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Preface

Phononic crystals and acoustic metamaterials have generated rising scientific

interests for very diverse technological applications ranging from sound abatement

to ultrasonic imaging to telecommunications to thermal management and thermo-

electricity. Phononic crystals and acoustic metamaterials are artificially structured

composite materials that enable manipulation of the dispersive properties of vibra-

tional waves. Phononic crystals are made of periodic distributions of inclusions

(scatterers) embedded in a matrix. Phononic crystals are designed to control the

dispersion of waves through Bragg scattering, the scattering of waves by a periodic

arrangement of scatterers with dimensions and periods comparable to the wave-

length. Acoustic metamaterials have the added feature of local resonance, and

although often designed as periodic structures, their properties do not rely on

periodicity. The structural features of acoustic metamaterials can be significantly

smaller than the wavelength of the waves they are affecting. Local resonance may

lead to negative effective dynamic mass density and bulk modulus and therefore to

their unusual dispersion characteristics. Whether these materials impact wave

dispersion (i.e., band structure) through Bragg’s scattering or local resonances,

they can achieve a wide range of unusual spectral (o-space), wave vector

(k-space), and phase (’-space) properties. For instance, under certain conditions,

absolute acoustic band gaps can form. These are spectral bands where propagation

of waves is forbidden independently of the direction of propagation. Mode locali-

zation in phononic crystals or acoustic metamaterials containing defects (e.g.,

cavities, linear defects, stubs, etc.) can produce a hierarchy of spectral features

inside the band gap that can lead to a wide range of functionalities such as

frequency filtering, wave guiding, wavelength multiplexing, and demultiplexing.

The wave vector properties result from passing bands with unique refractive

characteristics, such as negative refraction, when the wave group velocity (i.e.,

the direction of propagation of the energy) is antiparallel to the wave vector.

Negative refraction can be exploited to achieve wave focusing with flat lenses.

Under specific conditions involving amplification of evanescent waves, super-

resolution imaging can also be obtained, that is, forming images that beat the

Rayleigh limit of resolution. Phononic crystals and acoustic metamaterials with
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anisotropic band structures may exhibit zero-angle refraction and can lead to wave

guiding/collimation without the need for linear defects. The dominant mechanisms

behind the control of phase of propagating acoustic waves at some specific fre-

quency is associated with the noncollinearity of the wave vector and the group

velocity leading to phase shift. More recent developments have considered

phononic crystals and acoustic metamaterials composed of materials that go beyond

the regime of linear continuum elasticity theory. These include strongly nonlinear

phononic structures such as granular media, the effect of damping and

viscoelasticity on band structure, phononic structures composed of at least one

active medium, and phononic crystals made of discrete anharmonic lattices.

Phononic structures composed of strongly nonlinear media can show phenomena

with no linear analogue and can exhibit unique behaviors associated with solitary

waves, bifurcation, and tunability. Tunability of the band structure can also be

achieved with constitutive media with mixed properties such as acousto-optic or

acousto-magnetic properties. Dissipation, often seen as having a negative effect on

wave propagation, can be turned into a mean of controlling band structure.

Finally, the study of phononic crystals and acoustic metamaterials has also

extensively relied on a combination of experiments and theory that have shown

extraordinary complementarity.

In light of the strong interest in phononic crystals and acoustic metamaterials, we

are trying in this book to respond to the need for a pedagogical treatment of the

fundamental concepts necessary to understand the properties of these artificial

materials. For this, we use simple models to ease the reader into understanding

the fundamental concepts underlying the behavior of these materials. We also

expose the reader to the current state of knowledge through results from established

and cutting-edge research. We also present recent progresses in our understanding

of these materials. The chapters in this book are written by some of the pioneers in

the field as well as emerging young talents who are redirecting that field. These

chapters try to strike a balance, when possible, between theory and experiments.

We have made a coordinated effort to harmonize some of the contents of the

chapters and we have tried to follow a common thread based on variations on a

simple model, namely the one-dimensional (1-D) chain of spring and masses. In

Chap. 1, we present a non-exhaustive state of the field with some attention paid to

its chronological development. Chapter 2 serves as a pedagogical introduction to

many of the fundamental concepts and tools that are needed to understand the

properties of phononic crystals and acoustic metamaterials. Particular attention is

focused on the contrast between scattering by periodic structures and local

resonances. In that chapter, we use the 1-D harmonic chain as a simple metaphor

for wave propagation in more complex structures. This simple model will recur in

many of the other chapters of this book. Logically, Chap. 3 treats the vibrational

properties of 1-D phononic crystals (superlattices) of both discrete and continuous

media. A comparison of the theoretical results with experimental data available in

the literature is also presented. Chapter 4 then considers two-dimensional (2-D) and

three-dimensional (3-D) phononic crystals. A combination of experimental and

theoretical methods are presented and used to shed light not only on the spectral
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properties of phononic crystals but also importantly on refractive properties. Par-

ticular attention is paid to the phenomenon of negative refraction. Chapter 5

considers acoustic metamaterials whose properties are determined by local

resonators. These properties are related to the unusual behavior of the dynamic

mass density and bulk modulus in materials composed of locally resonant

structures. Chapters 6–9 introduce new directions for the field of phononic crystal

and acoustic metamaterials. The more recent topics of phononic structures com-

posed of dissipative media (Chap. 6), of strongly nonlinear media (Chap. 7), and

media enabling tunability of the band structure (Chap. 8) are presented. Chapter 9

illustrates the richness of behavior of phononic structures that may be encountered

at the nanoscale when accounting for the anharmonicity of interatomic forces.

Finally, Chap. 10 serves again a pedagogical purpose and is a compilation of the

different theoretical and computational methods that are used to study phononic

crystals and acoustic metamaterials. It is intended to support the other chapters in

providing additional details on the theoretical and numerical methods commonly

employed in the field.

We hope that this book will stimulate future interest in the field of phononic

crystals and acoustic metamaterials and will initiate new developments in their

study and design.

Tucson, AZ Pierre A. Deymier
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Chapter 1

Introduction to Phononic Crystals and Acoustic
Metamaterials

Pierre A. Deymier

Abstract The objective of this chapter is to introduce the broad subject of

phononic crystals and acoustic metamaterials. From a historical point of view, we

have tried to refer to some of the seminal contributions that have made the field.

This introduction is not an exhaustive review of the literature. However, we are

painting in broad strokes a picture that reflects the biased perception of this field by

the authors and coauthors of the various chapters of this book.

1.1 Properties of Phononic Crystals and Acoustic
Metamaterials

The field of phononic crystals (PCs) and acoustic metamaterials emerged over the

past two decades. These materials are composite structures designed to tailor elastic

wave dispersion (i.e., band structure) through Bragg’s scattering or local resonances

to achieve a range of spectral (o-space), wave vector (k-space), and phase

(f-space) properties.

1.1.1 Spectral Properties

The development of phononic crystals for the control of vibrational waves followed by

a few years the analogous concept of photonic crystals (1987) for electromagnetic

waves [1]. Both concepts are based on the idea that a structure composed of a periodic

arrangement of scatterers can affect quite strongly the propagation of classical waves

P.A. Deymier (*)

Department of Materials Science and Engineering, University of Arizona, Tucson,

AZ 85721, USA
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such as acoustic/elastic or electromagnetic waves. The names photonic and phononic

crystals are based on the elementary excitations associatedwith the particle description

of vibrational waves (phonon) and electromagnetic waves (photon). The first observa-

tion of a periodic structure, a GaAs/AlGaAs superlattice, used to control the propaga-

tion of high-frequency phonons was reported by Narayanamurti et al. in 1979 [2].

Although not called a phononic crystal then, a superlattice is nowadays considered to be

a one-dimensional phononic crystal. The actual birth of two-dimensional and three-

dimensional phononic crystals can be traced back to the early 1990s. Sigalas and

Economou demonstrated the existence of band gaps in the phonon density of state

and band structure of acoustic and elastic waves in three-dimensional structures

composed of identical spheres arranged periodically within a host medium [3] and in

two-dimensional fluid and solid systems constituted of periodic arrays of cylindrical

inclusions in a matrix [4]. The first full band structure calculation for transverse

polarization of vibration in a two-dimensional periodic elastic composite was subse-

quently reported [5]. In 1995, Francisco Meseguer and colleagues determined experi-

mentally the aural filtering properties of a perfectly real but fortuitous phononic crystal,

a minimalist sculpture by Eusebio Sempere standing in a park in Madrid, Spain [6]

(Fig. 1.1). This sculpture is a two-dimensional periodical square arrangement of steel

tubes in air. They showed that attenuation of acoustic waves occurs at certain

frequencies due not to absorption since steel is a very stiff material but due to multiple

interferences of sound waves as the steel tubes behave as very efficient scatterers for

soundwaves. The periodic arrangement of the tubes leads to constructive or destructive

interferences depending on the frequency of the waves. The destructive interferences

attenuate the amplitude of transmitted waves, and the phononic structure is said to

exhibit forbidden bands or band gaps at these frequencies. The properties of phononic

crystals result from the scattering of acoustic or elastic waves (i.e., band folding effects)

in a fashion analogous to Bragg scattering of X-rays by periodic crystals. The mecha-

nism for the formation of band gaps in phononic crystals is a Bragg-like scattering of

acoustic waves with wavelength comparable to the dimension of the period of the

crystal i.e., the crystal lattice constant. The first experimentally observed ultrasonic full

band gap for longitudinalwaveswas reported for an aluminumalloy platewith a square

array of cylindrical holes filledwith mercury [7]. The first experimental and theoretical

demonstration of an absolute band gap in a two-dimensional solid-solid phononic

crystal (triangular array of steel rods in an epoxy matrix) was demonstrated 3 years

later [8]. The absolute band gap spanned the entire Brillouin zone of the crystal andwas

not limited to a specific type of vibrational polarization (i.e., longitudinal or transverse).

In 2000, Liu et al. [9] presented a class of sonic crystals that exhibited spectral

gaps with lattice constants two orders of magnitude smaller than the relevant sonic

wavelength. The formation of band gaps in these acoustic metamaterials is based on

the idea of locally resonant structures. Because the wavelength of sonic waves is

orders of magnitude larger than the lattice constant of the structure, periodicity is

not necessary for the formation of a gap. Disordered composites made from such

localized resonant structures behave as a material with effective negative elastic

2 P.A. Deymier



constants and a total wave reflector within certain tunable sonic frequency ranges.

This idea was implemented with a simple cubic crystal consisting of a heavy solid

core material (lead) coated with elastically soft material (silicone elastomer)

embedded in a hard matrix material (epoxy). Centimeter size structures produced

narrow transmission gaps at low frequencies corresponding to that of the

resonances of the lead/elastomer resonator (Fig. 1.2).

While early phononic crystals and acoustic metamaterials research on spectral

properties focused on frequencies in the sonic (102–103 Hz) and ultrasonic

(104–106 Hz) range, phononic crystals with hypersonic (GHz) properties have

been fabricated by lithographic techniques and analyzed using Brillouin Light

Scattering [10]. It has also been shown theoretically and experimentally that

phononic crystals may be used to reduce thermal conductivity by impacting the

propagation of thermal phonons (THz) [11, 12].

Wave localization phenomena in defected phononic crystals containing linear

and point defects have been also considered [13]. Kafesaki et al. [14] calculated
the transmission of elastic waves through a straight waveguide created in a two-

dimensional phononic crystal by removing a row of cylinders. The guidance of the

waves is due to the existence of extended linear defect modes falling in the band gap

of the phononic crystal. The propagation of acoustic waves through a linear

waveguide, created inside a two-dimensional phononic crystal, along which a

stub resonantor (point defect) was attached to its side has also been studied [15].

The primary effect of the resonator is to induce zeros of transmission in the

transmission spectrum of the perfect waveguide. The transmittivity exhibits very

narrow dips whose frequencies depend upon the width and the length of the stub.

When a gap exists in the transmittivity of the perfect waveguide, the stub may also

permit selective frequency transmission in this gap.

Fig. 1.1 (a) Eusebio Sempere’s sculpture in Madrid, Spain, (b) Measured sound attenuation as a

function of frequency. The inset illustrates the direction of propagation of sound waves. The

brackets [hkl] represent, in the vocabulary of X-ray diffraction, crystallographic planes for which

Bragg interferences will occur (after [6])
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In addition to bulk elastic waves, various authors have studied theoretically the

existence of surface acoustic waves (SAW) localized at the free surface of a semi-

infinite two-dimensional phononic crystal [16–19]. For this geometry, the parallel

inclusions are of cylindrical shape and the surface considered is perpendicular to

their axis. Various arrays of inclusions [16, 17], crystallographic symmetries of the

component materials [9], and also the piezoelectricity of one of the constituent [19]

were considered. The band structures of 2D phononic crystal plates with two free

surfaces [20, 21] were also calculated. This includes the symmetric Lamb mode

band structure of 2D phononic crystal plates composed of triangular arrays of W
cylinders in a Si background. Charles et al. [21] reported on the band structure of a

slab made of a square array of iron cylinders embedded in a copper matrix. Hsu and

Wu [22] determined the lower dispersion curves in the band structure of 2D gold-

epoxy phononic crystal plates. Moreover, Manzanares-Martinez and Ramos-

Mendieta have also considered the propagation of acoustic waves along a surface

parallel to the cylinders in a 2D phononic crystal [23]. Sainidou and Stefanou

Fig. 1.2 (a) Cross section of a coated lead sphere that forms the basic structure unit (b) for an
8 � 8 � 8 sonic crystal. (c) Calculated (solid line) and measured (circles) amplitude transmission

coefficient along the [100] direction as a function of frequency, (d) calculated band structure of a

simple cubic structure of coated spheres in very good agreement with measurements (the

directions to the left and the right of the G point are the [110] and [100] directions of the Brillouin

zone, respectively (after [9])
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investigated the guided elastic waves in a glass plate coated on one side with a

periodic monolayer of polymer spheres immersed in water [24]. On the experimen-

tal point of view, Wu et al. [25] observed high-frequency SAW with a pair of

interdigital transducers placed on both sides of a very thick silicon plate in which a

square array of holes was drilled. Similar experiments were conducted by

Benchabane et al. on a 2D square lattice piezoelectric phononic crystal etched in

lithium niobate [26]. Zhang et al. [27] have shown the existence of gaps for acoustic
waves propagating at the surface of an air-aluminum 2D phononic crystal plate

through laser ultrasonic measurements.

1.1.2 Wave Vector Properties

The wave vector (k-space) properties of phononic crystals and acoustic

metamaterials result from passing bands with unique refractive characteristics,

such as negative refraction or zero-angle refraction. Negative refraction of acoustic

waves is analogous to negative refraction of electromagnetic waves also observed

in electromagnetic and optical metamaterials [28]. Negative refraction is achieved

when the wave group velocity (i.e., the direction of propagation of the energy) is

antiparallel to the wave vector. In electromagnetic metamaterials, the unusual

refraction is associated with materials that possess negative values of the permittiv-

ity and permeability , so-called double negative materials [29]. Negative refraction

of acoustic waves may be achieved with double negative acoustic metamaterials in

which both the effective mass density and bulk modulus are negative [30]. The

double negativity of the effective dynamical mass and bulk modulus results from

the coexistence in some specific range of frequency of monopolar and dipolar

resonances [31]. The monopolar resonance may be due to a breathing mode of

inclusions resonating out of phase with an incident acoustic wave leading to an

effective negative bulk modulus. The dipolar resonance of heavy inclusions coated

with a soft material embedded in a stiff matrix can result in a displacement of the

center of mass of the metamaterial that is out of phase with the acoustic wave,

leading to an effective negative dynamical mass density. Negative refraction may

also be achieved through band-folding effect due to Bragg’s scattering using

phononic crystals. Band folding can produce bands with negative slopes (i.e.,

negative group velocity and positive phase velocity), a prerequisite for negative

refraction. A combined theoretical and experimental study of a three-dimensional

phononic crystal composed of tungsten carbide beads in water has shown the

existence of a strongly anisotropic band with negative refraction [32]. A slab of

this crystal was used to make a flat lens [33] to focus a diverging sound beam

without curved interfaces typically employed in conventional lenses. A two-

dimensional phononic crystal constituted of a triangular lattice of steel rods

immersed in a liquid exhibited negative refraction and was used to focus ultrasound

[34, 35]. High-fidelity imaging is obtained when all-angle negative refraction

conditions are satisfied, that is, the equifrequency contour of the phononic crystal
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is circular and matches that of the medium in which it is embedded. A flat lens of

this latter crystal achieved focusing and subwavelength imaging of acoustic waves

[36]. This lens beat the diffraction limit of conventional lenses by transmitting the

evanescent components of a sound point source via the excitation of a vibrational

mode bound to the phononic crystal slab. In contrast, a conventional lens transmits

only the propagating component of the source. Negative refraction of surface

acoustic waves [37] and Lamb waves [38] has also been reported.

A broader range of unusual refractive properties was also reported in a study of a

phononic crystal consisting of a square array of cylindrical polyvinylchloride

(PVC) inclusions in air [39]. This crystal exhibits positive, negative, or zero

refraction depending on the angle of the incident sound beam. Zero angle refraction

can lead to wave guiding/localization without defects. The refraction in this crystal

is highly anisotropic due to the nearly square shape of the fourth vibrational band.

For all three cases of refraction, the transmitted beam undergoes splitting upon

exiting the crystal because the equifrequency contour on the incident medium (air)

in which a slab of the phononic crystal is immersed is larger than the Brillouin zone

of the crystal. In this case Block modes in the extended Brillouin zone are excited

inside the crystal and produce multiple beams upon exit.

1.1.3 Phase properties

Only recently has progress been made in the extension of properties of phononic

crystals beyond o-k space and into the space of acoustic wave phase (f-space). The
concept of phase control between propagating waves in a phononic crystal can be

realized through analysis of its band structure and equi-frequency contours [40].

The dominant mechanism behind the control of phase between propagating acous-

tic waves in two-dimensional phononic crystals arises from the non-colinearity of

the wave vector and the group velocity.

1.2 Beyond Macroscopic, Linear Elastic, Passive Structures
and Media

Until recently, phononic crystals and acoustic metamaterials have been constituted

of passive media satisfying continuum linear elasticity. A richer set of properties is

emerging by utilizing dissipative media or media obeying nonlinear elasticity.

Lossy media can be used to modify the dispersive properties of phononic crystals.

Acoustic structures composed of nonlinear media can support nondispersive waves.

Composite structures constituted of active media, media responding to internal or

external stimuli, enable the tunability of their band properties.
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1.2.1 Dissipative Media

Psarobas studied the behavior of a composite structure composed of close packed

viscoelastic rubber spheres in air [41]. He reported the existence of an appreciable

omnidirectional gap in the transmission spectrum in spite of the losses. The

existence of band gaps in phononic crystals constituted of viscoelastic silicone

rubber and air was also reported [42]. It was also shown that viscoelasticity did not

only attenuate acoustic waves traversing a rubber-based phononic crystal but also

modified the frequency of passing bands in the transmission spectrum [43]. A

theory of damped Bloch waves [44] was employed to show that damping alters

the shape of dispersion curves and reduces the size of band gaps as well as opens

wave vector gaps via branch cutoff [45]. Loss has an effect on the complete

complex band structure of phononic systems including the group velocity [46].

1.2.2 Nonlinear Media

In this subsection, we introduce only the nonlinear behavior of granular-type

acoustic structures. The nonlinearity of vibrational waves in materials at the atomic

scales due to the anharmonic nature of interatomic forces will be addressed in

Sect. 1.2.4. The nonlinearity of contact forces between grains in granular materials

has inspired the design of strongly nonlinear phononic structures. Daraio has

demonstrated that a one-dimensional phononic crystal assembled as a chain of

polytetrafluoroethylene (PTE-Teflon) spheres supports strongly nonlinear solitary

waves with very low speed [47]. Using a similar system composed of a chain of

stainless-steel spheres, Daraio has also shown the tunability of wave propagation

properties [48]. Precompression of the chain of spheres lead to a significant increase

in solitary wave speed. The study of noncohesive granular phononic crystals lead to

the prediction of translational modes but also, due to the rotational degrees of

freedom, of rotational modes and coupled rotational and translational modes [49].

The dispersion laws of these modes may also be tuned by an external loading on the

granular structure.

1.2.3 Tunable Structures

To date the applications of phononic crystals and acoustic metamaterials have been

limited because their constitutive materials exhibit essentially passive responses.

The ability to control and tune the phononic/acoustic properties of these materials

may overcome these limitations. Tunability may be achieved by changing the

geometry of the inclusions [50] or by varying the elastic characteristics of the

constitutive materials through application of contact and noncontact external
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stimuli [51]. For instance, some authors have proposed the use of electro-

rheological materials in conjunction with application of an external electric field

[52]. Some authors have considered the effect of temperature on the elastic moduli

[53, 54]. Other authors [55] have controlled the band structure of a phononic crystal

by applying an external stress that alters the crystal’s structure. Tunability can also

be achieved by using active constitutive materials. Following this approach, some

authors [56, 57] have studied how the piezoelectric effect can influence the elastic

properties of a PC and subsequently change its dispersion curves and gaps. Several

studies have also reported noticeable changes in the band structures of magneto-

electro-elastic phononic crystals when the coupling between magnetic, electric, and

elastic phenomena are taken into account [58, 59] or when external magnetic fields

are applied [60].

1.2.4 Scalability

The downscaling of phononic structures to nanometric dimensions requires an

atomic treatment of the constitutive materials. At the nanoscale, the propagation

of phonons may not be completely ballistic (wave-like) and nonlinear phenomena

such as phonon–phonon scattering (Normal and Umklapp processes) occur. These

nonlinear phenomena are at the core of the finiteness of the thermal conductivity

of materials. Gillet et al. investigated the thermal-insulating behavior of atomic-

scale three-dimensional nanoscale phononic crystals [11]. The phononic crystal

consists of a matrix of diamond-cubic Silicon with a periodic array of nano-

particles of Germanium (obtained by substitution of Si atoms by Ge atoms inside

the phonoic crystal unit cell). These authors calculated the band structure of the

nanoscale phononic crystal with classical lattice dynamics. They showed a flat-

tening of the dispersion curves leading to a significant decrease in the phonon

group velocities. This decrease leads to a reduction in thermal conductivity. In

addition to these linear effects associated with Bragg scattering of the phonons by

the periodic array of inclusions, another reduction in thermal conductivity is

obtained from multiple inelastic scattering of the phonons using Boltzmann

transport equation. The nanomaterial thermal conductivity can be reduced by

several orders of magnitude compared with bulk Si. Atomistic computational

methods such as molecular dynamics and the Green-Kubo method were employed

to shed light on the transport behavior of thermal phonons in models of graphene-

based nanophononic crystals comprising periodic arrays of holes [61]. The pho-

non lifetime and thermal conductivity as a function of the crystal filling fraction

and temperature were calculated. These calculations suggested a competition

between elastic Bragg’s scattering and inelastic phonon–phonon scattering and

an effect of elastic scattering via modification of the band structure on the phonon

lifetime (i.e., inelastic scattering).
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1.3 Phoxonic Structures

Recent effort has been aimed at designing periodic structures that can control

simultaneously the propagation of phonons and photons. Such periodic materials

possess band structure characteristics such as the simultaneous existence of

photonic and phononic band gaps. For this reason, these materials are named

“phoxonic” materials. Maldovan and Thomas have shown theoretically that simul-

taneous two-dimensional phononic and photonic band gaps exist for in-plane

propagation in periodic structures composed of square and triangular arrays of

cylindrical holes in silicon [62]. They have also shown localization of photonic

and phononic waves in defected phoxonic structures. Simultaneous photonic and

phononic band gaps have also been demonstrated computationally in two-

dimensional phoxonic crystal structures constituted of arrays of air holes in lithium

niobate [63]. Planar structures such as phoxonic crystal composed of arrays of void

cylindrical holes in silicon slabs with a finite thickness have been shown to possess

simultaneous photonic and phononic band gaps [64]. Other examples of phoxonic

crystals include three-dimensional lattices of metallic nanospheres embedded into a

dielectric matrix [65]. Phoxonic crystals with spectral gaps for both optical and

acoustic waves are particularly suited for applications that involve acousto-optic

interactions to control photons with phonons. The confinement of photons and

phonons in a one-dimensional model of a phoxonic cavity incorporating nonlinear

acousto-optic effects was shown to lead to enhanced modulation of light by acoustic

waves through multiphonon exchange mechanisms [66].
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Chapter 2

Discrete One-Dimensional Phononic
and Resonant Crystals

Pierre A. Deymier and L. Dobrzynski

Abstract The objective of this chapter is to introduce the broad range of concepts

necessary to appreciate and understand the various aspects and properties of

phononic crystals and acoustic metamaterials described in subsequent chapters.

These concepts range from the most elementary concepts of vibrational waves,

propagating waves, and evanescent waves, wave vector, phase and group velocity,

Bloch waves, Brillouin zone, band structure and band gaps, and bands with negative

group velocities in periodic or locally resonant structures. Simple models based

on the one-dimensional harmonic crystal serve as vehicles for illustrating these

concepts. We also illustrate the application of some of the tools used to study and

analyze these simple models. These analytical tools include eigenvalue problems

(o(k) or k(o)) and Green’s function methods. The purpose of this chapter is

primarily pedagogical. However, the simple models discussed herein will also

serve as common threads in each of the other chapters of this book.

2.1 One-Dimensional Monoatomic Harmonic Crystal

The one-dimensional (1-D) monoatomic harmonic crystal consists of an infinite

chain of masses, m, with nearest neighbor interaction modeled by harmonic springs

with spring constant, b. The separation distance between the masses at rest is

defined as a. This model system is illustrated in Fig. 2.1.
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d’Electronique, de Microélectronique et de Nanotechnologie, Université des Sciences et
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In the absence of external forces, the equation describing the motion of atom “n”
is given by

m
d2un
dt2
¼ bðunþ1 � unÞ � bðun � un�1Þ: (2.1)

In this equation,un represents the displacement of the mass “n” with respect to its
position at rest. The first term on the right-hand side of the equal sign is the

harmonic force on mass “n” resulting from the spring on its right. The second

term is the force due to the spring on the left of “n.” The dynamics of the 1-D

monoatomic harmonic crystal can, therefore, be studied by solving (2.2):

m
d2un
dt2
¼ bðunþ1 � 2un þ un�1Þ: (2.2)

The next subsections aim at seeking solutions of (2.2).

2.1.1 Propagating Waves

We seek solutions to (2.2) in the form of propagating waves:

un ¼ Aeiknaeiot; (2.3)

where k is a wave number and o is an angular frequency. Inserting solutions of the

form given by (2.3) into (2.2) and simplifying by Aeiknaeiot, one obtains the relation
between angular frequency and wave number:

o2 ¼ � b
m

e
ika
2 � e�

ika
2

� �2
: (2.4)

We use the relation 2isiny ¼ eiy � e�iy and the fact that o is a positive quantity

to obtain the so-called dispersion relation for propagating waves in the 1-D har-

monic crystal:

oðkÞ ¼ o0 sink
a

2

��� ���; (2.5)

with o0 ¼ 2

ffiffiffi
b
m

q
representing the upper limit for angular frequency. Since the

monoatomic crystal is discrete and waves with wave-length l ¼ 2p
k larger than 2a

Fig. 2.1 Schematic illustration of one 1-D mono-atomic harmonic crystal
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are physically equivalent to those with wave-length smaller than 2a, the dispersion
relation of (2.5) needs only be represented in the symmetrical interval k 2 � p

a ;
p
a

� �
(see Fig. 2.2). This interval is the first Brillouin zone of the 1-D monoatomic

periodic crystal.

2.1.2 Phase and Group Velocity

The velocity at which the phase of the wave with wave vector, k, and angular

frequency, o, propagates is defined as

v’ ¼ o
k
: (2.6)

The group velocity is defined as the velocity at which a wave packet (a

superposition of propagating waves with different values of wave number ranging

over some interval) propagates. It is easier to understand this concept by consider-

ing the superposition of only two waves with angular velocities, o1 and o2, and

wave vectors, k1 and k2. Choosing, o1 ¼ o� Do
2

and o2 ¼ oþ Do
2

, and,

k1 ¼k � Dk
2

and k2 ¼ k þ Dk
2
. The superposition of the two waves, assuming that

they have the same amplitude, A, leads to the displacement field at mass “n”:

usn ¼ 2Aeiknaeiotcos
Dk
2
naþ Do

2
t

� 	
: (2.7)

The first part of the right-hand side of (2.7) is a traveling wave that is modulated

by the cosine term. This later term represents a beat pulse. The velocity at which

this modulation travels is the group velocity and is given by

vg ¼ Do
Dk

: (2.8)

Fig. 2.2 Illustration of the

dispersion relation for

propagating waves in 1-D

mono-atomic harmonic

crystal
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In the limit of infinitesimally small differences in wave number and frequency,

the group velocity is expressed as a derivative of the dispersion relation:

vg ¼ doðkÞ
dk

: (2.9)

In the case of the 1-D harmonic crystal, the group velocity is given by vg ¼ o0
a
2
cosk a

2
.

We now open a parenthesis concerning the group velocity and show that it is also

equal to the velocity of the energy transported by a propagating wave. To that effect,

we calculate the average energy density as the sum of the potential energy and the

kinetic energy averaged over one cycle of time. The average energy is given by

hEi ¼ 1

2
bðun � un�1Þðun � un�1Þ� þ 1

2
m _un _u

�
n: (2.10)

In (2.10), the * denotes the complex conjugate and _u the time derivative of

the displacement (i.e., the velocity of the mass “n”). Inserting into (2.10) the

displacements given by (2.3) and the dispersion relation given by (2.5) yields the

average energy density:

hei ¼ hEi
a
¼ 4A2 b

a
sin2k

a

2
: (2.11)

We now calculate the energy flow through one unit cell of the 1-D crystal in the

form of the real part of the power,F, defined as the product of the force on mass “n”
due to one spring and the velocity of the mass:

F ¼ Re bðunþ1 � unÞ _u�n

 � ¼ bA2o0 sin k

a

2

��� ���sin ka: (2.12)

The velocity of the energy, ve , is therefore the ratio of the energy flow to the

average energy density, which after using trigonometric relations yields: ve ¼ o0
a
2

cosk a
2
. This expression is the same as that of the group velocity. In summary, the

group velocity represents also the velocity of the energy transported by the

propagating waves in the crystal.

2.1.3 Evanescent Waves

In Sect. 2.1.1, we sought solutions to the equation of motion (2.2) in the form of

propagating waves (Eq. (2.3)). We may also seek solutions in the form of

nonpropagating waves with exponentially decaying amplitude:

un ¼ Ae�k
00naeik

0naeiot: (2.13)
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Equation (2.13) can be obtained by inserting a complex wave number k ¼ k0þ
ik00into (2.3). Combining solutions of the form given by (2.13) and the equation of

motion (2.2), one gets

� mo2 ¼ b eik
0a
2e�k

00a
2 � e�ik

0a
2ek

00a
2

� �2
: (2.14)

Since the mass and the angular frequency are positive numbers, (2.14) possesses

solutions only when the difference inside the parenthesis is imaginary. This condi-

tion is met at the edge of the Brillouin zone, when, k0 ¼ p
a . In this case, (2.14) yields

the dispersion relation:

o ¼ o0 cosh k
00 a
2
: (2.15)

This condition is only met for angular frequencies greater than o0, that is, for

frequencies above the dispersion curves of propagating waves illustrated in

Fig. 2.2.

The solutions of (2.2) in the form of propagating and evanescent waves did not

need to be postulated as was done above and in Sect. 2.1.1. We illustrate below a

different path to solving (2.2). Instead of solving for the frequency as a function of

wave number, this approach solves for the wave number as a function of frequency.

This approach is particularly interesting as it will enable us to determine iso-

frequency maps in wave vector space when dealing with 2-D or 3-D phononic

structures.

We start with (2.4) and rewrite it in the form

� mo2 ¼ bðeika � 2þ e�ikaÞ: (2.16)

We now define the new variable: X ¼ eika . Consequently, equation (2.16)

becomes a quadratic equation in terms of X:

X2 þ m

b
o2 � 2

� 	
X þ 1 ¼ 0: (2.17)

This equation has two solutions, which in terms of o0 are

X ¼ 1

o2
0

o2
0 � 2o2

� 
� 2

o2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 o2 � o2

0

� 
q
: (2.18a)

The solutions given by (2.18a) are real or complex depending on the value of

the angular frequency. Let us consider first the case, o � o0, for which

X ¼ 1

o2
0

o2
0 � 2o2

� 
� 2i

o2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 o2

0 � o2
� 
q

: (2.18b)
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We now generalize the problem to complex wave numbers k ¼ k0 þ ik00. In this

case, X should take the form

X ¼ e�k
00acosk0aþ ie�k

00asink0a: (2.19)

We identify the real and imaginary parts of equations (2.18b) and (2.19) and

solve for k00 and k0. We find using standard trigonometric relations that k00 ¼ 0 and

sin2k0 a
2
¼ o2

o2
0

. This solution corresponds to propagating waves with a dispersion

relation equivalent to that previously found in Sect. 2.1.1 (Eq. (2.5)).

In contrast, when we consider o>o0, (2.18a) remains purely real. The real part

of (2.19) should then be equal to the right-hand side term of (2.18a). We will denote

this term h�ðoÞ. The imaginary part of (2.19) is zero. A trivial solution exists for

k0 ¼ 0. However, in this case, the function h�ðoÞ is always negative and one cannot
find a corresponding value for k00 . There exists another solution, namely, k0 ¼ p

a
(there is also a similar solution k0 ¼ � p

a ), for which, we obtain

k00�ðoÞ ¼ � 1

a
lnð�h�ðoÞÞ: (2.20)

One of the solutions given by (2.20) is positive and the other negative. In the

former case, the displacement is representative of an exponentially decaying

evanescent wave. In the latter case, the displacement grows exponentially. This

second solution is unphysical. This unphysical solution is a mathematical artifact of

the approach used here as it leads to a quadratic equation in X (i.e., k) for a 1-D

monoatomic crystal. Since this crystal has only one mass per unit cell “a” it should
exhibit only one solution foroðkÞ in the complex plane. We illustrate in Fig. 2.3 the

dispersion relations for the propagating and evanescent waves in the complex plane

k ¼ k0 þ ik00.

2.1.4 Green’s Function Approach

In anticipation of subsequent sections where Green’s function approaches will be

used to shed light on the vibrational behavior of more complex harmonic structures,

we present here the Green’s function formalism applied to the 1-D monoatomic

crystal. Considering harmonic solution with angular frequency o, the equation of

motion (2.2) can be recast in the form

1

m
½bunþ1 þ ðmo2 � 2bÞun þ bun�1� ¼ 0: (2.21)
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We now rewrite (2.21) in matrix form when applying it to all masses in the 1-D

monoatomic crystal:

H0

 !
~u ¼ 1

m

. .
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

. . . 0 b �g b 0 0 0 . . .

. . . 0 0 b �g b 0 0 . . .

. . . 0 0 0 b �g b 0 . . .

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

.

2
6666664

3
7777775

..

.

un�1
un
unþ1
..
.

2
6666664

3
7777775
¼

..

.

0

0

0

..

.

2
6666664

3
7777775
; (2.22)

where g ¼ 2b� mo2 . The operator, H0

 !
, is a more compact representation of

the dynamic matrix in (2.22), and ~u is the vector whose components are the

displacements of the masses in the crystal. With this notation, the Green’s function,

G0

 !
, associated with H0

 !
is defined by the relation

H0

 !
G0

 ! ¼ I
$
: (2.23)

In this equation, I
$
is the identity matrix. Equation (2.23) is written in component

form as

X
n00
H0ðn; n00ÞG0ðn00; n0Þ ¼ dnn0 : (2.24)

Here, we have used the Kroenecker symbol d0nn to represent the components

of the identity matrix, that is 1 when n ¼ n0 and 0 when n 6¼ n0 . Since H0

 !
is

tridiagonal (harmonic interactions are limited to first nearest neighbors), (2.23)

becomes

1

m
bG0ðnþ 1; n0Þ � gG0ðn; n0Þ þ bG0ðn� 1; n0Þ½ � ¼ dnn0 : (2.25)

Fig. 2.3 Dispersion curves

for the 1-D mono-atomic

harmonic crystal extended to

the wave-number complex

plane. The black solid curves
are for propagating waves,

and the grey solid curve is for
the evanescent waves
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From a physical point of view, the Green’s functionG0ðn; n0Þ is the displacement

of mass “n” when a unit external force is applied at the site of mass “n’”. The
solution of (2.25) is known [1] and has the general form

G0ðn; n0Þ ¼ m

b
tjn�n

0jþ1

t2 � 1
: (2.26)

The quantity, t, is determined by inserting this general solution into (2.25) and

choosing n ¼ n0. In this case, we obtain the simple quadratic equation:

t2 � 2xtþ 1 ¼ 0; (2.27)

with x ¼ g
2b ¼ 1� mo2

2b ¼ 1� 2o2

o2
0

. The resolution of the quadratic equation yields

t ¼
x� ðx2 � 1Þ1=2 if x>1

xþ ðx2 � 1Þ1=2 if x<� 1

xþ ið1� x2Þ1=2 if � 1 � x � 1

8><
>: : (2.28)

We note that foroE ½0; o0� and xE ½�1; 1� t is a complex quantity. We introduce

some wave number, k, and write this complex quantity, t ¼ eika . We equate the

real part and the imaginary part of this quantity with those of the third form of

the solution in (2.28) and using standard trigonometric relations, we obtain the

dispersion relation given by (2.5). We therefore recover the propagating wave

solution in the crystal. For, o>o0 and x<� 1; tE ½�1; 0�. Introducing a wave

number, k, we can therefore rewrite x ¼ �cosh ka and t ¼ �e�ka represents an

evanescent wave.

As a final note, we recast the operator,H0

 !
, as the difference,H00

 ! � o2 I
$
, where the

operator, H00, depends on the spring constant b only. Equation (2.23) then states that

G0

 ! ¼ I
$

H00
 ! � o2

� ��1
; (2.29)

meaning that the poles (zeros of the denominator) of the Green’s function are the

eigenvalues of the operator, H00
 !

. According to (2.26), the poles of the Green’s

function of the 1-D monoatomic harmonic crystal are, therefore, given by the

equation

t2 � 1 ¼ 0: (2.30)

This condition is met when t ¼ eika ¼ cos kaþ i sin ka. In the case,oE½0;o0�; t ¼
xþ ið1� x2Þ1=2 if � 1 � x � 1. We can subsequently write cos ka ¼ x ¼ 1� 2o2

o2
0

,

which, using trigonometric relation, reduces to the dispersion relation of propagating

waves in the crystal (Eq. (2.5)).
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2.2 Periodic One-Dimensional Harmonic Crystals

2.2.1 One-Dimensional Monoatomic Crystal and Super-Cell
Approach

We consider again the 1-D monoatomic harmonic crystal but treat it as a periodic

system with a super-period, R ¼ Na i.e., a super-cell representation of the crystal.

This system is represented in Fig. 2.4.

We will solve the equation of motion of the mass, “l” in the first super-cell, that

is, l E ½0;N � 1�. Equation (2.21) applied to “l” is

� mo2ul ¼ bðulþ1 � 2ul þ ul�1Þ: (2.31)

In contrast to Sect. 2.1, we now assume that the displacement obeys Block’s

theorem [2]. The solutions of (2.31) are the product of plane waves and a periodic

function of the super-cell structure:

u1ðkÞ ¼ eikla~ulðkÞ: (2.32)

The periodic function, ~ulðkÞ , satisfies the condition: ~ulðkÞ ¼ ~ulþNðkÞ. The wave
number, k, is now limited to the interval: � p

R ;
p
R

� �
. The periodic function ~ulðkÞ is

subsequently written in the form of a Fourier series:

~ulðkÞ ¼
X

g
ug ðkÞ eigla; (2.33)

where the reciprocal lattice vector of the periodic structure of super-cells g ¼ 2p
Nam

with m being an integer. Inserting (2.33) and (2.32) into (2.31) gives after some

algebra

X
g
ugðkÞeiðkþgÞla �mo2 � b eiðkþgÞa � 2þ e�iðkþgÞa

� �h i
¼ 0: (2.34)

In addition to the trivial solution, ugðkÞ ¼ 0, (2.34) admits nontrivial dispersion

relations:

oðkÞ ¼ o0 sin ðk þ gÞ a
2

��� ���: (2.35)

We illustrate this dispersion relation for a super-cell 2a long and containing two

masses. For N ¼ 2, the reciprocal space vectors, g ¼ p
a n. Equation (2.35) becomes

oðkÞ ¼ o0

sin k þ p
a n

� 

a

2

����
����:
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When n ¼ 0, this dispersion relation is identical to that given by (2.5) that was

illustrated in Fig. 2.2. The dispersion relation when n ¼ 1is equivalent to that of

(2.5) translated along the wave number axis by p
a . For n ¼ 2a and other even

values, one obtains again the same result than for n ¼ 0. The case n ¼ 3 and other

odd values are identical to the case n ¼ 1. There are therefore only two possible

nonequivalent representations of the dispersion relation (2.35). These dispersion

relations are only valid in the interval of wave number: � p
2a ;

p
2a

� �
. They are

illustrated in Fig. 2.5.

In the super-cell representation, the dispersion relation consists of two branches

that can be obtained graphically by folding the dispersion curve of Fig. 2.2 about

two vertical lines at wave numbers � p
2a and p

2a . The super-cell representation of

the band structure of the monoatomic crystal is a purely mathematical representa-

tion. In general, one can construct the band structure of a super-cell with period

R ¼ Na by folding the single dispersion curve of Fig. 2.2 N times inside a reduced

Brillouin zone: 0; p
Na

� �
. We will show in the next section that this representation

may be useful in interpreting the band structure of the 1-D diatomic harmonic

crystal.

2.2.2 One-Dimensional Diatomic Harmonic Crystal

The 1-D diatomic harmonic crystal is illustrated in Fig. 2.6.

The equations of motion of two adjacent odd and even atoms are

m1 €u2n ¼ bðu2nþ1 � u2n þ u2n�1Þ
m2€u2nþ1 ¼ bðu2nþ2 � u2nþ1 � u2nÞ

�
: (2.36)

Fig. 2.5 Schematic illustration of the dispersion relation of the 1-D monoatomic harmonic crystal

in the super-cell representation, N ¼ 2

Fig. 2.4 Schematic representation of the 1-D mono-atomic crystal as a periodic structure with

super-period Na
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We seek solutions in the form of propagating waves with different amplitudes

for odd or even atoms as their masses are different:

u2n ¼ Aeioteik2na

u2nþ1 ¼ Beioteikð2nþ1Þa

�
: (2.37)

Inserting these solutions into (2.36) leads, after some algebraic manipulations

and using the definition of the cosine in terms of complex exponentials, to the set of

two linear equations in A and B:

ð2b� m1o2ÞA� 2b cos ka B ¼ 0

�2b cos ka Aþ ð2b� m1o2ÞB ¼ 0
:

�
(2.38)

This is an eigenvalue problem in o2 . This set of equations admits nontrivial

solutions (i.e., A 6¼ 0;B 6¼ 0) when the determinant of the matrix composed of the

linear coefficients in equation (2.38) is equal to zero, that is,

2b� m1 o2 �2b cos ka
�2b cos ka 2b� m2o2

����
���� ¼ 0: (2.39)

Setting a ¼ o2, (2.39) takes the form of the quadratic equation:

a2 � 2b
1

m1

þ 1

m2

� 	
aþ 4b2

m1m2

sin2ka ¼ 0; (2.40)

which admits two solutions:

o2 ¼ a ¼ b
1

m1

þ 1

m2

� 	
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1

m1

þ 1

m2

� 	2

� 4b2

m1 m2

sin2ka

s
: (2.41)

These two solutions are periodic in wave number, k, with a period of p
a . These

solutions are represented graphically in the band structure of Fig. 2.7 over the

interval, k E 0; p
2a

� �
. This interval is the smallest interval, the so-called irreducible

Brillouin zone, for representing the band structure. The complete band structure is

reconstructed by mirror symmetry with respect to a vertical line passing though the

origin.

Fig. 2.6 Schematic illustration of the 1-D diatomic harmonic crystal. The atoms with an even

label have a massm1, and the odd atoms have a massm2. The force constant of the springs is b. The
periodicity of the crystal is 2a
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The frequencies o1; o2 and o3 are given by o1 ¼
ffiffiffiffi
2b
m1

q
; o2 ¼

ffiffiffiffi
2b
m2

q
, and

o3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b 1

m1
þ 1

m2

� �r
if one chooses m1>m2 . The band structure of Fig. 2.7

exhibits two branches since the unit cell of the 1-D diatomic crystal contains

two atoms. These branches are separated by a gap in the interval of frequency

½o1; o2� . The low-frequency branch is called the acoustic branch. The high-

frequency branch is called the optical branch. In the limit m1 ¼ m2 ¼ m , the

diatomic crystal reduces to a monoatomic crystal. The band structure of Fig. 2.7

becomes that of the 1-D monoatomic harmonic crystal in the super-cell repre-

sentation with N ¼ 2 (see Fig. 2.5). The construction of the band structure

of the diatomic crystal may then be understood conceptually by first considering

the folded band structure of the monoatomic crystal with a super-period R ¼ 2a.
The waves with wave number k ¼ p

2a have a wavelength l ¼ 2p
k ¼ 4a . The

wavelength is twice the period of the diatomic crystal. Then, we label alter-

nating atoms with odd and even numbers in the monoatomic crystal. If at some

instant an even atom undergoes a zero displacement, then the displacement of

all other even atoms will also be zero. At the same time, all odd number atoms

will be subjected to a maximum displacement. The even atom and odd atom

sublattices support the l ¼ 4a wave with the same frequency as long as their

masses are the same. However, if now one perturbs the monoatomic crystal by

making the mass of atoms on one sub-lattice different from the atoms on the

other (leading to the formation of a diatomic crystal), the frequency of the l ¼ 4a
wave will be lower for the heavier atoms than for the lighter ones. Approaching

the diatomic crystal by perturbing the masses of the monoatomic crystals sepa-

rates the folded branches of the monoatomic crystal at k ¼ p
2a leading to the

formation of a gap.

It is interesting to note that in contrast to the acoustic branch, the optical branch

has a negative slope, i.e., a negative group velocity. The group velocity and energy

velocity point in a direction opposite to the direction of the wave vector and of the

phase velocity. This observation is particularly important when dealing with the

concept of negative refraction. However, since the diatomic crystal is one

Fig. 2.7 Schematic

representation of the band

structure of the 1-D diatomic

harmonic crystal in the

irreducible Brillouin zone
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dimensional, we cannot address the phenomenon of refraction yet. However, we

rewrite the real part of the displacement of a superposition of waves given by (2.7)

in the form

usn ¼ 2A cosðkðnaþ v’tÞÞ cos Dk
2
ðnaþ vgtÞ

� 	
: (2.42)

Equation (2.42) shows that the envelope of the wave packet appears to propagate

in the opposite direction of the superposition of waves when the phase velocity

and the group velocity have opposite signs.

2.2.3 Evanescent Waves in the Diatomic Crystal

In this section, we use the method introduced in Sect. 2.1.3 to shed some light on the

nature of waves with frequencies corresponding to the gap of Fig. 2.7. For this, we

start with (2.38) and recast it in the form

�m1o2A ¼ bBeika � 2bAþ bBe�ika

�m2o2B ¼ bAeika � 2bBþ bAe�ika
:

�
(2.43)

We set X ¼ eika and insert it into the equations of motion (2.43) to obtain after

some algebraic manipulations the set of two quadratic equations:

X2A ¼ �Aþ X 2� m2o2

b

� 	
B

X2B ¼ �Bþ X 2� m1o2

b

� 	
A

:

8>><
>>: (2.44)

Equation (2.44) is recast further in the form of an eigenvalue problem taking the

matrix form

X

A
B
XA
XB

0
BB@

1
CCA ¼

0 0 1 0

0 0 0 1

�1 0 0 2� m2o2

b

0 �1 2� m1o2

b
0

0
BBBBB@

1
CCCCCA

A
B
XA
XB

0
BB@

1
CCA: (2.45)

There exists a nontrivial solution when

�a 0 1 0

0 �a 0 1

�1 0 �a 2� m2o2

b

0 �1 2� m1o2

b
�a

�����������

�����������
¼ 0 (2.46)
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In (2.46), the eigenvalues are a ¼ eika . This equation yields a fourth-order

equation:

a4 þ a2 2� 2� m2o2

b

� 	
2� m1o2

b

� 	� �
þ 1 ¼ 0: (2.47)

By setting z ¼ a2 ¼ ei2ka , we transform (2.47) in a quadratic equation whose

solutions are

z ¼ 1

o2
1o

2
2

o2
1o

2
2 þ 2o4 � 2o2o2

3

� 
� 2

o2
1o

2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 o2 � o2

1

� 

o2 � o2

2

� 

o2 � o2

3

� 
q
:

(2.48)

To obtain (2.48), we have used the relations o1 ¼
ffiffiffiffi
2b
m1

q
; o2 ¼

ffiffiffiffi
2b
m2

q
and o3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b 1

m1
þ 1

m2

� �r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

1 þ o2
2

p
. If 0<o<o1 or o2<o<o3 , then the argument

of the square root in equation (2.48) is negative and z is a complex function of

frequency corresponding to propagating waves (i.e., real wave number k). These
cases represent the acoustic and optical branches of the band structure of the

diatomic crystal. Inside the gap (o1<o<o2 ), z is a real function. Introducing a

complex wave number k ¼ k0 þ ik00, we redefine z as the quantity:

z ¼ e�2k
00acos 2k0aþ ie�2k

00asin 2k0a: (2.49)

z is therefore real only when sin 2k0 a ¼ 0, that is when k0 ¼ p
2a . Equating the real

part of (2.49) to (2.48) leads to two solutions for k00 . The positive solution is

unphysical as it represents an exponentially increasing wave. Again, the emergence

of this unphysical solution results from the fact that in the current eigenvalue

problem we used a 4 � 4 matrix (Eq. (2.45)) that is two times larger than the actual

2 � 2 dynamical matrix of the diatomic harmonic crystal. The negative solution for

k00 corresponds to an evanescent wave with exponentially decaying amplitude.

Similarly, the vibrational modes for frequencies beyond o3 also correspond to

evanescent waves. The complete band structure of the 1-D diatomic harmonic

crystal is illustrated schematically in Fig. 2.8.

2.2.4 Monoatomic Crystal with a Mass Defect

To shed additional light on the origin of the band gap in the band structure of the

diatomic harmonic crystal, we investigate the propagation of waves in a 1-D

monoatomic harmonic crystal with a single mass defect. This is accomplished by

substituting one atom with mass m by another atom with mass m0 . The diatomic

crystal may subsequently be created as a periodic substitution of atoms with

different masses. We address the following question: does the gap originate from
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the scattering of propagating waves by mass defects independently of their period-

icity or does the gap originate from the periodic arrangement of the mass defects?

The defected monoatomic crystal is illustrated in Fig. 2.9.

The equations of motion of the atoms in the defected crystal are

�mo2un ¼ bðunþ1 � 2un þ un�1Þ for n 6¼ 0

�m0o2uo ¼ bðu1 � 2u0 þ u�1Þ :

�
(2.50)

Let us consider an incident wave (i) propagating from the left of the crystal:

uðiÞn ¼ Aie
ikna for n � �1: (2.51)

Part of this wave will be reflected by the mass defect. Another part of the

incident wave will be transmitted through the defect. We write the displacements

associated with these reflected and transmitted waves in the form

uðrÞn ¼ Are
�ikna for n � �1

uðtÞn ¼ Ate
ikna for n � 1: ð2:52Þ

Fig. 2.8 Complete band structure of the 1-D diatomic harmonic crystal. The black solid lines
correspond to propagating waves. The gray lines correspond to evanescent waves

Fig. 2.9 Schematic illustration of the 1-D mono-atomic harmonic crystal with a single mass

defect at site 0. The springs are all identical with the same spring constant
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In (2.52), the upper-scripts (r) and (t) stand for reflected and transmitted

waves, respectively. The total displacement on the left of the defect is the sum

of the incident and reflected displacement. The displacement on the right of the

defect consists only of the transmitted wave. The total displacement is therefore

given by

un ¼ uðiÞn þ uðrÞn for n � �1
un ¼ uðtÞn for n � 1: ð2:53Þ

The continuity of the displacement at the defected site “0” imposes the condition

u0 ¼ u
ðiÞ
0 þ u

ðrÞ
0 ¼ u

ðtÞ
0 : (2.54)

Substituting (2.51) and (2.52) into the condition (2.54) yields a relation between

the amplitudes of the incident, the reflected, and the transmitted waves:

Ai þ Ar ¼ At: (2.55)

We now substitute equations (2.51), (2.52), and (2.54) into (2.50) for the motion

of the mass m0. After some algebraic steps, this equation becomes

�m0 o2 þ 2b� beika
� 


AT ¼ Aibe�ika þ ARbeika: (2.56)

Equations (2.55) and (2.56) constitute a set of linear equations in the amplitudes

of the incident, reflected, and transmitted waves. We can express the amplitude of

the reflected and transmitted waves in terms of the amplitude of the incident wave

to define a transmission coefficient and a reflection coefficient:

T ¼ At

Ai

¼ b2i sin ka
ðm0 � mÞo2 þ b2i sin ka

R ¼ Ar

Ai

¼ �ðm0 � mÞo2

ðm0 � mÞo2 þ b2i sin ka
: ð2:57Þ

To obtain (2.57), we have used the fact that for the 1-D monoatomic harmonic

crystal, the dispersion relation of (2.5) can be recast in the form mo2 ¼ 2bð1�
cos kaÞ . To analyze the behavior of the defected crystal further, we calculate

the square of the modulus of the transmission coefficient:

T2 ¼ TT� ¼ 4b2sin2ka

ðm0 � mÞ2o4 þ 4b2sin2ka
: (2.58)
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We note that whenm0 ¼ m, the incident wave propagates without reflection, i.e.,
the transmission coefficient ((2.58)) is equal to 1. We also note that for k ¼ p

2a , i.e.,

the edge of the Brillouin zone for the diatomic crystal, the transmission coefficient

simplifies to T2 ¼ 4b2

ðm0�mÞ2o4þ4b2 . The transmission coefficient decreases monotoni-

cally as a function of frequency showing no sign of resonance or any other localized

vibration phenomenon. In the absence of such a resonant phenomenon, the band

structure of the diatomic harmonic crystal can, therefore, be ascribed to the period-

icity of the structure, only. The presence of an acoustic branch and of an optical

branch separated by a gap results from scattering of waves by the periodic crystal,

namely, Bragg’s scattering.

2.2.5 Monoatomic Harmonic Crystal with a General Perturbation

The approach of Sect. 2.2.4 is generalized by introducing a frequency dependent

perturbation, VðoÞ , of the 1-D monoatomic crystal at site 0. The equations of

motion of the atoms in this defected crystal are

�mo2un ¼ bðunþ1 � 2un þ unþ1Þ for n 6¼ 0

�mo2u0 ¼ bðu1 � 2u0 þ u�1Þ þ VðoÞu0 :

�
(2.59)

Following the derivation of the transmission and reflection coefficients in the

previous section, we obtain

T ¼ b2i sin ka
VðoÞ þ b2i sin ka

R ¼ VðoÞ
VðoÞ þ b2i sin ka

: ð2:60Þ

We note that if VðoÞ ¼ 1, then an incident wave is totally reflected. Such a

condition may arise from a local resonance. This case is discussed in the next

section.

2.2.6 Locally Resonant Structure

In this section, we are interested in the behavior of a monoatomic crystal with a

structural perturbation taking the form of a side branch. The side branch is

composed of L’ atoms of mass m’ interacting via harmonic springs with force

constant b0. The side branch is attached to the monoatomic crystal at site “0” via a

spring with stiffness bI . We assume that the lattice parameter is the same in the
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side branch and the infinite monoatomic crystal. This structure is illustrated in

Fig. 2.10.

The derivation of an expression for the perturbation potential V begins with the

equations of motion of atoms in the side branch:

�m0o2un0 ¼ b0 un0þ1 � 2un0 þ un0�1ð Þ for n0 6¼ 10; L0 ðaÞ
�m0o2uL0 ¼ �b0 uL0 � uL0�1ð Þ ðbÞ:
�m0o2u10 ¼ �bI u10 � u0ð Þ þ b0 u20 � u10ð Þ ðcÞ

8<
: (2.61)

This set of equations is complemented by the equation of motion of site “0”:

� mo2uo ¼ bðu1 � 2u0 þ u�1Þ þ bI u10 � u0ð Þ: (2.62)

To find the perturbation potential, we are interested in coupling (2.61) and (2.62)

to obtain an effective equation taking the form of equation (2.69) for site “0.”

Rewriting (2.62) as �mo2 þ bI 1� u10
u0

� �� �
u0 ¼ bðu1 � 2u0 þ u�1Þ yields

V ¼ �bI 1� u10

u0

� 	
: (2.63)

The ratio of displacements in equation (2.63) is found by considering the general

solution to (2.61)(a):

un0 ¼ A0eik
0n0a þ B0e�ik

0n0a: (2.64)

Inserting this solution in (2.61)(a) gives

m0o2 ¼ 2b0ð1� cosk0aÞ: (2.65)

Fig. 2.10 Illustration of the

1-D mono-atomic crystal

perturbed by a side branch
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Should site N’ have been in an infinite monoatomic crystal, its equation of

motion would have been

� m0o2uL0 ¼ b0 uL0þ1 � 2uL0 þ uL0�1ð Þ: (2.66)

Subtracting (2.66) and (2.61)(b) gives

b0 uL0þ1 � uL0ð Þ ¼ 0: (2.67)

This equation serves as a boundary condition on site N’ in the side branch. We

define the displacement uL0þ1 at a fictive site “L0 + 1” as support for the boundary

condition (2.67). Similarly subtracting the equation of motion (2.61)(c) and that of

site “1’” if it were embedded in an infinite monoatomic crystal leads to the

boundary condition

� bI u10 � u0ð Þ þ b0 u10 � u00ð Þ ¼ 0: (2.68)

Fictive site “0’” is only used to impose the boundary condition. The two

boundary conditions at sites “1’” and “L’” form the set of equations:

uL0 � uL0þ1 ¼ 0

ðbI � b0Þu10 þ b0u00 ¼ 0:

�
(2.69)

We insert the general solution (2.64) into (2.69) and obtain the set of linear

equations

A0eik
0L0a 1� eik

0a
� 
þ B0e�ik

0L0a 1� e�ik
0a

� 
 ¼ 0

A0 ðbI � b0Þeik0a þ b0
� �þ B0 ðbI � b0Þe�ik0a þ b0

� � ¼ bIu0

�
: (2.70)

Solving (2.70) gives

A0 ¼ �bIu0e�ik
0L0a 1� e�ik

0a
� �

=D

B ¼ bIu0e
ik0L0a 1� eik

0a
� �

=D; ð2:71Þ

where

D ¼ �4isin k
0a
2
ðbI � b0Þcosk0 L0 � 1

2

� 	
aþ b0cosk0 L0 þ 1

2

� 	
a

� �
: (2.72)

To obtain (2.72), we have used a variety of trigonometric relations.

It is worth noting that in the limit of bI ¼ 0, the set of (2.70) can be used to find

the displacement of an isolated finite segment of monoatomic crystal. The existence
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of nontrivial solutions for the amplitudesA0andB0 is ensured by the conditionD ¼ 0.

This condition is rewritten as cosk0 L0 � 1
2

� 

aþ cosk0 L0 þ 1

2

� 

a ¼ �2sink0L0asin k0a

2¼ 0 or sink0L0a ¼ 0. These solutions correspond to vibrational modes of the finite

crystal of length L0, i.e., standing waves with wave vectors: k0 ¼ pp
L0 a , where p is an

integer.

Finally, to find the perturbation V , we use (2.70) and (2.64) to obtain the

displacement of atom “1’,” which we subsequently insert into (2.63). After several

algebraic and trigonometric manipulations, the perturbation becomes

VðoÞ ¼ 2b0bIsin k0a
2
sinL0k0a

ðbI � b0Þcosk0 L0 � 1
2

� 

aþ b0cosk0 L0 þ 1

2

� 

a
: (2.73)

The effect of the side branch on the propagation of waves along the infinite

crystal is most easily understood by considering the limiting case: b ¼ bI ¼ b0 and
m ¼ m0 such that k ¼ k0 . In this case, the side branch is constituted of the same

material as the infinite crystal and equation (2.73) becomes

VðoÞ ¼ 2bsin ka
2
sinL0ka

cosk L0 þ 1
2

� 

a

(2.74)

with the dispersion relation oðkÞ ¼ o0 sink a
2

�� �� (i.e., (2.5)). At the frequency (wave

number) corresponding to the standing wave modes of the side branch, the pertur-

bation V ¼ 0. The transmission and reflection coefficients given by (2.60) are equal

to 1 and 0, respectively. Zeros of transmission and complete reflection occur when

V ¼ 1, that is, when cosk L0 þ 1
2

� 

a ¼ 0 or k ¼ ð2pþ 1Þ p

ð2L0þ1Þa . These conditions
correspond to resonances with the side branch. For instance for a single atom side

branch, i.e., L0 ¼ 1, there is one zero of transmission in the irreducible Brillouin

zone of the monoatomic crystal at k ¼ p
3a . For a two-atom side branch, L0 ¼ 2, there

are two zeros of transmission in the irreducible Brillouin zone of the monoatomic

crystal at k ¼ p
5a and k ¼ 3p

5a . The number of zeros of transmission scales with the

number of atoms in the side branch. Therefore, in contrast to the result of Sect. 2.2.4

where the mass defect did not introduce any zeros of transmission, the side branch

leads to perturbations of the band structure of the supporting infinite 1-D mono-

atomic crystal. These perturbations arise from resonances ðV ¼ 1Þ of the side

branch. The alterations to the band structure of the monoatomic crystal due to the

side branch may be visualized as infinitesimally narrow band gaps. The crystal with

a single side branch is not periodic, and the perturbed band structure results only

from local resonances. In the next sections, we develop the formalism necessary to

shed light on the interplay between Bragg’s scattering and local resonances on the

band structure of a 1-D monoatomic crystal with periodic arrangements of side

branches. This formalism is based on the Green’s function approach called the

Interface Response Theory.
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2.3 Interface Response Theory

2.3.1 Fundamental Equations of the Interface response Theory

In this section, we review the fundamental equations of the Interface Response

Theory (IRT) for discrete systems [3]. This formalism allows the calculation of the

Green’s function of a perturbed system in terms of Green’s functions of unperturbed

systems. We recall (2.23) and (2.22) defining the Green’s function, G0

 !
, by

H0

 !
G0

 ! ¼ I:

The operator H0 is the infinite tridiagonal dynamic matrix:

H0

 ! ¼ 1

m

. .
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

. . . 0 b �g b 0 0 . . . . . .

. . . . . . 0 b �g b 0 . . . . . .

. . . . . . . . . 0 b �g b 0 . . .

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

.

2
6666664

3
7777775
; (2.75)

where g ¼ 2b� mo2. We initially consider a type of perturbation that cleaves the

1-D monoatomic harmonic crystal by severing a bond between two neighboring

atoms (Fig. 2.11).

The equations of motion of the atoms 0 and 1 are

1
m ð�au0 þ bu�1Þ ¼ 0
1
m ð�au1 þ bu2Þ ¼ 0

;

�
(2.76)

with a ¼ mo2 � b.
The dynamical operator for the cleaved crystal is written as

h0
 ! ¼ h

$
S1 0

$

0
$

h
$
S2

" #

¼ 1

m

	 	 	 �3 �2 �1 0 1 2 3 . . .
b �g b 0 0 0 0 0 0

0 b �g b 0 0 0 0 0

0 0 b �g b 0 0 0 0

0 0 0 b �a 0 0 0 0

0 0 0 0 0 �a b 0 0

0 0 0 0 0 b �g b 0

0 0 0 0 0 0 b �g b

2
66666666664

3
77777777775

..

.

�3
�2
�1
0

1

2

..

.

: (2.77)
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In (2.77), h0
 !

is a block matrix composed of two independent matrices h
$
S1 and h

$
S2,

corresponding to the two semi-infinite crystals on the left and right of the cleaved

bond, respectively. The Green’s function of the perturbed system, g
$
0, is therefore

defined through the relation

h
$
0g
$
0 ¼ I

$
: (2.78)

Since the dynamical matrix of the cleaved system is a block matrix, its

associated Green’s function is also a Block matrix:

g0
 ! ¼ g

$
S1 0

$

0
$

g
$
S2

" #
: (2.79)

We define the perturbation operator or cleavage operator as the difference

between the dynamical matrices of the cleaved and unperturbed crystals:

V
$
0 ¼ h

$
0 � H

$
0: (2.80)

Using the matrix representation, the cleavage operator is a 2 � 2 matrix limited

to the sites 0 and 1 of the crystal:

V
$
0 ¼ V0ð0; 0Þ V0ð1; 0Þ

V0ð0; 1Þ V0ð1; 1Þ
� 	

¼ 1

m

b �b
�b b

� 	
: (2.81)

We rewrite (2.78) in the form g
$
0h
$
0 ¼ I

$
by using the commutative property of the

product of a matrix with its inverse. Introduction (2.80) into this later relation,

multiplying both sides of the equal sign byG
$
0, applying the distributive property of

the product of matrices, and finally using (2.23) yields

g
$
0 I
$ þ V

$
0G
$
0

� �
¼ g

$
0 I
$ þ A

$
0

� �
¼ G

$
0: (2.82)

Equation (2.82) is called Dyson’s equation. It enables the determination of the

Green’s function of a perturbed system in terms of the perturbation operator and the

Green’s function of the unperturbed system. In (2.82), we have defined the surface

operator:

A
$
0 ¼ V

$
0 G
$
0: (2.83)

Fig. 2.11 Schematic illustration of the 1-D mono-atomic harmonic crystal cleaved between

atoms 0 and 1
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The Green’s function of the perturbed system is then given by

g
$
0 ¼ G

$
0 I
$ þ A

$
0

� ��1
: (2.84)

The poles of g
$
0 (i.e., the eigenvalues of the operator h

$
0) are the zeros of I

$ þ A
$
0.

2.3.2 Green’s Function of the Cleaved 1-D Monoatomic Crystal

We apply (2.84) to the calculation of the Green’s function of the semi-infinite

crystal on the right of the cleaved bond in Fig. 2.11 (i.e., n � 1). The components of

the surface operator defined by (2.83) are written as

AS2ðn; n0Þ ¼
X

n00
V0ðn; n00ÞG0ðn00; n0Þ with n; n0 � 1: (2.85)

The only nonzero components of the cleavage operator are for n; n0 E ½0; 1�, so
(2.85) reduces to

AS2ð1; n0Þ ¼ V0ð1; 0ÞG0ð0; n0Þ þ V0ð1; 1ÞG0ð1; n0Þ; n0 � 1: (2.86)

Inserting the terms in (2.81) and (2.26) into (2.86) results in

AS2ð1; n0Þ ¼ tn
0 � tn

0þ1

t2 � 1
: (2.87)

We now write equation (2.82) in component form:

gS2ðn; n0Þ þ gS2ðn; 1ÞAS2ð1; n0Þ ¼ G0ðn; n0Þ; n; n0 � 1: (2.88)

Expressing (2.88) at site n0 ¼ 1and using the relation (2.87) gives

gS2ðn; 1Þ ¼ m

b
tn

t� 1
:

We can now combine that relation with (2.87), (2.26), and (2.88) to obtain the

function sought

gS2ðn; n0Þ ¼ m

b
tjn�n

0 jþ1 þ tnþn
0

t2 � 1
; n; n0 � 1: (2.89)

The procedure used in this section to find the Green’s function of the perturbed

system can be generalized to obtain the universal equation of the IRT. All matrices
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in equation (2.82) are defined for, n0E½�1;1� . We now consider the space D for

n; n0 � 1 and rewrite equation (2.82) as

g
$
S2ðD;DÞ þ g

$
S2ðD;MÞA

$
S2ðM;DÞ ¼ G

$
S2ðD;DÞ: (2.90)

The index S specifies that all functions are limited to the space of a semi-infinite

truncated chain. Equation (2.88) is a particular case of the general equation (2.90)

where we have specified the space corresponding to the location of the perturbation

by M. In the case of the cleavage of the monoatomic crystal, M ¼ 1. A particular

form of (2.90) is

g
$
S2ðD;MÞ þ g

$
S2ðD;MÞA

$
S2ðM;MÞ ¼ G

$
S2ðD;MÞ: (2.91)

We combine (2.91) and (2.90) to obtain the universal equation of the IRT:

g
$
S2ðD;DÞ ¼ G

$
S2ðD;DÞ þ G

$
S2ðD;MÞD

$�1ðM;MÞA$S2ðM;DÞ; (2.92)

where

D
$ðM;MÞ ¼ I

$ðM;MÞ þ AS2
 !ðM;MÞ: (2.93)

Equation (2.93) introduces the diffusion matrix D
$
.

The displacement vector~uðDÞ is related to the Green’s functiong$S via the relation

~uðDÞ ¼ ~f ðDÞg$S2ðD;DÞ; (2.94)

where ~f is some force distribution applied in the space D. Inserting (2.92) into

(2.94), we obtain the displacement vector of the perturbed system in terms of the

displacement vector of the unperturbed system, U, as

~uðDÞ ¼ ~UðDÞ � ~UðMÞD$�1ðM;MÞA$S2ðM;DÞ: (2.95)

Applying (2.95) to the right side of the cleaved mono-atomic crystal yields

uðn0Þ ¼ Uðn0Þ � Uð1ÞD�1ð1; 1ÞAS2ð1; n0Þ for n0 � 1;

with D�1ð1; 1Þ ¼ 1
1þAS2ð1;1Þ ¼ t2�1

t�1 and AS2ð1; n0Þ ¼ tn
0 �tn0þ1
t2�1 . The displacement is

therefore

uðn0Þ ¼ Uðn0Þ þ Uð1Þtn0 n0 � 1:
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If we choose Uðn0Þ ¼ t�n
0
, corresponding to an incident wave coming from

n0¼ þ1, the displacement field in the semi-infinite chain takes the form

uðn0Þ ¼ t�n
0 þ tn

0�1 ¼ e�ikn
0a þ eikðn

0�1Þa:

This is a standing wave resulting from the superposition of an incident wave and

a reflected wave. We can also obtain this result by writing the equation of motion at

site 1 of the cleaved crystal:

� mo2u1 ¼ bðu2 � u1Þ:

This equation implies that u1 � u0 ¼ 0, where u0 is the displacement of the site

0 taken as a fictive site imposing a zero force boundary condition on site 1. We

assume that the displacement in the semi-infinite crystal is the sum of a reflected

wave and a transmitted wave:

un ¼ Aie
�ikna þ Are

ikna:

Inserting this general solution into the boundary condition leads to the relation

between the incident and reflected amplitudes: Ar ¼ Aie
�ika leading to the displace-

ment uðnÞ ¼ Aiðe�ikna þ eikðn�1ÞaÞ.

2.3.3 Finite Monoatomic Crystal

The finite 1-D monoatomic crystal is formed by cleaving an infinite crystal at two

separate locations. This doubly cleaved system is illustrated in Fig. 2.12.

The cleavage operator is a 4x4 matrix expressed in the space of the perturbed

sites (0,1) and (L,L + 1):

V
$
0 ¼ 1

m

0 1 L Lþ 1
b �b 0 0

�b b 0 0

0 0 b �b
0 0 �b b

2
664

3
775

0

1

L
Lþ 1

: (2.96)

The dynamical matrix is composed of three separate blocks corresponding to

the three uncoupled regions of the cleaved system of Fig. 2.12, namely regions

“1,” “2,” and “3.” Similarly, the Green’s function and the surface operators are

also block diagonal matrices. Using (2.83), the nonzero components of the

surface operator matrix corresponding to the block of the finite segment of crystal

“2” are
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AS2ð1; n0Þ ¼ V0ð1; 0ÞG0ð0; n0Þ þ V0ð1; 1ÞG0ð1; n0Þ
AS2ðL; n0Þ ¼ V0ðL; LÞG0ðL; n0Þ þ V0ðL; Lþ 1ÞG0ðLþ 1; n0Þ n0 2 1;L½ �: (2.97)

The Green’s function of the infinite crystal given by (2.26) is inserted into

(2.97) to obtain

AS2ð1; n0Þ ¼ �t
n0

tþ 1

AS2ðL; n0Þ ¼ �t
L�n0þ1

tþ 1

n0 2 1; L½ �: (2.98)

To apply the universal equation of the IRT, we need the block “2” of the surface

operator matrix in the space of the corresponding perturbed sites M E ½1; L�, that is

A
$
S2ðM;MÞ ¼ AS2ð1; 1Þ AS2ð1; LÞ

AS2ðL; 1Þ AS2ðL; LÞ
� �

¼ �1
tþ 1

t tL

tL t

� �
: (2.99)

The green’s function of the finite segment of crystal takes the form

gS2ðn;n0Þ ¼G0ðn;n0Þ�G0ðn;1ÞD�1ð1;1ÞAS2ð1;n0Þ�G0ðn;1ÞD�1ð1;LÞAS2ðL;n0Þ
�G0ðn;LÞD�1ðL;1ÞAS2ð1;n0Þ�G0ðn;LÞD�1ðL;LÞAS2ðL;n0Þ; n;n0E½1;L�:

(2.100)

In (2.100),

D
$�1ðM;MÞ ¼ 1

W

1

tþ 1

1 tL

tL 1

� �
; (2.101)

withW ¼ detD
 ! ¼ 1�t2L

ðtþ1Þ2 and according to (2.93)D
$ðM;MÞ ¼ I

$ðM;MÞ þ AS2
 !ðM;MÞ.

Inserting the expressions given by (2.26), (2.98), and (2.101) into (2.100) yields

the Green’s function of the finite crystal (for n; n0E ½1; L�):

gS2ðn;n0Þ ¼m

b
t n�n

0j jþ1þ tnþn
0

t2�1
þ t2Lþ1

ðt2�1Þð1� t2LÞ tn
0�nþ tn�n

0 þ t1�n�n
0 þ tnþn

0�1
� �� �

:

(2.102)

Fig. 2.12 Mono-atomic crystal cleaved between sites (0,1) and (L,L + 1) to obtain a finite crystal

composed of atoms [1,L]
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According to (2.84), the poles of the Green’s function are also those of D
$�1 .

Here, these poles are the zeros of . The Eigen values of the finite crystals are,

therefore, given by the condition 1� t2L ¼ 0. This condition may be rewritten as

tL � t�L ¼ 0 . For angular frequencies, o E ½0;o0�; t ¼ eika and the modes of the

finite crystal are given by eikLa � e�ikLa ¼ sin kLa ¼ 0. These modes correspond to

standing waves with wave number conditioned by k ¼ pp
La with p being an integer.

The displacement field of these standing waves is obtained from (2.95). In

components form, (2.95) becomes

uðn0Þ ¼ Uðn0Þ � Uð1ÞD�1ð1; 1ÞAS2ð1; n0Þ � Uð1ÞD�1ð1; LÞAS2ðL; n0Þ
� UðLÞD�1ðL; 1ÞAS2ð1; n0Þ � UðLÞD�1ðL; LÞAS2ðL; n0Þ; n; n0 E ½1; L�:

ð2:103Þ

Employing a reference displacement Uðn0Þ ¼ tn
0
, (2.103) gives

uðn0Þ ¼ tn
0 þ tn

0 t

1� t2L
þ t�n

0 t2Lþ2

1� t2L
þ tn

0 t2L

1� t2L
þ t�n

0 t2Lþ1

1� t2L
:

This expression diverges when 1� t2L ¼ 0 . It is therefore necessary to

obtain a finite displacement by renormalizing the previous expression by W . The

renormalized displacement then reduces to uðn0Þ ¼ tn
0 þ t�n

0þ1. This expression is

that of the displacement of standing waves in the finite crystal.

2.3.4 One-Dimensional Monoatomic Crystal with One Side
Branch

The calculation of the displacement in a system composed of a 1-D monoatomic

crystal with a finite crystal branch coupled to its side via a spring with constant, bI,
as illustrated in Fig. 2.10, begins with the block matrix describing the Green’s

function of the uncoupled system ðbI ¼ 0Þ

G
$
S ¼ G

$
0 0

$

0
$

g0
$

S2

 !
; (2.104)

whereG
$
0 is the Green’s function of the infinite crystal (whose components are given

by (2.26)) and where g
$0
S2 is the Green’s function of the finite side crystal given by

(2.102). This later Green’s function is labeled with a “prime” sign to indicate that

the spring constants and masses m0 and b0of the finite crystal may be different from

those of the infinite crystal m and b. The difference between the dynamic matrix of

the coupled systems and of the dynamic matrix of the uncoupled system defines a

coupling operator:
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V
$
I ¼ VIð0; 0Þ VIð0; 10Þ

VIð10; 0Þ VIð10; 10Þ
� 	

¼
�bI
m

bI
m

bI
m0

�bI
m0

0
B@

1
CA: (2.105)

We note that if the masses in the finite and infinite crystals were the same, the

coupling operator would simply be the opposite of the cleavage operator of (2.81).

We now use the fundamental equation of the IRT to derive an expression for the

displacement field in the coupled system in terms of the Green’s function of the

constituent crystals making up the uncoupled system and the perturbation operator

of (2.105).

To that effect, we first write expressions for the surface operator:

A
$
0ðMDÞ ¼

Að0; nÞ
Að0; n0Þ
Að10; nÞ
Að10; n0Þ

0
BB@

1
CCA ¼

VIð0; 0ÞG0ð0; nÞ
VIð0; 10Þg0S2ð10; n0Þ
VIð10; 0ÞG0ð0; nÞ

VIð10; 10Þg0S2ð10; n0Þ

0
BB@

1
CCA: (2.106)

In (2.106), n and n0 refer to sites in the infinite crystals and the finite side branch,
respectively. The diffusion matrix then takes the form of a 2x2 matrix in the space

of the interface sites M:

D
$ðMMÞ ¼ 1þ Að0; 0Þ Að0; 10Þ

Að10; 0Þ 1þ Að1; 10Þ
� 	

¼ 1þ VIð0; 0ÞG0ð0; 0Þ VIð0; 10Þg0S2ð10; 10Þ
VIð10; 0ÞG0ð0; 0Þ 1þ VIð10; 10Þg0S2ð10; 10Þ

� 	
: (2.107)

The inverse of the diffusion matrix is then

D
$�1ðMMÞ ¼ 1

detD
$

1þ VIð10; 10Þg0S2ð10; 10Þ �VIð0; 10Þg0S2ð10; 10Þ
�VIð10; 0ÞG0ð0; 0Þ 1þ VIð0; 0ÞG0ð0; 0Þ

� 	
: (2.108)

We use (2.95) to obtain the displacement field. For this we also need to assume

a form for the reference displacement UðDÞ ¼ tn . This displacement corresponds

to a wave propagating in the infinite crystal and launched from n ¼ �1 . The

displacement inside the side crystal is also assumed to be equal to zero. The

displacement in the space of the perturbed sites [0,10] take the form

UðMÞ ¼ ðUð0Þ;Uð10ÞÞ ¼ ð1; 0Þ: (2.109)

The displacement field at a site n � 1 along the infinite crystal (i.e., on the right

side of the grafted branch) is therefore determined from the equation:

un ¼ tn � ð1; 0Þ D�1ð0; 0Þ D�1ð0; 10Þ
D�1ð10; 0Þ D�1ð10; 10Þ

� 	
Að0; nÞ
Að10; nÞ

� 	
: (2.110)
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Inserting (2.108) and (2.106) into (2.110) yields

un ¼ tn � 1

detD
$ V
$
Ið0; 0ÞG0ð0; nÞ: (2.111)

One then combines (2.26), (2.102), (2.105), and (2.111) to obtain

un ¼ tn 1þ bI
b

1

detD
$

t

t2 � 1

 !
¼ tnT; (2.112)

with

detD
$ ¼ 1� bI

b0
t0 þ t02L

0

ðt0 � 1Þ 1� t02L
0� 
� bI

b
t

t2 � 1
: (2.113)

In (2.112), T is the transmission coefficient. We can rewrite (2.113) in the form

detD
$ ¼ � 1

V
� bI

b
1

2isinka
; (2.114)

where � 1
V ¼ 1� bI

b0
t0þt02L0

ðt0�1Þð1�t02L0 Þ . To obtain equation (2.114), we also defined t ¼ eika.

With t0 ¼ eik
0a, one can show that the quantity V is that given by equation (2.73).

2.3.5 One-Dimensional Monoatomic Crystal with Multiple
Side Branches

We now consider Nc side branches of various lengths grafted along an infinite 1-D

monoatomic crystal. The spaces D and M for this system are defined as

D¼f�1; . . . ;�1;0;1; . . . 1g
[ f10; 20; . . .L0g;f100;200; . . . ;L00g;f1ð3Þ;2ð3Þ; . . . ;Lð3Þg . . . ; 1ðNcÞ;2ðNcÞ; . . . ;LðNcÞ

n on o

and

M ¼ p1 ¼ 0; 10; p2; 100; p3; 1ð3Þ; . . . ; pNc
; 1ðNcÞ

n o
:

We have located the first finite crystal at site p1 ¼ 0 of the infinite crystal. The

second finite crystal is located at site p2>p1 of the infinite crystal. The third finite
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crystal is located at p3>p2, etc. In this case, the coupling operator is a 2Nc � 2Nc

matrix, whose form is given by

V
$
I ¼ bI

m

�1 1 0 0 . . . 0 0

1 �1 0 0 . . . 0 0

0 0 �1 1 . . . 0 0

0 0 1 �1 . . . 0 0

..

. ..
. ..

. ..
.

. . . ..
. ..

.

0 0 0 0 0 �1 1

0 0 0 0 0 1 �1

0
BBBBBBBB@

1
CCCCCCCCA
: (2.115)

To calculate D
$ðMMÞ ¼ I

$ðMMÞ þ V
$
IðMMÞGS

 !ðMMÞ , one needs the Green’s

function of the uncoupled system, GS
 !ðMMÞ, which takes the form

GS
 !ðMMÞ ¼

G0ðp1p1Þ 0 G0ðp1p2Þ 0 G0ðp1p3Þ 0 . . . G0 p1pNc
ð Þ 0

0 gsð1010Þ 0 0 0 0 . . . 0 0

G0ðp2p1Þ 0 G0ðp2p2Þ 0 G0ðp2p3Þ 0 . . . G0 p2pNc
ð Þ 0

0 0 0 gsð100100Þ 0 0 . . . 0 0

G0ðp3p1Þ 0 G0ðp3p2Þ 0 G0ðp3p3Þ 0 . . . G0 p3pNc
ð Þ 0

0 0 0 0 0 gsð1ð3Þ1ð3ÞÞ . . . 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

G0 pNcp1ð Þ 0 G0 pNcp2ð Þ 0 G0 pNcp3ð Þ 0 . . . G0 pNcpNcð Þ 0

0 0 0 0 0 0 . . . 0 gs 1ðNcÞ1ðNc Þ� 


0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

:

(2.116)

In this matrix, the odd entries (rows or columns) correspond to locations along

the infinite crystal in M and the even entries correspond to the position of the first

atom of the finite crystals (also in the space M). From (2.26) and (2.102), the

elements of this matrix are therefore

G0ðpipjÞ ¼ b
m

t pi�pjj jþ1
t2 � 1

(2.117)

and

gsð1ðiÞ1ðiÞÞ ¼ b0

m0
t0 þ t0L

0i

ðt0 � 1Þ 1� t02L
0i� 
 : (2.118)

We use (2.95) to obtain the displacement field. For this we also need to assume a

form for the reference displacementUðDÞ ¼ tn. This displacement corresponds to a

wave propagating in the infinite crystal and launched from n ¼ �1. The displace-

ment inside the side crystal is also assumed to be equal to zero. The displacement

in the space M takes the form

UðMÞ ¼ ðUð0Þ;Uð10Þ;Uðp2Þ;Uð100Þ; . . . ;U pNc
ð Þ;Uð1NcÞ

¼ 1; 0; tp2 ; 0; . . . ; tpNc ; 0ð Þ: ð2:119Þ
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The displacement field at a site n � pNc
along the infinite crystal (i.e., on the right

side of the last grafted finite crystal) is therefore determined from (2.95), where we use

A
$ðM; nÞ ¼

VIð0; 0ÞG0ð0; nÞ
VIð10; 0ÞG0ð0; nÞ
VIðp2; p2ÞG0ðp2; nÞ
VIð100; p2ÞG0ðp2; nÞ

..

.

VI pNc
; pNc

ð ÞG0 pNc
; nð Þ

VI 1
pNc ; pNc
ð ÞG0 pNc

; nð Þ

0
BBBBBBBBB@

1
CCCCCCCCCA
¼ bI

m

b
m

tn

t2 � 1

�t
t

�t1�p2
t1�p2
..
.

�t1�pNc

t1�pNc

0
BBBBBBBB@

1
CCCCCCCCA
: (2.120)

A transmission coefficient is subsequently defined as the ratio T ¼ un=t
n. For a

large number of grafted finite crystals, one has to resort to numerical calculation of

the transmission coefficient by inserting (2.115)–(2.120) into (2.95). For the sake of

Fig. 2.13 Infinite mono-atomic crystal with (a) from top to bottom, a one-atom ðL0 ¼ 1Þ side
branch located at p1 ¼ 0; two single-atom side branches located at p1 ¼ 0 and at p1 ¼ 0; four

single-atom side branches at p1 ¼ 0, p2 ¼ 1, p3 ¼ 2, p4 ¼ 3; and ten one-atom side branches at

p1 ¼ 0; . . . ; p10 ¼ 9 and (b) from top to bottom, a one-atom ðL0 ¼ 1Þ side branch located at p1 ¼ 0;

two single-atom side branches located at and at p1 ¼ 0; p2 ¼ 4; four single-atom side branches at

p1 ¼ 0; p2 ¼ 4; p3 ¼ 8; p4 ¼ 12 ; and ten one-atom side branches at p1 ¼ 0; . . . ; p10 ¼ 36 ,

b ¼ bI ¼ 1;m ¼ m0 ¼ 1
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illustration, we have performed such calculations using the limiting case: b ¼ bI
¼ b0 andm ¼ m0 (i.e., t ¼ t0). The numerical calculation involves the following steps

for a series of values of the angular frequency o � o0:

(a) calculating x ¼ 1� mo2

2b ;
(b) calculating t ¼ xþ ið1� x2Þ1=2 since� 1 � x � 1

(c) inserting t into (2.115)–(2.120)

(d) Calculating the transmission coefficient TðoÞ
Figure 2.13 illustrates the formation of a band gap by (a) local resonances and (b)

band folding effects (Bragg scattering) in the transmission coefficient as a function of

frequency for L0 ¼ 1; b ¼ bI ¼ 1; m ¼ m0 ¼ 1. With these conditions, o0 ¼ 2. A

single one-atom side branch produces one resonant zero of transmission ato ¼ 1. As

one increases the number of side branches, spaced regularly by one interatomic

spacing, the periodicity of the infinite chain is conserved and the resonant zero of

transmission broadens into a stop band. Two additional dips in transmission on both

sides of the resonant stop band form if the side branches are spaced by four atomic

spacings. For a large number of side branches spaced by four lattice parameters, these

dips broaden and deepen approaching the band gaps that would result from the

multiple scattering of waves by a periodic array of side branches.

