~b2 . Since
~a1j j ¼ ~a2j j ¼ a, where a is a lattice constant, it follows from the usual definition of

reciprocal lattice vectors ~ai � ~bj ¼ 2pdij, where dij is the Kronecker delta symbol,

that ~b1

��� ��� ¼ ~b2

��� ��� ¼ 4p
ffiffiffi
3

p
a

�
. By working out components of ~b1 and ~b2, one can be

convinced that the reciprocal lattice of a triangular lattice is also a triangular

lattice but rotated through 30� with respect to a direct lattice. Both direct and

reciprocal lattices possess six-fold symmetry. The first Brillouin zone has a shape

of a hexagon with two main symmetry directions, which are commonly referred to

as GM and GK (Fig. 4.1).

As an example of a 3D crystal, let us consider a collection of spheres assembled

in a face-centered cubic (FCC) structure, which is obtained from the simple-cubic

lattice by adding one sphere to the center of every face of the cubic unit cell.

Because of its high degree of symmetry, phononic crystals with this structure have

been extensively investigated, both theoretically and experimentally. Figure 4.2

shows the direct lattice of the FCC structure along with the corresponding recipro-

cal lattice, which turns out to be a body-centered cubic (BCC) crystal structure

(obtained from the simple-cubic structure by adding one atom in the center of its

unit cell). Also displayed are the sets of primitive vectors~a1;~a2;~a3 and ~b1; ~b2; ~b3 of
both lattices. It can be easily seen from Fig. 4.2 that with this particular choice of

the primitive vectors of the direct lattice we have ~a1j j ¼ ~a2j j ¼ ~a3j j ¼ a
ffiffiffi
2

p�
, and
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~b1

��� ��� ¼ ~b2

��� ��� ¼ ~b3

��� ��� ¼ 2
ffiffiffi
3

p
p a= , where a is the length of the cube edge in the direct

lattice.

The first Brillouin zone of the FCC lattice is a truncated octahedron and

coincides with the Wigner-Seitz cell of the BCC lattice. It is presented in Fig. 4.3

along with its high symmetry directions. With respect to the coordinate system in

Fig. 4.2, the coordinates of the high symmetry points (in units of 2p a= ) are: G [000],

X [100], L [ ½ ; ½ ; ½ ], W [ ½ ; 1; 0], and K [¾; ¾; 0]. The investigation of the

figure reveals that direction GL coincides with the direction also known as the [111]

direction, i.e., a direction along the body diagonal of the conventional FCC unit

cell, shown in Fig. 4.2.

A simple way of realizing a 3D crystal with the FCC Bravais lattice is by

stacking the crystal layers along the [111] direction. The touching spheres are

close packed in an ABCABC. . . sequence, which is shown in Fig. 4.4. The spheres
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Fig. 4.1 The direct and reciprocal lattices of the 2D phononic crystals, which were investigated

experimentally. The shaded hexagon indicates the first Brillouin zone. In the actual phononic

crystal the rods were positioned at the points of the direct lattice (perpendicular to the plane of the

figure)
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Fig. 4.2 The direct (FCC) and reciprocal (BCC) crystal lattices of the 3D phononic crystals
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belonging to the first layer are denoted by the letter A. The next layer is formed by

placing the spheres in the interstitials indicated by the letter B, and the third layer is

formed by placing spheres in the interstitials of the second layer, which are denoted

by the letter C. The sequence is then repeated again with the fourth layer beads to

occupy interstitials in the third layer, which are positioned directly above beads

denoted by the letter A. This packing results in the highest filling ratio of 74 %.

In this chapter, the dramatic effects of lattice periodicity on wave transport in 2D

and 3D phononic crystals will be illustrated using these two representative crystal

structures. Section 4.2 summarizes how such effects can be investigated experi-

mentally, with emphasis on measurement techniques in the ultrasonic frequency

range. Section 4.3 discusses the various mechanisms that can lead to the formation

of band gaps, a topic that has been of central interest since the first calculations and

experimental observations in phononic crystals. The rest of the chapter is concerned

with phenomena that occur in the pass bands, starting with negative refraction in

Sect. 4.4, the achievement of super-resolution lenses in Sect. 4.5 and band structure

design and its impact on refraction in Sect. 4.6.
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Fig. 4.3 The first Brillouin zone of the FCC lattice and its high symmetry points

A A A A
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Fig. 4.4 Schematic diagram explaining the formation of a 3D crystal in a ABCABC. . . sequence
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4.2 Experiments: Crystal Fabrication and Experimental

Methods

4.2.1 Sample Preparation

4.2.1.1 2D Phononic Crystals

In this section we will consider the practical aspects of phononic crystal fabrica-

tion for the examples of 2D and 3D phononic crystals used by Sukhovich et al.

[4, 5] and Yang et al. [6, 7] during their experiments on wave transport, negative

refraction and focusing of ultrasound waves (see Sects. 4.3 and 4.4.). The 2D

crystals were made of stainless steel rods assembled in a triangular crystal

lattice and immersed in a liquid matrix. To ensure that the operational frequency

of the crystals was in the MHz range, the characteristic dimensions of the crystals,

lattice constant and rod diameter (1.27 mm and 1.02 mm correspondingly),

were chosen to be comparable to the wavelength of ultrasound in water at this

frequency range (Fig. 4.5).

For reasons that will be explained in more detail later, the crystals were made in

two different shapes. A rectangular-shaped crystal had 6 layers stacked along the

GM direction (Fig. 4.6a). A prism-shaped crystal was also made; it had 58 layers,

whose length was diminishing progressively to produce sides forming angles of

30�, 60� and 90�. In this geometry, the shortest and longest sides are perpendicular

to the GM directions (Fig. 4.6b), and the third intermediate-length side is perpen-

dicular to the GK direction.

The filling fraction was 58.4 %. The particular details of crystal design depended

on the type of liquid, which filled the space between the rods. For the crystals

immersed in and filled with water, the rods were kept in place by two parallel

polycarbonate plates in which the required number of holes was drilled; the crystal

could then be easily assembled by sliding the rod’s into the holes in these top and

bottom templates (Fig. 4.7a, b). The rectangular crystal was 14 cm high while the

prism-shaped crystal height was 9 cm.

Since key properties of the phononic crystals follow from their periodicity, the

quality of the samples is critically dependent on the accuracy with which their

geometry is set. For example, special care must be taken to use as straight rods as

possible. At the same time, the holes defining the rods’ positions should be precisely

drilled, preferably using an automated programmable drilling machine.

Another rectangular-shaped crystal (with all parameters identical to those of the

first crystal) was constructed to enable the liquid surrounding the rods (methanol) to

be different to the medium outside the crystal (water), and consequently its design

was more complicated. First of all, all plastic parts were made of an alcohol-

resistant plastic (PVC). The crystal was encapsulated in a cell, whose face walls

were made of a very thin (0.01-mm) plastic film tightly wrapped around the crystal

(plastic film produced commercially and available as a food wrap worked very
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well). Finally, the edges of the cell were sealed from the surrounding water by two

rubber O-rings. The design of the crystal is shown in Fig. 4.8.

The choice of the phononic crystal materials provided high density and velocity

contrast, thus ensuring that most of the sound energy was scattered by the rods and

concentrated in the host matrix. Table 4.1 provides values of the densities and

sound velocities for the constituent materials of the 2D crystals.

4.2.1.2 3D Phononic Crystals

3D phononic crystals, used in the experiments by Yang et al. [6, 7] and by

Sukhovich et al. [8, 9], were made out of very monodisperse tungsten carbide

G
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a

G

M

K

58 rods

b

Fig. 4.6 Geometry of the 2D crystals. (a) Rectangular crystal. (b) Prism-shaped crystal

d = 1.02 mm

a = 1.27 mm

60°60°

60°

Fig. 4.5 Unit cell of a 2D phononic crystal
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beads, 0.800 � 0.0006 mm in diameter, immersed in reverse osmosis water. The

beads were manually assembled in the FCC structure, with layers stacked along the

cube body diagonal (the [111] direction) in an ABCABC. . . sequence. To ensure

the absence of air bubbles trapped between the beads, the whole process of

assembling crystals was conducted in water. To support the beads in the required

structure, acrylic templates were used. The template consisted of a thick substrate

with plastic walls attached to it (Fig. 4.9).

One can show that in order to keep beads in the FCC crystal lattice two kinds of

walls should be used with sides inclined at angles a ¼ 54.74� and b ¼ 70.33�

above the horizontal, and with inner side lengths LA and LB. The values of LA and

LB depend on the number of beads n along each side of the first crystal layer and the
bead diameter d. These lengths are given by the following expressions:

LA ¼ ðn� 1þ tan
a
2
Þd

LB ¼ ðn� 1þ tan
b
2
cot75�Þd ð4:1Þ

With 49 beads on each side of the bottom layer, (4.1) gives LA ¼ 38.814 mm

and LB ¼ 38.552 mm.

In the experiments on the resonant tunneling of ultrasound pulses, the samples

consisted of two 3D phononic crystals with the same number of layers and separated

by an aluminum spacer of constant thickness. For brevity, these samples will be

referred to as double 3D crystals. After the lower crystal was assembled, the spacer

was placed on the top without disturbing beads of the crystal. The upper crystal was

then assembled on the surface of the spacer. Spacer edges were machined at angles

Fig. 4.7 2D crystals filled with and immersed in water: (a) rectangular crystal, (b) prism-shaped

crystal
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matching the angles of the walls of the template. Also, the thickness of the spacer

was calculated such that it replaced precisely an integer number of layers of the

single crystal. This ensured that the beads resting on the spacer filled the entire

available surface without leaving any gaps, enabling high-quality crystals to be

Table 4.1 Comparison of the physical properties of the constituent materials used for 2D

phononic crystals [49]

Material Density (g/cm3) Longitudinal velocity (mm/ms) Shear velocity (mm/ms)

Stainless steel 7.89 5.80 3.10

Water 1.00 1.49 –

Methanol 0.79 1.10 –

Fill hole Fill hole

Rubber
O-ring14 cm

7.5 cm

Front view

Plastic film

Screws

Middle spacer 
supporting rods

Top view

0.66 cm

Side view

1.8 cm

Fig. 4.8 Methanol-filled 2D crystal cell design
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constructed. In most of the experiments, the thickness of the spacer was chosen to

be 7.05 � 0.01 mm.

The base of the template was made fairly thick (84.45 mm) to allow temporal

separation between the ultrasonic pulses that was directly transmitted through the

crystal, and all of its subsequent multiple reflections inside the substrate. The

density and velocity mismatch in the case of 3D crystals was even larger than for

2D crystals, as tungsten carbide has density of 13.8 g/cm3, longitudinal velocity

of 6.6 mm/ms and shear velocity of 3.2 mm/ms. The actual sample (single 3D

crystal) is shown in Fig. 4.10, while the close-up of its surface is presented in

Fig. 4.11.

4.2.2 Experimental Methods

In the sonic and ultrasonic frequency ranges, the properties of phononic crystals are

best studied experimentally by directing an incident acoustic or elastic wave

towards the sample and measuring the characteristics of the outgoing wave,

which was modified while propagating through the crystal. In practice, pulses are

preferred to continuous monochromatic waves since pulses are much more conve-

nient to work with. Due to their finite bandwidth, in a single experiment they allow

information to be obtained over a wide frequency range. The use of pulses also

facilitates the elimination of stray sound from the environment surrounding the

crystal. In what follows, we describe two types of experiments, each used to

investigate different aspects of phononic crystals.

a

b

A

B

A

A A

BB

B

Fig. 4.9 Template for 3D phononic crystal (top view) with side views of walls A and B. Note that

tana ¼ ffiffiffi
2

p
and tanb ¼ 2

ffiffiffi
2

p
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4.2.2.1 Transmission Experiments

In transmission experiments one measures the coherent ballistic pulse emerging

from the output side of the sample after a short pulse (often with a Gaussian

Fig. 4.11 Close-up view of the surface of the crystal, which is shown in Fig. 4.10

Fig. 4.10 3D single phononic crystal assembled in the supporting template
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envelope) was normally incident on the input side. Usually, crystals with two flat

surfaces are used and crystal properties are investigated along the directions for

which the direction of the output pulse is not expected to change with respect to

that of the input pulse. In this case the far-field waveforms are spatially uniform in

a plane parallel to the crystal faces, and thus the outgoing pulse can be accurately

detected using a planar transducer, whose active element’s characteristic dimensions

are many times larger than the wavelength of the measured pulse. (The diffraction

orders that appear at high frequencies are effectively eliminated by measuring the

transmitted field over the finite transverse width that is set by the diameter of the

detecting transducer.) Such a transducer averages any field fluctuations (for example

due to imperfections inside the sample) and provides information on the average

transport properties of the crystal. Another benefit of such averaging is an increase of

the signal-to-noise ratio. Note also that to ensure the best possible approximation of

the incident pulse by a plane wave, the sample should be placed in the far-field of the

generating transducer. In the ultrasonic frequency range, the most convenient refer-

ence material in which the transducers and crystal can be located is water.

