

Lecture Notes in Artificial Intelligence 7352

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Philip Cox Beryl Plimmer
Peter Rodgers (Eds.)

Diagrammatic
Representation
and Inference
7th International Conference, Diagrams 2012
Canterbury, UK, July 2-6, 2012
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Philip Cox
Dalhousie University, Faculty of Computer Science
6050 University Avenue, Halifax, NS, B3H 1W5, Canada
E-mail: pcox@cs.dal.ca

Beryl Plimmer
University of Auckland, Department of Computer Science
Private Bag 92019, Auckland, New Zealand
E-mail: beryl@cs.auckland.ac.nz

Peter Rodgers
University of Kent, School of Computing
Canterbury, CT2 7NF, UK
E-mail: p.j.rodgers@kent.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-31222-9 e-ISBN 978-3-642-31223-6
DOI 10.1007/978-3-642-31223-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012939642

CR Subject Classification (1998): H.5.2, H.5, H.4, I.3, K.4, F.4.1, G.2.2, I.2, G.3,
J.4, J.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 7th International Conference on the Theory and Application of Diagrams—
Diagrams 2012—was held in Canterbury, UK, during July 2012.

Diagrams is the only conference series that provides a united forum for all
areas that are concerned with the study of diagrams, including architecture, art,
artificial intelligence, cartography, cognitive science, computer science, educa-
tion, graphic design, history of science, human–computer interaction, linguis-
tics, logic, mathematics, philosophy, psychology, and software modelling. The
conference attracts a large number of researchers from these fields, positioning
Diagrams as a major international event in interdisciplinary research.

Diagram 2012 solicited long papers, short papers and posters. We received
54 long submissions, 17 short submissions and 12 poster submissions. This rep-
resents an increase on the previous conference, Diagrams 2010. Many long sub-
missions were accepted as short papers or poster abstracts, similarly, some short
papers were accepted as posters. The final totals in these proceedings are 16 long
papers, 6 short papers and 21 poster abstracts, giving a long-paper acceptance
rate of 30%.

Workshop proposals and tutorial suggestions were solicited. Three workshops
and one tutorial were accepted. The workshops were held the day before and
day after the main conference, and gave an opportunity for specialists in those
research areas to converge and discuss their shared interests. The organizers of
the workshops managed their own peer reviewing. A two-hour tutorial added
further to the vitality of the conference program. The conference also included
a Graduate Symposium which provided research students and recent graduates
a forum to present their work and to network.

The conference was fortunate to include two excellent invited keynote speec-
hes. Catherine Plaisant, a Senior Research Scientist at the Human–Computer
Interaction Lab of the University of Maryland Institute for Advanced Computer
Studies, discussed interactions with temporal event sequence representations.
Maxwell Roberts, an experimental psychologist at the University of Essex gave
his talk on the usability, aesthetics and evaluation of transport schematics. The
conference also coincided with the opening of his travelling exhibition, “Under-
ground Maps Unravelled,” at the University of Kent.

We appreciate the contribution to the peer-review process of the Program
Committee’s 29 members and of the additional reviewers. Each paper was con-
sidered by at least three reviewers, followed by a discussion phase. This peer
review was organized using the EasyChair system. The quality and substance
of the reviewers’ contributions allowed the Program Chairs to make decisions
about acceptance with confidence.

VI Preface

The University of Kent Hospitality Department made an important contri-
bution to the smooth running of the conference. We would like to thank the
conference Organizing Committee for managing their responsibilities effectively.
They also provided valuable support in running the conference. Nathaniel Miller
applied for and administered a National Science Foundation (NSF) award to
support the Graduate Symposium, and Lisa Best was awarded a grant from
her institution, the University of New Brunswick, also in support of the Gradu-
ate Symposium. The Cognitive Science Society provided the best student paper
prize in the main conference.

July 2012 Philip Cox
Beryl Plimmer
Peter Rodgers

Conference Organization

Conference Chair

Peter Rodgers University of Kent, UK

Program Chairs

Philip Cox Dalhousie University, Canada
Beryl Plimmer University of Auckland, New Zealand

Tutorials Chair

Gem Stapleton University of Brighton, UK

Workshops Chair

Nathaniel Miller University of Northern Colorado, USA

Graduate Symposium Chair

Lisa Best The University of New Brunswick, Canada

Publicity Chair

Aidan Delaney University of Brighton, UK

Program Committee

Gerard Allwein Naval Research Laboratory, USA
Dave Barker-Plummer Stanford University, USA
Alan Blackwell Cambridge University, UK
Rachel Blagojevic University of Auckland, New Zealand
Dorothea Blostein Queen’s University, Canada
Paolo Bottoni University of Rome, Italy
B. Chandrasekaran Ohio State University, USA
Richard Cox University of Edinburgh, UK
Frithjof Dau University of Wollongong, Australia
Richard Davis Singapore Management University, Singapore
Jim Davies Carleton University, Canada
Aidan Delaney University of Brighton, UK
Max J. Egenhofer University of Maine, USA

VIII Conference Organization

Stephanie Elzer Millersville University, USA
Jacques Fleuriot University of Edinburgh, UK
Jean Flower Autodesk, UK
Ashok Goel Georgia Institute of Technology, USA
Kirstie Hawkey Dalhousie University, Canada
Mary Hegarty University of California, Santa Barbara, USA
John Howse University of Brighton, UK
Mateja Jamnik Cambridge University, UK
Unmesh Kurup Rensselaer Polytechnic Institute, USA
Richard Lowe Curtin University of Technology, Australia
Kim Marriott Monash University, Australia
Mark Minas Universität der Bundeswehr, Germany
N. Hari Narayanan Auburn University, USA
Luis Pineda Universidad Nacional Autónoma de México
Helen Purchase Glasgow University, UK
Derek Reilly Dalhousie University
Frank Ruskey University of Victoria, Canada
Metin Sezgin Koç University, Turkey
Atsushi Shimojima Doshisha University, Japan
Nik Swoboda Universidad Politécnica de Madrid, Spain

External Reviewers

Jim Burton
Alejandro Erickson
Scott Fleming
Michael Helms
Veronika Irvine
Johann M. Kraus
Ludwig Lausser
David Majerich
Stefan Marks
Keith McGreggor
Simone Paolo Ponzetto
Phil Scott
John Taylor
Sean Wilson
Michael Wybrow

Peter Chapman
Andrew Fish
Melanie Grieb
Christian Hirsch
David Joyner
Maithilee Kunda
Sonja Maier
Khalegh Mamakani
Markus Maucher
Petros Papapanagiotou
Sattiraju Prabhakar
Ryo Takemura
Matej Urbas
Bryan Wiltgen

Sponsoring Institutions

National Science Foundation, USA
The University of New Brunswick, Canada
The University of Kent, UK
Cognitive Science Society

Table of Contents

Keynote

Life on the Line: Interacting with Temporal Event Sequence
Representations . 1

Catherine Plaisant

Tutorial

Learning to Use the Openbox: A Framework for the Implementation of
Heterogeneous Reasoning . 3

Dave Barker-Plummer, John Etchemendy, Michael Murray,
Emma Pease, and Nik Swoboda

Workshops

3rd International Workshop on Euler Diagrams . 4
Peter Chapman and Luana Micallef

Technology Enhanced Diagrams Research Workshop 5
Richard Cox and Jonathan San Diego

Accessible Graphics: Graphics for Vision Impaired People 6
Cagatay Goncu and Kim Marriott

Graduate Student Symposium

Graduate Student Symposium of Diagrams 2012 . 7
Lisa A. Best

Psychological and Cognitive Issues

Automatically Recognizing Intended Messages in Grouped Bar
Charts . 8

Richard Burns, Sandra Carberry, Stephanie Elzer, and
Daniel Chester

Representing Category and Continuum: Visualizing Thought 23
Barbara Tversky, James E. Corter, Lixiu Yu, David L. Mason, and
Jeffrey V. Nickerson

X Table of Contents

Elucidating the Mechanism of Spontaneous Diagram Use
in Explanations: How Cognitive Processing of Text and Diagrammatic
Representations Are Influenced by Individual and Task-Related
Factors . 35

Emmanuel Manalo and Yuri Uesaka

Diagram Layout

Orthogonal Hyperedge Routing . 51
Michael Wybrow, Kim Marriott, and Peter J. Stuckey

Improved Layout for Data Flow Diagrams with Port Constraints 65
Lars Kristian Klauske, Christoph Daniel Schulze,
Miro Spönemann, and Reinhard von Hanxleden

Aesthetic Layout of Wiring Diagrams . 80
Christian Ernstbrunner and Josef Pichler

Diagrams and Data Analysis

Points, Lines and Arrows in Statistical Graphs . 95
Cengiz Acartürk

Enriching Indented Pixel Tree Plots with Node-Oriented Quantitative,
Categorical, Relational, and Time-Series Data . 102

Michael Burch, Michael Raschke, Miriam Greis, and
Daniel Weiskopf

Interpreting Effect Size Estimates through Graphic Analysis of Raw
Data Distributions . 117

Michael T. Bradley, Andrew Brand, and A. Luke MacNeill

Psychological Evidence of Mental Segmentation in Table Reading 124
Takeshi Sugio, Atsushi Shimojima, and
Yasuhiro Katagiri

Venn and Euler Diagrams

Proof-Theoretical Investigation of Venn Diagrams: A Logic Translation
and Free Rides . 132

Ryo Takemura

Euler Diagram Encodings . 148
Paolo Bottoni, Gennaro Costagliola, and Andrew Fish

Table of Contents XI

Reasoning with Diagrams

Speedith: A Diagrammatic Reasoner for Spider Diagrams 163
Matej Urbas, Mateja Jamnik, Gem Stapleton, and Jean Flower

Algebra Diagrams: A HANDi Introduction . 178
Peter C.-H. Cheng

Boolean Differences between Two Hexagonal Extensions of the Logical
Square of Oppositions . 193

Hans Smessaert

Investigating Aesthetics

An Exploration of Visual Complexity . 200
Helen C. Purchase, Euan Freeman, and John Hamer

Diagram Ecologies – Diagrams as Science and Game Board 214
Christoph Lueder

Dynamic Diagrams: A Composition Alternative . 233
Richard Lowe and Jean-Michel Boucheix

Applications of Diagrams

Diagrammatically-Driven Formal Verification of Web-Services
Composition . 241

Petros Papapanagiotou, Jacques Fleuriot, and Sean Wilson

The Diagram of Flow: Its Departure from Software Engineering and Its
Return . 256

S.J. Morris and O.C.Z. Gotel

DDA\Repository: An Associative, Dynamic and Incremental Repository
of Design Diagrams . 270

Bharat Dave and Gwyllim Jahn

Structure, Space and Time: Some Ways That Diagrams Affect
Inferences in a Planning Task . 277

David L. Mason, James E. Corter, Barbara Tversky, and
Jeffrey V. Nickerson

Posters

What Can Concept Diagrams Say? . 291
Gem Stapleton, John Howse, Peter Chapman, Ian Oliver, and
Aidan Delaney

XII Table of Contents

CDEG: Computerized Diagrammatic Euclidean Geometry 2.0 294
Nathaniel Miller

Design and Implementation of Multi-camera Systems Distributed over
a Spherical Geometry . 297

Hossein Afshari, Kerem Seyid, Alexandre Schmid, and
Yusuf Leblebici

Algebraic Aspects of Duality Diagrams . 300
Lorenz Demey

The Use of Diagrams in Science: An Examination of Trends in Articles
Published in Science between 1880 and 2010 . 303

Lillian P. Fanjoy, A. Luke MacNeill, and Lisa A. Best

A User Study on Curved Edges in Graph Visualisation 306
Kai Xu, Chris Rooney, Peter Passmore, and Dong-Han Ham

Truth Diagrams: An Overview . 309
Peter C.-H. Cheng

Are Teachers Aware of Students’ Lack of Spontaneity in Diagram Use?
Suggestions from a Mathematical Model-Based Analysis of Teachers’
Predictions . 312

Yuri Uesaka, Emmanuel Manalo, and Masanori Nakagawa

Modelling Delivery Information Flow: A Comparative Analysis of
DSMs, DFDs and ICDs . 315

Christopher Durugbo, Ashutosh Tiwari, and Jeffrey R. Alcock

Completeness Proofs for Diagrammatic Logics . 318
Jim Burton, Gem Stapleton, and John Howse

Modelling Information Flow: Improving Diagrammatic Visualisations . . . 321
Christopher Durugbo

A Graph Calculus for Proving Intuitionistic Relation Algebraic
Equations . 324

Renata de Freitas and Petrucio Viana

Genetic Algorithm for Line Labeling of Diagrams Having Drawing
Cues . 327

Alexandra Bonnici and Kenneth Camilleri

A Logical Investigation on Global Reading of Diagrams 330
Ryo Takemura, Atsushi Shimojima, and Yasuhiro Katagiri

Pictures Are Visually Processed; Symbols Are also Recognized 334
Peter W. Coppin

Table of Contents XIII

How Do Viewers Spontaneously Segment Animated Diagrams
of Mechanical and Biological Subject Matter? . 337

Jean-Michel Boucheix and Richard Lowe

Which Diagrams and When? Health Workers’ Choice and Usage
of Different Diagram Types for Service Improvement 340

Gyuchan Thomas Jun, Cecily Morrison,
Christopher O’Loughlin, and P. John Clarkson

Eye Movement Patterns in Solving Scientific Graph Problems 343
Miao-Hsuan Yen, Chieh-Ning Lee, and Yu-Chun Yang

Formalising Simple Codecharts . 346
Jon Nicholson and Aidan Delaney

Notes about the London Underground Map as an Iconic Artifact 349
Breno Bitarello, Pedro Atã, and João Queiroz

The Efficacy of Diagrams in Syllogistic Reasoning: A Case of Linear
Diagrams . 352

Yuri Sato and Koji Mineshima

Author Index . 357

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 1–2, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Life on the Line: Interacting with Temporal Event
Sequence Representations

Catherine Plaisant

Human-Computer Interaction Lab, University of Maryland
plaisant@cs.umd.edu

Abstract. Sequences of events are part of people's life, their travel, hospital vis-
its, even web browsing experiences. Analysing collections of event sequences
can be challenging even for skilled computer professionals. We will review a
series of visualization techniques developed at the Human-Computer Interac-
tion lab to handle temporal data.

Keywords: visual analytics, time, interaction, temporal patterns.

1 Interactive Environments

Our early work on Lifelines (www.cs.umd.edu/lifelines) has shown that a timeline
visualization of personal histories can provide benefits over a tabular view; but many
tasks i nvolve temporal comparisons across multiple records relative to important

events (e.g. a first
heart attack). We are
exploring novel
strategies that facili-
tate the exploration
of temporal patterns
in sequences of
events. Lifelines2
[1] (Fig. 1) allows
for aligning records
on important events,
ranking, and filtering
combined with
grouping of results
to find common or
rare events, e.g..
Other approaches
explore query-by-
example. Our
current project, Li-
feFlow (Fig. 2) [2]

Fig. 1. Lifelines2 allows the exploration of multiple records, which
can be aligned, ranked and filtered. Temporal summaries allow
comparisons of aggregate data across groups of records.

www.cs.umd.edu/hcil/lifelines2

2 C. Plaisant

expands on LifeLines2 to provide compact visual summaries of all the sequences
found in the data. This breakthrough technique allows users to explore questions such
as “what happens before and after hospital patients are admitted to the Intensive Care
Unit?

2 Evaluation

While controlled
studies can quantify
the benefits of inte-
raction (e.g. the
benefits of provid-
ing alignment), we
use multi-faceted
in-depth longitu-
dinal case studies
(MILCs) [3] with
clinical researchers.
These studies
document the dis-
coveries made as
participants work
on problems over
time, and the suc-
cesses - and strug-
gles- they encounter

while using our prototypes with their own data in their own work environment. Case
studies seem well adapted to studying the creative activities that users of visual ana-
lytics engage in.

Acknowledgements. This work is conducted with Ben Shneiderman and many grad-
uate students from HCIL, with support from NIH, Washington Hospital Center and
Oracle.

References
1. Wang, T., Plaisant, C., Shneiderman, B., Spring, N., Roseman, D., Marchand, G., Mukher-

jee, V., Smith, M.: Temporal Summaries: Supporting Temporal Categorical Searching, Ag-
gregation and Comparison. IEEE Transactions on Visualization and Computer Graphics 15,
1049–1056 (2009)

2. Wongsuphasawat, K., Guerra Gómez, A., Plaisant, C., Wang, T.W., Taieb-Maimon, M.,
Shneiderman, B.: LifeFlow: Visualizing an Overview of Event Sequences. In: Proc. Conf.
on Human Factors in Computing Systems (CHI), pp. 1747–1756 (2011)

3. Shneiderman, B., Plaisant, C.: Strategies for Evaluating Information Visualization Tools:
Multidimensional In-depth Long-term Case Studies. In: Proc. of BELIV 2006, BEyond
Time and Errors: Novel evaLuation Methods for Information Visualization, a Workshop of
the AVI 2006 International Working Conference, pp. 38–43. ACM (2006)

Fig. 2. LifeFlow is a novel interactive visual overview of event
sequences. It summarizes all possible sequences and the temporal
spacing between events.

www.cs.umd.edu/hcil/lifeflow

Learning to Use the Openbox: A Framework for

the Implementation of Heterogeneous Reasoning

Dave Barker-Plummer1, John Etchemendy1, Michael Murray1,
Emma Pease1, and Nik Swoboda2

1 CSLI, Stanford University, Stanford, CA, 94305-4101, USA
2 Universidad Politécnica de Madrid, Boadilla del Monte, Madrid, 28660, Spain

1 Description

In this tutorial we will present the Openbox, a framework for constructing het-
erogeneous reasoning systems. Heterogeneous reasoning is reasoning involving
multiple representations. A common example is using a map (diagram) together
with an address (sentence) to plan a route from one point to another. This kind
of reasoning may involve diagrams of multiple types, diagrams and sentences,
and/or multiple instances of the same diagram type. Reasoning with sentences,
or with a single diagram are special cases of the general heterogeneous setting.

Many research groups within the diagrams community develop software im-
plementations of tools for reasoning with diagrammatic representations. Few of
these applications are used outside of the research groups that develop them.
We conjecture that part of the reason for this is the difficulty involved in moving
software from being an experimental platform usable only by the developers, to
a widely available, robust vehicle for research. One major obstacle is in develop-
ing the application infrastructure which is not of research interest, and requires
effort that is hard to justify within the research/funding community.

The Openbox is a component-based architecture which serves as a container
into which different representations can be loaded. A developer interested in
building a system to reason with a particular kind of diagram implements the
relevant diagram-specific components and loads these into the Openbox to obtain
a reasoning tool for those diagrams. Components from other developers can be
added to the Openbox to create heterogeneous reasoning systems by mixing and
matching the representations.

By providing the Openbox framework, as open source, to the community we
hope to encourage the development of more robust, distributable applications
for heterogeneous reasoning, encourage sharing of implementations within the
community, and reduce redundancy of implementation effort. This will lower the
cost of entry to the development of diagrammatic and heterogeneous reasoning
applications.

This tutorial is aimed at rseearchers who are considering the use of the Open-
box . The tutorial will begin with an overview of the use of the framework, while
the core of the tutorial is a program-along exercise to modify or develop a com-
ponent. The result will be an understanding of the Openbox component life cycle
and activities, and preparation for the implementation of original components.

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, p. 3, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

3rd International Workshop on Euler Diagrams

Peter Chapman1 and Luana Micallef2

1 Visual Modelling Group, School of Computing, Engineering and Mathematics,
University of Brighton, UK

p.b.chapman@brighton.ac.uk
2 School of Computing, University of Kent, Canterbury, UK

lm304@kent.ac.uk

Euler diagrams represent relationships between sets, including intersection,
containment, and disjointness. These diagrams have become the foundations
of various visual languages and have notably facilitated the modelling of, and
logical reasoning about, complex systems. Over the years, they have been ex-
tensively used in areas such as biosciences, business, criminology and national
security to intuitively visualize relationships and relative cardinalities of sets.
This widespread adoption has allowed analysis of complex collections of data.

The workshop will cover all aspects of Euler diagram research, particularly in
areas such as:

1. theoretical advances: drawability, layouts, logic and reasoning,
2. software support: diagram generation, automated reasoning, and data ex-

ploration,
3. real-world applications: system modelling, information visualization, and ed-

ucation,
4. cognition and perceptual principles: readability, aesthetics, and evaluation

including comparison to other representations.

Recently, there have been significant advances in all of the above areas. This
workshop of peer-reviewed submissions will afford the growing Euler diagrams
community the opportunity to present and discuss new research, and share multi-
interdisciplinary expertise. We envisage that this will stimulate collaborations
on current and future research needs. This will be the third Euler diagrams
workshop (after two successful workshops in 2004 and 2005) and will again bring
together researchers with diverse backgrounds, from both academic and industry
including: mathematicians, computer scientists, artificial intelligence experts, in-
formation designers, visualization experts, human-computer interaction experts
and users from various application areas.

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, p. 4, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Technology Enhanced Diagrams Research Workshop

Richard Cox1 and Jonathan San Diego2

1 School of Informatics, University of Edinburgh
rcox@inf.ed.ac.uk

2 King’s College London
j.p.san diego@kcl.ac.uk

Workshop Description

It is an understatement to say that technology has enabled methodological innovations
in diagram and spatial reasoning research. New technologies offer opportunities for
recording data through video screen recordings; spatial navigation in real and virtual re-
alities, visual attention monitoring, diagram activity on graphics tablets, and recording
body position and gestures via position sensors and accelerometers. Whilst the rich data
that these techniques yield offer exciting potential for research innovation, researchers
face new methodological challenges due to its sheer volume and the challenge of trian-
gulating data from multi-sources.

In the proposed workshop, experienced diagrams researchers will share their knowl-
edge and experiences of diagrams research using innovative technologies including
haptic devices, interactive surfaces, eye trackers and virtual reality systems. Interac-
tive sessions on the use of computer-based tools for synchronising and analysing multi-
source data will be offered. Workshop participants will have an opportunity to explore
and observe the methods in action and discuss their potential for methodological inno-
vation. The workshop will emphasise the need to plan research and design systems that
building data collection mechanisms from the outset. The importance of underpinning
the analyses with appropriate methodological theory will also be emphasised. Partici-
pants will also provide feedback on a proposed platform for locating and sharing useful
resources for technology-enhancing their diagrams research.

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, p. 5, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Accessible Graphics:

Graphics for Vision Impaired People

Cagatay Goncu and Kim Marriott

Clayton School of IT, Monash University
{cagatay.goncu,kim.marriott}@monash.edu

1 Introduction

Graphics are widely used in newspapers, text books, web pages, metro maps,
instruction manuals etc. When appropriate they can provide significant cogni-
tive benefits over text. Their use is set to increase as interactive information
visualisation applications become more mainstream.

Unfortunately, graphics are not easily accessed by people with severe vision
impairment. There have been many different approaches to solve this problem us-
ing tactile, tactile-audio, haptic and speech/non-speech audio techniques. How-
ever, these approaches have limitations such as the cost of translating into an
accessible graphics format, use of expensive tactile graphics or expensive periph-
eral devices, or lack of congruence with the original visual graphic.

We believe accessible graphics is at a watershed and that recent advances in in-
terface technologies, such as low cost haptic feedback devices, touch screens etc,
have the potential to greatly improve access to graphics by the vision impaired
in the next decade. How to do this and the potential benefits for people with vi-
sion impairment are the subject of this one day workshop. The workshop aims to
bring together researchers in the diagrams community, who are interested in the
cognitive benefits of graphics and accessible graphics, with researchers and devel-
opers of new interface technologies that can support accessible graphics, as well
as practitioners from organizations responsible for providing accessible graphics.
The workshop will consist of short presentations and demonstrations by workshop
attendees intermixed with breakout discussions to answer questions such as:

• What do not we know about cognition of accessible graphics and how could
we find out?

•• How best can we preserve the cognitive benefits of visual graphics in acces-
sible representations?

• How best can we provide low-cost, portable accessible graphics?
• How can we support interaction and dynamic content in accessible graphics?
• What are the limitations of current technologies and what presentation tech-
nologies are feasible for mainstream use in the next 5 years?

• How can we create accessible graphic content quickly and cheaply?
• How useful are accessible graphics in learning?
• How can we use graphics between sighted and blind people in collaborative
educational and work places?

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, p. 6, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, p. 7, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Graduate Student Symposium
of Diagrams 2012

Lisa A. Best

Department of Psychology, University of New Brunswick
100 Tucker Park Road, Saint John, NB E2L 4L5 Canada

Lisa.Best@unb.ca

The Graduate Student Symposium (GSS) was intended to provide student researchers
the opportunity to present their research and interact with other students and research-
ers interested in different aspects of diagrammatic research. We were committed to
encouraging participation from a diverse group of students and received submissions
from students typically underrepresented in science and engineering, such as members
of minority groups (9 submissions), women (7 submissions), and students from insti-
tutions not previously represented at the diagrams conference, were encouraged to
participate.

The goals of the 2012 GSS was twofold. Firstly, the Symposium was intended to
provide senior graduate students and recent graduates with the opportunity to present
their research. Feedback from established researchers was provided after each
presentation. Secondly, the Symposium provided students with the opportunity to
network with each other as future colleagues. Because Diagrams is the only
conference series that provides a forum for all areas relevant to the study of diagrams,
students were exposed to multidisciplinary research and met other researchers
interested in areas closely related to their research.

Three groups of presenters attended the Graduate Symposium: (1) students who
presented papers at Diagrams 2012; (2) students who presented posters at the main
conference, gave an oral presentation at the graduate symposium; and, (3) students
who made submissions directly to the GSS. Submissions were received from students
from seven different countries, including UK, USA, Canada, Sweden, Japan, and
Sweden. There was a presentation by the GSS chair on how to prepare for a
successful academic career.

A grant from the National Science Foundation (totaling $20,000 USD) provided all
students attendees with funds to cover their conference fees and partially offset their
travel expenses.

To close, the GSS provided students with the opportunity present their research
and network with each other as future colleagues. In keeping with the
multidisciplinary nature of the Diagrams conference series, students from diverse
disciplines, such as psychology, computer science, engineering, education, design,
and philosophy, were invited to present their research. The variety of topics presented
by students provides researchers with information about the future direction of
diagram research.

Automatically Recognizing Intended Messages
in Grouped Bar Charts

Richard Burns1, Sandra Carberry1, Stephanie Elzer2, and Daniel Chester1

1 Dept of Computer Science, Univ. of Delaware, Newark, DE 19716 USA
{burns,carberry,chester}@cis.udel.edu

2 Dept of Computer Science, Millersville Univ., Millersville, PA 17551 USA
elzer@cs.millersville.edu

Abstract. Information graphics (bar charts, line graphs, grouped bar
charts, etc.) often appear in popular media such as newspapers and mag-
azines. In most cases, the information graphic is intended to convey a
high-level message; this message plays a role in understanding the docu-
ment but is seldom repeated in the document’s text. This paper presents
our methodology for recognizing the intended message of a grouped bar
chart. We discuss the types of messages communicated in grouped bar
charts, the communicative signals that serve as evidence for the message,
and the design and evaluation of our implemented system.

1 Introduction

Information graphics are non-pictoral graphics that display information, such
as bar charts, line graphs, grouped bar charts, and pie charts. The purpose of
an information graphic in popular media—national and local newspapers (USA
Today, Philadelphia Inquirer) and magazines (Time, Newsweek)—is usually to
communicate a high-level contextual message to the graph viewer, as opposed
to merely displaying data for analysis.

Grouped bar charts are a type of information graphic. They are similar to
simple bar charts in that they visually display quantifiable relationships of values;
however they contain an additional grouping dimension. Despite this additional
complexity, they still convey intended high-level messages. For example, the
grouped bar chart in Figure 1 ostensibly conveys the high-level message that
“China has a greater rate of software piracy than the rest of the world.”

Clark [6] noted that language is more than just words, but rather is any “sig-
nal” or lack thereof, where a signal is a deliberate action that is intended to
convey a message, such as gestures and facial expressions. We can view infor-
mation graphics as a form of language. This paper presents a methodology for
automatically reasoning about the most likely intended message of a grouped
bar chart using their communicative signals as evidence; that is, we predict the
graphic designer’s high-level intention in designing the graphic.

Carberry [4] studied graphics from popular media and observed that the
graphic’s message was very often not repeated in the caption or headline, nor

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 8–22, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Automatically Recognizing Intended Messages in Grouped Bar Charts 9

in any article text. Thus, it is infeasible to perform only natural language pro-
cessing techniques on the caption and headlines of the graphic and expect to
consistently recognize high-level messages.

97
92

49
39

1994

2002

Percentage of
Software in Use
Which is Pirated

China World

Fig. 1. From NewsWeek, “Microsoft
Cozies Up to China”, June 28, 2004

Some research has already considered
the communicative intent of informa-
tion graphics. Kerpedjiev et al. [14] pro-
posed a methodology for automatically
generating graphics that realize desired
intentions. Fasciano [11], in the Post-
graphe system, generated graphics based
on the input of a communicative intention
and a data set. Mittal [16], in the SAGE
system, implemented a process which au-
tomatically generates captions which can
be used to explain data in novel or creative
graphics. Although the concept of gener-
ating good captions bears some similarity
to identifying the intended message of a
graphic, Mittal is given the data points
that will be displayed and the communica-
tive goal of the graphic. In our work, the communicative goal must be inferred
by reasoning about the communicative signals in the graphic.

Both Elzer [9] and Wu [21] have implemented systems which automatically
recognize the most likely high-level message in simple bar charts and line graphs,
respectively. However, grouped bar charts are much more complex than simple
bar charts and line graphs; thus they convey a much richer and varied set of
messages, the kinds of communicative signals are different, and inferring the
intended message requires more complex reasoning.

At least three applications can greatly benefit from this research. The first
is a system which provides sight-impaired individuals with alternative access
to information graphics in multimodal documents by conveying the high-level
content of its intended message via speech. The second is to use a graphic’s
intended message to index it for retrieval from a digital library. The third is to
use the intended message of a graphic as its high-level content and take it into
account during the summarization of a multimodal document. Our colleagues
are actively investigating all three applications.

Section 2 describes our grouped bar chart collection, the identification of the
types of high-level messages that graphic designers overwhelmingly convey in
grouped bar charts, and the annotation of our corpus. Section 3 describes the
communicative signals that appear in grouped bar charts. Section 4 presents
our implemented Bayesian reasoning framework, describes how the extracted
communicative signals are used as evidence in inferring the intended message of
a grouped bar chart, and discusses the system’s evaluation. Section 5 discusses
future work motivated by the inherent additional complexity in grouped bar
charts.

10 R. Burns et al.

2 Messages

Our corpus is a collection of 222 grouped bar charts from popular media (main-
stream newspapers and magazines).1 We analyzed the corpus to identify the
types of high-level messages that graphic designers communicate using grouped
bar charts and generalized these into message categories. This section discusses
our identified high-level message categories and presents examples from our
grouped bar chart corpus; Table 1 lists all of the message categories, and their
constraints and instantiated parameters.

2.1 Messages

Trend Messages. Trend messages convey a general trend (rising, falling, or
steady) over a set of ordinal data points. For example, the grouped bar chart in
Figure 2 ostensibly conveys the high-level message that “China increased spend-
ing on education, social security, military, and rural support from 2004 to 2006.”,
a Rising-Trends-All message category. Note that trends can be within-groups
in which case each group of bars comprises a data series or across-groups (as
in Figure 2 with the ith bar in each group comprising the ith data series). Ta-
ble 1 shows that the Rising-Trends-All message category requires at least 3 data
points for the trend and that data series be over a set of ordinal entities. The
trends hold for each series and the overall message of Figure 2 can be represented
as: Rising-Trends-All(across-groups: {Education, Social security, Military, Rural
support}).
Relationship Messages. Relationship messages capture the consistency of the
relative values for a set of entities, or the inconsistency of one set of relative
values with respect to the other sets. For example, the grouped bar chart in
Figure 8 ostensibly conveys the high-level message that “The increased funding
to Life Sciences is in contrast to the steady or decreased funding to the other
research areas.”, a contrasting message that we can represent with the message
category Entity-Relationship-Contrast. As with trend messages, the set of entities
may be within-groups, as in Figure 8, or across-groups (the ith bar from
each group). The parameter <i> as listed in Table 1 is instantiated with the
contrasting entity, in this case: 1st group (Life Sciences). Thus for Figure 8, the
intended message is Entity-Relationship-Contrast(within-groups:{Life Sciences,
Psychology, . . ., Other}, 1st group: Life Sciences).
Gap Messages. Gap messages recognize a high-level message involving either
one gap, or a trend in the size of multiple gaps, where a gap is the approximate
absolute difference between two values within the same entity. For example, the
grouped bar chart in Figure 3 ostensibly conveys that “There is an increasing gap
between the number of patents filed and the number of patents issued, over the
period from 1994 to 2003.”, and can be represented as Gap-Increasing(across-
groups:{’94,’95,. . . ,’03}). Figure 4 shows a Gap-Crossover message: “The gap

1 The corpus is available online at http://www.cis.udel.edu/∼burns/corpus

Automatically Recognizing Intended Messages in Grouped Bar Charts 11

T
ab

le
1.

O
ur

gr
ou

pe
d

ba
r

ch
ar

t
an

al
ys

is
id

en
ti
fie

d
nu

m
er

ou
s

m
es

sa
ge

s
th

at
gr

ap
hi

c
de

si
gn

er
s

co
nv

ey
vi

a
gr

ou
pe

d
ba

r
ch

ar
ts

.
M

es
sa

ge
ca

te
go

ri
es

ha
ve

co
ns

tr
ai

nt
s
(f

or
ex

am
pl

e,
a

tr
en

d
m

us
t
ex

is
t
ov

er
at

le
as

t
th

re
e

en
ti
ti
es

)
an

d
on

e
or

m
or

e
pa

ra
m

et
er

s
w

hi
ch

ar
e

in
st

an
ti
at

ed
.

C
on

st
ra

in
ts

K
ey

:O
(o

rd
in

al
en

ti
ti
es

ar
e

re
qu

ir
ed

),
3+

(a
t

le
as

t
th

re
e

en
ti
ti
es

ar
e

re
qu

ir
ed

),
2

(t
w

o
en

ti
ty

lim
it
).

M
es

sa
ge

C
at

eg
or

y
<

P
ar

am
et

er
(s

)>
C

on
st

ra
in

ts
G

lo
ss

R
is

in
g-

T
re

n
d
s-

A
ll

<
p
>

O
,
3+

T
h
er

e
is

th
e

sa
m

e
tr

en
d

(r
is

in
g,

fa
ll
in

g,
st

ea
d
y,

or
ch

an
gi

n
g)

fo
r

al
l
en

ti
ti

es
in

th
e

<
p
>

d
at

a
se

ri
es

w
h
er

e
<

p
>

is
“w

it
h
in

gr
ou

p
s”

or
“a

cr
os

s
gr

ou
p
s”

.
F
al

li
n
g-

T
re

n
d
s-

A
ll

<
p
>

S
te

ad
y-

T
re

n
d
s-

A
ll

<
p
>

C
h
an

ge
d
-T

re
n
d
s-

A
ll

<
p
>

O
p
p
os

it
e-

T
re

n
d
s

<
p
>

O
,
2

T
h
e

tw
o

en
ti

ti
es

h
av

e
op

p
os

it
e

tr
en

d
s

in
th

e
<

p
>

d
at

a
se

ri
es

w
h
er

e
<

p
>

is
“w

it
h
in

gr
ou

p
s”

or
“a

cr
os

s
gr

ou
p
s”

.
C

on
tr

as
t-

T
re

n
d

<
p
,
i>

O
,
3+

T
h
e

<
i>

th
tr

en
d

is
co

nt
ra

st
in

g
to

al
l
of

th
e

ot
h
er

tr
en

d
s

in
th

e
<

p
>

d
at

a
se

ri
es

w
h
er

e
<

p
>

is
“w

it
h
in

gr
ou

p
s”

or
“a

cr
os

s
gr

ou
p
s”

.
R

is
in

g-
T
re

n
d
s-

M
os

tl
y

<
p
>

T
h
er

e
is

so
m

e
tr

en
d

(r
is

in
g,

fa
ll
in

g,
st

ea
d
y)

fo
r

a
m

a
jo

ri
ty

b
u
t

n
ot

al
l
en

ti
ti

es
in

th
e

<
p
>

d
at

a
se

ri
es

w
h
er

e
<

p
>

is
“w

it
h
in

gr
ou

p
s”

or
“a

cr
os

s
gr

ou
p
s”

.
F
al

li
n
g-

T
re

n
d
s-

M
os

tl
y

<
p
>

S
te

ad
y-

T
re

n
d
s-

M
os

tl
y

<
p
>

S
am

e-
R

el
at

io
n
sh

ip
-A

ll
<

p
>

E
ac

h
en

ti
ty

in
th

e
<

p
>

d
at

a
se

ri
es

h
as

th
e

sa
m

e
re

la
ti

ve
or

d
er

in
g

of
b
ar

va
lu

es
w

h
er

e
<

p
>

is
“w

it
h
in

gr
ou

p
s”

or
“a

cr
os

s
gr

ou
p
s”

.
O

p
p
os

it
e-

E
nt

it
y-

R
el

at
io

n
sh

ip
<

p
>

2
T

h
e

tw
o

en
ti

ti
es

in
th

e
<

p
>

d
at

a
se

ri
es

h
av

e
a

d
iff

er
en

t
re

la
ti

ve
or

d
er

in
g

of
b
ar

va
lu

es
w

h
er

e
<

p
>

is
“w

it
h
in

gr
ou

p
s”

or
“a

cr
os

s
gr

ou
p
s”

.
E

nt
it
y-

R
el

at
io

n
sh

ip
-C

on
tr

as
t

<
p
,
i>

3+
T

h
e

<
i>

th
en

ti
ty

h
as

a
co

nt
ra

st
in

g
re

la
ti

ve
or

d
er

in
g

of
b
ar

va
lu

es
co

m
p
ar

ed
to

al
l
of

th
e

ot
h
er

en
ti

ti
es

in
th

e
<

p
>

d
at

a
se

ri
es

w
h
er

e
<

p
>

is
“w

it
h
in

gr
ou

p
s”

or
“a

cr
os

s
gr

ou
p
s”

.
S
am

e-
R

el
at

io
n
sh

ip
-M

os
tl

y
<

p
>

T
h
e

m
a
jo

ri
ty

b
u
t

n
ot

al
l

en
ti

ti
es

in
th

e
<

p
>

d
at

a
se

ri
es

h
av

e
th

e
sa

m
e

re
la

ti
ve

or
d
er

in
g

of
b
ar

va
lu

es
w

h
er

e
<

p
>

is
“w

it
h
in

gr
ou

p
s”

or
“a

cr
os

s
gr

ou
p
s”

.
G

ap
-I

n
cr

ea
si

n
g

<
p
>

O
,
3+

T
h
e

ga
p

b
et

w
ee

n
tw

o
en

ti
ti

es
is

tr
en

d
in

g
(i

n
cr

ea
si

n
g,

d
ec

re
as

in
g)

ov
er

th
e

<
p
>

d
at

a
se

ri
es

w
h
er

e
<

p
>

is
“w

it
h
in

gr
ou

p
s”

or
“a

cr
os

s
gr

ou
p
s”

.
G

ap
-D

ec
re

as
in

g
<

p
>

G
ap

-C
ro

ss
ov

er
<

p
>

T
h
e

ga
p

b
et

w
ee

n
tw

o
en

ti
ti

es
d
ec

re
as

ed
so

m
u
ch

th
at

on
e

en
ti

ty
ca

u
gh

t-
u
p
-t

o
an

d
th

en
cr

os
se

d
th

e
ot

h
er

w
h
er

e
<

p
>

(t
h
e

se
qu

en
ce

of
ga

p
s)

is
“w

it
h
in

gr
ou

p
s”

or
“a

cr
os

s
gr

ou
p
s”

.
G

ap
-C

om
p
ar

is
on

-S
in

gl
e

<
p
,
i>

3+
T

h
e

ga
p

in
th

e
<

i>
th

en
ti

ty
in

th
e

<
p
>

d
at

a
se

ri
es

is
b
ei

n
g

co
m

p
ar

ed
to

th
e

ga
p
s
of

th
e

ot
h
er

en
ti

ti
es

w
h
er

e
<

p
>

is
“w

it
h
in

gr
ou

p
s”

or
“a

cr
os

s
gr

ou
p
s”

.
G

ap
-C

om
p
ar

is
on

-P
ai

r
<

p
>

2
T

h
e

tw
o

ga
p
s
in

th
e

<
p
>

d
at

a
se

ri
es

ar
e

b
ei

n
g

co
m

p
ar

ed
w

it
h

ea
ch

ot
h
er

w
h
er

e
<

p
>

is
“w

it
h
in

gr
ou

p
s”

or
“a

cr
os

s
gr

ou
p
s”

.

E
nt

it
y-

C
om

p
ar

is
on

<
p
,
i>

T
h
e

<
i>

th
en

ti
ty

in
th

e
<

p
>

d
at

a
se

ri
es

is
b
ei

n
g

co
m

p
ar

ed
to

th
e

ot
h
er

en
ti

ti
es

w
h
er

e
<

p
>

is
“w

it
h
in

gr
ou

p
s”

or
“a

cr
os

s
gr

ou
p
s”

.
R

is
in

g-
E

nt
it

ie
s-

A
ll

<
p
>

O
,
2

A
ll

en
ti

ti
es

in
th

e
<

p
>

d
at

a
se

ri
es

h
av

e
tw

o
d
at

a
p
oi

nt
s

an
d

ar
e

(r
is

in
g,

fa
ll
in

g,
st

ea
d
y)

w
h
er

e
<

p
>

is
gr

ou
p
s

of
se

ri
es

.
F
al

li
n
g-

E
nt

it
ie

s-
A

ll
<

p
>

S
te

ad
y-

E
nt

it
ie

s-
A

ll
<

p
>

R
is

in
g-

E
nt

it
ie

s-
M

os
tl

y
<

p
>

T
h
e

m
a
jo

ri
ty

b
u
t

n
ot

al
l
en

ti
ti

es
in

th
e

<
p
>

d
at

a
se

ri
es

h
av

e
tw

o
d
at

a
p
oi

nt
s

an
d

ar
e

(r
is

in
g,

fa
ll
in

g,
st

ea
d
y)

w
h
er

e
<

p
>

is
gr

ou
p
s

of
se

ri
es

.
F
al

li
n
g-

E
nt

it
ie

s-
M

os
tl

y
<

p
>

S
te

ad
y-

E
nt

it
ie

s-
M

os
tl

y
<

p
>

12 R. Burns et al.

between the number of Internet users in the US and the number in China has
steadily decreased until now China has more Internet users than the US.” As we
observe in Table 1, the Gap-Increasing and Gap-Crossover message categories
require similar data constraints to the Rising-Trend: namely that there are at
least three data points and that the trending is over a set of ordinal entities.

2004

MilitaryEducation

Social Security Rural support

0605

0

100

200

300

400

China’s central government expenditure, yuan bn

Guns and butter

Fig. 2. Graphic from The
Economist, “Planning the new
socialist countryside”, March 9,
2006

Patenting trends among survey respondents

Patents issued

’95 ’97 ’99 ’01 ’03

June

0

1000

2000

3000

4000

5000

6000

7000

Number of patents

Patents filed

Fig. 3. Graphic from Technology Review, “A
Mixed Bag of U.S. Institutions”, July 2005

Some gap messages compare the gaps in one entity with the gaps of the
other entities. For example, Figure 5 ostensibly conveys that “The difference
in North American revenue between 2007 and 2008 is much larger than the
difference in revenue between 2007 and 2008 for the other areas listed.” This can
be represented as Gap-Comparison-Single(within-groups: {N America, Europe,
Latin America, Asia Pacific}, 1st group: <N America>).

Entity Comparison Messages. Entity comparison messages compare one en-
tity against the other entities. For example, the grouped bar chart in Figure 1
ostensibly conveys that “China has a greater rate of piracy than the rest of the
world.”. This is captured by the Entity-Comparison message category and is rep-
resented as Entity-Comparison(within-groups:{China,World}, 1st group: China).

Additional Messages. Space limitations preclude us from describing all of our
25 message categories listed in Table 1.

2.2 Annotation

Coders individually annotated each graphic in the corpus with the high-level
message that it conveyed by determining its message category and the instanti-
ation of its parameter.2 Where there was disagreement, the coders discussed the
graphic until a consensus was reached.
2 Only a small number of grouped bar charts did not contain an intended message.

Automatically Recognizing Intended Messages in Grouped Bar Charts 13

June

0

50

100

150

200

300

250

2002 080706050403

Internet users
m

United States China

Fig. 4. From The Economist
Daily Chart, July 31, 2008

North American

Global Growth
General Motors’
second quarter
revenue from its

automotive operations
is down 33% from the
same period a year
ago, but abroad,
revenue is growing.
In billions: Asia Pacific

Latin America, Africa & Middle East

Europe

N. America

5.2

5.3

5.1

4.3

9.5

10.6

$29.7

$19.8

2007

2008

Fig. 5. Graphic from Wall Street Journal, “GM
to Build Diesel Engines in Thailand”, August 14,
2008

3 Communicative Signals

Graph designers use communicative signals in grouped bar charts in order to
help convey their intended message. This section describers the kinds of com-
municative signals found in grouped bar charts. These signals are exploited
as communicative evidence in the intention recognition system presented in
Section 4.

3.1 Salience via Visual Signals

Visual signals are often used by graphic designers to make an entity (a bar or set
of bars) salient. This suggests that the salient entity is an important part of the
graphic’s intended message—in our terminology, it should be an instantiation of
the <i> parameter in the message categories of Table 1.

An entity can be made salient by coloring it differently from the other entities
in the graphic. Figure 6 shows a graphic from Time, where coloring creates
salience. Here the ’04 bar in the first group is colored differently from the ’04
bars in the other groups, thereby drawing attention to the increased instruction
on reading, in contrast with the decreased instruction for other subjects.

Sets of bars can become salient based on their position in the graphic. For
example, in Figure 8 the group “Life Sciences” is salient by virtue of its leading
position which is not part of a natural (such as alphabetical) ordering of the
groups.

A dramatic difference in height between one entity and the other entities can
make an entity salient. The “Life Sciences” entity in Figure 8 also jumps out
because it is so much taller than the other groups.

3.2 Linguistic Signals

Although Elzer [7] observed that captions in popular media very often do not
capture a graphic’s intended message, captions often contain linguistic signals

14 R. Burns et al.

that help convey the message. We observed two kinds of linguistic signals in
grouped bar charts: verb signals and linguistic structure signals.

Certain kinds of verbs can signal one or more high-level message categories.
For example, in the caption for Figure 7, “Shrinking Giants”, the verb shrink-
ing suggests the message categories: Falling-Trends-All, Falling-Trends-Mostly,
Falling-Entities-All, or Falling-Entities-Mostly.

The linguistic structure of the caption can signal the salience of a specific
entity. For example, in the caption for Figure 9, “Obama captured first-time
voters, but Clinton was strong among older voters”, three of the four graphed
entities (Obama, Clinton, older) are mentioned. They are each mentioned once
in the caption in independent clauses; Obama and Clinton are both in subject
position; older is in object position; however, Clinton is in a contrastive clause
introduced by “but”. This suggests that Clinton is a salient entity that is to be
compared.

3.3 Relative Perceptual Effort as a Communicative Signal

Green et al. [12] hypothesized that graphic designers construct graphics that fa-
cilitate as much as possible the tasks that the graph viewer will need to perform
to understand the graphic’s message. Thus, following Elzer [10] we view relative
perceptual task effort as a communicative signal: messages that require more
perceptual effort than others are less likely to be the message that the graph
designer intended to convey. This correlates with Larkin and Simon [15] who
observe that informationally equivalent graphics are not necessarily computa-
tionally equivalent, and Peebles and Cheng [17] who note that seemingly minor
design changes can greatly affect performance on graph reading tasks.

For example in Figure 10, although both graphics contain the same data,
individually they convey two different messages. The high-level message conveyed
by the left graphic is ostensibly that male salaries are greater than female salaries
in all of the subject areas, while the message conveyed by the right graphic is
ostensibly a message of rank: that engineering and the physical sciences have
the greatest salaries for both men and women. While this information can be
obtained from either graphic, the design of the graphic affects the perceptual
effort required and thus the intended message of the graphic.

We have built a cognitive model which produces a relative estimate of the
perceptual effort required given a message and graphic, which is also considered
as communicative evidence in the intention recognition system. This model is
built in the ACT-R [2] cognitive framework, following the ACT-R theory as
well as graph comprehension work from the psychological literature. Pilot eye-
tracking experiments, in which we asked human subjects to perform specific
graph tasks on grouped bar charts and subsequently analyzed their eye scan
patterns and fixation and attention locations, also helped us identify the factors
in grouped bar charts which affect the required recognition effort.

Pinker [18] identified high-level visual patterns such as linear lines and
quadratic curves which are easily identifiable for most graph viewers. In our
pilot experiments, we found that subjects fixated less on sets of entities whose

Automatically Recognizing Intended Messages in Grouped Bar Charts 15

’99 ’99 ’99 ’99’04 ’04 ’04 ’04
0

2

4

6

8

10

40 min. 17 min. 23 min. 17 min.

Reading Math Science History

Weekly hours of instructional
time, Grades 1 through 6

Fig. 6. Graphic from Time, “How to Fix
No Child Left Behind”, June 4, 2007

0

15

30

45

60

$75 billion

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

’98 ’99 ’00 ’01 ’02 ’03 ’04 ’05

GM
Ford

Shrinking Giants

Fig. 7. Graphic from Graphic from Wall
Street Journal, “Auto Industry, at a
Crossroads, Finds Itself Stalled by His-
tory”, January 2, 2006

Follow the money
Universities are expanding biotech
programs as the federal government
shifts more research money to
life sciences.

1994 share 2004 share

Math, Computer

Engineering

Other

Social
Sciences

Science

Sciences

Physical
Sciences

Environmental

Life
Sciences

Psychology

41%

54%

2%

2%

16%

10%

10%

7%

5%

5%

17%

2%

2%

4%

2%

20%

Fig. 8. Graphic from USA Today, “Uni-
versities grid for battle for biosciences
supremacy”, June 24, 2005

18 to 24
Obama

Clinton 48%

22%

32%

60%

Clinton was stronger among older voters
Obama captured first−time voters, but

65 and older

18 to 24

65 and older

Fig. 9. Graphic from Time Magazine,
January 21, 2008

bar heights resembled an easily identifiable visual pattern. Shah [19] noted that
the grouping of data points will influence the perceived pattern recognition of
trends and in our pilot experiments, subjects could still perceive trends despite
the presence of exceptions (a data point which does not follow the trend). Pe-
ripheral vision—the ability for multiple objects to be processed in parallel in a
guided search [1]—was present in our experiments: subjects showed the ability
to perform some graph tasks without fixating on the first or last groups. Wickens
and Carswell [20] defined the proximity compatibility principle and showed how
close perceptual proximity is advised (the perceptual similarity of two elements)
if and only if closeness in processing proximity is intended (the extent to which
elements are used as part of the same task). We observed an increase in the time
for subjects to perform graph tasks for grouped bar charts with increased noise

16 R. Burns et al.

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�

80,000

70,000

60,000

50,000

40,000

30,000

20,000

Computer/All
Math Sci

Engin. Phys.
Sci. Sci.

Social
Sci.

Life

Male Salaries

Female Salaries

50,000

60,000

70,000

80,000

20,000

30,000

40,000

FEMALE SALARIES MALE SALARIES

L
ife Sci.

Social Sci.

A
ll

C
om

puter/M
ath Sci.

Phys Sci.

E
ngineering

Social Sci.

L
ife Sci.

C
om

puter/M
ath Sci.

A
ll

Phys Sci.

E
ngineering

Fig. 10. Two bar charts designed from the same data

and visual clutter, where visual clutter is the close spatial proximity of two per-
ceptually or semantically contrasting elements which should not be compared.

The design of our model of relative perceptual effort incorporates these factors
so that the presence of high-level visual patterns in a graphic enables the model
to process a graph quicker while the presence of visual clutter and exceptions
cause an increase in processing time.

Our model was validated for a subset of our message categories in an initial
experiment [3] where the relative time required for our model to perform graph
tasks on a range of graphics was compared with the relative average for human
subjects to perform the same tasks with the same graphics. Our current work
includes validating our complete model for all message categories.

4 Recognizing the Intended Message

4.1 System Architecture

Our system for recognizing the intended message of a grouped bar chart requires
an XML representation of a graphic which specifies each bar, each series and
group of bars, their heights, colors, annotations, the axes labels, caption, etc.
This is the responsibility of a visual extraction module [5]. The generated output
is similar to Huang [13] who in addition to representing the graphic also considers
vision issues such as identifying an information graphic, locating an information
graphic within a noisy pdf document, and performing OCR on the text within
the graphic.

Our intention recognition system for grouped bar charts is modeled with a
Bayesian reasoning framework which captures the relationship between commu-
nicative signals and intended messages. Figure 11 shows the general structure
of our Bayesian network. There is an Intended Message node at the top whose
states are either message categories that still need to be further instantiated
or messages that can only have within-groups or across-groups as their possi-
ble instantiation.3 The five most prevalent states in our corpus are shown along
3 Thus, we can effectively treat these as message categories in our design.

Automatically Recognizing Intended Messages in Grouped Bar Charts 17

with their a priori probabilities before any evidence is entered into the network.
The communicative signals for a graphic are the evidence for or against possible
messages. These are represented in the leaves of the network as evidence nodes.

<within−groups, 4th>

Series Ordered and Sorted

Num Groups

Num Series

Num Salient Entities
Ling Rising Signal Verb

Ling Falling Signal Verb

Ling Steady Signal Verb

Ling Changed Signal Verb

Coloring Effort Estimate

Positioning
Salient Gap

Recency
Linguistic Classifier

Coloring Effort Estimate

Positioning
Salient Gap

Recency
Linguistic Classifier

14.9% Entity Comparison
7.44% Rising−Trends−All−WithinGroups
6.98% Contrast−Trend
6.98% Entity−Relationship−Contrast
6.05% Gap−Crossover−WithinGroups
..............

IntendedMessage

Groups Ordered By Bar Value

Groups Ordered and Sorted

Entity Comparison

Directional Message

Focused Entity Message

Generalized Message

. . .Gap−Comparison−Single

Gap−Comparison−Single
<within−groups, 1st>

Gap−Comparison−Single

Fig. 11. Network structure which captures the probabilistic relationship between in-
tended messages and communicative evidence

The grey nodes in Figure 11 between the top-level and leaves are determin-
istic, generalizing nodes which group together message categories that have a
general feature in common. This alleviates the data sparseness problem that
arises due to the limited size of our corpus. For example, the Directional Message
node groups together message categories which convey the same direction, such
as Rising-Trends-All, Rising-Trends-Mostly, Rising-Entities-All, Rising-Entities-
Mostly, into the Rising Messages category. Then, the child evidence nodes (Ling
Rising, Ling Falling, etc.) capture the probabilistic relationships between a Ris-
ing Message and the “signal verb” communicative signals. Similarly, the Focused
Entity Message node generalizes those message categories that focus on a specific
entity (<i>) (such as Contrast-Trend and Entity-Comparison) and captures the
probabilistic relationship between the evidence node Num Salient Entities which
represents how many entities in a graphic are salient. Finally, the Generalized
Message node categorizes those message categories together (such as Rising-

18 R. Burns et al.

Trends-All and Falling-Trends-All) for which we expect naive evidence (such as
the number of bars per group) to have the same affect on each.

Message categories at the top level that have a parameter instantiation be-
sides within-groups or across-groups are instantiated with a specific entity lower
in the network. In this case, evidence nodes appear as children for each possible
instantiation and are able to capture evidence that is only relevant for a specific
parameter instantiation. For example, in Figure 11 the Gap-Comparison-Single
message category node is instantiated for every possible group entity instantia-
tion in Figure 5. The value for the Salient Gap evidence node will be positive
only for the instantiated node Gap-Comparison-Single(within-groups, 1st).

4.2 Extracting Evidence

The evidence provided by visual communicative signals (such as whether a group
of bars is colored differently from the other bars) is automatically extracted from
the XML representation of a graphic and entered into evidence nodes. The text
of accompanying captions and headlines is extracted and parsed to identify the
presence of any signal verbs.

The extraction of linguistic structure signals is more complex. Headlines and
captions are parsed into their clausal structures. A support vector machine was
trained on our corpus of captions to produce a learned model that decides which
of several mentioned entities is most linguistically salient. It uses features such as
the frequency with which the entity is mentioned, the source of the mentioning
(main headline, caption, etc.), the ordering of mentions (is one entity preced-
ing), subject position, object position, main/subordinate clausal structure. The
decision of the model is entered into the Linguistic Classifier evidence nodes.

The relative perceptual effort model takes the XML representation and out-
puts a relative time for the expected recognition of some message. This relative
time is discretized and is entered into the Effort evidence nodes.

4.3 Training

Associated with each node in the Bayesian network is a conditional probability
table that captures the probability of each value for the node given the values
for its parent nodes. The conditional probability tables are learned from our
corpus of graphics. The Bayesian network applies Bayes’ rule to the network
constructed for a new graphic to propagate the evidence through the network and
compute the posterior probability for each node. Table 2 shows the conditional
probability table that captures the probabilistic relationship between the high-
level Gap-Comparison-Single(within-groups) message category and any visual
gap salience of the instantiated <i> entity or the other within-group entities.4

4 The Gap-Comparison-Single(within-groups) message category generalizes the Gap-
Comparison-Single(within-groups,<i>) messages where <i> is a group entity.

Automatically Recognizing Intended Messages in Grouped Bar Charts 19

Table 2. Learned conditional probability table for the Gap Salience evidence node
under the Gap-Comparison-Single(within-groups) message category

Gap Comparison-Single This Entity This Entity Other Entities No
<WithinGroups, i> Only Plus Others Only Entities

Intended 58.3% 24.9% 8.3% 8.3%
Not Intended 6.9% 14.8% 65.3% 12.9%

4.4 Current Performance and Discussion

We evaluated our system using leave-one-out cross-validation5, where the XML
representation of each of the 222 graphics is in-turn used as a test graphic with
the conditional probability tables computed from the other 221 graphs. Results
are averaged over all the tests. Currently our system’s accuracy rate is 65.6%:
that is, the message category and instantiation that the system predicts matches
exactly the consensus-based annotation. Table 3 shows our results. As a baseline,
we use the message category that appears most often in our corpus; however, note
that our system must recognize not only the correct message category but also
the instantiated parameters. Our system more than triples the baseline success
rate. Although our success rate is lower that that achieved by Elzer or Wu for bar
charts and line graphs (78.2% and 73% respectively), grouped bar charts involve
more than twice as many message categories and convey far richer messages,
making recognition more complex. Note that our success rate improves to 78.6%
if we use the top two system hypotheses; this results from grouped bar charts
having secondary messages, where occasionally it is difficult to determine which
message is primary and which is secondary. (See Future Work).

Table 3. Results of our system

Grouped Bar Chart System
Average number of possible messages for a grouped bar chart: 20.2

system criteria accuracy
Grouped Bar Chart System top message matches annotation 65.6%

Grouped Bar Chart System either of top 2 messages match
annotation 78.6%

Baseline: predict most common
possible message top message matches annotation 20.2%

Other Systems
Simple Bar Chart System (Elzer) [9] top message matches annotation 78.2%

Line Graph System (Wu) [21] top message matches annotation 73.0%

5 Leave-one-out cross-validation, as opposed to 10-fold cross-validation, was used to
mitigate some sparseness issues in the data set.

20 R. Burns et al.

Table 4. Example showing that removing communicative evidence for Figure 8 af-
fects the network’s prediction that Entity-Relationship-Contrast(within-groups:{Life
Sciences, Psychology, . . ., Other, 1st group:Life Sciences}) is the intended message

Likelihood Node Evidence Evidence Likelihood
Before Before After After

only one piece of evidence removed:

99.5% Linguistic Classifier only entity
mentioned

no entities
mentioned 94.1%

99.5% Salient By Height only entity that is
salient by height

no entities salient
by height 90.1%

99.5% Positioning first entity neither first nor
last 74.3%

evidence removed sequentially, one after another:

99.5% Linguistic Classifier only entity
mentioned

no entities
mentioned 94.1%

94.1% Salient By Height only entity that is
salient by height

no entities salient
by height 44.2%

44.2% Positioning first entity neither first nor
last 1.25%

As an example of a graphic processed by our system, consider the grouped
bar chart in Figure 8. The graph is processed by the Visual Extraction Mod-
ule to produce an XML representation. Our system correctly predicts an in-
tended message of Entity-Relationship-Contrast (within-groups:{Life Sciences,
Psychology,. . .,Other},1st group:Life Sciences) with an almost certain proba-
bility of 99.5%. Three communicative signals are automatically entered in the
evidence nodes for the Entity-Relationship-Contrast message category node in-
stantiated with <p>=within-groups, <i>=1st, namely that it is the only entity
mentioned in the caption, that it is the only entity that is visually salient by
height, and that it is positioned first in a set of more than two entities. Table 4
shows how the network’s prediction of this message decreases if the graphic were
altered to eliminate some of the communicative signals and thus alter the ev-
idence in the Bayesian Network. We see that the height salience and leading
position of the entity are very important for the system’s hypothesis of this
message. The effect of removing Life Sciences from the text, and thus chang-
ing the evidence in the Linguistic Classifier evidence node, follows our intuition
that an intended contrasting message may not always be linguistically salient
in accompanying text. In each case, the presence of two other kinds of salience
compensates when one kind of salience is removed as shown in the top half of
Table 4. The bottom half of Table 4 shows the cumulative affect of removing
several communicative signals. As we adjust the evidence entered into the net-
work, the system’s confidence in this message as the graph’s intended message
decreases and the likelihood of other possible messages increases.

Automatically Recognizing Intended Messages in Grouped Bar Charts 21

5 Conclusion

5.1 Future Work

Sparseness of data and reference resolution issues (such as determining that
USA refers to United States) are two major causes of our system’s errors. We
are working to address these problems.

Grouped bar charts are much more complex than simple bar charts because
of their additional “grouping” dimension. This facilitates the communication of
additional high-level messages, such as in Figure 1, “the rate of Chinese piracy
decreased less than the rest of the world” which supplements our previous ob-
served message that “China has a greater rate of software piracy than the rest of
the world.” Such secondary messages are novel to grouped bar charts and were
not observed in the work of simple bar charts and line graphs by Elzer [8] and Wu
[21], respectively. In general, secondary messages were not as apparent during
the annotation of our corpus and their realization produced more disagreement
among the coders. We are currently working on expanding our framework to
automatically identify secondary messages in grouped bar charts.

5.2 Summary

We have presented an implemented system which automatically hypothesizes the
high-level intended message of a grouped bar chart. To our knowledge, no one
has previously investigated the communicative signals in grouped bar charts, the
wide variety of messages that grouped bar charts can convey, and a methodology
for recognizing these messages. Our system automatically extracts communica-
tive evidence from the graphic and incorporates it as evidence in a Bayesian
network that hypothesizes the graphic’s intended message. This work has sev-
eral significant applications: (1) a system which provides sight-impaired individ-
uals with alternative access to information graphics in multimodal documents,
(2) indexing and retrieving grouped bar charts in digital libraries, (3) and the
summarization of multimodal documents.

References

1. Anderson, J.R., Lebiere, C.: The Atomic Components of Thought. Lawrence Erl-
baum Associates, Mahwah (1998)

2. Anderson, J.R., Matessa, M., Lebiere, C.: Act-r: A theory of higher level cogni-
tion and its relation to visual attenion. Human-Computer Interaction 12, 439–462
(1997)

3. Burns, R., Elzer, S., Carberry, S.: Modeling relative task effort for grouped bar
charts. In: Taatgen, N., van Rijn, H. (eds.) Proceedings of the 31st Annual Con-
ference of the Cognitive Science Society, pp. 2292–2297. Cognitive Science Society,
Austin (2009)

4. Carberry, S., Elzer, S., Demir, S.: Information graphics: An untapped resource
of digital libraries. In: Proceedings of 9th International ACM SigIR Conference
on Research and Development on Information Retrieval, pp. 581–588. ACM, New
York (2006)

22 R. Burns et al.

5. Chester, D., Elzer, S.: Getting Computers to See Information Graphics So Users
Do Not Have to. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.)
ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 660–668. Springer, Heidelberg (2005)

6. Clark, H.: Using Language. Cambridge University Press (1996)
7. Elzer, S., Carberry, S., Chester, D., Demir, S., Green, N., Zukerman, I., Trnka,

K.: Exploring and exploiting the limited utility of captions in recognizing inten-
tion in information graphics. In: Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics, pp. 223–230 (2005)

8. Elzer, S., Carberry, S., Demir, S.: Communicative signals as the key to automated
understanding of bar charts. In: Proceedings of the International Conference on
the Theory and Application of Diagrams (2006)

9. Elzer, S., Carberry, S., Zukerman, I., Chester, D., Green, N., Demir, S.: A prob-
abilistic framework for recognizing intention in information graphics. In: Proceed-
ings of the International Joint Conference on Artificial Intelligence, pp. 223–230.
Association for Computational Linguistics, Morristown (2005)

10. Elzer, S., Green, N., Carberry, S., Hoffman, J.: A model of perceptual task effort
for bar charts and its role in recognizing intention. International Journal on User
Modeling and User-Adapted Interaction 16, 1–30 (2006)

11. Fasciano, M., Lapalme, G.: Intentions in the coordinated generation of graphics
and text from tabular data. Knowledge and Information Systems 2(3) (August
2000)

12. Green, N.L., Carenini, G., Kerpedjiev, S., Mattis, J., Moore, J.D., Roth, S.F.:
Autobrief: an experimental system for the automatic generation of briefings in in-
tegrated text and information graphics. International Journal of Human-Computer
Studies 61(1), 32–70 (2004)

13. Huang, W., Tan, C.L.: A system for understanding imaged infographics and its
applications. In: Proceedings of the 2007 ACM Symposium on Document Engi-
neering, DocEng 2007, pp. 9–18. ACM, New York (2007)

14. Kerpedjiev, S., Green, N., Moore, J., Roth, S.: Saying it in graphics: from inten-
tions to visualizations. In: Proceedings of the Symposium on Information Visual-
ization (InfoVis 1998). IEEE Computer Society Technical Committee on Computer
Graphics, pp. 97–101. IEEE (1998)

15. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth a thousand words.
Cognitive Science 11, 65–99 (1987)

16. Mittal, V.O., Carenini, G., Moore, J.D., Roth, S.: Describing complex charts in
natural language: A caption generation system. Computational Linguistics 24(3),
431–467 (1998)

17. Peebles, D., Cheng, P.C.H.: Modeling the effect of task and graphical representation
on response latency in a graph reading task. Human Factors 45, 28–45 (2003)

18. Pinker, S.: A theory of graph comprehension. In: Artificial Intelligence and the
Future of Testing, pp. 73–126. Lawrence Erlbaum Associates, Hillsdale (1990)

19. Shah, P., Mayer, R.E., Hegarty, M.: Graphs as aids to knowledge construction:
Signaling techniques for guiding the process of graph comprehension. Educational
Psychology 91, 690–702 (1999)

20. Wickens, C.D., Carswell, C.M.: The proximity compatibility principle: Its psycho-
logical foundation and relevance to display design. Human Factors 37, 473–494
(1995)

21. Wu, P., Carberry, S., Elzer, S., Chester, D.: Recognizing the Intended Message of
Line Graphs. In: Goel, A.K., Jamnik, M., Narayanan, N.H. (eds.) Diagrams 2010.
LNCS, vol. 6170, pp. 220–234. Springer, Heidelberg (2010)

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 23–34, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Representing Category and Continuum:
Visualizing Thought

Barbara Tversky1,2, James E. Corter1, Lixiu Yu3,
David L. Mason1, and Jeffrey V. Nickerson3

1 Columbia Teachers College, 525 W. 120th Street
New York, NY 10027 USA

corter@tc.columbia.edu, davidleemason@gmail.com
2 Stanford University, 450 Serra Mall

Stanford, CA 94305-2130 USA
btversky@stanford.edu

3 Stevens Institute of Technology, 1 Castle Point on Hudson
Hoboken, NJ 07030, USA

{lisayu1103,jvnickerson}@gmail.com

Abstract. Abstract thought has roots in the spatial world. Abstractions are ex-
pressed in the ways things are arranged in the world as well as the ways people
talk and gesture. Mappings to the page should be better when they are congruent,
that is, when the abstract concept matches the spatial one. Congruent mappings
can be revealed in people’s performance and preferences. Congruence is sup-
ported here for visual representations of continuum and category. Congruently
mapping a continuous concept, frequency, to a continuous visual variable and
mapping a categorical concept, class inclusion, to a categorical visual variable
were preferred and led to better performance than the reverse mappings.

Keywords: diagrams, spatial metaphors, design, networks, information sys-
tems, reasoning.