This example clearly illustrates the contribution of local resonance to wave

propagation as well as the contribution of scattering by a periodic array of scatterers.

The formermechanism is the foundation of locally resonant structures that determines

the properties of acoustic metamaterials. The latter is associated with Bragg’s scatter-

ing, which is the fundamental mechanism underlying the properties of phononic

crystals.
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Chapter 3

One-Dimensional Phononic Crystals

EI Houssaine EI Boudouti and Bahram Djafari-Rouhani

Abstract In this chapter, we discuss the vibrational properties of one-dimensional

(1D) phononic crystals of both discrete and continuous media. These properties

include the dispersion curves of infinite crystals as well as the confined modes and

localized (surface, cavity) modes of finite and semi-infinite crystals. A general rule

about the existence of localized surface modes in finite and semi-infinite

superlattices with free surfaces is presented. We also present the calculations of

reflection and transmission coefficients, particularly in view of selective filtering

through localized modes. Most of the results presented in this chapter deal with

waves propagating along the axis of the superlattice. However, in the last part of the

chapter, we also discuss wave propagation out of the normal incidence and, more

particularly, we demonstrate the possibility of omnidirectional transmission gap

and selective filtering for any incidence angle. A comparison of the theoretical

results with experimental data available in the literature is also presented and the

reliability of the theoretical predictions is indicated.

3.1 Introduction

The one-dimensional (1D) phononic crystals called superlattices (SLs) are of great

importance in material science. These structures are, in general, composed of two

or several layers repeated periodically along the direction of growth. The layers

constituting each cell of the SL can be made of a combination of solid–solid or

E.H. EI Boudouti (*)
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solid–fluid-layered media. These materials enter now in the category of so-called

phononic crystals (see the first chapter of this book and references therein) [1–3]

constituted by inclusions (spheres, cylinders, etc.) arranged in a host matrix along

two-dimensional (2D) and three-dimensional (3D) of the space. After the proposal

of SLs by Esaki [4], the study of elementary excitations in multilayered systems has

been very active. Among these excitations, acoustic phonons have received

increased attention after the first observation by Colvard et al. [5] of a doublet

associated to folded longitudinal acoustic phonons by means of Raman scattering.

The essential property of these structures is the existence of forbidden frequency

bands induced by the difference in acoustic properties of the constituents and the

periodicity of these systems leading to unusual physical phenomena in these

heterostructures in comparison with bulk materials [6–8].

With regard to acoustic waves in solid–solid SLs, a number of theoretical and

experimental works have been devoted to the study of the band gap structures of

periodic SLs [6–10] composed of crystalline, amorphous semi-conductors, or

metallic multilayers at the nanometric scale. The theoretical models used are

essentially the transfer matrix [7, 11–13] and the Green’s function methods [6,

14–16], whereas the experimental techniques include Raman scattering [5, 17, 18],

ultrasonics [19–29], and time-resolved X-ray diffraction [30]. Besides the existence

of the band-gap structures in perfect periodic SLs, it was shown theoretically and

experimentally that the ideal SL should be modified to take into account the media

surrounding the structure as a free surface [14, 15, 31–40], a SL/substrate interface

[14, 15, 34, 41, 42], a cavity layer [43–51], etc., which are often used in experiments

together with SLs. In addition to the defect modes that can be introduced by such

inhomogeneities inside the band gaps, some other works have shown the existence

of small peaks in folded longitudinal acoustic phonons and interpreted as confined

phonons of the whole finite SL [52–54].

All the above phenomena have been exploited to propose one-dimensional (1D)

solid–solid-layered media for several interesting applications as in their 2D and 3D

counterparts phononic crystals (see the first chapter of this book and references

therein). Among these applications, one can mention (1) omnidirectional band gaps

[55–58], (2) the possibility to engineer small-size sonic crystals with locally

resonant band gaps in the audible frequency range [59], (3) hypersonic crystals

[60–63] with high-frequency band gaps to enhance acousto-optical [49–51] or

optomechanical [64, 65] interaction and to realize stimulated emission of acoustic

phonons [66], and (4) the possibility to enhance selective transmission through

guided modes of a cavity layer inserted in the periodic structure [6, 67] or by

interface resonance modes induced by the superlattice/substrate interface [68–70].

The advantage of 1D systems lies in the fact that their design is more feasible and

they require only relatively simple analytical and numerical calculations. The

analytical calculations enable us to understand deeply different physical properties

related to the band gaps in such systems.

In comparison with solid–solid-layered media, the propagation of acoustic

waves in the solid–fluid counterparts’ structures has received less attention [71].

The first works on these systems have been carried out by Rytov [72] and
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summarized by Brekhovskikh [71]. Rytov’s approach has been used by Schöenberg

[73] together with propagator matrix formalism to account for propagation through

such a periodic medium in any direction of propagation and at arbitrary frequency.

Similar results are also obtained by Rousseau [74]. In the low-frequency limit, it

was shown [73] that besides the existence of small gaps, there is one-wave speed for

propagation perpendicular to the layering and two-wave speeds for propagation

parallel to the layering which are without analogue in solid–solid SLs. The two

latter speeds both correspond to compressional waves and their existence is sug-

gestive of Biot’s theory [75] of wave propagation in porous media. Alternating solid

and viscous fluid layers have been proposed recently [76–78] as an idealized porous

medium to evaluate dispersion and attenuation of acoustic waves in porous solids

saturated with fluids. The experimental evidence [79] of these waves is carried out

using ultrasonic techniques in Al-water and Plexiglas-water SLs. Also, it was

shown theoretically and experimentally that finite size layered structures composed

of a few cells of solid–fluid layers with one [80, 81] or multiple [82] periodicity may

exhibit large gaps and the presence of defect layers in these structures may give rise

to well-defined defect modes in these gaps [81]. Recently, solid layers separated by

graded fluid layers [83] and piezoelectric composites [84, 85] have shown the

possibility of acoustic Bloch oscillations analogous to the Wannier–Stark ladders

of electronic states in a biased SL [86].

In this chapter, we discuss the vibrational properties of 1D phononic crystals of

both discrete and continuous media. These properties include the dispersion

curves of infinite crystals as well as the confined modes and localized (surface,

cavity) modes of finite and semi-infinite crystals. We also present the calculations

of reflection and transmission coefficients, particularly in view of selective filter-

ing through localized modes. Most of the results presented in this chapter deal

with waves propagating along the axis of the SL. However, in the last part of the

chapter, we also discuss wave propagation out of the normal incidence and, more

particularly, we demonstrate the possibility of omnidirectional transmission gap

and selective filtering for any incidence angle. More detailed physical and tech-

nical discussions about the band structure, phonon transport, as well as light

scattering by acoustic phonons in SLs and multilayered structures are given in

the review paper [6].

This chapter is organized as follows: In Sects. 3.2 and 3.3, we give a detailed

study on surface and confined longitudinal phonons in infinite, semi-infinite, and

finite 1D discrete and continuous phononic crystals. We demonstrated analytically

a general rule about the existence of surface modes associated with a SL free-stress

surface. This rule predicts the existence of one mode per gap when we consider

together two semi-infinite SLs obtained from the cleavage of an infinite SL between

two cells. In the case of finite 1D phononic crystals made of N cells, we show the

existence of two types of confined modes, namely, there are always N–1 modes in

the allowed bands, whereas there is one and only one state corresponding to each

band gap. In Sect. 3.4, we present briefly the theory of light scattering by longitudi-

nal acoustic phonons by means of the Green’s function method. The application of

this theory to deduce confined and surface phonons in semiconductor-layered
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materials is presented. Section 3.5 is devoted to the transmission enhancement

assisted by surface resonances when a 1D phononic crystal is inserted between

two different substrates. We show that the transmission can reach unity when the

number of cells in the phononic crystal is chosen appropriately. The total transmis-

sion occurs when the incident acoustic wave interacts with surface resonant

phonons localized at the interface between the phononic crystal and one of the

substrates. In Sect. 3.6, we show that similarly to the 2D and 3D phononic crystals

(see the first chapter of this book and references therein), layered media made of

alternating solid–solid and solid–fluid layers may exhibit total reflection of acoustic

incident waves in a given frequency range for all incident angles. Also, these

structures may be used as acoustic filters that may transmit selectively certain

frequencies within the omnidirectional gaps. The transmission filtering can be

achieved through the guided modes of a defect layer inserted in the periodic

structure.

These investigations are done within the framework of the Green’s function

method [87, 88] for discrete and continuous composite systems, the so-called

“interface response theory” associated to such heterostructures. The basic concepts

and the fundamental equations of this theory and its application to deduce the

necessary ingredients to study acoustic waves in continuous media made of solid

and fluid-layered materials are presented in reference [6]. A comparison of the

theoretical results with experimental data available in the literature is also presented

and the reliability of the theoretical predictions is indicated.

3.2 Surface and Confined Modes in 1D Discrete Phononic
Crystals

Even though the problem of vibration modes in an infinite 1D chain of atoms has

been the subject of many standard textbooks in solid state physics [89, 90], it is

interesting to understand quantum confinement in 1D finite crystal as many

fundamental problems are related to low-dimensional physics. In the case of

electronic structures, it was shown recently that a finite 1D crystal made of N
cells exhibits two types of confined states [91], namely, there are always N–1
states in the allowed bands, whereas there is one and only one state corresponding

to each band gap [92, 93]. This latter state did not depend on the width of the

crystal N. This demonstration has been extended to shear horizontal and sagittal

acoustic waves in continuous media made of finite solid–solid [94] and

solid–fluid [95] superlattices, respectively. An experimental and theoretical veri-

fication of this rule has been given recently for electromagnetic waves in 1D

coaxial cables [96]. In this section, we shall give an extension of these results for

longitudinal waves in 1D discrete phononic crystals made of two and three

different atoms.
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3.2.1 Diatomic Chain

In Chap. 2, the band structure of a diatomic crystal made of two different atoms

characterized by different masses m1 and m2 and coupled by a spring constant b is

given (see Fig. 2.7). Now, if we consider a finite structure made of N cells (i.e., 2N
different atoms), we shall be interested in what follows to the dispersion relation

of the discrete (confined) modes associated to standing waves in the finite

structure as well as to surface waves induced by the surfaces surrounding the

system. The theoretical calculation is based on the interface response theory

[87, 88] described in Chap. 2. In the case of an infinite chain of bi-atoms of

masses m1 and m2 and coupled by a spring constant b (Fig. 3.1a), the dynamical

matrix can be written as

HðMm;MmÞ ¼

. .
. . .

.
0 0 0 0

. .
. �g2 b 0 0 0

0 b �g1 b 0 0

0 0 b �g2 b 0

0 0 0 b �g1
. .
.

0 0 0 0 . .
. . .

.

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(3.1)

where

gi ¼ 2b� mio2; ði ¼ 1; 2Þ: (3.2)

Taking advantage of the periodicity d1 in the direction of the structure, the

Fourier transformed g�1(k; MM) of the above infinite tridiagonal (3.1) matrix

within one unit cell has the following form:

g�1ðk;MMÞ ¼ �g1 bþ be�jkd1

bþ bejkd1 �g2

� �
(3.3)

where k is the Bloch wave vector in the reciprocal space.

Therefore, one can deduce easily the dispersion relation from det(g�1(k;
MM)) ¼ 0 in the following form:

cosðkd1Þ ¼ g1g2
2b2

� 1 (3.4)

where d1 is the period of the structure. It is also straightforward to Fourier analyze

back into real space all the elements of g(k; MM)) and obtain all the interface

elements of g in the following form:
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gðn; 1; n0; 1Þ ¼ g2
b2

� �
tjn�n0jþ1

t2 � 1
; (3.5)

gðn; 1; n0; 2Þ ¼ 1

b
tjn�n0jþ1

t2 � 1
þ tjn�n0�1jþ1

t2 � 1

� �
; (3.6)

gðn; 2; n0; 1Þ ¼ 1

b
tjn�n0jþ1

t2 � 1
þ tjn�n0þ1jþ1

t2 � 1

� �
; (3.7)

gðn; 2; n0; 2Þ ¼ g1
b2

� �
tjn�n0 jþ1

t2 � 1
: (3.8)

where t ¼ eikd1 and n and n0 indicate the positions of the cells with two atoms labeled

1 and 2.

Now, we consider a finite structure made of 2N atoms (i.e., N bi-atoms) obtained

from the cleavage of an infinite structure in the interface space M ¼ {0, 1, 2N,
2N + 1} (Fig. 3.1b), which starts with atom 1 of mass m1 and terminates with atom

2N of mass m2. The cleavage operator is given by

VclðMMÞ ¼ hðMMÞ � HðMMÞ (3.9)

where h is the dynamical matrix of the whole system decoupled to three subsystems

after eliminating the springs connecting atoms 0 and 1 from one side and 2N and

b
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-1
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U0 V0 U1 UN VN UN+1 VN+1
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  m2
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  m1

2N
 m2

d1

a

1
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U1 UN VN

2
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2N-1
  m1

2N
  m2

d1

b b b

bb

b

Fig. 3.1 (a) Schematic representation of an infinite structure made of two atoms (m1 � m2)

coupled by a spring constant b. (b) Finite structure made of N bi-atoms. d1 is the period of the

crystal
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2N + 1 from the other side. Therefore, Vcl(MM) is a 4 � 4 matrix, defined in the

interface space M and can be written as follows:

VclðMMÞ ¼
b �b 0 0

�b b 0 0

0 0 b �b
0 0 �b b

0
BB@

1
CCA: (3.10)

The operator D(MM) is defined by the relation [87, 88]:

DðMMÞ ¼ IðMMÞ þ VclðMMÞgðMMÞ (3.11)

where g(MM) can be obtained from (3.5) in the interface space M ¼ {0, 1, 2N,
2N + 1}:

gðMMÞ ¼ t

bðt� 1Þ

g1
b

1

tþ 1
1

g1
b

t2N

tþ 1
t2N

1
g2
b

1

tþ 1
t2N�1 g2

b
t2N

tþ 1
g1
b

t2N

tþ 1
t2N�1 g1

b
1

tþ 1
1

t2N
g2
b

t2N

tþ 1
1

g2
b

1

tþ 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: (3.12)

Therefore, one can deduce the expression of Ds(MsMs) of the finale structure in

the space of the terminated surfaces Ms ¼ {0, 2N} (Fig. 3.1b) as follows:

DsðMsMsÞ ¼
� 1

t�1
þ g2

b
1

t2�1
� g1

b
1

t2�1
þ 1

t�1

� �
t2N

1
t�1

� g2
b

1
t2�1

þ
� �

t2N � 1
t�1

þ g1
b

1
t2�1

0
@

1
A: (3.13)

The discrete modes are given by the following equation [87, 88]:

detðDsÞ ¼ 0: (3.14)

After some algebraic calculation, (3.14) can be written in the following form:

tþ b
b� g1

� �
tþ b

b� g2

� �
ðt2N � 1Þ ¼ 0: (3.15)

When k is real, which corresponds to allowed bands, the eigenmodes are given

by vanishing the third term in (3.15), namely:

sinðNkd1Þ ¼ 0; (3.16)
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which gives

kd1 ¼ mp
N

; m ¼ 1; 2; . . . ; N � 1: (3.17)

When k is imaginary, which corresponds to band gaps, the eigenmodes are given

by vanishing the first two terms in (3.15), namely:

t ¼ b
g1 � b

(3.18)

and

t ¼ b
g2 � b

(3.19)

with the condition:

jtj<1 (3.20)

that ensures the decaying of the waves far from the surface. By using (3.4), (3.18)

and (3.19) can be written in a compact form:

bðg1 þ g2Þ � g1g2 ¼ 0 (3.21)

Equations (3.18) [respectively (3.19)] and (3.21) can be restricted to the case

m2 < m1 (respectively m1 < m2). These results show that localized surface modes

appear only when the light atom is at the surface. In addition, (3.15) clearly shows

that surface modes do not depend on N and therefore (3.21) gives the surface modes

associated to two semi-infinite chains obtained from the cleavage of an infinite

chain between atoms 1 and 2.

Figure 3.2a gives the variation of the frequencies as function of kd1/p inside the

first Brillouin zone for a diatomic chain such that m1 ¼ 2.09 g, m2 ¼ 4.08 g and

b ¼ 6.3 106 N/m. These parameters are taken from the experimental work by

Hladky et al. [97] on welded spheres, i.e., two alternating steel spheres of different

diameters. The band structure of the infinite system is given by dots, whereas the

confined modes of a finite structure made of N ¼ 4 bi-atoms are shown by solid

circles and surface modes are sketched by open circles.

As mentioned in Chap. 2, the first branch starts at the origin for kd1
p ¼ 0 and

increases progressively until the frequency
ffiffiffiffiffi
2b
m2

q
for kd1

p ¼ 1. The higher branch

starts at the frequency
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bðm1m2Þ
ðm1þm2Þ

q
for kd1

p ¼ 0 and decreases progressively until the

frequency
ffiffiffiffi
2b
m1

q
for kd1

p ¼ 1.

One can see clearly that each branch contains N � 1 confined modes. The gap

width is
ffiffiffiffi
2b
m2

q
�

ffiffiffiffi
2b
m1

q
. Inside the gap, there is a localized mode induced by the

surface terminated with the light atom. This mode is independent of N as it is
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illustrated in Fig. 3.2b where we have represented the variation of the frequency as

function of the number of bi-atoms N in the finite crystal. It is worth noting that this

simple analytical model gives a clear explanation to the numerical and experimen-

tal results by Hladky et al. [97] about the independence of the surface modes on the

width of the finite crystal.

3.2.2 Tri-atomic Chain

Figure 3.3a gives a schematic representation of an infinite linear chain made of

three atoms of masses m1, m2, and m3 repeated periodically. The spring constant b
is assumed to be the same for all atoms. Figure 3.3b shows a finite linear chain

obtained from the cleavage of the infinite structure between the sites (0, 1) on one

side and (3N, 3N + 1) on the other side. By using the same procedure as above for a

bi-atomic chain, one obtains the dispersion relation of the infinite chain (Fig. 3.3a):

cosðkd2Þ ¼ g1g2g3 � b2ðg1 þ g2 þ g3Þ
2b3

(3.22)

where d2 is the period and g1, g2, and g3 are given by (3.2). Also, the eigenmodes of

the finite chain (Fig. 3.3b) are given by

t� b2

g1g2 � b2 � bg2

� �
t� b2

g2g3 � b2 � bg2

� �
ðt2N � 1Þ ¼ 0 (3.23)
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Fig. 3.2 (a) Variation of the frequencies versus kd1
p inside the first Brillouin zone for a diatomic

linear chain. The masses are fixed to m1 ¼ 2.09 g, m2 ¼ 4.08 g and the spring constant b ¼ 6.3

106 N/m. The dots represent the band structure of the infinite chain, the solid circles give the

confined modes of the finite structure made of N ¼ 4 bi-atoms, whereas the open circles show the

surface modes inside the band gaps. (b) Variation of the frequencies versus the number N of bi-

atoms. Solid and open circles are confined and surface modes, respectively
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For k real, the third term in (3.23) gives the same expression as in (3.17).

However, if k is imaginary, the first two terms in (3.23) give the localized surface

modes, namely:

t ¼ b2

g1g2 � b2 � bg2
(3.24)

and

t ¼ b2

g2g3 � b2 � bg2
(3.25)

with the condition:

jtj < 1 (3.26)

From (3.22), (3.24), and (3.25), the dispersion relation of surface modes can be

written in a compact form:

bg2ðg1 þ g3Þ þ b2ðg1 � g2 þ g3Þ � 2b3 � g1g2g3 ¼ 0: (3.27)

In the particular case where the masses m1 and m3 are identical, (3.24) and (3.25)

become:

t ¼ �1: (3.28)

Fig. 3.3 (a) Schematic representation of the infinite structure made of three atoms (m1 � m2 �
m3) coupled by the same spring constant b. (b) Schematic representation of a finite structure

composed of N tri-atoms
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This result clearly shows that surface modes fall at the edge of the band gaps if

the unit cell is symmetric.

Similarly to the case of a bi-atomic chain, (3.24) [respectively (3.25)] and (3.26)

can be restricted to the case m3 < m1 (respectively m1 < m3). These results show

that localized surface modes appear only when the structure terminates with the

light atom at the surface.

Figure 3.4a shows the variation of the frequencies as function of kd2/p for a

tri-atomic chain such that m1 ¼ 2.09 g, m2 ¼ 4.08 g, m3 ¼ 6.07 g, and b ¼ 6.3

106 N/m. The band structure of the infinite system is given by dots, whereas the
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Fig. 3.4 (a) Variation of the frequencies versus kd2
p inside the first Brillouin zone for a tri-atomic

linear chain constituted of three atoms of masses m1 � m2 � m3. The masses are fixed to

m1 ¼ 2.09 g, m2 ¼ 4.08 g, m3 ¼ 6.07 g and the spring constant is taken such that b ¼ 6.3

106 N/m. The dots represent the band structure of the infinite chain, the solid circles give the

confined modes of the finite structure made of N ¼ 4 tri-atoms, whereas the open circles show the

surface modes inside the band gaps. (b) Variation of the frequencies versus the number N of tri-

atoms. Solid and open circles are confined and surface modes respectively. (c, d) The same as in

(a) and (b), but for a symmetric tri-atomic chain such that m1 ¼ m3 ¼ 2.09 g, m2 ¼ 4.08 g, and
b ¼ 6.3 � 106 N/m
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confined modes of a finite structure made of N ¼ 4 tri-atoms are shown by solid

circles and surface modes are sketched by open circles.

As predicted, because of three atoms constituting each cell, the band structure is

composed of three branches separated by two gaps. On can notice the formation of

N � 1 confined modes inside each band and one mode per gap induced by the weak

atom at the surface. These modes are independent of N as it is illustrated in

Fig. 3.4b).

Figure 3.4c, d give the same results as in Fig. 3.4a, b, respectively, but for

a symmetric tri-atomic chain, namely, m1 ¼ m3 ¼ 2.09 g, m2 ¼ 4.08 g, and b
¼ 6.3106 N/m. Contrary to the previous case, the surface modes fall exactly at

the edges of the band gaps in accordance with the analytical results [(3.28)]. These

results are similar to those obtained recently for photonic crystals made of coaxial

cables [96].

3.3 Surface and Confined Modes in 1D Continuous Phononic
Crystals

3.3.1 Interface Response Theory of Continuous Media

In Chap. 2, Deymier and Dobrzynski exposed the interface response theory for 1D

discrete media, which allows calculating the Green’s function of any composite

material. In what follows, we present the basic concept and the fundamental

equations of this theory for continuous 1D media [87, 88]. Let us consider any

composite material contained in its space of definition D and formed out of N
different homogeneous pieces located in their domains Di. Each piece is bounded

by an interface Mi, adjacent in general to j (1 � j � J) other pieces through

subinterfaces domains Mij. The ensemble of all these interface spaces Mi will be

called the interface spaceM of the composite material. The elements of the Green’s

function g(DD) of any composite material can be obtained from [87, 88]

gðDDÞ ¼ GðDDÞ � GðDMÞG�1ðMMÞGðMDÞ
þ GðDMÞG�1ðMMÞgðMMÞG�1ðMMÞGðMDÞ; ð3:29Þ

where G(DD) is the reference Green’s function formed out of truncated pieces in Di

of the bulk Green’s functions of the infinite continuous media and g(MM) the

interface element of the Green’s function of the composite system. The knowledge

of the inverse of g(MM) is sufficient to calculate the interface states of a composite

system through the relation [87, 88]

det½g�1ðMMÞ� ¼ 0 (3.30)
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Moreover, if U(D) represents an eigenvector of the reference system, (3.29)

enables the calculation of the eigenvectors u(D) of the composite material [87, 88]

uðDÞ¼UðDÞ�UðMÞG�1ðMMÞGðMDÞþUðMÞG�1ðMMÞgðMMÞG�1ðMMÞGðMDÞ:
(3.31)

In (3.31), U(D), U(M), and u(D) are row vectors. Equation (3.31) provides a

description of all the waves reflected and transmitted by the interfaces, as well as

the reflection and transmission coefficients of the composite system. In this case,

U(D) is a bulk wave launched in one homogeneous piece of the composite

material [6].

3.3.2 Inverse Surface Green Functions of the Elementary
Constituents

We consider an infinite homogeneous isotropic material i characterized by its

characteristic impedance Zi ¼ riui where ri is the mass density, ui the longitudinal
velocity of sound. We limit ourselves to the simplest case of longitudinal vibrations

in isotropic crystals with (001) interfaces where the field displacement u(z) is along
the axis z (perpendicular to the layers). The corresponding bulk equation of motion

for medium i is given by

rðiÞo2 þ C
ðiÞ
11

d2

dz2

� �
uðzÞ ¼ 0; (3.32)

where r(i) andCðiÞ
11 are, respectively, the mass density and the elastic constant and o

is the frequency of the vibrations.

Equation (3.32) can be written as

C
ðiÞ
11

d2

dz2
� a2i

� �
uðzÞ ¼ 0; (3.33)

where

ai ¼ �j
o
ui
; ui ¼

ffiffiffiffiffiffiffi
C
ðiÞ
11

rðiÞ

s
and j ¼

ffiffiffiffiffiffiffi
�1

p
: (3.34)

The corresponding bulk Green’s function for medium i is given by the equation:

C
ðiÞ
11

d2

dz2
� a2i

� �
Giðz� z0Þ ¼ dðz� z0Þ; (3.35)
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whose solution can be written as [6]

Giðz; z0Þ ¼ �j

2oZi
e�aijz�z0 j; (3.36)

Before addressing the problem of periodic lamellar structures, it is helpful to

know the surface elements of its elementary constituents, namely, the Green

function of a finite slab of length di bounded by two free surfaces located at

z ¼ �di/2 and +di/2. These surface elements can be written in the form of a

(2 � 2) matrix g(MM), within the interface space Mi ¼ � di
2
;þ di

2

� �
. The inverse

of this matrix takes the following form [6]

½gðMMÞ��1 ¼
�oZi Ci

Si

oZi

Si
oZi

Si

�oZiCi

Si

0
B@

1
CA: (3.37)

where Ci ¼ cos(odi/ui) and Si ¼ sin(odi/ui) in equation (3.37).

The inverse of the surface element of a semi-infinite substrate s characterized by
its impedance Zs and bounded by its surface z ¼ 0 is given by [6]

½gsð0; 0Þ��1 ¼ joZs: (3.38)

3.3.3 Dispersion Relations of Finite and Semi-infinite Periodic
1D Structures

Consider an infinite superlattice made of a periodic repetition of a given 1D cell

(Fig. 3.5c). The cell could be a multilayer structure, a multiwaveguide system, etc.

Using the Green’s function formalism, each cell is characterized by a 2 � 2 matrix

constituted by the Green’s function elements on the surface bounding the cell

(Fig. 3.5a). The inverse of this matrix can be written explicitly as

½gðMMÞ��1 ¼ a b
b c

� �
; (3.39)

where M ¼ {0, 1} (see Fig. 3.5a). The four matrix elements are real quantities

functions of the different parameters of the constituents inside the unit cell. The

elements of a, b, and c for a unit cell made of j layers can be obtained by a linear

juxtaposition of the 2 � 2 matrices of each layer i [(3.37)]. Then by inverting the

whole (j + 1) � (j + 1) matrix and keeping only the elements at the extremities of

this matrix, one obtains the 2 � 2 matrix of the unit cell, which we invert once

again to obtain (3.39). It is worth noting that in general a 6¼ c; however, if the cell
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is symmetric then a ¼ c. The eigenmodes of the elementary cell are given by

(3.30), namely

ac� b2 ¼ 0: (3.40)

Now, the Green’s function of the infinite SL made of a periodic repetition of a

given cell (Fig. 3.5c) is obtained by a linear juxtaposition of the 2 � 2 matrix

[Eq. (3.39)] in the interface domain of all the sites n. We obtain a tridiagonal matrix

where the diagonal and off-diagonal elements of this matrix are given, respectively,

by a + c and b.
Taking advantage of the translational periodicity of this system along the z axis,

this matrix can be Fourier transformed as [6]

½gðk;MMÞ��1 ¼ 2b½cosðkDÞ � x� (3.41)

where k is the modulus of the one-dimensional reciprocal vector (Bloch wave

vector), D is the period of the SL, and � ¼ �(a + c)/2b.
The dispersion relation of the infinite periodic SL (Fig. 3.5c) is given by (3.30)

and (3.41), namely

cosðkDÞ ¼ �ðaþ cÞ=2b: (3.42)

On the other hand, in the k space, the surface Green’s function is

½gðk;MMÞ� ¼ 1

2b½cosðkDÞ � x� (3.43)
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Fig. 3.5 Schematic representation of (a) a finite cell bounded by the space of interfaces M ¼ {0,

1}, the circle and the cross indicate the left and the right surfaces of the cell, respectively. (b) A
finite SL constituted of N cells. (c) An infinite SL. (d) Two semi-infinite SLs obtained from the

cleavage of the infinite SL (c) between two cells. Notice the similarities between the surfaces

ending the two complementary SLs [(d)] and those corresponding to a finite SL [(a), (b)]
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After inverse Fourier transformation, (3.43) gives

gðn; n0Þ ¼ 1

b

tjn�n0 jþ1

t2 � 1
(3.44)

where n and n0 denote the positions of the different interfaces between the cells and
t ¼ eikD.

Consider now a finite SL bounded by the two surfaces n ¼ 0 and n ¼ N
(Fig. 3.5b). The 2 � 2 Green’s function matrix in the space of interface M0 ¼ {0,

N} of the finite SL can be written as [6]

gðM0M0Þ ¼ 1

D
aþ b

t � t2Nðaþ btÞ �btN t� 1
t

	 

�btN t� 1

t

	 
 �a� btþ t2N aþ b
t

	 
� �
; (3.45)

where

D ¼ ðaþ btÞ aþ b

t

� �
ð1� t2NÞ (3.46)

The eigenmodes of the finite SL are given by the poles of the Green’s function,

namely D ¼ 0, or equivalently

1

t
þ a

b

� �
tþ a

b

� �
ð1� t2NÞ ¼ 0: (3.47)

This expression shows that there are two types of eigenmodes in the finite

structure:

1. If the wave vector k is imaginary (modulo p) which corresponds to a forbidden
band (gap), then the eigenmodes are given by the two first terms of (3.47), namely

t ¼ � a

b
(3.48)

and

t ¼ � b

a
; (3.49)

whereas the third term in (3.47) cannot vanish inside the gap since t should satisfy

the condition

jtj <1 (3.50)

to ensure the decaying of surface states from the surface.

In addition, we remark that if N ! 1 the term t2N vanishes and therefore the

two expressions [Eqs. (3.48) and (3.49)] give the surface modes for two semi-

infinite SLs with complementary surfaces (Fig. 3.5d).
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Equations (3.48) and (3.49) can be written in a unique explicit form by replacing

them in (3.42) and factorizing by the factor 1
b , one obtains

ac� b2 ¼ 0: (3.51)

Therefore, the surface modes of one semi-infinite SL are given by (3.51)

together with the condition a
b

�� ��<1, whereas the surface modes of the complementary

SL are given by (3.51) but with the condition b
a

�� ��<1. This result shows that if a

surface mode appears on the surface of one SL, it does not appear on the other

surface of the complementary SL. Moreover, (3.51) shows that the expression

giving the surface modes for two complementary SLs is exactly the same expres-

sion giving the eigenmodes of one cell [Eq. (3.40)]. In the particular case of a

symmetric cell (i.e., a ¼ c), then (3.51) reduces to a ¼ �b. This expression

corresponds to a band gap edge as cos(kD) ¼ �1 [Eq. (3.42)].

In addition to these results, let us recall briefly another result concerning the

existence of surface modes associated to two semi-infinite SLs obtained by the

cleavage of an infinite SL, namely [14, 15] there exists as many surface modes as

minigaps. These modes are associated with either one or the other surface of the two

SLs. These results concern especially the transverse elastic waves in layered media

[14, 15] and electromagnetic waves in quasi-one-dimensional waveguides [98, 99].

2. If the wave vector k is real which corresponds to an allowed band, then the

eigenmodes of the finite SL are given by the third term in (3.47), namely

sinðNkDÞ ¼ 0; (3.52)

which gives

kD ¼ mp
N

; m ¼ 1; 2; . . . ;N � 1; (3.53)

whereas the first and second terms in (3.47) cannot vanish in the bulk bands.

From the above results, one can deduce that a finite SL constituted of N cells

gives rise to N � 1 modes inside the bulk bands of the SL and one surface mode in

each gap of the SL that may be attributed to one of the two surfaces surrounding the

finite SL. The surface modes are independent of N and coincide with those of two

semi-infinite SLs obtained by the cleavage of an infinite SL between two cells. In

what follows, we shall give some numerical examples of these results in the case of

longitudinal acoustic wave propagation in layered media.

3.3.4 Transmission and Reflection Coefficients

We shall consider a finite multilayer system sandwiched between two different

homogeneous semi-infinite media having indexes s and s0, respectively. We have

3 One-Dimensional Phononic Crystals 61



two interfaces bounding the multilayer system, we shall call them l (left) and r
(right) respectively. The inverse of the Green’s-function projected in the space of

the interfaces can be expressed as

g�1
S ¼ g�1

S ðl; lÞ ¼ aþ joZs g�1
S ðl; rÞ ¼ b

g�1
S ðr; lÞ ¼ b g�1

S ðr; rÞ ¼ cþ joZs0

� 


Let us then consider an incident wave in the semi-infinite medium s

uðzÞ ¼ expð�iaszÞ; (3.54)

where as ¼ o/us. Following the expressions detailed in [100], it can be found that

the transmitted wave in medium s0 has the form

uTðzÞ ¼ �2iasgSðl; rÞexpð�ias0zÞ; (3.55)

whereas the reflected wave has the form

uRðzÞ ¼ �½1þ 2iasgSðl; lÞ�expðiaszÞ: (3.56)

It is then clear that (3.55) and (3.56) can be written as

uTðzÞ ¼ CT expð�ias0zÞ;
uRðzÞ ¼ CR expðiaszÞ; ð3:57Þ

where CT and CR are the transmission and reflection amplitudes given by

CT ¼ �2iasg�1
S ðl; rÞdetjgSj;

CR ¼ � 1þ 2iasg�1
S ðl; lÞdetjgSj

� �
: ð3:58Þ

3.3.5 Numerical Results

3.3.5.1 Case of a Finite Periodic Structure Made of Asymmetric Cells

In what follows, we consider a finite periodic phononic crystal where each cell is

made of two layers characterized by lengths dA and dB, longitudinal wave velocities
uA and uB and impedances ZA and ZB, respectively. When applied to a SL made of a

periodic repetition of layers A and B, the general dispersion relation [Eq. (3.42)]

gives the well-known relation

cosðkDÞ ¼ CACB � 0:5ðZA=ZB þ ZB=ZAÞSASB (3.59)
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where CA,B ¼ cos(odA,B/uA,B), SA ¼ sin(odA,B/uA,B), and D ¼ dA + dB is the

period.

In the particular case where dA/uA ¼ dB/uB, one can show easily that the limits of

the first band gap lying at the Brillouin zone edge (i.e., kD ¼ p) are given by

O� ¼ O0 � sin�1 jZA � ZBj=ðZA þ ZBÞð Þ (3.60)

where O ¼ odA,B/uA,B is the reduced frequency and O0 ¼ odA,B/uA,B ¼ p/2 is the

central gap frequency corresponding to quarter wavelength layers.

If the impedances ZA and ZB are very close, (3.60) shows that the band gap width
DO ¼ O+ � O� is proportional to the difference between impedances ZA and ZB.
However, if the mismatch between impedances is higher such that for example

ZA/ZB ¼ 2, then (3.59) becomes

cosðkDÞ ¼ 1� 9

4
sin2ðOÞ (3.61)

The limits of the band gaps are given by the successive sequences kD ¼ 0, p, p,
0, 0, p, p, 0 . . . and therefore O ’ 0, 0.39p, 0.61p, p, p, 1.39p, 1.61p, 2p, . . ..
These results show that the band gap structure is periodic every O ¼ p. Therefore,
we limited ourselves to the reduced frequency region 0 � O � p. The width of

the successive bands is about 0.4p, the width of the gaps at the edge of the

Brillouin zone is about 0.2p, whereas the width of the gaps at the center of the

Brillouin zone vanishes. These results are confirmed in Fig. 3.6 where we have

plotted the dispersion curves (frequency versus kD) for the periodic structure

depicted above.

Inside the first gap kD ¼ p � jk, the dispersion relation [Eq. (3.61)] becomes

coshðk=2Þ ¼ 3

2
ffiffiffi
2

p sinðOÞ: (3.62)

Equation (3.62) gives the imaginary part k of the reduced wave vector kD inside

the gaps which is responsible for the attenuation of the modes that may lie inside

these gaps when a defect is inserted in the structure such as the surface[6]. From the

above results, one can deduce that the center of the first gap is given by O ¼ p/2
and the value of k at this frequency is k’ 0.69 [Eq. (3.62)][see the dashed curves in

Fig. 3.6].

As concerns the eigenmodes of a finite SL (illustrated in Fig. 3.6 for N ¼ 4

cells), one can distinguish, as described in Sect. 3.3.3, the surface modes [Eq. (3.51)]

lying inside the forbidden bands and the bulk modes [Eq. (3.53)] lying inside the

allowed bands. The expression giving the surface modes [Eq. (3.51)] can be written

as [14, 15]

ZACASB þ ZBCBSA ¼ 0; (3.63)
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together with the condition [Eq. (3.50)]

CACB � ZB

ZA
SASB

����
����<1 (3.64)

when the structure is terminated by layer A, and

CACB � ZA

ZB
SASB

����
����<1 (3.65)

when the structure is terminated by layer B.
In the particular case considered here, CA ¼ CB ¼ cos(O) and SA ¼ SB ¼ sin

(O). Therefore, (3.63) becomes simply

sinð2OÞ ¼ 0; i.e:;O ¼ mp=2 (3.66)

where m is an integer. If m is even (i.e., O ¼ 0, p, 2p, . . .), then neither (3.64) nor

(3.65) are fulfilled since the left-hand term in these equations is unity. As mentioned

above, this situation corresponds to the center of the Brillouin zone (kD ¼ 0) where

the band gaps close. However, if m is odd (i.e., O ¼ p/2, 3p/2, . . .), then only

Eq. (3.64) is fulfilled since ZB < ZA, which means that all the surface modes appear

on the surface of the structure terminated by layer A and no surface modes appear

when the structure terminates with layer B. In Fig. 3.6 we have plotted by open

circles the surface mode lying in the first gap at O ¼ p/2 as well as the frequencies
lying at the band gap edges (i.e., O ¼ 0, p, . . .). Apart from these modes, there

exists N�1 ¼ 3 modes in each band given by Eq. (3.53).

Figure 3.7 shows the variation of the eigenmodes of a finite SL as a function of the

number of cells N. For N ¼ 1 (one cell), the eigenmodes are given by (3.66) and we

can distinguish the modes lying at the closing of the band gaps (i.e., O ¼ 0 and

O ¼ p) and the surfacemode lying at the center of the band gap (i.e.,O ¼ p/2).When

N increases, the above modes remain constant, whereas there exist N�1 modes in

each band for every value ofN in accordance with the analytical results in Sect. 3.3.3.
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An analysis of the local density of states (LDOS) (Fig. 3.8) shows that the

surface modes lying in the first gap at O ¼ p/2 exhibit a strong localization at the

surface with almost the same localization length as far as N exceeds 3. It is worth

noting that the LDOS reflects the behavior of the square modulus of the displace-

ment field inside the structure.

3.3.5.2 Case of a Finite Structure with Symmetric Cells

In what follows, we consider a finite periodic structure made of symmetric cells.

Each cell is composed of a layer of type B inserted between two layers of type A.

Therefore, each cell becomes equivalent to a A/B/A tri-layer. In this case, the

dispersion relation [Eq. (3.42)] becomes

cosðkDÞ ¼ C2
ACB � C2

BCA � CASASBðZA=ZB þ ZB=ZAÞ; (3.67)

where D ¼ 2dA + dB. In the particular case where dA/uA ¼ dB/uB and ZA/ZB ¼ 2,

the above equation becomes simply

cosðkDÞ ¼ cosðOÞ
2

ð9 cos2ðOÞ � 7Þ: (3.68)

The band gap edges are given by cos(kD) ¼ �1, namely, cos(O) ¼ �1, �1/3

and �2/3. Therefore (see Fig. 3.9),

O ¼ 0; 0:27p; 0:39p; 0:61p; 0:73p; p; . . . (3.69)

Inside the first two gaps, kD ¼ p � jk and kD ¼ �jk, respectively. Then the

attenuation coefficient k [Eq. (3.68)] satisfies the equation

coshðkÞ ¼ cosðOÞ
2

ð9 cos2ðOÞ � 7Þ
����

����: (3.70)
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Thus, one can deduce the reduced frequencies at the center of the first two gaps,

namely

cosðOÞ ¼ 7
ffiffiffi
7

p

9
ffiffiffi
3

p ; i.e:; O ’ 0:33p; and O ’ 0:67p (3.71)

as well as the corresponding values of k (k ’ 0.59, see the dashed curves in

Fig. 3.9).
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Fig. 3.8 The local density of states (LDOS) [in arbitrary units] as a function of the space position

z for the mode lying at the central gap frequency O ¼ p/2 (Fig. 3.7) for N ¼ 2 (a), 3 (b), 4 (c), 6
(d), and 10 (e). The finite SL is terminated by layers A and B at the left and the right of the

structure, respectively
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The surface modes [Eq. (3.51)] for a tri-layer SL are given in general by [15]

2CASACB þ SB C2
A

ZA

ZB
þ S2A

ZB

ZA

� �
¼ 0 (3.72)

In the particular case considered here, CA ¼ CB ¼ cos(O), SA ¼ SB ¼ sin(O),
and ZA/ZB ¼ 2. Thus, (3.72) becomes

sinðOÞð9 cos2ðOÞ � 1Þ ¼ 0; (3.73)

which leads to

sinðOÞ ¼ 0; i.e:; O ¼ 0; p; 2p: (3.74)

or

cosðOÞ ¼ � 1=3; i:e:; O ¼ 0:39p; 0:61p; 1:39p; 1:61p; . . . (3.75)

However, the two latter equations give cos(kD) ¼ �1 [Eq. (3.68)]. Conse-

quently, as mentioned in Sect. 3.3.3, the finite periodic SL with symmetric cells

do not exhibit surface modes inside the band gaps, but leads only to a constant

frequency band edge modes. These results are similar to those found by Ren [94] for

transverse waves in finite one-dimensional systems using another method of calcu-

lation. Of course, in addition to the band edge modes, one can expect N�l modes in

each band given by Eq. (3.53).

Figure 3.9a, b resume the numerical results corresponding to the analytical

results detailed above. Among the different modes, one can distinguish the band-

edge modes plotted by open circles, these modes fall at a constant frequency

independent of the number of cells N (see Fig. 3.9b) and the bulk band modes

(N�l ¼ 3) lying inside each allowed band (solid circles).
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Fig. 3.9 (a) Same as in Fig. 3.6 but here the cell is taken symmetrical, i.e., an A/B/A tri-layer.

(b) Variation of the eigenmodes of the finite SL as a function of the number of cells N. Open and

solid circles have the same meaning as in Fig. 3.7
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3.4 Light Scattering by Longitudinal Acoustic Phonons

In this section, we shall give some experimental results related to the determination

of bulk and surface modes in finite superlattices. In particular, we shall concentrate

essentially on experimental measurements based on light scattering by longitudinal

acoustic phonons.

The principle of this scattering can be summarized as follows: the propagation of

an acoustic wave in the superlattice excites periodic variations of strain which in

turn induce a modulation of the dielectric tensor eij from the photo-elastic coupling

to elastic fluctuations,

deij ¼ eiiejj
X
kl

Pijkl
1

2

@uk
@xl

þ @ul
@xk

� �
(3.76)

Pijkl are the elements of the photoelastic tensor and can be considered as

functions of z. The coupling of incident light to phonons gives rise to a polarization
in the superlattice which creates a scattered field. We are interested in pure

longitudinal phonons along the axis z of a multilayer structure composed of cubic

materials with (001) interfaces. In this case, we can assume that all the electromag-

netic fields (incident, scattered, and polarization waves) are polarized parallel to the

x axis and propagates along z. Then each medium a in the structure can be

characterized by an elastic constant Ca (which means C11), the mass density ra,
the dielectric constant ea ¼ n2a (where n is the index of refraction in the medium a),
and one photoelastic constant pa ¼ �e2aP

a
1133.

Equation (3.76) becomes for each medium a

dea ¼ pa
@uaðzÞ
@z

: (3.77)

The calculation of the emitted electric field Es(z,t) when the superlattice is

submitted to an incident electromagnetic field can be done following the Green’s

function method [101, 102]

Esðz; tÞ ¼ � o2
i

e0c2
X
a

Z
pa Gðz; z0Þ

@uaðz0Þ
@z0

E0
i ðz0; tÞ dz0: (3.78)

Here oi is the angular frequency of the incident wave, e0 and c are the permit-

tivity and the speed of light in vacuum, respectively, E0
i ðz0; tÞ is the electric field in

the SL, and G(z, z0) is the Green’s function associated with the propagation of an

electromagnetic field along z in the vacuum/superlattice system in the absence of

acoustic deformation.

In the particular case where the dielectric modulation of the multilayer structure

can be neglected (which happens when the layers are thin as compared to the optical
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wavelengths), the system can be considered as an homogeneous effective medium

from the optical point of view, then E0
i ðz0Þ ¼ E0

i e
ikiz

0
is a plane wave (instead of

being a Bloch wave) and Gðz; z0Þ / eiksðz�z0Þ . ki and ks are the wave vectors of the

incident and scattered waves. Therefore, (3.78) becomes

EsðzÞ / � o2
i

e0c2
X
a

Z
pae

iqz0 @uaðz0Þ
@z0

dz0 (3.79)

where

q ¼ ki � ks ¼ 2ki ¼ 4pneff=l (3.80)

is the wave vector of the phonon in the backscattering geometry and neff is the

effective index of refraction of the effective medium.

A great deal of work has been devoted to light scattering from acoustic phonons

in multilayered structures, since the first observation of folded longitudinal-acoustic

modes by Colvard et al. [5]. Several experimental studies have been reported on

GaAs-Gax Al1–x As and Si-Gex Si1–x systems. As mentioned before, in an ideal

periodic structure (superlattice) consisting of an infinite sequence of building

blocks AB made of different semiconductors A and B, the branches of the

acoustic-phonon dispersion are back-folded inside the Brillouin zone due to the

periodicity of the system. In the Raman process involving longitudinal acoustic

phonons in backscattering geometry along the growth direction (z), crystal momen-

tum is conserved, i.e., the wave vector transfer to the phonon corresponds to the

sum of the magnitudes of the wave vectors of incident and scattered photons ki and
ks, respectively. Characteristic doublets are observed in the spectrum which reflects

the folding of the superlattice dispersion curves in the first Brillouin zone. Crystal

momentum conservation at the doublet frequencies implies that all partial waves

are coherently scattered, i.e., all layers of the superlattice contribute constructively

to the total intensity. Therefore, the doublets are very sharp and pronounced.

In a real superlattice, the coherence of the scattering contributions from the

individual layers is partly removed due to interface roughness and layer thickness

fluctuations, finite-size effect of the superlattice as well as the effect of different

defects that may be introduced inside these systems such as surfaces, interfaces, and

defect layers (cavities, buffers, etc.).

In view of the relatively small thicknesses of the layers in the superlattice, the

acoustic phonon Raman scattering can be obtained from (3.79) as

IðoÞ /
X
a

Z
pa e

iqz0 @uaðz0Þ
@z0

dz0
�����

�����
2

: (3.81)

Here we assume that the light propagates like in a homogeneous medium and u
(z) is the normalized lattice displacement. Figure 3.10a gives the experimental
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results of Raman intensity obtained by Zhang et al. [52, 53] for a superlattice

composed of 15 periods of 20.5 nm of Si and 4.9 nm of Si0.52 Ge0.48 epitaxially

grown on a [101] oriented Si substrate. The different curves in Fig. 3.10a corre-

spond to different laser wavelengths (i.e., different phonon wave-vectors). By

reporting the frequency positions of the doublets within the band gap structure

(Fig. 3.10b), good agreement between the dispersion curves of the infinite

superlattice (full curves) and the experimental results (dots) has been obtained.

These results enable one to deduce a precise measurement of the width of the first

three gaps. Besides the description of the band gap structure, the Raman spectra

show also small features (indicated by small vertical arrows in Fig. 3.10a) which are
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Fig. 3.10 (a) Room-temperature acoustic phonon Raman spectra in the Si/Si0.52 Ge0.48
superlattice, excited with the five studied laser lines (After [53]). (b) Calculated dispersion curves

of the infinite SL (solid lines). The filled circles are obtained from the doublets of the theoretical

spectra sketched in (c) using our theoretical model. (d) Variation of the intensities of the six first

folded branches as functions of the diffusion wave vector D (qD/p)
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interpreted as confined modes (discrete modes) due to the finite-size structure of

the superlattice. By using our theoretical model [El Boudouti et al. (unpublished)],

we have reproduced theoretically in Fig. 3.10c the different Raman spectra of

Fig. 3.10a and the agreement between theoretical and experimental results is

quite good. In Fig. 3.10d we have calculated the intensity variation of different

phonon branches labeled 1–6 in Fig. 3.10b within the reduced Brillouin zone. The

intensities show drastic variations, especially for q close to the Brillouin zone

edges. The Brillouin line (branch labeled 1) is the most intense mode for a large

range of q values except near the zone boundary. These behaviors are similar to

the theoretical predictions obtained by He et al. [103] on GaAs-Gax Al1–x As

superlattices.

Besides the doublets associated to folded longitudinal acoustic phonons, Lemos

et al. [104] have shown the existence of additional modes between the doublets

which are induced by a cap layer deposited at the surface of the superlattice. These

modes fall inside the gap located at ~ 15 cm–1. The superlattice is composed of 20

periods of 21.5 nm of Si and 5.0 nm of Ge0.44Si0.56 terminated by a cap layer made

of Ge0.44Si0.56 with a thickness dc ¼ 1.5 nm. The top and bottom curves in

Fig. 3.11a are drawn for two different wavelengths 514.5 nm and 496.5 nm,
respectively. By using our theoretical model [El Boudouti et al. (unpublished)],

we have reproduced correctly (Fig. 3.11b) the main features of these results, except

that the intensity of the gap-mode greatly exceeds the observed value. To confirm

that the gap mode is induced by the cap layer, we have calculated the local DOS as a

function of the space position for the mode lying at ~15 cm–1. The spatial localiza-

tion of this mode (see Fig. 3.11c) shows clearly that it is localized in the cap layer

and decreases inside the SL.

3.5 Transmission Enhancement Assisted by Surface Resonance

The possibility of the enhanced transmission from a semi-infinite solid to a semi-

infinite fluid, in spite of a large mismatch of their acoustic impedances, has been

shown theoretically and experimentally [68–70]. The transmission occurs through

the surface resonances induced by a 1D solid–solid-layered structure inserted

between these two media. These resonances are attributed to the SL/fluid interface

[69] and coincide with the surface modes of the semi-infinite SL terminated with

the layer having the lower acoustic impedance [31]. Recently [105], the possibility

of the so-called extraordinary acoustic transmission assisted by surface resonances

between two fluids has been shown. The structure consists in separating the two

fluids by a rigid film flanked on both sides by finite arrays of grooves. The

transmission followed by a strong collimation of sound arises through a single

hole perforated in the film.

By analogy with the previous works on this subject [69], we show the possibility

of enhanced transmission between two fluids by inserting a solid–fluid-layered

material between these two fluids. Besides the possibility of selective transmission,
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this structure enables from a practical point of view to separate the two fluids which

are in general miscible. We give a simple analytical expression of the effective

acoustic impedance of the finite SL that enables to deduce easily the optimal value

N of layers in the SL to reach total transmission. In addition to the amplitude

analysis, we study also the behavior of the phase time around the surface resonances

as a function of N.
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Fig. 3.11 (a) Raman spectra of a SL composed of 20 periods of 21.5 nm of Si and 5.0 nm of

Ge0.44Si0.56 terminated by a cap layer made of Ge0.44Si0.56 with a thickness dc ¼ 1.5 nm. The top
and bottom curves are drawn for two different wavelengths 514.5 nm and 496.5 nm, respectively
(After [104]). (b) Theoretical results obtained from our theoretical model. (c) LDOS as function of

the space position z for the surface mode located at ~15 cm–1
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As in the previous work [69], we consider a structure formed by a finite

solid–fluid SL composed of N solid layers of impedance Zs separated by N–1
fluid layers of impedance Zf and inserted between two fluids of impedances Zf1
and Zf2. In the particular case of normal incidence (k|| ¼ 0) and assuming quarter

wavelength layers, i.e., o
ul
ds ¼ o

uf
df ¼ p

2
, the inverse of the Green’s function of the

finite SL with free surfaces becomes [95]

gðMMÞ�1 ¼
0 Zf

Zs

Zf

� �N

Zf
Zs

Zf

� �N
0

0
B@

1
CA: (3.82)

which is equivalent to the inverse Green’s function of a quarter wavelength layer

with an effective acoustic impedance Ze ¼ Zf
Zs

Zf

� �N
. Then we can use the well-

known relation [106] that enables to use an intermediate layer to form an

antireflection coating between two different semi-infinite media, namely, Zf1 Zf2

¼ Z2
e . Then we get easily

N ¼ 1

2

ln
Zf 1Zf 2

Z2
f

� �

ln Zs

Zf

� � : (3.83)

This relation requires a suitable choice of the materials in order to get a positive

value of N greater than unity. In particular, the solid and fluid media constituting the

SL should have close impedances.

An example is illustrated in Fig. 3.12 for a SL composed of Al and Hg and

sandwiched between water (incident medium) and Hg (detector medium). The elastic

parameters of the materials are given in Table 3.1. The thicknesses of the layers in the

SL are chosen such that ds
u‘
¼ df

uf
: One can see clearly that selective transmission

occurs around the reduced frequency O0 ¼ ods
ul

¼ odf
uf

¼ ð2nþ 1Þ p
2
for a number of

cells such that N ¼ 11 according to (3.83). Far from N ¼ 11, the transmission

decreases significantly as it is illustrated in the inset of Fig. 3.12. As a matter of

comparison, we have also sketched by horizontal line the transmission rate between

water and Hg in the absence of the finite SL. The resonances in Fig. 3.12 are of Breit-

Wigner type [69] with a lorentzian shape because of the absence of transmission

zeros at normal incidence. Zhao et al. [70] have attributed the resonances lying in the

middle of the gaps of the SL to the interference effect of acoustic waves reflected

from all periodically aligned interfaces. This explanation is of course correct but a

physical interpretation is still needed. We show that the resonances are actually

surface resonances induced by the interface between the SL and water. Indeed, the

dispersion relation giving the surface modes of a SL ended with a solid layer in

contact with vacuum are given by (see Sect. 3.3.5.1 and Fig. 3.7)

O0 ¼ ods
ul

¼ odf
uf

¼ ð2nþ 1Þ p
2

(3.84)
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In addition to (3.84), the supplementary condition (3.64) that ensures the

decaying of surface modes from the surface becomes

Zs<Zf (3.85)

This condition is fulfilled in the case of a SL made of Al-Hg. Now, when the Al

layer of the SL is in contact with water (instead of vacuum), this latter medium does

not affect considerably the position of the surface resonances as the impedance of

water is much smaller than Al. In order to confirm the above analysis, we have also

sketched the local density of states (LDOS) as a function of the space position z
(Fig. 3.13) for the mode lying at O0 ¼ p/2. This figure clearly shows that this

resonance is localized at the surface of the SL and decreases inside its bulk. Let us

notice that the LDOS reflects the square modulus of the displacement field. There-

fore, these results show without ambiguity that the transmission is enhanced by

surface resonances.

Besides the amplitude of the transmission, we have also analyzed the behavior of

the phase time (Fig. 3.14). One can notice a strong delay time at the frequencies

corresponding to surface resonances, reflecting the time spent by the phonon at the

SL/water interface before its transmission. Contrary to the amplitude (see the inset
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Fig. 3.12 Transmission rate for a finite SL composed of N ¼ 11 layers of Al separated by N –

1 ¼ 10 layers of Hg. The structure is inserted between water (incident medium) and Hg (detector

medium). The inset shows the variation of the maxima of the transmission as a function of the

number of unit cells N for the mode situated at odAl
ulðAlÞ ¼

p
2
. The straight horizontal line correspond

to the transmission rate between water and Hg (i.e., without the finite SL)

Table 3.1 Elastic parameters of aluminum, glass, water, and mercury

Materials Mass density r(kg/m3) Longitudinal velocity (m/s) Wave impedance Z (kg/m3s)

Aluminum 2.716 � 103 6.17 � 103 16.758 � 106

Glass 2.427 � 103 5.40 � 103 13.106 � 106

Water 1.00 � 103 1.479 � 103 1.479 � 106

Mercury 13.500 � 103 1.450 � 103 19.575 � 106
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of Fig. 3.12), the phase time at the surface resonance goes asymptotically to a

limiting value (~110) (in units of ds/vl(Al)) when N increases. This result known

as the Hartman effect [107] arises for classical waves tunneling through a barrier

where the phase time saturates to a constant value for a sufficiently barrier’s

thickness. This phenomenon has been observed experimentally [108] and explained

theoretically [109–111] in 1D photonic crystals. For a frequency lying in the

allowed bands, the phase time (not shown here) increases linearly as a function of N.

The above results can be explained in terms of the DOS. Indeed, due to the

similarity between the DOS and the phase time (for more details, see [100]),

Fig. 3.14 reflects also the DOS where the different resonant modes are enlarged

because of their interaction with the bulk waves of the surrounding media. When N
increases, the number of oscillations in the bulk bands (which is related to the

number of cells in the system) and the corresponding DOS increase. However, the

behavior is different for the peak associated to the surface resonance. Indeed, for

low values of N, the localization of this mode increases as a function of N because

the mode interacts less with the second substrate. So, its width decreases and its
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maximum increases to ensure an area equal to unity under the resonance peak.

However, the peak width cannot decrease indefinitely and reaches a threshold

because of its interaction with the first substrate. Therefore, the DOS (or the

phase time) saturates to a constant value. We have also examined the group velocity

vg which is inversely proportional to the phase time. We have found that vg
oscillates around the mean velocity vm ¼ D(df/vf + ds/vl)

–l inside the bands,

whereas this quantity is strongly reduced around the surface resonance. Therefore,

such structures can be used as a tool to reduce the speed of wave propagation.

As a matter of completeness we have also checked two other cases: (1) the case

where there is no surface resonance in the gap of the SL. This can be obtained by

using Hg on both sides of the structure. In this case, even if (3.84) and (3.85) are

satisfied, (3.83) gives inacceptable value of N (N < 0). In spite of the absence of

surface resonances, the phase time saturates to a constant value (~17) (in units of

ds/vl(Al)) at the mid-gap frequencies, because of the Hartman effect [107, 109]. This

value is much smaller than in the presence of a surface resonance. (2) The case

where there is two surface resonances in the gap of the SL. This can be obtained by

using water on both sides of the structure. In this case, (3.84) and (3.85) are satisfied

and (3.83) gives N ’ 22. Because of the existence of two symmetrical surfaces that

can support surface modes, one obtains a large surface resonance atO0 ¼ p/2, 3p/2,
. . . for N ¼ 22. For smaller values of N, this resonance splits into two distinguished
resonances around O0 because of the interaction between the two surfaces. A total

transmission is still obtained at each resonance. On the contrary, for higher values of

N (N > 22), there is a single peak in the transmission because the two surface

resonances become decoupled, although being enlarged due to their interaction with

the substrates. In this case, the transmission peak decreases as far as N increases.

A recent experiment has been realized by Zhao et al. [70] on a layered structure

that consists of an alternative stacking of aluminum and glass planar sheets, which

have the same dimensions: 12 � 12 cm section and 3 cm thickness. The experi-

mental setup is based on the ultrasonic transmission technique. Figure 3.15a gives a

schematic diagram of the sample and the experimental setup, showing that the

emitter contact transducer is coupled to substrate using a coupling gel and the last

layer is immersed in water. The receiver transducer is placed at a distance away

from the interface of the last layer B and water. A pulse generator produces a short

duration pulse. The pulses transmitted through the sample were detected by an

immersion transducer, which has a central frequency of 0.5 MHz and a diameter of

12.5 mm. Because of the limit of central frequency of the transducers, only the first

peculiar transmission peak was studied [70].

Figure 3.15b–d give the transmission coefficient versus the frequency for differ-

ent structures as depicted in the insets where materials A, B, and C denote

aluminum, glass, and water, respectively. The elastic parameters of these materials

are given in Table 3.1. The layers in the SL are chosen such that odA/uA ¼ odB/uB
¼ p/2 (i.e., quarter wavelength layers). In the case where the SL starts with layer A
and terminates with layer B, Fig. 3.15b shows a peculiar peak in the first gap around
f ¼ 0.5 MHz for a finite SL composed of N ’ 4 periods. An analytical expression

giving the number of bi-layers necessary to attain the transmission unity has been
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derived and shown to be N ¼ 1
2

lnðZB=ZCÞ
lnðZA=ZBÞ (i.e., N ’ 4 in the present case). The

experimental measurements (solid curves) agree well with the theoretical results

(dashed curves). Inside the bands, the transmission coefficient oscillates around the

transmission value T ’ 0.36 when the wave is transmitted directly from the

substrate B (i.e., glass) to water without the presence of the finite SL.

In addition to the expression giving the optimized value of N to get the total

transmission, the authors have attributed this enhancement to interference of

the acoustic waves reflected from all the interfaces. Whereas Mizuno [69] has

associated these peculiar transmission phenomenon to surface (or interface)

waves that can exist between the last layer and the receiver medium (i.e., water).

In addition to this structure (considered as the reference system), Zhao et al. [70]

have studied also experimentally two other structures: the first one consists on a SL

ending by layer A layer (i.e., Al) on both sides (Fig. l5c) and the second structure
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Fig. 3.15 (a) Configuration of a finite SL and the liquid detector. The free surface of the sample is

immersed in liquid. Two kinds of solid layers (A and B) are alternately stacked in the sample.

(b), (c), (d) Transmission rate of acoustic waves in water (medium C) for three different samples as

described in the insets. Dashed and solid curves represent theoretical and experimental results

respectively. (After [70])
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consists of a SL starting with A layer and ending with two layers A (i.e., layer A

with thickness 2 dA) (Fig. l5d). Figure 3.15c did not show any selective transmission

around 0.5 MHz, whereas Fig. l5d exhibits the reappearance of the transmission

mode. The authors have explained in terms of interference phenomenon between

the different materials how the selective transmission can appear and disappear

depending on the nature of the layer in contact with the last substrate (i.e., water).

In order to give another insight and explanation to these results, we have taken

the same structure as in Fig. l5a (i.e., composed of N periods A-B, but ended with a

cap layer (e.g., D) in contact with the substrate C as follows: B|A|B|A|B|A|B|....|A|B|
A|B|D|C. We suppose that A and B are quarter wavelength layers (as in Zhao’s

work), whereas the cap layer D can take any thickness dD, velocity uD, density rD,
and impedance ZD. One can show that the transmission coefficient reaches unity in

three situations, namely [95]

(i) N ¼ 1

2

lnðZB=ZCÞ
lnðZA=ZBÞ and ZC ¼ ZD

(ii) N ¼ 1

2

ln Z2
D=ZBZC

	 

lnðZA=ZBÞ and cosðodD=uDÞ ¼ 0

(iii) N ¼ 1

2

lnðZB=ZCÞ
lnðZA=ZBÞ and sinðodD=uDÞ ¼ 0 ð3:86Þ

These three conditions can explain easily the three spectra in Fig. 3.15. One can

see that Fig. l5b corresponds to the first situation (i) and gives N ’ 4 as in Zhao’s

work [70]. Figure 3.15c corresponds to the second situation (ii) where the cap layer

D ¼ A; in this case one can check easily that N becomes negative which means that

this condition cannot be fulfilled and therefore the transmission cannot reach unity

around f ’ 0.5 MHz. Figure 3.15d corresponds to the third situation (iii) where the

cap layer D ¼ 2A (i.e., the double layer dD ¼ 2dA). In this case, D becomes a half

wavelength layer (i.e., sin(odD/uD) ¼ 0 or odD/uD ¼ mp) and N ’ 4.

It is worth mentioning that Zhao et al. [70] have also studied theoretically the

situation where the receiver substrate presents a high impedance like tungsten for

example. In this case, it was found that contrary to the situation where the system is

in contact with water, the selective transmission arises when the SL terminates with

A layer (i.e., aluminum) or B layer (i.e., glass) but with double thickness. The

optimized number of periods to reach the maximum transmission when odA/uA 6¼
odB/uB has been also examined numerically.

3.6 Omnidirectional Reflection and Selective Transmission

3.6.1 Case of Solid–Solid-Layered Media

In the field of photonic band gap materials, it has been argued during the last years

[112–114] that one-dimensional structures such as superlattices can also exhibit the
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property of omnidirectional reflection, i.e., the existence of a transmission band gap

for any incident wave independent of the incidence angle and polarization. How-

ever, because the photonic band structure of a superlattice does not display any

absolute band gap (i.e., a gap for any value of the wave vector), the property of

omnidirectional reflection holds in general when the incident light is launched from

vacuum, or from a medium with relatively low index of refraction (or high velocity

of light). To overcome this difficulty, when the incident light is generated in a high

refraction index medium, a solution [115] that consists to associate with the

superlattice a cladding layer with a low index of refraction has been proposed.

This layer acts like a barrier for the propagation of light.

The object of this section is to examine the possibility of realizing one-

dimensional structures that exhibit the property of omnidirectional reflection for

acoustic waves. In the frequency range of the omnidirectional reflection, the

structure will behave analogously to the case of 2D and 3D phononic crystals,

i.e., it reflects any acoustic wave independent of its polarization and incidence

angle. We shall show that a simple superlattice can fulfill this property, provided the

substrate from which the incident waves are launched is made of a material with

relatively high acoustic velocities of sound. However, the substrate may have

relatively low acoustic velocities, according to the large varieties in the elastic

properties of materials. Then, we propose two alternative solutions to overcome the

difficulty related to the choice of the substrate, in order to obtain a frequency

domain in which the transmission of sound waves is inhibited even for a substrate

with low velocities of sound. As mentioned in the case of photonic band gap

materials, one solution would be to associate the superlattice with a cladding

layer having high velocities of sound in order to create a barrier for the propagation

of acoustic waves. Another solution will consist of associating two superlattices

chosen appropriately in such a way that the superposition of their band structures

displays a complete acoustic band gap [56, 57].

First, we emphasize that a single superlattice can display an omnidirectional

reflection band, provided the substrate is made of a material with relatively high

velocities of sound. The expressions of the transmission and reflection coefficients

and densities of states are cumbersome. We shall avoid the details of these cal-

culations which are given in [67].

Let us first examine the so-called projected band structure of a superlattice, i.e.,

the frequency o versus the wave vector k|| (parallel to the layers). Figure 3.16

displays the phononic band structure of an infinite superlattice composed of Al

and W materials with thicknesses d1 and d2, such as d1 ¼ d2 ¼ 0.5D, D being the

period of the superlattice. We have used a dimensionless frequency O ¼ oD/
Ct(Al), where Ct(Al) is the transverse velocity of sound in Al (the elastic parameters

of the materials are listed in Table 3.2). The left and right panels, respectively, give

the band structure for transverse and sagittal acoustic waves. For every value of k||,
the shaded and white areas in the projected band structure, respectively, correspond

to the minibands and to the minigaps of the superlattice, where the propagation of

acoustic waves is allowed or forbidden. Due to the large contrast between the elastic

parameters of Al and W, the minigaps of the superlattice are rather large in contrast
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to the case of other systems such as GaAs-AlAs superlattices. Nevertheless, it can

be easily noticed that the band structure shown in Fig. 3.16 does not display any

absolute gap, this means a gap existing for every value of the wave vector k||.
However, the superlattice can display an omnidirectional reflection band in the

frequency range of the minigap (2.952 < O < 4.585) if the velocities of sound in

the substrate are high enough. More precisely, let us assume that the transverse

velocity of sound in the substrate Ct(s) is greater than 5,543 m/s, (the heavy line

in Fig. 3.16 indicates the sound line with the velocity 5,543 m/s). For any wave

launched from this substrate, the frequency will be situated above the sound line

o ¼ Ct(s)k||, i.e., above the heavy line in Fig. 3.16. When the frequency falls in the

range 2.952 < O < 4.585 (corresponding to the minigap of the superlattice at

k|| ¼ 0), the wave cannot propagate inside the superlattice and will be reflected

back. Thus, the frequency range 2.952 < O < 4.585 corresponds to an omnidirec-

tional reflection band for the chosen substrate. Generally speaking, the above

condition expresses that the cone defined by the transverse velocity of sound in
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Table 3.2 Elastic parameters

of the materials involved in

the calculations

Materials Mass density (kg m–3) Ct (m/s) Cl(m/s)

W 19,300 2,860 5,231

Al 2,700 3,110 6,422

Si 2,330 5,845 8,440

Epoxy 1,200 1,160 2,830

Pb 10,760 850 1,960

Nylon 1,110 1,100 2,600

Plexiglas 1,200 1,380 2,700

Water 1,000 – 1,490
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the substrate contains a minigap of the superlattice. With the Al/W superlattice, this

condition is, for instance, fulfilled if the substrate is made of Si [55–57]. Of course,

in practice, due to the finiteness of the omnidirectional mirror, one can only impose

that the transmittance remains below a given threshold (for instance, 10–3 or 10–2).

A recent experiment [58] has been performed by Manzanares-Martinez on

Pb/Epoxy SLs to show the occurrence of such omnidirectional band gaps.

There exist different ways to realize selective transmission through layered

solid–solid structures. One way consists to insert a defect layer (cavity) within

the structure. The filtering is carried out through the resonant modes of the cavity.

An example is shown in Fig. 3.17a for a SL composed of five layers of Al and four

layers of W. The cavity is made of epoxy and inserted in the middle of the Al-W SL.

The whole system is embedded between two Si substrates.

Figure 3.17a gives the dispersion curves associated to defect modes in the first

gap of the SL. Because of the low velocities of sound in epoxy as compared to Si,

the defect branch is almost flat and falls around O ’ 3.48, which means that the

transmission filtering arises around almost the same frequency for all incident

angles and polarizations of the waves. Figure 3.17b shows the evolution of the

maximum of the transmission coefficient as function of the incident angle along the

defect branch. Depending on the polarization of the incident wave, one can have

two possibilities (1) the incident wave with shear-horizontal polarization is

completely transmitted (straight horizontal line), (2) an incident wave with shear-

vertical polarization gives rise to two transmitted waves, one longitudinal (dashed

dotted curve) and the other shear-vertical (dashed curve). The two latter curves

present a noticeable variation for the incident angles 0� < y < 45� with an impor-

tant conversion of modes from transverse-vertical to longitudinal around y ’ 19�.
For 45� < y < 90� (i.e., Ct(Si) < C < Cl(Si)), the longitudinal component of the

transmitted wave vanishes, whereas the transverse component continues to exist.

The number of defect branches inside the omnidirectional gap depends on the size

of the defect layer, this number increases as function of the thickness of the defect

layer. Let us mention that the existence and the behavior of localized sagittal modes

induced by defect layers within SLs have been the subject of recent studies

[116,117]. Resonances and mode conversions of phonons scattered by SLs with

and without inhomogeneities have been discussed [117–119]. In addition, group

velocities in the infinite and finite SLs have been calculated [120, 121]. In a

frequency gap, their magnitude in the finite SL becomes much larger than that in

the band region, and increases as the periodicity N increases [121]. This N depen-

dence is qualitatively different depending on whether the gap in the corresponding

infinite SL is due to the intramode or intermode Bragg reflection. The frequency

gaps associated with intramode and intermode reflections lay, respectively, at the

edges and within the Brillouin zone. The latter modes are strongly related to the

conversion mode effect.

Some years ago, Manzanares-Martinez et al. [58] have demonstrated experimen-

tally and theoretically the occurrence of omnidirectional reflection in a finite SL

made of a few periods of Pb/epoxy and sandwiched between substrates made of

Nylon. The parameters of the materials are given in Table 3.2. The thicknesses of
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the layers were chosen so that the structure has its omnidirectional gap in the

working frequencies of the transducers. They took layers of the same thickness

1 mm so as to generate a gap centered at around 300 kHz.

Figure 3.18a displays the band gap structure for transverse and sagittal acoustic

waves. An omnidirectional gap is predicted in the frequency region 273 kHz � f
� 371 kHz, which corresponds to the normal incidence band edges of the sagittal

modes. However, it is worth noting that the proposed structure does not have the

property of omnidirectional reflection for transverse waves for which the velocity is

about half of the longitudinal waves. The transmission measurements (Fig. 3.18b)

have been performed for longitudinal incident waves and the waves detected after

travelling the system, consist of the projection in the radial direction of the

transmitted waves (longitudinal and transverse). Figure 3.18b shows the transmis-

sion amplitude measured at different angles of incidence for the samples analyzed.

0 1 2 3

0

1

2

3

4

5

6

k ||D
123

ω
D
/C
t(
A
l)

0

1

2

3

4

5

6

θ
0 20 40 60 80

T
ra

n
sm

is
si

o
n

0.0

0.2

0.4

0.6

0.8

1.0

b

a

Fig. 3.17 (a) Band gap structure of transverse and sagittal modes as described in Fig. 3.16. The

bold line inside the omnidirectional gap represents the defect branch induced by a cavity layer

made of epoxy inserted in the middle of the finite Al/W SL embedded between two Si substrates.

The thick (thin) straight and dashed lines gives respectively the transverse and longitudinal

velocities of sound in Si (epoxy). (b) Amplitudes of the transmitted waves along the defect branch

in (a) as a function of the incident angle y. The horizontal line with total transmission corresponds

to shear-horizontal wave, whereas dashed and dashed-dotted curves correspond to shear-vertical

and longitudinal transmitted waves respectively
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One can notice that the transmission is almost negligible in the regions where a gap

(shadowed regions) is predicted by the band structure. The commune gap region

indicated by vertical dashed lines has been found in very good agreement with the

theoretical predictions.

3.6.2 Case of Solid–Fluid-Layered Media

Figure 3.19 gives the dispersion curves (gray areas) for an infinite SL made of

Plexiglas and water layers. The gray areas represent the bulk bands. The dashed

straight lines represent the transverse and longitudinal velocities of sound in

Plexiglas, whereas the dashed dotted line gives the longitudinal velocity of sound

in water. The thin solid and dotted curves represent the dispersion curves obtained

from the reflection zeros (total transmission) for a finite SL composed of N ¼ 5

Plexiglas layers inserted in water. The open circles curves show the positions of the

transmission zeros (total reflection). One can notice a shrinking of the N – 1

ba

Fig. 3.18 (a) Projected band structure of sagittal and transverse elastic waves in a Pb/epoxy

superlattice with layer thickness d1 ¼ d2 ¼ 1 mm. The frequencies (in kHz) are represented as

function of the reduced parallel wave vector k||D. The horizontal dashed lines delimit the

frequencies where no transmission occurs at every angle, i.e., the band of omnidirectional

reflection. (b) Experimental transmission spectra obtained for the three samples described in the

text. The gray areas define the gaps calculated for each angle of incidence yi, and the vertical
dashed lines describe the commune omnidirectional gap (After 58)
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branches when they intercept the transmission zero branch around (O ¼ 4.07,

k||D ¼ 2.3) and (O ¼ 7.64, k||D ¼ 3.8). This phenomenon reproduces for other

values of the couple (O, k||D) not shown here. This property of the shrinking of the

modes is a characteristic of solid-fluid SLs and is without analogue in their

counterpart solid–solid SLs (see Fig. 3.16). It is worth noting that the transmission

zeros occur only for incidence angles y such that 0� < y < ycr, where ycr is a

critical angle depending on the velocities of sound in solid and fluid layers (see [95]

for more details). In the example considered here ycr ¼ 39�.
Figure 3.20 gives the variation of the transmission rates T (Fig. 3.20a–c, e–g and

i–k) as a function of the reduced frequency O for a finite SL composed of N ¼ 1,

2 and 5 Plexiglas layers immersed in water. The left, middle and right panels

correspond to incident angles: y ¼ 0�, 25� and 40� respectively. At the bottom of

these panels we plotted the corresponding dispersion curves (i.e., O versus the

Bloch wave vector k3) (Fig. 3.20d, h and l). As predicted above, for y ¼ 0� (left

panel) and y > ycr (right panel), the transmission exhibits dips at some frequency

regions which transform into gaps as far as N increases. These gaps are due to the

periodicity of the system (Bragg gaps) and coincide with the band gap structure

of the infinite SL shown in Fig. 3.20d and l. For an incident angle 0� < y < ycr
(middle panel), one can notice the existence of a transmission zero around O ¼ 7.64

(Fig. 3.20e) which is due to the insertion of one Plexiglas layer (N ¼ 1) in water.

This transmission zero transforms to a large gap when N increases. Besides this gap

there exists a dip around O ¼ 5 for N ¼ 2 (Fig. 3.20f) which also transforms to a
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gap when N increases; this gap is due to the periodicity of the structure. The

transmission gaps map the band gap structure of the infinite SL (Fig. 3.20h),

where one can notice that the imaginary part of the Bloch wave vector (responsible

of the attenuation of the waves associated to defect modes) is finite in the Bragg

gaps and tends to infinity inside the gaps due to the transmission zeros. These latter

gaps can be used to localize strongly defect modes within the structure (see below).

From all the above results, one can conclude that for an incident angle 0� < y
< ycr (middle panel) there exists two types of gaps: Bragg gaps which are due to the

periodicity of the structure and gaps which are induced by the transmission zeros.

However, at normal incidence (y ¼ 0�) (left panel) and for y > ycr (right panel) all
the gaps are due to the periodicity of the system. The existence of these two types of

gaps has been discussed also by Shuvalov and Gorkunova [122] in periodic systems

of planar sliding-contact interfaces.

Now, we shall examine the condition for the existence and behavior of omnidi-

rectional band gaps in finite solid–fluid-layered media. Let us first come back to

the band gap structure given in Fig. 3.19 for a SL made of Plexiglas and water with

the same thickness ds ¼ df ¼ D/2. One can notice that the band gap structure of the
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Fig. 3.20 Variation of the transmission coefficients as a function of the reduced frequency O for a

finite SL composed of N ¼ 1 [(a), (e) and (i)], N ¼ 2 [(b), (f) and (j)] and N ¼ 5 [(c), (g) and (k)]
Plexiglas layers immersed in water. The left, middle, and right panels correspond to incident

angles: y ¼ 0�, 25�, and 40� respectively, (d), (h) and (l) give the dispersion curves (i.e., O versus

the Bloch wave vector k3) inside the reduced Brillouin zone 0 < k3 < p/D. Outside this zone are
represented the imaginary parts of k3

3 One-Dimensional Phononic Crystals 85



infinite Plexiglas-water SL does not display any absolute gap, this means a gap

existing for every value of the wave vector k||. Fig. 3.21a reproduces the results

given in Fig. 3.19 for a finite Plexiglas-water SL made of N ¼ 8 cells. The discrete

modes are obtained from the maxima of the transmission rate that exceeds a

threshold fixed to 10–3. One can notice that any wave launched from water will

display a partial gap for an incident angle 0� < y < 35� in the frequency region

4.015 < O < 5.105 indicated by horizontal lines. However, waves with incident

angles 35� < y < 90� will be totally transmitted through the discrete modes of the

SL [95]. These results remain valid for any incident liquid medium as, in general,

the velocities of sound in most liquids are of the same order or less than water. In

order to overcome this limitation or at least facilitate the existence of an omnidi-

rectional gap, we proposed, like in the previous subsection on solid–solid SLs, two

solutions. The first one consists to clad the SL on one side by a buffer layer of high

acoustic velocities, which can act as a barrier for the propagation of phonons. The

second solution consists to associate in tandem two SLs in such a way that their

band structures do not overlap.

In the following, we shall give an example concerning the first solution.

Figure 3.21b gives the discrete modes associated to the cladded-SL structure, i.e.,

the frequency domains in which the transmission rate exceeds a threshold of 10–3. In

this example the clad layer is made of Al with transverse and longitudinal velocities

of sound (dashed and straight lines) higher than the SL bulk modes lying in the

frequency region 4.015 < O < 5.105 (Fig. 3.21a, b). The thickness of the Al layer is

d0 ¼ 7D and the SL contains N ¼ 8 cells of Plexiglas-water. By combining these

two systems, the allowed modes of the SL and the guided modes induced by the Al

clad layer above its velocities of sound do not overlap over the frequency range of

the omnidirectional gap. This means that each system acts as a barrier for phonons of

the other system. In such a way, one obtains an omnidirectional band gap indicated

by the two horizontal lines in Fig. 3.21b in the frequency region 4.015 < O < 5.105.

By comparing Fig. 3.21a, b, one can notice clearly that the presence of the clad layer

has two opposite effects. It decreases the transmittance in some frequency domains

(essentially below the sound line defined by the transverse velocity of sound in the

clad), but also introduces new modes that can contribute themselves to transmission.

The transmission by the latter modes is prevented by the SL when the corresponding

branches fall inside the minigaps. In the allowed frequency regions belonging to both

the SL and the clad layer, one can notice an interaction and an anticrossing of the

modes associated to these two systems.

It is well known that the introduction of a defect layer (cavity) in a periodic

structure can give rise to defect modes inside the band gaps [43–51, 81]. These

modes appear as well defined peaks in the DOS; however, their contribution to

the transmission rate depends strongly on the position of these defects inside the

structure. Indeed, as it was shown before, a defect layer placed at the contact between

the SL and the substrate (clad layer) induces guided modes in the band gap of the SL

but without contributing to the transmission. However, the transmission through

these modes can be significantly enhanced if the cavity layer is placed at the middle

of the structure [46, 49–51, 67].
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In general, a periodic structure made of N cells (N > 2) is needed to create a

transmission gap in which a defect mode is then introduced for filtering. We show

that contrary to solid–solid SLs, it is possible to achieve large gaps as well as

sharp resonances inside these gaps with a solid–fluid structure as small as a

solid–fluid–solid sandwich triple layers (i.e., N ¼ 2). This property is associated

with the existence of zeros of transmission. Figure 3.22a gives the transmission rate

as a function of the reduced frequency O for a finite Plexiglas-water SL composed

of N ¼ 2 (solid curves) and N ¼ 4 (dotted curves) cells and for an incidence angle

y ¼ 35�. The fluid and solid layers have the same width df ¼ ds ¼ D/2. One can

notice that the transmission rate exhibits a large dip in the frequency region

4 < O < 8 around the transmission zero indicated by an open circle on the

abscissa. This transmission gap maps the band gap of the infinite system indicated

by solid circles on the abscissa. As it was discussed above, the transmission gap

becomes well defined as far as N increases. Now, if a fluid cavity layer of thickness

d0 ¼ D is inserted in the middle of the structure, then a resonance with total

transmission can be introduced in the gap (Fig. 3.22b). This resonance falls at

almost the same frequency and its width decreases when N increases. Let us

mention that the structure depicted in Fig. 3.22a, b with N ¼ 2 consists on a

sandwich system made of two Plexiglas layers separated by a water layer. There-

fore, such a small size structure clearly show the possibility of obtaining a large gap

and a sharp resonance inside the gap by just tailoring the width of these three

layered media. This property is specific to solid–fluid structures and is without
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Fig. 3.21 (a) Dispersion curves of a finite SL composed of N ¼ 8 Plexiglas layers immersed in

water. The thicknesses of Plexiglas and water layers are equal. The discrete modes correspond to

the frequencies obtained from the maxima of the transmission rate that exceeds a threshold of 10–3.

(b) The same as (a) but here the SL is cladded with an Al layer of thickness d0 ¼ 7D on one side
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analogue for their counterparts solid–solid systems where at least a number N > 2

of layers is needed to achieve well-defined gaps and cavity modes. In what follows,

we shall focus on the simple case of sandwich system (i.e., N ¼ 2).
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Fig. 3.22 (a) Transmission rate for a finite SL composed of N ¼ 2 (solid curves) and N ¼ 4

(dotted curves) Plexiglas layers immersed in water at an incidence angle y ¼ 35�. The solid and

open circles on the abscissa indicate the positions of the band gap edges and transmission zeros

respectively. (b) Same as in (a) but in presence of a defect fluid layer of thickness d0 ¼ D at the

middle of the structure. (c) Same as in (b) for N ¼ 2 and different values of the thickness d0 of the
cavity fluid layer as indicated in the inset
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An important point to notice in Fig. 3.22b is the shape of the resonance lying in

the vicinity of the transmission zero. Such a resonance is called Fano resonance

[123]. The origin and the asymmetry Fano profile of this resonance was explained

as a result of the interference between the discrete resonance and the smooth

continuum background in which the former is embedded. The existence of such

resonances in 2D and 3D phononic crystals, the so-called locally resonant band gap

materials [124, 125], has been shown recently [126–128]. Some analytical models

have been proposed to explain the origin and the behavior of these resonances

[126–128]. In the case of 1D model proposed here, the Fano resonance in Fig. 3.22b

is just an internal resonance induced by the discrete modes of the fluid layer when

these modes fall at the vicinity of the transmission zeros induced by the surrounding

solid layers. By decreasing the width of the fluid layer from d0 ¼ 1D to d0 ¼ 0.6D
(Fig. 3.22c), one can notice that the position of the Fano resonance moves to higher

frequencies, its width decreases and vanishes for a particular value of d0 ¼ 0.71D
before increasing again. At exactly d0 ¼ 0.71D, the transmission vanishes and the

resonance collapses giving rise to the so-called ghost Fano resonance [129]. Around

d0 ¼ 0.71D, the asymmetric Fano profile of the resonance becomes symmetric and

changes the shape.

In Fig. 3.22c, the two solids surrounding the fluid layer have the same widths ds,
therefore the transmission zeros induced by the solid layers fall at the same

frequency. Now, if the two solids have different widths (labeled, e.g., ds1 and

ds2), then one can obtain two transmission zeros and a resonance that can be

squeezed between these two dips if ds1 and ds2 are chosen appropriately. In this

case a symmetric Fano resonance can be obtained whose width can be tuned by

adjusting the frequencies of the zeros of transmission. Such resonances have been

found also for acoustic and magnetic circuits formed by a guide inserted between

two dangling resonators [130, 131].