The analysis of the recorded pulse is done by comparing it with a reference

pulse, obtained by recording a pulse propagating directly between generating and

receiving transducers (with the sample removed from the experimental set-up). To

allow the transmission properties to be determined from a direct comparison

between the reference and measured pulses, the reference pulse should be shifted

by the time Dt ¼ L uwat= , where L is the crystal thickness and uwat is the speed of

sound in the medium between source and receiver. Since the attenuation in water is

negligibly small, the time-shifted reference pulse accurately represents the pulse

that is incident on the input face of the sample.

Figures 4.12a and 4.12b shows a typical example of incident and transmitted

pulses for a 3D phononic crystal of tungsten carbide beads in water. The effects on

the transmitted pulse of multiple scattering inside the crystal are clearly seen by the

considerable dispersion of the pulse shape. Since the full transmitted wave function

is measured, complete information on both amplitude and phase can be determined

using Fourier analysis. The amplitude transmission coefficient as a function of

frequency is given by the ratio of the magnitudes of the Fourier transforms of the

transmitted and input pulses:

Tð f Þ ¼ Atransð f Þ
Arefð f Þ (4.2)

Figure 4.12c shows the Fourier transform magnitudes corresponding to the

pulses in Figs. 4.12b and 4.12b, demonstrating not only the large effect that

phononic crystals can have on the amplitude of transmitted waves but also the

wide range of frequencies that can be probed in a single pulsed measurement.

In addition to the transmission coefficient, ballistic pulse measurements also

provide information on the transmitted phase, from which the wave vector can be

obtained. This phase information is also directly related to the phase velocity uphase
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of the component of the Bloch state with wave vector in the extended zone scheme.

These parameters are measured by analyzing the cumulative phase difference D’
between transmitted and input pulses (obtained from Fourier transforms of both

signals—see Fig. 4.12d). This phase difference can be expressed as follows:

D’ ¼ kL ¼ 2pL
uphase

f (4.3)

where L is the crystal thickness. The ambiguity of 2p in the phase can be eliminated

by making measurements down to sufficiently low frequencies, since the phase

difference must approach zero as the frequency goes to zero. From (4.3) it is

possible to obtain directly the wave vector as function of frequency in the extended
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Fig. 4.12 (a) Incident and (b) transmitted ultrasonic pulses through a 6-layer 3D phononic crystal

of tungsten carbide beads in water. The crystal structure is FCC, and the direction of propagation is

along the [111] direction. (c) The amplitude of the incident (dashed line; left axis) and transmitted

pulses (solid line; right axis), obtained from the fast Fourier transforms of the waves in (a) and (b).

Their ratio yields the frequency dependent transmission coefficient [(4.2)]. (d) The phase differ-

ence between the transmitted and reference pulses, from which frequency dependence of the wave

vector can be determined [(4.3)]. The large decrease in transmitted amplitude near 1 MHz and the

nearly constant phase difference of np, where n ¼ 6 is the number of layers in the crystal, are

characteristics of a Bragg gap

106 A. Sukhovich et al.



zone scheme; the corresponding wave vector in the reduced zone scheme is

obtained by subtracting the appropriate reciprocal lattice vector. Thus, (4.3) allows

the dependence of the angular frequency o on the wave vector k to be determined,

yielding the dispersion curve and hence the band structure.

Finally, the experiments on the transmission of ballistic pulses allow the group

velocity, which is the velocity of Bloch waves in the crystal, to be measured. By its

definition, the group velocity is the velocity with which a wave packet travels as a

whole. Since the transmitted pulse may get distorted from its original Gaussian

shape as it passes through the crystal, especially if the pulse bandwidth is wide (as

in Fig. 4.12), the group velocity may lose its meaning in this case [10]. However, it

is still possible to recover two essentially Gaussian pulses by digitally filtering

the input and output pulses with a narrow Gaussian bandwidth centered at the

frequency of interest. The group velocity at that frequency is then found by the ratio

of the sample thickness L to the time delay Dtg between two filtered pulses:

ug ¼ L Dtg
�

: (4.4)

This direct method of measuring the group velocity is illustrated by Fig. 4.13,

which shows input and transmitted pulses filtered at the central frequency of

0.95 MHz with a bandwidth of 0.05 MHz, for a 12-layer 3D crystal of tungsten

carbide beads in water. The delay time is also indicated. By repeating this procedure

for different frequencies, the frequency dependence of the group velocity can be

found.

4.2.2.2 Field Mapping Experiments

In certain cases, the outgoing field is not expected to be spatially uniform and the

direction of the outgoing pulse might not be perpendicular to the crystal’s output

face (as in focusing and negative refraction experiments). To investigate the field

distribution a transducer whose size is larger than the wavelength cannot be used as

it smears out the spatial variations of the field by detecting the average pressure

across the transducer face. To resolve subwavelength details and map the field

accurately one needs an ultrasound detector with physical dimensions less than a

wavelength. For example, Yang et al. [7] and Sukhovich et al. [5] used a small

hydrophone with an active element diameter of 0.4 mm to investigate spatial

properties of the output sound field. This detector was appropriate since in their

experiments the wavelength in water ranged from 0.5 to 3 mm. In practice, the

ultrasound field was measured at every point of a rectangular grid by mounting the

hydrophone on a 3D motorized translation stage. In case of the experiments by

Sukhovich et al. [5], the plane of the grid was perpendicular to the rods and

intersected them approximately in their mid-points (to avoid edge effects).

Fig. 4.14 illustrates the experimental geometry used to map the outgoing field in

negative refraction experiments with the prism-shaped crystal.
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Fig. 4.14 Field mapping to investigate negative refraction for a prism-shaped 2D phononic crystal
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The recorded waveforms (acquired at each point of the grid) can be analyzed in

either time or frequency domains. In the time domain, the value of the field at each

grid point is read at some particular time and then used to create an image plot,

which is essentially a snapshot of the field at this particular moment of time. By

creating several image plots for different times, one can also investigate the time

evolution of the transmitted sound. The video in the supplementary information to

[5] shows an example of such time-evolving field maps. In the frequency domain,

one first calculates the Fourier transforms (FTs) of the acquired waveforms. The

magnitude of each FT is read at a single frequency and these values are used to

make the image plot. The image plot in this case represented an amplitude map

(proportional to the square root of intensity), which would be obtained from the

field plot if continuous monochromatic wave were used as an input signal instead of

a pulse. Examples of field and amplitude distributions measured in the negative

refraction and focusing experiments by Sukhovich et al. [5, 11] are shown in

Sects. 4.4 and 4.5.

4.3 Band Gaps and Tunneling

Lattice periodicity in phononic crystals leads to large dispersive effects in wave

transport, which are shown by band structure plots that depict the relationship

between frequency and wave vector along certain high symmetry directions. Rep-

resentative examples of the band structures of 2D and 3D phononic crystals are

illustrated in Figs. 4.15 and 4.16 for the structures described in Sect. 4.1. In both

these examples, the continuous medium surrounding the inclusions is water, with

the scattering inclusions being 1.02-mm-diameter steel rods for the 2D case and

0.800-mm-diameter tungsten carbide spheres for the 3D case. The solid curves in

these figures show the band structures calculated using Multiple Scattering Theory

(MST), which is ideally suited for determining the band structures of mixed crystals

consisting of solid scatterers embedded in a fluid matrix (see Chap. 10). The

symbols represent experimental data, determined from measurements of the trans-

mitted cumulative phase Df , as described in the previous section. To compare with

the theoretical band structure plots, the measured wave vectors (k ¼ o/vp ¼ Df/L)
are folded back into the first Brillouin zone by subtracting a reciprocal lattice vector

(kreduced ¼ kextended – G). Excellent agreement between theory and experiment is

seen, showing that experiments on relatively thin samples (6 layers for the 2D case,

and 12 layers for the 3D case) are sufficient to reveal the dispersion relations of

waves in the pass bands of an infinite periodic medium.

For both phononic crystals, there is a large velocity and density difference

between the scattering inclusions and the continuous embedding medium,

facilitating the formation of band gaps due to Bragg scattering. It is well known

that Bragg gaps are caused by destructive interference of waves scattered from

planes of periodically arranged scatterers. The lowest frequencies at which such

band gaps may occur satisfy the condition that the separation between adjacent
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crystal planes is approximately half the wavelength in the embedding medium. In

the 2D crystal, the lowest “gap” is only a stop band along the GMdirection, with the

lowest complete gap occurring between the 2nd and 3rd pass bands. For the 3D

crystal, the lowest band gap near 1 MHz is wide and complete, with the complete

Fig. 4.15 Band structure of a 2D phononic crystal of 1.02-mm-diameter steel rods arranged in a

triangular lattice and surrounded by water. The lattice constant a ¼ 1.27 and the steel volume

fraction is 0.584. Solid curves are predictions of the MST and open circles are experimental data.

There are no data points for the second band along GK as this is a “deaf” band to which an incident

plane wave cannot couple
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Fig. 4.16 Band structure of a 3D phononic crystal made from 0.800-mm-diameter tungsten

carbide spheres arranged in the FCC lattice and surrounded by water at a volume fraction of

0.74. Solid curves are predictions of the MST and circles are experimental data
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gap width being nearly 20 % and the width along the [111] direction extending to

approximately 40 %. These results show that phononic crystals with relatively

simple structures can exhibit wide gaps, which are easier to achieve for phononic

crystals than their optical counterparts because of the ability to manipulate large

scattering contrast via velocity and density differences. Indeed, there is an extensive
literature on how to create large band gaps for phononic crystals with a wide variety

of structures, with the important role of density contrast now being well established

(see the special edition on phononic crystals in Zeitschrift fur Kristallographie for

many examples and references [12]).

The existence of band gaps in phononic crystals of finite thickness is shown

clearly through measurements of the transmission coefficient. Results for the 2D

and 3D crystals are plotted in Figs. 4.17 and 4.18, where the symbols represent

experimental data and the solid curves are theoretical predictions using the layer

MST [5, 9]. At low frequencies below the first band gap, the transmission exhibits

small oscillations due to an interference effect resulting from reflections at the

crystal boundaries; there are n�1 oscillations, where n is the number of layers, and

the peaks in these oscillations correspond to the low frequency normal modes of the

crystal. At band gap frequencies, the amplitude transmission coefficient shows very

pronounced dips which became deeper in magnitude as the number of layers in the

crystal increases. The sample-thickness dependence of the transmission coefficient

in the middle of the gap (at 0.95 MHz) is plotted for the 3D crystals in Fig. 4.19.

This figure shows that the transmitted amplitude A decreases exponentially with

thickness in the gap, A(L) ¼ A0 exp[�kL], consistent with evanescent decay of the

amplitude, with k being the imaginary part of the wave vector. The value of k is

0.93 mm�1 in the middle of the gap, quantifying how quickly the transmission

drops as the thickness increases. Thus, wave transport crosses over from propaga-

tion with virtually no losses outside the gap to evanescent transmission inside the

gap. This evanescent character of the transmission at gap frequencies suggests that

ultrasound is transmitted through crystals of finite thickness by tunneling, whose

dynamics can be investigated by measuring the group velocity vg and predicting its
behavior using the MST [6]. Figure 4.20 shows that the group velocity increases

linearly with sample thickness in the absence of dissipation (solid line), an unusual

result that is the classic signature of tunneling in quantum mechanics [13], implying

that the group time (tg ¼ L/vg) is independent of thickness in sufficiently thick

samples. This behavior is clearly seen in Fig. 4.20 by the theoretical predictions

without absorption for thicknesses greater than 5 layers of beads. The dashed line in

this figure implies a constant value of the tunneling time through the phononic

crystal given by tg ¼ 0.54 ms, as expected for tunneling when kL � 1. The

experimentally measured group velocities are less than this theoretical prediction

but are still remarkably fast, being greater than the speed of sound in water

(1.5 mm/ms) for all crystal thicknesses, and greater than the velocities of elastic

waves in tungsten carbide (6.66 and 3.23 mm/ms for longitudinal and shear waves,

respectively) for the largest thicknesses. These experimental results for vg are

smaller than the dashed line in Fig. 4.20 because of absorption, which can be

taken into account in the MST by allowing the moduli of the constituent materials
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to become complex. The predictions of the theory with absorption are shown by the

dashed curve and give a satisfactory description of the experimental results,

indicating how dissipation, which has no counterpart in the quantum tunneling

case, significantly affects the measured tunneling time.

