
Chapter 10

Phononic Band Structures and Transmission

Coefficients: Methods and Approaches

J.O. Vasseur, Pierre A. Deymier, A. Sukhovich, B. Merheb,

A.-C. Hladky-Hennion, and M.I. Hussein

Abstract The purpose of this chapter is first to recall some fundamental notions

from the theory of crystalline solids (such as direct lattice, unit cell, reciprocal

lattice, vectors of the reciprocal lattice, Brillouin zone, etc.) applied to phononic

crystals and second to present the most common theoretical tools that have been

developed by several authors to study elastic wave propagation in phononic crystals

and acoustic metamaterials. These theoretical tools are the plane wave expansion

method, the finite-difference time domain method, the multiple scattering theory,

and the finite element method. Furthermore, a model reduction method based on

Bloch modal analysis is presented. This method applies on top of any of the

numerical methods mentioned above. Its purpose is to significantly reduce the

size of the final matrix model and hence enable the computation of the band

structure at a very fast rate without any noticeable loss in accuracy. The intention
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in this chapter is to give to the reader the basic elements necessary for the

development of his/her own calculation codes. The chapter does not contain all

the details of the numerical methods, and the reader is advised to refer to the large

bibliography already devoted to this topic.

10.1 Periodic Structures and Their Properties

Solids possessing crystalline structure are periodic arrays of atoms. The starting

point in the description of the symmetry of any periodic arrangement is the concept

of a Bravais lattice. A Bravais lattice is defined as an infinite array of discrete points

with such an arrangement and orientation that it appears exactly the same from

whichever of its points the array is viewed [1]. Mathematically, a Bravais lattice in

three dimensions is defined as a collection of points with position vectors ~R of the

form

~R ¼ n~a1 þ m~a2 þ k~a3 (10.1)

where a
*

1; a
*

2; a
*

3 are any three vectors not all in the same plane and n;m; k are any

three integer numbers. Vectors a
*

1; a
*

2; a
*

3 are called primitive vectors of a given

Bravais lattice. When any of the primitive vectors are zero, (10.1) also defines a

two-dimensional (2D) Bravais lattice, one example of which is shown in Fig. 10.1.

It is also worth mentioning that for any given Bravais lattice, the set of primitive

vectors is not unique, and there are very many different choices, as shown in

Fig. 10.1.

In three dimensions, there exist a total of 14 different Bravais lattices. The

symmetry of any physical crystal is described by one of the Bravais lattices plus

a basis. The basis consists of identical units (usually made by group of atoms),

which are attached to every point of the underlying Bravais lattice. A crystal,

whose basis consists of a single atom or ion, is said to have a monatomic Bravais

lattice.

Another important concept widely used in the study of crystals is that of a

primitive cell. The primitive cell is a volume of space that contains precisely one

lattice point and can be translated through all the vectors of a Bravais lattice to fill

all the space without overlapping itself or leaving voids. Just as in the case of

primitive vectors, there is no unique way of choosing a primitive cell. The most

common choice, however, is theWigner–Seitz cell, which has the full symmetry of

the underlying Bravais lattice. The Wigner–Seitz cell about a lattice point also has a

property of being closer to that point than to any other lattice point. It can be

constructed by drawing lines connecting a given point to nearby lying points,

bisecting each line with a plane and taking the smallest polyhedron bounded by

these planes.

The Bravais lattice, which is defined in real space, is sometimes referred to as

a direct lattice. At the same time, there exist the concepts of a reciprocal space
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and a reciprocal lattice, which play an extremely important role in virtually any

study of wave propagation, diffraction, and other wave phenomena in crystals.

For any Bravais lattice, given by a set of vectors ~R [see (10.1)], and a plane wave

expði~k �~rÞ, the reciprocal lattice is defined as a set of all wave vectors ~G that yield

plane waves with the periodicity of a given Bravais lattice [1]. Mathematically, a

wave vector ~G belongs to the reciprocal lattice of a Bravais lattice with vectors ~R,
if the equation

expði~G � ð~r þ ~RÞÞ ¼ expði~G �~rÞ (10.2)

is true for any ~r and ~R of the given Bravais lattice. It follows from (10.2) that a

reciprocal lattice can also be viewed as a set of points, whose positions are given by

a set of wave vectors ~G satisfying the condition:

expð~G � ~RÞ ¼ 1 (10.3)

for all ~R in the Bravais lattice. The reciprocal lattice itself is a Bravais lattice. The

primitive vectors b
*

1; b
*

2; b
*

3 of the reciprocal lattice are constructed from the

primitive vectors a
*

1; a
*

2; a
*

3 of the direct lattice and given in three dimensions by

the following expressions:

~b1 ¼ 2p
~a2 �~a3

~a1 � ð~a2 �~a3Þ
~b2 ¼ 2p

~a3 �~a1
~a2 � ð~a3 �~a1Þ

~b3 ¼ 2p
~a1 �~a2

~a3 � ð~a1 �~a2Þ

(10.4)

As an example, Fig. 10.2 shows a simple-cubic Bravais lattice with a lattice

constant a as well as its reciprocal lattice, which is also a simple-cubic one with a

lattice constant 2p=a (as follows from relations (10.4)).

Since the reciprocal lattice is a Bravais lattice, one can also find its Wigner–Seitz

cell. The Wigner–Seitz cell of a reciprocal lattice is conventionally called a first
Brillouin zone (BZ). Planes in k-space, which bisect the lines joining a particular

point of a reciprocal lattice with all other points, are known as Bragg planes.

1a
®

2a
®

Fig. 10.1 A 2D triangular

Bravais lattice. Several

possible choices of the

primitive vectors a1
! and a2

!
are indicated
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Therefore, the first BZ can also be defined as the set of all points in k-space that can
be reached from the origin without crossing any Bragg plane. The BZs of higher

orders also exist, with the nth BZ defined as the set of points that can be reached

from the origin by crossing (n-1) Bragg planes [1]. The first BZ is of great

importance in the theory of solids with periodic structures, since the periodicity

of the structure allows the description of the properties of the solids within the first

BZ. Figure 10.3 shows the first three BZs of the 2D square Bravais lattice. The first

BZ has a shape of a square with two high-symmetry directions, which are com-

monly referred to as GX and GM.

DIRECT LATTICE RECIPROCAL LATTICE

3a
®

2a
®

1a
®

2b
®

1b
®

3b
®

Fig. 10.2 Simple-cubic direct lattice and its reciprocal lattice. The primitive vectors of both

lattices are also indicated

a

b

X

M

1

2

22

2
3

3

3

3

3

3

3

3

Γ

Fig. 10.3 (a) The first three Brillouin zones of the reciprocal lattice of the 2D square Bravais

lattice. The dots indicate reciprocal lattice points, the solid lines indicate Bragg planes, and the

digits indicate the order of the corresponding Brillouin zone. (b) The first Brillouin zone with the

two high-symmetry directions commonly referred to as GX and GM. The triangle GXM is named

the irreducible Brillouin zone
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It is well known from quantum mechanics that the energy of an electron in an

atom assumes discrete values. However, when the atomic orbitals overlap as the

atoms come close together in a solid, the energy levels of the electrons broaden and

form continuous regions, also known as energy bands. At the same time, because of

the periodicity of the crystal structure, the electronic wave functions undergo strong

Bragg reflections at the boundaries of the BZs. The destructive interference of the

Bragg-scattered wave functions gives rise to the existence of the energy regions, in

which no electronic energy levels exist. Since these regions are not accessible by

the electrons, they are also known as forbidden bands. If the forbidden band occurs
along the particular direction inside the crystal, it is conventionally called a stop
band. If it happens to span all the directions inside the crystal, the term “complete

band gap,” or simply band gap, is used instead. The electronic properties of

crystalline solids are conveniently described with the help of the band structure
plots, which represent energy levels of the electrons of the solid as a function of the

direction inside the solid.

The concepts of the direct and reciprocal lattices, BZs and energy bands

discussed in this section, are of general nature and can be applied to any periodic

system without being limited to atomic crystals. These concepts appear throughout

the different chapters of this book.

10.2 Plane Wave Expansion methods

10.2.1 Plane Wave Expansion Method for Bulk Phononic
Crystals

We first present with many details the plane wave expansion (PWE) method used

for the calculation of the band structures of bulk phononic crystals, i.e., assumed of

infinite extent along the three spatial directions. For the sake of simplicity, we limit

ourselves to 2D phononic crystals, but the method can be easily extended to 3D

structures. Two-dimensional phononic crystals are modeled as periodic arrays of

infinite cylinders of different shape (circular, square, etc.) made up of a material A

embedded in an infinite matrix B. Elastic materials A and B may be isotropic or of

specific crystallographic symmetry. The elastic cylinders are assumed parallel to

the z axis of the Cartesian coordinates system ðO; x; y; zÞ. The intersections of the
cylinders axis with the ðxOyÞ transverse plane form a 2D periodic array and the

nearest neighbor distance between cylinders is a. The 2D primitive unit cell may

contain one cylinder, or more. The filling factor, fi, of each inclusion is defined as

the ratio between the cross-sectional area of a cylinder and the surface of the

primitive unit cell (see Fig. 10.4).

In absence of an external force, the equation of propagation of the elastic waves

in any composite material is given as
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rð~rÞ @
2uið~r; tÞ
@t2

¼
X

j

@

@xj

X
m;n

Cijmnð~rÞ @unð~r; tÞ
@xm

� �
(10.5)

where uið~r; tÞði ¼ 1; 2; 3Þ ) is a component of the elastic displacement field.

The elements Cijmnði; j;m; n ¼ 1; 2; 3Þ of the elastic stiffness tensor and the mass

density r are periodic functions of the position vector,~r ¼ ð~r
==
; zÞ ¼ ðx; y; zÞ:

In (10.5), x1, x2, x3, u1, u2 and u3 are equivalent to x, y, z, ux, uy, and uz
respectively.

For the sake of clarity, we consider constituent materials of cubic symmetry (but

the method could be applied for lower crystallographic symmetry) characterized by

the following stiffness tensor:

C ¼

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

0
BBBBBBBBB@

1
CCCCCCCCCA
; (10.6)

where the Voigt notation has been used. In this case, (10.5) becomes

r @2ux
@t2 ¼ @

@x C11
@ux
@x þC12

@uy
@y þ @uz

@z

� �� �
þ @

@y C44
@ux
@y þ @uy

@x

� �� �
þ @

@z C44
@ux
@z þ @uz

@x

� �� �
r @2uy

@t2 ¼ @
@x C44

@ux
@y þ @uy

@x

� �� �
þ @

@y C11
@uy
@y þC12

@ux
@x þ @uz

@z

� �� �
þ @

@z C44
@uy
@z þ @uz

@y

� �� �
r @2uz

@t2 ¼ @
@x C44

@uz
@x þ @ux

@z

� �� �þ @
@y C44

@uy
@z þ @uz

@y

� �� �
þ @

@z C11
@uz
@z þC12

@uy
@y þ @ux

@x

� �� �

8>>>><
>>>>:

:

(10.7)

a
y

xz
O

Fig. 10.4 Transverse cross

section of the (square) array
of inclusions . The cylinders

are parallel to the z direction.
The dotted lines represent the
primitive unit cell of the 2D

array
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For bulk phononic crystals, the elastic constants and the mass density do not
depend on z. Then taking advantage of the 2D periodicity in the ðxOyÞ plane, they
can be expanded in Fourier series in the form:

Cijð~r==Þ ¼
X
~G00

==

Cijð~G00
==Þei~G

00
==�~r== (10.8)

rð~r==Þ ¼
X
~G00

==

rð~G00
==Þei

~G00
==�~r== (10.9)

where ~G00
== is a 2D reciprocal lattice vector. One writes, with the help of the Bloch

theorem, the elastic displacement field as

~uð~rÞ ¼ eiðot�~K==�~r==�KzzÞ
X
~G0
==

~u~Kð~G0
==Þei

~G0
==
�~r== (10.10)

where ~K ¼ ð~K==;KzÞ ¼ ðKx;Ky;KzÞ is a wave vector, ~G0== , a 2D reciprocal

lattice vector, and o , an angular frequency. Substituting (10.8), (10.9), and

(10.10) into (10.5) and posing ~G== ¼ ~G0
== þ ~G00

== leads to a set of three coupled

equations

o2
X
~G0

==

B 11ð Þ
~G==;~G0

==
ux~K

~G0
==

� �

¼
X
~G0

==

ux~K
~G0

==

� �
A 11ð Þ

~G==;~G0
==
þuy~K

~G0
==

� �
A 12ð Þ

~G==;~G0
==
þuz~K

~G0
==

� �
A 13ð Þ

~G==;~G0
==

n o

o2
X
~G0

==

B 22ð Þ
~G==;~G0

==
uy~K

~G0
==

� �

¼
X
~G0
==

ux~K
~G0

==

� �
A 21ð Þ

~G==;~G0
==
þuy~K

~G0
==

� �
A 22ð Þ

~G==;~G0
==
þuz~K

~G0
==

� �
A 23ð Þ

~G==;~G0
==

n o

o2
X
~G0

==

B 33ð Þ
~G==;~G0

==
uz~K

~G0
==

� �

¼
X
~G0
==

ux~K
~G0

==

� �
A 31ð Þ

~G==;~G0
==
þuy~K

~G0
==

� �
A 32ð Þ

~G==;~G0
==
þuz~K

~G0
==

� �
A 33ð Þ

~G==;~G0
==

n o

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

(10.11)
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where

B 11ð Þ
~G==;~G0

==
¼B 22ð Þ

~G==;~G0
==
¼B 33ð Þ

~G==;~G0
==
¼ r ~G==� ~G0

==

� �
A 11ð Þ

~G==;~G0
==
¼C11

~G==� ~G0
==

� �
GxþKxð Þ ~G0

xþKx

� �
þC44

~G==� ~G0
==

� �
GyþKy

� �
~G0

yþKy

� �
þ Kzð Þ2

h i
A 12ð Þ

~G==;~G0
==
¼C12

~G==� ~G0
==

� �
GxþKxð Þ ~G0

yþKy

� �
þC44

~G==� ~G0
==

� �
~G0

xþKx

� �
GyþKy

� �
A 13ð Þ

~G==;~G0
==
¼C12

~G==� ~G0
==

� �
GxþKxð Þ Kzð ÞþC44

~G==� ~G0
==

� �
~G0

xþKx

� �
Kzð Þ

A 21ð Þ
~G==;~G0

==
¼C12

~G==� ~G0
==

� �
G0

xþKxð Þ GyþKy

� �
þC44

~G==� ~G0
==

� �
~G0

yþKy

� �
GxþKxð Þ

A 22ð Þ
~G==;~G0

==
¼C11

~G==� ~G0
==

� �
GyþKy

� �
G0

yþKy

� �
þC44

~G==� ~G0
==

� �
GxþKxð Þ G0

xþKxð Þþ Kzð Þ2
h i

A 23ð Þ
~G==;~G0

==
¼C12

~G==� ~G0
==

� �
Kzð Þ GyþKy

� �þC44
~G==� ~G0

==

� �
G0

yþKy

� �
Kzð Þ

A 31ð Þ
~G==;~G0

==
¼C12

~G==� ~G0
==

� �
G0

xþKxð Þ Kzð ÞþC44
~G==� ~G0

==

� �
GxþKxð Þ Kzð Þ

A 32ð Þ
~G==;~G0

==
¼C12

~G==� ~G0
==

� �
G0

yþKy

� �
Kzð ÞþC44

~G==� ~G0
==

� �
GyþKy

� �
Kzð Þ

A 33ð Þ
~G==;~G0

==
¼C11

~G==� ~G0
==

� �
Kzð Þ2þC44

~G==� ~G0
==

� �
GxþKxð Þ G0

xþKxð Þ½
þ GyþKy

� �
G0

yþKy

� ��

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(10.12)

and Gx, Gy (resp. ~G
0
x;
~G0
y) are the components of the ~G==(resp. ~G

0
==) vectors.

Equation (10.12) can be rewritten as a standard generalized eigenvalue equation

in the form

o2

B 11ð Þ
~G==;~G0

==
0 0

0 B 22ð Þ
~G==;~G0

==
0

0 0 B 33ð Þ
~G==;~G0

==

0
BB@

1
CCA

ux~K
~G0

==

� �
uy~K

~G0
==

� �
uz~K

~G0
==

� �
0
BBB@

1
CCCA

¼
A 11ð Þ

~G==;~G0
==

A 12ð Þ
~G==;~G0

==
A 13ð Þ

~G==;~G0
==

A 21ð Þ
~G==;~G0

==
A 22ð Þ

~G==;~G0
==

A 23ð Þ
~G==;~G0

==

A 31ð Þ
~G==;~G0

==
A 32ð Þ

~G==;~G0
==

A 33ð Þ
~G==;~G0

==

0
BB@

1
CCA

ux~K
~G0

==

� �
uy~K

~G0
==

� �
uz~K

~G0
==

� �
0
BBB@

1
CCCA: (10.13)
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Equation (10.13) is equivalent to o2B
$
~u~K ¼ A

$
~u~K , where A

$
and B

$
are square

matrices whose size depends on the number of 2D ~G== vectors taken into account in

the Fourier series. The numerical resolution of this eigenvalue equation is

performed along the principal directions of propagation of the 2D irreducible BZ

of the array of inclusions.

If one assumes that the elastic waves propagate only in the transverse plane

(xOy), i.e., Kz¼0, then the elements of the sub-matrices A 13ð Þ
~G==;~G0

==
, A 23ð Þ

~G==;~G0
==
,

A 31ð Þ
~G==;~G0

==
, and A 32ð Þ

~G==;~G0
==
vanish and (10.13) can be rewritten as

o2

B 11ð Þ
~G==;~G0

==
0 0

0 B 22ð Þ
~G==;~G0

==
0

0 0 B 33ð Þ
~G==;~G0

==

0
BB@

1
CCA

ux~K
~G0

==

� �
uy~K

~G0
==

� �
uz~K

~G0
==

� �
0
BBB@

1
CCCA

¼
A 11ð Þ

~G==;~G0
==

A 12ð Þ
~G==;~G0

==
0

A 21ð Þ
~G==;~G0

==
A 22ð Þ

~G==;~G0
==

0

0 0 A 33ð Þ
~G==;~G0

==

0
BB@

1
CCA

ux~K
~G0

==

� �
uy~K

~G0
==

� �
uz~K

~G0
==

� �
0
BBB@

1
CCCA (10.14)

The matrices involved in (10.14) are super-diagonal, and one can separate this

equation into two independent uncoupled eigenvalues equations as follows:

o2
B 11ð Þ

~G==;~G0
==

0

0 B 22ð Þ
~G==;~G0

==

 !
ux~K

~G0
==

� �
uy~K

~G0
==

� �
0
@

1
A

¼
A 11ð Þ

~G==;~G0
==

A 12ð Þ
~G==;~G0

==

A 21ð Þ
~G==;~G0

==
A 22ð Þ

~G==;~G0
==

 !
ux~K

~G0
==

� �
uy~K

~G0
==

� �
0
@

1
A (10.15)

o2
X
~G0

==

B 33ð Þ
~G==;~G0

==
uz~K

~G0
==

� �
¼
X
~G0

==

A 33ð Þ
~G==;~G0

==
uz~K

~G0
==

� �
(10.16)

Equation (10.15) leads to XY vibration modes polarized in the transverse plane

(xOy) and (10.16) corresponds to Z modes with a displacement field along the z

direction. Decoupling of the propagation modes in bulk phononic crystals leads to

the diagonalization of matrices of reduced size and then to save computation time.

In order to evaluate the Fourier transform of the elastic constants and the density

defined by (10.8) and (10.9), we need to specify the symmetry of the array of

inclusions, the shape, and the cross-sectional area of the cylinder inclusion. For

example, one considers a square array of cylinders of circular cross section of radius

R with a lattice parameter a. Then one inclusion of filling factor f ¼ p R
a

� �2
is located
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at the center of the 2D primitive unit cell (Wigner–Seitz cell) and the Fourier

coefficients in (10.8) and (10.9) are given as

zð~G==Þ ¼ 1

Au

ð ð
primitive
unit cell

� � zð~r==Þe�i~G==�~r==d2~r
==

(10.17)

where z � r;Cij and Au is the area of the 2D primitive unit cell. These Fourier

coefficients can be calculated as follows:

zð~G==Þ ¼ 1

Au

ð ð
primitive
unit cell

� � zð~r==Þe�i~G==�~r==d2~r==

¼ 1

Au

ð ð
Au:c:ð Þ

zAe
�i~G==�~r==d2~r== þ

ð ð
Bu:c:ð Þ

zBe
�i~G==�~r==d2~r==

8><
>:

9>=
>;

¼ 1

Au

ð ð
Au:c:ð Þ

zAe
�i~G==�~r==d2~r== � 1

Au

ð ð
Au:c:ð Þ

zBe
�i~G==�~r==d2~r==

þ 1

Au

ð ð
Au:c:ð Þ

zBe
�i~G==�~r==d2~r== þ 1

Au

ð ð
Bu:c:ð Þ

zBe
�i~G==�~r==d2~r==

¼ 1

Au

ð ð
Au:c:ð Þ

zAe
�i~G==�~r==d2~r== � 1

Au

ð ð
Au:c:ð Þ

zBe
�i~G==�~r==d2~r==

þ zB
1

Au

ð ð
primitive
unit cell

� � e�i~G==�~r==d2~r==

8>><
>>:

9>>=
>>; ¼ 1

Au

zA � zBð Þ
ð ð
Au:c:ð Þ

e�i~G==�~r==d2~r==

þ zB
1

Au

ð ð
primitive
unit cell

� � e�i~G==�~r==d2~r==

8>><
>>:

9>>=
>>;: ð10:18Þ

But 1
Au

ÐÐ
primitive
unit cellð Þe�i~G==�~r==d2~r== ¼ d~G==;~O

where d is the Dirac distribution and

(10.18) can be rewritten as

zð~G==Þ ¼ zA � zBð Þ:F ~G==

� �
þ zB:d~G==;~0

(10.19)

where Fð~G==Þ is the structure factor defined as

Fð~G==Þ ¼ 1

Au

ð ð
ðAu:cÞ

e�i~G==�~r==d2~r== (10.20)
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In (10.20), integration is performed over the cross section of the cylindrical

inclusion denoted by (Au.c.). Using the polar coordinates r==; y, one shows that

Fð~G
==
Þ ¼ 1

a2

ðR
0

ð2p
0

e�iG==�r==cosyr==dr==dy ¼ 1

a2

ðR
0

2pr==dr==J0 G==r==
� �

¼ 2p
a2G==

2

ðG==R

0

G==r==
� �

J0 G==r==
� �

d G==r==
� �

¼ 2p
a2G==

2
G==R:J1 G==R

� � ¼ 2f
J1 G==R
� �
G==R

ð10:21Þ

where J0 and J1 are Bessel functions of the first kind of orders 0 and 1, f ¼ pR2=a2

and 0 � f � p=4 . The maximum value of f corresponds to the close-packed

structure where one cylinder touches another one. Similar calculations lead, for

rods of square cross section of width d, to F ~G==

� �
¼ f

�
sin Gxd=2ð Þ
Gxd=2ð Þ

�
sin Gyd=2ð Þ

Gyd=2ð Þ
� �

where f ¼ d2=a2 and 0 � f � 1.