3.7 Conclusion

In this chapter, we have presented a theoretical analysis of the propagation and

localization of phonons in one-dimensional crystals in both atomic (discrete) and

elastic (continuum) approximations. In the case of continuous media, solid–solid

and solid–fluid-layered materials have been considered. In general, we have

limited ourselves to the case of isotropic materials for which shear-horizontal

waves are decoupled from sagittal waves polarized in the plane defined by the

normal to the surface and the wave vector parallel to the surface. This study has

been performed within the framework of the Green’s function method which

enables us to deduce the dispersion curves, densities of states as well as the

transmission and reflection coefficients. The Green’s function approach used in

this work is also of interest for studying the scattering of light by bulk and

surface phonons. The advantage of the 1D-layered media treated here in compari-

son with their 2D and 3D counterparts systems, resides in obtaining, in general,
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closed-form expressions that enables us to discuss deeply different physical

properties related to band gaps in such systems.

Despite the problem of acoustic waves in solid and fluid materials has been

intensively studied since the beginning of the last century, this subject still attracts

attention of researchers because of the high quality level of control and perfection

reached in the growth techniques of microstructures and nanostructures, but also

due to the sophisticated experimental techniques used to probe different modes of

these systems in different frequency domains. In addition, these systems may

present several applications in guiding, stopping and filtering waves.

First, we have treated pure longitudinal waves (normal incidence), where we

have shown that the eigenmodes of a finite SL constituted of N cells with free-stress

surfaces are composed of N–1 modes in each band and one mode by gap which is

associated to one of the two surfaces surrounding the system. These latter modes are

independent of N and coincide with the surface modes of two complementary SLs

obtained from the cleavage of an infinite SL along a plane parallel to the interfaces.

Then, we have shown the possibility of enhanced transmission between two media

through surface modes. Some experimental results and the interest of the Green’s

function calculation in explaining the Raman spectra are also reviewed.

The application of multilayered media as acoustic mirrors and selective filters at

oblique incidence has been shown. The transmission and reflection coefficients of

wave propagation through these systems has shown several new properties as the

existence of transmission zeros in solid–fluid SLs and therefore new gaps in

addition to Bragg gaps, as well as the existence of Fano resonances.
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30. P. Sondhauss, J. Larsson, M. Harbst, G.A. Naylor, A. Plech, K. Scheidt, O. Synnergren,

M. Wulff, J.S. Wark, Phys. Rev. Lett. 94, 125509 (2005)

31. B. Djafari-Rouhani, L. Dobrzynski, O. Hardouin Duparc, R.E. Camley, A.A. Maradudin,

Phys. Rev. B 28, 1711 (1983)

32. T. Aono, S. Tamura, Phys. Rev. B 58, 4838 (1998)

33. S. Mizuno, S. Tamura, Phys. Rev. B 53, 4549 (1996)

34. M. Hammouchi, E.H. El Boudouti, A. Nougaoui, B. Djafari-Rouhani, M.L.H. Lahlaouti, A.

Akjouj, L. Dobrzynski, Phys. Rev. B 59, 1999 (1999)

35. H.J. Trodahl, P.V. Santos, G.V.M. Williams, A. Bittar, Phys. Rev. B 40, R8577 (1989)

36. W. Chen, Y. Lu, H.J. Maris, G. Xiao, Phys. Rev. B 50, 14506 (1994)

37. B. Perrin, B. Bonello, J.C. Jeannet, E. Romatet, Physica B 219–220, 681 (1996)

38. B. Bonello, B. Perrin, E. Romatet, J.C. Jeannet, Ultrasonics 35, 223 (1997)

39. N-W Pu, J. Bokor, Phys. Rev. Lett. 91, 076101 (2003)

40. N-W Pu, Phys. Rev. B 72, 115428 (2005)

41. E.M. Khourdifi, B. Djafari-Rouhani, Surf. Sci. 211/212, 361 (1989)

42. D. Bria, E.H. El Boudouti, A. Nougaoui, B. Djafari-Rouhani, V.R. Velasco, Phys. Rev. B 60,
2505 (1999)

43. E.M. Khourdifi, B. Djafari-Rouhani, J. Phys. Condens. Matter 1, 7543 (1989)

44. D. Bria, E.H. El Boudouti, A. Nougaoui, B. Djafari-Rouhani, V.R. Velasco, Phys. Rev. B 61,
15858 (2000)

45. K.-Q. Chen, X.-H. Wang, B.-Y. Gu, Phys. Rev. B 61, 12075 (2000)

46. S. Mizuno, Phys. Rev. B 65, 193302 (2002)

47. S. Tamura, H. Watanabe, T. Kawasaki, Phys. Rev. B 72, 165306 (2005)

48. G.P. Schwartz, G.J. Gualtieri, W.A. Sunder, Appl. Phys. Lett. 58, 971 (1991)

49. M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, V. Thierry-Mieg, Phys. Rev. Lett. 89,
227402 (2002)

50. P. Lacharmoise, A. Fainstein, B. Jusserand, V. Thierry-Mieg, Appl. Phys. Lett. 84, 3274
(2004)

51. N.D. Lanzillotti Kimura, A. Fainstein, B. Jusserand, Phys. Rev. B 71, 041305(R) (2005)

3 One-Dimensional Phononic Crystals 91



52. P.X. Zhang, D.J. Lockwood, J.M. Baribeau, Can. J. Phys. 70, 843 (1992)

53. P.X. Zhang, D.J. Lockwood, H.J. Labbe, J.M. Baribeau, Phys. Rev. B 46, 9881 (1992)

54. M. Trigo, A. Fainstein, B. Jusserand, V. Thierry-Mieg, Phys. Rev. B 66, 125311 (2002)

55. A. Bousfia, E.H. El Boudouti, B. Djafari-Rouhani, D. Bria, A. Nougaoui, V.R. Velasco, Surf.

Sci. 482–485, 1175 (2001)

56. D. Bria, B. Djafari-Rouhani, A. Bousfia, E.H. El Boudouti, A. Nougaoui, Europhys. Lett. 55,
841 (2001)

57. D. Bria, B. Djafari-Rouhani, Phys. Rev. E 66, 056609 (2002)

58. B. Manzanares-Martinez, J. Sanchez-Dehesa, A. Hakansson, F. Cervera, F. Ramos-Mendieta,

Appl. Phys. Lett. 85, 154 (2004)

59. G. Wang, D. Yu, J. Wen, Y. Liu, X. Wen, Phys. Lett. A 327, 512 (2004)

60. L.C. Parsons, G.T. Andrews, Appl. Phys. Lett. 95, 241909 (2009)

61. G.N. Aliev, B. Goller, D. Kovalev, P.A. Snow, Appl. Phys. Lett. 96, 124101 (2010)

62. N. Gomopoulos, D. Maschke, C.Y. Koh, E.L. Thomas, W. Tremel, H.J. Butt, G. Fytas, Nano

Lett. 10, 980 (2010)

63. P.M. Walker, J.S. Sharp, A.V. Akimov, A.J. Kent, Appl. Phys. Lett. 97, 073106 (2010)

64. T. Berstermann, C. Brggemann, M. Bombeck, A.V. Akimov, D.R. Yakovlev, C. Kruse,

D. Hommel, M. Bayer, Phys. Rev. B 81, 085316 (2010)

65. I.E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, V. Laude, Phys.

Rev. B 82, 174303 (2010)

66. A.J. Kent, R.N. Kini, N.M. Stanton, M. Henini, B.A. Glavin, V.A. Kochelap, T.L. Linnik,

Phys. Rev. Lett. 96, 215504 (2006)

67. A. Bousfia, Ph.D. Thesis, University Mohamed I, Oujda, Morocco (2004)

68. H. Kato, Phys. Rev. B 59, 11136 (1999)

69. S. Mizuno, Phys. Rev. B 63, 035301 (2000)

70. D. Zhao, W. Wang, Z. Liu, J. Shi, W. Wen, Physica B 390, 159 (2007)

71. L.M. Brekhovskikh, Waves in Layered Media (Academic, New York, 1981)

72. S.M. Rytov, Phys. Acoust. 2, 68 (1956)
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Chapter 4

2D–3D Phononic Crystals

A. Sukhovich, J.H. Page, J.O. Vasseur, J.F. Robillard, N. Swinteck,
and Pierre A. Deymier

Abstract This chapter presents a comprehensive description of the properties of

phononic crystals ranging from spectral properties (e.g., band gaps) to wave vector

properties (refraction) and phase properties. These properties are characterized

by experiments and numerical simulations.

4.1 Introduction

In this chapter, we focus on 2D and 3D phononic crystals, which, thanks to their

spatial periodicity, allow the observation of new unusual phenomena as compared

to the 1D crystals discussed in the previous chapter. In experimental studies, 2D

crystals usually employ rods as scattering units, while 3D crystals are realized as

arrangements of spheres. It is common in theoretical studies of phononic crystals

to investigate crystals with scattering units that are simply air voids (e.g., empty

cylinders) in a matrix. Although there are many different ways of realizing the
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phononic crystal theoretically and experimentally (by varying material of the

scattering units and the host matrix), one condition is always observed: the charac-

teristic size of a scattering unit (rod or sphere) and a lattice constant should be on

the order of the wavelength of the incident radiation to ensure that the particular

crystal features arising from its regularity affect the wave propagating through the

crystal. In other words, the frequency range of the crystal operation is set by the

characteristic dimensions of the crystal (i.e., the size of its unit scatterer and its

lattice constant). The exception from this rule, however, is resonant sonic materials,

which exhibit a profound effect on the propagating radiation, whose wavelength

can be as much as two orders of magnitude larger than the characteristic size of the

structure, as was shown by Liu et al. [1, 2].
As described in Chap. 10, the regularity of the arrangement of scattering units of

the phononic crystal gives rise to Bragg reflections of the acoustic or elastic waves

that are multiply scattered inside the crystal. Their constructive or destructive

interference creates ranges of frequencies at which waves are either allowed to

propagate (pass bands) or blocked in one (stop bands) or any direction (complete

band gaps). The width of the band gap obviously depends on the crystal structure

and increases with the increase of density contrast between the material of the

scattering unit and that of a host matrix. Switching from a liquid matrix to the solid

one, e.g., from water to epoxy, which can support both longitudinal and transverse

polarizations, results in even larger band gaps, as was shown by Page et al. [3].

As an example of a 2D phononic crystal, consider a crystal made of cylinders

assembled in a triangular Bravais lattice, whose points are located at the vertices

of the equilateral triangles. Figure 4.1 presents the diagram of the direct and

reciprocal lattices with corresponding primitive vectors ~a1;~a2 and ~b1; ~b2 . Since
~a1j j ¼ ~a2j j ¼ a, where a is a lattice constant, it follows from the usual definition of

reciprocal lattice vectors ~ai � ~bj ¼ 2pdij, where dij is the Kronecker delta symbol,

that ~b1

��� ��� ¼ ~b2

��� ��� ¼ 4p
ffiffiffi
3

p
a

�
. By working out components of ~b1 and ~b2, one can be

convinced that the reciprocal lattice of a triangular lattice is also a triangular

lattice but rotated through 30� with respect to a direct lattice. Both direct and

reciprocal lattices possess six-fold symmetry. The first Brillouin zone has a shape

of a hexagon with two main symmetry directions, which are commonly referred to

as GM and GK (Fig. 4.1).

As an example of a 3D crystal, let us consider a collection of spheres assembled

in a face-centered cubic (FCC) structure, which is obtained from the simple-cubic

lattice by adding one sphere to the center of every face of the cubic unit cell.

Because of its high degree of symmetry, phononic crystals with this structure have

been extensively investigated, both theoretically and experimentally. Figure 4.2

shows the direct lattice of the FCC structure along with the corresponding recipro-

cal lattice, which turns out to be a body-centered cubic (BCC) crystal structure

(obtained from the simple-cubic structure by adding one atom in the center of its

unit cell). Also displayed are the sets of primitive vectors~a1;~a2;~a3 and ~b1; ~b2; ~b3 of
both lattices. It can be easily seen from Fig. 4.2 that with this particular choice of

the primitive vectors of the direct lattice we have ~a1j j ¼ ~a2j j ¼ ~a3j j ¼ a
ffiffiffi
2

p�
, and
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~b1

��� ��� ¼ ~b2

��� ��� ¼ ~b3

��� ��� ¼ 2
ffiffiffi
3

p
p a= , where a is the length of the cube edge in the direct

lattice.

The first Brillouin zone of the FCC lattice is a truncated octahedron and

coincides with the Wigner-Seitz cell of the BCC lattice. It is presented in Fig. 4.3

along with its high symmetry directions. With respect to the coordinate system in

Fig. 4.2, the coordinates of the high symmetry points (in units of 2p a= ) are: G [000],

X [100], L [ ½ ; ½ ; ½ ], W [ ½ ; 1; 0], and K [¾; ¾; 0]. The investigation of the

figure reveals that direction GL coincides with the direction also known as the [111]

direction, i.e., a direction along the body diagonal of the conventional FCC unit

cell, shown in Fig. 4.2.

A simple way of realizing a 3D crystal with the FCC Bravais lattice is by

stacking the crystal layers along the [111] direction. The touching spheres are

close packed in an ABCABC. . . sequence, which is shown in Fig. 4.4. The spheres

DIRECT LATTICE

a34π

RECIPROCAL LATTICE

a
1a

2a

1b

2b

G
M

K

Fig. 4.1 The direct and reciprocal lattices of the 2D phononic crystals, which were investigated

experimentally. The shaded hexagon indicates the first Brillouin zone. In the actual phononic

crystal the rods were positioned at the points of the direct lattice (perpendicular to the plane of the

figure)

DIRECT LATTICE

1a

2a
3a

a

RECIPROCAL LATTICE

1b
2b

3b

aπ4

x
y

z® ®

®
®

®

®

Fig. 4.2 The direct (FCC) and reciprocal (BCC) crystal lattices of the 3D phononic crystals
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belonging to the first layer are denoted by the letter A. The next layer is formed by

placing the spheres in the interstitials indicated by the letter B, and the third layer is

formed by placing spheres in the interstitials of the second layer, which are denoted

by the letter C. The sequence is then repeated again with the fourth layer beads to

occupy interstitials in the third layer, which are positioned directly above beads

denoted by the letter A. This packing results in the highest filling ratio of 74 %.

In this chapter, the dramatic effects of lattice periodicity on wave transport in 2D

and 3D phononic crystals will be illustrated using these two representative crystal

structures. Section 4.2 summarizes how such effects can be investigated experi-

mentally, with emphasis on measurement techniques in the ultrasonic frequency

range. Section 4.3 discusses the various mechanisms that can lead to the formation

of band gaps, a topic that has been of central interest since the first calculations and

experimental observations in phononic crystals. The rest of the chapter is concerned

with phenomena that occur in the pass bands, starting with negative refraction in

Sect. 4.4, the achievement of super-resolution lenses in Sect. 4.5 and band structure

design and its impact on refraction in Sect. 4.6.

X

G

L

K W
xk

zk

yk

Fig. 4.3 The first Brillouin zone of the FCC lattice and its high symmetry points

A A A A

A A A A

A A A A

A
B B B B

B B B
C C C C

C C C B

Fig. 4.4 Schematic diagram explaining the formation of a 3D crystal in a ABCABC. . . sequence
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4.2 Experiments: Crystal Fabrication and Experimental
Methods

4.2.1 Sample Preparation

4.2.1.1 2D Phononic Crystals

In this section we will consider the practical aspects of phononic crystal fabrica-

tion for the examples of 2D and 3D phononic crystals used by Sukhovich et al.

[4, 5] and Yang et al. [6, 7] during their experiments on wave transport, negative

refraction and focusing of ultrasound waves (see Sects. 4.3 and 4.4.). The 2D

crystals were made of stainless steel rods assembled in a triangular crystal

lattice and immersed in a liquid matrix. To ensure that the operational frequency

of the crystals was in the MHz range, the characteristic dimensions of the crystals,

lattice constant and rod diameter (1.27 mm and 1.02 mm correspondingly),

were chosen to be comparable to the wavelength of ultrasound in water at this

frequency range (Fig. 4.5).

For reasons that will be explained in more detail later, the crystals were made in

two different shapes. A rectangular-shaped crystal had 6 layers stacked along the

GM direction (Fig. 4.6a). A prism-shaped crystal was also made; it had 58 layers,

whose length was diminishing progressively to produce sides forming angles of

30�, 60� and 90�. In this geometry, the shortest and longest sides are perpendicular

to the GM directions (Fig. 4.6b), and the third intermediate-length side is perpen-

dicular to the GK direction.

The filling fraction was 58.4 %. The particular details of crystal design depended

on the type of liquid, which filled the space between the rods. For the crystals

immersed in and filled with water, the rods were kept in place by two parallel

polycarbonate plates in which the required number of holes was drilled; the crystal

could then be easily assembled by sliding the rod’s into the holes in these top and

bottom templates (Fig. 4.7a, b). The rectangular crystal was 14 cm high while the

prism-shaped crystal height was 9 cm.

Since key properties of the phononic crystals follow from their periodicity, the

quality of the samples is critically dependent on the accuracy with which their

geometry is set. For example, special care must be taken to use as straight rods as

possible. At the same time, the holes defining the rods’ positions should be precisely

drilled, preferably using an automated programmable drilling machine.

Another rectangular-shaped crystal (with all parameters identical to those of the

first crystal) was constructed to enable the liquid surrounding the rods (methanol) to

be different to the medium outside the crystal (water), and consequently its design

was more complicated. First of all, all plastic parts were made of an alcohol-

resistant plastic (PVC). The crystal was encapsulated in a cell, whose face walls

were made of a very thin (0.01-mm) plastic film tightly wrapped around the crystal

(plastic film produced commercially and available as a food wrap worked very
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well). Finally, the edges of the cell were sealed from the surrounding water by two

rubber O-rings. The design of the crystal is shown in Fig. 4.8.

The choice of the phononic crystal materials provided high density and velocity

contrast, thus ensuring that most of the sound energy was scattered by the rods and

concentrated in the host matrix. Table 4.1 provides values of the densities and

sound velocities for the constituent materials of the 2D crystals.

4.2.1.2 3D Phononic Crystals

3D phononic crystals, used in the experiments by Yang et al. [6, 7] and by

Sukhovich et al. [8, 9], were made out of very monodisperse tungsten carbide

G

K

M

60 rods

a

G

M

K

58 rods

b

Fig. 4.6 Geometry of the 2D crystals. (a) Rectangular crystal. (b) Prism-shaped crystal

d = 1.02 mm

a = 1.27 mm

60°60°

60°

Fig. 4.5 Unit cell of a 2D phononic crystal
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beads, 0.800 � 0.0006 mm in diameter, immersed in reverse osmosis water. The

beads were manually assembled in the FCC structure, with layers stacked along the

cube body diagonal (the [111] direction) in an ABCABC. . . sequence. To ensure

the absence of air bubbles trapped between the beads, the whole process of

assembling crystals was conducted in water. To support the beads in the required

structure, acrylic templates were used. The template consisted of a thick substrate

with plastic walls attached to it (Fig. 4.9).

One can show that in order to keep beads in the FCC crystal lattice two kinds of

walls should be used with sides inclined at angles a ¼ 54.74� and b ¼ 70.33�

above the horizontal, and with inner side lengths LA and LB. The values of LA and

LB depend on the number of beads n along each side of the first crystal layer and the
bead diameter d. These lengths are given by the following expressions:

LA ¼ ðn� 1þ tan
a
2
Þd

LB ¼ ðn� 1þ tan
b
2
cot75�Þd ð4:1Þ

With 49 beads on each side of the bottom layer, (4.1) gives LA ¼ 38.814 mm

and LB ¼ 38.552 mm.

In the experiments on the resonant tunneling of ultrasound pulses, the samples

consisted of two 3D phononic crystals with the same number of layers and separated

by an aluminum spacer of constant thickness. For brevity, these samples will be

referred to as double 3D crystals. After the lower crystal was assembled, the spacer

was placed on the top without disturbing beads of the crystal. The upper crystal was

then assembled on the surface of the spacer. Spacer edges were machined at angles

Fig. 4.7 2D crystals filled with and immersed in water: (a) rectangular crystal, (b) prism-shaped

crystal
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matching the angles of the walls of the template. Also, the thickness of the spacer

was calculated such that it replaced precisely an integer number of layers of the

single crystal. This ensured that the beads resting on the spacer filled the entire

available surface without leaving any gaps, enabling high-quality crystals to be

Table 4.1 Comparison of the physical properties of the constituent materials used for 2D

phononic crystals [49]

Material Density (g/cm3) Longitudinal velocity (mm/ms) Shear velocity (mm/ms)

Stainless steel 7.89 5.80 3.10

Water 1.00 1.49 –

Methanol 0.79 1.10 –

Fill hole Fill hole

Rubber
O-ring14 cm

7.5 cm

Front view

Plastic film

Screws

Middle spacer 
supporting rods

Top view

0.66 cm

Side view

1.8 cm

Fig. 4.8 Methanol-filled 2D crystal cell design

102 A. Sukhovich et al.



constructed. In most of the experiments, the thickness of the spacer was chosen to

be 7.05 � 0.01 mm.

The base of the template was made fairly thick (84.45 mm) to allow temporal

separation between the ultrasonic pulses that was directly transmitted through the

crystal, and all of its subsequent multiple reflections inside the substrate. The

density and velocity mismatch in the case of 3D crystals was even larger than for

2D crystals, as tungsten carbide has density of 13.8 g/cm3, longitudinal velocity

of 6.6 mm/ms and shear velocity of 3.2 mm/ms. The actual sample (single 3D

crystal) is shown in Fig. 4.10, while the close-up of its surface is presented in

Fig. 4.11.

4.2.2 Experimental Methods

In the sonic and ultrasonic frequency ranges, the properties of phononic crystals are

best studied experimentally by directing an incident acoustic or elastic wave

towards the sample and measuring the characteristics of the outgoing wave,

which was modified while propagating through the crystal. In practice, pulses are

preferred to continuous monochromatic waves since pulses are much more conve-

nient to work with. Due to their finite bandwidth, in a single experiment they allow

information to be obtained over a wide frequency range. The use of pulses also

facilitates the elimination of stray sound from the environment surrounding the

crystal. In what follows, we describe two types of experiments, each used to

investigate different aspects of phononic crystals.

a

b

A

B

A

A A

BB

B

Fig. 4.9 Template for 3D phononic crystal (top view) with side views of walls A and B. Note that

tana ¼ ffiffiffi
2

p
and tanb ¼ 2

ffiffiffi
2

p
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4.2.2.1 Transmission Experiments

In transmission experiments one measures the coherent ballistic pulse emerging

from the output side of the sample after a short pulse (often with a Gaussian

Fig. 4.11 Close-up view of the surface of the crystal, which is shown in Fig. 4.10

Fig. 4.10 3D single phononic crystal assembled in the supporting template
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envelope) was normally incident on the input side. Usually, crystals with two flat

surfaces are used and crystal properties are investigated along the directions for

which the direction of the output pulse is not expected to change with respect to

that of the input pulse. In this case the far-field waveforms are spatially uniform in

a plane parallel to the crystal faces, and thus the outgoing pulse can be accurately

detected using a planar transducer, whose active element’s characteristic dimensions

are many times larger than the wavelength of the measured pulse. (The diffraction

orders that appear at high frequencies are effectively eliminated by measuring the

transmitted field over the finite transverse width that is set by the diameter of the

detecting transducer.) Such a transducer averages any field fluctuations (for example

due to imperfections inside the sample) and provides information on the average

transport properties of the crystal. Another benefit of such averaging is an increase of

the signal-to-noise ratio. Note also that to ensure the best possible approximation of

the incident pulse by a plane wave, the sample should be placed in the far-field of the

generating transducer. In the ultrasonic frequency range, the most convenient refer-

ence material in which the transducers and crystal can be located is water.

The analysis of the recorded pulse is done by comparing it with a reference

pulse, obtained by recording a pulse propagating directly between generating and

receiving transducers (with the sample removed from the experimental set-up). To

allow the transmission properties to be determined from a direct comparison

between the reference and measured pulses, the reference pulse should be shifted

by the time Dt ¼ L uwat= , where L is the crystal thickness and uwat is the speed of

sound in the medium between source and receiver. Since the attenuation in water is

negligibly small, the time-shifted reference pulse accurately represents the pulse

that is incident on the input face of the sample.

Figures 4.12a and 4.12b shows a typical example of incident and transmitted

pulses for a 3D phononic crystal of tungsten carbide beads in water. The effects on

the transmitted pulse of multiple scattering inside the crystal are clearly seen by the

considerable dispersion of the pulse shape. Since the full transmitted wave function

is measured, complete information on both amplitude and phase can be determined

using Fourier analysis. The amplitude transmission coefficient as a function of

frequency is given by the ratio of the magnitudes of the Fourier transforms of the

transmitted and input pulses:

Tð f Þ ¼ Atransð f Þ
Arefð f Þ (4.2)

Figure 4.12c shows the Fourier transform magnitudes corresponding to the

pulses in Figs. 4.12b and 4.12b, demonstrating not only the large effect that

phononic crystals can have on the amplitude of transmitted waves but also the

wide range of frequencies that can be probed in a single pulsed measurement.

In addition to the transmission coefficient, ballistic pulse measurements also

provide information on the transmitted phase, from which the wave vector can be

obtained. This phase information is also directly related to the phase velocity uphase
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of the component of the Bloch state with wave vector in the extended zone scheme.

These parameters are measured by analyzing the cumulative phase difference D’
between transmitted and input pulses (obtained from Fourier transforms of both

signals—see Fig. 4.12d). This phase difference can be expressed as follows:

D’ ¼ kL ¼ 2pL
uphase

f (4.3)

where L is the crystal thickness. The ambiguity of 2p in the phase can be eliminated

by making measurements down to sufficiently low frequencies, since the phase

difference must approach zero as the frequency goes to zero. From (4.3) it is

possible to obtain directly the wave vector as function of frequency in the extended
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Fig. 4.12 (a) Incident and (b) transmitted ultrasonic pulses through a 6-layer 3D phononic crystal

of tungsten carbide beads in water. The crystal structure is FCC, and the direction of propagation is

along the [111] direction. (c) The amplitude of the incident (dashed line; left axis) and transmitted

pulses (solid line; right axis), obtained from the fast Fourier transforms of the waves in (a) and (b).
Their ratio yields the frequency dependent transmission coefficient [(4.2)]. (d) The phase differ-

ence between the transmitted and reference pulses, from which frequency dependence of the wave

vector can be determined [(4.3)]. The large decrease in transmitted amplitude near 1 MHz and the

nearly constant phase difference of np, where n ¼ 6 is the number of layers in the crystal, are

characteristics of a Bragg gap
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zone scheme; the corresponding wave vector in the reduced zone scheme is

obtained by subtracting the appropriate reciprocal lattice vector. Thus, (4.3) allows

the dependence of the angular frequency o on the wave vector k to be determined,

yielding the dispersion curve and hence the band structure.

Finally, the experiments on the transmission of ballistic pulses allow the group

velocity, which is the velocity of Bloch waves in the crystal, to be measured. By its

definition, the group velocity is the velocity with which a wave packet travels as a

whole. Since the transmitted pulse may get distorted from its original Gaussian

shape as it passes through the crystal, especially if the pulse bandwidth is wide (as

in Fig. 4.12), the group velocity may lose its meaning in this case [10]. However, it

is still possible to recover two essentially Gaussian pulses by digitally filtering

the input and output pulses with a narrow Gaussian bandwidth centered at the

frequency of interest. The group velocity at that frequency is then found by the ratio

of the sample thickness L to the time delay Dtg between two filtered pulses:

ug ¼ L Dtg
�

: (4.4)

This direct method of measuring the group velocity is illustrated by Fig. 4.13,

which shows input and transmitted pulses filtered at the central frequency of

0.95 MHz with a bandwidth of 0.05 MHz, for a 12-layer 3D crystal of tungsten

carbide beads in water. The delay time is also indicated. By repeating this procedure

for different frequencies, the frequency dependence of the group velocity can be

found.

4.2.2.2 Field Mapping Experiments

In certain cases, the outgoing field is not expected to be spatially uniform and the

direction of the outgoing pulse might not be perpendicular to the crystal’s output

face (as in focusing and negative refraction experiments). To investigate the field

distribution a transducer whose size is larger than the wavelength cannot be used as

it smears out the spatial variations of the field by detecting the average pressure

across the transducer face. To resolve subwavelength details and map the field

accurately one needs an ultrasound detector with physical dimensions less than a

wavelength. For example, Yang et al. [7] and Sukhovich et al. [5] used a small

hydrophone with an active element diameter of 0.4 mm to investigate spatial

properties of the output sound field. This detector was appropriate since in their

experiments the wavelength in water ranged from 0.5 to 3 mm. In practice, the

ultrasound field was measured at every point of a rectangular grid by mounting the

hydrophone on a 3D motorized translation stage. In case of the experiments by

Sukhovich et al. [5], the plane of the grid was perpendicular to the rods and

intersected them approximately in their mid-points (to avoid edge effects).

Fig. 4.14 illustrates the experimental geometry used to map the outgoing field in

negative refraction experiments with the prism-shaped crystal.
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The recorded waveforms (acquired at each point of the grid) can be analyzed in

either time or frequency domains. In the time domain, the value of the field at each

grid point is read at some particular time and then used to create an image plot,

which is essentially a snapshot of the field at this particular moment of time. By

creating several image plots for different times, one can also investigate the time

evolution of the transmitted sound. The video in the supplementary information to

[5] shows an example of such time-evolving field maps. In the frequency domain,

one first calculates the Fourier transforms (FTs) of the acquired waveforms. The

magnitude of each FT is read at a single frequency and these values are used to

make the image plot. The image plot in this case represented an amplitude map

(proportional to the square root of intensity), which would be obtained from the

field plot if continuous monochromatic wave were used as an input signal instead of

a pulse. Examples of field and amplitude distributions measured in the negative

refraction and focusing experiments by Sukhovich et al. [5, 11] are shown in

Sects. 4.4 and 4.5.

4.3 Band Gaps and Tunneling

Lattice periodicity in phononic crystals leads to large dispersive effects in wave

transport, which are shown by band structure plots that depict the relationship

between frequency and wave vector along certain high symmetry directions. Rep-

resentative examples of the band structures of 2D and 3D phononic crystals are

illustrated in Figs. 4.15 and 4.16 for the structures described in Sect. 4.1. In both

these examples, the continuous medium surrounding the inclusions is water, with

the scattering inclusions being 1.02-mm-diameter steel rods for the 2D case and

0.800-mm-diameter tungsten carbide spheres for the 3D case. The solid curves in

these figures show the band structures calculated using Multiple Scattering Theory

(MST), which is ideally suited for determining the band structures of mixed crystals

consisting of solid scatterers embedded in a fluid matrix (see Chap. 10). The

symbols represent experimental data, determined from measurements of the trans-

mitted cumulative phase Df , as described in the previous section. To compare with

the theoretical band structure plots, the measured wave vectors (k ¼ o/vp ¼ Df/L)
are folded back into the first Brillouin zone by subtracting a reciprocal lattice vector

(kreduced ¼ kextended – G). Excellent agreement between theory and experiment is

seen, showing that experiments on relatively thin samples (6 layers for the 2D case,

and 12 layers for the 3D case) are sufficient to reveal the dispersion relations of

waves in the pass bands of an infinite periodic medium.

For both phononic crystals, there is a large velocity and density difference

between the scattering inclusions and the continuous embedding medium,

facilitating the formation of band gaps due to Bragg scattering. It is well known

that Bragg gaps are caused by destructive interference of waves scattered from

planes of periodically arranged scatterers. The lowest frequencies at which such

band gaps may occur satisfy the condition that the separation between adjacent
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crystal planes is approximately half the wavelength in the embedding medium. In

the 2D crystal, the lowest “gap” is only a stop band along the GMdirection, with the

lowest complete gap occurring between the 2nd and 3rd pass bands. For the 3D

crystal, the lowest band gap near 1 MHz is wide and complete, with the complete

Fig. 4.15 Band structure of a 2D phononic crystal of 1.02-mm-diameter steel rods arranged in a

triangular lattice and surrounded by water. The lattice constant a ¼ 1.27 and the steel volume

fraction is 0.584. Solid curves are predictions of the MST and open circles are experimental data.

There are no data points for the second band along GK as this is a “deaf” band to which an incident

plane wave cannot couple
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Fig. 4.16 Band structure of a 3D phononic crystal made from 0.800-mm-diameter tungsten

carbide spheres arranged in the FCC lattice and surrounded by water at a volume fraction of

0.74. Solid curves are predictions of the MST and circles are experimental data
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gap width being nearly 20 % and the width along the [111] direction extending to

approximately 40 %. These results show that phononic crystals with relatively

simple structures can exhibit wide gaps, which are easier to achieve for phononic

crystals than their optical counterparts because of the ability to manipulate large

scattering contrast via velocity and density differences. Indeed, there is an extensive
literature on how to create large band gaps for phononic crystals with a wide variety

of structures, with the important role of density contrast now being well established

(see the special edition on phononic crystals in Zeitschrift fur Kristallographie for

many examples and references [12]).

The existence of band gaps in phononic crystals of finite thickness is shown

clearly through measurements of the transmission coefficient. Results for the 2D

and 3D crystals are plotted in Figs. 4.17 and 4.18, where the symbols represent

experimental data and the solid curves are theoretical predictions using the layer

MST [5, 9]. At low frequencies below the first band gap, the transmission exhibits

small oscillations due to an interference effect resulting from reflections at the

crystal boundaries; there are n�1 oscillations, where n is the number of layers, and

the peaks in these oscillations correspond to the low frequency normal modes of the

crystal. At band gap frequencies, the amplitude transmission coefficient shows very

pronounced dips which became deeper in magnitude as the number of layers in the

crystal increases. The sample-thickness dependence of the transmission coefficient

in the middle of the gap (at 0.95 MHz) is plotted for the 3D crystals in Fig. 4.19.

This figure shows that the transmitted amplitude A decreases exponentially with

thickness in the gap, A(L) ¼ A0 exp[�kL], consistent with evanescent decay of the

amplitude, with k being the imaginary part of the wave vector. The value of k is

0.93 mm�1 in the middle of the gap, quantifying how quickly the transmission

drops as the thickness increases. Thus, wave transport crosses over from propaga-

tion with virtually no losses outside the gap to evanescent transmission inside the

gap. This evanescent character of the transmission at gap frequencies suggests that

ultrasound is transmitted through crystals of finite thickness by tunneling, whose

dynamics can be investigated by measuring the group velocity vg and predicting its
behavior using the MST [6]. Figure 4.20 shows that the group velocity increases

linearly with sample thickness in the absence of dissipation (solid line), an unusual

result that is the classic signature of tunneling in quantum mechanics [13], implying

that the group time (tg ¼ L/vg) is independent of thickness in sufficiently thick

samples. This behavior is clearly seen in Fig. 4.20 by the theoretical predictions

without absorption for thicknesses greater than 5 layers of beads. The dashed line in

this figure implies a constant value of the tunneling time through the phononic

crystal given by tg ¼ 0.54 ms, as expected for tunneling when kL � 1. The

experimentally measured group velocities are less than this theoretical prediction

but are still remarkably fast, being greater than the speed of sound in water

(1.5 mm/ms) for all crystal thicknesses, and greater than the velocities of elastic

waves in tungsten carbide (6.66 and 3.23 mm/ms for longitudinal and shear waves,

respectively) for the largest thicknesses. These experimental results for vg are

smaller than the dashed line in Fig. 4.20 because of absorption, which can be

taken into account in the MST by allowing the moduli of the constituent materials
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to become complex. The predictions of the theory with absorption are shown by the

dashed curve and give a satisfactory description of the experimental results,

indicating how dissipation, which has no counterpart in the quantum tunneling

case, significantly affects the measured tunneling time.

The effect of dissipation on tunneling was interpreted using the two-modes

model (TMM), which allows the role of absorption to be understood in simple

physical terms [6]. Absorption in the band gap of a phononic crystal cuts off the long

multiple scattering paths, making the destructive interference that gives rise to the

band gap incomplete. As a result, a small-amplitude propagating mode exists in
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Fig. 4.17 Amplitude transmission coefficient as a function of frequency for a 6-layer 2D
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parallel with the dominant tunneling mode, so that the group velocity can be

calculated from the weighted average of the tunneling time ttun and the propagation
time tprop ¼ L/vprop. Thus, �vg ¼ L wtunttun þ wpropL=vprop

� ��
, where wtun and wprop

are the weighting factors, which depend on the coupling coefficients and attenuation

factors of each mode [6, 14]. The best fit to the data, shown by the solid curve in

Fig. 4.20, was obtained with a coupling coefficient to the tunneling mode of 0.95,

confirming the dominance of the tunnelingmechanism, and with a contribution from

the propagating component that diminished gradually with thickness, consistent

with decreased dissipation in the thicker crystals—a physically reasonable result

[14]. It is also interesting to note that with thickness-independent weight factors, the

predictions of the TMM and theMSTwith absorption are very similar. These results
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show that the TMM successfully account for the effects of absorption on the

tunneling of ultrasonic waves in phononic crystals, thereby providing a simple

physical picture of the underlying physics.

The demonstration of the tunneling of ultrasound through the band gap of a

phononic crystal raises an interesting question: Can resonant tunneling, analogous

to the resonant tunneling of a particle through a double barrier in quantum mechan-

ics, be observed in phononic crystals? This effect is intriguing since on resonance

the transmission probability of a quantum particle through a double barrier is

predicted to be unity, even though the transmission probability through a single

barrier is exponentially small. This question has been addressed through experi-

ments and theory on the transmission of ultrasound through pairs of phononic

crystals separated by a uniform medium, which formed a cavity between them

[8]. Evidence for resonant tunneling was revealed by large peaks in the transmis-

sion coefficient on resonance, which occurs at frequencies in a band gap when the

cavity thickness approaches a multiple of half the ultrasonic wavelength. However,

the transmission was less than unity on resonance because of the effects of dissipa-

tion in the phononic crystals, an effect that has a simple interpretation in the two

modes model as a consequence of leakage due to the small propagating component

in the band gap. Thus, the subtle effects of absorption on resonant tunneling in

acoustic systems could also be studied. In addition, the use of pulsed experiments

enabled the dynamics of resonant tunneling to be investigated. Very slow (“sub-

sonic”) sound was observed on resonance, while at neighboring frequencies, very

fast (“supersonic”) speeds were found. In contrast to the quantum case, ultrasonic

experiments on resonant tunneling in double phononic crystals enable the full wave

function to be measured, allowing both phase and amplitude information, in

addition to static and dynamic aspects, to be investigated.

While the most commonly studied type of band gap in phononic crystals arises

from Bragg scattering, band gaps may also be caused by mechanisms, such as

hybridization and weak elastic coupling effects, which do not rely on lattice

periodicity. Hybridization gaps are caused by the coupling between scattering

resonances of the individual inclusions and the propagating modes of the embed-

ding medium [15]. Their origin may be viewed as a level repulsion effect. Band

gaps due to this hybridization mechanism were first observed, and have also been

studied more recently, in random dispersions of plastic spheres in a liquid matrix

[16–20]. Such gaps are of particular importance in the context of acoustic and

elastic metamaterials, where the coupling of strong low frequency resonances with

the surrounding medium may lead to negative values of dynamic mass density and

modulus [21]. In phononic crystals, it is the possibility of designing structures in

which both hybridization and Bragg effects occur in the same frequency range that

is especially interesting [22]. For example, the combination of Bragg and

hybridization effects has been invoked to explain the remarkably wide bandgaps

that have been found both experimentally and theoretically in three dimensional

(3D) crystals of dense solid spheres (e.g., steel, tungsten carbide) in a polymeric

matrix (e.g., epoxy, polyester) [14, 23]. Other examples of band gaps that are

enhanced by the combined effects of resonances and Bragg scattering have been
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demonstrated in two-dimensional crystals of glass rods in epoxy and three dimen-

sional arrays of bubbles in a PDMS matrix [24, 25].

We illustrate the characteristic features of hybridization gaps by showing results

of experiments and finite element simulations on a two-dimensional hexagonal

phononic crystal of nylon rods in water [26]. Figure 4.21 shows the dispersion

relation and transmission coefficient in the vicinity of the lowest scattering reso-

nance of nylon rods for a crystal with a nylon volume fraction of 40 %. The

resonance occurs near 1 MHz for the 0.46-mm-diameter rods used in this crystal.

Near this frequency, the dispersion relation exhibits a negative slope, corresponding

to a range of frequencies with negative group velocity. Direct measurements of the

negative group velocity were performed from transmission experiments using

narrow-bandwidth pulses in the time domain, where the peak of the transmitted

pulse was observed to exit the crystal before the peak of the input pulse entered the

crystal. The negative time shift arises from pulse reshaping due to anomalous

dispersion and does not violate causality. This property of negative group velocity

is characteristic of resonance-related band gaps, and can be used to distinguish

them from Bragg gaps, for which the group velocity is large and positive, as shown

above. At higher frequencies, a second gap is observed for this crystal near

1.5 MHz; this gap is dominated by Bragg effects, with large positive group

velocities inside the gap.

A third mechanism leading to the formation of band gaps occurs in three-

dimensional single-component phononic crystals with the opal structure: spherical
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Fig. 4.21 Dispersion relation (a) and transmission coefficient (b) for a 6-layer 2D crystal of nylon

rods in water at a nylon volume fraction of 0.40. Symbols and solid curves represent experimental

data and finite element simulations respectively. The lower band gap near 1 MHz is an example of

a pure hybridization gap, characterized by a sharp dip in transmission and a range of frequencies in

the dispersion curve for which the group velocity is negative. The broader second gap centered

near 1.5 MHz has the character of a Bragg gap, with a large positive group velocity, and occurs at

the edge of the first Brillouin zone, indicated by the vertical dashed line
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particles that are bonded together by sintering to form a solid crystal without a

second embedding medium. Band gaps in such phononic crystals have been

observed at both hypersonic and ultrasonic frequencies [26, 27]. They have also

been seen in disordered structures of randomly positioned sintered spherical

particles [28, 29]. The origin of the band gaps is associated with resonances of

the spheres, but the underlying mechanism is quite different to the formation of

hybridization gaps. Indeed the physics is more analogous to the tight-binding model

of electronic band structures, with the resonant frequencies of the spheres

corresponding to the electronic energy levels of the atoms. The coupling between

the individual resonances of the spherical particles, due to the necks that form

between the particles during sintering, leads to the formation of bands of coupled

resonances with high transmission (pass bands). However, if the mechanical cou-

pling between the spheres is sufficiently weak, these pass bands have limited

bandwidth, and band gaps form in between them. These band gaps can be quite

wide and are omnidirectional.

Up to now, the theory and experiments we have described in this chapter have

been related to absolute band gap properties of phononic crystals. These results on

sound attenuation and tunneling have proved phononic crystals meaningful in the

perspective of building-up artificial materials with frequency dependent properties.

However, the periodic structure of phononic crystals similarly impacts propagation

of elastic waves in the frequency range of the passing bands. More specifically, the

zone folding effects imply the existence of negative group velocity bands. Such

bands offer the opportunity of negative refraction. In the next sections, theoretical

and practical aspects of negative refraction are discussed.

4.4 Negative Refraction in 2D Phononic Crystals

The periodicity of the phononic crystals makes them markedly different from the

homogeneous materials since wave propagation now depends on the direction

inside the crystal. It was shown in the previous section that the periodicity is the

fundamental cause for the existence of the stop bands and band gaps. In this section,

we will consider some other remarkable properties of phononic crystals not found

in regular materials: negative refraction and sound focusing. It will be shown that

both phenomena are essentially band structure effects.
It is well known that reflection and refraction of waves of any nature (acoustic,

elastic or electromagnetic) occurring at the interface between two different media

are governed by Snell’s law. According to Snell’s law, the component of the

wavevector, which is tangential to the interface, must be conserved as the wave

propagates from one medium to another. Let us consider, for example, the simple

case of a plane wave obliquely incident from a liquid with Lamé coefficients l1 and
m1 ¼ 0 on an isotropic solid characterized by Lamé coefficients l2 and m2
(Fig. 4.22). As a result of the wave interaction with the boundary, part of the energy

of the incident wave is reflected back into the liquid in the form of a reflected
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wave, which propagates with the phase velocity c1 ¼
ffiffiffiffiffiffiffiffiffiffi
l1 r=

p
. The rest of the

incident wave is transmitted into the solid and generates two outgoing waves,

longitudinal and transverse, which propagate with phase velocities

c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl2 þ 2m2Þ r=

p
and b2 ¼

ffiffiffiffiffiffiffiffiffiffi
m2 r=

p
respectively. Snell’s law requires

that parallel (to the interface) components of the wavevectors of the incident wave,

k1 ¼ o c1= , and of both refracted waves, k2 ¼ o c2= and k2t ¼ o b2= be equal (note

that k1 lies in the x–z plane and so do k2 and k2t). Mathematically, this means that the

following conditions must be satisfied:

k1 sin y1 ¼ k2 sin y2 ¼ k2t sin g2 (4.5)

where anglesy1; y2 andg2 are indicated in Fig. 4.22. By introducing the notion of the
index of refraction n and n0 , where n ¼ k2 k1= and n0 ¼ k2t k1= , Snell’s law is

frequently written in the following form:

sin y1¼ n sin y2
sin y1 ¼ n0 sin g2

(4.6)

With the help of Snell’s law (4.5), one can easily calculate the refraction angles

y2 and g2when the parameters of the two media and the angle of incidence y1 are

known (it is clear from Snell’s law that the angle of reflection must be equal to the

angle of incidence). Physically, Snell’s law implies that refraction and reflection

occur in the same way at any point of the interface between two media (i.e.,

independent of the x coordinate in Fig. 4.22).

The refraction of the wave from one medium to another can be conveniently

visualized with the help of the equifrequency surfaces (or contours in case of 2D

systems). Equifrequency surfaces are formed in k-space by all points whose

wavevectors correspond to plane waves of the same frequency o . Physically,

they display the magnitude of the wavevector ~k of a plane wave propagating in

the given medium as a function of the direction of propagation. For any isotropic

medium the equifrequency surfaces are perfect spheres (circles in 2D), since the
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magnitude of the wavevector is independent of the direction of propagation, as

illustrated in Fig. 4.23.

Another extremely important property of equifrequency surfaces is that at its

every point the direction of the group velocity~ug (or equivalently the direction of the
energy transport) in the medium at a given frequency coincides with the direction of

the normal to the equifrequency surface (pointing towards the increase of o). In

other words,~ug is given by the gradient of o as a function of the wavevector ~k:

~ug ¼~r~k oð~kÞ (4.7)

On the other hand, the direction of the phase velocity~up (or the direction of the

propagation of constant phase) is set by the direction of the wavevector~k. As shown
in Fig. 4.23, in an isotropic medium both phase and group velocities point in the

same direction. This is however not the case in an anisotropic medium (e.g., GaAs

or CdS), in which magnitude of the wavevector is direction dependent and thus

equifrequency surfaces will not be perfect spheres anymore.

Having introduced the notion of the equifrequency surfaces/contours, let us use

them to illustrate the refraction of a plane wave in Fig. 4.24. This is accomplished

by drawing the equifrequency contours (since all wavevectors lie in the x–z plane)
for each medium on the scale that would correctly represent the relative magnitudes

of the wavevectors of the incident and refracted waves. By projecting the parallel

component of the incident wavevector ~k1 (which must be conserved according to

Snell’s law) on the contours of the solid, one is able to find the direction of

propagation (i.e., refraction angles) of both waves in the solid (Fig. 4.24). As was

explained in the preceding paragraph, group velocities ~ug and wavevectors ~k are

parallel to each other (because of the spherical shape of the equifrequency

contours) and also point in the same direction, since o increases as the magnitude

of the wavevector increases, meaning that~r~k oð~kÞ points along the outward normal

to the equifrequency contour. The significance of the last observation will become

apparent when the refraction in 2D phononic crystals will be discussed.
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The periodicity of the phononic crystal makes it an anisotropic medium, in which

the magnitude of the wavevector depends on the direction inside the crystal and

equifrequency contours are, in general, not circular. However, the frequency ranges

still might exist where the equifrequency are almost perfect circles as is the case of a

2D crystal made of solid cylinders assembled in a triangular crystal lattice in a liquid

matrix. For example, for a crystal made of stainless steel rods immersed in water the

MST predicts the existence of circular equifrequency contours in the 2nd band for

the frequencies that are far enough from the Brillouin zone edges (ranging from

0.75 MHz to 1.04 MHz, which is the top frequency of the 2nd band). The

equifrequency contours for the several frequencies are presented in Fig. 4.25 [5].

Note that in this frequency range the wavevector ~kcr and the group velocity~ug
(which defines the direction of the energy transport inside the crystal) are antipar-
allel to each other. This is the consequence of the fact that o increases with the

decreasing magnitude of the wavevector, meaning that~r~koð~kÞ points along the

inward normal to the equifrequency contour, as explained in Fig. 4.26. It is also

obvious that, because of the circular shape of the equifrequency contours in the 2nd

band, ~kcr and~ug are antiparallel irrespective of the direction inside the crystal.

Let us investigate the consequence of this fact by considering the refraction into

such a phononic crystal of a plane wave incident on the liquid/crystal interface from

the liquid and having frequency lying in the 2nd band of the crystal (Fig. 4.27). The

parallel component of the wavevector in both media must be conserved just as it

was in the case displayed in Fig. 4.24. What is different however is that the wave

vector inside the crystal and the direction of the wave propagation inside the crystal
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are now opposite to each other. As a result, both incident and refracted waves (rays)
stay on the same side of the normal to the water/crystal interface (compare with

Fig. 4.24 in which incident wave crosses the plane though the normal as it refracts

into the lower medium).
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MST for the several
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the 2D phononic crystal made

of stainless steel rods in water
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Since the refracted wave happens to be on the negative side of the normal, this

unusual refraction can also be described by assigning an effective negative index of
refraction to the crystal. In this case we say that the incident wave is negatively
refracted into the crystal and use the term “negative refraction” to indicate this

phenomenon. Before we proceed further with discussion of sound wave refraction

in phononic crystals, it is worth noting that the negative refraction considered above

is fundamentally different from negative refraction in double negative materials, as

originally envisaged for electromagnetic waves by Veselago [30] in materials with

negative values of both electric permittivity e and magnetic permeability m.
Although both phenomena look similar, it is a band structure effect in case of

phononic crystals whereas in case of doubly negative materials it is brought about

by the negative values of the local parameters of the medium (e and m for the

electromagnetic wave case). It is also important to recognize that the negative

direction of refraction is always given by the direction of the group velocity in

phononic crystals.

Let us now consider the question of the experimental observation of the negative
refraction in phononic crystals. First, it should be mentioned, that the same effect

must occur when the direction of the wave in Fig. 4.27 is reversed, i.e., when the

wave is incident on the crystal/water interface from the crystal. One might contem-

plate an experiment in which a plane wave would be incident obliquely on a flat
phononic crystal with parallel sides. According to the previous discussion, it should
be refracted negatively twice before it finally appears on the output side of the

crystal, as shown in Fig. 4.28.

This type of experiment, however, is not able to provide conclusive evidence of

the negative refraction, as the direction of the propagation of the output wave will

be the same whether it refracts negatively inside the phononic crystal or positively

in a slab of a regular isotropic material (Fig. 4.28). In case of an input beam of finite

width, one can look for evidence of either negative or positive refraction inside the

slab by measuring the position of the output beam with respect to the input beam

and comparing it to the predicted value. In practice, this shift in position of the finite

width beammay be difficult to resolve. Another type of experiment, which is able to
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Fig. 4.27 Negative

refraction of a plane wave

incident obliquely on the

water/crystal interface. Note

the conservation of the

wavevector component kjj
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Fig. 4.28 Propagation of the sound wave through a flat crystal with parallel surfaces. Both

negatively and positively refracted waves leave the crystal’s surface in the same direction. Also

indicated are distances dp and dn by which positively and negatively refracted beams are displaced

with respect to the input beam.
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Fig. 4.29 Negative refraction experiment with the prism-shaped phononic crystal.
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negative refraction at the output face of the prism crystal are shown. The thick arrow indicates the

direction of wave propagation inside the crystal
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provide direct verification of whether positive or negative refraction takes place,

employs a prism-shaped phononic crystal (Fig. 4.29).

For the prism-shaped crystal, the input plane wave is incident normally on the

shortest side of the crystal and propagates into the crystal without any change in its

original direction, just as it would do in the case of a prism made out of a regular

material (see Fig. 4.29a). Recall that the ensuing wave inside the crystal will have

its wavevector ~k opposite to the direction of its propagation. This wave, however,

will be incident obliquely on the output side of the crystal and must undergo

negative refraction upon crossing the crystal/water interface (Fig. 4.29b), whereas

in the case of a prism of a regular material the output wave will be positively

refracted. Therefore, by recording on which side of the normal the outgoing wave

appears as it leaves the crystal, one is able to directly observe negative refraction of

the sound waves. From the predictions of the MST, one would expect the outgoing

wave to emerge on the negative side of the normal. This prediction was tested in the

experimentally by Sukhovich et al. [5]. The 2D phononic crystal was made in a

shape of a right-angle prism which is shown in Fig. 4.30. along with the high

symmetry directions of the triangular crystal lattice.

In the experiment, the input signal was normally incident on the shortest side of

the crystal, and the wavefield was scanned at the output side of the crystal

(Fig. 4.29b). Figure 4.31 presents the snapshot of the wavefield on which the

negatively refracted outgoing wave is clearly observed.

The angle at which the negatively refracted wave emerges with respect to

normal, �21� � 1�, was found to be in good agreement with the one predicted

by the MST and Snell’s law (�20.4�).

4.5 Flat Lenses and Super Resolution

In 2000, Pendry [31] has proposed to use “Double-negative” metamaterials, which

means composite systems exhibiting both negative permittivity and dielectric

constant, as a building material for potentially perfect lenses that beat the Rayleigh

diffraction limit. This is possible thanks to the contribution of two phenomena. First

intrinsic properties of negative index metamaterials provide self-focusing capabilities

to a simple slab of these materials. The second effect requires the evanescent part of

the spectra of a source to couple with the lens and being resonantly “amplified” in

order to reach the image without losses. From this time, experimental and theoretical

demonstrations of acoustic metamaterials and phononic crystals have been reported.

Early results by Yang et al. [7] in 2004 have shown the applicability of phononic

structures for sound focusing. They have realized phononic crystals made of

0.8 mm-diameter tungsten carbide beads surrounded by water. The face centered

cubic structure of the closed packed beads exhibits a complete band gap in the 0.98

to 1.2 MHz range. From the analysis of the equifrequency surfaces summarized in

Fig. 4.32a, b, the authors have shown that significant negative refraction effects are

expected due to the highly anisotropic properties of the dispersion relations.
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Experiments have been carried out to study the transmission of sound across a stack

made of the phononic crystal mounted onto a thick substrate. As will be discussed

in Fig. 4.33, negative refraction through a phononic crystal slab is expected to

produce a focus inside the crystal and on the output medium. This later focus was

observed by Yang et al. at the right distance on the substrate surface. They used a

pinducer that produce ultrasonic pulses and a hydrophone mounted on a 3D

translation stage. The recorded data was then treated by Fourier transform in

Fig. 4.32 Focusing of sound in a 3D phononic crystal after Yang et al. [7]. (a) Cross section of the
equifrequency surfaces at frequencies near 1.60 MHz in the reduced (a) end extended (b) Brillouin
zones. The cross section plane contains the [001], [110] and [111] directions. (c) Experimental

field patterns measured a 1.57 MHz without the phononic crystal in place. (d) same as (c) with the
phononic crystal in place
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Fig. 4.33 Illustration of the refraction properties of a negative index material slab. (a) In the usual
case of a positive material a source gives only divergent beams. If the slab is made of a negative

index metamaterial then the beams are convergent in the extent of the slab. (b) If the slab is thick

enough (or the index has sufficient magnitude), the incoming rays focus twice in the thickness of

the slab and on the output side. Here the index is supposed to be opposite to the index of the

embedding media. Two images are produced, inside the slab and on the output side (If the slab is

too thin (Fig. 4.33a) then a single virtual image exists)
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order to recover the components at the frequency of interest. The field patterns in

Fig. 4.32c, d show the focusing effect in the presence of the phononic crystal.

In 2009, evidences of an acoustic super-lensing effect have been provided by

Sukhovich et al. [11]. Here we describe the principles of acoustic super-resolution

and go into details about these recent results.

4.5.1 Sound Focusing by a Slab of Negative Index Material

Among the numerous consequences of negative refraction, the most promising in

terms of applications is the ability for a slab of negative index material to produce

an image from any point source. Indeed, in the extent of an equivalent homoge-

neous negative index material, the Snell’s law simply applies using the negative

index.

n1 sini1 ¼ n2 sini2 (4.8)

Here, n1 and n2 are the indexes and i1 and i2 the incident and refracted angles.

The negative value of i2 accounts for both refracted and incident beams being on the

same side with respect to the normal plane. Let us consider a sound source that

emits waves in a usual positive medium in front of a slab of another material. As

depicted on Fig. 4.33a, geometric ray tracing predicts that, if both materials are

positive, every beam from the source will cross the two interfaces between the two

materials and diverge as well on the output side of the slab. By contrast, if the slab is

made of a negative index material then, any diverging beam will converge in the

thickness of the slab. In the latter case, provided that the slab is sufficiently thick,

the beam will focus twice (Fig. 4.32b).

This way a simple parallel slab of negative material performs by itself the

focusing of an image as a lens would do. It is worthy to note that the principle of

such a lens does not rely on the effect of shaping the material but rather on the

intrinsic properties of negative index materials. The properties of these lenses are

completely different from their usual counterparts. First, a simple geometrical

analysis shows that the link between the respective positions of the image and

source points is:

i ¼ d
tani2
tani1

� s ¼ d
�n1=n2cosi1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðn1=n2Þ2sin2i1
q � s; (4.9)

where d is the slab thickness, s the distance from the point source to the input side

and i the distance from the output side to the image. The consequence of this

relation is that rays with different angles of incidence focus at different distances

from the output side. This is a drawback since producing an image from a point

source requires that all the angular components of the incident signal are focused
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to a same point, which is called stigmatism. Here this requirement is fulfilled

only if:

n2 ¼ �n1; (4.10)

which is the condition for All Angles Negative Refraction (AANR). This first

condition is a strong yet possible condition for imaging with a negative

metamaterial slab. In that case (4.9) reduces to:

i ¼ d � s: (4.11)

4.5.2 Origin of the Rayleigh Resolution Limit: Toward Super
Resolution

This condition being satisfied, one can hope to build a lens whose resolution at a

wavelength l is at best D ¼ l 2= . This limitation, known as Rayleigh resolution

limit, holds even in the case of no-loss materials and with a lens of infinite

aperture. As pointed out by Pendry [31], its origin lies in the loss of the near

field, evanescent, components from the source. If we consider the field emitted by

a point source one must consider components with real wave-vectors (propagating

waves) and pure imaginary wave-vectors due to the finite extension of the source.

The former components are evanescent waves whose decay occurs over the

distance of a few wavelengths. In the following we describe by means of a

Green’s function formalism [32] how the loss of these components leads to the

Rayleigh resolution limit.

Let assume an infinite slab of thickness d made of a homogeneous double

negative material immersed in a positive medium. Despite Green’s functions are

well suited to describe the response of any medium (possibly inhomogeneous) to a

point source stimulus, for the sake of simplicity, both media are treated as homoge-

neous fluids. This assumption will be discussed further on a practical case. How-

ever, this description is still suitable to show how to enhance the resolution thanks

to the integration of evanescent components. The notations and geometry used in

the following parts are depicted on Fig. 4.34, where r1, r2,c1 and c2 are the densities
and the sound waves velocities (phase velocities) of media 1 and 2 respectively.

The Green’s functionGð~x;~x0Þ describes the field generated at~x by a Dirac source
located at~x0. Due to the axial symmetry of the problem and the aim to introduce the

concept of wave-vectors we shall write this function as a two-dimensional spatial

Fourier transform in the plane parallel to the fluid/slab interface:

Gð~x;~x 0Þ ¼
Z

d2~k==

ð2pÞ2 e
i~k== ~x==�~x 0

==ð Þgð~k==; x3; x03Þ; (4.12)
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where~k== and~x== are the components of the wavevector and position vector parallel

to the (x1, x2) plane. This is the function of a composite medium composed of the

flat lens (medium 1) of thickness d (with faces centered on�d/2 and d/2) immersed

between two semi-infinite media 2. Following the notions developed in Chap. 3

about composition of Green’s functions, this Fourier Transform can be

expressed by:

gð~k==; x3; x03Þ ¼
2r1c

2
1a1e

�a2ðx3�x0
3
�dÞ

r1c
2
1a1 þ r2c

2
2a2

� �2
ea1d � r1c

2
1a1 � r2c

2
2a2

� �2
e�a1d

for x03<� d=2 and x3>d=2

(4.13)

Here,ai ¼ �ik3;ðiÞ , is the component of the wave-vector perpendicular to the

interface between medium 1 and medium 2.1 This wave-vector is the key parameter

since its value will account for the propagating or evanescent nature of the waves

and its sign depends on the positive or negative index of the material. The

component k3;ðiÞ of the wave-vector is fully determined at a given frequency and

k== by the dispersion relation of a homogeneous fluid:

o
ci

� �2

¼ k2== þ k23;ðiÞ (4.14)

In addition, the conservation of the parallel component of the wave-vector

implies that k== is the same in both media. One can see that (4.14) admits real

solutions for k3,(i) (i.e., propagating waves) only if o � k==ci . But we have to

consider the opposite case when o>k==ci and k3,(i) is pure imaginary (i.e., evanes-
cent waves). Finally, in the case of a double negative material, the wave-vector is

Fig. 4.34 Notations used in

the Green’s function analysis

of the Rayleigh resolution

limit and super-resolution

phenomena

1One can note that the zeros of the denominator in (4.13) correspond to all propagating and bound

modes of the system.

128 A. Sukhovich et al.

http://dx.doi.org/10.1007/978-3-642-31232-8_3


anti-parallel to direction of propagation which is accounted for by the minus sign

for the real k3,(1) . This choice of a negative sign in the case of propagating waves

ensures causality as pointed out by Veselago [32]. These considerations about the

wave-vectors are summarized in Table 4.2.

As shown above, in order to achieve sound focusing by means of a negative

index slab, the All Angles Negative Refraction condition has to be satisfied. Since

the index is defined by ni ¼ 1 ci= , it implies that c1 ¼ c2 ¼ c. We will further

simplify the model with some loss of generality by assuming that r1 ¼ �r2 ¼ �r
� 0. The negative sign of the density is due to the fact that medium 1 is a double

negative material which means that both bulk modulus and density are negative.

Therefore, the Fourier transform of the Green’s function from (4.13) reduces to:

gðk==; x3;x03Þ ¼ e�aðx3�x0
3
�2dÞ

2rc2a
for x03<� d=2 and x03>d=2 (4.15)

This function has to be summed over the parallel components range k// of the
source. This range will determine the resolution of the image. Indeed, if we assume

that both propagating and evanescent modes contribute to the formation of the

image (i.e., the integral is carried out for k// from zero to infinity2) then:

Gð~x;~x 0Þ ¼
ð1
0

d2~k==

2pð Þ2 e
i~k== ~x==�~x 0

==ð Þg k==; x3; x
0
3

� � ¼ ei o=cð Þ~x�~xij j

4prc2 ~x�~xij j ; where

~xi ¼ 0; 0;
d

2
þ d � s

� �
:

(4.16)

This expression is that of a spherical wave originating at the point~xi. The spatial
extent of this image is zero and therefore represents the perfectly reconstructed

image of the point source. Comparing this results to the notations of Fig. 4.33b, we

retrieve the relationship i ¼ d – s. On the opposite, if we consider the usual far field
situation, evanescent waves do not contribute to the image reconstruction and at a

given frequency o, the upper limit for k// is o/c. Then, the Green’s function

Table 4.2 Normal to the slab component of the wave vector is defined depending on the

evanescent or propagating nature of the wave and of the sign of the medium index

Medium 1

Negative index

Medium 2

Positive index

Propagating

o � k==ci
k3;ð1Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

c2
1

� k2==

q
k3;ð2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

c2
2

� k2==

q
Evanescent

o<k==ci
k3;ð1Þ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2== � o2

c2
1

q
k3;ð2Þ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2== � o2

c2
2

q

2 The formulae:
ffiffip
2

p e�a xj j
a ¼ 1ffiffiffiffi

2p
p

R1
�1

eixx

a2þx2 dx is used to calculate the Green’s function.
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describes an image similar to (4.9) convoluted by a Gaussian profile whose half-

width is:

D ¼ 2pc o= ¼ l 2= (4.17)

This latter case accounts for the Rayleigh resolution limit. Beating this resolu-

tion limit requires to achieve reconstruction of the image with at least a part

of the evanescent spectrum from the source. Furthermore, we see that the

actual resolution of an image is defined by the upper bound of the integral in

(4.16). If any mechanism enables the integration of components with wave vectors

up to k//m > o/c, then the resolution is:

D ¼ 2p=km<l 2= ; (4.18)

which demonstrates that the system achieves super resolution.

4.5.3 Design of a Phononic Crystal Super Resolution Lens

Sub wavelength resolution imaging has been a topic of considerable interest over

the past decade. As seen above, this effect requires negative refraction and the

ability of a system to transmit the entire spatial Fourier spectrum from a source,

including evanescent components. Here, we discuss the possibility to implement

such an acoustic super-lens and go into details about the recent experimental and

theoretical demonstration by Sukhovich et al. [11] using a structure consisting of a

triangular lattice of steel cylinders in methanol, all surrounded by water

(Fig. 4.35a).

First, negative refraction can arise from one of two mechanisms. Double nega-

tive metamaterials consist of systems including locally resonant structures which

exhibit a negative effective mass and negative bulk modulus [33, 34]. Other suitable

systems are phononic crystals, consisting of a periodic array of inclusions in a

physically dissimilar matrix [5, 6, 9, 11, 35, 36]. Negative refraction in phononic

crystals relies on Bragg scattering that induces bands with a negative group

velocity. It should be noticed that, since both metamaterials and phononic crystals

have complex dispersion curve, the approximation of a homogeneous media is

unlikely to be satisfied over the whole frequency range. However, it is possible to

design these systems such that in a narrow frequency band, they can be considered

as double negative materials with an effective negative index. In order to achieve

AANR, one has to design the phononic crystal such that at a given frequency, the

equifrequency contour is similar to an isotropic media, i.e., is a circle. In addition, at

this frequency, in order to satisfy condition c1 ¼ c2 ¼ c, this circle must have the

same diameter as the equifrequency contour of the media that surrounds the

phononic crystals lens. This requirement explains the choice of methanol as

the fluid medium surrounding the steel rods in the phononic crystal so that, at a
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frequency in the second band, the size of the circular equifrequency contours of the

crystal could be tuned to match the equifrequency contours of water outside the

crystal (Fig. 4.36). Thus, one of the important conditions for good focusing could be

achieved with this combination of materials. Indeed, any liquid with a sound

velocity that is small enough relative to water would have sufficed, with methanol

being a convenient choice not only because it is a low-loss fluid with a low velocity

(approximately two thirds the velocity in water) but also because it is readily

available. In this case, in the vicinity of the frequency of 544 kHz (the operation

frequency), the methanol-steel lens behaves as a negative index medium whose

index is opposite to the index of water, thus achieving the AANR condition.

The second requirement to obtain sub wavelength imaging is to keep the

contribution of the source evanescent modes. Following Sukhovich et al. [11],
sub wavelength imaging of acoustic waves has also been shown to be possible

using a square lattice of inclusions on which a surface modulation is introduced

[38], a steel slab with a periodic array of slits [39], and an acoustic hyperlens made

from brass fins [40]. In these demonstrations, the mechanism by which this phe-

nomenon occurs has been attributed to amplification of evanescent modes through

bound surface or slab modes of the system. In these systems, bound acoustic modes

whose frequency falls is the vicinity of the operation frequency exist. In that case,

provided that the lens is located in the close field of the source, some energy

radiated by the evanescent modes will couple in a resonant manner to these

bounded modes. The whole phononic crystal slab is excited and reemits the

evanescent components necessary to the perfect image reconstruction. It is worthy

to note that the amplification mechanism does not violate the conservation of

energy since evanescent waves does not carry energy as pointed out by Pendry

[31]. In this case, couplings with bounded modes play the role of the amplification

mechanism. These modes can be studied by means of a Finite Difference Time

Domain (FDTD) (see Chap. 10) simulation as shown on Fig. 4.37. If we look at the

dispersion graph in the direction parallel to the water/lens interface (i.e., in the GK
direction of the phononic crystal first Brillouin zone), we see a number of branches

that corresponds to waves whose displacement is confined in the phononic crystal

or at the surface of the slab. More specifically, at the operation frequency of

544 kHz, some nearly horizontal branches extend outside the water dispersion

cone. These modes are likely to couple with wave vectors outside the cone at this

frequency in accordance with the scheme described by Luo et al. [41].

4.5.4 Experimental and Theoretical Demonstration

Experiments have been carried out by Sukhovich [11] on a 2D phononic crystal

made of 1.02-mm-diameter stainless steel rods arranged in a triangular lattice with

lattice parameter of a ¼ 1.27 mm. The surface of the crystal was covered by a very

thin (0.01 mm) plastic film and the crystal was filled with methanol. A rectangular

lens was constructed from 6 layers of rods, with 60 rods per layer, stacked in the
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GM direction of the Brillouin zone, i.e., with the base of the triangular cell parallel

to the surface. The experiments were conducted in a water tank. The ultrasound

source was a narrow subwavelength piezoelectric strip, oriented with its long axis

parallel to the steel rods; it was therefore an excellent approximation to a 2D point

source. The spatiotemporal distribution of the acoustic field on the output side of the

lens was detected with a miniature 0.40-mm-diameter hydrophone mounted on a

motorized stage, which allowed the field to be scanned in a rectangular grid pattern.

This setup ensures that the widths of the source and detector are smaller than the

wavelength in water (l ¼ 2.81 mm) at the frequency of operation (530 kHz). The

pressure field, shown on Fig. 4.38, exhibits a focal spot on the axis of the lens at a

distance of approximately 3 mm from the output side. The resolution of this image

is defined as the half-width of the pressure peak corresponding to the image. This

value is determined by locating the maximum amplitude and fitting a vertical cut of

the pressure field through this point by a sinus cardinal function (sinc(2px/D)). The
half width D/2 is taken to be the distance from the central peak to the first minimum.

The resolution at 530 kHz was found to be 0.37l, where l ¼ 2.81 mm. This value is

significantly less than the value of 0.5l that corresponds to the Rayleigh diffraction
limit, demonstrating that the phononic crystal flat lens achieves super-resolution.

These experimental results are supported by FDTD simulations. The FDTD

method is based on a discrete formulation of the equations of propagation of elastic

waves in the time and space domains on a square grid. The method is described in

further details in Chap. 10. Here the whole methanol/steel phononic crystal is

meshed as well as a part of the surrounding water. The limits of the simulation

cell are treated under the Mur absorbing boundary condition that prevents

reflections. The simulated phononic crystal slab has only 31 rods per layer in

order that calculations remain compatible with computational resources. However

tests have shown low influence of the reduced length. The acoustic source is

simulated by a line source (0.55 mm wide) of mesh points emitting a sinusoidal

displacement at frequency n ¼ 530 kHz in accordance with the best experimental

result. Their displacement has components parallel and perpendicular to the surface

of the lens. The contour map on Fig. 4.38b shows the field of the time-averaged

absolute value of the pressure. It can be seen in that an image exists on the right side

of the crystal accompanied by lobes of high pressure that decay rapidly with

distance from the surface of the crystal. The similarity between the experimental

scheme and the FDTD mesh enables direct comparison of both experimental and

simulated pressure fields. The FDTD results confirm the observation of super

resolution with an image resolution of 0.35l in excellent agreement with

experiments. Both experimental and FDTD field patterns of Figs. 4.35b and 4.38

exhibit intense excitation inside the lens which is consistent with the role that bound

modes are expected to play in the resonant transmission of the acoustic spectra.

Theses modes, near the operating frequency, are bulk modes of the finite slab, not

surface modes that decay rapidly inside the slab.

As seen above, the Rayleigh resolution limit originates from the upper limit of

the Fourier spectrum transmitted to the image point which is at best o/c in the far

field regime of an imaging device. Here, since re-emitted evanescent waves can
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contribute to the image, the resolution beats this criterion. By this mechanism one

can virtually build an image up to an arbitrary resolution provided all evanescent

modes are amplified and a sufficient time is available to reach the steady state

regime for all evanescent modes. However, despite the absence of losses in the

Fig. 4.35 Scheme of the system studied by Sukhovich et al. [11]. The radius of the steel inclusions
is r ¼ 0.51 mm with a lattice parameter of a ¼ 1.27 mm. (a) FDTD grid used for the numerical

study. The black line in front of the input side represents the source. (b) Averaged pressure field

obtained through FTDT simulation. Note the image on the output side whose resolution (0.35l) is
below the Rayleigh limit
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Fig. 4.36 Band structure of the methanol-steel phononic crystal after [37]. The solid lines represent
the dispersion curves. The dispersion relation of the surrounding medium (water) is drawn as dashed
lines. The second band exhibits a negative group velocity and intersects the water cone on a circular
equifrequency at 544 kHz
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simulation scheme, the simulated resolution value is only 0.35l. This fact indicates
that the transmission of evanescent waves does not occur over the full Fourier

spectra but rather up to a limiting cut-off value km. The previous analysis of super
resolution in term of Green’s function assumed the constituent material of the lens

to be a homogeneous negative index material and did not discuss the possible

origins of limitations to the transmitted Fourier spectra of the source. In the

practical case when a phononic crystal, which is an inhomogeneous periodic

material, is used as the lens, only modes with wave vector k parallel to the lens

surface that is compatible with the periodicity of the phononic crystal in that same

direction can couple to the sound source. In other words, all evanescent modes

cannot contribute to the reconstruction of the image. The upper bound of the

integration is determined by the largest wave vector km parallel to the lens surface

that is compatible with the periodicity of the phononic crystal in that same direction

and that can be excited by the sound source. In Fig. 4.37, the dispersion curves of

the slab immersed in water are shown in the direction parallel to the lens surface.

The dashed diagonal lines are the dispersion curves of acoustic waves in water and

the dotted horizontal line represents the operating frequency. At this frequency, the

wave vector components of the incident wave with k// < o/c can propagate in the

crystal; they will form an image according to classical geometric acoustics.

Components with k// > o/c will couple to the bound modes of the slab provided

that these bound modes dispersion curves are in the vicinity of the operating

frequency. In this way, the existence of many modes of the slab with nearly flat

dispersion curves in the vicinity of the operating frequency is beneficial for

achieving super resolution, as mentioned in [37]. One might imagine that
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Fig. 4.37 Band structure diagram of the whole phononic crystal slab and water system in the

direction parallel to the lens surface (FDTD calculation after [37]). Each curve corresponds to an

acoustic mode propagating either in the phononic crystal slab or at the water/slab interface. The

operation frequency (544 kHz) is indicated as a horizontal dotted line. The straight dashed lines
are the dispersion relation of water. The x-axis range has been extended to the fist Brillouin zone

GK of the triangular lattice
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evanescent waves with transverse wave vector of any magnitude above o/c could
couple with bound modes. However, the modes that propagate through the thick-

ness of the lens must resemble those of the infinite periodic phononic crystal. The

symmetry of the waves inside the lens must therefore comply with the triangular

symmetry of the phononic crystal. More precisely, the modes of the crystal are

periodic in k-space with a period equal to the width of the first 2D triangular

Fig. 4.38 Comparison of experimental (top) and FDTD simulation (bottom) results after Sukhovich
et al. [11] showing the averaged pressure filed and pressure profiles along the lens axis and the output
side
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Brillouin zone. This is the reason why the x-axis of Fig. 4.37 has been extended up

to the K point of the hexagonal lattice reciprocal space. If an incident wave has a

wave vector above the first Brillouin zone boundary, then it will couple to a mode

having a wave vector that can be written as ~k
0
== ¼ ~k== þ ~G where ~G is a reciprocal

lattice vector and ~k lies in the first Brillouin zone. In our case, since the first

Brillouin zone of a triangular lattice extends from � 4p 3a= to 4p 3a= in the GK
direction (parallel to the lens surface), the information carried by incident evanes-

cent waves with transverse wave vector components,

k==<km ¼ 4p 3a= ; (4.19)

will contribute to the formation of the image. According to (4.11), with this

definition, one finds that the best possible image resolution is:

D
2
¼ 3a

4
; (4.20)

Applying this estimate to our phononic crystal with a ¼ 1.27 mm, and a

wavelength in water at 530 kHz of 2.81 mm, the minimum feature size that

would be resolvable with this system is 0.34l. This estimate matches results very

well for the best resolution found for this system (0.34l) presented in Sect. 4.2, and
with experiment (0.37l).

4.5.5 Effects of Physical and Operational Parameters
on Super Resolution

In this section, we explore the effects of several factors on the image resolution of

the phononic crystal flat lens. These factors include operational parameters such as

the source frequency and the position of the source and geometrical factors such as

the width and thickness of the lens. By exploring modifications to the system, we

aim to shed light on the parameters that have the greatest impact on the imaging

capabilities of the phononic crystal lens and understand their effects as they deviate

from the best operating conditions.

4.5.5.1 Operating Frequency

Up to now, the operating frequency of the source was chosen to be 530 kHz, as in

[6], this value was chosen as a compromise between proximity with bounded modes

required for evanescent waves coupling and the AANR frequency in order to

achieve the best experimental resolution. We now focus on the effects of the

operating frequency in the 510 to 560 kHz range by means of numerical simulations

and experimental measurements. Figure 4.39a shows the image resolution and
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distance of the focus from the exit surface of the lens as a function of the operating

frequency. Experiments and calculations are in reasonable agreement from 523 to

560 kHz. Experiments exhibit an optimum resolution (0.37l) at 530 kHz as

discussed above. As expected, experimental values are higher than the computed

values since practical imperfections in the lens fabrication and measurement noise

lower the resolution of the focus. However, the difference does not exceed 0.05l
which is excellent. For increasing frequencies, the image lateral width increases up

to the Rayleigh value (0.5l) while the focus forms farther from the lens output side.

These trends are confirmed in both experiments and FDTD results. However, no

clear minimum of the resolution is observed in the simulations.

The observation of an optimum resolution has been interpreted in terms of a

trade off between the AANR condition and the excitation of bound modes of the

phononic crystal [37]. Figure 4.39b depicts the EFC in water and in the phononic

crystal for different frequencies as circles of different diameters. The occurrence of

super-resolution is discussed with respect to the operating frequency of 544 kHz

which is the frequency of AANR expected from simulations.

First, if the source frequency is tuned lower than 544 kHz, super resolution is

achieved with a resolution below 0.39l. Since the operating frequency is lower than
544 kHz, the equifrequency contour of water is a smaller circle than the EFC inside

the crystal. All components of the incident wave vectors corresponding to

propagating modes can be negatively refracted by the crystal, i.e., the AANR
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Fig. 4.39 Effects of the operating frequency after [37]. (a) Resolution and distance of the image

as a function of the operating frequency. Results from experiments (triangles) are compared to

FDTD simulation (circles). (b) Schematic representation of the transmission through the phononic

crystal lens based on the equifrequency contours shapes. The equifrequency contour of the

phononic crystal lens is represented as a circle inside the first Brillouin zone of the hexagonal

infinite crystal. The gray areas illustrate the existence of bound modes with frequency very close to

the operating frequency
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condition is satisfied. However, the mismatch of the equifrequency contours

diameters leads to a negative effective index of refraction with magnitude greater

than one, causing the different components from the source to focus at different

places. On another hand, operating frequencies well below 544 kHz are close to the

flat bands of bound modes in the phononic crystal slab, allowing for efficient

excitation by the evanescent waves from the source (Fig. 4.37). These modes are

depicted as a gray region on the EFC of the slab in Fig. 4.39b. Thus, the gain from

the amplification of evanescent modes is retained and super-resolution is achieved.

At the frequency of 544 kHz the EFC of water and the phononic crystal have the

same diameter resulting in an effective index of �1. This condition implies a

perfect focusing of all propagating components of the source into a single focal

point. However Fig. 4.37 shows that the flat bands of bound modes of the lens are

now well below the operating frequency, which means that coupling with these

modes and amplification of the evanescent waves during transmission is now

inefficient. The experimental optimum of the lateral resolution at 530 kHz occurs

between the bound mode frequencies (510 kHz) and the perfect matching of the

equifrequency contours (544 kHz).

In the case of frequencies above 544 kHz, the EFC of water has now a greater

diameter than the EFC of the phononic crystal and the AANR condition is not

matched. A part of the propagating components experience total reflection at the

water/lens interface and the resolution worsens up to 0.5l at 555 kHz.

These results confirm the importance of the design of the phononic crystal super-

lens with respect to two conditions. First, one has to meet the AANR condition,

which requires that the phononic crystal be a negative refraction medium with a

circular EFC matching the EFC of the outside medium (water). Second, bound

modes must exist in the phononic crystal whose frequencies are close to the

operating frequency so that amplification of evanescent components may occur.

The optimum frequency is found as the best compromise between those two

parameters.

Finally, the effect of the operating frequency on the image distance can be

understood according to acoustic ray tracing. Here, since the magnitude of the

effective acoustic index of the phononic crystal decreases as the frequency

increases, the image appears farther from the lens exit surface for higher

frequencies [see (4.9)]. This trend, confirmed by experiments as well as simulations

(see Fig. 4.39a) shows the high sensitivity of the image location to changes in

frequency. Here, tuning the frequency from 523 to 555 kHz shifts the image from

2.6 to 5.75 mm. A change over 6 % in the frequency is able to tune the focal spot

distance over 220 %.

4.5.5.2 Distance from the Source to the Lens

Here, we consider the effects of the position of the source with respect to the

phononic crystal surface. Super resolution requires coupling of the evanescent

waves from the source to bound modes in the phononic crystal in order to achieve
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amplification and re-emission. This process is thus only possible if the phononic

crystal lies in the near field of the point source at a distance where evanescent

components are not too much attenuated. In terms of sizes, this means that distance

from source to lens and the period of the phononic crystal (lattice constant) are

comparable in magnitude. A question arises whether or not the detailed heteroge-

neous structure of the phononic crystal can be ignored and replaced by a continuous

model of a negative index material. This question was addressed from a numerical

point of view by varying the distance between the point source and the surface at the

optimum frequency of 530 kHz. The measured effects are the position of the source

with respect to the exit face and the lateral resolution of the focus as shown on

Fig. 4.40. Indeed, if the phononic crystal can be modeled by a homogeneous

negative index material slab, geometrical ray tracing implies that the distance

from lens to focus is described by (4.11). The dashed horizontal lines represent

the Rayleigh diffraction limit (0.5l) and the estimated maximum resolution limit

(0.34l) calculated in Sect. 4.5. It results that as the distance between the source and
the face of the lens is increased, excitation of the bound modes is less and less

effective and the resolution decreases. For this range of image distances, the

resolution remains smaller than the Rayleigh diffraction limit. The fact that this

limit is not reached on the plot is related to the close distances which range from

0.036l to 1.4l. The lens is always in the near field of the source for the studied

range. One expects that for larger distances the resolution will reach the Rayleigh

diffraction limit, accompanied by loss of super-resolution. It should be noted that

the source cannot be placed farther than one lens thickness from the lens itself in

order to get a real image. Thus, to observe the complete loss of super-resolution

would require to significantly increase the lens thickness as well as the source

distance which is demanding for a computational point of view.
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The Green’s function model described in Sect. 4.5.2 shows that if all evanescent

and propagating modes are contributing the image is perfectly reconstructed as a

point source at a distance d�s from the exit face of the lens. This position is in

accordance with geometric rays tracing in two media with opposite refraction

indices. It could be shown that if the two media had some low acoustic index

mismatch or if the lens media had uniaxial anisotropy in normal incidence axis

direction [32], the relation would still be linear. This linear behavior is indeed

observed thanks to simulation data on Fig. 4.40 where the focus location fits a linear

relation with a slope of �0.82 with respect to source location. However, the

intercept of this curve is not exactly the thickness of the lens (d ¼ 6.52 mm), as

expected from (4.11). We have seen that the operating frequency could change

dramatically the focus location since it defines the effective index of the phononic

crystal. Here the results are presented at the frequency of 530 kHz which is not the

exact value of the AANR condition when an index of n ¼ �1 is achieved.

The value for 530 kHz is rather n ¼ �1.07. Acoustic ray tracing predicts that if n
is the effective index of the phononic crystal relative to water, then the focus

position for a source placed very close to the lens is d/|n|. This would predict an

intercept at 6.09 mm, still far from the observed value. Thus, the frequency effect

over index alone is insufficient to explain completely the discrepancy. This dis-

crepancy is therefore most probably due to the fact that the assumption of a

homogeneous negative medium is poorly valid in the case of a phononic crystal

because of the similar length scales between the lattice parameter, lens thickness,

wavelength and the source distance. At least, it is less valid than in the case of

metamaterial slabs [42] where the resonant inclusions have sizes well below the

wavelength.

4.5.5.3 Geometry of the Phononic Crystal Lens

The geometry of the lens itself has been studied in terms of its effects on resolution

and the location of the image. The respective effects of the thickness and width of

the phononic crystal lens are discussed successively. The width of the lens has been

studied from the experimental and computational point of views. The picture of a

semi infinite slab (in the x1 and x2) directions used for the Green’s function model is

quite different in the context of simulations and experiments where the width of the

lens is measured along x1 by the number of rod inclusions in each layer parallel to

the surface. The question raised by the limited width of the lens is similar to what is

called aperture in the context of optics. The spatially limited transmission due to the

finite extent of a lens is responsible for a loss of resolution due to the convolution of

any image by an Airy function. Thus, a sufficient width has to be chosen so that this

limitation is low enough in order to demonstrate the super resolution effect.

Sukhovich et al. [5] have used lenses of 15, 31 and 61 rods per layer in crystals

made of 6 layers, all other parameters being constant. The behavior of the lenses

with 31 and 61 rods per layer are similar and suitable to exhibit super resolution.

The position of the image and resolution as a function of the position of the source
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(Fig. 4.41) were almost identical. By contrast, the results for the narrower 15 rods

per layer are significantly different. This effect was attributed to the small aspect

ratio (2.5) of this lens inducing significant distortions. For lenses wider than 31

rods, the aspect ratio is greater than 5 and does not affect the results.

For what concerns the thickness of the lens, it can be varied by changing the

number of layers of inclusions. Robillard et al. [37] simulated thicknesses of 4, 5, 6,

7 and 8 layers for the case with a width of 31 rods per layer. The distance from the

source to the surface was maintained at 0.1 mm and the corresponding results are

shown in Fig. 4.41. It follows that, within the range of measurement error, the

resolution does not change with width as expected. This fact is also confirmed by

the authors by the existence of similar bound modes in the vicinity of the operating

frequency whatever the lens thickness. The frequencies of the bound modes that are

responsible for super-resolution do not vary significantly as the thickness changes.