1 Introduction

Abstract thought has roots in the spatial world (e. g., Boroditsky, 2002; Lakoff &
Johnson, 1980; Shepard, 2001; Talmy, 1983; Tversky, Kugelmass, & Winter, 1991).
These abstractions are expressed in the ways people organize space as well as in the
ways they speak, gesture, put things on the page, and design the world (Tversky,
2011). External visual expressions of thought, from paintings in caves to bits in com-
puters, go back tens of thousands of years. Expressions of abstract thought have be-
come common only with the widespread use of paper, though apparent in language
and gesture far longer. Visualizations of thought are especially apt for conveying
information that is intrinsically spatial, like environments, organisms, and objects,
where elements and relations in real space can be mapped onto elements and relations
on the page. Yet they are also effective for conveying concepts and relations that are
metaphorically spatial, including temporal, social, quantitative, and more, in part

24 B. Tversky et al.

because such concepts have “natural” mappings to space (e. g., Landy & Goldstone,
2007; Tversky et al., 1991). These natural mappings seem to come from the ways that
we arrange space to suit our needs as well as the ways that space governs our beha-
vior (Tversky, 2011). They are also evident in language, in common expressions and
metaphors (e. g., Cooper & Ross, 1975; Lakoff & Johnson, 1980). For example,
people, trees, and more grow stronger as they grow taller; taller piles of money are
greater; taller towers, buildings, and bridges must be stronger than smaller ones. In
particular, it takes strength to overcome gravity. Such associations provide a worldly
foundation for the many metaphors associating up with good, more, strength, health,
and power.

By mapping abstract concepts and relations congruently to space and spatial rela-
tions, visualizations not only promote comprehension but also promote inference (cf.
Bertin, 1981; Norman, 1993; Tversky, 2001; Zahner & Corter, 2010; Zhang, 2000).
They allow users to apply highly-practiced skills of spatial reasoning to abstract rea-
soning (e. g., Tversky, 2001; 2011).

Despite natural mappings, representing abstract relations graphically is not always
straightforward. Several alternative means of visual expression are often available,
and, typically, each of these has several possible interpretations. Many common and
useful devices, like dots, lines, boxes, and arrows, are ambiguous, with multiple
meanings, not unlike related spatial terms like link, frame, field, and relationship,
which also have multiple meanings (e. g., Tversky, Zacks, Lee & Heiser, 2002). Ar-
rows, for example, can indicate order, direction, movement, causality, and more
(Heiser & Tversky, 2006). Yet, choosing the right representation is essential to fast
and clear communication, and to effective reasoning with diagrams.

Selecting the right representation for visualizing abstractions does not have to be at
the whim of a designer. The Production-Preference-Performance program provides
empirical methods for design decisions (cf. Kessell & Tversky, 2011; Tversky, Agra-
wala, et al., 2007). In the 3Ps program, one group of participants produces graphic
representations for a concept or group of concepts, for example, keeping track of a set
of people as they move in time. People’s spontaneous graphic productions for
representing information reflect their understanding of how that information is struc-
tured (e. g., Novick & Hurley, 2001; Zacks & Tversky, 1999). Another group is pre-
sented with a set of graphic representations for the same information, for example, a
matrix or a graph, and asked which they prefer, that is, which is a better or best way
to convey the information. In some cases, interpretation of the visualization is added
or substituted for preference. A third group is asked to make judgments or inferences
from one of several graphic representations, allowing comparison of performance
under each representation. Comparing these measures can help select the right graphic
representation and can also provide insight into the cognition underlying the concepts.
Ideally, the mappings that are more successful in performance and preference are
more successful because they are more congruent.

Designing direct, comprehensible visualizations to express abstract meanings can
be more challenging when those meanings are superimposed on a system structure.
Structure, especially spatial structure, has priority for the use of space in a diagram
over time and abstract relations (e. g., Kessell & Tversky, 2011; Nickerson, Tversky,

 Representing Category and Continuum: Visualizing Thought 25

Corter, Yu, & Mason, 2010). Some cases are relatively straightforward, for example,
superimposing causal relations on the structure of the circulatory system or a bicycle
pump or the water cycle by adding arrows indicating the sequence and direction of
causality (e. g., Heiser & Tversky, 2006).

Superimposing abstract relations on structural ones is more complicated in other
cases. Consider the problem explored here, a network diagram conveying social or
computer interrelations. Suppose that we want to show not only the links among the
nodes that represent the people or the computers but also how frequently pairs interact
or the subgroups that they are part of, issues faced frequently in visualizations, includ-
ing networks (e. g., Tollis et al., 1998). Effectively diagramming frequency and sub-
groups are critical in the design of information systems, where balancing efficiency,
rooted in frequency of interaction, and security, rooted in subgrouping, are central
issues. Representing frequency and grouping are basic to other network problems,
and, more generally, to statistical and information graphics. Frequency is a paradig-
matic continuous variable and grouping is a paradigmatic categorical variable.

Spatial organization in the world suggests some possibilities for representing fre-
quency and grouping, possibilities that have been produced in practice. All other
things equal, individuals who are closer in space interact more frequently; conversely,
when high interaction is desired, individuals—and computers—are placed in close
proximity. Distance is (perhaps arguably) the most common way to use space to
represent abstract relations, where distance in space indicates distance on some ab-
stract dimension. Individuals or components that form a subgroup are often put in the
same enclosed space; similarly, individuals in the same enclosed space are more like-
ly to form a subgroup. That is, subgroups are often in the same container. Finally,
thicker pipes carry more water and thicker cables carry more wires. Thickness was
used to represent the number of troops in the famous Minard visualization of Napole-
on’s unsuccessful campaign on Russia. Thus, thickness of links connecting compo-
nents is a natural way to represent the frequency of interactions, especially among
components. Each of these real-world and diagrammatic expressions appears in talk
as well. We say we’ve grown apart or distant, we talk about bandwidth, we say a sys-
tem or a group contains so and so or such and such as members.

Spatial organizations in the world, then, form a basis for abstract thought. They al-
so form a basis for congruency of mapping from the conceptual to the spatial world of
a diagram (Tversky, Morrison & Betrancourt, 2002). Because frequency is conti-
nuous, it is more congruently matched to continuous spatial variables, such as dis-
tance or thickness; similarly, because grouping is a categorical variable, it is more
congruently matched to a categorical variable such as containment. Some support for
congruence in mapping continuous and categorical concepts comes from prior work
on line and bar graphs, where participants understood and produced lines for conti-
nuous variables and bars for discrete ones (Zacks & Tversky, 1999), but this was for
mapping only those variables, not for superimposing that information on a structure,
as in the present studies.

26 B. Tversky et al.

Given that several visual expressions of frequency and inclusion have been pro-
duced, as in the previous research, we turn to ask whether one or some conceptual
mappings to space are more effective in performance or more compelling in
preference.

To insure comparability of performance and preference, both frequency and group-
ing were treated as binary variables: high vs. low frequency and included or not in-
cluded in a subgroup. Although the more typical ways of regarding these concepts, as
categorical or continuous, is expected to affect performance and preference, particu-
larities of the diagrams and the tasks may modulate the predictions derived from
congruence.

2 Experiment 1: Performance

Will performance with conceptually congruent mappings be superior to performance
with less congruent mappings? That is, will people make more inferences about fre-
quency when more frequent interactions are represented as closer in proximity or
connected by thicker lines than when contained in a common frame? Distance and
thickness are continuous, thus more congruent with continuous concepts like frequen-
cy, whereas frames are categorical, thus more congruent with categorical concepts
like grouping. Will people make more accurate inferences involving grouping when
groups are contained in the same frame or connected by thicker lines than when they
are merely in closer proximity?

2.1 Method

Participants. 399 volunteers from Amazon’s Mechanical Turk website participated,
distributed fairly evenly across 6 conditions. The average age was 30, with a range
from 18-63. 56% were male, 45% were native English speakers, and 48% had a col-
lege degree. Collecting data on a website increases the range of responders, making
the data more representative of a general population, but decreases control, which
may add variance to the results, decreasing chances of finding significance.

Design. There were six groups. Each participant saw one of three visualizations (Fig-
ure 1) and answered one of the two questions below (Frequency or Grouping):

Frequency. The diagram below represents computers that can all communicate with
each other. S and F communicate with each other six times a second. F and J commu-
nicate with each other six times a second. J and B communicate with each other six
times a second. E and G communicate with each other six times a second. K and G
communicate with each other six times a second. All the other communication links
shown indicate that the nodes communicate with each other at the rate of one time a
second.

S needs to transmit a message to E. Along which pathway will the message arrive
first? (Please list all nodes along the pathway).

 Representing Category and Continuum: Visualizing Thought 27

Thickness

Containment

Distance

Fig. 1. The diagrammatic prompts

Grouping. The diagram below represents computers that can all communicate with
each other. S and F are part of the same system. F and J are part of the same system. J
and B are part of the same system. E and G are part of the same system. K and G are
part of the same system. Links within a system are six times as secure as other links.

S needs to transmit a message to E. Which pathway is the most secure? (Please list
all nodes along the pathway.)

In pilot experiments using simpler diagrams (such as those in the preference expe-
riment described below), performance was at ceiling. With the more complex dia-
grams used here, accuracy was about 50%, a level that allowed detection of differenc-
es across diagrams and inferences, but makes direct comparison to the preference
results more difficult.

2.2 Results

Figures 2 and 3 show the proportion of correct responses to the optimal-path inference
questions posed in the frequency and grouping problems. In a log-linear analysis, the

28 B. Tversky et al.

Fig. 2. Mean proportions correct for each diagram type for the Frequency problem. Error bars
represent the 95% confidence interval for the mean.

Fig. 3. Mean proportions correct for each diagram type for the Grouping problem. Error bars
represent the 95% confidence interval for the mean.

three-way association among prompt condition (frequency versus grouping), diagram
type (container, distance, line weight), and correctness was significant, χ2(2)=12.16,
p=.002, meaning that the effects of the diagram types on correctness differed for

 Representing Category and Continuum: Visualizing Thought 29

frequency and grouping scenarios. Mapping frequency to distance or thickness led to
superior performance (Figure 2) compared with mapping frequency to containment, z
= -2.99, p=.003. Distance and thickness mappings did not differ, z = 0.83, p=.407.

By contrast, mapping grouping to containment or thickness led to superior perfor-
mance (Figure 3) compared with mapping grouping to distance, z=3.30, p=.001.
Thickness and containment did not differ, z=1.243, p=.214.

2.3 Discussion

Congruence of conceptual mapping can account for the general pattern of results.
Participants were more accurate making inferences about frequency when it was
mapped to spatial distance or thickness than when it was mapped to containment.
Frequency is a continuous conceptual dimension and both distance and thickness are
continuous spatial dimensions. Thus the conceptual and visual are congruent.

Inferences about grouping, a categorical relationship, led to a different pattern: par-
ticipants were more accurate judging groupings of computers when grouping was
mapped to containment than to distance. This, too, is a congruent mapping, of a
categorical concept, inclusion, to a categorical visual device, a frame. Interestingly,
thickness of connection was as good as containment for grouping judgments. In the
specific diagrams used in the experiment, thickness had only two levels, so that it
could easily be mapped to inclusion, but distance had many levels, hence was more
confusing for assessing a categorical concept like inclusion.

3 Experiment 2: Preference

Congruence of concept to space accounted for the general pattern of performance
(i.e., inferences). Here, we examine preferences to see if they, too, are congruent. Will
people judge the use of boxes to enclose computers belonging to the same system a
more natural way to think about grouping and inclusion than putting them close
spatially? Will people think putting computer systems that communicate frequently
close in space a more natural way to think about frequency than enclosing them?

3.1 Method

A total of 377 volunteers from Amazon’s Mechanical Turk website participated. 182
participated in the frequency condition (see below), the others in the grouping condi-
tion. The average age was 30, with a range from 18-69. 52% were male, 61% were
native English speakers, and 70% had a college degree.

In this experiment participants made preference judgments. Participants compared
the three diagrams in Figure 4 in one of the two judgment tasks described below,
Frequency or Grouping. Frequency. “The diagrams below represent computers that
can all communicate with each other. K communicates frequently with Z. H commu-
nicates frequently T. Neither K nor Z communicates frequently with either H or T.
Choose the diagram that best expresses the description. Choose the second best

30 B. Tversky et al.

diagram. Choose the third best diagram.” Grouping. “These diagrams represent com-
puters that can all communicate with each other. K and Z are part of the same system.
H and T are part of the same system. Choose the diagram that best expresses the
description. Choose the second best diagram. Choose the third best diagram.”

Thickness Distance Containment

Fig. 4. The diagrams presented in the experiment

3.2 Results

Figures 5 and 6 show the proportions of participants choosing each diagram type as
best in the Frequency and Grouping conditions. In a log-linear analysis, the propor-
tions of "best" choices of the three diagram types differed between the two conditions,
χ2(2) = 83.676, p<.001. In the Frequency condition, line thickness was most often
chosen as the best representation, by 48% of participants. Containment was chosen as
best by 34% of participants, and distance was chosen as best by only 18%. In the
Grouping condition, containment was chosen as the best representation by 70% of
participants. Line thickness was chosen as best by only 22% of participants, and dis-
tance by only 9%.

Fig. 5. The proportion of participants in the Grouping condition who chose each diagram type
as best

 Representing Category and Continuum: Visualizing Thought 31

3.3 Discussion

The importance of the congruence of conceptual content to the visual representation is
supported by participants’ first-choice preferences. To represent grouping, a categor-
ical concept, most participants chose containment, a categorical visual variable. To
represent frequency, a continuous concept, the most common choice was thickness, a
continuous visual variable.

Fig. 6. The proportion of participants in the Grouping condition who chose each diagram type
as best

4 General Discussion

Abstract thought reflected in spatial thinking is all around us, in the world, in talk, in
gesture, in diagrams. Communication through diagrams can be fast and efficient, and
is increasingly common. Mapping spatial entities and spatial relations in the world to
spatial elements and relations on the page is fairly straightforward, as in maps (which
is not to say that it is always done well).

But successfully mapping abstract concepts and relations to marks and spatial rela-
tions to the page, that is, metaphoric use of diagrams, can be more complicated. The
best mappings use space and marks in space in ways that are congruent with the ab-
stract concept. For example, since people think of greater height, health, power, and
wealth as going upwards, mapping those concepts upwards on a graph is bound to
lead to better and faster comprehension and inference. Sometimes, however, map-
pings conflict. Think of inflation and unemployment, both undesirable, yet increases
in both are typically mapped upwards. Note the increases; inflation and unemploy-
ment are given in numbers, so that the more general rule that increasing numbers

32 B. Tversky et al.

should go upwards overrides the more specific correspondence to content. Congruent
mappings can be revealed indirectly in language and gesture, and more directly in
experiments eliciting production, performance, and preference (e.g., Kessell &
Tversky, 2011, Tversky, 2011; Tversky, et al., 2001). Because of the complexity of
thought, there is no guarantee of agreement across people or agreement across tasks,
that is, there is no guarantee that production, performance, and preference will align.
However, when there is agreement, when the measures converge, the consensus
should go far to guarantee successful communication.

Here we explored congruent mappings for a continuous concept, frequency, and a
categorical concept, grouping in diagrams of computer networks. These representa-
tions were superimposed on a graphic structure, a network, rather than appearing in
isolation. Interconnected computer systems are usually visualized as nodes linked in a
network, much like social, transportation, and associative networks. Networks are
common, perhaps because nodes can represent any idea, and links can represent rela-
tions between ideas. A node and a link, then, can be regarded as the minimal repre-
sentation of thought, a proposition.

It is often desirable to superimpose other information on networks, notably fre-
quency of interaction of nodes and subgroups of nodes. Several ways to superimpose
this information on networks have been proposed in the literature, including distance
or lengths of link, thickness of link, and frames or containers (e.g., Bertin, 1981;
Harel, 1987).

Since frequency is a continuous concept, mapping it to a continuous spatial varia-
ble, either distance or thickness, should be congruent. Since inclusion is a categorical
concept, mapping it to frames should be congruent. Congruency predictions were
borne out both in performance, making inferences from the diagrams, and in prefe-
rence. Inferences involving frequency were more accurate when frequency was
mapped to the continuous representations, distance and thickness, compared with
when it was mapped to the categorical aspect of containment. The opposite held for
making inferences involving inclusion or group membership, where containment (but
also thickness) led to superior performance. Thickness was actually used as a binary
variable in the present graphs, encouraging a categorical interpretation.

For preference judgments, containment was preferred to represent grouping; this
was predicted because both relationships are categorical. For representing frequency,
the continuous aspect of line thickness was most often chosen as the best representa-
tion, as predicted. Distance, though, was a distant third choice, perhaps because in the
set of diagrams used in this experiment, the distances used in the diagrams were hard
to compare.

There are limitations to these experiments, including some inconsistencies in the
data for the two studies. In addition, for large networks, these devices, thickness, in-
clusion, and distance, might not scale well, so that other means of conveying frequen-
cy and inclusion might be needed. The present experiments only examined conceptual
mappings, and only some of them, between marks in space and discrete and conti-
nuous concepts. Perceptual variables, such as the discriminabilty of the marks,
are also a factor that is well-known to affect performance. Based on data from psy-
chophysics, Cleveland (1985) has found evidence for a hierarchy of visual features

 Representing Category and Continuum: Visualizing Thought 33

such as length and angle in making inferences from graphs. In addition, experience
with using particular kinds of representations or with specific conventions are likely
to bias performance, preference, and production.

Networks are familiar and popular because they can represent the structure of rela-
tionships among people, objects, or ideas, that is, anything. There are computer net-
works, social networks, and association networks. Hierarchies, such as corporate or
phylogenetic, flow charts, grammatical diagrams, and decision trees can be regarded
as special cases of networks. Again, all represent the structure of the relationships
among elements. Using spatial relations or marks in space to superimpose other di-
mensions or variables, such as inclusion relations and frequency of interaction, on a
spatial structure can be challenging.

Both preference and performance suggest that congruent mappings of concepts to
space are effective. Although the specific mappings to performance and preference
differed somewhat between the experiments, for many possible reasons, the overall
conclusion holds. Mapping continuous concepts to continuous uses of space and
mapping categorical concepts to categorical uses of space were preferred and led to
superior performance. The effectiveness of mapping categorical concepts to categori-
cal marks in space and continuous concepts to continuous marks in space is further
strengthened by earlier work showing that bars, discrete marks in space, are inter-
preted as and produced for discrete comparisons, whereas lines, continuous marks in
space, are interpreted as and produced for trends (Zacks & Tversky, 1999).

The present findings add support to previous findings of conceptual-spatial con-
gruence in other domains, maps, instructions, graphs, and representations of the ac-
tions of agents in time, and space (e. g., Tversky, Agrawala, et al., 2007; Kessell &
Tversky, 2011; Zacks & Tversky, 1999). These results also strengthen the case for the
general program, of selecting among graphic means to represent abstract concepts and
relations by assessing people’s productions, preferences, and performance. The pro-
gram has broad implications for designing diagrams, for information systems as well
as for statistical, scientific, and information graphics in the popular and technical
media. The reasoning and the techniques provide a model for empirical methods to
reveal design principles for many other domains. That is, design can be rooted in
research. In turn, the findings have implications for the many arenas of life where
understanding diagrams is crucial, including navigation in the world, research in
science and engineering, and learning in and out of classrooms, Spatial thinking is
pervasive and powerful; visualizations can successfully express a range of abstract
concepts, as long as the mappings are congruent with thought.

Acknowledgments. Portions of this research were supported by grants from Na-
tional Science Foundation IIS-0725223, IIS-0855995, and REC-0440103, the Stan-
ford Regional Visualization and Analysis Center, and Office of Naval Research
NOOO14-PP-1-O649, N000140110717, and N000140210534.

34 B. Tversky et al.

References
1. Bertin, J.: Graphics and Graphic Information Processing. Walter de Gruyter, New York

(1981)
2. Boroditsky, L.: Metaphoric Structuring: Understanding Time Through Spatial Metaphors.

Cognition 75, 1–28 (2000)
3. Cleveland, W.S.: The Elements of Graphing Data. Wadsworth, Monterey (1985)
4. Cooper, W.E., Ross, J.R.: World Order. In: Grossman, R.E., San, L.J., Vances, T.J. (eds.)

Papers From the Parasession on Functionalism, pp. 63–111. Chicago Linguistic Society,
Chicago (1975)

5. Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming 8, 231–274 (1987)

6. Kessell, A.M., Tversky, B.: Visualizing Space, Time, and Agents: Production, Perfor-
mance, and Preference. Cognitive Processing 12, 43–52 (2011)

7. Lakoff, G., Johnson, M.: Metaphors We Live By. University of Chicago Press, Chicago
(1980)

8. Landy, D., Goldstone, R.L.: How Abstract is Symbolic Thought? Journal of Experimental
Psychology: Learning, Memory, & Cognition 33, 720–733 (2007)

9. Nickerson, J.V., Tversky, B., Corter, J.E., Yu, L., Mason, D.: Thinking with Networks. In:
Proceedings of the 32nd Annual Conference of the Cognitive Science Society (2010)

10. Norman, D.A.: Things That Make us Smart. Addison-Wesley, Reading (1993)
11. Novick, L.R., Hurley, S.M.: To Matrix, Network, or Hierarchy: That is the Question. Cog-

nitive Psychology 42, 158–216 (2001)
12. Shepard, R.N.: Perceptual-cognitive Universals as Reflections of the World. Behavioral

and Brain Sciences 24, 581–601 (2001)
13. Talmy, L.: How language Structures Space. In: Pick Jr., H.L., Acredolo, L.P. (eds.) Spatial

Orientation: Theory, Research and Application, pp. 225–282. Plenum, New York (1983)
14. Tollis, I.G., Di Battista, G., Eades, P., Tamasssia, R.: Graph Drawing: Algorithms for the

Visualization of Graphs. Prentice Hall, New York (1998)
15. Tversky, B.: Spatial schemas in depictions. In: Gattis, M. (ed.) Spatial Schemas and Ab-

stract Thought, pp. 79–111. MIT Press, Cambridge (2001)
16. Tversky, B.: Tools for Thought. In: Benedetti, B., Cook, V. (eds.) Language and Bilingual

Cognition, pp. 131–139. Psychology Press, New York (2011a)
17. Tversky, B.: Visualizing Thought. Topics in Cognitive Science 3, 499–535 (2011b)
18. Tversky, B., Agrawala, M., Heiser, J., Lee, P.U., Hanrahan, P., Phan, D., Stolte, C., Da-

niel, M.-P.: Cognitive Design Principles for Generating Visualizations. In: Allen, G. (ed.)
Applied Spatial Cognition: From Research to Cognitive Technology, pp. 53–73. Erlbaum,
Mahwah (2007)

19. Tversky, B., Kugelmass, S., Winter, A.: Cross-cultural and Developmental Trends in
Graphic Productions. Cognitive Psychology 23, 515–557 (1991)

20. Tversky, B., Morrison, J.B., Betrancourt, M.: Animation: Can it Facilitate? International
Journal of Human Computer Studies 57, 247–262 (2002)

21. Tversky, B., Zacks, J., Lee, P., Heiser, J.: Lines, Blobs, Crosses and Arrows: Diagrammatic
Communication with Schematic Figures. In: Anderson, M., Cheng, P., Haarslev, V. (eds.) Di-
agrams 2000. LNCS (LNAI), vol. 1889, pp. 221–230. Springer, Heidelberg (2000)

22. Zacks, J., Tversky, B.: Bars and Lines: A Study of Graphic Communication. Memory and
Cognition 27, 1073–1079 (1999)

23. Zahner, D., Corter, J.E.: The process of probability problem solving: Use of external visual
representations. Mathematical Thinking and Learning 12, 177–204 (2010)

24. Zhang, J.: External representations in complex information processing tasks. In: Kent, A.
(ed.) Encyclopedia of Library and Information Science, vol. 68, pp. 164–180. Marcel
Dekker, Inc., New York (2000)

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 35–50, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Elucidating the Mechanism of Spontaneous Diagram Use
in Explanations: How Cognitive Processing of Text

and Diagrammatic Representations
Are Influenced by Individual and Task-Related Factors

Emmanuel Manalo1 and Yuri Uesaka2

1 Faculty of Science and Engineering, Waseda University, Tokyo, Japan
2 Graduate School of Education, The University of Tokyo, Japan

emmanuel.manalo@gmail.com, y_uesaka@p.u-tokyo.ac.jp

Abstract. Although diagrams are considered effective tools for communication,
students have been reported as lacking sufficient spontaneity in using diagrams
when explaining what they have learned. This study examined the possible
mechanism that relates text to diagram production in the process of providing
written explanations. It puts forward the hypothesis that the production of text
and diagrammatic representations shares the same cognitive processing
resources, the allocation of which is influenced by individual factors like
language ability and task-related factors like imageability of what needs to be
explained. This hypothesis was tested on Japanese university students who were
administered a passage (two versions varying in imageability) to read and
subsequently explain in English or Japanese. A significant correlation was
found between diagram use and English language competence (measured by
TOEIC scores) – but only among students asked to explain the passage with
lower imageability, and in English, providing support for the hypothesis.

Keywords: spontaneous diagram use, text and diagrammatic representations,
explanation, cognitive processing resources, communication.

1 Introduction

Diagram use is considered efficacious in many educational situations. This efficacy
has been described in terms of diagrammatic representations’ capacity to group
related information together and support many perceptual inferences – thus rendering
such representations more computationally efficient compared to sentential
representations [1]. The construction of diagrams serve a number of valuable
functions in educational contexts including enhancement of engagement in learning,
encouragement of use of more effective strategies, and promotion of the development
of a number of crucial skills such as those in creative reasoning, communication, and
the use of multiple literacies for knowledge construction and representation [2].
Despite this apparent usefulness, however, researchers have also reported that many

36 E. Manalo and Y. Uesaka

students manifest problems in the actual use of diagrams [3]. These problems include
poor choice of diagrams to use [4, 5], failure to draw appropriate inferences when
diagrams are used [6–9], and a lack of spontaneity in the use of diagrams [7, 10–13].
The problem with spontaneity is particularly serious because it means that many
students fail to benefit from diagram use in tasks they need to complete in school, as
well as outside of school.

Although the lack of spontaneity in diagram use has mainly been reported as a
problem among primary and secondary students in math problem solving [7, 10–13],
recently Manalo, Uesaka, Kriz, Kato, and Fukaya [14] reported that university
students lack sufficient spontaneity in using diagrams when explaining what they
have learned. More specifically, they found that although many of the students
included some form of diagrammatic representation in the notes they took during the
process of learning information contained in a text passage, a significantly lower
proportion employed diagrams in a subsequent task of constructing an explanation for
an imaginary classmate who did not know anything about the topic of the passage.

The appropriate use of diagrams in communication is considered to be an
efficacious strategy: for example, the effectiveness of text-based communication is
often enhanced when it is supplemented with diagrams [15]. It is therefore important
to develop instructional strategies that could improve students’ spontaneity and
effectiveness in using diagrams in communication tasks like the provision of
explanations. To develop such strategies, however, it would be helpful to understand
the mechanisms that may underlie diagram use in such situations.

1.1 Cognitive Processing of Text and Diagrammatic Representations

A number of research studies have been conducted to explain the mechanism by
which simultaneously presented verbal and visual information (multimedia
information) is cognitively processed [16–18]. Mayer and Moreno [19] summarized
the proposed mechanism as involving two channels in working memory [20, 21] – an
auditory/verbal channel that receives and processes auditory input and verbal
representations, and a visual/pictorial channel that receives and processes visual input
and pictorial/diagrammatic representations.

There is, however, no equivalent model or explanation for the mechanism involved
in producing verbal (text) and visual (diagrammatic) representations in
communication tasks. No previous considerations had been put forward as to whether
the production of text and diagrammatic representations in communicating learned
information could be explained using similar processes in working memory. If they
could be explained in similar terms, it would be useful to find out whether limitations
in cognitive load capacity could explain instances of failure to employ diagrams in
such communication tasks.

Figure 1 shows the possible mechanism involved if the dual channel model of
working memory is used to portray what happens when a person is required to
communicate what he or she has learned. In this model, the requirement to provide an
explanation instigates access from long-term memory of relevant knowledge about
the material to be explained. If external resources (e.g., notes) are available, these

 Elucidating the M

could also be accessed. In w
visual channels: these orga
information – selecting, rec
representations. The result
execution (i.e., script writi
would be represented in the

Fig. 1. Proposed mechanis
representations in explaining in

In this model, the use
production of text and diagr
existence of relevant know
content knowledge and any
and perception of the r
representations. For examp
material to be explained,
person may not be able t
representation. This assump
are unable to use strategies
when they are aware that
person does not perceive
explanation, then the visu
diagrammatic representatio
findings that spontaneous
efficacy the strategy brings

Mayer and Moreno [19]
and visual channels as mor
may be appropriate wher
information (i.e., narration
create internal representatio

Mechanism of Spontaneous Diagram Use in Explanations

working memory, processing occurs through the verbal
anize the portions of the accessed knowledge and/or ot
combining, reformulating them – into verbal and/or vis
ting processing output would then be relayed for mo
ng, diagram drawing), and hence the relevant knowle

e form of written words and/or diagrams.

sm involved in the production of text and diagramm
nformation that has been learned

of working memory resources for the organization
rammatic representations would depend on two conditio
wledge and/or skills (i.e., the person possesses both
y requisite skills relating to the material to be explaine
elevance or value of providing verbal and/or vis
ple, if the person lacks semantic knowledge about
or does not have adequate vocabulary to explain it,

to use the verbal channel to produce the necessary t
ption is based on previous research findings that stude
that fall outside the knowledge or skills they posses – e
those skills are required [e.g., 13, 22]. Likewise, if
the value or relevance of including a diagram in

ual channel will not be utilized for the production o
on. This second assumption is based on previous resea
use of a strategy is influenced by perceptions about
to the task at hand [e.g., 13].

] portrayed processing of multimedia stimuli in the ver
re or less parallel, independent processes. Such a portra
re processing externally presented auditory and vis

and images), which use different senses, is processed
ons. When students have to provide a written explanat

37

and
ther
sual
otor

edge

matic

and
ons:
the

ed),
sual
the
the

text
ents

even
the
the

of a
arch

the

rbal
ayal
sual
d to
tion

38 E. Manalo and Y. Uesaka

however – processing which essentially needs to proceed in the opposite direction
(i.e., from internal to external representation of the information) – greater interactivity
and interdependence may be imposed on the verbal and visual channels. To begin
with, information accessed from long-term memory would likely contain both verbal
and visual components that would need to be relayed to the corresponding verbal and
visual channels of working memory. The verbal channel would be responsible for
selecting the appropriate words to express the learned information, combining those
words into meaningful expressions, and sequentially organizing those expressions
into a coherent explanation of what is known. However, encoding that verbal
explanation in written form would require interactive processing through both verbal
and visual channels (i.e., translation of the words into the written script).

The visual channel, on the other hand, would be responsible for processing of
relevant visual information drawn from long-term memory. If modifications are
required of the retrieved information, the visual channel would be responsible for its
deconstruction, modification, and recombination to produce the required, modified
version. Such revisions, however, would likely involve the verbal channel in the
articulation, not only of the modifications required, but also the meaning of those
modifications. Likewise, the verbal channel is likely to be involved in the production
of new diagrammatic representations. It would be involved in the formulation of the
propositions that characterize, and instigate the need for, the new representation (e.g.,
that X is connected to Y which in turn is connected to Z). Those verbal propositions
would then require translation for processing via the visual channel (i.e., to construct
the corresponding visual representation).

The model proposed here suggests that the construction of text and diagrammatic
representations for the provision of explanations entails greater interaction between
the verbal and visual channels of working memory. The channels would frequently
need to hold information in a shared space in working memory and that information
needs to be translated from one channel to the other so that the required forms of
representation – script representing verbal information or diagrams representing
verbal propositions – could be produced. Determining exactly where this information
sharing between the channels occurs is outside the scope of the current paper. It is
possible, for example, that the interaction and combination occurs within the episodic
buffer [23], a component of working memory responsible for holding integrated
episodes or chunks in a multidimensional code, and which acts as a buffer store
between the other components of working memory [24]. Possibilities like this would
need to be investigated in future research.

It is important to note, however, that there are limited cognitive resources available
for such processing. According to both working memory theory [20, 21] and
cognitive load theory [25, 26], the human information processing system has a limited
capacity. Once processing demand exceeds that limit, the intended or desired outcome
will no longer eventuate. In multimedia learning, Mayer and Moreno [19] explained
that when cognitive overload occurs (i.e., when the processing requirements of the
task exceeds the cognitive resources available for processing), deficient learning
outcomes are produced. In the production of written explanations, cognitive overload
will likely have similar detrimental effects on performance.

 Elucidating the Mechanism of Spontaneous Diagram Use in Explanations 39

1.2 Individual and Task-Related Factors that Influence Resource Allocation

Manalo et al. [14] pointed out that educational socialization in general emphasizes a
verbal response when required to provide an explanation of what one has learned. In
such situations, therefore, most students would place priority on the production of
text/verbal representation of the learned information, with diagrammatic/visual
representation likely to be used only as a supplementation or enhancement. This
would suggest that initial and possibly greater cognitive processing resources would
be utilized for text production compared to diagram construction.

In addition to the socialization issue, however, some individual and task-related
factors could affect the allocation and use of cognitive resources. Individual factors
include those that are intrinsic to the individual, such as the knowledge, experience,
and skills that he or she possesses. Task-related factors are those that are intrinsic to
the task itself, such as its length or complexity. In providing a written explanation of
information that has been learned, language ability (an individual factor) and
imageability (a task-related factor) are two factors that could potentially influence the
allocation and use of cognitive resources for text and diagram production.

An individual’s language proficiency is likely to have a direct bearing on the
amount of cognitive effort required to produce the verbal/text representation of the
information that needs to be explained. High proficiency would correspond to less
mental effort in producing the necessary text representation. In contrast, lack of
proficiency would entail the use of much greater mental effort and resources in
producing the same or equivalent text representation.

A similar relationship is likely to exist between imageability of the information that
has been learned and the amount of resources required to produce a diagrammatic or
visual representation of it. Uesaka and Manalo [27] previously reported evidence that
a higher cognitive cost is entailed in constructing an appropriate diagram for some
math word problems – more specifically, those that require more abstract
representations (e.g., a table or a graph, as opposed to a simple drawing or illustration
of key components). The production of a diagrammatic representation for information
that is harder to visually imagine (i.e., lower in imageability) is likely to demand a
similarly higher cognitive cost, and thus demand the use of more cognitive resources,
compared to information that is easier to imagine (i.e., higher in imageability).

If an individual’s language ability and the imageability of the target information
affect the amount of cognitive resources required to produce a written explanation,
situations in which cognitive overload occur could potentially explain poor
performance. For example, if a person lacks sufficient proficiency in the language that
needs to be used, the production of the verbal/text explanation of the information
would place greater demand on available cognitive resources. This would mean that
the verbal channel of working memory may end up using most, if not all, of the
resources available in working memory for the production of a verbal/text
representation. As a consequence, little or no resources may be left for use in the
production of a diagrammatic representation.

Likewise, if the target information has low imageability, the requirement to
produce an explanation of it could place a greater demand on the cognitive resources
available to the verbal and visual channels of working memory. Information that is

40 E. Manalo and Y. Uesaka

difficult to imagine could also be more difficult to verbally represent and hence could
impose greater processing demands on the verbal channel. But even if the verbal
channel did not require greater cognitive resources for the production of the text
explanation, the remaining resources available for the visual channel to use for the
construction of a diagrammatic representation may prove inadequate for that purpose.

If the above assumptions are correct, they could provide not only a viable means to
understand the mechanisms involved in the use of cognitive resources for the
production of text and diagrammatic representations in written explanations, but also
a possible explanation for why students might manifest insufficient spontaneity in
using diagrams when explaining what they have learned. The present investigation
sought to experimentally verify these explanations.

1.3 Overview and Predictions of the Present Study

The key objective of the present study is to explain how the production of text and
diagrammatic representations might be related to each other in the process of
providing an explanation of what has been learned. Its primary hypothesis is that the
production of these forms of representation shares the same cognitive processing
resources in working memory. If correct, this would mean that greater resource
demand for the production of one form of representation (text or diagram) could result
in inadequate resources for the production of the other form of representation. The
secondary, related hypothesis is that some individual and task-related factors
influence the allocation and use of cognitive resources for the production of text and
diagrammatic representations in explanations. If correct, this would mean that
variations in particular kinds of individual and task-related factors would correspond
to variations in text and diagrams used in explanations.

To test the above hypotheses, the production of written explanations was examined
among Japanese university students. More specifically, the extent to which the
students used diagrams in constructing their explanations was examined.

As previously noted, the primary and secondary hypotheses are related. To test the
first hypothesis, the resource demand for one form of representation needed to be
manipulated so that the resulting effect on the production of the other form of
representation could be observed. To manipulate the demand for these resources,
individual and task-related factors – the key components of the secondary hypothesis
– were selected for manipulation. More specifically, the students’ language
proficiency in English was chosen as the individual factor, and the imageability of the
passages the students had to learn was selected as the task-related factor.

Because English is a second language (L2) for the Japanese students, lower
proficiency in English would presumably result in greater cognitive resource demand
when the explanation required is in English. In other words, if a student is not so
proficient in English, he or she would need to put more effort – and use up more
cognitive resources – to construct a written explanation in English of the information
he or she has learned. In such cases, cognitive resources remaining for use in diagram
construction would be depleted.

However, even if the student is required to explain in L2, the cognitive resources
remaining for use in diagram construction may be adequate if the task itself is not
high in cognitive demand. Hence the relationship between L2 proficiency and

 Elucidating the Mechanism of Spontaneous Diagram Use in Explanations 41

diagram use should be more apparent in a task that in itself is more demanding of
cognitive resources. In this study, the “more demanding” task was one that required
explanation of information that was of lower imageability.

Two main predictions were therefore made. The first prediction was that, overall,
the students would use fewer diagrams in producing written explanations of the
passage of lower imageability. The second prediction was that an index of the
students’ level of English language competence would correlate with their diagram
use when explaining the passage of lower imageability in English.

Two passages, one about how music is played from a compact disk (CD) (adapted
from [28]) and another about the human blood circulation system (adapted from [29]),
were used in this study. These passages were deemed as differing in their imageability
based on the kinds of diagram considered most appropriate to use in explaining their
content. Although both passages concern processes, for the CD passage, a flow chart
of the different component parts involved would be appropriate: most of those parts
are difficult to imagine (e.g., microscopic indentations on the surface of a CD,
photocell detector, binary number decoder, etc.) and the key purpose of the diagram
would be to show the sequence involved in generating, coding, and converting data
that eventually become music. In contrast, for the circulation passage, a drawing or
sketch of the parts of the body involved would be considered appropriate: these (e.g.,
heart, lungs, blood vessels, etc.) are easier to imagine and the key purpose of the
diagram would be to show the directions of blood flow through these parts of the
system. The diagram that is appropriate for the CD passage (i.e., the flow chart) is
more abstract compared to the one that is appropriate for the circulation passage (i.e.,
the sketch or drawing of the organs). Uesaka and Manalo [27] had earlier pointed out
that constructing a more abstract diagram requires more transformational steps, and
therefore involves greater cognitive cost. The first prediction of this study was based
on the notion that imageability, as a task-related factor, would affect demand on
cognitive processing resources and the consequent use – or otherwise – of diagrams in
the provision of explanations. The expectation was that a passage of lower
imageability would require more cognitive translational steps to generate a diagram
for, resulting in greater cognitive cost. This cost in turn would reduce the spontaneous
use of diagrams in written explanations that are produced.

The students’ TOEIC test scores (Test of English for International Communication
[30]) were used in this study as the index of their English language competence.
Students in the faculty of the university where this study was conducted are required
to sit the TOEIC test when they first enter the university, and then at regular intervals
afterwards as a general assessment of their English language skills development. The
second prediction of this study was based on the notion that competence in the
language to be used in explaining, as an individual factor, would affect demand on
cognitive processing resources and the consequent use – or otherwise – of diagrams in
the explanations that are produced. The expectation was that students with lower
TOEIC scores would need to use more cognitive resources to produce the verbal/text
representation of the passage. If that passage is also of low imageability, the
remaining cognitive resources were expected to be inadequate for the additional
generation of a diagrammatic representation. In those cases, therefore, a relationship
should be observed between TOEIC scores and diagram use.

42 E. Manalo and Y. Uesaka

A possible alternative explanation to the predicted relationship between TOEIC
scores and diagram use is that it may not be the students’ English language
competence but their general language competence – or even their general intellectual
ability – that determines the use of diagrams. In other words, students who have
higher language or intellectual ability would score higher in the TOEIC test and also
perform better in tasks like explaining what they have learned, making effective use
of techniques like the inclusion of diagrammatic representations. Verbal/language
ability, and intellectual abilities and performance, are generally considered as being
related (see, e.g., reviews by Ackerman [31] and Neisser et al. [32]). If this alternative
explanation were correct, the predicted relationship between English language
competence and diagram use would not be attributable to cognitive resource demand
and allocation, but more to general language and/or intellectual ability.

A third prediction was therefore made: that no relationship would be observed
between the students’ TOEIC scores and their diagram use when the explanation
required was in Japanese (the students’ native language, or L1). If the relationship is
due to general language and/or intellectual ability, its manifestation should not be
restricted to when the students have to explain in English: in other words, it should be
observable even when they have to explain in Japanese. Thus, if the relationship were
found to be absent in the conditions requiring Japanese explanations, it would provide
verification for the hypotheses proposed in this study.

It should also be noted here that the predicted relationship between language
competence and diagram use was only in terms of the former being a potential
limiting factor on the latter. In other words, when language competence is low, it
could impose much higher demand on cognitive processing resources to produce the
required text (verbal) representation – to the extent that inadequate resources remain
for the production of a diagrammatic (visual) representation. However, the converse
(i.e., that greater cognitive resources remaining would necessarily lead to more
diagrams being spontaneously produced) was not expected. Thus, for example, it was
not expected that the students would generally produce more diagrams when
explaining in the L1 (Japanese). In such situations, other factors noted earlier (e.g.,
skills in constructing the required diagrammatic representation, perceptions about the
value of including a diagram, imageability) would likely play more significant roles in
determining the spontaneous use of diagrams.

2 Method

2.1 Participants

The participants were 100 undergraduate science and engineering students at a
university in Japan (mean age = 19.92 years, SD = .907 years; females = 15). They
participated voluntarily in the study and received no monetary compensation for
participation, but were allowed to keep a pen supplied for use in the study.

2.2 Materials

The participants were provided a booklet containing the experimental materials, and a
separate sheet for note taking purposes. There were four versions of the booklet,

 Elucidating the Mechanism of Spontaneous Diagram Use in Explanations 43

which were distributed randomly to students in approximately equal numbers. The
booklets contained either the passage about how music is played from a CD or the
passage about how the human blood circulation system works, both noted earlier. The
passages contained only words; no diagrams or illustrations were included.
Modifications were made to the original versions of these passages [28, 29] so that the
two passages used in the present study were equivalent in length, and contained
approximately the same number of discreet information units or segments that convey
distinct, meaningful information. To clarify what those units pertained to, the
following example sentence was considered as containing four of those units as
indicated by the segmentation slashes used here: The list of numbers representing the
music is ‘burned’ on a CD / using a laser beam / that etches bumps (called “pits”) /
into the shiny surface of the CD. In this example, the first unit pertains to what is
done, the second indicates what is used, the third states how it is done, and the fourth
refers to the location. In each booklet, the passage (CD or circulation) was provided
first in the Japanese language, and then in the English language.

Apart from differences in the passage content, the booklets also differed in the
language that the participants were asked to use in a subsequent explanation of what
they had learned: approximately half of the booklets asked for an explanation in
Japanese (the L1) and the other half in English (the L2). Thus, the four versions of the
booklet were: (1) CD passage requiring L1 explanation, (2) CD passage requiring L2
explanation, (3) circulation passage requiring L1 explanation, and (4) circulation
passage requiring L2 explanation. In all other respects (i.e., the instructions given, the
questions asked, etc.), the four versions of the booklet were identical.

2.3 Procedure

The factors manipulated in this study (i.e., kind of passage, and language of
explanation required) were both between-subject variables. The four resulting groups,
with corresponding total number of participants in brackets, were as follows: CD-L1
(25), CD-L2 (27), Circulation-L1 (25), and Circulation-L2 (23). Data collection was
carried out at the end of one of the students’ regular, scheduled classes. After
distribution of the booklets to those who were willing to participate, the students were
provided verbal instructions about what to do. Equivalent instructions were provided
in the booklets in written form. The students were informed that they would be
reading a passage, first in Japanese and then in English, and that later they would be
asked questions about it, including explaining its content in Japanese or in English.
They were informed that the language they would need to use to explain would be
given later.

The students were asked to read the passage they were allotted in Japanese (8
minutes) and then in English (8 minutes). During these 8-minute reading periods, they
were informed that they could use the extra sheet of paper they were provided to take
notes as they wished, and that they could consult the notes they made during the
entire experiment. They were also informed, however, that they were not allowed to
return to, or re-read, the original Japanese and English versions of the passage once
the time allocated for reading those had expired.

44 E. Manalo and Y. Uesaka

Next, the students were given 2 minutes to answer five questions relating to their
perceptions about their understanding of the passage, its level of difficulty, their
previous knowledge about it, and how easy or difficult they considered it would be to
explain its content using the Japanese language, and the English language. All
questions required responses on Likert-type scales.

After this, the students were provided space on the following page to provide an
explanation of the passage they had read. For this, they were asked to imagine that
their audience was a fellow student who did not know anything about the topic. At
this point, the students could see in their booklet whether the language they had to use
was Japanese or English. The students were given 10 minutes to complete this task.

Following this, the students were given 4 minutes to answer four questions on the
next page of the booklet. The questions were constructed to more objectively assess
their understanding of the passage they had read. Finally, on the last page of the
booklet, the students were asked to provide some demographic information about
themselves (e.g., their age, gender, year at university, etc.), as well as their most
recent TOEIC test score.

3 Results

Prior to analyses of the data, the explanations that the participants produced were
coded for instances of diagram use. For the purposes of this study, a diagram was
defined as any representations produced by the participants, other than representations
in the form of words, sentences, or numbers on their own. For example, drawings and
graphs counted as diagrams, as did arrows and similar symbols when these were used
to link three or more concepts or ideas. Examples of diagrams that participants
produced for the CD and circulation passages are shown in Figure 2.

Fig. 2. Examples of diagrams that participants produced for the circulation and CD passages

The proportions of participants who spontaneously used a diagram in providing
explanations for the CD and the circulation passages in Japanese and in English, as
well as in total, are shown in Table 1.

The results of an ANOVA revealed a significant main effect for the kind of
passage administered, F(1, 96) = 20.13, p < .001. However, no effect was found due
to the language of explanation required, F(1, 96) = .43, n.s.. Likewise, there was no
significant interaction between passage administered and language of explanation
required, F(1, 96) = .11, n.s.. This finding provides support for the first prediction that

 Elucidating the Mechanism of Spontaneous Diagram Use in Explanations 45

the participants would use fewer diagrams in the explanations they provide for the
passage of lower imageability (the CD passage).

Table 1. Proportions of participants who used a diagram in explaining the CD and circulation
passages in Japanese, in English, and in both languages

Passage Japanese
explanation

English
explanation

Both languages
(combined)

CD .15 .12 .13
Circulation .57 .48 .52

The correlations between the participants’ TOEIC scores and their diagram use

when explaining the CD and circulation passages in Japanese and in English are
shown in Table 2.

Table 2. Correlation coefficients between participants’ TOEIC scores and their diagram use in
the CD and circulation passages when explaining them in Japanese and in English

Passage Japanese
explanation

English
explanation

CD –.14 .47*
Circulation –.21 .28

 * p < .05

These results provide support for the second prediction that the participants’
English language competence (as measured by their TOEIC scores) would
significantly correlate with their diagram use, but only when explaining the passage of
lower imageability (the CD passage) in the English language (the L2). The results
also provide support for the third prediction that no similar significant correlation
would be found when the explanation required was in the Japanese language (the L1).

Significant negative correlations were found between diagram use when explaining
the CD passage in the Japanese language and participants’ assessment of how much
they previously knew about the topic (“prior knowledge”, r = –.54, p < .01), how
difficult they considered the passage (“passage difficulty”, r = –.51, p < .01), and how
difficult they considered it would be to explain the passage in Japanese (“Japanese
explanation difficulty”, r = –.44, p < .05). No other significant correlations were
found between the participants’ diagram use in the explanations they provided and the
other measurements taken through the questionnaire.

4 Discussion

In line with the findings of Uesaka and Manalo [27], the results of this study indicate
that task-related factors influence the spontaneity with which students use diagrams.
In the present study, the imageability of the passage to be explained was found to
affect diagram use: significantly fewer diagrams were used in explanations of the
passage of lower imageability. More translational steps, and greater cognitive

46 E. Manalo and Y. Uesaka

processing resources, would have been required in generating a diagrammatic
representation for the passage of lower imageability. Thus, the significantly fewer
diagrams that students generated in explaining that passage can be understood both in
terms of possible cognitive overload [19, 25, 26] and the view that human
performance is based on economic concepts [33, 34]. As explained earlier, for the
passage of lower imageability, after the production of text representation has used up
a certain portion of the available cognitive processing resources, inadequate resources
may remain for use in the generation of a diagrammatic representation. It is also
possible that, even if adequate cognitive processing resources remain, the high
cognitive cost of constructing the required diagram may prove prohibitive for many
students. This is based on the assumption that people are predisposed to avoid or
minimize cognitive workload [35], an assumption that has been proven in research
studies involving strategy selection [36, 37]. However, prior to the present study, only
Uesaka and Manalo [27] had demonstrated the applicability of this assumption in
educational contexts. The findings of the present study, therefore, contribute to
highlighting the importance in educational contexts of considering the cognitive
processing costs that variations in certain task-related factors generate.

The findings of the present study also indicate that individual factors – in this case,
language competence – can impact on the likelihood of a diagram being
spontaneously used. This impact is again based on the notion of cognitive overload
[19, 25, 26]. It is proposed in this paper that, in constructing an explanation of what
one has learned, the production of text and diagrammatic representations shares the
same cognitive processing resources in working memory. Thus, low language
competence could result in an increased demand and use of those resources for the
production of text representation: the consequence of this would be a reduction in
remaining resources available for the production of a diagrammatic representation.
Hence, especially when explaining a passage with low imageability, those remaining
resources may prove inadequate for the construction of the required diagram.

The significant negative correlations between students’ diagram use when
explaining the CD passage in Japanese and measurements of “prior knowledge”,
“passage difficulty”, and “Japanese explanation difficulty” indicate that the more
participants felt they previously knew about the CD topic and the less difficult they
thought the passage was to understand and to explain in Japanese, the less they used
diagrams in their explanations. No such correlations were found in the circulation
passage. This finding therefore suggests that, because the CD passage required greater
cognitive cost to construct a diagram for, many of those participants opted not to
include a diagram in their explanation. They could have felt that explaining the
contents of the passage well – using words – was adequate and they did not need to
worry about constructing the corresponding hard-to-imagine diagram.

It is important to stress here that a general relationship between language ability
and diagram use is not being proposed in this paper. The support found for the third
prediction, of a lack of relationship between the students’ TOEIC scores and their
diagram use when the explanation required was in Japanese, indicates that the
observed language competence impact on diagram use cannot be attributed to the
students’ general language ability. It should also be noted here that the authors are by

 Elucidating the Mechanism of Spontaneous Diagram Use in Explanations 47

no means suggesting that enhancing students’ language competence would directly
result in increases in their diagram use. That would only be expected, to a limited
extent, if their language competence were so low as to cause a need to use much
greater cognitive processing resources for the production of text representations, as
explained earlier. In other words, the relationship between language competence and
diagram use that is proposed here is only in terms of the former being a potential
limiting factor on the latter. For this reason, the authors do not consider the absence of
a significant effect due to the language of explanation to be inconsistent with the
predictions made. Writing explanations in L1 would not necessarily equate to greater
diagram use. A significant difference would only be expected if a much higher
proportion of the students who were required to write in L2 had much poorer levels of
competence in that language – to the extent that their lower competence became a
limiting factor on their diagram use.

The finding that students with lower L2 competence who were required to produce
their explanation in that language evidenced lower diagram use may initially sound
counter-intuitive. For those students, using diagrams in their explanation could have
been easier than verbally explaining using the L2, so the question of why they did not
do this arises. The answer may lie with the students’ educational socialization which,
as noted earlier, generally emphasizes a verbal response when called upon to provide
explanations. Thus, even though it may have been more difficult for them, the
students with lower L2 competence still strived to verbally explain what they had
learned. In the present study, no explicit directions were given about how
explanations should be constructed as the authors were interested in the spontaneous
responses that the students would make. However, in future research, it may be useful
to examine whether a different pattern of results would emerge if the participants
were explicitly instructed that they could use words, or diagrams, or a combination of
both, in providing their explanations.

Prior to the current research, no previous studies had considered and
experimentally investigated the possible mechanism that links text and diagram
production in the provision of written explanations. The current paper proposes such a
mechanism, and provides experimental evidence to verify predictions derived from
that proposed mechanism. The proposed mechanism has two important features. First,
unlike the Mayer and Moreno [19] model for multimedia learning, where verbal and
visual processing more or less operate independently of each other, the model
proposed here suggests greater interaction and interdependence between these modes
of processing. To generate text and diagrammatic representations, it suggests greater
use of the space that verbal and visual processing share in working memory. As a
consequence, processing resource use for the production of one form of representation
impacts on the resources that may remain for the production of the other. The second
important feature of the proposed mechanism is that individual and task-related
factors influence the allocation and use of those resources. Hence, as the findings
suggest, individual factors like language competence, and task-related factors like
imageability, affected the allocation and use of resources for the production of text
and diagrammatic representations.

48 E. Manalo and Y. Uesaka

In its current state, the authors consider the mechanism proposed here as being
only at a very basic stage: it simply suggests that cognitive processing resources are
shared in the generation of text and diagrammatic representations. Thus, there is an
interdependency of sorts between these forms of representation: increased demand on
resources for the generation of one form of representation could render remaining
resources insufficient for the generation of the other. Potentially, the model can be
developed to more accurately represent and promote understanding of the
relationships between text/verbal and diagrammatic/visual representations that people
generate in teaching and learning situations. Understanding those relationships is
important if enhancing students’ competence in the use of multi-modal
representations to think, learn, reason, and communicate is a desired outcome in
science and other educational disciplines [see, e.g., 2, 14].

Acknowledgments. This project was supported by a Grant for Scientific Research
(Category B) from the Japan Society for the Promotion of Science. The authors would
like to thank Tatsushi Fukaya, Fusa Katada, Nilson Kunioshi, Masako Tanaka, and
Yoshio Ueno for their help in data collection and/or processing.

References

1. Larkin, J.H., Simon, H.A.: Why a Diagram is (Sometimes) Worth Ten Thousand Words.
Cognitive Science 11, 65–99 (1987)

2. Ainsworth, S., Prain, V., Tytler, R.: Drawing to Learn in Science. Science 333, 1096–1097
(2011)

3. Manalo, E., Uesaka, Y.: Drawing Attention to Diagram Use. Science 334, 761 (2011)
4. Grawemeyer, B., Cox, R.: The Effect of Knowledge-of-External-Representations Upon

Performance and Representational Choice in a Database Query Task. In: Blackwell, A.,
Marriott, K., Shimojima, A. (eds.) Diagrams 2004. LNCS (LNAI), vol. 2980, pp. 351–354.
Springer, Heidelberg (2004)

5. Uesaka, Y., Manalo, E.: Active Comparison as a Means of Promoting the Development of
Abstract Conditional Knowledge and Appropriate Choice of Diagrams in Math Word
Problem Solving. In: Barker-Plummer, D., Cox, R., Swoboda, N. (eds.) Diagrams 2006.
LNCS (LNAI), vol. 4045, pp. 181–195. Springer, Heidelberg (2006)

6. Bowen, G.M., Roth, W.-M.: Why Students Not Learn to Interpret Scientific Inscriptions.
Research in Science Education 32, 303–327 (2002)

7. Dufour-Janvier, B., Bednarz, N., Belanger, M.: Pedagogical Considerations Concerning
the Problem of Representation. In: Janvier, C. (ed.) Problems of Representation in the
Teaching and Learning of Mathematics, pp. 110–120. Erlbaum, Hillsdale (1987)

8. Kozhevnikov, M., Motes, M.A., Hegarty, M.: Spatial Visualization in Physics Problem
Solving. Cognitive Science 31, 549–579 (2007)

9. Mokros, J.R., Tinker, R.F.: The Impact of Microcomputer-Based Labs on Children’s
Ability to Interpret Graphs. Journal of Research in Science Teaching 24, 369–383 (1987)

10. Ichikawa, S.: Suugakuteki na Kangaekata wo Megutte no Soudan to Sidou [Case Report of
Cognitive Counseling in Mathematical Thinking]. In: Ichikawa, S. (ed.) Gakusyuu wo
Sasaeru Nintikaunsering: Shinrigaku to Kyouiku no Aratana Setten [Cognitive Counseling
that Supports Learning: A New Approach Bridging Psychology and Education], pp. 36–61.
Brain Press, Tokyo (1993)

 Elucidating the Mechanism of Spontaneous Diagram Use in Explanations 49

11. Manalo, E., Uesaka, Y.: Quantity and Quality of Diagrams Used in Math Word Problem
Solving: A Comparison Between New Zealand and Japanese Students. Refereed Papers of
the NZARE (New Zealand Association for Research in Education) National Conference
2006. NZARE, Wellington. ERIC Document Reproduction Service No. ED518280 (2006)

12. Uesaka, Y., Manalo, E., Ichikawa, S.: What Kinds of Perceptions and Daily Learning
Behaviors Promote Students’ Use of Diagrams in Mathematics Problem Solving? Learning
and Instruction 17, 322–335 (2007)

13. Uesaka, Y., Manalo, E., Ichikawa, S.: The Effects of Perception of Efficacy and Diagram
Construction Skills on Students’ Spontaneous Use of Diagrams When Solving Math Word
Problems. In: Goel, A.K., Jamnik, M., Narayanan, N.H. (eds.) Diagrams 2010. LNCS
(LNAI), vol. 6170, pp. 197–211. Springer, Heidelberg (2010)

14. Manalo, E., Uesaka, Y., Pérez-Kriz, S., Kato, M., Fukaya, T.: Science and Engineering
Students’ Use of Diagrams During Note Taking Versus Explanation. Educational Studies
(2012), doi:10.1080/03055698.2012.680577

15. Mayer, R.E.: Multimedia Learning. Cambridge University Press, New York (2001)
16. Mayer, R.E., Anderson, R.B.: Animations Need Narrations: An Experimental Test of a

Dual-Coding Hypothesis. Journal of Educational Psychology 83, 484–490 (1991)
17. Mayer, R.E., Moreno, R.: A Split-Attention Effect in Multimedia Learning: Evidence for

Dual Processing Systems in Working Memory. Journal of Educational Psychology 90,
312–320 (1998)

18. Mayer, R.E., Sims, V.K.: For Whom is a Picture Worth a Thousand Words? Extensions of
a Dual-Coding Theory of Multimedia Learning. Journal of Educational Psychology 84,
389–460 (1994)

19. Mayer, R.E., Moreno, R.: Nine Ways to Reduce Cognitive Load in Multimedia Learning.
Educational Psychologist 38, 43–52 (2003)

20. Baddeley, A.D.: Working Memory. Oxford University Press, Oxford (1986)
21. Baddeley, A.D.: Human Memory. Allyn & Bacon, Boston (1998)
22. Cornoldi, C., Gobbo, C., Mazzoni, G.: On Metamemory-Memory Relationship: Strategy

Availability and Training. International Journal of Behavioral Development 14, 101–121
(1991)

23. Baddeley, A.D.: Personal communication, February 24 (2012)
24. Baddeley, A.D.: The Episodic Buffer: A New Component of Working Memory? Trends in

Cognitive Sciences 4, 417–423 (2000)
25. Chandler, P., Sweller, J.: Cognitive Load Theory and the Format of Instruction. Cognition

and Instruction 8, 293–332 (1991)
26. Sweller, J.: Instructional Design in Technical Areas. ACER Press, Camberwell (1999)
27. Uesaka, Y., Manalo, E.: Task-related Factors that Influence the Spontaneous Use of

Diagrams in Math Word Problems. Applied Cognitive Psychology (2011),
doi:10.1002/acp.1816

28. How CDs and DVDs Work,
http://www.explainthatstuff.com/cdplayers.html

29. Chi, M.T.H., Siler, S.A., Jeong, H., Yamauchi, T., Hausmann, R.G.: Learning from
Human Tutoring. Cognitive Science 25, 471–533 (2001)

30. TOEIC-ETS Home, http://www.ets.org/toeic
31. Ackerman, P.L.: Individual Differences in Information Processing: An Investigation of

Intellectual Abilities and Task Performance During Practice. Intelligence 10, 101–139
(1986)

50 E. Manalo and Y. Uesaka

32. Neisser, U., Boodoo, G., Bouchard, T.J., Halpern, D.E., Loehlin, J.C., Perloff, R.,
Sternberg, R.J., Urbina, S.: Intelligence: Knowns and Unknowns. American
Psychologist 51, 77–101 (1996)

33. Navon, D., Gopher, D.: On the Economy of the Human-Processing System. Psychological
Review 86, 214–255 (1979)

34. Norman, D.A., Bobrow, D.J.: On Data-Limited and Resource-Limited Processes.
Cognitive Psychology 7, 44–64 (1975)

35. Allport, G.W.: The Nature of Prejudice. Addison Wesley, New York (1954)
36. Kool, W., McGuire, J.T., Rosen, Z.B., Botvinick, M.M.: Decision Making and the

Avoidance of Cognitive Demand. Journal of Experimental Psychology: General 139, 665–
682 (2010)

37. Mathews, N., Hunt, E., MacLeod, C.M.: Strategy Choice and Strategy Training in
Sentence-Picture Verification. Journal of Verbal Learning and Verbal Behavior 19, 531–
548 (1980)

Orthogonal Hyperedge Routing

Michael Wybrow1, Kim Marriott1, and Peter J. Stuckey2

1 National ICT Australia, Victoria Laboratory,
Clayton School of Information Technology,

Monash University, Clayton, Victoria 3800, Australia
{Michael.Wybrow,Kim.Marriott}@monash.edu
2 National ICT Australia, Victoria Laboratory,

Department of Computing and Information Systems,
University of Melbourne, Victoria 3010, Australia

pstuckey@unimelb.edu.au

Abstract. Orthogonal connectors are used in drawings of many network
diagrams, especially those representing electrical circuits. Such diagrams
frequently include hyperedges—single edges that connect more than two
endpoints. While many interactive diagram editors provide some form
of automatic connector routing we are unaware of any that provide au-
tomatic routing for orthogonal hyperedge connectors. We give three al-
gorithms for hyperedge routing in an interactive diagramming editor.
The first supports semi-automatic routing in which a route given by the
user is improved by local transformations while the other two support
fully-automatic routing and are heuristics based on an algorithm used
for connector routing in circuit layout.

Keywords: orthogonal routing, hyperedges, circuit diagrams.

1 Introduction

Orthogonal connectors are used in drawings of many network diagrams, espe-
cially those representing electrical circuits. Such diagrams frequently include
hyperedges—single edges that connect more than two endpoints. While many
interactive diagram editors provide some form of automatic connector routing
we are unaware of any that support automatic routing for orthogonal hyperedge
connectors. This is the problem we address.

In this paper we describe how we have extended the connector routing li-
brary libavoid1 to support orthogonal object-avoiding hyperedge routing in
a commercial diagramming tool for circuit diagrams and the Dunnart diagram
editor.2

We give three algorithms for hyperedge routing that support interactive con-
struction and routing of hyperedges in interactive diagramming tools. The first

1 http://adaptagrams.sourceforge.net/libavoid/
2 Dunnart, including some orthogonal hyperedge routing features, is available for
download from http://www.dunnart.org/

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 51–64, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://adaptagrams.sourceforge.net/libavoid/
http://www.dunnart.org/

52 M. Wybrow, K. Marriott, and P.J. Stuckey

(a) (b)

(c) (d)

Fig. 1. Demonstration of the interaction model. (a) The diagram initially contains a
single hyperedge made up of shapes, junction points and the connectors linking them.
(b) The user drags a shape to a new location causing the connector between it and the
junction point to be rerouted automatically. (c) Semi-automatic routing is performed to
improve the hyperedge route. (d) If the user desires, they can perform fully-automatic
routing to find a better topology for the hyperedge.

performs semi-automatic routing in which a route given by the user is improved
by local transformations. The other two algorithms perform fully-automatic rout-
ing and are heuristic approaches extending an algorithm used for connector
routing in circuit layout.

Previous research on connector routing in interactive diagramming tools has
focused on poly-line and orthogonal routing for edges, i.e. arcs that connect two
nodes [9,10]. Hyperedge routing generalises this by allowing the connector to con-
nect multiple nodes. Here we focus on computing orthogonal routes, i.e. routes
composed of horizontal and vertical segments, reflecting the drawing conventions
used in circuit design.

Orthogonal hyperedge routing generalizes the problem of finding a minimal
length rectilinear Steiner tree (MRST) connecting a set of points in the plane [5].
Computing the MRST is NP-Complete [2] and several heuristics and exact meth-
ods are given in [5]. A number of heuristic methods have also been developed
for finding obstacle-avoiding rectilinear Steiner minimal trees (OARSMTs) [1,6]
for automatic connector routing in VLSI design. Our problem differs from the
standard problem studied in the VLSI setting because we are interested in sup-
porting circuit construction in an interactive diagramming tool. This means that
the algorithms need to be fast enough to support interaction and that the visual
appeal and readability of the routes is important. Thus when computing the

Orthogonal Hyperedge Routing 53

routes we penalize the number of bends as well as the total length and the semi-
automatic routing step ensures that routes are visually distinct and pleasing in
the sense that their paths are not obviously “bad.”

Hyperedge routing is loosely related to edge bundling in which edge segments
originating at the same node are collapsed together [3,4,8].

The remainder of this paper is organized as follows. In the next section we
define our interaction model and formalize the automatic and semi-automatic
routing problem. In Section 3 we discuss the semi-automatic routing algorithm
which improves a route without changing topology. In Section 4 we give two
algorithms for fully-automatic routing. We give experiments showing the effec-
tiveness of the methods in Section 5. Finally in Section 6 we conclude.

2 Interaction Model and Problem Statement

Our algorithms are designed to support the following interaction model designed
for interactive diagramming tools (Figure 1). It is designed to provide predictable
automatic layout but allow the user to guide and override this. The four kinds
of interaction are:

Creation: The user can create a new hyperedge by defining an initial route
through specification of the bends and junctions that comprise the route.
This specifies the topology of the route. The route is automatically improved
so as to reduce segment lengths or bends but without changing the topology.
We call this semi-automatic routing.

Editing: Whenever the user edits the diagram components, such as moving or
deleting a node or diagram object, semi-automatic routing is used to improve
the hyperedge routes while preserving the topology. See Figure 1(b) and (c).

Automatic routing: If the user is unhappy with a particular hyperedge route
they can explicitly request that the tool performs fully-automatic routing in
which case the system uses heuristic approaches to MRST to find an initial
route which is then improved using semi-automatic routing. See Figure 1(d).

Manual adjustment: If the user is still unhappy they can manually modify
the hyperedge route.

Since explicit support for hyperedges is not common in interactive diagramming
tools, users will often work around this by using multiple individual connectors
converging at junction points (or small dummy shapes if the software doesn’t
support junctions). This is actually a reasonably natural representation for hy-
peredges since it allows for easy incremental construction and alteration by the
user, e.g., drawing a connector from a shape to an existing point on the hyper-
edge path. The difference with our approach is that the junction positions do not
need to be tediously managed by the user but can be automatically positioned
in response to diagram changes. Without semi-automatic routing its the users
responsibility to manually modify Figure 1(b) to become Figure 1(c).

Notice that the interaction model requires that semi-automatic routing is per-
formed very quickly since it must be applied to all hyperedges after most editing

54 M. Wybrow, K. Marriott, and P.J. Stuckey

(a) Before (b) After

(c) Before (d) After

Fig. 2. The two local transformations used to improve the initial route. At the top is
moving a junction to merge parallel routes, at the bottom moving a segment to reduce
overall hyperedge length.

actions. In contrast, automatic routing can be slower since it is only performed for
a subset of hyperedges at a time, and only when explicitly requested by the user.

We formalize automatic and semi-automatic hyperedge routing as follows. We
have a set of nodes N and a set of hyperedgesH . Each i ∈ N has a fixed position,
width and height as well as a set of connector ports P on its perimeter. Each
p ∈ P is a connector port with a direction of visibility. Each hyperedge h ∈ H
is a non-empty subset of connector ports. We wish to find a route R for each h.
This is a set of horizontal and vertical segments R that form a tree whose leaf
vertices are the connector ports h. The route should not pass through any of the
nodes and should minimize a penalty function p(R) that is a monotonic function
f of the length of R, ||R||, and the number of bends (or equivalently segments)
in R, bends(R), i.e. p(R) = f(||R||, bends(R)). We sometimes refer to the leaf
vertices of the route as the terminals and to the internal nodes as junctions and
bendpoints. In the case of semi-automatic routing we are given an initial route
R′ for h which we must improve.

3 Semi-automatic Routing

Semi-automatic routing has two steps. The first step is to perform local improve-
ment on the initial route to improve it by rectifying bad routing that is obvious
to the human observer. The local improvement step is novel and is a result of
examining many routes and identifying how to improve these manually.

Local improvement is designed to make local changes to the hyperedge which
reduce edge length and bends. We first build R, a tree representing the routing
for the hyperedge, with the root node of the tree being one of the junctions and
the leaf nodes being the terminal points. Other nodes within the tree are made
up of bendpoints and the remaining junctions from the hyperedge. We use two
local transformations on this tree. They are illustrated in Figure 2.