Note that for ~G== ¼~0;Fð~G== ¼~0Þ ¼ f and

zð~G== ¼~0Þ ¼ ðzA � zBÞf þ zB ¼ f zA þ ð1� f ÞzB (10.22)

and zð~G== ¼~0Þ corresponds to the average value of z.
The components of the 2D reciprocal lattice vectors ~G== are Gx ¼ 2p

a nx and

Gy ¼ 2p
a ny where nx and ny are integers. In the course of the numerical resolution of

(10.13), we consider �MxbnxbþMx and �My � ny � þMy (with Mx and My

positive integers), i.e., ð2Mx þ 1Þð2My þ 1Þ 2D ~G== vectors (Gx and Gy have

ð2Mx þ 1Þ and ð2My þ 1Þdifferent values, respectively) are taken into account. This
gives 3ð2Mx þ 1Þð2My þ 1Þ real eigenfrequencies oð~KÞ for a given wave vector ~K
describing the principal directions of propagation in the irreducible BZ. Following

the same process, the PWE method can be applied to other symmetries of the array

(triangular, honeycomb, etc.) and other shapes of the inclusion (square, rotated

square, etc.). The choice of the values of the integers Mx, My is of crucial impor-

tance for insuring the convergency of the Fourier series. The convergency is fast

when considering constituent materials with closed physical properties but is

slower when materials A and B present very different densities and elastic

moduli [2]. The PWE method is also useful for computing band structures of

phononic crystals made of fluid constituents [3]. In this case, the Fourier transform

of the equation of propagation of longitudinal acoustic waves in a heterogeneous

periodic fluid leads to a generalized eigenvalue equation similar to (10.16). But the

PWE method fails to predict accurately the band structures of mixed phononic

crystals made of solid (resp. fluid) inclusions surrounded by a fluid (resp. solid) [4].

Nevertheless, in some particular cases, the PWEmethod is very well adapted for the

calculations of band structures of mixed systems, provided the inclusions can be

assumed to be infinitely rigid as it happens in arrays of solid inclusions surrounded

with air [5]. On the other hand, the PWE method assumes the phononic crystal to be
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of infinite extent in the three spatial directions and does not allow the calculation of

the reflection and transmission coefficients of elastic waves through phononic

crystals of finite thickness.

10.2.2 PWE Method for Phononic Crystal Plates:
The Super-Cell Method

To calculate the elastic band structures of 2D phononic crystal plates, one modifies

the PWE method presented in Sect. 10.2.1. The phononic crystal plate of thickness,

h2, is assumed to be infinite in the ðxOyÞ plane of the Cartesian coordinates system

ðO; x; y; zÞ. The plate is sandwiched between two slabs of thicknesses h1 and h3 ,
made of elastic homogeneous materials C and D (see Fig. 10.5a). In the course of

the numerical calculations, one considers the parallelepipedic super-cell depicted in

Fig. 10.5b).

The basis of the super-cell in the ðxOyÞ plane includes that of the 2D primitive

unit cell (which may contain one cylinder or more) of the array of inclusions, and its

height along the z direction is ‘ ¼ h1 þ h2 þ h3 . This super-cell is repeated

periodically along the x, y, and z directions. This triple periodicity allows one to

develop the elastic constants and the mass density of the constituent materials as

Fourier series as

zð~rÞ ¼
X
~G

zð~GÞei~G�~r (10.23)

where ~r ¼ ð~r==; zÞ ¼ ðx; y; zÞ and ~G ¼ ð~G==;GzÞ ¼ ðGx;Gy;GzÞ are 3D position
vectors and reciprocal lattice vectors, respectively. Moreover, the elastic displace-

ment field can be written as

~uð~rÞ ¼ eiðot�~K==�~r==�KzzÞ
X
~G

~u~Kð~GÞei
~G�~r: (10.24)

h1 C

a b

B A

D
a

h2

h3

h1 C

B A

D

a
a

h2

h3

z y

x

Fig. 10.5 (a) 2D phononic crystal plate sandwiched between two slabs of homogeneous materials

and (b) 3D super-cell considered in the course of the super-cell PWE computation
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The components in the ðxOyÞ plane of the ~G vectors depend on the geometry of

the array of inclusions while along the z direction,Gz ¼ 2p
‘ nz, where nz is an integer.

The Fourier coefficients in (10.23) are now given as

zð~GÞ ¼ 1

Vu

ð ð ð
ðsuper cellÞ

zð~rÞe�i~G�~rd3~r (10.25)

with Vu ¼ Au:‘ is the volume of the super-cell.

For a square array of inclusions, the Fourier coefficients become

zð~GÞ ¼ f zA
h2
‘

� �
þ ð1� f ÞzB h2

‘

� �þ zC
h1
‘

� �þ zD
h3
‘

� �
; if ~G ¼~0

ðzA � zBÞFs
Ið~GÞ þ ðzC � zBÞFs

IIð~GÞ þ ðzD � zBÞFs
IIIð~GÞ; if ~G 6¼~0

8<
:

(10.26)

with

Fs
Ið~GÞ ¼

1

Vu

ð ð ð
ðAÞ

e�i~G�~rd3~r ¼ Fð~G
==
Þ

sin Gz
h2
2

� �

Gz
h2
2

� �
0
BB@

1
CCA:

h2
‘

� �
(10.27)

Fs
IIð~GÞ ¼

1

Vu

ð ð ð
ðCÞ

e�i~G�~rd3~r

¼
sin Gx

a

2

� �
Gx

a

2

� �
0
B@

1
CA:

sin Gy
a

2

� �
Gy

a

2

� �
0
B@

1
CA:

sin Gz
h1
2

� �

Gz
h1
2

� �
0
BB@

1
CCA:

h1
‘

� �
:e�iGz

h1þh2
2ð Þ

(10.28)

Fs
IIIð~GÞ ¼

1

Vu

ð ð ð
ðDÞ

e�i~G�~rd3~r

¼
sinðGx

a

2
Þ

ðGx
a

2
Þ

0
B@

1
CA:

sinðGy
a

2
Þ

ðGy
a

2
Þ

0
B@

1
CA:

sinðGz
h3
2
Þ

ðGz
h3
2
Þ

0
B@

1
CA:

h3
‘

� �
:e�iGz

h2þh3
2ð Þ (10.29)

In (10.27), (10.28), and (10.29), the integration is performed over the volume

occupied by each material A, C, or D inside the unit cell. In (10.27), Fð~G
==
Þ is the

structure factor defined by (10.21) for cylindrical inclusions.
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As for the bulk phononic crystals, the equation of motion is Fourier transformed

by substituting (10.23) and (10.24) in (10.5), and this leads to the following

generalized eigenvalue equation:

o2

B 11ð Þ
~G;~G0 0 0

0 B 22ð Þ
~G;~G0 0

0 0 B 33ð Þ
~G;~G0

0
B@

1
CA

ux~K
~G0
� �

uy~K
~G0
� �

uz~K
~G0
� �

0
BBB@

1
CCCA

¼
A 11ð Þ

~G;~G0 A 12ð Þ
~G;~G0 A 13ð Þ

~G;~G0

A 21ð Þ
~G;~G0 A 22ð Þ

~G;~G0 A 23ð Þ
~G;~G0

A 31ð Þ
~G;~G0 A 32ð Þ

~G;~G0 A 33ð Þ
~G;~G0

0
B@

1
CA

ux~K
~G0
� �

uy~K
~G0
� �

uz~K
~G0
� �

0
BBB@

1
CCCA

where

B 11ð Þ
~G;~G0 ¼B 22ð Þ

~G;~G0 ¼B 33ð Þ
~G;~G0 ¼r ~G�~G0

� �
A 11ð Þ

~G;~G0 ¼C11
~G�~G0
� �

GxþKxð Þ G0
xþKxð Þ

þC44
~G�~G0
� �

GyþKy

� �
G0

yþKy

� �þ GzþKzð Þ G0
zþKzð Þ� 	

A 12ð Þ
~G;~G0 ¼C12

~G�~G0
� �

GxþKxð Þ G0
yþKy

� �þC44
~G�~G0
� �

G0
xþKxð Þ GyþKy

� �
A 13ð Þ

~G;~G0 ¼C12
~G�~G0
� �

GxþKxð Þ G0
zþKzð ÞþC44

~G==�~G0
==

� �
G0

xþKxð Þ GzþKzð Þ

A 21ð Þ
~G;~G0 ¼C12

~G�~G0
� �

G0
xþKxð Þ GyþKy

� �þC44
~G�~G0
� �

G0
yþKy

� �
GxþKxð Þ

A 22ð Þ
~G;~G0 ¼C11

~G�~G0
� �

GyþKy

� �
G0

yþKy

� �
þC44

~G�~G0
� �

GxþKxð Þ G0
xþKxð Þþ GzþKzð Þ G0

zþKzð Þ½ �

A 23ð Þ
~G;~G0 ¼C12

~G�~G0
� �

G0
zþKzð Þ GyþKy

� �þC44
~G�~G0
� �

G0
yþKy

� �
GzþKzð Þ

A 31ð Þ
~G;~G0 ¼C12

~G�~G0
� �

G0
xþKxð Þ GzþKzð ÞþC44

~G�~G0
� �

GxþKxð Þ G0
zþKzð Þ

A 32ð Þ
~G;~G0 ¼C12

~G�~G0
� �

G0
yþKy

� �
GzþKzð ÞþC44

~G�~G0
� �

GyþKy

� �
G0

zþKzð Þ

A 33ð Þ
~G;~G0 ¼C11

~G�~G0
� �

GzþKzð Þ G0
zþKzð Þ

þC44
~G�~G0
� �

GxþKxð Þ G0
xþKxð Þþ G0

yþKy

� �
GyþKy

� �� 	

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(10.30)

The numerical resolution of this eigenvalue equation is performed along the

principal directions of propagation of the 2D irreducible BZ of the array of

inclusions whileKz is fixed to any value lower than
p
‘ . In the course of the numerical
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calculations, Gx, Gy, and Gz take respectively ð2Mx þ 1Þ,ð2My þ 1Þ, and ð2Mz þ 1Þ
discrete values, and this leads to 3ð2Mx þ 1Þð2My þ 1Þð2Mz þ 1Þ eigenfrequencies
o for a given wave vector ~K.

The super-cell method requires an interaction as low as possible between the

vibrational modes of neighboring periodically repeated phononic crystal plates.

Then, in order to allow the top surface of the plate to be free of stress, medium C

should behave, for instance, like vacuum [6]. But as already observed by various

authors [6–8], the choice of the physical parameters characterizing vacuum in the

course of the PWE computations is of critical importance. Indeed, in the framework

of the PWE method, taking abruptly Cij ¼ 0 and r ¼ 0 for vacuum leads to

numerical instabilities and unphysical results [6–8]. Then vacuum must be modeled

as a pseudo-solid material with very low Cij and r. For the sake of simplicity, this

low impedance medium (LIM) is supposed to be elastically isotropic and is

characterized by a longitudinal speed of sound Cl , and a transversal speed of

sound Ct or equivalently by two elastic moduli expressed with the Voigt notation

as C11 ¼ rC‘
2 and C44 ¼ rCt

2 . The choice of the values of these parameters is

governed by the boundary condition between any solid material and vacuum.

Indeed, one knows that this interface must be free of stress, and this requires that

C11 ¼ 0 and C44 ¼ 0 rigorously in vacuum [6]. Then, using the LIM to model

vacuum in the PWE computations, the nonvanishing values of these parameters

must be as small as possible, and we consider that the ratio between the elastic

moduli of the LIM and those of any other solid material constituting the phononic

crystal must approach zero. We choose Cl and Ct to be much larger than the speeds

of sound in usual solid materials in order to limit propagation of acoustic waves to

the solid. Large speeds of sound and small elastic moduli impose a choice of a very

low mass density for the LIM. More specifically, we choose r¼ 10�4 kgm�3 and

Cl ¼ Ct¼ 105 m s�1 , i.e., the acoustic impedances of the LIM are equal to 10 kg

m�2 s�1. With these values, C11 ¼ C44¼ 106 Nm�2 and the elastic constants of the

LIM are approximately 104 times lower than those of any usual solid material that

are typically on the order of 1010 Nm�2. The values we choose forC11 andC44 are a

compromise to achieve satisfactory convergence of the SC-PWE method and still

satisfy boundary conditions. Values of the elastic constants of the LIM lower than

104 Nm�2 can have, in some cases, effects on the numerical convergence. We

choose C11 ¼ C44 for convenience. In the course of the PWE calculations, these

values of the LIM physical characteristics allow one to model vacuum without

numerical difficulties.