Last point, always according to the ray tracing and Green’s models, the distance of

the image is expected to be linearly dependent on the lens thickness. This fact is

observed as well but the fitted value of this slope is not one, as expected in the case

of a homogeneous negative medium, but 0.83. As discussed earlier in this para-

graph, the lens made of an effective homogeneous medium may not be a valid

hypothesis in these conditions. Again, the discrepancy between the slope of 0.83

compared to one indicates the thickness mismatch between effective homogeneous

slabs and phononic crystal slabs [42].
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4.5.5.4 Location of the Source in the Direction Parallel to the Lens

The position of the source in a direction parallel to the slab input face plays a role

that is linked to the amplification mechanism of evanescent components from the

source. Necessary couplings with bound modes of the phononic crystal slab and

near field proximity implies that this mechanism is sensitive the heterogeneous

structure of the phononic crystal. Especially, efficient coupling requires that dis-

placement fields of the bound modes and evanescent waves overlap in space. Since

the lens excitation exhibits high pressure lobes in front of each steel cylinder when

super resolution is achieved, it is assumed that the bound modes involved have

similar displacement patterns. Thus, by shifting the source in a direction parallel to

the slab the efficiency of the couplings is expected to change and result in modifi-

cation of the super resolution effect. This process was simulated by a source facing

the gap midway between two cylinders of the phononic crystal. In this case, the

resolution falls to 0.54l as can be seen by the wider focus on Fig. 4.42a, b.

Experiments confirm these results are in accordance with experimental results;

moving the source parallel to the surface from the position opposite a cylinder (best

resolution) by only a quarter of its diameter caused the image resolution to degrade

from 0.37l to 0.47l.
Thus, looking at Fig. 4.42a gives an understanding of the bound modes displace-

ment. The pressure exhibits lobes of maximum amplitude between cylinders and

consequently the displacement amplitude would show maxima in front of each

cylinder and nodes between them. Placing the source at any of the nodes of the

displacement field prevents evanescent waves from coupling efficiently with the

bound modes.

4.5.5.5 Disorder

The properties of Phononic Crystals rely on the coherent summation of the Bragg

scattered components of acoustic waves on the successive planes of the crystal.

Because of this coherent character, any deviation from perfect order inside the

crystal structure is expected to introduce diffusion effects that are detrimental to

imaging properties. Especially, the super-resolution effect that is described in this

section should be sensitive to such defects. This hypothesis has been verified from

both the experimental and numerical point of view [11]. Figure. 4.42c, d show

FDTD results that assume some random deviation in the rods position from the

perfect triangular lattice configuration. This positional disorder in the numerical

model has a standard deviation of 5 %, which corresponds to an upper limit for the

experimental crystal. The experimental measurements were found to be very

sensitive to disorder in the position of the steel rods. These results confirm in that

disorder in the phononic crystal is detrimental to the quality of the image and for

some random realizations can even eliminate the focusing property of the lens.
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4.6 Band Structure Design and Impact on Refraction

As shown before, 2D and 3D phononic crystals have been extensively studied and

implemented for their frequency dependent (o-space) effects on sound or elastic

wave propagation. Especially, absolute band gaps have led to a variety of guiding,

confinement and filtering designs. The astonishing demonstration of sound

tunneling is also related to the presence of band gaps. On the other hand, negative

bands and the subsequent negative refraction that occurs at the interface of some

phononic crystals and the surrounding media is a property related to the shape of the

EquiFrequency Contour (EFC) of the dispersion curves in the wave-vectors plane

(k-space). For the purpose of achieving super resolution imaging with a phononic

crystal lens, one has to design a phononic crystal with circular EFCs. These two

effects, band gaps and all-angle negative refraction, have received much attention

from the community since the first reports on sonic crystals. However, as expected

from the behavior of elastic waves in genuine crystals, a wider variety of properties

should result from the periodic arrangement of phononic crystals constituents. The

propagation of waves is always fully understandable by means of the dispersion

relations, i.e. the o and k-spaces. Since dispersion curves are determined by

Fig. 4.42 Influence of the location of the source in the direction parallel to the lens and of the

disorder after [11]. The contour maps of the normalized average absolute value of pressure

calculated via FDTD at a frequency of 530 kHz for the phononic crystal lens imaging are plotted.

(a) The line source is located at 0.1 mm from the left lens surface and centered with respect to a

surface cylinder at x ¼ 0. (b) Same simulation as (a) but with the source shifted down by a/2 in the
direction parallel to the surface of the lens. (c) and (d) show two lenses with positional disorder of

the steel rods showing imperfect focusing (c) and loss of focusing (d)
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geometrical (sizes, symmetry) and material (stiffness, density) parameters,

phononic crystals can be designed in order to exhibit advanced spectral (o) and
directional (k) properties based on the analysis of the dispersion relations. In this

section we show how the design, especially the symmetry, of a phononic crystal,

can lead to strongly anisotropic effects such as positive, negative and even zero

angle refraction at a single frequency. Other effects such as collimation, beam

splitting and phase controlling are also predicted. Eventually, we discuss the

opportunity to control the respective phases between different acoustic beams

(’-space) and its possible implementation on acoustic logic gates.

4.6.1 Square Equifrequency Contours in a PVC/Air
Phononic Crystal

In 2009, Bucay et al. [43] have described theoretically and computationally the

properties of a phononic crystal made of polyvinylchloride (PVC) cylinders

arranged as a square lattice embedded in a host air matrix. We will develop this

section of Chap. 4 from the properties of this representative system. This PVC/air

system exhibits an absolute band gap in the 4–10 kHz range followed by a band

exhibiting negative refraction. The band structure for the infinite periodic phononic

crystal is generated by the Plane Wave Expansion (PWE) method and plotted in

Fig. 4.43b. In the 13.5 kHz equifrequency plane, the second negative band defines a

contour of nearly square shape centered on the M point of the first Brillouin zone.

This shape appears clearly in Fig. 4.43c which shows a contour map of the disper-

sion surface taken between frequency values 13.0 and 16.0 kHz extended to several

Brillouin zones. Though the properties of such an arrangement can be reproduced in

other systems of suitable symmetry and material parameters, we describe here the

parameters used in that particular demonstration. The spacing between the cylinders

(lattice parameter) is a ¼ 27 mm and the radius of the inclusions is r ¼ 12.9 mm.

The PVC/Air system parameters are: rPVC ¼ 1364 kg/m3, ct,PVC ¼ 1000 m/s,

cl,PVC ¼ 2230 m/s, rAir ¼ 1.3 kg/m3, ct,Air ¼ 0 m/s, and cl,Air ¼ 340 m/s (r is

density, ct is transverse speed of sound, and cl is longitudinal speed of sound). The

PVC cylinders are considered as infinitely rigid and of infinite height. This assump-

tion of rigidity simplifies the band structure calculation and is justified by a large

contrast in density and speed of sound between the solid inclusions and the matrix

medium. Again, the results gathered from this analysis are applicable to other solid/

air phononic crystals of the same filling fraction because, in reference to other solids,

air has extremely small characteristic acoustic impedance.

Bucay et al. [43] have focused on the consequences on acoustic propagation in the
passing bands with such square shaped EFCs. Here we summarize these effects and

their possible applications in acoustic imaging and information processing. The next

paragraphs use the schematic of Fig. 4.43a on which a PVC/air phononic crystal slab

is surrounded by air. This schematic corresponds to the FDTD simulation space. One
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or several beams impinge on the input side. Each source on the input side of the

simulation space is modeled by a slanted line of grid points consistent with the

desired incidence angle of the source. The nodes along this line are displaced in a

direction orthogonal to the source line as a harmonic function of time. These sources

can assume any incident angle to the phononic crystal face and can be ascribed any

relative phase difference, thus allowing for complete analysis of the phononic crystal

wave vector space (k-space) and phase-space (’-space). The output side is reserved
for the detection of exiting acoustic signals.

4.6.2 Positive, Zero, and Negative Angle Refraction,
Self-Collimation

First, looking at the EFC contour at a given frequency of 13.5 kHz, it appears that

the square symmetry of the phononic lattice has a strong impact on the band

structure (Fig. 4.44). Indeed, while at very low frequencies the dispersion relations

are linear (low frequency parts of the acoustic branches), the higher order branches

Fig. 4.43 Schematic and band structure of the PVC/air system after Bucay et al. [183].

(a) Schematic illustration of the FDTD simulation cell. The acoustic sources can assume any

incident angle to the phononic crystal face and be set with any relative phase difference. (b) Band
structure generated by PWE method along the edges of the first Brillouin zone (pictured in (c)). (c)
EFCs (extended zone scheme of irreducible Brillouin zone) in range of 13.0–16.0 kHz
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considered at the frequency of 13.5 kHz have direction dependent properties. These

k-dependent properties appear themselves in the almost square shape of the

equifrequency contour. The equivalent media formed by the PVC/air has to be

considered as anisotropic. This particular EFC is plotted in Fig. 4.44 along with the

EFC in air at the same frequency. The EFC of the PVC/air system has been

extended over another Brillouin zone in the Ky direction on this plot in order to

exhibit one complete face of the square which is centered on the M point. Since the

surrounding medium is linear and isotropic in the operating frequency range its

EFC is simply circular. Let us now discuss the different cases of the beam refraction

induced by the unusual shape of the EFCs.

In order to clearly describe these cases, we remind the reader how the wave

vector and group velocity of a refracted beam is determined from the angle of an

incident beam.

The conservation of frequency and parallel to surface (k//) component of wave

vector is required. These rules are written in Eqs.4.21 and 4.22 where the subscripts

i and r stand for incident and refracted.

oi ¼ or; (4.21)

k==i
	! ¼ k==r

	!þ G
!
; (4.22)

The presence of a vector G
!

of the reciprocal lattice will be discussed later, in

the non-periodic media it is a zero vector. In other words, the normal component of

the wave vector k⊥ is determined such that the wave vector kr ¼ k⊥r þ k//r in the

second medium matches a dispersion curve at the frequency oi. If such a matching

Fig. 4.44 Determination of the refraction angles of several incident beams from the EFC of the

PVC/air system
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point exists, a refracted beam exists, otherwise the incident beam undergoes total

reflection. The couple (kr ,or) defines a point of the Brillouin zone at which the

group velocity can be determined by (4.7). It must be noted that, contrary to the case

of an isotropic media, the wave vector and group velocity might not be collinear in

the general case. This can be seen in Fig. 4.44 where the wave vectors are depicted

by black arrows and the group velocity vectors by blue arrows.

From these rules and Fig. 4.44 it follows that any beam that impinges on the

phononic crystal with an incidence angles lower that 5� cannot couple to any

propagation mode of the phononic crystal and thus will be completely reflected.

This can be seen as a directional band gap. Between 5� and 55� waves are refracted
and propagate in the phononic crystal and several cases are distinguished. Below

28�, refracted waves have a group velocity vector (blue arrows) with a positive

parallel (Ky) component. They undergo classical positive refraction. At the singular

angle of 28�, the contour is flat in the Ky direction such that the group velocity will

be perfectly oriented toward the x axis. Such behavior corresponds to a zero angle

of refraction and is quite unusual. An illustration of this phenomenon is shown in

Fig. 4.45a with a FDTD result of the averaged pressure field. An incident beam at

30� is oriented toward the surface of a PVC/air crystal slab. Since the incidence

angle is very close to the predicted zero refraction angle (28�) it is refracted and the
beam follows a path close to the x axis.

In Fig. 4.45b, a beam with higher incidence angle is negatively refracted, in

accordance with the previous discussion. The ability of this system to achieve

positive, negative and zero angle refraction at a single frequency has been success-

fully tested experimentally and theoretically by Bucay et al. [43]. One should note

that the vicinity of the 28� incidence angle coincides with small degrees of

refraction. One could define an incidence range that gives rise to refracted angles

reasonably close to zero. As an example, for incidence angle between 20� and 30�

the angle of refraction is within in the�2� to 2� range. Thus, from this point of view

this system is able to combine a wide angle input wave into a nearly collimated

beam. This ability called self-collimation is pretty unusual and could have signifi-

cant uses in the field of acoustic imaging. The discussed system can also enable the

a b

q i =30° q i =40°

Fig. 4.45 Zero refraction and negative refraction occur at the same frequency, in the same

PVC/air system depending only on the incidence angle. The incident beams are oriented upward

at angles of (a) 30� and (b) 40� respectively
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propagation in the same volume of the phononic crystal of two non-collinear

incident beams. This spatial overlapping of two waves carrying non-identical

signals offers interferences conditions that might be useful for information

processing as we shall see later.

4.6.3 Beam Splitting

Another striking property of such a system is the presence of two output beams as

seen on Fig. 4.45. The incident beam impinges from the bottom part of the

simulation cell. The upper beam on the input side is a partial reflection. On the

exit side, the beam splits into balanced parts. This phenomenon, confirmed experi-

mentally [43], is striking since Snell’s law of refraction does not account for such

behavior. Optical analogues of such an effect are birefringent crystals which

discriminate light into several beams with respect to its polarization or beam

splitters that share incident energy into two output beams. Again, this analogy

does not account for the radically different origins of this effect in optics and

acoustic phononic crystals. Indeed, while optic beam splitters take advantage of

balanced transmission and reflection coefficients by means of suitable surface

coatings, the phononic crystal beam splitter produces two identical refracted

beams, that both have propagated through the phononic crystal following the

same path. In the latter case, the splitting effect relies only on the properties of

wave coupling between periodic (phononic crystal) and homogeneous (air) media.

Potential applications of this spontaneous beam splitting effects are discussed in the

following sections. Here we describe its origins.

The schemes in Fig. 4.46 show the equifrequency planes in a system composed

of a phononic crystal slab similar to the PVC/Air system immersed in a fluid

medium (air). The plot extends over two Brillouin zones. The operating frequency

is 13.5 kHz, which corresponds to a square EFC of the phononic crystal. Note that

the circular EFC in air is larger than the first Brillouin zone of the phononic crystal.

Let us now apply coupling rules for an incident wave to propagate inside the

phononic crystal. In (4.22) we have introduced an additional vector ~G that belongs

to the reciprocal lattice. Indeed, in crystalline structures as in any periodic structure

the momentum conservation can be satisfied modulo a certain vector ~G . This

conservation rule for sonic waves is analogous to the one governing phonon

diffusion in solids [44]. The processes which involve a zero G vector are called

natural processes. They ensure complete conservation of the crystal momentum,

while non-zero G vector processes (Umklapp) ensure momentum conservation due

to the contribution of the crystal total momentum. The latter involve a wave vector

outside of the first Brillouin zone. From this rule follows that for a given incidence

angle, the incident beam can couple to several modes inside the phononic crystal.

The wave vectors of these modes lie in distinct Brillouin zones. Since the extent of

the EFC in air is twice as large as the Brillouin zone, two of k// are possible for the
propagation into the phononic crystal. On the output side these two different modes

148 A. Sukhovich et al.



couple back to the surrounding media according to the same rules, which account

for the presence of two beams.

The remarkable property of the multiple modes inside the phononic crystal is

that they have similar group velocity vectors (black arrows) but different

wavevectors (gray arrows). It results that they will only split on the output side

but share the exact same path inside the crystal.

Additionally, Fig. 4.46 shows that, on the opposite side of the zero incidence

line, another beam might couple with exactly the same set of wave vectors inside

the crystal. Then, two beams can produce exactly the same effects and are called

complementary. Complementary waves will have incidence angles y0 þ Dy and

�y0 þ Dy with y0 being the zero-refraction angle.

4.6.4 Phase Control

Except for the case of complementary incident waves, any couple of incident beams

will be refracted at different refraction angles and thus accumulate a certain phase

difference while propagating through the crystal. One should remark that, here again,

refracted waves in the phononic crystal have somewhat uncommon properties since

their group velocity is nearly parallel to the normal to the crystal/air interface

(Fig. 4.46) while their k-vector, has a wide range of possible orientations due to the

incidence angle. Group velocity and wave vector being non-collinear simply means

that energy and phase propagates in different directions. In the vicinity of the zero

angle refraction, a wide span of Bloch waves exists with group velocities that

coincide with small degrees of refraction, allowing refraction to occur between

propagating waves within the nearly same volume of crystal. This is shown through

the high slope around 0� in Fig. 4.47a which represents the angle of incidence of the

Fig. 4.46 Determination of the refraction angles of several incident beams from the EFC of the

PVC/air system. The central scheme depicts an extended zone EFC contour of the phononic

crystal. Gray arrows are wavevectors while black arrows are the group velocity vector
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input beam as a function of the angle of refraction in the bulk of the phononic crystal

slab.

A fine analysis of the square EFC shows that, while the group velocity of

different refracted beams have nearly the same zero angle of refraction, their

wave vectors quite different. Since group velocity describes the propagation of

the energy while the wave vector k is related to the propagation of phase, this fact

shows that beams propagating in close directions in the phononic crystal might

accumulate significantly different phase shifts.

To investigate this effect, Swinteck and Bringuier [45–47] have calculated the

phase shift accumulated per unit length of a phononic crystal slab as a function of

the incidence angle. Two impinging waves with wave vectors k1
!

(angle y1) and k2
!

(angle y2) excite several Bloch modes throughout the k-space of the phononic

crystal. As seen in the beam-splitting effect, because the extent of the first

Brillouin zone is smaller than the circular EFC in the surrounding media, each

incident wave will couple to two Bloch modes that correspond to complementary

waves. These two Bloch modes are noted k1A
	!

and k1B
	!

in Fig. 4.48a and are

necessary to describe the wave physics in this phononic crystal in terms of phase.

Each of these wave vector pairs has a unique refraction angle noted as a1 and a2.
The following calculations will focus on the phase shift accumulated between

Bloch modes k1A
	!

and k2A
	!

only (noted ’1A,2A), though similar discussion would

lead to compatible results for the second pair of modes. These two Bloch wave

vectors are expressed as:

k1A
	! ¼ 2p

a
k1x~iþ k1y~j


 �
(4.23)

k2A
	! ¼ 2p

a
k2x~iþ k2y~j


 �
(4.24)

where k1x and k1y are the components of the wave vector k1A
	!

and k2x and k2y are the
components of the wave vector k2A

	!
(in units of 2p/a).~i and~j are unit vectors along

axes x and y respectively.
Each incident beam ~k is refracted by an angle a and travels in the phononic

crystal along a path that is simply:

~r ¼ L~iþ L tan að Þ~j (4.25)

where L is the slab thickness. The phase accumulated at the exit face of the slab with

respect to the input point is:

’ ¼ ~k �~r ¼ 2pL
a

kx þ tan að Þky

 �

(4.26)
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It follows that the phase difference between Bloch modes with wave vectors k1A
	!

and k2A
	!

can be expressed as:

’1A;2A ¼ k1A
	! � r1!� k2A

	! � r2!¼ 2pL
a

k1x þ tan a1ð Þk1y � k2x � tan a2ð Þk2y

 �

(4.27)

Let us formulate a few remarks about this result. First, to evaluate this phase

shift it is useful to plot it as a function of the incidence angle y1 of one input beam
the other beam being a constant reference beam. The angle (28.1�) for which zero

while angle refraction occurs is a preferred choice. Second, as expected, the result

depends linearly on the thickness of the slab. Third, computing this phase shift can

be done by extracting the components, (k1x, k1y) and (k2x, k2y), used in (4.27) from

the EFC data in Fig. 4.45. Finally, the calculated phase shift per unit length is

plotted in Fig. 4.47b along with FDTD results that agree very well with the above

analysis. Looking closely at (4.27), one understands that the phase shift has two

origins. First, the travel paths inside the phononic crystal for the both waves are

different (r1
! 6¼ r2

!). The second effect comes from the difference in phase velocities

( k1A
	!��� ��� 6¼ k2A

	!��� ��� ). Waves of different phase velocities traveling different paths

certainly will develop a phase shift. From Fig. 4.47b one can deduce the phase

difference between a pair of beams which is of crucial importance since it

determines how exiting beams interfere. It is worth noting that the steel/methanol

system described in Sect. 4.5 exhibits, at the considered operating frequencies,

circular EFCs centered on the G point. In such a configuration phase and group

velocity are collinear and anti-parallel. Such a system wouldn’t produce substantial

phase shifts between two Bloch modes that are nearly collinear.

Figure 4.48b shows that outgoing beams intersect each other on the output side

in two points. These points are places where the relative phase between two beams

can be found by measure of the interference state. The choice of the two incidence

angles higher and lower than 28.1 (the zero angle of refraction) is important. Indeed

it ensures that one beam is refracted positively and the other one negatively, while

forming the intersection points on the exit side. In the end, the incidence angles of

the two beams determine wave vectors k1
!

and k2
!

and the angles of refraction a1 and
a2 which give the phase shift. Therefore incidence angle selection is proposed as a

leverage to modulate the relative phase between propagating acoustic beams.

4.6.5 Implementation of Acoustic Logic Gates

More recently, it has been proposed to use these interference effects to implement an

acoustic equivalent of the so-called Boolean logic gates [47] on the basis of phase

control by means of a phononic crystal slab. Here we discuss the example of the

NAND gate which is identified as universal since the implementation of any other

Boolean logic gate is feasible by associating several NAND gates [48]. The NAND

gate is a two inputs function which truth table is described in Fig. 4.49a. The setup of

Bringuier et al. [47] relies on a phononic crystal slab and two permanent sources S1
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and S2 impinging at the same point of the input face. The angles of incidence are

such that these beams are not complementary waves, i.e., their paths do not perfectly
overlap in the phononic crystal slab. The following demonstration is based on FDTD

simulations on the PVC/air system described above. In this scheme it is straightfor-

ward to keep a given phase relation between the two permanent sources S1 and S2.

In this particular case, they they impinge in-phase on the input side of the phononic

Fig. 4.47 (a) Angle of the incident beam as a function of its refraction angle. The graph can be

read as follows: one obtains a 0� refracted beam inside the phononic crystal when the incidence

angle is 28�. (b) Phase shift per unit length of phononic crystal as a function of the incidence angle.
The phase shift is evaluated with respect to a zero refracted beam (Circles: analytical solution.
Triangles: results from FDTD calculation)
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crystal. Because their incidence angles are 10� and 38�, the two sources will refract
negatively and positively in accordance with the Fig. 4.48b. The phase shift on the

output side is calculated thanks to (4.27) and is evaluated to be 2p radians. This

results in constructive interference on the output side between the centers of the

exiting beams. At this particular point where the interferences are constructive, a

detector D is positioned. This “detector” simply indicates that the averaged pressure

is recorded over a given cut which makes an angle 24� (i.e., in between 10� and 38�).
The corresponding pressure profile is presented on the left side of Fig. 4.49b. The

position of the constructive interference point is indicated by a vertical dashed line

which, indeed, corresponds to a maximum of the pressure. This state describes the

zero inputs state of the NAND gates. In this regime the continuous high level of

pressure is interpreted as a 1 output from the gate.

The authors model the inputs of the NAND by two additional beams I1 and I2

which are the corresponding complementary waves (19� and 50�) to the sources,

S1and S2, respectively. As compared to the permanent sources, I1 and I2 are set

such that their phases are p radians on the input side. It results from this condition

that whenever I1 is turned on, it perfectly overlaps the path of S1 in the phononic

crystal (because these are complementary waves) and since their phase difference is

p, they interfere destructively. It results that only S2 contributes to the averaged

pressure at the detector point as shown on Fig. 4.49c. The same analysis holds if I1

is off and I2 is on. The last case corresponds to having both inputs emitting waves

simultaneously. In this case S1 and I1 as well as S2 and I2 interfere destructively

Fig. 4.48 (a) (k-space) Bloch modes excited in the PVC/air system by two waves having different

angles of incidence. (b) (real space) paths of the corresponding waves in the phononic crystal slab.
After Swinteck et al. [46]
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and this case exhibits the minimal pressure at the detector point among all other

cases.

The situation when “I1 is emitting” (or “I1 is not emitting”) means that the first

input of the NAND gate is at state 1 (or state 0). By establishing a threshold value

just above the minimal pressure, the output is defined to be in state 1 if the pressure

Fig. 4.49 Implementation of the NAND gate with phononic crystals. The system consists of a

phononic crystal with the same square EFC characteristics as in the PVC/Air system and two

permanent sources S1 and S2 are incident at different angles
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is above the threshold and in state 0 if the pressure is below the threshold. Finally,

the only configuration that produces a 0 output state is the state with I1 and I2 both

emitting waves. This complies with the truth table of the NAND gate. This study

demonstrates another possible application of the full dispersion properties (fre-

quency, wave vector and phase) of phononic crystals in the field of information

processing.

4.7 Conclusion

In this chapter, we have focused on 2D and 3D phononic crystals and their unusual

properties. After having introduced the necessary concepts of Bravais lattices and

their corresponding Brillouin zones, we have summarized how phononic crystals

properties can be investigated experimentally especially in the ultrasonic frequency

range. The discussion then focused on spectral aspects of phononic crystals. The

existence of band gaps is the first property of phononic crystals investigated theoreti-

cally and experimentally. Because of the evanescent character of waves whose

frequency falls into the band gaps, tunneling of sound has been demonstrated.

However, band gaps despite the wealth of applications they bring (sound isolation,

wave guiding, resonators, filtering. . .) are not the only striking phenomena in

phononic crystals. Other phenomena observed in the passing bands have been studied

in details such as negative refraction. Negative refraction occurs when the wave

vector and the group velocity are anti-parallel in a material. The similarities between

negative refraction and the negative index metamaterials have been discussed. This

chapter also provides a wealth of details about experimental conditions of negative

refraction. Later sections have focused on the conditions required to use negative

refraction in combination with close field coupling to a phononic crystal slab in order

to achieve super-resolution, i.e., imaging a source point with a better than half-

wavelength resolution. Finally, we have briefly described recent developments

about the impact of the phononic crystal symmetry on refraction properties. A

model system exhibiting anisotropic propagation properties has been described by

its refraction properties as a function of their incidence angles. This type of system

has been demonstrated in the context of self-collimation, beam-splitting, phase

controlling and a possible implementation of logic gates.

Throughout the chapter it has been shown that, despite the variety of possible

implementations of phononic crystals, their properties can always be described in

the frame of Bragg reflections of the acoustic or elastic waves that interfere

constructively or destructively. The consequences of periodicity manifest them-

selves in the dispersion relations that fully describe the spectral, directional and

phase properties of propagation in phononic structures. From this point of view the

analogy between phononic crystals and natural crystalline material is complete. It

follows that, the complete spectrum of opportunities offered by periodic artificial

structures is extremely large and still not fully explored.
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Chapter 5

Dynamic Mass Density and Acoustic
Metamaterials

Jun Mei, Guancong Ma, Min Yang, Jason Yang, and Ping Sheng

Abstract Elastic and electromagnetic waves are two types of classical waves that,

though very different, nevertheless display many analogous features. In particular,

for the acoustic waves, there can be a correspondence between the two material

parameters of the acoustic wave equation, the mass density and bulk modulus, with

the dielectric constant and magnetic permeability of the Maxwell equations. We

show that the classical mass density, a quantity that is often regarded as positive

definite in value, can display complex finite-frequency characteristics for a com-

posite that comprises local resonators, thereby leading to acoustic metamaterials in

exact analogy with the electromagnetic metamaterials. In particular, we demon-

strate that through the anti-resonance mechanism, a locally resonant sonic material

is capable of totally reflecting low-frequency sound at a frequency where the

effective dynamic mass density can approach positive and negative infinities. The

condition that leads to the anti-resonance thereby offers a physical explanation of

the metamaterial characteristics for both the membrane resonator and the 3D locally

resonant sonic materials. Besides the metamaterials arising from the dynamic mass

density behavior at finite frequencies, we also present a review of other relevant

types of acoustic metamaterials. At the zero-frequency limit, i.e., in the absence of

resonances, the dynamic mass density for the fluid–solid composites is shown to

still differ significantly from the usual volume-averaged expression. We offer both

a physical explanation and a rigorous mathematical derivation of the dynamic mass

density in this case.
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5.1 Introduction

The novel characteristics of metamaterials represent an emergent phenomenon in

which the basic mechanism of resonances, when considered in aggregate, can give

rise to material properties that are outside the realm provided by Nature. In the case

of acoustic metamaterials, the novel characteristics directly arise from the finite-

frequency behavior of the two relevant material parameters—the mass density and

bulk modulus. The focus of this chapter is on the dynamic mass density and its

related metamaterial characteristics. For completeness, a brief review of other types

of acoustic metamaterials is also presented.

It is well known that in the quantum mechanical band theory of solids, the

effective mass of an electron can change sign depending on its energy within an

energy band. However, as this is attributed to the electron’s wave character, the

classical mass density is usually regarded as a positive-definite quantity since the

quantum mechanical effects are absent. In particular, for a two-component com-

posite, the effective mass density is usually given by the volume-averaged value:

reff ¼ fD1 þ ð1� f ÞD2; (5.1)

whereD1ð2Þ denotes the mass density of the 1st (2nd) component, and f is the volume

fraction of component 1. We denote the static mass density (5.1) reff .
An implicit assumption underlying the validity of the static mass density expres-

sion is that in the presence of wave motion, the two components of the composite

move in unison. However, this assumption is not always true. For a composite

comprising many identical local resonators embedded in a matrix material, if the

local resonators’ masses move out of phase with the matrix displacement (as when

the wave frequency o exceeds the resonance frequency of the resonators), then we

have a case in which the matrix and the resonators’ masses display relative motion.
If, in addition, we assume that the local resonators occupy a significant volume

fraction, then it is clear that within a particular frequency range, the overall

effective mass density can appear to be negative [1–6]. This fact can be simply

illustrated in a one-dimensional (1D) model [7, 8], where n cylindrical cavities of

length d are embedded in a bar of rigid material. Within each cavity, a sphere of

mass m is attached to the cavity wall by two identical springs with elastic constant

K. An external force F acts on the rigid bar, which has a static massM0, as shown in

Fig. 5.1.

For the first resonator, the displacements of the sphere and the right wall

are denoted by u and U, respectively (Fig. 5.1). By assuming that � f1 and � f2
are the forces on the sphere exerted by the left and right springs, respectively,

with f2 along the same direction as F, and f1 the opposite, then Hook’s law tells us

that � f1 þ f2 ¼ �2KðU � uÞ . From Newton’s second law, we have f1 � f2 ¼
ð�ioÞ2mu. From these two relations, we obtain u ¼ 2K

2K�mo2 U. Applying Newton’s

second law to the rigid bar, we have Fþ n ð f2 � f1Þ ¼ ð�ioÞ2M0U . Hence F ¼
ð�ioÞ2 ½M0U þ nmu� ¼ ð�ioÞ2ðDeffVÞU . Here the effective dynamic mass
density Deff is defined as F=ð�o2UÞ:
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DeffV ¼ M0 þ nm
u

U
¼ M0 þ nm

1� ðo2=o2
0Þ
; (5.2)

where o2
0 ¼ 2K m= and V denotes the total volume of the system. Thus negative

dynamic mass is possible at finite frequencies (when o2 is in the range of o2
0), and

this phenomenon enables the realization of acoustic metamaterials. Equation (5.2)

is also informative in showing that the dynamic mass density is generally defined as

the averaged force density f divided by the averaged acceleration a, i.e.,

Deff ¼ h f i hai= ; (5.3)

where hi denotes averaging over interfaces with the external region of the observer.
Obviously, this is precisely how (5.2) is obtained. The above simple example serves

to illustrate the point that the dynamic mass density, in the presence of relative

motion between the components, can differ from the volume-averaged static mass

density. In more realistic models in which the matrix is an elastic medium, it will be

shown below that the dynamic mass density’s resonance-like behavior is directly

associated with the anti-resonance(s) of the system.

In the limit of o ! 0 so that resonances can be excluded, the volume-averaged

mass density holds true for most composites. However, the fluid–solid composites

constitute an important exception. A well-known example is the fourth sound of

liquid helium 4 in a porous medium [9], which arises from the relative motion

between the liquid helium 4 and the solid frame—even at the low-frequency limit.

More generally, it is well known that for a fluid–solid composite, there is a viscous

boundary layer thickness ‘vis ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
� rfo=

p
at the fluid–solid interface, where �

denotes the fluid viscosity and rf the fluid density. It is clear from the definition

of ‘vis that the � ! 0 limit cannot be interchanged with theo ! 0 limit since in the

former case ‘vis ! 0 whereas in the latter case we have ‘vis ! 1. Thus the Biot

slow wave, predicted as a second longitudinal wave in a fluid–solid composite [10]

and eventually experimentally verified [11], may be viewed as a “fourth sound” for

the viscous fluid, valid when the pore size ‘ of the porous medium is larger than ‘vis
[12]. Thus the dynamic mass density of a fluid–solid composite is what governs the

wave propagation when the dimensionless ratio
ffiffiffiffiffiffiffiffiffiffiffiffiffi
� rfo=

p
‘= <<1.

Fig. 5.1 A one-dimensional acoustic metamaterial composed of a series of local resonators

embedded in a rigid bar. Here the directions of f1 and f2 are shown as that on the left and right

walls of the cavity, respectively. Adapted from [7]
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In what follows, we describe in Sect. 5.2 the initial realization of acoustic

metamaterials based on the concept of local resonators and their special

characteristics. In particular, it is shown that such metamaterials can break the

mass density law, which governs air-borne sound attenuation through a solid wall.

This is followed by the presentation of the membrane-type metamaterials in

Sect. 5.3 that may be regarded as the two-dimensional (2D) version of resonant

sonic materials. The unifying characteristic of the anti-resonance and negative

dynamic mass density is emphasized in both Sects. 5.2 and 5.3. In Sect. 5.4, we

give a brief review of other types of acoustic metamaterials that have since been

realized. Section 5.5 is devoted to the dynamic mass density in the low-frequency

limit (for the fluid–solid composites), prefaced by a short review of the multiple-

scattering theory (MST). We conclude in Sect. 5.6 with a brief summary and some

remarks on the prospects and challenges.

5.2 Locally Resonant Sonic Materials: A Metamaterial Based
on the Dynamic Mass Density Effects

In Fig. 5.2a we show a cross-sectional photo image of the basic unit for the locally

resonant sonic material [1]. It comprises a metallic sphere 5 mm in radius coated by

a layer of silicone rubber. Figure 5.2b is a picture showing a cube assembled from

these basic units with epoxy, in a simple cubic structure with a lattice constant of

1.55 cm. It is clear that the metallic sphere of the basic unit acts as a heavy mass,

with silicone rubber as the weak spring. Hence there must be a low-frequency

resonance. Moreover, the resonance is local in character, to be distinguished from

the structural resonances that are common to any mechanical object. Figure 5.2c, d

show the transmission characteristics and band structure of the crystal shown in

Fig. 5.2b, respectively. It is noted that there is a deep transmission dip at 380 Hz,

followed by a transmission maximum at 610 Hz. This pattern is repeated at

1,340 Hz and 1,580 Hz. Here the solid line is the theory prediction calculated

from the MST, and the solid circles are the measured data. They show good

agreement. In Fig. 5.2d, the calculated band structure is shown. The flat band

edges, at 380 Hz and 1,340 Hz, are characteristic of local (anti-)resonances that

are very weakly coupled to each other.

It is seen that the structure shown in Fig. 5.2b has a complete bandgap between

380 Hz and 610 Hz. In contrast to phononic crystals where the relevant wavelength

corresponding to the primary bandgap frequency must be comparable to the lattice

constant, here the wavelength (in epoxy) at 380 Hz is ~300 times the lattice

constant. That is, the locally resonant sonic materials can open phononic gaps at

frequencies that are much lower than that derived from considerations of their

structural length scales. In fact, since the effect is due to local resonances, and these

resonances depend only on the rubber’s elastic constants and metal sphere’s mass,

the bandgap frequency should be totally decoupled from structural considerations.
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The fact that the locally resonant sonic materials can have bandgaps may be

simply explained by using analogy with the tight binding approach for the elec-

tronic structure calculations, in which the starting point is the discrete electronic

energy levels in individual atoms. Our local resonances also have a discrete

spectrum. When the atoms interact with each other (through the hopping matrix

element in the tight binding formulation), the discrete energy levels broaden into

energy bands. If the interaction is weak, the bands may not completely overlap and

what remain are exactly the bandgaps. Moreover, the band edges are usually flat

just as what we see in Fig. 5.2d. From this analogy, it is plausible that since

periodicity plays only an implicit role in the tight binding approach, it may not be

a necessary requirement for the creation of bandgaps. Hence it was shown by

Weaire [13] that in tetrahedrally bonded system (such as the amorphous silicon),

the existence of bandgaps indeed does not require long-range periodic order. This is

another aspect that differs from phononic crystals, in which the bandgap is the result

of Bragg scattering.

Fig. 5.2 (a) Cross section of a coated sphere that forms the basic structure unit (b) for an 8� 8

�8 sonic crystal. (c) Calculated (solid line) and measured (circles) amplitude transmission

coefficients along the [100] direction are plotted as a function of frequency. The calculation is

for a four-layer slab of simple cubic arrangement of coated spheres, periodic parallel to the slab.

The observed transmission characteristics correspond well with the calculated band structure (d),
from 200 to 2,000 Hz, of a simple cubic structure of coated spheres. Figure adapted from [1]

5 Dynamic Mass Density and Acoustic Metamaterials 163



Below we present the novel functionality of the locally resonant sonic material

together with its relevant physics. It will be seen that the dynamic mass density

behavior of the system naturally emerges as the dominant cause of its special

characteristics.

5.2.1 Metamaterial Functionality

In Fig. 5.2c, it is seen that at 380 Hz, the locally resonant sonic material can have a

sharp minimum in transmission. In order to appreciate the significance of this

phenomenon, it is necessary to first review the law of acoustic attenuation by a

solid wall, usually denoted the mass density law.
Consider a sound wave in air with angular frequencyo impinging normally on a

solid wall of thickness d, mass density r2 and bulk modulus k2. Sound transmission

amplitude is given by

T ¼ 4n exp ðik2dÞ
ð1þ nÞ2 � ð1� nÞ2exp ð2ik2dÞ

; (5.4)

where k2 ¼ o=
ffiffiffiffiffiffiffiffiffiffiffiffi
k2=r2

p
is the wavevector in solid and n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2r2=k1r1
p

is the

solid–air impedance ratio, with k1 and r1 denoting the bulk modulus and mass

density of air, respectively. For solid walls that are less than a meter in thickness,

which is usually the case, we have k2d � 1 and n � 1 for frequencies less than

1 kHz. In that limit, an accurate approximation to (5.4) is given by

T ffi i
2

ffiffiffiffiffiffiffiffiffiffi
r1k1

p
or2d

: (5.5)

It is seen that the bulk modulus of the wall does not appear in (5.5). That is, to a

high degree of accuracy, the sound attenuation through a solid wall is independent

of whether the wall is rigid or soft. Only the wall’s mass per unit area (r2d) matters.

That is why (5.5) is called the mass density law. But perhaps the most important

aspect of (5.5) is that T is inversely proportional to the sound frequency. Hence low-

frequency sound is inherently difficult to attenuate. This is the reason why low-

frequency noise is such a pernicious source of urban environmental pollution.

In Fig. 5.3, we plot the measured amplitude transmission coefficient (solid

circles with the connecting solid line) for a 2.1-cm slab of composite material

containing 48 vol% of randomly dispersed coated metal spheres (same as the one

whose cross-sectional picture is shown in Fig. 5.2a) in an epoxy matrix. As a

reference, the measured amplitude transmission coefficient through a 2.1-cm slab

of epoxy is also plotted (open squares connected by thin solid line). The dashed and
dot-dashed lines, respectively, show the calculated transmission amplitudes of a

2.1-cm epoxy slab and a 2.1-cm homogeneous slab of the same density as that of the
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composite material containing the coated spheres. The arrows indicate the dip

frequency positions predicted by the multiple-scattering calculation for a mono-

layer of hexagonally arranged coated spheres in an epoxy matrix.

In Fig. 5.3, the comparison between the measured results for the composite slab

and the mass density predictions shows clearly that the locally resonant sonic

materials can break the mass density law at particular low-frequency regimes,

thereby exhibiting acoustic metamaterial characteristics.

5.2.2 Theoretical Understanding

In order to gain an understanding of the metamaterial functionality, we have

performed finite-element simulations by using the COMSOL Multiphysics. In the

simulations, the mass density, Young’s modulus, and Poisson’s ratio for the lead

sphere are 11:6� 103kg/m3, 4:08� 1010Pa, and 0.37, respectively. The mass

density, Young’s modulus, and Poisson’s ratio for the silicone rubber are 1:3� 103

kg/m3, 1:18� 105Pa, and 0.469, respectively. Corresponding parameters for epoxy

are 1:18� 103kg/m3, 4:35� 109Pa, and 0.368, respectively. Standard values for

air, i.e., r ¼ 1:23 kg/m3, ambient pressure of 1 atm, and speed of sound in air of

c ¼ 340m/s, were used. Two types of simulations were performed.

We first calculate the spectrum of transmission coefficients for a plane wave

normally incident onto one unit cell along the z-direction. Periodic boundary

conditions along the x- and y-directions were used. Radiation boundary conditions

Fig. 5.3 Measured amplitude transmission (solid circles; the solid line is a guide to the eye)

through a 2.1-cm slab of composite material containing 48 vol% of randomly dispersed coated

lead spheres in an epoxy matrix. As a reference, the measured amplitude transmission through a

2.1-cm slab of epoxy is also plotted (open squares connected by a thin solid line). The dashed and
dot-dashed lines, respectively, show the calculated transmission amplitudes of a 2.1-cm epoxy slab

and a 2.1-cm homogeneous slab of the same density as that of the composite material containing

the coated spheres. Adapted from [1]
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were used at the input and output planes of the air domain in the simulations. Two

transmission peaks, with frequencies at 606 Hz and 1,576 Hz, were found. We also

found two transmission dips, at 374 and 1,339 Hz.

We have also calculated the eigenmodes for one unit cell. Many eigenmodes

were found. Out of these, we select the ones that are symmetric with respect to both

the x- and y-directions, since otherwise the modes would not couple to the normally

incident plane wave. The resulting triply degenerate eigenfrequencies are located at

606 and 1,571 Hz, respectively. They are seen to be almost identical with the
frequencies of the transmission peaks.

In Fig. 5.4a, we show the calculated displacement configurations around the first

peak frequency, where the lead sphere is seen to move as a whole along the

direction of wave propagation. Around the second peak, the maximum displace-

ment occurs inside the silicone rubber, as shown in Fig. 5.4b. In Fig. 5.5, we show

the calculated strain tensor components exz and eyz at the first and second dip

frequencies, respectively. It can be seen that strains occur at the lead–rubber and/or

the rubber–epoxy interfaces, which in fact can also be inferred from the displace-

ment configurations as shown in Fig. 5.4. Below we show that the dip frequencies
correspond to anti-resonances where the dynamic mass density displays a

resonance-like behavior.

Figure 5.6 displays the calculated dynamic mass densityDeff for one unit cell of

the locally resonant sonic material. Around 370 and 1,340 Hz, i.e., the transmission

dip frequencies, the dynamic mass density Deff ¼ r � sh iz azh i= clearly displays a

resonance-like behavior. Thus the transmission peaks correspond with the eigen-

frequencies, and the dips in the transmission are associated with anti-resonances at

which we have a dynamic mass density resonance profile. In particular, it is shown

below that at the anti-resonance frequencies, the average normal displacement of

the unit cell surface (in the matrix material) vanishes, hence azh i ¼ �o2 uzh i goes
through a zero and therefore it is easy to see that Deff acquires a resonance-like

behavior, with a diverging magnitude at the anti-resonance frequency. In a sense,

the mass density law seems to recover its validity–but only if its value replaces the

static mass density.

Fig. 5.4 Calculated displacement configurations around the first (a) and second (b) peak frequencies.
The displacement show is for a cross section through the center of one coated sphere, located at the

front surface. The arrows indicate the direction of the incident wave. Adapted from [1]
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Fig. 5.5 Calculated strain components exz (a) and eyz (b) at the first dip frequency, and exz (c) and
eyz (d) at the second dip frequency, within the z ¼ 0 cross section plane within one unit cell. Red
and blue colors denote positive and negative values of strain components, respectively, and green
indicates near-zero strain

Fig. 5.6 Dynamic effective mass densityDeff for one unit cell of the local resonant sonic material

as shown in Fig. 5.2. Around the anti-resonance frequencies (transmission dip frequencies),

resonant behavior of Deff is evident
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5.2.3 Physical Underpinning of the Anti-resonances

Mechanical anti-resonances constitute a very common phenomenon [14]. They are

also of practical importance in mechanical systems. For example, the change in

frequencies of anti-resonances can be an indicator of structural damages [15, 16]; it

is also an element that needs to be taken into account in the design and modeling of

the cantilever for atomic force microscopes [17–19].

By focusing on the surface normal displacement of the mechanical system, it is

possible to appreciate the physical underpinning of this phenomenon. That is, an

anti-resonance always occurs between two resonances. At the anti-resonance fre-

quency, the two neighboring resonances are simultaneously excited but with the

opposite phase, since the resonance response is given by 1=ðo2
i � o2Þ , with oi

denoting the angular frequency of the ith resonance and oi <o<oiþ1. As the two

eigenfunctions are spatially orthogonal to each other, it is possible to demonstrate

that in varying the frequency continuously from oi tooiþ1, there must be a point at

which the averaged normal surface displacement is zero. In Fig. 5.7, we show the

averaged normal surface displacement uzh i at a unit cell when the incident wave is

along the z-direction. It can be seen that uzh i passes through zero at around the

transmission dip frequencies, and that is the underlying mechanism of the diver-

gence of Deff ¼ r � sh iz �o2 uzh ið Þ�
in the relevant frequency regime. It therefore

follows that the dynamic mass density must have a resonant behavior at anti-

resonance, giving rise to total reflection of the acoustic waves. It is also seen that

Fig. 5.7 Averaged normal surface displacement uzh i for one unit cell of the locally resonant sonic
material when a plane wave is incident along the z-direction. Large uzh i amplitude corresponds

with the transmission peak. Around the transmission dip frequency (lower side of the transmission

peak frequency), uzh i passes through zero (indicated by the red arrows), thereby leading to the

divergence of Deff as shown in Fig. 5.6
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uzh i exhibits divergent behavior at the eigenmode frequencies where the peak

transmissions occur.

The understanding that the dynamic mass density’s behavior–as the underlying

cause of the anti-resonances–offers the possibility of generalization of this principle

to the regime of ultrasound and even optical phonons. However, such experimental

manifestations at high frequencies are still to be pursued.

5.3 Membrane-Type Acoustic Metamaterials

The metamaterial functionality of the locally resonant sonic materials operates only

in a limited range of frequencies. Such a disadvantage can be overcome if there are

membrane-type locally resonant sonic materials since one may be able to stack

these membranes, each operative at a different frequency regime, so as to broaden

the effective frequency range of the stacked sample.

However, making a membrane-type acoustic metamaterial that can totally reflect

the low-frequency sound may seem to be anti-intuitive at first sight because a total-

reflecting surface is usually a node, implying no displacement. However, a mem-

brane is generally soft and elastically weak, hence difficult to have zero movement.

But what we shall show, both theoretically and experimentally, is that precisely

because of its weak elastic moduli, even a small membrane can have multiple low-

frequency resonances. As there can be an anti-resonance between two resonances, it

follows that the average normal displacement of the membrane vanishes at the anti-

resonance frequency, thereby causing a resonant behavior of the dynamic mass

density together with a diverging magnitude at the anti-resonance frequency. Total

reflection occurs as a result.

It should be noted, however, that even though the average normal displacement

is zero, the membrane displacement is not everywhere zero. But such nonzero

displacement couples only to non-radiating evanescent waves, which can be

ignored as far as the far-field transmission and reflection are concerned.

Below we give a detailed account of this simple system.

5.3.1 Sample Construct

In Fig. 5.8, we show our sample to consist of a circular rubber membrane decorated

with a small button of varying mass (at the center of the membrane) for the purpose

of tuning the eigenfrequencies [20]. These decorated membranes are assembled

into a larger plate. The measurement setup, illustrated in the top panel, comprises

two Brüel and Kjaer type-4206 impedance tubes with a sample sandwiched in

between. The front tube has a loudspeaker at one end to generate a plane wave.

There are two sensors in the front tube to sense the incident and reflected waves.

The third sensor in the back tube, terminated with a 25-cm-thick anechoic sponge
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(enough to minimize reflection), senses the transmitted wave. The signals from the

three sensors are sufficient to resolve the transmitted and reflected wave amplitudes,

in conjunction with their phases.

5.3.2 Vibrational Eigenfunctions and the Anti-resonance
Phenomenon

In Fig. 5.9a, c, we show the finite-element COMSOL simulation results on the

vibrational eigenmodes of a button-decorated rubber membrane. Here the circular

button has a radius of 4.5 mm and a mass of 160 mg, and the rubber membrane is

28 mm in diameter and 0.2 mm in thickness. The mass density, Young’s modulus,

and Poisson’s ratio for the rubber are 980 kg/m3, 2� 105Pa, and 0.49, respectively.

A radial pre-stress, on the order of 105 Pa, has been applied to the membrane.

The two lowest-frequency eigenmodes are shown. It is seen that for the lowest

frequency eigenmode, at 250 Hz (Fig. 5.9a), the button and the membrane (on

which it is attached) move in unison. However, for the mode at ~1,050 Hz

(Fig. 5.9c), the button’s oscillation amplitude is small whereas the surrounding

rubber’s oscillation amplitude is fairly significant. Figure 5.9b shows the profile at

the anti-resonance frequency. It should be noted that in contrast to the 3D locally

resonant sonic materials (see 5.2), in which the resonance and anti-resonance

frequencies are closely grouped together, for the membrane-type acoustic

metamaterials the resonance and anti-resonance frequencies are well-separated.

Fig. 5.8 Typical sample structure of the membrane-type acoustic metamaterial (bottom panels)
and the testing geometry (upper panel)
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In Fig. 5.10, it is shown that each of the transmission peaks corresponds with an

eigenmode of the system. Between the two eigenfrequencies, there is clearly a sharp

dip in transmission. At this dip frequency (~440 Hz), both eigenmodes are excited,

but with opposite phase. Their superposition leads to the mode profile shown in

Fig. 5.9b. A closer examination of this transmission dip configuration shows that

the averaged normal displacement of the mode is accurately zero. The dynamic

mass density, defined as

Deff ¼ � szzh i h azh ið Þ= ¼ szzh i o2h wh i� ��
; (5.6)

Fig. 5.9 The first eigenmode (a) and the second eigenmode (c). The profile at the dip frequency is
shown in (b)

Fig. 5.10 The effective dynamic mass of the membrane-type acoustic metamaterial (red
symbols, right axis), together with the transmission coefficient (black solid curve, left axis),
evaluated with an incident wave with pressure modulation amplitude of 1 Pa
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displays a resonance-like behavior in which Deff has a divergent magnitude

precisely at the anti-resonance frequency, as shown in Fig. 5.10. Here szz denotes
the zz component of the stress tensor, z being the direction normal to the membrane

surface, az is the acceleration along the z-direction, equal to � o2w for time-

harmonic motions, with w being the normal displacement of the membrane and

h being the thickness of the membrane. In accordance with the principle of the mass

density law, if one allows the dynamic mass density to play the role of the static

mass density, then total reflection should occur. However, a more accurate picture

for explaining the total reflection phenomenon is as follows.

5.3.3 Anti-resonance and the Non-radiating Evanescent Mode

Consider the dispersion relation for the acoustic wave in air, k2jj þ k2? ¼ o2 v2
� ¼

ð2p l= Þ2, where k*jj, k? denote the wave vector components parallel or perpendicular

to the surface of the membrane, respectively, v ¼ 340 m/s is the speed of sound in

air, and l is the wavelength. At the air–membrane interface, we note that the normal

displacement (which is usually sub-micron in magnitude and hence small compared

to the membrane thickness) pattern of the membrane can be fully described by

using 2D Fourier components of k
*

jj . If we decompose the normal displacement

w into an area-averaged component and a component of whatever is left over, i.e.,

w ¼ <w>þ dw, then it should be clear that their respective Fourier components’

magnitudes should have a distribution, illustrated schematically in Fig. 5.11.

Here d denotes the lateral size of the membrane. Since d is usually much smaller

than the wavelength l, it follows that for the dw part of the displacement, the

overwhelming majority of the k
*

jj components will have magnitudes kjj
�� �� 	 2p d= �

2p l= . Hence from the dispersion relation, it follows that the associated k2?<0.

That is, the dw part of the displacement can only cause evanescent waves. In

contrast, for the wh ipart of the normal displacement, the distribution of the kjj
�� ��must

be peaked at zero, owing to its piston-like motion. Thus again from the dispersion

relation, the associated k2? 
 ð2p l= Þ2. It follows that only the average component of

the normal displacement can affect far-field transmission. If wh i ¼ 0, then there can

be no far-field transmission. We therefore arrive at the conclusion that total

reflection is the necessary consequence of the membrane status at the anti-

resonance frequency.

However, even at the anti-resonance frequency, the membrane is not stationary.

Figure 5.12 displays the finite-element COMSOL simulation result at the anti-

resonance frequency. It indicates evanescent waves being emitted, with a decay

length on the order of a millimeter. This fact distinguishes a membrane reflector

from its rigid (and heavy) wall counterpart.

In Fig. 5.10, it should be noted that before the first resonance, Deff is negative

with a decreasing trend (toward negative infinity) as the frequency approaches zero.

This would seem to contradict the common intuition that Deff should reduce to the
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volume-averaged value in the static limit. The fact that it does not do so in the

present case is due to two factors. First, the divergent magnitude is a reflection of

the boundary condition. Since the boundary of the membrane is fixed, the mem-

brane essentially transfers its load onto the fixed boundary in the long wavelength

Fig. 5.11 The parallel Fourier components’ distribution for (a) wh i and (b) dw components,

respectively. For (b), the peak of the distribution lies higher than 2p=d because the feature sizes for
the dw component must be smaller than d

Fig. 5.12 The normal velocity field distribution near the membrane at the transmission dip

frequency, where the black dashed line denotes the position of membrane plane. The left axis

(which is also the symmetry axis) is in units of millimeter, while the velocity is in mm/s (calculated

with the same incident wave intensity as that for Fig. 5.10). The wave is incident from the bottom.

The decay characteristic near the two sides of the membrane surfaces indicates a decay length of

3 mm
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limit. That means the fixed boundary can also be interpreted as a piece of very

heavy mass. Second, the negative sign of Deff, signifying off-phase response to the

external force, is a reflection of Newton’s third law—the reaction is opposite to the

applied force. Such behavior of Deff , also referred to as the “Drude-type negative

mass density” in analogy to free electrons in metal, has been studied in different

structures [21, 22].

5.3.4 Experimental Verification

Experimentally, we have used laser Doppler vibrometer (LDV) to directly verify

the wh i ¼ 0 condition at the transmission minimum frequency. The amplitude

transmission spectrum of the membrane-type metamaterial system was also

measured. Both show very good agreement with the predictions of finite-element

COMSOL simulations.

In Fig. 5.13 the correlation between the transmission coefficient and jhwij is
clearly demonstrated. In Fig. 5.14, we give a detailed comparison between the

measured normal displacement profiles and the COMSOL simulation results on

Fig. 5.13 The black open circles are the measured transmission coefficient (left axis), and the red
solid circles are the LDV-measured jhwij(right axis, arbitrary unit). The red line is to guide the eye.
A clear correlation is seen
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the two eigenmodes, together with the profile at the anti-resonance frequency. Very

good agreement is seen. In particular, if one uses the experimental profile to

calculate the average normal displacement, wh i ffi 0 is obtained at the anti-

resonance point.

In Fig. 5.15, we show a comparison of the theory and experimental transmission

spectra, in which the black solid curve denotes the calculated amplitude transmis-

sion coefficient and the open circles represent measured data. The dashed red line is

the prediction of the mass density law. Excellent agreement is obtained. In particu-

lar, the transmission peaks’ correspondence with the vibrational eigenmodes, as

well as with the transmission dip’s amplitude and frequency, all conform to the

theory predictions.

Fig. 5.14 The calculated (upper panel) and measured (middle and lower panels) normal displace-

ment profiles on the two eigenmodes (left and right columns) and the anti-resonance mode (central

column). The frequencies of the three profiles are (from left to right) around 230 Hz, 450 Hz, and

1,050 Hz. Displacement profiles are measured with ~0.25 Pa incident wave amplitude. Note that

the simulation results (top panels) are only half of the experimental profiles (bottom panels), since
the simulation results are symmetric and therefore the other half need not be shown
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5.3.5 Addition Rule

As stated earlier, one of the purposes of developing the membrane-type

metamaterials is to stack them so as to make the stacked sample more effective at

a particular frequency as well as to broaden the frequency range of the metamaterial

functionality. Here we illustrate the results of such stacking to be indeed in line with

what was expected.

An important point about stacking is that the membrane–membrane separation

should be larger than the evanescent decay length generated by the dw part of the

membrane displacement. Only when this condition is satisfied would the two

membranes be regarded as truly independent, in the sense of having no near-field

coupling.

We first examine quantitatively the effect of stacking two decorated membranes

with the same anti-resonance frequency. In order to contrast with the traditional

mass density law, we note that if the thickness of a solid wall is doubled, then the

mass density law predicts the transmission amplitude to be halved, i.e.,

T / 1

roðd þ dÞ ¼ ð0:5Þ 1

rod
; (5.7)
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Fig. 5.15 Measured transmission coefficient amplitude (black open circles) and the COMSOL

simulation results (black solid curve). The red dashed line is the mass density law prediction
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a 6 dB increase in sound intensity attenuation is expected. In order to achieve 18 dB

attenuation, which is the usual desired increment, it follows that the wall thickness

has to be increased by a factor of 8! In contrast, for the membrane-type

metamaterials, the attenuation rule is given by

T / exp ½�const:ðd þ dÞ� ¼ fexp ½�const:d�g2: (5.8)

From the above, it can be seen that in terms of dB, the addition rule for the mass

density law is logarithmic in character, whereas it is linearly additive for the

membrane-type metamaterials, which is much more effective. In Fig. 5.16a,
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Fig. 5.16 Measured transmission spectra for stacking two membranes operating at almost identi-

cal frequencies (a) and three membranes operating at different anti-resonance frequencies (b)
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we show the result of stacking two almost identical membrane-type metamaterials.

The green and red curves are the transmission spectra of the two membranes,

measured individually. The violet curve is the measured result by stacking the

two together. At the anti-resonance frequency, almost 49 dB in intensity attenuation

has been achieved. That is, stacking two nearly identical membranes shows an

enhancement of ~20 dB in attenuation over a single membrane at the anti-resonance

frequency.

It should be further noted that the resonant frequency of the first eigenmode is

tunable by varying the weight of the central mass, in a manner that is proportional to

the inverse square root of the central mass. The frequency of the second eigenmode,

since its vibrational amplitude is mostly in the membrane, is insensitive to the

weight. As the anti-resonance is a superposition of these two eigenmodes, it is viable

to tune the anti-resonance frequency by varying the weight of the central mass.

To illustrate that stacking can broaden the frequency range of the membrane-

type metamaterial functionality, we have fabricated a panel comprising three

membranes operative at different anti-resonance frequencies. In Fig. 5.16b, the

individually measured transmission spectra are shown as the red, green, and cyan

curves. The transmission spectrum of the stacked sample is shown as the violet

curve. The additive character of the panel is clearly seen from the remnant trans-

mission dips of the three membranes.

To achieve broadband attenuation, we have fabricated panels with multiple

weights in each unit cell (e.g., four weights in one cell). Multiple weights introduce

degenerate eigenmodes, and as a result, the panel’s transmission spectrum has

many transmission minima. We have further tuned the frequency positions of the

anti-resonance dips so that by stacking several panels, a broadband attenuation

sample can be achieved. The separation between the neighboring panels is 15 mm,

much larger than the evanescent decay length at the transmission dips. This sample

(left panel, Fig. 5.17) has a total weight of 15 kg/m2, and the average transmission

loss is 45 dB over the 50–1,500 Hz frequency range (Fig. 5.17, right panel) [23].

Fig. 5.17 Broadband attenuation sample (left) and its measured transmission loss (right)
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5.4 Other Types of Acoustic Metamaterials

Subsequent to the initial demonstration of metamaterial characteristics of the

locally resonant sonic materials, there has been a proliferation of other types of

acoustic metamaterials during the past decade. This section is devoted to a brief

survey of some major achievements in this field, with emphasis on the negativity in

bulk modulus.

5.4.1 Negative Effective Bulk Modulus

Elastic constants play an equally important role as the mass density in determining a

material’s response to elastic/acoustic waves. In the context of elasticity, bulk

modulus describes the elastic deformation that leads to a change in volume [24].

Intuitively, such deformation can be understood as a result of hydrostatic pressure

with no preferred direction(s). This geometric characteristic of the bulk modulus,

which differs from that of mass density, carries over to the consideration of

effective bulk modulus (EBM) for acoustic metamaterials.

Multipole expansion is a standard technique that can be used to reveal the geo-

metric character of the response functions. Being omnidirectional, bulk modulus-

type response has the highest degree of rotational symmetry. Translated into the

language of multipole representation, such response must be dominated by the

monopole term [25]. On the other hand, mass density-type response is strongly

directional as evidenced by the vibrational modes we analyzed in previous sections.

It has the dipole symmetry.

Negativity in bulk modulus means that the medium expands under compression

and contracts upon release. Thermodynamics dictates that a system with such a

static response characteristic must be unstable. However, negative bulk modulus is

possible in the context of dynamic response of an elastic/acoustic system, whereby

the material display an out-of-phase response to an AC pressure field. Some

theoretical models, such as water with suspending air bubbles [26], have been

proposed for the realization of negative EBM.

In terms of experimental realization, there has been only one recipe so far that

successfully achieved negative EBM [27]. The structure consists of a fluid channel

that is sideway shunted by a series of periodically placed Helmholtz resonators

(HRs). Instead of utilizing combinations of several materials, this metamaterial

system seeks to produce modulus-type response by shaping the geometry that

confines fluid in which sound propagates [28]. Several derivative works also exist

on structures that display negative EBM, e.g., HRs in air that are operative in the

kHz frequency regime [29, 30], and flute-like structures [31].
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HR is a well-known acoustic resonance structure that can be analyzed with a

spring-and-mass model. An HR is basically a bottle with a large belly and a small

opening orifice, connected by a narrow neck. Since the volume of the neck is much

smaller than that of the belly, it is a good approximation to consider the fluid in the

neck to be incompressible. The fluid in the belly, however, is compressed when

the fluid in the neck section moves inward. Once compressed, the fluid pressure in

the belly naturally increases, thereby providing a restoring force. Since the wave-

length of the sound is generally much larger than the dimension of the entire

resonator, the pressure gradient within the cavity can be neglected. From this

description of the HR, fluid in the neck serves as the mass and the belly plays the

role of a spring. Using this analogy, we obtain the resonance frequency of an HR as

o2
0 ¼ k=m ¼ ðdF=dxÞ=m ¼ S2ðdP=dVÞ=m , with k denoting the spring constant,

which can be expressed as the force (F) derivative with respect to displacement

(x), and that in turn can be expressed as the pressure (P) derivative with respect to

volume (V) times the square of the cross-sectional area S of the neck. By writing

m ¼ rSL, where r denotes fluid density and L the length of the neck, we obtain

o0 ¼ v
ffiffiffiffiffiffiffiffiffiffiffi
S=VL

p
; (5.9)

where v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðvðdP=dvÞ=rÞp
is the speed of sound in the fluid and V is the volume of

the resonator chamber (the belly) (Fig. 5.18).

The HRs in [27] were arranged orthogonal to the propagation direction of the

sound in the waveguide (Fig. 5.19a). A sound wave can trigger fluid motion in the

neck of an HR, and when the excitation frequency approaches the vicinity of the HR

eigenfrequency, the EBM response is excited, with a typical frequency dependence

of 1=ðo2
0 � o2Þ. We therefore expect a sign change in the EBM response, arising

from the fact that the motion of the fluid column in the neck switches from in-phase

to out-of-phase with respect to the external pressure field.

Negative bulk modulus has a similar effect on acoustic wave propagation as the

negative mass density—both cause the acoustic waves to be evanescent in character.

Fig. 5.18 A typical

Helmholtz resonator
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Accordingly, bandgap was experimentally observed close to the resonant frequency

of the metamaterial (Fig. 5.20).

5.4.2 Acoustic Double Negativity

The successful demonstrations of acoustic metamaterials with negative effective

parameters naturally lead to the possibility of simultaneous double negativity in the

same frequency regime. Early theoretical prediction [25] suggested that monopolar

Fig. 5.19 Experimental layout (a) and measured results (b), (c). Negative transit time in (b)
indicates negative group velocity, as seen in the band structure in (c). Figures adapted from [27]

Fig. 5.20 Transmission spectra. A forbidden band is clearly seen around 32 kHz, owing to the HR

resonance. The asymmetric peak (red arrow) is caused by Fano-like resonance, which is the

consequence of interference between continuum channel and resonant channel [27, 32].

Figure adapted from [27]
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and dipolar resonances of the local scatterers are key to negative EBM and negative

effective (dynamic) mass density, respectively. Recipes were conceived for their

simultaneous realization [25, 26, 33, 34]. Similar to the electromagnetic case, doubly

negative bulk modulus and (dynamic) mass density can lead to negative dispersion,

i.e., the so-called left-handed acoustic materials. However, it was not until 2010 that

the first success in experimental realization of acoustic double negativity [35] was

demonstrated. In their 1D design, periodically arranged elastic membranes were

deployed to tune the dipolar resonance [21], with side-opening orifices providing

monopolar response [31]. Double-negative transmission band was found in the low-

frequency limit. The same group later utilized the same design to demonstrate a

reversed Doppler shift of sound within the double-negative band [36].

5.4.3 Focusing and Imaging

With the advent of acoustic metamaterials, a new horizon of possibilities for

acoustic wave manipulation has emerged. During the past few years, there has

been a proliferation of theoretical/numerical predictions [37–41] for achieving

acoustic focusing and superlensing by using acoustic metamaterials. Shu Zhang

et al. expanded such concept by building an interconnecting fluid network. Shunted
by cavities of different volumes, each unit in the network resembles a Helmholtz

resonator. It was experimentally shown that such a network is capable of achieving

in-device focusing of ultrasound [42]. Lucian Zigoneanu et al. designed and

fabricated flat lens with gradient index of refraction, bringing kHz airborne sound

into out-of-device focus [43].

Highly dispersive materials can attain almost flat equi-frequency contours within

a certain regime, thereby “canalizes” the propagation of wave [44, 45], achieving

imaging effect. Such concept can be adapted to acoustic waves. By arranging

locally resonant units in a square lattice, a low-frequency bandgap can emerge,

with almost-flat lower band edge. It was numerically shown that the equi-frequency

contour is square-like near the band edge and is capable of canalizing even

evanescent acoustic wave into propagating modes [46, 47]. X. Ao and C. T. Chan

took a step further [47] by incorporating rectangular lattice to introduce anisotropy.

And by laying out the lattice in half-cylindrical geometry, a magnifying effect

analogous to optical hyperlens [48, 49] was numerically demonstrated.

Anisotropy is at the core of the hyperlens idea. From multipole expansion, waves

scattered/emanated from an object can be represented by superposition of modes

with different angular momenta. Geometric details of the scatterers are carried in

modes with high angular momenta that do not propagate (i.e., evanescent in charac-

ter). However, for anisotropic materials in which the dielectric constant along one

direction is negative, it becomes possible to have hyper-resolution. This is easy to

see for a 2D circular geometry in which we have anisotropic dielectric constantsey,er
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with the condition that eyer < 0. Then from the dispersion relation ðk2y=erÞ þ ðk2r =eyÞ
¼ ðo2=v2Þ, it is easy to see that both ky and kr can take on very large values,

implying high resolution, without violating the dispersion relation. Such a

material is denoted a hyperlens [48, 50], which is able to convert evanescent

waves with high angular momenta into propagating modes. An acoustic

magnifying “hyperlens” was subsequently realized by Jensen Li et al. [51],

based not on the negative dielectric constant but rather on the large effective

density and the relatively weak bulk modulus, realized by a fan-like structure

with alternating fins of brass and air ducts, so that the effective wave speed is

low and thereby the relevant wavelength is small. The lens has clearly

demonstrated resolution that is less than half of the wavelength (with magnifi-

cation) in a spatial region that is out of the device.

In the absence of viscous effect, a longitudinal acoustic wave can propagate

in ducts (i.e., waveguides) of very small cross section, without the constraint of

a cutoff frequency. By exploiting this fact, and with the aid of Fabry–Perot

resonances, it was shown theoretically [52] that an “acoustic endoscope” can

enhance evanescent waves, therefore open the possibility for sub-diffraction imag-

ining. This idea was subsequently realized [53] with an array of waveguides with

deep-subwavelength transverse-scale size.

Besides the approaches discussed above, C. Daraio’s group took a different path

toward acoustic focusing—nonlinearity in granular materials [54]. They constructed

a nonlinear lens by patching granular chains tightly together. Such granular chains

can transform an acoustic pulse into solitary waves, whose phase velocity depends

on the amplitude. By adjusting the pre-applied static force exerted on each indi-

vidual chain, the lens was found able to focus sonic pulse into very high intensity.

5.4.4 Cloaking

Acoustic cloaking has attracted theoretical attention in the past few years [55–67].

In particular, researchers have conceived devices by using “transformation acous-

tics” as a tool. Schemes for the cloaking of acoustic surface waves [68], bending

waves on thin plates [69–71] and even fluid flow [72], have been proposed theoreti-

cally and studied by numerical simulations.

The experimental breakthrough came from Fang’s group [73]. By making

analogy between the acoustic wave equation and the telegrapher’s equation, they

explored the idea of using fluid networks as a platform for realizing acoustic

cloaking. The effective mass density and bulk modulus were designed to follow a

gradient in the radial direction, such that the ultrasonic wave is bent around the

central domain, thereby minimizing the scattering of the object placed inside the

domain so as to render it “invisible” to external observers. Experimental demon-

stration has clearly shown the reduced shadowing effect of the scattering object in
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the presence of the cloak. Impedance mismatch and the inevitable dissipative loss

accounted for the less-than-perfect cloaking effect. Recently, the method of trans-

formation acoustics showed its power in the design and experimental realization of

an acoustics “carpet cloak” in air [74].

5.4.5 Acoustic Rectification

Time-reversal symmetry and spatial inversion symmetry are intrinsic to linear

acoustic wave equation. Hence, nonreciprocal transmission of wave requires certain

extra conditions to break these symmetries. By introducing second harmonics

(nonlinear effect) into the wave equation and thereby breaking its time-reversal

symmetry, an acoustic one-way mirror was proposed [75]. This was subsequently

realized in the ultrasonic regime [76]. More recently, C. Daraio’s group used 1D,

strongly nonlinear (force-loaded) artificial granular medium to achieve rectification

of acoustic waves and proposed prototypes of mechanical logic gates [77]. On the

other hand, acoustic “one-way mirror” was also realized using simple 2D phononic

crystals with incomplete bandgap [78]. Li et al. incorporated diffraction structures

on one end of the phononic crystal to induce spatial modes with different k-vectors,
thereby mimicking the condition of oblique incidence to result in transmission for

part of the acoustic energy.

5.4.6 Hybrid Elastic Solids

Negativity in the effective mass density and the EBM is a direct outcome of dipolar

and monopolar resonances, respectively. A natural question is whether it is possible

to have a solid with a unit cell that can display monopole, dipole, and quadrupole

resonances [6]. If so, what kind of behavior would such a solid exhibit? A recent

publication [79] has proposed a unit cell design that can realize all three resonances,

with overlapping resonance frequency regimes. Finite-element calculations found

this unique design to simultaneously support dipolar and monopolar/quadrupolar

resonances. As a result, two doubly negative bands exist. In one band, with

overlapping dipolar and monopolar resonances, only pressure waves can propagate

(with negative dispersion) while the shear waves are evanescent. This in effect

resembles the acoustic property of a fluid. In the other band, “super-anisotropic

behavior” is exhibited—i.e., pressure and shear waves are allowed to propagate

only along mutually perpendicular directions. Hence within the frequency range of

this band, the material appears to be a rigid solid in one direction but appears fluid-

like in the other (Table 5.1).
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5.5 Dynamic Mass Density at the Low-Frequency Limit

It is well known that for a time-harmonic wave, the elastic wave equation may be

written as

r � m½ru
* þ ðru

*ÞT� þ rðlr � u*Þ þ Do2u
* ¼ 0; (5.10)

whereD is the mass density, l and m are the (spatially varying) Lamé constants, u
*
is

the displacement vector, and ðru
*ÞT denotes the transpose of the tensorial quantity

ru
*
. Static effective elastic moduli and mass density are usually defined in the zero-

frequency limit, where the limito ! 0 is usually taken first, so that the mass density

term drops out. Thus, the static effective moduli are obtained by the homogeniza-

tion of r � ðmrÞ and rðlr�Þ operators. In contrast, to obtain the dynamic mass

density expression, we have to solve the wave equation (5.10) so as to get the low-

frequency wave solution and its relevant dispersion relation oðk*Þ. The fact that for
the fluid–solid composites the two limits are not necessarily the same has already

been explained in the introductory Sect. 5.1. Thus the dynamic mass density is

obtained from the slope of oðk*Þ, i.e., the wave velocity. However, to separate out

the elastic constant and mass density information from a single wave speed requires

an additional criterion, which turns out to be the different angular momentum

channels, as shown below. But at this point, we must first briefly introduce the

MST, since our approach in obtaining theo ! 0 dynamic mass density is simply to

examine the low-frequency limit of the MST.

Table 5.1 Properties of the hybrid elastic solids [79]

Direction

Wave type

GX GM

P-wave S-wave P-wave S-wave

Wave velocities
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
keff þ meff

reff

r ffiffiffiffiffiffiffi
ceff44

reff

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
keff þ ceff44

reff

s ffiffiffiffiffiffiffi
meff
reff

r

Lower band

keff > 0;reff < 0

meff � 0; ceff44 > 0

Propagation

allowed, double

negative in reff
and meff

Evanescent,

negative reff
Evanescent,

negative reff
Propagation

allowed, double

negative in reff
and meff

Higher band

keff < 0;reff < 0

meff > 0; ceff44 > 0

Propagation

allowed, double

negative in reff
and keff

Evanescent,

negative reff
Propagation

allowed, double

negative in reff
and keff

Evanescent,

negative reff
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5.5.1 Multiple-Scattering Theory

MST represents a solution of the elastic wave equation (5.10) for a periodic

composite that accounts fully for all the multiple scattering effects between any
two scatterers, shown schematically in Fig. 5.21, as well as for the inherent vector

character of elastic waves [2, 80, 81]. In what follows, we shall attempt to illustrate

the basic ideas of the MST by using diagrammatic illustrations. A more detailed

mathematical description can be found in Chap. 10.

We shall focus on the case of 2D periodic composites with a fluid matrix,

in which MST has a rather simple form, as shown in Fig. 5.22, where u
*in

i ðr*iÞ ¼P
n
ainJ

*i

nðr*iÞ and u*sc
i ðr*iÞ ¼

P
n
binH

* i

nðr*iÞ are the waves incident on, and scattered by

the scatterer i, respectively, with a1 ¼ o
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D1 B1=

p
being the wave vector in the

fluid matrix. Here D1 and B1 denote the mass density and bulk modulus of the

matrix, respectively, r* ¼ ðr; ’Þ is the polar coordinates, and JnðxÞ and HnðxÞ
denote the nth Bessel function and Hankel function of the first kind, respectively.

Since the incident wave on scatterer i comprises the external incident wave

u
*inð0Þ
i ðr*iÞ plus the scattered waves by all the other scatterers except i (as shown in

Fig. 5.21), we have

u
*in

i ðr*iÞ ¼ u
*inð0Þ
i ðr*iÞ þ

X
j 6¼i

X
n00

bjn00H
* j

n00 ðr*jÞ; (5.11)

where r*i and r*j refer to the position of the same spatial point measured from

scatterers i and j, respectively.
In Fig. 5.22, the expansion coefficients fang and fbng are not independent

but are in fact related by the so-called T matrix. This is shown in Fig. 5.23, where

T ¼ fTnn0 g is the elastic Mie scattering matrix determined by matching the normal

displacement and normal stress component at the fluid–solid interface.

Fig. 5.21 A schematic diagram illustrating the basic idea of the multiple-scattering theory (MST),

in which the scattered outgoing wave from any one particular scatterer constitutes part of the

incident wave to any other scatterer
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Fig. 5.23 T matrix and the boundary conditions. Region 1 denotes the matrix materials and region

2 denotes the solid scatterer

Fig. 5.22 General solution of the acoustic wave equation for 2D phononic crystals with a fluid

matrix. Here Jn denotes the Bessel function of nth order and Hn denotes the nth-order Hankel
function of the first kind
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With the help of addition theorem, it can be proved that

H
* j
n00 ðr*jÞ ¼ H

* j
n00 r*i � ðR*j � R

*

iÞ
� �

¼
X
n

Gij
n00nJ

*i

nðr*iÞ; (5.12)

where the G matrix Gij
n00n ¼ Gn00nðR

*

j � R
*

iÞ denotes the translation coefficients as

shown in Fig. 5.24, with f ¼ arg ðR*j � R
*

iÞ, R
*

iðjÞ being the position of scatterer iðjÞ.
This translation means that the wave scattered by the scatterer jmay be expressed in

terms of Bessel functions centered at scatterer i. And since the coefficients fang and
fbng at scatterer i are related by the T matrix, one can therefore obtain a single

matrix equation with fang being the variables. Of course, in such a derivation, it is

assumed that in a periodic composite every scatterer is the same.

For the purpose of calculating the dispersion relation, we do not need an

externally incident wave u
*inð0Þ
i ðr*iÞ in (5.2), thus we have

u
*in
i ðr*iÞ ¼

X
j 6¼i

X
n00

b j
n00H

* j
n00 ðr*jÞ: (5.13)

After substituting the expressions for the T matrix and G matrix into this

equation and Fourier-transforming the coefficients of fang, as shown in Fig. 5.25,

we arrive at the following secular equation:

det T�1
nn0 � Gnn0 ðk

*Þ
��� ��� ¼ 0: (5.14)

Equation (5.14) is equivalent to (85) in Chap. 10. Written in this particular form,

(5.14) is particularly suitable for the low-frequency expansion, as seen below.

Fig. 5.24 G matrix and its evaluation method
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5.5.2 Dynamic Mass Density at the v ! 0 Limit

Equation (5.14) is the secular equation for determining the band structure of a

periodic composite. Here we want only the branch at theo ! 0 limit, i.e., by letting

a1 ! 0 and retaining the leading-order terms of the secular equation. This is

illustrated in Fig. 5.26.

By taking the low-frequency limit and retaining terms to the order of o�2, both

the T�1 matrix and the G matrix can be simplified to 3 � 3 matrices [4, 5].

Therefore, the secular equation in the low-frequency limit is given by

det

D1 þ D2

D1 � D2

þ x2f

1� x2
ixf

1� x2
� f

1� x2

� ixf

1� x2
B2

B2 � B1

þ x2f

1� x2
ixf

1� x2

� f

1� x2
� ixf

1� x2
D1 þ D2

D1 � D2

þ x2f

1� x2

������������

������������
¼ 0; (5.15)

in which f ¼ pr20 A= is the filling ratio of the solid inclusions, B1 ¼ l1 and B2 ¼
l2 þ m2 are the bulk moduli of the fluid matrix and solid inclusions, respectively,

and x ¼ Veff V1= is the variable to be solved in the determinant equation (5.15).

By discarding the trivial root, we obtain the effective sound velocity of the

composite as

Fig. 5.25 Secular determinant equation of the MST, for the determination of band structures for

periodic composites
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Veff ¼
ffiffiffiffiffiffiffiffi
Beff

Deff

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

B2 þ ðB1 � B2Þf B1

ðD2 þ D1Þ þ ðD2 � D1Þf
ðD2 þ D1Þ � ðD2 � D1Þf D1

vuuuuut : (5.16)

It is well known that according to the effective medium theory [82], the EBM

Beff of the fluid–solid composite is given by

1

Beff

¼ 1� f

B1

þ f

B2

(5.17)

or

Beff ¼ B2

B2 þ ðB1 � B2Þf B1: (5.18)

Fig. 5.26 The T�1 matrix and G matrix in the low-frequency limit, where r0 and A are the radius

of solid inclusions and area of unit cell, respectively. l1, l2, and m2 are the Lamé constants, and

g0 � 0:5772 is the Euler’s constant. y0 Is the polar angle of wave vector k
*

, which vanishes in the

determinant evaluation of T�1 � G
�� ��. The variable x ¼ Veff V1= is the quantity to be evaluated
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It can also be seen from Eq. (5.15) and Fig. 5.26 that the expression for Beff ,

(5.18), arises from the n ¼ 0 angular scattering channel.

By using (5.16) and the effective medium expression for Beff [i.e., (5.18)], we

arrive at precisely the Berryman effective mass density in 2D [83, 84]:

Deff ¼ ðD2 þ D1Þ þ ðD2 � D1Þf
ðD2 þ D1Þ � ðD2 � D1Þf D1: (5.19)

In contrast to the Beff expression, the effective mass density Deff is completely

determined by the n ¼ 1 angular channel. As pointed out previously, the effective

mass density and the EBM represent separate but parallel wave scattering channels.
Equation (5.19) is valid for both the square and the hexagonal lattices when the

filling fraction of the solid inclusions is not very high. At this leading order of

density expansion, both Beff and Deff are noted to be independent of the lattice

structure. In particular, they are both relatively accurate for random fluid–solid

composites as long as the density is not close to the tight-packing limit, and the

viscous boundary layer thickness is smaller than the fluid channel width. When the

concentration of scatterers becomes larger and larger, it is expected that higher-

order angular momentum channels in T�1 and G matrices should be included. The

effective sound speeds would then be different for the square and the hexagonal

lattices, but isotropy still holds.

It is instructive to carry the effective dynamic mass density evaluation to a

higher concentration level, by retaining more angular momentum channels in the

T�1 and G matrices. Through a lengthy derivation, the dynamic mass density is

found to be in the form [84–86]

Deff ¼ ðD2 þ D1Þ þ ðD2 � D1Þð f � gÞ
ðD2 þ D1Þ � ðD2 � D1Þð f þ gÞD1; (5.20)

where [87]

g ¼ 768
M4

p

	 
2

f 4 � 0:3058f 4 (5.21)

for the square lattice, and

g ¼ 1; 620
M6

p2

	 
2

f 6 � 0:0754f 6 (5.22)

for the hexagonal lattice. Here the lattice sums

M4 ¼
X
h 6¼0

J4 Khað Þ
Khað Þ2 e4iyh (5.23)
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and

M6 ¼
X
h 6¼0

J6 Khað Þ
Khað Þ e6iyh (5.24)

are defined in the reciprocal spaces of the square and hexagonal lattices, respec-

tively, withK
*

h ¼ Kh; yhð Þ denoting the reciprocal lattice vector in polar coordinates
and abeing the lattice constant. In contrast, the EBM is still given by (5.18), i.e., the

Wood’s formula.

Comparing (5.20) with (5.19), we notice that the effective mass density is

modified by a correction term, g. When the filling fraction of the inclusions is not

very high, g is very small so that it can be safely neglected. When this happens,

(5.20) reduces to (5.19), i.e., the dipole solution. However, in case of high concen-

tration of inclusions, Berryman’s expression, i.e., (5.19), should be modified to

incorporate the influence of higher-order scattering coefficients.

It is worth noting that the correction term g is proportional to f 4 for the square
lattice and to f 6 for the hexagonal lattice. Common sense tells us that the correc-

tion term should be quadratic in f, but here the correction term g is obviously

determined by the symmetry of the square and hexagonal lattices. This point can be

easily understood since the coefficients in front of f 4 (square lattice) and f 6

(hexagonal lattice) are respectively the lattice sums M4 and M6 defined by (5.23)

and (5.24), and they are clearly determined by the lattice symmetry.

If the matrix is made of solid instead of liquid, we can also take the low-

frequency limit on the MST in a similar way. But a different effective medium

formula for the mass density may be expected since in a solid matrix not only the

longitudinal wave but also the transverse waves can propagate. It is well known

that in 2D phononic crystals, when the wave vector is confined in the 2D plane (i.e.,

the x–y plane) perpendicular to the cylinder axis direction (i.e., the z-direction), the
elastic waves can be decoupled into an out-of-plane transverse z mode and an

in-plane mixed xy mode.

For the transverse zmode, the displacement is perpendicular to the x–y plane and
thus easier to deal with. By taking the low-frequency limit and retaining the

dominant terms, the T�1 � G matrix can also be simplified to a 3 � 3 matrix [5]:

T�1 �G¼ 4i

pr2
1

b21

m2 þ m1
m2 � m1

þ f
x2

1� x2
ixf

1� x2
e�iy0 � f

1� x2
e�2iy0

� ixf

1� x2
eiy0

D1

D1 �D2

þ f
x2

1� x2
ixf

1� x2
e�iy0

� f

1� x2
e2iy0 � ixf

1� x2
eiy0

m2 þ m1
m2 � m1

þ f
x2

1� x2

2
66666664

3
77777775
;

(5.25)
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in which x ¼ Veff=V1 is the quantity to be evaluated. By solving (5.25), we obtain

the effective transverse wave velocity of the composite as

Veff ¼
ffiffiffiffiffiffiffiffi
meff
Deff

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 þ m1Þ þ ðm2 � m1Þf
ðm2 þ m1Þ � ðm2 � m1Þf

m1

ð1� f ÞD1 þ fD2

vuuut
: (5.26)

It can be recognized from (5.26) that the effective shear modulusmeff, determined

by the n ¼ 1 angular channel [see (5.25)], is given by

meff ¼
ðm2 þ m1Þ þ ðm2 � m1Þf
ðm2 þ m1Þ � ðm2 � m1Þf

m1: (5.27)

It is interesting to point out that (5.27) has the same form as (5.19), and this

similarity is due to the fact that both meff and Deff arise from the n ¼ 1 angular

channel scattering.

According to (5.26) and the effective shear modulus expression for meff , i.e.,
(5.27), we arrive at the volume-averaged mass density expression for the transverse

z mode:

Deff ¼ reff ¼ ð1� f ÞD1 þ fD2; (5.28)

which is distinct from the fluid-matrix case. Here the effective mass density for the

solid-matrix composite is determined by the n ¼ 0 angular channel. Equation (5.28)

for the solid matrix case is noted to be identical to that found by Berryman [83]

through a different approach.

If we let m1 ! 0, then according to (5.27), we have meff ! 0. That is, when the

solid matrix is gradually reduced to the limit of zero shear modulus, the whole

composite would also act like a zero-shear modulus system, i.e., the composite

behaves like a fluid. However, it is important to note that even in this limit, the

volume-averaged density formula, i.e., (5.28), still holds. Therefore, by first taking

the o ! 0 limit and then the m1 ! 0 limit, we arrive at the volume-averaged mass

density expression. However, reversing the order of taking the two limits leads to

the expression given by (5.19). Therefore, the order of taking the two limits cannot
be interchanged, as explained in the introductory Sect. 5.1.