The effect of dissipation on tunneling was interpreted using the two-modes

model (TMM), which allows the role of absorption to be understood in simple

physical terms [6]. Absorption in the band gap of a phononic crystal cuts off the long

multiple scattering paths, making the destructive interference that gives rise to the

band gap incomplete. As a result, a small-amplitude propagating mode exists in
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Fig. 4.17 Amplitude transmission coefficient as a function of frequency for a 6-layer 2D

phononic crystal along the GM direction. Squares and lines represent experimental data and

MST predictions, respectively
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parallel with the dominant tunneling mode, so that the group velocity can be

calculated from the weighted average of the tunneling time ttun and the propagation
time tprop ¼ L/vprop. Thus, �vg ¼ L wtunttun þ wpropL=vprop

� ��
, where wtun and wprop

are the weighting factors, which depend on the coupling coefficients and attenuation

factors of each mode [6, 14]. The best fit to the data, shown by the solid curve in

Fig. 4.20, was obtained with a coupling coefficient to the tunneling mode of 0.95,

confirming the dominance of the tunnelingmechanism, and with a contribution from

the propagating component that diminished gradually with thickness, consistent

with decreased dissipation in the thicker crystals—a physically reasonable result

[14]. It is also interesting to note that with thickness-independent weight factors, the

predictions of the TMM and theMSTwith absorption are very similar. These results
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show that the TMM successfully account for the effects of absorption on the

tunneling of ultrasonic waves in phononic crystals, thereby providing a simple

physical picture of the underlying physics.

The demonstration of the tunneling of ultrasound through the band gap of a

phononic crystal raises an interesting question: Can resonant tunneling, analogous

to the resonant tunneling of a particle through a double barrier in quantum mechan-

ics, be observed in phononic crystals? This effect is intriguing since on resonance

the transmission probability of a quantum particle through a double barrier is

predicted to be unity, even though the transmission probability through a single

barrier is exponentially small. This question has been addressed through experi-

ments and theory on the transmission of ultrasound through pairs of phononic

crystals separated by a uniform medium, which formed a cavity between them

[8]. Evidence for resonant tunneling was revealed by large peaks in the transmis-

sion coefficient on resonance, which occurs at frequencies in a band gap when the

cavity thickness approaches a multiple of half the ultrasonic wavelength. However,

the transmission was less than unity on resonance because of the effects of dissipa-

tion in the phononic crystals, an effect that has a simple interpretation in the two

modes model as a consequence of leakage due to the small propagating component

in the band gap. Thus, the subtle effects of absorption on resonant tunneling in

acoustic systems could also be studied. In addition, the use of pulsed experiments

enabled the dynamics of resonant tunneling to be investigated. Very slow (“sub-

sonic”) sound was observed on resonance, while at neighboring frequencies, very

fast (“supersonic”) speeds were found. In contrast to the quantum case, ultrasonic

experiments on resonant tunneling in double phononic crystals enable the full wave

function to be measured, allowing both phase and amplitude information, in

addition to static and dynamic aspects, to be investigated.

While the most commonly studied type of band gap in phononic crystals arises

from Bragg scattering, band gaps may also be caused by mechanisms, such as

hybridization and weak elastic coupling effects, which do not rely on lattice

periodicity. Hybridization gaps are caused by the coupling between scattering

resonances of the individual inclusions and the propagating modes of the embed-

ding medium [15]. Their origin may be viewed as a level repulsion effect. Band

gaps due to this hybridization mechanism were first observed, and have also been

studied more recently, in random dispersions of plastic spheres in a liquid matrix

[16–20]. Such gaps are of particular importance in the context of acoustic and

elastic metamaterials, where the coupling of strong low frequency resonances with

the surrounding medium may lead to negative values of dynamic mass density and

modulus [21]. In phononic crystals, it is the possibility of designing structures in

which both hybridization and Bragg effects occur in the same frequency range that

is especially interesting [22]. For example, the combination of Bragg and

hybridization effects has been invoked to explain the remarkably wide bandgaps

that have been found both experimentally and theoretically in three dimensional

(3D) crystals of dense solid spheres (e.g., steel, tungsten carbide) in a polymeric

matrix (e.g., epoxy, polyester) [14, 23]. Other examples of band gaps that are

enhanced by the combined effects of resonances and Bragg scattering have been
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demonstrated in two-dimensional crystals of glass rods in epoxy and three dimen-

sional arrays of bubbles in a PDMS matrix [24, 25].

We illustrate the characteristic features of hybridization gaps by showing results

of experiments and finite element simulations on a two-dimensional hexagonal

phononic crystal of nylon rods in water [26]. Figure 4.21 shows the dispersion

relation and transmission coefficient in the vicinity of the lowest scattering reso-

nance of nylon rods for a crystal with a nylon volume fraction of 40 %. The

resonance occurs near 1 MHz for the 0.46-mm-diameter rods used in this crystal.

Near this frequency, the dispersion relation exhibits a negative slope, corresponding

to a range of frequencies with negative group velocity. Direct measurements of the

negative group velocity were performed from transmission experiments using

narrow-bandwidth pulses in the time domain, where the peak of the transmitted

pulse was observed to exit the crystal before the peak of the input pulse entered the

crystal. The negative time shift arises from pulse reshaping due to anomalous

dispersion and does not violate causality. This property of negative group velocity

is characteristic of resonance-related band gaps, and can be used to distinguish

them from Bragg gaps, for which the group velocity is large and positive, as shown

above. At higher frequencies, a second gap is observed for this crystal near

1.5 MHz; this gap is dominated by Bragg effects, with large positive group

velocities inside the gap.

A third mechanism leading to the formation of band gaps occurs in three-

dimensional single-component phononic crystals with the opal structure: spherical
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Fig. 4.21 Dispersion relation (a) and transmission coefficient (b) for a 6-layer 2D crystal of nylon

rods in water at a nylon volume fraction of 0.40. Symbols and solid curves represent experimental

data and finite element simulations respectively. The lower band gap near 1 MHz is an example of

a pure hybridization gap, characterized by a sharp dip in transmission and a range of frequencies in

the dispersion curve for which the group velocity is negative. The broader second gap centered

near 1.5 MHz has the character of a Bragg gap, with a large positive group velocity, and occurs at

the edge of the first Brillouin zone, indicated by the vertical dashed line
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particles that are bonded together by sintering to form a solid crystal without a

second embedding medium. Band gaps in such phononic crystals have been

observed at both hypersonic and ultrasonic frequencies [26, 27]. They have also

been seen in disordered structures of randomly positioned sintered spherical

particles [28, 29]. The origin of the band gaps is associated with resonances of

the spheres, but the underlying mechanism is quite different to the formation of

hybridization gaps. Indeed the physics is more analogous to the tight-binding model

of electronic band structures, with the resonant frequencies of the spheres

corresponding to the electronic energy levels of the atoms. The coupling between

the individual resonances of the spherical particles, due to the necks that form

between the particles during sintering, leads to the formation of bands of coupled

resonances with high transmission (pass bands). However, if the mechanical cou-

pling between the spheres is sufficiently weak, these pass bands have limited

bandwidth, and band gaps form in between them. These band gaps can be quite

wide and are omnidirectional.

Up to now, the theory and experiments we have described in this chapter have

been related to absolute band gap properties of phononic crystals. These results on

sound attenuation and tunneling have proved phononic crystals meaningful in the

perspective of building-up artificial materials with frequency dependent properties.

However, the periodic structure of phononic crystals similarly impacts propagation

of elastic waves in the frequency range of the passing bands. More specifically, the

zone folding effects imply the existence of negative group velocity bands. Such

bands offer the opportunity of negative refraction. In the next sections, theoretical

and practical aspects of negative refraction are discussed.

4.4 Negative Refraction in 2D Phononic Crystals

The periodicity of the phononic crystals makes them markedly different from the

homogeneous materials since wave propagation now depends on the direction

inside the crystal. It was shown in the previous section that the periodicity is the

fundamental cause for the existence of the stop bands and band gaps. In this section,

we will consider some other remarkable properties of phononic crystals not found

in regular materials: negative refraction and sound focusing. It will be shown that

both phenomena are essentially band structure effects.
It is well known that reflection and refraction of waves of any nature (acoustic,

elastic or electromagnetic) occurring at the interface between two different media

are governed by Snell’s law. According to Snell’s law, the component of the

wavevector, which is tangential to the interface, must be conserved as the wave

propagates from one medium to another. Let us consider, for example, the simple

case of a plane wave obliquely incident from a liquid with Lamé coefficients l1 and
m1 ¼ 0 on an isotropic solid characterized by Lamé coefficients l2 and m2
(Fig. 4.22). As a result of the wave interaction with the boundary, part of the energy

of the incident wave is reflected back into the liquid in the form of a reflected
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wave, which propagates with the phase velocity c1 ¼
ffiffiffiffiffiffiffiffiffiffi
l1 r=

p
. The rest of the

incident wave is transmitted into the solid and generates two outgoing waves,

longitudinal and transverse, which propagate with phase velocities

c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl2 þ 2m2Þ r=

p
and b2 ¼

ffiffiffiffiffiffiffiffiffiffi
m2 r=

p
respectively. Snell’s law requires

that parallel (to the interface) components of the wavevectors of the incident wave,

k1 ¼ o c1= , and of both refracted waves, k2 ¼ o c2= and k2t ¼ o b2= be equal (note

that k1 lies in the x–z plane and so do k2 and k2t). Mathematically, this means that the

following conditions must be satisfied:

k1 sin y1 ¼ k2 sin y2 ¼ k2t sin g2 (4.5)

where anglesy1; y2 andg2 are indicated in Fig. 4.22. By introducing the notion of the
index of refraction n and n0 , where n ¼ k2 k1= and n0 ¼ k2t k1= , Snell’s law is

frequently written in the following form:

sin y1¼ n sin y2
sin y1 ¼ n0 sin g2

(4.6)

With the help of Snell’s law (4.5), one can easily calculate the refraction angles

y2 and g2when the parameters of the two media and the angle of incidence y1 are

known (it is clear from Snell’s law that the angle of reflection must be equal to the

angle of incidence). Physically, Snell’s law implies that refraction and reflection

occur in the same way at any point of the interface between two media (i.e.,

independent of the x coordinate in Fig. 4.22).

The refraction of the wave from one medium to another can be conveniently

visualized with the help of the equifrequency surfaces (or contours in case of 2D

systems). Equifrequency surfaces are formed in k-space by all points whose

wavevectors correspond to plane waves of the same frequency o . Physically,

they display the magnitude of the wavevector ~k of a plane wave propagating in

the given medium as a function of the direction of propagation. For any isotropic

medium the equifrequency surfaces are perfect spheres (circles in 2D), since the

LIQUID

SOLID

x

z

k1

k2

k2

k1

k

k
q1 q1

q2

g2

®®

®

®

Fig. 4.22 Reflection and

refraction of a plane wave

incident obliquely on the

liquid/solid interface from the

liquid. Note the conservation

of the wavevector

component kjj

4 2D–3D Phononic Crystals 117



magnitude of the wavevector is independent of the direction of propagation, as

illustrated in Fig. 4.23.

Another extremely important property of equifrequency surfaces is that at its

every point the direction of the group velocity~ug (or equivalently the direction of the
energy transport) in the medium at a given frequency coincides with the direction of

the normal to the equifrequency surface (pointing towards the increase of o). In

other words,~ug is given by the gradient of o as a function of the wavevector ~k:

~ug ¼~r~k oð~kÞ (4.7)

On the other hand, the direction of the phase velocity~up (or the direction of the

propagation of constant phase) is set by the direction of the wavevector~k. As shown
in Fig. 4.23, in an isotropic medium both phase and group velocities point in the

same direction. This is however not the case in an anisotropic medium (e.g., GaAs

or CdS), in which magnitude of the wavevector is direction dependent and thus

equifrequency surfaces will not be perfect spheres anymore.

Having introduced the notion of the equifrequency surfaces/contours, let us use

them to illustrate the refraction of a plane wave in Fig. 4.24. This is accomplished

by drawing the equifrequency contours (since all wavevectors lie in the x–z plane)
for each medium on the scale that would correctly represent the relative magnitudes

of the wavevectors of the incident and refracted waves. By projecting the parallel

component of the incident wavevector ~k1 (which must be conserved according to

Snell’s law) on the contours of the solid, one is able to find the direction of

propagation (i.e., refraction angles) of both waves in the solid (Fig. 4.24). As was

explained in the preceding paragraph, group velocities ~ug and wavevectors ~k are

parallel to each other (because of the spherical shape of the equifrequency

contours) and also point in the same direction, since o increases as the magnitude

of the wavevector increases, meaning that~r~k oð~kÞ points along the outward normal

to the equifrequency contour. The significance of the last observation will become

apparent when the refraction in 2D phononic crystals will be discussed.
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The periodicity of the phononic crystal makes it an anisotropic medium, in which

the magnitude of the wavevector depends on the direction inside the crystal and

equifrequency contours are, in general, not circular. However, the frequency ranges

still might exist where the equifrequency are almost perfect circles as is the case of a

2D crystal made of solid cylinders assembled in a triangular crystal lattice in a liquid

matrix. For example, for a crystal made of stainless steel rods immersed in water the

MST predicts the existence of circular equifrequency contours in the 2nd band for

the frequencies that are far enough from the Brillouin zone edges (ranging from

0.75 MHz to 1.04 MHz, which is the top frequency of the 2nd band). The

equifrequency contours for the several frequencies are presented in Fig. 4.25 [5].

Note that in this frequency range the wavevector ~kcr and the group velocity~ug
(which defines the direction of the energy transport inside the crystal) are antipar-
allel to each other. This is the consequence of the fact that o increases with the

decreasing magnitude of the wavevector, meaning that~r~koð~kÞ points along the

inward normal to the equifrequency contour, as explained in Fig. 4.26. It is also

obvious that, because of the circular shape of the equifrequency contours in the 2nd

band, ~kcr and~ug are antiparallel irrespective of the direction inside the crystal.