In the super-cell, medium D can be either vacuum or a homogeneous material

depending on whether one wants to model a phononic crystal plate or a structure

made of a phononic crystal plate deposited on a substrate of finite thickness.

Computations of dispersion curves of phononic crystal plates with Kz ¼ 0 and

with any other nonvanishing value of Kz , lower than
p
‘ , lead to nearly the same

result. Indeed, the eigenvalues computed withKz ¼ 0 andKz 6¼ 0 differ only in their

third decimal. This indicates that the homogeneous slabs C and D made of the LIM

modeling vacuum rigorously provide appropriate decoupling of the plate modes of
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vibration in the zdirection. Then, the value ofKzmay be fixed to zero. Due to this 3D

nature, the numerical convergency of the super-cell PWE (SC-PWE) method is

relatively slow, and it has been shown that this method is suitable for voids/solid

matrix plates but is not reliable for constituent materials with very different

physical properties [9]. The SC-PWE method does not to require to write and to

satisfy explicitly the boundary conditions at the free surfaces. Nevertheless, other

authors have proposed PWE schemes for phononic crystals plates where these

boundary conditions are satisfied, but these methods also suffer from convergence

difficulties [10].

10.2.3 PWE Method for Complex Band Structures

In classical PWE methods (see Sect. 10.2.1), one calculates a set of real eigenfre-

quenciesoð~KÞ for a specific wave vector ~K. That means that only propagating modes

with a real wave vector can be deduced fromoð~KÞPWEmethods. Then an extended

PWE method has been proposed that allows the calculation of not only the

propagating modes but also the evanescent modes. The wave vector for evanescent

waves possesses a nonvanishing imaginary part. We have seen previously that the

Fourier transform of the equation of propagation of elastic waves in a phononic

crystal leads to the resolution of a generalized eigenvalue equation in the form o2B
$

~U ¼ A
$
~U . The matrix elements of A

$
and B

$
involve terms depending on the

components of the wave vector ~K . It is always possible to rewrite matrix A
$
as A

$

¼ K2
aA1

$ þKaA2

$ þA3

$
, whereKa is one of the components of the wave vector, andA1

$
,

A2

$
, and A3

$
are matrices of the same size as A

$
. The generalized eigenvalue equation

o2B
$
~U ¼ A

$
~Umay be recast asK2

aA1

$
U
$ ¼ o2B

$
~U � A3

$
U
$ � KaA2

$
U
$
and one canwrite

Ka
I
$

0
$

0
$

A1

$

 !
~U

Ka~U

� �
¼ 0

$
I
$

o2B
$ � A3

$ �A2

$

 !
~U

Ka~U

� �
(10.31)

where I
$
is the identity matrix. Equation (10.31) is nothing else than a generalized

eigenvalue equation where the eigenvalues are the component Ka of the wave

vector. For a specific value of the circular frequency o, one calculates a set of

complex eigenvaluesKa. This method is named ~KðoÞ PWE method. The size of the

matrices occurring on the left and right sides of (10.31) is twice that of matrices A
$

andB
$
. One may illustrate these general ideas by considering the peculiar case of the

Z elastic modes propagating in a bulk 2D phononic crystal made of a square array of

lattice parameter a, of cylindrical inclusions embedded in a solid matrix. If one

assumes Kz¼ 0, then these modes are given by (10.16), where o depends on the two

variables Kx and Ky. Consider the propagation of elastic waves along the GX
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direction of the irreducible BZ for which Ky ¼ 0 and 0 � ReðKxÞ � p
a . Equation

(10.16) leads to

K2
x

X
~G0

==

C44 G
*

== �G
* 0

==

� �
uz~K

~G0
==

� �

¼
X
~G0

==

o2r G
*

== �G
* 0

==

� �
� Gx:G

0
x þGy:G

0
y

� �
C44 G

*

== �G
* 0

==

� �
 �
uz~K

~G0
==

� �

�Kx

X
~G0

==

Gx þG0
xð ÞC44 G

*

== �G
* 0

==

� �
uz~K

~G0
==

� �
ð10:32Þ

and can be rewritten as

Kx
I
$

0
$

0
$

A1

$

 !
~U

Kx
~U

� �
¼ 0

$
I
$

o2B
$ � A3

$ �A2

$

 !
~U

Kx
~U

� �
(10.33)

where

B~G==;~G0
==
¼ r ~G== � ~G0

==

� �
A1~G==;~G0

==
¼ C44

~G== � ~G0
==

� �
A2~G==;~G0

==
¼ C44

~G== � ~G0
==

� �
Gx þ G0

xð Þ
A3~G==;~G0

==
¼ C44

~G== � ~G0
==

� �
GxG

0
x þ GyG

0
y

� �� 	

8>>>>>><
>>>>>>:

: (10.34)

Numerical resolution of (10.34) leads to 2N (ifN � N is the size ofmatricesA
$
andB

$
)

complex values ofKx ¼ ReðKxÞ � iImðKxÞ for any value ofo. Eigenvalues belonging
to the irreducible BZ and corresponding to waves with a vanishing amplitude when

x ! þ1maybe taken into account, i.e.,0 � ReðKxÞ � p
a andImðKxÞ � 0.Figure 10.6

presents the band structures calculated by both oð~KÞ and ~KðoÞ methods. This figure

shows the ability of the ~KðoÞmethod to calculate the evanescent modes. Of particular

interest is the existence of additional bands (see right panel of Fig. 10.6 for reduced

frequency around 1.1) not predicted by the classical oð~KÞ PWE method (red dots).

These vibrational modes are characterized by a nonvanishing ImðKxÞ.
To apply this, ~KðoÞPWEmethod requires to consider only one component of the

wave vector ~K as eigenvalue. That needs to keep fixed the other component or to

write a linear relation between them. For example, along the GM direction in the

irreducible BZ of the square array, one can write Kx ¼ Ky and consider Kx as the

eigenvalue. In the same way, one can deal with any direction of propagation and not

only with the high-symmetry directions. Plotting all the values of Kx and Ky

corresponding to a specific frequency leads to the equi-frequency contour (EFC)

of the phononic crystal. Knowing precisely the shape of these EFCs is of funda-

mental interest when studying focusing or self-collimating of elastic waves by
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phononic crystals [11]. Moreover, the ~KðoÞ PWE method allows to take into

account elastic moduli depending on the frequency and should be applied for

calculating the band structures of phononic crystals made of viscoelastic materials.

10.3 Finite-Difference Time Domain Method

10.3.1 Calculation of Transmission Coefficients

We present here the basic principles of the finite-difference time domain (FDTD)

method applied to the calculation of transmission coefficients of elastic waves

through phononic crystals made of nonviscous or nonviscoelastic constituents.

The method is based on discretizations of the differential equations of motion on

both spatial and time domains. As previously and for the sake of simplicity, we limit

ourselves to 2D phononic crystals.

We consider a 2D phononic crystal containing cylindrical inclusions surrounded

by a host matrix. Constituent materials are supposed to be isotropic solids or fluids.

The inclusions are parallel to the z direction and are arranged periodically in the

transverse (x,y) plane. A phononic crystal of finite thickness along the y direction is
realized by considering a small number of periods in this direction. The “sample” is

bounded by semi-infinite homogeneous media on both sides. The system is infinite

in the vertical direction z, and all its physical properties do not depend on z.
That means that we propose a strictly 2D FDTD scheme. The probing signal

Fig. 10.6 Band structures along the GX direction of the irreducible Brillouin zone for a square

array of holes drilled in a Silicon matrix: Red dots: oð~KÞ method; Black dots: ~KðoÞ method
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corresponding to a longitudinal wave that propagates along the y direction is

launched from the left homogeneous medium (inlet zone) and detected in the

right one (outlet zone) (see Fig. 10.7). We just describe here a 2D FDTD scheme

just as it has been reported in [12].

The elastic wave equation is given by

@~v

@t
¼ 1

rðx; yÞ r:
�!��s (10.35)

with

~v ¼ @~u

@t
(10.36)

where t is time, rðx; yÞ is the mass density, ~uðx; y; tÞ is the displacement field,

~vðx; y; tÞ is the velocity vector, and ��sðx; yÞ is the total stress tensor. The nonzero

Cartesian components of the 2D stress tensor ��s are

sxx ¼ C11

@ux
@x

þ C12

@uy
@y

(10.37)

syy ¼ C44

@uy
@x

þ @ux
@y

� �
(10.38)

sxy ¼ C11

@uy
@y

þ C12

@ux
@x

(10.39)

with C11(x,y), C44(x,y), C12(x,y) ¼ C11(x,y)�2C44(x,y), the position-dependent

elastic moduli. For a given isotropic medium, C11 and C44 are related to the

longitudinal Cl and transverse Ct speeds of sound as C11 ¼ rCl
2 and C44 ¼ rCt

2.

A fluid is treated as a solid with zero transverse speed of sound in this 2D FDTD

scheme. From (10.37), (10.38), and (10.39), one notes that we consider only modes

of vibration analog to XYmodes as defined by (10.15) in the preceding section. The

Fig. 10.7 Two-dimensional cross section of the FDTD model structure. The cylinders are parallel

to the z axis of the Cartesian coordinate system (Oxyz). The lattice parameter is a
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FDTD method involves transforming the governing differential equations given by

(10.35) and (10.36) in the time domain into finite differences and solving them as

one progress in time in small increments. For the implementation of the FDTD

method, we divide the computational domain intoNx � Ny sub-domains (grids) with

dimensions Dx, Dy. For the time derivative, we use forward difference, with a time

interval Dt, and the displacement field is calculated at multiple integers of Dt,
whereas the velocity is calculated on a time grid shifted by half the step. The

probing signal is launched from the left homogeneous medium and corresponds to a

longitudinal wave that propagates along the y direction for increasing y. This can be
written as Fðy; tÞ ¼ Fðy� CltÞ, where Cl is the longitudinal speed of sound in the

inlet medium. The initial conditions on the displacement field and the speed vector

are such as~uðt ¼ 0Þ ¼ ux ¼ 0

uy ¼ FðyÞ
� �

and~v t ¼ Dt
2

� � ¼ vx ¼ 0

vy ¼ �Cl
dFðy;tÞ

dt





t¼þDt=2

 !
.

The stress component sxx is calculated at time (n+1) from the components of the

displacement field calculated at time t by discretizing (10.37), then

snþ1
xx ði; jÞ ¼ C11 iþ 1

2
; j

� �
unxðiþ 1; jÞ � unxði; jÞ

Dx

� �

þ C12 iþ 1

2
; j

� �
unyði; jÞ � unyði; j� 1Þ

Dy

� �
(10.40)

where we define C11 iþ 1
2
; j

� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11ðiþ 1; jÞC11ði; jÞ

p
and C12 iþ 1

2
; j

� � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C12ðiþ 1; jÞC12ði; jÞ

p
:

Similarly, the components sxy and syy are obtained in discretized form as

snþ1
xy ði; jÞ ¼ C11 iþ 1

2
; j

� �
unyði; jÞ � unyði; j� 1Þ

Dy

� �
þ C12 iþ 1

2
; j

� �

� unxðiþ 1; jÞ � unxði; jÞ
Dy

� �
(10.41)

snþ1
yy ði; jÞ ¼ C44 i; jþ 1

2

� �
unxði; jþ 1Þ � unxði; jÞ

Dy
þ unyði; jÞ � unyði� 1; jÞ

Dx

� �
(10.42)

where we define C44 i; jþ 1
2

� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C44ði; jþ 1ÞC44ði; jÞ

p
.

Using expansions at point (i,j) and time n, (10.35) in component form becomes
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vnþ1
x ði; jÞ ¼ vnxði; jÞ þ

Dt
rði; jÞ

snþ1
xx ði; jÞ � snþ1

xx ði� 1; jÞ
Dx

þ snþ1
xy ði; jÞ � snþ1

xy ði; j� 1Þ
Dy

 !