5.5.3 Comparison with Experimental Data

Cervera et al. have measured the sound velocity in a 2D phononic crystal composed

of hexagonal array of aluminum cylinders in air [86]. Here the frequency of sound

is 600 Hz, and the wavelength of sound in air, 57 cm, is much larger than either the

cylinder diameter or the lattice constant. The wavelengths of sound in Al, for both
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longitudinal and transverse waves, are even larger. The use of effective medium

theory is thus justified. The viscosity and mass density of air at normal temperature

are 1:827� 10�5Pa s and 1.292 kg/m3, respectively. At the experimental frequency

of ~600 Hz, the viscous boundary layer thickness ‘vis ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� rairo=

p ¼ 6:12� 10�3

cm is much smaller than either the cylinder diameter, the lattice constant, or the

fluid channel width ‘. Thus the condition ‘ � ‘vis is valid.
In the experiment, the maximum filling ratio of Al cylinders is about 0.36, shown

as open triangles in Fig. 5.27, where it can be seen that there is nearly an order of

magnitude discrepancy between the experimentally measured velocity with that

predicted by using the volume-averaged mass density and the EBM Beff given by

(5.18). In contrast, when the dynamic effective mass density, (5.19), is used,

excellent agreement is seen.

For higher filling ratio of Al cylinders, we have used COMSOL Multiphysics, a

finite-element solver, to perform a band-structure calculation for the same periodic

system. From the band structure, i.e., the dispersion relation, one can compute the

effective wave speed by using c ¼ o=k in the low-frequency limit. The

corresponding results are plotted in Fig. 5.27 in green circles. They are seen to be

in excellent agreement with (5.20), as shown with red solid curve, where the

correction term g is included.

In Fig. 5.28a, we show the numerically calculated displacement field intensities

for the relevant experiment. It can be seen that the displacement field is nearly zero

inside the cylinders, hence it is almost impossible to have the condition for the

validity of volume-averaged density formula. However, when the impedance mis-

match is relatively moderate, e.g., when the mass density contrast is small, then the

effective dynamic mass density reduces the volume-averaged mass density, which

means that the static mass density is a special case of the dynamic mass density. For

comparison with Fig. 5.28a, we have also plotted the displacement field intensities

for the poly(methyl methacrylate) (PMMA)–water system in Fig. 5.28b, in which

the wavefield homogeneity is very evident. As our derivation of the dynamic mass

density is obtained by taking the long wavelength limit of the scattering wave field

solutions, it is not surprising that such formula inherently accounts for the wavefield

inhomogeneities as they exist in reality. As explained in Sect. 5.1, the relative
motion between the components of a composite is the basic reason leading to the

difference between the static and dynamic mass densities, and such relative motion

is evident when the impedance mismatch is large and ‘>>‘vis.
In a solid-matrix composite, the presence of a nonzero shear modulus for the

matrix component means that in the long wavelength limit, uniform motion of the

matrix and the inclusions is guaranteed. As a result, the dynamic mass density for

the solid-matrix composites is always the volume-averaged value. When one

further takes the limit of m1 ! 0 in that case, only the relative ratio of the

longitudinal wavelength to the transverse (shear) wavelength is altered, which is

the reason that the effective mass density expression still remains the same as the

static mass density.
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5.6 Concluding Remarks

Acoustics has been one of the oldest topics of scientific investigation. Its robust

revival during the past two decades has been a most gratifying experience for many

researchers in this area. The purpose of this chapter is to give a vignette on some of

Fig. 5.28 (a) MST-calculated displacement field intensities in a 2D hexagonal lattice of Al

cylinders in air, with the relevant experimental parameter values as stated in the text. Blue
indicates low field intensity, and yellow indicates high field intensity. The wave vector is along

the y-direction, with a being the lattice constant. It is seen that the wave amplitude is nearly zero

inside the Al cylinders. Decreasing the frequency further does not alter this fact. (b) The same for

PMMA cylinders in water. Wave field is seen to be much more homogeneous than that in (a).
Figure adapted from [4]

Fig. 5.27 The effective sound velocities calculated with the effective bulk modulus given by

Wood’s formula with volume-averaged mass density (solid squares) and with the mass density

given by (5.19) (solid triangle). Experimentally measured effective sound velocity is shown as

open triangles. While the volume-averaged mass density gives results very far removed from the

experiment, the mass density given by (5.19) is shown to yield almost perfect agreement with

measured results when the filling ratio of the Al cylinders is not very high. When the filling ratio is

larger than 0.6, however, the correction term g should be included [see (5.20)], with the prediction
shown by the red solid curve. It can be seen that the prediction of (5.20) agrees very well with the
finite-element simulation results, shown as green dots, even when the filling ratio is close to the

tight-packing limit
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the more recent developments. In particular, we present an overview on the

different ramifications of the dynamic mass density issue that includes both

the acoustic metamaterials manifestations and the effective mass density of

fluid–solid composite in the zero frequency limit. The connection with the anti-

resonance behavior is emphasized and clarified, especially with respect to the

membrane-type acoustic metamaterials. A brief review of other types of acoustic

metamaterials is also included.

In contrast to electromagnetic metamaterials, the role of dissipation is minimal

for acoustic metamaterials—at least in the low-frequency limit. However, since the

presence of dissipation is inevitable, its consideration, while still in the incipient

stage at present, may become more important in the future. Another issue is the role

of evanescent waves, which can be expected to play an increasingly important part

in transformational acoustics, just as in the case of electromagnetic metamaterials.

However, unlike the electromagnetic case, the elasticity of solid composites has

more parameters and therefore can be expected to display a much richer variety of

behaviors. An example along this direction is the recent work on hybrid elastic

solids [79].

Potential applications of acoustic metamaterials would undoubtedly be a con-

sideration for the future developments in this area. Pursuit of such a worthy goal

may not only open up new topics for basic research, but can also impact those

disciplines that are traditionally related to acoustics—such as architecture, noise

pollution, medical ultrasound, acoustic imaging, etc. Cross-disciplinary pollination

can imply exciting potential possibilities.
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18. G. Schitter, F. Allgöwer, A. Stemmer, A new control strategy for high-speed atomic force

microscopy. Nanotechnology 15, 108 (2004)

19. G. Schitter, P.J. Thurner, P.K. Hansma, Design and input-shaping control of a novel scanner

for high-speed atomic force microscopy. Mechatronics 18, 282 (2008)

20. Z. Yang, J. Mei, M. Yang, N. Chan, P. Sheng, Membrane-type acoustic metamaterial with

negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008)

21. S.H. Lee, C.M. Park, Y.M. Seo, Z.G. Wang, C.K. Kim, Acoustic metamaterial with negative

density. Phys. Lett. A 373, 4464 (2009)

22. S. Yao, X. Zhou, G. Hu, Investigation of the negative-mass behaviors occurring below a cut-

off frequency. New J. Phys. 12, 103025 (2010)

23. Z. Yang, H. Dai, N. Chan, G. Ma, P. Sheng, Acoustic metamaterial panels for sound attenua-

tion in the 50–1000 Hz regime. Appl. Phys. Lett. 96, 041906 (2010)

24. L. Landau, E. Lifshitz, Theory of Elasticity, 3rd edn. (Elmsford, New York, 1982)

25. J. Li, C. Chan, Double-negative acoustic metamaterial. Phys. Rev. E 70, 055602 (2004)

26. Y. Ding, Z. Liu, C. Qiu, J. Shi, Metamaterial with simultaneously negative bulk modulus and

mass density. Phys. Rev. Lett. 99, 93904 (2007)

27. N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, X. Zhang, Ultrasonic

metamaterials with negative modulus. Nat. Mater. 5, 452 (2006)

28. L. Fok, M. Ambati, X. Zhang, Acoustic metamaterials. MRS Bull. 33, 931 (2008)

29. C. Ding, L. Hao, X. Zhao, Two-dimensional acoustic metamaterial with negative modulus.

J. Appl. Phys. 108, 074911 (2010)

30. C.L. Ding, X.P. Zhao, Multi-band and broadband acoustic metamaterial with resonant

structures. J. Phys. D Appl. Phys. 44, 215402 (2011)

31. S.H. Lee, C.M. Park, Y.M. Seo, Z.G. Wang, C.K. Kim, Acoustic metamaterial with negative

modulus. J. Phys. Condens. Matter 21, 175704 (2009)

32. C. Goffaux, J. Sánchez-Dehesa, A.L. Yeyati, P. Lambin, A. Khelif, J. Vasseur, B. Djafari-

Rouhani, Evidence of fano-like interference phenomena in locally resonant materials. Phys.

Rev. Lett. 88, 225502 (2002)

33. Y. Cheng, J. Xu, X. Liu, One-dimensional structured ultrasonic metamaterials with simulta-

neously negative dynamic density and modulus. Phys. Rev. B 77, 045134 (2008)

34. X. Hu, K.M. Ho, C. Chan, J. Zi, Homogenization of acoustic metamaterials of Helmholtz

resonators in fluid. Phys. Rev. B 77, 172301 (2008)

5 Dynamic Mass Density and Acoustic Metamaterials 197



35. S.H. Lee, C.M. Park, Y.M. Seo, Z.G. Wang, C.K. Kim, Composite acoustic medium with

simultaneously negative density and modulus. Phys. Rev. Lett. 104, 54301 (2010)

36. S.H. Lee, C.M. Park, Y.M. Seo, C.K. Kim, Reversed Doppler effect in double negative

metamaterials. Phys. Rev. B 81, 241102 (2010)

37. M. Ambati, N. Fang, C. Sun, X. Zhang, Surface resonant states and superlensing in acoustic

metamaterials. Phys. Rev. B 75, 195447 (2007)

38. S. Guenneau, A. Movchan, G. Pétursson, S. Anantha Ramakrishna, Acoustic metamaterials for

sound focusing and confinement. New J. Phys. 9, 399 (2007)

39. K. Deng, Y. Ding, Z. He, H. Zhao, J. Shi, Z. Liu, Theoretical study of subwavelength imaging

by acoustic metamaterial slabs. J. Appl. Phys. 105, 124909 (2009)

40. X. Zhou, G. Hu, Superlensing effect of an anisotropic metamaterial slab with near-zero

dynamic mass. Appl. Phys. Lett. 98, 263510 (2011)

41. J. Li, Z. Liu, C. Qiu, Negative refraction imaging of acoustic waves by a two-dimensional

three-component phononic crystal. Phys. Rev. B 73, 054302 (2006)

42. S. Zhang, L. Yin, N. Fang, Focusing ultrasound with an acoustic metamaterial network. Phys.

Rev. Lett. 102, 194301 (2009)

43. L. Zigoneanu, B.I. Popa, S.A. Cummer, Design and measurements of a broadband two-

dimensional acoustic lens. Phys. Rev. B 84, 024305 (2011)

44. P.A. Belov, C.R. Simovski, P. Ikonen, Canalization of subwavelength images by electromag-

netic crystals. Phys. Rev. B 71, 193105 (2005)

45. Y. Jin, S. He, Canalization for subwavelength focusing by a slab of dielectric photonic crystal.

Phys. Rev. B 75, 195126 (2007)

46. Z. He, F. Cai, Y. Ding, Z. Liu, Subwavelength imaging of acoustic waves by a canalization

mechanism in a two-dimensional phononic crystal. Appl. Phys. Lett. 93, 233503 (2008)

47. X. Ao, C. Chan, Far-field image magnification for acoustic waves using anisotropic acoustic

metamaterials. Phys. Rev. E 77, 025601 (2008)

48. Z. Jacob, L.V. Alekseyev, E. Narimanov, Optical hyperlens: far-field imaging beyond the

diffraction limit. Opt. Express 14, 8247 (2006)

49. Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Far-field optical hyperlens magnifying sub-

diffraction-limited objects. Science 315, 1686 (2007)

50. D. Smith, D. Schurig, Electromagnetic wave propagation in media with indefinite permittivity

and permeability tensors. Phys. Rev. Lett. 90, 77405 (2003)

51. J. Li, L. Fok, X. Yin, G. Bartal, X. Zhang, Experimental demonstration of an acoustic

magnifying hyperlens. Nat. Mater. 8, 931 (2009)

52. F. Liu, F. Cai, S. Peng, R. Hao, M. Ke, Z. Liu, Parallel acoustic near-field microscope: a steel

slab with a periodic array of slits. Phys. Rev. E 80, 026603 (2009)

53. J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, F. Garcia-Vidal, A

holey-structured metamaterial for acoustic deep-subwavelength imaging. Nat. Phys. 7, 52
(2010)

54. A. Spadoni, C. Daraio, Generation and control of sound bullets with a nonlinear acoustic lens.

Proc. Natl. Acad. Sci. 107, 7230 (2010)

55. G.W. Milton, M. Briane, J.R. Willis, On cloaking for elasticity and physical equations with a

transformation invariant form. New J. Phys. 8, 248 (2006)

56. H. Chen, C. Chan, Acoustic cloaking in three dimensions using acoustic metamaterials. Appl.

Phys. Lett. 91, 183518 (2007)

57. S.A. Cummer, D. Schurig, One path to acoustic cloaking. New J. Phys. 9, 45 (2007)

58. Y. Cheng, F. Yang, J.Y. Xu, X.J. Liu, A multilayer structured acoustic cloak with homoge-

neous isotropic materials. Appl. Phys. Lett. 92, 151913 (2008)

59. J. Pendry, J. Li, An acoustic metafluid: realizing a broadband acoustic cloak. New J. Phys. 10,
115032 (2008)

60. D. Torrent, J. Sánchez-Dehesa, Acoustic cloaking in two dimensions: a feasible approach.

New J. Phys. 10, 063015 (2008)

198 J. Mei et al.



61. S.A. Cummer, B.I. Popa, D. Schurig, D.R. Smith, J. Pendry, M. Rahm, A. Starr, Scattering

theory derivation of a 3d acoustic cloaking shell. Phys. Rev. Lett. 100, 24301 (2008)

62. A.N. Norris, Acoustic cloaking theory. Proc. R. Soc. A 464, 2411 (2008)

63. Y. Urzhumov, F. Ghezzo, J. Hunt, D.R. Smith, Acoustic cloaking transformations from

attainable material properties. New J. Phys. 12, 073014 (2010)

64. Y. Bobrovnitskii, Impedance acoustic cloaking. New J. Phys. 12, 043049 (2010)

65. Z. Liang, J. Li, Bending a periodically layered structure for transformation acoustics. Appl.

Phys. Lett. 98, 241914 (2011)

66. X. Zhu, B. Liang, W. Kan, X. Zou, J. Cheng, Acoustic cloaking by a superlens with single-

negative materials. Phys. Rev. Lett. 106, 14301 (2011)

67. H. Chen, C. Chan, Acoustic cloaking and transformation acoustics. J. Phys. D Appl. Phys. 43,
113001 (2010)

68. M. Farhat, S. Enoch, S. Guenneau, A. Movchan, Broadband cylindrical acoustic cloak for

linear surface waves in a fluid. Phys. Rev. Lett. 101, 134501 (2008)

69. M. Farhat, S. Guenneau, S. Enoch, A.B.. Movchan, Cloaking bending waves propagating in

thin elastic plates. Phys. Rev. B 79, 033102 (2009)

70. M. Farhat, S. Guenneau, S. Enoch, Ultrabroadband elastic cloaking in thin plates. Phys.

Rev. Lett. 103, 24301 (2009)

71. A. Norris, A. Shuvalov, Elastic cloaking theory. Wave Motion 48, 525–538 (2011)

72. Y.A. Urzhumov, D.R. Smith, Fluid flow control with transformation media. Phys. Rev. Lett.

107, 074501 (2011)

73. S. Zhang, C. Xia, N. Fang, Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett.

106, 24301 (2011)

74. B.I. Popa, L. Zigoneanu, S.A. Cummer, Experimental acoustic ground cloak in air. Phys. Rev.

Lett. 106, 253901 (2011)

75. B. Liang, B. Yuan, J. Cheng, Acoustic diode: rectification of acoustic energy flux in one-

dimensional systems. Phys. Rev. Lett. 103, 104301 (2009)

76. B. Liang, X. Guo, J. Tu, D. Zhang, J. Cheng, An acoustic rectifier. Nat. Mater. 9, 989 (2010)

77. N. Boechler, G. Theocharis, C. Daraio, Bifurcation-based acoustic switching and rectification.

Nat. Mater. 10, 665 (2011)

78. X.F. Li, X. Ni, L. Feng, M.H. Lu, C. He, Y.F. Chen, Tunable unidirectional sound propagation

through a sonic-crystal-based acoustic diode. Phys. Rev. Lett. 106, 84301 (2011)

79. Y. Lai, Y. Wu, P. Sheng, Z.Q. Zhang. Hybrid elastic solids. Nat. Mater. 10, 620 (2011)

80. J. Mei, Z. Liu, J. Shi, D. Tian, Theory for elastic wave scattering by a two-dimensional

periodical array of cylinders: an ideal approach for band-structure calculations. Phys. Rev. B

67, 245107 (2003)

81. J. Mei, Z. Liu, C. Qiu, Multiple-scattering theory for out-of-plane propagation of elastic waves

in two-dimensional phononic crystals. J. Phys. Condens. Matter 17, 3735 (2005)

82. P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, vol. 88,
Springer Series in Materials Science (Springer, 2006)

83. J.G. Berryman, Long wavelength propagation in composite elastic media I. Spherical

inclusions. J. Acoust. Soc. Am. 68, 1809 (1980)

84. L.M. Schwartz, D.L. Johnson, Long-wavelength acoustic propagation in ordered and disor-

dered suspensions. Phys. Rev. B 30, 4302 (1984)

85. R. Lakes, T. Lee, A. Bersie, Y. Wang, Extreme damping in composite materials with negative-

stiffness inclusions. Nature 410, 565 (2001)

86. F. Cervera, L. Sanchis, J. Sanchez-Perez, R. Martinez-Sala, C. Rubio, F. Meseguer, C. Lopez,

D. Caballero, J. Sanchez-Dehesa, Refractive acoustic devices for airborne sound. Phys. Rev.

Lett. 88, 23902 (2001)

87. J. Mei, Y. Wu, Z. Liu, Effective medium of periodic fluid-solid composites, Eur. Phys. Lett.

98, 54001 (2012)

5 Dynamic Mass Density and Acoustic Metamaterials 199



Chapter 6

Damped Phononic Crystals and Acoustic
Metamaterials

Mahmoud I. Hussein and Michael J. Frazier

Abstract The objective of this chapter is to introduce the topic of damping in the

context of both its modeling and its effects in phononic crystals and acoustic

metamaterials. First, we provide a brief discussion on the modeling of damping in

structural dynamic systems in general with a focus on viscous and viscoelastic types

of damping (Sect. 6.2) and follow with a non-exhaustive literature review of prior

work that examined periodic phononic materials with damping (Sect. 6.3). In

Sect. 6.4, we consider damped 1D diatomic phononic crystals and acoustic

metamaterials as example problems (keeping our attention on 1D systems for

ease of exposition as in previous chapters). We introduce the generalized form of

Bloch’s theorem, which is needed to account for both temporal and spatial attenua-

tion of the elastic waves resulting from the presence of damping. We also describe

the transformation of the governing equations of motion to a state-space represen-

tation to facilitate the treatment of the damping term that arises in the emerging

eigenvalue problem. Finally, the effects of dissipation (based on the two types of

damping models considered) on the frequency and damping ratio band structures

are demonstrated by solving the equations developed for a particular choice of

material parameters.

6.1 Introduction

Damping is an innate property of materials and structures. Its consideration in the

study of wave propagation is important because of its association with energy

dissipation. We can concisely classify the sources of damping in phononic crystals

and acoustic metamaterials into three categories, depending on the type and
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configuration of the unit cell. These are (1) bulk material-level dissipation stem-

ming from deformation processes (e.g., dissipation due to friction between internal

crystal planes that slip past each other during deformation); (2) dissipation arising

from the presence of interfaces or joints between different components (e.g., lattice

structures consisting of interconnected beam elements [1]); and (3) dissipation

associated with the presence of a fluid within the periodic structure or in contact

with it. In general, the mechanical deformations that take place at the bulk material

level, or similarly at interfaces or joints, involve microscopic processes that are not

thermodynamically reversible [2]. These processes account for the dissipation of

the oscillation energy in a manner that fundamentally alters the macroscopic

dynamical characteristics including the shape of the frequency band structure.

Similar yet qualitatively different effects occur due to viscous dissipation in the

presence of a fluid. While the representation of the inertial and elastic properties of

a vibrating structure is adequately accounted for by the usual “mass” and “stiffness”

matrices, finding an appropriate damping model to describe observed experimental

behavior can be a daunting task. This is primarily due to the difficulty in identifying

which state variables the damping forces depend on and in formulating the best

functional representation once a set of state variables is determined [3, 4].

6.2 Modeling of Material Damping

Due to the diversity and complexity of dissipative mechanisms, the development of

a universal damping model stands as a major challenge. A rather simple model

proposed by Rayleigh [5] is the viscous damping model in which the instantaneous

generalized velocities, _u , are the only relevant state variables in the calculation

of the damping force vector fd [4]. Using C to denote the damping matrix, this

relationship is given by

fdðtÞ ¼ C _uðtÞ: (6.1)

While this description may be suitable when accounting for dissipation associated

with the presence of a standard viscous medium (e.g., a Newtonian fluid), a

physically realistic model of material damping will generally depend on a wider

assortment of state variables. Such a model would represent nonviscous damping,

of which viscoelastic damping is the most common type.

In treating viscoelasticity, it is suitable to use Boltzmann’s hereditary theory

whereby the damping force depends upon the past history of motion via a convolu-

tion integral over a kernel function GðtÞ:

fdðtÞ ¼ C

ðt
0

Gðt� tÞ _uðtÞdt: (6.2)

The kernel function GðtÞ may take several forms while recognizing that in the limit

where Gðt� tÞ ¼ dðt� tÞ, the familiar viscous damping model of (6.1) is recovered

[4]. Fundamentally, any form is valid if it guarantees a positive rate of energy
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dissipation. Thus there are numerous possibilities. For example, in Fig. 6.1, the

Maxwell model for viscoelastic damping is illustrated; it consists of a linear spring

and a viscous dashpot in a series configuration. The spring accounts for the fraction of

mechanical energy that is stored during loading, while the viscous dashpot accounts

for the remainder that is lost (not stored) from the system. The dashpot also adds a time

dependence to the model as the rate of deformation becomes a factor. In this

arrangement, the spring and dashpot experience the same axial force, F ¼ ku ¼ c _u.
In addition, the total displacement has contributions from both elements, that is,

u ¼ us þ ud , where the subscripts “s” and “d” denote the spring and dashpot,

respectively. Differentiating u with respect to time gives _u ¼ _us þ _ud;which, by
recalling the aforementioned equality of force within each element, can be

written in the following form:

_u ¼
_F

k
þ F

c
: (6.3)

Assuming an initial displacement uð0Þ ¼ Fð0Þ=k , we can integrate (6.3) with

respect to time to obtain the displacement function, uðtÞ . Corresponding to an

elongation uðtÞ ¼ HðtÞ, where HðtÞ is the unit step-function, a relaxation response

function may be expressed as hðtÞ ¼ GðtÞ. Based on the Maxwell model of Fig. 6.1,

the kernel function is [6]

GðtÞ ¼ ke�
k
ctHðtÞ: (6.4)

If the spring constant k ! 1 in the Maxwell model, then elasticity, the mechanism

of storing energy, is lost, and only the dissipative viscous mechanism remains. This

is immediately apparent in (6.3), where _F=k ! 0 thus leading to the omission of

the force–displacement portion of the Maxwell element. Returning to (6.2), we will

use a more general form of the kernel function, GðtÞ ¼ m1e
�m2tHðtÞ , where the

constants m1;2 are called relaxation parameters and may be determined from

experiment.

6.3 Elastic Wave Propagation in Damped Periodic Media

There are several studies in the literature that consider the treatment of damping in

the context of periodic phononic materials. Many of these focus on simulating finite

periodic structures (e.g., [7–11]), which is different from carrying out a unit cell

analysis. The latter approach has the advantage that it allows us to elucidate the

broad effects of damping on the band structure characteristics. It is, therefore, more

comprehensive because it provides information that can be relevant to a range of

finite-structure simulation scenarios.

kcFig. 6.1 Maxwell model
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In unit cell analysis, the dynamics of a periodic material [(e.g., atomic-scale

crystalline materials, phononic (or photonic) crystals, periodic acoustic (or electro-

magnetic) metamaterials] is fully characterized by the application of Bloch’s

theorem [12] on a single representative unit cell. As discussed in earlier chapters,

this theorem states that the wave field in a periodic medium is also periodic, except

that its periodicity is determined by the frequency versus wavevector dispersion

relation. The form of the displacement response in a non-dissipative phononic

material following Bloch’s theorem is given by

uðx;k; tÞ ¼ ~uðx;kÞeiðk�x�otÞ; (6.5)

where u ¼ fux; uy; uzg is the displacement field, ~u is the displacement Bloch

function, x ¼ fx; y; zg is the position vector, k ¼ fkx; ky; kzg is the wavevector,

i ¼ ffiffiffiffiffiffiffi�1
p

, and o and t denote real-valued temporal frequency and time, respectively.

Among the earlier studies that adopted a unit cell approach is the paper by

Mead [13], which presented 1D discrete mass–spring–dashpot models and solved

for the dispersion under structural damping (i.e., damping exhibiting velocity-

independent forces). Similarly, Mukherjee and Lee [14], Castanier and Pierre

[10], Zhang et al. [15], and Merheb et al. [16] provided dispersion relations using

a complex elastic modulus (or a convolution integral expression in the case of

[16]), and Langley [17] presented a corresponding analysis using a complex

inertial term to account for the damping. In these studies, damping has therefore

been incorporated in either the stiffness or mass matrix in the governing

equations. Representing damping directly in the form of viscous or viscoelastic

forces (as discussed in Sect. 6.2) represents another avenue, but requires the

incorporation of an additional state variable—velocity—in the governing

equations of motion. Naturally, this leads to an eigenvalue problem with a non-

traditional format. Several studies considered this problem for different types of

configurations (i.e., concerning the geometry, boundary conditions, and constitutive

material behavior), for example, [18].

A critical limitation to using (6.5) is that it assumes that a spatially propagating

wave does not attenuate in time [19, 20]. The allowance of a temporal loss factor

was adopted by Mukherjee and Lee [14, 21] in their investigations of damped

periodic composites (although limited to structural damping). In recent

publications [22–24], the possibility of temporal attenuation has been incor-

porated in the Bloch formulation for viscous damping, and it was shown that

such treatment is consistent with results emanating from a free vibration analysis

of corresponding finite periodic structures (whose theory of damping is well

established [4]). It was observed that the band gaps in the damped unit cell

dispersion match with the damped natural frequency gaps in the finite periodic

structures only when the temporal component of Bloch’s theorem is generalized

to include a complex root l, that is,

uðx;k; tÞ ¼ ~uðx;kÞ eiðk�xÞelt: (6.6)
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Here it should be noted that for the undamped case, l ¼ �io and (6.5) is recovered.

While this form was successfully applied in [22–24], the models considered were

limited to simple Kelvin–Voigt viscous damping models. In the next section, we

present formulations for analyzing damped one-dimensional diatomic phononic

crystals and acoustic metamaterials on the basis of the generalized Bloch’s theorem

and for both viscous and viscoelastic damping as described in Sect. 6.2.

6.4 Damped One-Dimensional Diatomic Phononic Crystals
and Acoustic Metamaterials

By considering lumped masses, springs, and damping elements, in this section we

construct a simple 1D model of a damped diatomic phononic crystal (represented

by a “mass-and-mass” configuration as shown in Fig. 6.2a) and similarly a simple

ID model of a damped diatomic acoustic metamaterial (represented by a “mass-in-

mass” configuration as shown in Fig. 6.2b).

Considering unit cell periodicity, the set of homogeneous differential equations

describing the motion of each mass in the phononic crystal model is obtained as

follows [23]:

m1€u
j
1 þ ðc1 þ c2Þ _uj1 � c2 _u

j
2 � c1 _u

j�1
2 þ ðk1 þ k2Þuj1 � k2u

j
2 � k1u

j�1
2 ¼ 0; (6.7)

m2€u
j
2 þ ðc1 þ c2Þ _uj2 � c2 _u

j
1 � c1 _u

jþ1
1 þ ðk1 þ k2Þuj2 � k2u

j
1 � k1u

jþ1
1 ¼ 0; (6.8)

whereuja is the displacement ofmassa in an arbitrary jth unit cell. In general, a unit cell
and its neighbors may be identified by jþ n, where n ¼ 0;�1; 1 denote the present,

previous, and subsequent unit cells, respectively. Similarly, for the acoustic meta-

material model, the equations of motion corresponding to the two masses are [24]

m1€u
j
1 þ c1 2 _uj1 � _uj�1

1 � _ujþ1
1

� �
þ c2 _uj1 � _uj2

� �
þ k1 2uj1 � uj�1

1 � ujþ1
1

� �
þ k2 uj1 � uj2

� �
¼ 0;

(6.9)

m2€u
j
2 þ k2 uj2 � uj1

� �
þ c2 _uj2 � _uj1

� �
¼ 0: (6.10)

6.4.1 Generalized Bloch’s theorem and State-Space
Transformation

Generalized Bloch’s theorem
Writing the generalized Bloch’s theorem of (6.6) in discrete format for the models

shown in Fig. 6.2 involves the product of the spatial function Aðx; kÞ ¼ eiðkxþnkaÞ
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and a temporal function, which takes the form of �UaðtÞ ¼ ~Uae
lt. Here, ~Ua represents

the complexwave amplitude, the variableadenotes the lattice constant, andk ¼ kx for
brevity. Thus, the displacement function ofmassa in the ð jþ nÞth unit cell is given by

u jþn
a ðx; k; tÞ ¼ Aðx; kÞ �UaðtÞ ¼ ~Uae

iðkxþnkaÞþlt: (6.11)

If we apply this form of the Bloch wave solution to (6.7) and (6.8) for the

phononic crystal, we obtain the following complex eigenvalue problem:

l2m1
~U1þlðc1þc2Þ ~U1�lc2 ~U2�lc1 ~U2e

�ikaþðk1þk2Þ ~U1�k2 ~U2�k1 ~U2e
�ika¼0;

(6.12a)

l2m2
~U2þlðc1þc2Þ ~U2�lc2 ~U1�lc1 ~U1e

ikaþðk1þk2Þ ~U2�k2 ~U1�k1 ~U1e
ika¼0;

(6.12b)

which in matrix form is represented as

l2m1þ lðc1þ c2Þþ k1þ k2 �lðc1e�ikaþ c2Þ� ðe�ikak1þ k2Þ
�lðc1eikaþ c2Þ� ðeikak1þ k2Þ l2m2þ lðc1þ c2Þþ k1þ k2

� �
~U1

~U2

� �
¼ 0

0

� �
:

(6.12c)

Equation (6.12c) can be segregated in the following manner:

l2Mþ lCðkÞ þKðkÞ� �
~U ¼ 0: (6.13)

Thus, we identify the mass matrix M, damping matrix CðkÞ, and stiffness matrix

KðkÞ as

M ¼ m1 0

0 m2

� �
; (6.14)

k2

c2

k1

c1

m2 m1

a

k2

c2

m2

k1

c1

m1

a

a bFig. 6.2 Lumped parameter

unit cell model of (a)
phononic crystal (mass-and-

mass) and (b) acoustic
metamaterial (mass-in-mass)
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CðkÞ ¼ c1 þ c2 �ðc1e�ika þ c2Þ
�ðc1eika þ c2Þ c1 þ c2

� �
; (6.15)

KðkÞ ¼ k1 þ k2 �ðk1e�ika þ k2Þ
�ðk1eika þ k2Þ k1 þ k2

� �
: (6.16)

Applying (6.11) to (6.9) and (6.10) for the acoustic metamaterial yields the

following complex eigenvalue problem:

l2m1
~U1þ2lc1ð1�coskaÞ ~U1þlc2ð ~U1� ~U2Þþ2k1ð1�coskaÞ ~U1þk2ð ~U1� ~U2Þ¼0;

(6.17a)

l2m2
~U2 þ lc2ð ~U2 � ~U1Þ þ k2ð ~U2 � ~U1Þ ¼ 0; (6.17b)

which in matrix form can be represented as

l2m1þ2lc1ð1�coskaÞþlc2þ2k1ð1�coskaÞþk2 �ðlc2þk2Þ
�ðk2þlc2Þ l2m2þlc2þk2

" #
~U1

~U2

" #
¼ 0

0

� �
:

(6.17c)

Again, by segregating the coefficients, the mass matrix will be as given in (6.14)

and the damping and stiffness matrices will be identified and written as follows:

CðkÞ ¼ 2c1ð1� cos kaÞ þ c2 �c2
�c2 c2

� �
; (6.18)

KðkÞ ¼ 2k1ð1� cos kaÞ þ k2 �k2
�k2 k2

� �
: (6.19)

Finally, if we define the set of material parameters rm, rc, and rk as follows:

rm ¼ m2=m1; rc ¼ c2=c1; rk ¼ k2=k1; (6.20)

then we may write the system matrices for each of the two models in a more

convenient form. Thus the system matrices for the phononic crystal become

M ¼ m2
1=rm 0

0 1

� �
¼ m2Mr; (6.21)

CðkÞ ¼ c2
1þ 1=rc � 1þ e�ika=rc

	 

� 1þ eika=rc
	 


1þ 1=rc

� �
¼ c2CrðkÞ; (6.22)
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KðkÞ ¼ k2
1þ 1=rk � 1þ e�ika=rk

	 

� 1þ eika=rk
	 


1þ 1=rk

� �
¼ k2KrðkÞ; (6.23)

and for the acoustic metamaterial,

CðkÞ ¼ c2
2ð1� cos kaÞ=rc þ 1 �1

�1 1

� �
¼ c2CrðkÞ; (6.24)

KðkÞ ¼ k2
2ð1� cos kaÞ=rk þ 1 �1

�1 1

� �
¼ k2KrðkÞ; (6.25)

andM is the same as in (6.21). It should be noted that in general the matricesCrðkÞ
and KrðkÞ are unitary matrices.

State-space transformation
For general damping, viscous or nonviscous, the equations of motion cannot be

uncoupled by using an alternate set of coordinates (as done, for example, in [22],

which treated proportional Rayleigh damping using Bloch modal analysis). To

determine the complex eigenvalues, ls , s ¼ 1; 2, we develop a Bloch state-space

formulation for each of the damping types. The formulation is based on a transfor-

mation of variables of the form:

�Y ¼ _�U
�U

� �
: (6.26)

6.4.1.1 Viscous Damping

For general viscous damping, the Block state-space formulation is as follows [23]:

0 m2Mr

m2Mr c2CrðkÞ
� �

_�Yþ �m2Mr 0
0 k2KrðkÞ

� �
�Y ¼ 0: (6.27)

Now we write the solution as �Y ¼ ~Yegt . It is at this point that we introduce, for

convenience, two additional material parameters, �o ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
and b ¼ c2=m2 .

Thus, (6.27) becomes

0 Mr

Mr bCrðkÞ
� �

gþ �Mr 0
0 �o2KrðkÞ

� �� �
~Y ¼ 0: (6.28)

Equation (6.28), which is a first-order representation of the original second-order

eigenvalue problem, has two complex conjugate pairs of eigenvalues, g; and
eigenvectors, ~Y . Given their orthogonality with respect to the system matrices,
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the eigenvectors decouple the equations into four modal equations with complex

roots gs� , s
� ¼ 1; . . . ; 4 appearing in complex conjugate pairs and thus effectively

representing two single-degree of freedom systems. Thus we can write

gs ¼ �xsos � iods ¼ �xsos � ios

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2s

q
; s ¼ 1; 2: (6.29)

If we focus our attention on only the first eigenvalue in each complex conjugate

pair, then we extract the wavenumber-dependent damped frequency as:

odsðkÞ ¼ Im gsðkÞ½ �; s ¼ 1; 2; (6.30)

and the corresponding wavenumber-dependent damping ratio:

xsðkÞ ¼ � Re gsðkÞ½ �
Abs gsðkÞ½ � ; s ¼ 1; 2: (6.31)

Note that osðkÞ ¼ Abs½gsðkÞ� and is referred to as the resonant frequency. For the

special case of proportional viscous damping, the resonant frequency is equal to the

undamped frequency.

6.4.1.2 Viscoelastic Damping

In this section, we replace the viscous damping elements in Fig. 6.2 with Maxwell

elements and apply the Bloch state-space approach to the viscoelastic case by

introducing a set of internal variables. We develop the state-space matrices using

an approach proposed by Wagner and Adhikari [25] for finite structural dynamics

systems; here we extend it to the analysis of the unit cell problem. The approach is

specific to the case in which the constants m1;2 in (6.4) are equal (i.e., m ¼ m1 ¼ m2).
According to [25], we define an internal variable �VðtÞ as follows:

�VðtÞ ¼
ðt
0

me�mðt�tÞ _�UðtÞdt: (6.32)

The Leibniz integral rule gives the following formula for differentiation of a

definite integral whose limits are functions of the differential variable:

@

@t

ðbðtÞ
aðtÞ

f ðx; tÞdt ¼
ðbðtÞ
aðtÞ

@

@t
f ðx; tÞdtþ f bðtÞ; t½ � � @

@t
bðtÞ � f aðtÞ; t½ � @

@t
aðtÞ: (6.33)

Applying this rule to (6.32), we obtain
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_�VðtÞ ¼
ðt
0

�m2e�mðt�tÞ _�UðtÞdtþ m _�UðtÞ ¼ m _�UðtÞ � �VðtÞ
�
;

�
(6.34)

which we may rewrite as

_�VðtÞ þ m�VðtÞ ¼ m _�UðtÞ: (6.35)

According to (6.2) and (6.4), the system of equations for a viscoelastically

damped chain is

M€�Uþ CðkÞ
ðt
0

me�mðt�tÞ _�UðtÞdtþKðkÞ�U ¼ 0: (6.36)

Utilizing (6.21)–(6.25) and the definitions �o and b, we get:

Mr
€�Uþ bCrðkÞ

ðt
0

me�mðt�tÞ _�Udtþ �o2KrðkÞ�U ¼ 0: (6.37)

With (6.32), this becomes

Mr
€�Uþ bCrðkÞ�Vþ �o2KrðkÞ�U ¼ 0: (6.38)

Next, we solve for �VðtÞ in (6.35) and substitute the result into (6.38):

Mr
€�Uþ bCrðkÞ _�U� 1

m
_�V

� �
þ �o2KrðkÞ�U ¼ 0: (6.39)

At this point, incorporating (6.39) into a state-space matrix equation format will

result in non-square matrices. To produce square and block-symmetric state-space

matrices, we formulate another equation. Premultiplying (6.35) by CrðkÞ and

dividing by m2 yields

� 1

m
CrðkÞ _�Uþ 1

m2
CrðkÞ _�Vþ 1

m
CrðkÞ�V ¼ 0: (6.40)

In the first-order state-space form, (6.39) and (6.40) become

0 Mr 0

Mr bCrðkÞ �b
m
CrðkÞ

0 �b
m
CrðkÞ b

m2
CrðkÞ

2
6664

3
7775 _�Zþ

�Mr 0 0
0 �o2KrðkÞ 0

0 0
b
m
CrðkÞ

2
664

3
775�Z ¼ 0; (6.41)
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where �Z ¼ _�U �U �V

h iT
. We assume the solution �Z ¼ ~Zegt and subsequently

develop the eigenvalue problem:

0 Mr 0
Mr bCrðkÞ � b

mCrðkÞ
0 � b

mCrðkÞ b
m2 CrðkÞ

2
64

3
75gþ �Mr 0 0

0 �o2KrðkÞ 0
0 0 b

mCrðkÞ

2
4

3
5

0
B@

1
CA~Z ¼ 0:

(6.42)

Upon obtaining the eigenvalues gs� , now mathematically a set of six values,

s� ¼ 1; . . . ; 6 , we can extract the two sets of roots appearing as complex

conjugate pairs (the two remaining roots are spurious) that physically

represent the modes of damped wave propagation, exactly as defined in

(6.30) and (6.31).

As implied in the above formulation, and supported by the definition of the

Maxwell element [Fig. 6.1 and (6.3)], in the limit m ! 1, the viscous Bloch state-

space formulation of (6.28) is recovered. That is, high values of m represent

more viscous behavior (less dependence on the past history), while low values of

m represent more viscoelastic behavior (more dependence on the past history).

6.4.2 Damped Bragg Scattering and Local Resonance

For both the phononic crystal and the acoustic metamaterial models in Fig. 6.2, we

generate dispersion curves using, for demonstration, a specific set of material

parameters: rm ¼ 9, rc ¼ 0:5, rk ¼ 1, and �o ¼ 149:07 rad/s. The parameter b is

varied to show the dependence on the damping intensity. In Figs. 6.3–6.6, plots

corresponding to the phononic crystal (mass-and-mass model) appear on the left

while those pertaining to the acoustic metamaterial (mass-in-mass model) appear

on the right. While these results are dependent on values chosen for the parameters

rm , rc , and rk , they provide a basic insight into the effects of damping on the

elastodynamic behavior of phononic crystals and acoustic metamaterials.

6.4.2.1 Viscous Damping

Here we show the frequency (Fig. 6.3) and damping ratio (Fig. 6.4) band structures

for the case of viscous damping, obtained by solving (6.28). We observe in Fig. 6.3

that as the damping intensity b=�o is increased, the optical branch for both the

phononic crystal and the acoustic metamaterial drops while the acoustic branch

experiences little change—this in turn leads to a reduction in the size of the band

gap. For the phononic crystal, the descent of the optical branch takes place at

slightly faster rates at low wavenumbers compared to high wavenumbers, whereas

for the acoustic metamaterial, significantly higher drop rates take place at high
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wavenumbers compared to low wavenumbers. The damping ratio band diagram in

Fig. 6.4 follows a corresponding trend with an indication that the effect of damping

is slightly more significant at low wavenumbers for the phononic crystal and

noticeably more significant at high wavenumbers for the acoustic metamaterial.

We also observe that at low wavenumbers, the damping ratio values for the

phononic crystal exceed those of the acoustic metamaterial for a given damping

intensity b=�o and vice versa at high wavenumbers. With regard to the damping

ratios of the acoustic branch modes, these are higher for the phononic crystal

compared to the acoustic metamaterial.
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Fig. 6.3 Frequency band structure for viscous damping case: phononic crystal (left) and acoustic

metamaterial (right)
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6.4.2.2 Viscoelastic damping

As noted in Sect. 6.4.1.2, viscoelastic behavior is better represented by “low”m and,
in contrast, viscous behavior is better represented by “high” m. What qualifies as a

low/high value of m depends on the other parameters in the damping matrixCðkÞ. If
m is such that 1

mCðkÞ � 0 compared to CðkÞ (i.e., CðkÞ þ 1
mCðkÞ � CðkÞ), then

dominantly viscous behavior can be expected. For our models, we find that m ¼ 108

reflects viscous behavior well. To represent the viscoelastic behavior, we set

m ¼ 103 and show the solution of (6.42) in Figs. 6.5 and 6.6.

Unlike the viscous damping case, we notice that in this model of viscoelastic

damping, the optical dispersion branches for both the phononic crystal and the

acoustic metamaterial rise with the damping intensity. Subsequently, this increases

the size of the band gap—a desirable feature for many applications such as
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vibration isolation and frequency sensing. The sensitivity of the changes in the

optical branches again seems to be highest in the acoustic metamaterial at high

wavenumbers. The damping ratio band structures shown in Fig. 6.6 indicate less

sensitivity overall to damping intensity compared to the viscous damping case. This

is because a portion of the energy associated with the viscoelastic forces is stored in

the spring element (as discussed in Sect. 6.2) and not dissipated.

Recall that both the phononic crystal and the acoustic metamaterial models

considered are based on the same ratios of mass, stiffness, and damping (see

Fig. 6.2 and 6.20). Yet the effects of damping are different. This is a manifestation

of the fundamental difference in the wave propagation mechanism of Bragg

scattering (that takes place in phononic crystals) and that of local resonance (that

takes place in acoustic metamaterials).
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Chapter 7

Nonlinear Periodic Phononic Structures
and Granular Crystals

G. Theocharis, N. Boechler, and C. Daraio

Abstract This chapter describes the dynamic behavior of nonlinear periodic

phononic structures, along with how such structures can be utilized to affect the

propagation of mechanical waves. Granular crystals are one type of nonlinear

periodic phononic structure and are the focus of this chapter. The chapter begins

with a brief history of nonlinear lattices and an introduction to granular crystals.

This is followed by a summary of past and recent work on one-dimensional (1D)

and two-dimensional (2D) granular crystals, which is categorized according to the

crystals’ periodicity and dynamical regime. The chapter is concluded with a

commentary by the authors, which discusses several possible future directions

relating to granular crystals and other nonlinear periodic phononic structures.

Throughout this chapter, a richness of nonlinear dynamic effects that occur in

granular crystals is revealed, including a plethora of phenomena with no linear

analog such as solitary waves, discrete breathers, tunable frequency band gaps,

bifurcations, and chaos. Furthermore, in addition to the description of fundamental

nonlinear phenomena, the authors describe how such phenomena can enable novel

engineering devices and be applied to other nonlinear periodic systems.

7.1 Introduction

7.1.1 Nonlinearity in Periodic Phononic Structures

The effect of structural periodicity on wave propagation has been studied in a wide

array of fields. This includes vibrations in spring-mass systems, electrons in

crystalline lattices, light waves in photonic periodic structures, cold atoms in optical

lattices, and plasmons in networks of Josephson junctions or metal surfaces [1–4].
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The preceding chapters of this book have considered, in particular, the effect of

structural discreteness and periodicity on the propagation of phonons, sound, and

other mechanical waves. Phononic crystals and acoustic metamaterials are

examples of materials designed for this purpose. By studying the linear response

of these systems, many common properties are revealed, such as the existence of

band gaps. However, as the amplitude of the wave excitation is increased, the

response of the material can become nonlinear and the wave propagation becomes

more complex. As a result, the study of nonlinearity in periodic structures has

revealed unique phenomena with no analogs in linear theory. Such phenomena

include nonlinear resonances, bifurcations, chaos, self-trapping, and intrinsic local-

ization. Nonlinear devices thus have potential for novel applications such as

frequency conversion, energy harvesting, and switching, among others.

Although the role of nonlinearity has been extensively studied in non-phononic

periodic structures and metamaterials, such as photonic periodic structures, optical

metamaterials, and atomic Bose-Einstein Condensates in optical lattices [5], there

are thus-far few examples of nonlinear phononic crystals or nonlinear acoustic

metamaterials. Potential sources of nonlinearity in phononic/acoustic materials can

be categorized into (1) intrinsic and (2) extrinsic. The former derives from

nonlinearities in the material constitutive response (i.e., interatomic forces, nonlin-

ear elasticity, plasticity, or ferroelasticity) [6]. The latter derives from the geometry

or topology of the fundamental building blocks (i.e., contact forces between

particles [7], deformation of micro-nano mechanical oscillators [8], or the nonline-

arity related to geometrical instabilities [9]).

Homogenous materials with nonlinear elastic [6] or nonlinear acoustic responses

[10] have long been studied. Nonlinear bulk and surface waves, resulting from the

interplay between the intrinsic nonlinearity and geometrical dispersion, have also

been studied and observed in solids [11–13]. However, until recently, this research

has not been combined with the new capabilities of linear phononic crystals and

acoustic metamaterials, as described in the previous chapters of this book. The far

most studied nonlinear periodic phononic structures within the sonic regime

(0–20 kHz) are granular crystals. Granular crystals are arrays of elastic particles

in contact [14] whose nonlinearity results from the geometry of adjacent particles.

In addition to granular crystals, some of the few studied examples of nonlinear

periodic phononic structures are as follows. In the ultrasonic regime (greater than

1 MHz), nonlinear energy localization has been observed in micromechanical

oscillator arrays [15]. Moreover, recent work by Liang B et al. suggested theoreti-

cally [16] and later demonstrated experimentally [17] the ability to use nonlinear

acoustic materials, e.g., a contrast agent micro-bubble suspension, coupled to a

linear superlattice to obtain acoustic rectification. Finally, at much higher

frequencies (greater than 1 GHz), several studies have explored mechanical wave

propagation in periodic nonlinear structures, focusing on high-amplitude stress

wave and thermal phonon propagation. Several studies by Maris and collaborators

investigated the propagation of high-amplitude picosecond pulses in crystalline

solids, which are a type of naturally occurring nonlinear periodic structure [18, 19].

With respect to the propagation of high-frequency thermal phonons, many studies
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have focused on the use of nonlinear lattices for thermal rectification. The earliest

of these studies were conducted by Terraneo et al. in 2002 [20] and then by Li et al.

in 2004 [21]. Later, an experimental study by Chang et al., 2006, also demonstrated

thermal rectification using mass-loaded carbon and boron-nitride nanotubes, and

attributed the rectification to nonlinear processes [22]. Based on these studies,

several following works have extended this concept further to suggest that nonlin-

ear lattices could be used as thermal transistors [23], logic gates [24], and memory

[25]. Several computational studies have also investigated and suggested multiple

device concepts for thermal rectification building blocks, including carbon nano-

cones [26] and graphene ribbons [27].

One of the most common ways to model the behavior of granular crystals, and

many other types of nonlinear periodic structures, is to describe them as nonlinear

lattices. The study of nonlinear lattices can thus offer many potential lessons and

insights into the behavior of nonlinear periodic phononic structures. As such, the

section directly following gives a brief history of the major types of nonlinear

lattices. The review of nonlinear lattices is then followed by an introduction to

granular crystals, which is one of the most widely studied types of nonlinear

periodic phononic structures and is the subject matter that comprises the focus of

this chapter.

7.1.2 Nonlinear Lattices

Since the first computational experiments in nonlinear mass-spring lattices by

Fermi, Pasta, and Ulam in 1955 [28], there has been a wealth of interest in the

dynamics of nonlinear lattices. Using one of the first modern computers, Fermi,

Pasta, and Ulam (FPU) studied a system where the restoring (spring) force between

two adjacent masses was nonlinearly related to the relative displacement between

masses, and investigated how long would it take for long-wavelength oscillations to

transfer their energy (thermalize) into an equilibrium distribution between all the

modes of the system. Instead of the predicted thermalization, they found that over

the course of the simulation, most of the energy had returned to the mode with

which they had initialized the system in coherent form [29].

This discovery initiated whole fields of research relating to the study of nonlin-

ear waves in discrete lattices [30–32]. This includes many different types of

nonlinear lattices inspired by physical systems (in addition to the FPU lattice),

and the study of physical phenomena occurring in them. As described in the review

by Kevrekidis, P. G. [32], three of the most commonly studied types of nonlinear

lattices are the discrete nonlinear Schrödinger (DNLS), the Klein-Gordon (KG),

and the FPU lattices. The 1D forms of these lattice equations are as follows:

The DNLS can be written as

j _ui ¼ �Eðuiþ1 þ ui�1Þ � juij2ui;
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the KG as

€ui ¼ Eðuiþ1 � 2ui þ ui�1Þ � V0ðuiÞ;

and the FPU as

€ui ¼ V0ðuiþ1 � uiÞ � V0ðui � ui�1Þ;

where ui is the dynamical variable of interest at site i, E is a coupling parameter

(constant), j ¼ ffiffiffiffiffiffiffi�1
p

, and V is a nonlinear potential function [32]. The DNLS

equation has been used to describe nonlinear waveguide arrays and Bose-Einstein

condensates, among others [32]. Additionally, under small-amplitude assumptions,

it is interesting to note that the DNLS can be derived from either the KG or the FPU

lattices [33]. The KG system has been used to model systems of coupled pendula,

electrical systems, and metamaterials with split ring resonators, among others [32].

In contrast to the KG system, the FPU has no onsite potential term, and instead

involves a nonlinear potential based on nearest neighbor interactions (nonlinear

springs). The FPU system has been used to describe the behavior of crystalline

solids and structures, including granular crystals.

Studies of these lattices have helped to predict and understand the existence of

localized nonlinear coherent structures and other nonlinear phenomena in many natu-

rally occurring and artificial nonlinear (not necessarily discrete) systems. Two

examples of nonlinear coherent structures, which are particularly applicable to the

study of granular crystals are solitary waves and discrete breathers. Solitary waves were

first observed by Russel in a shallow water-filled canal in 1844 [34]. Since then they

were shown to be a solution of the Korteweg-de Vries (KdV), a nonlinear partial

differential equation, and have been discovered in myriad systems and discrete nonlin-

ear lattices of all the above types [35, 36]. Discrete breathers are a type of intrinsic (not

tied to any structural disorder) localized mode, and have been the subject of many

theoretical and experimental investigations [33, 36, 37]. Discrete breathers have been

demonstrated in charge-transfer solids, superconducting Josephson junctions, photonic

crystals, biopolymers, micromechanical cantilever arrays, and more [33]. In addition to

nonlinear localized structures, the presence of nonlinearity in dynamical lattices makes

available an array of useful phenomena including quasiperiodic and chaotic states, sub-

and superharmonic generation, bifurcations, the breaking of time-reversal symmetry,

and frequency conversion [38–43].

7.1.3 Introduction to Granular Crystals

Granular crystals, which can be defined as ordered aggregates of elastic particles in

contact with each other, are a type of nonlinear periodic phononic structure

(Fig. 7.1). Their nonlinearity emerges from two characteristics: (1) the geometry
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of the particles is such that the force at the contact between neighboring elements is

nonlinearly related to the displacement of the particle centers, as can be described

by Hertzian contact [7] and (2) in an uncompressed state, granular crystals cannot

support tensile loads, effectively creating an asymmetric potential between neigh-

boring elements. An unusual feature of granular crystals that results from these

nonlinearities is the negligible linear range of the interaction forces between

neighboring particles in the vicinity of a zero compression force. This results in

nonexistent linear sound speed in the uncompressed material. This phenomena has

led to the term “sonic vacuum,” which describes a medium where the traditional

wave equation does not support a characteristic speed of sound [14].

The study of granular crystals emerged in 1983 with work by Nesterenko that

showed analytically, numerically [44], and later experimentally [45], the concept of

“sonic vacuum” and the formation and propagation of highly nonlinear solitary

waves in one-dimensional granular crystals. Granular crystals have since been

shown to support many other unique dynamic phenomena. This wide array of

phenomena supported by granular crystals is enabled by a tunable nonlinear

response that encompasses linear, weakly nonlinear, and highly nonlinear

behaviors, and can be controlled by essentially linearizing the system through the

application of a variable static load [14, 46–48].

In their linear and weakly nonlinear dynamic regime, granular crystals have

shown the ability to support tunable acoustic band gaps [49, 50] and discrete

breathers [51, 52]. In the strongly nonlinear regime, they have been shown to

support compact solitary waves [44–46, 48], nonlinear normal modes [53] anoma-

lous reflections [54], and energy-trapping phenomena when interacting with defects

Fig. 7.1 Granular crystals in one, two, and three dimensions composed by metallic particles

confined by supporting walls or confined in a matrix [The three-dimensional image has been

adapted from (Daraio, C.; Nesterenko, V.F.; Jin, S.; “Strongly Nonlinear Waves in 3D Phononic
Crystals” APS – Shock Compression of Condensed Matter, 197–200, American Institute of

Physics, Conference Proceedings, Portland (OR), 2003)]
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and interfaces [55]. Because of this array-rich dynamics, which has been confirmed

by theory, numerical simulations, and simple experiments, granular crystals have

become one of the most studied examples of nonlinear lattices. Granular crystals

have also been proposed and designed for use in numerous engineering applications

including tunable vibration filters [50, 56], optimal shock protectors [57], nonde-

structive evaluation devices [58], acoustic lenses [59], and acoustic rectifiers [60].

As previously described, the nonlinearity of the interaction law results from the

Hertzian contact between particles with elliptical contact area [7, 61, 62]. The

Hertzian contact relates the contact force Fi,i+1 between two particles (i and i+1)
to the relative displacement Di,i+1 of their particle centers, as shown in the following

equation:

Fi;iþ1 ¼ Ai;iþ1½Di;iþ1�ni;iþ1

þ :

Values inside the bracket [s]+ only take positive values, which denotes the

tensionless characteristic of the system (i.e., there is no force between the

particles when they are separated). For Di,i+1 ¼ 0 the particles are just touching,

Di,i+1 > 0 the particles are in compression, and Di,i+1 < 0 the particles are

separated. This tensionless characteristic is one part of the nonlinearity of the

Hertzian contact.

For two spheres (or a sphere and a cylinder), the coefficient Ai,i+1 in the Hertz

relationship is defined as:

Ai;iþ1 ¼
4EiEiþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RiRiþ1

Ri þ Riþ1

r
3Eiþ1ð1� n2i Þ þ 3Eið1� n2iþ1Þ

; ni;iþ1 ¼ 3

2
; (7.1)

where Ei, ni, and Ri are the elastic modulus, the Poisson’s ratio, and the radius of

the i-th particle, respectively. The ni;iþ1 ¼ 3=2 comes from the geometry of the

contact between two linearly elastic particles with elliptical contact area, as can

be seen in [61]. In addition to assuming that the contact area is elliptical and that

both particles remain linearly elastic, the derivation of Hertzian contact assumes

that [61]: (1) the contact area is small compared to the dimensions of the particle,

(2) the contact surface is frictionless with only normal forces between them, and

(3) the motion between the particles is slow enough that the material responds

quasi-statically. Variation of the contact geometry will result in a variation of the

interaction law stiffness and/or nonlinearity, and ultimately in a variation of the

acoustic properties of the crystals. Several recent works have studied this varia-

tion theoretically, numerically, and experimentally, by exploring the dynamic

response of chains of particles composed of grains with different geometries

[63–65] (see Sect. 7.3.5).

The remainder of this chapter describes past and recent work in one-dimensional

(1D) and two-dimensional (2D) granular crystals, categorized according to periodicity

and dynamical regime.
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7.2 One-Dimensional Granular Crystals

The dynamic properties of one-dimensional (1D) granular crystals have been

extensively studied, using analytical, numerical, and experimental methods. The

following sections describe some of the most interesting physical phenomena

supported by these nonlinear systems.

If the stiffness of the contact between two adjacent particles is very low

compared to the bulk stiffness of the particles composing the crystal and the contact

area small compared to the particle size, 1D granular crystals can be modeled as a

system of nonlinear springs and point masses (FPU-like nonlinear lattices). Another

perspective from which to approach this same idea is that the characteristic

(resonant) frequencies of the particles themselves must be very high compared to

the modal frequencies of the granular crystal involving the rigid body-like motion

of the particles in the system. Neglecting any dissipation, a statically compressed

1D array of elastic granules can be described by the following system of coupled

nonlinear differential equations:

mi€ui ¼ Ai�1;i½d0;i�1;i þ ui�1 � ui�ni�1;i

þ � Ai;iþ1½d0;i;iþ1 þ ui � uiþ1�ni;iþ1

þ : (7.2)

For spherical particles we recall that ni;iþ1 ¼ 3
2
and Ai,i+1 is defined as in (7.1).

Here, the static overlap d0;i;iþ1 ¼ F0

Ai;iþ1

� �2=3
, and F0 is the homogeneous static

compression force. mi is the mass of the ith particle and ui is the dynamic dis-

placement of the ith particle from its equilibrium position in the initially statically

compressed chain. The bracket ½s�þ of (7.2) takes the value s if s> 0 and the value

0 if s � 0; which signifies that adjacent beads are not in contact. Within this

framework, the dynamic of the system can be tuned to encompass linear, weakly

nonlinear, and strongly nonlinear regimes of dynamic behavior, as will be

demonstrated for the mono-atomic case in the following section.

7.3 One-Dimensional Monoatomic Granular Crystals

This section focuses on the nonlinear dynamic behavior of a statically compressed

1D monoatomic granular crystal (all particles are the same). A granular crystal

composed of identical elastic spherical granules is considered, as shown in Fig. 7.2.

For this crystal, Ri ¼ R,mi ¼ m ¼ 4
3
pR3r0, and Ai,i+1 of (7.2) is reduced to Ai;iþ1 ¼

A ¼ E
ffiffiffiffi
2R

p
3 1�n2ð Þ , where m is the mass of the sphere, E and r0 are the Young’s modulus

and density of particle material, R is the particle radius, and n is the Poisson’s ratio.
Moreover, it is assumed that the chain is subjected to constant static force F0

applied to both ends, resulting in an initial displacement d0 between neighboring

particle centers, d0;i;iþ1 ¼ F0

A

� �2=3 ¼ d0. The particle equations of motion, shown in

(7.2) thus reduce to:
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m€ui ¼ A½d0 þ ui�1 � ui�3=2þ � A½d0 þ ui � uiþ1�3=2þ ; (7.3)

where ui is the displacement of the ith bead from its equilibrium position in the

initially compressed chain, as shown in Fig. 7.2, and i 2 f2; � � � ;N � 1g.

7.3.1 Near-Linear Regime

To approximate the fully nonlinear equations of motion shown in (7.3), a power

series expansion of the forces can be taken. For dynamical displacements with

amplitude much less than the static overlap, i.e. ui�1�uij j
d0;i

� 1, one can keep only the

harmonic term of the expansion. In this case, the granular crystal can be considered

as a linear lattice with spring constant K2 ¼ 3
2
Ad1=20 , where the equations of motion

are reduced to:

mi€ui ¼ K2ðui�1 � uiÞ � K2ðui � uiþ1Þ: (7.4)

The spectral band of the ensuing linear chain (see Chap. 2 for more details) has

an upper cutoff frequency of om ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K2=m

p
. As a consequence of the nonlinear

relation F0 / d3=20 , for the case of the spherical granules, the cutoff frequency (as

well as the sound velocity of the 1D monoatomic granular crystal) scales as F
1=6
0 .

These results have been confirmed experimentally [47, 66].

7.3.2 Weakly Nonlinear Regime

If the dynamic displacements have small amplitudes
jui�1�uij

d0;i
<1 relative to those due

to static load, a power series expansion of the forces (up to quartic displacement

terms) can be calculated to yield the K2 � K3 � K4 model:

m€ui ¼
X4
k¼2

Kk½ðuiþ1 � uiÞk�1 � ðui � ui�1Þk�1�; (7.5)

where K2 ¼ 3
2
Ad1=20 ; K3 ¼ � 3

8
Ad�1=2

0 ; K4 ¼ � 3
48
Ad�3=2

0 .

Fig. 7.2 One-dimensional monoatomic crystal compressed by a static force F0 . The crosses
represent the initial positions of the particle centers in a statically compressed chain while the

black circles denote the current positions [14]
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This model is an example of the celebrated FPU model. Many theoretical studies

have focused on the dynamical properties of this type of nonlinear lattice, revealing

the existence of coherent nonlinear structures such as nonlinear periodic waves,

solitary waves [67], and discrete breathers [68].

Seeking traveling waves with a characteristic spatial size L that is much larger

than the inter-particle distance a ¼ 2R � d0, one can apply the so-called long-

wavelength or continuum approximation.

Using the replacement:

ui ¼ uðxÞ; ui�1 � u� aux þ 1

2
a2uxx � 1

6
a3uxxx þ 1

24
a4u4x; (7.6)

equation (7.5) is transformed into the nonlinear Boussinesq equation and into the

Korteweg-de Vries equation (see for example [69]). In (7.6), ux ¼ ∂u/∂x, and the

number of subscripts x denotes the order of the derivative of u. Nesterenko applied

this method (taking into account only up to the K3 term) to a strongly compressed

granular chain, and derived the following KdV equation [14]:

xt þ c0xxx þ gxxxx þ
s
2c0

xxx ¼ 0; x ¼ �ux

c20 ¼
Ad1=20 6R2

m
; g ¼ c0R

2

6
; s ¼ c20R

d0
:

(7.7)

In (7.7), x ¼ �ux, xx ¼ ∂x /∂t, and c0 is the linear sound speed. The solutions of
(7.7) are well known, and include nonlinear periodic waves and solitary waves.

On the other hand, to investigate how quasi-monochromatic plane waves or

narrow-band packets evolve by nonlinear effects, one can derive another well-

known nonlinear wave equation—the Nonlinear Schrödinger (NLS) equation. This

equation predicts many nonlinear phenomena, including second harmonic genera-

tion, modulation instability, and the existence of bright and dark solitons [35]. The

derivation of the NLS from (7.5) is possible using the method of multiple scales

combined with a quasi-discreteness approximation (see [70] for an application of

this method to a generic FPU lattice in the form of (7.5) and [71] for a recent

application of this method to a monoatomic strongly compressed granular crystal).

Another generic feature of nonlinear lattices is the existence of nonlinear localized

modes called discrete breathers (DBs). DBs have been studied extensively in

monoatomic FPU chains [68]. One of the mechanisms for the generation of such

nonlinear localized modes is the modulational instability (MI) of a plane wave at the

band edge. A detailed analysis of this instability (bifurcation) shows that the MI of

the upper cutoff mode manifests itself when the coefficients of the FPU lattice are

such that 3K2K4 � 4K2
3>0 (see Sect. 4.3 of [33] and references therein). In the

monoatomic granular crystal setting, one can show that this inequality does not hold.

This is an indication that small-amplitude DBs bifurcating from the upper band mode

do not exist in monoatomic granular crystals. However, the existence of dark discrete

breathers or large-amplitude DBs remains an interesting open question.
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Another interesting weakly nonlinear effect, self-demodulation, was studied

by Tournat and collaborators in compressed 1D granular crystals [72]. In this

work, they explored how, in a nonlinear medium, two primary frequencies can

mix to form a propagating wave with frequency that is the difference of the two

primaries.

7.3.3 Highly Nonlinear Regime: Long-Wavelength Approach

A very interesting, non-classical wave behavior appears if the granular material is

weakly compressed and the particle displacements are larger than the initial relative

displacement d0 resulting from the static compression. This regime is termed the

highly nonlinear regime. Most of the studies in 1D monoatomic granular crystals

have been devoted to this dynamical regime. This section summarizes the basic

steps of the long-wavelength method that Nesterenko applied [14]. A review of

alternate analytical approaches and experimental observations will also be

presented in the following sections.

Including d0 in displacement ui which is calculated from the particle positions in

the uncompressed system (see Fig. 7.3 and [14] for more details), (7.3) becomes:

m€ui ¼ A½ui�1 � ui�3=2þ � A½ui � uiþ1�3=2þ (7.8)

In the long-wavelength approximation, the displacements ui-1, ui+1 can be

expanded in a power series according to a small parameter e ¼ a/L up to the fourth

order [see (7.6)]. By substituting (7.6) into (7.8), and conducting some additional

calculation, a new wave equation is obtained [14]:

utt ¼ �c2 ð�uxÞ3=2 þ a2

12
ð�uxÞ3=2
� �

xx
� 3

8
ð�uxÞ�1=2
� �

u2xx

� �	 

x

;�ux>0;

c2 ¼ 2E

pr0ð1� n2Þ : ð7:9Þ

Despite the complex nature of the presented strongly nonlinear wave equation,

the stationary solutions of (7.9), such as nonlinear periodic and solitary waves, can

be found in the form u(x � Vt) [14]. The waveform of a periodic wave with speed

V ¼ Vp is given by the following expression:

x ¼ 5V2
p

4c2

 !2

cos4
ffiffiffiffiffi
10

p

5a
x

� �
: (7.10)

The dependence of the speed of the periodic wave, Vp, on the minimal and

maximum strains is presented in [14].
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The solitary shape (for the case when the initial prestrain x0 approaches 0) is one
hump of the periodic solution of (7.10), with a finite wave length equal to about five
particle diameters. This solitary wave is a supersonic one, similarly to the KdV

soliton, but differs from the KdV soliton in other fundamental properties. A unique

feature of this solitary wave is the independence of its width on amplitude.

Accordingly, this property is quite different from the property of weakly nonlinear

KdV solitary wave. Here, the speed of the solitary wave Vs has a nonlinear

dependence on maximum strain xm (and particle velocityum):

Vs ¼ 2ffiffiffi
5

p c x1=4m ¼ 16

25

� �1=5

c4=5u1=5m ¼ 8E

5pr0 1� n2ð Þ
� �2=5

u1=5m : (7.11)

This result shows that the speed of the strongly nonlinear solitary wave Vs does

not depend on particle size in the granular material. At the same time it does depend

on the elastic properties of the particles (E and v) and their density. The presented

theoretical results allow us to design strongly nonlinear granular materials with

exceptionally low velocity of signal propagation. Simple estimation based on (7.11)

shows that it is possible to create materials with nonlinear impulse speed in the

interval 10–100 m/s.

7.3.4 Review of Alternate Strongly Nonlinear Wave Theoretical
Approaches

The solitary wave solution (or a soliton with compact support, known also as

compacton [73]) presented in the previous section describes well the solitary

wave that an impulsive excitation generates in a weakly compressed or uncom-

pressed granular crystal. This was verified in simulations and experiments by

different authors (see references below). The rigorous proof of the existence of

solitary waves in a monoatomic granular crystal composed of spherical particles

was done by MacKay [74], who applied the existence theorem for solitary waves on

lattices by Friesecke and Wattis [75]. Ji and Hong extended the proof given by

MacKay to the general case of an arbitrary power-law type contact force [76].

Fig. 7.3 Weakly compressed chain of particles. The crosses represent the initial positions of the
particles in the statically compressed chain, the black circles correspond to the current positions of
spheres, and the open circles the initial positions of the spheres in the uncompressed [14]
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An analytical solution of the form tanh(fn) for stationary waves in discrete

chains, where fn is represented by a series, was also presented by Sen and Manciu

[77]. Their result is very close to a soliton obtained by the long-wavelength

approximation. Chatterjee studied the asymptotic description of the tail of the

soliton in an uncompressed chain and he revealed that it has a double exponential

decay [78]. He also presented a new asymptotic solution for the full solitary wave,

which is closer to the results of numerical simulations than the approximate solution

given by Nesterenko. A quite different analytic approach for the study of pulse

propagation in granular crystals was developed by Lindenberg and collaborators

[79, 80]. This method uses the binary collision approximation to reduce the problem

of propagation to collisions involving only two granules at a time.

English and Pego [81] studied the shape of the solitary wave that propagates

in a 1D granular chain without precompression (d0 ¼ 0). Their method is based

on a reformulation of the equations of motion using the difference coordinates

ri ¼ ui�1 � ui such that:

m€ri ¼ A ½riþ1�3=2þ � 2½ri�3=2þ þ ½ri�1�3=2þ
h i

: (7.12)

Seeking for traveling wave solutions, ri ¼ rðxÞ 	 rði� ctÞ , one obtains the

following advanced delay equation:

r00ðxÞ ¼ A

mc2
r3=2ðx� 1Þ � 2r3=2ðxÞ þ r3=2ðxþ 1Þ
h i

: (7.13)

By rewriting this equation in an equivalent integral form and studying its

asymptotic behavior, they proved that the solitary wave decays super-

exponentially. Moreover, they applied an iterative method for the computation of

the numerically exact shape of the solitary waves.
Later, Ahnert and Pikovksy [82] applied a different type of quasi-continuum

approximation by expanding, up to fourth order, the difference coordinate ri instead
of the displacement ui . Substituting these expansions in (7.12), they obtained a

strongly nonlinear partial differential equation (see (7.6) in [82]) that supports a

solitary wave with compact form. The analytic solution has the same form as

Nesterenko’s solution, but with slightly different amplitude and width constants.

Moreover, they presented an accurate numerical method for the numerical solution

of the advanced delay equation (7.13) and they compared the numerically obtained

solutions with those of approximated PDEs.

Recently, Starosvetsky and Vakakis [83], working directly on the nonlinear

lattice equations with no precompression, developed semi-analytical approaches

for computing different families of nonlinear traveling waves. These waves involve

both separation and compression between adjacent particles and therefore they

cannot be resolved using quasi-continuum approximations. In addition, they

showed that these wave families converge to the solitary wave in a certain
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asymptotic limit. They also solved the reduced advanced delay equation numeri-

cally, and applied the method of Pade approximations.

7.3.5 Review of Experiments with Strongly Nonlinear Solitary
Waves

The quantitative agreement of analytical and numerical predictions with

experiments, regarding solitary waves in strongly nonlinear granular crystals,

was first found by Lazaridi and Nesterenko [45]. They observed for the first time

the rapid decomposition of the initial impulse excitation into multiple solitary

waves in a distance comparable to the solitary wave width, (Fig. 7.4). Since then

there have been several experimental studies and observations of solitary waves

and other strongly nonlinear phenomena in multiple settings. Optical observations

of strongly nonlinear waves in arrays of photoelastic disks excited by a local

explosive loading were reported by Zhu, Shukla, and Sadd [84]. Coste, Falcon,

and Fauve [46], and Coste and Gilles [47] conducted a very detailed quantitative

study of the speed and shape of solitary waves at different amplitudes. They

reported a negligible decay of the solitary wave in chains composed of 50

particles, and they concluded that the solitary waves shape observed in

experiments were in very good agreement with the predictions obtained from

theoretical solutions such as (7.10).

The relatively low speed of the solitary waves detected by Coste et al. [46] is

very unusual for solid materials. In an uncompressed granular system, according to

(7.11), the minimum propagation speed of a solitary wave can be close to zero if the

amplitude of the disturbance is approaching zero (“sonic vacuum”) [13]. Using

polymeric and composite particles [85, 86], for example, one can design granular

crystals with a solitary wave speed corresponding to a signal in the interval of

10–100 m/s, an order of magnitude less than that previously observed in exper-

iments by Coste et al. [45]. In addition to the experimental observation of solitary

waves, many works relating to highly nonlinear phenomena in granular crystals

have followed. Nesterenko et al. showed experimentally the presence of anomalous

reflections when highly nonlinear waves interact with interfaces [54], effectively

demonstrating for the first time the concept of an acoustic diode. Daraio et al. [48],

described in detail the ability to tune the dynamic response of granular crystals by

controlling the static precompression and the dynamic excitation applied to the

system. Job et al. [87], investigated the behavior of solitary waves interacting with a

boundary, showing for the first time the sensitivity of solitary waves to the mechan-

ical properties of an adjacent medium. Thorough experimental, numerical, and

theoretical descriptions of the formation, propagation [88], and collision of solitary

wave trains were published a few years later [89].

Recently, several experimental works described wave propagation in granular

crystals composed of particles with elliptical and cylindrical geometries [63, 64].

Chains composed of ellipsoidal or cylindrical particles were shown to support the
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formation and propagation of highly nonlinear solitary waves similar to the solitary

waves observed in chains of spherical particles. These systems were also found to be

highly dependent not only on the particles’ geometry but also on the orientation

angles between particles in the chain. This dependence on orientation angle between

beads provides an additional free parameter to design acoustic materials with unprec-

edented transmission properties.

Experimental studies have also described the dynamic response of chains com-

posed of spherical steel particles coated with a soft polymeric material. These

studies showed that this type of system also supports the formation and propagation

of highly nonlinear solitary waves [85]. However, one interesting property of these

systems is that the contact interaction between thin-coated spheres does not follow

the classical Hertzian interaction between two solid spheres [90]. The dynamic

response of chains composed of coated spheres is governed by a quadratic power

law dependence between the contact force, F, and the displacement, d, instead of

the Hertzian, non-integer power of 3/2. This new nonlinear contact interaction

dramatically changes the dynamics of solitary wave propagation compared to its

counterpart in chains of solid spheres. Here, the spatial width of the wave becomes

shorter (3.14 particles size instead of 5), the wave speed (Vs) is relatively slower,

and its dependence on force amplitude (Fm) is also different (Vs ~ Fm
1/4 instead of

Vs ~ Fm
1/6).

Studies of chains of hollow spherical particles also presented interesting nonlinear

acoustic phenomena. Highly nonlinear solitary waves were observed to propagate

Fig. 7.4 Evolution of a soliton train excited experimentally by a striker impact (Ms ¼ 10 m,
us ¼ 0.5 m/s), after a propagation distance of N particles: (a) N ¼ 5, (b) N ¼ 10, (c) N ¼ 20, (d)
N ¼ 30, (e) N ¼ 40, (f) N ¼ 60. The vertical scale corresponds to a force of 80 N, the horizontal

scale to a total time of 50 ms (a–e) and 100 ms (f) [14]. Figure reproduced from [Nesterenko, V.F.,

Dynamics of Heterogeneous Materials. 2001, Chapter 1, pp. 70, NY: Springer-Verlag] with

permission from the publisher
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through the system, but the wave properties were different from the highly nonlinear

solitary waves in the chains of solid spheres. The spatial width of the solitary wave in

chain of hollow spheres was approximately 8 particles (larger than 5 particles, which

is the characteristic length of a solitary wave forming in a chain of uniform, solid

spheres). The wave speed was found to be proportional to the force amplitude to the

power 1/11 [65]. It was shown that such behavior resulted from the unique contact

interaction between thin hollow spheres, which for the range of wave amplitude

studied, could be approximated by a power-law type relation (F ¼ kdn). In this case,
the exponent n was found to be smaller than the value 3/2 as in the classical Hertzian

interaction between solid spheres. The contact stiffness k and the exponent n were

also found to be dependent on the thickness of the hollow sphere’s shell. This

dependence of the dynamic behavior of granular crystals on the coating and/or

shell thickness of spherical particles provides yet another free parameter to employ

in tuning the dynamics of nonlinear acoustic crystals.

7.4 One-Dimensional Diatomic Granular Crystals

By increasing the degree of periodicity, from a homogenous monoatomic granular

crystal to a diatomic granular crystal composed of alternating particles, additional

interesting phenomena can be accessed. This section describes some of those

phenomena characteristic of 1D diatomic granular crystals, including tunable band

gaps, discrete breathers (DBs), and highly nonlinear solitary waves with widths up to

ten particles.

An example of a 1D diatomic granular crystal is illustrated in the bottom of

Fig. 7.1. The equation of motion for the general 1D granular crystal, shown in (7.2),

can be reduced to the 1D diatomic crystal model, as follows:

mi€ui ¼ A½d0 þ ui�1 � ui�3=2þ � A½d0 þ ui � uiþ1�3=2þ ; (7.14)

where the subscript i is the index of the ith particle, the particle masses are m2i�1

¼ m andm2i ¼ M. By convention,M is taken to be the larger of the two masses and

m to be the smaller of the two masses. Because all contacts (aside from any

boundaries) are the same, there is a single Hertzian contact coefficient A and static

overlap d0 that are used to represent the system, which have been defined in the

previous sections. Within this framework, as before, the dynamic response of the

system can be tuned to encompass linear, weakly nonlinear, and strongly nonlinear

regimes of dynamic behavior. Also as before, the K2�K3�K4 model can be applied

in the weakly nonlinear regime, and the K2 linearized model in the linear regime.

7.4.1 Near-Linear Regime: Localized Surface Modes

For dynamical displacements with amplitude much less than the static overlap

ð uiþ1 � uij j � d0Þ, the nonlinear K3 and K4 terms can be neglected, and the linear
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dispersion relation of the system can be easily computed. This results in an

effectively linear diatomic system of springs and point masses, as was presented

in Chap. 2, but with a tunable stiffness K2.

Several previous studies explored the existence of band gaps in highly com-

pressed granular crystals. Initially, studies focused on 1D, two-particle unit cell,

arrays of glued [91], welded [92], and elastically compressed spherical particles

[49, 51, 56]. These studies demonstrated tunable vibration spectra with two bands

of propagation (called the acoustic and optical bands) separated by a band gap in the

diatomic case. Boechler et al. [50] later extended this work by investigating the

response of one-dimensional diatomic granular crystals with three-particle unit

cells, and showing their tunability based on variations of the particles geometry

and on the applied static load. In contrast to diatomic granular crystals with two-

particle unit cells, the three-particle unit cell granular crystal was shown to contain

up to three distinct pass bands and two finite band gaps.

In addition to acoustic and optical bandmodes, the diatomic semi-infinite harmonic

granular crystal also supports a gap mode, provided the crystal has a light particle at

the surface and free boundary conditions. This mode is localized at the surface (i.e., at

the first particle), and its displacements have the following form [93]:

u2iþ1 ¼ Bð�1Þi m

M

� �i
e jost (7.15)

u2iþ2 ¼ Bð�1Þiþ1 m

M

� �iþ1

e jost;

with particle number i 
 0, frequency os ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2ð1=mþ 1=MÞp

is in the gap of the

linear spectrum, and B is an arbitrary constant. This particular mode with frequency

in the band gap, that is localized around the surface, proves to have a nonlinear

counterpart and to be very closely related to the DB in the strongly discrete regime,

as will be described in the following section.

7.4.2 Weakly Nonlinear Regime: Discrete Breathers

By increasing the relative amplitude of the dynamic to static displacements ðjuiþ1

�uij<d0Þ , and thus entering the weakly nonlinear regime, a type of intrinsic

localized mode called a discrete breather (DB) can be supported by the system.

DBs have been widely studied in the realm of nonlinear lattices, as previously

described [33]. They are nonlinear modes that have frequency within the gap of the

linear spectrum and are localized in space. As such, discrete breathers have

practical importance as a mechanism to localize vibrational energy in frequency

and space without the introduction of any extrinsic disorder.

DBs were rigorously proven to exist in diatomic FPU-type lattices, with

alternating heavy and light masses, by Mackay in 1997 [94]. Furthermore, several
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studies also investigated the specific case of DBs located in the gap between the

acoustic and optical bands of anharmonic diatomic lattices [95–97].

A recent study by Theocharis et al. systematically studied the existence and

stability of DBs in diatomic granular crystals [52]. Studies in other diatomic

anharmonic lattices have shown the existence of up to two types of DBs. The

study by Theocharis et al. demonstrated that both types of DBs can arise in granular

chains. They examined both of these two families of discrete gap breathers, and

studied their existence, stability, and structure throughout the gap of the linear

spectrum. The first family was an unstable DB that is centered on a heavy particle

and characterized by a symmetric spatial energy profile, and the second family is a

potentially stable DB that is centered on a light particle, and is characterized by an

asymmetric spatial energy profile.

Although the FPU and granular crystal lattices are analogous in many respects,

there exists an important difference because of the additional nonlinearity caused

by the tensionless characteristic of the granular crystal lattice. Accordingly,

Theocharis et al., contrasted discrete breathers in anharmonic FPU-type diatomic

chains with those in diatomic granular crystals, and found that for the case when the

DB was very narrow (highly discrete), the asymmetric nature of the latter interac-

tion potential led to a form of hybrid bulk-surface localized solutions (see Fig. 7.5).

Figure 7.5 shows the two families of DB solutions at times t ¼ T and t ¼ T/2
(where T is the periodic of the DB), and the profile of a linear surface mode. This

similarity between the shapes of the two modes suggests that the temporary creation

of a new interior surface, allowed by tensionless characteristic of the system, has

contributed to a modified type of intrinsic localized mode.

The existence of DBs in diatomic granular crystals was experimentally proven in

a recent study by Boechler et al. [51]. In this study, the authors utilized the

modulational instability (MI) of the lower optical mode to generate DBs in an 80

particle diatomic granular crystal. In the weakly nonlinear regime, granular crystals

can be showed to be subject to MI when K3
2/K2K4 < 3/4. To excite the MI, they

drove the granular crystal from one boundary at the lower optical mode frequency,

at high amplitude. Upon reaching a critical amplitude for the MI to occur, the

anharmonic lattice vibration decayed into a localized DB.

Figure 7.6 shows, as per Boechler et al. [51], an experimental observation of a

DB, generated in an 80 particle diatomic granular crystal. This example shows

how the interplay of nonlinearity and discreteness/periodicity leads to the locali-

zation of vibrational energy within a narrow spatial regime (around the 14th

particle from the boundary), at a specific frequency within the gap of the linear

spectrum ( fb ¼ 8.31 kHz). In panels (a) and (b), far from the center of the DB, a

periodic response at the driving frequency ( fd ¼ 8.9 kHz) can be seen. Alterna-

tively, in panels (c) and (d), near the center of the DB, a quasiperiodic response

appears, which is characterized by the driving frequency and frequency of the

generated DB. This spatial localization is further clarified in the spatial profile of

the energy distribution shown in panel (e).
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c d

Fig. 7.5 Top panels: Spatial profile of a DB in the heavy mass-centered symmetric family at times

(a) t ¼ 0 and (b) t ¼ T/2. Bottom panels: As with the top panels, but for the light mass centered

asymmetric family of DB solutions. The dashed curves correspond to the spatial profile of the

surface mode obtained using (7.15). In each panel, a visualization of particle positions is included,

along with the corresponding spatial gap openings, for the corresponding time and DB solution.

Copyright (2010) by The American Physical Society [52]

Fig. 7.6 Experimental observation of a DB, in an 80 particle granular crystal, at fb ¼ 8.31 kHz.

(a), (c) Force at particle 2 and 14, respectively. (b), (d) Power spectral density (PSD) for the

highlighted time regions in (a), (c) of the same color. Square (circular) markers denote the DB

(driving) frequency and PSD amplitude. (e) The ratio of the PSD amplitude at the discrete breather

frequency divided by the PSD amplitude of the driving frequency as a function of sensor location.

The vertical dashed line in (b) and (d) denotes the lower cutoff frequency of the optical band, and
the vertical dashed lines in (a) and (c) denote the time region for the PSD calculation. Image

reproduced from [98]
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7.4.3 Highly Nonlinear Regime: Strongly Nonlinear Solitary
Waves

In this section, the effects of increased periodicity on the propagation of solitary

waves in 1D diatomic granular crystals with no static load is described. Solitary

waves in such systems were first studied and described by Nesterenko in 2001 [14].

He found that by assuming the mass of one particle type to be much larger than the

mass of the other (m1/m2 >> 1) and by applying the long wavelength approxima-

tion, the resulting wave equation supports a solitary wave solution with a charac-

teristic spatial width of ~10 particles. This demonstrates how an increase in

periodicity (or redistribution of the monoatomic particle masses to two neighboring

particles) can result in wider solitary wave.

Later, Porter et al. [99] applied the long-wavelength approximation to diatomic

granular crystals with arbitrary mass ratios by postulating a “consistency condition”

between the displacements of the two particles in the unit cell. They showed that

the diatomic chain supports a finite-width soliton-like solution, and they obtained

an analytical expression for the width of the solution as a function on the mass ratio.

This expression generalizes the previously known limiting cases, namely,

m1/m2 ¼ 1 (monoatomic) and m1/m2 >> 1 (diatomic with ~10 particle length

solitary wave width). In the same study, Porter et al. compared these analytical

predictions with simulations and experiments and found good agreement.

Recently, Vakakis et al. [100] presented an extensive numerical and theoretical

study of solitary waves in diatomic chains. They showed that in a diatomic granular

crystal, scattering at the interfaces of the dissimilar light and heavy beads will

typically cause a slow disintegration of the traveling wave and the formation of

small amplitude oscillating tails. However, they also found that for specific discrete

values of the mass ratio between heavy and light particles, the system supports

solitary waves which travel without distortion. These discrete values of the mass

ratio correspond to the case where the light beads always stay in contact with

adjacent heavy beads. For this case, the entire energy of the main pulse is conserved

and transferred without loss to the next heavy bead. These solutions can be

considered analogous to the propagation of solitary waves in monoatomic granular

crystals, in that their velocity profiles decay to zero. Finally, they also observed

that the diatomic family of solitary waves propagates faster than the corresponding

solitary waves in monoatomic systems.