Let us investigate the consequence of this fact by considering the refraction into

such a phononic crystal of a plane wave incident on the liquid/crystal interface from

the liquid and having frequency lying in the 2nd band of the crystal (Fig. 4.27). The

parallel component of the wavevector in both media must be conserved just as it

was in the case displayed in Fig. 4.24. What is different however is that the wave

vector inside the crystal and the direction of the wave propagation inside the crystal
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are now opposite to each other. As a result, both incident and refracted waves (rays)
stay on the same side of the normal to the water/crystal interface (compare with

Fig. 4.24 in which incident wave crosses the plane though the normal as it refracts

into the lower medium).
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Since the refracted wave happens to be on the negative side of the normal, this

unusual refraction can also be described by assigning an effective negative index of
refraction to the crystal. In this case we say that the incident wave is negatively
refracted into the crystal and use the term “negative refraction” to indicate this

phenomenon. Before we proceed further with discussion of sound wave refraction

in phononic crystals, it is worth noting that the negative refraction considered above

is fundamentally different from negative refraction in double negative materials, as

originally envisaged for electromagnetic waves by Veselago [30] in materials with

negative values of both electric permittivity e and magnetic permeability m.
Although both phenomena look similar, it is a band structure effect in case of

phononic crystals whereas in case of doubly negative materials it is brought about

by the negative values of the local parameters of the medium (e and m for the

electromagnetic wave case). It is also important to recognize that the negative

direction of refraction is always given by the direction of the group velocity in

phononic crystals.

Let us now consider the question of the experimental observation of the negative
refraction in phononic crystals. First, it should be mentioned, that the same effect

must occur when the direction of the wave in Fig. 4.27 is reversed, i.e., when the

wave is incident on the crystal/water interface from the crystal. One might contem-

plate an experiment in which a plane wave would be incident obliquely on a flat
phononic crystal with parallel sides. According to the previous discussion, it should
be refracted negatively twice before it finally appears on the output side of the

crystal, as shown in Fig. 4.28.

This type of experiment, however, is not able to provide conclusive evidence of

the negative refraction, as the direction of the propagation of the output wave will

be the same whether it refracts negatively inside the phononic crystal or positively

in a slab of a regular isotropic material (Fig. 4.28). In case of an input beam of finite

width, one can look for evidence of either negative or positive refraction inside the

slab by measuring the position of the output beam with respect to the input beam

and comparing it to the predicted value. In practice, this shift in position of the finite

width beammay be difficult to resolve. Another type of experiment, which is able to
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provide direct verification of whether positive or negative refraction takes place,

employs a prism-shaped phononic crystal (Fig. 4.29).

For the prism-shaped crystal, the input plane wave is incident normally on the

shortest side of the crystal and propagates into the crystal without any change in its

original direction, just as it would do in the case of a prism made out of a regular

material (see Fig. 4.29a). Recall that the ensuing wave inside the crystal will have

its wavevector ~k opposite to the direction of its propagation. This wave, however,

will be incident obliquely on the output side of the crystal and must undergo

negative refraction upon crossing the crystal/water interface (Fig. 4.29b), whereas

in the case of a prism of a regular material the output wave will be positively

refracted. Therefore, by recording on which side of the normal the outgoing wave

appears as it leaves the crystal, one is able to directly observe negative refraction of

the sound waves. From the predictions of the MST, one would expect the outgoing

wave to emerge on the negative side of the normal. This prediction was tested in the

experimentally by Sukhovich et al. [5]. The 2D phononic crystal was made in a

shape of a right-angle prism which is shown in Fig. 4.30. along with the high

symmetry directions of the triangular crystal lattice.

In the experiment, the input signal was normally incident on the shortest side of

the crystal, and the wavefield was scanned at the output side of the crystal

(Fig. 4.29b). Figure 4.31 presents the snapshot of the wavefield on which the

negatively refracted outgoing wave is clearly observed.

The angle at which the negatively refracted wave emerges with respect to

normal, �21� � 1�, was found to be in good agreement with the one predicted

by the MST and Snell’s law (�20.4�).

4.5 Flat Lenses and Super Resolution

In 2000, Pendry [31] has proposed to use “Double-negative” metamaterials, which

means composite systems exhibiting both negative permittivity and dielectric

constant, as a building material for potentially perfect lenses that beat the Rayleigh

diffraction limit. This is possible thanks to the contribution of two phenomena. First

intrinsic properties of negative index metamaterials provide self-focusing capabilities

to a simple slab of these materials. The second effect requires the evanescent part of

the spectra of a source to couple with the lens and being resonantly “amplified” in

order to reach the image without losses. From this time, experimental and theoretical

demonstrations of acoustic metamaterials and phononic crystals have been reported.

Early results by Yang et al. [7] in 2004 have shown the applicability of phononic

structures for sound focusing. They have realized phononic crystals made of

0.8 mm-diameter tungsten carbide beads surrounded by water. The face centered

cubic structure of the closed packed beads exhibits a complete band gap in the 0.98

to 1.2 MHz range. From the analysis of the equifrequency surfaces summarized in

Fig. 4.32a, b, the authors have shown that significant negative refraction effects are

expected due to the highly anisotropic properties of the dispersion relations.
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Fig. 4.31 Outgoing pulses in the negative refraction experiment (after Sukhovich et al. [5])
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Fig. 4.30 Geometry of the 2D prism-shaped crystal. (a) Unit cell. (b) View from above. High

symmetry directions, indicated as GM and GK, correspond to those shown in Fig. 4.1
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Experiments have been carried out to study the transmission of sound across a stack

made of the phononic crystal mounted onto a thick substrate. As will be discussed

in Fig. 4.33, negative refraction through a phononic crystal slab is expected to

produce a focus inside the crystal and on the output medium. This later focus was

observed by Yang et al. at the right distance on the substrate surface. They used a

pinducer that produce ultrasonic pulses and a hydrophone mounted on a 3D

translation stage. The recorded data was then treated by Fourier transform in

Fig. 4.32 Focusing of sound in a 3D phononic crystal after Yang et al. [7]. (a) Cross section of the

equifrequency surfaces at frequencies near 1.60 MHz in the reduced (a) end extended (b) Brillouin

zones. The cross section plane contains the [001], [110] and [111] directions. (c) Experimental

field patterns measured a 1.57 MHz without the phononic crystal in place. (d) same as (c) with the

phononic crystal in place
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Fig. 4.33 Illustration of the refraction properties of a negative index material slab. (a) In the usual

case of a positive material a source gives only divergent beams. If the slab is made of a negative

index metamaterial then the beams are convergent in the extent of the slab. (b) If the slab is thick

enough (or the index has sufficient magnitude), the incoming rays focus twice in the thickness of

the slab and on the output side. Here the index is supposed to be opposite to the index of the

embedding media. Two images are produced, inside the slab and on the output side (If the slab is

too thin (Fig. 4.33a) then a single virtual image exists)
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order to recover the components at the frequency of interest. The field patterns in

Fig. 4.32c, d show the focusing effect in the presence of the phononic crystal.

In 2009, evidences of an acoustic super-lensing effect have been provided by

Sukhovich et al. [11]. Here we describe the principles of acoustic super-resolution

and go into details about these recent results.

4.5.1 Sound Focusing by a Slab of Negative Index Material

Among the numerous consequences of negative refraction, the most promising in

terms of applications is the ability for a slab of negative index material to produce

an image from any point source. Indeed, in the extent of an equivalent homoge-

neous negative index material, the Snell’s law simply applies using the negative

index.

n1 sini1 ¼ n2 sini2 (4.8)

Here, n1 and n2 are the indexes and i1 and i2 the incident and refracted angles.

The negative value of i2 accounts for both refracted and incident beams being on the

same side with respect to the normal plane. Let us consider a sound source that

emits waves in a usual positive medium in front of a slab of another material. As

depicted on Fig. 4.33a, geometric ray tracing predicts that, if both materials are

positive, every beam from the source will cross the two interfaces between the two

materials and diverge as well on the output side of the slab. By contrast, if the slab is

made of a negative index material then, any diverging beam will converge in the

thickness of the slab. In the latter case, provided that the slab is sufficiently thick,

the beam will focus twice (Fig. 4.32b).

This way a simple parallel slab of negative material performs by itself the

focusing of an image as a lens would do. It is worthy to note that the principle of

such a lens does not rely on the effect of shaping the material but rather on the

intrinsic properties of negative index materials. The properties of these lenses are

completely different from their usual counterparts. First, a simple geometrical

analysis shows that the link between the respective positions of the image and

source points is:

i ¼ d
tani2
tani1

� s ¼ d
�n1=n2cosi1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðn1=n2Þ2sin2i1
q � s; (4.9)

where d is the slab thickness, s the distance from the point source to the input side

and i the distance from the output side to the image. The consequence of this

relation is that rays with different angles of incidence focus at different distances

from the output side. This is a drawback since producing an image from a point

source requires that all the angular components of the incident signal are focused
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to a same point, which is called stigmatism. Here this requirement is fulfilled

only if:

n2 ¼ �n1; (4.10)

which is the condition for All Angles Negative Refraction (AANR). This first

condition is a strong yet possible condition for imaging with a negative

metamaterial slab. In that case (4.9) reduces to:

i ¼ d � s: (4.11)

4.5.2 Origin of the Rayleigh Resolution Limit: Toward Super
Resolution

This condition being satisfied, one can hope to build a lens whose resolution at a

wavelength l is at best D ¼ l 2= . This limitation, known as Rayleigh resolution

limit, holds even in the case of no-loss materials and with a lens of infinite

aperture. As pointed out by Pendry [31], its origin lies in the loss of the near

field, evanescent, components from the source. If we consider the field emitted by

a point source one must consider components with real wave-vectors (propagating

waves) and pure imaginary wave-vectors due to the finite extension of the source.

The former components are evanescent waves whose decay occurs over the

distance of a few wavelengths. In the following we describe by means of a

Green’s function formalism [32] how the loss of these components leads to the

Rayleigh resolution limit.

Let assume an infinite slab of thickness d made of a homogeneous double

negative material immersed in a positive medium. Despite Green’s functions are

well suited to describe the response of any medium (possibly inhomogeneous) to a

point source stimulus, for the sake of simplicity, both media are treated as homoge-

neous fluids. This assumption will be discussed further on a practical case. How-

ever, this description is still suitable to show how to enhance the resolution thanks

to the integration of evanescent components. The notations and geometry used in

the following parts are depicted on Fig. 4.34, where r1, r2,c1 and c2 are the densities
and the sound waves velocities (phase velocities) of media 1 and 2 respectively.

The Green’s functionGð~x;~x0Þ describes the field generated at~x by a Dirac source
located at~x0. Due to the axial symmetry of the problem and the aim to introduce the

concept of wave-vectors we shall write this function as a two-dimensional spatial

Fourier transform in the plane parallel to the fluid/slab interface:

Gð~x;~x 0Þ ¼
Z

d2~k==

ð2pÞ2 e
i~k== ~x==�~x 0

==ð Þgð~k==; x3; x03Þ; (4.12)
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where~k== and~x== are the components of the wavevector and position vector parallel

to the (x1, x2) plane. This is the function of a composite medium composed of the

flat lens (medium 1) of thickness d (with faces centered on�d/2 and d/2) immersed

between two semi-infinite media 2. Following the notions developed in Chap. 3

about composition of Green’s functions, this Fourier Transform can be

expressed by:

gð~k==; x3; x03Þ ¼
2r1c

2
1a1e

�a2ðx3�x0
3
�dÞ

r1c
2
1a1 þ r2c

2
2a2

� �2
ea1d � r1c

2
1a1 � r2c

2
2a2

� �2
e�a1d

for x03<� d=2 and x3>d=2

(4.13)

Here,ai ¼ �ik3;ðiÞ , is the component of the wave-vector perpendicular to the

interface between medium 1 and medium 2.1 This wave-vector is the key parameter

since its value will account for the propagating or evanescent nature of the waves

and its sign depends on the positive or negative index of the material. The

component k3;ðiÞ of the wave-vector is fully determined at a given frequency and

k== by the dispersion relation of a homogeneous fluid:

o
ci

� �2

¼ k2== þ k23;ðiÞ (4.14)

In addition, the conservation of the parallel component of the wave-vector

implies that k== is the same in both media. One can see that (4.14) admits real

solutions for k3,(i) (i.e., propagating waves) only if o � k==ci . But we have to

consider the opposite case when o>k==ci and k3,(i) is pure imaginary (i.e., evanes-
cent waves). Finally, in the case of a double negative material, the wave-vector is

Fig. 4.34 Notations used in

the Green’s function analysis

of the Rayleigh resolution

limit and super-resolution

phenomena

1One can note that the zeros of the denominator in (4.13) correspond to all propagating and bound

modes of the system.
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anti-parallel to direction of propagation which is accounted for by the minus sign

for the real k3,(1) . This choice of a negative sign in the case of propagating waves

ensures causality as pointed out by Veselago [32]. These considerations about the

wave-vectors are summarized in Table 4.2.