(10.43)

vnþ1
y ði; jÞ ¼ vnyði; jÞ þ

Dt

r iþ 1

2
; jþ 1

2

� �

� snþ1
yy ði; jþ 1Þ � snþ1

yy ði; jÞ
Dx

þ snþ1
xy ðiþ 1; jÞ � snþ1

xy ði; jÞ
Dy

 !
(10.44)

where we define r iþ 1
2
; jþ 1

2

� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rði; jÞrðiþ 1; jÞrði; jþ 1Þrðiþ 1; jþ 1Þ4

p
.

Finally, the components of the displacement field at time (n+1) are deduced from
the same component but evaluated at time n as unþ1

x ði; jÞ ¼ unxði; jÞ þ Dt:vnxði; jÞ and
unþ1
y ði; jÞ ¼ unyði; jÞ þ Dt:vnyði; jÞ.
Using this iterative procedure, the elastic wave equation is solved numerically,

and the components of the time-dependent displacement field are calculated at the

exit of the outlet. The component uy(t) is then averaged on a period of the slab along
the x direction and Fourier transformed with respect to time. The same procedure is

applied when the phononic crystal slab is replaced by a homogeneous medium

identical to the inlet and the outlet media. The ratio between the two Fourier-

transformed signals (with and without the PC slab) leads to the transmission

coefficient. A reliable calculation of the transmission coefficient strongly depends

on the choice of the function F(y,t) corresponding to the probing signal. In particu-

lar, when considering the propagation through a homogeneous structure, i.e.,

without the PC slab, the Fourier-transformed signal must vary smoothly with the

frequency on a specific frequency range [0,omax]. This condition can be satisfied by

taken into account a sinusoidal function weighted by a Gaussian profile such as

Fðy; tÞ ¼ Fðy� CltÞ ¼ FðYÞ ¼ Acos½k0Y�:exp � ðk0YÞ2
2

h i
; where k0 	 omax

Cl
: The

choice of this kind of function also allows to mimic the frequency response of a

transducer generating pressure waves with a pass band [0,omax] usually used in

ultrasonic measurements.

Periodic boundary conditions are applied along the x direction. That means that

the elastic displacement is imposed to be the same on x ¼ 0 and x ¼ L, where L is

the width of the FDTD mesh along the x direction for any value of y. For example,

one must satisfy for any time step that uy(imax+1, j) ¼ uy(1, j), where the integer i
denoting the number of the spatial discretization step along the x direction varies

between 1 and imax. For closing the FDTD mesh along the y direction, it is

necessary to impose absorbing boundary conditions on ymin and ymax, where ymin

and ymax denote the entry of the inlet zone and the exit of the outlet zone. Absorbing

boundary conditions are implemented in order to prevent reflection from the end

elements of the FDTD mesh. First-order Mur’s absorbing conditions [13] are
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usually used and can be implemented in the FDTD code by satisfying the following

formula:

unþ1
y ði; jmaxÞ ¼ unyði; jmax � 1Þ þ ClDt� Dy

ClDtþ Dy

� �
unþ1
y ði; jmax � 1Þ � unyði; jmaxÞ

h i
(10.45)

unþ1
y ði; 1Þ ¼ unyði; 2Þ þ

ClDt� Dy
ClDtþ Dy

� �
unþ1
y ði; 2Þ � unyði; 1Þ

h i
(10.46)

where the integer j denoting the number of the spatial discretization step along the y
direction varies between 1 and jmax. Same formula should be satisfied for the x
component of the displacement field.

Finally, for insuring the numerical stability of the FDTD code, it must be

checked that the time step Dt and the discretization meshes Dx and Dy satisfy the

following stability criterion [14]:

Dt � 0:5

Cmax
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Dx

� �2 þ 1
Dy

� �2r (10.47)

where Cl
max stands for the largest longitudinal speed of sound of the constituent

materials involved in the structure.

10.3.2 Band Structure Calculation

In some cases, the PWE method fails to predict accurately the band structure of

phononic crystals especially for mixed composites where one of the constituent is a

fluid. Tanaka et al. [8] have reported an extension of the FDTD method for the

calculation of dispersion relations of acoustic waves in 2D phononic crystals. In

contrast with the standard FDTD approach presented in Sect. 10.3.1, the band

structure FDTD technique implies a periodic system in the transverse plane xy.

The displacement field, the velocity vector, and the stress tensor must satisfy the

Bloch theorem, i.e.,

~uð~r; tÞ ¼ ei K:
�!

~r:~Uð~r; tÞ (10.48)

~vð~r; tÞ ¼ ei K:
�!

~r:~Vð~r; tÞ (10.49)

��sð~r; tÞ ¼ ei K:
�!

~r:Sð~r; tÞ (10.50)
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where~rðx; yÞ is the position vector in the xy plane and ~KðKx;KyÞ is the Bloch wave

vector.
~Uð~r; tÞ, ~Vð~r; tÞ, and Sð~r; tÞ are spatial periodic functions satisfying ~Uð~r þ~aÞ

¼ ~Uð~rÞ, ~Vð~r þ~aÞ ¼ ~Vð~rÞ, and Sð~r þ~aÞ ¼ Sð~rÞ, where ~a is the lattice translation

vector. One inserts (10.48), (10.49), and (10.50) into the equations of propagation

of the elastic waves, i.e., (10.35) and (10.36), and these later become

d~V

dt
¼ 1

rð~rÞ i
~K:Sð~r; tÞ with ~V ¼ d~U

dt
: (10.51)

To solve (10.51), one first specifies a 2D wave vector, ~KðKx;KyÞ , along the

principal direction of the irreducible BZ. An assumption on the initial displacement
~Uð~r; t ¼ 0Þ in the form of a delta stimulus at some random location within the unit

cell is then made. The equations of motion are then solved by discretizing both

space and time. The time evolution of ~Uð ri!; tÞ at several predetermined locations ri
!

within the unit cell is recorded. Peaks in the frequency space of the Fourier-

transformed signals are identified as the eigenfrequencies of the normal modes of

the system for a given wave vector, ~K.

10.3.3 Viscoelastic Media

The FDTD method reported in Sect. 10.3.1 is suitable for the calculation of

transmission coefficient through phononic crystals made of non-lossy purely elastic

material. Nevertheless several experimental studies were devoted to phononic

crystals made of viscoelastic materials such as rubber, epoxy. Taking into account

the effects of viscoelasticity on the propagation of elastic waves in phononic

crystals is of fundamental as well as of practical interest in many areas. In this

section, an alternate FDTD scheme where the viscoelastic properties, i.e., time-

dependent elastic moduli, are rigorously taken into account is presented. As visco-

elastic materials, we consider the general linear viscoelastic fluid (GLVF).

10.3.3.1 Viscoelastic Model

When the GLVF material also is compressible, the components of the total stress

tensor are given by

sðtÞ ¼ 2

ðt
�1

Gðt� t0ÞDðt0Þdt0 þ
ðt
�1

Kðt� t0Þ � 2

3
Gðt� t0Þ

� �
~r: ~vðt0Þ
h i

Idt0

(10.52)
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where t is time,~vð~r; tÞ is the velocity vector, ~Dð~r; tÞ is the rate of deformation tensor

given by

~D ¼ 1

2
~r~v
� �

þ ~r~v
� �T� �

(10.53)

and G(t) and K(t) are the steady shear and bulk moduli, respectively.

These moduli can be experimentally determined through rheometry, and the data

can be fit in a variety of ways, including the use of mechanical-analog models.

A viscoelastic model, or in effect, the behavior pattern it describes, may be

illustrated schematically by combinations of springs and dashpots, representing

elastic and viscous factors, respectively. Hence, a spring is assumed to reflect the

properties of an elastic deformation and similarly a dashpot to depict the

characteristics of viscous flow. The generalized Maxwell model, also known as

the Maxwell– Weichert model, takes into account the fact that the relaxation does

not occur with a single time constant, but with a distribution of relaxation times.

The Weichert model shows this by having as many spring–dashpot Maxwell

elements as are necessary to accurately represent the distribution (Fig. 10.8). A

multiple element Maxwell model is therefore more apt to represent the numerous

timescales associated with relaxation in real viscoelastic materials.

For an n-element generalized Maxwell solid model, the extensional modulus

E(t) is calculated to be

EðtÞ ¼ E1 þ
Xn
i

Eie
� t

ti (10.54)

s

t2 tjt1

E2 EjE1

E∞

Fig. 10.8 Spring and dashpot illustration of the generalized Maxwell model
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wherefEi; ti ¼ 1; 2; . . . ; ngare the moduli and relaxation times of the elements, and

E1 ¼ Eð1Þ is the equilibrium extensional modulus.

Introducing aðtÞ ¼ a0 þ
Pn
i¼1

aie�t=ti where a0 ¼ E1
Esum

, ai ¼ Ei

Esum
(i ¼ 1, 2,.., n), andPn

i¼0

ai ¼ 1, Esum ¼Pn
i¼1

Ei, we obtain EðtÞ ¼ EsumaðtÞ.
Consequently, we assume that

EðtÞ ¼ 2GðtÞð1þ uÞ ¼ 3KðtÞð1� 2uÞ (10.55)

with
GðtÞ ¼ GsumaðtÞ
KðtÞ ¼ KsumaðtÞ



and

Gsum ¼ m

Ksum � 2

3
Gsum ¼ l

8<
: : (10.56)

In (10.55) and (10.56), u is the Poisson’s ratio and l and m are the Lamé constant

and shear modulus, respectively.

Now we consider a 2D elastic/viscoelastic material, where the system is infinite

in the vertical direction z, and none of its properties depends on z (translational

invariance). In this case, the Cartesian components of the 2D stress tensor deduced

from (10.52) become

sxxðtÞ ¼ 2

ðt
�1

Gðt� t0Þ @vxðt
0Þ

@x
dt0 þ

ðt
�1

Kðt� t0Þ � 2

3
Gðt� t0Þ

� �

� @vxðt0Þ
@x

þ @vyðt0Þ
@y

� �
dt0 (10.57)

syyðtÞ ¼ 2

ðt
�1

Gðt� t0Þ @vyðt
0Þ

@y
dt0 þ

ðt
�1

Kðt� t0Þ � 2

3
Gðt� t0Þ

� �

� @vxðt0Þ
@x

þ @vyðt0Þ
@y

� �
dt0 (10.58)

sxyðtÞ ¼ syxðtÞ ¼
ðt
�1

Gðt� t0Þ @vxðt0Þ
@y

þ @vyðt0Þ
@x

� �
dt0 (10.59)

For the sake of illustration, let us insert (10.56) into (10.57). UsingC11 ¼ 2mþ l,
C12 ¼ l, and C44 ¼ m, sxxðtÞ becomes

sxxðtÞ ¼ a0 C11

@uxðtÞ
@x

þ C12

@uyðtÞ
@y

� �

þC11

Xn
1

ai

ðt
�1

@vxðt0Þ
@x

e
� t�t0ð Þ

ti dt0 þ C12

Xn
1

ai

ðt
�1

@vyðt0Þ
@y

e
� t�t0ð Þ

ti dt0

(10.60)
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Equation (10.60) involves integrals of the type

IxxiðtÞ ¼
ðt
�1

@vxðt0Þ
@x

e
�ðt�t0 Þ

ti dt0 (10.61)

in which calculations can be achieved by the following recursive method.

First we assume that for an incident wave that arrives from an elastic medium,

we have
Ð t
�1 
 Ð t

0
. Then the following variable w ¼ t – t0, ()dw ¼ �dt0) leads to

IxxiðtÞ ¼
ðt
0

@vxðt� wÞ
@x

e
�w

ti dw (10.62)

Now we calculate Ixxiðtþ DtÞ.