7.5 One-Dimensional Monoatomic Granular Crystals
with Defects

By placing one or more defects into an otherwise perfectly periodic mono-atomic

granular crystal, disorder can be introduced into the system. The presence of

disorder, and its interplay with the nonlinearity of the system, causes interesting
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and useful phenomena throughout the granular crystal’s range of dynamic regimes.

In contrast to the case of increasing periodicity, introducing disorder adds new ways

to break the spatial-symmetry of the granular crystal. In combination with the

ability of nonlinear systems to break the time-reversal symmetry of the dynamic

response, the introduction of spatially asymmetric disorder can be particularly

useful. In the following section several recent studies are described relating

to defects in monoatomic granular crystals, including: tunability of defect modes

in the linear regime [101], localized nonlinear defect modes and spontaneous

symmetry breaking in the weakly nonlinear regime [102], the interplay of solitary

waves with defects in the highly nonlinear regime [103], and tunable bifurcation-

based acoustic rectification in a driven granular crystal [60].

7.5.1 Near-Linear Regime: Tunable Defect Modes

A strongly compressed (with respect to the dynamic displacements) homogenous

granular crystal with light-mass defects will contain exponentially localized modes

with frequencies above the acoustic band of the granular crystal, localized around

the defect sites. The frequency of these localized defect modes is tunable with

changes in static load, similar to the tunability of the linear dispersion relation of a

periodic granular crystal.

The existence and tunability of defect modes localized around one and two light-

mass defects in a strongly compressed 1D otherwise homogenous granular crystal

was investigated first numerically and analytically by Theocharis et al. [101], and

then experimentally by Man et al. [101]. In the work by Man et al., they placed one

and two light-mass defects near the edge of a 20 stainless-steel particle granular

crystal, applied white-noise excitation from the edge of the crystal, and measured

the frequency of the defect modes localized in the vicinity of the defects as a

function of defect size and relative defect position. The observed defect mode

frequencies were compared with eigen-analysis of the linearized 20 particle granu-

lar crystal (as described in Theocharis et al. [101]), and analytical expressions based

on few-site considerations [100]. They showed that, for a sufficiently small single

light mass defect in an otherwise homogenous granular crystal, the frequency of the

defect mode can be approximated as [101]:

f3bead

¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KRrMþKRRmþKRrmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�8KRrKRRmMþ ½2KRrMþðKRRþKRrÞm�2

q
2mM

vuut
:

(7.16)

This expression is obtained by solving the eigenvalue problem of the three-

particle system in the vicinity of the defect (large particle–defect particle–large

particle). Here M is the mass of the homogenous particles, m is the mass of
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the defect particle, f3bead is the frequency of the localized defect mode, KRR ¼ 3=2

ARR
2=3F0

1=3 is the linearized stiffness between two large particles, and KRr ¼ 3=2

ARr
2=3F0

1=3 is the linear stiffness of the contact between a defect-particle and a large

particle. ARr and ARR are the Hertz contact coefficients between the respective

particles. From this expression, it is clear how the defect modes are tunable with

static load, geometry, and material properties.

In both studies [101, 102], it was found that when two defects were placed

sufficiently far from each other (outside the localization length of each individual

defect mode), the granular crystal presented two isolated linear defect modes with

frequencies of a single-defect mode. The further the distance between the defects,

the closer the modes are to isolated ones with near-identical frequencies. However,

when the defects are brought sufficiently close together (within the localization

length of a single-defect mode) each defect was found to affect the other. This

caused the formation of a symmetric and anti-symmetric pair of defect modes, with

two new separate frequencies, involving both defects.

7.5.2 Weakly Nonlinear Regime: Nonlinear Localized Modes
and Symmetry Breaking

If the amplitudes of the dynamic displacements are increased, relative to the static

overlap, and thus the nonlinearity of the dynamic response is also increased, the

nonlinear localized defect modes depart from their linear counterparts and new

phenomena are introduced. In addition to exploring the near-linear behavior of one-

dimensional, strongly compressed granular crystals with one or two light-mass

defects, Theocharis et al. investigated the behavior of defects in the weakly

nonlinear regime [102]. As previously described, by analyzing the problem’s linear

limit, they identified the system eigen frequencies and the linear defect modes.

Using continuation techniques, they found localized nonlinear defect mode

solutions that bifurcate from their linear counterparts and studied their linear

stability in detail by computing the Floquet multipliers of the nonlinear periodic

solutions.

For the case of a single light-mass defect, it was found that the inherent

nonlinearity of the system leads to long-lived localized breathing oscillations,

which form robust nonlinear localized modes. Their frequency depends not only

on the static load, the geometry, and the material properties of the granular crystal

and defect particle, but also on the amplitude of the oscillations. Because of the type

of the nonlinearity in the system, the defect mode’s frequency decreases with

increasing dynamic amplitude (and nonlinearity). These are examples of two

ways where nonlinearity can be used to tune the frequency of a localized mode:

by changing the static load, and thus the stiffness of the contacts, or by changing the

relative amplitude of the dynamic displacements to the static overlap.
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For the case of two defects, nonlinearity can create further interesting phenome-

nology when the defects are sufficiently close. A particularly intriguing example is

the case of next-nearest neighbor defects, where the two defects are separated by

one large particle. This resembles the situation of a “double well” potential, which

has been studied systematically in various settings, including nonlinear optics [104]

and atomic physics [105, 106]. In these settings, it has been predicted analytically

(via a two-mode reduction), manifested numerically, and observed experimentally

that beyond a certain nonlinearity threshold, a pitchfork bifurcation arises that

causes the spontaneous symmetry breaking of the relevant configurations, and

results in asymmetric nonlinear modes. The investigations of this phenomena in

granular crystals, by Theocharis et al., indicate that this phenomenology is more

generic. Figure 7.7 shows the bifurcation of the antisymmetric linear defect mode

as a function of the defect mode frequency and relative force between the defect

sites, for a next-nearest neighbor configuration. As the antisymmetric defect mode

(Fig. 7.7, inset A1) becomes progressively more nonlinear (and decreases in

frequency), at a critical point, the mode becomes unstable via a pitchfork-like

bifurcation. This bifurcation signals the emergence of two asymmetric modes

(Fig. 7.7, insets A2 and A3), which are mirror images of each other and predomi-

nantly centered on one of the two defect sites.

The case of the bifurcation of the antisymmetric two-defect mode is a good

example of how, through the addition of nonlinearity, sharp transitions can be

created between two acutely different states, the spatial symmetry of the dynamic

response broken, and new mechanisms accessed to control the distribution and

frequency of vibrational energy.

7.5.3 Highly Nonlinear Regime: Transient Localized Modes

By increasing the nonlinearity of the dynamic response further, the interaction of

traveling waves with defects in a nonlinear system can be explored. The interaction

of highly nonlinear solitary waves with a mass defect placed in a 1D, unloaded

granular crystal has been investigated analytically and computationally first by Sen

[107–109] and then by Hascoet, in 2000 [110]. This work was later followed by a

more in depth numerical and experimental study by Job, in 2009 [103]. Two

different physical pictures emerge whether one considers a light or a heavy impurity

mass. The scatter of the solitary wave with a light impurity yields transient

oscillations of the defect which leads to the emission of lower amplitude solitary

waves in both directions [110]. In contrast, a heavy-mass defect is shifted by the

solitary wave, a solitary wave is reflected back, and the transmitted wave loses its

soliton characteristics and is fragmented into smaller waves of decreasing amplitude

[110]. In the work by Job, it was shown that the interaction with a light-mass defect

will also lead to the transient excitation of a localized mode [103]. They described

how the slow-timescale local compression caused by the solitary wave around the

defect site can act analogously to the linearizing static compression described in
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the previous sections, and create an oscillating localized defect mode [103].

Starosvetsky et al. also analyzed analytically and numerically the interaction of

the solitary wave with light mass defects. They used reduced models that take into

account only the interaction of the defect mass with its neighboring particles [111].

7.5.4 Driven-Damped Granular Crystals: Quasiperiodicity,
Chaos, and Acoustic Rectification

In the previous sections, the existence of linear and nonlinear localized modes

surrounding defects in an otherwise homogenous granular crystal was discussed.

The transient interaction of traveling solitary waves with defects was also explored.

Neither of these cases involved a high-amplitude continuous driving force nor

damping. Studying cases with damping and continuous driving is useful for both

real-world applications and devices, and involves interesting new phenomena.

In 2011, Boechler et al. [60] studied experimentally and computationally the

case of a 1D statically compressed granular crystal that contains a light-mass defect

close to one end, and is subject to a harmonic driving force (see left panel of

Fig. 7.8). As described in the previous section, a light mass defect will create a

localized mode with frequency above the acoustic band of the homogenous part of

the granular crystal. Boechler et al. selected the frequency of the driving force to be

close to the defect mode frequency. Because the driving force has frequency above

the acoustic band of the homogenous granular crystal, the signal cannot propagate
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Fig. 7.7 Pitchfork bifurcation illustrated by force differential between two next-nearest neighbor

defects, as a function of the mode frequency. This shows the transition from a single antisymmetric

mode to two (mirror-symmetric between them) asymmetric modes after the onset of the symmetry

breaking bifurcation. Insets: spatial profiles and locations of Floquet multipliers l in the complex

plane of solutions for different frequencies
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through the crystal at that frequency. However, at sufficiently high amplitudes, and

only from the boundary that is close to the defect, a jump phenomenon occurs from

periodic to quasiperiodic and then chaotic states, where the energy of the driver is

redistributed to different frequencies that can transmit through the system. This

example illustrates how the combination of nonlinearity, periodicity, driving, and

asymmetric disorder can create new material and device capabilities. In this case,

this combination allowed energy to propagate predominantly in one direction.

To understand the nature of the bifurcations, and the jump to the quasiperiodic

and chaotic states that allowed the asymmetric acoustic energy transmission,

Boechler et al. conducted parametric continuation using the Newton-Raphson

(NR) method in phase space [33] and numerical integration of the fully nonlinear

equations of motion that describe the granular crystal. Dissipation was taken into

account by using linear damping (see more about dissipative effects in the next

section). Applying NR, they followed the periodic family of solutions of the driven

system as a function of driving amplitude and studied its linear stability. Right

panel of Fig. 7.8 shows the maximum dynamic force amplitude (four particles from

the actuator) for each solution as a function of the driving amplitude. The stable

(unstable) periodic solutions are denoted with solid blue (dashed black) lines.

At turning points 1,2, stable and unstable periodic solutions collide and mutually

annihilate (saddle-center bifurcation [40]). At points 3,4, the periodic solution

changes stability and a new two-frequency stable quasiperiodic state emerges

(Naimark-Sacker bifurcation [38]). Following this bifurcation picture, they observed

in their experimental setup and numerical simulations that with increasing amplitude,

a progression of the system response that followed the low-amplitude stable periodic

solution up to point 1, where the system jumps past the unstable periodic solution to

the high-amplitude stable quasiperiodic state. Further increase of the driver’s ampli-

tude led to a continued cascade of double period bifurcations and resulted in the

merging of distinct frequency peaks, the formation of continuous bands, and chaotic

dynamics. As the quasiperiodic and chaotic states redistribute energy from the driver

to frequencies within the transmitting band, it is the existence of these states which

enables the previously described acoustic rectification.

Fig. 7.8 (Left) Schematic diagram of a 1D granular crystal designed for acoustic rectification and

switching. (Right) Bifurcation diagram. Right panel reproduced from [60] with permission from

the publisher
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7.6 Dissipative Granular Crystals

Most of the studies to date involving granular crystals ignore dissipative effects.

However, it is clear from the experiments that in many settings dissipation is strong

and should be included. The sources of dissipation in granular crystals are many,

including friction, plasticity, viscoelasticity, and viscous drag, among others. In the

past few years there have been a number of analytical and numerical studies that

have introduced dissipative terms into the equations of motion.

In [112], the authors studied the effects of two dissipative mechanisms on pulse

propagation in nonlinear chains. The first was an intrinsic mechanism—an incomplete

restitution mechanism that resulted in partial trapping of the impulse energy in the

internal modes of the grain. The second mechanism was extrinsic—a velocity-

dependent friction f ¼ �g _ui. In both cases, they showed that the decay of the energy
waswell approximated by an exponential function. The attenuation of traveling pulses

in 1D unloaded granular crystals due to on-site linear damping f ¼ �g _ui was also
analyzed in [113]. They found an overall exponential decay of the energy, which

depends on the exponent of the interaction potential, and causes the pulse to slow

down as it propagates. They also showed that the shape and the width of the pulse

remained unchanged.

Job and his collaborators studied the interaction of a solitary wave with

boundaries in a 1D granular crystal, considering two dissipative mechanisms:

internal viscoelasticity and solid friction of the beads due to their weight on the

track aligning the granular crystal [114]. Viscoelastic dissipation was taken into

account by considering a dissipative force at the contact of the two beads in the

form f ¼ �A@tð½ui�1 � ui�3=2þ Þ[114], where � includes unknown coefficients due to

internal friction of the material. Solid friction was included by considering a force

f ¼ mmg. These dissipative terms were also shown to produce broader solitary waves.

In [115] viscous dissipation, depending on the relative velocity between neigh-

boring particles, was included in the model as f ¼ pð _ui�1 �2 _ui þ _uiþ1Þ, where p is

the viscosity coefficient. The authors investigated its influence on the shape of a

steady shock wave. Using this type of viscous dissipation, in [116], they solved the

following system of nondimensional equations:

€ui¼½pð _uiþ1� _uiÞ�ðui�uiþ1Þn�yðui�uiþ1Þ�½pð _ui�1� _uiÞþðui�1�uiÞn�yðui�1�uiÞ;

where y is the Heaviside function. They found that the inclusion of this relative

velocity-dependent viscous damping may yield interesting effects such as the

creation of secondary pulses. A different approach was presented in [117], where

the authors provided a quantitative characterization of dissipative effects for soli-

tary wave propagation in 1D granular crystals. They incorporated a phenomeno-

logical nonlinear dissipation that depends on the particle’s relative velocities. By

using optimization schemes and experiments, they calculated a common dissipation

exponent with a material-dependent prefactor.
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Most of the above studies concern the attenuation of propagating pulses

generated by an impulsive excitation. Recent experiments in 1D compressed

granular crystals, subjected to continuous harmonic driving at one end, also

revealed a strong attenuation of the signal [60]. To account for the dissipation in

these experimental settings, a linear on-site damping term f ¼ �g _ui with a damping

coefficient g was selected to match the experimental results.

7.7 Two-Dimensional Granular Crystals

Given the richness of the nonlinear dynamic phenomena found in one-

dimensional systems, higher dimensional nonlinear systems are expected to

present a plethora of new dynamic effects. For example, two- and three-

dimensional nonlinear systems are expected to present additional families of

wave modes not realizable in the 1D case; new types of solitary waves

propagating in the axial and lateral directions (particularly interesting for wave

energy redirection and wave guiding); complex nonlinear resonance interactions

occurring between spatially extended modes and localized waves; and enhanced

possibilities for acoustic wave energy localization and trapping across spatial or

temporal scales.

The dynamic properties of 2D granular crystals have only been partially

characterized. In particular, experimental efforts are few, although such systems

are expected to present a variety of novel dynamic phenomena. Several authors

have previously proposed models to characterize the dynamic response of two-

dimensional, ordered granular media. For example, [118] described a model for a

square lattice of elastically interacting particles, which included relative particle

rotation. Tournat et al. [119] proposed a theoretical model to describe out-of-plane

elastic waves in a monolayer granular membrane consisting of a hexagonal lattice

of particles. Their model was the first one to include shear and bending rigidity at

the contact between particles, and to calculate dispersion relations that accounted

for these effects.

The simplest example of a highly nonlinear 2D granular crystal consists of a

uniform, uncompressed square packing of elastic particles in contact with each

other. When this system is excited on one side by a uniform, planar waveform, its

response is expected to be quasi-one-dimensional [14] and the response of the

system can be characterized by a “curtain solution” derived similarly to (7.10). The

first experimental characterization of the dynamic behavior of a square packing of

particles was provided in [84], using photoelastic elliptical disks, excited by an

explosive charge. The same study characterized the stress wave propagation in

arrays of elliptical disks of various geometrical packings, and concluded that it is

the contact normals and the vector-connecting particles’ centers of mass that

primarily influence wave propagation characteristics such as load transfer path
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and load attenuation. Discrete element numerical models (DEM) were also used to

analyze the dynamics of similar systems [120].

The formation and propagation of solitary waves in 2D square granular crystals

was reported and studied quantitatively for the first time by Leonard et al. [121]

using triaxial accelerometers embedded within selected particles in the crystals. A

larger number of studies also explored the dynamic behavior of hexagonal packing

under different (near-linear to highly nonlinear) loading conditions [84, 120,

122–128].One of the major difficulties in the experimental realization of acoustic

materials based on two-dimensional nonlinear granular lattices is the sensitivity of

such systems to the presence of variation in the particles’ geometry. In the ideal

configuration, all particles have an equal number of contacts and equal equilibrium

forces. The presence of small defects in experiments, however, can lead to the loss

of contact between particles or to the local compression in the surrounding

particles. Such loss of contacts or local compression ultimately results in a

disordered energy transfer between the particles. A few past works studied the

effects of imperfections in two-dimensional granular crystals and their role in the

stress wave propagation [122–125, 129]. While Hertzian behavior predicts a 1/6

power-law between maximum force and wave speed [47], it was found that the

presence of defects tends to increase the wave propagation speed to a 1/4 power

law relationship, effectively inducing deviations from the theoretical Hertzian

behavior. This deviation from Hertzian behavior was observed only for granular

crystals with low precompression. Increasing the precompression applied on

hexagonal arrays was seen to cause a transition to a fully Hertzian behavior

[122–125]. More recently, Leonard et al. experimentally characterized the

dynamic response of regular 2D square granular crystals, and showed that varia-

tion in the packing geometry/composition (Fig. 7.9, left) can dramatically vary the

directionality of wave propagation [130].

Two-dimensional arrays of particles have also been shown to form tunable

acoustic lenses (Fig. 7.9, right) that support the formation of concentrated acoustic

pulses at the focal point (“sound bullets”, [59]). The ability to redirect nonlinear

acoustic pulses in two-dimensional systems has also been studied by looking at

pulse splitting and recombination in y-shaped granular networks [131–133]. These

works showed theoretically, numerically, and experimentally the ability to bend

and split incident pulses, and redirect mechanical energy as a function of the branch

geometry.

Additional work on the dynamic behavior of ordered two-dimensional granular

crystals is needed to fully understand the dynamic response of such systems, and to

characterize how nonlinear wave formation and propagation depends on the under-

lying particle arrangement. Variations of the excitation type (impulsive or harmonic

forcing) are expected to lead to the discovery of interesting new acoustic/dynamic

phenomena including wave guiding, trapping, filtering, and localized breathing

modes.
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7.8 Future Directions and Conclusions

The preceding chapters of this book have demonstrated how structural periodicity can

be utilized to create new materials with unprecedented physical properties. In such

materials the individual building blocks are assembled in carefully designed structures,

where by working together, they cause the bulk material to present properties greater

than those of the individual components. This general concept of obtaining “materials

by design” is not new, and has been a long-term quest for chemists and material

scientists alike. For instance, chemists have long been trying to engineer crystals and

molecules by arranging atoms in specific lattices and geometries, to obtain a specific

bulk property.However, by extending this concept pastmolecules and crystal grains, to

specially designed structural building blocks—from the nano tomacroscales—awhole

new field of possibilities is enabled.

One of the main benefits of such designed materials is that they enable new

technological capabilities. New materials with multifunctional properties can be

designed, which have both structural and dynamic functionalities. Perhaps more

importantly, by creating materials with previously unseen properties, new devices

and applications are enabled. Furthermore, as such materials are “designed” by

construction, and they can be easily tailored for use in specifically targeted

applications.

The range of possible bulk responses from such designed materials depends in

part on the complexity of the interaction between the fundamental building blocks.

As described in the previous chapters, the design of these periodic structures has

historically been based on linear interactions. The presence of nonlinearity in these

systems gives added advantages through complexity. This chapter predominately

Fig. 7.9 (Left) Dynamic response of two-dimensional granular crystals formed by square-

centered packings of different material cylinders and spheres (see inset). Variation of the materials

configuration leads to dramatic changes of the wave propagation front, as shown from experiments

and numerical simulations [130]. (Right) Design concept of a tunable, nonlinear acoustic lens

obtained with a two-dimensional array of particle chains. The formation of the focal spot (i.e., the

“sound bullet”) is evident on the host medium on the right [59]. Images reproduced from [130]

and [59]
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focused on nonlinear dynamic phenomena in granular crystal systems, where the

nonlinearity was caused by the geometric inter-particle interactions between elastic

particles. As was described, nonlinear dynamics enables the existence of new useful

dynamic phenomena and coherent structures. This includes solitary waves, discrete

breathers, bifurcations, quasiperiodicity, and chaos, among others. Nonlinearity

also enables a dramatic tunability of the material responses, by providing an

unprecedented sensitivity to variations of materials and external parameters. How-

ever, because of the inherent complexity of nonlinear systems, which enables such

useful phenomena, analyzing and predicting the behavior of such systems is also

more difficult. In the future, the development of new predictive theoretical and

computational tools will be necessary to further guide the development, design, and

testing of nonlinear periodic phononic structures.

Some particular future areas of interest, with respect to the study of nonlinear

periodic phononic structures, include, but are not limited to the following. As nonline-

arity has been applied to spring-mass-like systems, in granular crystals, nonlinearity

could also further be applied to the study of nonlinear metamaterials, nonlinear

resonant structures, or phononic crystals with nonlinearly elastic components. The

study of hybrid linear-nonlinear systems, could lead to the observation of new dynamic

phenomena such as the amplitude-dependent filtering of acoustic signals [134].

New material systems where nonlinear material responses interplay with active

building blocks or other multi-physical effects is another area that could lead to the

discovery of unprecedented material responses. The ability to couple multi-physical

effects in periodic structures can also lead to the creation of tunable multifunctional

and energy-harvesting devices, such as opto-mechanical sensors [135], or phoXonic

systems [136]. For example, the generation of nonlinear modes in nonlinear acoustic

crystals could be used as a mechanism for frequency conversion, or the presence of

nonlinear localizedmodes could be exploited for energy localization and harvesting.

Because of the similarity of acoustic and elastic wave propagation to phonon

propagation, the effects studied here could also be extended to smaller scales

involving heat propagation. For instance, as described in this chapter for acoustics,

nonlinear periodic structures have been utilized to create tunable rectifiers based on

the onset of bifurcation instabilities. This type of device could provide new ways to

control the flow of acoustic energy, enable acoustic logic devices, and be used in

novel energy-harvesting systems [60]. However, these same ideas could be scaled

down to create new ways to control heat propagation, and enable materials with

direction-dependent thermal conductivities or thermal logic devices.

Furthermore, the newly explored phenomena, which occur in granular crystals

and other nonlinear periodic phononic structures, should be further explored for

their potential in engineering applications. The ability to engineer the dispersion

relation through nonlinearities could be implemented in tunable vibration filtering

devices and in noise and vibration-insulating systems. Compact solitary waves with

robust properties and large amplitudes could find use in biomedical devices

with improved resolution and signal-to-noise ratio [59], or in the nondestructive

evaluation of materials [58].
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The study of nonlinearity in engineered materials like phononic crystals and

metamaterials is still at an early stage of development. By understanding the

fundamental properties of nonlinear acoustic crystals, nonlinear phononic systems,

and nonlinear resonant structures, new physical phenomena can be discovered and

lead to a new ability to design and implement materials and devices.
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Chapter 8

Tunable Phononic Crystals and Metamaterials

O. Bou Matar, J.O. Vasseur, and Pierre A. Deymier

Abstract The objective of this chapter is to show how it would be possible to

introduce a certain degree of tunability of the properties of phononic crystals. The

main concepts underlying the conception of tunable phononic crystals are first

introduced with simple models: the one-dimensional harmonic crystal with varying

parameter and two coupled one-dimensional harmonic crystals. An overview of the

literature on tunable phononic crystals is given. Three of the tuning methods proposed

in the literature are described in some details. We also illustrate the new or enhanced

functionalities open by the tuning of the phononic crystal properties. These

applications include reconfigurable waveguides and tunable superlenses.
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8.1 Introduction to Tunability. One-Dimensional Tunable
Harmonic Crystal

8.1.1 One-Dimensional Diatomic Harmonic Crystal With Varying
Parameters

As an introduction to the concept of tunability of the phononic crystal properties,

we first consider the 1-D diatomic harmonic crystal introduced in paragraph 2.2.2,

but treat it as a system with variable properties. It has been demonstrated that the

dispersion equation of diatomic harmonic crystal, constituted of an infinite chain of

masses with alternatively a mass m1 and a mass m2 connected by harmonic springs

with spring constant b, can be expressed as

o2 ¼ o2
3

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o4

3

4
� ðo1o2Þ2sin2ka

r
(8.1)

whereo1,o2, ando3 are characteristic frequencies given by:o1 ¼
ffiffiffiffi
2b
m1

q
,o2 ¼

ffiffiffiffi
2b
m2

q
,

ando3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b 1

m1
þ 1

m2

� �r
if one choosem1>m2. Two kinds of parameters appear in

the dispersion equation (8.1): geometrical parameters, i.e., the separation distance

between the masses at rest a, and property parameters, i.e., the spring constantb and
massesm1 andm2. This opens the possibility to tune the 1-D harmonic crystal band

structure by changing its geometry, or by varying part or all of the properties of its

constituents (spring and/or masses). First, we consider a 1-D harmonic crystal in

which the lattice parameter is tunable from a to a0, with a0 ¼ 1.5a. The original,

corresponding to the lattice parameter a, and modified band structures are displayed

in Fig. 8.1a by solid and dashed lines, respectively. In this case, the phase velocity

of the acoustic branch at low frequency and the slope of the negative optical branch

are drastically modified. Nevertheless, the width of the gap appearing between o1

and o2 does not change.

Consider now a 1-D harmonic crystal with a value of the mass m1 doubled, and

with all the other parameters kept constant. The corresponding band structures are

displayed in Fig. 8.1b. In this case, the phase velocity of the acoustic branch at low

frequency and the slope of the negative optical branch can once again be tuned, but

also the gap width. In the example presented in Fig. 8.1b, the gap width is increased

by 20 %.

The tuning of the physical properties of the constituents of the phononic crystal

can be made by the application of an external stimulus, such as the temperature,

an electrical or magnetic field, etc. Some time, these external stimuli interact with

the acoustical vibrations as coupled modes. A simple, but instructive, 1-D model

of such coupling, a system of two coupled 1-D harmonic crystals, is now

presented.
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8.1.2 Two Coupled One-Dimensional Mono-Atomic Harmonic
Crystals

The system of two coupled one-dimensional harmonic crystals is illustrated in

Fig. 8.2.

In absence of external forces, the equations describing the motion of atom “n” of
the first 1-D harmonic crystal, and “m” of the second 1-D harmonic crystal are

given by

m1€un ¼ bðunþ1 � 2un þ un�1Þ þ bIðum � unÞ;
M€um ¼ bðumþ1 � 2um þ um�1Þ � bIðum � unÞ; (8.2)

Here, bI is the coupling spring constant. We seek solutions in the form of

propagating waves with different amplitudes for atoms of each 1-D harmonic

crystal as their masses are different:

Fig. 8.1 Schematic representation of the modifications of the band structure of a 1-D diatomic

harmonic crystal in the irreducible Brillouin zone induced by changing (a) the geometrical

parameter a, and (b) the property parameter m1 . The solid lines represent the original band

structure, and the dashed lines the modified band structure

Fig. 8.2 Schematic illustration of the system of two coupled 1-D harmonic crystals. The atoms of

one of the 1-D harmonic crystal have a massm1, and the atoms of the other one have a massM. The

force constant of the springs of each 1-D harmonic crystal is b . The force constant of the coupling
springs is bI . The periodicity of the crystal is a
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un ¼ Aeioteikna;

um ¼ Beioteikma;
(8.3)

where k is a wavenumber and o is an angular frequency. Inserting solutions of the

form given by (8.3) into (8.2) leads, after some algebraic manipulations and using

the relation 2isiny ¼ eiy � e�iy, to the following set of linear equations in A and B:

m1o2 þ b 2isin
ka

2

� �2

� bI

 !
Aþ bIe

ikðm�nÞaB ¼ 0;

bIe
ikðn�mÞaAþ Mo2 þ b 2isin

ka

2

� �2

� bI

 !
B ¼ 0: (8.4)

This is an Eigen value problem in o2 which admits non-trivial solutions when

the determinant of the matrix composed of the linear coefficient in (8.4) is equal

to zero:

m1o2 þ b 2i sin
ka

2

� �2

� bI bIe
ikðm�nÞa

bIe
ikðn�mÞa Mo2 þ b 2i sin

ka

2

� �2

� bI

���������

���������
¼ 0 (8.5)

Setting a ¼ o2, (8.5) takes the form of the following quadratic equation:

a2 þ b 2isin
ka

2

� �2

� bI

 !
1

m1

þ 1

M

� �
aþ b2

m1M
2isin

ka

2

� �4

¼ 0 (8.6)

which admits two solutions:

o2 ¼ 2bsin2
ka

2
þ bI

2

� �
1

m1

þ 1

M

� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bsin2

ka

2
þ bI

2

� �2
1

m1

þ 1

M

� �2

� 16b2

m1M
sin4

ka

2

s
¼ 0

: (8.7)

These two solutions are periodic in wave number k with a period of p
a . These

solutions are represented graphically in the band structure (solid lines) of Fig. 8.3a

over the interval k 2 0; pa
� 	

for a ratio
bI
b ¼ 0:1. For comparison, the band structure in

the case of uncoupled modes, i.e., bI ¼ 0, is also displayed in Fig. 8.3 as dashed

lines. It appears that the effect of coupling arises mainly in the region where the

dispersion curves of the two uncoupled modes intersect, i.e., at low frequencies in

the considered case. This is a universal property of modes coupling. For weak

coupling, as displayed in Fig. 8.3, the upper limits for angular frequency of the two
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modes, at the edge of the Brillouin zone, are very close to those obtained in the case

of uncoupled modes, i.e.,o0 ¼ 2
ffiffiffiffi
b
m1

q
andO0 ¼ 2

ffiffiffi
b
M

q
. But, at k ¼ 0 a gap appears in

the interval of frequency 0;Og

� 	
, whereOg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bI

1
m1

þ 1
M

� �r
, for the mode with the

highest phase velocity, corresponding to the chain of atoms with masses M. This

behavior is very similar to those observed in magnetoacoustic waves, where a

magnetoacoustic gap appears in the spin waves branch near a phase transition [1].

If we enlarge on the band structures of the coupled modes at low frequencies, as

shown in Fig. 8.3b, the influence of the coupling on the mode with the lowest phase

velocity is enlightened: its low-frequency phase velocity, corresponding to the slop

of band structure curve near k ¼ 0, can be dramatically reduced. Then, if we

consider the chain of masses M as an external stimulus acting on a 1-D mono-

atomic harmonic crystal, with masses m1 , it clearly appears that the external

stimulus can be used to tune the acoustic properties of the harmonic crystal.

8.2 Literature Review

Phononic crystal may have applications in numerous technological fields. Never-

theless, for enhanced functionality it appears necessary to introduce a certain

degree of frequency tunability of phononic crystal properties. As shown in the

1-D harmonic crystal example, tunability could be achieved by changing the

geometry of the phononic crystal or by varying the elastic characteristics of

the constitutive materials through application of external stimuli.

In 2-D, contrary to the harmonic crystal, the geometry of a phononic crystal can

be changed not only by modifying the filling fraction, but also by the rotation of

square inclusions [2]. In 2-D periodic arrays of rotating square solid rods, variations

up to 60 % of the relative band width of the first gap have been predicted for filling

Fig. 8.3 (a) Band structure

of the system of two coupled

1-D mono-atomic harmonic

crystals. (b) Zoom of the band

structure around the low-

frequency range. The dashed
lines represent the uncoupled
case (bI ¼ 0)
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fractions less than 0.5, and even more for higher filling fractions [3]. The large

tuning capability of the properties of these rotating rods phononic crystals opens the

opportunity to develop devices with enhanced or new functionality. An example of

refraction control in such 2-D phononic crystal will be presented at the end of this

chapter [4]. Isotropic materials are usually chosen as constituents of phononic

crystals where a change in geometry is utilized to tune the band structure. The

isotropy of the materials imposes the choice of inclusions that do not have an axial

symmetry to modify the geometry of the phononic crystal when the rods are rotated.

But, when anisotropic inclusions are considered, even cylindrical inclusions can be

used to obtain similar results [5].

Other authors [6] exploit the change of the structure, i.e., the lattice and the form

of the inclusions, of a phononic crystal made of holes in an elastomeric matrix, due

to an external stress to alter the band structure. Periodic elastomeric structures can

reversely undergo large strain deformations and dramatic transformations in their

periodic pattern with only a small applied stress. A 2-D periodically patterned

SU-8, the material of choice for microelectromechanical system fabrication,

has been used as the matrix of a phononic crystal where the internal stress arises

due to swelling of a solvent. This system shows a significant change in the phononic

band structure, specifically in the opening of a new band gap in the GHz range [7].

Micrometric 3-D elastomeric network/air structures have been realized by

interference lithography [8].

Now, if the used elastomer is a dielectric elastomer, an electric field can be used

to deform the structure. For example, one can modify the size of dielectric elasto-

mer cylindrical inclusions by applying an electric field [9]. A square lattice

arrangement of dielectric elastomer tube in air has been shown to open the possi-

bility to change the refraction from positive to negative with the increase in the

applied electric field [10]. The application to the conception of a tunable narrow

pass band filter based on a 1-D phononic crystal with a dielectric elastomer layer

has also been presented [11].

However, the main part of these approaches requires physical contact with the

phononic crystal. Another proposed solution requires using active materials as

constituents of the composite material. In this case, the geometry of the phononic

crystal is fixed and only the constituent properties, i.e., density and elastic

constants, are varied. Then one can expect that the elastic contrast, and subse-

quently the crystal properties, e.g., the bang gaps frequencies and widths, the

negative refraction behaviors, could be controlled by an external stimulus.

Following this way, some authors [12] have studied how the piezoelectric

effect can influence the elastic properties of the system and therefore can change

the dispersion curves and in particular the gaps. For an arrangement of piezoelec-

tric cylinders embedded in a polymer matrix, they show that the effect is signifi-

cant for large filling fractions but negligibly small for small ones [13]. Moreover,

a strong influence of the polarization direction on the width and starting frequency

of the first band gap of a phononic crystal consisting of rectangular piezoelectric

ceramics placed periodically in an epoxy matrix has been reported [14]. As

regions of polarizations, alternatively oriented toward the top (up) or bottom
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(down), in plates or films, can be obtained in ceramics at the millimeter scales or

with domain engineering of ferroelectric films at the micrometer scale. This high

polarization direction sensitivity can open new opportunity for the design of

integrated tunable phononic devices. Following this way, the concept of a switch-

able phononic crystal filter using polarization-patterned piezoelectric solids has

been proposed [15].

Several studies have reported changes in the band structures of magnetoelec-

troelastic phononic crystals when the coupling between magnetic, electric, and

elastic phenomena is taken into account [16]. Nevertheless, noticeable changes

can be obtained only by modifying the geometry in the considered piezoelectric/

piezomagnetic layered composites. In fact, crystals presenting true piezo-

magnetism, i.e., a linear dependence of stress, or strain, on a magnetic field, are

quite rare, and piezomagnetic behavior is often observed in magnetostrictive media

around an equilibrium state imposed by an external static magnetic field. The band

structure of a two-dimensional phononic crystal constituted of a square array of

Terfenol-D square rods embedded in an epoxy resin matrix can be controlled by

application of an external magnetic field [17, 18]. Indeed, the elastic properties of

magnetoacoustic material are very sensitive to its magnetic state and on the applied

magnetic field. For instance, in giant magnetostrictive material, such as Terfenol-D,

this dependence can lead to more than 50 % variation of some of the elastic

constants, even at ultrasonic frequencies [19], without any contact by a magnetic

field. Magnetoacoustic phononic crystal properties will be presented in some detail

in Sect. 8.3.3 and their application to the design of a reconfigurable waveguide in

Sect. 8.4.1. The use of an external magnetic field to tune the properties of colloidal

phononic crystals with paramagnetic particles integrated in the crystal has also been

proposed [20].

Other authors have considered the effect of temperature on the elastic moduli

of the constituents of the phononic crystal, as for example in the case of holes

containing air in a Quartz background [21]. The tuning of negative refraction of a

sonic crystal constituted of steel rods in air background, induced by the variations

of the air density and sound speed with temperature changes in the range �40�

to 100 �C, has also been studied [22]. Generally, the elastic moduli changes as

a function of temperature are quite small, with the exception of those close to a

phase transition. Using a phase transition around 35 �C in Ba0:7Sr0:3TiO3 , a

tunable ferroelectric phononic crystal, with an epoxy matrix, has been designed

and realized by a dice and fill technique [23]. More details on ferroelectric

phononic crystal will be given in Sect. 8.3.2. A fluid/solid phase transition with

temperature can also be used as shown in [24], where an anodic aluminum oxide

containing periodically arranged cylindrical nanopores infiltrated by PVDF poly-

mer has been studied. Here, the solid/fluid transition of the PVDF, when the

temperature changes from 25 �C to 180 �C, is shown to induce an on/off switch of
some of the passing band in the band structure of the realized hypersound

phononic crystal.

Some authors have proposed the use of electrorheological materials in conjunc-

tion with the application of an external electric field [25]. As in electrorheological
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material this is the shear modulus that can be controlled by an electric field, only

the mode with transverse polarization can be tuned. In the same spirit, one can

imagine to use magnetorheological material with the application of a magnetic

field [26].

The last envisaged method is to incorporate non-linear media as constituents of a

phononic crystal. Indeed, in non-linear materials the application of an external

static stress induces a variation of the effective elastic constants [27, 28]. As for

most of methods implying variations of the geometry, the use of non-linear

materials requires physical contact with the phononic crystal. More details on this

topic have been presented in Chap. 7.

8.3 Two-Dimensional Tunable Phononic Crystals

8.3.1 Tunable Phononic Crystals Created by Rotating Square
Rods

The first method of tuning 2-D phononic crystal that we will consider in more

details is the physical rotation of square inclusions periodically positioned in air,

first proposed by Goffaux and Vigneron [2]. Here, we only consider the low solid

filling fraction, i.e., the case of isolated solid rods in air, as shown in Fig. 8.4.

Indeed, this configuration corresponds to the only one with potential application for

tunable phononic crystals. For filling fractions higher than 0.5, and above a critical

value of the rotation angle, yc ¼ cos�1ð ffiffiffi
f

p Þ, the rods can no more be rotated due to

contacts between neighboring rods.

Because, in this system of square solid rods in air, the high-density contrast

between solid and air authorizes the use of the condition of elastic rigidity to the

solid rods, all the calculations presented in this part have been made with the PWE

method applied to fluid inclusions in fluid. The structure factor for the square lattice

of square rods with rotation angle y can be written as [29]

I ~G
� �

¼ f sin ~Gx
d

2

� �
sin ~Gy

d

2

� �
; (8.8)

with

~Gx ¼ Gx cosyþ Gy siny;
~Gy ¼ �Gx sinyþ Gy cosy;

(8.9)

where d is the edge length of the square rods, and Gx and Gy are the components of

the reciprocal vectors.
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The elastic parameters chosen for all the calculations are rair ¼ 1 kg.m�3 ,

rrod ¼ 1; 500 kg.m�3, cair ¼ 340m.s�1, and crod ¼ 2; 000m.s�1. We investigate the

acoustic band structures as a function of the rotation angle and filling fraction. To

ensure a good convergence, 625 plane waves have been used in all the acoustic

band structure calculations.

Two examples of band structures, obtained for a square-lattice two-dimensional

phononic crystal consisting of square solid rods in air with a filling fraction f ¼ 0.5

and edge length d ¼ 0.5 mm, are displayed in Fig. 8.5 for a rotating angle (a) y ¼ 0

and (b) y ¼ 45�. As seen in Fig. 8.5a, no absolute acoustic band gap exists for y ¼ 0

in the first eight bands. In fact, as shown in Fig. 8.6, no absolute band gap appears

between the first two bands for any filling fraction for this orientation. Rotating the

square rods from an angle y ¼ 0 to 45�, a large absolute phononic band gap appears
between the first and second bands.

Figure 8.6 shows the numerical results of the normalized width of the lowest

band gap, between the first and second bands, as a function of the rotation angle yof
the rods for five different filling fractions f ¼ 0.30, 0.35, 0.40, 0.45, and 0.50. The

normalized width of the band gap is taken as the gap width Do divided by the mid

gap frequencyog. It can be seen that for a given filling fraction the normalized gap

width increases with the rotation angle, and, for a given angle, it increases with the

filling fraction. Moreover, for a given filling fraction, the absolute acoustic band

gap appears only above a certain angle. This gap-opening angle gradually decreases

as the filling fraction increases.

The widening of the gap can be explained by the change of the geometry [2].

Indeed, at 0� the space left between the rods is sufficiently large to allow for

propagation of the waves in the structure with little wave interferences. In this

case, no gap appears in the band structure. On the other hand, when the rods are

rotated this space is reduced, and the destructive wave interferences are increased.

This finally leads to first the appearance of a gap and then to its widening.

In the present method, a physical contact with the phononic crystal is needed in

order to tune its properties. This limitation can be overcome, as shown in the

Fig. 8.4 Transverse cross-section of two-dimensional phononic crystals constituted of square

section hard rods in air arranged in a square lattice. The figure represents an array having the same

orientation as the empty lattice (left part), and the same array rotated by an angley ¼ 45� (right part)
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Literature review section 8.2, by the introduction of an active material as one, or

even both, of the constituents of the phononic crystal.

8.3.2 Tunable Ferroelectric Phononic Crystals

Ferroelectric ceramics are one kind of such active material. Perovskite ferroelectrics,

such as Ba0:7Sr0:3TiO3, undergo phase transformation around Curie temperature TC,
accompanied by huge variations of the material properties, as the acoustic velocities.

Fig. 8.6 Evolution of the normalized lowest absolute band gap width as a function of the rotation

angle y for five different filling fractions f ¼ 0.30, 0.35, 0.40, 0.45, 0.50, respectively

Fig. 8.5 Acoustic band structure for a square-lattice two-dimensional phononic crystal consisting

of square solid rods rotated with an angle (a) y ¼ 0� and (b) y ¼ 45�, in air. The filling fraction

f ¼ 0.5 and edge length d ¼ 0.5 mm
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ForBa0:7Sr0:3TiO3, the Curie temperature is around 35 �C [23, 30], a suitable value for

real device operations. Figure 8.7 displays the variation of the longitudinal cl and
transverse ct acoustic velocities as a function of temperature. These curves

corresponding to fit from the experimental data presented in [23] show increases of

about 20% and 30% forcl andct, respectively, in a temperature range going from35 to

45 �C and overlapping the Curie temperature of the material.

The two-dimensional phononic crystal constituted of Ba0:7Sr0:3TiO3 square rods

in an epoxy matrix, proposed and realized by a dice-and-fill technique by Jim et al.
[23], is considered. The filling fraction is f ¼ 0.57 and the period is a ¼ 267 mm.

Epoxy has been chosen as the matrix constituent due to its large contrast in acoustic

properties (both density and acoustic velocities) with Ba0:7Sr0:3TiO3 . This is

generally convenient for the emergence of a large absolute band gap. Moreover,

epoxy shows an infinitesimal velocity change in the considered temperature range

(less than 0.03 %).

The band structure of the XY modes of propagation of this ferroelectric/epoxy

phononic crystal has been calculated by the PWE method with 625 plane waves

(see Chap. 10), considering isotropic inclusions in an isotropic matrix. In this

configuration the out-of-plane Z modes are decoupled from the in plane XY
modes. Results are displayed in Fig. 8.8 for two different temperatures: (a) 35 �C
and (b) 45 �C. Two remarks should be made. First, the width of the first absolute

band gap, appearing between the first and second bands, increases from 3 MHz to

4.4 MHz when the temperature is increased by 10 �C around the Curie temperature

of the inclusions. This corresponds to a relative increase of about 30 %. Second, the

lowest band edge at 5 MHz almost does not depend on the temperature.

Fig. 8.7 Temperature dependence of the longitudinal (solid line) and transverse (dashed line)
sound velocities in Ba0:7Sr0:3TiO3
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The evolution of the first absolute elastic band gap of the square lattice of

Ba0:7Sr0:3TiO3 square rods embedded in an epoxy matrix as a function of tempera-

ture is summarized in Fig. 8.9a. This figure confirms the fact that only the upper

band edge follows the temperature variation of the acoustic properties of

the inclusions.

Plotting, now, the evolution of the normalized band gap width as a function of

the temperature (see Fig. 8.9b), it becomes clear that this evolution follows the

variation of the acoustic velocities of the Ba0:7Sr0:3TiO3 inclusions. These

variations of about 30 % are of the same order of magnitude as the ones obtained

by a mechanical means (rotation of square rods), but now with a solid state tuning

scheme. It has to be noted that, in the case of the considered ferroelectric material,

the acoustical velocity variations are induced by a structural phase transition, a

tetragonal-to-cubic transition.

Fig. 8.9 Evolution of (a) the absolute elastic band gaps, and (b) the normalized absolute elastic

band gaps width as a function of the temperature

Fig. 8.8 Band structure of the XY modes of propagation of a square-lattice 2D phononic crystal

consisting of Ba0:7Sr0:3TiO3 square rods embedded in an epoxy matrix at a temperature of

(a) 35 �C and (b) 45 �C. The filling ratio f ¼ 0.57 and period a ¼ 267 mm
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8.3.3 Tunable Magnetoacoustic Phononic Crystals

The possibility of controling and tuning of the band structures of phononic

crystals offered by the introduction of an active magnetoacoustic material and

the application of an external magnetic field are now presented. Three means to

obtain large elastic property variations in magnetoacoustic materials can be

envisaged: giant magnetostriction, spin reorientation transition [1], and ferro-

magnetic resonance effects. Here, only the first two will be described. The

magnetoacoustic coupling is taken into account through the consideration of an

equivalent piezomagnetic material model with elastic Cijkl , piezomagnetic qlij
and magnetic permeability mij tensors varying as a function of the amplitude

and orientation of the applied magnetic field [17, 18]. Considering a uniformly

oriented magnetization, the equivalent piezomagnetic material formulation

leading to equations similar to the ones classically used for piezoelectric

materials is

r0
@2ui
@t2

¼ @sij
@xj

;

@bi
@xi

¼ 0;

(8.10)

with

sij ¼ CijklðHÞ @uk
@xl

þ qlijðHÞ @’m

@xl
; (8.11)

bi ¼ qiklðHÞ @uk
@xl

� milðHÞ @’m

@xl
; (8.12)

where r0 is the mass density, ui and bi are the ith component of the particle

displacement and magnetic induction, xi denotes the Eulerian coordinates,sij are the
stress tensor components, and ’m is the magnetic potential. This formulation

enables the direct use of PWE and FE methods developed for the calculation of

phononic crystal characteristics in piezoelectric media [31].

According to the Bloch-Floquet theorem, the displacement vector and the

magnetic potential can be expanded in infinite Fourier series

uiðr; tÞ ¼
X
G

uikþGe
jðot�k:r�G:rÞ;

’mðr; tÞ ¼
X
G

’kþGe
jðot�k:r�G:rÞ;

(8.13)

where r ¼ (x,y,z) is the vector position, o is the circular frequency, G are the

reciprocal lattice vectors, and k is the wave vector. Moreover, due to the periodicity
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the material constants rðrÞ, CijklðrÞ, qlijðrÞ, and mijðrÞ are also expanded as Fourier

series

aðrÞ ¼
X
G

aGe�jG:r : (8.14)

Inserting these expansions, (8.13)–(8.14) in (8.10)–(8.12), using orthogonality

property of Fourier series components and collecting terms yields the following

generalized eigenvalue equation [31]

o2 ~R ~U¼Gi
~AilGl

~U; (8.15)

where ~U is a vector gathering the Fourier amplitudes of the generalized displace-

ment u ¼ ðu1; u2; u3;’mÞ , ~R , ~Ail are 4N x 4N matrix involving only material

constants, and Gi are diagonal matrices involving the wave vector and vectors of

the reciprocal lattice. The detailed expressions of all these matrices are given in

[31]. By solving (8.15) foro as a function of the wave vector k in the first Brillouin
zone of the considered lattice, the band structures can be calculated.

Results of contactless tunability of the absolute band gaps are presented for a

two-dimensional phononic crystal constituted of Terfenol-D square rod embedded

in an epoxy matrix.

The evolution of the effective elastic coefficients, piezomagnetic constants, and

magnetic permeability for a Terfenol-D rod as a function of the amplitude of an

external magnetic field applied along the rod axis is displayed in Fig. 8.10a. The

Terfenol-D parameters used in all the calculations correspond to the ones of

commercially available data [18]. As the external magnetic field is applied in the

Z direction, parallel to the rod axis, only two elastic coefficientsC44 andC55 and two

piezomagnetic constants q24 and q15 display strong variations as a function of the

magnetic field. The order of magnitude of the predicted transverse elastic coeffi-

cient variations is in good agreement with the one measured in Terfenol-D [19]. The

variations of the diagonal terms of the effective magnetic permeability tensor are

also displayed in Fig. 8.10a. The slowness polar diagrams calculated for elastic

waves propagating in the XY plane, perpendicular to the rod axis, using the effective

piezomagnetic material properties are shown in Fig. 8.10b for three increasing

values of the amplitude of the external magnetic field: 1 kOe (dashed line),

10 kOe (dotted line), and 20 kOe (solid line). In this configuration, only the out

of plane transverse wave, propagating with the velocity and with displacement

directed along the applied static magnetic field, is coupled to this magnetic field.

We study now the influence of the introduction of a magnetoelastic medium on

the properties of phononic crystals. The calculations have been made for a square

lattice of Terfenol-D square rods of section d ¼ 1 mm embedded in an epoxy

matrix. The matrix is constituted of epoxy resin, considered as isotropic and with

the following parameters: r0 ¼ 1; 142 kg/m3,C11 ¼ 7:54GPa, andC44 ¼ 1:48GPa.
441 plane waves have been used in the PWE calculation of the band structure.
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Comparison with FEM results has confirmed the rather good convergence of the

Fourier series.

We study the evolution of the band structure, as a function of the amplitude and

the orientation of the external magnetic field, induced by the variations of the

effective parameters of the Terfenol-D rods. The band structures displayed in

Fig. 8.11 give a typical example of the magnetic field influence when applied along

the rod axis. With a filling factor f ¼ (d/a)2 ¼ 0.35 and an applied fieldHext ¼ 3 kOe,

the phononic crystal possesses an absolute band gap in the 0–1MHz frequency range,

as shown in Fig. 8.11b. When the external field is increased to 10 kOe, a second

absolute band gap, ranging from approximately 0.76 to 0.8 MHz, appears

(Fig. 8.11a).

Moreover, the frequency range of the first absolute band gap is slightly

increased. More precisely, the application of a magnetic field with an amplitude

higher than 6 kOe increases the bandwidth of the band gap, and opens a second one

in the 0–1 MHz frequency range, as shown in Fig. 8.12a. So elastic waves are

evanescent waves in this phononic crystal at 0.8 MHz when the field becomes

higher than 6 kOe. When the filling factor is increased to 0.5, as shown in

Fig. 8.10 (a) Evolution of the effective elastic moduli, piezomagnetic constants, and magnetic

permeabilities of a Terfenol-D rod as a function of the static external magnetic field applied along

the rod axis (Z). The effective elastic and piezomagnetic constants are expressed in Voigt notation.

(b) Slowness polar diagram for propagation in a Terfenol-D rodwith a static external magnetic field,

applied along the rod axis (Z), of 1 kOe (dashed line), 10 kOe (dotted line), and 20 kOe (solid line)
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Fig. 8.12b, the process is inverted: the second absolute band gap disappears when

the amplitude of the external magnetic field is increased. In both cases, the

phononic crystal behaves as a switch controlled without any contact by an external

applied magnetic field. Nevertheless, in this case, where the magnetic field is

applied along the rod axis, the band gap width variation remains lower than

25 %. Moreover, a careful look at the band structures of Fig. 8.11 has shown that

only modes polarized along Z are coupled to the external field [18].

Considering now a magnetic field applied in a direction perpendicular to the

Terfenol-D rod, the evolution of the parameters of the effective piezomagnetic

material as a function of the amplitude of the external magnetic field are presented

in Fig. 8.13a. Contrary to the previous case, all the Christoffel tensor components

are now field dependent. As shown in Fig. 8.13b, displaying the slowness polar

diagrams for an external field of 4 kOe (dashed line), 10 kOe (dotted line), and

Fig. 8.12 Evolution of the absolute elastic band gaps of a square lattice of Terfenol D square rods

embedded in an epoxy matrix as a function of the amplitude of the applied static magnetic field

along the rod axis Z, for a filling factor (a) f ¼ 0.35 and (b) f ¼ 0.5

a b

Fig. 8.11 Band structure of a square lattice of Terfenol-D square rods with a filling factor

f ¼ (d/a)2 ¼ 0.35, embedded in an epoxy matrix for two applied static magnetic fields along the

rod axis Z: (a) Hext ¼ 10 kOe and (b) Hext ¼ 3 kOe
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20 kOe (solid line), this leads to the fact that all the modes are now affected by the

magnetic field, even if the influence on the quasi-longitudinal mode is still low.

Moreover, the induced velocity variations of the transverse waves, both in plane

and out of plane, become very large for propagation in the X direction, due to the

presence of a magnetic spin reorientation transition (SRT). It is well known that the

magnetoelastic coupling can become significant near a SRT if the magnetic mode

of frequency o0 that interacts with the sound is a soft mode leading to a coupling

coefficient B ¼ 1 at the transition. At the SRT, the equilibrium orientation of the

magnetization suddenly changes. For the considered Terfenol-D sample, the SRT

corresponds to Hext ¼ 2:56 kOe. Close to the SRT, e.g., for Hext ¼ 4 kOe, for a

propagation along the external magnetic field direction, the phase velocity of the

transverse waves tends to zero.

On the other hand, when the propagation is perpendicular to the external field

direction, only the in plane transverse wave velocity shows a slight variation as a

function of the magnetic field amplitude. The difference between these two cases

arises from the existence of a dynamic dipole field created by the magnetoelastic

wave propagation. So the long-range dipole interaction can considerably weaken

the magnetoelastic coupling at the SRT for waves propagating in an arbitrary

direction.

Fig. 8.13 (a) Evolution of the effective elastic moduli, piezomagnetic constants, and magnetic

permeabilities of a Terfenol-D rod as a function of the static external magnetic field applied along

the X axis. The effective elastic and piezomagnetic constants are expressed in Voigt notation.

(b) Slowness polar diagram for propagation in a Terfenol-D rod with a static external magnetic

field, applied along the X axis, of 4 kOe (dashed line), 10 kOe (dotted line), and 20 kOe (solid line)

8 Tunable Phononic Crystals and Metamaterials 269



When the magnetic field is applied perpendicularly to the Terfenol-D rod axis, the

absolute band gap evolution displayed in Fig. 8.14 shows more important variations

than in the previously considered case where the magnetic field was along the rod

axis. This can be directly linked to the SRT described in the preceding part.

The calculations have been made for decreasing external magnetic field amplitude

down to 4 kOe, not too close to the SRT. Indeed, below and close to the SRT, the

used assumption of uniformly oriented magnetization becomes doubtful.

8.4 Applications of Tunable Phononic Crystals

We have seen how a sufficient, e.g., at least 10 %, level of tunability can be

introduced in the properties of 2-D phononic crystals. This tuning capability

opens the opportunity to design and create phononic crystal devices with new or

enhanced functionalities.

As mentioned in Chap. 1, some authors have demonstrated that the removal of

inclusions along some pathway in the phononic crystal produces acoustic

waveguides [32, 33]. Acoustic waves that would not propagate otherwise in a

phononic crystal can be guided with minimal loss along such waveguides. Low-

loss transmission can be achieved in linear waveguides as well as guides with sharp

bends. That opens possibilities for the design of devices allowing the filtering or the

demultiplexing of acoustic waves at the scale of the wavelength [34]. More

specifically it has been shown numerically and experimentally that such structures

manufactured at the micrometer scale behave as high Q micromechanical

resonators with high resonance frequencies and can be integrated in devices for

wireless communications and sensing applications [35]. Moreover some dispersion

curves in the band structure of a phononic crystal may present a negative curvature

i.e., the Poynting vector and the wave vector, associated to energy flux and phase

velocity are opposite in sign. This property may lead to the negative refraction

Fig. 8.14 Evolution of the

absolute elastic band gaps of a

square lattice of Terfenol-D

square rods with a filling

factor f ¼ 0.5, embedded in

an epoxy matrix, as a function

of the amplitude of the

applied static external

magnetic field along the

X axis perpendicular to the

rod axis
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of acoustic waves for frequencies falling in the frequency domain of the band

with negative curvature. Negative refraction allows for the focusing of acoustic

waves with a resolution lower than the diffraction limit [36] as well as for the

autocollimation of an acoustic beam [37].

Two examples of how tuning capability could improve the potentiality of such

waveguiding and negative refraction flat lens devices are now presented.

All the calculations presented in this section have been performed using the

Finite Element (FE) method to simulate the propagation of acoustic waves in the

designed phononic crystal devices.

8.4.1 Tunable and Reconfigurable Waveguides

The first application considered is the use of a 2-D magnetoacoustic tunable

phononic crystal to design a completely reconfigurable waveguiding device. The

building block of this system is a 7 by 10 array of 0.5 mm radius Terfenol-D

cylindrical rods embedded in an epoxy matrix, as shown in Fig. 8.15. A filling

factor of 0.6 is chosen in order to obtain a large band gap around 1 MHz when an

external static magnetic field of 20 kOe is applied along the rod axis, see Fig. 8.16a.

The 2-D phononic crystal is sandwiched between two homogeneous parts com-

posed of epoxy. To simulate infinite media, Perfectly Matched Layers (PMLs) are

implemented on the left and right sides of the calculation domain. Moreover,

periodic boundary conditions are used on the upper and lower sides.

As shown in Sect. 8.3.3, the band structure of the realized magnetoacoustic

phononic crystal can be tuned by changing the amplitude (or the direction) of the

applied external magnetic field. In the present configuration, when the amplitude of

the magnetic field applied along the rod axis, i.e., the Z axis, is reduced to 1 kOe,

then a transmission band appears in the gap near 1 MHz, as displayed in Fig. 8.16b.

In fact, the two modes, which constitute this transmission band, correspond to out

of plane transversely polarized modes.

We first consider a straight waveguide created by applying locally a static

magnetic field of 1 kOe (in place of 20 kOe) on one row of cylinders along the

propagation direction (X axis), as shown in Fig. 8.15. From an experimental point of

view, the external magnetic field can be applied locally on each cylinder using a

magnetic writing head. The length of the obtained waveguide is 10 periods and its

width is one period. A plane wave, containing components in the three directions,

with a frequency of 970 kHz is launched from the left side of the 2-D phononic

crystal. The obtained three components of the particle displacement u1, u2, and u3
are displayed in Fig. 8.16c. This figure clearly demonstrates that only the out of

plane transversely polarized mode is transmitted through the waveguide.

Classically, waveguides are created in phononic crystal by removing one row

of inclusions. In order to understand the difference between the two kinds of

waveguide, the band structures for the waveguide modes along the GX direction

are calculated with the FE method by defining a supercell of five periods in the
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Y direction, and reported in Fig. 8.17. In the case of a waveguide created by

applying locally a static magnetic field of 1 kOe, only two flat modes appear in

the band gap of the phononic crystal, leading to the emergence of a narrow passing

band. As it will be shown latter on, such flat modes can be used for multiplexing or

demultiplexing applications [34]. For a waveguide realized by removing one row of

Fig. 8.15 Structure of a linear waveguide created, in a square-lattice 2D phononic crystal, by

applying an external magnetic field of 1 kOe on one row of cylindrical Terfenol-D inclusions along

the X direction. The phononic crystal is constituted of cylindrical Terfenol-D rods of 0.5 mm

radius embedded in an epoxy matrix with a filling factor f ¼ 0.6. The applied static magnetic field

is 20 kOe along the Z axis

Fig. 8.16 Band structure of a square-lattice 2D phononic crystal constituted of cylindrical

Terfenol-D rods of 0.5 mm radius embedded in an epoxy matrix with a filling factor f ¼ 0.6.

The applied static magnetic field is (a) 20 kOe and (b) 1 kOe along the Z axis. (c) Three

components of the particle displacement of a plane wave with a frequency of 970 kHz impinging

on a square-lattice 2D phononic crystal containing a linear waveguide. Only the out of plane

transversely polarized mode is transmitted through the waveguide

272 O. Bou Matar et al.



rods, see Fig. 8.17b, the number of modes appearing inside the band gap is

considerably higher than in the previous case. Generally, to decrease this number

of modes, the width of the waveguide needs to be reduced.

The signal transmitted along the waveguide is recorded at its end and integrated

along its width. The transmission is then calculated by normalizing this signal with

respect to the case where a homogeneous epoxy medium is considered. The

calculated transmission is displayed as a function of frequency in Fig. 8.18a. We

can observe full transmission of out of plane elastic waves for certain frequencies

within the phononic crystal stop band. Zooming on this passing band, as shown in

Fig. 8.18b, we can see oscillations of the transmission coefficient as a function

of frequency typical of phononic waveguide, induced by the roughness, with a

periodicity a, of the guide wall.
Now, if we apply the localized 1 kOe static magnetic field on a succession

of Terfenol-D rods forming a complex path, we can for example design a bent

waveguide, as shown in Fig. 8.19a. Calculating, as in the case of a straight

waveguide, the particle displacement induced by an impinging plane wave at a

frequency of 970 kHz, we can see that the wave follows the guide even in the sharp

corner (90�).

Fig. 8.17 (a) Band structure of a square-lattice 2D phononic crystal, containing a linear wave-

guide obtained by applying an external magnetic field of 1 kOe on one row of cylindrical Terfenol-

D inclusions along the X direction, performed by considering a supercell of 5 periods along the

Y direction. The phononic crystal is constituted of cylindrical Terfenol-D rods of 0.5 mm radius

embedded in an epoxy matrix with a filling factor f ¼ 0.6. The applied static magnetic field is

20 kOe along the Z axis. (b) Band structure of a square-lattice 2D phononic crystal containing a

linear waveguide obtained by removing one row of cylindrical Terfenol-D inclusions along the

X direction. The calculation is performed by considering a supercell of 5 periods along the

Y direction
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With the same structure of Terfenol-D rods embedded in an epoxy matrix, we

can design a Y-shaped waveguide, as shown in Fig. 8.20a. The left part of the

waveguide contains cylinders of Terfenol-D with two different applied magnetic

fields along the Z direction: 1 kOe (blue rods) and 2 kOe (green rods). In the right

Fig. 8.19 (a) Structure of a square-lattice 2D phononic crystal, containing a bended waveguide

obtained by applying an external magnetic field of 1 kOe (blue rods) along the Z direction on

cylindrical Terfenol-D inclusions. The phononic crystal is constituted of cylindrical Terfenol-D

rods of 0.5 mm radius embedded in an epoxy matrix with a filling factor f ¼ 0.6. The applied static

magnetic field is 20 kOe (red rods) along the Z axis. (b) Out of plane component u3 of the particle
displacement of a plane wave with a frequency of 970 kHz impinging on the waveguide

Fig. 8.18 (a) Transmission through the waveguide of Fig. 8.17a for an out of plane transversely

polarized incident waves. (b) Zoom of the transmission in dB around the passing band introduced

by the linear guide for out of plane transversely polarized modes
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part, each branch of the Y contains one type of cylinder. Applying a 2 kOe

magnetic field moves the passing band of the 2D-phononic crystal to higher

frequencies. As the passing band created in the band gap is sufficiently narrow

we can find frequencies moving from the passing band to the band gap, or

inversely, when the amplitude of the applied magnetic field is changed. The

plot of the out of plane component of the displacement field for the Y-shaped

waveguide is represented in Fig. 8.20 for two different frequencies: 1,023 kHz (b)

and 960 kHz (c). These spectra show that the superposed waves supported by the

mixed waveguide are separated and directed toward the two branches of the Y

junction. This system can be used as a demultiplexer or a multiplexer if used in the

reversed direction.

In conclusion, we have seen that an array of Terfenol-D arranged in a square

lattice and embedded in an epoxy matrix can be used as a reconfigurable device for

guiding, multiplexing, or demultiplexing acoustic waves.

Fig. 8.20 (a) Schematic of the Y-shaped waveguide. The left part of the waveguide contains

cylinders of Terfenol-D with two different applied magnetic fields along the Z direction: 1 kOe

(blue rods) and 2 kOe (green rods). The phononic crystal is constituted of cylindrical Terfenol-D

rods of 0.5 mm radius embedded in an epoxy matrix with a filling factor f ¼ 0.6. The applied static

magnetic field is 20 kOe along the Z axis (red rods). Each branch of the Y contains one type of

cylinder. Representation of the out of plane component of the displacement field for the Y-shaped

waveguide at two frequencies of (b) 1,023 kHz, and (c) 960 kHz
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8.4.2 Tunable Negative Refraction Lenses

Due to emerging applications of negative refraction, such as the realization of flat

lenses and lenses with resolution beyond the diffraction limit, i.e., superlenses, it

becomes highly desirable to obtain some degrees of tunability in wave refraction.

We consider a square-lattice 2-D phononic crystal constituted of square solid

rods that can be rotated in air, as in Sect. 8.3.1. The filling fraction is f ¼ 0.5 and the

square rods edge length is d ¼ 0.5 mm. In such phononic crystal, the negative

refraction is realized without employing a negative index or a backward wave

effect, i.e., the phase and group velocities are not opposites, but is due to a negative

phononic ”effective mass” effect [4, 38]. For the frequency 120 kHz, the equi-

Fig. 8.21 Acoustic band structure for a square-lattice two-dimensional phononic crystal consisted

of square solid rods rotated with an angle (a) y ¼ 0� and (b) y ¼ 45� , in air. The filling fraction

f ¼ 0.5 and edge length d ¼ 0.5 mm. (c) EFSs k space of air (solid) and the phononic crystal with
both y ¼ 0� (dashed) and y ¼ 45� (dotted) at 120 kHz. Vg is the group velocity in the phononic

crystal
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frequency surfaces (EFS) obtained by the PWEmethod, for the two different angles

y ¼ 0� and 45�, are displayed in Fig. 8.21c. As explained in Chap. 4, the anisotropy
of EFS determines the refraction of acoustic waves at the interface between the air

and the phononic crystal. As shown in Fig. 8.21c, in the case of a phononic crystal

with surface normal oriented along the G�M direction, when the rotation angle is

y ¼ 0�, the shape of the EFS is convex in the vicinity of the pointGwith an outward-

pointing group velocity, Vgð0�Þ, leading to positive refraction. When y ¼ 45�, the
shape of the EFS becomes square-like and centered at the point M. As shown in

Fig. 8.21c the group velocity, Vgð45�Þ is inward-pointing to the pointM. Therefore,

the refraction is negative for this angle of rotation. So, by rotating the rods from

y ¼ 0� to 45�, the refraction can be changed from positive to negative.

The acoustic band structures, calculated by the PWE method, are displayed in

Fig. 8.21a for y ¼ 0� and Fig. 8.21b for y ¼ 45�. As shown, for the larger angle of
rotation the first acoustic band is compressed, corresponding to an increase of the

anisotropy, and is generally well suited to the apparition of an all-angle negative

refraction (AANR) region [38]. Here, the required conditions for AANR effect

are obtained when the solid rods are rotated with an angle of 45�, in a frequency

range highlighted in Fig. 8.21b. From Fig. 8.21a, we can notice that the AANR

region is absent when the angle y ¼ 0�, although the negative refraction region is

larger. A tunable acoustic superlens can be designed through such a tunable

AANR effect.

In this perspective, we consider a 6-layer square-lattice 2-D phononic slab as

shown in Fig. 8.22. The surface perpendicular to the phononic crystal slab is

oriented along the G�M direction. The pressure fields generated at 120 kHz by

a point source placed at a distance equals to the lattice parameter from the left of the

phononic crystal slab calculated by an FE method for the two angles of rotation of

Fig. 8.22 Pressure field

generated at 120 kHz by a

point source placed at a

distance of a from the left of

the phononic crystal slab. The

phononic crystal is

constituted of square solid

rods in air with a filling

fraction f ¼ 0.5 and edge

length ¼ 0.5 mm. The angle

of rotation of the rods is

(a) y ¼ 0� and (b) y ¼ 45�
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the rods, y ¼ 0� and y ¼ 45�, are displayed in Fig. 8.22. It appears that when the

rods are rotated by an angle of 45�, a perfect image of the source is obtained, due to

the AANR effect. Now, when the angle y ¼ 0� the image completely disappears.

Therefore, by rotating the solid rods composing the phononic crystal slab, the

superlens can be switched on/off.

All the described behaviors of refraction control of an acoustic wave in a square

rod phononic crystal have been verified experimentally by Feng et al. [4]. More-

over, similar results have been predicted by Yang et al. [10] for a tunable phononic
crystal made of dielectric elastomer cylindrical actuators.

8.5 Summary

We have shown that tunability of phononic crystal properties could be achieved by

changing their geometry or by varying the elastic characteristics of their constitu-

tive materials through application of external stimuli. Variation of the relative band

gap width of more than 50 % could be attained by the physical rotation of square

inclusions periodically positioned in air or by using an active material, such as a

ferroelectric or a magnetoacoustic material, as one of the constituent of the

phononic crystal. The introduction of an active material constituent opens the

possibility of easy controllability of the properties of a phononic crystal without

any physical contact. More specifically one can achieve additional functionalities

such as the switching of transmission in a defined frequency range, the control of

refraction properties, and the reconfiguration of waveguide and multiplexer.
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Chapter 9

Nanoscale Phononic Crystals and Structures

N. Swinteck, Pierre A. Deymier, K. Muralidharan, and R. Erdmann

Abstract The objective of this chapter is to explore advances in the development

of phononic crystals and phononic structures at the nanoscale. The downscaling of

phononic structures to nanometric dimensions requires an atomic treatment of the

constitutive materials. At the nanoscale, the propagation of phonons may not be

completely ballistic (wave-like) and nonlinear phenomena such as phonon–phonon

scattering occur. We apply second-order perturbation theory to a one-dimensional

anharmonic crystal to shed light on phonon self-interaction and three-phonon

scattering processes. We emphasize the competition between dispersion effects

induced by the structure, anharmonicity of the atomic bonds, and boundary scatter-

ing. These phenomena are illustrated by several examples of atomistic models of

nanoscale phononic structures simulated using the method of molecular dynamics

(MD). Special attention is also paid to size effects.

9.1 Introduction

Nanofabrication techniques can be used to structure matter in a way that affects the

propagation of phononic excitations such as high frequency (short wavelength)

thermal phonons. Modulating the thermal properties of materials by creating a

nanoscale composite structure is an approach that has been extensively studied in

the case of superlattices [1–3]. These stacks of nanoscale layers have been shown

experimentally and theoretically [4, 5] to impact thermal transport due to scattering

effects of phonons.
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While superlattices are actually one-dimensional phononic structures, only a few

studies have investigated 2D and 3D nanophononic structures. Most studies on

2D and 3D phononic crystals (PCs) have focused on macroscopic elastic systems.

However this large body of knowledge suggests a possibility of designing disper-

sive properties by downscaling PCs to nanodimensions to affect the propagation

characteristics of phonons with frequencies exceeding the THz range [6]. Recently,

Gillet et al. [7] have reported simulations of atomic-level phononic structures made

of three-dimensional lattices of Ge quantum dots in a Si matrix. They have shown

a decrease of the thermal conductivity by several orders of magnitude due to the

periodic structure of the system. Davis and Hussein [8] have considered three-

dimensional nanoscale phononic crystals formed from silicon and cubic voids of

vacuum. The voids are arranged on a simple cubic lattice with a lattice constant an

order of magnitude larger than that of the bulk crystalline silicon primitive cell.

This study showed that dispersion at the phononic crystal unit cell level plays a

noticeable role in determining the thermal conductivity and that boundary scatter-

ing can also be a dominant factor. Control of high-frequency thermal phonons via

structural periodicity requires preserving elastic Bragg scattering and is a signifi-

cant challenge because of the possible loss of phonon coherence due to inherent

inelastic scattering resulting from the anharmonicity of interatomic bonds. Band-

structure effects will be highest at low temperatures where there is less anharmonic

scattering [5] but one has to operate at often undesirably low temperatures [9]. For

applications at ambient temperature and phononic crystal dimensions that can be

fabricated with relative ease, the transition between Bragg- and inelastic-dominated

scattering depends on the characteristic length of the phononic crystal and the

Debye temperature of the constitutive material. This latter quantity relates directly

to the phonon coherence length. Two-dimensional materials such as graphene or

boron nitride (BN) sheets are therefore particularly suited for such applications due

to their high phonon coherence length. Atomistic computational methods have been

employed to shed light on the transport behavior of thermal phonons in models of

graphene antidot super-lattice structures composed of periodic arrays of holes [10].

The phonon lifetime and thermal conductivity as a function of the crystal filling

fraction and temperature were calculated in this study. These calculations indicated

coherent phononic effects even at room temperature.

The first section of this chapter focuses on the relationship between wave

interactions and dispersion in one-dimensional anharmonic crystals. This is done

using second-order pertubation theory as well as numerial simulations of molecular

dynamics (MD) models of nanoscale phononic systems. Details on the perturbation

theory approach are given for pedagogical reasons. Subsequent sections show that

coherent phononic effects due to period arrays of scatterers and/or asymmetric

scatterers are achievable in nanostructured two-dimensional high-Debye tempera-

ture materials such as graphene and BN sheets. Attention is also paid to the

competition between phonon–phonon scattering and boundary scattering.
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9.2 Anharmonic One-Dimensional Atomic Structures

9.2.1 Perturbation Theory of the Mono-Atomic
Anharmonic Crystal

In a harmonic crystal, the vibrational modes do not interact. Anharmonic

lattice dynamics methods have been applied to introduce phonon interactions in

three-dimensional crystals as perturbations to the harmonic solution [11–13].

Anharmonic forces lead to mode-dependent frequency shifts and introduce finite

phonon life-time (i.e., line-width). In this section, we consider the anharmonic one-

dimensional monoatomic crystal as a simple model to shed light on the effect of

nonlinear interatomic forces on the vibrational modes that this medium can support.

Amplitude-dependent self-interaction of a wave in a monoatomic and diatomic

chain of masses and springs with nonlinear cubic forces has been studied [14].

It was shown that the dispersion curves undergo frequency shifts dependent on the

amplitude of the wave. The interaction between two different waves in a nonlinear

monoatomic chain results in the formation of different dispersion branches that are

amplitude and frequency dependent [15]. Here, we employ second-order perturba-

tion theory based on multiple time scale analysis [16, 17] and provide a detailed

derivation of the anharmonic modes.

A schematic illustration of the 1D monoatomic crystal is shown in Fig. 9.1a. The

potential energy function detailing the interaction between neighboring masses in

the 1D crystal is shown in Fig. 9.1b. The parameter (e) characterizes the strength of
nonlinearity in the springs connecting the masses. As e increases in magnitude a

region of instability emerges in the potential energy function.

The equation of motion for the quadratically nonlinear monoatomic chain is

represented by (9.1):

m
d2unðtÞ
dt2

¼ bðunþ1 � 2un þ un�1Þ þ e ðunþ1 � unÞ2 � ðun � un�1Þ2
h i

; (9.1)

where m is mass, un(t) is the displacement from equilibrium of the nth mass, b is

linear stiffness, and e is a small parameter characterizing quadratic nonlinearity.

The time variable (t) is replaced by a collection of variables t ¼ (t0, t1, t2)
whereby: t0 ¼ t, t1 ¼ et, t2 ¼ e2t. Under this condition, (9.1) becomes

d2unðt0; t1; t2Þ
dt2

¼ on
2ðunþ1 � 2un þ un�1Þ þ e

m
ðunþ1 � unÞ2 � ðun � un�1Þ2
h i

;

(9.2)

where on ¼
ffiffiffi
b
m

q
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The dependent variable in (9.2), un(t), is expressed as an asymptotic expansion

at multiple time scales:

unðtÞ ¼ uð0Þn ðtÞ þ euð1Þn ðtÞ þ e2uð2Þn ðtÞ þ higher order terms (9.3)

With this (9.2) is decomposed into equations for each order of expansion of

e, namely, the following set of equations:

Oðe0Þ : @
2u

ð0Þ
n

@t02
¼ on

2 u
ð0Þ
nþ1 � 2uð0Þn þ u

ð0Þ
n�1

� �

Oðe1Þ : @
2u

ð1Þ
n

@t02
þ 2

@2u
ð0Þ
n

@t0@t1
¼ on

2 u
ð1Þ
nþ1 � 2uð1Þn þ u

ð1Þ
n�1

� �
þ 1

m
u
ð0Þ
nþ1u

ð0Þ
nþ1 � 2u

ð0Þ
nþ1u

ð0Þ
n þ 2u

ð0Þ
n�1u

ð0Þ
n � u

ð0Þ
n�1u

ð0Þ
n�1

h i

Fig. 9.1 (a) Schematic representation of 1D crystal with linear stiffness b and quadratic nonline-

arity parameter e. (b) The potential energy function describing the 1D crystal
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Oðe2Þ : @2u
ð2Þ
n

@t02
þ 2

@2u
ð1Þ
n

@t0@t1
þ 2

@2u
ð0Þ
n

@t0@t2
þ @2u

ð0Þ
n

@t12
¼ on

2 u
ð2Þ
nþ1 � 2uð2Þn þ u

ð2Þ
n�1

� �
þ 2

m
u
ð1Þ
nþ1u

ð0Þ
nþ1 � u

ð1Þ
nþ1u

ð0Þ
n � u

ð0Þ
nþ1u

ð1Þ
n þ u

ð1Þ
n�1u

ð0Þ
n þ u

ð0Þ
n�1u

ð1Þ
n � u

ð1Þ
n�1u

ð0Þ
n�1

h i

9.2.1.1 Self-Interaction

We first address the self-interaction of a vibrational mode, that is, the effect of the

lattice deformation on itself. To solve the e0-equation, a general solution of the

following form is proposed:

u
ð0Þ
n;Gðt0; t1; t2Þ ¼ A0ðt1; t2Þ eiknae�io0t0 þ �A0ðt1; t2Þ e�iknaeio0t0 ; (9.4)

where

A0ðt1; t2Þ ¼ aðt1; t2Þ e�i’ðt1;t2Þ

�A0ðt1; t2Þ ¼ aðt1; t2Þ ei’ðt1;t2Þ

A0(t1,t2) is a complex quantity that permits slow time evolution of amplitude

and phase and a t1; t2ð Þ and ’ðt1; t2Þ are real-valued functions. Inserting (9.4)

into the e0-order equation yields the well-known dispersion relationship for the

harmonic system (9.5):

o0
2 ¼ on

2 2� eika � e�ika
� � ¼ b

m
2� 2 cos kað Þ½ � (9.5)

Equation (9.4) is now utilized in the e1-order equation to resolve the general

solution for u
ð1Þ
n . The e1-order equation is written as follows:

@2u
ð1Þ
n

@t02
þ on

2 2uð1Þn � u
ð1Þ
nþ1 � u

ð1Þ
n�1

� �
¼ 2io0

@A0

@t1
eiknae�io0t0 � @ �A0

@t1
e�iknaeio0t0

� �

þ 1

m
ei2ka � 2eika þ 2e�ika � e�i2ka
� �

A0A0e
i2knae�i2o0t0 � �A0

�A0e
�i2knaei2o0t0

� �	 

It is assumed that the solution to the homogeneous equation of the e1-order

equation takes similar form to the general solution of the e0-order equation. Under
this assumption, terms on the RHS of the e1-order equation with functional form

eio0t0 or e�io0t0 contribute to secular behavior. These terms are eliminated by setting

them equal to zero. Accordingly, A0 and �A0 are considered to be independent

functions of t1. This modifies the form of the general solution to the e0-equation:
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u
ð0Þ
n;Gðt0; t2Þ ¼ A0ðt2Þ eiknae�io0t0 þ �A0ðt2Þ e�iknaeio0t0 ; (9.6)

where

A0ðt2Þ ¼ aðt2Þe�i’ðt2Þ

�A0ðt2Þ ¼ aðt2Þ ei’ðt2Þ

The homogeneous solution to the e1-order equation takes the following form:

u
ð1Þ
n;Hðt0; t2Þ ¼ B0ðt2Þeiknae�io0t0 þ �B0ðt2Þe�iknaeio0t0 (9.7)

The particular solution to the e1-order equation is of the form:

u
ð1Þ
n;Pðt0; t2Þ ¼ C0ðt2Þei2knae�i2o0t0 þ �C0ðt2Þe�i2knaei2o0t0 (9.8)

Inserting (9.8) into the e1-order equation and relating like terms reveals

relationships for the exponential pre-factors C0ðt2Þ and �C0ðt2Þ . Equation (9.8)

becomes

u
ð1Þ
n;Pðt0;t2Þ¼

2i sinð2kaÞ�2sinðkaÞð Þ
b 2�2cosð Þ�4 2�2cosðkaÞð Þð Þ A0

2ei2knae�i2o0t0 � �A0
2
e�i2knaei2o0t0

h i
:

The general solution to the e1-order equation is a sum of the homogeneous (u
ð1Þ
n;H)

and particular solutions (u
ð1Þ
n;P):

u
ð1Þ
n;Gðt0; t2Þ ¼ B0e

iknae�io0t0 þ �B0 e
�iknaeio0t0

þ 2i sin ð2kaÞ � 2 sin ðkaÞð Þ
b 2� 2 cos ð2kaÞð Þ � 4 2� 2 cos ðkaÞð Þð Þ

� A0A0e
i2knae�i2o0t0 � �A0

�A0e
�i2knaei2o0t0

	 

The values for B0 and �B0 are found from initial conditions. With the general

solutions to the e0-equation and the e1-equation, the e2-order equation is developed.
Inserting u

ð0Þ
n;G and u

ð1Þ
n;G into the e

2-order equation, utilizing the expressions forA0ðt2Þ
and �A0ðt2Þ, and noting that uð0Þn and u

ð1Þ
n are independent functions of t1; the e

2-order

equation is written as

@2u
ð2Þ
n

@t02
þ on

2 2uð2Þn � u
ð2Þ
nþ1 � u

ð2Þ
n�1

� �
¼
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eiknae�io0t0 2o0a
@’

@t2
e�i’ þ 2io0e

�i’ @a
@t2

� �

þ e�iknaeio0t0 2o0a
@’

@t2
ei’ � 2io0e

i’ @a
@t2

� �

þ 2

m
f ei2ka � 2eika þ 2e�ika � e�i2ka
� �

A0B0e
i2knae�i2o0t0 � �A0

�B0e
�i2knaei2o0t0

� �	 

þ ei3ka � ei2ka � eika þ e�ika þ e�i2ka � e�i3ka
� �	

� A0C0e
i3knae�i3o0t0 � �A0

�C0e
�i3knaei3o0t0

� �

þ ei2ka � 2eika þ 2e�ika � e�i2ka
� �

A0
�C0e

�iknaeio0t0 � �A0C0e
iknae�io0t0

� �	 
g
The homogeneous solution to the e2-order equation is similar in form to the

general solution of the e0-equation and the homogeneous solution of the e1-equation.
Accordingly, terms on the RHS of the e2-order equation with functional form eio0t0

or e�io0t0 contribute to secular behavior and must be eliminated. Setting exponential

pre-factors equal to zero yields the following relationships for aðt2Þ and ’ðt2Þ:

aðt2Þ ¼ a0 (9.9)

’ðt2Þ ¼ � a2

o0bm
� 4 sinð2kaÞ � 2 sinðkaÞð Þ2
2� 2 cosð2kaÞð Þ � 4 2� 2 cosðkaÞð Þ t2 þ ’0; (9.10)

where a0 and ’0 are constants determined from initial plane wave conditions. The

general solution to the e0-equation [(9.6)] is considered again with (9.9) and (9.10)

utilized in expressions for A0 and �A0. Here, the constant ’0 can be set equal to zero

without loss of generality.

u
ð0Þ
n;Gðt0; t2Þ ¼ a0e

i kna� o0�e2 a2
o0bm

� 4 sinð2kaÞ�2 sinðkaÞð Þ2
2�2 cosð2kaÞð Þ�4 2�2 cosðkaÞð Þ

� �
t0

� �

þ a0e
�i kna� o0�e2 a2

o0bm
� 4 sinð2kaÞ�2 sinðkaÞð Þ2

2�2 cosð2kaÞð Þ�4 2�2 cosðkaÞð Þ
� �

t0

� �

This result shows that the 0th order term in the asymptotic expansion ofun shows
the harmonic dispersion curve to be shifted by a quantity that has quadratic

dependence on the strength of the nonlinearity parameter e.

9.2.1.2 Three-Wave Interactions

Here we consider the interaction between three waves with different wave vectors

and frequencies. The analysis begins with the equation of motion [(9.1)] from the

single-wave dispersion analysis. The displacement of the nth mass is represented by

a superposition of wave modes each with a unique, time and wave vector-dependent

amplitude factor [(9.11)]:
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unðtÞ ¼
X
k

Aðk; tÞeikna (9.11)

Here we use a discrete summation over the wave numbers instead of an integral

over a continuum of wave vectors. This is done to help the reader to conceptualize

the interactions between specific phonons and to facilitate the comparison with the

MD models presented subsequently. Indeed, MD simulations are limited to finite

size systems for which the phonon modes do not form a continuum but a discrete set

of possible wave vectors. Inserting (9.11) into the equation of motion for the 1D

monoatomic crystal yields a modified equation of motion [(9.12)].