Orthogonal Hyperedge Routing 55

The first transformation is to remove redundant edges. This looks at each
junction node and if any of the edges in the tree both have another common
endpoint (as well as the junction node), then the junction is moved to that node
and the redundant edge is removed. This reduces the overall connector length
and removes a bend point. The transformation is often not initially necessary
but is still important in cases where the user has manually placed junctions at
positions that may cause the shortest paths from multiple terminals to converge
together before reaching the junction.

The second transformation is first applied in the horizontal dimension, then
the vertical. In the case of the horizontal dimension we move a vertical line
segment (an edge from our path tree) horizontally within the available space
bordered by obstacles, and in the direction with the most divergent paths. This
is shown in Figure 2(c–d) for a horizontal line segment in the vertical dimension.
A line segment will consist of one or more collinear edges from the path tree, and
thus multiple nodes. Using these nodes we maintain for each segment a count
of the edges that diverge to each side. We also perform a sweep of the diagram,
similar to that described in [10], to give us available space to shift each segment
in either direction. We then repeatedly shift unbalanced segments, either to an
obstacle boundary, or to the endpoint of the shortest diverging segment in that
direction, updating the balance counts and merging segments as we do this. We
will also shift balanced segments up to a diverging segment when doing so reduces
the overall “length” of the hyperedge taking into consideration the penalty for
each bend. Once there are no more segments to shift in that dimension, we
remove redundant edges and perform the symmetric vertical process.

For an individual connector the transformations either remove a segment from
the route or move the segment against the side of an obstacle (i.e., a shape ex-
panded slightly with some buffer space). Thus, they can be applied no more than
O(n+ s) times where s is the number of segments in the hyperedge. The sweep
takes O(n logn) time for each dimension. However, in practice local improvement
is very fast.

The second step in semi-automatic routing is nudging and centering. This
is performed on all hyperedges (and edges) together and is based on that for
orthogonal edge routing [10]. We first determine the relative ordering of connec-
tors in shared edges. In order to make the connector route clearer we want to
nudge these paths apart to make the paths visually distinct. It is important to
do so in a manner which does not introduce unnecessary crossings or bends in
segments. Based on this we determine the exact coordinates of the orthogonal
connector segments. This nudges connector routes a minimum distance apart
to show the relative order of connectors with shared segments and also ensures
that connectors pass down the middle of “alleys” in the diagrams when this does
not lead to additional cost or additional edge crossings. This is described more
fully in [10]. If n is the number of diagram objects and s the total number of
connector segments then this step has O((s+ n)2) worst-case complexity.

56 M. Wybrow, K. Marriott, and P.J. Stuckey

(a) Heuristic 1 (b) Heuristic 2

Fig. 3. Real-world circuit diagram example showing difference between the two fully-
automatic routing heuristics. (a) Sequential construction of MTST does not appro-
priately discount any shared segments on the paths in the MCST. (b) Interleaved
construction of SPTF and MTST creates better routes, closer to what a human would
draw. These diagrams show the raw output of each heuristic, before the hyperedge
improvement step is performed. Note that Heuristic 2 also tends to result in less work
needing to be performed in the subsequent improvement stage.

4 Fully Automatic Routing

As we have seen, computing an optimal hyperedge route is NP-Hard. In this
section we describe two polynomial time heuristics for computing an initial hy-
peredge route. When combined with the preceding approach for semi-automatic
layout they give a method for fully-automatic routing. Computing the initial
route is quite an expensive operation. However in our model for user interaction
its use is explicitly controlled by the user who must select a set of hyperedges to
be rerouted by the tool.

The basis for our heuristics is the observation that when finding routes mini-
mizing the penalty function we need only consider routes in the orthogonal visi-
bility graph. This was introduced in [10] and is defined as follows. Let I be the set
of interesting points (x, y) in the diagram, i.e. the connector points and corners
of the bounding box of each object. Let XI be the set of x coordinates in I and
YI the set of y coordinates in I. The orthogonal visibility graph V G = (V,E) is

Orthogonal Hyperedge Routing 57

v

h

v

v

h

h

h

v

v

h

Fig. 4. A separated orthogonal visibility graph: v nodes and vertical edges are on a
plane above the h nodes and horizontal edges. The dashed edges connect the two planes
and correspond to a bend.

made up of nodes V ⊆ XI×YI s.t. (x, y) ∈ V iff there exists y′ s.t. (x, y′) ∈ I and
there is no intervening object between (x, y) and (x, y′) and there exists x′ s.t.
(x′, y) ∈ I and there is no intervening object between (x, y) and (x′, y). There
is an edge e ∈ E between each point in V to its nearest neighbour to the north,
south, east and west iff there is no intervening object in the original diagram.

We slightly modify the orthogonal visibility graph to produce a separated or-
thogonal visibility graph in which each node is split into two nodes (conceptually
on two different planes) corresponding to whether it is connected to horizontally
or vertically neighbouring nodes. Additionally, we add a link between these two
nodes with a weight representing the bend penalty. This simplifies the algorithms
because length and bend penalties are treated uniformly. Figure 4 illustrates the
separated graph.

The orthogonal visibility graph can be constructed in O(n2) time for a dia-
gram with n objects and contains O(n2) vertices and O(n2) edges. An example
orthogonal visibility graph is shown in Figure 5(a). It is quite different to the
standard (non-orthogonal) visibility graph used for poly-line routing. In partic-
ular, the standard visibility graph has O(n) nodes if there are n objects in the
diagram while the orthogonal visibility graph has O(n2) nodes. Both have O(n2)
edges.

4.1 Heuristic 1: Sequential Construction of MTST

The starting point for our first heuristic is the VLSI routing algorithm of Long
et al. [7]. This algorithm uses the standard (non-orthogonal) visibility graph
(using the Manhattan distance on visibility edges) and is designed to find the
route of minimal length. We have altered it to work with the separated orthog-
onal visibility graph in order to take the number of bends into account when
computing the cost of a route. Figure 5 gives an overview of the main steps in
fully-automatic routing with this heuristic for an example layout.

Our heuristic works by first constructing the shortest path terminal forest
(SPTF) for the orthogonal visibility graph where the terminals are the hyperedge

58 M. Wybrow, K. Marriott, and P.J. Stuckey

(a) (b)

(c) (d)

Fig. 5. Heuristic 1: In the sequential fully-automatic hyperedge routing the initial route
is found by: (a) computing the separated orthogonal visibility graph, (b) constructing
the shortest path terminal forest (SPTF) and using it to compute an (c) initial hy-
peredge routing from the minimum terminal spanning tree (MTST). Semi-automatic
hyperedge routing takes an initial routing and improves it by (d) performing local
optimization followed by centering and nudging.

nodes and the edges are weighted by their length. This is computed using an
extended Dijkstra shortest path algorithm. This processes edges in order of least
distance from a terminal creating a shortest cost tree around each terminal.
When processing an edge, if its endpoint is not already in a tree it is added
to the tree, otherwise it is marked as a bridge edge if its endpoint belongs to a
different terminal trees or else ignored if its endpoint belongs to the same tree
(self edge). An example SPTF can be seen in Figure 5(b).

Importantly, the use of a high bend penalty along with our separated orthog-
onal visibility graph modification results in shortest cost trees that grow a long
way in a straight line before branching. This helps our approach produce ideal
two-segment connections between far apart terminals that could otherwise be
blocked by the “bushy” growth of traditional SPTFs.

At the end of this step all nodes in the orthogonal visibility graph belong
to exactly one terminal’s shortest cost tree, and edges between these trees are
marked as bridges. Next an extended Kruskal minimum spanning tree algorithm
is used to find the minimum cost spanning tree (MCST) using bridge edges that
connects the terminal trees where the cost of a bridge edge is its weight plus

Orthogonal Hyperedge Routing 59

the cost to reach the terminal node from each of its endpoints. The minimum
terminal spanning tree MTST is then the bridge nodes in the minimum cost
spanning tree and the associated path to each terminal. For more details see [7].

As the number of nodes and edges in the visibility graph is O(n2) the time
complexity of computing the SPTF, MCST and MTST is O(n2 logn).

4.2 Heuristic 2: Interleaved Construction of SPTF and MTST

The main limitation of Heuristic 1 is that for efficiency the SPTF is computed
before the MCST. This means that the cost when computing the MCST does not
appropriately discount any shared segments on the paths in the MCST, see for
example Figure 3. In essence, we can improve the quality of the solution found
by interleaving computation of the SPTF with that of the MCST and building
the MTST as we go. Our algorithm for this interleaved computation is given in
in Figure 63 and an example of the algorithm’s operation is shown in Figure 7.

The algorithm works by constructing sub-routes connecting disjoint subsets
of the terminals in the original hyperedge, repeatedly combining these using a
bridge edge from MCST until all of the terminals are connected in which case a
MTST has been found.

The algorithm uses two priority queues MCSTpq and SPTFpq for comput-
ing the MCST from the sub-routes and the SPTF. Nodes n in the separated
orthogonal visibility graph (V G) are annotated to indicate whether they have
been reached in the SPTF (reached[n]), and if so the cost of the path to them
(cost[n]), and the sub-route (route[n]) from which the path originates (a set
of edges). Elements in SPTFpq are tuples (c, n, n′, R) indicating that node n
can be reached from node n′ with a path of cost c from sub-route R. Elements
in MCSTpq are tuples (c, n, w, n′) indicating that nodes n and n′ have been
reached in the SPTF from different sub routes, say R and R′, and that R and
R′ can be connected by a path with a total cost of c passing through bridge
edge (n,w, n′). We assume a function terms(R) which returns the set of terminal
nodes appearing in route (set of edges) R.

The algorithm repeatedly does one of two things. It can extend the SPTF
around the current set of sub-routes by popping a tuple from the MTSTpq and
adding non-self edges and non-bridge edges to the SPTFpq . Whenever a bridge
edge is encountered the appropriate path is added to the MCSTpq . Or it can
pop a tuple (c, n, w, n′) from MCSTpq and merge the two sub-routes using the
path through (n,w, n′) and add nodes on the merged route to the MTSTpq with
a zero cost. The algorithm stops when it has created a sub-route connecting all
of the terminals in the hyperedge.

3 For the sake of pedagogical clarity the algorithm in Figure 6 omits several details
important for implementation. For example, an implementation should use a num-
ber greater than any potential path in the diagram (including penalties) in place
of ∞. Also, the algorithm description assumes that the priority queues will never
be empty. This can happen in the case where obstacles prevent all possible paths
between sections of the hyperedge. Please see the implementation in libavoid for
more information.

60 M. Wybrow, K. Marriott, and P.J. Stuckey

V G := separated orthogonal visibility graph
SPTFpq := {(∞,⊥,⊥, ∅)} ; MCSTpq := {(∞,⊥, 0,⊥)}
reached[⊥] := true
for each node n in V G do reached[n] := false endfor
for each terminal n in h do

add (0, n,⊥, ∅) to SPTFpq
endfor
repeat

if 2 × cost of top tuple on SPTFpq < cost of top tuple on MCSTpq then
(c, n, np,R) := pop SPTFpq
if ¬reached[n] ∧ reached[np] then

reached[n] := true ; cost[n] := c ; route[n] := R
for each edge (n,w, n′) in V G do

if reached[n′] then
if terms(R) �= terms(route[n′]) then /* bridge edge */

add (c+ cost[n′] + w, n, w, n′) to MCSTpq
endif

else /* non self + non bridge edge */
add (c+w, n′, n, R ∪ {(n, w, n′)}) to SPTFpq

endif
endfor

endif
else /* found two sub-routes to connect */

(c, n, w, n′) := pop MCSTpq
R := route[n] ∪ route[n′] ∪ {(n, w, n′)}
if terms(R) = h then

return R /* complete hyperedge route */
for each node n′′ where terms(route[n′′]) ⊆ terms(R) do

reached[n′′] := false
endfor
for each node n′′ in R do

add (0, n′′,⊥,R) to SPTFpq
endfor

endif
forever

Fig. 6. Heuristic for computing a route R for hyperedge h using interleaved construc-
tion of the SPTF and MCST

Orthogonal Hyperedge Routing 61

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7. Heuristic 2: In the interleaved approach we (a) incrementally build the SPTF,
storing possible bridging edges. (b) We commit to the cheapest bridge when we reach
a vertex with a cost more than twice the cost of the bridge. We then remove the
bridged terminal’s SPTFs and (c) continue, adding new terminals with zero cost for
each vertex along the bridged path. (d–f) We repeat this process, until (g) there is just
one terminal group remaining. This route is then improved by (h) performing local
optimization followed by centering and nudging.

62 M. Wybrow, K. Marriott, and P.J. Stuckey

Table 1. Average times taken to compute fully-automatic routing for hyperedges in
a representative circuit diagram and for several larger randomly generated instances.
(Please note, P is the total number of connection pins among all hyperedges H , and
the VisGraph and Improve times are global rather than per hyperedge).

Diagram size VisGraph size Times (in msec.) to compute
Diagram |N | |H | |P | |V | |E| VisGraph Heuristic1 Heuristic2 Improve

Circuit 52 5 57 6,948 11,083 16 155 167 12
Random-1 200 1 25 20,142 35,674 56 47 142 25
Random-2 200 1 50 22,674 40,035 62 61 187 64
Random-3 400 1 50 28,117 46,952 82 70 304 213
Random-4 400 10 250 33,587 52,805 97 74 197 466

The choice of whether to extend the SPTF or to merge two sub-routes depends
on the cost of the top tuples of SPTFpq and MCSTpq. If the current top tuple
on SPTFpq has cost c then we can safely commit to joining the two sub-routes
R and R′ connected by the bridge edge (n,w, n′) in the top tuple of MTSTpq if
its cost c′ is no more than 2 × c. This is because we have found the minimum
cost path between the sub-routes connected by (n,w, n′). To see this consider
any other path p′ between R and R′. If all nodes on the path have been reached,
then the path must be in MCSTpq and since it was not the top of the heap, its
cost is no less than c. Otherwise not all nodes on the path have been reached.
This means there are two nodes on the path nR and nR′ respectively reached
from R and R′ that are in SPTFpq . But this means the cost of getting to nR

from R is at least c and to nR′ from R′ is also at least c and so the total cost of
this path is at least 2× c.

The disadvantage of this algorithm is the increased time complexity. Basically,
whenever we process a path from the MCSTpq we recompute the SPTF around
that path. This means that in the worst case the algorithm has time complexity
O(kn2 logn) where k is the number of terminals in the hyperedge.

5 Evaluation

We have implemented all algorithms in the open source libavoid connector
routing library. These features can also be used interactively from within the
Dunnart diagram editor.4 We have used the orthogonal hyperedge routing algo-
rithms to find routes for a variety of diagrams.

To investigate performance of the algorithms we ran the following experiment
on a 2008 MacBook Pro with a 2.53 GHz Intel Core 2 Duo processor and 4GB of
memory. Our C++ libavoid implementation was compiled using gcc 4.2.1 with
-O3. The experiment used a small representative example from our commercial
partner as well as some larger, randomly generated examples. We measured the
time for each stage of the routing. The results are shown in Table 1. Note the

4 http://www.dunnart.org/

http://www.dunnart.org/

Orthogonal Hyperedge Routing 63

visibility graph construction and the improvement is performed only once for each
diagram, whereas the times for the full rerouting are average times per hyperedge.

We found that routing hyperedges of 25–50 terminals in a small diagram of up
to 200 hundred nodes can be performed in a fraction of a second. In the largest
example of 400 nodes, full rerouting for 10 hyperedges (each with 25 terminals)
with heuristic 1 took 1.7 seconds, or just under 3 seconds using heuristic 2. Of
course this would be considerably less if the user was requesting rerouting of
just a single hyperedge. In general, the interleaved heuristic was approximately
3 times slower than the sequential approach, but resulted in much better hy-
peredge routes. The interleaved heuristic also lead to less improvement work
being necessary, though with insignificant gains. Adding additional hyperedges
to any example requires the cost of running the heuristic approach when a user
require rerouting be performed, as well as a small time increase for the local
improvement stage.

6 Conclusion

We have given a practical approach to support hyperedge routing in a diagram-
ming tool designed for electrical circuit design. It produces high-quality routings
and is fast enough to be used for interactive diagramming. Our interaction model
supports hyperedge creation and semi-automatic routing to improve routes af-
ter changes in the diagram, as well as fully-automatic routing, when changes
in the diagram suggest the topology of the hyperedge should change. We give
two heuristics for fully-automatic routing, one very similar to standard VLSI
approaches, and a novel interleaving approach that better captures the cost of
resulting hyperedge. The interleaved heuristic creates markedly better routes at
about three times the runtime cost of the sequential approach.

Acknowledgments. NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council. We acknowledge the support of
the ARC through Discovery Project Grant DP0987168 and DP110101390.

References

1. Ajwani, G., Chu, C., Mak, W.K.: FOARS: FLUTE based obstacle-avoiding rectilin-
ear steiner tree construction. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems 30(2), 194–204 (2011)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

3. Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hi-
erarchical data. IEEE Transactions on Visualization and Computer Graphics 12,
741–748 (2006)

4. Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization.
Comput. Graph. Forum 28(3), 983–990 (2009)

64 M. Wybrow, K. Marriott, and P.J. Stuckey

5. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Annals of
Discrete Mathematics (1992)

6. Lin, C.W., Chen, S.Y., Li, C.F., Chang, Y.W., Yang, C.L.: Efficient obstacle-
avoiding rectilinear steiner tree construction. In: Proc. of the 2007 Int. Symp. on
Physical Design, ISPD 2007, pp. 127–134. ACM, New York (2007)

7. Long, J., Zhou, H., Memik, S.O.: EBOARST: An efficient edge-based obstacle-
avoiding rectilinear steiner tree construction algorithm. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems 27(12), 2169–2182 (2008)

8. Pupyrev, S., Nachmanson, L., Kaufmann, M.: Improving Layered Graph Lay-
outs with Edge Bundling. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS,
vol. 6502, pp. 329–340. Springer, Heidelberg (2011)

9. Wybrow, M., Marriott, K., Stuckey, P.J.: Incremental Connector Routing. In:
Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 446–457. Springer,
Heidelberg (2006)

10. Wybrow, M., Marriott, K., Stuckey, P.J.: Orthogonal Connector Routing. In: Epp-
stein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 219–231. Springer,
Heidelberg (2010)

Improved Layout for Data Flow Diagrams

with Port Constraints

Lars Kristian Klauske1, Christoph Daniel Schulze2,
Miro Spönemann2, and Reinhard von Hanxleden2

1 Daimler Center for Automotive Information Technology Innovations, Berlin
lars.klauske@dcaiti.com

2 Real-Time and Embedded Systems Group, Christian-Albrechts-Universität zu Kiel
{cds,msp,rvh}@informatik.uni-kiel.de

Abstract. The automatic generation of graphical views for data flow
models and the efficient development of such models require layout al-
gorithms that are able to handle their specific requirements. Examples
include constraints on the placement of ports as well as the proper han-
dling of nested models. We present an algorithm for laying out data flow
diagrams that improves earlier approaches by reducing the number of
edge crossings and bend points. We validate the quality of our algorithm
with a range of models drawn from Ptolemy, a popular modeling tool for
the design of embedded systems.

1 Introduction

With up to ten million lines of code, software-based functions account for 50–
70% of the effort in the development of automotive electronic control units [2,24].
To keep up with the growing complexity and tightening time-to-market require-
ments, embedded software domains such as the automotive, rail or aerospace in-
dustry increasingly take advantage of graphical model-based development tools
that follow the actor-oriented approach of data flow models [10] such as Simulink
(The MathWorks, Inc.), SCADE (Esterel Technologies), ASCET (ETAS), or
Ptolemy (UC Berkeley). Herein, graphical diagrams are used as input represen-
tations for simulators, rapid prototyping systems, and code generators. Fig. 1
shows a typical data flow diagram from Simulink and reveals the basic compo-
nents of such a diagram, namely actors (also called blocks or operators), con-
nections between the actors, and ports specifying the interface of actors and the
kind of data that is transported by connections.

While it is generally assumed that graphical diagrams are more readable than
textual programs, their readability strongly depends on the diagrams’ layout.
Therefore, when creating or changing a model, an estimated 30% of a user’s time
is spent on manual layout adjustments according to Klauske and Dziobek [8]. Ad-
ditionally, interactive applications employing methods such as automatic model
generation and transformation gain importance, requiring diagram layouts to be
generated from scratch. Both of these problems imply the need for an adequate
automatic view generation using methods of graph layout.

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 65–79, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

66 L.K. Klauske et al.

Fig. 1. A Simulink model for engine control (example by The MathWorks, Inc.)

Contributions. In this paper, we address the problem of automatic layout of
data flow diagrams. While the difficulties of port constraints and hyperedges in
crossing reduction and edge routing, as well as some basic solutions, have already
been introduced [19,9], we show how to further reduce the number of edge cross-
ings and bend points through the creation and handling of additional dummy
nodes and extensions of the crossing minimization phase. We also describe an
improved method to handle the layout of nested diagrams.

Outline. We begin by introducing two example applications in Sect. 2, give an
overview of related work in this area in Sect. 3, and continue by defining the
necessary mathematical notation in Sect. 4. In Sect. 5 we provide the description
of our algorithm, followed by the evaluation and its results in Sect. 6. Finally we
conclude in Sect. 7.

2 Data Flow Models

For a closer look at the application domains of our graph drawing method, we
present two exemplary modeling tools: Simulink and Ptolemy.

2.1 Simulink

Simulink is a graphical modeling language based on data flow diagrams with op-
tional Statechart diagrams encapsulated inside data flow diagram nodes. It is of
widespread use for embedded software development in the automotive domain.
Its models are used for specification, simulation, rapid prototyping, and pro-
duction code generation. Using real-world Simulink models of automotive body
control modules with a total of 40,000 nodes and 50,000 edges as our reference,
the average Simulink diagram has about 20 nodes and 30 edges, with 90% of all
models counting 60 edges or less. While large diagrams of more than 100 nodes
do exist (about 1% of our reference diagrams), they usually follow a very simple
structure with few or no potential edge crossings and only a couple of layers.

Improved Layout for Data Flow Diagrams with Port Constraints 67

(a) Layout using a previous approach [19] (3 edge crossings, 30 edge bends)

(b) Layout using the method presented here (1 edge crossing, 14 edge bends)

Fig. 2. A Ptolemy model representing a stack (example by Edward A. Lee)

The algorithm presented in this paper can directly be applied to Simulink
diagrams: Simulink edges can be taken as hyperedges with one source and one
or more targets. Ports are arranged on the rectangular node borders, with all
output ports on one side, most input ports on the opposite side, and up to three
input ports on the remaining sides (see Fig. 1 for a typical example).

The port side and order in Simulink diagrams is always fixed, with port posi-
tions that depend roughly linearly on the node size. For the scope of this paper,
we assume Simulink node sizes to be fixed, which results in fixed port positions.
Simulink diagrams with variable node sizes can be processed using an LP-based
edge straightening method [8,9].

2.2 Ptolemy

Ptolemy1 is an open source modeling environment developed at UC Berkeley
that targets the modeling and semantics of concurrent real-time systems [4].
Ptolemy models are actor-oriented data flow diagrams and can contain nested
state machines (modal models). A Ptolemy data flow model of the process net-
works domain is shown in Fig. 2.

The layout algorithm presented in this paper has been integrated in the mod-
eling environment of Ptolemy and is now part of its official distribution. Thereby
automatic layout can be used as an aid for the creation of Ptolemy models and
for the visualization of generated or transformed models.

1 http://ptolemy.eecs.berkeley.edu/

http://ptolemy.eecs.berkeley.edu/

68 L.K. Klauske et al.

3 Related Work

The foundations for the layout of directed graphs were laid by Sugiyama et
al. [21], who introduced the layered (a.k.a. hierarchical) approach for graph
drawing. The basic idea is to organize the nodes in subsequent layers such that
edges point from layers of lower index to those of higher index. This kind of
ordering helps to emphasize the direction of flow, which is quite natural for
data flow diagrams. Afterwards the nodes of each layer are reordered so as to
minimize the number of edge crossings. This is followed by the calculation of
suitable coordinates for node positions, and optionally by an edge routing phase.

The first contributions to the problem of integrating port constraints in the
layered approach were motivated by the layout of data structures, where cer-
tain fields of a structure may contain pointers to other structures. Gansner et
al. showed how node positioning can be extended for including offsets derived
from port positions [6]. Sander introduced the idea of handling side ports by
adding dummy nodes in order to route the respective edges [14]. The problem
of crossing minimization with port constraints was first discussed by Waddle,
who adapted the standard node ordering heuristic to consider port positions
[22]. These contributions employ FixedPos constraints with spline curve edge
routing, but they do not support inverted ports or other port constraints and
are not sufficient for the layout of data flow diagrams.

Schreiber proposed different solutions in the context of drawing bio-chemical
networks [17]. The crossing minimization phase is adapted by inserting dummy
nodes for each port and adding constraints to respect the order of ports. Side
ports are handled by routing the incident edges locally for each node, which is
done through transformation into a two-layer crossing minimization problem.
This suffices for treating FixedPos constraints, but can lead to unpleasant lay-
outs, since the number of resulting bend points is possibly higher than necessary.
This can be seen in Fig. 3(a), where the incoming edge at the South side port of
node d has two additional bend points. The approach of Siebenhaller suffers from
the same problem, because it also routes edges of side ports locally [18]. How-
ever, it supports more flexible port constraints, since constraints are associated
with individual edges instead of nodes. The consequence is that a node may have
some edges that are constrained to ports, and some that are not. The crossing
minimization problem that results from this additional degree of freedom can be
solved by reducing it to a network flow problem. This flexibility can be useful
for the layout of UML diagrams, where it is possible that only a subset of the
edges is connected to fixed points of a node, but data flow diagrams usually do
not require such mixed constraints.

A previous approach [19] for layout of data flow diagrams applied local rout-
ing not only to the side ports of a node, but also to inverted ports, which leads
to layouts such as the one shown in Fig. 3(a). Although it simplifies the crossing
minimization phase, the obvious drawback is that it cannot take into account the
global structure of the graph, and thus leads to an unnecessarily high number of
edge crossings and bend points. In this paper we therefore employ a different ap-
proach based on dummy nodes, which is able to route the feedback edge (d, c) in

Improved Layout for Data Flow Diagrams with Port Constraints 69

�

�

� �

(a) Previous approach [19]: edges at side
ports and inverted ports routed locally
(5 edge crossings)

�

�

�

�

(b) Our proposal: edges at side ports
and inverted ports routed using dummy
nodes (1 edge crossing)

Fig. 3. Two alternatives for handling port constraints

Fig. 3(b) with four bend points and without any crossings, as opposed to six bend
points and three crossings for the previous approach. Other previous contribu-
tions adapt the barycenter heuristic for handling different port constraints [19],
and add a specialized node placement for FixedRatio constraints [8,9]. This
type of constraint allows changing the size of nodes in order to minimize the
number of bend points of incident edges [9].

Orlarey et al. generate data flow diagrams out of textual specifications [12].
Instead of generating a graph and applying a graph layout algorithm to it, they
derive the layout directly from an algebraic representation [11]. The composi-
tional nature of this representation implies a geometric node ordering: sequential
composition leads to horizontal order, and parallel composition leads to vertical
order. Since our contribution is based on graph representations, we will not go
into further details on the algebraic approach.

4 Definitions

A directed port-based graph consists of a finite set of nodes V and ports P , a set
of edges E ⊆ P × P connecting the ports, and a function n : P → V that maps
ports to their nodes. An edge e = (p1, p2) ∈ E is an outgoing edge of p1 and v1
and an incoming edge of p2 and v2 if v1 = n(p1) and v2 = n(p2); e is said to be
incident to p1, p2, v1, and v2. We call p1 and v1 the source of e, while p2 and v2
are called its target.

A layering of a graph is a partition L = (L1, . . . , Lk) of the nodes into layers
L1, . . . , Lk such that for all edges e with source node v1 ∈ Li and target node
v2 ∈ Lj we have i < j. If we have i ≤ j, L is called a weak layering, and an edge
connecting two nodes in the same layer is called an in-layer edge. If i < j − 1
then e is called a long edge and is split into a sequence of edges that span
only consecutive layers by adding edge dummy nodes. Each layer has a specific
ordering of its nodes which can be altered by the algorithm. The current index
of node v in this ordering is written as idx(v).

Usually ports are drawn on the border of their respective nodes. The function
side : P → {North,South,West,East} assigns ports to one of the node’s

70 L.K. Klauske et al.

sides. Ports with only incoming edges are called input ports and are usually
placed on the West side. Ports with only outgoing edges are called output ports
and are usually placed on the East side. Input ports that are placed on the East
side and output ports that are placed on the West side are called inverted ports.
Ports on the North or South side are called side ports.

Port constraints control how much influence a layout algorithm has over the
positioning of the ports of a node. The function cons : V → PC maps nodes to
their port constraints, with PC containing the available port constraints. They
are, in increasing order of strictness:

Free Ports may be drawn at arbitrary positions on the border of a node.
FixedSides The side is prescribed for each port, but the order of ports is free

on each side.
FixedOrder The side is fixed for each port, and the order of ports is fixed for

each side.
FixedRatio The side is fixed for each port, and the ratio between the port’s

position on the side and the side’s length is fixed.
FixedPos The exact position is fixed for each port.

Due to constraints from the application domains, we assume the graph to be
drawn such that the prevalent direction of edges is from left to right. Hence the
nodes of a layer Li are placed on a vertical line, Li+1 is drawn right of Li, and
nodes within layers are indexed from top to bottom. Other publications (e. g.
Sugiyama et al. [21]) and applications (e. g., UML diagrams) assume a top-down
drawing, but our definitions and approaches can be applied symmetrically.

5 The KLay Algorithm

The KLay Layered algorithm is part of the Kiel Integrated Environment for
Layout Eclipse RichClient (KIELER)2 project, a test bed for layout algorithms
and modeling pragmatics. The algorithm expects a set of nodes and edges as
its input and computes coordinates and bend points to arrive at a layout. It is
structurally based upon the layered approach by Sugiyama et al., being divided
into several phases as follows:

1. KLay Layered does not assume the input graph to be acyclic, which requires
the first phase to break possible cycles. This is done using the feedback arc
set algorithm proposed by Eades et al. [3]. The goal is to have the vast
majority of edges point in the same direction, so as to make the flow of data
as obvious as possible.

2. As in Sugiyama’s approach, a layer assignment phase computes a valid lay-
ering for the graph. Long edges are split into segments such that edges only
connect nodes in neighboring layers. KLay Layered provides an implemen-
tation of the network simplex layering algorithm by Gansner et al., which
minimizes the length of edges [6].

2 http://www.informatik.uni-kiel.de/rtsys/kieler/

http://www.informatik.uni-kiel.de/rtsys/kieler/

Improved Layout for Data Flow Diagrams with Port Constraints 71

3. The order of nodes in a layer determines the number of edge crossings.
Solving this problem is NP-complete even for two layers [7], making the use
of heuristics necessary. A popular heuristic is the barycenter approach, which
works with two layers of which one is fixed. Its nodes are assigned rank values
reflecting their order in the layer. For the free layer’s nodes, rank values are
computed based on the ranks of their fixed-layer neighbors. The nodes are
then sorted by their computed ranks to arrive at an ordering for the free
layer [21].
KLay Layered performs forward and backward sweeps through the layers,
each time randomizing the order of the sweep’s first fixed layer. After a pre-
defined number of sweeps, the result with the least number of edge crossings
is chosen.

4. The node placement phase determines the position of nodes inside each layer,
making sure not to change the ordering determined by the crossing minimiza-
tion phase. KLay Layered uses Sander’s method for node placement, which
partitions the graph’s nodes into linear segments whose elements are to be
kept on a straight line [15]. Typically, edge dummy nodes inserted to divide
long edges form a linear segment to keep long edges free of bend points.

5. While Sugiyama’s approach uses straight lines to connect nodes, KLay Lay-
ered routes edges orthogonally, with bend points set in a way that each
segment of an edge runs either horizontally or vertically. This requires the
addition of a final edge routing phase, which is based on Sander’s hyperedge
routing algorithm [16].

Having already split the algorith into five distinct phases, it is only a small
step to allow the concrete implementations to be exchanged at runtime. This
way, the algorithm can also be used for different applications. For instance, our
main implementation of the edge routing phase routes edges orthogonally, which
is the expected method for data flow diagrams. For other types of diagrams,
however, edges may be preferred to simply be straight lines, which is supported
by another—in that case rather trivial—implementation of the edge routing
phase.

We introduce an additional level of modularity by adding intermediate pro-
cessing phases before, between, and after the five main phases. During these
intermediate phases, additional modules can be executed that simplify the main
phases by factoring out shared functionality, or by reducing complex layout
problems to simpler ones that can be handled by the five main phases. Which
modules are executed depends on the graph’s features: if there are no inverted
ports, no corresponding modules need to be executed.

The remainder of this section describes our methods of handling northern and
southern ports, inverted ports, and hierarchical ports.

5.1 Side Ports

The usual case for data flow diagrams is for a node to have its input ports on
the West side and its output ports on the East side. The situation becomes

72 L.K. Klauske et al.

(a) A node with side ports and with
edges drawn as KLay Layered would.
Note that the local number of cross-
ings is minimal.

(b) Inserted bend dummy nodes. (solid
circles) Edge dummy nodes can be in-
serted among them without problems,
but the relative order of bend dummy
nodes must be fixed to avoid ambiguity.

Fig. 4. Side ports and how bend dummy nodes are created to handle them

more complicated, however, once nodes are allowed to have ports on the North
or South side, also called side ports. Note that this can only happen with port
constraints set to FixedSides or higher. Previous methods transform such nodes
to the usual case, either by doing a node-local routing first [17,19], or by adding
a dummy node for the northern and for the southern side which encapsulates the
necessary edge routing [14]. All of these approaches suffer from the problem that
long edges must be routed around edges connected to side ports, introducing
unnecessary bend points or crossings, as can be seen in Fig. 3.

Our method resembles the latter approach, but solves its limitations by al-
lowing more than one dummy node to be created for each side: if the side has
x ports, we create between �x/2� and x bend dummy nodes for those ports as
shown in Fig. 4. These dummy nodes are created just prior to crossing mini-
mization, and are removed after the last phase, inserting bend points at their
position.

This method allows edge dummy nodes to be placed between the bend dummy
nodes, which was not previously possible. However, it puts two constraints on
the result of the crossing minimization phase: First, generated bend dummy
nodes must retain their order to avoid ambiguity due to overlapping edges. And
second, the bend dummy nodes generated for different nodes must not be inter-
leaved.

To satisfy these constraints, we add appropriate successor constraints on the
bend dummy nodes and remember which node they were created for. A successor
constraint is a tuple (v1, v2) ∈ V × V which requires v1 to be placed above v2
in a layer. Once an initial order is computed, violated constraints are resolved
through a method proposed by Forster [5].

Placing an edge dummy node between two bend dummy nodes causes edge
crossings usually not counted by the crossing minimization algorithm, which may
lead to inferior results. However, these crossings can be easily counted with a
time complexity linear to the number of nodes in a layer.

Improved Layout for Data Flow Diagrams with Port Constraints 73

�

�

(a) A dummy node placed in the previ-
ous layer. The edge e needs to be recon-
nected and reversed appropriately, and
a new edge connects the dummy node
with the original target of e.

�

�

(b) A dummy node placed in the same
layer. The edge e is not reversed, but re-
connected to the dummy node. A new
edge connects the dummy node with its
original target.

Fig. 5. An inverted port and two approaches for handling it

One limitation of this method is that the way bend dummy nodes are created
is designed to minimize edge crossings locally. Future research could go into
finding methods to also take surrounding layers into account.

5.2 Inverted Ports

With port constraints set to at least FixedSides, inverted ports may appear
in a diagram. Edges connected to inverted ports need to be routed around the
port’s node to avoid overlapping. There are two basic previous approaches to
handle this situation, both based on turning inverted ports into regular ones. The
first does so by applying node-local edge routing, as described in Sect. 5.1 [19].
The second approach handles inverted ports through the addition of a dummy
node [8,9]. Take p to be an inverted port on the West side with an outgoing
edge e (Fig. 5(a)). Then a dummy node is added to the preceding layer, and
the source of e is changed to the new dummy node. Finally, the dummy node is
connected to p.

While the problems of the former approach have already been discussed, the
latter approach works reasonably well. However, additional work is required to
make sure that the dummy node does not take up space in its layer that could
well be used by other nodes. In particular, the inserted dummy node needs
additional handling when it is later removed, adding complexity.

KLay Layered therefore uses a different approach, illustrated in Fig. 5(b).
After the layer assignment phase, edge dummy nodes are added for edges con-
nected to inverted ports similar to the second approach. The differences are that
the dummy node is placed in the same layer, and that the dummy node does not
only have outgoing edges. One advantage of this approach is that the inserted
dummy node can be treated just like a regular edge dummy node inserted to
break long edges.

This of course comes at the cost of turning the layering into a weak layering
by the addition of in-layer edges, which has consequences for the crossing min-
imization phase. For barycenter-based algorithms, it is not immediately clear

74 L.K. Klauske et al.

what to do with in-layer edges. A problem arises when a barycenter value is to
be calculated for a node n1 which is connected to another node n2 in the same
layer, since n2 does not have a rank value assigned. We solve this by pretending
edges incident to n2 to also be incident to n1, and thereby effectively treating
n2 as not being there at all. This has the positive effect of making n1 and n2 be
closer together, thereby reducing the length and the possibility of crossings due
to the in-layer edge connecting them.

This approach also has consequences for cross counting. Usually, cross count-
ing algorithms only count crossings between two layers, not in the same layer.
However, a worst-case estimate for crossings caused by in-layer edges can be
easily computed in time linear to the number of ports in a layer. First, all ports
with incident edges are numbered from top to bottom. Then, for each in-layer
edge e, we calculate the difference of the numbers of the ports it connects. We
get the maximum number of ports between them whose incident edges will cause
crossings with e.

5.3 Hierarchical Ports

In order to control the complexity of large systems, data flow models are bro-
ken into hierarchically structured levels using composite actors, which are also
called submodules. Although the nested content of a composite actor is usually
displayed in a new window, it is also possible to draw it directly inside the com-
posite actor’s bounding box in the containing diagram by enlarging the bounding
box accordingly. This leads to a compound graph structure [20], where composite
actors are represented by compound nodes. This kind of visualization allows to
directly connect the ports of a composite actor with its content, thus emphasiz-
ing the flow of data across hierarchy levels. We call such ports with connections
to the inside as well as the outside hierarchical ports. Our approach regards
each compound node as a separate diagram to be laid out. The hierarchy tree
is traversed bottom-up, applying the layout algorithm to the deeper hierarchy
levels prior to the containing ones. This method requires the layout algorithm
to determine positions for hierarchical ports.

In a previous approach [19], hierarchical ports on the North or South side
were handled by routing their incident edges around a diagram’s nodes to dummy
nodes inserted into the first layer. This produced long edges and a cluttered
diagram, two problems that our new approach solves by eliminating the need to
route edges around the diagram.

With port constraints set to Free, this is staightforward. Dummy nodes are
added to the graph and placed in the first or last layer, depending on how many
outgoing and incoming edges they have. In the end, the position of hierarchical
ports can be directly inferred from where the algorithm placed their dummy
nodes.

With port constraints set to FixedSides or higher, the hierarchical equiv-
alents of side ports and inverted ports can appear. Treating hierarchical ports
assigned to the West or East side is similar to the Free case. However, for
hierarchical ports assigned to the North or South side, some more work is re-

Improved Layout for Data Flow Diagrams with Port Constraints 75

�

Fig. 6. Inserted dummy nodes to handle hierarchical ports on the North side. Solid
circles are inserted dummy nodes the regular nodes connect to. The dashed line indi-
cates how our algorithm routes the edges to the hierarchical port p.

quired. In these cases, KLay Layered creates dummy nodes for nodes connected
to hierarchical ports to connect to instead, as shown in Fig. 6. These dummy
nodes are placed above or below all other nodes inside a layer, depending on
whether they belong to a North or South port. In a separate edge routing
phase, these dummy nodes are connected to another dummy node representing
the hierarchical port itself, the edges between them routed with the orthogonal
edge routing algorithm also used for normal edge routing. The position of the
hierarchical ports is derived from the position of their dummy node, calculated
using a force-based approach that takes the position of connected nodes into
account.

With port constraints set to at least FixedOrder, this calculation of dummy
node positions can lead to invalid results. In these cases, the positions are cor-
rected to adhere to the given hierarchical port order.

In the FixedRatio and FixedPos cases, the position of the hierarchical
ports is explicitly prescribed.

One shortcoming of this approach is that our treatment of hierarchical ports
does not take external connections into account. Thus, hierarchical ports can
be placed in a way that works well within an actor, but leads to unnecessary
crossings in the upper hierarchy levels. Ongoing research within our group aims
to solve this problem.

6 Evaluation

The quality of layouts is usually measured using a selection of aesthetics criteria,
of which the number of edge crossings and the number of bend points rank
among the most important according to Purchase et al. [13,23]. We evaluated the
KLay Layered algorithm against its predecessor, the KLoDD (KIELER Layout of
Dataflow Diagrams) algorithm [19], comparing the number of produced crossings
and bend points. Since both are meant to be used in interactive applications
with users actively waiting for a layout to be generated, we also compared their
runtime performance.

76 L.K. Klauske et al.

(a) Number of bend points. (Random
models)

(b) Number of edge crossings. (Random
models)

(c) Number of bend points. (Ptolemy
models)

(d) Number of edge crossings. (Ptolemy
models)

Fig. 7. The number of bend points and the number of crossings produced by theKLay
Layered algorithm presented here (solid lines and circles) and the KLoDD algorithm,
which follows a previous approach [19] (dashed lines and crosses), applied to our set of
random graphs (a, b) and to our selection of Ptolemy models (c, d)

For a visual impression, Fig. 2(b) shows a drawing created with KLay, while
Fig. 2(a) shows a drawing of the same model created with KLoDD.

We applied the algorithms to two sets of diagrams in order to evaluate the
layout quality. The first set consisted of 270 random graphs with 10 to 50 nodes
each and an average of 1.2 outgoing edges per node, which is roughly what we
find in real-world data flow diagrams. Port sides were chosen randomly: input
ports would usually be placed on the West side and output ports on the East
side, with a probability of 0.05 of this being the other way round, and with a
probability of 0.2 of a port being placed on the North or South side. For the
second set, we wanted to focus on real-world diagrams. Therefore we used a
selection of 141 models taken from the demonstration model repository of the
Ptolemy II tool developed at UC Berkeley and imported them into KIELER.
Contrary to the set of random graphs, the graph structure of most Ptolemy
models was hierarchical, with each compound node averaging 8.98 child nodes,
up to a maximum of 43 child nodes.

During the development of KLay Layered, we placed some emphasis on re-
ducing the number of bend points and thus expected it to be lower compared
to KLoDD. Due to improved crossing minimization we also expected the num-

Improved Layout for Data Flow Diagrams with Port Constraints 77

(a) Performance relative to the number of
nodes in the graph.

(b) Performance relative to the number of
outgoing edges per node.

Fig. 8. The runtime performance of KLay Layered algorithm (solid line) and the
KLoDD algorithm (dashed line), plotted against the number of nodes (a) and against
the number of outgoing edges per node (b)

ber of crossings to be slightly lower. The results of our quality evaluation are
shown in Fig. 7. Indeed they indicate that the number of bend points produced
by KLay Layered is almost consistently lower compared to KLoDD. Regarding
the number of crossings, the algorithms average fairly similar results, with KLay

Layered having a slight advantage for smaller diagrams.
For the performance evaluation we used randomly generated diagrams with

nearly the same characteristics as the ones already described. Since we wanted
to measure the reaction of the algorithms to both changes in the number of
nodes and changes in the number of outgoing edges per node, we used two sets
of random diagrams. For the first set, we kept the number of outgoing edges per
node between 0 and 2, generating graphs with between 10 and 10, 000 nodes. The
second set was fixed at 100 nodes, with the number of outgoing edges varying
between 0 and 15.

As for the results, we expected KLay Layered to be considerably slower than
KLoDD due to its more complex architecture. We were surprised to see that this
is not the case, as can be seen in Fig. 8. In fact, for large diagrams, KLay Layered
shows a linear correlation with the number of nodes. It does not react quite as
well to the number of outgoing edges per node, however. This is very likely due
to its extensive use of dummy nodes, which KLoDD uses more conservatively.

All in all, KLay Layered performs very well with diagrams from our applica-
tion domain and is well suited to be used in interactive applications.

7 Conclusion

We presented new approaches for handling port constraints as they often appear
in data flow diagrams of actor-oriented modeling languages such as Simulink or
Ptolemy. These approaches involve the creation and special treatment of dummy
nodes. To that end, we introduced enhancements to the crossing minimization
phase of the layer-based graph layout method. Compared to previous approaches,

78 L.K. Klauske et al.

our contributions result in significantly lower numbers of bend points and cross-
ings for realistically sized diagrams. However, there is still room for improve-
ments, which we leave for future work:

– The layer-sweep crossing minimization approach requires a method for count-
ing the number of crossings in order to find an appropriate terminating con-
dition. While there exist efficient counting methods for plain graphs [1], these
are inaccurate when hyperedges are involved, because their actual number
of crossings is determined later in the edge routing phase [16].

– We currently treat hierarchical diagrams by recursively applying the layout
algorithm to each hierarchy level, starting with the innermost ones. This
procedure is not optimal when the ports of a compound node are rearranged,
since the algorithm processing the content of that node does not take into
account its external connections.

– Relation nodes are hypernodes that are used in Ptolemy to connect an ar-
bitrary number of actors. Treating these nodes in the same manner as data
flow actors leads to unsatisfying results, and it is not clear what an optimal
solution would look like.

References

1. Barth, W., Jünger, M., Mutzel, P.: Simple and Efficient Bilayer Cross Counting.
In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 130–141.
Springer, Heidelberg (2002), http://dx.doi.org/10.1007/3-540-36151-0_13

2. Broy, M.: Challenges in automotive software engineering. In: ICSE 2006: Proceed-
ings of the 28th International Conference on Software Engineering, pp. 33–42 (2006)

3. Eades, P., Lin, X., Smyth, W.F.: A fast and effective heuristic for the feedback arc
set problem. Information Processing Letters 47(6), 319–323 (1993)

4. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity—the Ptolemy approach. Proceedings
of the IEEE 91(1), 127–144 (2003)

5. Forster, M.: A Fast and Simple Heuristic for Constrained Two-Level Crossing Re-
duction. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 206–216. Springer, Hei-
delberg (2005), http://dx.doi.org/10.1007/978-3-540-31843-9_22

6. Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.P.: A technique for drawing
directed graphs. Software Engineering 19(3), 214–230 (1993)

7. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM Journal on
Algebraic and Discrete Methods 4(3), 312–316 (1983),
http://link.aip.org/link/?SML/4/312/1

8. Klauske, L.K., Dziobek, C.: Improving modeling usability: Automated layout gen-
eration for Simulink. In: Proceedings of the MathWorks Automotive Conference,
MAC 2010 (2010)

9. Klauske, L.K., Dziobek, C.: Effizientes Erstellen von Simulink Modellen mit
Hilfe eines spezifisch angepassten Layoutalgorithmus. In: Tagungsband Dagstuhl-
Workshop MBEES: Modellbasierte Entwicklung eingebetteter Systeme VII, pp.
115–126 (2011),
http://www.in.tu-clausthal.de/abteilungen/gi/Forschung/MBEES2011/

http://dx.doi.org/10.1007/3-540-36151-0_13
http://dx.doi.org/10.1007/978-3-540-31843-9_22
http://link.aip.org/link/?SML/4/312/1
http://www.in.tu-clausthal.de/abteilungen/gi/Forschung/MBEES2011/

Improved Layout for Data Flow Diagrams with Port Constraints 79

10. Lee, E.A., Neuendorffer, S., Wirthlin, M.J.: Actor-oriented design of embedded
hardware and software systems. Journal of Circuits, Systems, and Computers
(JCSC) 12(3), 231–260 (2003)

11. Orlarey, Y., Fober, D., Letz, S.: An algebraic approach to block diagram construc-
tions. In: Actes des Journèes d’Informatique Musicale (JIM 2002), pp. 151–158.
GMEM, Marseille (2002)

12. Orlarey, Y., Fober, D., Letz, S.: FAUST: an efficient functional approach to DSP
programming. In: Assayag, G., Gerzso, A. (eds.) New Computational Paradigms
for Computer Music. Editions Delatour, France (2009)

13. Purchase, H.C.: Which Aesthetic has the Greatest Effect on Human Understand-
ing? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer,
Heidelberg (1997)

14. Sander, G.: Graph layout through the VCG tool. Tech. Rep. A03/94, Universität
des Saarlandes, FB 14 Informatik, 66041 Saarbrücken (October 1994)

15. Sander, G.: A Fast Heuristic for Hierarchical Manhattan Layout. In: Brandenburg,
F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 447–458. Springer, Heidelberg (1996)

16. Sander, G.: Layout of Directed Hypergraphs with Orthogonal Hyperedges. In: Li-
otta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 381–386. Springer, Heidelberg (2004)

17. Schreiber, F.: Visualisierung biochemischer Reaktionsnetze. Ph.D. thesis, Univer-
sität Passau, Innstrasse 29, 94032 Passau (2001)

18. Siebenhaller, M.: Orthogonal Graph Drawing with Constraints: Algorithms and
Applications. Ph.D. thesis, Universität Tübingen, Wilhelmstr. 32, 72074 Tübingen
(2009)

19. Spönemann, M., Fuhrmann, H., von Hanxleden, R., Mutzel, P.: Port Constraints
in Hierarchical Layout of Data Flow Diagrams. In: Eppstein, D., Gansner, E.R.
(eds.) GD 2009. LNCS, vol. 5849, pp. 135–146. Springer, Heidelberg (2010)

20. Sugiyama, K., Misue, K.: Visualization of structural information: automatic draw-
ing of compound digraphs. IEEE Transactions on Systems, Man and Cybernet-
ics 21(4), 876–892 (1991)

21. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchi-
cal system structures. IEEE Transactions on Systems, Man and Cybernetics 11(2),
109–125 (1981)

22. Waddle, V.: Graph Layout for Displaying Data Structures. In: Marks, J. (ed.) GD
2000. LNCS, vol. 1984, pp. 241–252. Springer, Heidelberg (2001)

23. Ware, C., Purchase, H., Colpoys, L., McGill, M.: Cognitive measurements of graph
aesthetics. Information Visualization 1(2), 103–110 (2002)

24. Wernicke, M.: AUTOSAR auf dem Weg in die Serie. Elektronik Praxis 02 (2008),
http://www.elektronikpraxis.vogel.de/themen/

embeddedsoftwareengineering/analyseentwurf/articles/105576/

http://www.elektronikpraxis.vogel.de/themen/embeddedsoftwareengineering/analyseentwurf/articles/105576/
http://www.elektronikpraxis.vogel.de/themen/embeddedsoftwareengineering/analyseentwurf/articles/105576/

Aesthetic Layout of Wiring Diagrams

Christian Ernstbrunner and Josef Pichler

Software Competence Center Hagenberg,
Softwarepark 21, 4232 Hagenberg, Austria

{christian.ernstbrunner,josef.pichler}@scch.at

Abstract. A wiring diagram plays an important role in electrical ma-
chine design. The layout of a wiring diagram must facilitate a designer’s
understanding of the schematic as well as the real electrical machine.
Even though wiring diagrams are undirected graphs, standard algorithms
and libraries for graph drawing are not sufficient to achieve adequate di-
agrams that preserve the structure and further characteristics of the real
machine. We argue that specialized algorithms are required to achieve ad-
equate and aesthetic diagrams without compromising the characteristics
of an electrical machine. In this paper, we describe a new algorithm for
positioning diagram elements and a customized algorithm for connector
routing for aesthetic wiring diagrams.

Keywords: Graph layout, connector routing, wiring diagram.

1 Introduction

A wiring diagram is a simplified pictorial representation of an electrical circuit
that shows the interconnection of electrical elements such as resistors, inductors,
and switches. For an electrical machine, a wiring diagram shows the electrical
elements of the machine (e. g. a power transformer) such as windings, switches,
terminals, and Y-connections.

A software tool that supports electrical engineers in specifying the wiring
of an electrical machine must provide efficient creation and error diagnostics of
electrical circuits. Because not all kind of errors may be detected automatically—
some require interpretation of an expert—the software tool must display wiring
diagrams in a way that electrical engineers identify faulty wirings by brief in-
spection. This requirement assumes the diagram to be aesthetically and clearly
readable. The guidelines for aesthetic diagram drawing as identified by Ben-
nett et al. [2] and readability investigated by Tamassia et al. [14] are mainly
applicable to electrical diagrams as well. Even a wiring diagram is a pictorial
representation of a real electrical machine, an electrical engineer must be able
to close the gap between the real electrical machine and the schematic, picto-
rial representation. So the wiring diagram must be visualized in a notation that
preserves knowledge of the actual electrical machine. This is usually achieved by
means of several strategies. To discover symmetric wiring on different phases at a
glance, for instance, electrical elements can be assigned to electrical phases. Fur-
thermore, the order of winding elements in the wiring diagram uniquely defines

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 80–94, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Aesthetic Layout of Wiring Diagrams 81

(a) (b)

Fig. 1. Wiring diagrams using the yFiles library with (a) swim-lanes and orthogonal
routing and (b) with orthogonal layout

the order of windings in the real electrical machine. These knowledge preserving
strategies are more important than other graph drawing aesthetics, which either
must be adopted or cannot be implemented for electrical wiring diagrams.

Basically, wiring diagrams represent undirected graphs, with electrical ele-
ments as graph vertices and connectors as graph edges between vertices. Hence,
layout of wiring diagrams can be considered as a graph layout problem. Today, a
plethora of algorithms (e.g. [1], [13], [15], [3]) and software libraries (e.g. yFiles1

and ILOG2) exist for this problem. The result quality of standard graph layout
algorithms mostly depend on free positioning of vertices. In other words, edge
placement heuristics ([2], [11]) such as minimize the number of edge bends or
minimize the number of edge crossings are applied by repositioning graph ver-
tices. Some libraries provide mechanisms to restrict positioning. For instance,
the yFiles library provides either swim-lanes which could be used to restrict
positioning of phase-specific diagram elements or sketch-driven graph drawing
[3]. However, the result is far away from aesthetics expected by domain experts
(see Fig. 1). In contrary, constraint graph layout used for dynamic graph layout
is able to preserve the mental map (also called layout stability) of the user [7].
The new layout should not move an existing node unless the current position
leads to poor layout [5]. For instance, Dwyer et al. propose an algorithm that
preserves the topology of the initial layout based on force-directed style layout
[5]. Wybrow et al. [15] propose an algorithm for orthogonal connector routing
that does not move nodes at all. Hence, it is a potential candidate for rout-
ing of wiring diagrams. However, the result is not satisfactory because wiring
diagrams requires further restrictions on routing (directions of glue points, vari-
able number of edges between two vertices, etc.) that are not addressed by the
algorithm.

1 http://www.yworks.com
2 http://www.ilog.com

82 C. Ernstbrunner and J. Pichler

Due to restrictions of available algorithms and libraries, we have implemented
positioning of diagram elements by using simple heuristics to preserve domain-
specific aesthetics and extended the orthogonal connector routing algorithm [15]
in a way that respects most requirements concerning layout of wiring diagrams.
We have implemented the algorithms as part of a software tool for the technical
design of power transformers (see [4] and [10]). The contribution of this paper
is to close the gap between standard algorithms for graph layout and domain-
specific requirements (aesthetics) in the electrical engineering domain. The main
contribution is a new algorithm for element positioning (Section 3) as well as
an extended algorithm for connector routing (Section 4). Both algorithms are
defined, elaborated, and evaluated for wiring diagrams. We demonstrate and
approve the successful application of domain-specific heuristics for graph layout
and connector routing, a field that is less elaborated compared to standard al-
gorithms [2]. The resulting diagrams have been evaluated with potential users
of the software system such as electrical engineers (Section 5).

2 Problem Statement

In this section, we describe requirements and constraints of wiring diagrams by
means of an internal wiring of a power transformer. The software tool that we
have developed helps engineers to construct and edit such wiring diagrams in
an incremental way. Electrical elements as well as connectors between elements
may be added and removed in the diagram directly. Every change triggers an
entire layout of diagram. Manual arrangement of elements in the diagram is not
yet supported by the tool.

Fig. 2 shows a typical wiring diagram for a three-phase power transformer
consisting of two independent electrical cycles that are both applied to a terminal
(T 1 and T 2). The internal wiring of a power transformer is a network of different
types of electrical elements connected to each other by designated entry and exit
taps (depicted by circles). A winding element (US, ST ,G, and F) is an electrical
coil that is represented by one entry and multiple exit taps. Terminal elements
(T 1, T 2) are ports to connect the power transformer to external elements. Switch
elements consist of one entry tap and either two (e.g. S) or more exit taps
(e.g. O). Last, a Y-connection element (Y) is used to join multiple phases to a
common point. As depicted in Fig. 2, most elements are symmetric according to
the three-phases of the power transformer.

The differences between these element types have influence on the connector
routing because of different number of entry/exit taps and preferred directions
for connector docking. The preferred direction used to connect to an element
on a specific part depends on the element as well as on the entry/exit tap. For
instance, taps of a terminal are always connected to the right whereas entry taps
of windings (at the top) and a single exit tap at the bottom (e.g. US, ST) can
be connected from arbitrary directions. However, exit taps of a winding with
multiple exit taps (e.g. F) may be connected from the right side only.

Aesthetic Layout of Wiring Diagrams 83

Fig. 2. Layout result of a wiring schematic for a three-phase power transformer

The network shown in Fig. 2 presents the positioning of electrical elements
expected by electrical engineers. This expectation includes following restrictions
concerning horizontal and vertical positioning:

1. Elements that are available on all phases are horizontally aligned.
2. Terminal elements are always placed on the left hand side.
3. A Y-connection element spans all phases of the network.
4. Winding elements are vertically aligned corresponding to their actual geo-

metrical position in the power transformer.
5. The vertical positioning of other element types except windings is free with

respect to connectors to other elements, in particular to winding elements.

The enumerated restrictions concerning positioning are used to keep knowledge
of elements in the real electrical machine in the schematics diagram as well.
Furthermore, positioning of elements must also facilitate and assure aesthetic
connector routing as defined in literature [2]. Restrictions concerning reduction
of lengths and crossings can only be satisfied by well-coordinated positioning
and routing algorithms.

Due to the fact that power transformers commonly consist of less than fifty
electrical elements but up to 103 connectors, positioning of elements is not as
time critical as routing of connectors. Routing is even more critical because of

84 C. Ernstbrunner and J. Pichler

the requirement that diagrams with same elements and connectors must result in
an equal layout which means that modifications of a network (adding, removing,
and editing elements or connectors) trigger a new layout of the complete diagram.
The next sections present the implementation and adaptation of positioning and
routing algorithms to meet all these requirements.

3 Positioning of Diagram Elements

We developed an algorithm that respects the requirements and restrictions con-
cerning horizontal and vertical positioning of diagram elements as described in
the previous section. The algorithm follows additional rules to assure aesthetic
drawing of connectors:

1. Place elements closer to connected elements to keep connectors short. If more
than one element is connected to a specific element E, the one with more
connectors to E will be positioned next to E.

2. The vertical position of an element relative to a connected element is deter-
mined by the preferred directions of element taps that are connected. For
example, if a (right) tap of a terminal element T is connected to the top tap
of a winding element W, T will be placed above W to keep the connector
short.

3. The horizontal position—element is placed left or right from a connected
element—can be determined the same way. This helps to reduce bends of
connectors. This restriction may not be applied to winding and terminal
elements because of the restrictions listed above.

A network (Fig. 3a) is given as undirected graph (Fig. 3b) containing vertices
for all diagram elements (e.g. A1 and B1) and edges representing connectors
between diagram elements. For positioning, this graph is transformed to an in-
termediate undirected graph (Fig. 3c) by collapsing multiple edges between the
same elements and collapsing multiple elements with the same text label. Finally,
the undirected graph is transformed to a directed graph (Fig. 3d) that contains
a single node for symmetric diagram elements. In other words, where the net-
work graph contains three nodes representing symmetric winding elements (e.g.

A1

B1

A2

B2

A3

B3

A1

B1

A2

B2

A3

B3

A

B

A

B

(a) (b) (c) (d)

Fig. 3. Transformation of a network (a) given as network graph (b) to an undirected
graph (c) and, finally, to a directed graph (d)

Aesthetic Layout of Wiring Diagrams 85

winding element US in Fig. 2) of all phases, the resulting graph contains a single
node only, because vertical positioning is equal to all three diagram elements
and horizontal positioning is symmetric on all lanes of phases. As consequence,
the three diagram elements need not be treated separately for positioning.

The first step of the positioning algorithm is the vertical placement (ranking)
of elements. As a connector has no defined start and end point, the resulting edge
in the graph is undirected. To simplify ranking of nodes (and hence of diagram
elements) and cycle detection later on, edges gets a designated start and end
vertex, resulting in a directed graph. The start and end vertex of an edge is
determined as follows:

1. If the position of the first tap of the connector is at the bottom, right, or left
of element E1 and the position of the second tap is at the top of element E2,
the start point of the edge is vertex for E1 and end point is vertex for E2.

2. If position of first tap is bottom of element E1, position of second tap is top,
right, or left of element E2, start point is vertex for E1, end point is vertex
for E2.

3. If position of the taps is equal (e.g. both are at the bottom), start and end
vertices of the edge are determined due to the element types of the vertices
by some heuristics as described above.

On the basis of these vertices and edges an adjacency matrix is constructed. Table
1 shows the initial adjacency matrix for the network given in Fig. 2 holding a row
and a column entry for every vertex. For each edge, the value in the matrix at
column position for start vertex and row position for end vertex is increased by
1. If all values in a column are summed up one gets the number of successors of a
specific vertex, summing up a row results in the number of vertex predecessors.

In addition to the adjacency matrix, an ordered set of virtual edges is created
for all windings of the transformer. A virtual edge contains a start and an end
vertex as well, but start and end are determined by the actual vertical position
of the winding and not from a connector given in the wiring diagram. Table 2
shows that, if winding US is directly placed above winding ST a virtual edge
is created with start vertex of US and end vertex of ST . This strategy ensures
that the winding ordering is preserved by the positioning algorithm.

After preparation of these data structures, the actual positioning starts with
ranking of unconnected elements (i.e. the sum of column and row values in the
adjacency matrix is 0), ignoring unconnected windings. Unconnected elements
are simply sorted by the alphabetical order of their names. Note that the order of
unconnected elements never affects the resulting, final diagram but intermediate
diagrams only where not all elements are connected. Hence, this rather trivial
strategy is sufficient for our purpose.

In contrast to unconnected elements, connected elements and virtually con-
nected elements are processed as follows:

1. The elements with the most significant vertex Vi (where i is the 1-based
index of the vertex in the adjacency matrix) is determined. The most signif-
icant vertex is the vertex with highest number of successors (highest sum of

86 C. Ernstbrunner and J. Pichler

Table 1. Adjacency matrix as graph representation
for positioning whereas columns hold successors and
rows hold predecessors of graph elements

US ST G F S O T1 T2 Y SUM

US – 3 3
ST – 3 3
G – 3 3
F 3 – 3
S 3 3 – 6
O 12 – 12
T1 – 0
T2 – 1 1
Y 3 – 3

SUM 0 3 6 12 3 3 3 3 1 –

Table 2. Set of virtual
edges between winding el-
ements

1. US → ST
2. ST → G
3. G → F

columns) and—if there is more than one vertex—with the highest number
of predecessors (highest sum of rows).
Example: In Table 1 the vertex with the highest significance is vertex V4,
named F (sum of values in column 4).

2. If the most significant vertex is the end vertex of a virtual edge, the algorithm
continues with the start vertex (assigning this start vertex to Vi) of this
virtual edge and repeats this step until no virtual predecessor can be found.
Example: Table 2 shows that vertex F is the end vertex of the virtual edge
G → F so the newly inspected vertex is G. Because G is itself the end vertex
of a virtual edge step 2 is repeated until the first start vertex in the set of
virtual edges is found – in Table 2 this is vertex US.

3. The next step is the identification of predecessors for vertex Vi with the
highest local significance, which is the vertex with the highest value in row
i. This step is repeated until either no predecessor can be found or the
most significant predecessor is Vi again. If no predecessor can be found the
vertex with no predecessor is assigned to Vi. Otherwise if the most significant
predecessor is vertex Vi again a cycle in the graph was detected. Breaking
this cycle is done by first finding the weakest edge in the cycle. The weakest
edge is the vertex tuple with fewest interconnections and, if more than one
of these tuples exists, with the least cumulated significance (in Table 1 the
weakest edge in the cycle T 2 → ST → S → G → F → O → Y → T 2 is the
one from Y to T 2). Then the end vertex of the weakest edge is assigned to
Vi.
Example: In Table 1 the only predecessor for vertex US is T 1 (see row 1),
which do not have a predecessor on its own (see empty row for T 1). Hence
no cycle in this partial graph is found and the new inspected vertex is T 1.

4. Vertex Vi is ranked as the bottommost vertex of all already ranked vertices.
Because now this vertex is handled, all values in column and row at index i
are reset, which primarily results in a loss of significance for its predecessors.
Additionally virtual edges with start vertex Vi are removed.

Aesthetic Layout of Wiring Diagrams 87

Example: For the graph represented in Table 1, vertex T 1 is ranked as the
topmost vertex.

5. Then the successors of Vi, sorted in descending order of local significance,
are ranked using a depth first processing [8] to traverse vertex successors.
Depth first processing means that successor is assigned to Vi and step 4 and
5 are repeated until either no successor or a successor with another, more
significant, predecessor can be found.
Example: The most significant successor of T 1 in Table 1 is vertex US (the
highest value in column 7) and is therefore ranked after T 1. Because US do
not have any successors and T 1 does not have any others this partial graph
is processed entirely.

6. When depth first processing is stopped, ranking of remaining elements con-
tinues with an adjusted adjacency matrix and the reduced set of virtual
edges at step 1. Example: The adjusted matrix for Table 1 after processing
vertices T 1 and US is shown in Table 3. Accordingly, Table 4 shows the
reduced set of virtual edges.

Table 3. Adjusted adjacency matrix after process-
ing US and T1

ST G F S O T2 Y SUM

ST – 3 3
G – 3 3
F 3 – 3
S 3 3 – 6
O 12 – 12
T2 – 1 1
Y 3 – 3

SUM 3 6 12 3 3 3 1 –

Table 4. Adjusted set of
virtual edges

1. ST → G
2. G → F

The horizontal arrangement of elements in the phase lanes mainly adjusts the
position of windings and terminals due to the alignment constraints for these
types of elements. Hence if more taps positioned on the left side of an element
are connected to elements of the same phase or more taps are connected to
elements of a phase on the right, the element will be positioned on the right
side of the lane. On contrary, an element will be positioned on the left side of
the lane, if more taps on the left are connected or the element is connected to
elements of a phase on the left. If no preferred side could be determined the
element is horizontally aligned with windings on the same phase.

4 Connector Routing

After arranging elements vertically and horizontally, the connectors can be drawn
with respect to a clear and aesthetic visualization of the entire diagram, as pro-
posed by [14]. The principles that apply best to our needs of clear and aesthetic
connector routing are following:

88 C. Ernstbrunner and J. Pichler

(a) (b) (c)

Fig. 4. Orthogonal connector routing by Wybrow et al. [15]

– Route connectors orthogonal
– Reduce length of each connector
– Reduce bends of each connector
– Reduce crossing of multiple connectors
– Reduce overlapping of multiple connectors
– Avoid connectors the overlap elements

These principles are implemented in the orthogonal connector routing algorithm
[15] and shown in Fig. 4.
The orthogonal connector routing algorithm consists of three consecutive stages:

1. Determining the orthogonal visibility graph (Fig. 4a). The orthogonal vis-
ibility graph is a set of interesting points including connector points, edge
points of the elements, and crossing points of straight lines through these
connector and edge points.

2. Calculating routes through the visibility graph (Fig. 4b) using the A* algo-
rithm [6].

3. Slightly moving of overlapping segments of poly-line routes, called nudging
(Fig. 4c).

We mainly adopted this algorithm with few modifications to fit our needs. In
contrary to the approach in [15] we can assume that (1) the elements in wiring
diagrams are arranged in some kind of a grid (horizontal and vertical alignment
of elements), (2) taps (connector points) of the elements may be connected from
different directions, (3) connectors are more likely oriented from top-to-bottom
than from left-to-right, and (4) symmetric windings, i.e. windings on all phases,
are often wired using special connection types like star or delta connection (see
wiring of US windings in Fig. 2).

To take these assumptions into account, we perform an additional step before
routing a connector. This step follows the idea of port constraints (e.g. [12]) and

Aesthetic Layout of Wiring Diagrams 89

US US
2

0 0 0

1 1 1

US
1

US
3

US
1

US
2

US
3

0 0 0

1 1 1

(a) (b) (c)

Fig. 5. Difference between connector routing by Wybrow [15] (b) and extended con-
nector routing (c) of connector directions (a)

US
1

US
2

0 0

1 1

US
1

US
2

0 0

1 1

(a) (b)

Fig. 6. Difference between (a) A* and (b) A* with horizontal centering

is used to determine which of the tap directions (see Fig. 5a) is the best one for
a given connector. The best direction is the one that allows the route to bypass
most elements without additional bends and most likely causes least crossings
of connectors. Fig. 5 shows the difference between the results from the standard
algorithm by Wybrow (b) and our extension (c). Experiments showed that the
most aesthetic results are obtained if the connectors are sorted by ascending
distance of their start and end point.