Ixxiðtþ DtÞ ¼
ðtþDt

0

@vxðtþ Dt� wÞ
@x

e
�w

tidw (10.63)

Ixxiðtþ DtÞ ¼
ðDt
0

@vxðtþ Dt� wÞ
@x

e
�w

tidwþ
ðtþDt

Dt

@vxðtþ Dt� wÞ
@x

e
�w

tidw

(10.64)

By changing s ¼ w� Dt ¼ > ds ¼ dw

Ixxiðtþ DtÞ ¼
ð0
�Dt

@vxðt� sÞ
@x

e
�ðsþDtÞ

ti dsþ
ðt
0

@vxðt� sÞ
@x

e
�ðsþDtÞ

ti ds (10.65)

Ixxiðtþ DtÞ ¼
@vxðtÞ
@x

e
�Dt

ti þ @vxðtþ DtÞ
@x

2
Dt

2
64

3
75þ e

�Dt
ti

ðt
0

@vxðt� sÞ
@x

e
� s
tids (10.66)

And finally a recursive form for the integral calculation is obtained as

Ixxiðtþ DtÞ ¼
@vxðtÞ
@x

e
�Dt
ti þ @vxðtþ DtÞ

@x
2

dt

2
64

3
75þ e

�Dt
ti IxxiðtÞ (10.67)

where Ixxið0Þ ¼ 0

Similar equations are obtained for the yy and xy components.

Iyyiðtþ DtÞ ¼
@vyðtÞ
@y

e
�Dt
ti þ @vyðtþ DtÞ

@y

2
Dt

2
664

3
775þ e

�Dt
ti IyyiðtÞ (10.68)
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Ixyiðtþ DtÞ ¼
@vxðtÞ
@y

e
�Dt
ti þ @vxðtþ DtÞ

@y

2
Dt

2
664

3
775þ e

�Dt
ti IxyiðtÞ (10.69)

Iyxiðtþ DtÞ ¼
@vyðtÞ

@x e
�Dt
ti þ @vyðtþ DtÞ

@x
2

Dt

2
64

3
75þ e

�Dt
ti IyxiðtÞ (10.70)

We can now develop the FDTD method for the generalized Maxwell model.

10.3.3.2 FDTD Method for the Generalized Maxwell Model

As in Sect. 10.3.1, (10.35) stands for the basis equation for implementing the FDTD

scheme taking into account the viscoelastic properties of the constituent materials

of the 2D phononic crystal. The components of the velocity vector are given in

discretized form by (10.43) and (10.44).

The stress component sxx is calculated by discretizing (10.60), using expansion

at point (i, j) and time (n):

snþ1
xx ði; jÞ ¼ a0 iþ 1

2
; j

� �
C11 iþ 1

2
; j

� �
unxðiþ 1; jÞ� unxði; jÞ

Dx

� �

þ a0 iþ 1

2
; j

� �
C12 iþ 1

2
; j

� �
unyði; jÞ� unyði; j� 1Þ

Dy

� �

þC11 iþ 1

2
; j

� �Xn
p¼1

ap iþ 1

2
; j

� �

:
vnx iþ 1; jð Þ� vnxði; jÞ

2Dx
þ vn�1

x ðiþ 1; jÞ� vn�1
x ði; jÞ

2Dx
e
� Dt
tp iþ1

2
;jð Þ þ e

� Dt
tpði;jÞInxxp

" #

þC12 iþ 1

2
; j

� �Xn
p¼1

ap iþ 1

2
; j

� �

:
vnyði; jÞ� vnyði; j� 1Þ

2Dx
þ vn�1

y ði; jÞ � vn�1
y ði; j� 1Þ

2Dx
e
� Dt
tp iþ1

2
;jð Þ þ e

� Dt
tpði;jÞInyyp

" #

ð10:71Þ

where we define C11ðiþ 1=2; jÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11ðiþ 1; jÞC11ði; jÞ

p
, C12ðiþ 1=2; jÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C12ðiþ 1; jÞC12ði; jÞ
p

, and apðiþ 1=2; jÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
apðiþ 1; jÞapði; jÞ

p
, p ¼ 0,1,2, . . .,n.
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Similarly, the components syy and sxy are obtained in discretized form:

snþ1
yy i; jð Þ ¼ a0 iþ 1

2
; j

� �
C11 iþ 1

2
; j

� �
uny i; jð Þ � uny i; j� 1ð Þ

Dy

� �

þ a0 iþ 1

2
; j

� �
C12 iþ 1

2
; j

� �
unx iþ 1; jð Þ � unx i; jð Þ

Dy

� �

þ C11 iþ 1

2
; j

� �Xn
p¼1

ap iþ 1

2
; j

� �

:
vny i; jð Þ � vny i; j� 1ð Þ

2Dy
þ vn�1

y i; jð Þ � vn�1
y i; j� 1ð Þ

2Dy
e
� Dt

tp iþ1
2
; jð Þ þ e

� Dt
tp i; jð ÞInyyp

" #

þ C12 iþ 1

2
; j

� �Xn
p¼1

ap iþ 1

2
; j

� �

:
vnx iþ 1; jð Þ � vny i; j� 1ð Þ

2Dx
þ vn�1

x iþ 1; jð Þ � vn�1
x i; j� 1ð Þ

2Dx
e
� Dt

tp iþ1
2
; jð Þ þ e

� Dt
tp i; jð ÞInxxp

� �
:

ð10:72Þ

snþ1
xy i; jð Þ ¼ a0 i; jþ 1

2

� �
C44 i; jþ 1

2

� �

� unx i; jþ 1ð Þ � unx i; jð Þ
Dy

þ uny i; jð Þ � uny i� 1; j� 1ð Þ
Dx

� �

þ C44 i; jþ 1

2

� �Xn
p¼1

ap i; jþ 1

2

� �

:
vnx i; jþ 1ð Þ � vnx i; jð Þ

2Dy
þ vn�1

x i; jþ 1ð Þ � vn�1
x i; jð Þ

2Dy
e
� Dt

tp i; jþ1
2ð Þ þ e

� Dt
tp i; jð ÞInxyp

� �

þ C44 i; jþ 1

2

� �Xn
p¼1

ap i; jþ 1

2

� �

:
vny i; jð Þ � vny i� 1; jð Þ

2Dx
þ vn�1

y i; jð Þ � vn�1
y i� 1; jð Þ

2Dx
e
� Dt

tp i; jþ1
2ð Þ þ e

� Dt
tp i; jð ÞInyxp

" #
ð10:73Þ

where C44ði; jþ 1=2Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C44ði; jþ 1ÞC44ði; jÞ

p
and apði; jþ 1=2Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

apði; jþ 1Þapði; jÞ
p

, p ¼ 0,1,2, . . .,n.

It has to be mentioned that the above way of discretizing the equations ensures

second-order accurate central difference for the space derivatives. The field

components ux and uy have to be centered in different space points. Calculations

of transmission coefficients through 2D phononic crystals made of viscoelastic

constituents follow the same procedures as in Sect. 10.3.1. These calculations

must be done considering the structure depicted in Fig. 10.7 and applying periodic
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boundary conditions in the x direction and Mur’s absorbing boundary conditions on

the two extremities of the discretization mesh along the y direction.
Such calculations for 2D phononic crystals made of steel cylinders embedded

in rubber modeled as GLVF were reported in [15, 16]. Results have shown the

very good agreement between the numerical predictions and the experimental

measurements.

10.4 Multiple Scattering Theory

The multiple scattering theory (MST) was introduced for 3D phononic crystals by

three different groups at about the same time [17–19], and its 2D version was

developed 3 years later by Prof. Liu’s group in the theoretical work by Mei et al.

[20]. The MST is essentially an extension of the Korringa–Kohn–Rostoker (KKR)

theory (which is a well-known method used by the solid-state community for

electronic band structure calculations) to the case of elastic/acoustic waves. The

MST is ideally suited for phononic crystals (both 2D and 3D) in which scattering

units have simple symmetries, such as spheres or cylinders. It is also a quickly

converging method that takes into account the full vector character of the elastic

field and is able to deal with the phononic crystals of any type (e.g., liquid/solid

crystals, for which the PWE method fails). We present in this sub-section the main

points of the MST in case of the 3D phononic crystals by following the steps along

which it was developed by Liu et al. in [18].

In a homogeneous isotropic medium, the elastic wave equation may be written as

ðlþ 2mÞ ~rð ~r �~uÞ � m~r � ~r�~uþ ro2~u ¼ 0 (10.74)

where r is the density of the medium, l, m are its Lamé constants, and ~u is the

displacement field. Because of the spherical symmetry of the scatterers, it is natural

to work with the general solution of (10.74) expressed in the spherical coordinates:

~uð~rÞ ¼
X
lms

½alms~Jlmsð~rÞ þ blms~Hlmsð~rÞ� (10.75)

where ~Jlmsð~rÞ; ~Hlmsð~rÞ are defined as follows:

~Jlm1ð~rÞ ¼ 1

a
~r½jlðarÞYlmðr̂Þ�

~Jlm2ð~rÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ~r � ½~rjlðbrÞYlmðr̂Þ�

~Jlm3ð~rÞ ¼ 1

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ~r � ~r � ½~rjlðbrÞYlmðr̂Þ� (10.76)
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and

~Hlm1ð~rÞ ¼ 1

a
~r½hlðarÞYlmðr̂Þ�

~Hlm2ð~rÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ~r� ½~rhlðbrÞYlmðr̂Þ�

~Hlm3ð~rÞ ¼ 1

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ~r � ~r � ½~rhlðbrÞYlmðr̂Þ� (10.77)

wherea ¼ o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r ðlþ 2mÞ=

p
,b ¼ o

ffiffiffiffiffiffiffiffi
r m=

p
, jlðxÞ is the spherical Bessel function,hlðxÞ

is the spherical Hankel function of the first kind, and Ylmðr̂Þ is the usual spherical
harmonic with r̂ denoting angular coordinates ðy; ’Þ of ~r in spherical coordinate

system. In (10.75), index s assumes values from 1 to 3, where s ¼ 1 indicates the

longitudinal wave and s ¼ 2; 3 indicates two transverse waves of different

polarizations. In the case when the coefficients blms in (10.75) are equal to zero,

~uð~rÞ represents an incident wave, and in the case of alms ¼ 0, ~uð~rÞ represents a

scattered wave. Therefore, the wave incident on an ith scatterer is expressed as

~u in
i ð~riÞ ¼

X
lms

ailms
~Jilmsð~riÞ (10.78)

where ~ri indicates some point in space as measured from the center of the ith
scatterer. The wave scattered by scatterer i can be expressed as

~u sc
i ð~riÞ ¼

X
lms

bilms
~Hi
lmsð~riÞ: (10.79)

The first key point of MST is the idea that the wave (10.78) incident on a

given scatterer i can be viewed as a sum of the externally incident wave ~u
ð0Þ
i ð~riÞ

expressed as

~u
ð0Þ
i ð~riÞ ¼

X
lms

a
ið0Þ
lms

~Jilmsð~riÞ (10.80)

and all other scattered waves except the one scattered by the ith scatterer, which can
be expressed as

X
j6¼i

~u sc
j ð~rjÞ ¼

X
j 6¼i

X
lms

bjlms
~Hj
lmsð~rjÞ (10.81)

so that (10.78) can also be written as

~u in
i ð~riÞ ¼ ~u

ð0Þ
i ð~riÞ þ

X
j 6¼i

~u sc
j ð~rjÞ (10.82)
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Here~ri and~rj refer to the position of the same point in space and are measured

from the centers of scatterers i and j, respectively.
Another crucial point of MST is that for a given scatterer, the scattered field is

completely determined from the incident field with the help of the scattering matrix

T. In other words, the expansion coefficients A ¼ fa j
lmsg and B ¼ fb j

lmsg are related
through T ¼ ftlmsl0m0s0 g as follows:

B ¼ TA

or more explicitly

b j
lms ¼

X
l0m0s0

tlmsl0m0s0a
j
l0m0s0 : (10.83)

For objects of simple geometry, such as spheres or cylinders, the calculation of

the scattering matrix T is an exactly solvable boundary-value problem, and this is

the origin of MST’s reliability and precision when handling arrangements of

scatterers of spherical symmetry. In short, the coefficients tlmsl0m0s0 are found by

applying the boundary conditions that require the continuity of the normal

components of both the displacement and the stress vectors at the scatterer–matrix

interface. The explicit expressions of the T matrix coefficients for an elastic sphere

can be found in [17] (liquid matrix) and in [19] (elastic matrix), and in [20] for an

elastic cylinder in an elastic matrix.