As shown above, in order to achieve sound focusing by means of a negative

index slab, the All Angles Negative Refraction condition has to be satisfied. Since

the index is defined by ni ¼ 1 ci= , it implies that c1 ¼ c2 ¼ c. We will further

simplify the model with some loss of generality by assuming that r1 ¼ �r2 ¼ �r
� 0. The negative sign of the density is due to the fact that medium 1 is a double

negative material which means that both bulk modulus and density are negative.

Therefore, the Fourier transform of the Green’s function from (4.13) reduces to:

gðk==; x3;x03Þ ¼ e�aðx3�x0
3
�2dÞ

2rc2a
for x03<� d=2 and x03>d=2 (4.15)

This function has to be summed over the parallel components range k// of the
source. This range will determine the resolution of the image. Indeed, if we assume

that both propagating and evanescent modes contribute to the formation of the

image (i.e., the integral is carried out for k// from zero to infinity2) then:

Gð~x;~x 0Þ ¼
ð1
0

d2~k==

2pð Þ2 e
i~k== ~x==�~x 0

==ð Þg k==; x3; x
0
3

� � ¼ ei o=cð Þ~x�~xij j

4prc2 ~x�~xij j ; where

~xi ¼ 0; 0;
d

2
þ d � s

� �
:

(4.16)

This expression is that of a spherical wave originating at the point~xi. The spatial
extent of this image is zero and therefore represents the perfectly reconstructed

image of the point source. Comparing this results to the notations of Fig. 4.33b, we

retrieve the relationship i ¼ d – s. On the opposite, if we consider the usual far field
situation, evanescent waves do not contribute to the image reconstruction and at a

given frequency o, the upper limit for k// is o/c. Then, the Green’s function

Table 4.2 Normal to the slab component of the wave vector is defined depending on the

evanescent or propagating nature of the wave and of the sign of the medium index

Medium 1

Negative index

Medium 2

Positive index

Propagating

o � k==ci
k3;ð1Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

c2
1

� k2==

q
k3;ð2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

c2
2

� k2==

q
Evanescent

o<k==ci
k3;ð1Þ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2== � o2

c2
1

q
k3;ð2Þ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2== � o2

c2
2

q

2 The formulae:
ffiffip
2

p e�a xj j
a ¼ 1ffiffiffiffi

2p
p

R1
�1

eixx

a2þx2 dx is used to calculate the Green’s function.
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describes an image similar to (4.9) convoluted by a Gaussian profile whose half-

width is:

D ¼ 2pc o= ¼ l 2= (4.17)

This latter case accounts for the Rayleigh resolution limit. Beating this resolu-

tion limit requires to achieve reconstruction of the image with at least a part

of the evanescent spectrum from the source. Furthermore, we see that the

actual resolution of an image is defined by the upper bound of the integral in

(4.16). If any mechanism enables the integration of components with wave vectors

up to k//m > o/c, then the resolution is:

D ¼ 2p=km<l 2= ; (4.18)

which demonstrates that the system achieves super resolution.

4.5.3 Design of a Phononic Crystal Super Resolution Lens

Sub wavelength resolution imaging has been a topic of considerable interest over

the past decade. As seen above, this effect requires negative refraction and the

ability of a system to transmit the entire spatial Fourier spectrum from a source,

including evanescent components. Here, we discuss the possibility to implement

such an acoustic super-lens and go into details about the recent experimental and

theoretical demonstration by Sukhovich et al. [11] using a structure consisting of a

triangular lattice of steel cylinders in methanol, all surrounded by water

(Fig. 4.35a).

First, negative refraction can arise from one of two mechanisms. Double nega-

tive metamaterials consist of systems including locally resonant structures which

exhibit a negative effective mass and negative bulk modulus [33, 34]. Other suitable

systems are phononic crystals, consisting of a periodic array of inclusions in a

physically dissimilar matrix [5, 6, 9, 11, 35, 36]. Negative refraction in phononic

crystals relies on Bragg scattering that induces bands with a negative group

velocity. It should be noticed that, since both metamaterials and phononic crystals

have complex dispersion curve, the approximation of a homogeneous media is

unlikely to be satisfied over the whole frequency range. However, it is possible to

design these systems such that in a narrow frequency band, they can be considered

as double negative materials with an effective negative index. In order to achieve

AANR, one has to design the phononic crystal such that at a given frequency, the

equifrequency contour is similar to an isotropic media, i.e., is a circle. In addition, at

this frequency, in order to satisfy condition c1 ¼ c2 ¼ c, this circle must have the

same diameter as the equifrequency contour of the media that surrounds the

phononic crystals lens. This requirement explains the choice of methanol as

the fluid medium surrounding the steel rods in the phononic crystal so that, at a
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frequency in the second band, the size of the circular equifrequency contours of the

crystal could be tuned to match the equifrequency contours of water outside the

crystal (Fig. 4.36). Thus, one of the important conditions for good focusing could be

achieved with this combination of materials. Indeed, any liquid with a sound

velocity that is small enough relative to water would have sufficed, with methanol

being a convenient choice not only because it is a low-loss fluid with a low velocity

(approximately two thirds the velocity in water) but also because it is readily

available. In this case, in the vicinity of the frequency of 544 kHz (the operation

frequency), the methanol-steel lens behaves as a negative index medium whose

index is opposite to the index of water, thus achieving the AANR condition.

The second requirement to obtain sub wavelength imaging is to keep the

contribution of the source evanescent modes. Following Sukhovich et al. [11],
sub wavelength imaging of acoustic waves has also been shown to be possible

using a square lattice of inclusions on which a surface modulation is introduced

[38], a steel slab with a periodic array of slits [39], and an acoustic hyperlens made

from brass fins [40]. In these demonstrations, the mechanism by which this phe-

nomenon occurs has been attributed to amplification of evanescent modes through

bound surface or slab modes of the system. In these systems, bound acoustic modes

whose frequency falls is the vicinity of the operation frequency exist. In that case,

provided that the lens is located in the close field of the source, some energy

radiated by the evanescent modes will couple in a resonant manner to these

bounded modes. The whole phononic crystal slab is excited and reemits the

evanescent components necessary to the perfect image reconstruction. It is worthy

to note that the amplification mechanism does not violate the conservation of

energy since evanescent waves does not carry energy as pointed out by Pendry

[31]. In this case, couplings with bounded modes play the role of the amplification

mechanism. These modes can be studied by means of a Finite Difference Time

Domain (FDTD) (see Chap. 10) simulation as shown on Fig. 4.37. If we look at the

dispersion graph in the direction parallel to the water/lens interface (i.e., in the GK
direction of the phononic crystal first Brillouin zone), we see a number of branches

that corresponds to waves whose displacement is confined in the phononic crystal

or at the surface of the slab. More specifically, at the operation frequency of

544 kHz, some nearly horizontal branches extend outside the water dispersion

cone. These modes are likely to couple with wave vectors outside the cone at this

frequency in accordance with the scheme described by Luo et al. [41].

4.5.4 Experimental and Theoretical Demonstration

Experiments have been carried out by Sukhovich [11] on a 2D phononic crystal

made of 1.02-mm-diameter stainless steel rods arranged in a triangular lattice with

lattice parameter of a ¼ 1.27 mm. The surface of the crystal was covered by a very

thin (0.01 mm) plastic film and the crystal was filled with methanol. A rectangular

lens was constructed from 6 layers of rods, with 60 rods per layer, stacked in the
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GM direction of the Brillouin zone, i.e., with the base of the triangular cell parallel

to the surface. The experiments were conducted in a water tank. The ultrasound

source was a narrow subwavelength piezoelectric strip, oriented with its long axis

parallel to the steel rods; it was therefore an excellent approximation to a 2D point

source. The spatiotemporal distribution of the acoustic field on the output side of the

lens was detected with a miniature 0.40-mm-diameter hydrophone mounted on a

motorized stage, which allowed the field to be scanned in a rectangular grid pattern.

This setup ensures that the widths of the source and detector are smaller than the

wavelength in water (l ¼ 2.81 mm) at the frequency of operation (530 kHz). The

pressure field, shown on Fig. 4.38, exhibits a focal spot on the axis of the lens at a

distance of approximately 3 mm from the output side. The resolution of this image

is defined as the half-width of the pressure peak corresponding to the image. This

value is determined by locating the maximum amplitude and fitting a vertical cut of

the pressure field through this point by a sinus cardinal function (sinc(2px/D)). The
half width D/2 is taken to be the distance from the central peak to the first minimum.

The resolution at 530 kHz was found to be 0.37l, where l ¼ 2.81 mm. This value is

significantly less than the value of 0.5l that corresponds to the Rayleigh diffraction
limit, demonstrating that the phononic crystal flat lens achieves super-resolution.

These experimental results are supported by FDTD simulations. The FDTD

method is based on a discrete formulation of the equations of propagation of elastic

waves in the time and space domains on a square grid. The method is described in

further details in Chap. 10. Here the whole methanol/steel phononic crystal is

meshed as well as a part of the surrounding water. The limits of the simulation

cell are treated under the Mur absorbing boundary condition that prevents

reflections. The simulated phononic crystal slab has only 31 rods per layer in

order that calculations remain compatible with computational resources. However

tests have shown low influence of the reduced length. The acoustic source is

simulated by a line source (0.55 mm wide) of mesh points emitting a sinusoidal

displacement at frequency n ¼ 530 kHz in accordance with the best experimental

result. Their displacement has components parallel and perpendicular to the surface

of the lens. The contour map on Fig. 4.38b shows the field of the time-averaged

absolute value of the pressure. It can be seen in that an image exists on the right side

of the crystal accompanied by lobes of high pressure that decay rapidly with

distance from the surface of the crystal. The similarity between the experimental

scheme and the FDTD mesh enables direct comparison of both experimental and

simulated pressure fields. The FDTD results confirm the observation of super

resolution with an image resolution of 0.35l in excellent agreement with

experiments. Both experimental and FDTD field patterns of Figs. 4.35b and 4.38

exhibit intense excitation inside the lens which is consistent with the role that bound

modes are expected to play in the resonant transmission of the acoustic spectra.

Theses modes, near the operating frequency, are bulk modes of the finite slab, not

surface modes that decay rapidly inside the slab.

As seen above, the Rayleigh resolution limit originates from the upper limit of

the Fourier spectrum transmitted to the image point which is at best o/c in the far

field regime of an imaging device. Here, since re-emitted evanescent waves can
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contribute to the image, the resolution beats this criterion. By this mechanism one

can virtually build an image up to an arbitrary resolution provided all evanescent

modes are amplified and a sufficient time is available to reach the steady state

regime for all evanescent modes. However, despite the absence of losses in the

Fig. 4.35 Scheme of the system studied by Sukhovich et al. [11]. The radius of the steel inclusions
is r ¼ 0.51 mm with a lattice parameter of a ¼ 1.27 mm. (a) FDTD grid used for the numerical

study. The black line in front of the input side represents the source. (b) Averaged pressure field

obtained through FTDT simulation. Note the image on the output side whose resolution (0.35l) is
below the Rayleigh limit
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Fig. 4.36 Band structure of the methanol-steel phononic crystal after [37]. The solid lines represent
the dispersion curves. The dispersion relation of the surrounding medium (water) is drawn as dashed
lines. The second band exhibits a negative group velocity and intersects the water cone on a circular
equifrequency at 544 kHz
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simulation scheme, the simulated resolution value is only 0.35l. This fact indicates
that the transmission of evanescent waves does not occur over the full Fourier

spectra but rather up to a limiting cut-off value km. The previous analysis of super
resolution in term of Green’s function assumed the constituent material of the lens

to be a homogeneous negative index material and did not discuss the possible

origins of limitations to the transmitted Fourier spectra of the source. In the

practical case when a phononic crystal, which is an inhomogeneous periodic

material, is used as the lens, only modes with wave vector k parallel to the lens

surface that is compatible with the periodicity of the phononic crystal in that same

direction can couple to the sound source. In other words, all evanescent modes

cannot contribute to the reconstruction of the image. The upper bound of the

integration is determined by the largest wave vector km parallel to the lens surface

that is compatible with the periodicity of the phononic crystal in that same direction

and that can be excited by the sound source. In Fig. 4.37, the dispersion curves of

the slab immersed in water are shown in the direction parallel to the lens surface.

The dashed diagonal lines are the dispersion curves of acoustic waves in water and

the dotted horizontal line represents the operating frequency. At this frequency, the

wave vector components of the incident wave with k// < o/c can propagate in the

crystal; they will form an image according to classical geometric acoustics.