The cost function of the A* algorithm including length and bend heuristics
was adopted and extended as well. The costs for bends were raised so that a
longer route will be preferred to a route with more bends [11]. In addition costs
for horizontal centering of vertical route segments were applied. Thus visibility
graph points with similar horizontal distance to start and end point will be
preferred for routing to those with more different ratio. The results are shown
in Fig. 6.

Due to performance reasons a penalty is added to the costs if the Manhattan
Route to the end tap is blocked by a shape in the diagram because it means
that the route cannot be finished without adding at least two additional bends.
This prevents the algorithm from calculating costs for too many points in the
visibility graph that most likely are not part of the best route. When the best
route is identified by the A* algorithm, an entry for every passed point in the
orthogonal visibility graph is made holding whether the connector traverses the
point horizontally or vertically. Hence this allows to efficiently determine over-
lapping segments or crossing of route segments after routing of all connectors. If
any overlapping segments are detected these segments are moved relatively to a
reference segment. This reference segment is either the longest of these segments

90 C. Ernstbrunner and J. Pichler

Fig. 7. Layouting result for a typical wiring of a three-phase transformer

or—if there is not enough space because shapes or other connectors would be
overlapped—another selected segment that allows to move other segments with-
out additional overlappings. Vertical segments are moved either to the left or
right from the reference segment depending on whether start point of the ded-
icated route is located on the left or right of the segment. Horizontal segments
are accordingly moved to top or bottom.

5 Evaluation

The introduced positioning and routing algorithms were implemented using the
.NET platform version 3.5. The results of this implementation as shown in Fig.
2 and Fig. 7 are as defined and expected by domain experts; the only connector
that could be routed more aesthetically without crossing other routes is the
connector between terminal T 2 and the Y -connection at the bottom of Fig. 2.

Aesthetic Layout of Wiring Diagrams 91

Fig. 8 demonstrates nudging and handling of crossings by means of a fictitious
wiring. Although multiple connectors lead to the same tap they can be easily
distinguished. The complexity of the wiring in Fig. 8 is typical for real wiring
diagrams. Electrical engineers have designed wiring diagrams of actual electrical
machines with our software tool. The users were able to design all diagrams with
minor assistance only. The resulting diagrams were readable and understandable
for the engineers as well.

Fig. 9 and Fig. 10 present some open issues concerning positioning of elements
and routing of connectors:

– Uncommonly, if a tap is connected with too much other taps there is lack of
space for nudging connectors (see tap 6 of element W in Fig. 9) aesthetically.
Hence one of these connectors cannot be distinguished from the others.

– Even though all elements and connectors between elements S and W are
symmetric the connector of the first phase is routed—in contrary to the
other phases—around element W in Fig. 9. This routing behavior makes it
difficult to detect the symmetry of the three connectors at a glance.

– The diagram in Fig. 10 contains a cycle with three elements. Each element
is linked with exactly three connectors to the other elements, which means
that no weakest edge can be determined by means of the criteria presented
in section 3. The ordering of elements as is leads to longer routes and more
crossings.

Fig. 8. Nudging and handling of crossing for overlapping connectors

92 C. Ernstbrunner and J. Pichler

Fig. 9. Fictitious wiring example demonstrating routing problems

Fig. 10. Fictitious wiring demonstrating positioning problem for cycles

Aesthetic Layout of Wiring Diagrams 93

Table 5. Time measurements for layout of diagrams

Diagram Size VisGraph Times to compute (in msec.)
Vertices Edges Points Pos VisGraph Routing Nudging Overall

10 40 5000 20 1 12 1 34
20 120 17500 40 2 38 1 81
30 250 58000 102 4 260 3 369

The implemented layout algorithm also meets the requirements in terms of per-
formance. Table 5 exposes that layout of diagrams for typical power transformers
with less than 20 elements and less than 150 connectors is performed under 100
ms. Indeed, time consumed increases for larger networks, especially if the num-
ber of connectors raises. All examples were tested on a PC (dual core with 2.3
GHz and 3 GB of RAM) running Windows XP.

6 Conclusion

Wiring diagrams play an important role in electrical engineering. We showed that
standard algorithms and libraries for graph layout are not sufficient for aesthetic
layouts of wiring diagrams. Hence, we developed a new algorithm for positioning
of diagram elements and extended a given algorithm with respect to special
requirements concerning layout of wiring. To the best of our knowledge, there
is no comparable work for wiring diagrams. However, [9] proposes an algorithm
for aesthetic routing for transistor schematics.

The wiring diagrams resulting from our algorithms have been implemented
as part of a design tool for power transformers and were evaluated by elec-
trical engineers. Evaluations of the resulting diagrams by electrical engineers
acknowledge the aesthetics of the diagrams. Furthermore, time behavior of our
implementation is adequate for typical size of wiring diagrams .

Even the current algorithms are sufficient for typical wiring diagrams, we plan
to extend our work in following ways. First, typical patterns of wiring shall be
recognized and drawn in a more aesthetic way. For instance a delta-connection
as shown in Fig. 2 or the connectors from a winding to a multi-tap switch
as shown in Fig. 7 are examples of such patterns. Second, the additional step
introduced before routing the connectors to determine the best tap direction can
be replaced by extending the cost function of the A* algorithm by penalties for
crossings. First attempts to implement a non-anticipatory approach resulted in
major performance losses because too many points of the visibility graph are
processed before the best route was found.

References

1. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for Drawing
Graphs: an Annotated Bibliography. Computational Geometry 4(5), 235–282
(1994)

94 C. Ernstbrunner and J. Pichler

2. Bennett, C., Ryall, J., Spalteholz, L., Gooch, A.: The Aesthetics of Graph Visual-
ization. In: Computational Aesthetics 2007: Eurographics Workshop on Computa-
tional Aesthetics in Graphics, Visualization and Imaging, pp. 57–64 (2007)

3. Brandes, U., Eiglsperger, M., Kaufmann, M., Wagner, D.: Sketch-Driven Orthog-
onal Graph Drawing. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS,
vol. 2528, pp. 131–148. Springer, Heidelberg (2002)

4. Czech, G., Ernstbrunner, C., Pichler, J.: A .NET Architecture for Model-Based
Domain Expert Programming. In: Fox, R., Golubski, W. (eds.) IASTED Inter-
national Conference on Software Engineering, IASTED, pp. 25–32. ACTA Press
(2010)

5. Dwyer, T., Marriott, K., Wybrow, M.: Topology Preserving Constrained Graph
Layout. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 230–
241. Springer, Heidelberg (2009)

6. Hart, P., Nilsson, N., Raphael, B.: A Formal Basis for the Heuristic Determination
of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernet-
ics 4(2), 100–107 (1968)

7. He, W., Marriot, K.: Constraint Graph Layout. Constraints 3, 289–314 (1998)
8. Hopcroft, J., Tarjan, R.: Algorithm 447: Efficient Algorithms for Graph Manipu-

lation. Communication ACM 16(6), 372–378 (1973)
9. Lee, T.D., McNamee, L.P.: Aesthetic Routing for Transistor Schematics. In:

IEEE/ACM International Conference on Computer-Aided Design, pp. 35–38. IEEE
Computer Society Press (1992)

10. Pfeiffer, M., Pichler, J.: Trade: A Language and its Tool Support for Programming
in Electrical Engineering. In: Fox, R., Golubski, W. (eds.) IASTED International
Conference on Software Engineering, IASTED, pp. 33–40. ACTA Press (2010)

11. Purchase, H.C., Carrington, D., Allder, J.: Empirical Evaluation of Aesthetics-base
Graph Layout. In: Empirical Software Engineering, vol. 7, pp. 233–255. Kluwer
Academic Publishers (2002)

12. Spönemann, M., Fuhrmann, H., von Hanxleden, R., Mutzel, P.: Port Constraints
In Hierarchical Layout of Data Flow Diagrams. In: Eppstein, D., Gansner, E.R.
(eds.) GD 2009. LNCS, vol. 5849, pp. 135–146. Springer, Heidelberg (2010)

13. Sugiyama, K., Tagawa, S., Toda, M.: Methods for Visual Understanding of Hier-
archical System Structures. IEEE Transactions on Systems, Man, and Cybernet-
ics 11(2), 109–125 (1981)

14. Tamassia, R., Battista, G.D., Batini, C.: Automatic Graph Drawing and Read-
ability of Diagrams. IEEE Transactions on Systems, Man, and Cybernetics, 61–79
(1988)

15. Wybrow, M., Marriott, K., Stuckey, P.J.: Orthogonal Connector Routing. In: Epp-
stein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 219–231. Springer,
Heidelberg (2010)

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 95–101, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Points, Lines and Arrows in Statistical Graphs

Cengiz Acartürk

Middle East Technical University, Informatics Institute,
Cognitive Science Program, 06800 Ankara, Turkey

acarturk@metu.edu.tr

Abstract. Widely used statistical graphs (such as line graphs and bar graphs)
are usually accompanied by graphical entities other than the graph proper.
Those graphical cues, such as point marks and arrows serve for communicative
purposes by bringing certain aspects to the foreground over the others. The
present study discusses the results of an experimental investigation, in which
the participants produced sketches of graphical cues on different types of
graphs, given sentential expressions of states and processes. The outcomes
of the study have the potential for serving as guidelines for the development of
software tools that produce graphical cues.

Keywords: statistical graphs, graphical cues, diagrammatic communication.

1 Introduction

Statistical graphs (e.g., line graphs, bar graphs) are abundant in communication set-
tings and problem solving settings of daily life. They are used in newspapers and in
web blogs, in annual reports of institutions and in management reports, in academic
settings such as lecture notes and in scientific articles. The investigation of statistical
graphs (henceforth, graphs) from a scientific perspective has attracted interdiscipli-
nary interest. An early study at the intersection between cognitive psychology and
usability research is an identification of the ‘basic level graphic constituents’ and
acceptability principles (i.e., design guidelines) for charts and graphs by S. M. Koss-
lyn [1]. Kosslyn uses the notion of ‘basic level’ analogous to the conception of the
term in categorization hierarchies, thus introducing a general classification of the
components of a typical graph (or chart) in addition to keeping a high degree of simi-
larity among different types. All the components of a graph or a chart are presented
on the background, the first basic component. The background is often blank and it
does not play a significant role in communication information. The framework
represents the domain variables (in graphs), without specifying particular information
about the mapping between the values. The specifier specifies the mapping between
the parts of the framework. The lines in a line graph and the bars in a bar graph, in
other words the graph (proper), are the specifier. Finally, the labels comprise alpha-
numerical expressions and depictive labels that contribute to the interpretation of the
specifier or the framework. For example, in the time-domain line graph in Figure 1 (a
two-year graph for the S&P 500 stock market index) the rectangular grid constitutes

96 C. Acartürk

the background and the framework; the graph line is the specifier (i.e., the graph
proper). The alphanumerical expressions on the framework and the depictive labels
on the graph proper—in this case a circle and an arrow—constitute the labels. The
depictive labels, also called graphical cues, are the major focus of the present study. 1

Fig. 1. A sample time-domain line graph. Excerpted from and redrawn based on the article
“Bull Market Coming to an End?” by Sara Nunnally, Smart Investing Daily, retrieved on Sep.
6, 2011, http://www.smartinvestingdaily.com/articles/smart-investing-042511.html

Graphical cues and alphanumerical labels on the graph proper facilitate compre-
hension of the reader (or the interlocutor in a communication setting) by highlighting
a whole graphical entity, a part of it, and/or domain entities that are referred to by the
graphical entities. Human perception in un-cued visual displays is largely directed by
perceptual salience of graphical entities. Entities with larger size and brighter colors
or unusual shapes tend to be more conspicuous than others [2]. In closed contours,
perceptual salience is often determined by a set of critical points (in the terminology
of geometry) such as maxima, minima, inflection points [3], discontinuities in curva-
ture and endpoints, among others [4]. These points have the potential for predicting
attention and possibly eye movements [5]. Adding graphical cues updates the “natural
perceptibility profile” of the display so that perceptibility is better aligned with the-
matic relevance [6].2 In time-domain graphs, graphical cues and verbal annotations
bring certain aspects of states and processes to the foreground over the others, such as
temporal aspect [7] and causal relationships [8]. The use of ‘schematic figures’ as
graphical cues, such as arrows in diagrams, and their influence on comprehension and
verbal descriptions have been the subject of research in diagrammatic communication
[9], [10], [11], and the relevant domains. In the domain of instructional science, for
instance, the role of graphical cues in learning has been investigated in multimedia

1 In the present study, the term ‘graphical cue’ is used for graphical entities that emphasize

comprehension-relevant aspects of other graphical entities in visual displays. In the domain of
computer science, the term ‘annotation’ is used to mean the same type of graphical entities. In
the domain of instructional science, the terms ‘signaling’ and ‘scaffolding’ are used in addi-
tion to ‘cueing’.

2 Thanks one reviewer for emphasizing the relationship between graphical cues, perceptibility
and thematic relevance.

 Points, Lines and Arrows in Statistical Graphs 97

learning material that involves picture and text. ‘Signaling’ is introduced as a tech-
nique to foster learning in multimedia material, e.g. [12], [13], as well as in anima-
tions without text, e.g. [6]. From the perspective of software development and HCI,
although graph-drawing tools in statistical and mathematical software packages are
abundant, the methods for designing and producing graphical cues (i.e., annotations)
are very limited in the current state of the art, mostly relying on designers’ experience
and practice rather than research-based design guidelines. The present study reports
an experimental investigation of graphical cues by analyzing cues produced by hu-
mans in terms of their types and their use in different graph types. The findings are
interpreted within the theoretical framework of acceptability principles for charts and
graphs proposed in [1], thus leading to a set of basic design guidelines for graphical
cues.

2 Experiment

2.1 Participants, Materials and Design

Sixty participants from the Middle East Technical University, Turkey, participated in
the experiment (mean age = 21.6, SD = 1.9). The participants were native speakers of
Turkish, the language of the experiment. Each participant was presented 21 graph-
sentence pairs. Each pair involved a graph (the population of a bird species) and a
sentence that emphasized a certain aspect of the information represented by the graph
(see Figure 2 for sample stimuli).

Fig. 2. A sample graph-sentence pair, designed based on a bird consensus report by PRBO
Conservation Science (http://www.prbo.org). The stimuli were designed and reconstructed
where necessary, according to the purposes aimed at the experimental investigation.

The experiment design involved one between-subject parameter (the graph type)
and one within-subject parameter (the content of the accompanying sentence, i.e. the
sentence type). The graph type parameter involved three experimental conditions
(smooth line graph, straight line graph with sharp corners, bar graph). Accordingly,
the participants were randomly divided into three groups (20 participants per group)

98 C. Acartürk

and each group of was presented one of the three graph types. The graphs represented
the same statistical data. The within-subject parameter was the type of the accompa-
nying sentence in the presented stimuli. The accompanying sentence represented ei-
ther a punctual or durative state (‘For the past 15 years, canvasback population has
been about 30 birds’) or a process such as an increase or decrease with(out) explicit
numerical values (‘Ruddy duck number has decreased to about 50 in 2010.’), fluc-
tuate (‘The number of sanderling on the lagoon has fluctuated from about 20 birds to
about 120 birds in the past 35 years’), peak (‘The number of white-winged scooters
peaked at about 90 birds in 1985’) or cause (the cause sentences were increase / de-
crease process sentences; however, they involved a causal terminology). The stimuli
were presented in printed form and the participants produced graphical cues for
graphs on paper. The participants were instructed to improve a seminar presentation
by marking and labeling according to the accompanying sentences.

2.2 Results

Each participant produced graphical cues for the 21 sentence-graph pairs, thus pro-
ducing a total of 1260 protocols in the experiment. The graphical cues that were pro-
duced by the participants were classified into four groups.

• 0-D: Point-like markings, such as asterisks, stars, dot-circles and dash lines.
• 1-D directional: Straight and curved lines with a single arrowhead.
• 1-D nondirectional/bidirectional: Lines with no- or double-arrowheads.
• 2-D: Region-shapes such as ellipses, circles, rectangles and squares.

In the following sections, the analysis of graphical cues and the projection lines are
reported.3

Graphical Cues on the Graph Proper.
The types of graphical cues on the graph proper were analyzed by a Friedman test,
which was conducted to evaluate differences in medians among the cue types. The
test was significant, χ2 (3, N = 60) = 70.3, p < .01, and the Kendall coefficient of con-
cordance of .39 indicated strong differences among the cue types. The participants
produced more 0-D graphical cues than 1-D directional cues, which was followed by
1-D nondirectional/bidirectional cues and then 2-D cues. A comparison between the
groups showed that the participants in the bar graph group produced more 1-D nondi-
rectional/bidirectional cues than both line graph groups. In addition, the participants
produced different types of cues depending on the sentence type in the stimuli. They
produced more 0-D cues when the graph was accompanied by a process sentence in
which the domain value was explicitly stated. In the durative states, the participants
produced less 0-D cues but more 1-D nondirectional/bidirectional cues and 2-D cues.

3 The participants also produced alphanumerical annotations, which were numerical expres-

sions of the domain value and time, as well as verbal expressions that were mostly causal
statements, where applicable. The investigation of alphanumerical annotations is left for fu-
ture research and it is not analyzed in the present study.

 Points, Lines and Arrows in Statistical Graphs 99

Finally, in the increase/decrease processes, the participants produced more 1-D direc-
tional cues than the other cue types.

Graphical Cues on the Axes.
The participants produced less graphical cues on the axes (M = 9.85) compared to the
graphical cues on the graph proper (M = 22.6) per participant. The analysis of the
produced graphical cues on the axes revealed significant differences for different
types of cues, χ2 (7, N = 60) = 99.3, p < .01 (Kendall coefficient .24). The participants
produced more 0-D cues (on both the x axis and the y axis) than all the other types of
cues. In addition, they produced more nondirectional/bidirectional 1-D cues and more
2-D cues on the y axis than on the x axis. Graphical cues on the axes were more fre-
quently produced by the bar graph group than the two line graph groups. Concerning
the relationship between the cue type and the type of the accompanying sentence, the
participants produced 0-D cues on the x axis in the durative states (to highlight the
duration of the state), whereas in the increase/decrease and in the fluctuate processes,
they produced the 0-D cues on the y axis (to highlight the domain values).

Projection Lines.
The projection lines serve for facilitating the construction of the mapping between a
point on the graph proper (e.g. a point on the line or the tip of a bar) and the relevant
axis. In the experiment, the smooth line group produced more vertical projections
compared to the straight line group (the participants in the bar graph group produced
almost no vertical projection lines because the bars themselves served for vertical
mapping to the x axis). Moreover, the participants produced horizontal projection
lines if the domain value was explicitly stated in the accompanying sentence. Finally,
the participants produced more vertical projection lines in the durative states than they
produced in the increase/decrease processes.

3 Discussion

The results of the experimental investigation showed that the production of graphical
cues by the participants was influenced by several factors, such as the type of the
accompanying sentence (state vs. process), the occurrence of an explicit domain value
in the sentence and the type of the graph (bar vs. line). In particular, when the graph
was accompanied by a durative state sentence, the participants produced more nondi-
rectional/bidirectional lines and region shapes on the graph proper and they used more
vertical projections on the framework. On the other hand, when the graph was accom-
panied by a process sentence, the participants produced more arrows than nondirec-
tional/bidirectional lines. A second finding was that the participants who produced
graphical cues in line graphs produced more arrows for process sentences compared
to the participants who produced graphical cues in bar graphs. Third, the occurrence
of a numerical value in the accompanying sentence resulted in more point marks on
the graph proper and more horizontal projection lines compared to the absence of an
explicit value in the sentence. Finally, the participants who produced graphical cues in
smooth line graphs produced more projection lines than the participants who

100 C. Acartürk

produced cues in straight line graphs. It is likely that straight line graphs with sharp
corners convey information about specific numerical values more efficiently com-
pared to smooth line graphs.

Participants’ systematic production of graphical cues for bringing certain aspects of
states and processes to the foreground over the others shows that time-domain graphs
are interpreted not only as visualizations of domain values but also as visualizations
of states and processes, and possibly they are interpreted as hints to causes and effects
in the domain of discourse [7] [8]. The graph-as-data-visualization conception of
graph design tools, in the recent state of the art, underestimates the potential use of
graphs in reasoning and communication, thus leading to a lack of research in design-
ing graphical cues. The results of the experiment suggest that a systematic analysis of
graphical cues has the potential to fill this gap in graph design research.

4 Conclusion and Future Work

Among many factors that underlie the competent uses of a graph, graphical cues are
design elements that facilitate reasoning as well as communication by statistical
graphs. The findings in this small-scale study suggest the following guidelines for the
design of graphical cues in time-domain graphs. Larger-scale usability studies would
provide a complete list of design guidelines for cued graphs.

1. Processes (e.g., fall, rise, fluctuate) should be highlighted by arrows whereas dura-
tive states (e.g., remain) should be highlighted by nondirectional/bidirectional
lines.

2. A line graph (instead of a bar graph) should be used to emphasize a process.
3. The emphasis on explicit numerical values in the graph can be facilitated by the

use of point marks and projection lines.
4. Smooth line graphs should be avoided if the designer aims to highlight specific in-

formation on the graph.

Additional guidelines, such as ‘the arrows should not be drawn on top of the graph
proper but near it’ (cf. Figure 1) would help the end user to produce more usable
graphs. These guidelines provide the basis not only for designing graphical cues but
also for the graphical tools that provide end users with the toolkits for designing
graphical cues. The future work should address the following topics. The reported
experiment investigates graphical cues from a production perspective. In particular,
the participants were free in their producing graphical cues in contrast to being pro-
vided an inventory of graphical items for their selection, cf. [14]. The future work
should analyze participants’ choice given an inventory of graphical cues in addition to
addressing the interpretation of graphical cues on graphs from a comprehension pers-
pective. A relevant research topic is the interaction between dynamic gestures, differ-
ent types of static and dynamic graphical cues and referring expressions in spoken
communication environments. The analysis of alphanumerical annotations is a com-
plementary research topic to the analysis of graphical cues in written communication
environments and in reasoning.

 Points, Lines and Arrows in Statistical Graphs 101

Acknowledgments. I thank Christopher Habel for his valuable comments and sugges-
tions in the initial drafts. Thanks METU HCI Research and Application Laboratory
for providing technical support during the experiments. I also thank three anonymous
reviewers for their helpful comments.

References

1. Kosslyn, S.M.: Understanding Charts and Graphs. Applied Cognitive Psychology 3, 185–
226 (1989)

2. Lowe, R.K.: Multimedia Learning of Meteorology. In: Mayer, R.E. (ed.) The Cambridge
Handbook of Multimedia Learning, pp. 429–446. Cambridge University Press, New York
(2005)

3. Attneave, F.: Some Informational Aspects of Visual Perception. Psychological Review 61,
183–193 (1954)

4. Freeman, H.: Shape Description via the Use of Critical Points. Pattern Recognition 10,
159–166 (1978)

5. Feldman, J., Singh, M.: Information along Contours and Object Boundaries. Psychological
Review 112, 243–252 (2005)

6. Lowe, R.K., Boucheix, J.-M.: Cueing Complex Animations: Does Direction of Attention
Foster Learning Processes? Learning and Instruction 21, 650–663 (2011)

7. Acarturk, C., Habel, C., Cagiltay, K.: Multimodal Comprehension of Graphics with Tex-
tual Annotations: The Role of Graphical Means Relating Annotations and Graph Lines. In:
Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 335–
343. Springer, Heidelberg (2008)

8. Habel, C., Acartürk, C.: Causal Inference in Graph-Text Constellations: Designing Verbal-
ly Annotated Graphs. Tsinghua Science and Technology 16, 7–12 (2011)

9. Tversky, B., Zacks, J., Lee, P., Heiser, J.: Lines, Blobs, Crosses and Arrows: Diagrammat-
ic Communication with Schematic Figures. In: Anderson, M., Cheng, P., Haarslev, V.
(eds.) Diagrams 2000. LNCS (LNAI), vol. 1889, pp. 221–230. Springer, Heidelberg
(2000)

10. Heiser, J., Tversky, B.: Arrows in Comprehending and Producing Mechanical Diagrams.
Cognitive Science 30, 581–592 (2006)

11. Kong, N., Agrawala, M.: Perceptual Interpretation of Ink Annotations on Line Charts. In:
Proceedings of the 22nd ACM Symposium on User Interface Software and Technology,
pp. 233–236. ACM, New York (2009)

12. Shah, P., Mayer, R.E., Hegarty, M.: Graphs as Aids to Knowledge Construction: Signaling
Techniques for Guiding the Process of Graph Comprehension. Journal of Educational Psy-
chology 91, 690–702 (1999)

13. Mautone, P.D., Mayer, R.E.: Cognitive Aids for Guiding Graph Comprehension. Journal
of Educational Psychology 99, 640–652 (2007)

14. Tversky, B., Lee, P.U.: Pictorial and Verbal Tools for Conveying Routes. In: Freksa, C.,
Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 51–64. Springer, Heidelberg (1999)

Enriching Indented Pixel Tree Plots with
Node-Oriented Quantitative, Categorical, Relational,

and Time-Series Data

Michael Burch, Michael Raschke, Miriam Greis, and Daniel Weiskopf

VISUS, University of Stuttgart

Abstract. Indented Pixel Tree Plots are useful for an overview of large and deep
hierarchical data. As a major benefit, these plots scale to pixel or even subpixel
resolution, still clearly visualizing the hierarchical structures and substructures
in a redundant-free representation. Consequently, there is display space avail-
able that may be used to show additional information such as enlarged or filtered
subregions, details-on-demand, or control panels. In this paper, we demonstrate
how this compact indented diagram can be enriched with additional data asso-
ciated with both leaf and inner nodes of the hierarchy. To this end, we support
quantitative, categorical, relational, and time-series data. By such a combination,
exploration and analysis of visual patterns and anomalies on different levels of
hierarchical granularity are possible in a static diagram. Furthermore, interactive
features such as expanding/collapsing of subhierarchies, horizontal/vertical dis-
tortions, zooming in/out, or details-on-demand are integrated to allow the user to
inspect the data from different viewpoints. The usefulness of the enriched dia-
grams is illustrated by applying them to file system data where single software
constructs are hierarchically organized. Here, we focus on quantitative, categor-
ical, and relational data attached to the nodes of the hierarchy. In a second case
study, we demonstrate how evolving water level data of rivers in Germany can be
represented by our plots.

Keywords: Hierarchy visualization, data visualization, pixel-based techniques,
time-varying data.

1 Introduction

Hierarchical datasets occur in many application domains, including software develop-
ment processes, where a complete software system is structured into packages, directo-
ries, subdirectories, files, classes, and methods or functions. Similarly, the file system
of a user’s workspace is hierarchically organized in the form of directories and sub-
directories. Apart from their structural organization, these hierarchical entities always
have a certain size and fall into a certain category given by the file type—resulting in
quantitative and categorical data attached to the nodes of the hierarchy.

In today’s typical software projects, we have to deal with very large systems reach-
ing hierarchies that consist of several thousands of elements. If we want to explore an
even more fine-granular substructure, e.g., on source-code level, we soon reach sizes

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 102–116, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Enriched Indented Pixel Tree Plots 103

of several million hierarchically organized elements, leading to a huge dataset that can-
not be explored and analyzed by inspecting the raw data. Consequently, visualization
in the form of a diagram, a chart, or a plot is required to support the viewer in obtain-
ing an overview and additional insights about the dataset. Tapping the full potential of
computer-generated visualization, interactive features may be applied to gain further
insights that might not have been uncovered by the static diagram only. Here, we follow
the Visual Information Seeking Mantra: Overview first, zoom and filter, then details-
on-demand [22].

In particular, our requirements for the static diagram and the accompanying interac-
tive features are:

– Display of the structure of large hierarchical data
– Additional, simultaneous display of information associated with the vertices of the

hierarchy on different levels of granularity
– Support for comparisons of such attached information between hierarchical ele-

ments

To achieve these goals, we combine the Indented Pixel Tree Plots proposed by Burch et
al. [5]—which intrinsically support large-data tree visualization—with the visual rep-
resentation of several kinds of additional data associated with hierarchical elements:
quantitative, categorical, relational, and time-series data. By such a combination, an ex-
ploration of the additional data on different levels of hierarchical granularity is easily
possible.

The combination of hierarchical data with additionally attached node-oriented data
leads to three variants of diagrams:

– Indented Bar Diagram: Quantitative as well as categorical data types can be ex-
plored by adding bar charts and color coding to the indented plot.

– Indented Timeline Diagram: Time-varying quantitative data are shown by color-
coded timelines aligned with the indented plot.

– Indented Matrix Diagram: Weighted relational data can be analyzed in both ver-
tical and horizontal directions by adding a matrix diagram to two indented plots at
the vertical and horizontal axes.

All three variants of these diagrams are scalable pixel-based and even subpixel-based
representations using overplotting or aggregation of the compressed single data points.
Therefore, all these diagrams support large-data exploration on different levels of gran-
ularity of visual representation. Our visualization techniques provide several interactive
features: subhierarchies can be collapsed and expanded, the plot can be distorted hori-
zontally as well as vertically, subregions and subintervals can be selected, and we allow
details-on-demand, data annotations, and the like.

The usefulness of the enriched Indented Pixel Tree Plots is illustrated by exploring
hierarchical data from large file systems and time-varying water levels of rivers in Ger-
many. The insights gained by our interactive visualization tool are demonstrated in two
corresponding case studies.

104 M. Burch et al.

2 Related Work

Visualizing hierarchical data has been in the focus of many researchers throughout the
years, as reviewed in the surveys by Jürgensmann and Schulz [19], [20]. Many visual
metaphors have been invented, developed, and enhanced, leading to a variety of dia-
grams for hierarchical data.

Node-link diagrams are a good and most popular choice when displaying hierar-
chical organizations in an intuitive way. Burch et al. [4] used eye tracking to evaluate
node-link visual metaphors for tree diagrams. As a major result of this study, it is advan-
tageous if the root node is placed on top and the subordinate elements on layers below
depending on their depth in the hierarchy, as also used in early work by Eades [11] and
also by Reingold and Tilford [18].

In this work, we address the issue of displaying additional information attached to a
tree diagram, supporting a viewer to inspect datasets on different levels of hierarchical
granularity in a static diagram and serving as a good overview of the whole dataset
by using aggregation and overplotting. Examples of this line of research include the
display of timelines (of dynamic quantitative data) attached to edges of an orthogonal
node-link tree diagram [7], the visual encoding of transaction data in Timeline Trees [2],
or heatmap representations attached to dendrograms [12] used in bioinformatics. The
drawback of these approaches is the limited scalability in the number of vertices and
that additional data cannot be attached to leaf and to inner vertices at the same time.

Being visually most related to indented plots, layered icicle plots [14] exploit the
principle of vertically stacked bars growing from top to bottom, leading to diagrams
that look very similar to icicles in nature. A drawback of layered icicles is the fact that
much ink is used for inner vertices and borders are needed to separate sibling nodes.
Most important in the context of this paper, inner nodes in icicle plots have no represen-
tative elements on the outline of the tree. Therefore, data associated with inner vertices
is difficult to represent. Similarly, interactive visualization tools that use radial layered
icicle plots—such as Information Slices [1], Sunburst [23], or InterRing [26]—may rep-
resent additional node-associated data but radially growing visual elements are difficult
to judge and to compare [10].

Treemaps [21] are based on the principle of nested boxes. This approach generates
space-filling hierarchy representations and allows us to additionally encode quantita-
tive data (in the form of the box sizes) and categorical data (by color). Following this
principle, inner vertices typically cover the sum of the areas of all their child vertices.
Therefore, it is difficult to attach other kinds of information that does not add up when
traversing the hierarchy. In particular, treemaps soon reach their limitations when try-
ing to attach relational data and lead to visual clutter caused by many link crossings,
e.g. in the ArcTrees visualization [17], in the Trees in a Treemap approach [8], or by
overlaying graph links on treemaps [13]. Attaching dynamic data to treemap represen-
tations is in focus of the TennisViewer tool [15] and the Contrast Spiral Treemap [24].
The biggest problem when combining time-varying data with treemap representations
is the difficulty that a viewer has when simultaneously comparing the data in subinter-
vals. Time-varying relations in information hierarchies are an even harder visualization
challenge and have been investigated by Burch et al. [3] in their recent work on parallel
edge splatting.

Enriched Indented Pixel Tree Plots 105

Most of the aforementioned tree diagrams enriched with additional node-oriented
data are useful for their respective tasks and application domains. However, they lack
scalability in either the hierarchy visualization part or attached data visualization part.
Furthermore, the efficiency of using the given display space when reflecting the hierar-
chical structure varies between the visualization techniques [16]. For example, treemaps
may be used to represent large hierarchies. However, attaching relational data is diffi-
cult and may cause visual clutter. Attaching quantitative and categorical data is difficult
to interpret on different levels of granularity, and attaching time-series data is hard to
compare in subintervals because treemap boxes do not allow aligned timelines for all
levels of a hierarchy. Node-link diagrams and icicle plots do not scale for large hierar-
chies because of the much ink used for drawing the link information. These also do not
allow the attachment of data to inner nodes because only leaf nodes are represented at
the outline of the tree. Furthermore, separation lines are additionally needed in treemaps
and icicle plots to visually differ between sibling nodes.

We address these issues and drawbacks by using Indented Pixel Tree Plots as the
basis for hierarchy visualization [5] and corresponding tree browsing [6]. In particular,
Indented Pixel Tree Plots naturally lend themselves to scalability in the number of nodes
and depth of the hierarchy because of their pixel-based drawing approach. This paper
adds scalability in terms of visualization of additional data associated with inner and
leaf nodes.

3 Data Model and Indented Metaphor

To display hierarchical structures, we use the indented visual metaphor that is popular
in graphical file browsers and pretty printing of source code. The greatest benefits of
indentation are the facts that as little ink as possible is needed to represent the hierarchi-
cal data and that the diagrams can be scaled down to pixel or even subpixel size. Hence,
they scale up to large hierachical datasets. The diagrams are mapped to one-dimensional
zigzag curves and, thus, provide much free space to attach additional visual informa-
tion. Another advantage is the fact that each vertex—leaf and inner vertex alike—has a
representative element on the one-dimesional axis and, hence, allows data comparisons
on different levels of hierarchical granularity.

3.1 Data Model

We model a hierarchy as an ordered pair

H = (VI,EI)

where VI denotes the set of vertices and EI ⊂ VI ×VI the set of directed edges, i.e., the
parent–child relationships that we call inclusion edges to distinguish them from another
kind of relations called adjacency edges. One vertex is designated the root vertex of the
hierarchy.

Quantitative data attached to the hierarchy can be modeled by a function

fq : VI −→R

106 M. Burch et al.

(a) (b)

Fig. 1. Comparsion of node-link diagram and indented plot for the same hierarchy. (a) Node-link
diagram: explicit link structures are used to express parent–child relationships. (b) Indented plot:
hierarchical structure is illustrated by indenting vertically.

mapping each vertex to a real-valued number. Additional categorical data is described
by a function

fc : VI −→ T

where T expresses a set of different categories. Dynamic data is modeled by a function

fd : VI −→ (ai)

i.e., a sequence of real-valued numbers ai ∈ R or categorical data ai ∈ T . The index
i ∈ {1, . . . ,N} corresponds to the time for which the quantitative or categorical data was
recorded. Relations between hierarchy elements can be modeled as a graph G= (VI,EA)
where VI contains the same vertices as in the hierarchy and EA are adjacency edges
expressing weighted relations between pairs of vertices, i.e. EA ⊆VI ×VI. A function

gq : EA −→R

attaches real-valued numbers to each adjacency edge, leading to a weighted directed
graph in information hierarchies. A similar function

gc : EA −→ T

may be used to attach a category to each edge, leading to a graph with edge attributes.

3.2 Indented Plot Generation

Here, we briefly review the idea and structure of the original Indented Pixel Tree Plots.
For details, we refer to the paper by Burch et al. [5]. Indented plots can be drawn easily,
without caring for the visual space required for the subhierarchies, because they are
depicted step-by-step from left to right. The elements of a hierarchical structure are
processed one-by-one with depth-first traversal. For each vertex, we draw a vertical line
of some fixed length and some fixed width, where the y-position on screen only depends

Enriched Indented Pixel Tree Plots 107

on the depth of the corresponding vertex in the hierarchy and the x-position depends
linearly on the index number of the vertex (the same index as from the traversal order
in the depth-first strategy). To visually cluster leaf vertices for aesthetically pleasing
diagrams, the hierarchy may be ordered in a way as to group leaf vertices on each
hierarchy level to the right.

Figure 1 shows an example of a hierarchy visualized as a node-link diagram (a) and
as an indented plot (b). To transform the data to the indented plot, the link information
is removed, leading to a plot using as little ink as possible for displaying the data. The
root node of each subhierarchy is placed to the left of all its corresponding subordinate
nodes.

3.3 Visual Interpretation of an Indented Plot

Indented Pixel Tree Plots are new and, thus, have to be learned to be read. However, the
user study by Burch et al. [5] showed that the learning curve is not steep: participants
were able to understand the indented visual metaphor within a few minutes time, by just
reading a short tutorial. The comparative evaluation with traditional node-link diagrams
showed that reading, understanding, exploring, and deriving insights from an indented
plot is easy and effective.

The indented plot visually encodes subordinate nodes to the right and vertically be-
low their parent nodes recursively in all hierarchy levels. This simple visual structure
can be exploited for efficient task solution strategies. For example, the parent node X of
some other node Y is quickly identified by just looking for the closest vertical graphical
primitive to the left in the indented plot that lies exactly one step above the node Y in the
vertical direction. As another example, the least common ancestor of a group of vertices
v1, . . . ,vn can be found by starting at the right hand side of the plot and inspecting the
lowest peak that is to the left of the leftmost vertex of v1, . . . ,vn and that is still above
all of the highest peaks between any two subsequent vertices of v1, . . . ,vn in the plot.

4 Combination with Additional Node-Associated Data

There are many scenarios where additional data in hierarchical structures exists and
there is a need for a diagram that shows the hierarchy in combination with that data
at one glance. In this section, we will describe how certain, relevant data types can be
combined with hierarchical structures in a scalable way with the goal to obtain a good
overview of the data and to analyze it on different levels of hierarchical granularity.

4.1 Indented Bar Diagram

Quantitative data may be represented as aligned bar charts or histograms, as evalu-
ated by Cleveland and McGill [10], because the single lengths can be judged and com-
pared very accurately and reliably by the human visual system. Categorical data is typ-
ically represented by color or shape, see Card and Mackinlay [9]. In our diagrams, we
use color coding because shape representation is not feasible for pixel-based or even
subpixel-based visualization.

108 M. Burch et al.

Fig. 2. Example of an Indented Bar Diagram: Combination of hierarchical data with quantitative
as well as categorical data in a single diagram

The Indented Bar Diagram is composed of an Indented Pixel Tree Plot for repre-
senting the hierarchical organization of the data elements and of a bar chart for visually
encoding the attached quantitative information about each data element. The category of
each element is displayed by a color-coded rectangle aligned below each corresponding
vertex in the indented outline, see also Figure 2. This color coding can be used to de-
rive and compare the categories of the hierarchy and subhierarchy elements. Grayscale
is used to additionally link the hierarchical organization with the corresponding data
elements and to obtain the impression of a single diagram as a whole and not of two
separated parts. The gray values are linearly adapted to the depth of each element v ∈VI

in the hierarchy.
All color tables can be changed interactively and independently for each represented

data type: hierarchy depth, quantitative data, and categorical data. Relational and time-
series data either consist of single quantitative data points, i.e., the weights of the graph
or of single categorical data points.

Figure 2 shows an Indented Bar Diagram for a hierarchical dataset containing 10
elements at a maximal depth of 3. Here, a blue-to-red color gradient is chosen for en-
coding the depths in the tree—the redder, the deeper in the hierarchy. Gray bars connect
the indented plot on top with the bar chart at the bottom, where the gray values also re-
flect the depth of the hierarchy element. If a categorical data for the hierarchy elements
exists, this is drawn as shown in the color legend in Figure 2. Quantitative data for each
hierarchy element is displayed as a bar chart and additionally color coded by using the
vegetation color scale, see the color legend in Figure 2. By using the same horizontal
axis as reference (e.g., for zero values), the quantitative values are easy to compare, just

Enriched Indented Pixel Tree Plots 109

Fig. 3. Example of an Indented Timeline Diagram: Combination of hierarchical data with quan-
titative as well as categorical data in a single diagram. Additionally, the evolution of either quan-
titative or categorical data is shown below the Indented Bar Diagram as an aligned timeline rep-
resentation supporting comparisons of subintervals.

like in a regular bar chart. Here, color is used to improve the perception of differences
in the quantitative data. One can easily see, for example, that the leftmost bar (the one
for the root node) is highest and red.

4.2 Indented Timeline Diagram

Time-varying quantitative data may be visualized by a static time-to-space mapping
instead of a time-to-time mapping as commonly used in animations. We choose a static
visualization because it reduces cognitive efforts and preserves a viewer’s mental map.
Drawbacks of animated diagrams are discussed in more detail by Tversky et al. [25].

The Indented Timeline Diagram attaches a timeline representation to each hierar-
chy element in an aligned way and hence, shows the time-varying data in a static dia-
gram with the goal to support a viewer when comparing the dynamic data in different
subintervals and also on different levels of hierarchical granularity. By using a time-to-
space mapping the evolving data can easily be explored for dynamic phenomena such
as trends, countertrends, temporal shifts, periodicities, stagnation, or anomalies.

Figure 3 illustrates the idea for the small example of 10 hierarchical elements and a
time-varying quantitative dataset containing 6 timesteps. For example, the quantitative
data for the rightmost element in the diagram is not changing over time, which can be
seen by the constant red color for all time steps. This fact also holds for some other
elements, whereas the timeline for the root node at the leftmost position of the diagram
shows heavy fluctuations over time. It starts with a red color and then changes to green,
blue, and green again.

110 M. Burch et al.

Fig. 4. Example of an Indented Matrix Diagram: Combination of hierarchical data with relational
data in one single diagram

4.3 Indented Matrix Diagram

A more complex but also easy-to-understand representation is given by the Indented
Matrix Diagram. In this scenario, a weighted relational dataset is visualized where the
single related elements are additionally hierarchically organized. The hierarchy has to
be represented twice, vertically as well as horizontally in the indented metaphor and
the weighted directed graph data is shown as a matrix representation that benefits from
reduction of visual clutter for dense graphs, i.e., graphs with very many edges.

In Figure 4, such an Indented Matrix Diagram is shown for a hierarchy with 10
elements. Strongly related subhierarchies can easily be uncovered by inspecting the
indented plot on top and to the left combined with the color-coded matrix representation
in-between the indented plots. In the figure, we can easily derive from the matrix cell
colored in yellow that the strongest relation is a relation of the rightmost element with
itself, a so-called self-edge. The small blue colored blocks indicate that there is a small
clique among several elements and the hierarchical belonging can also be tracked easily.

4.4 Interactive Features

A static diagram serves as a good overview of a huge dataset but we also support a
viewer by interactive features to tap the full potential of computer-generated visual-
izations. Following the Visual Information Seeking Mantra—Overview first, zoom and
filter, then details-on-demand [22]—we provide the following interactive features:

Enriched Indented Pixel Tree Plots 111

Fig. 5. An Indented Bar Diagram of a directory structure containing 36,856 files and subdirecto-
ries represented as a combination of hierarchical data with quantitative and categorical data

– Expanding/Collapsing of Subhierarchies: Clicking on a node in the indented plot
leads to a collapsed subhierarchy of the corresponding subordinate nodes and an
aggregation of the quantitative or categorical data. Several aggregation modi exist
for generating the new values such as maximum, sum, or average value. Clicking
on a collapsed node leads to an expansion of the subtree again.

– Horizontal/Vertical Distortions: Since indented plots scale for large hierarchical
datasets and allow still readable pixel or subpixel representations, we support the
user by horizontal and vertical distortion techniques that create new space for dis-
playing additional information.

– Separate Color Codings: All components of the combined diagrams can be at-
tached to a separate color coding to avoid misinterpretations that would be caused
by using similar color schemes for different components.

– Weight Filtering: Quantitative data can be filtered for values in a given inter-
val, categorical data for several categories, relational data for vertex groups, time-
varying data for subintervals, and hierarchical data for certain subhierarchies. Also
a logarithm function can be applied to reduce the visual dynamic range between
high and low values.

– Textual Search: If the hierarchical data contains elements with an additional de-
scriptive information, i.e., labels, the user can apply textual search to highlight these
interesting elements.

– Details-on-Demand: Hovering the mouse cursor over any part of any component
of the combined plots shows a detail-on-demand information if one is present, i.e.,
the value of the focused matrix cell for example with its corresponding vertical and
horizontal hierarchy elements.

5 Case Study

To illustrate the usefulness and the scalability of the enriched plots, we apply them
to file system data containing several thousand hierarchically organized elements to
which a quantitative and categorical data type may be attached. Furthermore, relations
among the elements exist, generating a dense weighted and directed graph, and also
an evolution over time may be possible for the quantitative as well as the categorical
data. In a second application example, we explore dynamic water level data from the
river system in Germany for trends, countertrends, periodicities, temporal shifts, and
anomalies.

112 M. Burch et al.

5.1 File Systems

Typically, file systems can become very large containing many subdirectories and files
that all have different sizes and fall into different categories given by the file type for
example. To get an overview of all this data, some kind of diagram is required that
shows the hierarchical organization on the one hand and visually encodes the different
types of data on the other hand.

Figure 5 shows an Indented Bar Diagram of a directory structure containing 36,856
files (leaf nodes) and subdirectories (inner nodes) at a maximal hierarchy depth of 17.
We use an additional blue-to-red color gradient besides the vertical indentation to vi-
sually strengthen the depth of a node in the hierarchy. File and directory sizes are dis-
played as an aligned bar chart right below each corresponding element in the hierarchy
by using a vegetation color scale (i.e. blue and green color codings mean low values and

Fig. 6. An Indented Matrix Diagram of a directory structure containing 36,856 files and subdirec-
tories and more than 1,350,000,000 weighted directed relations in a compressed and aggregated
view serving as an overview representation

Enriched Indented Pixel Tree Plots 113

Fig. 7. An Indented Timeline Diagram represents several measurement stations for water level
data of rivers in Germany as a hierarchical system and shows the evolution of the water levels
over time for 768 points in time

red and yellow color codings encode high values). We additionally apply a logarithm
function to the values to keep the differences between maximum and minimum values
small. Each file falls into a certain category given by the type of the file in this applica-
tion example. This information is visually encoded to the lower end of each graphical
primitive in the indented plot of the corresponding hierarchical element.

From this diagram, we already obtain many insights by just inspecting the static
picture. First of all, the deepest level of the hierarchy structure is visualized in the right
hand part of the diagram, which can be visually uncovered by the red color coding
and the vertically indented outline. If we additionally inspect the corresponding bar
chart right below in this subregion, only blue colored and flat bars can be detected,
indicating that the files located there are not that large compared to many others in the
diagram.

Figure 6 shows which files are related to each other with respect to the same file type.
Here, 1,350,000,000 weighted directed relations are displayed in a compressed and ag-
gregated matrix representation allowing a good overview for the hierarchical structure,
the categorical file types, the quantitative file and directory sizes, and weighted relations
between the hierarchy elements. This overview representation can be used as a starting
point for further exploration and analysis tasks. Following the Visual Information Seek-
ing Mantra [22], we can inspect the data piece-by-piece, supported by the interactive
features provided by the visualization tool, until we finally understand the data.

114 M. Burch et al.

5.2 Dynamic Water Levels

To demonstrate the usefulness of our Indented Timeline Diagram, we visualize dynamic
water level data from measurement stations of rivers in Germany that are hierarchically
organized by the confluents. The data was acquired over 32 days (September 2010 plus
2 days) and a measurement was recorded every hour, generating a sequence of quanti-
tative data over 768 points in time.

Figure 7 demonstrates trends, countertrends, temporal shifts, periodic behaviors, and
anomalies of this time-varying dataset. For example, the periodic behavior in many of
the timelines is the natural consequence of low and high tides of the North Sea and
Baltic Sea. Measurement stations close to these Seas and the mouths of rivers into
these Seas consequently show this phenomenon. It can be visually uncovered by the
alternating yellow to red color in several timelines.

On the left hand side of the diagram, one can see a temporal shift pattern, i.e., a
flood wave is moving downward the river. A detail-on-demand request shows that this
phenomenon belongs to measurement stations along the river Rhine. There are many
more visual features and dynamic patterns in the dataset visible by just inspecting the
static diagram. Interactive features of the visualization tool can be applied to further
analyze and explore these large datasets.

6 Conclusion and Future Work

We have demonstrated how hierarchically organized data with additionally attached dif-
ferent kinds of data—such as quantitative, categorical, relational, or time-series data—
can be represented visually in a single static diagram serving as an overview represen-
tation as a starting point for further and more detailed exploration tasks.

In particular, we have combined Indented Pixel Tree Plots with bar diagrams, time-
line diagrams, and matrix diagrams, although combinations with other node-oriented
plots are conceivable as well. Our approach scales for large hierarchical datasets, uses
as little ink as possible to display the hierarchy, and allows data to be attached for all
vertices—leaf and inner vertices alike.

Apart from the static diagrams, several interactive features can be applied to explore
the data from different viewpoints and also on different levels of hierarchical gran-
ularity. We have shown the usefulness of the diagrams by visually exploring a large
file system with several thousand elements and additionally attached data types. Fur-
thermore, in a second application scenario, we have demonstrated how time-varying
water level data can be represented in a hierarchically oranized river system to al-
low for a good overview and to better compare the dynamic data in different time
intervals side-by-side for trends, countertrends, temporal shifts, periodicities, and
anomalies.

For future work, we plan to conduct a user study to evaluate the enriched visualiza-
tion techniques. Furthermore, we want to apply it to datasets from different application
domains, e.g., biological data where the hierarchical organization of organisms and
species plays a crucial role.

Enriched Indented Pixel Tree Plots 115

References

1. Andrews, K., Heidegger, H.: Information Slices: Visualising and Exploring Large Hierar-
chies Using Cascading, Semi-Circular Discs. In: Proceedings of the IEEE Symposium on
Information Visualization, pp. 9–12 (1998)

2. Burch, M., Beck, F., Diehl, S.: Timeline Trees: Visualizing Sequences of Transactions in
Information Hierarchies. In: Proceedings of Advanced Visual Interfaces, pp. 75–82 (2008)

3. Burch, M., Vehlow, C., Beck, F., Diehl, S., Weiskopf, D.: Parallel Edge Splatting for Scalable
Dynamic Graph Visualization. IEEE Transactions on Visualization and Computer Graph-
ics 17(12), 2344–2353 (2011)

4. Burch, M., Heinrich, J., Konevtsova, N., Höferlin, M., Weiskopf, D.: Evaluation of Tradi-
tional, Orthogonal, and Radial Tree Diagrams by an Eye Tracking Study. IEEE Transactions
on Visualization and Computer Graphics 17(12), 2440–2448 (2011)

5. Burch, M., Raschke, M., Weiskopf, D.: Indented Pixel Tree Plots. In: Bebis, G., Boyle, R.,
Parvin, B., Koracin, D., Chung, R., Hammoud, R., Hussain, M., Kar-Han, T., Crawfis, R.,
Thalmann, D., Kao, D., Avila, L. (eds.) ISVC 2010. LNCS, vol. 6453, pp. 338–349. Springer,
Heidelberg (2010)

6. Burch, M., Schmauder, H., Weiskopf, D.: Indented Pixel Tree Browser for Exploring Huge
Hierarchies. In: Proceedings of the International Symposium on Visual Computing, pp. 301–
312 (2011)

7. Burch, M., Weiskopf, D.: Visualizing Dynamic Quantitative Data in Hierarchies. In: Pro-
ceedings of International Conference on Information Visualization Theory and Applications,
pp. 177–186 (2011)

8. Burch, M., Diehl, S.: Trees in a Treemap: Visualizing Multiple Hierarchies. In: Proceedings
of Visualization and Data Analysis, pp. 224–235 (2006)

9. Card, S.K., Mackinlay, J.: The Structure of the Information Visualization Design Space. In:
Proceedings of the IEEE Symposium on Information Visualization, pp. 92–99 (1997)

10. Cleveland, W.S., McGill, R.: Graphical Perception: Theory, Experimentation, and Applica-
tion to the Development of Graphical Methods. Journal of the American Statistical Associa-
tion 79(387), 531–554 (1984)

11. Eades, P.: Drawing Free Trees. Bulletin of the Institute for Combinatorics and its Applica-
tions 5, 10–36 (1992)

12. Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster Analysis and Display of Genome-
Wide Expression Patterns. Proceedings of the National Academy of Sciences 95, 14863–
14868 (1998)

13. Fekete, J.-D., Wang, D., Dang, N., Aris, A., Plaisant, C.: Overlaying Graph Links on
Treemaps. In: Proceedings of the IEEE Symposium on Information Visualization, Poster
Compendium, pp. 82–83 (2003)

14. Kruskal, J., Landwehr, J.: Icicle Plots: Better Displays for Hierarchical Clustering. The
American Statistician 37(2), 162–168 (1983)

15. Jin, L., Banks, D.C.: TennisViewer: A Browser for Competition Trees. IEEE Computer
Graphics and Applications 17(4), 63–65 (1997)

16. McGuffin, M.J., Robert, J.M.: Quantifying the Space-Efficiency of 2D Graphical Represen-
tations of Trees. Information Visualization 9(2), 115–140 (2009)

17. Neumann, P., Schlechtweg, S., Carpendale, S.: ArcTrees: Visualizing Relations in Hierar-
chical Data. In: Proceedings of Eurographics IEEE VGTC Symposium on Visualization, pp.
53–60 (2005)

18. Reingold, E.M., Tilford, J.S.: Tidier Drawings of Trees. IEEE Transactions on Software En-
gineering 7, 223–228 (1981)

116 M. Burch et al.

19. Jürgensmann, S., Schulz, H.-J.: A Visual Survey of Tree Visualization. In: Proceedings of
the IEEE Conference on Information Visualization, Poster Compendium (2010)

20. Schulz, H.-J.: Treevis.net: A Tree Visualization Reference. IEEE Computer Graphics and
Applications 31(6), 11–15 (2011)

21. Shneiderman, B.: Tree Visualization with Tree-Maps: 2-D Space-Filling Approach. ACM
Transactions on Graphics 11(1), 92–99 (1992)

22. Shneiderman, B.: The Eyes Have It: A Task by Data Type Taxonomy for Information Vi-
sualizations. In: Proceedings of the IEEE Symposium on Visual Languages, pp. 336–343
(1996)

23. Stasko, J.T., Zhang, E.: Focus+Context Display and Navigation Techniques for Enhancing
Radial, Space-Filling Hierarchy Visualizations. In: Proceedings of the IEEE Symposium on
Information Visualization, pp. 57–65 (2000)

24. Tu, Y., Shen, H.-W.: Visualizing Changes of Hierarchical Data Using Treemaps. IEEE Trans-
actions on Visualization and Computer Graphics 13(6), 1286–1293 (2007)

25. Tversky, B., Bauer Morrison, J., Bétrancourt, M.: Animation: Can it Facilitate? International
Journal of Human-Computer Studies 57(4), 247–262 (2002)

26. Yang, J., Ward, M.O., Rundensteiner, E.A., Patro, A.: InterRing: A Visual Interface for Nav-
igating and Manipulating Hierarchies. Information Visualization 2(1), 16–30 (2003)

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 117–123, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Interpreting Effect Size Estimates through Graphic
Analysis of Raw Data Distributions

Michael T. Bradley1, Andrew Brand2, and A. Luke MacNeill1

1 University of New Brunswick
Department of Psychology

P.O. Box 5050
Saint John, NB E2L 4L5 Canada

Bradley@unb.ca
2 Kings College

Institute of Psychiatry
P.O. Box 77

De Crespigney Park
London SE5 8AF, GB

Abstract. Effect size estimates are altered by many factors, including, and
perhaps most importantly, the shapes of compared distributions. There have
been many long time advocates of the necessity of graphing raw data to truly
understand analysis. Though they were and remain correct, there is little
evidence in the published literature in psychology that their recommendations
have been followed. This paper argues their case, but with the advantage of the
recent emphasis on effect sizes promoted by, amongst others, the American
Psychological Association publication guide. Unlike Null Hypothesis
Statistical Testing (NHST), effect size estimates are not robust to distributional
deviations from normality. As a consequence of effect size sensitivity to
distributional distortions from normality, it is all the more important to
understand the qualities of the distributions from which estimates are
derived. In this paper, we consider and simulate cases where graphical
analyses reveal distortion in effect size estimates, and in doing so highlight the
value of graphing data to interpret effect size estimates.

1 Introduction

Graphic approaches to understanding Social Science data lead to insights [1]. Cohen
[2], echoing the advice given by Tukey [3], suggested that researchers should attempt
to understand their raw data through graphic representation. Beyond the compelling
visual examples modelled for interpreting confidence intervals by Cumming and
Finch [4], there is not strong evidence that his advice has been followed with
regularity. Perhaps there is reluctance on the part of researchers, reviewers, and
editors to learn and consider a perceived myriad of techniques when they feel
comfortable with an approved set of methods associated with null hypothesis
statistical tests (NHST). Furthermore, computational aspects of NHST have been so

118 M.T. Bradley, A. Brand, and A.L. MacNeill

routinized that data analysis to some could seem like a matter of simply entering the
data. Historically, an unintended consequence of Box [5] and earlier researchers in
documenting the robustness of t and F tests to violations of normality may have also
contributed. The general message from their studies is that t and F tests are so robust
that researchers need not concern themselves with the distribution shape of their raw
data. Therefore, the researcher is presented, on the one hand, with robust techniques
that are well laid out, as versus, on the other hand, techniques which offer a learning
curve perceived as steep.

Things may be ripe for change. Years of criticism of NHST has led to a greater
emphasis on effect size measures [6], [7], [8]. Moving this approach into prominence
could stimulate recognition of the value of graphic approaches, as we will try to
demonstrate in this paper through the use of simulated and empirical data sets. As
mentioned, many have tried before to guide researchers towards a more graphic
approach, but in this current attempt, we have two advantages. One is from the
emphasis on effect size, and the second comes through the benefit of hindsight. With
hindsight, it is arguable that a graphic approach should 1) emphasize simplicity, 2)
illustrate common or highly probable examples, and 3) link examples to known
statistical techniques and descriptors. By simplicity, we mean raw data graphic
approaches that are not overwhelming, and to which the majority of psychologists
have been exposed at some point in their education. There are at least 39 major
probability distributions [9]. That number alone can be intimidating. The potential
number of moments for any distribution could perhaps be even more intimidating,
since, in theory, it is the number of measures sampled minus one. However, by simply
concentrating on the normal distribution and three major deviations reflected in
variance, skew, and kurtosis, we argue that many cases in the social sciences are
covered to the extent that most researchers will see value in graphing. In certain
specialized areas (e.g., reaction time measurement), exploration beyond our
presentation will be and has been undertaken. Means, variance, skew, and kurtosis are
within the realm of training typical for social scientists, and they are very revealing
about the structure of raw data for subsequent analysis. Virtually all researchers are
intimately familiar with the 1st and 2nd moments, the mean and variance, respectively,
and they have at the least a passing familiarity with the 3rd and 4th moments, skew and
kurtosis. These moments are readily comprehended visually and are often focused on
in Finance courses as key to describing stock market activity. All distributions can be
at least partially understood by these moments.

The alleged robust nature of NHST can be counterproductive when considering
effect sizes [5]. Effect sizes are meant to be accurate estimates of the size of a
phenomenon, and the more accurate and precise the estimate the better. It turns out,
however, that effect size estimates are not robust to the very distortions to which a
statistical significance test supposedly is. Brand, Bradley, Best, and Stoica, [10], [11],
[12] have spent some effort detailing when effect sizes may or may not be accurate
reflections of the intended measure, but perhaps the most important situation arises
with deviations from the normal distribution. These deviations are most readily
apparent from graphs. It is evident with graphs that effect sizes depend very much on
the underlying distribution assumptions, as we intend to show. Consider variance:

Interpreting Effect Size Estimates through Graphic Analysis of Raw Data Distributions 119

Standardized estimates of mean differences are based on estimates of variability, and,
as a consequence of graphing, researchers may pay attention to variability.

2 Three Examples of Effect Size Sensitivity

Variance Manipulation. In the following illustration, the initial or control
distribution was conceptualized as a distribution of 38 measures with a mean of 10
and a standard deviation of 2. A hypothetical manipulation created sets of
distributions of 38 measures with means of 10.4, 11 and 11.6. These values
correspond to Cohen’s effect sizes of .2, .4 and .8. Standard deviations for each of
the means in the second set of distributions ranged from .5 to 4. Effect sizes were
calculated between the standard reference distribution and each of the manipulated
distributions. The proportional differences remained approximately the same across
different effect sizes, so one set of effect size numbers covers all cases. The effect
sizes were reduced by 36% from the pooled estimates with the largest SD to an
increase of 36% with the smallest SD. Accurate measurement is a hallmark of science
but it may be difficult to obtain with not only error in measurement of means but also
error in estimating variability.

Fig. 1. A normal control distribution with mean = 10, SD = 2 compared with three distributions
with a mean of 10.4 (d = .2) and SDs of .5, 2 and 4. The vertical dotted lines show the
placement of the means.

120 M.T. Bradley, A. Brand, and A.L. MacNeill

Examination of the graphs in figure 1 show what is happening with robustness and
a potential inaccuracy of standardized effect sizes. With graphs it is obvious that the
differences in effect size are from the increase or decrease in variance. On the one
hand, increased variability may, with traditional inference testing, result in a failure to
obtain statistically significant results, whereas, with a decrease, not only is there an
increase in the probability of statistical significance, but also the reported effect size
may be exaggerated. We use “may be exaggerated” because analysis does not stop
with the graphing of the data. Theory or past findings also matter. A decrease in
variance could be legitimate if the manipulation does actually shrink variance. For
example, nitrous oxide makes virtually all people laugh continuously during its
application. On the other hand, it could be an artifact. For example, many
measurement scales have a limited range and result in a compression of variance.

Scales and Measurement. To understand potential measurement effects, it is worth
considering the data sets presented in figure 2. For example, Likert scales may have
only five, seven, or 10 points, and manipulations that move participants’ ratings
unidirectionally away from a midpoint are almost certain to create skewed, leptokurtic
distributions with restricted variability. The graphs presented in figure 2 are based on
ten point scales, which seemed reasonable at the time of creation. However
examination of the three graphs together may raise the questions as to whether or not
the scales were nuanced enough to adequately discriminate amongst participants.
Panel A shows love ratings amongst university-aged individuals. Ratings of love
average 8.4 and are skewed and leptokurtic. Ratings of security, with a mean of 8.1
and similar levels of skew and kurtosis, follow the same pattern (see Panel B).

Fig. 2. Three raw data graphs showing different levels of deviation from normality to inform
interpretation. Ratings of love (Panel A), ratings of security (Panel B), and ratings of self-
idealness (Panel C) are presented.

Interpreting Effect Size Estimates through Graphic Analysis of Raw Data Distributions 121

The graphs revealed a further point of interest. There was actually an error in that
the idealness scale went to 11. Graphing made this completely evident and showed
the scale scores had to be reduced by 9%. With that reduction the mean was 7.5 and
was different from the love mean. Thus graphing revealed two things: a clear error,
and, even without the error, a distribution difference that reflected a less intense
appraisal of self idealness than ratings of love. Overall, with a look at the graphs, a
more complicated appreciation of data is gained in comparison to the simple analysis
of means. The surprise was with idealness. This rating was an estimation of how
ideal each individual estimated themselves for their particular partner (see Panel C).
The distribution mean was 8.2 but the distribution was mesokurtic (approaching
normal) and only mildly skewed. Thus individuals were rating themselves as less than
ideal even though they were intensely in love. This could be interpreted as modesty
in estimating one’s own impact on another.

It is worth noting that Anscombe [13] had some time ago encouraged graphic
analysis of raw data for the same distributional reasons we discuss. Anscombe [13]
presented four distributions that visually were radically different from each other but
shared equal means and variances. That paper, at the time, presented a compelling
argument for graphic understanding of data, but it may not have had the impact it
deserved for two reasons. It was written before the emphasis on effect size [6], and
Anscombe [13] did not manipulate variances. With variance free to vary and effect
sizes, as not only prominent metrics, but also demonstratively sensitive to variance
manipulations perhaps there will be greater appreciation of this type of work.

Bimodal Distribution. Perhaps the most compelling case for the value of graphs
could occur with bimodal distributions. In the following illustration, the beginning
distribution approximates normality, whereas the manipulated distribution
approximates a bimodal distribution. The means of the two distributions are the same
for the simulation. Under this circumstance, a traditional F test discovers no
statistically significant difference, and the effect size approaches 0. An analysis with
no reference to graphs or higher moments of the distribution would suggest that
nothing happened. However, examination of variability and kurtosis reveal
distributions that differ from each other in important and informative ways. This
simulation could model the evaluation of a politician. The initial description may be
relatively neutral, and present a sincere, honest, established individual who has a
family and is interested in serving the ordinary citizens of the country to the best of
her/his ability. In figure 3, the ratings are represented by the unimodal normal curve
depicted with the solid line. After the initial rating, the politician, in the North
American context, could be identified with the contentious issue of gun control. The
issue is potentially divisive enough to create a bimodal distribution which, in this
case, is depicted with the dotted lines. The increase in variance and the increase in
platykurtosis associated with the bimodal distribution, so clearly illustrated in figure
3, indicate that there are at least two groups reacting to this particular issue.

Examination of figure 3 makes it obvious that knowledge could be furthered by
identifying two groups of responders, perhaps right wing and more centrist voters.
The logical follow-up would be to create a more complex design. Before such an
observation is trivialized, because we know some factors in this particular example, it
should be considered that similar distribution changes can occur in drug research, and
in the evaluation of art, movies and products.

122 M.T. Bradley, A. Brand, and A.L. MacNeill

Fig. 3. Graph representation of a nonsignificant, 0 effect size comparison where the
manipulated distribution is bimodal and obviously different from the original normal
distribution

3 Conclusion

The human condition is complex, and the perpetuation of testing one mean against
another without the thorough graphic examination of the distributions, as we have
tried to present, needlessly limits the potential of Social science. At the most
problematic level, a researcher may simply input data into a program, obtain a
significance value, and then fail to look at the data distributions. The hesitation to
further examine the data can range from a lack of realization of potential insights to
be gained, to a misunderstanding of the conventions of research. Such conventions
suggest that once a significance test fails there is little to be done with the data
collected. That view may hold for well developed and understood areas, but it is
arguably not the case for relatively underdeveloped areas of science. Furthermore, we
argue, through our examples, that an appreciation of raw data distributions gained
from graphing is a necessary adjunct to understanding effect size estimates, since
these estimates are very sensitive to various and common departures from normality.
This holds at the micro level of one’s particular area and informs theory and
measurement practice. At the macro level, involving general reading in one‘s
discipline, or in new areas, and with important findings, it is necessary to have at least
the trust, if not the actual graph or some form of evidence, that the author considered
the raw data distribution form.

References

1. Wainer, H., Velleman, P.F.: Statistical graphics: Mapping the pathways of science. Annual
Review of Psychology 52, 305–335 (2001)

2. Cohen, J.: The Earth is round (<.05}. American Psychologist 49(12), 997–1003 (1994)
3. Tukey, J.W.: The Future of Data Analysis. The Annals of Mathematical Statistics 33, 1–67

(1962)
4. Cumming, G., Finch, S.: Inference by eye: Confidence intervals and how to read pictures

of data. American Psychologist 60(2), 170–180 (2005)

Interpreting Effect Size Estimates through Graphic Analysis of Raw Data Distributions 123

5. Box, G.E.P.: Non-normality and tests on variances. Biometrika 40(3/4), 318–335 (1953)
6. Wilkinson, L., Task Force on Statistical Inference: Statistical Methods in Psychology

Journals: Guidelines and Explanations. American Psychologist 54(8), 594–604 (1999)
7. American Psychological Association: Publication manual of the American Psychological

Association, 5th edn., Washington, DC (2001)
8. American Psychological Association: Publication manual of the American Psychological

Association, 6th edn., Washington, DC (2010)
9. Evans, M., Hastings, N., Peacock, B.: Statistical distributions, 2nd edn. John Wiley and

Sons (1993)
10. Brand, A., Bradley, M.T., Best, L., Stoica, G.: Accuracy of effect size estimates from

published psychological research. Perceptual and Motor Skills 106, 645–649 (2008)
11. Brand, A., Bradley, M.T., Best, L., Stoica, G.: Multiple Trials May Yield Exaggerated

Effect Size Estimates. Journal of General Psychology 138(1), 1–11 (2011)
12. Brand, A., Bradley, M.T., Best, L., Stoica, G.: Accuracy of Effect Size Estimates from

Published Psychological Experiments Involving Multiple Trials. Journal of General
Psychology 138(4), 281–291 (2011)

13. Anscombe, F.J.: Graphs in statistical analysis. American Statistician 27, 17–21 (1973)

Psychological Evidence
of Mental Segmentation in Table Reading

Takeshi Sugio1, Atsushi Shimojima1, and Yasuhiro Katagiri2

1 Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto, Japan
2 Future University Hakodate, 116-2 Kamedanakano, Hakodate, Hokkaido, Japan

Abstract. How we organize elements when reading a table was examined in
a psychological experiment using a modified spatial-cuing paradigm. Table-like
stimuli consisting of 16 square elements arranged in a four-by-four matrix form
were used. Participants were instructed to discriminate whether the presented
stimuli could be read as containing either one element or two elements in ac-
cordance with the induced reading direction. The results showed that when two
elements were presented along with the induced direction, it was easier to read as
such than when two elements were presented orthogonal to the induced direction.
Although there was no contour line in the stimuli, participants were able to men-
tally segment and organize them into global units lying in the particular direction,
which was instrumental to reading the tables efficiently.