The final MST equation is obtained by substituting (10.78), (10.80), (10.81), and

(10.83) into (10.82) and reads

X
jl0m0s0

dijdll0dmm0dss0 �
X
l00m00s00

t jl00m00s00l0m0s0G
ij
l00m00s00lms

 !
a j
l0m0s0 ¼ a

ið0Þ
lms (10.84)

where Glmsl0m0s0 is the so-called vector structure constant, which relates ~Hj
lmsð~rjÞ in

(10.81) and ~Jilmsð~riÞ through the relation

~Hj
lmsð~rjÞ ¼

X
l0m0s0

Gij
lmsl0m0s0

~Jil0m0s0 ð~riÞ

(more details can be found in [18]). The normal modes of the system may be

obtained by solving the secular equation that follows from (10.84) in the absence of

an external incident wave (i.e., when all a
ið0Þ
lms are zero):

det dijdll0dmm0dss0 �
X
l00m00s00

tjl00m00s00l0m0s0G
ij
l00m00s00lms












 ¼ 0: (10.85)

In case of the periodic system, Glmsl0m0s0 is modified to take into account the

symmetry of the structure. The solutions of (10.85) give the band structure of an

elastic periodic system.
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To facilitate the direct comparison with the real samples, a successful theory

must also be able to calculate the quantities that one measures in a typical experi-

ment, e.g., transmission and reflection coefficients. This is accomplished in the

framework of the layer MST, which allows one to calculate the transmission of an

elastic wave through a finite slab (with an arbitrary number of layers) of periodi-

cally arranged scatterers. The approach starts by calculating the field of the elastic

wave scattered (or transmitted) by a single layer of scatterers. Let us assume that the

layer of scatterers (elastic spheres) lies completely in the x–y plane and that

positions of the scatterers are given by vectors f~Rng of a 2D Bravais lattice,

which is generated by two primitive vectors ~a1;~a2, i.e.,

~Rn ¼ n1~a1 þ n2~a2 (10.86)

where n1; n2 are integers. The positive direction of the z-axis is chosen to be to the

left of the layer as explained by Fig. 10.9.

A plane elastic wave~u inð~rÞ incident on the layer can be expressed in general as

~u inð~rÞ ¼
X
s

~u in;s
a ð~rÞ þ

X
s

~u in;s
b ð~rÞ (10.87)

where s ¼ þ=� indicates waves incident from the left (positive z) and from the

right (negative z) respectively, while a ¼ 1 and b ¼ 2; 3 are identical to index s in

(10.75) and distinguish between the longitudinal and the transverse (with two

polarizations) waves . Each term in (10.87) can be expressed in terms of the

primitive vectors b
*

1; ~b2 of the 2D reciprocal lattice as follows:

x

y

z

,-,- , inin uu ®®

+,,+ , scsc uu
®®

++ ,, , inin
a uu ®®

-- ,, , scsc uu ®®

2a
®

1a
®

b

a b

a b

a b

Fig. 10.9 Geometry of the

layer MST. Vectors a1
!and a2

!
are the primitive vectors of

the corresponding 2D Bravais

lattice
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~u in;�
a ð~rÞ ¼

X
~g

~u in;�
ag ð~rÞ ¼

X
~g

~U in;�
ag expði~k�ag �~rÞ (10.88a)

~u in;�
b ð~rÞ ¼

X
~g

~u in;�
bg ð~rÞ ¼

X
~g

~U in;�
bg expði~k�bg �~rÞ (10.88b)

where wave vectors ~k�ag and ~k�bg are given by the expressions

~k�ag ¼ ~kjj þ~g;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ~kjj þ~g




 


2
r !

(10.89a)

~k�bg ¼ ~kjj þ~g;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ~kjj þ~g




 


2
r !

(10.89b)

Here ~g is the 2D reciprocal lattice vector (~g ¼ m1b
*

1 þ m2
~b2, where m1;m2 are

integers), and ~kjj is a reduced wave vector in the first BZ of the reciprocal lattice.

In (10.89a) and (10.89b), ð~kjj þ~gÞ simply represents components of wave vectors
~k�ag and ~k�bg that are parallel to the layer of scatterers. These expressions are chosen

to simplify subsequent calculations.

Much in the same way, the wave~u scð~rÞ scattered by the layer can be expressed as
follows:

~u scð~rÞ ¼
X
s

~u sc;s
a ð~rÞ þ

X
s

~u sc;s
b ð~rÞ

¼
X
s;~g

~U sc;s
ag expði~ksag �~rÞ þ

X
s;~g

~U sc;s
bg expði~ksbg �~rÞ (10.90)

Indices a and b have the same meaning as in case of incident wave (10.87). The

index s ¼ þ=� , however, reverses its meaning and now indicates the scattered

waves propagating away from the layer on its right (negative z) and on its left

(positive z) correspondingly (see Fig. 10.9).

After lengthy and complicated calculations, one can show (see Ref. [18]) that

amplitudes ~U sc;�
ag and ~U sc;�

bg of the scattered wave are related to the amplitudes ~U in;�
ag

and ~U in;�
bg of the incident wave with the help of matrices Mss0

kk0 (s; s
0 ¼ þ=� and

k; k0 ¼ a; b) as follows:

U sc;þ
a

U
sc;þ
b

" #
¼

Mþþ
aa Mþþ

ab

Mþþ
ba Mþþ

bb

" #
U in;þ

a

U
in;þ
b

" #
þ

Mþ�
aa Mþ�

ab

Mþ�
ba Mþ�

bb

" #
U in;�

a

U
in;�
b

" #

U sc;�
a

U
sc;�
b

" #
¼

M�þ
aa M�þ

ab

M�þ
ba M�þ

bb

" #
U in;þ

a

U
in;þ
b

" #
þ M��

aa M��
ab

M��
ba M��

bb

" #
U in;�

a

U
in;�
b

" # (10.91)
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In the above equations, U sc;�
k and U in;�

k are column vectors defined as

U sc;�
k ¼ ½U sc;�

kg1 U sc;�
g2

::: U sc;�
kgN�1

U sc;�
kgN �Tr (10.92a)

U in;�
k ¼ ½U in;�

kg1 U in;�
g2

::: U in;�
kgN�1

U in;�
kgN �Tr (10.92b)

where the Tr superscript denotes the operation of transposing. The explicit

expressions for the elements of the matrices Mss0
kk0 are given by Liu et al. [18].

Being very complicated mathematical objects, matrices Mss0
kk0 nevertheless have

simple physical meaning (Fig. 10.10). They are transmission and reflection matrices

for incident waves U in;�
a and U

in;�
b . For example, by expanding first line in the first

matrix equation in (10.91), one obtains

U sc;þ
a ¼ Mþþ

aa U in;þ
a þMþþ

ab U
in;þ
b þMþ�

aa U in;�
a þMþ�

ab U
in;�
b

Figure 10.10 shows a schematic diagram explaining the physical meaning of

matrices contained in the above equation.

Having found transmission and reflection matrices through the single layer, one
needs to find a way to calculate similar matrices for a phononic crystal with an

arbitrary number of layers. Figure 10.10 shows a schematic diagram explaining the

physical meaning of matrices Mss0
kk0 contained in the above equation. This is

accomplished by calculating matrices Qss0
kk0 for each of two single layers that are

displaced with respect to the x–y plane by vectors ~a3 2= and �~a3 2= , where ~a3 is a
third primitive vector of the Bravais lattice of the phononic crystal. In other words,

,inU

,inU

M

M

M

++

++

+-

-

-

+-

M
,+inU

,+inU

a
aa

a

aa

ab

b

ab

b

Fig. 10.10 Schematic illustration of the physical significance of the matrices MSS0
kk0
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~a3 is a vector by which a single 2D layer of scatterers should be repeated to form the

3D phononic crystal. MatricesQss0
kk0 have the same physical meaning asMss0

kk0 and are

connected with matricesMss0
kk0 by another translation matrix ’s

k, whose elements are

explicitly expressed in [18]. The transmission and reflection matrices for the pair of

two successive layers (denoted by N and N+1) are obtained by combining

corresponding matrices Qss0
kk0 ðNÞ and Qss0

kk0 ðN þ 1Þ . The essential physics here is

that two sets of matrices are combined by taking into account allmultiple reflections
that the incident wave undergoes between two layers as it propagates through the

two-layer system. By repeating this procedure, the transmission and reflection

matrices through the slab consisting of 2n layers can be found. The corresponding

matrices for the crystal with an arbitrary number of layers can be obtained by

combining matrices for the slab with even number of layers and one extra layer.

It also should be noted that in addition to the band structure, which displays

normal modes of the system along high-symmetry directions, the MST also allows

calculation of the modes along any direction inside the crystal. The geometrical set

of all points belonging to a particular mode (which is characterized by a certain

frequency) is referred to as an equi-frequency surface or equi-frequency contour for

3D or 2D structures correspondingly.

10.5 Finite Element Method

The finite element (FE) method is suitable for the calculation of band structures

of phononic crystals, containing several phases or materials. To present the model,

a doubly periodic structure is considered. Square-, rectangular-, triangular-, or

honeycomb-type structures can be considered, but for the sake of simplicity, only

the square array is presented in this section with a 2D mesh. The phononic crystal

contains two or more different phases and consists, for instance, in a periodic array

of holes in a solid matrix or a periodic array of cylindrical rods or tubes in a solid

matrix. The formalism is the same when the periodic structure is all fluid. The

structure is supposed to be infinite and periodic in the x-y plane and is infinite and

uniform in the third direction. Consequently, the problem is strictly bidimensional,

depending only on the x and y coordinates, using plane strain conditions. The whole
domain is split into successive cells (Fig. 10.11). Due to the periodicity of the

structure, the A1 and A2 lines, parallel to the y axis, and the B1 and B2 lines, parallel
to the x axis, limit the unit cell, which is 2d1 wide in the x direction and 2d2 wide in
the y direction. In Fig. 10.11, corners are marked by letter C.

Then the structure is excited by a plane monochromatic wave, the direction of

incidence of which is marked by an angle y with respect to the positive y axis. The
incident wave is characterized by a real wave vector ~k , of modulus k, the wave

number.

Because the structure is assumed to extend from �1 to þ1 in the x and y
directions and to be periodic, any space function F (pressure, displacement, electri-

cal potential, etc.) has to satisfy the classical Bloch relation:
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Fðxþ 2d1; yþ 2d2Þ ¼ Fðx; yÞej2d1ksinyej2d2kcosy ¼ Fðx; yÞejg1ejg2 : (10.93)

Using relation (10.93) allows reducing the model to only one unit cell, which can

be meshed using FEs (Fig. 10.11). Writing relation (10.93) between the displace-

ment values for nodes separated by one period provides the boundary conditions

between adjacent cells. Using the FE method, a modal analysis is considered, and

the whole system of equations is classically

½Kuu� � o2½M�� �
~U ¼ ~F (10.94)

where the unknown is the vector of nodal values of the displacement ~U � ½Kuu� and
½M� are, respectively, the structure stiffness and coherent mass matrices. o is the

angular frequency. ~Fcontains the nodal values of the applied forces.