¼�4b
X
k

Aðk; tÞeiknasin2 ka

2

� �
þ e

X
k0

X
k00

A k0; tð ÞA k00; tð Þei k0þk00ð Þnaf ðk0;k00Þ
" #

;

ð9:12Þ

where f k0; k00ð Þ ¼ �8isin k0a
2

� �
sin k00a

2

� �
sin

k0þk00ð Þa
2

� �
. Equation (9.12) is multiplied by

e�ik�na and a summation over all n masses is imposed. This procedure selects the

mode k�as reference wave vector. With o2
n ¼ 4b

m , (9.12) becomes

d2Aðk�; tÞ
dt2

þ o2
nsin

2 k�a
2

� �
Aðk�; tÞ ¼ e

m

X
k0

X
k00

A k0; tð ÞA k00; tð Þf ðk0; k00Þdk0þk00;k�

(9.13)

dk0þk00;k� imposes the wave vector conservation rule k� ¼ k0 þ k00 þ mG where m
is an integer and G is a reciprocal lattice vector of the periodic structure. We do not

label G in the delta function for the sake of simplicity of the notation. For m ¼ 0,

one has the so-called normal three phonon scattering process. The case of m 6¼ 0

corresponds to umklapp processes where k0 + k00 is located outside the first

Brillouin zone. In (9.13), the variable t is introduced, where t ¼ ont. Single time

variables (t) are replaced by a collection of variables t ¼ (t0, t1, t2) whereby:
t0 ¼ t, t1 ¼ et, t2 ¼ e2t. Additionally, A(k*, t) is replaced by an asymptotic

expansion whereby:

Aðk�; tÞ ¼ A0ðk�; tÞ þ eA1ðk�; tÞ þ e2A2ðk�; tÞ
Aðk�; t0; t1; t2Þ ¼ A0ðk�; t0; t1; t2Þ þ eA1ðk�; t0; t1; t2Þ þ e2A2ðk�; t0; t1; t2Þ

With these considerations, (9.13) is separated into expressions at order e0, e1,
and e2:

O(e0):

@2A0ðk�; tÞ
@t20

þ sin2
k�a
2

� �
A0ðk�; tÞ ¼ 0

O(e1):
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@2A1ðk�; tÞ
@t20

þ 2
@2A0ðk�; tÞ
@t1@t0

þ sin2
k�a
2

� �
A1ðk�; tÞ

¼ 1

mo2
n

X
k0

X
k00

f ðk0; k00Þdk0þk00;k� A0ðk0; tÞA0ðk00; tÞ½ �

O(e2):

@2A2ðk�; tÞ
@t20

þ 2
@2A1ðk�; tÞ
@t1@t0

þ 2
@2A0ðk�; tÞ
@t2@t0

þ @2A0ðk�; tÞ
@t21

þ sin2
k�a
2

� �
A2 k�; tð Þ

¼ 1

mo2
n

X
k0

X
k00

f ðk0; k00Þdk0þk00;k� A0ðk0; tÞA1ðk00; tÞ þ A1ðk0; tÞA0ðk00; tÞ½ �

To solve the e0-equation, a general solution of the following form is proposed:

A0ðk�; t0; t1; t2Þ ¼ a0ðk�; t1; t2Þeio�
0
t0 þ �a0ðk�; t1; t2Þe�io�

0
t0 (9.14)

Inserting (9.14) into the e0-equation offers the expected relationship betweeno�
0

and k�:o�2
0 ¼ sin2 k�a

2

� �
. Inserting (9.14) into the e1-equation offers an expression to

solve for A1(k
*,t). After rearranging and utilizing the following definitions

A0ðk0; t0; t1; t2Þ ¼ a0ðk0; t1; t2Þeio0
0t0 þ �a0ðk0; t1; t2Þe�io0

0t0

A0ðk00; t0; t1; t2Þ ¼ a0ðk00; t1; t2Þeio00
0t0 þ �a0ðk00; t1; t2Þe�io00

0t0

the e1-equation becomes

@2A1ðk�; tÞ
@t20

þ o�2
0 A1ðk�; tÞ ¼ �2io�

0

@a�0
@t1

eio
�
0
t0 � @�a�0

@t1
e�io�

0
t0

� �

þ 1

mo2
n

X
k0

X
k00

f ðk0; k00Þdk0þk00;k� ½a00a000eiðo
0
0þo00

0Þt0 þ a00�a
00
0e

iðo0
0�o00

0Þt0

þ �a00a
00
0e

�iðo0
0�o00

0Þt0 þ �a00�a
00
0e

�iðo0
0þo00

0
Þt0 �

where terms like a�0; a
0
0; a

00 . . . etc:are compact representations for a0ðk�; t1; t2Þ;
a0ðk0; t1; t2Þ; a0ðk00; t1; t2Þ . . . etc: A homogeneous solution to the e1-equation is

proposed:

A1;Hðk�;t0;t2Þ ¼ a1ðk�;t2Þeio�
0
t0 þ �a1ðk�;t2Þe�io�

0
t0 ¼ a�1e

io�
0
t0 þ �a�1e�io�

0
t0 (9.15)

The forcing terms on the right hand side (RHS) of the e1-equation with functional
form eio

�
0
t0 or e�io�

0
t0 contribute to secular behavior. These terms must be eliminated

such that the final representation of A(k*, t) is well behaved (e.g.contains no terms

that temporally growwithout bound). These terms are set to zero bymakinga0 and �a0
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functions of k* and t2 only. With this stipulation, an appropriate form of the

particular solution to the e1-equation is:

A1;Pðk�; tÞ ¼ 1

mo2
n

X
k0

X
k00

f ðk0; k00Þdk0þk00;k�

� b1e
iðo0

0þo00
0Þt0 þ �b1e

�iðo0
0þo00

0Þt0 þ c1e
iðo0

0�o00
0Þt0 þ �c1e

�iðo0
0�o00

0Þt0
h i

(9.16)

The exponential pre-factors b1; �b1; c1; �c1 have dependency on k0; k00; t2;o�
0;o

0
0;

o00
0 . Substituting (9.16) into the e1-equation and relating like terms reveals the

exponential pre-factors: b1; �b1; c1; �c1

b1 ¼ a0ðk0; t2Þa0ðk00; t2Þ
o�

0
2 � ðo0

0 þ o00
0Þ2

; �b1 ¼ �a0ðk0; t2Þ�a0ðk00; t2Þ
o�

0
2 � ðo0

0 þ o00
0Þ2

c1 ¼ a0ðk0; t2Þ�a0ðk00; t2Þ
o�

0
2 � ðo0

0 � o00
0Þ2

; �c1 ¼ �a0ðk0; t2Þa0ðk00; t2Þ
o�

0
2 � ðo0

0 � o00
0Þ2

In the long wavelength limit, angular frequency has nearly linear dependence on

wave vector. In considering the stipulated wave vector relationship inside the double

summation in (9.16), ðk0 þ k00 ¼ k�Þ, it is conceivable thato0ðk0Þ þ o0ðk00Þ ¼ o0ðk�Þ
or o0ðk0Þ � o0ðk00Þ ¼ o0ðk�Þ . In this instance, the denominator terms in the

expressions for b1; �b1; c1; �c1 will go to zero. To avoid this complication, following

the procedure stipulated by Khoo et al. [17], a small imaginary part ’ is introduced in

the denominator.At thefinal result of the calculation a limitwill be taken as’ ! 0. The

general solution to the e1-equation is a sum of the homogeneous and particular

solutions:

A1ðk�;t0;t2Þ¼a�1e
io�

0
t0 þ �a�1e

�io�
0
t0 þ 1

mo2
n

X
k0

X
k00

f ðk0;k00Þdk0þk00;k�

� a00a
00
0

g�1
eiðo

0
0þo00

0Þt0 þ �a00�a
00
0

g�1
e�iðo0

0þo00
0Þt0 þa00�a

00
0

g�2
eiðo

0
0�o00

0Þt0
�

þ�a00a
00
0

g�2
e�iðo0

0�o00
0Þt0
�
; ð9:17Þ

where g�1 ¼ o�2
0 � ðo0

0 þ o00
0Þ2 þ i’; g�2 ¼ o�2

0 � ðo0
0 � o00

0Þ2 þ i’
The e2-equation is reduced to the following expressions because A0(k

*,t) and
A1(k

*,t) are independent of t1:
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@2A2ðk�; t0; t1; t2Þ
@t20

þ o�2
0 A2ðk�; t0; t1; t2Þ

¼ �2io�
0

@a0ðk�; t2Þ
@t2

eio
�
0
t0 þ 2io�

0

@�a0ðk�; t2Þ
@t2

e�io�
0
t0

þ 1

mo2
n

X
k0

X
k00

f ðk0; k00Þdk0þk00;k� A0ðk0; t0; t2ÞA1ðk00; t0; t2Þ½

þA1ðk0; t0; t2ÞA0ðk00; t0; t2Þ�

As before, the solution to the homogeneous equation of the e2-equation is of

the form:

A2;Hðk�; t0; t2Þ ¼ a2ðk�; t2Þeio�
0
t0 þ �a2ðk�; t2Þe�io�

0
t0

Terms on the RHS of the e2-equation with functional form eio
�
0
t0 or e�io�

0
t0

contribute to secular behavior. Using equations (9.14) and (9.17) to develop the

RHS of the e2-equation gives (9.18):

@2A2ðk�; t0; t1; t2Þ
@t20

þ o�2
0 A2ðk�; t0; t1; t2Þ

¼ �2io�
0

@a0ðk�; t2Þ
@t2

eio
�
0
t0 þ 2io�

0

@�a0ðk�; t2Þ
@t2

e�io�
0
t0

þ 1

mon
2

X
k0

X
k00

f ðk0; k00Þdk0þk00;k� a00a001ei o
0
0þo00

0ð Þt0 þ a00�a001ei o0
0�o00

0ð Þt0�

þ �a00a001e�i o0
0�o00

0ð Þt0 þ �a00�a001e�i o0
0þo00

0ð Þt0
�

þ 1

mon
2

X
k0

X
k00

f ðk0; k00Þdk0þk00;k� a000a01ei o
00
0þo0

0ð Þt0 þ a000�a01ei o
00
0�o0

0ð Þt0
�

þ �a000a01e�i o00
0�o0

0ð Þt0 þ �a000�a01e�i o00
0þo0

0ð Þt0
�

þ 1

mo2
n

X
k0

X
k00

f ðk0; k00Þdk0þk00;k�
1

mo2
n

X
k1

X
k2

f ðk1; k2Þdk1þk2;k00

"(

a00a
ð1Þ
0 a

ð2Þ
0

g001
eiðo

ð1Þ
0
þoð2Þ

0
þo0

0Þt0þ
"

a00 �a
ð1Þ
0 �a

ð2Þ
0

g001
e�iðoð1Þ

0
þoð2Þ

0
�o0

0Þt0

þ a00a
ð1Þ
0 �a

ð2Þ
0

g002
eiðo

ð1Þ
0
�oð2Þ

0
þo0

0Þt0 þ a00 �a
ð1Þ
0 a

ð2Þ
0

g002
e�iðoð1Þ

0
�oð2Þ

0
�o0

0Þt0

�a00a
ð1Þ
0 a

ð2Þ
0

g001
eiðo

ð1Þ
0
þoð2Þ

0
�o0

0Þt0 þ �a00 �a
ð1Þ
0 �a

ð2Þ
0

g001
e�iðoð1Þ

0
þoð2Þ

0
þo0

0Þt0

þ �a00 a
ð1Þ
0 �a

ð2Þ
0

g002
eiðo

ð1Þ
0
�oð2Þ

0
�o0

0Þt0 þ �a00�a
ð1Þ
0 a

ð2Þ
0

g002
e�iðoð1Þ

0
�oð2Þ

0
þo0

0Þt0
##
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þ 1

mo2
n

X
k1

X
k2

f ðk1; k2Þdk1þk2;k0

"

� a000 a
ð1Þ
0 a

ð2Þ
0

g01
eiðo

ð1Þ
0
þoð2Þ

0
þo00

0Þt0 þ a000�a
ð1Þ
0 �a

ð2Þ
0

g01
e�iðoð1Þ

0
þoð2Þ

0
�o00

0Þt0
"

þ a000a
ð1Þ
0 �a

ð2Þ
0

g02
eiðo

ð1Þ
0
�oð2Þ

0
þo00

0Þt0 þ a000�a
ð1Þ
0 a

ð2Þ
0

g02
e�iðoð1Þ

0
�oð2Þ

0
�o00

0Þt0

þ �a000a
ð1Þ
0 a

ð2Þ
0

g01
eiðo

ð1Þ
0
þoð2Þ

0
�o00

0Þt0 þ �a000�a
ð1Þ
0 �a

ð2Þ
0

g01
e�iðoð1Þ

0
þoð2Þ

0
þo00

0Þt0

þ �a000a
ð1Þ
0 �a

ð2Þ
0

g02
eiðo

ð1Þ
0
�oð2Þ

0
�o00

0Þt0 þ �a000�a
ð1Þ
0 a

ð2Þ
0

g02
e�iðoð1Þ

0
�oð2Þ

0
þo00

0Þt0
##)

ð9:18Þ
There is notable similarity between the terms on the RHS of the e1-equation that

was solved to yield (9.17) and the third and fourth terms on the RHS of (9.18).

These terms are treated with the same procedure as that used for the e1-equation.
Accordingly, they will not contribute to secular terms.

The objective is to identify terms in the e2-equation with eio
�
0
t0 or e�io�

0
t0

dependency. This will be done by systematically evaluating all wave vector pairs

k1; k2f g that satisfy the wave vector constraints stipulated by (9.18). Specifically,

dk0 þ k00;k�dk1þk2;k00 ! k0 þ k1 þ k2 ¼ k�

dk0 þ k00;k�dk1þk2;k0 ! k00 þ k1 þ k2 ¼ k�:

If a certain pair of wave vectors satisfies the above-mentioned wave vector

constraints, then an analysis will be carried through to see if these wave vectors

give rise to terms with eio
�
0
t0 or e�io�

0
t0 dependence. As before, terms with eio

�
0
t0 or

e�io�
0
t0 dependence will be removed.

In (9.18), inside the summation over k0; k00, there are two summations over k1; k2.
For the first summation over k1; k2 , two conditions must be met: (1) k0 þ k00 ¼ k�

and (2) k1 þ k2 ¼ k00.
The only possible combinations for k1; k2 that give wave vector relationships that

are compatible with dk0þk00;k� are shown as Condition A and Condition B:

Condition A : k1 ¼ �k0; k2 ¼ k�and� k0 þ k� ¼ k00

ConditionB : k1 ¼ k�; k2 ¼ �k0; and k� � k0 ¼ k00

Now that wave vector constraints are satisfied, an analysis is carried out to see if

any terms with eio
�
0
t0 or e�io�

0
t0 dependence arise in the first summation over k1; k2.
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The following frequency relationships are present in the first summation over k1; k2
in (9.18):

(i). oð1Þ
0 þ oð2Þ

0 þ o0
0

(ii). oð1Þ
0 þ oð2Þ

0 � o0
0

(iii). oð1Þ
0 � oð2Þ

0 þ o0
0

(iv). oð1Þ
0 � oð2Þ

0 � o00
Applying Condition A to these frequency relationships show two relationships

that offer terms with eio
�
0
t0 or e�io�

0
t0 dependence:

Condition A : k1 ¼ �k0 ! oð1Þ
0 ¼ o0

0 and k2 ¼ k� ! oð2Þ
0 ¼ o�

0

Applying Condition A to frequency relationships leads to:

(i). oð1Þ
0 þ oð2Þ

0 þ o0
0 ! o0

0 þ o�
0 þ o0

0 ¼ o�
0 þ 2o0

0

(ii). oð1Þ
0 þ oð2Þ

0 � o0
0 ! o0

0 þ o�
0 � o0

0 ¼ o�
0

(iii). oð1Þ
0 � oð2Þ

0 þ o0
0 ! o0

0 � o�
0 þ o0

0 ¼ �o�
0 þ 2o0

0

(iv). oð1Þ
0 � oð2Þ

0 � o0
0 ! o0

0 � o�
0 � o0

0 ¼ �o�
0

As a result, with Condition A, the following terms in the first summation over

k1; k2 contribute to secular terms:

a00�a
ð1Þ
0 �a

ð2Þ
0

g001
e�iðoð1Þ

0
þoð2Þ

0
�o0

0Þt0 ¼ a00�a
0
0�a

�
0

g001
e�iðo0

0þo�
0
�o0

0Þt0 ¼ a00�a
0
0�a

�
0

g001
e�iðo�

0
Þt0

�a00a
ð1Þ
0 a

ð2Þ
0

g001
eiðo

ð1Þ
0
þoð2Þ

0
�o0

0Þt0 ¼ �a00a
0
0a

�
0

g001
eiðo

0
0þo�

0
�o0

0Þt0 ¼ �a00a
0
0a

�
0

g001
eiðo

�
0
Þt0

a00�a
ð1Þ
0 a

ð2Þ
0

g002
e�iðoð1Þ

0
�oð2Þ

0
�o0

0Þt0 ¼ a00�a
0
0a

�
0

g002
e�iðo0

0�o�
0
�o0

0Þt0 ¼ a00�a
ð1Þ
0 a

ð2Þ
0

g002
eiðo

�
0
Þt0

�a00a
ð1Þ
0 �a

ð2Þ
0

g002
eiðo

ð1Þ
0
�oð2Þ

0
�o0

0Þt0 ¼ �a00a
0
0�a

�
0

g002
eiðo

0
0�o�

0
�o0

0Þt0 ¼ �a00a
ð1Þ
0 �a

ð2Þ
0

g002
e�iðo�

0
Þt0

Applying Condition B to these frequency relationships show two different

relationships that offer terms with eio
�
0
t0 or e�io�

0
t0 dependence:

Condition B : k1 ¼ k� ! oð1Þ
0 ¼ o�

0; k2 ¼ �k0 ! oð2Þ
0 ¼ o0

0

Applying Condition B to frequency relationships leads to:

(i). oð1Þ
0 þ oð2Þ

0 þ o0
0 ! o�

0 þ o0
0 þ o0

0 ¼ o�
0 þ 2o0

0

(ii). oð1Þ
0 þ oð2Þ

0 � o0
0 ! o�

0 þ o0
0 � o0

0 ¼ o�
0

(iii). oð1Þ
0 � oð2Þ

0 þ o0
0 ! o�

0 � o0
0 þ o0

0 ¼ o�
0

(iv). oð1Þ
0 � oð2Þ

0 � o0
0 ! o�

0 � o0
0 � o0

0 ¼ o�
0 � 2o0

0
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As a result, with Condition B, the following terms in the first summation over

k1; k2 contribute to secular terms:

a00�a
ð1Þ
0 �a

ð2Þ
0

g001
e�iðoð1Þ

0
þoð2Þ

0
�o0

0Þt0 ¼ a00�a
�
0�a

0
0

g001
e�iðo�

0
þo0

0�o0
0Þt0 ¼ a00�a

�
0�a

0
0

g001
e�iðo�

0
Þt0

�a00a
ð1Þ
0 a

ð2Þ
0

g001
eiðo

ð1Þ
0
þoð2Þ

0
�o0

0Þt0 ¼ �a00a
�
0a

0
0
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eiðo

�
0
þo0

0�o0
0Þt0 ¼ �a00a

�
0a

0
0

g001
eiðo

�
0
Þt0

a00a
ð1Þ
0 �a

ð2Þ
0

g002
eiðo

ð1Þ
0
�oð2Þ

0
þo0

0Þt0 ¼ a00a
�
0�a

0
0

g002
eiðo

�
0
�o0

0þo0
0Þt0 ¼ a00a

�
0�a

0
0

g002
eiðo

�
0
Þt0

�a00�a
ð1Þ
0 a

ð2Þ
0

g002
e�iðoð1Þ

0
�oð2Þ

0
þo0

0Þt0 ¼ �a00�a
�
0a

0
0

g002
e�iðo�

0
�o0

0þo0
0Þt0 ¼ �a00�a

�
0a

0
0

g002
e�iðo�

0
Þt0

For the second summation over k1; k2 , two conditions must be met:

(1) k0 þ k00 ¼ k�

(2) k1 þ k2 ¼ k0

The only possible combinations for k1; k2 that give wave vector relationships that
are compatible with dk0þk00;k� are shown as Condition C and Condition D:

Condition C : k1 ¼ �k00; k2 ¼ k�; and� k00 þ k� ¼ k0

Condition D : k1 ¼ k�; k2 ¼ �k00; and k� � k00 ¼ k

Now that wave vector constraints are satisfied, an analysis is carried out to see

if any terms with eio
�
0
t0 or e�io�

0
t0 dependency arise in the second summation over

k1; k2. The following frequency relationships are present in the second summation

over k1; k2 in (9.18):

(v). oð1Þ
0 þ oð2Þ

0 þ o00
0

(vi). oð1Þ
0 þ oð2Þ

0 � o00
0

(vii). oð1Þ
0 � oð2Þ

0 þ o00
0

(viii). oð1Þ
0 � oð2Þ

0 � o00
0

Applying Condition C to these frequency relationships show two relationships

that offer terms with eio
�
0
t0 or e�io�

0
t0 dependence:

Condition C : k1 ¼ �k00 ! oð1Þ
0 ¼ o00

0 and k2 ¼ k� ! oð2Þ
0 ¼ o�

0

Applying Condition C to frequency relationships leads to

(v). oð1Þ
0 þ oð2Þ

0 þ o00
0 ! o00

0 þ o�
0 þ o00

0 ¼ o�
0 þ 2o00

0

(vi). oð1Þ
0 þ oð2Þ

0 � o00
0 ! o00

0 þ o�
0 � o00

0 ¼ o�
0

(vii). oð1Þ
0 � oð2Þ

0 þ o00
0 ! o00

0 � o�
0 þ o00

0 ¼ �o�
0 þ 2o00

0

(viii). oð1Þ
0 � oð2Þ

0 � o00
0 ! o00

0 � o�
0 � o00

0 ¼ �o�
0
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As a result, with Condition C, the following terms in the second summation over

k1; k2 contribute to secular terms:

a000�a
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Applying Condition D to these frequency relationships show two different

relationships that offer terms with eio
�
0
t0 or e�io�

0
t0 dependence:

Condition D : k1 ¼ k� ! oð1Þ
0 ¼ o�

0and k2 ¼ �k00 ! oð2Þ
0 ¼ o00

0

Applying Condition D to frequency relationships leads to

(v). oð1Þ
0 þ oð2Þ

0 þ o00
0 ! o�

0 þ o00
0 þ o00

0 ¼ o�
0 þ 2o00

0

(vi). oð1Þ
0 þ oð2Þ

0 � o00
0 ! o�

0 þ o00
0 � o00

0 ¼ o�
0

(vii). oð1Þ
0 � oð2Þ

0 þ o00
0 ! o�

0 � o00
0 þ o00

0 ¼ o�
0

(viii). oð1Þ
0 � oð2Þ

0 � o00
0 ! o�

0 � o00
0 � o00

0 ¼ o�
0 � 2o00

0

As a result, with Condition D, the following terms in the second summation over

k1; k2 contribute to secular terms:
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In assuming that terms a0 k0ð Þ; �a0 k0ð Þ; a0 �k0ð Þ; �a0 �k0ð Þ; . . . ; etc:½ �in (9.18) behave
as follows:

a0 k0; t2ð Þ ¼ a0 k0; 0ð Þeibðk0Þt2

�a0ðk0; t2Þ ¼ �a0ðk0; 0Þe�ibðk0Þt2

a0ð�k0; t2Þ ¼ a0ð�k0; 0Þeibð�k0Þt2

�a0 �k0; t2ð Þ ¼ �a0 �k0; 0ð Þe�ibð�k0Þt2

..

.

etc.

Additionally,

a0ðk0; 0Þ ¼ a0ð�k0; 0Þ

�a0ðk0; 0Þ ¼ �a0ð�k0; 0Þ

bðk0Þ ¼ bð�k0Þ

Equation (9.18) can be rewritten in the form of (9.19):

@2A2ðk�; t0; t1; t2Þ
@t20

þ o�2
0 A2ðk�; t0; t1; t2Þ

¼ �2io�
0

@a0ðk�; t2Þ
@t2

þ



a0ðk�; 0Þeibðk�Þt2 1

mo2
n

� �2X
k0

X
k00

f ðk0; k00Þdk0 þ k00;k�

� 2f ð�k0; k�Þd�k0þk�;k00a0ðk0; 0Þ�a0ðk0; 0Þ 1

g001
þ

��
1

g002

�

þ2f ð�k00; k�Þd�k00þk�;k0a0ðk00; 0Þ�a0ðk00; 0Þ 1

g01
þ 1

g02

� ���
eio

�
0
t0

þ 2io�
0

@�a0ðk�; t2Þ
@t2

þ



�a0ðk�; 0Þe�ibðk�Þt2 1

mo2
n

� �2

�
X
k0

X
k00

f ðk0; k00Þdk0 þ k00;k� 2f ð�k0; k�Þd�k0þk�;k00a0ðk0; 0Þ�a0ðk0; 0Þ
	

� 1

g001
þ

�
1

g002

�
þ 2f ð�k00; k�Þd�k00þk�;k0a0ðk00; 0Þ�a0ðk00; 0Þ 1

g01
þ 1

g02

� ���
e�io�

0
t0

þ other terms which will not give eio
�
0
t0 or e�io�

0
t0 dependence ð9:19Þ

The terms in front of eio
�
0
t0 and e�io�

0
t0 are set to zero. This is shown by equations

(9.20) and (9.21):
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a0ðk�; 0Þeibðk�Þt2 1

mo2
n

� �2X
k0

X
k00

f ðk0; k00Þdk0þk00;k�

�
2f ð�k0; k�Þd�k0þk�;k00a0ðk0; 0Þ�a0ðk0; 0Þ

� 1

g001
þ

�
1

g002

�
þ2f ð�k00; k�Þd�k00þk�;k0a0ðk00; 0Þ�a0ðk00; 0Þ 1

g01
þ 1

g02

� ��
¼ �2o�

0bðk�Þa0ðk�; 0Þeibðk
�Þt2

(9.20)

�a0ðk�; 0Þe�ibðk�Þt2 1

mo2
n

� �2X
k0

X
k00

f ðk0; k00Þdk0þk00;k� 2f ð�k0; k�Þd�k0þk�;k00a0ðk0; 0Þ�a0ðk0; 0Þ
	

� 1

g001
þ

�
1

g002

�
þ 2f ð�k00; k�Þd�k00þk�;k0a0ðk00; 0Þ�a0ðk00; 0Þ 1

g01
þ 1

g02

� ��
¼ �2o�

0bðk�Þ�a0ðk�; 0Þe�ibðk�Þt2

(9.21)

From (9.20) and (9.21), the same expression for b* results [(9.22)]:

bðk�Þ ¼ � 1

2o�
0

1

mo2
n

� �2X
k0

X
k00

f ðk0; k00Þdk0þk00;k� 2f ð�k0; k�Þd�k0þk�;k00a0ðk0; 0Þ�a0ðk0; 0Þ
	

� 1

g001
þ

�
1

g002

�
þ 2f ð�k00; k�Þd�k00þk�;k0a0ðk00; 0Þ�a0ðk00; 0Þ 1

g01
þ 1

g02

� ��
(9.22)

Recall that ’ appears in the terms containing g001 ; g
00
2; g

0
1; g

0
2 The limit of (9.22) is

taken as ’ ! 0. The following definition is utilized [17]:

lim
y!0

1

ðx� iyÞ ¼
1

x

� �
pp

� ipdðxÞ

where pp denotes principle part. The real and imaginary parts of (9.22) are shown as

(9.23) and (9.24), respectively.

9 Nanoscale Phononic Crystals and Structures 297



Reðb�Þ ¼ Dk� ¼ �64
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(9.23)

Imðb�Þ ¼ Gk� ¼ 32p
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ð9:24Þ

In the above expressions for the real and imaginary parts of b*

a00�a
0
0 ¼ a0ðk0; 0Þ�a0ðk0; 0Þ

a000�a
00 ¼ a0ðk00; 0Þ�a0ðk00; 0Þ

From here, the general solution to the e0-equation [(9.14)] is considered with the
new found results for a0ðk�; t2Þ and �a0ðk�; t2Þ :

a0ðk�; t2Þ ¼ a0ðk�; 0Þeibðk�Þt2

�a0ðk�; t2Þ ¼ �a0ðk�; 0Þe�ibðk�Þt2

Equation (9.14) is written as follows:

A0ðk�; t0; t2Þ ¼ a0ðk�; t2Þeio�
0
t0 þ �a0ðk�; t2Þe�io�

0
t0

Utilizing the new found results for a0ðk�; t2Þ and �a0ðk�; t2Þ, one arrives at the

following expression:

A0ðk�; t0; t2Þ ¼ a0ðk�; 0Þei o�
0
t0þbðk�Þt2ð Þ þ �a0ðk�; 0Þe�i o�

0
t0þbðk�Þt2ð Þ
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Writing the above expression strictly in terms of t0, where t2 ¼ e2t0 gives the

following representation for A0ðk�; t0Þ

A0ðk�; t0Þ ¼ a0ðk�; 0Þei o�
0
t0þe2bðk�Þt0ð Þ þ �a0ðk�; 0Þe�i o�

0
t0þe2bðk�Þt0ð Þ

b* is expressed in terms of its real and imaginary parts to yield the final

representation for A0ðk�; t0Þ:

bðk�Þ ¼ Dk� þ iGk�

A0ðk�; t0Þ ¼ a0ðk�; 0Þei o�
0
t0þe2 Dk�þiGk�ð Þt0ð Þ þ �a0ðk�; 0Þe�i o�

0
t0þe2 Dk�þiGk�ð Þt0ð Þ

A0ðk�; t0Þ ¼ a0ðk�; 0Þei o�
0
þe2Dk�ð Þt0ð Þe�e2Gk� t0

þ �a0ðk�; 0Þe�i o�
0
þe2Dk�ð Þt0ð Þee2Gk� t0 (9.25)

Three-wave interaction leads therefore to an additional frequency shift propor-

tional to the square of the strength of the nonlinearity. Moreover, three-wave

interaction leads to a damping of each wave, that is, a finite lifetime. This result

is the classical mechanics equivalent of that reported within the framework of

quantum mechanics [11–13, 17].

9.2.2 Molecular Dynamics Simulation and Spectral Energy
Density Approach

In this section we shed additional light on the three phonon scattering processes in

one-dimensional anharmonic crystals using the numerical method of MD. MD is a

simulation technique for computing the thermodynamic as well as kinetic

properties of a classical many-body system [18]. Classical MD methods consist

of solving numerically Newton’s equations of motion of a collection of N

interacting particles or atoms. The most critical component of an MD simulation

is the interatomic potential from which interatomic forces may be derived. The

equation of motion of each individual atom is solved numerically in time to obtain

the trajectories of the system, namely, the time evolution of the positions and

momenta of every particle. In some systems the computational task of solving the

equations of motion scales at best linearly with the number of particles, N, and more

generally as N2. Periodic boundary conditions (PBC) are often used to reduce the

computational problem size. PBC consist of repeating periodically in all directions

of space a “small” simulation cell. One allows interaction between the N atoms

within the simulation cell and also between atoms inside the simulation cell and

atoms in the periodically repeated “image” cells. Interactions are cut-off to less than

half the minimum characteristic length of the simulation cell to avoid spurious

9 Nanoscale Phononic Crystals and Structures 299



effects such as interaction of an atom with its own image. This method effectively

reduces the effects that may be associated with surfaces associated with a finite size

system. However, while trying to mimic the behavior of an infinite system, the

simulated system still possesses the characteristics of a finite system. For instance,

the finiteness of an MD system with PBC leads to a discretization of the phonon

modes and a suppression of the modes with wavelength longer than the simulation

cell length. This is easily seen by considering a 1D monoatomic system composed

of N atoms interacting via a nearest neighbor harmonic (or anharmonic) potential.

In this case, imposing PBC leads to atom N interacting with atom 1 thus forming a

ring. Modes with wavelengths exceeding the length L ¼ Na, where a is the

interatomic spacing, are not compatible with the constraint of the ring geometry

and cannot be supported by that structure. The finite number of modes will also

impact the number of three phonon interactions that may take place in a finite

simulation cell. The discrete phonon modes may not allow the requirement of

frequency conservation. These points will be illustrated with numerical simulations

of the 1D anharmonic monoatomic crystal.

For the present discussion, the equation of motion [(9.1)] for a toy system is

integrated by MD techniques with PBC using the velocity Verlet algorithm under

the microcanonical ensemble (constant energy)[18]. This scheme ensures that

energy is conserved within 0.5%. Harmonic MD simulations of the 1D monoatomic

crystal utilize b ¼ 1.0 N/m and e ¼ 0.0 N/m2 whereas anharmonic simulations

utilize b ¼ 1.0 N/m and e ¼ [0.9�3.7] N/m2. The 1D crystal consists of a chain of

1.0 kg masses spaced periodically 1.0 meter apart. These parameters can be easily

scaled down to represent an atomic system. To initiate a simulation, every mass in

the MD simulation cell is randomly displaced from its equilibrium position. The

maximum value in which a mass can be displaced is constrained such that

instabilities do not emerge in the potential energy function. MD simulations are

run for 221 time steps with a timestep of 0.01 s. For post-processing spectral energy

density (SED) calculations, velocity data is collected for each mass in the simula-

tion cell over the entire simulation time.

The SED method is a technique for predicting phonon dispersion relations and

lifetimes from the atomic velocities of the particles in a crystal generated by

classical MD [19]. The SED method offers a comprehensive description of phonon

properties because individual phonon modes can be isolated for analysis and is

computationally affordable for the systems that will be examined in this section.

Formally, the expression for SED is written as follows:

Fð~k;oÞ ¼ 1

4pt0N

X
a

XB
b

mb

ðt0
0

XN
nx;y;z

va
nx;y;z
b

; t

� �
� eði~k�r0

!�iotÞdt

������
������
2

where t0 represents the length of time over which velocity data is collected from a

given MD simulation, N is the total number of unit cells represented in the MD

simulation, and va

�
nx;y;z
b

; t
�
represents the velocity of atom b (of mass mb in unit

cell nx;y;z) in the a-direction. For a specified wave vector (~k), the spectrum relating
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SED to frequency is found by adding the square of the absolute value of the Fourier

transform of the discrete temporal signal f ðtÞ ¼ PNT

nx;y;z

va

�
nx;y;z
b

; t
�
� eði~k�r0

!Þ for every

½a; b� pair. A SED value represents the average kinetic energy per unit cell as a

function of wave vector and frequency. A peak in the spectrum relating SED to

frequency signifies a vibrational eigenmode for wave vector (~k). The shape of the

frequency spread for eigenmode (~k) is represented with the Lorentzian function:

Fð~k;oÞ ¼ I

1þ ðo� ocÞ=g½ �2

where I is the peak magnitude, ocis the frequency at the center of the peak, and g is
the half-width at half-maximum. The lifetime for phonon mode (~k) is defined as

t ¼ 1=2g[19]. Nondegenerate wave vector modes are dependent on the size of the

MD simulation cell and are written as follows: ki ¼ 2pni=aNi, where a is the lattice
constant, Ni is the total number of unit cells in the i-direction, and ni is an integer

ranging from –Ni+1 to Ni. The robust nature of the SED method is used to quantify

specific phonon modes in several configurations of the 1D anharmonic crystal in the

following subsections.

9.2.3 One-Dimensional Anharmonic Monoatomic Crystal

To begin with, the band structure generated by the SED method is shown for the 1D

harmonic monoatomic crystal (Fig. 9.2). Figure 9.2 shows contours of constant

SED over the wave vector-frequency plane.

There are 101 discrete, nondegenerate wave vectors resolved between the center

of the irreducible Brillouin Zone and the zone edge at k ¼ p=a . In the band

structure, there is a nearly linear region that accounts for the propagative

characteristics of long wavelength excitations in the 1D harmonic crystal. At larger

wave vector values, a departure from the linear behavior is apparent and the phase

velocity of propagative phonon modes is markedly different from the group veloc-

ity. This is similar to the expected dispersion behavior of the infinite monoatomic

harmonic crystal. At the edge of the irreducible Brillouin zone, a SED-frequency

plot is reported. A peak in the spectrum shows this vibrational mode contributing

significantly to the average kinetic energy per unit cell. A Lorentzian function is fit

to this peak and shows a finite value for half-width at half-maximum (g) because the
fast Fourier transform scheme used in the SED calculation involves a signal

sampled over a finite time window. This value for half-width at half-maximum is

subsequently used as a lower bound for the error on lifetime estimated with the SED

method. This error amounts to one interval in the discrete frequency scale. The band

structure of the harmonic system is highlighted in the long wavelength regime;

Fig. 9.3 zooms in on a region of the dispersion curve near k ¼ p=10a.
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In Fig. 9.3 on the right hand side, four SED-frequency plots are shown (plots a–d).

Each plot represents a different MD simulation of the 1D harmonic monoatomic

crystal. Each MD simulation begins with a random starting configuration for atomic

displacements in the 1D crystal. It is observable from these four plots that for a given

wave vector, the SED takes on different values. This is due to the fact that for a

harmonic crystal, energy contained within a particular mode cannot be passed to

Fig. 9.2 (Left) Band Structure of 1D harmonic monoatomic crystal. (Right) SED-frequency plot

showing wave vector mode k ¼ p=a

Fig. 9.3 (Left) Band Structure (constant SED contours) for 1D harmonic monoatomic crystal near

k ¼ p=10a. (Right) SED-frequency plots for four MD simulations differing in their initial random

configurations
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other modes of vibration. This highlights the sensitivity of the vibrational modes of

the harmonic crystal on the initial configuration. Consequently, to obtain a nonbiased

band structure, multiple MD simulations must be run such that an average can be

taken of the different SED values for each discrete, nondegenerate wave vector mode.

An average of plots (a–d) is shown on the left hand side of Fig. 9.3 with the color of

the contours signifying SED intensity. A Lorentzian function is fit to each of the

peaks in the left hand figure and shows the same value for half-width at half-

maximum as that calculated in Fig. 9.2. For comparison, the band structure of the

1D anharmonic monoatomic crystal near k ¼ p=10ais shown in Fig. 9.4. Here the

parameter characterizing the degree of anharmonicity in the 1D crystal is e ¼ 3.0

(see Fig. 9.1b).

Similar to Fig. 9.3, the four plots on the right hand side of Fig. 9.4 represent

SED-frequency plots generated from four different MD simulations. The SED

intensity for a given mode varies from simulation to simulation, which indicates

that energy does not easily exchange between modes of vibration in the 1D

anharmonic crystal. In contrast, though, there are some peaks in the SED-frequency

spectra that show slightly larger values for half-width at half-maximum. However,

it is critical that averages be taken for SED data extracted from several MD

simulations such that an accurate quantification of phonon lifetime can be realized.

The contour map on the left hand side of Fig. 9.4 represents an average over plots

(a–d). Lorentzian functions are fit to the peaks in this figure. The half-width at half-

maximum for all peaks is found to be comparable to the harmonic case. With a

Fig. 9.4 (Left) Band Structure (constant SED contours) for 1D anharmonic monoatomic crystal

near k ¼ p=10a. (Right) SED-frequency plots for four MD simulations differing in their initial

random configurations
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random initial displacement of the masses of at most 10 % of the lattice spacing “a,”

the total energy of the anharmonic system is only 1.3 % higher than that of the

harmonic system. Under this condition, the system can be considered to be weakly

anharmonic and second order perturbation theory is applicable. In other words, the

system studied here belongs to the category of weak coupling and is not expected to

behave like the Fermi-Pasta-Ulam model where strong nonlinearity leads to persis-

tent recurring vibrational modes[20]. Considering the final expression forA0ðk�; t0Þ
in Sect. 9.2.1 (9.25), which represents the 0th order term in the asymptotic expan-

sion of Aðk�; tÞ describing three-wave interactions, Gk� (9.24) corresponds to a

decay constant for mode k�. Half-width at half-maximum calculations of peaks in

SED-frequency spectra embody Gk� . In the long wavelength regime, Gk� is small

because of squared sinusoidal terms inside the double summation over k0 and k00 .
Accordingly, one should not expect large values for half-width at half-maximum in

the long wavelength limit. The complete band structure for the 1D anharmonic

monoatomic crystal is shown in Fig. 9.5. The band structure is generated from SED

averages taken from four MD simulations.

In Fig. 9.5, it seems that each nondegenerate wave vector is associated with

multiple eigenfrequencies due to the fact that multiple peaks appear in the SED. At

the edge of the irreducible Brillouin zone, an intense central peak is seen along with

multiple, less intense symmetrical satellite peaks. These satellite peaks emerge

when the anharmonicity of the system is adequately sampled (i.e., large amplitudes

of vibration). Equation (9.17) of Sect. 9.2.1 is utilized to explain the appearance of

these satellite peaks. This equation represents the 1st order term in the asymptotic

expansion of Aðk�; tÞ describing three-wave interactions. Inside the double summa-

tion over ðk0; k00Þ in (9.17), conservation of wave vectors is imposed: dk0þk00;k� ! k0

þk00 ¼ k�. If the mode of interest is k� ¼ p=a, then conservation of wave vector can
be satisfied by adding nondegenerate wave vector pairs that yieldk�. With N ¼ 400,

nondegenerate wave vectors are limited to the following: ki ¼ ni
400

� 2pa . If only wave

Fig. 9.5 (Left) Band Structure for 1D anharmonic monoatomic crystal. (Right) SED-frequency
plot showing wave vector mode k ¼ p=a. e ¼ 3:0 and initial random displacement does not exceed

10 % of a
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vectors contained between the center of the irreducible Brillouin zone and the zone

edge are considered, then ni ranges from 0 to 200. As a first example, to satisfy wave

vector conservation, consider two wave vectors: (1) the first nondegenerate

wave vector before the zone edge at ðk ¼ p=aÞ and (2) the first nondegenerate

wave vector after the center of the irreducible Brillouin zone at (k ¼ 0). This pair of

wave vectors is shown as Case I and satisfies wave vector conservation: (Case I)

k0 ¼ 199
400

� 2pa , k00 ¼ 1
400

� 2pa , k� ¼ 200
400

� 2pa .
As a second example, consider (1) the second nondegenerate wave vector before

the zone edge at (k ¼ p=a) and (2) the second nondegenerate wave vector after the

center of the irreducible Brillouin zone at (k ¼ 0). This pair of wave vectors is

defined as Case II and satisfies wave vector conservation: (Case II) k0 ¼ 198
400

� 2pa , k00
¼ 2

400
� 2pa , k� ¼ 200

400
� 2pa . We note that both cases do not conserve frequency. In both

cases, since the dispersion relationship for the 1D anharmonic monoatomic crystal is

not strictly linear, the frequency of mode k0 plus (or minus) the frequency of mode k00

will not exactly equal the frequency of modek�. Instead, the addition (or subtraction)
of the frequencies associated with modes k0 and k00 will be slightly greater than (or

less than) the frequency of mode k� . This forces the denominator of the pre-

exponential factors in (9.17) to become small, thereby contributing to a large

value ofA1ðk�; t0; t2Þ. The presence of nonzeroA1ðk�; t0; t2Þ indicates that discrete,
near-resonance modes are initiated for short wavelength phonons (k0 ) interacting
with long wavelength phonons (k00 ). On the left hand side of Fig. 9.6, we show

nondegenerate wave vector modes k0 and k00 corresponding to Case I (top) and

Case II (bottom). On the right hand side, Fig. 9.6 shows the modes at k� ¼ p=a.

Fig. 9.6 (Top, left) SED-frequency plots for wave vector modes k and k corresponding to Case I.

(Bottom, left) SED-frequency plots for wave vector modes k and k corresponding to Case II. (Right)
SED-frequency plot corresponding to k� ¼ p=a. For Cases I and II, wave vectors k and k satisfy

wave vector conservation for mode k�. The frequencies of modes k and k add (or subtract) to yield
near-resonance peaks near o�ðk�Þ. Notice the frequency scale difference between short and long

wavelength modes
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In this image the satellite peaks coincide with discrete, near-resonance modes.

The central peak frequencies of modes k0 and k00 add (or subtract) to yield satellite

peaks to the central peak for k� ¼ p=a. The primary satellite peaks at 1.999 and

1.969 rad/s come from Case I. The secondary satellite peaks at 2.015 and 1.951 rad/

s come from Case II. Tertiary, quaternary, and other higher order satellite peaks

exist and are revealed if the scale on the right hand SED plot were adjusted. The

magnitude of the satellite peaks depends upon the “distance” from the central peak

at k ¼ p=a in accordance with their near resonant character. This distance depends

upon the size of the MD simulation. For an MD simulation with N ¼ 100 atoms,

there are 51 discrete, nondegenerate wave vector modes available between the

center of the irreducible Brillouin zone and the zone edge. For N ¼ 1,000 atoms,

there are 501 available modes. The resolution in wave vector-space is finer for

larger MD systems as is the resolution in frequency-space. Higher frequency

resolution results in smaller spacing between satellite peaks. This is shown in

Fig. 9.7. As the number of atoms (N) increases, the satellite peaks congregate

around the central peak and increase in relative amplitude. In the limit of an infinite

system all satellite peaks merge into the central peak.

For a phonon mode to decay, wave vector and frequency conservation rules must

be satisfied. For short wavelength phonon modes, these constraints are pathologi-

cally difficult to satisfy because the monoatomic dispersion curve is not linear. The

central frequency peaks in Fig. 9.7 represent the resonance mode of wave vector

k ¼ p=a. The satellite peaks in Fig. 9.7 represent frequency-nonconserving near-

resonance modes spawned from nonlinear wave interactions between short wave-

length phonons and long wavelength phonons. The lifetime of phonon mode k ¼ p
=a comes from fitting a Lorentzian function to the central peak. As Fig. 9.7 shows,

the half-width at half-maximum for phonon mode k ¼ p=a is rather insensitive to

the number of atoms in the MD simulation cell. It is found that the half-width at

half-maximum for k ¼ p=a is the same order of magnitude as the error estimate

found from the harmonic case in Fig. 9.2. As a result, lifetime of high-frequency

phonon modes in the anharmonic monoatomic crystal is inherently long because

wave vector and frequency conservation constraints cannot be satisfied.

In comparing the anharmonic band structure with the harmonic band structure at

(k ¼ p=a), there is an obvious shift in frequency of the central peak. The perturba-

tion analysis of the single-wave dispersion has shown that the anharmonic disper-

sion curve is frequency-shifted (with respect to the harmonic dispersion curve) by a

quantity that has quadratic dependence on the strength of the nonlinearity parameter

e. Fig. 9.8 shows a plot mapping the frequency shift relative to the harmonic system

for several values of e for a MD simulation cell consisting of N ¼ 200 atoms. In

Fig. 9.8, three different curves are rendered. Each curve represents a different

magnitude for the initial random displacement imposed upon the masses in the

1D crystal in terms of percentage lattice spacing. The magnitude of the initial

displacement controls the amplitude of the phonon modes. For triangles, the

maximum value a mass can be displaced is 10 % of the lattice spacing. For squares
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and circles, displacement values are 5 % and 2 %, respectively. Quadratic depen-

dence is observed for values of e ranging from 0.0 to 3.7. Beyond e ¼ 3.7, the

potential energy function becomes completely unstable.

Analysis of the weakly anharmonic 1D monoatomic crystal has shown that the

lifetime of phonon modes is not significantly affected by nonlinear interaction

forces because it is pathologically difficult to satisfy the conditions for frequency

and wave vector conservation. On the contrary, there exist conditions between short

wavelength phonons and long wavelength phonons whereby near-resonance peaks

emerge in plots of SED-frequency spectra. Satellite peaks materialize when the

Fig. 9.7 SED-frequency plots for 1D anharmonic monoatomic crystal at k ¼ p=a for MD systems

of varying sizes. The parameter characterizing the degree of anharmonicity in the 1D crystal is

e ¼ 3.0
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anharmonicity of the system is adequately sampled. Lastly, nonlinear interaction

forces lead to amplitude-dependent frequency shifts.

9.2.4 Anharmonic One-Dimensional Superlattices

In this section, the insight gained from analysis of the 1D harmonic and anharmonic

crystals is extended to a series of superlattice configurations. A characteristic

feature offered by periodic media is folded phononic band structures. Band-folding

allows the conditions for wave vector and frequency conservation to be easily

satisfied thereby greatly impacting three phonon processes because a greater

number of phonon mode decay channels are available. Three direct consequences

of band folding are (1) modulated eigenfrequencies for vibrational modes,

(2) decreased phonon mode group velocities, and (3) altered phonon mode

lifetimes. The superlattice configurations considered in this section do not possess

the ability to boundary-scatter phonons because the potential describing the inter-

action between particles of differing mass is identical to the potential between

particles of the same mass. Accordingly, the discussion of phonon mode lifetime is

limited to coherent, band-folding effects. The main objective in this section is to

illustrate the role superlattice periodicity plays in modulating eigenfrequencies and

phonon mode lifetimes at a constant filling fraction. For all superlattices consi-

dered, the total number of atoms simulated with MD is N ¼ 800. Every plot

presented represents an average over a minimum of five unique MD simulations

with randomly generated initial conditions. For superlattice unit cells, the mass of

the black atom amounts to 50 % of that of the white atom.

To begin with, consider the 1D anharmonic diatomic crystal (superlattice 1:1) as

pictured in Fig. 9.9. In comparison to the 1D anharmonic monoatomic crystal, a

single fold in the phononic band structure occurs at wave vector mode k ¼ p=2a.

Fig. 9.8 Frequency-shift evaluated at k ¼ p=a for 1D anharmonic crystal relative to harmonic

case. Symbols represent different magnitudes for the maximum initial random displacement

imposed upon the masses in the 1D crystal in terms of percentage of the lattice spacing. Circle,
square, and triangle symbols represent small, intermediate, and large initial displacements,

respectively
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Similar to the monoatomic case, there is a region in the band structure where

frequency varies linearly with wave vector. In Fig. 9.9 (right), a SED-frequency

plot is highlighted at k ¼ p=a . This mode, minus a reciprocal space vector, is

identical to the mode at the center of the irreducible Brillouin zone. Two peaks are

visible in this plot: the dashed line represents a peak for the 1D harmonic diatomic

crystal whereas the solid line represents the anharmonic case. There is a noticeable

frequency shift as well as a marked difference in peak breadth. Peak broadening is

directly associated with satisfaction of conservation of wave vector and frequency

conditions; the addition of a second band in the band structure allows these

conditions to be met more easily. In the left hand plot of Fig. 9.9, two peaks are

apparent. The dashed line corresponds to the diatomic harmonic system and the

solid line represents the anharmonic case. There appears to be no significant

difference in peak position or width. This result was seen in the anharmonic

monoatomic case for long wavelength, low-frequency wave vector modes.

Larger superlattice configurations are now considered to probe the impact

superlattice periodicity has on frequency shift and phonon lifetime. In Fig. 9.10,

the band structure for a superlattice configuration consisting of a unit cell comprised

of two heavy atoms and two light atoms (superlattice 2:2) is displayed. Four distinct

bands span the irreducible Brillouin zone. The highest frequency band shows near

zero group velocity for all nondegenerate wave vector modes. A SED-frequency

plot is highlighted at k ¼ p=2a . This plot shows information for the harmonic

(dashed line) and anharmonic (solid line) cases. Similar to Fig. 9.9, there is a

noticeable shift in frequency and the anharmonic peak is significantly broader

Fig. 9.9 (Top) unit cell for diatomic crystal. (Center) band structure for 1D anharmonic diatomic

crystal. (Left) SED-frequency plot at k ¼ p=20a with peaks for harmonic (dashed line) and

anharmonic (solid line) cases. (Right) SED-frequency plot at k ¼ p=a with peaks for harmonic

(dashed line) and anharmonic (solid line) cases
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than the harmonic peak. In comparison to the diatomic case, the increased number

of bands in the irreducible Brillouin zone allows the conditions for conservation of

wave vector and frequency to be met with greater ease. That is, many more three

phonon processes satisfy those conditions. Accordingly, the anharmonic peak here

shows greater width than the anharmonic peak in the right hand plot of Fig. 9.9.

In Fig. 9.11, the band structure for a superlattice configuration comprised of

eight atoms (superlattice 4:4) is displayed. Eight distinct bands span the irreducible

Brillouin zone. Of these bands, several show wave vector modes with near zero

group velocity. The SED-frequency plot on the right hand side of Fig. 9.11 shows a

very wide peak for the anharmonic case. From Figs. 9.9–9.11 it is apparent that

anharmonic SED-frequency peaks broaden as the number of bands spanning the

irreducible Brillouin zone increases. Accordingly, phonon mode lifetime is signifi-

cantly reduced by the number of bands available. If the bands spanning the

irreducible Brillouin zone are flat bands, then this effect becomes even more

pronounced because for a flat band, the conditions for conservation of wave vector

can always be satisfied.

With this notion in mind, a final configuration is introduced (Fig. 9.12) with

superlattice periodicity 16a (superlattice 8:8). Similar to Figs. 9.9, 9.10, 9.11,

Fig. 9.12 shows a frequency shift and peak broadening for the highest frequency

anharmonic mode at k ¼ p=8a.

Fig. 9.10 (Top) four atom unit cell. (Left) anharmonic band structure corresponding to the four

atom unit cell. (Right) SED-frequency plot at k ¼ p=2a. Dashed line represents the harmonic case

whereas the solid line represents the anharmonic case
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Fig. 9.11 (Top) eight atom unit cell. (Left) anharmonic band structure corresponding to the eight

atom unit cell. (Right) SED-frequency plot at k ¼ p=4a. Dashed line represents the harmonic case

whereas the solid line represents the anharmonic case

Fig. 9.12 (Top) 16 atom unit cell. (Left) anharmonic band structure corresponding to the 16 atom

unit cell. (Right) SED-frequency plot at k ¼ p=8a . Dashed line represents the harmonic case

whereas the solid line represents the anharmonic case

9 Nanoscale Phononic Crystals and Structures 311



To compare all four superlattice configurations, Fig. 9.13 shows (a) SED-

frequency plots and (b) Lorentzian function fits to SED-frequency data

corresponding to the mode with highest frequency.

Qualitatively (in Fig. 9.13a) and quantitatively (in Fig. 9.13b), it is observable

that as the length of the period decreases a general narrowing occurs for anharmonic

SED-frequency peaks. Accordingly, phonon mode lifetime increases when the

period of the superlattice is decreased. This observation is consistent with the

work presented by Garg et al. [21]. In this study it was shown that the thermal

conductivity of a small period Si–Ge superlattice could be higher than that of the

constituent materials. In that model, the authors calculated the thermal conductivity

using the Boltzmann transport equation within the single mode relaxation time

(SMRT) approximation [22]. They modeled the superlattice with harmonic and

anharmonic force constants derived from density-functional theory (DFT). In that

work the interfaces were treated as perfect(no boundary scattering). It was found

that mass mismatch between Si and Ge atoms essentially controls phonon disper-

sion in the superlattices. The model also considered only three-phonon anharmonic

scattering processes. Under these conditions, an increase in lifetime of the trans-

verse acoustic (TA) modes (the majority contributors to thermal conductivity) was

responsible for the observed increase in thermal conductivity of the short-period

superlattice. This increase in lifetime was explained by the effect of a reduction in

periodicity on the band structure of the superlattice that leads to bands that do not

allow three phonon scattering events involving TA modes that satisfy the wave

vector and frequency conservation rules. Additional lengthening of the phonon

lifetime (and increase in thermal conductivity) was further demonstrated by chang-

ing the mass mismatch between the constituent materials.

Other authors have addressed the issue of boundary scattering in superlattices;

however, these investigations have included interfacial scattering phenomena in

addition to coherent band-folding effects. Experimentally and theoretically

Fig. 9.13 (a) (Left to right)
1:1, 2:2, 4:4, and 8:8 SED-

frequency plot with peaks

respectively corresponding to

the superlattice configurations

depicted in Figs. 9.9, 9.10,

9.11, and 9.12. (b) Lorentzian
function fits to the SED-

frequency spectra in (a).
Lorentzian peaks are labeled

with half-width at half-

maximum values in units of

10�6 Hz
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[23–25], it has been demonstrated that phonon–boundary collisions play a leading

role in decreasing the lifetime of thermal phonons in semiconductor superlattice

configurations.

9.3 Phonon Propagation in Two-Dimensional Systems

Having examined the phononic properties of one-dimensional systems, we now

turn our attention to two-dimensional systems. In particular, using MD we examine

thermal-phonon transport in nanostructured graphene and boron nitride (BN). Both

systems are technologically important materials and are characterized by large

Debye temperatures; consequently they display distinct harmonic (at low

temperatures) and anharmonic regimes, thereby lending themselves well to the

study of phonon propagation as a function of temperature and the underlying

nanostructure. Specifically, we focus on graphene sheets nanostructured with peri-

odic antidots and boron nitride nanoribbons with aperiodic, spatially asymmetric

nanoscale-triangular defects [26]. These contrasting 2D systems, which can also be

experimentally synthesized, provide avenues to compare and distinguish the com-

petition between coherent and incoherent phonon scattering and boundary

scattering.

The Brenner-Tersoff style potentials [27] are invoked to represent interatomic

interactions in graphene and BN as they capture the many-body, covalent nature of

the atomic-bonds well, and represent the phonon band structure of the two systems

accurately. The Brenner-Tersoff potential includes the anharmonicity of inter-

atomic bonds. The potential parameters for graphene and BN are given in Ref

[28] and [29], respectively.

In order to characterize phonon transport in nanostructured graphene and BN, we

use relative measures of material parameters such as thermal diffusivity and

thermal conductivity as indirect probes to characterize thermal-phonon propagation

and lifetimes; it should be noted that it is not our intention to quantify thermal

conductivity as well as diffusivity. While in principle the SED method can be

invoked for such studies, the mode-by-mode analysis becomes an extremely cum-

bersome task involving the identification and characterization of the many phonon

modes that appear due to the folding of bands within the mini-Brillouin zone

corresponding to the periodicity of the phononic crystal.

Strategies to evaluate thermal conductivity and diffusivity include nonequilib-

riumMD (NEMD) and equilibriumMD (EMD) methods. In the NEMD framework,

the thermal conductivity is obtained directly by solving Fourier’s law under steady-

state conditions, where a temperature gradient is maintained across the modeled

material by fixing the temperature of the two ends of the material at different

temperatures. Thermal diffusivity is evaluated under transient conditions, by solv-

ing for the second-order heat equation. The EMD method is based on the Green-

Kubo formulations[29], where NVE (i.e., the microcanonical ensemble) conditions

are imposed on the simulated system; based on the equilibrium fluctuations in the
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heat current (S), the thermal conductivity (k) is estimated from the time-dependent

heat current autocorrelation function (HCAF) as given by (9.26) and (9.27), where

V and T are the volume and temperature of the system respectively [30]. The

thermal diffusivity (DT) can then be calculated [see (9.28)], where Cp and r are

the specific heat and mass density respectively.

SðtÞ ¼
X

i
Eivi þ 1

2

X
i;j
ðFij � viÞrij þ 1

6

X
i;j;k

ðFijk � viÞðrij þ rikÞ (9.26)

k ¼ 1

3kBVT2

ð1
0

SðtÞ � Sð0Þh idt (9.27)

DT ¼ k
rCP

(9.28)

Here, vi and Ei represent the velocity and energy of an atom I respectively, while
Fij and Fijk represent two body and three-body forces on atom i, due to neighboring
atoms j and k.

EMD and NEMD methods have been routinely used to model thermal transport

in materials, but care has to be taken in their implementation; in particular, NEMD

methods impose extraordinarily large temperature gradients across the material that

may not be realized experimentally; further, as discussed by Jiang et al. [31] and as

also observed by the authors of this chapter [K. Muralidharan, unpublished work

(2011)], the thermostated ends induce spurious vibrational modes characteristic of

the size and location of the respective thermostats, which modify the injected heat

flux, leading to the possible erroneous estimation of the thermal conductivity. EMD

methods, on the other hand, can yield an accurate estimate of the thermal conduc-

tivity provided the HCAF is calculated over long time-periods (typically few

nanoseconds).

9.3.1 Graphene-Based Phononic Crystals

Here, we report on the thermal-phonon characteristics of antidote graphene

comprised of periodic arrangements of holes in a graphene matrix. This system

serves as a metaphor for nano-phononic crystal (nano-PC). The lifetime of acoustic

and optical phonons is found to be highly sensitive to the filling fraction of the holes

in the phononic structure as well as temperature. Results are interpreted in terms of

competition between elastic scattering, inelastic phonon–phonon scattering, and

boundary scattering.
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9.3.1.1 Simulation Procedure

The nano-PC system of interest is comprised of a graphene matrix with periodically

spaced holes. The holes are arranged in a triangular lattice with fixed lattice spacing

a ¼ 7.5 nm. The radius of the holes varies in size to yield a series of nano-PC unit

cells with different filling fractions. Filling fraction (ff) is defined as the atomic

fraction of number of atoms removed divided by total number of atoms available. In

this study, filling fraction values range from 0.055 % to 20 %. Over this range, EMD

calculations using the Green-Kubo method [29] are carried out to extract informa-

tion on the lifetime of acoustic and optical phonons as a function of temperature

(100, 300, 500 K). In Fig. 9.14a, several examples of unit cells for the nano-PC are

pictured. A unit cell with ff ¼ 0.0 % represents perfect graphene and contains 1,800

carbon atoms. Two-dimensional PBC are applied with no restrictions in the third

dimension. PBC for finite-sized MD simulation cells may constrain some of long-

wavelength phonon modes. For every filling fraction, a characteristic length or

minimum feature length (L) is identified and is defined as the shortest distance

between edges of the holes in the periodic array of the nano-PC. Charact-

eristic length is related to filling fraction through the following relationship: ¼
a 1� b

ffiffiffiffi
ff

p� �
; b ¼ 2

p

� �0:5 ffiffiffi
34

p
.

MD simulation cells are initially equilibrated at the temperature of interest by

integrating the equations of motion for one million time steps under isothermal

conditions using a Berendsen thermostat [32]. Next, the MD system is simulated

Fig. 9.14 (a) Three examples of unit cells for the nano-PC at different filling fraction. (b) an
extended zone representation of the nano-PC with parameter (L), characteristic length, highlighted
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under constant energy conditions for three million time steps, and the HCAF is

calculated over the last two million time steps. In this work, only the last two terms

in (9.26) are utilized to calculate the HCAF because these relate strictly to conduc-

tion (the convective term (first term) is neglected). Figure 9.15 shows the HCAF at

300 K for (1) perfect graphene and (2) a nano-PC with 8 % filling fraction holes.

The HCAFs exhibit two-stage decay and are, following [30], fit to the sum of two

exponential functions of the following form:

SðtÞ � Sð0Þ
3

¼ Aa e
�ðt=taÞ þ Ao e

�ðt=taÞ (9.29)

The longer relaxation time is assigned to acoustic modes (ta) and the shorter time

to optical modes (to ). In Fig. 9.15 the average lifetimes for acoustic and optical

phonons are also displayed. The decay of the HCAF is extremely rapid in compari-

son to perfect graphene. The nature of this decay is the subject of the remainder of

this section.

The lifetime of a particular phonon mode is well described by Matthiessen’s

Rule:

1

t
¼ 1

tph
þ 1

te
þ 1

td
þ 1

tB
(9.30)

Here t represents the total phonon lifetime and tph , te , td , and tB signify

characteristic decay times associated with different types of phonon collision

processes, specifically, phonon–phonon, phonon–electron, phonon–defect, and

phonon–boundary, respectively. Given the classical nature of the MD simulations,

phonon–electron contributions are not included in addition to phonon–defect terms,

since the MD simulation-cells are constructed to be defect free. Thus, MD simula-

tion results are interpreted in terms of phonon–phonon and phonon–boundary

scattering.

Fig. 9.15 Examples of

HCAFs for graphene and

nano-PC with ff ¼ 8 %. A

sum of two exponential

functions is fit to the HCAF to

yield estimates for average

acoustic and optical phonon

lifetime
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9.3.1.2 Phonon–Phonon and Phonon–Boundary Scattering

Figure 9.16 shows plots of average phonon lifetime versus filling fraction of holes

for acoustic phonons (a) and optical phonons (b).

For perfect graphene (ff ¼ 0.0 %), the average lifetime of acoustic and optical

phonons decreases with increasing temperature. For acoustic phonons, average

lifetime decreases from 78.12 ps (100 K) to 9.57 ps (300 K) to 4.69 ps (500 K).

For optical phonons, the average lifetime decreases from 11.96 ps (100 K) to

1.74 ps (300 K) to 1.10 ps (500 K). This observation highlights the phonon–phonon

collision mechanism embodied in normal and Umklapp phonon processes. The

calculated lifetime of optical phonons in perfect graphene at room temperature is

consistent with an experimental measurement of 1.2 ps using time-resolved inco-

herent anti-Stokes Raman scattering [33]. Further, the predicted trend in the

estimated acoustic phonon lifetimes matches experimental observations; specifi-

cally, using the experimentally measured phonon coherence length in suspended

graphene (approximately 800 nm at 300 K [34–37] and 330–400 nm at 400 K [38])

in conjunction with the longitudinal acoustic velocity in graphene (approximately

20,000 m/s [39]), we obtain lifetimes that range between 15 ps (at 400 K) and 40 ps

(at 300 K), which compare reasonably well with our predictions.

If a single atom is removed from the MD simulation cell, a nano-PC structure

effectively results with filling fraction equal to 0.05 %. Figure 9.16a, b show for all

temperatures that the removal of a single atom yields a dramatic decrease in

average phonon lifetime. At 100 K the average lifetime of acoustic phonons

decreases by 68 %. For 300 K and 500 K, the observed decreases in average

lifetime are 63 % and 49 % respectively. This abrupt decrease in phonon lifetime

can be attributed to two possible mechanisms: (1) The removal of a single atom

offers a superlattice configuration whereby the phononic band structure associated

with perfect graphene is folded multiple times thus allowing many more

phonon–phonon scattering processes that meet the conditions for conservation of

wave vector and frequency, a prerequisite for phonon mode decay; (2) The removal

Fig. 9.16 (a) average lifetime of acoustic phonons versus filling fraction (100 K, 300 K, 500 K).

(b) same as (a) but for optical phonons. The insets are magnifications of the regions of high filling

fractions (ff)
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of a single atom creates a boundary/surface that propagating phonons can collide

with. Isolating one mechanism from the other is inherently difficult because the two

are both present at the same time. However, one may rewrite equation (9.30) in

terms of average phonon lifetimes to highlight the dependencies of the different

contributions to the total average lifetime:

1

t
¼ 1

tphðT; LÞ þ
1

tBðLÞ (9.31)

Here, we have highlighted the dependency of phonon–phonon scattering on

temperature (T) as well as the band structure resulting from the periodicity of the

structure (L or ff). Boundary scattering depends essentially on the minimum feature

length (L) of the structure. As filling fraction increases, for all temperatures, the

average lifetime of acoustic phonon modes decreases. For optical phonons, this

behavior is less pronounced. For acoustic phonons in the 0.3–3 % filling fraction

region, strong temperature dependence suggests that phonon–phonon collisions are

the dominant scattering mechanism. The Callaway-Holland model [40, 41]

identifies the propensity of a phonon mode (of wave vector k and polarization l)
to undergo normal and Umklapp scattering processes as a function of temperature

and frequency:

1=tphðk; l; TÞ ¼ gðk; lÞTe��=T (9.32)

Here gðk; lÞ contains the frequency of the specific phonon mode and � is a

parameter used to match empirical data. For the purpose of this discussion, (9.32) is

adapted by considering average phonon lifetimes by defining tphðTÞv to represent

an average over all polarization branches. We also define a frequency independent

average, �g. Equation (9.32) becomes:

1

tphðTÞ ¼
�gTe�

�
T (9.33)

Figure 9.17a shows a plot of average lifetime (acoustic and optical) versus

temperature for perfect graphene. Equation (9.33) is fit to the data points with

ai ¼ 1=�g ; bi ¼ �. This illustrates the temperature dependence of tðTÞ 	 tphðTÞ in
the absence of a periodic array of holes. Figure 9.17b shows a plot of average

acoustic lifetime versus temperature for three different filling fractions in the

0.3–3 % range. Similar to Fig. 9.17a, (9.33) is fit to the data points and it is well

correlated. This can be interpreted as resulting from the dual dependency of

phonon–phonon scattering on temperature and periodicity (through band folding),

that is, tðT; LÞ 	 tphðT; LÞ in the case of the antidot nano-PC structures. This result

also implies that tph<tB . Therefore, in the 0.3 % - 3 % filling fraction region,

phonon–phonon processes appear to be the dominant mechanism behind the lower-

ing of phonon mode lifetimes.
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Beyond ff ¼ 3.0 %, the temperature dependency of acoustic phonon lifetime is

diminished. The inset in Fig. 9.16a shows, for all temperatures, that average

acoustic phonon lifetime follows the same, weak linear trend as filling fraction

increases. Temperature dependency of acoustic modes can be diminished if the

holes in the graphene matrix have increased in size to a point whereby the

characteristic length is such that acoustical phonons have higher probability of

getting scattering by the boundary of a hole than with another phonon. This is the

case when tB<tph and t 	 tBðLÞ . A plot of average acoustical phonon lifetime

versus characteristic length (Fig. 9.18) shows for large filling fractions (small L

values) the lifetime of acoustical phonons is linearly dependent on L.

The characteristic decay time associated with boundary scattering takes the

functional form [40, 41]: tB ¼ L=v, where v represents an average speed of sound

in graphene. In the small L region of Fig. 9.18 a line is fit where v ¼ 7000 m/s (a

reasonable value for average speed of sound for acoustic phonons in graphene). In

this region, boundary scattering is the dominant scattering mechanism. Beyond

L ¼ 5 nm, this linear dependence is lost and scattering is attributed to a mix of

phonon–boundary and phonon–phonon collisions. As L increases to larger values,

the significance of boundary scattering is lost and normal and Umklapp phonon

processes dominate.

9.3.2 Phonon Transport in Boron Nitride Nano-Ribbons

Two-dimensional BN structures are isomorphic to their carbon counterparts and

capable of demonstrating equally remarkable structure–property relations. Of par-

ticular interest are the phonon propagation characteristics in single-layer BN sheets

and Boron Nitride nanoribbons (BNNR) containing triangular defects, which have

been recently fabricated by Jin et al. [42]. As pointed out by Yang et al. [43], such

Fig. 9.17 (a) Lifetime versus temperature for acoustic and optical phonons in graphene.(b)
Average acoustic phonon lifetime for three different nano-PC filling fractions versus temperature.

Symbols are calculated values and solid lines represent fits using (9.33)
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structures open up new avenues for manipulating the thermal properties of defected

BNNR, and in particular, the geometric asymmetry of the triangular vacancies/

defects can be exploited to preferentially scatter phonons in BNNR, which can, in

turn, lead to spatially dependent thermal properties. A related consequence is the

possibility of realizing thermal rectifiers as discussed by Go et al. [44], where it was

shown that the thermal conductivity of a material has to be an inseparable function

of both space and temperature to exhibit thermal rectification. To examine the

interplay between defect-orientation and phonon propagation in BNNR, we employ

(1) EMD simulations to correlate the relations between phonon transport and the

temporal evolution of spatial HCAF profiles across the simulated system, and (2) a

variant of NEMD simulations, where one end of the BNNR is suddenly quenched

and held at a fixed temperature; the time taken for the temperature of the rest of the

material to equal that of the thermostated end is taken as a measure of the thermal

diffusivity and more importantly a measure of transient thermal-phonon

characteristics. Note that, in both methods employed, we explicitly avoid

estimating heat fluxes, and thereby circumvent problems associated with NEMD

as discussed previously.

9.3.2.1 Simulation Procedure

The MD simulations of pristine and defected BNNR employ the Brenner-Tersoff

potential as developed by Albe and Moller [29] due to its success in modeling the

different hybridization states of BN, an important requirement while modeling

defected BNNR. To ensure consistency with experimental observations [42], the

arm-chair orientation of BNNR (a-BNNR) was simulated; the length of the

simulated a-BNNR was 17.5 nm, while periodic boundary conditions were applied

along its 7.1 nm width. Fixed boundary conditions were imposed on the edge atoms

(i.e., the thinnest strip consisting of boron and nitrogen atoms at each end). For the

defected system, the defect was represented by an equilateral triangle with

nitrogen-termination to ensure consistency with experimental observations. The

defect orientation is shown in Fig. 9.19, and its dimensions were chosen to be

approximately half the BNNR width (corresponding to a filling fraction of 5 %).

Fig. 9.18 Average acoustical

phonon lifetime versus

characteristic length.

Phonon–boundary collisions

are the dominant scattering

mechanism at low L values.

In this region, there is greater

probability of phonon-

scattering due to the hole-

edge than phonon-phonon

scattering

320 N. Swinteck et al.



In order to carry out EMD simulations, both pristine as well as defected BNNR

were initially equilibrated at 300 K and 900 K respectively, after which NVE

simulations were conducted for 7 ns with a time step of 1 fs. The systems were

spatially divided into 15 bins along their length to enable the calculations of spatial

variations in HCAF, which were obtained over the last 5 ns of each NVE run.

Particular attention was paid to the HCAF component along the length of the

BNNR, which was primarily used in our data analysis. To ensure better statistics,

five different equilibrated starting configurations were used for each case. In the

NEMD simulations, the thinnest possible strip of atoms (consisting of equal number

of boron and nitrogen), adjacent to the boundary atoms at the opposite ends of the

BNNR, were identified to be the thermostated regions which were governed by a

Nose-Hoover thermostat [32]. The boundary atoms were not included to avoid edge

effects as noted by Jiang et al. [31]. For the 300 K and 900 K systems, the

thermostat temperature equaled 150 K and 450 K respectively, and the time for

the rest of the unconstrained system to attain the temperature of the thermostated

region was calculated when the thermostat was placed at the (1) left and the (2) right

edge respectively.

9.3.2.2 Phonon Transport and Rectification

The 300 K spatial variation in HCAF as a function of time for pristine BNNR is

given in Fig. 9.20. Interestingly, each spatial-bin is characterized by similar,

temporally periodic peaks and valleys, which are systematically displaced with

respect to neighboring bins. Since the HCAF is a measure of the material’s ability to

dissipate thermal fluctuations, and therefore directly related to thermal-phonon

energy transport, Fig. 9.20 can be interpreted in terms of phonon propagation.

Specifically, the appearance of the first and the second valley in the HCAF for

each bin represents phonon-reflection from the nearest and farthest fixed-edge

respectively. Clearly, the time-delay between the two valleys is related to the spatial

Fig. 9.19 Illustration of the

pristine and defected BNNR
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location of the bin. Note that a single reflection from a fixed edge leads to a phase-

change as represented by the valley. At approximately 1.5 ps, we see the emergence

of a peak for all spatial bins. This corresponds to a ‘round-trip’ made by the

respective phonons, which undergo two reflections (i.e., two phase changes) from

either edge; the peak is larger in magnitude than the valley, representing the

simultaneous arrival of the two phonons. A similar peak appears at approximately

3 ps, though the magnitude of this peak is reduced as compared to the first peak,

implying the role of anharmonicity-induced scattering of phonons that eventually

leads to a finite lifetime of phonons as evidenced by the gradual diminishing of the

peaks and valleys in the HCAF.

While the spatially decomposed HCAF of pristine BNNR is symmetric (i.e.,

HCAF of nth bin and (15-n)th bin are similar), this is not observed for the 300 K

defected BNNR, as shown in Fig. 9.21.

An inspection of Fig. 9.21 reveals that additional phonon reflection is enabled by

the AB-face (see Fig. 9.19) of the triangular defect that is parallel to the BNNR

edge, leading to dissimilar HCAF profiles in the two regions that are separated by

the triangular vacancy in the defected BNNR.

In particular, consider the first two HCAF valleys/peaks in the bins between the

triangle-face AB and the near edge (i.e., bins 1–6). The bins in proximity to the

BNNR edge (bins 1–3) are characterized by valleys followed by peaks in HCAF,

while the HCAFs in bins closer to the triangle-face AB (bins 4–6) are first described

by peaks and subsequently by valleys. This is explained by the fact that the triangle-

face AB is not a fixed boundary, and does not lead to a phase change during

Fig. 9.20 (Left)- Time evolution of the spatially resolved HCAF for pristine BNNR at 300 K.

Black overlays are an aid to the eye. (Right)-Representation of the spatial decomposition of the

simulated system into 15 bins
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reflection. At approximately 0.7 ps, we see the uniform appearance of valleys for all

the bins (9.1–9.6), which is correlated to the simultaneous ‘round-trip’ arrival of

two phonons. Note that the same phenomenon is also observed in the pristine

BNNR system at 1.5 ps due to the longer path (almost twice) traversed by the

respective phonons. For the region in the defected BNNR between triangle vertex-C

and the farther edge, the spatial HCAF profile diverges from that of the other

region; all the bins corresponding to this region (9.9–9.15) are characterized by

an initial valley (reflection from the farther fixed end), but subsequent features are

not well pronounced, a direct consequence of phonon scattering from the sloped

edges of the triangle defect, which can be distinguished from the reflection that

occurs at the normal AB face. Thus, phonon propagation characteristics in the two

regions separated by the geometrically asymmetric triangular defect are indeed

different.

Figure 9.22a, b illustrate the HCAF of pristine and defected BNNR at 900 K. A

comparison with Figs. 9.20 and 9.21 indicates the role of temperature on the HCAF

profile. Clearly, the anharmonic effects become more distinct at the higher temper-

ature, as seen by the absence of higher order HCAF echoes in the respective

systems. Thus, by comparing and contrasting the HCAF characteristics of pristine

and defected BNNR, one can conclude that geometric asymmetry of the defect

leads to distinct spatial- and temperature-dependent thermal-phonon propagation

characteristics for the defected BNNR system, indicating the possibility of observ-

ing thermal rectification in such systems.

In order to study the transient response of the two systems, the quenching

procedure as described earlier was adopted. Figure 9.23a, b illustrates the rate of

Fig. 9.21 (Left)- Time evolution of the spatially resolved HCAF for defected BNNR at 300 K.

(Right)-Representation of the spatial decomposition of the simulated system into 15 bins
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temperature change for the pristine BNNR and defected BNNR (both initially at

300 K and quenched to 150 K), when in ‘forward’ bias (i.e., the thermostated

BNNR edge faces the triangle-face AB) and ‘reverse’ bias (i.e., the thermostated

BNNR edge faces the triangle vertex-C). While the pristine BNNR responds

identically under both forward and reverse bias, the temperature-time curve do

not overlap for the defected BNNR, implying that the thermal diffusivity is

position-dependent. Numerical solution of the transient heat equation shows that

the reverse-bias apparent thermal diffusivity is higher by a factor of 1.13. A similar

result was also observed when the 900 K systems were quenched to 450 K, with the

ratio of the reverse-bias to forward-bias thermal diffusivity for defected BNNR

equaling 1.07. These results when viewed in conjunction with the HCAF

observations clearly indicate that the asymmetric triangular defect plays an impor-

tant part in the ability of the defected BNNR to respond to external thermal stimuli.

Specifically, based on the orientation, specific triangular-faces can impede phonon-

energy propagation, thereby allowing defected BNNR systems to exhibit spatially

asymmetric thermal transport properties.

Importantly, these results are consistent with past theoretical and experimental

investigations, where boundary scattering from arrays of spatially asymmetric

triangular holes led to acoustic rectification in the MHz and GHz regimes [45,

46]. An important distinction between these studies and the current work is the

explicit inclusion of anharmonic interactions that arise in atomic systems;

Fig. 9.22 Time evolution of the spatially resolved HCAF for (a) pristine and (b) defected BNNR
at 900 K
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nevertheless, in each case it is clear that scattering at the triangular-hole boundary

dominates phonon propagation leading to rectification. Other related atomistic

investigations include the characterization of interface asperity on the in-plane

thermal conductivity of superlattices [47]; here the interface asperity was

represented by a series of triangles, and even the in-plane thermal-phonon

transport was dictated by the surface roughness (i.e., the size and orientation of

interface-triangles) further affirming the effect of boundary scattering on phonon

propagation.
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Chapter 10

Phononic Band Structures and Transmission
Coefficients: Methods and Approaches

J.O. Vasseur, Pierre A. Deymier, A. Sukhovich, B. Merheb,
A.-C. Hladky-Hennion, and M.I. Hussein

Abstract The purpose of this chapter is first to recall some fundamental notions

from the theory of crystalline solids (such as direct lattice, unit cell, reciprocal

lattice, vectors of the reciprocal lattice, Brillouin zone, etc.) applied to phononic

crystals and second to present the most common theoretical tools that have been

developed by several authors to study elastic wave propagation in phononic crystals

and acoustic metamaterials. These theoretical tools are the plane wave expansion

method, the finite-difference time domain method, the multiple scattering theory,

and the finite element method. Furthermore, a model reduction method based on

Bloch modal analysis is presented. This method applies on top of any of the

numerical methods mentioned above. Its purpose is to significantly reduce the

size of the final matrix model and hence enable the computation of the band

structure at a very fast rate without any noticeable loss in accuracy. The intention
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in this chapter is to give to the reader the basic elements necessary for the

development of his/her own calculation codes. The chapter does not contain all

the details of the numerical methods, and the reader is advised to refer to the large

bibliography already devoted to this topic.

10.1 Periodic Structures and Their Properties

Solids possessing crystalline structure are periodic arrays of atoms. The starting

point in the description of the symmetry of any periodic arrangement is the concept

of a Bravais lattice. A Bravais lattice is defined as an infinite array of discrete points

with such an arrangement and orientation that it appears exactly the same from

whichever of its points the array is viewed [1]. Mathematically, a Bravais lattice in

three dimensions is defined as a collection of points with position vectors ~R of the

form

~R ¼ n~a1 þ m~a2 þ k~a3 (10.1)

where a
*

1; a
*

2; a
*

3 are any three vectors not all in the same plane and n;m; k are any

three integer numbers. Vectors a
*

1; a
*

2; a
*

3 are called primitive vectors of a given

Bravais lattice. When any of the primitive vectors are zero, (10.1) also defines a

two-dimensional (2D) Bravais lattice, one example of which is shown in Fig. 10.1.

It is also worth mentioning that for any given Bravais lattice, the set of primitive

vectors is not unique, and there are very many different choices, as shown in

Fig. 10.1.

In three dimensions, there exist a total of 14 different Bravais lattices. The

symmetry of any physical crystal is described by one of the Bravais lattices plus

a basis. The basis consists of identical units (usually made by group of atoms),

which are attached to every point of the underlying Bravais lattice. A crystal,

whose basis consists of a single atom or ion, is said to have a monatomic Bravais

lattice.

Another important concept widely used in the study of crystals is that of a

primitive cell. The primitive cell is a volume of space that contains precisely one

lattice point and can be translated through all the vectors of a Bravais lattice to fill

all the space without overlapping itself or leaving voids. Just as in the case of

primitive vectors, there is no unique way of choosing a primitive cell. The most

common choice, however, is theWigner–Seitz cell, which has the full symmetry of

the underlying Bravais lattice. The Wigner–Seitz cell about a lattice point also has a

property of being closer to that point than to any other lattice point. It can be

constructed by drawing lines connecting a given point to nearby lying points,

bisecting each line with a plane and taking the smallest polyhedron bounded by

these planes.

The Bravais lattice, which is defined in real space, is sometimes referred to as

a direct lattice. At the same time, there exist the concepts of a reciprocal space
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and a reciprocal lattice, which play an extremely important role in virtually any

study of wave propagation, diffraction, and other wave phenomena in crystals.

For any Bravais lattice, given by a set of vectors ~R [see (10.1)], and a plane wave

expði~k �~rÞ, the reciprocal lattice is defined as a set of all wave vectors ~G that yield

plane waves with the periodicity of a given Bravais lattice [1]. Mathematically, a

wave vector ~G belongs to the reciprocal lattice of a Bravais lattice with vectors ~R,
if the equation

expði~G � ð~r þ ~RÞÞ ¼ expði~G �~rÞ (10.2)

is true for any ~r and ~R of the given Bravais lattice. It follows from (10.2) that a

reciprocal lattice can also be viewed as a set of points, whose positions are given by

a set of wave vectors ~G satisfying the condition:

expð~G � ~RÞ ¼ 1 (10.3)

for all ~R in the Bravais lattice. The reciprocal lattice itself is a Bravais lattice. The

primitive vectors b
*

1; b
*

2; b
*

3 of the reciprocal lattice are constructed from the

primitive vectors a
*

1; a
*

2; a
*

3 of the direct lattice and given in three dimensions by

the following expressions:

~b1 ¼ 2p
~a2 �~a3

~a1 � ð~a2 �~a3Þ
~b2 ¼ 2p

~a3 �~a1
~a2 � ð~a3 �~a1Þ

~b3 ¼ 2p
~a1 �~a2

~a3 � ð~a1 �~a2Þ

(10.4)

As an example, Fig. 10.2 shows a simple-cubic Bravais lattice with a lattice

constant a as well as its reciprocal lattice, which is also a simple-cubic one with a

lattice constant 2p=a (as follows from relations (10.4)).

Since the reciprocal lattice is a Bravais lattice, one can also find its Wigner–Seitz

cell. The Wigner–Seitz cell of a reciprocal lattice is conventionally called a first
Brillouin zone (BZ). Planes in k-space, which bisect the lines joining a particular

point of a reciprocal lattice with all other points, are known as Bragg planes.

1a
®

2a
®

Fig. 10.1 A 2D triangular

Bravais lattice. Several

possible choices of the

primitive vectors a1
! and a2

!
are indicated
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Therefore, the first BZ can also be defined as the set of all points in k-space that can
be reached from the origin without crossing any Bragg plane. The BZs of higher

orders also exist, with the nth BZ defined as the set of points that can be reached

from the origin by crossing (n-1) Bragg planes [1]. The first BZ is of great

importance in the theory of solids with periodic structures, since the periodicity

of the structure allows the description of the properties of the solids within the first

BZ. Figure 10.3 shows the first three BZs of the 2D square Bravais lattice. The first

BZ has a shape of a square with two high-symmetry directions, which are com-

monly referred to as GX and GM.

DIRECT LATTICE RECIPROCAL LATTICE

3a
®

2a
®

1a
®

2b
®

1b
®

3b
®

Fig. 10.2 Simple-cubic direct lattice and its reciprocal lattice. The primitive vectors of both

lattices are also indicated

a

b

X

M

1

2

22

2
3

3

3

3

3

3

3

3

Γ

Fig. 10.3 (a) The first three Brillouin zones of the reciprocal lattice of the 2D square Bravais

lattice. The dots indicate reciprocal lattice points, the solid lines indicate Bragg planes, and the

digits indicate the order of the corresponding Brillouin zone. (b) The first Brillouin zone with the

two high-symmetry directions commonly referred to as GX and GM. The triangle GXM is named

the irreducible Brillouin zone
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It is well known from quantum mechanics that the energy of an electron in an

atom assumes discrete values. However, when the atomic orbitals overlap as the

atoms come close together in a solid, the energy levels of the electrons broaden and

form continuous regions, also known as energy bands. At the same time, because of

the periodicity of the crystal structure, the electronic wave functions undergo strong

Bragg reflections at the boundaries of the BZs. The destructive interference of the

Bragg-scattered wave functions gives rise to the existence of the energy regions, in

which no electronic energy levels exist. Since these regions are not accessible by

the electrons, they are also known as forbidden bands. If the forbidden band occurs
along the particular direction inside the crystal, it is conventionally called a stop
band. If it happens to span all the directions inside the crystal, the term “complete

band gap,” or simply band gap, is used instead. The electronic properties of

crystalline solids are conveniently described with the help of the band structure
plots, which represent energy levels of the electrons of the solid as a function of the

direction inside the solid.

The concepts of the direct and reciprocal lattices, BZs and energy bands

discussed in this section, are of general nature and can be applied to any periodic

system without being limited to atomic crystals. These concepts appear throughout

the different chapters of this book.