Keywords: object-based attention, table reading, global unit.

1 Introduction

Empirical studies on the comprehension of information graphics can be divided into
several broad categories according to what aspect of the comprehension process they
are interested in. One traditional line of research is concerned with the estimation pro-
cess of the relative magnitudes of individual graphical objects, such as the lines, bars,
and pie slices in statistical charts [1,2]. Active research is also conducted on the inter-
pretation process, where the features obtained in the estimation process are translated
into meaningful information on a represented domain. Typical subjects are the transla-
tion of a steeper line in a line graph to a faster pace of change [3] and of a “descendant
staircase” in a bar graph to a decreasing trend [4] as well as other interpretation pro-
cesses yielding what we later discuss as “higher level” information. In addition, there is
an emerging body of research shedding light on a more fundamental aspect of graphics
comprehension, namely, the attention process, where graphical objects to be estimated
and interpreted are segregated out from other candidate objects. Several researchers
(e.g., [5,6]) started investigating how people allocate attention to different locations in
information graphics by using participants’ eye movements and fixations as clues.

Strictly speaking, however, the issue of attentional shifts and focusing is different
from the issue of attentional content—the order and durations in which different lo-
cations are attended to do not determine what exact graphical objects are segregated
during that process. It is this latter issue that the present work is concerned with. We
borrowed a spatial-cuing experimental paradigm [7] used in standard attention research

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 124–131, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Psychological Evidence of Mental Segmentation in Table Reading 125

and applied it to investigate the working of our attentional system over a typical tabular
representation (See Fig. 1 in section 2).

A dedicated investigation on attentional content is also important for at least two
reasons. The first reason is related to the phenomenon of object-based attention. Roelf-
sema and his colleagues [8,9] proposed computational and neurological models of the
“bounded activation” operation in Ullman’s sense [10], whose function is to define co-
herent units of regions in an unarticulated visual scene so that further operations can
be applied selectively to the activated regions. “Object-based attention,” actively in-
vestigated by Duncan [11] and Kramer and Jacobson [12], largely overlaps with the
operation of bounded activation.

Given that we are endowed with this ability, the content of our attention is not a
simple function of the center of attention as indicated by the fixation center. Attention
may spread over various graphical elements in and near the center, grouping them into a
single “global unit” to which estimation and interpretation operations are applied. Mul-
tiple global units may be bounded in this manner, even forming a hierarchical structure.
What objects are bounded and how they are organized in the attentional process there-
fore need dedicated examination.

The second reason is not particular to graphics comprehension research but related
more generally to the functional significance of object-based attention. Object-based
attention has been a central topic in the psychological research of visual attention, and
its existence has been abundantly evidenced. When it comes to its functions, however,
much still remains unclear. Why do we need to bound our attention into a particular
unit of regions rather than just radiating it from a certain center?

One plausible explanation is that the units of regions we bound our attention into
strongly affect the kinds of information we read off from a scene, and graphics com-
prehension is a quintessential example of the reading process affected in that way. Re-
searchers and designers have long noted that information graphics can express “higher
level” information as well as “lower level” information (e.g., [13,14,4,15]), and what
higher level information we read off depends heavily on what units of regions we at-
tend to. Taking the case of a scatter plot, for example, we usually read off the strength
of correlation between two variables by attending to the “cloud” formed by multiple
dots as a unit of interpretation [16]. We usually read off the existence of two dominant
subfamilies from a family tree by attending to the relevant sub-trees as units of inter-
pretation. Likewise, a membership table usually lets us read off the number of groups
to which more than two members belong only when we attend to rows (or columns) as
units of interpretation. In two experiments using the modified spatial-cuing paradigm,
we attempt to demonstrate the involvement of object-based attention in the reading of
information in the table. By connecting research on object-based attention to graphics
comprehension research in this way, we can expect to identify one concrete function of
object-based attention.

2 Experiment

It has been shown that object-based attentional effects can be separated from space-
based effects by controlling the distances among cued locations and target locations

126 T. Sugio, A. Shimojima, and Y. Katagiri

[7]. We used the experimental paradigm developed by [7] to show the degree of the
involvement of the object-based attention that underlies our ability to read tables.

We conducted a preliminary experiment by using a detection task, which was used
to detect whether a target (filled square) was present in the table-like stimulus. We
found that the mean reaction time in the valid-cue condition was faster than those in
invalid-cue conditions. A significant difference was not observed between two invalid-
cue conditions (within-object and between-object), which suggested that participants
were able to extend their attentional focus to entire stimuli regardless of the reading
direction instructed in the detection task. On the basis of this preliminary result, we
investigated whether such attentional enhancement can also be found for more complex
task like discrimination.

2.1 Method

Participants, Apparatus, and Stimuli. The participants were 15 undergraduate stu-
dents, of which 11 were females. All had normal or corrected-to-normal vision and
were paid for their participation. The experiment was programmed and conducted using
Psychtoolbox (version 3.0.8) running on a MATLAB (R2007b) platform on an IBM-
compatible PC [17]. A response pad (Cedrus RB-530) was used to collect data. All stim-
uli were presented on a 17-in. color monitor (85-Hz refresh rate) at a viewing distance
of about 57 cm. Participants’ heads were immobilized with a chin rest. The experiment
took place in a dark room.

The fixation cross, letters (labels and instructions used to induce the reading direction
of the stimuli), and element squares (including targets, filled squares) were gray, and the
cue was the color white. The fixation cross was a plus sign (+), which subtended about
0.5 × 0.5 deg in a visual angle. Row labels, column labels, and the letters G (Group)
and P (Person) were the same size as the fixation. Each square subtended about 2 × 2
deg with a stroke of approximately 2.0 deg, and the distances between two squares were
1.3 deg in both directions.

Design and Procedure. Before beginning the experiment, several examples of the table-
like stimuli were presented to participants with descriptions on how the stimuli were
to be comprehended in accordance with the reading direction. Each trial started with a
preview display (16 squares in 4 × 4 arrangement with the instruction letter at the center)
for 1,000 ms. Participants were instructed to remember the instructed reading direction
of the target display. Then, the cue (white) was presented at one of the four corners for
100 ms. The cue was replaced with the fixation display (16 squares with a fixation cross
at the center) for another 200 ms. The target (filled square or squares) was presented,
and it overlapped this fixation display until there was a response from pressing a button
or 2,000 ms elapsed with no response. The task was to discriminate the table-like stimuli
on the basis of the number of people that each group had (“G”) or the number of groups
that each person belonged to (“P”). Figure 1 illustrates how the identical stimuli can be
interpreted differently according to the instructed reading direction. Participants pressed
the assigned button (left or right button of the response pad) for each number (“one”
or “two”) as rapidly and as accurately as possible. A feedback beep was presented
for errors. The next trial began after a 500-ms blank intertrial interval. Participants

Psychological Evidence of Mental Segmentation in Table Reading 127

Fig. 1. Difference in the interpretation of the table according to the reading direction

Fig. 2. Mean response time costs of invalid-cuing for correct trials between target type and in-
struction compatibility. Error bars represent 95% within-confidence intervals [18].

were instructed to maintain fixation on the center throughout each trial. The order was
randomized for each participant. There were 1,600 trials in all, and they were divided
into 16 blocks of 100 trials each. A self-paced rest was allowed between blocks.

One of the targets always appeared at the cued location for the valid condition (76%
of the trials). For the single target conditions, the target appeared either at the cued loca-
tion (valid cue) or at the uncued location (invalid cue, either compatible or incompatible
with the instructed reading direction). For two-target conditions, the spatial relation be-
tween two elements was manipulated (grouped or separated).

2.2 Results

Two separate cost-benefit analyses were performed. One was based on the difference in
response times between valid and invalid-cuing conditions, which indicates the degree
of the effectiveness of spatial cuing at a particular location in the table-like stimuli. The
other was based on the difference in response times between single-target and two-target
conditions, which may reflect the additional time necessary for processing an element
in the stimuli.

First, a two-way repeated-measures ANOVA was performed for the difference in
median response times for the valid and invalid conditions (Figure 2). The two within-

128 T. Sugio, A. Shimojima, and Y. Katagiri

Fig. 3. Mean response time costs of processing an additional target for correct trials between
target relation and instruction compatibility (left) and between cue validity and instruction com-
patibility (right). Error bars represent 95% within-confidence intervals [18].

participant factors were target type (single target, grouped targets, or separated targets)
and compatibility with instruction (compatible or incompatible). The main effect of the
target type and the interaction between the target type and compatibility were signifi-
cant; F(2, 28) = 60.619, p < .001, F(2, 18) = 14.963, p < .001. The main effect of
compatibility was marginally significant; F(1, 14) = 4.580, p = .050. A post-hoc anal-
ysis using Shaffer’s method revealed significant differences between a single target and
grouped targets and between a single target and separated targets (all p < .05). Sim-
ple main effects were analyzed for the interaction. The simple main effect of a target
type was significant in both compatible and incompatible conditions (all p < .05). In
comparison, the simple main effect of an instruction-compatibility was significant in a
single-target condition only (p < .05).

Next, a three-way repeated-measures ANOVA was performed for the difference in
median response time for single-target and two-target conditions. The three within-
participant factors were the distance between two targets (grouped or separated), cue va-
lidity (valid or invalid), and compatibility with an instruction (compatible or incompat-
ible). All main effects and two interactions (target relation × instruction compatibility,
cue validity × instruction compatibility) were significant; F(1, 14) = 4.924, p = .044,
F(1, 14) = 86.143, p < .001, F(1, 14) = 184.999, p < .001, F(1, 14) = 5.213, p = .039,
F(1, 14) = 26.401, p < .001 (Figure 3). The simple main effect for the interaction be-
tween target relation and instruction compatibility showed that when the target location
was along the same reading direction with the cue, there was no difference in discrim-
ination time between grouped and separated targets. In comparison, when the target
location was on the orthogonal reading direction to the cue, discriminating grouped
targets as each belonging to different group (or person) required more time than with
separated targets (100 – 90 ms). The simple main effects of instruction compatibility
were significant for both grouped and separated targets (p < .05). Furthermore, all sim-
ple main effects for the interaction between cue validity and instruction compatibility
were significant (p < .05).

2.3 Discussion

The interaction between target type and instruction compatibility showed quite a dis-
crepant result with previous studies [7]. Since the task was to discriminate whether the

Psychological Evidence of Mental Segmentation in Table Reading 129

presented stimuli could be read as containing only one element or two elements for
each group (or person), participants had no need to continue the search for another ob-
ject when they successfully found two elements along the induced reading direction.
However, when there was only one element within the object that participants were at-
tending to, they had to continue the search to confirm their responses, and they also had
to maintain which object had been already attended to in their working memory.

Since the exogenous cue automatically drew attention to the cued location, the in-
formation reading process must have begun at the cued location. It is plausible that the
automatic allocation of attention to the cued location lead to inefficient processing when
sufficient information for making a decision could not be obtained there. Attending to a
specific element may have activated an incorrect response in such trials, and participants
had to inhibit the incorrect response.

A considerable amount of difference in the costs of processing additional elements
between two instruction-compatibility conditions was observed. This result indicates
that multiple targets appearing within the cued mental object were easily discrimi-
nated as two independent elements irrespective of the proximity between them. In other
words, the spatial resolution of the attended mental object was better than that of an
unattended one.

In comparison, when two targets were presented at locations orthogonal to the in-
duced reading direction, the discrimination time was longer than in the single-target
condition, which suggests that each mental object was searched sequentially. However,
considering that the cost for discriminating grouped targets was larger than that of sep-
arate targets, the search result of each uncued object seemed to be maintained in a
degraded manner, namely, it was a cost to discriminate two consecutive objects as two
distinct objects. Since there was no contour line presented in the stimuli, it was demand-
ing to maintain multiple unattended objects in working memory. As indicated from the
simple main effect of instruction compatibility for a valid cue, the cost of processing
an additional element was rather small, suggesting the enhanced discrimination process
within the attended object.

These results suggest that space-based and object-based attention may not have con-
tributed to the efficient processing of information in a simple additive manner. Rather,
space-based attention seems to have dominated object-based attention when both are
directed at the same area in the stimuli. The function of object-based attention is not to
further highlight particular portions in the stimuli but to bound sub-areas within it. The
nature of the top-down knowledge that served to segment mental objects remains to be
investigated. Some sort of rule-based processing, such as syntactic processing, might
be one of the possibilities [19].

3 Conclusion

Combined with a preliminary experiment, the experiment indicates our ability to keep
the entire array of a table activated for feature detection while maintaining a partic-
ular segmentation of the array into a set of rows or columns depending on the task at
hand. Contrast our finding to a more simple-minded possibility that task-dependent seg-
ments (rows or columns) are segregated sequentially as the comprehension of the table

130 T. Sugio, A. Shimojima, and Y. Katagiri

proceeds from one segment to another. Our results indicate a more parallel attentive
mechanism, where a global unit in the display, along with its sub-units, is maintained
simultaneously. The existence of this hierarchical structure was evidenced by the facil-
itation of target-detection within the global unit that is comparable to the facilitation
within a rectangle observed in [7] (the preliminary experiment) and the facilitation of
target-discrimination within each sub-unit regardless of which particular sub-unit the
cue had fallen into (the main experiment).

Here, the segregation of the global unit appears to be space-based, so the spot light
metaphor is appropriate here. Yet, the lighting is not plain but rather divided, with
individual divisions allocated to different task-dependent sub-units. Although our ex-
periments were confined to a table, we can easily imagine that this strategy of global
spot-lighting and local segmentation is extended to portions of node-link graphs, maps,
statistical charts, or any information graphics of which the segmentation of non-well-
defined objects is functionally important. This has a deep implication on the way we
extract information from information graphics, especially because it implies that mul-
tiple sub-units can be maintained in parallel so far as they are within the coverage of a
spot light, aka, space-based attention to a superior global unit. Our results also have an
important implication on the functional significance of object-based attention: it serves
to segment the area segregated by space-based attention. Here, the role of object-based
attention is only segmentation (not initial segregation), but it is informed of the demand
of the reading task at hand. This task-sensitivity appears to be an important feature of
object-based attention, apparently missing from space-based attention.

References

1. Cleveland, W.S., McGill, R.: An experiment in graphical perception. International Journal of
Man-Machine Studies 25(5), 491–500 (1986)

2. Spence, I.: Visual psychophysics of simple graphical elements. Journal of Experimental Psy-
chology: Human Perception and Performance 16(4), 683–692 (1990)

3. Gattis, M., Holyoak, K.J.: Mapping conceptual to spatial relations in visual reasoning. Jour-
nal of Experimental Psychology 22(1), 231–239 (1996)

4. Pinker, S.: A theory of graph comprehension. In: Aritificial Intelligence and the Future of
Testing, pp. 73–126. L. Erlbaum Associates (1990)

5. Carpenter, P., Shah, P.: A model of the perceptual and conceptual processes in graph com-
prehension. Journal of Experimental Psychology: Applied 4(2), 75–100 (1998)

6. Peebles, D., Cheng, P.C.: Modeling the effect of task and graphical representation on re-
sponse latency in a graph reading task. Human Factors 45(1), 28–46 (2003)

7. Egly, R., Driver, J., Rafal, R.D.: Shifting visual attention between objects and locations:
Evidence from normal and parietal lesion subjects. Journal of Experimental Psychology:
General 123(3), 161–177 (1994)

8. Roelfsema, P.R., Lamme, V.A.F., Spekreijse, H.: The implementation of visual routines. Vi-
sion Research 40, 1385–1411 (2000)

9. Roelfsema, P.R.: Cortical algorithms for perceptual grouping. Annual Review of Neuro-
science 29, 203–227 (2006)

10. Ullman, S.: Visual routines. Cognition 18, 97–159 (1984)
11. Duncan, J.: Selective attention and the organization of visual information. Journal of Exper-

imental Psychology: General 113(4), 501–517 (1984)

Psychological Evidence of Mental Segmentation in Table Reading 131

12. Kramer, A.F., Jacobson, A.: Perceptual organization and focused attention: the role of objects
and proximity in visual processing. Perception & Psychophysics 50(3), 267–284 (1991)

13. Bertin, J.: Semiology of Graphics: Diagrams, Networks, Maps. The University of Wisconsin
Press, Madison (1973)

14. Tufte, E.R.: Envisioning information. Graphics Press, Cheshire (1990)
15. Cleveland, W.S.: The Elements of Graphing Data. Hobart Press, Summit (1994)
16. Kosslyn, S.M.: Elements of Graph Design. W. H. Freeman and Company, New York (1994)
17. Brainard, D.H.: The psychophysics toolbox. Spatial Vision 10(4), 433–436 (1997)
18. Masson, M.E.J., Loftus, G.R.: Using confidence intervals for graphically based data inter-

pretation. Canadian Journal of Experimental Psychology 57(3), 202–220 (2003)
19. Jansen, A.R., Marriott, K., Yelland, G.W.: Comprehension of algebraic expressions by ex-

perienced users of mathematics. The Quarterly Journal of Experimental Psychology 56A(1),
3–30 (2003)

Proof-Theoretical Investigation of Venn

Diagrams: A Logic Translation and Free Rides

Ryo Takemura

Nihon University, Japan
takemura@abelard.flet.keio.ac.jp

Abstract. In the literature on diagrammatic reasoning, Venn diagrams
are abstractly formalized in terms of minimal regions. In view of the cog-
nitive process to recognize Venn diagrams, we modify slightly the formal-
ization by distinguishing conjunctive, negative, and disjunctive regions
among possible regions in Venn diagrams. Then we study a logic trans-
lation of the Venn diagrammatic system with the aim of investigating
how our inference rules are rendered to resolution calculus. We further
investigate the free ride property of the Venn diagrammatic system. Free
ride is one of the most basic properties of diagrammatic systems and it
is mainly discussed in cognitive science literature as an account of the
inferential efficacy of diagrams. The soundness of our translation shows
that a free ride occurs between the Venn diagrammatic system and res-
olution calculus. Furthermore, our translation provides a more in-depth
analysis of the free ride. In particular, we calculate how many pieces of
information are obtained in the manipulation of Venn diagrams.

1 Introduction

Venn and Euler diagrams are two of the most basic diagrams for logical rea-
soning, originally introduced to illustrate syllogisms. These diagrams have been
studied since the 1990s from both a mathematical and formal logic viewpoint,
and have been applied, beyond simple syllogisms, to various areas such as knowl-
edge representation and ontologies.

In the literature on diagrammatic reasoning, a Venn diagram is abstractly
defined as a set of minimal regions (refer to Howse et al. [4] and to [11] for a
survey).

For example, the Venn diagram, V , in Fig. 1 is specified
as a diagram in which “the region inside A, but outside
B and C (denoted by ABC) is empty,” and “the region
inside A and C, but outside B (ABC) is empty.” Thus,
V is abstractly formalized as the set of shaded minimal
regions {ABC,ABC}.

A B

C

Fig. 1. Venn dia-
gram, V

Although we can read from this V , “the region inside A, but outside B (AB) is
empty,” such a (non minimal) region is generally defined as the union of minimal
regions, i.e., ABC ∪ABC, and hence, only minimal regions are mathematically

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 132–147, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Proof-Theoretical Investigation of Venn Diagrams 133

sufficient for the abstract formalization of Venn diagrams. Based on this formal-
ization of Venn diagrams, Euler diagrams are formalized by considering shaded
regions of Venn diagrams as “missing” regions (cf. [4]). Thus, both Venn and
Euler diagrams are abstractly formalized in terms of minimal regions, and we
call this framework a “region-based” framework.

Based on the above formalization of Venn and Euler diagrams, their influence
on human reasoning, particularly syllogistic reasoning, is discussed in the cog-
nitive science literature by Gurr-Lee-Stenning [3] and Shimojima [9], amongst
others. From a cognitive viewpoint, it is often observed that Venn diagrams
are harder to handle in actual reasoning than Euler diagrams. However, from
the mathematical formalization of Venn and Euler diagrams in the region-based
framework, it is difficult to derive any differences between them especially in
their cognitive complexities [3].

In contrast to studies using the region-based framework, Mineshima-Okada-
Takemura [5] introduced another framework to formalize Euler diagrams. The
framework is based on the idea that, from a cognitive viewpoint, the most basic
and essential component of Euler diagrams is topological (inclusion and exclu-
sion) relations between circles. Thus, in this framework, Euler diagrams and
manipulations thereof are formalized in terms of the topological relations. The
inference rules are designed to be as natural as possible to reflect intuitive ma-
nipulations of Euler diagrams. We describe this approach being “relation-based.”

Along similar lines, if we consider processes to recognize Venn diagrams, it
seems that the existing mathematical formalization in terms of minimal regions
is somewhat inadequate. For example, in the diagram V in Fig. 1, in order to
read “There is nothing that is A but not B,” i.e., “All A are B,” it is not suffi-
cient to grasp the emptiness of the minimal regions ABC and ABC discretely.
Instead it is necessary to grasp the emptiness of the union of these regions as a
whole. Thus, it is considered appropriate for the formalization of Venn diagrams
to take into account the unions of certain minimal regions. Based on this idea, we
modify slightly the region-based formalization of Venn diagrams. Of the possible
regions in Venn diagrams, we distinguish conjunctive, negative, and disjunctive
regions. In particular, each conjunctive region denotes “Things that are X1 and
. . . and Xn, but not Y1 or . . . or Ym.” As the most basic system, we are mainly
concerned with a formal Venn diagrammatic system based on conjunctive re-
gions in Section 2, and we define an abstract Venn diagram as a set of shaded
conjunctive regions.

In Section 3, we investigate a proof theory of the Venn diagrammatic sys-
tem. In particular, we study a logic translation of the system with the aim of
investigating how our Venn diagrammatic inference rules are rendered to res-
olution calculus. The logic translation enables us various further investigation
of the Venn diagrammatic system. We investigate, among others, the free ride
property of our system in Section 4. Free ride occurs when by adding a certain
piece of information to a diagram, the resulting diagram somehow comes to rep-
resent pieces of information not contained in the given diagram or in the original

134 R. Takemura

piece of information. Shimojima [9] analyzed its semantic conditions within the
framework of Barwise-Seligman’s channel theory [1].

In contrast to the semantic investigation, Takemura [12] introduced a proof-
theoretical framework to analyze the free ride through logic translations. It was
shown that the soundness of a translation between two logical systems implies
the occurrence of free ride (in the sense of [9,1]) between the systems. Based on
the result, we show that free ride occurs between our Venn diagrammatic system
and resolution calculus in Section 4. Our logic translation gives us a more in-
depth analysis of free ride. We are able to investigate what kind of and how
many inference steps are required in terms of the translated logical system, to
derive freely obtained pieces of information in the manipulation of diagrams. In
particular, we investigate the number of pieces of information, that we call “free
rides,” occurring in an application of a Venn diagrammatic inference rule, which
serves to estimate recognition steps for the free rides.

Since our formalization and analysis of the free ride is based on the general
method of logic translation in the proof theory, they are also applicable to other
appropriately defined diagrammatic systems.

In Section 5, based on the analysis given in Section 4 and that given in [12],
we discuss a difference between the Venn and Euler diagrammatic systems with
respect to free rides.

2 Venn Diagrammatic System

In this section, we recall the syntax, semantics, and inference rules for Venn
diagrams. See, e.g., Howse et al. [4], Shin [10] for detailed and formal descrip-
tions thereof. In particular, in Section 2.1 we introduce a classification among
regions in Venn diagrams, namely conjunctive, negative, and disjunctive regions.
Inference rules, described in Section 2.2, are those defined in [6].

2.1 Venn Diagrams

A (concrete) Venn diagram (denoted by V ,V1,V2, . . .) consists of a finite num-
ber of named circles (i.e., simple closed curves) on a plane R2 enclosed by a
boundary rectangle that satisfies the partial-overlapping condition, i.e., all pos-
sible intersections of circles must occur.

A minimal region (denoted by z, z1, z2, . . .) is a part of the plane that
lies inside some of the circles and outside the remaining circles of the diagram.
(Although our “minimal region” may be more appropriately called a zone as
in [4], we prefer to retain our terminology in this paper.) Thus, if L is the set
of names of circles in a Venn diagram V , each minimal region is specified using
the names in L as X1 . . . XnY1 . . . Ym, where {X1, . . . , Xn, Y1, . . . , Ym} = L, and
X1, . . . , Xn are the names of the circles enclosing the region, Y1, . . . , Ym are the
names of the circles outside of which the region lies.

A (general) region is the union of certain minimal regions.

Proof-Theoretical Investigation of Venn Diagrams 135

Example 1. The following Venn diagram V consists of two circles A and B,
which have four minimal regions: z1 is inside A, but outside B
(and is denoted by AB); z2 is inside both A and B (AB); z3 is
outside A, but inside B (AB); and z4 is outside both A and B
(AB). V

A B
z1 z2 z3

z4

In general, we denote by r a sequence, say X1 . . . XnY1 . . . Ym, of names and
overlined names of circles, in which we ignore the order and repetition of el-
ements, i.e., we regard r as a set. Then, by |r| we denote the set of names
{X1, . . . , Xn, Y1, . . . , Ym}.

For any sequences r and r′, the concatenation thereof is denoted by rr′.
Of the regions in a given Venn diagram, we distinguish conjunctive, negative,

and disjunctive regions.

Definition 1 (Conjunctive region). A conjunctive region r of a Venn di-
agram V is a region of V that is specified by the names of circles in V as follows.
For n ≥ 1,m ≥ 0,

X1 . . . XnY1 . . . Ym .

A region specified by using only overlined names of the form Y1 . . . Ym is called
a negative region. A region that is neither conjunctive nor negative is called
a disjunctive region.

Observe that if L is the set of names of circles in V , a conjunctive or negative
region r such that |r| = L is a usual minimal region. Note also that conjunctive,
negative, and disjunctive regions are disjoint.

Example 2. In the diagram V in Example 1, the regions z1 (= AB), z2 (=
AB), z3 (= AB), z1 ∪ z2 (= A), and z2 ∪ z3 (= B) are all conjunctive (the
first three are also minimal); regions such as z4 (= AB), and z3 ∪ z4 (= A) are
negative; while the other regions e.g., z1 ∪ z3, and z1 ∪ z2 ∪ z3, are disjunctive.

Each conjunctive region can naturally be read as “Things that are X1 and
. . . and Xn, but not Y1 or . . . or Ym.” We are mainly concerned with conjunc-
tive regions in our formalization of Venn diagrammatic system, which can be
extended by including other regions.

Each conjunctive region may be shaded. In particular, a Venn diagram in
which no regions are shaded is called a primary diagram. For a Venn diagram
V , we denote by m(V), shm(V), and shc(V) the set of names of minimal regions,
shaded minimal regions, and shaded conjunctive regions, respectively of V .

An abstract Venn diagram is defined as the set of shaded conjunctive
and/or negative, disjunctive regions. Instead of giving a formal definition of the
abstract syntax here, we explain it through our translation into a resolution
calculus in Section 3.2.

Although we do not deal explicitly with points and the linking thereof in
this paper, we may technically regard points (with linking) in Venn diagrams as
special circles that do not contain or overlap any other circles. See [6].

136 R. Takemura

We define the semantics of Venn diagrams in the same way as Howse et al. [4].
A model is a pair M = (U, I), where U is a non-empty set called the universe,
and I is an interpretation function that assigns to each circle a subset of U . The
interpretation function I is naturally extended to interpret conjunctive regions
as follows. For any conjunctive region r, specified as X1 . . . XnY1 . . . Ym, the
interpretation I(r) is defined by I(r) = I(X1)∩· · ·∩I(Xn)∩ I(Y1)∩· · ·∩ I(Ym),
where I(Yj) is the complement of the set I(Yj).M = (U, I) is a model of the Venn
diagram V , denoted as M |= V , if each shaded conjunctive region is interpreted
as the empty set, i.e.,

⋃
r∈shc(V) I(r) = ∅.

2.2 Venn Diagrammatic Inference System

We review the most basic Venn diagrammatic inference system V from
Mineshima-Okada-Takemura [6]. See [4,10], for example, for a formal descrip-
tion of rules.

Definition 2 (Inference rules for V).

Axiom Any primary diagram (i.e., a diagram in which no regions are shaded)
is an axiom.

Introduction of a circle Let V be a Venn diagram that does not contain a circle
A. Then, to obtain the conclusion diagram V+A, add circle A to V observing
the partial-overlapping rule, i.e., each conjunctive or negative region (as well
as shaded one) of V is split into two regions.

Superposition of diagrams Let V1 and V2 be Venn diagrams that contain the

same circles. Then, to obtain the conclusion diagram V1 + V2, construct a
primary diagram with the same circles as V1. Then, shade all minimal regions
that are shaded in V1 or V2.

Erasure of shading Let V be a Venn diagram in which a minimal region z is

shaded. Then, to obtain the conclusion diagram V − {z}, erase the shading
of z.

Erasure of a circle Let V be a Venn diagram that contains a circle A. Then, to
obtain the conclusion diagram V − A, circle A must be erased from V and
any shading remaining in only a part of a minimal region after the erasure
of A should also be erased.

The notion of Venn diagrammatic proof is defined inductively as tree structures
consisting of the above inference rules (see Example 3 below). Note in particular
that each leaf of a proof-tree is a premise diagram or a primary diagram (i.e.,
an axiom).

Example 3. Fig. 2 is a Venn diagrammatic proof of V3 from premises V1 and V2.

Proof-Theoretical Investigation of Venn Diagrams 137

B C

A

D

V3

B C

A

D

V1 + A �

B C

A

D

(V2 + C) + D�

B C

D

V1 �

B C

A

V2 + C�

B

A

V2�

Fig. 2. Venn diagrammatic proof

3 Translation of Venn Diagrammatic System

In this section, after a brief review of the resolution calculus in Section 3.1, we
define a translation of the Venn diagrammatic inference system V into resolution
calculus in Section 3.2. In particular, we translate the rule for Superposition
(instead of the rule for Erasure of a circle as in [6]) into a combination of the
resolution principle.

3.1 Resolution Calculus

Propositional and first-order resolution were introduced by Robinson “for use as
a basic theoretical instrument of the computer theorem-proving program” [7].
The “resolution principle” is very powerful in that it forms by itself a complete
system of propositional and first-order logic. The efficiency of the rule makes it
easy to implement decision procedures involved in establishing the provability
of given formulas. The resolution principle gives the theoretical basis of logic
programming such as Prolog. For details refer to [2], for example.

A literal is either an atom A or its negation A. In the context of resolution, we
use the “overbar” symbol for negation instead of the usual ¬. We denote literals
by L,L1, L2, If L is a literal of the form A, then L denotes the unnegated
literal A. A clause is a finite set of literals, and is denoted by r, x, y, z, If a
clause r is {L1, . . . , Ln}, it is usually expressed as L1 · · ·Ln. A set of clauses is
called a clause set, and is denoted by Γ,Δ,Σ, In particular, the singleton
{r} of a clause r is often denoted by r. Let r1 and r2 be clauses such that L ∈ r1

138 R. Takemura

and L ∈ r2. The resolution principle is defined by the following operation to
derive the clause (r1 \ {L}) ∪ (r2 \ {L}), called the resolvent of r1 and r2:

r1 r2

(r1 \ {L}) ∪ (r2 \ {L})
res, L

.

A resolution derivation is then defined as the process of deriving a clause r
from a given clause set Γ by applications of the resolution principle.

For any non-empty clause set Γ = {r1, . . . , rm}, we denote by d(Γ), the
disjunctive normal form (DNF) formula (∧r1) ∨ · · · ∨ (∧rm).

To investigate the translation of the Venn diagrammatic system V, we intro-
duce a calculus VR over clause sets based on the resolution principle.

Definition 3 (VR). The resolution calculus for Venn diagrams VR consists of
the following rules over clause sets.

{rL} {rL}
{r} res, L Γ

ΓL
intro, L

Γ1 · · · Γn

Γ1 ∪ · · · ∪ Γn

sup Γ ∪Δ
Γ

er

Here, ΓL (or equivalently LΓ) signifies {r1L, . . . , rnL} when Γ = {r1, . . . , rn}.
We assume the empty clause ∅ is an axiom of VR.

Note that the above resolution principle in VR is slightly restricted, since r is
shared in the premises. However, by using the intro rule, the usual resolution
principle is easily simulated by the above rule.

By Res(Γ), we denote the set of clauses that is derivable from a clause set Γ
by applications of only the above resolution principle in VR.

Instead of proving the soundness of VR, we explain the inference rules of
VR in terms of those of natural deduction under our interpretation of clauses.
We interpret each clause set, say Γ = {r1, . . . , rn}, as the negation of the
disjunctive normal form formula ¬d(Γ) = ¬((∧r1) ∨ · · · ∨ (∧rn)) (cf. the se-
mantics of Venn diagrams). In particular, the empty clause set ∅ is interpreted
as the constant � which expresses the truth. Then, using this interpretation
and the usual equivalence of formulas, the intro rule corresponds to the dis-
junction introduction rule of natural deduction, since, when Γ = {r1, . . . , rn},
¬((∧r1)∨ · · · ∨ (∧rn)) implies ¬((∧r1)∨ · · · ∨ (∧rn))∨¬L, which is equivalent to
¬((∧r1∧L)∨· · ·∨ (∧rn∧L)). The sup rule corresponds to the n-ary conjunction
introduction rule since ¬d(Γ1), . . . ,¬d(Γn) implies ¬d(Γ1) ∧ · · · ∧ ¬d(Γn), i.e.,
¬(d(Γ1) ∨ · · · ∨ d(Γn)). The er rule corresponds to the conjunction elimination
rule since ¬(d(Γ)∨d(Δ)), which is equivalent to ¬d(Γ)∧¬d(Δ), implies ¬d(Γ).

3.2 Translation of V

We present a translation of the Venn diagrammatic inference system V into the
resolution calculus VR. Our translation here is different from and more suitable
than that in [6] for comparing free rides in Venn and Euler diagrammatic systems.

Proof-Theoretical Investigation of Venn Diagrams 139

Translation between logical systems is one of the basic methods in proof the-
ory, and can be applied to various systems for a variety of reasons. Compared
with semantic interpretation, a logic translation reveals various properties of
inference rules in a logical system. For example, it enables us to study logical
connectives and inference rules of the original system in terms of those of the
translated system.

In general, diagrams correspond to formulas in symbolic logic, and diagram
manipulations correspond to applications of inference rules in a certain logical
system. In particular, our Venn diagrams abstractly specified in terms of con-
junctive regions correspond to clause sets, i.e., disjunctive normal form formulas,
and the inference rules of the Venn diagrammatic system V correspond to infer-
ence rules over clause sets.

We first define a translation of a Venn diagram into a clause set.

Definition 4 (Translation of Venn diagrams). Let V be a Venn diagram
such that shc(V) = {r1, . . . , rn}.
– Each shaded conjunctive region ri such that X1 . . . XnY1 . . . Ym is translated

into a clause r•i such that X1 . . . XnY1 . . . Ym.
– The Venn diagram V is translated into the clause set V• = {r•1 , . . . , r•n}.

In particular, each primary diagram is translated as ∅.
To avoid notational complications, we denote simply by r (instead of r•) the

translation of a region r.

Example 4. Venn diagrams V1 and V2 in Example 3 are translated as follows:
V•
1 = {BCD,BCD,BCD,BCD,CD,BD,BC} and V•

2 = {AB}.
Based on the above translation of Venn diagrams into clause sets, inference rules
for V are translated into resolution calculus VR.

Definition 5 (Translation of V). Rules for V are translated as follows.

Introduction of a circle The conclusion diagram V + A is specified in terms of
the set of shaded conjunctive regions as follows:

shc(V +A) = shc(V) ∪ {rA | r ∈ shc(V)} ∪ {rA | r ∈ shc(V)}.
Then this rule is translated as follows.

V•
V•
AV• intro, A

V•

V•A
intro, A

V• ∪ AV• ∪ V•A
sup

Superposition of diagrams The conclusion diagram V1 +V2 is specified in terms

of the set of shaded conjunctive regions as follows. Let n be the length, i.e., the
number of names of each minimal region of V1, which is uniquely determined.
Let Γ0 = {r | rL ∈ shm(V1), rL ∈ shm(V2)} and Γi = {r | rL, rL ∈ Γi−1}.

shc(V1 + V2) = shc(V1) ∪ shc(V2) ∪
⋃n

i=0 Γi

140 R. Takemura

Then this rule is translated as shown below.

V•
1 V•

2 Res(V•
1 ∪ V•

2)

V•
1 ∪ V•

2 ∪Res(V•
1 ∪ V•

2)
sup

Here, Res(V•
1 ∪V•

2) denotes the set of clauses derived from V•
1 ∪V•

2 by applying
the resolution principle.

Erasure of shading The conclusion diagram V − {z} is specified as follows:

shc(V − {z}) = shc(V) \ ({z} ∪ {r ∈ shc(V) | ∃r′.rr′ = z}) .
Then this rule is translated as shown below. Let V• be the disjoint union {z} ∪
Γ1∪Γ2, where for all r ∈ Γ1, there exists r

′ such that rr′ = z, and for all x ∈ Γ2,
there is no r′ such that xr′ = z.

{z} ∪ Γ1 ∪ Γ2

Γ2
er

Erasure of a circle The conclusion diagram V −A is specified as follows:

shc(V −A) = shc(V) \ {r ∈ shc(V) | A ∈ |r|} .

Then this rule is translated as shown below. Let V• = Γ1 ∪ Γ2 in which A ∈ |r|
for all r ∈ Γ1, and A �∈ |x| for all x ∈ Γ2.

Γ1 ∪ Γ2

Γ2
er

Example 5. The proof in Fig. 2 for Example 3 is translated as π in Fig. 3.

π1

⎧
⎪⎪⎨

⎪⎪⎩

V•
1

V•
1

V•
1A

intro,A
V•

1

V•
1A

intro, A

(V1 + A)• = V•
1 ∪

{ ABCD,

ABCD,

ABCD,

ABCD,

ABCD,

ABCD,

ABCD,

ABCD,

ACD,

ACD,

ABD,

ABD,

ABC,

ABC

} sup

Here, V•
1 = {BCD,BCD,BCD,BCD,CD,BD,BC}

π2

⎧
⎪⎪⎨

⎪⎪⎩

V•
2 = {AB}

V•
2

V•
2C

intro, C
V•

2

V•
2C

intro, C

(V2 + C)• = V•
2 ∪ {ABC,ABC}

sup
(V2 + C)•

(V2 + C)•D
intro,D

(V2 + C)•

(V2 + C)•D
intro, D

((V2 + C) + D)• = (V2 + C)• ∪ {ABCD,ABCD, ABCD,ABCD, ABD,ABD}
sup

π

⎧
⎪⎨

⎪⎩

.

.

.

.
π1

(V1+A)•

.

.

.

.
π2

((V2+C)+D)•

(V1A)•

ABCD

(V2CD)•

ABCD

ACD

(V1A)•

ABCD

(V2CD)•

ABCD

ACD

(V1A)•

ABD

(V2CD)•

ABD

AD

(V1A)•

ABC

(V2CD)•

ABC

AC

(V1 + A)• ∪ ((V2 + C) + D)• ∪ {ACD,ACD,AD, AC}
sup

Fig. 3. Translation of the Venn diagrammatic proof in Fig. 2

In order to justify the above translation, we show the following lemma.

Proof-Theoretical Investigation of Venn Diagrams 141

Lemma 1. Let r be a region of a given Venn diagram V, and let X be a circle
of V such that X �∈ |r|. r ∈ shc(V) if and only if rX, rX ∈ shc(V).
Proof. ⇐) When rX, rX ∈ shc(V), we have r = rX ∪ rX ∈ shc(V).
⇒) Let r ∈ shc(V). Since X �∈ |r|, r is still shaded after the erasure of circle
X , i.e., r ∈ shc(V − X). Then, since each region is split into two parts by the
introduction of X to V −X , we have rX, rX ∈ shc((V −X) +X).

Assume to the contrary that rX �∈ shc(V) or rX �∈ shc(V). If rX �∈ shc(V),
since unshaded regions are kept by the erasure and introduction of circle X , we
have rX �∈ shc((V −X) +X), which contradicts rX ∈ shc((V −X) +X). The
same applies to the case rX �∈ shc(V). Therefore, we have rX, rX ∈ shc(V).

By the above Lemma 1, we have the following lemma.

Lemma 2. Let V be a Venn diagram, and r be a region of V. r ∈ shc(V) if and
only if r ∈ Res(shm(V)).
Proof. ⇐) Let r ∈ Res(shm(V)). We show r ∈ shc(V) by induction on the
length n of a given derivation of r. The base step n = 0 is immediate, since we
have r ∈ shm(V) ⊆ shc(V). In the induction step n > 0, r is obtained by the
resolution principle from rX and rX for some X . By the induction hypothesis,
we have rX, rX ∈ shc(V), and hence, by Lemma 1, we have r ∈ shc(V).
⇒) Let r ∈ shc(V). When r is a minimal region, we immediately have r ∈
Res(shm(V)). When r is not a minimal region, by Lemma 1, for some X1 �∈ |r|,
we have rX1, rX1 ∈ shc(V).

On the one hand, when rX1 and rX1 are minimal regions, we have r ∈
Res(shm(V)) by the resolution principle. On the other hand, when rX1 and
rX1 are not minimal, again by Lemma 1, for some X2 �∈ |rX1|, we have
rX1X2, rX1X2 ∈ shc(V) and rX1X2, rX1X2 ∈ shc(V). Since the length of a
minimal region in V is finite, we are able to reduce these case to the case of
minimal regions by repeated applications of Lemma 1. In this way, we have
r ∈ Res(shm(V)).

Based on Lemmas 1 and 2, the soundness of the translation is easily obtained.

Theorem 1 (Soundness of translation of VR). If V is provable from
V1, . . . ,Vn in the Venn diagrammatic system V, then V• is derivable from
V•
1 , . . . ,V•

n in resolution calculus VR.

4 Free Ride in Venn Diagrammatic System

We now investigate the free ride property of our Venn diagrammatic system V. In
Takemura [12], a translation of Euler diagrammatic system of Mineshima-Okada-
Takemura [5] into a natural deduction system is given, and it is shown that the
soundness theorem of the translation implies the occurrence of free ride (in the
sense of [9,1]) between the systems. In this way, free ride is formalized in the
proof-theoretical framework through the logic translation. Thus, the soundness
of our translation in Section 3.2 shows that free ride occurs between the Venn
diagrammatic system V and the resolution calculus VR. See Takemura [12].

142 R. Takemura

Our formalization of free ride in the proof-theoretical framework makes it
possible to analyze free ride in more detail than that in the semantic framework.
In the translation (Definition 5) of the Venn diagrammatic system V into the
resolution calculus VR, it is revealed that which conjunctive regions are shaded
in the conclusion diagram after the application of an inference rule. Some of such
regions are not specified in the given premise diagrams or in the description of
the diagrammatic operation of the rule, and they are automatically represented
by the application of the rule. By slightly extending the notion of free ride of
Shimojima [9], let us call the regions “free rides” those that are automatically
represented in a diagram after a manipulation of given diagrams. Our free rides
may also be called “emergent objects.”

For example, when we carry out the operation of Superposition (cf. Definition
2) as illustrated in Fig. 2, we only need to consider shaded minimal regions in
both premise diagrams; we do not need to take the other regions into account.
Hence, the conjunctive regions ACD,ACD,AD,AC in Fig. 3 are automatically
represented by the application of Superposition, and they are free rides of this
application of Superposition.

In this way, for our Venn diagrammatic system V, we are able to define the
free rides of an application of each inference rule in terms of shaded conjunctive
regions. In general, the free rides of an application of an inference rule are defined
as the regions obtained by subtracting from the shaded conjunctive regions of
the conclusion, the shaded conjunctive regions of premises and those described
in the operation of the rule. Thus, Introduction of a circle, Erasure of shading,
and Erasure of a circle have no free rides, and in particular, the free rides of
Superposition are defined as follows.

Definition 6 (Free rides of superposition). In an application S of Superpo-
sition between V1 and V2, the following set of conjunctive regions are called the
free rides of S:

shc(V1 + V2) \
(
shc(V1) ∪ shc(V2)

)
.

Based on the above definition of free rides, we are able to investigate what kind
of and how many inference steps are required in terms of the resolution calculus,
to derive free rides. We here investigate the number of free rides occurring in an
application of Superposition.

First, we calculate the number of conjunctive regions cr(V) in a given diagram
V consisting of n circles as follows:

cr(V) =
n∑

i=1

nCi × 2i −
n∑

i=1

nCi .

Here, nCn × 2n (= 2n) is the number of usual (i.e., including negative) minimal
regions of V (cf. truth table), and

∑n
i=1 nCi is the number of negative regions.

Thus, for a Venn diagram V3 (resp. V4) consisting of 3 (resp. 4) circles, we have
cr(V3) = 19, i.e., {A,B,C,AB,AC,AB,AC,BC,AB,BC,AC,BC,ABC,ABC,

Proof-Theoretical Investigation of Venn Diagrams 143

ABC,ABC,ABC,ABC,ABC} (resp. cr(V4) = 65). (Cf. Example 2 for the case
of n = 2.)

Next we calculate the number of free rides in the worst case, where the
maximum number of free rides occur. Let V1 and V2 be Venn diagrams such
that (1) m(V1) = m(V2) (i.e., V1 and V2 have the same minimal regions); (2)
shc(Vi)\shm(Vi) = ∅ for each i = 1, 2 (i.e., the shaded regions are only minimal
regions); and (3) r ∈ shc(V1) if and only if r �∈ shc(V2), for any conjunctive
region r of V1 (i.e., V1 and V2 are dual diagrams with respect to shading). Thus,
after an application of Superposition, all conjunctive regions are shaded in V1+V2.
The following Fig. 4 illustrates such V1 and V2 consisting of three circles.

A B

C
V1

A B

C
V2

Fig. 4.

Then, the number of free rides in V1+V2, which consists of n circles, is as follows.

fr(V1 + V2) = cr(V1 + V2)− (nCn × 2n − nCn)

Here, nCn is the number of negative minimal regions, and nCn×2n−nCn is the
number of conjunctive minimal regions. Thus, for example, if V1 and V2 consist
of 2 (resp. 3, and 4) circles, fr(V1 + V2) = 5 − 3 = 2 (resp. 19 − 7 = 12 and
64 − 14 = 50). In this way, if n ≥ 3, we have 2n < fr(V1 + V2), and hence, the
number of free rides increases exponentially with the number of circles n.

Furthermore, if we consider negative and disjunctive regions as well, the num-
ber of free rides is estimated as follows. Since a (general) region is a non-empty
union of certain minimal regions, and since the number of minimal regions mr(V)
of a Venn diagram consisting of n circles is 2n, the number of regions r(V) is
22

n − 1. Then, the number of free rides in the worst case is calculated by sub-
tracting the number of minimal regions from the total number of regions:

fr(V1 + V2) = r(V1 + V2)−mr(V1 + V2) .

Thus, for example, if V1+V2 consists of 2 (resp. 3) circles, we have fr(V1+V2) = 11
(resp. = 248).

5 A Comparison of Venn Diagrams and Euler Diagrams

We try to compare Venn and Euler diagrams with respect to free rides. In Section
5.1, we briefly review the analysis, given in Takemura [12], on free rides in our
Euler diagrammatic system. Then, in Section 5.2, we discuss differences between
the Venn and Euler diagrammatic systems, and discuss our future work.

144 R. Takemura

5.1 Free Rides in Euler Diagrammatic System

While the most basic and essential components of Venn diagrams are regions
and shading of them, those of Euler diagrams are topological (inclusion and
exclusion) relations between circles and points. Based on this idea, Mineshima-
Okada-Takemura [6] distinguished a “region-based” framework for Venn dia-
grams, where a diagram is specified in terms of shaded regions, and a “relation-
based” framework for Euler diagrams, where a diagram is specified in terms
of inclusion and exclusion relations. Then Mineshima-Okada-Takemura investi-
gated a relation-based Euler diagrammatic inference system in [5].

This inference system comprises two kinds of inference rules: Deletion and
Unification. Essentially, Deletion allows us to delete a diagrammatic object from
a given Euler diagram. Unification allows us to combine two Euler diagrams into
one diagram, where the semantic information is equivalent to the conjunction of
the two original diagrams. To characterize intuitive manipulations on diagrams
as formal inference rules, the unification rules are defined by requiring that
one of the unified diagrams be a minimal diagram that consists of two objects
(circles and points). Each inference rule is described in terms of relations by
specifying (i) premise diagrams; (ii) the constraints that the premise diagrams
should satisfy; and (iii) diagrammatic operations to introduce a new object into,
or to rearrange a configuration of objects of, one of the premise diagrams. See
[5,12] for a detailed description.

The following diagrammatic proof on the left in Fig. 5 is an application of our
unification rule, in which, to obtain the unified diagram D + α, circle A in the
minimal diagram α is added to diagram D so that “A is inside B” holds.

While our region-based Venn diagrammatic system is naturally translated
into resolution calculus as seen in Section 3.2, the relation-based Euler dia-
grammatic system is translated into a natural deduction system (cf. [6,12]).
An Euler diagram specified in terms of relations corresponds to a conjunc-
tion of implicational formulas, and an inference rule of our Euler diagram-
matic system corresponds to natural deduction inference rules associated with
the implicational connective. For example, the Euler diagram D (resp. α) on
the left in Fig. 5 is translated into the conjunction of implicational formulas

B

C

D

D
A
B

α� �

A
B

C

D

D + α

D◦ α◦

[A]1
α◦

A → B

B
D◦

B → C
C

A → C
1

[A]1
α◦

A → B

B
D◦

B → ¬D
¬D

A → ¬D 1

D◦ ∧ α◦ ∧ (A → C) ∧ (A → ¬D)
︸ ︷︷ ︸

Free rides

Fig. 5. Free rides of an Unification in the Euler diagrammatic proof that corresponds
to the Venn diagrammatic proof in Fig. 2

Proof-Theoretical Investigation of Venn Diagrams 145

D◦ = (B → C) ∧ (B → ¬D) ∧ (C → ¬D) ∧ (B → B) ∧ (C → C) ∧ (D → D)
(resp. α◦ = (A → B)∧ (A → A)∧ (B → B)). Then the application of Unification
is translated into the natural deduction proof on the right in Fig. 5, in which
natural deduction rules for the conjunction are generalized to those for n-ary
conjunction. See [12] for a detailed description.

Note that, when we carry out the operation of Unification in Fig. 5, we only
need to consider the relations between A and B, and not the other circles.
Hence, the relations corresponding to A → C and A → ¬D, i.e., “A is inside
C” and “A is outside D,” are automatically represented by this application of
Unification, and we call these relations “free rides.” In general, the free rides for
an application of each Unification are defined in terms of relations that exist in the
diagrams, as the relations obtained by subtracting, from the relations holding at
the conclusion, the relations existing in the premises and the relations required
to exist in the description of the operation of the rule (see [12]).

Let us calculate the number of free rides in the worst case. For an application
of Unification between a (general) diagram D and a minimal diagram α, assume
that D contains n circles A1, . . . , An which are laid out in a line with respect
to the inclusion relation so that A1 is the smallest circle, and assume that “B
is inside A1” holds in α. Such a Unification D + α is a worst case, where the
maximum number of free rides occur, and it is easily seen that the number of
free rides is n−1, i.e., the relations “B is inside Ai” for 2 ≤ i ≤ n. The application
of Unification in Fig. 5 also illustrates a worst case, where D contains 3 circles,
with a total of 2 free rides.

5.2 Discussion and Future Work

In order to compare Venn diagrams and Euler diagrams with respect to free
rides, we consider the examples of translations given in Figs. 2 and 3, and Fig. 5.

On the one hand, in the application of Superposition of Venn diagrams in
Fig. 2, free rides are the regions ACD,ACD,AD,AC, i.e., ¬(A∧¬C ∧D),¬(A∧
¬C ∧¬D),¬(A∧D), and ¬(A∧¬C) as seen in Fig. 3. On the other hand, in the
application of Unification of Euler diagrams in Fig. 5, free rides are A → C and
A → ¬D. In view of the equivalence between formulas ¬(A∧¬C) (resp. ¬(A∧D))
and A → C (resp. A → ¬D), it is immediately seen that the Superposition of
Venn diagrams has more free rides than the Unification of Euler diagrams. This
generally holds, as we have already seen in the estimation of the number of free
rides in Venn and Euler diagrammatic systems. In other words, an application
of Superposition to Venn diagrams generally provides more pieces of information
automatically than that of Unification of Euler diagrams.

However, this does not necessarily imply that Venn diagrams are more useful
than Euler diagrams. In particular, from a cognitive viewpoint, it is often ob-
served that Venn diagrams are harder to handle in actual reasoning than Euler
diagrams, and there are some experimental results to support this claim, e.g.,
Sato-Mineshima-Takemura [8].

Although the translated inference steps in resolution calculus and natural de-
duction, are not simply regarded as cognitive/psychological processes to

146 R. Takemura

recognize free rides represented in diagrams, we may assume at least one step is
required to recognize each of the free rides. Then, the number of free rides can
be calculated as the number of steps required to recognize these free rides. Thus,
we could be able to interpret our results as follows. On the one hand, in Venn
diagrams the number of recognition steps for free rides increases exponentially
with the number of circles contained in the given diagrams, whereas in Euler
diagrams, it increases linearly. We consider this to be part of the reason that
Euler diagrams are considered to be more tractable than Venn diagrams.

As future work, we need a more in-depth analysis of the estimation of free
rides. The Venn diagrams used in our worst case analysis of the number of free
rides do not correspond to Euler diagrams. It is better to evaluate free rides in
an application of Superposition to Venn diagrams obtained by translating Euler
diagrams. Although not fully investigated, we have made the following observa-
tions. In the simplest case where only conjunctive regions are considered, and
moreover, at most three circles are contained in the given Venn diagrams (this
case corresponds to the simplest one-step syllogism covering only universal sen-
tences), the number of free rides in Superposition of such Venn diagrams is the
same as that in Unification of the corresponding Euler diagrams. However, if we
also consider negative or disjunctive regions, the number is greater in Superpo-
sition than that in Unification. Furthermore, in the case where the given Venn
diagrams contain more than three circles, as shown in Figs. 3 and 5, the number
of free rides is greater in Superposition than in Unification when considering only
conjunctive regions. In view of these observations, we need to investigate how
many free rides occur in the Superposition of Venn diagrams that are translated
from Euler diagrams.

In our analysis of free rides, we assumed an ideal person who is able to recog-
nize all shaded conjunctive regions fully and uniformly. However, in our actual
reasoning, some regions may be more difficult to grasp than others. In fact,
our conjunctive regions are not exactly equivalent to visually connected regions,
which depend on a particular representation of a diagram. Our analysis may be
considered as the one on the abstract or informational aspect of free ride. For
the thorough analysis on free ride, we need further study on the cognitive or
perceptual aspect of free ride.

References

1. Barwise, J., Seligman, J.: Information Flow: The Logic of Distributed Systems.
Cambridge University Press (1997)

2. Buss, S.R.: An Introduction to Proof Theory. In: Buss, S.R. (ed.) Handbook Proof
Theory. Elsevier, Amsterdam (1998)

3. Gurr, C.A., Lee, J., Stenning, K.: Theories of diagrammatic reasoning: Distinguish-
ing component problems. Minds and Machines 8(4), 533–557 (1998)

4. Howse, J., Stapleton, G., Taylor, J.: Spider Diagrams. LMS Journal of Computation
and Mathematics 8, 145–194 (2005)

Proof-Theoretical Investigation of Venn Diagrams 147

5. Mineshima, K., Okada, M., Takemura, R.: A Diagrammatic Inference System with
Euler Circles. Journal of Logic, Language and Information (to appear), A prelim-
inary version is available at:
http://abelard.flet.keio.ac.jp/person/takemura/index.html

6. Mineshima, K., Okada, M., Takemura, R.: Two Types of Diagrammatic Inference
Systems: Natural Deduction Style and Resolution Style. In: Goel, A.K., Jamnik,
M., Narayanan, N.H. (eds.) Diagrams 2010. LNCS (LNAI), vol. 6170, pp. 99–114.
Springer, Heidelberg (2010)

7. Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Principle. Jour-
nal of the ACM 12(1), 23–41 (1965)

8. Sato, Y., Mineshima, K., Takemura, R.: The Efficacy of Euler and Venn Di-
agrams in Deductive Reasoning: Empirical Findings. In: Goel, A.K., Jamnik,
M., Narayanan, N.H. (eds.) Diagrams 2010. LNCS (LNAI), vol. 6170, pp. 6–22.
Springer, Heidelberg (2010)

9. Shimojima, A.: On the Efficacy of Representation, Ph.D. thesis, Indiana University
(1996)

10. Shin, S.-J.: The Logical Status of Diagrams. Cambridge University Press (1994)
11. Stapleton, G.: A survey of reasoning systems based on Euler diagrams. In: Proc.

of Euler 2004. Electronic Notes in Theoretical Computer Science, vol. 134(1), pp.
127–151 (2005)

12. Takemura, R.: Proof theory for reasoning with Euler diagrams: a logic translation
and normalization. Studia Logica (to appear), A preliminary version is available
at: http://abelard.flet.keio.ac.jp/person/takemura/index.html

http://abelard.flet.keio.ac.jp/person/takemura/index.html
http://abelard.flet.keio.ac.jp/person/takemura/index.html

Euler Diagram Encodings

Paolo Bottoni1, Gennaro Costagliola2, and Andrew Fish3,�

1 Dipartimento di Informatica - “Sapienza” University of Rome, Italy
bottoni@di.uniroma1.it

2 Dipartimento di Informatica - University of Salerno, Italy
gencos@unisa.it

3 School of Computing, Engineering and Mathematics - University of Brighton, UK
Andrew.Fish@brighton.ac.uk

Abstract. Euler Diagrams are a well-known visualisation of set-based relation-
ships, used in many application areas and at the basis of more complex nota-
tions. We propose a static code for concrete Euler Diagrams, which enables
efficient storage (vs. storage of concrete diagrams), and transformations pre-
serving concrete-level structure, hence the viewer’s mental map. We provide the
theoretical underpinnings of the encoding, examples and deductions, and an in-
dication of their utility. For use in an interactive setting, we provide algorithms to
update the code upon curve addition and removal. Independently, we show that
the code identifies minimal regions, enabling the computation of the abstract zone
set.

1 Introduction

Euler Diagrams (EDs) are a popular visualisation method for representing relationships
between set-based data. They consist of a set of curves representing sets and their re-
lationships, e.g. disjointness and containment. The same name is also used to refer to
the extension, termed Euler Diagrams with items in [3], in which items (elements) are
visualised within the regions (set intersections) determined by the curves.

From a logical perspective, EDs are a diagrammatic system for representing, and
reasoning with, logic expressions. Subsequent to pioneering work by Shin [18], recent
work has included producing automatic reasoning with ED logics [19], heterogeneous
reasoning systems [20], combination with Conceptual Graphs [5], and more expressive
diagrammatic logics, such as Spider Diagrams [13], and Constraint Diagrams [15].

From an information visualisation perspective, EDs with items are used in applica-
tion domains such as network visualisation [17], resource management [3], and for dis-
play of search query results [21]. EDs with area-proportional regions to indicate relative
sizes of sets are used in bio-informatics [16] and for statistical data representation [2].

When considering interaction with EDs, ED transformations (e.g. curve addition and
deletion) become important. This has been investigated in several contexts, e.g. devel-
oping dual graph transformations corresponding to diagram transformations [7]. Trans-
formations should preserve a viewer’s mental map (a term provided for graphs in [6],
but used more broadly), controlling variations between consecutive diagrams.

For visual languages, the concrete level refers to the drawing, whilst an abstract
level captures information that is deemed semantically important. Abstract EDs consist

� Thanks to UK EPSRC for support via grant EP/J010898/1 Automatic Diagram Generation.

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 148–162, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Euler Diagram Encodings 149

of an abstract set of zones which correspond to the set intersections to be represented
as regions in the concrete ED. In [8], alternative ED abstractions were considered, and
shown to be equivalent, including the view of EDs as a building sequence of curve ad-
ditions [10]. In [3,4], efficient algorithms were provided for the online ED abstraction
problem: given a concrete ED compute the associated abstract ED and update this ef-
ficiently upon curve addition and removal. This utilised intersection points created in a
building sequence, using these points (or equivalently curve segments) to mark zones.
Checking membership of these marked points within regions can then be used to deter-
mine the new zone set quickly. By not utilising a graph based methodology within the
interactive setting, the implementation becomes simple and computations efficient.

In this paper, we complement, and abstract from, the work in [8,4], inspired by the
use of codes in Knot Theory, and provide a notion of encodings of EDs. In detail, Sec-
tion 2 provides preliminaries and terminology conventions. The encoding is introduced
in Section 3, providing examples, theoretical underpinnings, some results and an indi-
cation of the utility of the encoding. Section 4 presents detailed algorithmic procedures
for dynamical code update and in Section 5 we provide a method for obtaining the
abstract diagram from a code. We discuss related avenues and conclude in Section 6.

2 Preliminaries

Various classes of EDs are considered in the literature, with different topological and
geometric well-formedness conditions on curves [11]. We develop the theory of ED
codes for several of these classes. We assume that all curves have unique identifiers
(labels) and we do not distinguish between curves and their identifiers. An extension to
multiple curves with the same label is also possible.

Definition 1. A concrete ED is a finite set of closed curves C in the plane, subject to a
set of conditions W . Let E denote the class of concrete EDs with W requiring that there
are a finite number of curve intersections, each of which is a transverse double point
(exactly two arcs cross at any intersection). For any partition (X,Y), where X and Y
can be empty, of the curves C of d ∈ E , let R be the maximal set of points which are in
the interior of all curves in X and in the exterior of all curves in Y . If R is non-empty,
we say that it is a concrete zone of d. A minimal region of d is a component of the plane
in the complement of C. Let Es ⊂ E denote the class for which W is extended so that
curves are simple (no self-intersections), and Ew ⊂ Es the further extension where all
concrete zones are minimal regions.

The class E agrees with conditions on knot diagrams. The class Ew corresponds to
well-formed diagrams in [11]. The class Es admits non-connected zones needed for the
incremental construction of well-formed EDs (EDs in Es are termed weakly reducible
EDs in [3]), important in an interactive setting. Examples are provided in Figure 1.

The most common abstraction for EDs is the following zone-based abstraction, used
as the specification for the ED generation problem in [11], although alternative abstrac-
tions [8] may be appropriate according to the context.

Definition 2. An abstract Euler Diagram d∗ is a set of labels L, called abstract curves,
together with a set of abstract zones which are partitions (X,Y) of L, where X and

150 P. Bottoni, G. Costagliola, and A. Fish

A

B

A
A

B
B

C
C

D

A B

C

A

C

A B

Fig. 1. Euler Diagrams from various classes: (top row) the left diagram is in E with A, a non-
simple curve shown dashed, whilst the other two are not in E since the left one has a triple point
whilst the right one has an infinite number of intersection points. (bottom row) all diagrams are
in Es: the middle and right diagrams are well-formed (in Ew). The left diagram is not in Ew since
the zone (A,C) which in inside A but outside C comprises of a union of two minimal regions;
this diagram can occur in the incremental construction of the middle diagram.

Y can be empty, and are called the inside set and outside set, respectively. If there is
a bijection between the set of abstract curves of d∗ and the set of curves of a concrete
Euler Diagram d, which induces a bijection between the abstract zones of d∗ and the
concrete zones of d, then d∗ is the abstraction of d, and d is a realisation of d∗.

The concrete ED d on the bottom left of Figure 1 has two curves, labelled by A
and C, decomposing the plane into six minimal regions. The four regions: outside both
curves; inside just A; inside just C; inside bothA andC are concrete zones. The abstrac-
tion of d has label set {A,C} and abstract zones: (∅, {A,C}), ({A}, {C}), ({C}, {A}),
and ({A,C}, ∅). We abbreviate zone descriptions by removing set brackets and con-
catenating labels to ease reading; i.e. we write (∅, AC), (A,C), (C,A), (AC, ∅). Each
of the concrete zones (A,C) and (C,A) is the union of two minimal regions.

In this paper, we assume that all concrete EDs have at least two contours and are
connected (or non-nested [12]), i.e. every curve is decomposed into segments via its
crossing points. The extension to nested diagrams is relatively straightforward. We in-
troduce further concrete level concepts and terminology in the next section.

3 The Static Code

Definition 3. Let d ∈ E . An orientation of d is a choice of orientation for each of the
curves of d. A crossing point of d is a point p of intersection of curves of d. Each curve c
of d that has a crossing point naturally decomposes into a set of segments, overlapping
at exactly the crossing points and with orientation induced from the orientation of c,
giving rise to their start and end points. A sequence of segments π is a path if the end
of each segment is the start of the next segment; it is a cycle if the end of the last
segment of the path is the start of the first segment and there is no sub-sequence of π
with this property. To each crossing point p of d we assign a unique crossing number

Euler Diagram Encodings 151

Fig. 2. An Euler Diagram d ∈ Ew with curves labelled and crossings numbered

k ∈ {1, . . . , n}, with n the number of crossing points in d. Each path π of segments
induces a sequence of crossing numbers called the crossing number sequence of π; for a
cycle we omit the final number and use parentheses to indicate that the sequence is read
cyclically. For each curve c in d a choice of orientation of the curve and a base point
give rise to a unique (up to reversal and cyclic permutation) crossing number sequence,
called the base code of c. A base code of d is a set of base codes for the curves of d.

The ED d ∈ Ew, shown in Figure 2, has four curves, labelled A,B,C and D, deter-
mining 14 concrete zones, each of which is a minimal region. The crossing points have
been numbered uniquely with numbers from 1 to n = 12. We adopted the convention of
assigning numbers following the incremental construction of d (adding curves A,B,C
and D in turn), orienting the curves clockwise, and choosing an arbitrary start point
on each curve. The curve D decomposes into a cycle of six segments: 7-8, 8-9, 9-10,
10-11, 11-12, and 12-7. The crossing number sequence for the cycle πD (for curve D)
is (7 8 9 10 11 12); to identify curve D explicitly we write D:(7 8 9 10 11 12). The base
code of d is: {A:(1 6 10 5 2 7), B:(1 3 11 4 2 8), C:(4 5 9 6 3 12), D:(7 8 9 10 11 12)}.

The base code of a diagram d does not encode enough information to identify its
abstract zone set. For example, if the segment 7-1 of A passed along the bottom of the
diagram instead of along the top (e.g. enclosing point 12 within A instead of point 8),
then the base code remains the same, but there would be a different zone set.

Definition 4. Let d ∈ E with curve set C, and let s be a segment of curve c of d with start
point p1 and end point p2. The containing curve set of s in d, denoted K(s, d), is the set
of all curves C′ ⊆ C whose interior contains s, with the possible exception of p1 and p2.
We write K(s) for K(s, d) when no ambiguity arises. A cycle π of crossing numbers
is annotated if each consecutive pair of numbers (read cyclically) corresponding to a
segment s is annotated by K(s); we present this annotation as a concatenation of the
curves in K(s) forming a subscript of the crossing number of the end point of s. A static
code of a curve c of d, denoted Stat(c), is an annotated base code of the curve, and a
static code of d, denoted Stat(d), is a set of annotated base codes for the curves of d.

To simplify language we refer to the (annotated) crossing number sequence of a segment
as an (annotated) segment. For d in Figure 2, B:1 3 denotes the segment s1 of B from

152 P. Bottoni, G. Costagliola, and A. Fish

curve A to curve C outside all other curves, and so K(s1) = ∅. Also B:4 2 denotes
the segment s2 of B from curve C to curve A inside the curve D, and so K(s2) =
{D}. We omit instances of ∅ in the annotations, so we write B:4 2D for the annotated
segment s2, and B:1 3, instead of B:1 3∅, for the annotated segment s1. The static
code for d is given by: {A:(1 6B 10BC 5BCD 2BD 7D), B:(1A 3 11C 4CD 2D 8AD),
C:(4D 5BD 9ABD 6AB 3B 12), D:(7 8A 9AB 10ABC 11BC 12C)}. The code fragment
1 6B 10BC in Stat(A) indicates that segment 1-6 is inside curve B only, and 6-10 is
inside curves B and C but no others. The annotated segment 12 4D in Stat(C) has
12 at the end of Stat(C) and 4D at the start, highlighting the cyclic nature of the
code. Algorithm 1 computes the static code for a diagram d by recording the crossing
information for each curve c, together with the containing set information for each
segment of c. Here n is the total number of crossings in d, ni is the number of crossings
in a single traversal of curve ci, m

j
i is the j-th crossing number in Stat(ci), and %n

denotes modulo n. Theorem 1 presents some properties of codes.

Algorithm 1. GetStaticCode(d)
Input: A concrete Euler Diagram d ∈ E with n crossing points.
Output: A static code for d.

Assign a unique (crossing number) from 1 to n to each crossing point in d.1

forall curves ci in d do2

choose a base point pi on ci and an orientation of ci.3

record in Stat(ci) the crossing numbers met when traversing ci once from pi4

according to the chosen orientation.
forall segments (mj

i ,m
(j+1)%n
i) in Stat(ci) do5

associate with m
(j+1)%n
i the set of all curves containing the segment of ci6

between the crossing points numbered mj
i and m

(j+1)%n
i

return (Stat(d) = {Stat(ci) : ci ∈ d})7

Theorem 1. Let d ∈ Es. Then the following properties hold for Stat(d):

1. Each crossing number k in Stat(d) appears exactly twice, once in Stat(c) and
once in Stat(c′), where c and c′ are distinct curves in d.