The application of the periodic boundary conditions implies that the phase

relation (10.93) between nodal values belonging to the A1 and A2 lines, on the

one hand, to the B1 and B2 lines on the other hand, has to be incorporated in the

matrix equation (10.94). The unit cell is divided into nine parts: the four lines A1,
A2, B1, and B2; the four corners C1, C2, C3, and C4; and the inner domain I.
Displacement vector ~U and force vector ~F are then split into the corresponding nine

parts. Due to relation (10.93), their components have to verify

~UA2 ¼ ejg1 ~UA1; ~UB2 ¼ ejg2 ~UB1; ~UC2 ¼ ejg1 ~UC1; ~UC3 ¼ ejg2 ~UC1; ~UC4 ¼ ejg1þjg2 ~UC1:

(10.95)

Then owing to the equilibrium of interconnecting forces between two adjacent

cells, relation (10.93) leads to analogous relations for the force vector. ~FI , which

corresponds to forces applied to inner nodes, is equal to zero. Defining the reduced

vector ~UR as a vector containing values of the displacement on the A1 and B1 lines,
on the C1 corner, and in the inner domain I, relations given in (10.95) imply a

simple matrix relation between ~U and ~UR, which can be written as

Fig. 10.11 Schematic

description of one unit cell of

the doubly periodic structure,

used to define the A1, A2, B1,
and B2 lines, the C1, C2, C3,
and C4 corners, and the phase
relation between the lines
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~U ¼ ½PU�~UR ¼ ½PU�
~UA1
~UB1
~UC1
~UI

0
BB@

1
CCA: (10.96)

In the same way, a matrix relation can be defined between the vector ~F and the

reduced vector ~FR:

~F ¼ ½PF�~FR ¼ ½PF�
~FA1
~FB1
~FC1
~0

0
BB@

1
CCA: (10.97)

Thus, the equation to be solved can be reduced to

½PU��T ½Kuu� � o2½M�� �½PU�~UR ¼ ½KR� � o2½MR�
� �

~UR ¼ ½PU��T ½PF�~FR: (10.98)

Finally, the matrices ½KR� and ½MR� are divided into following four parts, A1, B1,
C1, and I and the resulting equation is

½KR� � o2½MR�
� �

~UR ¼~0: (10.99)

A detailed expression of ½KR� and ½MR� are presented in Appendix 2 of [21].

For a given value of the wave number k, the phase shifts of (10.93) and (10.95)

are deduced and incorporated in relations (10.96) and (10.97). The resolution of the

system (10.99) gives the corresponding eigenvalues o that are real because the

reduced matrices ½KR� and ½MR� are hermitians.

The angular frequency o is a periodical function of wave vector ~k . Thus, the
problem can be reduced to the first BZ. The dispersion curves are built varying~k on
the first BZ, for a given propagation direction. The whole diagram is deduced using

symmetries.

A particular interest is the study of phononic crystal plates, made for instance of

arrays of air inclusions drilled in a plate. In that case, a 3D mesh is considered and

the structure is supposed to be of finite size along the thickness of the plate, periodic

and infinite in the two other directions. Only one unit mesh is considered, and a

phase relation is applied on only the four faces of the mesh, defining boundary

conditions between adjacent cells. The FE method is accurate for the study of

phononic crystal plates because it does not introduce hypothesis on the displace-

ment field or on the characteristics of the medium surrounding the plate [9, 22].

Another way to characterize periodic structures is the scattering or the radiation

of plane acoustic waves from immersed passive or active periodic structures at any

incidence. Therefore, the calculation of the transmission and reflection coefficients

is performed, when N unit cells are taken into account (Fig. 10.12). For this study,

the mesh of the N unit cells of the periodic structure is enough, with a small part of
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the surrounding fluid domain, which can be air, and a harmonic analysis is

performed at a given frequency. The general system of equation is

½Kuu� � o2½M� �½L�
�r2c2o2½L�T ½H� � o2½M1�

� �
~U
~P

� �
¼ ~F

~c

� �
(10.100)

where the unknown is the vector of nodal values of the displacement ~U and of the

pressure field ~P . ½H� and ½M1� are, respectively, the compressibility and mass

matrices for the fluid. [L] is the connectivity matrix at the interface and r and c
are the density and the sound velocity in the fluid, respectively. ~c contains the

nodal values of the pressure normal gradient on the fluid boundaries, on the top

and bottom surfaces. In this system, the periodic boundary conditions are

introduced as previously by the phase relations between nodes separated by the

periodic spacing. Then, the effects of the remaining fluid domain are accounted for

Fig. 10.12 Schematic

description of N unit cells

(N¼6) of the periodic

structure, for the calculation

of the transmission and

reflection coefficients.

A small part of the fluid

domain is meshed before and

after the periodic structure
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by matching the pressure field in the FE mesh with simple PWEs of the incoming

and outgoing waves. Writing the continuity equations introduces matrix relations

between the nodal values of the pressure on the bottom and top surfaces, which are

then incorporated into system (10.100). The resolution of the system gives the

pressure in the fluid domain. Then, the transmission and reflection coefficients are

calculated.

10.6 Model Reduction for Band Structure Calculations

10.6.1 Background

As thoroughly discussed in previous chapters and sections, the study of wave

propagation in phononic crystals, or periodic media in general, utilizes Bloch’s

theorem, which allows for the calculation of dispersion curves (frequency band

structure) and density of states. Due to crystallographic symmetry, the Bloch wave

solution needs to be applied only to a single unit cell in the reciprocal lattice space

covering the first BZ [23]. Further utilization of symmetry reduces the solution

domain, even more, to the irreducible Brillouin zone (IBZ). As mentioned in

previous sections, there are several techniques for band structure calculations for

phononic crystals and acoustic metamaterials (which are also applicable to photonic

crystals and electromagnetic metamaterials). Some of the methods involve

expanding the periodic domain and the wave field using a truncated basis. This

provides a means of classification in terms of the type of basis, e.g., the plane wave

method (Sect. 10.2) involves a Fourier basis expansion and the FE method

(Sect. 10.5) involves a real space basis expansion. The pros and cons of the various

methods are discussed in depth in the literature [24].

Regardless of the type of system and type of method used for band structure

calculations, the computational effort is usually high because it involves solving a

complex eigenvalue problem and doing so numerous times as the value of the

wave vector, k, is varied. The size of the problem, and hence the computational

load, is particularly high for the following cases: (a) when the unit cell configu-

ration requires a large number of degrees of freedom to be adequately described;

(b) when the presence of defects is incorporated in the calculations, thus requiring

the modeling of large super-cells; and (c) when a large number of calculations;

are needed such as in band structure optimization [25, 26]. All these cases suggest

that a fast technique for band structure calculation would be very beneficial.

Some techniques have been developed to expedite band structure calculations;

examples include utilization of the multigrid concept [27], development of fast

iterative solvers for the Bloch eigenvalue problem [28, 29], and extension of

homogenization methods to capture dispersion [30, 31]. In this section, we provide

a model reduction method that is based on modal transformation [32, 33]. This

method, which is referred to as the reduced Bloch mode expansion (RBME)method,
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involves carrying out an expansion employing a natural basis composed of a

selected reduced set of Bloch eigenfunctions1. This reduced basis is selected within

the IBZ at high-symmetry points determined by the crystal structure and group

theory (and possibly at additional related points). At each of these high-symmetry

points, a number of Bloch eigenfunctions are selected up to the frequency range of

interest for the band structure calculations. As mentioned above, it is common to

initially discretize the problem at hand using some choice of basis. In this manner,

RBME constitutes a secondary expansion using a set of Bloch eigenvectors and

hence keeps and builds on any favorable attributes the primary expansion approach

might exhibit. The proposed method is in line with the well-known concept of

modal analysis, which is widely used in various fields in the physical sciences and

engineering2.

In the next section, a description of the RBME process and its application in a

discrete setting (e.g., using FEs) is given for a phononic crystal problem. Some

results from a case study are also presented to demonstrate the application of the

method.

10.6.2 Reduced Bloch Mode Expansion method

The starting point for the RBME method is a discrete generalized eigenvalue

problem emerging from the application of Bloch’s theorem applied to a standard

periodic unit cell model. This yields an equation of the form

ðKðkÞ � o2MÞ~U ¼ 0; (10.101)

whereM andK(k) are the global mass and stiffness matrices, respectively; ~U is the

discrete Bloch vector, which is periodic in the unit cell domain; k is the wave

vector; and o is the frequency. Equation (10.101) is then solved at a reduced set of

selected wave vector points (i.e., reduced set of k-points), providing the

eigenvectors from which a reduced Bloch modal matrix, denoted C , is formed.

Several schemes are available for this selection, the simplest of which is the set of

eigenvectors corresponding to the first few branches at the high-symmetry points

G, X, M for a 2D model and G, X, M, R for a 3D model, as illustrated in Fig. 10.13

for square and simple-cubic cells (more details on selection schemes are given in

[32]). The matrix C is then used to expand the eigenvectors ~U, i.e.,

1 The same mode selection concept, but in the context of a multiscale two-field variational method,

was presented in [31, 34].
2 The concept of modal analysis is rooted in the idea of extracting a reduced set of representative

information on the dynamical nature of a complex system. This practice is believed to have

originated by the Egyptians in around 4700 B.C. in their quest to find effective ways to track the

flooding of the Nile and predict celestial events [35].
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~Uðn�1Þ ¼ Cðn�mÞ ~Vðm�1Þ; (10.102)

where ~V is a vector of modal coordinates for the unit cell Bloch mode shapes.

In (10.102), n and m refer to the number of rows and number of columns for the

matrix equation. To enable significant model reduction, the chosen k-point selec-

tion scheme has to ensure that m<<n . Substituting (10.102) into (10.101), and

premultiplying by the complex transpose of C,

C�KðkÞC~V� o2C�MC~V ¼ 0; (10.103)

Fig. 10.13 Unit cell in reciprocal lattice space with the irreducible Brillouin zone, high-symmetry

k-points (solid circles) and intermediate k-points (hollow ciircles) shown. (a) 2D square unit cell,

(b) 3D simple-cubic unit cell

Fig. 10.14 Phononic band structure and density of states (DOS) calculated using full model

(matrix size: 4,050 � 4,050) and reduced Bloch mode expansion model (matrix size: 24 � 24).

The IBZ and eigenvector selection points are shown in the left inset. The 2D unit cell is shown in

the right inset; the stiff/dense material phase is in black, and the compliant/light material phase is

in white. The finite element method was used for the primary expansion
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yields a reduced eigenvalue problem of size m� m,

�KðkÞ~V� o2 �M~V ¼ 0; (10.104)

where �M and �KðkÞ are reduced generalized mass and stiffness matrices. The

eigenvalue problem given in (10.104) can then be solved for the entire region of

interest within the IBZ at a significantly lower cost compared to using the full

model given in (10.101).

To demonstrate the RBME approach, we consider a linear elastic, isotropic,

continuum model of a 2D phononic crystal under plain strain conditions. As an

example, a square lattice is considered with a bi-material unit cell. One material

phase is chosen to be stiff and dense and the other compliant and light. In particular,

a ratio of Young’s moduli of E2/E1 ¼ 16 and a ratio of densities of r2/r1 ¼ 8 are

chosen. The topology of the material phase distribution in the unit cell is shown in

the inset of Fig. 10.14. The unit cell is discretized into 45 � 45 uniformly sized

four-node bilinear quadrilateral FEs, i.e., 2,025 elements. With the application of

periodic boundary conditions, the number of degrees of freedom is n ¼ 4050.

Figure. 10.14 shows the calculated band structure and density of states using two-

point expansion, that is, the selection is carried out at the G, X,M points in k-space.

In the calculations, eight modes were utilized at each of these selection points. As

such, a total of 24 eigenvectors (m ¼ 24) were used to form the Bloch modal

matrix. The results for the full model are overlaid for comparison indicating

excellent agreement, despite a reduction of model size from 4050 to 24 degrees

Fig. 10.15 Computational efficiency: ratio of reduced Bloch mode expansion model to full model

calculation times, r, versus number of sampled k-points along the border of the IBZ, nk (for two 2D
finite element meshes). The number of elements is denoted by nel
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of freedom. For models with a larger number of degrees of freedom, and a calcula-

tion with high k-point sampling, two orders of magnitude or greater reduction in

computational expense will be achieved (as shown in Fig. 10.15).

While the focus in this section has been on phononic crystals, the RBME method

is also applicable to acoustic metamaterials, to discrete lattice dynamics calcula-

tions, and to photonic and electronic band structure calculations. Furthermore, the

method is applicable to any type of lattice symmetry.
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