10.2 Plane Wave Expansion methods

10.2.1 Plane Wave Expansion Method for Bulk Phononic
Crystals

We first present with many details the plane wave expansion (PWE) method used

for the calculation of the band structures of bulk phononic crystals, i.e., assumed of

infinite extent along the three spatial directions. For the sake of simplicity, we limit

ourselves to 2D phononic crystals, but the method can be easily extended to 3D

structures. Two-dimensional phononic crystals are modeled as periodic arrays of

infinite cylinders of different shape (circular, square, etc.) made up of a material A

embedded in an infinite matrix B. Elastic materials A and B may be isotropic or of

specific crystallographic symmetry. The elastic cylinders are assumed parallel to

the z axis of the Cartesian coordinates system ðO; x; y; zÞ. The intersections of the
cylinders axis with the ðxOyÞ transverse plane form a 2D periodic array and the

nearest neighbor distance between cylinders is a. The 2D primitive unit cell may

contain one cylinder, or more. The filling factor, fi, of each inclusion is defined as

the ratio between the cross-sectional area of a cylinder and the surface of the

primitive unit cell (see Fig. 10.4).

In absence of an external force, the equation of propagation of the elastic waves

in any composite material is given as
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rð~rÞ @
2uið~r; tÞ
@t2

¼
X

j

@

@xj

X
m;n

Cijmnð~rÞ @unð~r; tÞ
@xm

� �
(10.5)

where uið~r; tÞði ¼ 1; 2; 3Þ ) is a component of the elastic displacement field.

The elements Cijmnði; j;m; n ¼ 1; 2; 3Þ of the elastic stiffness tensor and the mass

density r are periodic functions of the position vector,~r ¼ ð~r
==
; zÞ ¼ ðx; y; zÞ:

In (10.5), x1, x2, x3, u1, u2 and u3 are equivalent to x, y, z, ux, uy, and uz
respectively.

For the sake of clarity, we consider constituent materials of cubic symmetry (but

the method could be applied for lower crystallographic symmetry) characterized by

the following stiffness tensor:

C ¼

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

0
BBBBBBBBB@

1
CCCCCCCCCA
; (10.6)

where the Voigt notation has been used. In this case, (10.5) becomes

r @2ux
@t2 ¼ @

@x C11
@ux
@x þC12

@uy
@y þ @uz

@z

� �� �
þ @

@y C44
@ux
@y þ @uy

@x

� �� �
þ @

@z C44
@ux
@z þ @uz

@x

� �� �
r @2uy

@t2 ¼ @
@x C44

@ux
@y þ @uy

@x

� �� �
þ @

@y C11
@uy
@y þC12

@ux
@x þ @uz

@z

� �� �
þ @

@z C44
@uy
@z þ @uz

@y

� �� �
r @2uz

@t2 ¼ @
@x C44

@uz
@x þ @ux

@z

� �� �þ @
@y C44

@uy
@z þ @uz

@y

� �� �
þ @

@z C11
@uz
@z þC12

@uy
@y þ @ux

@x

� �� �

8>>>><
>>>>:

:

(10.7)

a
y

xz
O

Fig. 10.4 Transverse cross

section of the (square) array
of inclusions . The cylinders

are parallel to the z direction.
The dotted lines represent the
primitive unit cell of the 2D

array
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For bulk phononic crystals, the elastic constants and the mass density do not
depend on z. Then taking advantage of the 2D periodicity in the ðxOyÞ plane, they
can be expanded in Fourier series in the form:

Cijð~r==Þ ¼
X
~G00

==

Cijð~G00
==Þei~G

00
==�~r== (10.8)

rð~r==Þ ¼
X
~G00

==

rð~G00
==Þei

~G00
==�~r== (10.9)

where ~G00
== is a 2D reciprocal lattice vector. One writes, with the help of the Bloch

theorem, the elastic displacement field as

~uð~rÞ ¼ eiðot�~K==�~r==�KzzÞ
X
~G0
==

~u~Kð~G0
==Þei

~G0
==
�~r== (10.10)

where ~K ¼ ð~K==;KzÞ ¼ ðKx;Ky;KzÞ is a wave vector, ~G0== , a 2D reciprocal

lattice vector, and o , an angular frequency. Substituting (10.8), (10.9), and

(10.10) into (10.5) and posing ~G== ¼ ~G0
== þ ~G00

== leads to a set of three coupled

equations

o2
X
~G0

==

B 11ð Þ
~G==;~G0

==
ux~K

~G0
==

� �

¼
X
~G0

==

ux~K
~G0

==

� �
A 11ð Þ

~G==;~G0
==
þuy~K

~G0
==

� �
A 12ð Þ

~G==;~G0
==
þuz~K

~G0
==

� �
A 13ð Þ

~G==;~G0
==

n o

o2
X
~G0

==

B 22ð Þ
~G==;~G0

==
uy~K

~G0
==

� �

¼
X
~G0
==

ux~K
~G0

==

� �
A 21ð Þ

~G==;~G0
==
þuy~K

~G0
==

� �
A 22ð Þ

~G==;~G0
==
þuz~K

~G0
==

� �
A 23ð Þ

~G==;~G0
==

n o

o2
X
~G0

==

B 33ð Þ
~G==;~G0

==
uz~K

~G0
==

� �

¼
X
~G0
==

ux~K
~G0

==

� �
A 31ð Þ

~G==;~G0
==
þuy~K

~G0
==

� �
A 32ð Þ

~G==;~G0
==
þuz~K

~G0
==

� �
A 33ð Þ

~G==;~G0
==

n o

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

(10.11)
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where

B 11ð Þ
~G==;~G0

==
¼B 22ð Þ

~G==;~G0
==
¼B 33ð Þ

~G==;~G0
==
¼ r ~G==� ~G0

==

� �
A 11ð Þ

~G==;~G0
==
¼C11

~G==� ~G0
==

� �
GxþKxð Þ ~G0

xþKx

� �
þC44

~G==� ~G0
==

� �
GyþKy

� �
~G0

yþKy

� �
þ Kzð Þ2

h i
A 12ð Þ

~G==;~G0
==
¼C12

~G==� ~G0
==

� �
GxþKxð Þ ~G0

yþKy

� �
þC44

~G==� ~G0
==

� �
~G0

xþKx

� �
GyþKy

� �
A 13ð Þ

~G==;~G0
==
¼C12

~G==� ~G0
==

� �
GxþKxð Þ Kzð ÞþC44

~G==� ~G0
==

� �
~G0

xþKx

� �
Kzð Þ

A 21ð Þ
~G==;~G0

==
¼C12

~G==� ~G0
==

� �
G0

xþKxð Þ GyþKy

� �
þC44

~G==� ~G0
==

� �
~G0

yþKy

� �
GxþKxð Þ

A 22ð Þ
~G==;~G0

==
¼C11

~G==� ~G0
==

� �
GyþKy

� �
G0

yþKy

� �
þC44

~G==� ~G0
==

� �
GxþKxð Þ G0

xþKxð Þþ Kzð Þ2
h i

A 23ð Þ
~G==;~G0

==
¼C12

~G==� ~G0
==

� �
Kzð Þ GyþKy

� �þC44
~G==� ~G0

==

� �
G0

yþKy

� �
Kzð Þ

A 31ð Þ
~G==;~G0

==
¼C12

~G==� ~G0
==

� �
G0

xþKxð Þ Kzð ÞþC44
~G==� ~G0

==

� �
GxþKxð Þ Kzð Þ

A 32ð Þ
~G==;~G0

==
¼C12

~G==� ~G0
==

� �
G0

yþKy

� �
Kzð ÞþC44

~G==� ~G0
==

� �
GyþKy

� �
Kzð Þ

A 33ð Þ
~G==;~G0

==
¼C11

~G==� ~G0
==

� �
Kzð Þ2þC44

~G==� ~G0
==

� �
GxþKxð Þ G0

xþKxð Þ½
þ GyþKy

� �
G0

yþKy

� ��

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(10.12)

and Gx, Gy (resp. ~G
0
x;
~G0
y) are the components of the ~G==(resp. ~G

0
==) vectors.

Equation (10.12) can be rewritten as a standard generalized eigenvalue equation

in the form

o2

B 11ð Þ
~G==;~G0

==
0 0

0 B 22ð Þ
~G==;~G0

==
0

0 0 B 33ð Þ
~G==;~G0

==

0
BB@

1
CCA

ux~K
~G0

==

� �
uy~K

~G0
==

� �
uz~K

~G0
==

� �
0
BBB@

1
CCCA

¼
A 11ð Þ

~G==;~G0
==

A 12ð Þ
~G==;~G0

==
A 13ð Þ

~G==;~G0
==

A 21ð Þ
~G==;~G0

==
A 22ð Þ

~G==;~G0
==

A 23ð Þ
~G==;~G0

==

A 31ð Þ
~G==;~G0

==
A 32ð Þ

~G==;~G0
==

A 33ð Þ
~G==;~G0

==

0
BB@

1
CCA

ux~K
~G0

==

� �
uy~K

~G0
==

� �
uz~K

~G0
==

� �
0
BBB@

1
CCCA: (10.13)
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Equation (10.13) is equivalent to o2B
$
~u~K ¼ A

$
~u~K , where A

$
and B

$
are square

matrices whose size depends on the number of 2D ~G== vectors taken into account in

the Fourier series. The numerical resolution of this eigenvalue equation is

performed along the principal directions of propagation of the 2D irreducible BZ

of the array of inclusions.

If one assumes that the elastic waves propagate only in the transverse plane

(xOy), i.e., Kz¼0, then the elements of the sub-matrices A 13ð Þ
~G==;~G0

==
, A 23ð Þ

~G==;~G0
==
,

A 31ð Þ
~G==;~G0

==
, and A 32ð Þ

~G==;~G0
==
vanish and (10.13) can be rewritten as

o2

B 11ð Þ
~G==;~G0

==
0 0

0 B 22ð Þ
~G==;~G0

==
0

0 0 B 33ð Þ
~G==;~G0

==

0
BB@

1
CCA

ux~K
~G0

==

� �
uy~K

~G0
==

� �
uz~K

~G0
==

� �
0
BBB@

1
CCCA

¼
A 11ð Þ

~G==;~G0
==

A 12ð Þ
~G==;~G0

==
0

A 21ð Þ
~G==;~G0

==
A 22ð Þ

~G==;~G0
==

0

0 0 A 33ð Þ
~G==;~G0

==

0
BB@

1
CCA

ux~K
~G0

==

� �
uy~K

~G0
==

� �
uz~K

~G0
==

� �
0
BBB@

1
CCCA (10.14)

The matrices involved in (10.14) are super-diagonal, and one can separate this

equation into two independent uncoupled eigenvalues equations as follows:

o2
B 11ð Þ

~G==;~G0
==

0

0 B 22ð Þ
~G==;~G0

==

 !
ux~K

~G0
==

� �
uy~K

~G0
==

� �
0
@

1
A

¼
A 11ð Þ

~G==;~G0
==

A 12ð Þ
~G==;~G0

==

A 21ð Þ
~G==;~G0

==
A 22ð Þ

~G==;~G0
==

 !
ux~K

~G0
==

� �
uy~K

~G0
==

� �
0
@

1
A (10.15)

o2
X
~G0

==

B 33ð Þ
~G==;~G0

==
uz~K

~G0
==

� �
¼
X
~G0

==

A 33ð Þ
~G==;~G0

==
uz~K

~G0
==

� �
(10.16)

Equation (10.15) leads to XY vibration modes polarized in the transverse plane

(xOy) and (10.16) corresponds to Z modes with a displacement field along the z

direction. Decoupling of the propagation modes in bulk phononic crystals leads to

the diagonalization of matrices of reduced size and then to save computation time.

In order to evaluate the Fourier transform of the elastic constants and the density

defined by (10.8) and (10.9), we need to specify the symmetry of the array of

inclusions, the shape, and the cross-sectional area of the cylinder inclusion. For

example, one considers a square array of cylinders of circular cross section of radius

R with a lattice parameter a. Then one inclusion of filling factor f ¼ p R
a

� �2
is located
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at the center of the 2D primitive unit cell (Wigner–Seitz cell) and the Fourier

coefficients in (10.8) and (10.9) are given as

zð~G==Þ ¼ 1

Au

ð ð
primitive
unit cell

� � zð~r==Þe
�i~G==�~r==d2~r

==
(10.17)

where z � r;Cij and Au is the area of the 2D primitive unit cell. These Fourier

coefficients can be calculated as follows:

zð~G==Þ ¼ 1

Au

ð ð
primitive
unit cell

� � zð~r==Þe
�i~G==�~r==d2~r==

¼ 1

Au

ð ð
Au:c:ð Þ

zAe
�i~G==�~r==d2~r== þ

ð ð
Bu:c:ð Þ

zBe
�i~G==�~r==d2~r==

8><
>:

9>=
>;

¼ 1

Au

ð ð
Au:c:ð Þ

zAe
�i~G==�~r==d2~r== � 1

Au

ð ð
Au:c:ð Þ

zBe
�i~G==�~r==d2~r==

þ 1

Au

ð ð
Au:c:ð Þ

zBe
�i~G==�~r==d2~r== þ 1

Au

ð ð
Bu:c:ð Þ

zBe
�i~G==�~r==d2~r==

¼ 1

Au

ð ð
Au:c:ð Þ

zAe
�i~G==�~r==d2~r== � 1

Au

ð ð
Au:c:ð Þ

zBe
�i~G==�~r==d2~r==

þ zB
1

Au

ð ð
primitive
unit cell

� � e
�i~G==�~r==d2~r==

8>><
>>:

9>>=
>>; ¼ 1

Au

zA � zBð Þ
ð ð
Au:c:ð Þ

e�i~G==�~r==d2~r==

þ zB
1

Au

ð ð
primitive
unit cell

� � e
�i~G==�~r==d2~r==

8>><
>>:

9>>=
>>;: ð10:18Þ

But 1
Au

ÐÐ
primitive
unit cellð Þe�i~G==�~r==d2~r== ¼ d~G==;~O

where d is the Dirac distribution and

(10.18) can be rewritten as

zð~G==Þ ¼ zA � zBð Þ:F ~G==

� �
þ zB:d~G==;~0

(10.19)

where Fð~G==Þ is the structure factor defined as

Fð~G==Þ ¼ 1

Au

ð ð
ðAu:cÞ

e�i~G==�~r==d2~r== (10.20)
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In (10.20), integration is performed over the cross section of the cylindrical

inclusion denoted by (Au.c.). Using the polar coordinates r==; y, one shows that

Fð~G
==
Þ ¼ 1

a2

ðR
0

ð2p
0

e�iG==�r==cosyr==dr==dy ¼ 1

a2

ðR
0

2pr==dr==J0 G==r==
� �

¼ 2p
a2G==

2

ðG==R

0

G==r==
� �

J0 G==r==
� �

d G==r==
� �

¼ 2p
a2G==

2
G==R:J1 G==R

� � ¼ 2f
J1 G==R
� �
G==R

ð10:21Þ

where J0 and J1 are Bessel functions of the first kind of orders 0 and 1, f ¼ pR2=a2

and 0 � f � p=4 . The maximum value of f corresponds to the close-packed

structure where one cylinder touches another one. Similar calculations lead, for

rods of square cross section of width d, to F ~G==

� �
¼ f

�
sin Gxd=2ð Þ
Gxd=2ð Þ

�
sin Gyd=2ð Þ

Gyd=2ð Þ
� �

where f ¼ d2=a2 and 0 � f � 1.

Note that for ~G== ¼~0;Fð~G== ¼~0Þ ¼ f and

zð~G== ¼~0Þ ¼ ðzA � zBÞf þ zB ¼ f zA þ ð1� f ÞzB (10.22)

and zð~G== ¼~0Þ corresponds to the average value of z.
The components of the 2D reciprocal lattice vectors ~G== are Gx ¼ 2p

a nx and

Gy ¼ 2p
a ny where nx and ny are integers. In the course of the numerical resolution of

(10.13), we consider �MxbnxbþMx and �My � ny � þMy (with Mx and My

positive integers), i.e., ð2Mx þ 1Þð2My þ 1Þ 2D ~G== vectors (Gx and Gy have

ð2Mx þ 1Þ and ð2My þ 1Þdifferent values, respectively) are taken into account. This
gives 3ð2Mx þ 1Þð2My þ 1Þ real eigenfrequencies oð~KÞ for a given wave vector ~K
describing the principal directions of propagation in the irreducible BZ. Following

the same process, the PWE method can be applied to other symmetries of the array

(triangular, honeycomb, etc.) and other shapes of the inclusion (square, rotated

square, etc.). The choice of the values of the integers Mx, My is of crucial impor-

tance for insuring the convergency of the Fourier series. The convergency is fast

when considering constituent materials with closed physical properties but is

slower when materials A and B present very different densities and elastic

moduli [2]. The PWE method is also useful for computing band structures of

phononic crystals made of fluid constituents [3]. In this case, the Fourier transform

of the equation of propagation of longitudinal acoustic waves in a heterogeneous

periodic fluid leads to a generalized eigenvalue equation similar to (10.16). But the

PWE method fails to predict accurately the band structures of mixed phononic

crystals made of solid (resp. fluid) inclusions surrounded by a fluid (resp. solid) [4].

Nevertheless, in some particular cases, the PWEmethod is very well adapted for the

calculations of band structures of mixed systems, provided the inclusions can be

assumed to be infinitely rigid as it happens in arrays of solid inclusions surrounded

with air [5]. On the other hand, the PWE method assumes the phononic crystal to be
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of infinite extent in the three spatial directions and does not allow the calculation of

the reflection and transmission coefficients of elastic waves through phononic

crystals of finite thickness.

10.2.2 PWE Method for Phononic Crystal Plates:
The Super-Cell Method

To calculate the elastic band structures of 2D phononic crystal plates, one modifies

the PWE method presented in Sect. 10.2.1. The phononic crystal plate of thickness,

h2, is assumed to be infinite in the ðxOyÞ plane of the Cartesian coordinates system

ðO; x; y; zÞ. The plate is sandwiched between two slabs of thicknesses h1 and h3 ,
made of elastic homogeneous materials C and D (see Fig. 10.5a). In the course of

the numerical calculations, one considers the parallelepipedic super-cell depicted in

Fig. 10.5b).

The basis of the super-cell in the ðxOyÞ plane includes that of the 2D primitive

unit cell (which may contain one cylinder or more) of the array of inclusions, and its

height along the z direction is ‘ ¼ h1 þ h2 þ h3 . This super-cell is repeated

periodically along the x, y, and z directions. This triple periodicity allows one to

develop the elastic constants and the mass density of the constituent materials as

Fourier series as

zð~rÞ ¼
X
~G

zð~GÞei~G�~r (10.23)

where ~r ¼ ð~r==; zÞ ¼ ðx; y; zÞ and ~G ¼ ð~G==;GzÞ ¼ ðGx;Gy;GzÞ are 3D position
vectors and reciprocal lattice vectors, respectively. Moreover, the elastic displace-

ment field can be written as

~uð~rÞ ¼ eiðot�~K==�~r==�KzzÞ
X
~G

~u~Kð~GÞei
~G�~r: (10.24)

h1 C

a b

B A

D
a

h2

h3

h1 C

B A

D

a
a

h2

h3

z y

x

Fig. 10.5 (a) 2D phononic crystal plate sandwiched between two slabs of homogeneous materials

and (b) 3D super-cell considered in the course of the super-cell PWE computation

340 J.O. Vasseur et al.



The components in the ðxOyÞ plane of the ~G vectors depend on the geometry of

the array of inclusions while along the z direction,Gz ¼ 2p
‘ nz, where nz is an integer.

The Fourier coefficients in (10.23) are now given as

zð~GÞ ¼ 1

Vu

ð ð ð
ðsuper cellÞ

zð~rÞe�i~G�~rd3~r (10.25)

with Vu ¼ Au:‘ is the volume of the super-cell.

For a square array of inclusions, the Fourier coefficients become

zð~GÞ ¼ f zA
h2
‘

� �
þ ð1� f ÞzB h2

‘

� �þ zC
h1
‘

� �þ zD
h3
‘

� �
; if ~G ¼~0

ðzA � zBÞFs
Ið~GÞ þ ðzC � zBÞFs

IIð~GÞ þ ðzD � zBÞFs
IIIð~GÞ; if ~G 6¼~0

8<
:

(10.26)

with

Fs
Ið~GÞ ¼

1

Vu

ð ð ð
ðAÞ

e�i~G�~rd3~r ¼ Fð~G
==
Þ

sin Gz
h2
2

� �

Gz
h2
2

� �
0
BB@

1
CCA:

h2
‘

� �
(10.27)

Fs
IIð~GÞ ¼

1

Vu

ð ð ð
ðCÞ

e�i~G�~rd3~r

¼
sin Gx

a

2

� �
Gx

a

2

� �
0
B@

1
CA:

sin Gy
a

2

� �
Gy

a

2

� �
0
B@

1
CA:

sin Gz
h1
2

� �

Gz
h1
2

� �
0
BB@

1
CCA:

h1
‘

� �
:e�iGz

h1þh2
2ð Þ

(10.28)

Fs
IIIð~GÞ ¼

1

Vu

ð ð ð
ðDÞ

e�i~G�~rd3~r

¼
sinðGx

a

2
Þ

ðGx
a

2
Þ

0
B@

1
CA:

sinðGy
a

2
Þ

ðGy
a

2
Þ

0
B@

1
CA:

sinðGz
h3
2
Þ

ðGz
h3
2
Þ

0
B@

1
CA:

h3
‘

� �
:e�iGz

h2þh3
2ð Þ (10.29)

In (10.27), (10.28), and (10.29), the integration is performed over the volume

occupied by each material A, C, or D inside the unit cell. In (10.27), Fð~G
==
Þ is the

structure factor defined by (10.21) for cylindrical inclusions.
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As for the bulk phononic crystals, the equation of motion is Fourier transformed

by substituting (10.23) and (10.24) in (10.5), and this leads to the following

generalized eigenvalue equation:

o2

B 11ð Þ
~G;~G0 0 0

0 B 22ð Þ
~G;~G0 0

0 0 B 33ð Þ
~G;~G0

0
B@

1
CA

ux~K
~G0
� �

uy~K
~G0
� �

uz~K
~G0
� �

0
BBB@

1
CCCA

¼
A 11ð Þ

~G;~G0 A 12ð Þ
~G;~G0 A 13ð Þ

~G;~G0

A 21ð Þ
~G;~G0 A 22ð Þ

~G;~G0 A 23ð Þ
~G;~G0

A 31ð Þ
~G;~G0 A 32ð Þ

~G;~G0 A 33ð Þ
~G;~G0

0
B@

1
CA

ux~K
~G0
� �

uy~K
~G0
� �

uz~K
~G0
� �

0
BBB@

1
CCCA

where

B 11ð Þ
~G;~G0 ¼B 22ð Þ

~G;~G0 ¼B 33ð Þ
~G;~G0 ¼r ~G�~G0

� �
A 11ð Þ

~G;~G0 ¼C11
~G�~G0
� �

GxþKxð Þ G0
xþKxð Þ

þC44
~G�~G0
� �

GyþKy

� �
G0

yþKy

� �þ GzþKzð Þ G0
zþKzð Þ� 	

A 12ð Þ
~G;~G0 ¼C12

~G�~G0
� �

GxþKxð Þ G0
yþKy

� �þC44
~G�~G0
� �

G0
xþKxð Þ GyþKy

� �
A 13ð Þ

~G;~G0 ¼C12
~G�~G0
� �

GxþKxð Þ G0
zþKzð ÞþC44

~G==�~G0
==

� �
G0

xþKxð Þ GzþKzð Þ

A 21ð Þ
~G;~G0 ¼C12

~G�~G0
� �

G0
xþKxð Þ GyþKy

� �þC44
~G�~G0
� �

G0
yþKy

� �
GxþKxð Þ

A 22ð Þ
~G;~G0 ¼C11

~G�~G0
� �

GyþKy

� �
G0

yþKy

� �
þC44

~G�~G0
� �

GxþKxð Þ G0
xþKxð Þþ GzþKzð Þ G0

zþKzð Þ½ �

A 23ð Þ
~G;~G0 ¼C12

~G�~G0
� �

G0
zþKzð Þ GyþKy

� �þC44
~G�~G0
� �

G0
yþKy

� �
GzþKzð Þ

A 31ð Þ
~G;~G0 ¼C12

~G�~G0
� �

G0
xþKxð Þ GzþKzð ÞþC44

~G�~G0
� �

GxþKxð Þ G0
zþKzð Þ

A 32ð Þ
~G;~G0 ¼C12

~G�~G0
� �

G0
yþKy

� �
GzþKzð ÞþC44

~G�~G0
� �

GyþKy

� �
G0

zþKzð Þ

A 33ð Þ
~G;~G0 ¼C11

~G�~G0
� �

GzþKzð Þ G0
zþKzð Þ

þC44
~G�~G0
� �

GxþKxð Þ G0
xþKxð Þþ G0

yþKy

� �
GyþKy

� �� 	

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(10.30)

The numerical resolution of this eigenvalue equation is performed along the

principal directions of propagation of the 2D irreducible BZ of the array of

inclusions whileKz is fixed to any value lower than
p
‘ . In the course of the numerical
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calculations, Gx, Gy, and Gz take respectively ð2Mx þ 1Þ,ð2My þ 1Þ, and ð2Mz þ 1Þ
discrete values, and this leads to 3ð2Mx þ 1Þð2My þ 1Þð2Mz þ 1Þ eigenfrequencies
o for a given wave vector ~K.

The super-cell method requires an interaction as low as possible between the

vibrational modes of neighboring periodically repeated phononic crystal plates.

Then, in order to allow the top surface of the plate to be free of stress, medium C

should behave, for instance, like vacuum [6]. But as already observed by various

authors [6–8], the choice of the physical parameters characterizing vacuum in the

course of the PWE computations is of critical importance. Indeed, in the framework

of the PWE method, taking abruptly Cij ¼ 0 and r ¼ 0 for vacuum leads to

numerical instabilities and unphysical results [6–8]. Then vacuum must be modeled

as a pseudo-solid material with very low Cij and r. For the sake of simplicity, this

low impedance medium (LIM) is supposed to be elastically isotropic and is

characterized by a longitudinal speed of sound Cl , and a transversal speed of

sound Ct or equivalently by two elastic moduli expressed with the Voigt notation

as C11 ¼ rC‘
2 and C44 ¼ rCt

2 . The choice of the values of these parameters is

governed by the boundary condition between any solid material and vacuum.

Indeed, one knows that this interface must be free of stress, and this requires that

C11 ¼ 0 and C44 ¼ 0 rigorously in vacuum [6]. Then, using the LIM to model

vacuum in the PWE computations, the nonvanishing values of these parameters

must be as small as possible, and we consider that the ratio between the elastic

moduli of the LIM and those of any other solid material constituting the phononic

crystal must approach zero. We choose Cl and Ct to be much larger than the speeds

of sound in usual solid materials in order to limit propagation of acoustic waves to

the solid. Large speeds of sound and small elastic moduli impose a choice of a very

low mass density for the LIM. More specifically, we choose r¼ 10�4 kgm�3 and

Cl ¼ Ct¼ 105 m s�1 , i.e., the acoustic impedances of the LIM are equal to 10 kg

m�2 s�1. With these values, C11 ¼ C44¼ 106 Nm�2 and the elastic constants of the

LIM are approximately 104 times lower than those of any usual solid material that

are typically on the order of 1010 Nm�2. The values we choose forC11 andC44 are a

compromise to achieve satisfactory convergence of the SC-PWE method and still

satisfy boundary conditions. Values of the elastic constants of the LIM lower than

104 Nm�2 can have, in some cases, effects on the numerical convergence. We

choose C11 ¼ C44 for convenience. In the course of the PWE calculations, these

values of the LIM physical characteristics allow one to model vacuum without

numerical difficulties.

In the super-cell, medium D can be either vacuum or a homogeneous material

depending on whether one wants to model a phononic crystal plate or a structure

made of a phononic crystal plate deposited on a substrate of finite thickness.

Computations of dispersion curves of phononic crystal plates with Kz ¼ 0 and

with any other nonvanishing value of Kz , lower than
p
‘ , lead to nearly the same

result. Indeed, the eigenvalues computed withKz ¼ 0 andKz 6¼ 0 differ only in their

third decimal. This indicates that the homogeneous slabs C and D made of the LIM

modeling vacuum rigorously provide appropriate decoupling of the plate modes of

10 Phononic Band Structures and Transmission Coefficients: Methods and Approaches 343



vibration in the zdirection. Then, the value ofKzmay be fixed to zero. Due to this 3D

nature, the numerical convergency of the super-cell PWE (SC-PWE) method is

relatively slow, and it has been shown that this method is suitable for voids/solid

matrix plates but is not reliable for constituent materials with very different

physical properties [9]. The SC-PWE method does not to require to write and to

satisfy explicitly the boundary conditions at the free surfaces. Nevertheless, other

authors have proposed PWE schemes for phononic crystals plates where these

boundary conditions are satisfied, but these methods also suffer from convergence

difficulties [10].

10.2.3 PWE Method for Complex Band Structures

In classical PWE methods (see Sect. 10.2.1), one calculates a set of real eigenfre-

quenciesoð~KÞ for a specific wave vector ~K. That means that only propagating modes

with a real wave vector can be deduced fromoð~KÞPWEmethods. Then an extended

PWE method has been proposed that allows the calculation of not only the

propagating modes but also the evanescent modes. The wave vector for evanescent

waves possesses a nonvanishing imaginary part. We have seen previously that the

Fourier transform of the equation of propagation of elastic waves in a phononic

crystal leads to the resolution of a generalized eigenvalue equation in the form o2B
$

~U ¼ A
$
~U . The matrix elements of A

$
and B

$
involve terms depending on the

components of the wave vector ~K . It is always possible to rewrite matrix A
$
as A

$

¼ K2
aA1

$ þKaA2

$ þA3

$
, whereKa is one of the components of the wave vector, andA1

$
,

A2

$
, and A3

$
are matrices of the same size as A

$
. The generalized eigenvalue equation

o2B
$
~U ¼ A

$
~Umay be recast asK2

aA1

$
U
$ ¼ o2B

$
~U � A3

$
U
$ � KaA2

$
U
$
and one canwrite

Ka
I
$

0
$

0
$

A1

$

 !
~U

Ka~U

� �
¼ 0

$
I
$

o2B
$ � A3

$ �A2

$

 !
~U

Ka~U

� �
(10.31)

where I
$
is the identity matrix. Equation (10.31) is nothing else than a generalized

eigenvalue equation where the eigenvalues are the component Ka of the wave

vector. For a specific value of the circular frequency o, one calculates a set of

complex eigenvaluesKa. This method is named ~KðoÞ PWE method. The size of the

matrices occurring on the left and right sides of (10.31) is twice that of matrices A
$

andB
$
. One may illustrate these general ideas by considering the peculiar case of the

Z elastic modes propagating in a bulk 2D phononic crystal made of a square array of

lattice parameter a, of cylindrical inclusions embedded in a solid matrix. If one

assumes Kz¼ 0, then these modes are given by (10.16), where o depends on the two

variables Kx and Ky. Consider the propagation of elastic waves along the GX
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direction of the irreducible BZ for which Ky ¼ 0 and 0 � ReðKxÞ � p
a . Equation

(10.16) leads to

K2
x

X
~G0

==

C44 G
*

== �G
* 0

==

� �
uz~K

~G0
==

� �

¼
X
~G0

==

o2r G
*

== �G
* 0

==

� �
� Gx:G

0
x þGy:G

0
y

� �
C44 G

*

== �G
* 0

==

� �
 �
uz~K

~G0
==

� �

�Kx

X
~G0

==

Gx þG0
xð ÞC44 G

*

== �G
* 0

==

� �
uz~K

~G0
==

� �
ð10:32Þ

and can be rewritten as

Kx
I
$

0
$

0
$

A1

$

 !
~U

Kx
~U

� �
¼ 0

$
I
$

o2B
$ � A3

$ �A2

$

 !
~U

Kx
~U

� �
(10.33)

where

B~G==;~G0
==
¼ r ~G== � ~G0

==

� �
A1~G==;~G0

==
¼ C44

~G== � ~G0
==

� �
A2~G==;~G0

==
¼ C44

~G== � ~G0
==

� �
Gx þ G0

xð Þ
A3~G==;~G0

==
¼ C44

~G== � ~G0
==

� �
GxG

0
x þ GyG

0
y

� �� 	

8>>>>>><
>>>>>>:

: (10.34)

Numerical resolution of (10.34) leads to 2N (ifN � N is the size ofmatricesA
$
andB

$
)

complex values ofKx ¼ ReðKxÞ � iImðKxÞ for any value ofo. Eigenvalues belonging
to the irreducible BZ and corresponding to waves with a vanishing amplitude when

x ! þ1maybe taken into account, i.e.,0 � ReðKxÞ � p
a andImðKxÞ � 0.Figure 10.6

presents the band structures calculated by both oð~KÞ and ~KðoÞ methods. This figure

shows the ability of the ~KðoÞmethod to calculate the evanescent modes. Of particular

interest is the existence of additional bands (see right panel of Fig. 10.6 for reduced

frequency around 1.1) not predicted by the classical oð~KÞ PWE method (red dots).

These vibrational modes are characterized by a nonvanishing ImðKxÞ.
To apply this, ~KðoÞPWEmethod requires to consider only one component of the

wave vector ~K as eigenvalue. That needs to keep fixed the other component or to

write a linear relation between them. For example, along the GM direction in the

irreducible BZ of the square array, one can write Kx ¼ Ky and consider Kx as the

eigenvalue. In the same way, one can deal with any direction of propagation and not

only with the high-symmetry directions. Plotting all the values of Kx and Ky

corresponding to a specific frequency leads to the equi-frequency contour (EFC)

of the phononic crystal. Knowing precisely the shape of these EFCs is of funda-

mental interest when studying focusing or self-collimating of elastic waves by
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phononic crystals [11]. Moreover, the ~KðoÞ PWE method allows to take into

account elastic moduli depending on the frequency and should be applied for

calculating the band structures of phononic crystals made of viscoelastic materials.

10.3 Finite-Difference Time Domain Method

10.3.1 Calculation of Transmission Coefficients

We present here the basic principles of the finite-difference time domain (FDTD)

method applied to the calculation of transmission coefficients of elastic waves

through phononic crystals made of nonviscous or nonviscoelastic constituents.

The method is based on discretizations of the differential equations of motion on

both spatial and time domains. As previously and for the sake of simplicity, we limit

ourselves to 2D phononic crystals.

We consider a 2D phononic crystal containing cylindrical inclusions surrounded

by a host matrix. Constituent materials are supposed to be isotropic solids or fluids.

The inclusions are parallel to the z direction and are arranged periodically in the

transverse (x,y) plane. A phononic crystal of finite thickness along the y direction is
realized by considering a small number of periods in this direction. The “sample” is

bounded by semi-infinite homogeneous media on both sides. The system is infinite

in the vertical direction z, and all its physical properties do not depend on z.
That means that we propose a strictly 2D FDTD scheme. The probing signal

Fig. 10.6 Band structures along the GX direction of the irreducible Brillouin zone for a square

array of holes drilled in a Silicon matrix: Red dots: oð~KÞ method; Black dots: ~KðoÞ method
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corresponding to a longitudinal wave that propagates along the y direction is

launched from the left homogeneous medium (inlet zone) and detected in the

right one (outlet zone) (see Fig. 10.7). We just describe here a 2D FDTD scheme

just as it has been reported in [12].

The elastic wave equation is given by

@~v

@t
¼ 1

rðx; yÞ r:
�!��s (10.35)

with

~v ¼ @~u

@t
(10.36)

where t is time, rðx; yÞ is the mass density, ~uðx; y; tÞ is the displacement field,

~vðx; y; tÞ is the velocity vector, and ��sðx; yÞ is the total stress tensor. The nonzero

Cartesian components of the 2D stress tensor ��s are

sxx ¼ C11

@ux
@x

þ C12

@uy
@y

(10.37)

syy ¼ C44

@uy
@x

þ @ux
@y

� �
(10.38)

sxy ¼ C11

@uy
@y

þ C12

@ux
@x

(10.39)

with C11(x,y), C44(x,y), C12(x,y) ¼ C11(x,y)�2C44(x,y), the position-dependent

elastic moduli. For a given isotropic medium, C11 and C44 are related to the

longitudinal Cl and transverse Ct speeds of sound as C11 ¼ rCl
2 and C44 ¼ rCt

2.

A fluid is treated as a solid with zero transverse speed of sound in this 2D FDTD

scheme. From (10.37), (10.38), and (10.39), one notes that we consider only modes

of vibration analog to XYmodes as defined by (10.15) in the preceding section. The

Fig. 10.7 Two-dimensional cross section of the FDTD model structure. The cylinders are parallel

to the z axis of the Cartesian coordinate system (Oxyz). The lattice parameter is a
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FDTD method involves transforming the governing differential equations given by

(10.35) and (10.36) in the time domain into finite differences and solving them as

one progress in time in small increments. For the implementation of the FDTD

method, we divide the computational domain intoNx � Ny sub-domains (grids) with

dimensions Dx, Dy. For the time derivative, we use forward difference, with a time

interval Dt, and the displacement field is calculated at multiple integers of Dt,
whereas the velocity is calculated on a time grid shifted by half the step. The

probing signal is launched from the left homogeneous medium and corresponds to a

longitudinal wave that propagates along the y direction for increasing y. This can be
written as Fðy; tÞ ¼ Fðy� CltÞ, where Cl is the longitudinal speed of sound in the

inlet medium. The initial conditions on the displacement field and the speed vector

are such as~uðt ¼ 0Þ ¼ ux ¼ 0

uy ¼ FðyÞ
� �

and~v t ¼ Dt
2

� � ¼ vx ¼ 0

vy ¼ �Cl
dFðy;tÞ

dt





t¼þDt=2

 !
.

The stress component sxx is calculated at time (n+1) from the components of the

displacement field calculated at time t by discretizing (10.37), then

snþ1
xx ði; jÞ ¼ C11 iþ 1

2
; j

� �
unxðiþ 1; jÞ � unxði; jÞ

Dx

� �

þ C12 iþ 1

2
; j

� �
unyði; jÞ � unyði; j� 1Þ

Dy

� �
(10.40)

where we define C11 iþ 1
2
; j

� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11ðiþ 1; jÞC11ði; jÞ

p
and C12 iþ 1

2
; j

� � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C12ðiþ 1; jÞC12ði; jÞ

p
:

Similarly, the components sxy and syy are obtained in discretized form as

snþ1
xy ði; jÞ ¼ C11 iþ 1

2
; j

� �
unyði; jÞ � unyði; j� 1Þ

Dy

� �
þ C12 iþ 1

2
; j

� �

� unxðiþ 1; jÞ � unxði; jÞ
Dy

� �
(10.41)

snþ1
yy ði; jÞ ¼ C44 i; jþ 1

2

� �
unxði; jþ 1Þ � unxði; jÞ

Dy
þ unyði; jÞ � unyði� 1; jÞ

Dx

� �
(10.42)

where we define C44 i; jþ 1
2

� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C44ði; jþ 1ÞC44ði; jÞ

p
.

Using expansions at point (i,j) and time n, (10.35) in component form becomes
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vnþ1
x ði; jÞ ¼ vnxði; jÞ þ

Dt
rði; jÞ

snþ1
xx ði; jÞ � snþ1

xx ði� 1; jÞ
Dx

þ snþ1
xy ði; jÞ � snþ1

xy ði; j� 1Þ
Dy

 !

(10.43)

vnþ1
y ði; jÞ ¼ vnyði; jÞ þ

Dt

r iþ 1

2
; jþ 1

2

� �

� snþ1
yy ði; jþ 1Þ � snþ1

yy ði; jÞ
Dx

þ snþ1
xy ðiþ 1; jÞ � snþ1

xy ði; jÞ
Dy

 !
(10.44)

where we define r iþ 1
2
; jþ 1

2

� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rði; jÞrðiþ 1; jÞrði; jþ 1Þrðiþ 1; jþ 1Þ4

p
.

Finally, the components of the displacement field at time (n+1) are deduced from
the same component but evaluated at time n as unþ1

x ði; jÞ ¼ unxði; jÞ þ Dt:vnxði; jÞ and
unþ1
y ði; jÞ ¼ unyði; jÞ þ Dt:vnyði; jÞ.
Using this iterative procedure, the elastic wave equation is solved numerically,

and the components of the time-dependent displacement field are calculated at the

exit of the outlet. The component uy(t) is then averaged on a period of the slab along
the x direction and Fourier transformed with respect to time. The same procedure is

applied when the phononic crystal slab is replaced by a homogeneous medium

identical to the inlet and the outlet media. The ratio between the two Fourier-

transformed signals (with and without the PC slab) leads to the transmission

coefficient. A reliable calculation of the transmission coefficient strongly depends

on the choice of the function F(y,t) corresponding to the probing signal. In particu-

lar, when considering the propagation through a homogeneous structure, i.e.,

without the PC slab, the Fourier-transformed signal must vary smoothly with the

frequency on a specific frequency range [0,omax]. This condition can be satisfied by

taken into account a sinusoidal function weighted by a Gaussian profile such as

Fðy; tÞ ¼ Fðy� CltÞ ¼ FðYÞ ¼ Acos½k0Y�:exp � ðk0YÞ2
2

h i
; where k0 	 omax

Cl
: The

choice of this kind of function also allows to mimic the frequency response of a

transducer generating pressure waves with a pass band [0,omax] usually used in

ultrasonic measurements.

Periodic boundary conditions are applied along the x direction. That means that

the elastic displacement is imposed to be the same on x ¼ 0 and x ¼ L, where L is

the width of the FDTD mesh along the x direction for any value of y. For example,

one must satisfy for any time step that uy(imax+1, j) ¼ uy(1, j), where the integer i
denoting the number of the spatial discretization step along the x direction varies

between 1 and imax. For closing the FDTD mesh along the y direction, it is

necessary to impose absorbing boundary conditions on ymin and ymax, where ymin

and ymax denote the entry of the inlet zone and the exit of the outlet zone. Absorbing

boundary conditions are implemented in order to prevent reflection from the end

elements of the FDTD mesh. First-order Mur’s absorbing conditions [13] are
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usually used and can be implemented in the FDTD code by satisfying the following

formula:

unþ1
y ði; jmaxÞ ¼ unyði; jmax � 1Þ þ ClDt� Dy

ClDtþ Dy

� �
unþ1
y ði; jmax � 1Þ � unyði; jmaxÞ

h i
(10.45)

unþ1
y ði; 1Þ ¼ unyði; 2Þ þ

ClDt� Dy
ClDtþ Dy

� �
unþ1
y ði; 2Þ � unyði; 1Þ

h i
(10.46)

where the integer j denoting the number of the spatial discretization step along the y
direction varies between 1 and jmax. Same formula should be satisfied for the x
component of the displacement field.

Finally, for insuring the numerical stability of the FDTD code, it must be

checked that the time step Dt and the discretization meshes Dx and Dy satisfy the

following stability criterion [14]:

Dt � 0:5

Cmax
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Dx

� �2 þ 1
Dy

� �2r (10.47)

where Cl
max stands for the largest longitudinal speed of sound of the constituent

materials involved in the structure.

10.3.2 Band Structure Calculation

In some cases, the PWE method fails to predict accurately the band structure of

phononic crystals especially for mixed composites where one of the constituent is a

fluid. Tanaka et al. [8] have reported an extension of the FDTD method for the

calculation of dispersion relations of acoustic waves in 2D phononic crystals. In

contrast with the standard FDTD approach presented in Sect. 10.3.1, the band

structure FDTD technique implies a periodic system in the transverse plane xy.

The displacement field, the velocity vector, and the stress tensor must satisfy the

Bloch theorem, i.e.,

~uð~r; tÞ ¼ ei K:
�!

~r:~Uð~r; tÞ (10.48)

~vð~r; tÞ ¼ ei K:
�!

~r:~Vð~r; tÞ (10.49)

��sð~r; tÞ ¼ ei K:
�!

~r:Sð~r; tÞ (10.50)
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where~rðx; yÞ is the position vector in the xy plane and ~KðKx;KyÞ is the Bloch wave

vector.
~Uð~r; tÞ, ~Vð~r; tÞ, and Sð~r; tÞ are spatial periodic functions satisfying ~Uð~r þ~aÞ

¼ ~Uð~rÞ, ~Vð~r þ~aÞ ¼ ~Vð~rÞ, and Sð~r þ~aÞ ¼ Sð~rÞ, where ~a is the lattice translation

vector. One inserts (10.48), (10.49), and (10.50) into the equations of propagation

of the elastic waves, i.e., (10.35) and (10.36), and these later become

d~V

dt
¼ 1

rð~rÞ i
~K:Sð~r; tÞ with ~V ¼ d~U

dt
: (10.51)

To solve (10.51), one first specifies a 2D wave vector, ~KðKx;KyÞ , along the

principal direction of the irreducible BZ. An assumption on the initial displacement
~Uð~r; t ¼ 0Þ in the form of a delta stimulus at some random location within the unit

cell is then made. The equations of motion are then solved by discretizing both

space and time. The time evolution of ~Uð ri!; tÞ at several predetermined locations ri
!

within the unit cell is recorded. Peaks in the frequency space of the Fourier-

transformed signals are identified as the eigenfrequencies of the normal modes of

the system for a given wave vector, ~K.

10.3.3 Viscoelastic Media

The FDTD method reported in Sect. 10.3.1 is suitable for the calculation of

transmission coefficient through phononic crystals made of non-lossy purely elastic

material. Nevertheless several experimental studies were devoted to phononic

crystals made of viscoelastic materials such as rubber, epoxy. Taking into account

the effects of viscoelasticity on the propagation of elastic waves in phononic

crystals is of fundamental as well as of practical interest in many areas. In this

section, an alternate FDTD scheme where the viscoelastic properties, i.e., time-

dependent elastic moduli, are rigorously taken into account is presented. As visco-

elastic materials, we consider the general linear viscoelastic fluid (GLVF).

10.3.3.1 Viscoelastic Model

When the GLVF material also is compressible, the components of the total stress

tensor are given by

sðtÞ ¼ 2

ðt
�1

Gðt� t0ÞDðt0Þdt0 þ
ðt
�1

Kðt� t0Þ � 2

3
Gðt� t0Þ

� �
~r: ~vðt0Þ
h i

Idt0

(10.52)
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where t is time,~vð~r; tÞ is the velocity vector, ~Dð~r; tÞ is the rate of deformation tensor

given by

~D ¼ 1

2
~r~v
� �

þ ~r~v
� �T� �

(10.53)

and G(t) and K(t) are the steady shear and bulk moduli, respectively.

These moduli can be experimentally determined through rheometry, and the data

can be fit in a variety of ways, including the use of mechanical-analog models.

A viscoelastic model, or in effect, the behavior pattern it describes, may be

illustrated schematically by combinations of springs and dashpots, representing

elastic and viscous factors, respectively. Hence, a spring is assumed to reflect the

properties of an elastic deformation and similarly a dashpot to depict the

characteristics of viscous flow. The generalized Maxwell model, also known as

the Maxwell– Weichert model, takes into account the fact that the relaxation does

not occur with a single time constant, but with a distribution of relaxation times.

The Weichert model shows this by having as many spring–dashpot Maxwell

elements as are necessary to accurately represent the distribution (Fig. 10.8). A

multiple element Maxwell model is therefore more apt to represent the numerous

timescales associated with relaxation in real viscoelastic materials.

For an n-element generalized Maxwell solid model, the extensional modulus

E(t) is calculated to be

EðtÞ ¼ E1 þ
Xn
i

Eie
� t

ti (10.54)

s

t2 tjt1

E2 EjE1

E∞

Fig. 10.8 Spring and dashpot illustration of the generalized Maxwell model
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wherefEi; ti ¼ 1; 2; . . . ; ngare the moduli and relaxation times of the elements, and

E1 ¼ Eð1Þ is the equilibrium extensional modulus.

Introducing aðtÞ ¼ a0 þ
Pn
i¼1

aie�t=ti where a0 ¼ E1
Esum

, ai ¼ Ei

Esum
(i ¼ 1, 2,.., n), andPn

i¼0

ai ¼ 1, Esum ¼Pn
i¼1

Ei, we obtain EðtÞ ¼ EsumaðtÞ.
Consequently, we assume that

EðtÞ ¼ 2GðtÞð1þ uÞ ¼ 3KðtÞð1� 2uÞ (10.55)

with
GðtÞ ¼ GsumaðtÞ
KðtÞ ¼ KsumaðtÞ



and

Gsum ¼ m

Ksum � 2

3
Gsum ¼ l

8<
: : (10.56)

In (10.55) and (10.56), u is the Poisson’s ratio and l and m are the Lamé constant

and shear modulus, respectively.

Now we consider a 2D elastic/viscoelastic material, where the system is infinite

in the vertical direction z, and none of its properties depends on z (translational

invariance). In this case, the Cartesian components of the 2D stress tensor deduced

from (10.52) become

sxxðtÞ ¼ 2

ðt
�1

Gðt� t0Þ @vxðt
0Þ

@x
dt0 þ

ðt
�1

Kðt� t0Þ � 2

3
Gðt� t0Þ

� �

� @vxðt0Þ
@x

þ @vyðt0Þ
@y

� �
dt0 (10.57)

syyðtÞ ¼ 2

ðt
�1

Gðt� t0Þ @vyðt
0Þ

@y
dt0 þ

ðt
�1

Kðt� t0Þ � 2

3
Gðt� t0Þ

� �

� @vxðt0Þ
@x

þ @vyðt0Þ
@y

� �
dt0 (10.58)

sxyðtÞ ¼ syxðtÞ ¼
ðt
�1

Gðt� t0Þ @vxðt0Þ
@y

þ @vyðt0Þ
@x

� �
dt0 (10.59)

For the sake of illustration, let us insert (10.56) into (10.57). UsingC11 ¼ 2mþ l,
C12 ¼ l, and C44 ¼ m, sxxðtÞ becomes

sxxðtÞ ¼ a0 C11

@uxðtÞ
@x

þ C12

@uyðtÞ
@y

� �

þC11

Xn
1

ai

ðt
�1

@vxðt0Þ
@x

e
� t�t0ð Þ

ti dt0 þ C12

Xn
1

ai

ðt
�1

@vyðt0Þ
@y

e
� t�t0ð Þ

ti dt0

(10.60)
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Equation (10.60) involves integrals of the type

IxxiðtÞ ¼
ðt
�1

@vxðt0Þ
@x

e
�ðt�t0 Þ

ti dt0 (10.61)

in which calculations can be achieved by the following recursive method.

First we assume that for an incident wave that arrives from an elastic medium,

we have
Ð t
�1 
 Ð t

0
. Then the following variable w ¼ t – t0, ()dw ¼ �dt0) leads to

IxxiðtÞ ¼
ðt
0

@vxðt� wÞ
@x

e
�w

ti dw (10.62)

Now we calculate Ixxiðtþ DtÞ.

Ixxiðtþ DtÞ ¼
ðtþDt

0

@vxðtþ Dt� wÞ
@x

e
�w

tidw (10.63)

Ixxiðtþ DtÞ ¼
ðDt
0

@vxðtþ Dt� wÞ
@x

e
�w

tidwþ
ðtþDt

Dt

@vxðtþ Dt� wÞ
@x

e
�w

tidw

(10.64)

By changing s ¼ w� Dt ¼ > ds ¼ dw

Ixxiðtþ DtÞ ¼
ð0
�Dt

@vxðt� sÞ
@x

e
�ðsþDtÞ

ti dsþ
ðt
0

@vxðt� sÞ
@x

e
�ðsþDtÞ

ti ds (10.65)

Ixxiðtþ DtÞ ¼
@vxðtÞ
@x

e
�Dt

ti þ @vxðtþ DtÞ
@x

2
Dt

2
64

3
75þ e

�Dt
ti

ðt
0

@vxðt� sÞ
@x

e
� s
tids (10.66)

And finally a recursive form for the integral calculation is obtained as

Ixxiðtþ DtÞ ¼
@vxðtÞ
@x

e
�Dt
ti þ @vxðtþ DtÞ

@x
2

dt

2
64

3
75þ e

�Dt
ti IxxiðtÞ (10.67)

where Ixxið0Þ ¼ 0

Similar equations are obtained for the yy and xy components.

Iyyiðtþ DtÞ ¼
@vyðtÞ
@y

e
�Dt
ti þ @vyðtþ DtÞ

@y

2
Dt

2
664

3
775þ e

�Dt
ti IyyiðtÞ (10.68)
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Ixyiðtþ DtÞ ¼
@vxðtÞ
@y

e
�Dt
ti þ @vxðtþ DtÞ

@y

2
Dt

2
664

3
775þ e

�Dt
ti IxyiðtÞ (10.69)

Iyxiðtþ DtÞ ¼
@vyðtÞ

@x e
�Dt
ti þ @vyðtþ DtÞ

@x
2

Dt

2
64

3
75þ e

�Dt
ti IyxiðtÞ (10.70)

We can now develop the FDTD method for the generalized Maxwell model.

10.3.3.2 FDTD Method for the Generalized Maxwell Model

As in Sect. 10.3.1, (10.35) stands for the basis equation for implementing the FDTD

scheme taking into account the viscoelastic properties of the constituent materials

of the 2D phononic crystal. The components of the velocity vector are given in

discretized form by (10.43) and (10.44).

The stress component sxx is calculated by discretizing (10.60), using expansion

at point (i, j) and time (n):

snþ1
xx ði; jÞ ¼ a0 iþ 1

2
; j

� �
C11 iþ 1

2
; j

� �
unxðiþ 1; jÞ� unxði; jÞ

Dx

� �

þ a0 iþ 1

2
; j

� �
C12 iþ 1

2
; j

� �
unyði; jÞ� unyði; j� 1Þ

Dy

� �

þC11 iþ 1

2
; j

� �Xn
p¼1

ap iþ 1

2
; j

� �

:
vnx iþ 1; jð Þ� vnxði; jÞ

2Dx
þ vn�1

x ðiþ 1; jÞ� vn�1
x ði; jÞ

2Dx
e
� Dt
tp iþ1

2
;jð Þ þ e

� Dt
tpði;jÞInxxp

" #

þC12 iþ 1

2
; j

� �Xn
p¼1

ap iþ 1

2
; j

� �

:
vnyði; jÞ� vnyði; j� 1Þ

2Dx
þ vn�1

y ði; jÞ � vn�1
y ði; j� 1Þ

2Dx
e
� Dt
tp iþ1

2
;jð Þ þ e

� Dt
tpði;jÞInyyp

" #

ð10:71Þ

where we define C11ðiþ 1=2; jÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11ðiþ 1; jÞC11ði; jÞ

p
, C12ðiþ 1=2; jÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C12ðiþ 1; jÞC12ði; jÞ
p

, and apðiþ 1=2; jÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
apðiþ 1; jÞapði; jÞ

p
, p ¼ 0,1,2, . . .,n.

10 Phononic Band Structures and Transmission Coefficients: Methods and Approaches 355



Similarly, the components syy and sxy are obtained in discretized form:

snþ1
yy i; jð Þ ¼ a0 iþ 1

2
; j

� �
C11 iþ 1

2
; j

� �
uny i; jð Þ � uny i; j� 1ð Þ

Dy

� �

þ a0 iþ 1

2
; j

� �
C12 iþ 1

2
; j

� �
unx iþ 1; jð Þ � unx i; jð Þ

Dy

� �

þ C11 iþ 1

2
; j

� �Xn
p¼1

ap iþ 1

2
; j

� �

:
vny i; jð Þ � vny i; j� 1ð Þ

2Dy
þ vn�1

y i; jð Þ � vn�1
y i; j� 1ð Þ

2Dy
e
� Dt

tp iþ1
2
; jð Þ þ e

� Dt
tp i; jð ÞInyyp

" #

þ C12 iþ 1

2
; j

� �Xn
p¼1

ap iþ 1

2
; j

� �

:
vnx iþ 1; jð Þ � vny i; j� 1ð Þ

2Dx
þ vn�1

x iþ 1; jð Þ � vn�1
x i; j� 1ð Þ

2Dx
e
� Dt

tp iþ1
2
; jð Þ þ e

� Dt
tp i; jð ÞInxxp

� �
:

ð10:72Þ

snþ1
xy i; jð Þ ¼ a0 i; jþ 1

2

� �
C44 i; jþ 1

2

� �

� unx i; jþ 1ð Þ � unx i; jð Þ
Dy

þ uny i; jð Þ � uny i� 1; j� 1ð Þ
Dx

� �

þ C44 i; jþ 1

2

� �Xn
p¼1

ap i; jþ 1

2

� �

:
vnx i; jþ 1ð Þ � vnx i; jð Þ

2Dy
þ vn�1

x i; jþ 1ð Þ � vn�1
x i; jð Þ

2Dy
e
� Dt

tp i; jþ1
2ð Þ þ e

� Dt
tp i; jð ÞInxyp

� �

þ C44 i; jþ 1

2

� �Xn
p¼1

ap i; jþ 1

2

� �

:
vny i; jð Þ � vny i� 1; jð Þ

2Dx
þ vn�1

y i; jð Þ � vn�1
y i� 1; jð Þ

2Dx
e
� Dt

tp i; jþ1
2ð Þ þ e

� Dt
tp i; jð ÞInyxp

" #
ð10:73Þ

where C44ði; jþ 1=2Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C44ði; jþ 1ÞC44ði; jÞ

p
and apði; jþ 1=2Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

apði; jþ 1Þapði; jÞ
p

, p ¼ 0,1,2, . . .,n.

It has to be mentioned that the above way of discretizing the equations ensures

second-order accurate central difference for the space derivatives. The field

components ux and uy have to be centered in different space points. Calculations

of transmission coefficients through 2D phononic crystals made of viscoelastic

constituents follow the same procedures as in Sect. 10.3.1. These calculations

must be done considering the structure depicted in Fig. 10.7 and applying periodic
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boundary conditions in the x direction and Mur’s absorbing boundary conditions on

the two extremities of the discretization mesh along the y direction.
Such calculations for 2D phononic crystals made of steel cylinders embedded

in rubber modeled as GLVF were reported in [15, 16]. Results have shown the

very good agreement between the numerical predictions and the experimental

measurements.

10.4 Multiple Scattering Theory

The multiple scattering theory (MST) was introduced for 3D phononic crystals by

three different groups at about the same time [17–19], and its 2D version was

developed 3 years later by Prof. Liu’s group in the theoretical work by Mei et al.

[20]. The MST is essentially an extension of the Korringa–Kohn–Rostoker (KKR)

theory (which is a well-known method used by the solid-state community for

electronic band structure calculations) to the case of elastic/acoustic waves. The

MST is ideally suited for phononic crystals (both 2D and 3D) in which scattering

units have simple symmetries, such as spheres or cylinders. It is also a quickly

converging method that takes into account the full vector character of the elastic

field and is able to deal with the phononic crystals of any type (e.g., liquid/solid

crystals, for which the PWE method fails). We present in this sub-section the main

points of the MST in case of the 3D phononic crystals by following the steps along

which it was developed by Liu et al. in [18].

In a homogeneous isotropic medium, the elastic wave equation may be written as

ðlþ 2mÞ ~rð ~r �~uÞ � m~r � ~r�~uþ ro2~u ¼ 0 (10.74)

where r is the density of the medium, l, m are its Lamé constants, and ~u is the

displacement field. Because of the spherical symmetry of the scatterers, it is natural

to work with the general solution of (10.74) expressed in the spherical coordinates:

~uð~rÞ ¼
X
lms

½alms~Jlmsð~rÞ þ blms~Hlmsð~rÞ� (10.75)

where ~Jlmsð~rÞ; ~Hlmsð~rÞ are defined as follows:

~Jlm1ð~rÞ ¼ 1

a
~r½jlðarÞYlmðr̂Þ�

~Jlm2ð~rÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ~r � ½~rjlðbrÞYlmðr̂Þ�

~Jlm3ð~rÞ ¼ 1

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ~r � ~r � ½~rjlðbrÞYlmðr̂Þ� (10.76)

10 Phononic Band Structures and Transmission Coefficients: Methods and Approaches 357



and

~Hlm1ð~rÞ ¼ 1

a
~r½hlðarÞYlmðr̂Þ�

~Hlm2ð~rÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ~r� ½~rhlðbrÞYlmðr̂Þ�

~Hlm3ð~rÞ ¼ 1

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ~r � ~r � ½~rhlðbrÞYlmðr̂Þ� (10.77)

wherea ¼ o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r ðlþ 2mÞ=

p
,b ¼ o

ffiffiffiffiffiffiffiffi
r m=

p
, jlðxÞ is the spherical Bessel function,hlðxÞ

is the spherical Hankel function of the first kind, and Ylmðr̂Þ is the usual spherical
harmonic with r̂ denoting angular coordinates ðy; ’Þ of ~r in spherical coordinate

system. In (10.75), index s assumes values from 1 to 3, where s ¼ 1 indicates the

longitudinal wave and s ¼ 2; 3 indicates two transverse waves of different

polarizations. In the case when the coefficients blms in (10.75) are equal to zero,

~uð~rÞ represents an incident wave, and in the case of alms ¼ 0, ~uð~rÞ represents a

scattered wave. Therefore, the wave incident on an ith scatterer is expressed as

~u in
i ð~riÞ ¼

X
lms

ailms
~Jilmsð~riÞ (10.78)

where ~ri indicates some point in space as measured from the center of the ith
scatterer. The wave scattered by scatterer i can be expressed as

~u sc
i ð~riÞ ¼

X
lms

bilms
~Hi
lmsð~riÞ: (10.79)

The first key point of MST is the idea that the wave (10.78) incident on a

given scatterer i can be viewed as a sum of the externally incident wave ~u
ð0Þ
i ð~riÞ

expressed as

~u
ð0Þ
i ð~riÞ ¼

X
lms

a
ið0Þ
lms

~Jilmsð~riÞ (10.80)

and all other scattered waves except the one scattered by the ith scatterer, which can
be expressed as

X
j6¼i

~u sc
j ð~rjÞ ¼

X
j 6¼i

X
lms

bjlms
~Hj
lmsð~rjÞ (10.81)

so that (10.78) can also be written as

~u in
i ð~riÞ ¼ ~u

ð0Þ
i ð~riÞ þ

X
j 6¼i

~u sc
j ð~rjÞ (10.82)
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Here~ri and~rj refer to the position of the same point in space and are measured

from the centers of scatterers i and j, respectively.
Another crucial point of MST is that for a given scatterer, the scattered field is

completely determined from the incident field with the help of the scattering matrix

T. In other words, the expansion coefficients A ¼ fa j
lmsg and B ¼ fb j

lmsg are related
through T ¼ ftlmsl0m0s0 g as follows:

B ¼ TA

or more explicitly

b j
lms ¼

X
l0m0s0

tlmsl0m0s0a
j
l0m0s0 : (10.83)

For objects of simple geometry, such as spheres or cylinders, the calculation of

the scattering matrix T is an exactly solvable boundary-value problem, and this is

the origin of MST’s reliability and precision when handling arrangements of

scatterers of spherical symmetry. In short, the coefficients tlmsl0m0s0 are found by

applying the boundary conditions that require the continuity of the normal

components of both the displacement and the stress vectors at the scatterer–matrix

interface. The explicit expressions of the T matrix coefficients for an elastic sphere

can be found in [17] (liquid matrix) and in [19] (elastic matrix), and in [20] for an

elastic cylinder in an elastic matrix.

The final MST equation is obtained by substituting (10.78), (10.80), (10.81), and

(10.83) into (10.82) and reads

X
jl0m0s0

dijdll0dmm0dss0 �
X
l00m00s00

t jl00m00s00l0m0s0G
ij
l00m00s00lms

 !
a j
l0m0s0 ¼ a

ið0Þ
lms (10.84)

where Glmsl0m0s0 is the so-called vector structure constant, which relates ~Hj
lmsð~rjÞ in

(10.81) and ~Jilmsð~riÞ through the relation

~Hj
lmsð~rjÞ ¼

X
l0m0s0

Gij
lmsl0m0s0

~Jil0m0s0 ð~riÞ

(more details can be found in [18]). The normal modes of the system may be

obtained by solving the secular equation that follows from (10.84) in the absence of

an external incident wave (i.e., when all a
ið0Þ
lms are zero):

det dijdll0dmm0dss0 �
X
l00m00s00

tjl00m00s00l0m0s0G
ij
l00m00s00lms












 ¼ 0: (10.85)

In case of the periodic system, Glmsl0m0s0 is modified to take into account the

symmetry of the structure. The solutions of (10.85) give the band structure of an

elastic periodic system.
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To facilitate the direct comparison with the real samples, a successful theory

must also be able to calculate the quantities that one measures in a typical experi-

ment, e.g., transmission and reflection coefficients. This is accomplished in the

framework of the layer MST, which allows one to calculate the transmission of an

elastic wave through a finite slab (with an arbitrary number of layers) of periodi-

cally arranged scatterers. The approach starts by calculating the field of the elastic

wave scattered (or transmitted) by a single layer of scatterers. Let us assume that the

layer of scatterers (elastic spheres) lies completely in the x–y plane and that

positions of the scatterers are given by vectors f~Rng of a 2D Bravais lattice,

which is generated by two primitive vectors ~a1;~a2, i.e.,

~Rn ¼ n1~a1 þ n2~a2 (10.86)

where n1; n2 are integers. The positive direction of the z-axis is chosen to be to the

left of the layer as explained by Fig. 10.9.

A plane elastic wave~u inð~rÞ incident on the layer can be expressed in general as

~u inð~rÞ ¼
X
s

~u in;s
a ð~rÞ þ

X
s

~u in;s
b ð~rÞ (10.87)

where s ¼ þ=� indicates waves incident from the left (positive z) and from the

right (negative z) respectively, while a ¼ 1 and b ¼ 2; 3 are identical to index s in

(10.75) and distinguish between the longitudinal and the transverse (with two

polarizations) waves . Each term in (10.87) can be expressed in terms of the

primitive vectors b
*

1; ~b2 of the 2D reciprocal lattice as follows:

x

y

z

,-,- , inin uu ®®

+,,+ , scsc uu
®®

++ ,, , inin
a uu ®®

-- ,, , scsc uu ®®

2a
®

1a
®

b

a b

a b

a b

Fig. 10.9 Geometry of the

layer MST. Vectors a1
!and a2

!
are the primitive vectors of

the corresponding 2D Bravais

lattice
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~u in;�
a ð~rÞ ¼

X
~g

~u in;�
ag ð~rÞ ¼

X
~g

~U in;�
ag expði~k�ag �~rÞ (10.88a)

~u in;�
b ð~rÞ ¼

X
~g

~u in;�
bg ð~rÞ ¼

X
~g

~U in;�
bg expði~k�bg �~rÞ (10.88b)

where wave vectors ~k�ag and ~k�bg are given by the expressions

~k�ag ¼ ~kjj þ~g;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ~kjj þ~g




 


2
r !

(10.89a)

~k�bg ¼ ~kjj þ~g;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ~kjj þ~g




 


2
r !

(10.89b)

Here ~g is the 2D reciprocal lattice vector (~g ¼ m1b
*

1 þ m2
~b2, where m1;m2 are

integers), and ~kjj is a reduced wave vector in the first BZ of the reciprocal lattice.

In (10.89a) and (10.89b), ð~kjj þ~gÞ simply represents components of wave vectors
~k�ag and ~k�bg that are parallel to the layer of scatterers. These expressions are chosen

to simplify subsequent calculations.

Much in the same way, the wave~u scð~rÞ scattered by the layer can be expressed as
follows:

~u scð~rÞ ¼
X
s

~u sc;s
a ð~rÞ þ

X
s

~u sc;s
b ð~rÞ

¼
X
s;~g

~U sc;s
ag expði~ksag �~rÞ þ

X
s;~g

~U sc;s
bg expði~ksbg �~rÞ (10.90)

Indices a and b have the same meaning as in case of incident wave (10.87). The

index s ¼ þ=� , however, reverses its meaning and now indicates the scattered

waves propagating away from the layer on its right (negative z) and on its left

(positive z) correspondingly (see Fig. 10.9).

After lengthy and complicated calculations, one can show (see Ref. [18]) that

amplitudes ~U sc;�
ag and ~U sc;�

bg of the scattered wave are related to the amplitudes ~U in;�
ag

and ~U in;�
bg of the incident wave with the help of matrices Mss0

kk0 (s; s
0 ¼ þ=� and

k; k0 ¼ a; b) as follows:

U sc;þ
a

U sc;þ
b

" #
¼

Mþþ
aa Mþþ

ab

Mþþ
ba Mþþ

bb

" #
U in;þ

a

U in;þ
b

" #
þ

Mþ�
aa Mþ�

ab

Mþ�
ba Mþ�

bb

" #
U in;�

a

U in;�
b

" #

U sc;�
a

U sc;�
b

" #
¼

M�þ
aa M�þ

ab

M�þ
ba M�þ

bb

" #
U in;þ

a

U in;þ
b

" #
þ M��

aa M��
ab

M��
ba M��

bb

" #
U in;�

a

U in;�
b

" # (10.91)
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In the above equations, U sc;�
k and U in;�

k are column vectors defined as

U sc;�
k ¼ ½U sc;�

kg1 U sc;�
g2

::: U sc;�
kgN�1

U sc;�
kgN �Tr (10.92a)

U in;�
k ¼ ½U in;�

kg1 U in;�
g2

::: U in;�
kgN�1

U in;�
kgN �Tr (10.92b)

where the Tr superscript denotes the operation of transposing. The explicit

expressions for the elements of the matrices Mss0
kk0 are given by Liu et al. [18].

Being very complicated mathematical objects, matrices Mss0
kk0 nevertheless have

simple physical meaning (Fig. 10.10). They are transmission and reflection matrices

for incident waves U in;�
a and U in;�

b . For example, by expanding first line in the first

matrix equation in (10.91), one obtains

U sc;þ
a ¼ Mþþ

aa U in;þ
a þMþþ

ab U in;þ
b þMþ�

aa U in;�
a þMþ�

ab U in;�
b

Figure 10.10 shows a schematic diagram explaining the physical meaning of

matrices contained in the above equation.

Having found transmission and reflection matrices through the single layer, one
needs to find a way to calculate similar matrices for a phononic crystal with an

arbitrary number of layers. Figure 10.10 shows a schematic diagram explaining the

physical meaning of matrices Mss0
kk0 contained in the above equation. This is

accomplished by calculating matrices Qss0
kk0 for each of two single layers that are

displaced with respect to the x–y plane by vectors ~a3 2= and �~a3 2= , where ~a3 is a
third primitive vector of the Bravais lattice of the phononic crystal. In other words,

,inU

,inU

M

M

M

++

++

+ -

-

-

+ -

M
,+inU

,+inU

a
aa

a

aa

ab

b

ab

b

Fig. 10.10 Schematic illustration of the physical significance of the matrices MSS0
kk0
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~a3 is a vector by which a single 2D layer of scatterers should be repeated to form the

3D phononic crystal. MatricesQss0
kk0 have the same physical meaning asMss0

kk0 and are

connected with matricesMss0
kk0 by another translation matrix ’s

k, whose elements are

explicitly expressed in [18]. The transmission and reflection matrices for the pair of

two successive layers (denoted by N and N+1) are obtained by combining

corresponding matrices Qss0
kk0 ðNÞ and Qss0

kk0 ðN þ 1Þ . The essential physics here is

that two sets of matrices are combined by taking into account allmultiple reflections
that the incident wave undergoes between two layers as it propagates through the

two-layer system. By repeating this procedure, the transmission and reflection

matrices through the slab consisting of 2n layers can be found. The corresponding

matrices for the crystal with an arbitrary number of layers can be obtained by

combining matrices for the slab with even number of layers and one extra layer.

It also should be noted that in addition to the band structure, which displays

normal modes of the system along high-symmetry directions, the MST also allows

calculation of the modes along any direction inside the crystal. The geometrical set

of all points belonging to a particular mode (which is characterized by a certain

frequency) is referred to as an equi-frequency surface or equi-frequency contour for

3D or 2D structures correspondingly.

10.5 Finite Element Method

The finite element (FE) method is suitable for the calculation of band structures

of phononic crystals, containing several phases or materials. To present the model,

a doubly periodic structure is considered. Square-, rectangular-, triangular-, or

honeycomb-type structures can be considered, but for the sake of simplicity, only

the square array is presented in this section with a 2D mesh. The phononic crystal

contains two or more different phases and consists, for instance, in a periodic array

of holes in a solid matrix or a periodic array of cylindrical rods or tubes in a solid

matrix. The formalism is the same when the periodic structure is all fluid. The

structure is supposed to be infinite and periodic in the x-y plane and is infinite and

uniform in the third direction. Consequently, the problem is strictly bidimensional,

depending only on the x and y coordinates, using plane strain conditions. The whole
domain is split into successive cells (Fig. 10.11). Due to the periodicity of the

structure, the A1 and A2 lines, parallel to the y axis, and the B1 and B2 lines, parallel
to the x axis, limit the unit cell, which is 2d1 wide in the x direction and 2d2 wide in
the y direction. In Fig. 10.11, corners are marked by letter C.

Then the structure is excited by a plane monochromatic wave, the direction of

incidence of which is marked by an angle y with respect to the positive y axis. The
incident wave is characterized by a real wave vector ~k , of modulus k, the wave

number.

Because the structure is assumed to extend from �1 to þ1 in the x and y
directions and to be periodic, any space function F (pressure, displacement, electri-

cal potential, etc.) has to satisfy the classical Bloch relation:
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Fðxþ 2d1; yþ 2d2Þ ¼ Fðx; yÞej2d1ksinyej2d2kcosy ¼ Fðx; yÞejg1ejg2 : (10.93)

Using relation (10.93) allows reducing the model to only one unit cell, which can

be meshed using FEs (Fig. 10.11). Writing relation (10.93) between the displace-

ment values for nodes separated by one period provides the boundary conditions

between adjacent cells. Using the FE method, a modal analysis is considered, and

the whole system of equations is classically

½Kuu� � o2½M�� �
~U ¼ ~F (10.94)

where the unknown is the vector of nodal values of the displacement ~U � ½Kuu� and
½M� are, respectively, the structure stiffness and coherent mass matrices. o is the

angular frequency. ~Fcontains the nodal values of the applied forces.

The application of the periodic boundary conditions implies that the phase

relation (10.93) between nodal values belonging to the A1 and A2 lines, on the

one hand, to the B1 and B2 lines on the other hand, has to be incorporated in the

matrix equation (10.94). The unit cell is divided into nine parts: the four lines A1,
A2, B1, and B2; the four corners C1, C2, C3, and C4; and the inner domain I.
Displacement vector ~U and force vector ~F are then split into the corresponding nine

parts. Due to relation (10.93), their components have to verify

~UA2 ¼ ejg1 ~UA1; ~UB2 ¼ ejg2 ~UB1; ~UC2 ¼ ejg1 ~UC1; ~UC3 ¼ ejg2 ~UC1; ~UC4 ¼ ejg1þjg2 ~UC1:

(10.95)

Then owing to the equilibrium of interconnecting forces between two adjacent

cells, relation (10.93) leads to analogous relations for the force vector. ~FI , which

corresponds to forces applied to inner nodes, is equal to zero. Defining the reduced

vector ~UR as a vector containing values of the displacement on the A1 and B1 lines,
on the C1 corner, and in the inner domain I, relations given in (10.95) imply a

simple matrix relation between ~U and ~UR, which can be written as

Fig. 10.11 Schematic

description of one unit cell of

the doubly periodic structure,

used to define the A1, A2, B1,
and B2 lines, the C1, C2, C3,
and C4 corners, and the phase
relation between the lines
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~U ¼ ½PU�~UR ¼ ½PU�
~UA1
~UB1
~UC1
~UI

0
BB@

1
CCA: (10.96)

In the same way, a matrix relation can be defined between the vector ~F and the

reduced vector ~FR:

~F ¼ ½PF�~FR ¼ ½PF�
~FA1
~FB1
~FC1
~0

0
BB@

1
CCA: (10.97)

Thus, the equation to be solved can be reduced to

½PU��T ½Kuu� � o2½M�� �½PU�~UR ¼ ½KR� � o2½MR�
� �

~UR ¼ ½PU��T ½PF�~FR: (10.98)

Finally, the matrices ½KR� and ½MR� are divided into following four parts, A1, B1,
C1, and I and the resulting equation is

½KR� � o2½MR�
� �

~UR ¼~0: (10.99)

A detailed expression of ½KR� and ½MR� are presented in Appendix 2 of [21].

For a given value of the wave number k, the phase shifts of (10.93) and (10.95)

are deduced and incorporated in relations (10.96) and (10.97). The resolution of the

system (10.99) gives the corresponding eigenvalues o that are real because the

reduced matrices ½KR� and ½MR� are hermitians.

The angular frequency o is a periodical function of wave vector ~k . Thus, the
problem can be reduced to the first BZ. The dispersion curves are built varying~k on
the first BZ, for a given propagation direction. The whole diagram is deduced using

symmetries.

A particular interest is the study of phononic crystal plates, made for instance of

arrays of air inclusions drilled in a plate. In that case, a 3D mesh is considered and

the structure is supposed to be of finite size along the thickness of the plate, periodic

and infinite in the two other directions. Only one unit mesh is considered, and a

phase relation is applied on only the four faces of the mesh, defining boundary

conditions between adjacent cells. The FE method is accurate for the study of

phononic crystal plates because it does not introduce hypothesis on the displace-

ment field or on the characteristics of the medium surrounding the plate [9, 22].

Another way to characterize periodic structures is the scattering or the radiation

of plane acoustic waves from immersed passive or active periodic structures at any

incidence. Therefore, the calculation of the transmission and reflection coefficients

is performed, when N unit cells are taken into account (Fig. 10.12). For this study,

the mesh of the N unit cells of the periodic structure is enough, with a small part of
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the surrounding fluid domain, which can be air, and a harmonic analysis is

performed at a given frequency. The general system of equation is

½Kuu� � o2½M� �½L�
�r2c2o2½L�T ½H� � o2½M1�

� �
~U
~P

� �
¼ ~F

~c

� �
(10.100)

where the unknown is the vector of nodal values of the displacement ~U and of the

pressure field ~P . ½H� and ½M1� are, respectively, the compressibility and mass

matrices for the fluid. [L] is the connectivity matrix at the interface and r and c
are the density and the sound velocity in the fluid, respectively. ~c contains the

nodal values of the pressure normal gradient on the fluid boundaries, on the top

and bottom surfaces. In this system, the periodic boundary conditions are

introduced as previously by the phase relations between nodes separated by the

periodic spacing. Then, the effects of the remaining fluid domain are accounted for

Fig. 10.12 Schematic

description of N unit cells

(N¼6) of the periodic

structure, for the calculation

of the transmission and

reflection coefficients.

A small part of the fluid

domain is meshed before and

after the periodic structure
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by matching the pressure field in the FE mesh with simple PWEs of the incoming

and outgoing waves. Writing the continuity equations introduces matrix relations

between the nodal values of the pressure on the bottom and top surfaces, which are

then incorporated into system (10.100). The resolution of the system gives the

pressure in the fluid domain. Then, the transmission and reflection coefficients are

calculated.

10.6 Model Reduction for Band Structure Calculations

10.6.1 Background

As thoroughly discussed in previous chapters and sections, the study of wave

propagation in phononic crystals, or periodic media in general, utilizes Bloch’s

theorem, which allows for the calculation of dispersion curves (frequency band

structure) and density of states. Due to crystallographic symmetry, the Bloch wave

solution needs to be applied only to a single unit cell in the reciprocal lattice space

covering the first BZ [23]. Further utilization of symmetry reduces the solution

domain, even more, to the irreducible Brillouin zone (IBZ). As mentioned in

previous sections, there are several techniques for band structure calculations for

phononic crystals and acoustic metamaterials (which are also applicable to photonic

crystals and electromagnetic metamaterials). Some of the methods involve

expanding the periodic domain and the wave field using a truncated basis. This

provides a means of classification in terms of the type of basis, e.g., the plane wave

method (Sect. 10.2) involves a Fourier basis expansion and the FE method

(Sect. 10.5) involves a real space basis expansion. The pros and cons of the various

methods are discussed in depth in the literature [24].

Regardless of the type of system and type of method used for band structure

calculations, the computational effort is usually high because it involves solving a

complex eigenvalue problem and doing so numerous times as the value of the

wave vector, k, is varied. The size of the problem, and hence the computational

load, is particularly high for the following cases: (a) when the unit cell configu-

ration requires a large number of degrees of freedom to be adequately described;

(b) when the presence of defects is incorporated in the calculations, thus requiring

the modeling of large super-cells; and (c) when a large number of calculations;

are needed such as in band structure optimization [25, 26]. All these cases suggest

that a fast technique for band structure calculation would be very beneficial.

Some techniques have been developed to expedite band structure calculations;

examples include utilization of the multigrid concept [27], development of fast

iterative solvers for the Bloch eigenvalue problem [28, 29], and extension of

homogenization methods to capture dispersion [30, 31]. In this section, we provide

a model reduction method that is based on modal transformation [32, 33]. This

method, which is referred to as the reduced Bloch mode expansion (RBME)method,
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involves carrying out an expansion employing a natural basis composed of a

selected reduced set of Bloch eigenfunctions1. This reduced basis is selected within

the IBZ at high-symmetry points determined by the crystal structure and group

theory (and possibly at additional related points). At each of these high-symmetry

points, a number of Bloch eigenfunctions are selected up to the frequency range of

interest for the band structure calculations. As mentioned above, it is common to

initially discretize the problem at hand using some choice of basis. In this manner,

RBME constitutes a secondary expansion using a set of Bloch eigenvectors and

hence keeps and builds on any favorable attributes the primary expansion approach

might exhibit. The proposed method is in line with the well-known concept of

modal analysis, which is widely used in various fields in the physical sciences and

engineering2.

In the next section, a description of the RBME process and its application in a

discrete setting (e.g., using FEs) is given for a phononic crystal problem. Some

results from a case study are also presented to demonstrate the application of the

method.

10.6.2 Reduced Bloch Mode Expansion method

The starting point for the RBME method is a discrete generalized eigenvalue

problem emerging from the application of Bloch’s theorem applied to a standard

periodic unit cell model. This yields an equation of the form

ðKðkÞ � o2MÞ~U ¼ 0; (10.101)

whereM andK(k) are the global mass and stiffness matrices, respectively; ~U is the

discrete Bloch vector, which is periodic in the unit cell domain; k is the wave

vector; and o is the frequency. Equation (10.101) is then solved at a reduced set of

selected wave vector points (i.e., reduced set of k-points), providing the

eigenvectors from which a reduced Bloch modal matrix, denoted C , is formed.

Several schemes are available for this selection, the simplest of which is the set of

eigenvectors corresponding to the first few branches at the high-symmetry points

G, X, M for a 2D model and G, X, M, R for a 3D model, as illustrated in Fig. 10.13

for square and simple-cubic cells (more details on selection schemes are given in

[32]). The matrix C is then used to expand the eigenvectors ~U, i.e.,

1 The same mode selection concept, but in the context of a multiscale two-field variational method,

was presented in [31, 34].
2 The concept of modal analysis is rooted in the idea of extracting a reduced set of representative

information on the dynamical nature of a complex system. This practice is believed to have

originated by the Egyptians in around 4700 B.C. in their quest to find effective ways to track the

flooding of the Nile and predict celestial events [35].
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~Uðn�1Þ ¼ Cðn�mÞ ~Vðm�1Þ; (10.102)

where ~V is a vector of modal coordinates for the unit cell Bloch mode shapes.

In (10.102), n and m refer to the number of rows and number of columns for the

matrix equation. To enable significant model reduction, the chosen k-point selec-
tion scheme has to ensure that m<<n . Substituting (10.102) into (10.101), and

premultiplying by the complex transpose of C,

C�KðkÞC~V� o2C�MC~V ¼ 0; (10.103)

Fig. 10.13 Unit cell in reciprocal lattice space with the irreducible Brillouin zone, high-symmetry

k-points (solid circles) and intermediate k-points (hollow ciircles) shown. (a) 2D square unit cell,

(b) 3D simple-cubic unit cell

Fig. 10.14 Phononic band structure and density of states (DOS) calculated using full model

(matrix size: 4,050 � 4,050) and reduced Bloch mode expansion model (matrix size: 24 � 24).

The IBZ and eigenvector selection points are shown in the left inset. The 2D unit cell is shown in

the right inset; the stiff/dense material phase is in black, and the compliant/light material phase is

in white. The finite element method was used for the primary expansion
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yields a reduced eigenvalue problem of size m� m,

�KðkÞ~V� o2 �M~V ¼ 0; (10.104)

where �M and �KðkÞ are reduced generalized mass and stiffness matrices. The

eigenvalue problem given in (10.104) can then be solved for the entire region of

interest within the IBZ at a significantly lower cost compared to using the full

model given in (10.101).

To demonstrate the RBME approach, we consider a linear elastic, isotropic,

continuum model of a 2D phononic crystal under plain strain conditions. As an

example, a square lattice is considered with a bi-material unit cell. One material

phase is chosen to be stiff and dense and the other compliant and light. In particular,

a ratio of Young’s moduli of E2/E1 ¼ 16 and a ratio of densities of r2/r1 ¼ 8 are

chosen. The topology of the material phase distribution in the unit cell is shown in

the inset of Fig. 10.14. The unit cell is discretized into 45 � 45 uniformly sized

four-node bilinear quadrilateral FEs, i.e., 2,025 elements. With the application of

periodic boundary conditions, the number of degrees of freedom is n ¼ 4050.

Figure. 10.14 shows the calculated band structure and density of states using two-

point expansion, that is, the selection is carried out at the G, X,M points in k-space.
In the calculations, eight modes were utilized at each of these selection points. As

such, a total of 24 eigenvectors (m ¼ 24) were used to form the Bloch modal

matrix. The results for the full model are overlaid for comparison indicating

excellent agreement, despite a reduction of model size from 4050 to 24 degrees

Fig. 10.15 Computational efficiency: ratio of reduced Bloch mode expansion model to full model

calculation times, r, versus number of sampled k-points along the border of the IBZ, nk (for two 2D
finite element meshes). The number of elements is denoted by nel
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of freedom. For models with a larger number of degrees of freedom, and a calcula-

tion with high k-point sampling, two orders of magnitude or greater reduction in

computational expense will be achieved (as shown in Fig. 10.15).

While the focus in this section has been on phononic crystals, the RBME method

is also applicable to acoustic metamaterials, to discrete lattice dynamics calcula-

tions, and to photonic and electronic band structure calculations. Furthermore, the

method is applicable to any type of lattice symmetry.
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AANR. See All Angles Negative Refraction
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Acoustic branch, 24, 29

Acoustic diode, 229

Acoustic impedance, 71–73

Acoustic phonons, 46, 47, 68–71

Acoustic rectification, 218, 222, 236, 239–240

Active material, 258, 262, 278

Addition rule, 176–178

All Angles Negative Refraction (AANR), 127,
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Anomalous dispersion, 115

Anomalous reflections, 221, 229

Anti-resonance, 161, 162, 166–178, 196

Autocollimation, 271

Autocorrelation function (HCAF), 314, 316,

320–324

Average phonon lifetime, 317, 318

B

Ballistic, 104, 105, 107

Band

edges, 162, 163, 183
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modes, 67
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Band-folding, 308, 312, 318
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