Components with k// > o/c will couple to the bound modes of the slab provided

that these bound modes dispersion curves are in the vicinity of the operating

frequency. In this way, the existence of many modes of the slab with nearly flat

dispersion curves in the vicinity of the operating frequency is beneficial for

achieving super resolution, as mentioned in [37]. One might imagine that
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Fig. 4.37 Band structure diagram of the whole phononic crystal slab and water system in the

direction parallel to the lens surface (FDTD calculation after [37]). Each curve corresponds to an

acoustic mode propagating either in the phononic crystal slab or at the water/slab interface. The

operation frequency (544 kHz) is indicated as a horizontal dotted line. The straight dashed lines
are the dispersion relation of water. The x-axis range has been extended to the fist Brillouin zone

GK of the triangular lattice
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evanescent waves with transverse wave vector of any magnitude above o/c could
couple with bound modes. However, the modes that propagate through the thick-

ness of the lens must resemble those of the infinite periodic phononic crystal. The

symmetry of the waves inside the lens must therefore comply with the triangular

symmetry of the phononic crystal. More precisely, the modes of the crystal are

periodic in k-space with a period equal to the width of the first 2D triangular

Fig. 4.38 Comparison of experimental (top) and FDTD simulation (bottom) results after Sukhovich
et al. [11] showing the averaged pressure filed and pressure profiles along the lens axis and the output
side
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Brillouin zone. This is the reason why the x-axis of Fig. 4.37 has been extended up

to the K point of the hexagonal lattice reciprocal space. If an incident wave has a

wave vector above the first Brillouin zone boundary, then it will couple to a mode

having a wave vector that can be written as ~k
0
== ¼ ~k== þ ~G where ~G is a reciprocal

lattice vector and ~k lies in the first Brillouin zone. In our case, since the first

Brillouin zone of a triangular lattice extends from � 4p 3a= to 4p 3a= in the GK
direction (parallel to the lens surface), the information carried by incident evanes-

cent waves with transverse wave vector components,

k==<km ¼ 4p 3a= ; (4.19)

will contribute to the formation of the image. According to (4.11), with this

definition, one finds that the best possible image resolution is:

D
2
¼ 3a

4
; (4.20)

Applying this estimate to our phononic crystal with a ¼ 1.27 mm, and a

wavelength in water at 530 kHz of 2.81 mm, the minimum feature size that

would be resolvable with this system is 0.34l. This estimate matches results very

well for the best resolution found for this system (0.34l) presented in Sect. 4.2, and
with experiment (0.37l).

4.5.5 Effects of Physical and Operational Parameters
on Super Resolution

In this section, we explore the effects of several factors on the image resolution of

the phononic crystal flat lens. These factors include operational parameters such as

the source frequency and the position of the source and geometrical factors such as

the width and thickness of the lens. By exploring modifications to the system, we

aim to shed light on the parameters that have the greatest impact on the imaging

capabilities of the phononic crystal lens and understand their effects as they deviate

from the best operating conditions.

4.5.5.1 Operating Frequency

Up to now, the operating frequency of the source was chosen to be 530 kHz, as in

[6], this value was chosen as a compromise between proximity with bounded modes

required for evanescent waves coupling and the AANR frequency in order to

achieve the best experimental resolution. We now focus on the effects of the

operating frequency in the 510 to 560 kHz range by means of numerical simulations

and experimental measurements. Figure 4.39a shows the image resolution and
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distance of the focus from the exit surface of the lens as a function of the operating

frequency. Experiments and calculations are in reasonable agreement from 523 to

560 kHz. Experiments exhibit an optimum resolution (0.37l) at 530 kHz as

discussed above. As expected, experimental values are higher than the computed

values since practical imperfections in the lens fabrication and measurement noise

lower the resolution of the focus. However, the difference does not exceed 0.05l
which is excellent. For increasing frequencies, the image lateral width increases up

to the Rayleigh value (0.5l) while the focus forms farther from the lens output side.

These trends are confirmed in both experiments and FDTD results. However, no

clear minimum of the resolution is observed in the simulations.

The observation of an optimum resolution has been interpreted in terms of a

trade off between the AANR condition and the excitation of bound modes of the

phononic crystal [37]. Figure 4.39b depicts the EFC in water and in the phononic

crystal for different frequencies as circles of different diameters. The occurrence of

super-resolution is discussed with respect to the operating frequency of 544 kHz

which is the frequency of AANR expected from simulations.

First, if the source frequency is tuned lower than 544 kHz, super resolution is

achieved with a resolution below 0.39l. Since the operating frequency is lower than
544 kHz, the equifrequency contour of water is a smaller circle than the EFC inside

the crystal. All components of the incident wave vectors corresponding to

propagating modes can be negatively refracted by the crystal, i.e., the AANR
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Fig. 4.39 Effects of the operating frequency after [37]. (a) Resolution and distance of the image

as a function of the operating frequency. Results from experiments (triangles) are compared to

FDTD simulation (circles). (b) Schematic representation of the transmission through the phononic

crystal lens based on the equifrequency contours shapes. The equifrequency contour of the

phononic crystal lens is represented as a circle inside the first Brillouin zone of the hexagonal

infinite crystal. The gray areas illustrate the existence of bound modes with frequency very close to

the operating frequency

4 2D–3D Phononic Crystals 137



condition is satisfied. However, the mismatch of the equifrequency contours

diameters leads to a negative effective index of refraction with magnitude greater

than one, causing the different components from the source to focus at different

places. On another hand, operating frequencies well below 544 kHz are close to the

flat bands of bound modes in the phononic crystal slab, allowing for efficient

excitation by the evanescent waves from the source (Fig. 4.37). These modes are

depicted as a gray region on the EFC of the slab in Fig. 4.39b. Thus, the gain from

the amplification of evanescent modes is retained and super-resolution is achieved.

At the frequency of 544 kHz the EFC of water and the phononic crystal have the

same diameter resulting in an effective index of �1. This condition implies a

perfect focusing of all propagating components of the source into a single focal

point. However Fig. 4.37 shows that the flat bands of bound modes of the lens are

now well below the operating frequency, which means that coupling with these

modes and amplification of the evanescent waves during transmission is now

inefficient. The experimental optimum of the lateral resolution at 530 kHz occurs

between the bound mode frequencies (510 kHz) and the perfect matching of the

equifrequency contours (544 kHz).

In the case of frequencies above 544 kHz, the EFC of water has now a greater

diameter than the EFC of the phononic crystal and the AANR condition is not

matched. A part of the propagating components experience total reflection at the

water/lens interface and the resolution worsens up to 0.5l at 555 kHz.

These results confirm the importance of the design of the phononic crystal super-

lens with respect to two conditions. First, one has to meet the AANR condition,

which requires that the phononic crystal be a negative refraction medium with a

circular EFC matching the EFC of the outside medium (water). Second, bound

modes must exist in the phononic crystal whose frequencies are close to the

operating frequency so that amplification of evanescent components may occur.

The optimum frequency is found as the best compromise between those two

parameters.

Finally, the effect of the operating frequency on the image distance can be

understood according to acoustic ray tracing. Here, since the magnitude of the

effective acoustic index of the phononic crystal decreases as the frequency

increases, the image appears farther from the lens exit surface for higher

frequencies [see (4.9)]. This trend, confirmed by experiments as well as simulations

(see Fig. 4.39a) shows the high sensitivity of the image location to changes in

frequency. Here, tuning the frequency from 523 to 555 kHz shifts the image from

2.6 to 5.75 mm. A change over 6 % in the frequency is able to tune the focal spot

distance over 220 %.

4.5.5.2 Distance from the Source to the Lens

Here, we consider the effects of the position of the source with respect to the

phononic crystal surface. Super resolution requires coupling of the evanescent

waves from the source to bound modes in the phononic crystal in order to achieve
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amplification and re-emission. This process is thus only possible if the phononic

crystal lies in the near field of the point source at a distance where evanescent

components are not too much attenuated. In terms of sizes, this means that distance

from source to lens and the period of the phononic crystal (lattice constant) are

comparable in magnitude. A question arises whether or not the detailed heteroge-

neous structure of the phononic crystal can be ignored and replaced by a continuous

model of a negative index material. This question was addressed from a numerical

point of view by varying the distance between the point source and the surface at the

optimum frequency of 530 kHz. The measured effects are the position of the source

with respect to the exit face and the lateral resolution of the focus as shown on

Fig. 4.40. Indeed, if the phononic crystal can be modeled by a homogeneous

negative index material slab, geometrical ray tracing implies that the distance

from lens to focus is described by (4.11). The dashed horizontal lines represent

the Rayleigh diffraction limit (0.5l) and the estimated maximum resolution limit

(0.34l) calculated in Sect. 4.5. It results that as the distance between the source and
the face of the lens is increased, excitation of the bound modes is less and less

effective and the resolution decreases. For this range of image distances, the

resolution remains smaller than the Rayleigh diffraction limit. The fact that this

limit is not reached on the plot is related to the close distances which range from

0.036l to 1.4l. The lens is always in the near field of the source for the studied

range. One expects that for larger distances the resolution will reach the Rayleigh

diffraction limit, accompanied by loss of super-resolution. It should be noted that

the source cannot be placed farther than one lens thickness from the lens itself in

order to get a real image. Thus, to observe the complete loss of super-resolution

would require to significantly increase the lens thickness as well as the source

distance which is demanding for a computational point of view.
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The Green’s function model described in Sect. 4.5.2 shows that if all evanescent

and propagating modes are contributing the image is perfectly reconstructed as a

point source at a distance d�s from the exit face of the lens. This position is in

accordance with geometric rays tracing in two media with opposite refraction

indices. It could be shown that if the two media had some low acoustic index

mismatch or if the lens media had uniaxial anisotropy in normal incidence axis

direction [32], the relation would still be linear. This linear behavior is indeed

observed thanks to simulation data on Fig. 4.40 where the focus location fits a linear

relation with a slope of �0.82 with respect to source location. However, the

intercept of this curve is not exactly the thickness of the lens (d ¼ 6.52 mm), as

expected from (4.11). We have seen that the operating frequency could change

dramatically the focus location since it defines the effective index of the phononic

crystal. Here the results are presented at the frequency of 530 kHz which is not the

exact value of the AANR condition when an index of n ¼ �1 is achieved.

The value for 530 kHz is rather n ¼ �1.07. Acoustic ray tracing predicts that if n
is the effective index of the phononic crystal relative to water, then the focus

position for a source placed very close to the lens is d/|n|. This would predict an

intercept at 6.09 mm, still far from the observed value. Thus, the frequency effect

over index alone is insufficient to explain completely the discrepancy. This dis-

crepancy is therefore most probably due to the fact that the assumption of a

homogeneous negative medium is poorly valid in the case of a phononic crystal

because of the similar length scales between the lattice parameter, lens thickness,

wavelength and the source distance. At least, it is less valid than in the case of

metamaterial slabs [42] where the resonant inclusions have sizes well below the

wavelength.

4.5.5.3 Geometry of the Phononic Crystal Lens

The geometry of the lens itself has been studied in terms of its effects on resolution

and the location of the image. The respective effects of the thickness and width of

the phononic crystal lens are discussed successively. The width of the lens has been

studied from the experimental and computational point of views. The picture of a

semi infinite slab (in the x1 and x2) directions used for the Green’s function model is

quite different in the context of simulations and experiments where the width of the

lens is measured along x1 by the number of rod inclusions in each layer parallel to

the surface. The question raised by the limited width of the lens is similar to what is

called aperture in the context of optics. The spatially limited transmission due to the

finite extent of a lens is responsible for a loss of resolution due to the convolution of

any image by an Airy function. Thus, a sufficient width has to be chosen so that this

limitation is low enough in order to demonstrate the super resolution effect.

Sukhovich et al. [5] have used lenses of 15, 31 and 61 rods per layer in crystals

made of 6 layers, all other parameters being constant. The behavior of the lenses

with 31 and 61 rods per layer are similar and suitable to exhibit super resolution.

The position of the image and resolution as a function of the position of the source
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(Fig. 4.41) were almost identical. By contrast, the results for the narrower 15 rods

per layer are significantly different. This effect was attributed to the small aspect

ratio (2.5) of this lens inducing significant distortions. For lenses wider than 31

rods, the aspect ratio is greater than 5 and does not affect the results.

For what concerns the thickness of the lens, it can be varied by changing the

number of layers of inclusions. Robillard et al. [37] simulated thicknesses of 4, 5, 6,

7 and 8 layers for the case with a width of 31 rods per layer. The distance from the

source to the surface was maintained at 0.1 mm and the corresponding results are

shown in Fig. 4.41. It follows that, within the range of measurement error, the

resolution does not change with width as expected. This fact is also confirmed by

the authors by the existence of similar bound modes in the vicinity of the operating

frequency whatever the lens thickness. The frequencies of the bound modes that are

responsible for super-resolution do not vary significantly as the thickness changes.