2. Suppose that there is exactly one segment s from Stat(ci) for which curve cj �= ci
is in K(s). Then there is a segment s′ from Stat(cj) for which curve ci is in K(s′).

3. If curve cj is in K(s) for every segment s of Stat(ci) for some curve ci then curve
cj contains curve ci in d.

Proof. When constructing the static code of d, each crossing point is met twice, once
for each curve involved in the traversed crossing. So 1 holds. If curve cj is in exactly one
K(s) with s a segment from Stat(ci) for ci �= cj , then cj contains exactly one segment
of ci. Either (i) cj crosses ci at the two endpoints of the segment s, and so Stat(cj) has
some segment s′ with ci ∈ K(s′) (left of Figure 3), or (ii) cj does not intersect with ci
and so ci must lie in the interior of cj (right of Figure 3). Since d is connected, there is

Euler Diagram Encodings 153

Fig. 3. Two relations between ci and cj in Es

another curve ck that intersects ci. Thus cj appears more than once in curve ci’s code
since ci is in the interior of cj and it consists of more than one segment. This contradicts
the hypothesis. So 2 holds. As the presence of a curve cj in K(s) for every segment s
of Stat(ci) means that every segment of ci is within the interior of ci, 3 holds. ��

The encoding encapsulates more information than the abstract diagram. Figure 4
shows three examples of the construction of V enn(4), the Venn diagram on four curves
with all of the 24 = 16 possible zones present. For the final diagrams in the top and
middle row, V1 and V2, there is a bijection on the curve sets that induces a bijection
on the static codes (up to renumbering and reversal) given by exchanging the roles
of B and D. The final diagram in the bottom row, V3, is a distinct concrete real-
isation of V enn(4) as it has the property that the zone (D,ABC) is not topologi-
cally adjacent to the outside zone (∅, ABCD), whilst for V1 and V2 each of the zones
(A,BCD), (B,ACD), (C,ABD) and (D,ABC), which are inside exactly one curve,
are topologically adjacent to the outside zone (∅, ABCD). In fact, no zone inside D in
V3 is topologically adjacent to the outside zone. This property can be observed directly
from the static code by checking if there is a segment s in a cycle from a curve with
K(s) = ∅. Since properties such as this cannot be distinguished at the (usual) abstract
level, and the abstract zone set can be recovered from the static code, we have:

Observation 1 For d ∈ E , Stat(d) is more informative than the abstraction of d.

The static code of an ED can be updated upon the addition (deletion) of curves, enabling
an incremental construction. Deleting a curve c is straightforward: (i) delete c from
every containing set in which it appears; (ii) delete every instance of a crossing number
appearing in Stat(c); (iii) delete Stat(c). For example, deleting curve D from diagram
d in Figure 2 gives the diagram d2 in Figure 5. The method above gives Stat(d2) as
{A:(1 6B 5BC 2B), B:(1A 3 4C 2), C:(4 5B 6AB 3B)}, the static code for the diagram
d2. The effects on the static code of the addition of a curve are much more complicated,
and we present a detailed algorithmic implementation.

4 Incremental Curve Addition

Let d ∈ Es be a concrete diagram and c′ a concrete curve not in d, s.t. the addition of
c′ to d yields d′ ∈ Es. Algorithm 1 provides Stat(d), the static code of d. Recomputing
Stat(d′) from scratch may be inefficient as the number of crossing points increases and
code comparison is hindered since their numbering can differ significantly. Algorithm 2
takes d, Stat(d) and c′ as input and computes Stat(d′) incrementally, enabling an easy
comparison of codes for d and d′. We utilise the following parameterised operations.

154 P. Bottoni, G. Costagliola, and A. Fish

A C

B

D

A

B

A C

B

A

1 2

34

5
6

7
8

9 10 11 12

14

13

A: A: (1B 2 3B 4)
B: (1 2A 3 4A)

A: (1B 6 2C 3BC 7C 4)
B: (1 5A 2AC 3C 8AC 4A)
C: (5AB 6A 7 8A)

A: (1B 6 2C 12BC 3BCD 7CD 4D 10BD)
B: (1 5A 2AC 13C 3CD 8ACD 4AD 9D)
C: (5AB 6A 14 7D 8AD 11ABD)
D: (9 10B 11AB 12ABC 13BC 14C)

A B

C
D

A B

C

A BA
1

2

3 4

56

7

8 9

10
1112

13
14

A: A: (1 2B)
B: (1A 2)

A: (1 4B 2BC 6C)
B: (1A 5 2C 3AC)
C: (3A 4AB 5B 6)

A: (1 9B 4BD 11BCD 2BC 13C 6CD 7D)
B: (1A 5 2C 12AC 3ACD 8AD)
C: (3AD 4ABD 10BD 5B 14 6D)
D: (7 8A 9AB 10B 11BC 12ABC 13AC 14C)

A B

C

D
A B

C

A BA 1

2

3
4

5
6 7

8
9
10 11

12
1314

A: A: (1 2B 3 4B)
B: (1A 4 3A 2)

A: (1 2B 6 3C 4BC5C)
B: (1A 8 4C 3AC 7C 2)
C: (5 6A 7 8B)

A: (1 11B 2BD 6D 3CD 13BCD 4BC5C)
B: (1A 8 4C 14C 3ACD 7CD 2D 10AD)
C: (5 9A 6AD 7D 12BD 8B)
D: (9AC 10A 11AB 12B 13BC 14ABC)

Fig. 4. Incremental constructions and static codes of Venn(4). The final diagrams in the first two
rows have equivalent codes, not equivalent to the code of the final diagram in the bottom row.

Definition 5. Let c(d) denote a curve c of d ∈ Es, and c′ a curve not in d, s.t. the
addition of c′ to d yields d′ ∈ Es. Let s(d) denote a segment of any curve in d, s(k, d) a
segment of curve k in d, and ŝ(k, d) the annotated crossing number sequence of s(k, d).
Let y denote a sequence of crossing numbers, x1 and x2 denote annotated crossing
number sequences, and Set(x1) the set of unannotated crossing numbers in x1. Then:

intersect(c′, s(d)) returns the crossing number sequence that c′ generates along s(d),
ordered according to the orientation of s(d);

contained(s(F), c(G)) with F,G ∈ {d, d′}, returns true if c(G) ∈ K(s(F)); i.e. if
s(F) is contained in the interior of c(G).

split(ŝ(k, d), c′, y) where ŝ(k, d) = lS mT and y = y1 . . . yp = intersect(c′, s(k, d)),
returns the string lS y1V 1 . . . ypV p mV p+1 which is the decomposition of lS mT due

Euler Diagram Encodings 155

1

2

A

B

C

3

4

6

5

Fig. 5. The effect of the deletion of curve D from the diagram d in Figure 2

to the addition of c′; for i ∈ {1, . . . , p+ 1}, V i = T ∪ {c′} if contained(si(k, d′),
c′(d′)) = true, where si(k, d′) is the segment of curve k in d′ between the crossing
points yi−1 and yi, taking y0 = l and yp+1 = m. Otherwise, V i = T .

join(c(d), x1, x2) with x1 and x2 annotated crossing number sequences that are sub-
sequences of Stat(c) in Stat(d), returns an annotated crossing number sequence
ordered with respect to the orientation of c, constructed as follows: form the set u
= Set(x1) ∪ Set(x2) of all crossing numbers from x1 or x2; for each l ∈ u, if l
appears in both x1 and x2 then annotate l with the union of the annotations of l in
x1 and x2, otherwise annotate l with the annotation that was present in either x1 or
x2; order u according to the orientation of c.

encode(c(G), y, d) with G ∈ {d, d′}, y the sequence of crossing numbers of curve
c = c(G), returns Stat(c) by (i) sorting y w.r.t. the orientation of c and (ii) an-
notating, with K(s), each consecutive pair of crossing numbers (read cyclically)
corresponding to a segment s = s(c,G).

Figure 6 illustrates the use of these operations. The segment s = s(C, d) lies be-
tween the points numbered 3 and 4, having ŝ = 〈3AB 4B〉, where 〈−〉 indicates that
a sequence of crossing numbers is not to be read cyclically. Curve D, shown dashed,
is added to d generating new points numbered 7 to 12. We have intersect(D, s) =
〈8, 9, 10〉, contained(s,D) = false, but contained(s,B) = true. Then split(ŝ, D,
〈8, 9, 10〉) = split(〈3AB 4B〉, D, 〈8, 9, 10〉) = 〈3AB 8BD 9B 10BD 4B〉, and join(c,
〈6AD 3ABD〉, 〈3AB 8BD 9B 10BD 4B〉) = 〈6AD 3ABD 8BD 9B 10BD 4B〉. We
have encode(B, {1, 2, 4, 6, 7, 11}, d) = (1AD 7D 4 11C 2CD 6ACD).

Algorithm 2 specifies how to update the static code Stat(d) to Stat(d′) when adding
a new curve c′ to d. For each curve G with cycle Stat(G) in Stat(d), the algorithm
builds a new cycle Stat(G′) with elements resulting from inserting the new annotated
crossing numbers produced by adding c′ to d. Then Stat(d′) is the set of these cycles,
together with the new cycle for c′ (lines 13–14). To compute Stat(G′) from G, the
algorithm takes each annotated crossing number sequence a = ŝ(G, d) from Stat(G)
and: (i) computes y′ the sequence of crossing numbers that the insertion of c′ generates
along the concrete segment s(G, d), ordered according to its orientation (line 5); (ii) if
y′ is not empty then a is decomposed into a new sequence which is added to Stat(G′).
The new sequence is computed by splitting a with respect to the new crossings gener-

156 P. Bottoni, G. Costagliola, and A. Fish

D

s

B

A

7

1

2

9

4

3

6

C

5

8

10
11

12

Fig. 6. Demonstrating operations: s lies on C, and the curve shown dashed is the new curve D

Algorithm 2. Incremental static curve addition(d, Stat(d), c′)
Input: d ∈ Es, Stat(d), and a new curve c′ s.t. the addition of c′ to d yields d′ ∈ Es.
Output: A static code for d′.

y = ∅1

foreach curve G in d do2

Stat(G′) = ∅3

foreach a = ŝ(G, d) in Stat(G) from Stat(d) do4

y′ = intersect(c′, s(G, d))5

if y′ �= ∅ then6

Stat(G′) = join(G, Stat(G′), split(a, c′, y′))7

y = y ‖ y′ where ‖ is the operator concatenating two sequences8

else9

if contained(s(G, d), c′) then10

update a such that K(s(G, d)) =K(s(G, d)) ∪ {c′}11

Stat(G′) = join(G, Stat(G′), a)12

add Stat(G′) to Stat(d′)13

add encode(c′, y, d′) to Stat(d′)14

return (Stat(d′))15

ated by c′ (lines 6–7). Since the new crossings in y′ are crossings in c′ by construction,
they need to be accumulated in y, with accumulator denoted ||, (line 8) in order to
build the cycle for c′ (line 14); (iii) if y′ is empty (i.e. there are no intersections be-
tween s(G, d) and the new curve c′), then if s(G, d) is in the interior of c′, a is updated
by adding c′ to the containing curve set K as subscript of the end crossing number of
a. Then a is added to Stat(G′) (lines 10–12).

As an example, Table 1 shows the execution trace of Algorithm 2 upon adding
curve D to d yielding d′, shown in Figure 7. Curves are oriented clockwise. We have
Stat(d) = {Stat(A):1 2C , Stat(B):3C 4, Stat(C):1A 3 4B 2}. In the table we record

Euler Diagram Encodings 157

Fig. 7. Diagram d′ (right) resulting from the insertion of the curve D into d (left)

split = split(a, c′, y′). Steps 1 and 2 consider the two annotated crossing number se-
quences 1 2C and 2C 1 (column a) of the cycle A:1 2C for curve A (column G). In Step
1, columns y′ and split are empty since the segment 1-2 of curve A does not intersect
with D, whilst column Stat(G′) shows a updated w.r.t. containment in D (lines 10–
11 of the algorithm). No crossing numbers are added to the set of the crossings of D
(column y) and nothing is added to Stat(d′). In Step 2, the sequence resulting from
intersecting segment 2-1 of curve A and the curve D is y′ = 〈8, 5〉 ordered w.r.t the
orientation of A. The column split shows the new sequence. The containment of the
new segments only needs to be checked against the newly added curve and not against
the curves in d, as this information is inherited from the original segment (to which they
belong). Column Stat(G′) contains the result of joining the previously calculated (in
Step 1) sequence Stat(G′) = 〈1 2CD〉 to the annotated sequence split = 〈2C 8D 5 1D〉.
The operation constructs the union of the crossing numbers from Stat(G′) and split,
taking the union of the annotations (i.e. containing curve sets) for crossing numbers
common to both Stat(G′) and split, and orders the crossing numbers w.r.t. the orienta-
tion of A. The column y contains the sequence 〈8, 5〉 of the calculated crossing numbers
of D while Stat(d′) is updated by adding the cycle from column Stat(G′). A similar
description to Step 2 can be given for Step 3, but now the sequence 〈6, 7〉 is concate-
nated to column y to form the sequence 〈8, 5, 6, 7〉. The remaining steps are similar to
Step 1, since none of the remaining segments produces new crossings upon the addi-
tion of D. Finally, after ordering the sequence in y with respect to the orientation of
D and updating the annotations (containing curve sets) for the consecutive segments
(read cyclically), the cycle (8 5A 6 7B) is added to Stat(d′). The algorithm returns:
{A:(1D 2CD 8D 5), B:(3CD 6D 7 4D), C:(1AD 3D 4BD 2D), D:(8 5A 6 7B)}.

Table 1. Trace of the execution of Algorithm 2 when adding D to d to yield d′ in Figure 7

Step G a y′ split Stat(G′) y Stat(d′)
1 A 1 2C 1 2CD

2 A 2C 1 8, 5 2C 8D 5 1D 1D 2CD 8D 5 8, 5 added Stat(G′)
3 B 3C 4 6, 7 3C 6D 7 4D 3CD 6D 7 4D 8, 5, 6, 7
4 B 4 3C 3CD 6D 7 4D added Stat(G′)
5 C 1A 3 1A 3D
6 C 3 4B 1A 3D 4BD

7 C 4B 2 1A 3D 4BD 2D
8 C 2 1A 1AD 3D 4BD 2D added Stat(G′)

158 P. Bottoni, G. Costagliola, and A. Fish

5 Encoding Zones

We present a means of encoding the zones of a diagram d ∈ Es by viewing each zone
as a union of minimal regions; we encode the set of minimal regions for each zone
by indicating the cycle of segments around its boundary. We use a minor modification
(without changing information content) of the static code to have direct access to the
curve that the segment belongs to, as well as those containing it. We show how to
compute the set of all abstract zones of d from a code.

Definition 6. Let d ∈ E be a Euler Diagram with curve set C. The boundary of a
minimal region mr of d is a cycle, up to orientation reversal of the segments, such that
there are no segments in the interior of the region bounded by the cycle1. A zone z of d
can be viewed as a union of a set of minimal regions mr1, . . . ,mrk, and a segment s
lies on the boundary of z if s lies on the boundary of one of the mi.

Fig. 8. An ED d ∈ Es with segment annotation extended to include the curve which the segment
belongs to (shown dotted). The circled numbers indicate the minimal regions.

The concrete diagram d ∈ Es in Figure 8 is not well formed (i.e. d �∈ Ew), hav-
ing 8 minimal regions, indicated by circled numbers, and 7 zones. In order, the min-
imal regions belong to the following zones: (A,BC), (AB,C), (B,AC), (ABC, ∅),
(B,AC), (BC,A), (C,AB), (∅, ABC). Zone (B,AC) is comprised of two minimal
regions, numbered 3 and 5, whilst the others are comprised of a single minimal region.

We modify the static code by extending the annotated set of curves that contain
segments to include the curve that the segment belongs to, distinguished by a dot, and
we omit the set notation in the examples and figures. For example, with all the curves
oriented clockwise in Figure 8, we have Stat∗(d) is: Stat∗(A)= (6Ȧ 4ȦB 3ȦBC 5ȦB),
Stat∗(B)= (6AḂ 1Ḃ 2ḂC 5Ḃ), Stat

∗(C)= (1BĊ2Ċ 3BĊ 4ABĊ).

Definition 7. Let s be a segment of curve c in diagram d ∈ E , with curve set C(d). The
extended containing curve set of s in d, denoted K̇(s, d), is the set K(s) ∪ {ċ} where
ċ is used to indicate the distinguished element c in the set. We abbreviate K̇(s, d) by
K̇(s) when no ambiguity arises. Define Stat•(F) to be Stat(F) with K(s) replaced
by K̇(s) throughout, for F = d or F ∈ C(d).

1 For the outer cycle around the unbounded face this is the interior of the unbounded region.

Euler Diagram Encodings 159

This extension allows us to specify the boundaries of minimal regions by form-
ing a cycle using segments from different curve’s codes (possibly reversing orienta-
tion of individual segments.) For example, in Figure 8, boundaries of minimal re-
gions are encoded as: Stat•(mr1)=(6Ȧ 5AḂ), Stat

•(mr2)=(4ȦB 3ABĊ 5ȦB 6AḂ),
Stat•(mr3)=(1Ḃ 4BĊ 6ȦB), Stat

•(mr4)=(3ȦBC 4ABĊ), Stat
•(mr5)=(5Ḃ 3ȦB 2BĊ),

Stat•(mr6) = (2ḂC 3BĊ 4ȦBC 1BĊ), Stat
•(mr7)=(2Ċ 1ḂC), Stat

•(mr8)=(1Ḃ 2Ċ
5Ḃ 6Ȧ). Since zone (B,AC) is composed of the minimal regions 3 and 5, its encod-
ing is the set {(1Ḃ 4BĊ 6ȦB), (5Ḃ 3ȦB 2BĊ)}={Stat•(mr3), Stat

•(mr5)}. The other
zones are encoded as singleton sets containing the corresponding minimal region code.

Definition 8. Let d ∈ Es and mr be a minimal region of d. Then Stat•(mr) is defined
as the path (x1

S1
x2
S2

. . .xn
Sn

) where each segment si, determined by ŝi = xix(i+1)%n,
for 1 ≤ i ≤ n, is a segment of the boundary of mr and is annotated by the extended con-
taining curve set Si = K̇(si). Moreover, Stat•(z) = {Stat•(mr1), . . . , Stat

•(mrk)},
where zone z is a union of minimal regions mr1, . . . ,mrk.

Theorem 2. Let d ∈ Es. The conditions (1) for 2 ≤ i ≤ n + 1, ∃c ∈ C(d) for which
the code fragment xi−1

Si−1
xi
Si

(with indices taken modulo n), or its reverse, occurs in

Stat•(c), (2) the xi are all distinct and (3) ∃i with 1 ≤ i ≤ n, s.t. for 1 ≤ j ≤ n either
(i) set(Si) = set(Sj) or (ii) Sj = {Ȧj} ∪ set(Si), with Aj ∈ C(d) \ set(Si)

2 hold iff
there is a minimal region mr of d for which Stat•(mr) = (x1

S1
x2
S2

. . . xn
Sn

).

In the case of Theorem 2 we say that Si is a seed of the minimal region mr. The proof
of this theorem utilises results presented after, in Lemmata 1- 3.

Proof. The above construction of a cycle G = (x1
S1

x2
S2

. . . xn
Sn

) is well defined since
each code fragment arises from a segment of d, and it forms a cycle by definition (no
self-intersections due to condition 2). We show that each corresponding segment of
d bounds the same minimal region (and hence the same zone). Firstly, by Lemma 1,
G cannot have other curves crossing it, and it cannot traverse the same curve for two
consecutive segments. Therefore, at every crossing point that the cycle reaches, it must
turn onto the adjacent segment to the right or left and not pass over other curves. Now,
the extended containing curve set of a segment indicates the pair of zones that a segment
bounds (Observation 2), and we can identify the curves in this set which are not part of
the extended containing curve set of the seed (Lemma 2). These results are used to show
that all sequences of three segments of G bound a common zone (Lemma 3). Thus the
cycle must bound a minimal region of a single zone. The result follows. ��
As an example, the code of the boundary of minimal region 2 in Figure 8 is given
by Stat•(mr2) = 4ȦB 3ĊAB 5ȦB 6ḂA. Formally, the seed is S1 = {Ȧ, B}, S2 =
{Ċ, A,B},S3 = {Ȧ, B} and S4 = {Ḃ, A}. Thus set(S3) = set(S4) = set(S1) = {A,B},
and S2 = {Ċ, A,B} = {Ċ} ∪ set(S1).

Lemma 1. Given any pair of consecutive segments sj−2 (with ŝj−2 = xj−2xj−1) and
sj−1 (with ŝj−1 = xj−1xj) in G, no curve c ∈ C can cross this segment pair at xj−1.
Hence no two consecutive segments of G can have the same curve-label.

2 The set operator takes all of the elements of Sj forgetting the distinguished role of one curve,
returning the set of curves containing a segment together with the curve owning the segment.

160 P. Bottoni, G. Costagliola, and A. Fish

Proof. Suppose curve A crosses the pair at xj−1. Then A is in exactly one of K(sj−2)
and K(sj−1). Then condition 3, in the hypothesis of Theorem 2, implies that one of
the two segments must belong to the curve A, contradicting the fact that the curve A
crossed the segment pair. Furthermore, since no curve crosses a consecutive pair of
these segments, if we had two consecutive segments in G belonging to the same curve
then the crossing point xj−1 would be a tangential point of the diagram, which is not
allowed due to the choice of ED class under consideration (i.e. d ∈ Es). ��
Observation 2 Let sj be any segment of d, and Kj = K(sj). If K̇(sj) = {Ȧj} ∪Kj ,
then sj bounds exactly the two zones {(Kj, C \Kj), (Kj ∪ Aj , C \ (Kj ∪ Aj)}.

Lemma 2. Suppose that Si is a seed, and the segment si belongs to curve ci. Then
condition 3 ensures that every other segment sj , belonging to curve cj , in the cycle
either has: K(si) = K(sj) and ci = cj; K(si) \ {cj} = K(sj) \ {ci}; or K(sj) =
K(si) ∪ {ci} and cj �∈ K(si). Furthermore, if there is a pair of consecutive segments,
sj−2 (with ŝj−2 = xj−2xj−1) and sj−1 (with ŝj−1 = xj−1xj) in G, such that ck is not
in K(sj−2) or in K(sj−1) then ck �∈ Si = K̇(si).

Lemma 3. All sequences in the cycle must lie on the boundary of a common zone.

Proof. We show that if there are 3 consecutive segments in the constructed cycle that
do not all bound a common zone then condition 3 is violated. Let s1, s2 and s3 be
3 consecutive segments in the cycle s.t. s1 and s3 do not bound a common zone. By
construction of the cycle s1 and s2 share a common zone, and so do s1 and s2. We
have sj has K̇(sj) = {Ȧj} ∪ Sj , for each j ∈ {1, 2, 3}. By Lemma 1, A1 �= A2 and
A2 �= A3. The seed Si bounds the two zones (Ki, C \Ki) and (Ki∪Ai, C \ (Ki∪Ai))
by Observation 2, whilst s1 bounds (K1, C \K1) and (K1 ∪ A1, C \ (K1 ∪ A1)) and
s3 bounds (K3, C \ K3) and (K3 ∪ A3, C \ (K3 ∪ A3)). Moreover, the conditions on
the seed imply that it bounds a zone in common with every segment in G. Lemma 2
relates conditions on the seed to conditions on the other segments, and indicates that
any curve not appearing in any consecutive pair of segments cannot be in the extended
containing curve set of the seed. Hence, since s1 and s3 do not bound a common zone,
and each segment bounds 2 zones determined by the curve the segment belongs to,
K̇(s1) and K̇(s3) must differ by such an extent that they cannot both relate to the seed
as is required. Thus, there cannot be a seed, contradicting the hypothesis. ��
Theorem 3. Let d ∈ Es. Then the abstract zone set of d can be computed from Stat•(d).

Proof. Each minimal region mr1 of d is part of a single concrete zone z1. The ab-
stract zone corresponding to z1 can be computed from Stat•(mr1) as (Set(Si), C(d) \
Set(Si)), where Si is a seed of mr1. In fact, it can also be computed as the union of
all K(s) for s a segment of the cycle for the boundary of mr1. Computing the abstract
zone for each minimal region in the diagram (obtained by enumerating through the rel-
evant cycles in the code) yields the result. ��
For example, the two codes (1Ḃ 4BĊ 6ȦB) and (5Ḃ 3ȦB 2BĊ) for minimal regions 3
and 5 in Figure 8, respectively, are not equivalent (i.e. they are not the same up to cyclic
permutation and reversal) but they share the same seed S = {Ḃ}. They both give rise

Euler Diagram Encodings 161

to the same abstract zone ({B}, {A,C}). The set of minimal region codes {(1Ḃ 4BĊ

6ȦB), (5Ḃ 3ȦB 2BĊ) } with seed S is said to encode the zone ({B}, {A,C}).

6 Discussion and Conclusions

We have developed the foundations for a theory of ED codes, providing access to the
specification of features of concrete diagrams in addition to the usual zone-based ab-
straction. This finer control over diagram specification has potential for major benefits
in multiple areas, and opens up many avenues for future work. For example, identi-
fying properties of the encoding relative to the use of variants of the well-formedness
condition will be useful in ED interpretation; integration with [4] will develop the the-
ory whilst providing access to existing algorithms and libraries. The encoding will also
benefit the automatic generation of EDs; foundational works [2,11] have led to much
research activity on relaxing various forms of the well-formedness conditions and im-
proving layout aesthetics, and the encodings will permit a finer specification of the
desired layout than is currently used. Storing marked points, as in [4], rather than seg-
ments is likely to improve efficiency, but we chose to consider segments in the static
code in order to simplify comprehension of the abstraction by humans (allowing the
future option of utilising control points).

In [22], a methodology was provided which takes a set of polygons (i.e. regions
determined by sets of non-overlapping curves) and outputs a set of non-overlapping
polygons (essentially the boundary of the zones), enabling the computation of poly-
gon operations such as union, intersection, difference and clipping. They use a graph
based structure and their algorithm “corrects” input containing degeneracies (e.g. con-
currency). Since analysing topological relationships between contours may be sufficient
to compute the information required to reconstruct the abstract diagram, from a purely
topological viewpoint, certain cases of singularities or degeneracies (e.g. concurrency
or multiple points) may be deemed irrelevant. However, our long term goal is to relax
the wellformedness conditions, developing codes which enable the identification and
use of such singularities, permitting their use within wider contexts.

In [1], the Grünbaum encoding is shown to uniquely identify simple (wellformed)
Venn diagrams which are monotone and polar symmetric; their codes rely upon num-
bering the curves (adopting conventions based on the curve segment in certain faces to
fix the choices) and recording the sequence of curve numbers as one traverses a given
curve. Our ED encoding is more generic, applying to a wider class of diagrams, and
is based of numbering crossings rather than curves. Investigating connections between
these encoding variations is an interesting line of future investigation.

We considered connected EDs, but the extension to nested diagrams [12], where
one diagram is embedded in the zone of another, is straightforward. This generalises to
disconnectable EDs considered in the context of diagram generation, where deleting a
curve disconnects the diagram [9]; investigating relationships with ED codes is a natural
step that should benefit the ED generation programme. The notion of encoding EDs was
inspired by the codes in Knot Theory. For knot diagrams, one encapsulates “over” and
“under” information of curves at crossings by a signed Gauss code [14], whereas we
capture the containment relationship for EDs, which is the key information in this case.

162 P. Bottoni, G. Costagliola, and A. Fish

References

1. Cao, T., Mamakani, K., Ruskey, F.: Symmetric Monotone Venn Diagrams with Seven Curves.
In: Boldi, P. (ed.) FUN 2010. LNCS, vol. 6099, pp. 331–342. Springer, Heidelberg (2010)

2. Chow, S.C.: Generating and Drawing Area-Proportional Euler and Venn Diagrams. PhD the-
sis, University of Victoria (2007)

3. Cordasco, G., De Chiara, R., Fish, A.: Interactive visual classification with Euler diagrams.
In: Proc. VL/HCC 2009, pp. 185–192. IEEE (2009)

4. Cordasco, G., De Chiara, R., Fish, A.: Fast region computations for reducible Euler diagrams.
Computation Geometry: Theory and Applications 44, 52–68 (2011)

5. Dau, F., Fish, A.: Conceptual Spider Diagrams. In: Eklund, P., Haemmerlé, O. (eds.) ICCS
2008. LNCS (LNAI), vol. 5113, pp. 104–118. Springer, Heidelberg (2008)

6. Eades, P., Lai, W., Misue, K., Sugiyama, K.: Layout adjustment and the mental map. JVLC 6,
183–210 (1995)

7. Fish, A.: Euler diagram transformations. ECEASST 18, 1–17 (2009)
8. Fish, A., Flower, J.: Abstractions of Euler diagrams. In: Proc. Euler 2004. ENTCS, vol. 134,

pp. 77–101 (2005)
9. Fish, A., Flower, J.: Euler Diagram Decomposition. In: Stapleton, G., Howse, J., Lee, J. (eds.)

Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 28–44. Springer, Heidelberg (2008)
10. Fish, A., Flower, J., Howse, J.: The semantics of augmented constraint diagrams. JVLC 16,

541–573 (2005)
11. Flower, J., Fish, A., Howse, J.: Euler diagram generation. JVLC (2008)
12. Flower, J., Howse, J., Taylor, J.: Nesting in Euler diagrams: syntax, semantics and construc-

tion. Software and Systems Modelling 3, 55–67 (2004)
13. Howse, J., Stapleton, G., Taylor, J.: Spider diagrams. LMS Journal of Computation and Math-

ematics 8, 145–194 (2005)
14. Kauffman, L.: Knots and Physics. World Scientific (1991)
15. Kent, S.: Constraint diagrams: Visualizing invariants in object oriented modelling. In: Proc.

OOPSLA 1997, pp. 327–341. ACM Press (October 1997)
16. Kestler, H.A., Müller, A., Kraus, J.M., Buchholz, M., Gress, T.M., Liu, H., Kane, D.W.,

Zeeberg, B.R., Weinstein, J.: Vennmaster: Area-proportional Euler diagrams for functional
GO analysis of microarrays. BMC Bioinformatics 9, 67 (2008)

17. Riche, N.H., Dwyer, T.: Untangling Euler diagrams. IEEE VCG 16(6), 1090–1099 (2010)
18. Shin, S.-J.: The Logical Status of Diagrams. Cambridge University Press (1994)
19. Stapleton, G., Masthoff, J., Flower, J., Fish, A., Southern, J.: Automated theorem proving in

Euler diagrams systems. Journal of Automated Reasoning (2007)
20. Swoboda, N., Allwein, G.: Using DAG transformations to verify Euler/Venn homogeneous

and Euler/Venn FOL heterogeneous rules of inference. SoSyM 3(2), 136–149 (2004)
21. Thièvre, J., Viaud, M., Verroust-Blondet, A.: Using Euler diagrams in traditional library

environments. In: Proc. Euler 2004. ENTCS, vol. 134, pp. 189–202. ENTCS (2005)
22. Weiler, K.: Polygon comparison using a graph representation. Computer Graphics (SIG-

GRAPH 1980 Proceedings) 14(3), 10–18 (1980)

Speedith: A Diagrammatic Reasoner

for Spider Diagrams

Matej Urbas1, Mateja Jamnik1, Gem Stapleton2, and Jean Flower3

1 Computer Laboratory, University of Cambridge, UK
{Matej.Urbas,Mateja.Jamnik}@cl.cam.ac.uk

2 School of Computing, Engineering and Mathematics, University of Brighton, UK
g.e.stapleton@brighton.ac.uk

3 Autodesk, UK

Abstract. In this paper, we introduce Speedith which is a diagrammatic
theorem prover for the language of spider diagrams. Spider diagrams are
a well-known logic for which there is a sound and complete set of infer-
ence rules. Speedith provides a way to input diagrams, transform them
via the diagrammatic inference rules, and prove diagrammatic theorems.
It is designed as a program that plugs into existing general purpose theo-
rem provers. This allows for seamless formal verification of diagrammatic
proof steps within established proof assistants such as Isabelle. We de-
scribe the general structure of Speedith, the diagrammatic language, the
automatic mechanism that draws the diagrams when inference rules are
applied on them, and how formal diagrammatic proofs are constructed.

1 Introduction

Diagrams have been used to prove theorems since ancient times. One can ar-
gue that diagrams often provide compelling and intuitive solutions to problems.
Despite this, diagrams have rarely been formalised in proof tools to be used for
reasoning. In this paper, we do just that: we present a new, formal diagrammatic
theorem prover Speedith. Speedith’s domain is the language of spider diagrams.
It allows us to apply diagrammatic inference rules on conjectures about spider
diagrams, and thus construct a proof. The entire proof construction process is
carried out visually. The derived proof is certified to be (logically) correct. Here
are the hypotheses we test and objectives we aim to achieve:

– We want to show that it is possible to design and implement a complete
formal diagrammatic reasoner in the general domain of monadic first-order
logic (MFOL) with equality, expressed using the language of spider diagrams.

– We aim to have the guarantee that the derived proofs are formally correct.

– We aim for our system to be standalone, yet also reasonably easily plugable
into external proof tools, thus providing alternative problem representation
and proof construction method for these tools.

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 163–177, 2012.
� Springer-Verlag Berlin Heidelberg 2012

164 M. Urbas et al.

Fig. 1. A proof of a spider-diagrammatic statement. The proof establishes that given
sets A and B, if there are two elements s1 and s2 and one is in both of A and B and the
other is either in only A or only B, then we can deduce that one element is in A and
the other is in B. In this proof, we applied the split spiders, add feet, and idempotency
inference rules. The rules are proved to be sound and their application in this proof is
verified by Speedith to be correct. Hence, the proof is certified to be correct.

Whilst there exist other purely diagrammatic theorem provers, such as Dia-
mond [1], Dr.Doodle [2], and Cinderella [3], they target different, more restricted
domains (e.g., a small subset of natural number arithmetic, a subset of real arith-
metic), and are hence able to prove only a limited class and number of theorems.
They do not provide a provably sound and complete set of inference rules. They
are also not designed to be readily integrated into external proof tools.

There are theorem provers that were developed for spider diagrams, but they
worked only for fragments of the logic in this paper, and did not include any log-
ical connectives, or only a limited number of them [4]. In Speedith we formalize
the whole spider diagram logic, which is expressively equivalent to MFOL with
equality. We also develop a set of sound inference rules, representing a conserva-
tive extension of the complete system in [5], which allow for more intuitive proof
steps.

Speedith is an interactive proof assistant for the language of spider diagrams
and allows its users to interactively apply diagrammatic (visual) inference rules
on spider-diagrammatic statements. It checks whether the inference rules are
used correctly and verifies that a spider-diagrammatic statement expresses a
true fact – it is a theorem. Thus, Speedith’s diagrammatic proofs are entirely
formal and certified to be correct. Fig. 1 shows an example of Speedith’s purely
diagrammatic proof. Here, d1 is a spider diagram which conveys some informa-
tion about the relationships between two elements and two sets and proves that
d6 follows logically.

Speedith provides a graphical user interface through which all the diagram-
matic proofs are constructed. It visually displays spider-diagrammatic state-
ments; allows the user to specify which inference rules should be applied on
what parts of the spider diagram; and displays the result of this visually.

Whilst Speedith is a standalone diagrammatic proof assistant, it is also de-
signed to easily plug into external proof tools. This has the advantage that

Speedith: A Diagrammatic Reasoner for Spider Diagrams 165

spider-diagrammatic proofs can be reconstructed in traditional logic, and thus
certified with, for example, LCF-style general purpose theorem provers [6].

To confirm our hypotheses above and achieve our aims, we designed Speedith
as a standalone system that incorporates the following components: full specifi-
cation of Spider diagrams (Sec. 2) and their inference rules (Sec. 3), a reasoning
kernel that manages the state of the proofs, controls how inference steps are ap-
plied, and manages the communication with external general purpose theorem
provers (Sec. 4), and a visualisation component with input methods for construct-
ing diagrammatic statements and interactively applying inference rules (Sec. 5).
Lastly, we evaluate our prover (Sec. 6) and conclude with future directions and
general observations (Sec. 7).

2 Spider Diagrams: Syntax and Semantics

We now introduce spider diagrams (see [5] for more details and examples). Spider
diagrams use closed curves, called contours, to represent sets and assert relation-
ships between those sets. For instance, the enclosure of one contour by another
contour corresponds to a subset/superset relationship between the represented
sets. Contours are named with labels (in d1 in Fig. 1, the contour labels are A
and B). The set of contour labels used in a diagram d is denoted by L(d).

A zone is a region in a diagram that is inside some of the contours (possibly
no contours) and not inside the rest of them. Formally, a zone is a pair of fi-
nite, disjoint sets of contour labels, (in, out). Intuitively, (in, out) is inside every
contour of in, and outside every contour of out. So, in a diagram, the set of pos-
sible zones is formed by its contour labels (e.g., in d1, the zones are (∅, {A,B}),
({A}, {B}), ({B}, {A}), ({A,B}, ∅)). We denote the set of zones in a diagram d
by Z(d). The zones from Z(d) can be shaded, denoted ShZ(d), and this places
upper bounds on set cardinality: in a shaded zone, all elements are represented
by spiders.

Spiders are trees used in spider diagrams to assert the existence of elements;
they place lower bounds on set cardinalities (e.g., d1 contains two spiders called
s1 and s2 representing an element in only A or only B, and an element in A and
B; there may be other elements too). The nodes of the trees are called spider
feet, or simply feet (e.g., in d1 the spider s1 has two feet). The set of spiders in
d is denoted by S(d) and the function η:S(d) → PZ(d) − {∅} (here P denotes
the power set) returns the set of zones in which the spider is placed, called its
habitat (e.g., in Fig. 1, s1 is placed in the zones ({A},{B}) and ({B},{A})). To
avoid ambiguity when talking about the habitats of spiders in more than one
diagram, we write ηd(s) to mean the habitat of spider s in diagram d.

The diagrams considered so far are called unitary spider diagrams: they can
be defined by a tuple d = (L,Z, ShZ, S, η) as described above.1 Spider diagrams
can be negated and joined with binary connectives into compound diagrams: ¬
1 We define unitary diagrams differently to [5] where no mapping function for spiders
and their habitats was used. The mapping function provides a convenient translation
of spiders into formulae where each spider is a variable (see Sec. 4.3).

166 M. Urbas et al.

to denote ‘not’, ∧ to denote ‘and’, ∨ to denote ‘or’, ⇒ to denote ‘implies’ (e.g.,
in Fig. 1, d2 ∨ d3 forms a compound diagram), and ⇔ to denote ‘equivalent’.2

The semantics of spider diagrams are captured by interpretations, I = (U, Ψ),
where U is a universal set, and Ψ is an assignment of a subset of U to each
contour label. A zone, (in, out), represents the set:

Ψ(in, out) =
⋂
l∈in

Ψ(l) ∩
⋂

l∈out

(U − Ψ(l))

where Ψ(l) is the set assigned to contour label l. A set of zones represents the
set which is the union of the sets represented by the individual zones.

In order to identify when an interpretation agrees with the meaning of a
unitary diagram d we define missing zones, MZ(d) such that:

MZ(d) = {(in , L(d)− in) : in ⊆ L(d) ∧ (in , L(d)− in) �∈ Z(d)}.

Intuitively, the missing zones are the zones that do not appear in the diagram
due to its particular configuration, but could be specified using the labels from
L(d) (e.g., consider d1 in Fig. 2 on page 167; nine zones can be specified, but
do not appear in d1, including ({A,C,D}, {B}) and ({A,B}, {C,D})). Briefly,
we say that an interpretation, I = (U, Ψ), is a model for unitary diagram d if
there exists a function ψ:S(d) → U (interpreting the spiders as elements) that
ensures:

1. the missing zones represent the empty set, that is, Ψ(MZ(d)) = ∅;
2. each spider s in d maps to an element ψ(s) of the set represented by the

spider’s habitat, that is, ψ(s) ∈ Ψ(η(s));
3. no two spiders map to the same element, that is, ψ(s1) = ψ(s2) ⇒ s1 = s2;
4. the shaded zones contain only elements represented by spiders, that is,

Ψ(ShZ(d)) ⊆ {ψ(s) : s ∈ S(d)}.
The definition of a model extends in the obvious way to compound diagrams.

3 Speedith’s Inference Rules

We present some of Speedith’s inference rules for spider diagrams. We introduce
three new rules that conservatively extend the set of sound and complete rules
from [5]. Speedith can use all of them, but we only present the ones needed for
our examples. Our new rules are designed to allow making intuitive proof steps
and to substantially reduce proof length. All inference rules are proved to be
sound but, due to space restrictions, we omit the proofs in this paper.

Our first rule allows us to ‘copy’ a contour from one diagram into another
diagram: we argue that this is a natural deduction step. To illustrate, consider
the diagram d1 ∧ d2 in Fig. 2. In d2 we can see that C ⊆ E and E ⊆ A. We
can copy the contour E from d2 to d1 using this information and thus obtain
d′1. Here, E is completely inside A (since E ⊆ A) and C is completely inside

2 This extends the definition of compound diagrams in [5] which did not allow ¬ or ⇒.

Speedith: A Diagrammatic Reasoner for Spider Diagrams 167

Fig. 2. Illustrating new inference rules: copying syntax

E (since C ⊆ E). We do not know anything about the relationship between E
and D, thus we ensure that E partially overlaps with D. The spider habitats
are updated in line with how the zones have changed. In general, all shading is
preserved in the same fashion.

To define the copy contour rule, we start by observing that each zone in the
diagram, d1, into which the contour is copied is either (a) completely outside the
new contour, (b) completely inside the new contour, or (c) split into two zones
by the new contour. In order to identify what happens to each zone, we need to
inspect the contours of d2.

Definition 1. Let d be a unitary diagram and let λ and λ′ be in L(d).

1. If (the contours labelled) λ and λ′ have disjoint interiors then λ and λ′ are
disjoint in d, denoted λ ∩d λ

′ = ∅.
2. If λ is in the interior of λ′ then λ is a contained by λ′ in d, denoted λ ⊆d λ′.

For example, in Fig. 2, inspecting d2 we have the following relations involving
E: E ∩d2 F = ∅, E ⊆d2 A and C ⊆d2 E. Using these relations, we can determine
the effect of copying E from d2 to d1 on the zones. In particular, since E ⊆d2 A,
all zones that are not inside A will not be inside E; these zones are placed in a
set called ZOUT (OUT for ‘outside’).3 Since C ⊆d2 E, all zones that are inside
C will be inside E; these zones are placed in a set called ZIN (IN for ‘inside’).
The remaining zones will be split when E is copied into d1.

Definition 2. Let d1 and d2 be unitary diagrams and let λ be in L(d2)−L(d1).
We define three subsets of Z(d1) (ZOUT (λ, d2), ZIN (λ, d2), and ZSPLIT (λ, d2))
according to the following rules: let (in , out) ∈ Z(d1)

1. (in , out) ∈ ZOUT (λ, d2) provided there exists a contour label, λ′, in L(d2)
such that either
(a) λ′ ∈ in and λ ∩d2 λ

′ = ∅, or
(b) λ′ ∈ out and λ ⊆d2 λ′,

2. (in , out) ∈ ZIN(λ, d2) provided there exists a contour label, λ′, in L(d2) such
that λ′ ∈ in and λ′ ⊆d2 λ,

3. finally, ZSPLIT (λ, d2) = Z(d1)− (ZIN (λ, d2) ∪ ZOUT (λ, d2)).

3 If F occurred in d1 then, since E ∩d2F = ∅ all zones inside F would also be outside E.

168 M. Urbas et al.

Rule 1 Copy a Contour. Let d1 and d2 be unitary diagrams and let λ be in
L(d2)− L(d1). Let d

′
1 be the diagram whose components are defined as follows:

1. the contour labels are L(d′1) = L(d1) ∪ {λ},
2. the zones are

Z(d′1) = {(in, out ∪ {λ}) : (in, out) ∈ ZOUT (λ, d2) ∪ ZSPLIT (λ, d2)} ∪
{(in ∪ {λ}, out) : (in, out) ∈ ZIN (λ, d2) ∪ ZSPLIT (λ, d2)}

3. the shaded zones are

ShZ(d′1) = {(in, out ∪ {λ}): (in, out)∈(ZOUT (λ, d2) ∪ ZSPLIT (λ, d2)) ∩ ShZ(d1)}
∪{(in ∪ {λ}, out): (in, out)∈(ZIN(λ, d2) ∪ ZSPLIT (λ, d2)) ∩ ShZ(d1)}

4. the spiders are S(d′1) = S(d1), and
5. the habitat of each spider, s′ ∈ S(d′1), is

ηd′1(s
′) = {(in, out ∪ {λ}): (in, out) ∈ (ZOUT (λ, d2) ∪ ZSPLIT (λ, d2)) ∩ ηd1(s

′)}
∪{(in ∪ {λ}, out): (in, out) ∈ (ZIN (λ, d2) ∪ ZSPLIT (λ, d2)) ∩ ηd1(s

′)}.

Then d1 ∧ d2 is logically equivalent to d′1 ∧ d2.

As well as enabling ‘natural’ proof steps to be made in a single inference step,
our copy contour substantially reduces the number of proof steps required. In
Fig. 2, if we used only the inference rules from [5], a proof establishing d1 ∧ d2 �
d′1∧d2 would require hundreds of proof steps (in part because, using the inference
rules of [5], in proofs that d1 ∧ d2 � d′1 ∧ d2 the number of spider feet increases
rapidly when contours are added and all of these spiders need to be split until
they have single feet).

If we consider d′1∧d2 in Fig. 2, we can see that the shaded region that comprises
the zone ({A,E,C}, {F}) in d2 represents the set C (this is the only zone inside
C). There is a corresponding zone in d′1, namely ({A,C}, {B,D}), that also
represents the set C. Since these two zones contain the same spiders, we can
copy the shading from d2 over to d′1, as shown in d′′1 ∧ d2. In order to define this
rule, we introduce some notation to denote the set of spiders whose habitat is a
subset of a given region r in a unitary diagram d: S(r, d) = {s ∈ S(d) : η(s) ⊆ r}.
In addition, it is possible to syntactically identify when two distinct regions,
r1 and r2, necessarily represent the same set [7]. Such regions are said to be
corresponding. To illustrate the idea, in Fig. 2 the region inside d1 that comprises
the four zones outside of A corresponds to the region that comprises the two
zones outside of A in d2.

Rule 2 Copy Shading. Let d1 and d2 be unitary diagrams with corresponding
regions, r1 and r2 respectively, such that:

1. r1 contains at least one non-shaded zone in d1,
2. r2 is entirely shaded in d2,
3. in d1, all of the spiders that have a foot in r1 are also in S(r1, d1),
4. in d2, all of the spiders that have a foot in r2 are also in S(r2, d2), and

Speedith: A Diagrammatic Reasoner for Spider Diagrams 169

5. there is a habitat preserving bijection, σ, from S(r1, d1) to S(r2, d2) (i.e.,
ηd1(s) corresponds to ηd2(σ(s))).

Let d′1 be a copy of d1 except that r1 is entirely shaded. Then d1 ∧ d2 is logically
equivalent to d′1 ∧ d2.

Our final new rule allows us to copy spiders from one diagram to another.
This is illustrated in Fig. 2, where we can copy a spider from d2 into d′′1 , to give
d′′′1 ∧ d2. The two spiders in d2 that inhabit the region outside of A tell us that
there are at least two elements in U − A, where U is the universal set. Since
there is only one spider in the corresponding region of d′′1 , that is, there is at
least one element in U −A, we can copy across the second spider.

Rule 3 Copy a Spider. Let d1 and d2 be unitary diagrams with corresponding
regions, r1 and r2 respectively, such that:

1. r1 contains no shaded zones in d1,
2. in d1, all of the spiders that have a foot in r1 are also in S(r1, d1),
3. there exists a habitat preserving injective, but not surjective, map σ from

S(r1, d1) to S(r2, d2) (i.e., ηd1(s1) corresponds to ηd2(σr(s1))).

Choose a spider, s, that is in S(r2, d2) but is not in the image of σ such that
there exists a region, r′ in d1 that corresponds to ηd2(s). Let d

′
1 be a copy of d1

except d′1 contains s with habitat r′. Then d1∧d2 is logically equivalent to d′1∧d2.
Three other rules are used in our examples: add feet and split spiders (see both

in Fig. 1) and remove a contour (see Fig. 7); their formal definitions are in [5].

Rule 4 Add feet to a Spider. Let d1 be a unitary diagram that contains a
spider, s, whose habitat does not include all of the zones in d1. Let d2 be a copy
of d1 except that s contains additional feet. Then d1 logically entails d2.

Rule 5 Split Spiders. Let d be a unitary diagram containing a spider, s, with
habitat such that |η(s)| ≥ 2. Let η1 and η2 be a two-way partition of η(s). Let
d1 (d2) be the diagram obtained from d by changing the habitat of s to η1 (η2).
Then d and d1 ∨ d2 are logically equivalent.

Rule 6 Remove a Contour. Let d1 be a unitary diagram and let λ ∈ L(d).
Let d2 be the diagram obtained from d1 by removing the contour, C, labelled λ,
so L(d2) = L(d1) − {λ}. If, on the removal of C, two zones combine to form
a single zone then spiders’ habitats are updated in the same way. With regard
to shading, if a shaded zone merges with a non-shaded zone then the shading is
removed. Otherwise the shading remains. Then d1 logically entails d2.

4 Architecture of Speedith

Speedith is the implementation of a diagrammatic theorem prover for spider di-
agrams described in Sec. 2, and the inference rules from Sec. 3 and [5]. It consists
of four main components:

170 M. Urbas et al.

��������	
���
�� �����
�����	
���
��

���������	�
����
�����
�������
��������������������
������������������������

�������	���

������������	
���
��

���	��	����	���
���	������������	����	��

����	
���
�� ���	����

�

���

Fig. 3. A class diagram of the abstract representation of spider diagrams in Speedith

1. abstract representation of spider-diagrammatic statements (Sec. 4.1),
2. the reasoning kernel with proof infrastructure (Sec. 4.2),
3. verification of diagrammatic proofs, including input and output system for

importing and exporting formulae in many different formats (Sec. 4.3), and
4. visualisation of spider-diagrammatic statements (Sec. 5).

4.1 Abstract Representation

Speedith uses an abstract spider diagram representation to express spider-di-
agrammatic formulae. This representation is captured by the class diagram in
Fig. 3. The null spider diagram is the unitary diagram containing only the zone
(∅, ∅), no spiders and no shading; it is used as the logical truth constant �. Uni-
tary spider diagrams contain the bulk of diagrammatic information. Finally, the
compound spider diagrams build up more complex formulae by connecting spider
diagrams through the usual logical connectives: conjunction, disjunction, impli-
cation, equivalence and negation. Thus, a compound spider diagram nests one
or more other spider diagrams, as indicated with the diamond notation in Fig. 3.

To optimize performance, Speedith’s abstract representation of spider dia-
grams removes some redundancies from the syntax in Sec. 2. In particular, Speed-
ith does not explicitly store the sets L(d) and Z(d). Moreover, the sets ShZ and
MZ are merged into SMZ, and the set VEZ lists all the zones that are shaded but
have no spider feet in them. This more closely matches the semantics of spider di-
agrams as the zones that convey no semantic information (i.e. zones with no spi-
der feet and no shading) are not explicitly stored. However, Speedith does store
the shaded zones, the missing zones, and the spiders with their habitats, which
is needed when converting diagrams to sentential form for verification. Note that
all sets from the tuple d = (L,Z, ShZ, S, η) in Sec. 2, can still be computed. The
set L(d) is obtained via the method getContours(), which takes an arbitrary
zone (in, out) and computes L(d) = in∪out. The set MZ(d) is obtained through
SMZ− (VEZ∪habitats). Finally, Z(d) = {(in, L(d)− in) : in ⊆ L(d)}−MZ(d).

An advantage of Speedith’s abstract representation is the simplicity of con-
verting spider-diagrammatic formulae to and from first-order logic formulae for
the purposes of verification (see Sec.4.3). On the other hand, the user has no
control on how the diagrams are drawn – Speedith lays them out automatically.

Speedith: A Diagrammatic Reasoner for Spider Diagrams 171

4.2 The Reasoning Kernel

One of the central components of Speedith is the reasoning kernel. It is re-
sponsible for correctly applying the inference rules on particular parts of spider-
diagrammatic formulae. The kernel contains two types of inference rules: the
ones for logical connectives based on the well-known logical equivalences, and
purely spider-diagrammatic rules including the ones introduced in Sec. 3.

4.2.1 Proofs in Speedith
A proof in Speedith starts with a spider-diagrammatic formula D (the initial
goal, i.e., the theorem we aim to prove), proceeds by transforming D with ap-
plications of inference rules, and ends with an empty set of goals. The specific
rules and parts of the diagram on which they should be applied are chosen by
the user. Rules can be applied in both backward and forward reasoning styles.
Backward proof steps take a goal D and transform it into a new goal D′, where
D′ � D. In forward proofs, D must be of the form Di ⇒ Dj , and the rules
transform Di into D′

i, where Di � D′
i, resulting in the new goal D′

i ⇒ Dj.
4 The

user can switch between backward and forward proof styles due to the inference
rule (� ⇒ D) � D. Either way, since the inference rules in both proof styles
adhere to the entailment property for valid deductive steps, the proofs are of the
standard structure: �

SD inference rule
...

SD inference rule
D’

SD inference rule
D

(1)

which together with the soundness of our rules justifies that D is a theorem.
Speedith stores and manages the proof as a sequence of goals and inference

rule applications. The diagram in Fig. 4 outlines the architecture for managing
proof state and goals. Multiple simultaneous goals are supported, and the proof
is finished only when all goals are converted to null diagrams.

�����

���������	
�	��������

����	

�����	��
�	��
�����������������������������
����
�	��������

�	���������

	����������������	
�	���!�"�	��

��

����#
� ���#

Fig. 4. A simplified class diagram of the part of the reasoning kernel responsible for
tracking the proof state

Once a spider-diagrammatic theorem Dt is proved, it is added to the database
of theorems available for reuse in other proofs. This is possible in both backward
and forward proofs through the schematic inference rules � � Dt and Dt � �
respectively. In addition to theorems, Speedith allows the use of axioms : given
an axiom Da, it can be used in a proof through the inference rule � � Da.
4 Note that all our examples in Figs. 1, 6 and 7 use forward reasoning style.

172 M. Urbas et al.

Fig. 5. The tree structure of the spider-diagrammatic formula (d1∨d2) ⇒ d3, where d1,
d2, and d3 refer to unitary spider diagrams, and the logical connectives ⇒ and ∨ refer
to compound spider diagrams. The circled numbers are the indexes of sub-diagrams.

4.2.2 Transforming Spider Diagrams
A compound spider diagram connects multiple sub-diagrams with logical con-
nectives. In the abstract representation, sub-diagrams are children nodes of a
compound spider diagram. This composition forms a tree structure. Every sub-
diagram is assigned a sequential number – node indexes. The depth-first algo-
rithm is used for assignment of these indexes. An example of the tree structure
of a compound spider diagrams is shown in Fig. 5.

When an inference rule is to be applied, the tree structure of a spider diagram
is traversed to a particular point where the relevant transformation takes place
and thus returns new spider diagrams. This point is chosen by the user and
supplied to the inference rule through the rule application arguments. The rule
application arguments differ from rule to rule. Some rules, like the split spider
rule, work on particular spiders in a unitary diagram. Thus, the split spider
rule requires the sub-diagram index of the unitary diagram, the name of the
spider, and also the region on which to split the spider’s habitat. If a rule cannot
be applied at a certain position, or if the sub-diagram does not satisfy all the
requirements needed for a safe and valid rule application, the rule will not be
applied and the user will be notified of this.

In the implementation of Speedith, the actual data structures of the abstract
representation of a spider diagram do not change during the rule application.
Rather, an entirely new spider diagram is constructed. For lower memory con-
sumption and for efficiency purposes, the new spider diagram shares all un-
changed sub-diagrams of the initial formula. This also improves the speed of
syntactic equality comparisons in Speedith, as there cannot exist two different
instances of syntactically identical spider diagrams.

4.3 Verification with External Tools

Proofs in Speedith rely purely on the soundness of the individual inference rules
outlined in Sec. 3 and [5]. As proofs are derived by sequential application of
these rules, they are guaranteed to be correct by construction (see Sec. 4.2.1).
However, the implementation of Speedith cannot be guaranteed to be bug-free.
Also, some users might trust Speedith more if its proofs are verified in other,
established, theorem provers. Thus, we designed Speedith to easily plug into,
and allow for seamless communication with external proof tools. This enables
Speedith to verify particular proof steps externally: namely, spider-diagrammatic

Speedith: A Diagrammatic Reasoner for Spider Diagrams 173

proofs can be reconstructed in traditional logic. To date, Speedith’s proofs can
be certified in the general purpose theorem prover Isabelle [8]. Other tools can be
supported by supplying a plug-in which implements the communication with the
new external tool. Conceptually, a proof step in Speedith can be proved correct
by verifying that conjunctively connected sub-goals Di imply the initial goal D
(see Formula (1) in Sec. 4.2.1). Thus, in order to verify its proof steps, Speedith
exports the following theorem which is to be proved by the external tool:

D1 ∧D2 ∧ · · · ∧Dn ⇒ D.

Apart from exporting, Speedith can also import formulae. This enables the
so-called heterogeneous reasoning, that is, constructing proofs that consist of
diagrammatic inferences and traditional sentential logical inferences. We use
it in our heterogeneous reasoning framework called Diabelli [8] that combines
diagrammatic theorem proving in Speedith with sentential theorem proving in
Isabelle [9].

4.3.1 Input and Output Formats
Speedith supports different input and output formulae formats for importing
and exporting. The standard input format of Speedith is the native textual rep-
resentation outlined in Sec. 4.3.2 below. For export, on the other hand, Speedith
uses formats that several other tools understand. For example, one supported
export format translates abstract representations of spider diagrams into Is-
abelle/HOL formulae. Here is an example of how the diagram d1 in Fig. 1 is
translated to the Isabelle/HOL format:

∃ s1 s2. distinct[s1, s2] ∧ s1 ∈ A ∩ B ∧ s2 ∈ (A - B) ∪ (B - A)

A new output or input format can be specified by providing a translation
procedure that takes a set of spider diagrams in their abstract representation,
a proof trace, or an inference rule application, and translates it to a specific
textual format.

4.3.2 Textual Representation
In addition to the data structures and object oriented model used in abstract
representation, Speedith also provides a textual form of spider diagrams. This
form is Speedith’s default for exporting and importing diagrammatic statements
to and from external tools. It is used when verifying particular steps in the
diagrammatic proof, or verifying properties about spider-diagrammatic formulae
in a sentential reasoner. Here is an example of the textual form of diagram d1
in Fig. 1:

PrimarySD {
spiders = ["s1", "s2"],
habitats = [("s1", [(["A"], ["B"]), (["B"], ["A"])]),

("s2", [(["A", "B"], [])])],
sm_zones = [], ve_zones = []

}

174 M. Urbas et al.

5 Diagram Visualisation

The visualization component of Speedith, called iCircles, builds on the Euler dia-
gram drawing software presented in [10]. We extended the drawing algorithm to
spider diagrams, enabling the layout of spiders as well as including functionality
to specify which zones are to be shaded.

The input to Speedith is a statement of the theorem. This can be entered
through drawing commands, first-order logic formulae,5 or the textual repre-
sentation (as described in Sec. 4.3.2). A future direction would be to support
additional input methods, such as free-hand drawing and shape recognition.

Next, the entered theorem is automatically drawn – Speedith uses the follow-
ing drawing algorithm:

1. Draw the underlying Euler diagram, using the methods of [10]. This takes
the set of zones to be present and determines how to draw the diagram with
circles.

2. Next, shading is placed in the appropriate zones, using standard ‘region
shading’ methods.

3. Finally, the spiders are laid out. Given a particular spider, s, with habitat
η(s), a point is found in each zone in η(s). These points form the feet of
the spider. The feet are then joined by edges: we prioritize drawing edges
between feet in adjacent zones, until the feet form a tree. Care is taken to
ensure that edges do not pass through feet belonging to other spiders. This
is achieved by nudging the position of feet that lie on the path of a to-be-
drawn edge in eight principal directions until a suitable position is found. In
addition, when the initial points are found for spiders, we ensure that they
do not lie on already drawn edges.

Fig. 6 is an example of Speedith using iCircles to display spider-diagrammatic
formulae. The abstract representation of a spider-diagrammatic formula is con-
verted into iCircles and composed to form arbitrary compound spider diagrams.

Speedith translates the abstract representation of unitary spider diagrams
into a concrete description of the drawing. An important step of the translation
is determining which shaded zones contain spider feet and must thus be present
in the drawing. The decision on whether to display other shaded zones is left to
the iCircles drawing algorithm.

After all unitary spider diagrams of a compound statement are drawn, they
are laid out as operands of the logical connectives. Individual sub-diagrams are
finally enclosed with a bounding box, which separates them spatially for clearer
presentation and unambiguous nesting of operators.

Following the entry and drawing of the theorem, the user proceeds to apply in-
ference rules on specific parts of the diagram. The exact target of the rule applica-
tion is determined through a rule-specific sequence of clicking on select elements in
the diagram. The inference rule to apply is chosen from a list of all available rules;

5 Speedith currently supports only a specific form of first-order logic formulae in the
Isabelle/HOL syntax.

Speedith: A Diagrammatic Reasoner for Spider Diagrams 175

Fig. 6. Automatically drawing spider diagrams using iCircles

as we implement more inference rules in the future, we will introduce a filter that
shows only the rules applicable to the part of the diagram that the user clicked on.
Once the proof is completed, it is added to the suite of unit tests.

6 Results and Related Work

Speedith is implemented in Java and is currently under active development. Its
sources are available from https://gitorious.org/speedith. With Speedith
we are able to prove all theorems of MFOL with equality, expressed using spider
diagrams – this is a significant range and depth of theorems.

We demonstrate the evaluation of Speedith’s functionality with two diagram-
matic proof examples. The first one was presented in Fig. 1. The proof makes use
of diagrammatic rules that transform spiders and a disjunction equivalence rule.
The second example, shown in Fig. 7, tests the inference rules which manipu-
late spiders, contours, shaded zones, and logical connectives. The proof in Fig. 7
essentially makes use of the information from the right conjunct to transform
the diagram representing the left conjunct through a series of copying rules: first
the contour D, then spider s1, followed by shading of the zone ({C}, {D}), and
finally eliminating the redundant right conjunct and removing contours A and
C to deduce the theorem’s conclusion.

One of Speedith’s main contributions is its representation of formulae and
proof steps. This differentiates it from interactive sentential theorem provers
(such as Isabelle) in that it provides a domain-specific, visual, and thus perhaps
more intuitive approach to proofs in MFOL with equality. Speedith’s inference
rules, which perform simple visual transformations of the diagrammatic state-
ment are succinct and ‘natural’ – they capture the notion of truthfulness that
humans find easy to understand. In contrast, proofs of the same theorems in

https://gitorious.org/speedith

176 M. Urbas et al.

Fig. 7. A proof of a spider-diagrammatic statement using inference rules that work
with spiders, contours, and shaded zones.

sentential theorem provers consist of lower-level, more fine-grained proof steps
which make them longer and arguably harder to “see” the intuition behind the
proof. Comparing Speedith’s speed with other theorem proving tools remains
work for the future.

Other diagrammatic theorem provers most related to Speedith are Edith,
Diamond, and Cinderella. Whilst Edith is the closest to Speedith in terms of
the domain it targets, it does not support spiders nor compound diagrams with
logical connectives, and thus provides fewer inference rules. Edith also does not
support external verification of its proof steps. Diamond, on the other hand,
supports external verification, but the class of problems it tackles is different
and narrower compared to Speedith. Cinderella targets the domain of geometry
and uses a different approach to its diagrammatic proofs. The user gradually
constructs the geometric model of the theorem, while in the background an
automated theorem prover verifies that each construction step results in a valid
geometric diagram. Thus, the steps in Cinderella are not guaranteed to be sound,
and the proof process does not follow the standard inference rule application
pattern (as described in Sec. 4.2.1).

Finally, Speedith was designed with language extensions in mind. Spider di-
agrams could be extended with non-monadic relations, functions, and universal
quantification of spiders. Designing meaningful and complete diagrammatic in-
ference rules for such extended language is hard and remains work for the future.

7 Future Work and Conclusion

By developing Speedith, we demonstrated the feasibility of diagrammatic rea-
soning systems that utilise a rule-based deductive proof approach. This is similar
to the approach employed by general purpose proof assistants like Isabelle.

We also showed how to utilize existing state-of-the-art theorem provers to
verify diagrammatic inference steps. Whilst we focused on spider diagrams, the
approach can be used for other diagrammatic logics, such as existential graphs [11]
or constraint diagrams [12].

Speedith: A Diagrammatic Reasoner for Spider Diagrams 177

Part of our future directions for Speedith includes extending the abstract repre-
sentation to better control how diagrams are drawn. Moreover, the diagrams are
currently laid out independently, and hence diagrams in consecutive proof steps
can look radically different from each other. Thus, we aim to improve layout heuris-
tics to take entire sequences of diagrammatic statements into account. In addition
to better diagram visualisation, we also envision extensions to the language of spi-
der diagrams, proof search automation, use of Speedith in practical settings [13,14],
and a study of scalability of proofs and their visualisation in Speedith.

Acknowledgements. This work was supported by EPSRC Advanced Research
Fellowship GR/R76783 (Mateja Jamnik), EPSRC Doctoral Training Grant and
Computer Laboratory Premium Research Studentship (Matej Urbas).

References

1. Jamnik, M., Bundy, A., Green, I.: On Automating Diagrammatic Proofs of Arith-
metic Arguments. JOLLI 8(3), 297–321 (1999)

2. Winterstein, D., Bundy, A., Gurr, C.: Dr.Doodle: A Diagrammatic Theorem
Prover. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097,
pp. 331–335. Springer, Heidelberg (2004)

3. Kortenkamp, U., Richter-Gebert, J.: Using automatic theorem proving to improve
the usability of geometry software. In: MUI (2004)

4. Stapleton, G., Masthoff, J., Flower, J., Fish, A., Southern, J.: Automated Theorem
Proving in Euler Diagram Systems. JAR 39(4), 431–470 (2007)

5. Howse, J., Stapleton, G., Taylor, J.: Spider Diagrams. LMS JCM 8, 145–194 (2005)
6. Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF. LNCS, vol. 78.

Springer, Heidelberg (1979)
7. Howse, J., Stapleton, G., Flower, J., Taylor, J.: Corresponding Regions in Euler

Diagrams. In: Hegarty, M., Meyer, B., Narayanan, N.H. (eds.) Diagrams 2002.
LNCS (LNAI), vol. 2317, pp. 76–90. Springer, Heidelberg (2002)

8. Urbas, M., Jamnik, M.: Heterogeneous Proofs: Spider Diagrams Meet Higher-Order
Provers. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP
2011. LNCS, vol. 6898, pp. 376–382. Springer, Heidelberg (2011)

9. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle Framework. In: Mohamed,
O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38.
Springer, Heidelberg (2008)

10. Stapleton, G., Zhang, L., Howse, J., Rodgers, P.: Drawing Euler Diagrams with
Circles. In: Goel, A.K., Jamnik, M., Narayanan, N.H. (eds.) Diagrams 2010. LNCS,
vol. 6170, pp. 23–38. Springer, Heidelberg (2010)

11. Dau, F.: Constants and Functions in Peirce’s Existential Graphs. In: Priss, U.,
Polovina, S., Hill, R. (eds.) ICCS 2007. LNCS (LNAI), vol. 4604, pp. 429–442.
Springer, Heidelberg (2007)

12. Kent, S.: Constraint diagrams: Visualizing invariants in object oriented modelling.
In: OOPSLA. SIGPLAN, vol. 32, pp. 327–341. ACM (1997)

13. Keslter, H., Muller, A., Kraus, J., Buchholz, M., Gress, T., Liu, H., Kane, D., Zee-
berg, B., Weinstein, J.: Vennmaster: Area-proportional Euler diagrams for func-
tional go analysis of microarrays. BMC Bioinformatics 9(67) (2008)

14. De Chiara, R., Hammar, M., Scarano, V.: A system for virtual directories using
euler diagrams. ENTCS 134, 33–53 (2005)

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 178–192, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Algebra Diagrams: A HANDi Introduction

Peter C.-H. Cheng

Department of Informatics, University of Sussex, Brighton, BN1 9QH, UK
p.c.h.cheng@sussex.ac.uk

Abstract. A diagrammatic notation for algebra is presented – Hierarchical Al-
gebra Network Diagrams, HANDi. The notation uses a 2D network notation
with systematically designed icons to explicitly and coherently encode the fun-
damental concepts of algebra. The structure of the diagrams is described and
the rules for making derivations are presented. The key design features of
HANDi are discussed and compared with the conventional formula notation in
order demonstrate that the new notation is a more logical codification of intro-
ductory algebra.

1 Introduction

This paper describes novel notational system for introductory (school level) algebra –
Hierarchical Algebra Network Diagrams (HANDi). HANDi was invented as part of a
programme of research that is developing the Representational Epistemic approach to
the study of how notational systems encode knowledge and the potential cognitive
benefits that novel codifications of knowledge may confer [1-3]. The core principle
of the Representational Epistemic approach claims that notational systems designed to
directly encode the fundamental conceptual structure of knowledge rich domains,
using coherent notational
schemes, will possess semantic
transparent and thus enhance
problem solving and conceptual
learning (see [1-3]).

This paper that has two pur-
poses: (1) to provide a detailed
description of HANDi, that
includes a set rules for making
HANDi derivations; (2) to
highlight the main design fea-
tures of the notation that at-
tempt to more coherently encode the fundamental conceptual structure of algebra than
the conventional formula notation. Thus, the paper has the 4 following main sections:
section 2 present the basic graphical structure the HANDi notation; section 3 de-
scribes the rules for manipulating expression in the notation; section 4 provides

Fig. 1. A HANDi equation comprising two trees

x 2 3

(x-5)(-2x+3i)= -2x2-10x+3xi-15i

x 10 3 5 2 15

 Algebra Diagrams: A HANDi Introduction 179

examples of derivation using the rules; section 5 discuses the how the HANDi nota-
tion encodes the key concepts of the domain.

2 HANDi Expressions

Fig. 1 shows an example of a Hierarchical Algebra Network Diagram for a quadratic
equation in x that involves a complex number. The equation in the conventional for-
mula notation equation is shown below the diagram. This diagram consists of two
trees, left and right, but other diagrams may have multiple trees. The full interpreta-
tion of the diagram will become clear as the component parts of HANDi equations are
introduced.

2.1 Basic Operators

Fig. 2 shows the HANDi sub-tress for basic binary operators, which consist of a node,
trunk and two branches. At the end of each branch is either an argument leaf that
consists of a number, a variable, or another a node for an operator (as in Fig. 1). The
trunk of a node is the line
ascending from the top of
the node. A right-angle
branch represents addition
of the arguments (or node)
at the end of the branch. A
right-angle branch with a
horizontal bar represents
subtraction of the argument
at the end of the branch. An
arc branch represents mul-
tiplication, in the same way. An arc branch with a diagonal bar represents division by
the argument on the branch. The different styles of lines distinguish addition and
subtraction from multiplication and division. The bars distinguish subtraction from
addition and division from multiplication. All this conveys the notation that division
is to multiplication as subtraction is to addition.

Different styles of branches may not be connected to the same node, and a diagonal
bar may only be associated with an arc branch and a horizontal bar with a right-angle
branch; Fig 3 shows three illegal diagrams.

2.2 Equation

Relations among numbers and variables are encoded as hierarchical networks, trees,
composed of the basic operators. The numerical equality of trees is shown a double
horizontal line connecting their
topmost trunk; for example Fig 1.
(Inequalities may be shown by a
double horizontal line with a <, ≤,
>, ≥ symbol written on the line.) A
tree may only have a single occur-
rence of each variable; there is just

Fig. 2. Trees for the elementary algebraic operators

a+b

b a

a–b

b a a b

a×b a/b (= a×b-1)

(+) (-) (×) (÷)

a b

Fig. 3. Invalid tree and branch types

ba a a

(A) (B) (C)

180 P.C.-H. Cheng

one letter ‘x’ in each of the two trees in Fig. 1. This is a key feature of HANDi.
However, there may be multiple instances of the same number in a tree, for two rea-
sons: (a) the same numbers may stand for quantities that have different units, in which
case they necessarily represent different things (e.g., 3 metres versus 3 seconds), so
should have different symbols; (b) pragmatically, this provides a means to manage the
complexity of the diagrams, particularly in order to avoid crossing branches.

Fig. 4. Operations involving identify element

2.3 Identities and Inverse Operations

Fig. 4 shows how a sub-tree with a single branch
may be drawn in place of a binary tree that has the
same argument and a particular identity element. Fig
4.1 is a sub-tree with a single branch, and no bar, that
is equivalent to Figs. 4.2-4.5. Figs. 4.6 and 4.7 show
that single branches with a diagonal or horizontal bar
are equivalent to trees in which the argument is the
divisor of one or is subtracted from zero. Fig. 4.8
and 4.9 shows that an argument divided by or sub-
tracted from itself are equal to one or zero, respec-
tively.

2.4 Negative and Imaginary Numbers – Unary Turn Operators

HANDi provides a notational scheme that coherently unifies positive, negative and im-
aginary numbers; see Fig. 5. A turn is a unary operator at the end of branch that indicates
the extent of rotation of the argument in an Argand diagram. A quarter turn (1/4 circle)
represents an imaginary argument, a half turn (semi-circle) represents a negative argu-

a a 1 a 0

a =a×1 = a/1 =a+0 =a–0

a 1 a 0 a 1

1 = a/a

a 0

0 = a–a

1 2 3 4 5 6 7 8 9

a a 1 a a 0

0–a 0–a 1/a 1/a

Fig. 5. Positive, imaginary,
negative, negative imaginary
and positive arguments

a b c d

a bi -c -di a

a

Fig. 6. Turns in trees

a b c d a b c d

a–(-b)) c/(-d) a+(-b) c×(-d)

1 2 3 4 5 6

a b c d

(a+(-b))i -(c×(-d))i

 Algebra Diagrams: A HANDi Introduction 181

ment, a three quarter turn (3/4 circle) represents a negative imaginary argument, and
positive argument is a branch with no turn or a complete (whole circle).

2.5 Combined Unary and Higher Order Operators

Fig. 6 shows unary turn operators in association with binary operators. Addition,
subtraction, multiplication and division operators may act upon negative numbers;
Figs. 6.1 to 6.4. HANDi makes an explicit distinction between negative numbers and
subtraction in terms of the type of attachment to the branch, either a half turn or a bar,
and in relation to the position of the attachment, either at the end or bisecting the
branch. Fig. 6.5 and 6.6 indicate how unary turn operator may be applied to trees.
Notice how in Fig. 6.6 the minus sign and ‘i’ occur at opposite ends of a conventional
formula, but the same information is encoded as a single three quarter turn symbol in
HANDi.

2.6 Repeated Operations – Recursive Addition and Powers

Figs. 7 and 8 show HANDi expressions that involve repeated applications of an oper-
ator to an argument. Fig. 7.1-7.4 shows multiple additions of a single argument, in-
cluding recursive applications. Figs. 7.5-7.10 show how HANDi represents various
power expressions for a single argument. In cases where multiple branches of a tree
converge on a single sub-tree below (Figs. 7.4, 7.9 & 7.10 and Fig. 8.5), each branch
represents a repeated operation on the sub-tree: Fig. 7.4 shows two additions of 3a;
Fig. 7.9 shows the product of three a3; Fig. 8.5 shows the product of two a×b. Notice
that the top tree in Fig. 7.9 is equivalent to the top tree in Fig. 7.8, which both
represent the cube of their respective arguments. Consider Fig. 7.10; raising an index
of an argument (2 in a2) to a power (3 in a^23) is represented by a number of the hie-
rarchical repetitions of the sub-tree for the index (2) by the magnitude of the power
(3): there is a stack of three pairs of branches. Fig. 8.4 shows that arguments raised to
some power may be embedded as a sub-tree within a higher tree. If all the branches
of the tree have diagonal bars, which indicate division by the argument, then the tree
represents a negative power, as in Fig. 8.1.

Fig. 7. Repeated addition and powers

a a

4a 3a+2a a3a2=a3+2 a5

a

2a

a

3a+3a

a

a2

a a a a

(a2)3=a2×3 a(23)

a

a(32)

1 2 3 4 5 6 7 8 9 10

182 P.C.-H. Cheng

To show non-integer fractional pow-
ers, branches that ascend as well as
descend from the node are used. Fig.
8.2 has two ascending branches and one
descending branch, so its power is 1/2
(square root). Fig 8.2 shows a2/3, be-
cause two branches point down and
three point up. By the same scheme,
the two down and one up branches in
Fig. 7.5 shows the argument raised to
the “fractional” power of 2/1.

That completes the description of the graphical structure of HANDi trees.

3 Elementary HANDi Transformation Rules

HANDi provides rules for the transformation of tree diagrams in to alternative forms.
Elementary rules are the primitive transformations – considered in this section – and
derived rules are more complex transformations composed by the successive applica-
tions of the elementary rules – considered in the next section.

HANDi has twelve elementary rules
for transforming trees and equations.

Rule E0 specifies that horizontal
positioning of argument and nodes is
arbitrary so their relative positions
may be swapped at will; for instance,
to improve the clarity of a diagram.
The E0 labels on the double equality
line in Figs. 15 and 23 (below) show
the application of this rule.

Rule E1 allows binary trees for
operations on an argument and an
identity element to be replaced by a
single branch for the argument, as
described above and shown in Figs. 4.2-4.7. In the case of Rule E1.1 the single
branches for the arguments have no bars (Fig 4.2-5), whereas in Rule E1.2 each

Fig. 8. Assorted power diagrams

b

ab2

a b a

(ab)2

b b a

a-2 b1/2 b2/3

1 2 3 4 5

Fig. 10. Nest operations that are equivalent to a
tree with a single plain branch

Fig. 9. Branch insertion or elimination

a b a b a b a b a b a b

E3 E3 E3 E3

1 2 3 4 5 6

 Algebra Diagrams: A HANDi Introduction 183

branch has a bar (Figs. 4.6 & 4.7). The opposite also applies; a single branch may be
transformed in to a binary tree (e.g., Fig 4.1 in to any of Figs. 4.2-4.6)

Rule E2 also allows a binary tree to be replaced by a single branch, or vice versa,
but in this case the argument on the branch is either one or zero, because the binary
tree involves an argument divided by itself or subtract from itself, as described above
and shown in Figs. 4.8 & 4.9.

Rule E3 allows a single branch with no bar to be inserted (or removed) from a tree.
Going from Fig. 9.2 to 9.1, or Fig. 9.5 to 9.4, an extra node and branch are inserted above
the node in the tree indicated by the arrow. Going from Fig. 9.2 to 9.3, or Fig. 9.5 to 9.6,
an extra branch and node are inserted below the indicated node of the tree. In the oppo-
site direction (to Fig. 9.2 or to Fig. 9.5) the node and branch are eliminated.

Rule E4 involves trees with single branches, Fig. 10. The circles and capital ‘A’
stand for an argument or a sub-tree. Three trees have two nested branches for the
same type the operator (Fig 10.2-4) and one has two different operators (Fig 10.5). In
all cases the trees are equivalent to a single plain branch (Fig 10.1). For instance, Fig
10.4 states that taking the negative of a negative gives positive and Fig 10.5 shows
that subtracting a negative is equivalent to a positive. Thus, the variants of E4 allow
such nested branches to be replaced by a single plain branch, or vice versa.

Fig. 11. Promotion and demotion of bars

Rule E5 concerns the movement of bars up and down branches, as shown in Fig.
11. A bar on a trunk can be move down to any branch that has no bar, but if a bar
already exists on the branch it is cancelled out by the moved bar. The rule applies
equally to right-angle and arc trees. For example, Fig. 11.1 and 11.3 show that the
bar on the b branch is eliminated and a bar added to the a branch, when the bar of the
trunk is demoted.

Rule E6 concerns the relation of right-angle trees to
trees with arc branches. Fig. 12 is an example of how
repeated additions of the same argument may be
represented as a multiplication operation. A tree with
multiple right-angle branches for a single argument may
be transformed into a binary tree with arc branches, one
for the argument and another with a number matching the
quantity of right-angle branches.

Rule E7. Depending on the type of tree, transforms in-
volving turns are governing by different conservation

a b a b a b a b

–(a–b) = b–a 1/(a/b) = b/a

a b a b

1/(b×a) = (1/a)×(1/b)

a b a b

–(a+b) = 0–a–b

1 2 3 4
E5 E5 E5 E5

Fig. 12. Multiplication
and repeated addition

a 3 a

a+a+a = 3a

E6

184 P.C.-H. Cheng

rules. In a tree with right-angle branches (with or without horizontal bars), the num-
ber of turns in successive right-angle branches must be preserved, with the proviso
that one complete turn is equivalent to no turn. For example, for variable a in Fig.
13.1, there are no turns along the branches from the top of the tree down to the a leaf,
so when a quarter, half and three-quarter turn are introduced on the trunk, Figs. 13.2–
13.4, the a branch must be augmented with sufficient fractional turns that the total
number of turns is the same, a complete turn (or none). Similarly, with branches b, c
and d, which start with a quarter, half and three-quarter turn, respectively.

Fig. 13. Conservation of turns along successive right-angle branches in equivalent trees

The conservation of turns in trees with arc branches applies to the whole tree, so all
the turns on all the branches are summed, but with the exception that turns on
branches that also have diagonal bars must be deducted. In Fig. 14 all the trees have a
total of one quarter turn. In Fig 14.1 and 14.2 the quarter turn is associated with one
argument or the whole tree, respectively. In Figs 14.3-5 a quarter turn is associated
with a branch that has a diagonal bar, variable c, which means that there must be a
total of a half turn elsewhere in the rest of each of the trees, so that all the trees pos-
sess the same number of turns. In Fig 14.6 the half turn associated with that branch
will cancel most of the three-quarter turn on the middle branch (variable b) to leave
the requisite quarter turn.

Fig. 14. Conservation of turns throughout equivalent trees with arc branches

Rule E8. This rule encodes the property of distribution of multiplication over addi-
tion. In Fig 15.1 the topmost tree has arc branches, one of which is for the variable
‘a’ and the other attaches to a tree with right-angle branches (b+c). Now, as the arc
branch attached to the right-angle tree has no bar, the right-angle tree may be pro-
moted and its branches attached to two sub-tree with arc branches below, as shown in

a b

a+bi+(-c)+(-di) = ((-ai)+b+ci+(-d))i = -((-a)+(-bi)+c+di) = -(ai+(-b)+(-ci)+d)i

d c a b d c a b d c a b d c

1 2 3 4

E7.1 E7.1 E7.1

a b c a b c a b c a b c

ai×b/c = (a×b/c)i = ai×bi/ci = (ai×b/ci)i = -(a×b/ci) = a×(-bi)/(-c)

a b c

1 2 3 4 5 6

a b c

E7.2 E7.2 E7.2 E7.2 E7.2

 Algebra Diagrams: A HANDi Introduction 185

Fig. 15.2. Note that the two new arc-branched trees now share the single variable (a)
from the original arc-branched tree. Figs. 15.4 and 15.3 are variants of Figs. 15.1 and
15.2 that simply change the horizontal position of the variables according to rule E0.
This rule applies to right-angle trees with more than two branches and may be derived
by repeated application of Rule E8 to successive right-angle branches.

Fig. 15. Distributive property of multiplication over addition

Figs 16.1 and 16.2 show further two valid applications of rule E8 that also involve
the presence of bars and turns. Again, note the absence of a bar on the critical arc
branch, but the permitted presence of a turn on the branch in Fig. 16.2. In both cases
the redistribution of argument a does not directly affect the bars or the half turn, be-
cause they remain attached to their original branches. In contrast Fig 16.3 shows
when E8 cannot be applied, because there is a bar on the critical arc branch, which
may not be re-distributed through the right-angle tree when that branch disappears.

Fig. 16. Distributive property involving subtraction and division

Rule E9 concerns the transformation of trees for a single argument that have mul-
tiple arc branches, which may be nested, such as those shown in Figs. 7.5-7.10 and
Fig. 8. Transformations of such trees should simply maintain the total effective num-
ber of branches. For example, in Fig. 17.1 a single branch for the upper sub-tree con-
nects to a sub-tree with three arcs and a sub-tree with two arcs, hence there is a total
of five branches overall, as shown in Fig. 17.2. In Fig 17.4 there are three lots of
three arcs, which may be redrawn as nine branches, Fig. 17.5, or as the recursive ap-
plication of a three-branch sub-tree to a lower level tree with three branches, Fig.
17.3. In general, successive sub-trees with multiple branches at different levels are
multiplied, so as trees with upward pointing arcs represent fractional powers, we

a b c b c a

a×(b+c) = a×b+a×c = a×b+a×c = a×(b+c)

b c a b c a

E8 E8 E0

1 2 3 4

No bar

No bar

b c a b c a

a*(b–c) = a*b – a*c -(b+c)/a = -(b/a + c/a)

b c a b c a

E8 E8

a/(b+c) ≠ a/b + a/c

b c a b c a

|

1 2 3

Bar
No bar No bar

186 P.C.-H. Cheng

simply multiply by the appropriate fraction. In Fig. 17.6 there is a sub-tree with a pair
of arcs and above another with half an arc (two upside down arcs), thus the total
number of branches is one, as shown in Fig. 17.7. Further, the transition from Fig.
17.1 to 17.2, and from Fig. 17.4 to 17.5 may also be interpreted as multiple applica-
tions of E3, which allows branches to be eliminated from trees.

Fig. 17. Transformation of power expressions

Fig. 18. Transformations to main trunks of equal trees

Rule E10. So far all the transformation rules have applied to individual trees.
Consider now the transformation of multiple trees connected by the double horizontal
line (for algebraic equality). This set of rules permits the same operation to be ap-
plied to all the trees attached to the double line, with some provisos. Rule E10.1 al-
lows a horizontal or diagonal bar, or any turn, to be added to the top of both trees, or
removed from both trees. Fig 17.1 shows this schematically, where the trees are
represented by the circle and the pentagon and the grey squares stand for the same
type of bar or number of turns that are to be added or removed: Fig. 17.2 is a particu-
lar example with diagonal bars. Rule E10.2 warrants the transformation of a tree with
the incorporation (removal) of the same branch into both trees, as shown by the di-
amonds in Fig. 17.3 & 17.4. The one restriction is that the argument must not be a
zero when the branches are curves, as this could yield trees are not equivalent (e.g.,
2*0=3*0 but 2≠3). Further, Rule E10.3 states that the introduction of the operator
must produce trees with equal overall numbers of turns, as illustrated schematically
by the two grey circles and the two grey semi-circles on either side of Fig 17.5. Fig.

a a a

a3×a2 = a3+2 = a5 a32
 = (a3)3 = a3×3 = a9

a a a a

(a2)1/2 = a

E9 (E3) E9 (E3) E9 E9

1 2 3 4 5 6 7

a

2 4 6

E10

E10 E10

E10

1 3 5

E10

≠ 0

a
a ≠ -a a2 = (-a)2

a a

| |

 Algebra Diagrams: A HANDi Introduction 187

17.6 shows an invalid application of Rule E10.3, in which two trees with an equiva-
lent number of turns (right) are operated on to produce two new trees that do not have
equal numbers of turn (left).

Rule E11. To calculate magnitudes of trees whose leaves are numbers, one may
simply replace nodes with the number that results from applying the operators to the
given values. For multi-level trees the process is performed in a recursive manner
starting with the leaves.

Table 1 summarizes the 12 elementary rules for transforming HANDi expressions.

Table 1. Elementary HANDi transformation rules

Rule Summary
E0 Horizontal position of arguments/nodes is arbitrary.
E1 Swapping a single branch with binary tree involving identities:

 E1.1) Single branch with no bar, Figs. 4.1-4.5.
 E1.2) Single branch with a bar, Figs. 4.6 & 4.7.

E2 Introduce/eliminate an argument with a pair of inverse operators:
 E2.1) Arc branches, Fig. 4.8 E2.2) Right-angle branches, Fig. 4.9

E3 Branch insertion/elimination at a node, Fig. 9.
E4 Equivalence of nested operations on successive single branches:

 E4.1) Two bars, Figs. 10.2 & 10.3; or two half turns, Fig. 10.4.
 E4.2) A horizontal bar and half turn, Fig. 10.5.

E5 Promotion/demotion of bars up/down equivalent branches, Fig. 11.
E6 Multiplication is repeated addition, Fig. 12.
E7 Conservation of number of turns with respect to:

 E7.1) Successive right-angle branches within a tree, Fig. 13.
 E7.2) Whole tree of arc branches (diagonal bars = subtraction), Fig 14.

E8 Distribute arc branch over a right-angle tree, Figs. 15 & 16.
E9 Equality of the total number arc branches for one argument, Fig. 17.
E10 Operations applied to (removed from) top trunk of equal trees, Fig. 18.
E11 Replace nodes with values calculated from number arguments.

4 Derived Proofs and Composite Transformation Rules

The elementary transformations of HANDi diagrams presented in the previous section
can be applied to derive proofs or generate composite transformation rules. This sec-
tion considers a few examples.

Fig. 19 shows the two applications of elementary
rules: rule E1.1 turns a single branch tree into a binary
tree by introducing a second arc branch with the num-
ber 1 as its argument; rule E2.1 then converts the 1 into
to a further binary tree that involves the simultaneous
multiplication and division of a new variable. For the
purpose of a further example below that uses this deri-
vation, it will be called composite rule C1.

Fig. 19. Composite rule C1

a

 b = b×1 = b×(a/a)

b b 1 b

E1.1 E2.1

188 P.C.-H. Cheng

Under the conventional approach the notion that addition and multiplication are as-
sociative is typically introduced in as fundamental property of algebraic formulas. In
contrast, in HANDi the associative property may be treated as a composite rule that is
derived from the elementary rule E3, for the insertion or elimination of a branch at a
node. Fig. 20.2 may be redrawn as Fig. 20.1 or 20.3 by inserting a new right-angle
branch to create a sub-tree. A diagram equivalent to Fig. 20.1-3 may also be drawn
with arc braches for the associative property of multiplication. As E3 applies to any
node, a branch may be inserted into a diagram with bars, for instance as shown in Fig.
20.4 and 20.5. However, branches with bar may not be inserted in this fashion, so
Fig. 20.6 is not a valid transformation of Fig. 20.4 or 20.5: division is not associative.
A diagram equivalent to Fig. 20.4-6 may also be drawn with right-angle branches
showing the non-associative property of subtraction.

Fig. 20. Addition (& multiplication) is associative and division (& subtraction) is sometimes

Fig. 21 shows the proof that subtracting an argument is equivalent to applying the
negation operator to the argument. Fig. 21.1 encodes elementary rule E4.2 that states
that a positive argument is equal to the subtraction of the negative of the argument. A
branch with a single horizontal bar may be inserted in both trees according to rule
E10.2, so that left has one bar and the right has two, as shown in Fig. 21.2. Now, rule
E4.1 permits the cancellation of the two bars on the right, so we obtain Fig. 21.3,
which has just a half turn, the negation operator, to match the bar on the right, as re-
quired.

Fig. 21. Subtraction is equivalent to negation

The derivation of the product of two sums is shown in Fig. 22. This proceeds by
applying the distributive transformation, rule E8, three times in succession. The parts
of the diagram that are changed by each application of the rule are highlighted, which
have the characteristic patterns found in Fig 15.1 and 15.2 (or their mirror image). In

a b c a b c a b c

(a+b)+c = a+b+c = a+(b+c)

a b c a b a b c

(a/b)/c =a/b/c ≠ a/(b/c)

c

|

1 2 3 4 5 6

E3 E3 E3

 A = –(-A) 0–A=0–(–(-A) 0–A=-A

E10 E4.1

1 2 3

 Algebra Diagrams: A HANDi Introduction 189

the last step of the proof, Fig 22.4 to 22.5, all the unnecessary right-angle branches
are eliminated, by rule E3, to reveal the four products of the variables. Of course, one
may treat Figs. 22.1 and 22.5 as a composite transformation rule that simply says
draw arc sub-trees for each combination of variables in the two right-angle trees and
joint them all together with top level right-angle tree.

Fig. 22. Expansion of the product of two sums

Fig. 23 shows how the sum of reciprocals may be transformed by a diagrammatic
procedure equivalent to cross multiplication. The first step is to form a sub-tree for
each reciprocal in Fig. 23.1 with the variable of the other reciprocal by applying com-
posite rule C1 (defined above, Fig. 19) to give Fig 23.2. The position of the pair of
nodes may be swapped (applying rule E0) whilst the variables remain in place to yield
Fig. 23.3, in which the interchanged nodes have been highlighted. Rule E3 may now
be applied twice, as shown in Fig. 23.4, to introduce new branches to separate the arcs
with bars from the ones without. As each sub-tree in Fig. 23.4 has branches with
bars, the bars may be promoted to the next level by applying rule E5 (Fig. 23.5). The
pairs of sub-trees in Fig. 23.5 are equivalent, so we have a situation like Fig 16.2
(right), where the sub-trees here map to ‘a’ in that figure. Thus, rule E8 may be ap-
plied to coalesce the sub-trees to generate Fig. 23.6. With a little experience one
learns to compose steps in similar proofs, for example jumping straight from Fig. 23.4
to Fig. 23.5 or even to Fig. 23.6. Again, the initial and final diagrams (Figs. 23.1 and
23.6) may be treated as a composite transformation rule.

a b a b c d

(a+b)(c+d) = a(c+d)+b(c+d) = a(c+d)+(bc+bd) = (ac+ad)+(bc+bd) = ac+ad+bc+bd

a d b c c d a b c d a b c d

1 2 3 4 5

 E8 E8 E8 E3

Fig. 23. Sum of two reciprocals

1/x+1/y = (y/y)/x+(x/x)/y = (x/x)/y+(y/y)/x = x×x-1×y-1+y×x-1×y-1 = x/(x×y)+y/(x×y) = (x+y)/(x×y)

y x y x y x x y

1 2 3 4 5 6

 2×C1 E0 E8

x y

 2×E3

x y

 2×E5

190 P.C.-H. Cheng

As a final example, consider how laws of indices may be derived. Fig. 24 shows a
cubed variable divided by the square of the same variable. The proof simply in-
volves: (i) demoting the diagonal bar on the trunk of the binary tree to its branches by
applying E5 to give Fig. 24.2; (ii) eliminating branches of the upper tree using E3
twice, Fig. 24.3; (iii) eliminating pairs of arc branches with and without a bar to give
branches ending in 1 by applying E2 twice, Fig. 24.4; and, (iv) deleting the branches
ending in 1 by applying E1 twice, Fig 24.5.

That completes the introduction of HANDi and its transformation rules.

5 HANDi Design

The main motivation for the
creation HANDi was to fur-
ther test Representational
Epistemic ideas about how to
design notational systems to
encode knowledge [1-3]. The
core claim of this approach is
that effective notational sys-
tems should directly encode
the fundamental conceptual
structure of their knowledge
rich domains, within coherent
notational schemes, and thereby possess semantic transparency that will enhance
problem solving and conceptual learning [1-3]. Having presented HANDi in some
detail above, this section makes explicit the design features of the new notation that
attempt to achieve such a direct encoding of the knowledge of algebra.

HANDi attempts to provide a more rational codification than the conventional
formula notation by coherently encoding fundamental concepts and properties of
algebra. The notational schemes used to capture these concepts and properties will be
considered in turn and contrasted with the conventional approach.

Representing variables and numbers, and relations among them, is obviously fun-
damental to algebra. HANDi uses individual sub-trees composed of a node, a trunk
and branches to encode single relations among arguments. This is done for two rea-
sons. First, a sub-tree is an explicit composite iconic symbol that stands for an opera-
tion among arguments, or other sub-trees (Fig. 5). Second, it is feasible to limit to
just one instance the occurrence of letter standing for a variable in a tree. As the con-
ventional notation (largely) relies upon the linear concatenation of symbols to capture
relations among arguments, multiple occurrences of letters are often necessary, which
means that the identity of arguments participating in a particular relations cannot al-
ways be read directly from the formula, so detailed examination of the arrangement of
symbols in the formula is needed to determine the mathematical structure of the ex-
pression. In cognitive terms, HANDi exploits some of the well-understood benefits
diagrams (e.g., [4]): information for each and every relation is co-located in the

Fig. 24. Simplifying a power expression

a

a3/a2 = a3×a-2 = a×(a/a)(a/a) = a×1×1 = a1

a a a

E5 2×E3 2×E2

1 2 3 4 5

a 1

2×E1

 Algebra Diagrams: A HANDi Introduction 191

individual sub-trees of HANDi and the presence of just one letter for each variable in
a tree reduces amount of deliberate search that is needed to match symbolic labels.

Relations in algebraic expression are hierarchical, so knowing the specific level of
sub-expressions is essential to the correct interpretation and transformation of formu-
las. HANDi specifically uses the network structure of sub-trees, with nodes spatially
distributed in the vertical dimension, to show the hierarchal structure. In contrast, the
conventional notation makes the hierarchical structure of expressions rather opaque,
because it relies upon nested parenthesis to define sub-expressions or requires the
reader to mentally apply parsing rules (e.g., “BODMAS”). Both of these schemes in
the conventional notational clearly demand more mental effort than the direct visual
inspection of HANDi expressions (e.g., the levels of the nodes in Fig. 1 is more ob-
vious than the levels of the expressions in the formulas below the diagram.)

The four elementary arithmetic operators possess important conceptual similarities
and differences. In HANDi the respective shapes of branches, arc versus right-angle,
captures the similarity between multiplication and division but distinguishes it from
addition and subtraction. Bars on branches are not only used to distinguish subtrac-
tion and division from addition and multiplication, but also encode the asymmetric
nature of the former two operations. The perceptive reader will have noted that no
explicit rule relating to the commutative property was included among the elementary
rules. The explanation for its absence is that it is built directly into HANDi by the
particular design of branch shapes and bars. The benefits of this scheme reach further
by providing a single definition of the circumstances in which the distribution rule
holds when subtraction, division and negation operators are present, as shown in Fig.
16. Distribution is valid whenever the arc branch above the right-angle tree does not
have a bar. For example, the asymmetry of trees determined by the location of the bar
neatly encodes the validity of the right distribution of division but not the left distribu-
tion (i.e., (b+c)/a, Fig. 16.2, versus a/(b+c), Fig. 16.3].

Powers and imaginary numbers extend the range algebraic operations. In the con-
ventional formulas supplementary notation devices are built on top of the basic for-
mulas: superscripts for powers and the ‘i’ symbol as the imaginary unit. Each device
has it own particular set of rules. In contrast, the approach in HANDi is simpler. To
encode power relations HANDi exploits the idea that powers are operations that re-
peat multiplication, so the hierarchical network of sub-trees in the diagrams naturally
encodes repetitions of arc branches at the same level and by recursively spanning
levels (Fig. 7). HANDi has a single unified scheme to deal with imaginary numbers
and negative numbers, Fig. 5, 13 and 14, that builds the fundamental relations that
exist among positive, negative and imaginary numbers into the design of the notation
at a foundational level. In both the case of powers and imaginary numbers, HANDi
does not require the introduction of unique sets of rules associated with supplementa-
ry notations.

A potential disadvantage is that HANDi expressions are more complex in terms of
the sheer number of symbols, when considered at the level of nodes, branches and
bars. However, with a little experience one quickly begins to read HANDi expres-
sions at the level of sub-trees or higher, in which case its complexity is comparable to
the conventional notation. Taking this notion further, one potentially significant

192 P.C.-H. Cheng

difference between the two notations, in cognitive terms, is the extent to which
HANDi may allow its users to exploit perceptual operators to recognize meaningful
patterns and to make inferences (c.f. [4]). The primary notational scheme of the con-
ventional approach is the linear concatenation of symbols, including parenthesizes,
which tends to mask characteristic configurations of symbols. The network structure
and principled design of the symbols (branches, bars, turns) of HANDi aims to pro-
vide distinctive patterns to associate with particular concepts. Thus, many of the
HANDi transformation rules involve spotting patterns and drawing new configura-
tions, such as the multiple application of the E8 distribution rule in Fig 15.

It has been argued that HANDi may be a more rational encoding of algebra than
the conventional formula notation. However, reactions to a new notational system are
sometimes negative, for at least two reasons. First, one may initially feel that HANDi
expressions are arbitrary and its rules complex compared to the existing formula nota-
tion. However, such immediate judgments should be treated with caution, because
one’s relative expertise in the familiar notation masks the effort required to learn the
notation in the first place, which is what one is experiencing during initial encounters
with HANDi. Which notation better supports learning and problem solving is an
empirical question, so studies to evaluate HANDi are planned. The second common
negative reaction is to think that this is not what subject is “truly” about, because
algebra is the writing and transformation of formulas. However, this falsely assumes
that a topic and its notation are inseparable, perhaps because one has only experienced
algebra in the one notation, and that there is a single valid codification of a topic. The
scope of HANDi expressions and rules of derivations presented here provides an exis-
tence proof that an thoroughgoing rigorous alternative codification of algebra is feasi-
ble. HANDi is not a mere visualization of the formula notion, but a generative nota-
tion that re-codifies the content of this topic This, of course, opens up wider epistem-
ic and pedagogic questions that must, unfortunately, be considered elsewhere.

Acknowledgements. My thanks go to members of the Representational Systems Lab
in the Department of Informatics and to Alan Blackwell for their comments on early
versions of this paper. Thanks also to the three anonymous reviewers for their handy
comments.

References

1. Cheng, P.C.-H.: Electrifying diagrams for learning: principles for effective representation-
al systems. Cognitive Science 26(6), 685–736 (2002)

2. Cheng, P.C.-H.: Probably good diagrams for learning: Representational epistemic re-
codification of probability theory. Topics in Cognitive Science 3(3), 475–498 (2011)

3. Cheng, P.C.-H., Barone, R.: Representing complex problems: A representational epistemic
approach. In: Jonassen, D.H. (ed.) Learning to Solve Complex Scientific Problems, pp.
97–130. Lawrence Erlbaum Associates, Mahmah (2007)

4. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand words. Cog-
nitive Science 11, 65–99 (1987)

Boolean Differences between Two Hexagonal

Extensions of the Logical Square of Oppositions

Hans Smessaert�

Department of Linguistics
University of Leuven, Belgium

Hans.Smessaert@arts.kuleuven.be

Abstract. The classical Aristotelian Square characterizes four formu-
lae in terms of four relations of Opposition: contradiction, contrariety,
subcontrariety, and subalternation. This square has been extended into a
hexagon by two different strategies of inserting intermediate formulae: (1)
the horizontal SB-insertion of Sesmat-Blanché and (2) the
vertical SC-insertion of Sherwood-Czeżowski. The resulting visual con-
stellations of opposition relations are radically different, however. The
central claim of this paper is that these differences are due to the fact
that the SB hexagon is closed under the Boolean operations of meet, join
and complement, whereas the SC hexagon is not. Therefore we define
the Boolean closure of the SC hexagon by characterizing the remaining
8 (non-trivial) formulae, and demonstrate how the resulting 14 formu-
lae generate 6 SB hexagons. These can be embedded into a much richer
3D Aristotelian structure, namely a rhombic dodecahedron, which also
underlies the modal system S5 and the propositional connectives.

Keywords: square of oppositions, hexagon of oppositions, logical ge-
ometry, Boolean closure, 3D visualisation.

1 Introduction: The Aristotelian Square of Oppositions

The traditional relations of opposition are defined in terms of two formulae ϕ
and ψ being true together (ϕ ∧ ψ) or being false together (¬ϕ ∧ ¬ψ):

ϕ and ψ are contradictory iff S |= ¬(ϕ ∧ ψ) and S |= ¬(¬ϕ ∧ ¬ψ),
ϕ and ψ are contrary iff S |= ¬(ϕ ∧ ψ) and S �|= ¬(¬ϕ ∧ ¬ψ),
ϕ and ψ are subcontrary iff S �|= ¬(ϕ ∧ ψ) and S |= ¬(¬ϕ ∧ ¬ψ),
ϕ and ψ are in subalternation iff S |= ϕ → ψ and S �|= ψ → ϕ.

Two formulae are contradictory when they cannot be true together and can-
not be false together1. They are contrary when they cannot be true together

� I wish to thank Fabien Schang for bringing the work of Czeżowski to my attention
and Lorenz Demey for his Boolean advice. I am grateful to Fabien, Lorenz, Dany
Jaspers and Alessio Moretti for their feedback on earlier versions of this paper.

1 S |= ¬α means that the formula ¬α is a tautology of the logical system S. Hence α
is a contradiction, i.e. α is false in all models of S (see [4]).

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 193–199, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

194 H. Smessaert

Fig. 1. The Aristotelian Square of Oppositions

but may be false together and subcontrary when they cannot be false together
but may be true together. Subalternation holds between ϕ and ψ when ϕ
entails ψ but not vice versa. Figure 1 then shows the classical constellation of
four quantified formulae, together with their mnemonic conventions — all (A),
some (I), no (E) and not all (O) — and the colour conventions for the four
relations of Opposition. In Section 2 we consider the first hexagonal extension
of the square by Sesmat and Blanché, whereas in Section 3 the second extension
by Sherwood and Czeżowski is introduced. The crucial differences between the
two lead to the definition of the Boolean closure of the SC-hexagon in terms of
six different SB-hexagons in Section 4. The resulting structure is argued to be
isomorphic to the modal system S5 and the system of propositional connectives
in Section 5. This section also demonstrates how the six Aristotelian hexagons
can be embedded into the 3D structure of a rhombic dodecahedron.

2 Sesmat-Blanché: From Square to SB-Hexagon

The Square of Oppositions in Figure 1 has been extended by Sesmat [12] and
Blanché [2] to a logical hexagon by inserting a U vertex for all or no (A∨E)
above the upper horizontal A-E connection and a Y vertex for some but not all
(I∧O) below the lower horizontal I-O connection. In the resulting hexagon in
Figure 2a the three red diagonals A-O, I-E and U-Y represent the relation of
Contradiction (CD), whereas the blue relations of contrariety (CR) between A,
Y and E in Figure 2b and the green ones of subcontrariety (SCR) between I, O,
and U in Figure 2c yield two triangles interlocking into a star-like shape. The
black arrows of Subalternation (SA) in Figure 2d then go from each vertex of
the blue triangle to the two adjecent ones on the green triangle. The resulting
constellation, henceforth referred to as the Sesmat-Blanché (SB) hexagon,
not only contains the classical AIOE square SB1 in Figure 3a, but also the AYOU
Square SB2 in Figure 3b and the IYEU Square SB3 in Figure 3c.

3 Sherwood-Czeżowski: From Square to SC-Hexagon

Czeżowski [3], on the other hand, proposes a hexagonal structure which inserts
a third type of quantity on an intermediate layer in between the top layer of the
universals all and no in (1-4) and the bottom layer of the particulars some and

Hexagonal Extensions of the Square of Oppositions 195

Fig. 2. Opposition relations in the SB-hexagon: (a) Contradiction (b) Contrariety (c)
Subcontrariety (d) Subalternation

Fig. 3. Squares in SB-hexagon: (a) AIOE = SB1 (b) AYOU = SB2 (c) IYEU = SB3

not all in (3-6), namely the positive singular This X is Y in (2) in between a
and i and the negative singular This X is not Y in (5) in between e and o2.

(1) a All men are asleep 0001 (4) e No men are asleep 1000
(2) u This man is asleep 0011 (5) y This man is not asleep 1100
(3) i Some men are asleep 0111 (6) o Not all men are asleep 1110

The resulting hexagonal constellation in Figure 4 will henceforth be referred to as
the Sherwood-Czeżowski (SC) hexagon3. Although the three diagonals in
Figure 4a represent contradiction in much the same way as in Figure 2a, the SB-
hexagon is fundamentally different from the SC-hexagon (cf. [6,5]): the horizontal
SB-insertion of Sesmat-Blanché (A-U-E and I-Y-O) — with the vertical extra
diagonal UY - is based on (sub)contrariety whereas the vertical SC-insertion of
Sherwood-Czeżowski (a-u-i and e-y-o) — with the horizontal extra diagonal uy
— is based on subalternation. As a consequence, the relations of contrariety in

2 The expressions in (1-6) are of the general form Determiner(A,B) with A the noun
man, B the predicate be asleep and a the unique element in A picked up by the
deictic operator this. They are assigned a bit-string representation (see [13] for more
details) where each bit-position corresponds to the truth value of one of the four
disjuncts in the Disjunctive Normal Form: [A∩B=∅] ∨ [A∩B�= ∅ ∧ a/∈B] ∨ [A�B
∧ a∈B] ∨ [A⊆B]. We distinguish level 1 (L1), level 2 (L2) and level 3 (L3)
expressions in terms of the number of values 1 in their bit-string.

3 Khomskii [7] convincingly argues that this constellation was in fact discovered much
earlier by William of Sherwood [8].

196 H. Smessaert

Fig. 4. Opposition relations in the SC-hexagon: (a) Contradiction (b) Contrariety (c)
Subcontrariety (d) Subalternation

Fig. 5. Squares in SC-hexagon: (a) aioe = SC1 (b) uiye = SC2 (c) uoya = SC3

Figure 4b and subcontrariety in Figure 4c no longer constitute triangular shapes,
and the arrows of subalternation in Figure 4d no longer constitute the outer
edges of the hexagon. Furthermore, although the SC-hexagon also allows three
different embeddings of a square of opposition, the arrows point downwards in
Squares SC2 and SC3 in Figure 5b-c, whereas in Squares SB2 and SB3 in Figure
3b-c they point upwards4.

4 Boolean Closure of the SC-Hexagon

The central claim of this paper is that the differences between the SB-hexagon
and the SC-hexagon are due to the fact that the former is closed under the
Boolean operations of meet (conjunction), join (disjunction) and complement
(negation) whereas the latter is not. For any contingent formula ϕ in the SB-
hexagon, its negation ¬ϕ is also contained in it, while for any two contingent
formulae ϕ and ψ in the SB-hexagon, ϕ ∨ ψ and ϕ ∧ ψ also belong to it5. The
SC-hexagon is not closed under the Boolean operators in this way, however6.

4 Figures 3b-c are 120 degree rotations, counterclockwise and clockwise respectively,
of Figure 3a, whereas in Figure 5 the corresponding rotations are only 30 degrees.

5 In some cases conjunction yields a contradiction (A∧O) and disjunction yields a
tautology (A∨O). Although such trivial (non-contingent) formulae are not explicitly
represented in the hexagon, they do belong to the Boolean closure. In a sense, both
contradiction and tautology are “hidden” in the centre of the hexagon (see [4,13]).

6 The disjunction a∨o (1001), e.g. does not belong to the SC-hexagon.

Hexagonal Extensions of the Square of Oppositions 197

Fig. 6. (a) Hexagon SC1, (b) Hexagon SC2, (c) Hexagon SC3

4.1 Hexagonal Closure of the Three SC-squares

In a first step we now construct the Boolean closure of the three SC-squares in
Figure 5 by systematically adding the disjunction of the square’s two top nodes
above their upper horizontal connection and the conjunction of the two bottom
nodes below their lower horizontal connection7. Thus, the Boolean closure of the
SC1 square aioe (1+3+4+6) in Figure 5a is obtained by adding the formulae
(7-8) and yields the classical Sesmat-Blanché hexagon in Figure 6a. Similarly,
the closure of the SC2 square uiye (2+3+4+5) in Figure 5b adds the formulae
(9-10) yielding Figure 6b, whereas that of the SC3 square uoya (1+2+5+6) in
Figure 5c incorporates the formulae (11-12) resulting in Figure 6c:

(7) a ∨ e No or all men are asleep 1001
(8) i ∧ o Some but not all men are asleep 0110
(9) u ∨ e No men are asleep or this man is asleep 1011
(10) i ∧ y This man is not asleep but some men are asleep 0100
(11) a ∨ y All men are asleep or this man is not asleep 1101
(12) u ∧ o This man is asleep but not all men are asleep 0010

Notice that all hexagons in Figure 6 have two L1 expressions on the blue triangle,
two L3 expressions on the green triangle, and two L2 expressions one on each
triangle8. Thus the hexagons in Figure 6b and Figure 6c, which share the same
L2 diagonal uy, differ as to which of u or y occurs on the blue triangle.

4.2 Three More Hexagonal Closures

A fourth hexagon can be obtained by taking the same L2 diagonal a∨e-i∧o as in
Figure 6a, but this time putting a∨e on the blue triangle. The result in Figure
7a contains all six of the complex expressions in (7-8-9-10-11-12). The formulae

7 Notice that conjunction and disjunction apply straightforwardly to the bit-strings:
a conjunction only gets a 1 in positions where both conjuncts have value 1, a dis-
junction gets a 1 in positions where at least one disjunct has value 1 (see [13]).

8 Furthermore, any formula ϕ on the blue triangle can be defined as the conjunction
of its two adjacent formulae on the outer hexagon, and any formula ϕ on the green
triangle can be defined as the disjunction of its two adjacent formulae.

198 H. Smessaert

Fig. 7. (a) Hexagon SC4, (b) Hexagon SC5, (c) Hexagon SC6

in (1-6) and (7-12) contain all four possible L1 expressions and all four possible
L3 expressions, but only four out of the six possible L2 expressions. The two
remaining complex L2 expressions are given in (13-14).

(13) e∨(u∧o) No men sleep or this man does but not all men do 1010
(14) a∨(i∧y) All men sleep or this man does not but some men do 0101

These expressions constitute the third possible L2 diagonal: in combination with
(3-4-11-12) this diagonal yields the fifth hexagon in Figure 7b, whereas upside
down it combines with (1-6-9-10) into the sixth hexagon in Figure 7c.

5 Isomorphisms and the Rhombic Dodecahedron

The Boolean closure of the SC-hexagon in terms of 14 non-trivial formulae can
easily be shown to be isomorphic to that of the modal system S5 ([1,5,9,13]) and
that of the propositional connectives ([5,9,11]). The positive entailment sequence
in (1-3) is isomorphic both to that of the modal system S5 [�p � p � ♦p],
and to that of propositional logic, nl. [p∧q � p � p∨q]. The negative sequence
in (4-6) is isomorphic to both modal [¬♦p � ¬p � ¬�p] and propositional
[¬p∧¬q � ¬p � ¬p∨¬q]. Hence, in the realm of nominal quantification the
singular expression This man is (not) asleep fulfills a role similar to that of the
null modalities p and ¬p in S5, and that of the unmodified single propositions
p and ¬p with the propositional connectives9. In [4,13] the underlying algebraic
structure has been visualised by means of the 3D polyhedral structure of a
rhombic dodecahedron as in Figure 8a10. The six SB-hexagons in Figure 6
and Figure 7 then correspond to the 6 different ways in which the dodecahedron
can be sliced in two equal parts, as in Figure 8b. Two hexagons sharing an L2
diagonal interlock as in Figure 8c.

9 In other words, the middle area of “contingency” for possibly but not necessarily or
some but not all is split into possibly but not actually/some but not this one and
actually but not necessarily/this one but not all.

10 In [9,10] it is called the β3-structure and visualised as a so-called tetra-
icosahedron, very much similar to the tetra-hexahedron of [11]. In [4] the
rhombic dodecahedron is applied to the realm of Public Announcement Logic.

Hexagonal Extensions of the Square of Oppositions 199

Fig. 8. (a) Rhombic Dodecahedron, with (b) Single Hexagon and (c) Double Hexagon

6 Conclusions

This paper has compared two hexagonal extensions of the Aristotelian Square:
the SB-hexagon which is closed under the Boolean operators, and the
SC-hexagon, which is not. The incomplete SC-hexagon gets a Boolean closure
containing 8 more non-trivial formulae. The resulting 14 formulae generate 6
SB-hexagons embedded into a 3D rhombic dodecahedron of Oppositions.

References

1. Béziau, J.Y.: New light on the square of oppositions and its nameless corner. Logical
Investigations 10, 218–232 (2003)

2. Blanché, R.: Structures Intellectuelles. Essai sur l’organisation systématique des
concepts. Librairie Philosophique J. Vrin, Paris (1969)

3. Czeżowski, T.: On certain peculiarities of singular propositions. Mind 64(255),
392–395 (1955)

4. Demey, L.: Structures of Oppositions in Public Announcement Logic. In: Béziau,
J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition. Springer,
Basel (2012)

5. Horn, L.R.: Hamburgers and truth: Why Gricean explanation is Gricean. In: Hall,
K. (ed.) Proceedings of the Sixteenth Annual Meeting of the Berkeley Linguistics
Society, pp. 454–471. Berkeley Linguistics Society, Berkeley (1990)

6. Humberstone, L.: Modality. In: Jackson, F., Smith, M. (eds.) The Oxford Hand-
book of Contemporary Philosophy, pp. 534–614. OUP, Oxford (2005)

7. Khomskii, Y.: William of Sherwood, singular propositions and the hexagon of op-
position. In: Béziau, J.Y., Payette, G. (eds.) New Perspectives on the Square of
Opposition. Peter Lang, Bern (2011)

8. Kretzmann, N.: William of Sherwood’s Introduction to Logic. Minnesota Archive
Editions, Minneapolis (1966)

9. Moretti, A.: The Geometry of Logical Opposition. Ph.D. thesis, University of
Neuchâtel (2009)

10. Pellissier, R.: Setting n-opposition. Logica Universalis 2(2), 235–263 (2008)
11. Sauriol, P.: Remarques sur la théorie de l’hexagone logique de Blanché. Dialogue 7,

374–390 (1968)
12. Sesmat, A.: Logique II. Les Raisonnements. Hermann, Paris (1951)
13. Smessaert, H.: On the 3D visualisation of logical relations. Logica Universalis 3(2),

303–332 (2009)

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 200–213, 2012.
© Springer-Verlag Berlin Heidelberg 2012

An Exploration of Visual Complexity

Helen C. Purchase1, Euan Freeman1, and John Hamer2

1 School of Computing Science, University of Glasgow,
University Avenue, Glasgow, G12 8QQ, United Kingdom

2 Department of Computer Science, University of Auckland,
38 Princes Street, Auckland 1142, New Zealand

Abstract. Inspired by the contrast between ‘classical’ and ‘expressive’ visual
aesthetic design, this paper explores the ‘visual complexity’ of images. We
wished to investigate whether the visual complexity of an image could be
quantified so that it matched participants’ view of complexity. An empirical
study was conducted to collect data on the human view of the complexity of a
set of images. The results were then related to a set of computational metrics
applied to these images, so as to identify which objective metrics best
encapsulate the human subjective opinion. We conclude that the subjective
notion of ‘complexity’ is consistent both to an individual and to a group, but
that it does not easily relate to the most obvious computational metrics.

Keywords: Image complexity, visual aesthetic, image processing, empirical
results.

1 Introduction

In assessing the usefulness of an interface, it is not only the functional interaction
model and the provision of interactive elements that is important: non-functional
aspects of the interface also have a part to play in how useful the interface is
perceived to be, how much a user likes the interface, and how willing the user might
be to engage with it for extended lengths of time. There is even research that suggests
that the more ‘aesthetically pleasing’ an interface, the more likely a user is to perform
their task correctly and efficiently [1].

In this paper, we consider an aspect of the aesthetics of visual design that has not
been considered quantifiably before: that is, the ‘visual complexity’ of an image. If
we were able to measure and combine computational features of an image so as to
reliably match ‘complexity’ as judged by humans, then that would be the first step in
being able to determine the effect (if any) of the visual complexity of images used on
an interface and its effect on users’ aesthetic judgments, preference, performance, or
perceived usability.

This research therefore contributes to the growing area of investigating the effects
of interface aesthetics, while also adding a new human perception focus to the field of
image processing.

In this study, we created a set of nine computational metrics for image processing,
applied them to 60 digital images, and removed those metrics which were highly

 An Exploration of Visual Complexity 201

correlated with each other (while retaining one in each of the categories of colour,
edge, intensity variation and file size). We then obtained both ranking and rating
‘visual complexity’ judgments from 54 participants, assessed their internal and
external consistency, and then used regression analysis to devise a prediction formula.
We then attempted to validate the formula on a further 12 images and 28 participants.

2 Background

2.1 Interface Aesthetics

There is an increasing recognition of the role of visual aesthetics in interface design,
and several evaluation studies have been performed on assessing the aesthetics of
interfaces (e.g. [2-4]). In addition, theoretical work has produced frameworks for the
investigation of system aesthetics and on relevant and useful terminology (e.g. [5, 6]).

Recent research has demonstrated that the aesthetic appearance of an interface is
important, not just with respect to users’ preferences [7] and perception of usability
[4] but with respect to their performance in visual search tasks [1].

Lavie and Tractinsky [6] provide an extensive list of aesthetic terminology to
support subsequent experiments, and distinguish between “empirical studies of
aesthetics” involving controlled studies with manipulation of visual variables, and an
“exploratory approach” involving evaluation of existing stimuli. Most existing work
falls into the latter category: while this has produced interesting results, without being
able to relate the data back to quantitative or well-defined qualitative descriptions of
the stimuli, the results remain descriptive rather than explanatory.

Ngo et al.[8] took a quantitative approach, and defined fourteen computational
metrics for objectively quantifying different layout aspects of an interface, (e.g.
symmetry, balance, equilibrium, sequence). They use the term “aesthetic” for these
metrics, even though in effect they characterise simply the placement of objects on a
2D plane. These formulae produce values between 0 and 1, each an indicator of the
presence of an aesthetic feature of the interface. Ngo validated these measures [9] and
investigated whether they could be used to determine users’ acceptance of data entry
screens. He asked seven designers to rank 57 screens; from these results he proposed
a regression formula and proved that this formula could predict (within a small range)
the rankings of new participants on different screens.

The traditional definition of “aesthetics” with respect to the visual sense is much
richer than simple object placement, encompassing the use of colour, texture and
contrast. Lavie and Tractinsky [6] conducted studies using web sites which allowed
them to classify perception as being of two dimensions; “classical aesthetics”,
featuring characteristics such as symmetry, clarity, order and organisation, and
“expressive aesthetics”, relating to creativity and originality.

Ngo’s metrics addressed the quantification of the “classical” approach to aesthetic
perception, based on the positioning of objects on the plane. The more nebulous
notion of “expressive” aesthetics (being based on “originality and the ability to break
design conventions”) may be impossible to quantify objectively. There is, however, a
perspective that falls between the simple positioning of objects (the “classical”) and
creativity (the “expressive”): it is the perception of the complexity of an image –
colour, shapes, overlapping of visual objects, curvature etc. An image that is entirely
blue is not complex; a photograph of a busy railway scene is highly complex – this

202 H.C. Purchase, E. Freeman, and J. Hamer

complexity is not captured by either “classical” or “expressive” notions of aesthetic
perception.

2.2 Visual Perception of Web Pages

In considering the visual complexity of interfaces, several studies have been
performed on the perception of web pages. Such studies tend to focus on the overall
perception of the entire collection of objects that make up a web page, rather than the
perception of the individual objects themselves, and focus on preference judgements.

Knight and Pandir [7] asked participants to order printouts of twelve web pages
according to their perception of “pleasingness”, “complexity”, and “interestingness”
(with no further definition given to these terms). They found that the most pleasing
web pages were neither the most interesting nor the most complex, and that when
participants ranked web pages, complexity was not a predictor of aesthetic pleasure.
Their data also showed that participants were generally in agreement on complexity
judgements.

Michailidou et al. [10] also focussed on web pages, and asked participants to rank
thirty web pages according to “visual complexity”. Their correlation and regression
analysis was based around a definition of complexity that included the structural and
interactive features of the pages: the number of menus, number of images, number of
links etc.

When considering users’ perceptions of usability and “aesthetic appeal”, Purchase
et al. [11] asked participants to rank fifteen web sites, and related the ranking data to
the values from Ngo’s classical aesthetic layout metrics as applied to the positioning
of the text, image and control objects on the web pages. They found that aesthetic
appeal was strongly captured by Ngo’s composite metric, and that colour was not a
dominant factor in judging either aesthetic appeal or perceived usability. The
relationship between aesthetic appeal and the classical metrics was strongest with
respect to the placement of images (rather than text or control elements). They note
that a limitation of their approach was that this classical method only took into
account the location of the images, not their content, and that an image on the page
that was wholly blue would have contributed to the aesthetic metric calculation as
much as an image of a busy railway station of the same size and position.

2.3 Visual Complexity

The focus of this paper is the objective characterization of the visual complexity of a
single image. We are therefore placing this research in between the “classical” and
“expressive” definitions of Lavie and Tractinsky [6]. We are concerned with the
aesthetic judgments of static images that may be used, for example, as the background
for an interface, or as an item on an interface, or as a clickable image on a web page.
By focusing on the static images themselves (rather than web pages), we are
removing any factors that might be associated with interactive features. We aim to
investigate whether we can devise objective, computational measures of visual
complexity – comparable to those created by Ngo for the layout of objects.

The simplest objective indication of the visual complexity of a digital image is the
compressed file size; JPEG compressed file size [12, 13] and GIF file size [14] have
been found to correlate with human perceptions of visual complexity.

 An Exploration of Visual Complexity 203

File compression metrics are, however, rather abstract, and are difficult to describe
to both users and interface designers. Our research wished to investigate whether
alternative, more visually concrete features of an image related to the perception of
complexity – for example, colour, edges, extreme visual differences, etc.

Oliva et al. [15] found that people qualitatively characterised visual complexity
using criteria such as “clutter”, “symmetry”, “open space” and “organisation”, and
Knight and Pandir’s [7] participants used words like “overpowering”, “intense”,
“daunting” and “unordered” when describing the most complex website, and
“simple”, “unified” and “clean” when describing the least complex website.
Our challenge was to see whether these visual terms could be captured
computationally.

3 Method

3.1 Objective Measures of Complexity

In choosing our metrics for visual complexity, we considered definitions from
Snodgrass and Vanderwart [16] as “the amount of detail or intricacy”, and as
characterised by Oliva et al. [15] as being “principally represented by the perceptual
dimensions of quantity of objects, clutter, openness, symmetry, organization, and
variety of colors.” The work by Mario, et al. [17] suggests that analysis of the edges
in an image could be used as a measure of complexity (where a sharp change in
luminance in an image often represents the edge of an object).

Table 1. Computational metrics for the Visual Complexity of an image

Name Description
Values when applied to 60 experimental images
minimum maximum standard deviation

Colours
Number of unique
RGB colours.

10011 316630 55598

RColours
Number of unique
RGB colours, after
colour reduction

2070 114539 23460

PColours
Number of unique
RGB colours,
after posterization.

21 179 34.63

SColours

Number of unique
RGB colours,
after pyramid
segmentation.

2 35 5.02

EdgeArea
The area of the image
occupied by edges.

0.00029 0.1760 0.333

GrayscaleSD
Standard deviation of
pixel intensities
in grayscale.

14 80 16.55

JPEG
JPEG file size when
compressed.

51243 382364 60202

PNG PNG file size. 410820 2199954 410200
GIF GIF file size. 403096 989309 131918

204 H.C. Purchase, E. Freeman, and J. Hamer

 Based on this prior research, our own intuitions, pilot tests conducted as part of an
associated research project [18] and considering the prior research that found the
relationship between complexity and file size, we categorized our metrics into four
types: colour, edges of objects, intensity variation, and file size. We implemented nine
different computational metrics (Table 1): each metric takes as input a digital image
file, and produces a metric value.

Colours: Digital images are typically represented as a grid of pixels, where each pixel
has associated with it three values; the red, green and blue (RGB) components which
make up the colour of that pixel. The most simple of the measures, Colours, is a count
of the unique RGB colours which make up an image.

RColours: In an attempt to improve on the Colours metric, an algorithm was created
which tried to normalize similar coloured regions by looking at adjacent pixels. This
measure, RColours, is the number of unique colours after this algorithm has
transformed an image. This algorithm compared each pixel with the pixel to the right,
and below it. If either of these pairs of pixels were considered “similar” (within 10
units with respect to the CIE76 formula [19-21]) the adjacent pixel was coloured to
match the original pixel. This had the effect of reducing the number of colours in
similar coloured areas such as the sky.

PColours: The PColours metric is a count of unique RGB colours, after an image has
been transformed using a posterization algorithm. The posterization process limits the
red, green and blue components of an RGB colour to a specific number of areas. This
has the effect of normalizing similar coloured regions of an image as these similar
colours fall into the same area. In this study, a posterization parameter of 6 was used,
allowing up to 63 colours.

SColours: In image processing, segmentation is the process of simplifying an image
by organising pixels into a larger group of pixels, a “segment”. Pyramid segmentation
[22] constructs a pyramid, where pixels are compared with those on adjacent levels.
The pyramid segmentation function is parametrised by two threshold values. The first
of these defines the threshold below which two pixels on different levels are
considered associated. The second threshold determines if two segments belong to the
same cluster. Pyramid segmentation, with both thresholds set to 60, was used to
transform an image to its segmented form. The SColour measure counts the unique
RGB colours in this transformed image. The rationale for this metric is that the
number of colours in a segmented image should roughly indicate the number of
“objects” perceived to be in the image, as a segment (each a single colour) typically
represents a single group of features in an image.

EdgeArea: The edge detection process searches for sharp changes in intensity [23]
which typically represents the edges of objects. Using the Canny edge detection
algorithm [24] implementation provided by OpenCV [22], a metric was created which
calculates the EdgeArea; the ratio of edges in an image to non-edges. The two

 An Exploration of Visual Complexity 205

threshold values used for the Canny algorithm were 1 and 100, for the first and
second thresholds respectively. To remove noise, images were first smoothed using an
11x11 Gaussian blur. The rationale for this metric is that images with a greater edge
area may represent images containing a higher number of objects

GrayscaleSD: Unlike images which use the RGB colour system, grayscale images
store the intensity of that pixel, typically in the range of 0 (black) to 255 (white). The
GrayscaleSD metric takes the standard deviation in pixel intensities to give a measure
of how much the image varies in intensity, thus representing high variations in
intensity. Intensity variations can indicate presence of different objects in the image.

JPEG, PNG and GIF: These three metrics are the compressed filesize of the image.
The JPEG representation of the image is compressed at 70% quality using
ImageMagick [25].

3.2 Subjective Perception of Complexity

A within-subjects experiment was conducted to gather subjective rankings and ratings
of visual complexity. The dependent variable in this experiment was participants’
subjective view of “visual complexity”.

Sixty images were used in this study, which were photographs taken by the second
author. A wide range of image subjects were sought, including landscapes, domestic
objects and city scenes. Images were resized to a resolution of 640x480 for the
experiment and were shown in colour.

Procedure: Subjective data was gathered online, using a website created specifically
for this study, allowing participants to take part at a time and place which suited them.
After reading about the experiment and agreeing to volunteer to take part, participants
began the first of two stages in the experiment.

In the first stage, participants were shown four images in a row and asked “Please
sort the images based on how visually complex you consider them to be.” A drag-and-
drop user interface allowed the participants to easily compare and sort images. Each
image was shown twice during this stage, such that each participant completed thirty
four-way comparisons. A four-way comparison was chosen over two or three based
on pilot studies: we wished the task to be difficult enough that participants were
required to think carefully about their considerations of visual complexity.

This first stage of the experiment allowed the participants to develop a good idea
of what causes them to perceive an image as being complex. In the second stage of
the complexity experiment, participants were shown each of the sixty images
individually, and were asked to rate the visual complexity of each image using a five-
point Likert scale.

Appropriate randomisation was used throughout, with different random orders
used for each participant, both in the first stage (the selection of the four images to
shown at any one time) and in the second stage (ordering of the images shown with
the Likert scales).

206 H.C. Purchase, E. Freeman, and J. Hamer

At the end of the experiment, participants were thanked for their participation and
given the chance to provide anonymous feedback. The mean time spent on the
experiment per participant was 13 minutes. The experiment ran for a two week
period, during which time 54 participants completed all stages of the experiment.

3.3 The Data

Each trial in the ranking stage of the experiment provided six pairwise orderings
between the four images. As each of the 60 images was shown twice (a total of 30
trials), each participant provided 180 pairwise orderings. These orderings were
represented in a directed acyclic graph of 60 nodes and 180 edges, one graph for each
participant (called G1..G54). A composite graph (GAll) of 60 nodes was also created,
representing all the pairwise orderings from all the participants.

In addition, each image was associated with the sum of two numbers, each
representing the two ranking positions in which it was placed in its row-of-four (1 for
least complex, 4 for most complex), summed over all participants (called R1..R60).
The range was 154-408 (standard deviation = 63.9).

The third data measure collected was the mean Likert rating for each image over
all participants (L1..L60). The range was 1.46-4.63 (standard deviation = 0.77).

All the metrics in Table 1 were implemented and applied to all 60 images.

4 Analysis

Several participants mentioned in the end-of-experiment questionnaire that they were
confused as to what the term “Visual Complexity” meant. One participant remarked
that “I found it hard to judge complexity of the scenes” and that he wasn’t sure “how
‘complex’ they are.” Another participant commented that it was “difficult to judge
‘complexity’ of an image due to the different concepts of complexity such as colour,
shape and patterns.” It was suggested by a third participant that “it’d help to explain
in more detail what you expect from the term ‘visually complex’.” No description had
been given on purpose, as previous work by Oliva et al. [15] found that perception of
visual complexity is biased by how the term is described. Two groups in a between-
subjects experiment were given different descriptions of complexity, and the
reserchers found that these groups judged complexity differently according to the
description they were given.

Before addressing the main research question of relating the complexity data to the
computational metrics, we therefore needed to ensure that the ranking and rating data
collected was robust enough to use. This analysis section therefore starts off with a
consideration of consistency.

4.1 Consistency

Our consistency analysis considered two questions:

• Were participants consistent within-themselves as to their definition of ‘visual
complexity’? Each image was deliberately shown twice in the ranking task so
that we could ensure that the participants were being consistent in their
judgments (and were taking the task seriously).

 An Exploration of Visual Complexity 207

• Were participants consistent between-themselves as to their definition of
‘visual complexity’? We needed to be sure that our aggregate data over all
participants was representative of a consistent view of complexity (rather than
there being, for example, two opposing views, which would result in a
meaningless aggregate).

In determining within-participant consistency, we laid out each of the 54 graphs
(G1..G54) using a hierarchical graph layout algorithm which displays as many of the
directed edges as possible in the same direction, from top-to-bottom. We then
determined how many of the edges in each would need to be reversed for all the
edges to flow downwards; that is: how many edges need to be reversed for the graph
to contain no cycles; or, put another way, how many of the participant’s pairwise
judgments should be reversed for the graph to represent total consistency (Fig. 1).

22 of the 54 participants were wholly consistent, 13 were only inconsistent in one
pairwise judgment, and only two made as many as six. When considering that each
participant made three explicit pairwise judgments for each four-in-a-row ranking
task,1 and therefore a total of 90 placements, these are low numbers, with 6 judgments
representing only 7% of all judgments. These numbers suggest that participants were
internally consistent in their definition of visual complexity, and that they were all
taking the ranking task seriously.

Fig. 1. Histogram showing the number of participants for whom consistency can be assured by
reversing the given number of pairwise judgments

In determining between-participant consistency, we considered the GAll graph.
This graph includes all 60 nodes (representing the images) and 9469 directed edges
(representing ‘is more complex than’ judgments). All pairwise decisions made by all
participants are included in this graph, excluding duplicate edges from the same
participant: thus, if a participant had two opportunities to compare image A with

1 An additional three pairwise rankings can be inferred in any four-way ranking; only three are

explicit rank placements.

208 H.C. Purchase, E. Freeman, and J. Hamer

image B (and made the same decision as to which was more complex both times), this
decision was represented only once in GAll. However, if two participants made the
same complexity decision between image A and image B, or if a participants made
two contradictory decisions about A and B, then both decisions are recorded.

 For each pair of images, we computed an ‘agreement index’ – the proportion of
edges going in the same direction; i.e. the proportion of those participants who had
had an opportunity to make a pairwise judgment between the two images who agreed
on their relative complexity. The range of this agreement index is [0.5-1.0], where 1.0
represents total agreement, 0.5 means a 50:50 split between the judgments made, and
therefore no agreement.

Of the 17682 agreement indices, 572 (32%) represented total agreement with a
value of 1.0, with 926 (52%) pairwise judgments representing agreement of at least
0.8 (Fig. 2). The mean was 0.79. Only 9% of the indices were 0.5, representing no
majority agreement at all. We have no explanation for the unexpectedly higher
number of 0.6-0.69 agreements than 0.7-0.79, but the general trend from right to left
is clearly downwards. Our images were deliberately not chosen to represent extremes,
but to cover a range of objects and scenes, and so the fact that there was not total
agreement for all pairwise judgments is as expected. This data suggests that there was
sufficient agreement amongst the participants as to what is meant by ‘visual
complexity’ for the complexity ranking data to be worth analyzing further, and to be
related to the computational metrics.

Fig. 2. Histogram showing frequency of agreement indices for 1768 pairwise complexity
judgments: 1.0 represents total agreement; 0.5 represents no clear agreement.

Using these agreement indices, we identified those images for which there was
most agreement: the top-ranked nine images have a mean agreement index of over
0.849 (Fig. 3). 3

2 1768 is (60*59/2)-2. Two node pairs were never seen in the same group-of-four by any

participant.
3 O.849 was chosen as the cut-off when considering the rank of agreement indices, as the

difference between 0.849 and the next image’s index (0.836) represented an apparent step
change.

 An Exploration of Visual Complexity 209

0.877

0.877 0.876

0.872

0.862

0.934 0.903 0.869

0.849

Fig. 3. (a) The nine images with the highest mean agreement amongst participants: the top row
are ‘the least complex’, the bottom row are ‘the most complex’

4.2 Computational Predictors of Visual Complexity

Regression Analysis: We have two measures of subjective relative complexity for
each of the 60 images:

• the sum of the ranks (R1..R60), and
• the mean Likert value (L1..L60).

The correlation between R1..R60 and L1..L60 is 0.97 (p<0.001). We chose to use the
Likert ratings in our analysis: the ranking values are relative (i.e. participants were
forced to assign rank values to images in comparison with the others in each group-
of-four), while the Likert ratings are absolute (i.e. participants were only looking at a
single image when they gave it an individual Likert rating).