Last point, always according to the ray tracing and Green’s models, the distance of

the image is expected to be linearly dependent on the lens thickness. This fact is

observed as well but the fitted value of this slope is not one, as expected in the case

of a homogeneous negative medium, but 0.83. As discussed earlier in this para-

graph, the lens made of an effective homogeneous medium may not be a valid

hypothesis in these conditions. Again, the discrepancy between the slope of 0.83

compared to one indicates the thickness mismatch between effective homogeneous

slabs and phononic crystal slabs [42].
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4.5.5.4 Location of the Source in the Direction Parallel to the Lens

The position of the source in a direction parallel to the slab input face plays a role

that is linked to the amplification mechanism of evanescent components from the

source. Necessary couplings with bound modes of the phononic crystal slab and

near field proximity implies that this mechanism is sensitive the heterogeneous

structure of the phononic crystal. Especially, efficient coupling requires that dis-

placement fields of the bound modes and evanescent waves overlap in space. Since

the lens excitation exhibits high pressure lobes in front of each steel cylinder when

super resolution is achieved, it is assumed that the bound modes involved have

similar displacement patterns. Thus, by shifting the source in a direction parallel to

the slab the efficiency of the couplings is expected to change and result in modifi-

cation of the super resolution effect. This process was simulated by a source facing

the gap midway between two cylinders of the phononic crystal. In this case, the

resolution falls to 0.54l as can be seen by the wider focus on Fig. 4.42a, b.

Experiments confirm these results are in accordance with experimental results;

moving the source parallel to the surface from the position opposite a cylinder (best

resolution) by only a quarter of its diameter caused the image resolution to degrade

from 0.37l to 0.47l.
Thus, looking at Fig. 4.42a gives an understanding of the bound modes displace-

ment. The pressure exhibits lobes of maximum amplitude between cylinders and

consequently the displacement amplitude would show maxima in front of each

cylinder and nodes between them. Placing the source at any of the nodes of the

displacement field prevents evanescent waves from coupling efficiently with the

bound modes.

4.5.5.5 Disorder

The properties of Phononic Crystals rely on the coherent summation of the Bragg

scattered components of acoustic waves on the successive planes of the crystal.

Because of this coherent character, any deviation from perfect order inside the

crystal structure is expected to introduce diffusion effects that are detrimental to

imaging properties. Especially, the super-resolution effect that is described in this

section should be sensitive to such defects. This hypothesis has been verified from

both the experimental and numerical point of view [11]. Figure. 4.42c, d show

FDTD results that assume some random deviation in the rods position from the

perfect triangular lattice configuration. This positional disorder in the numerical

model has a standard deviation of 5 %, which corresponds to an upper limit for the

experimental crystal. The experimental measurements were found to be very

sensitive to disorder in the position of the steel rods. These results confirm in that

disorder in the phononic crystal is detrimental to the quality of the image and for

some random realizations can even eliminate the focusing property of the lens.
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4.6 Band Structure Design and Impact on Refraction

As shown before, 2D and 3D phononic crystals have been extensively studied and

implemented for their frequency dependent (o-space) effects on sound or elastic

wave propagation. Especially, absolute band gaps have led to a variety of guiding,

confinement and filtering designs. The astonishing demonstration of sound

tunneling is also related to the presence of band gaps. On the other hand, negative

bands and the subsequent negative refraction that occurs at the interface of some

phononic crystals and the surrounding media is a property related to the shape of the

EquiFrequency Contour (EFC) of the dispersion curves in the wave-vectors plane

(k-space). For the purpose of achieving super resolution imaging with a phononic

crystal lens, one has to design a phononic crystal with circular EFCs. These two

effects, band gaps and all-angle negative refraction, have received much attention

from the community since the first reports on sonic crystals. However, as expected

from the behavior of elastic waves in genuine crystals, a wider variety of properties

should result from the periodic arrangement of phononic crystals constituents. The

propagation of waves is always fully understandable by means of the dispersion

relations, i.e. the o and k-spaces. Since dispersion curves are determined by

Fig. 4.42 Influence of the location of the source in the direction parallel to the lens and of the

disorder after [11]. The contour maps of the normalized average absolute value of pressure

calculated via FDTD at a frequency of 530 kHz for the phononic crystal lens imaging are plotted.

(a) The line source is located at 0.1 mm from the left lens surface and centered with respect to a

surface cylinder at x ¼ 0. (b) Same simulation as (a) but with the source shifted down by a/2 in the
direction parallel to the surface of the lens. (c) and (d) show two lenses with positional disorder of

the steel rods showing imperfect focusing (c) and loss of focusing (d)
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geometrical (sizes, symmetry) and material (stiffness, density) parameters,

phononic crystals can be designed in order to exhibit advanced spectral (o) and
directional (k) properties based on the analysis of the dispersion relations. In this

section we show how the design, especially the symmetry, of a phononic crystal,

can lead to strongly anisotropic effects such as positive, negative and even zero

angle refraction at a single frequency. Other effects such as collimation, beam

splitting and phase controlling are also predicted. Eventually, we discuss the

opportunity to control the respective phases between different acoustic beams

(’-space) and its possible implementation on acoustic logic gates.

4.6.1 Square Equifrequency Contours in a PVC/Air
Phononic Crystal

In 2009, Bucay et al. [43] have described theoretically and computationally the

properties of a phononic crystal made of polyvinylchloride (PVC) cylinders

arranged as a square lattice embedded in a host air matrix. We will develop this

section of Chap. 4 from the properties of this representative system. This PVC/air

system exhibits an absolute band gap in the 4–10 kHz range followed by a band

exhibiting negative refraction. The band structure for the infinite periodic phononic

crystal is generated by the Plane Wave Expansion (PWE) method and plotted in

Fig. 4.43b. In the 13.5 kHz equifrequency plane, the second negative band defines a

contour of nearly square shape centered on the M point of the first Brillouin zone.

This shape appears clearly in Fig. 4.43c which shows a contour map of the disper-

sion surface taken between frequency values 13.0 and 16.0 kHz extended to several

Brillouin zones. Though the properties of such an arrangement can be reproduced in

other systems of suitable symmetry and material parameters, we describe here the

parameters used in that particular demonstration. The spacing between the cylinders

(lattice parameter) is a ¼ 27 mm and the radius of the inclusions is r ¼ 12.9 mm.

The PVC/Air system parameters are: rPVC ¼ 1364 kg/m3, ct,PVC ¼ 1000 m/s,

cl,PVC ¼ 2230 m/s, rAir ¼ 1.3 kg/m3, ct,Air ¼ 0 m/s, and cl,Air ¼ 340 m/s (r is

density, ct is transverse speed of sound, and cl is longitudinal speed of sound). The

PVC cylinders are considered as infinitely rigid and of infinite height. This assump-

tion of rigidity simplifies the band structure calculation and is justified by a large

contrast in density and speed of sound between the solid inclusions and the matrix

medium. Again, the results gathered from this analysis are applicable to other solid/

air phononic crystals of the same filling fraction because, in reference to other solids,

air has extremely small characteristic acoustic impedance.

Bucay et al. [43] have focused on the consequences on acoustic propagation in the
passing bands with such square shaped EFCs. Here we summarize these effects and

their possible applications in acoustic imaging and information processing. The next

paragraphs use the schematic of Fig. 4.43a on which a PVC/air phononic crystal slab

is surrounded by air. This schematic corresponds to the FDTD simulation space. One
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or several beams impinge on the input side. Each source on the input side of the

simulation space is modeled by a slanted line of grid points consistent with the

desired incidence angle of the source. The nodes along this line are displaced in a

direction orthogonal to the source line as a harmonic function of time. These sources

can assume any incident angle to the phononic crystal face and can be ascribed any

relative phase difference, thus allowing for complete analysis of the phononic crystal

wave vector space (k-space) and phase-space (’-space). The output side is reserved
for the detection of exiting acoustic signals.

4.6.2 Positive, Zero, and Negative Angle Refraction,
Self-Collimation

First, looking at the EFC contour at a given frequency of 13.5 kHz, it appears that

the square symmetry of the phononic lattice has a strong impact on the band

structure (Fig. 4.44). Indeed, while at very low frequencies the dispersion relations

are linear (low frequency parts of the acoustic branches), the higher order branches

Fig. 4.43 Schematic and band structure of the PVC/air system after Bucay et al. [183].

(a) Schematic illustration of the FDTD simulation cell. The acoustic sources can assume any

incident angle to the phononic crystal face and be set with any relative phase difference. (b) Band

structure generated by PWE method along the edges of the first Brillouin zone (pictured in (c)). (c)

EFCs (extended zone scheme of irreducible Brillouin zone) in range of 13.0–16.0 kHz
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considered at the frequency of 13.5 kHz have direction dependent properties. These

k-dependent properties appear themselves in the almost square shape of the

equifrequency contour. The equivalent media formed by the PVC/air has to be

considered as anisotropic. This particular EFC is plotted in Fig. 4.44 along with the

EFC in air at the same frequency. The EFC of the PVC/air system has been

extended over another Brillouin zone in the Ky direction on this plot in order to

exhibit one complete face of the square which is centered on the M point. Since the

surrounding medium is linear and isotropic in the operating frequency range its

EFC is simply circular. Let us now discuss the different cases of the beam refraction

induced by the unusual shape of the EFCs.

In order to clearly describe these cases, we remind the reader how the wave

vector and group velocity of a refracted beam is determined from the angle of an

incident beam.

The conservation of frequency and parallel to surface (k//) component of wave

vector is required. These rules are written in Eqs.4.21 and 4.22 where the subscripts

i and r stand for incident and refracted.

oi ¼ or; (4.21)

k==i
	! ¼ k==r

	!þ G
!
; (4.22)

The presence of a vector G
!

of the reciprocal lattice will be discussed later, in

the non-periodic media it is a zero vector. In other words, the normal component of

the wave vector k⊥ is determined such that the wave vector kr ¼ k⊥r þ k//r in the

second medium matches a dispersion curve at the frequency oi. If such a matching

Fig. 4.44 Determination of the refraction angles of several incident beams from the EFC of the

PVC/air system
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point exists, a refracted beam exists, otherwise the incident beam undergoes total

reflection. The couple (kr ,or) defines a point of the Brillouin zone at which the

group velocity can be determined by (4.7). It must be noted that, contrary to the case

of an isotropic media, the wave vector and group velocity might not be collinear in

the general case. This can be seen in Fig. 4.44 where the wave vectors are depicted

by black arrows and the group velocity vectors by blue arrows.

From these rules and Fig. 4.44 it follows that any beam that impinges on the

phononic crystal with an incidence angles lower that 5� cannot couple to any

propagation mode of the phononic crystal and thus will be completely reflected.

This can be seen as a directional band gap. Between 5� and 55� waves are refracted
and propagate in the phononic crystal and several cases are distinguished. Below

28�, refracted waves have a group velocity vector (blue arrows) with a positive

parallel (Ky) component. They undergo classical positive refraction. At the singular

angle of 28�, the contour is flat in the Ky direction such that the group velocity will

be perfectly oriented toward the x axis. Such behavior corresponds to a zero angle

of refraction and is quite unusual. An illustration of this phenomenon is shown in

Fig. 4.45a with a FDTD result of the averaged pressure field. An incident beam at

30� is oriented toward the surface of a PVC/air crystal slab. Since the incidence

angle is very close to the predicted zero refraction angle (28�) it is refracted and the
beam follows a path close to the x axis.

In Fig. 4.45b, a beam with higher incidence angle is negatively refracted, in

accordance with the previous discussion. The ability of this system to achieve

positive, negative and zero angle refraction at a single frequency has been success-

fully tested experimentally and theoretically by Bucay et al. [43]. One should note

that the vicinity of the 28� incidence angle coincides with small degrees of

refraction. One could define an incidence range that gives rise to refracted angles

reasonably close to zero. As an example, for incidence angle between 20� and 30�

the angle of refraction is within in the�2� to 2� range. Thus, from this point of view

this system is able to combine a wide angle input wave into a nearly collimated

beam. This ability called self-collimation is pretty unusual and could have signifi-

cant uses in the field of acoustic imaging. The discussed system can also enable the

a b

q i =30° q i =40°

Fig. 4.45 Zero refraction and negative refraction occur at the same frequency, in the same

PVC/air system depending only on the incidence angle. The incident beams are oriented upward

at angles of (a) 30� and (b) 40� respectively
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propagation in the same volume of the phononic crystal of two non-collinear

incident beams. This spatial overlapping of two waves carrying non-identical

signals offers interferences conditions that might be useful for information

processing as we shall see later.

4.6.3 Beam Splitting

Another striking property of such a system is the presence of two output beams as

seen on Fig. 4.45. The incident beam impinges from the bottom part of the

simulation cell. The upper beam on the input side is a partial reflection. On the

exit side, the beam splits into balanced parts. This phenomenon, confirmed experi-

mentally [43], is striking since Snell’s law of refraction does not account for such

behavior. Optical analogues of such an effect are birefringent crystals which

discriminate light into several beams with respect to its polarization or beam

splitters that share incident energy into two output beams. Again, this analogy

does not account for the radically different origins of this effect in optics and

acoustic phononic crystals. Indeed, while optic beam splitters take advantage of

balanced transmission and reflection coefficients by means of suitable surface

coatings, the phononic crystal beam splitter produces two identical refracted

beams, that both have propagated through the phononic crystal following the

same path. In the latter case, the splitting effect relies only on the properties of

wave coupling between periodic (phononic crystal) and homogeneous (air) media.

Potential applications of this spontaneous beam splitting effects are discussed in the

following sections. Here we describe its origins.

The schemes in Fig. 4.46 show the equifrequency planes in a system composed

of a phononic crystal slab similar to the PVC/Air system immersed in a fluid

medium (air). The plot extends over two Brillouin zones. The operating frequency

is 13.5 kHz, which corresponds to a square EFC of the phononic crystal. Note that

the circular EFC in air is larger than the first Brillouin zone of the phononic crystal.

Let us now apply coupling rules for an incident wave to propagate inside the

phononic crystal. In (4.22) we have introduced an additional vector ~G that belongs

to the reciprocal lattice. Indeed, in crystalline structures as in any periodic structure

the momentum conservation can be satisfied modulo a certain vector ~G . This

conservation rule for sonic waves is analogous to the one governing phonon

diffusion in solids [44]. The processes which involve a zero G vector are called

natural processes. They ensure complete conservation of the crystal momentum,

while non-zero G vector processes (Umklapp) ensure momentum conservation due

to the contribution of the crystal total momentum. The latter involve a wave vector

outside of the first Brillouin zone. From this rule follows that for a given incidence

angle, the incident beam can couple to several modes inside the phononic crystal.

The wave vectors of these modes lie in distinct Brillouin zones. Since the extent of

the EFC in air is twice as large as the Brillouin zone, two of k// are possible for the
propagation into the phononic crystal. On the output side these two different modes
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couple back to the surrounding media according to the same rules, which account

for the presence of two beams.

The remarkable property of the multiple modes inside the phononic crystal is

that they have similar group velocity vectors (black arrows) but different

wavevectors (gray arrows). It results that they will only split on the output side

but share the exact same path inside the crystal.

Additionally, Fig. 4.46 shows that, on the opposite side of the zero incidence

line, another beam might couple with exactly the same set of wave vectors inside

the crystal. Then, two beams can produce exactly the same effects and are called

complementary. Complementary waves will have incidence angles y0 þ Dy and

�y0 þ Dy with y0 being the zero-refraction angle.

4.6.4 Phase Control

Except for the case of complementary incident waves, any couple of incident beams

will be refracted at different refraction angles and thus accumulate a certain phase

difference while propagating through the crystal. One should remark that, here again,

refracted waves in the phononic crystal have somewhat uncommon properties since

their group velocity is nearly parallel to the normal to the crystal/air interface

(Fig. 4.46) while their k-vector, has a wide range of possible orientations due to the

incidence angle. Group velocity and wave vector being non-collinear simply means

that energy and phase propagates in different directions. In the vicinity of the zero

angle refraction, a wide span of Bloch waves exists with group velocities that

coincide with small degrees of refraction, allowing refraction to occur between

propagating waves within the nearly same volume of crystal. This is shown through

the high slope around 0� in Fig. 4.47a which represents the angle of incidence of the

Fig. 4.46 Determination of the refraction angles of several incident beams from the EFC of the

PVC/air system. The central scheme depicts an extended zone EFC contour of the phononic

crystal. Gray arrows are wavevectors while black arrows are the group velocity vector
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input beam as a function of the angle of refraction in the bulk of the phononic crystal

slab.

A fine analysis of the square EFC shows that, while the group velocity of

different refracted beams have nearly the same zero angle of refraction, their

wave vectors quite different. Since group velocity describes the propagation of

the energy while the wave vector k is related to the propagation of phase, this fact

shows that beams propagating in close directions in the phononic crystal might

accumulate significantly different phase shifts.

To investigate this effect, Swinteck and Bringuier [45–47] have calculated the

phase shift accumulated per unit length of a phononic crystal slab as a function of

the incidence angle. Two impinging waves with wave vectors k1
!

(angle y1) and k2
!

(angle y2) excite several Bloch modes throughout the k-space of the phononic

crystal. As seen in the beam-splitting effect, because the extent of the first

Brillouin zone is smaller than the circular EFC in the surrounding media, each

incident wave will couple to two Bloch modes that correspond to complementary

waves. These two Bloch modes are noted k1A
	!

and k1B
	!

in Fig. 4.48a and are

necessary to describe the wave physics in this phononic crystal in terms of phase.

Each of these wave vector pairs has a unique refraction angle noted as a1 and a2.
The following calculations will focus on the phase shift accumulated between

Bloch modes k1A
	!

and k2A
	!

only (noted ’1A,2A), though similar discussion would

lead to compatible results for the second pair of modes. These two Bloch wave

vectors are expressed as:

k1A
	! ¼ 2p

a
k1x~iþ k1y~j


 �
(4.23)

k2A
	! ¼ 2p

a
k2x~iþ k2y~j


 �
(4.24)

where k1x and k1y are the components of the wave vector k1A
	!

and k2x and k2y are the
components of the wave vector k2A

	!
(in units of 2p/a).~i and~j are unit vectors along

axes x and y respectively.
Each incident beam ~k is refracted by an angle a and travels in the phononic

crystal along a path that is simply:

~r ¼ L~iþ L tan að Þ~j (4.25)

where L is the slab thickness. The phase accumulated at the exit face of the slab with

respect to the input point is:

’ ¼ ~k �~r ¼ 2pL
a

kx þ tan að Þky

 �

(4.26)
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It follows that the phase difference between Bloch modes with wave vectors k1A
	!

and k2A
	!

can be expressed as:

’1A;2A ¼ k1A
	! � r1!� k2A

	! � r2!¼ 2pL
a

k1x þ tan a1ð Þk1y � k2x � tan a2ð Þk2y

 �

(4.27)

Let us formulate a few remarks about this result. First, to evaluate this phase

shift it is useful to plot it as a function of the incidence angle y1 of one input beam
the other beam being a constant reference beam. The angle (28.1�) for which zero

while angle refraction occurs is a preferred choice. Second, as expected, the result

depends linearly on the thickness of the slab. Third, computing this phase shift can

be done by extracting the components, (k1x, k1y) and (k2x, k2y), used in (4.27) from

the EFC data in Fig. 4.45. Finally, the calculated phase shift per unit length is

plotted in Fig. 4.47b along with FDTD results that agree very well with the above

analysis. Looking closely at (4.27), one understands that the phase shift has two

origins. First, the travel paths inside the phononic crystal for the both waves are

different (r1
! 6¼ r2

!). The second effect comes from the difference in phase velocities

( k1A
	!��� ��� 6¼ k2A

	!��� ��� ). Waves of different phase velocities traveling different paths

certainly will develop a phase shift. From Fig. 4.47b one can deduce the phase

difference between a pair of beams which is of crucial importance since it

determines how exiting beams interfere. It is worth noting that the steel/methanol

system described in Sect. 4.5 exhibits, at the considered operating frequencies,

circular EFCs centered on the G point. In such a configuration phase and group

velocity are collinear and anti-parallel. Such a system wouldn’t produce substantial

phase shifts between two Bloch modes that are nearly collinear.

Figure 4.48b shows that outgoing beams intersect each other on the output side

in two points. These points are places where the relative phase between two beams

can be found by measure of the interference state. The choice of the two incidence

angles higher and lower than 28.1 (the zero angle of refraction) is important. Indeed

it ensures that one beam is refracted positively and the other one negatively, while

forming the intersection points on the exit side. In the end, the incidence angles of

the two beams determine wave vectors k1
!

and k2
!

and the angles of refraction a1 and
a2 which give the phase shift. Therefore incidence angle selection is proposed as a

leverage to modulate the relative phase between propagating acoustic beams.

4.6.5 Implementation of Acoustic Logic Gates

More recently, it has been proposed to use these interference effects to implement an

acoustic equivalent of the so-called Boolean logic gates [47] on the basis of phase

control by means of a phononic crystal slab. Here we discuss the example of the

NAND gate which is identified as universal since the implementation of any other

Boolean logic gate is feasible by associating several NAND gates [48]. The NAND

gate is a two inputs function which truth table is described in Fig. 4.49a. The setup of

Bringuier et al. [47] relies on a phononic crystal slab and two permanent sources S1
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and S2 impinging at the same point of the input face. The angles of incidence are

such that these beams are not complementary waves, i.e., their paths do not perfectly
overlap in the phononic crystal slab. The following demonstration is based on FDTD

simulations on the PVC/air system described above. In this scheme it is straightfor-

ward to keep a given phase relation between the two permanent sources S1 and S2.

In this particular case, they they impinge in-phase on the input side of the phononic

Fig. 4.47 (a) Angle of the incident beam as a function of its refraction angle. The graph can be

read as follows: one obtains a 0� refracted beam inside the phononic crystal when the incidence

angle is 28�. (b) Phase shift per unit length of phononic crystal as a function of the incidence angle.
The phase shift is evaluated with respect to a zero refracted beam (Circles: analytical solution.
Triangles: results from FDTD calculation)
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crystal. Because their incidence angles are 10� and 38�, the two sources will refract
negatively and positively in accordance with the Fig. 4.48b. The phase shift on the

output side is calculated thanks to (4.27) and is evaluated to be 2p radians. This

results in constructive interference on the output side between the centers of the

exiting beams. At this particular point where the interferences are constructive, a

detector D is positioned. This “detector” simply indicates that the averaged pressure

is recorded over a given cut which makes an angle 24� (i.e., in between 10� and 38�).
The corresponding pressure profile is presented on the left side of Fig. 4.49b. The

position of the constructive interference point is indicated by a vertical dashed line

which, indeed, corresponds to a maximum of the pressure. This state describes the

zero inputs state of the NAND gates. In this regime the continuous high level of

pressure is interpreted as a 1 output from the gate.

The authors model the inputs of the NAND by two additional beams I1 and I2

which are the corresponding complementary waves (19� and 50�) to the sources,

S1and S2, respectively. As compared to the permanent sources, I1 and I2 are set

such that their phases are p radians on the input side. It results from this condition

that whenever I1 is turned on, it perfectly overlaps the path of S1 in the phononic

crystal (because these are complementary waves) and since their phase difference is

p, they interfere destructively. It results that only S2 contributes to the averaged

pressure at the detector point as shown on Fig. 4.49c. The same analysis holds if I1

is off and I2 is on. The last case corresponds to having both inputs emitting waves

simultaneously. In this case S1 and I1 as well as S2 and I2 interfere destructively

Fig. 4.48 (a) (k-space) Bloch modes excited in the PVC/air system by two waves having different

angles of incidence. (b) (real space) paths of the corresponding waves in the phononic crystal slab.

After Swinteck et al. [46]
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and this case exhibits the minimal pressure at the detector point among all other

cases.

The situation when “I1 is emitting” (or “I1 is not emitting”) means that the first

input of the NAND gate is at state 1 (or state 0). By establishing a threshold value

just above the minimal pressure, the output is defined to be in state 1 if the pressure

Fig. 4.49 Implementation of the NAND gate with phononic crystals. The system consists of a

phononic crystal with the same square EFC characteristics as in the PVC/Air system and two

permanent sources S1 and S2 are incident at different angles

154 A. Sukhovich et al.



is above the threshold and in state 0 if the pressure is below the threshold. Finally,

the only configuration that produces a 0 output state is the state with I1 and I2 both

emitting waves. This complies with the truth table of the NAND gate. This study

demonstrates another possible application of the full dispersion properties (fre-

quency, wave vector and phase) of phononic crystals in the field of information

processing.

4.7 Conclusion

In this chapter, we have focused on 2D and 3D phononic crystals and their unusual

properties. After having introduced the necessary concepts of Bravais lattices and

their corresponding Brillouin zones, we have summarized how phononic crystals

properties can be investigated experimentally especially in the ultrasonic frequency

range. The discussion then focused on spectral aspects of phononic crystals. The

existence of band gaps is the first property of phononic crystals investigated theoreti-

cally and experimentally. Because of the evanescent character of waves whose

frequency falls into the band gaps, tunneling of sound has been demonstrated.

However, band gaps despite the wealth of applications they bring (sound isolation,

wave guiding, resonators, filtering. . .) are not the only striking phenomena in

phononic crystals. Other phenomena observed in the passing bands have been studied

in details such as negative refraction. Negative refraction occurs when the wave

vector and the group velocity are anti-parallel in a material. The similarities between

negative refraction and the negative index metamaterials have been discussed. This

chapter also provides a wealth of details about experimental conditions of negative

refraction. Later sections have focused on the conditions required to use negative

refraction in combination with close field coupling to a phononic crystal slab in order

to achieve super-resolution, i.e., imaging a source point with a better than half-

wavelength resolution. Finally, we have briefly described recent developments

about the impact of the phononic crystal symmetry on refraction properties. A

model system exhibiting anisotropic propagation properties has been described by

its refraction properties as a function of their incidence angles. This type of system

has been demonstrated in the context of self-collimation, beam-splitting, phase

controlling and a possible implementation of logic gates.

Throughout the chapter it has been shown that, despite the variety of possible

implementations of phononic crystals, their properties can always be described in

the frame of Bragg reflections of the acoustic or elastic waves that interfere

constructively or destructively. The consequences of periodicity manifest them-

selves in the dispersion relations that fully describe the spectral, directional and

phase properties of propagation in phononic structures. From this point of view the

analogy between phononic crystals and natural crystalline material is complete. It

follows that, the complete spectrum of opportunities offered by periodic artificial

structures is extremely large and still not fully explored.
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