The predictor variables used in a multiple regression analysis should be
independent where possible. While we had nine image metrics, we only needed one
metric for each of the four visual categories: colour, intensity, edges and file size. By
looking at the pairwise correlations between the values of all nine metrics when
applied to the 60 stimuli, we eliminated those metrics for which there was a high
correlation within the same type. This left us with four metrics: for colour (SColour),
for edges (EdgeArea), for intensity (GreyscaleSD), and for file size (GIF). While
these metrics were not all entirely independent (for example, there was a significant
correlation between Edge Area and GIF), this was the best combination of metrics we
could have chosen so as reduce the overall number of high correlations.

For a valid multiple regression analysis, it is generally accepted that the number of
cases must substantially exceed the number of predictor variables: an absolute
minimum ratio of 5:1 (and a preferably ratio of 10:1) [26]. In our case, we have 60
cases, and 4 predictor variables, a ratio of 15:1.

We used the SPSS multiple linear regressions tool, using the ‘Enter’ method first to
identify the predictor variables, followed by the ‘Backward’ method which produced
the statistically significant (p<0.05) co-efficients for these variables.

The Regression Formula: The analysis produces a formula y = ε + β1x1 + β2x2 + ...
+ βnxn such that y is the dependent variable (in this case, the visual complexity as
represented by a Likert rating judgement between 1 and 5, called VCL), ε is the y-

210 H.C. Purchase, E. Fre

intercept and ß1 to ßn are c
SColour, GreyscaleSD, Ed

The best-fitting model pr

VCL = 1.9

The EdgeArea and GIF

Watson statistic for this mo
2.0, this value indicates, as
independent.

The goodness-of-fit of
indicates that 25% of the v
this model. The standard e
between observed depende
this 0.67 value into contex
and 5.

4.3 Testing the Model

Although a statistically sig
predictor variables, we ha
explains 25% (R2=0.248) of

To see whether this mo
experimental data. 28 par
before, with 12 new imag
predict the mean Likert ra
predicted visual complexity

Fig. 4. The relationship betw
scatterplot on the left do not st

Fig. 4 plots the mean L
predicted by the model (le
ranking predicted by the mo

The correlation co-effic
0.257; between the actual a

eeman, and J. Hamer

coefficients for independent variables x1 to xn (in this ca
dgeArea and GIF).
roduced the following formula:

945 + 0.013*GreyscaleSD + 0.053*SColour

F variables were not included in this model. The Durb
odel is 1.992: being close to the generally agreed cut-of
 we know, that the two predictor variables are sufficien

this model is represented by its R2 value (0.248) wh
variation in the dependent variable (VCL) is described
error of this model, 0.67, describes the standard deviat
nt variables and the predicted dependent variables. To
t, the range for the dependent variable VCL is betwee

gnificant regression formula had been found based on t
ad little confidence in it – this best fitting model o
f variance in subjective ratings of visual complexity.
odel held any validity, we tested it against further, n
rticipants underwent the same experimental process

ges provided by the first author. The model was used
ating for each image, and to rank the images in order
y.

ween predicted and actual results. Note that both axes for
tart at the origin.

Likert values for these validation images against the va
eft) and the ranking of the validation images against th
odel (right).
cient between the actual and predicted Likert values w
and predicted ranks it was 0.294. Neither of these value

ase,

ban-
ff of
ntly

hich
d by
tion
put

en 1

two
only

new
s as
d to
r of

the

alue
heir

was
es is

 An Exploration of Visual Complexity 211

significant. We removed image number 5 from the analysis; as a map, it was more of
a schematic than an image, and we felt that, in retrospect, its inclusion had been
inappropriate (and it was one of the obvious outliers from the data obtained: the
lower-right data point in both plots in Fig. 4). Redoing the analysis without this map
image produced revised correlation co-efficient of 0.450 and 0.473; again, neither of
these is statistically significant.

5 Discussion

Several aspects of this study surprised us: even when they were not given a specific
definition of an uncommon and abstract visual concept, participants are in broad
agreement with each other as to what it means when applied to concrete instances. In
addition, participants are internally consistent with their interpretation of a term that
they are unlikely to have had to work with before. There seems to be no doubt as to
what ‘visually complex’ means from the point of view of human perception – it may
be difficult to precisely define, but people “know it when they see it.”4

However, our exploratory study has shown that ‘visually complex’ is more difficult
to define computationally than subjectively. That is, while it may be easy for us to
devise computational metrics that measure various aspects of an image, finding ‘the
right’ metrics that will adequately capture the human notion of ‘visual complexity’ is
more challenging. Despite the fact that we used obvious visual variables of colour,
intensity change, and extent of edges (in addition to the variable of compressed file
size), it appears that there are other less obvious image features that need to be
considered.

The participants’ complexity judgments were based on two processes: the physical
perception of the stimulus, as well as the semantic comprehension of the term ‘visual
complexity’. Our consistency analysis suggests that we need not concern ourselves
overly with the latter issue, and that it is the former where further work should be
focused. More complex image processing algorithms for feature extraction, pattern
variation, intensity fragments, level of detail of edges (as in [17]) or spatial frequency
analysis might provide more useful predictor variables – even if some of these
features can only be completely defined computationally, are difficult to define
qualitatively, and may be hard to describe to users or interface designers.

In our attempt to locate this study between “classical” and “expressive” aesthetics
[6], we have made no attempt to include metrics representing the layout of objects in
the image. This may have been an important omission, as it may be that ‘complexity’
also encompasses the notions of order, symmetry, clarity, balance (or the lack
thereof). Image processing algorithms that can identify the main objects in image (and
their location in the 2D plane), and then apply the Ngo metrics to derive a classical
aesthetics measure may embody useful factors that are missing in our regression
formula. Pointers to this idea can be found in a study on web site complexity [10],
when it was found that “the more organised, clear, clean and beautiful a webpage is,
the visually simpler the page was perceived by the participants” – it is possible that
these classical features extend to non-interactive images as well.

4 All the images (experimental and validation) are at www.dcs.gla.ac.uk/~hcp/Diagrams2012.

212 H.C. Purchase, E. Freeman, and J. Hamer

There are other higher-level perception processes that could also be integrated into
studies of visual complexity, for example, the Gestalt laws and principles of pattern
recognition [27]. Our approach has been bottom-up; additional studies could devise
computational metrics that characterize images with respect to their overall visual
pattern or structure and include these into the analysis.

Different results may be obtained by using stimuli that are diagrammatic or
schematic in form, or that have abstract meaning, rather than concrete photographs. It
may prove easier to quantify visual complexity with pictures that are less expressive
than photographs.

Until a valid computational model encapsulating human perception of ‘complexity’
has been derived, experimental work on interface aesthetics that wishes to consider
the complexity of images used will need to derive quantitative complexity rankings
from supplementary human studies. This approach is similar to that used by
Hassenzahl [3] who asked one set of participants to rank MP3 player skins according
to ‘beauty’ and used the resultant ‘most beautiful’ and ‘ugliest’ skins as the
independent variable in a subsequent experiment.

6 Conclusion

This paper has reported on an experiment that attempted to derive a computational
formula for the human perception of ‘visual complexity’ of an image. Despite using
metrics for typical visual features (i.e. colour, edges, intensity), and including a
common image compression method, our regression formula gave poor predictions of
the complexity of a validation set of images, as judged by human participants. It is
clear that more subtle or advanced image processing algorithms will be needed to
appropriately capture the nuances of the human perception of image complexity.

Acknowledgments. We are grateful to the many participants who took part in both
parts of this experiment, to Mhairi McDonald for her statistics assistance, and to
David Simmons and Paul Siebert for their useful image processing suggestions.

References

1. Salimun, C., et al.: The effect of aesthetically pleasing composition on visual search
performance. In: Nordic Human Computer Interaction Conference, pp. 422–431. ACM
(2010)

2. Hartmann, J., Sutcliffe, A., De Angeli, A.: Investigating attractiveness in web user
interfaces. In: Human Factors in Computing Systems (CHI) Conference, pp. 387–396
(2007)

3. Hassenzahl, M.: The Interplay of Beauty, Goodness, and Usability in Interactive Products.
Human-Computer Interaction 19, 319–349 (2004)

4. Kurosu, M., Kashimura, K.: Apparent usability vs inherent usability: experimental analysis
on the determinants of the apparent usability. In: Human Factors in Computing Systems
(CHI) Conference (1995)

 An Exploration of Visual Complexity 213

5. Hartmann, J., Sutcliffe, A., De Angeli, A.: Towards a Theory of User Judgment of
Aesthetics and User Interface Quality. ACM Transactions on Computer-Human
Interaction 15(4), 15 (2008)

6. Lavie, T., Tractinsky, N.: Assessing dimensions of perceived visual aesthetics of web sites.
International Journal of Human-Computer Studies 60(3), 269–298 (2004)

7. Knight, J., Pandir, M.: Homepage aesthetics: The search for preference factors and the
challenges of subjectivity. Interacting with Computers 18, 1351–1370 (2006)

8. Ngo, D., Teo, L., Byrne, J.G.: Modelling interface aesthetics. Information Sciences 152,
25–46 (2003)

9. Ngo, D., Byrne, J.: Application of an aesthetic evaluation model to data entry screens.
Computers in Human Behavior 17(2), 149–185 (2001)

10. Michailidou, E., Harper, S., Bechhofer, S.: Visual Complexity and Aesthetic Perception of
Web Pages. In: SIGDOC 2008 Conference, Lisbon, pp. 215–224 (2008)

11. Purchase, H.C., et al.: Investigating objective measures of web page aesthetics and
usability. In: Lutteroth, C., Shen, H. (eds.) Australasian User Interface Conference, pp. 19–
28. CPRIT, Perth (2011)

12. Donderi, D., McFadden, S.: Compressed file length predicts search time and errors on
visual displays. Displays 26, 71–78 (2005)

13. Donderi, D.: An information theory analysis of visual complexity and dissimilarity.
Perception 35, 823–835 (2006)

14. Forsythe, A., et al.: Predicting beauty: Fractal dimension and visual complexity in art.
British Journal of Psychology 102, 49–70 (2001)

15. Oliva, A., et al.: Identifying the Perceptual Dimensions of Visual Complexity of Scenes.
In: Cognitive Science Conference (2004)

16. Snodgrass, J.G., Vanderwart, M.: A Standardized Set of 260 Pictures. Norms for Name
Agreement, Image Agreement, Familiarity and Visual Complexity. Journal of
Experimental Psychology: Human Learning and Memory 6(2), 174–215 (1980)

17. Mario, I., et al.: Image complexity measure: a human criterion free approach. In: North
American Fuzzy Information Processing Society, pp. 241–246 (2005)

18. Salimun, C., Purchase, H.C., Simmons, D.: Visual aesthetics in computer interface design:
does it matter? In: 34th European Conference on Visual Perception, p. 220 (2011)

19. International Commission on Illumination: Colour Difference,
http://en.wikipedia.org/wiki/Color_difference#CIE76 (accessed
February 28, 2012)

20. Robertson, A.: The CIE 1976 color-difference formulae. Colour Research and
Application 2(1), 7–11 (1997)

21. Sharma, G.: Digital Color Imaging. IEEE Transactions on Image Processing 6(7), 901–932
(1997)

22. Willow Garage: OpenCV, http://opencv.willowgarage.com/ (accessed
February 28, 2012)

23. Ding, L., Goshtasby, A.: On the Canny edge detector. Pattern Recognition 34, 721–725
(2001)

24. Canny, J.: A Computational Approach to Edge Detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence 8(6), 679–698 (1986)

25. ImageMagick Studio LLC: ImageMagick, http://www.imagemagick.org/
(accessed February 28, 2012)

26. Brace, N., Kemp, R., Snelgar, R.: SPSS for Psychologists, 2nd edn. Palgrave Macmillan
(2003)

27. Ware, C.: Information Visualisation: Perception for Design. Elsevier (2004)

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 214–232, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Diagram Ecologies −
Diagrams as Science and Game Board

Christoph Lueder

Abstract. This paper will examine two ‘ecologies of thought’, which
encompass architectural theory, history, pedagogy, and practice.

A lineage of ‘scientific’ diagramming originates from scientific management
and the Bauhaus-inspired curriculum introduced to Harvard by Walter Gropius;
it incorporates diagrams into a problem-solving methodology, and is
exemplified by the ‘bubble diagram’. This scientific emphasis is extended by
Christopher Alexander’s urban analysis introducing mathematical set theory. In
general, the scientific diagram emphasizes hierarchies and logical relations; it
eschews visual resemblance to the subject of its analysis.

The second, post-war, trajectory privileges the semantic and syntactic
potential of the diagram, and shifts emphasis from “solving a problem” to
“learning a language”; it may be best understood through the ‘Nine Square
Grid’ design exercise introduced by John Hejduk, resonating with positions
articulated by Colin Rowe, Rudolf Wittkower, and Rudolf Arnheim.

The rendezvous of both trajectories with the digital screen sparks a new
typology, diagrammatic controls.

Keywords: Diagram, annotation, architecture, design, heuristic, scientific
management, syntactic, transparency, urbanism, grid, digital, screen, interface,
diagrammatic control.

1 The Relational Identity of Diagrams

Unlike other forms of art, diagrams usually are inscribed and annotated with text; and
diagrams can also be annotations to texts, ranging from technical manuals to
theoretical manifestos. Diagrams are tools for explaining (Collins English Dictionary,
2003); they in turn are explained by their annotations. Indeed, diagrams have
accompanied the earliest theoretical texts on architecture, such as Vitruvius Ten
Books on Architecture, which refers to nine diagrammatic images (Carpo, 2001).
Those diagrams are not included in the surviving (hand copied) exemplars; instead
some copies, such as the Sélestat Codex, are annotated with new diagrams, revealing
a dynamic relationship between text and diagram. In a more recent example of
diagrammatic re-annotation, Bernhard Hoesli appends to his translation into German
of Colin Rowe and Robert Slutzky’s essay Transparency: Literal and Phenomenal
exercises he had asked students to undertake, intending to complement their reading
of the text through making diagrammatic models and drawings. Both the fabrication
of diagrams, as well as their appendage to the translated text, augments the praxis of
dynamic diagrammatic annotation.

 Diagram Ecologies − Diagrams as Science and Game Board 215

5 6 7 9 10 11

12

3

4

Fig. 1. American Football Coaches Association, Athletic Journal, 1939, Football offence
diagram 11, Illinois High Schools

Diagrammatic charts can seamlessly integrate diagnosis and prognosis (or project
and prognosis); other diagrams sustain parallel temporal and spatial readings, as
witnessed by lines of longitude on world maps, which denote distance in space, but
also mark hourly increments. Diagrams emanating from a particular discipline, such
as biology, geography, dance, sport analysis (fig 1), architecture, or filmmaking can
be appropriated by another discipline, transferring modes of operation and frames of
reference. This often occurs in a semi-conscious, informal process.

The fundamentally relational identity of diagrams (Krauss, 1999, p. 3) places them
in a supporting role, but also at pivotal, if not always acknowledged, positions within
ecologies of thought. Hence, diagrams provide auspicious vantage points for
describing and understanding such ecologies. Paraphrasing Anthony Vidler’s
statement that ‘the diagram is both the instrument of thought and its mirror’ (2006,
p.20), it can be claimed that specific types of diagrams have become preferred
instruments to specific ecologies of thought and act as their mirrors.
The science of ecology studies the relations between living organisms. The term
Diagram Ecologies is appropriated to theory and used shift emphasis from away
singular authors or schools toward dynamic and reciprocal links between praxis,
education and theory. The 20th century has not produced a singular, unified diagram
ecology; instead several approaches compete. The two most dominant diagram
ecologies will be explored in detail, and at a set of scales ranging from human body,
room, building, to city.

The first diagram ecology looks to science for reference; diagrams are employed as
devices for solving problems, but not recognized as objects of inquiry in themselves,
hence such heuristic diagrams could be described as transparent. These types of
diagram historically have been associated with scientific management and Taylorism,
however, their broader roots and wider reach merit attention. Bubble and flow
diagrams are the most conspicuous manifestation in architecture; they remain
indispensable to contemporary architecture and urbanism.

A second diagram ecology refers to the history of architecture itself, to art, and to
Gestalt theory; it deems the diagram itself worth of interrogation. The nine square
grid problem introduced by John Hejduk is its most conspicuous manifestation in

216 C. Lueder

education. Diagrams are exploited not only to solve, but also to invent and frame
problems. Architecture becomes a language to be learned through diagrammatic
exercises. This diagram typology resonates with characteristics of game boards. As
practitioner and theorist, Peter Eisenman has long been its most vocal advocate, but
its ethos persists in the work of OMA, MVRDV or SANAA, to name but a few.

This essay will argue that, while methodologies affiliated with these - potentially
complementary - diagram ecologies are occasionally compounded by their users, their
most prominent protagonists have conspicuously abstained from cross-references in
their theoretical writing. I will attempt to assess the reach of both diagram ecologies
into contemporary digital authoring environments, and the consequences of their
newfound electronic proximity on the digital screen. However, a comprehensive
report on the history of the diagram in the 20th century falls outside the scope of this
article. The mental maps introduced by Kevin Lynch and the Deleuzian notion of
diagrams acting ‘as causes that are coextensive with the whole social field’ (1988, p.
37), or the concomitant notion proposed by Robin Evans of the architectural plan as
diagrammatic trace and description of the nature of human relationships (1997, p. 56),
are fundamental to any discourse on diagrams, but will not be examined in particular.

2 Scientific / Heuristic Diagram and the Myth of Its
Transparency

Hannes Meyer, successor to Walter Gropius as director of the Bauhaus, claimed that
‘building is a biological and not an aesthetic process’ (Meyer, 1930); thus also
assigning a new role to the diagram within the modernist project. The implications
occur at two scales: First, the human body becomes a subject of scientific
diagramming, as the time and motion studies of Lillian and Frank Gilbreth and the
flow diagrams of Christine Frederick and Alexander Klein most distinctly
demonstrate. Second, the biological diagram of the body and its organs becomes a
metaphor for the organization of buildings, exemplified by the early bubble diagrams
of Le Corbusier, Percy Nobbs, Ernst Neufert, and the pronounced role of bubble
diagrams at Harvard’s Graduate School of Design under Walter Gropius.

Frank and Lillian Gilbreth’s time and motion studies exploited photographic
process and, unlike previous diagrams, no longer relied exclusively on hand and
imagination of an author. Their chronocyclegraphs made routine movements visible
by photographing over a long exposure the trace of an illuminated point attached to
the body. The Gilbreth’s advertized their research as a means to eliminate wasteful
movement and thereby optimize production sequences; unlike architect’s diagrams,
their chronocyclegraphs and corresponding wireframe models of movements are not
aimed at a spatial proposition. The architectural historian Siegfried Gideon, in his
seminal book Mechanization Takes Command (1949, p. 17-30, 100-107), included
the Gilbreth’s chronocyclegraphs alongside chronophotographs by Etienne-Jules
Marey; but even prior to that publication architects had taken note. Marey deemed his
method of sequential photographic recording ‘superior to all other modes of
expression’ as it is ‘the language of the phenomena themselves’ (1885, p. iv); his

 Diagram Ecologies − Diagrams as Science and Game Board 217

notion of the diagram affording an unbiased survey of its subject has resounded
within the ecology of the scientific diagram. Scientific diagrams have accordingly
been regarded by many authors to be transparent in the sense that typographers
ascribe to a familiar font, which does not attract attention to itself, and therefore is
transparent to the text it notates. Some skepticism appears justified as to whether
chronocyclegraphs and chronophotographs can even be classified as diagrams at all,
because they really are mechanical recordings of phenomena, whereas an intention to
interpret and communicate should be at the basis of any diagram. On the other hand,
one may equally argue that a large degree of interpretation takes place in editing such
recordings, and presenting them in a particular context. However one may ultimately
classify chronocyclegraphs and chronophotographs, their influence on a lineage of
‘scientific’ diagramming pursued by writers, scientists, and architects such as
Gilbreth, Frederick, and Klein is crucial.

S

S

B

B

B

B

B

A

A

A

A

DRAINDRAIN

DRAIN

DRAIN

SINK

ICE
BOX

ICE
BOX SINK

CHINA

CELLAR
CELLAR

C
H

IN
A

DINING ROOMDINING ROOM

TABLE

TABLE

TABLE

TABLE

STO
V

E

STOVE

C
A

B
IN

ET

CABINET

Fig. 2. Christine Frederick, 1913, The New Housekeeping

Fig. 3. Alexander Klein, 1927, Functional House for Frictionless Living

218 C. Lueder

At the scale of the room, Christine Frederick’s flow diagram of 1913 (fig 2)
explains two alternative movement sequences in a kitchen while preparing an omelet,
the first showing ‘badly arranged equipment, which makes confused intersecting
chains of steps’, while the second demonstrates ‘proper arrangement’ and a ‘simple
chain of steps’ (1913, p.53). The elimination of redundant steps in the process chart
is of equal importance to spatial rearrangement.

At the scale of the apartment, Alexander Klein (1927, p.299) diagrams the flow of
people; a ‘bad example’, which again features intersecting lines and numerous
turnings of paths, is confronted with a ‘good example’, which cleanly separates
daytime and nighttime paths (fig 3). Klein’s traffic-way diagram was published under
the title Functional Housing for Frictionless Living, reflecting his belief that diagrams
provide an impartial basis for selecting the best proposal according to functional
criteria. Christine Frederick’s Routing diagrams comparing efficient and inefficient
movement of the houseworker (1915, p. 74), (fig 4) examine the sequence in which
tasks are performed; efficient as well as inefficient patterns of movement occur in a
spatially identical setting.

DINING ROOM DINING ROOM

LIVING ROOMLIVING ROOM

STUDYSTUDY

HALL HALL

KITCHEN KITCHEN

PORCH PORCH

Fig. 4. Christine Frederick, 1919, Household Engineering

In the work of all three proponents of scientific optimization, the Gilbreth’s,
Frederick and Klein, it is hard to miss an obvious attention to diagrammatic beauty as
well as graphic choices aspiring to elegance. Increased complexity of movement at
the larger scale of the room or apartment, as opposed to the scale of the hand in the
Gilbreth’s chronocyclegraphs, necessitated a shift from mechanical or photographic
recording to selective interpretation. Frederic omitted steps such as the washing of
hands before preparation, and Klein eliminated the entrance sequence from his
nighttime trajectory. Klein points out that ‘general and objective valuation was until
now difficult’, and claims ‘the graphical method of analysis differs from former
methods of plan-valuation (…), by its means the qualities of the plan can be
determined in an objective and clear manner’ (1931, p. 166). Today’s digital methods
of analysis can rely on increased computational capability to handle large quantities
of data in translating reality into diagrammatic representation. Design decisions are
made by architects on the basis of such models. Taken to its logical conclusion, a
genetic algorithm is trusted to reach those decisions in an evolutionary and

 Diagram Ecologies − Diagrams as Science and Game Board 219

quasi-biological simulation. Hence, Klein’s argument is essentially reiterated, albeit at
a higher level of complexity; but it needs to be remembered that any such simulation
can only draw on edited and interpreted information and is never completely
transparent to its content. Indeed, Robin Evans (1997, p. 85) has pointed out that the
house for frictionless living articulates a cultural and social agenda far more than it
presents an objective and clear evaluation.

Despite their declared scientific objective of optimization and rationalization, the
graphic treatment of Frederick and Klein’s diagrams, and a certain – unacknowledged
- resemblance to dance notation, suggests another hidden agenda, aiming for
prescriptive choreography of movement amalgamated with graphic celebration of
efficiency.

Flow diagrams start with an analysis of movement at the scale of the human hand;
at the scale of the apartment or house they point to a second biological analogy, to
systems of circulation. Architectural bubble diagrams suggest a third biological
reference, correlating programs and spaces with biological organs.

Fig. 5. Le Corbusier, 1929, Bubble diagram drawn during a lecture in Buenos Aires

An early bubble diagram (fig 5), by Le Corbusier (1930, p. 223) shows a sequence
of evolutionary steps starting with a linear arrangement (A), which then is
transformed into a more complex network labeled ‘circulation (B)’, and finally ends
up as a densely packed arrangement of bubbles annotated with ‘= la maison (C)’.
Bubble diagrams have been described earlier by other authors, such as Philip Sawyer
(1923, p. 263), who maintained that ‘once the problem is so stated it is hard to go
wrong, (…) because the diagrams show the best solutions that can be evolved, and
every move is toward that rather than being a mere attempt to install (…) a
development of the existing arrangement.’ Percy Nobbs (1937, p. 255), recommends
laying out the components of the program, and then to ‘draw in lines and loops among
the circles to show the connexions’, in a next step ‘the circles should be regrouped to
simplify the diagram’ (a topological transformation), resulting in an arrangement
where closely related programs become adjacent, and certain spaces, such as the hall
and pantry reveal themselves as nodes in the network (fig 6). Nobbs observes that
‘the plan at this stage is like a medical student’s dissected animal, with all its organs
neatly spilled out and some of the connections stretched, but none broken.‘

220 C. Lueder

STAIR UP
TO BEDROOM
FLOOR

STAIR UP
TO SERVANTS
QUARTERS

STAIR
DOWN TO
BASEMENT

LR DR

H V

FD

S K P SH CR CR L HC

BP G

BD Go

L

HALL

LR

S

DR

PANTRY

SH

s

CR

CR

VFD

L

L

K rp BD

DN

LR

LR

DR

DR

S

S

K

K

L

L

G

G

SH

SH

H

P

P

S

S
V

SP

CR

CR

CR
L

Fig. 6. Percy Nobbs, 1937, Successive steps in solving a problem of planning

Percy Nobbs suggests the use of bubble diagrams in a design process which is not

only ripe with biological connotations, but also implies an understanding of the

 Diagram Ecologies − Diagrams as Science and Game Board 221

diagram as a ‘transparent’ device through which the best solution, the evolution of the
‘fittest organism’ can be simulated, apparently independent of the architectural
language to be employed in the materialization of the project. Notwithstanding the
obvious differences between flow and bubble diagrams, between Alexander Klein’s
agenda and that of Percy Nobbs, their approaches are comparable inasmuch as they
both view the diagram as a quasi-scientific tool, a neutral device independent of
architectural preferences and style.

The propagation of the bubble diagram by Gropius during his tenure at the Harvard
Graduate School of Design helped to incorporate it into dominant design
methodology; and turned it into a conspicuous symbol of the functionalist agenda.
Thus, the bubble diagram was often indicted alongside the Bauhaus methodology
when attacked as ‘too dogmatic (…) of for having inhibited individuality’ (Herdeg,
1983, p. 3). Corbusier’s labeling of his sketched bubble diagram at its final stage with
‘= la maison’ (1930, p. 223) may at first sight indeed suggest a simplistic approach;
however, elsewhere in his South American lectures, he lists five distinct acts, (‘to
classify, to dimension, to circulate, to compose, to proportion’) which are illustrated
by a much wider variety of diagrams (1930, pp. 124-135), and associated with a much
more complex and layered design process. Ernst Neufert, describing his very
systematic design process, took care to point out that the initial, diagrammatic phase
needs to be followed by a creative process (1936, p. 34).

The attacks against Bauhaus methodology reverberate in the critique against early
attempts to introduce the computer to the architectural design process. Anthony
Vidler (2000, p. 16) is representative of a widely held view when he comments on
‘the simplistic and often rigid models based on functional analysis proposed by
design-methods theorists like Christopher Alexander in the early decades of
computerization’. In this context it is worth recalling Christopher Alexander’s
comment that the ‘machine is distinctly complementary to and not a substitute for
man’s creative talent’ (1963, p. 166).

The cross-section of early proponents of the bubble diagram exposes an eclectic
group; Sawyer, Corbusier, Nobbs, Gropius, and Neufert could hardly be any more
diverse in their architectural approach and style. None of their diagrams bear direct
visual resemblance to their buildings, and this, along with references to biology or
other sciences, may be the defining criteria of scientific diagramming.

In that sense, aspects of the work of Christopher Alexander, and in particular his
essay ‘A City is not a Tree’ (1965) can be classified as an augmentation of the
scientific project of diagramming. Alexander draws on mathematical set theory to
diagram selected cities, identifying tree-like networks (fig 7) with ‘artificial’ cities,
planned in the 20th century, as opposed to semi-lattice structures (fig. 7) observed in
the social structure of existing cities. Alexander argues that planners find it easier to
conceptualize hierarchical, tree-like arrangements, and thus, in a ‘self-conscious’
process of urban design, such organizations come to dominate, as opposed to a natural
process of design, in which urban patterns are incrementally extended following
received knowledge, which can result in semi-lattice type structures.

222 C. Lueder

Fig. 7. Christopher Alexander, 1965, Tree and Venn diagram of tree
Christopher Alexander, 1965, Semi-lattice and Venn diagram of semi-lattice

Here, Alexander verges on assigning agency to the diagram and to its visual
representation. However, this is not his argument. Alexander’s criticism is not
directed at the diagram, but rather at habits and cognitive limitations of planners. The
diagram merely serves as a device to diagnose and explain these constraints.
Alexander’s diagrams do not attempt to visually resemble, but rather to translate
urban structure into the language of mathematics. His Venn diagrams adapt the
typology of the bubble diagram to an urban argument, broadening the repertoire of the
scientific diagram. However, by including a reproduction of a painting by Simon
Nicholson, which is used to exemplify spatial overlap and ambiguity, he paraphrases
in terms of urban structure (but not acknowledges), the argument on architectural
space Colin Rowe and Robert Slutzky had declared two years earlier in Transparency,
Literal and Phenomenal (1963). Rowe and Slutzky’s assertion will be explored in the
context of the second diagram ecology, the ecology of the syntactic diagram.

3 Syntactic Diagram and Game Board

In a pointed remark, Peter Eisenman states that ‘many see the diagram’s initial
emergence in Rudolf Wittkower’s use of the nine square grid in the late 1940’s to
describe Palladian villas’ (Eisenman, 1999), thereby purposefully negating the legacy
of the functionalist, scientific diagram.

Wittkower’s diagrams (1952, p. 27), (fig 8) eliminate any indication of function or
links between rooms, and, beyond staircases, do not give any indication of movement.

 Diagram Ecologies − Diagrams as Science and Game Board 223

Unlike flow or bubble diagrams, they are not concerned with assemblage of program
and activities to form an efficient organism. To the 11 diagrams of Palladian villas,
Wittkower appends a 12th diagram, showing a rectangle subdivided into 12 fields by
a symmetrical grid. Wittkower reveals the Palladian floor plans to be variations
originating from a shared system of geometrical rules, suggesting that collectively
they may form a single conceptual project. While he does not refer to the concept of
the game board, his diagrammatic catalogue bears irrefutable visual resemblances,
and suggest a latent reading of the plan diagrams as topological permutations, or
positions occurring as a game proceeds. Time is no longer a function of movement
through a building; instead the diagrams capture snapshots taken during a
permutational game played between 1547 and 1567.

Eisenman (1999, p. 27) recounts that the academic pedigree of Wittkower’s
diagram ‘continued to develop in the form of the nine square problem (which) was
seen as an antidote to the bubble diagramming of the Bauhaus functionalism rampant
at Harvard (…) and to the parti of the French academy.’ John Hejduk and others
developed the nine square grid problem at the University of Austin in 1954
(Caragonne, 1991, p. 190-195). Students were given a grid onto which architectural
elements and fragments could be placed. The exercise was underpinned by Colin
Rowe’s The Mathematics of the Ideal Villa (1947), which extends the premises of
Wittkower’s diagrammatic comparison to encompass Le Corbusier’s Villa Stein at
Garches, asserting dialectic of ideal diagram (paradigm) against its elaboration as a
specific plan (program). This process of negotiating ideal against specific is re-
enacted by the student on the nine square board of Hejduk’s exercise.

The terms of the exercise were further refined by Transparency, Literal and
Phenomenal (Rowe and Slutzky, 1963), written in 1955-56, while both Rowe and
Slutzky were teaching at Austin. Rowe and Slutzky argue that the material definition
of transparency, i.e. seeing one object through another, overlapping object, needs to
be complemented by a spatial definition, manifest in a person inhabiting two
overlapping spaces simultaneously. Their architectural examples work with a variety
of elements, which have the ability to imply spatial boundaries, such as walls,
parapets, facades, and floor surfaces. These elements usually are fragmented and
operate in conjunction with imaginary planes to partially enclose overlapping spaces;
they are bound by and organized on an underlying grid. Thus, the nine square grid
problem can act as a laboratory table on which experiments are conducted,
compositional strategies evaluated and spaces elaborated. However, the diagram
ceases to function as a transparent device through which to study alternatives, and
then identify the best proposal according to functional criteria; instead it provides an
idealized starting point for an educational design process. Architecture is defined
through syntactical relationships between elements, and perceived as a language to be
learned, no longer as a functional problem to be solved. Indeed, the nine square grid
problem prepares the ground for a continuing lineage of diagrammatic narratives,
which are invented in order to motivate idiosyncratic architectural vocabularies and
languages, as evidenced in the work of OMA or MRDV.

224 C. Lueder

Fig. 8. Rudolf Wittkower, 1952, Palladian Villa Types

 Diagram Ecologies − Diagrams as Science and Game Board 225

Fig. 9. Rudolf Arnheim, 1954, Structural map of the perception of a square

The agenda of the nine square grid extends beyond syntactical analysis of
experienced space through diagrams; in fact it applies the same analytical
methodology to the diagram itself. This second level of analysis, turning the formerly
transparent diagram into an object of experimental and theoretical inquiry, is driven
by the publication of Art and Visual Perception by Rudolf Arnheim (1954). Arnheim
interrogates drawings and diagrams (fig 9) much as Rowe examines buildings,
investigating what he defines as ‘perceptual forces’ acting on diagrams, which
determine the ‘percepts’, which we form when we see.

Alexander Caragonne (1991, p. xvii - xviii) offers a student perspective on Rowe
and Hejduk’s teaching methodology: ‘As I continued to sketch, tracing overlay after
overlay gradually I became aware of a curious phenomenon. If I could somehow
manage to align certain key walls, even columns, (…) in place of a courtyard flanked
by two galleries, another, grander space, richer and more complex, yet allowing each
to retain its identity, would miraculously appear. (…) For vocabulary or no, I had
begun to “see” architectural space for the first time.’ Caragonne’s sketches and
diagrams become prerequisite and enhancement to seeing, and cease to be transparent
devices dedicated to impartial scientific analysis. The diagram, which Alexander
Klein trusted to guard against ambiguity, and to impartially identify the single best
solution, has, under Rowe and Hejduk inverted its ambition and now celebrates
spatial ambiguity.

The close biographical links between Wittkower, Rowe, Hejduk and Eisenman,
and the rather specific nature of the method of diagrammatic analysis that developed
from unique interaction between writing and teaching, at first suggests that their
approach might be more aptly described as a school of thought. However, the impact
of their conceptions has sparked an active ecology of ideas sustained by the students
who graduated from their programs at Austin, Cornell, the Cooper Union and many
other universities.

226 C. Lueder

This claim is substantiated by the argument Albert Pope, in his book Ladders
(1997), elicits from his urban analysis of the postwar American city. Pope compares
what he describes as a centrifugal grid emanating from city to surrounding field of
landscape (beautifully illustrated with an image of a street sign announcing ‘339
Avenue’ in the middle of nowhere), to a centripetal grid looking inwards, which can
be found in fragments of grids cut off from their surroundings, e.g. in malls or some
inner city districts (fig 10).

Fig. 10. Albert Pope, 1997, The Superblock

Fig. 11 and Fig. 12. Piet Mondrian, Composition IA, 1930 and Composition 2, 1922

Pope introduces his discourse on urban space with a reference to Rosalind Krauss’
essay Grids (1979, p. 9-22) which explores a subtle difference in how Piet Mondrian
interacts with the edges of his canvas (fig 11, 12). In one set of Mondrian paintings,
black lines seem to extend beyond the canvas, suggesting an infinite grid. In some
cases Mondrian has reinforced this centrifugal perception of the grid by rotating

 Diagram Ecologies − Diagrams as Science and Game Board 227

Fig. 13. Hoshino Toshi and Yanabe Toshiro, 1950, longest recorded game of Go

canvas boundaries by 45°. Conversely, in another set of Mondrian Paintings, a
centripetal reading is suggested by grid lines stopping just shy of the edge of the canvas.
The simultaneous presence of both readings is described by Krauss as ‘cheerfully
schizophrenic’, and finds its equivalent in a similarly ambiguous state of the urban grid.
By introducing his diagnosis of an urban condition with a reference to perceptual forces
acting on Mondrian’s paintings, Pope expands the scope of syntactic analysis to the scale
of the city, while simultaneously extrapolating the terms of the nine square grid exercise,
which are predicated on a bounded surface, to an exploration of the grid itself and to an
examination of its boundaries. The diagram has indeed become ‘the matter of
architecture’ (Somol, 1999, p. 7). Gridded cities figure prominently in both Alexander’s
and Pope’s urban diagnosis, yet their conclusions could not deviate more, due to their
opposing approaches to diagramming, if nothing else. By including an illustration of the
game of Go (fig 13), Ladders explicates the references to the game board, which are
latent, but remain uncommented, in Wittkower’s Palladian diagrams and Hejduk’s nine
square grid problem.

4 Scientific and Syntactic Diagram in Digital Context

The relationships between the scientific and syntactic diagram ecologies, and also
those of their most articulate protagonists, are complex. The nine square grid exercise,
and the curriculum at the University of Austin it was situated in, ‘was seen as an antidote

228 C. Lueder

to the bubble diagramming of the Bauhaus functionalism rampant at Harvard’
(Eisenman, 1999, p. 27). Nevertheless, bubble diagrams are used by Bernard Hoesli at
Austin to explain the design process (Caragonne, 1991, p. 85), Hoesli suggests their use
in a – rather functionalist - ‘pre-drawing phase of design’ (Caragonne, 1991, p. 102), and
both two-dimensional and three-dimensional bubble diagrams made by students are
documented (Caragonne, 1991, p. 93, 104), suggesting a duplicity of polemical critique
directed against the bubble diagram’s dominance, which is confuted by its pragmatic
usage. In respect to Christopher Alexander’s bubble and tree diagrams, the position is
inverted to an equally schizophrenic stance of polemical embrace versus negation of
discourse. R. E. Somol bookends his seminal introduction to Diagram Diaries with
demonstrative acknowledgment of Alexander’s contributions, but sidesteps any
meaningful engagement, echoing the similarly double-edged attitude of his mentor Peter
Eisenman. The remarkable lack of a genuine discourse between both diagrammatic
approaches again manifests itself during the legendary debate between Christopher
Alexander and Peter Eisenman at Harvard University (Alexander and Eisenman, 1983),
when Alexander repeatedly and ostentatiously pleads ignorance to references brought up
by Eisenman.

At first, this divide appears reiterated in the digital realm. On the one hand, flow
and bubble diagrams find an obvious corollary in equivalent diagram typologies used
to optimize computer code; their biological connotation is mirrored by the use of
genetic algorithms for scripting and programming. On the other hand, the bounded
surface of the nine square grid, set up as a field of syntactic manipulation, visually
resembles and operationally corresponds to the digital screen, which becomes a scene
of operations, which sometimes reference game board metaphors. However, a closer
look suggests that such an apparent divide between code and screen is too simplistic;
it reveals that bubble and flow diagrams have migrated to the digital screen; indeed
they are the sole interface metaphor used by the audio editing program MaxMSP
(fig 14).

As diagrams establish themselves in computing, their most significant impact may
be invested in the emergence of diagrammatic controls on the digital screen, further
compounded by the convergence of authoring environments, which have originated in
a wide range of creative disciplines, filmmaking, animation, architecture, graphic
design, and even navigation and game design, towards a singular language of shared
diagrammatic controls. Within the extensive inventory of those controls, tree-like
hierarchical representations (Windows explorer, scene explorers, and digital effect
libraries) sit alongside graphs mapping the parameters of motion, undo-redo history
palettes, and the ubiquitous digital timeline, which stands out amongst the multitude
of diagrammatic conceptualizations mapping time onto space. On the digital screen,
the dual legacies of the scientific and syntactic diagram are only separated by a single
mouse click. Hierarchical parent-child relations represented in a tree-like folder
structure (Cinema 4D, fig 15), procedural controls storing geometric information as
an elaborate narrative of editable transformation (Houdini) or the aforementioned
rhizomatic networks of objects (MaxMSP) coexist within a single digital authoring
environment or even a single software package. In fact, within this heterogeneous set,
controls can act as diagrammatic annotations to each other; changes are updated

 Diagram Ecologies − Diagrams as Science and Game Board 229

electronically and instantly, in vastly accelerated and automated reenactment of the
process of annotation and re-annotation known since Vitruvius Ten Books on
Architecture, albeit written text no longer partakes.

Fig. 14. MaxMSP audio editing software, 2011, screenshot

Fig. 15. Cinema 4d Animation Software, 2011, screenshot

Despite the omnipresence of diagrammatic interfaces controlling and thereby
conceptualizing time and space on screen, and the highly specialized and original
options of manipulation they afford their users, the myth of the transparent diagram
reappears in a new guise; the diagrammatic metaphors that travel between disciplines
alongside these controls, changing the way designers and architects think about time

230 C. Lueder

and space in their work, rarely are registered and interrogated. A shift in the spatiality
of architect to drawing, from the horizontal surface of the drawing board to a chasm
between vertical screen of output and horizontal keyboard and trackpad of input, is
similarly underappreciated; it has been examined elsewhere (Lueder, 2011).

Sherry Turkle has remarked that 'the culture of simulation includes a new emphasis
on visualization and the development of intuition through the manipulation of virtual
objects' (1996, p. 52). In that sense, diagrammatic controls on screen are ‘objects-to-
play-with’ and increasingly their significance is grasped through manipulation, rather
than instructed by material experience, technical manual or theoretical text.
Alexander Caragonne’s account of his education to ‘see architectural space’ through
sketching (and reading) at the University of Austin comes to mind. Caragonne’s
contemporary revenant may now learn to ‘see architectural space and time’ through
digital authoring environments and the metaphors carried by their diagrammatic
controls. Learning to ‘see architectural space’ under the guidance of carefully
calibrated studio exercises rooted in an elaborate body of theoretical writing is an
extended process, and only its motivated student will be rewarded with augmented
spatial perception. Therefore it is not surprising that, while long a dominant voice in
theoretical discourse, the syntactic diagram has not been able to extend its reach
beyond that discourse to a wider audience; perhaps its protagonists never intended for
it to do so. By contrast, digital diagrammatic controls, such as the ubiquitous
timeline, have been appropriated by a vast public as objects to play with, and thus
inadvertently are becoming objects to think with for many of their users.

Fig. 16. CNLab, 2011, Laufwege von Fußballspielern, Replay, Analyse und Statistik

The avid football fan, for example, is assisted in his match analysis by digital
interfaces such as the one furnished by CNLab (CNLab, 2011), (fig 16), which
displays, and dynamically links to each other, no less than eleven diagrammatic
representations of the match, ranging from animated flow diagram, timeline,
statistical table, distance-time graph for each individual player, heatmap, positional

 Diagram Ecologies − Diagrams as Science and Game Board 231

matrix, relative positioning, to diagrammatic snapshots. Such interfaces may still be
atypical, but they portend modes of conceptualizing dynamic links between time and
space which architecture – and theory - cannot afford to ignore.

References

Alexander, C., Chermayeff, S.: Community and Privacy. Toward a new architecture of
humanism. Doubleday & Co., Garden City (1963)

Alexander, C.: A City is not a Tree. Architectural Forum 122(1&2) (1965); reprinted in:
Thackara, J. (ed.) Design After Modernism: Beyond the Object, pp. 67–84. Thames and
Hudson, London (1988)

Alexander, C., Eisenman, P.: Contrasting Concepts of Harmony in Architecture. Lotus
International 40, 60–68 (1983)

Arnheim, R.: Art and Visual Perception: A Psychology of the Creative Eye. University of
California Press, Berkeley and Los Angeles (1954)

Caragonne, A.: The Texas Rangers: Notes from the Architectural Underground. MIT Press,
Cambridge (1991)

Carpo, M.: Architecture in the Age of Printing. MIT Press, Cambridge (2001); for a list and
discussion of the Vitruvian diagrams

Collins English Dictionary, A diagram is defined as ‘a sketch, outline, or plan demonstrating
the form or workings of something’. HarperCollins Publishers (2003)

Deleuze, G.: Foucault. Athlone, London (1988)
Eisenman, P.: Diagram: An Original Scene of Writing. In: Eisenman, P. (ed.) Diagram Diaries.

Thames and Hudson, London (1999)
Frederick, C.: The new housekeeping: efficiency studies in home management. Doubleday,

Pape & Co., Garden City (1913)
Frederick, C.: Household engineering. American School of Home Economics, Chicago (1913)
Evans, R.: Figures, Doors, and Passages. In: Evans, R. (ed.) Translations from Drawing to

Building and Other Essays, p. 56. Architectural Association, London (1997)
Giedion, S.: Mechanization Takes Command. Oxford University Press, Oxford (1948)
Herdeg, K.: The Decorated Diagram: Harvard Architecture and the Failure of the Bauhaus

Legacy. MIT Press, Cambridge (1983)
HSR Hochschule für Technik Rapperswil, CNLAB (2011),

http://www.cnlab.ch/fussball/ (accessed August 20, 2011)
Klein, A.: Die Baugilde (November 1927); Reprinted as: Illustrations of German Efficiency

Studies. Architectural Record, 299 (March 1929)
Klein, A.: Judging the Small House. Architectural Forum 55, 166–172 (1931)
Krauss, J.: Information at a Glance, On the History of the Diagram, OASE 48, Diagrams (1999)
Krauss, R.E.: Grids, You Say. In: Grids: Format and Image in 20th Century Art. Pace Gallery,

New York (1978)
Le Corbusier: Precisions on the present state of architecture and city planning (1930); translated

by Edith Schreiber Aujame. MIT Press, Cambridge (1991)
Lueder, C.: Thinking between diagram and image: the ergonomics of abstraction and imitation.

Architectural Research Quarterly 15, 57–67 (2011)
Marey, E.-J.: La méthode graphique dans les sciences expérimentales et principalement en

physiologie et en medicine, 3rd edn. G. Masson, Paris (1885)

232 C. Lueder

Meyer, H.: My ejection from the Bauhaus. Open letter in the newspaper: Das Tagebuch
(August 16, 1930); Reprinted in: Schnaidt, C., Meyer, H.: Bauten, Projekte und Schriften.
Buildings, projects and writings, transl. D. Q. Stephenson, p. 103. Architectural Book
Publishing Co., New York (1965)

Neufert, E.: Design Method, Architect’s Data. Crosby Lookwood, London (1936); translated by
Herz, R., et al. (1970)

Neufert, E.: Bau-Entwurf Arbeitsvorgang, Bauentwurfslehre, 3rd edn. Bauwelt Verlag, Berlin
(1936)

Nobbs, P.: Design: A Treatise on the Discovery of Form. Oxford University Press, Oxford
(1937)

Pai, H.: The Portfolio and the Diagram. MIT Press, Cambridge (2002)
Pope, A.: Ladders. Princeton Architectural Press, Princeton (1997)
Rowe, C.: The Mathematics of the Ideal Villa. Architectural Review (01), 101–104 (1947)
Rowe, C., Slutzky, R.: Transparency: Literal and Phenomenal. Perspecta 8, 45–54 (1963)
Sawyer, P.: The Planning of Banks. Architectural Forum 38, 263–272 (1923)
Somol, R.E.: Dummy Text, or the Diagrammatic Basis of Contemporary Architecture. In:

Eisenman, P. (ed.) Diagram Diaries. Thames and Hudson, London (1999)
Turkle, S.: Life on the Screen. Weidenfeld and Nicholson, London (1996)
Vidler, A.: Diagrams of Diagrams: Architectural Abstraction and Modern Representation.

Representations 72 (2000)
Vidler, A.: What is a Diagram Anyway. In: Cassara, S., Eisenman, P., Vidler, A., Kipnis, J.

(eds.) Peter Eisenman: Feints. Skira, Milan (2006)
Wittkower, R.: Architectural Principles in the Age of Humanism. Warburg Institute, University

of London, London (1949)

5 Illustrations

Fig 1: American Football Coaches Association, Athletic Journal, 1939, Football offence
diagram 11, Illinois High Schools

Fig 2: Christine Frederick, 1913, The New Housekeeping
Fig 3: Alexander Klein, 1927, Functional House for Frictionless Living
Fig 4: Christine Frederick, 1919, Household Engineering
Fig 5: Le Corbusier, 1929, Bubble diagram drawn during a lecture in Buenos Aires
Fig 6: Percy Nobbs, 1937, Successive steps in solving a problem of planning
Fig 7: Christopher Alexander, 1965, Tree and Venn diagram of tree, Semi-lattice and Venn

diagram of semi-lattice
Fig 8: Rudolf Wittkower, 1952, Palladian Villa Types
Fig 9: Rudolf Arnheim, 1954, Structural map of the perception of a square
Fig 10: Albert Pope, 1997, The Superblock
Fig 11: Piet Mondrian, Composition IA, 1930
Fig 12: Piet Mondrian, Composition 2, 1922
Fig 13: Hoshino Toshi and Yanabe Toshiro, 1950, Longest recorded Go game
Fig 14: MaxMSP audio editing software, 2011, screenshot
Fig 15: Cinema 4d Animation Software, 2011, screenshot
Fig 16: CNLab, 2011, Laufwege von Fußballspielern, Replay, Analyse und Statistik,

screenshot

Fig 1–4, 6-13 are redrawn by the author.

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 233–240, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Dynamic Diagrams: A Composition Alternative

Richard Lowe1 and Jean-Michel Boucheix2

1 Curtin University, Australia
r.k.lowe@curtin.edu.au
2 University of Burgundy, France

Jean-Michel.Boucheix@u-bourgogne.fr

Abstract. A major problem that learners face in comprehending animated
diagrams is in decomposing the presented information into a form that furnishes
appropriate raw material for building high quality mental models. This paper
proposes an alternative to existing design approaches that shifts the prime focus
from the nature of the external representation to the internal composition
activity learners engage in during mental model construction.

Keywords: dynamic diagrams, decomposition, composition, comprehension.

1 Introduction

Current standard practice with explanatory animations is to portray the subject matter
as a coherent whole, that is, as a dynamic external representation of a fully
operational system. However, learners may run into problems relatively early in their
processing of this conventional type of animation [1]. In particular, learners can fail to
internalize key high relevance aspects from the continuous flux of information that
confronts them in these rich depictions. As a consequence, the quality of the mental
model that learners ultimately construct on the basis of their animation processing
may be compromised. The efforts of those who design animations (typically a subject
matter expert and a graphic designer) are primarily concerned with the attributes of
the animation as an external representation, rather than with the learner’s task of
constructing an internal representation of the depicted content. Further, the prevailing
idea in animation design that the external representation should at all costs be faithful
to its referent is sometimes erroneously equated with a need to depict the subject
matter in a realistic way [2,3]. However, realism can actually make information
harder for learners to process, particularly where the depiction portrays complex
unfamiliar content. Under such circumstances, there is a fundamental mismatch
between the characteristics of the representation and the constraints of the human
visual processing system.

Recent efforts to improve the effectiveness of explanatory animations typically
involve approaches such as adding various types of cues, dividing the animation into
segments, making the animation user controllable, adding accompanying learning
activities (e.g. self-explanation or prediction), and giving strategy training [4,5,6,7,8,].

234 R. Lowe and J.-M. Boucheix

However, these interventions are ancillary to the animation itself in that they do not
alter the core assumptions of its design.

It is our contention that in order to make further progress on improving the
effectiveness of animated explanations, a re-conceptualization of how animations
present information to learners is needed. There is a fundamental incompatibility
between the activities of (a) following an animation’s ever-changing information
stream, and (b) simultaneously processing that information effectively. Rather than
requiring learners to adapt to the presentation, perhaps the way that animations are
designed needs to better fit the way learners actually process dynamic information.
The Animation Processing Model (APM) [9] offers a basis for developing such an
alternative. It was devised with the aim of providing foundations for a more
principled and coherent approach to the design of animations. This five phase model
targets the psychological processes learners use to deal with conventional animations
that present complex, unfamiliar dynamic subject matter (Figure 1). It incorporates
perceptual aspects of animation processing that have hitherto been neglected by other
more cognitively-oriented accounts [e.g., 10]. Further, it places special emphasis on
the psychological effects of the visuospatial and dynamic character of animations and
how they affect the learner’s construction of a mental model [11,12].

Fig. 1. Phases of the Animation Processing Model indicating the role that both bottom-up and
top-down influences have in the construction of a mental model from an animated presentation

The Animation Processing Model has its origins in characteristics of the
fundamental perceptual and cognitive processing capacities that govern operation of
the human visual system when it deals with animations (see [9] for a detailed
account). Limitations in the capacity of this system mean that we process all but the
simplest of animations in an incremental and cumulative fashion rather than all at
once. Eye tracking research shows that learners gather information from an animation
discontinuously via a series of individual fixations separated by saccades, not through
smooth pursuit of moving entities in the display [13, 14].

According to the APM, phase 1 processing involves the learner decomposing the
animation’s unbroken information flow into discrete event units (i.e., entities plus

 Dynamic Diagrams: A Composition Alternative 235

their associated behaviours). During this decomposition, capacity limits on human
perception and competition for attention mean that learners extract subsets of the
information available in the display whilst neglecting other aspects. Unfortunately,
the information that they attend to then extract under these circumstances is not
necessarily what is most relevant to the task at hand. Instead, learners may by-pass
crucial information in favour of material that is more conspicuous but less relevant.
As a result of this sub-optimal breakdown of the animation, the mental models they
build from the extracted material may not be of high quality. The question then arises
as to whether the considerable problems learners have in obtaining appropriate raw
material for building high quality mental models could be circumvented by changing
the way information is presented.

2 Decomposition versus Composition

Humans readily decompose familiar everyday experience by partitioning it into
coherent objects, events and scenes that are the basis for our understanding of the
world around us [15]. However, with an animation that depicts complex unfamiliar
content, decomposition not only tends to be extremely demanding for the learner, but
can also fail to produce the required content understandings. Given the constraints on
human information processing capacity, it would make sense to do everything
possible to help learners devote their maximum processing capacity to composition.
This cannot happen if learners must also allocate their scarce perceptual and cognitive
resources to decomposition, a process that can be regarded as peripheral rather than
central to mental model construction. Learner implemented decomposition is not only
inefficient, but it is also likely to produce unsatisfactory outcomes.

We propose that learners be relieved of the burden of having to decompose
animations in order to supply themselves with the components from which to
compose their mental models. This would involve abandoning the current reliance on
conventional (‘comprehensive’) animations. Our proposed alternative approach is to
feed learners far smaller and more constrained pre-selected subsets of the entire
information corpus that they need to internalize. We will use the term relation sets to
describe these selections, indicating that they will be connected by means of various
relationships in order to build the mental model. Relation sets have three fundamental
constituents; (i) entities that are the actors in the depicted phenomenon, (ii) events in
which those entities are engaged, and (iii) relations that bind the entities and events
together into a coherent, stand-alone assemblage. In effect, relation sets are composed
of two or more interlinked event units. In the next section, we consider how relation
sets might be generated and illustrate this approach with an example.

3 Composition Components

The approach we are suggesting is directly derived from the way learning from
animation is characterized in the APM. It particularly targets phase 1 processing
activity in seeking to minimize the extent to which learners need to carry out their
own parsing. To illustrate how the proposed relation sets might be determined, we
consider the case of an animated hydraulic circuit diagram (Figure 2). This diagram

236 R. Lowe and J.-M. Boucheix

portrays the circuit of a hydraulically operated system for clamping then drilling a
work-piece (apply clamp, apply drill, retract drill, retract clamp). The animated
version of this diagram provides a dynamic depiction of how the various components
of the hydraulic circuit contribute to this overall functioning. When depicted as an
entire functioning system, multiple events occur simultaneously or in close succession
at separate locations. These temporal and spatial features of the system’s dynamics
present a challenging set of processing demands to learners if they are all depicted as
they actually occur [16].

Fig. 2. Hydraulic circuit diagram for a system that clamps then drills work-pieces. An animated
version of this diagram would show operation of dynamic components (pump, actuators, etc.)

Instead of presenting a conventional animation of the full system, the composition
approach we are suggesting would present information already broken down into
individual relation sets. An example will make clear the need for relation sets. The
basic reason for Actuator A’s piston being extended is pressurization of the hydraulic
fluid by the pump. However, this cause and its effect are widely separated in the
original display. Further, the symbol for the pump is far less conspicuous than that for
the actuator, due its size, position and dynamics. A conventional animation would
present these two aspects submerged in the rich context of the whole system’s entire
corpus of dynamic changes. Differences in the conspicuity of the cause (pump) and
effect (actuator) together with competition for attention from the rest of the dynamic
display prejudice the learner’s chances of singling out this important relationship from
the animation. As a result, learner decomposition is not likely to be an efficient and
effective way of establishing this key aspect of the system’s functionality.

 Dynamic Diagrams: A Composition Alternative 237

Fig. 3. (a) Pump-actuator causal chain in context of whole diagram (b) relation set for the same
causal chain. Note pump/actuator re-alignment and simplification/shortening of hydraulic hose

By contrast, a composition approach would present only those aspects that are
fundamental to this cause-effect pairing. Omitting other components of the display
would both reduce the apparent visual complexity of the display and remove
undesirable competition for attention. In addition, simplifying the route of the
hydraulic hose that provides the explicit cause-effect connection between the pump
and the actuator could allow the linkage to be more readily perceived. For example,
the pump and actuator could be more directly aligned and the hydraulic hose
shortened as shown in Figure 3b. This would facilitate perceptual routines such as the
use of visual scanning to make the comparisons of event units required to establish
the presence of a relationship. Further, it is consistent with Johnson-Laird’s view that
effective mental models use tokens to represent external subject matter in order to
facilitate internal manipulation of that content within the constraints of our limited
cognitive capacity. The simplifications applied to produce the example relation set
shown in Figure 3b is a step on the path to abstraction and should facilitate the
formation of such tokens.

4 Sequencing Composition

Appropriate timing is an important consideration in external visualizations [17]. Task
relevant information needs to be presented when the viewer is ready to benefit from it.
The sequence in which raw material is made available for composing a mental model
is therefore likely to affect its construction. The APM characterizes learner

238 R. Lowe and J.-M. Boucheix

construction of mental models from an animation as a cumulative, iterative process. A
single pass through a complex, unfamiliar animation is simply insufficient to allow
the learner to extract all the necessary information [5]. The sequencing used to present
information via relation sets should therefore be one that facilitates their accumulation
towards the desired mental model. It would also need to accommodate repeated cycles
of learner activity.

If the animation is not being presented in its entirety but rather in the piecemeal
fashion being suggested in the proposed compositional approach, effects such as
initial competition for attention from other aspects of the display are reduced or
eliminated. By using a series of relation sets, the animation designer can have many
more opportunities for guiding how learners carry out mental model construction
activities. These opportunities arise once it is accepted that the sequence in which
information is presented does not have to correspond to its order of occurrence in a
behaviorally realistic conventional animation. Rather, the order in which relation sets
are presented can be manipulated so that it is as consistent as possible with efficient
building of the desired mental model.

Once freed from the restriction of having to ensure behavioural realism, animation
designers can introduce treatments of the content that both relieve the learner of non-
core processing demands and foster cohesive knowledge structures. For example,
dynamics that take place simultaneously in different parts of the display or in rapid
cascades can be teased out so that split attention effects are eliminated; similar
relation sets that apply to various parts of the display but at different times can be
grouped spatially and temporally during presentation to indicate their commonality.

5 Conclusion

This paper argues that conventional animated diagrams which present a dynamic
depiction of an entire functioning system subject learners to unnecessary information
processing burdens. The composition approach being proposed here may seem to bear
a superficial resemblance to existing ‘build’ animations in which graphic items
depicting different aspects of the content are progressively added to the display.
However, the building up of a conventional animation in this way by accretion of its
parts is the antithesis of the composition approach. This is because the fundamental
goal of using relation sets is to support the construction of an internal representation,
not an external one.

A fundamental feature of our alternative approach is that animation design should
begin with a careful consideration of the nature of the mental model that instruction is
seeking to produce, not simply the characteristics of an external representation of the
to-be-learned subject matter. The composition approach opens up new opportunities
for using cues in more targeted and powerful ways. Instead of being used to support
decomposition, cues could be used to aid the composition of information subsets into
higher order structures by signaling the relations that are the basis for combining their
constituent event units. The possibility of such relational cueing has previously been
canvassed by Lowe and Boucheix [18].

 Dynamic Diagrams: A Composition Alternative 239

Moving from the theoretical ideas presented in this paper to their practical
implementation will require an extensive program of research and development.
Fundamental issues that need to be explored in the first instance include principled
approaches to designing effective relation sets, facilitating learners’ linking of those
sets, and helping learners to structure the internal representations they compose
according to the referent content’s functionality.

References

1. Lowe, R.K., Schnotz, W., Rasch, T.: Aligning affordances of graphics with learning task
requirements. Applied Cognitive Psychology, 452–459 (2010)

2. Hegarty, M.: The cognitive science of visual-spatial displays: Implications for design.
Topics in Cognitive Science, 1–29 (2011)

3. Schnotz, W., Lowe, R.K.: A unified view of learning from animated and static graphics.
In: Lowe, R.K., Schnotz, W. (eds.) Learning with Animation: Research Implications for
Design, pp. 304–356. Cambridge University Press, New York (2008)

4. de Koning, B.B., Tabbers, H.K., Rikers, R.M.J.P., Paas, F.: Towards a framework for
attention cueing in instructional animations: Guidelines for research and design.
Educational Psychology Review 21, 113–140 (2009)

5. Lowe, R.K., Boucheix, J.-M.: Cueing complex animations: Does direction of attention
foster learning processes? Learning and Instruction 21, 650–663 (2011)

6. Kriz, S., Hegarty, M.: Top-down and bottom-up influences on learning from animations.
International Journal of Human Computer Studies 65, 911–930 (2007)

7. Amadieu, F., Mariné, C., Laimay, C.: The attention-guiding effect and cognitive load in
the comprehension of animations. Computers in Human Behavior 27, 36–40 (2011)

8. Mayer, R.E., Mathais, A., Wetzell, K.: Fostering understanding of multimedia messages
through pre-training: Evidence for a two-stage theory of mental model construction.
Journal of Experimental Psychology: Applied 8, 147–154 (2002)

9. Lowe, R., Boucheix, J.-M.: Learning from Animated Diagrams: How Are Mental Models
Built? In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI),
vol. 5223, pp. 266–281. Springer, Heidelberg (2008)

10. Mayer, R.E.: Research-Based Principles for Learning with Animation. In: Lowe, R.K.,
Schnotz, W. (eds.) Learning with Animation. Research Implications for Design, pp. 30–48.
Cambridge University Press, New York (2008)

11. Johnson-Laird, P.N.: How We Reason. Oxford University Press, Oxford (2006)
12. Jahn, G., Knauff, M., Johnson-Laird, P.N.: Preferred mental models in reasoning about

spatial relations. Memory & Cognition 35, 2075–2086 (2007)
13. Hyönä, J.: The use of eye movements in the study of multimedia learning. Learning and

Instruction 20, 172–176 (2010)
14. Jarodzka, H., Scheiter, K., Gerjets, P., Van Gog, T.: In the eyes of the beholder: How

experts and novices interpret dynamic stimuli. Learning and Instruction 20, 146–154
(2010)

15. Kurby, A., Zacks, J.: Segmentation in the perception and memory of events. Trends in
Cognitive Science 12, 72–79 (2007)

240 R. Lowe and J.-M. Boucheix

16. Lowe, R.K., Boucheix, J.M.: Unfair Competition: Static. Cues in Animated Graphics.
Poster presented at the Comprehension of Text and Graphic, SIG 2 Meeting, Tubingen,
Germany (2010)

17. Khooshabeh, P., Hegarty, M.: Inferring Cross-Sections: When Internal Visualizations Are
More Important Than Properties of External Visualizations. Human Computer
Interaction 25(2), 119–147 (2010)

18. Lowe, R., Boucheix, J.-M.: Supporting Relational Processing in Complex Animated
Diagrams. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI),
vol. 5223, pp. 391–394. Springer, Heidelberg (2008)

Diagrammatically-Driven Formal Verification

of Web-Services Composition

Petros Papapanagiotou, Jacques Fleuriot, and Sean Wilson

School of Informatics
University of Edinburgh

United Kingdom
p.papapanagiotou@sms.ed.ac.uk, jdf@inf.ed.ac.uk, sean.wilson@ed.ac.uk

Abstract. This paper describes a diagrammatic approach to the for-
mal verification of web-services composition. We present a set of graph-
ical composition rules that map to proof steps in Classical Linear Logic
(CLL) and can be used to drive the proof assistant HOL Light purely
through interactive, diagrammatic reasoning. The end result is a verified,
workflow-like diagram that provides a visual account of the composition
process and of the information flow between the services making up the
composite service. Our approach thus removes the need to interact di-
rectly with HOL Light and provides a mean of visualising and carrying
out the whole verification process at an intuitive, yet fully rigorous, level.

1 Introduction

In recent work [7] using the HOL Light theorem prover [5], we showed how Clas-
sical Linear Logic (CLL) can be used to verify the correctness of web services
composition interactively. In short, by specifying each service as a CLL state-
ment, the composition process corresponds to finding a proof for a requested
service, with the available services stated as assumptions. If a proof is found,
this means a valid composition exists, and then a process calculus realisation of
the composite service can be extracted automatically. This particular approach,
provides a verified result where it is guaranteed that the inputs and outputs of
each web service are matched appropriately and that all exceptions are handled
systematically. This property is particularly useful in systems where a certain
level of trust is required in the interaction among the involved parties and infor-
mation provenance can be explicitly tracked.

Although our approach can successfully deal with complex compositions in-
volving numerous web-services, it asks for some familiarity with CLL and, more
importantly, it also requires the user to have a decent level of expertise in the use
of HOL Light. While these requirements are not intractable, it does make the
methodology quite demanding for those whose main interest lies in the design
of web-services and their composition rather than theorem-proving. However,
during the development of our framework, we realised that we often used dia-
grams in order to explore the various ways of composing services and illustrate

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 241–255, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

242 P. Papapanagiotou, J. Fleuriot, and S. Wilson

the information flow between them. This observation provided us with the mo-
tivation for developing a systematic diagrammatic approach that can abstract
from the low-level text-based theorem proving. We first developed pen-and-paper
versions of a set of diagram-transformation rules – we call these actions – that
could be applied intuitively during the interactive composition of web services
(see Section 3). The actions were then implemented as part of a Java-based GUI
that drives the theorem prover HOL Light in the background during a purely
graphical composition process. The overall result is a new composition approach
embodied into a tool that does not require any knowledge of CLL or theorem
proving on the part of the user and yet provides a formally-verified composition
process.

The organisation of the paper is as follows: We describe the representation of
web services in our system, both in its internal logical form and its corresponding
diagrammatic notation in Section 2. We then analyze the defined composition
actions through various examples and provide actual screenshots from our im-
plemented tool as well as the corresponding formal proof trees in Section 3. A
use case from a real estate domain is presented in Section 4, followed by some de-
tails of the implementation of our interface in Section 5. Finally, we briefly cover
some related work in Section 6 and mention plans for future work in Section 7,
before summarizing our results in Section 8.

2 Representation

The main focus in designing our diagrammatic representation was to provide
enough expressivity to allow the specification of any web service, while hiding
the complicated syntax and attached semantics of the underlying logic. In what
follows, we briefly explain how web services are specified internally in our system
in Section 2.1 and then describe the diagrammatic notation for these specifica-
tions in Section 2.2.

2.1 Classical Linear Logic Specifications

The theorem-proving part of our implementation uses the multiplicative additive
fragment of propositional CLL (MALL) to describe web services. This is a rela-
tively expressive logic that allows us to incorporate all the necessary information,
including exceptions, when composing services.

We will not delve into all the details of the various operators of MALL and
their formal semantics here. We instead refer the interested reader to other
papers where these have been given [7,8]. For the purpose of this article, we
only briefly explain how various relevant operators can be used to express web
services functional properties. Note also that whenever we refer to CLL in the
rest of this paper, we are implicitly referring to MALL.

We focus on representing the types of the inputs, preconditions, outputs, post-
conditions, and exceptions of each service. From here on in this paper, unless oth-
erwise stated, every reference to inputs corresponds to the types of both inputs

Diagrammatically-Driven Formal Verification of Web-Services Composition 243

and preconditions, whereas any reference to outputs corresponds to the types
of both outputs and postconditions, as these are treated similarly. In general,
negated terms (.⊥) correspond to inputs, whereas positive literals correspond to
outputs or exceptions. A number of basic operations are allowed on inputs and
outputs and can be expressed as follows in CLL:

– A⊥ `B⊥ indicates the simultaneous input of A and B (composite input)1.
– A⊗B indicates the simultaneous output of A and B (composite output).
– A⊥&B⊥ indicates that A or B but not both will be given as input (optional

input).
– A⊕B indicates that A or B but not both will be given as output (optional

or exceptional output).

Based on the above we can specify any web service using logical consequence in
one-sided sequent calculus CLL statements.

2.2 Diagrammatic Notation

We can now introduce our diagrammatic notation for capturing these CLL spec-
ifications. Each service is represented as a node with dangling edges standing
for its inputs and outputs. Solid edges correspond to composite inputs/outputs
whereas dashed edges correspond to optional inputs/outputs. Moreover, lighter
(grey) edges correspond to information that is not explicitly handled by the
receiving service but merely being buffered through it.

For example, we can represent a service Pa with inputs A and B and outputs
X and Y in CLL and our graphical notation as shown in Fig. 1.

� A⊥, B⊥, X ⊗ Y

Fig. 1.

Similarly, a service Pb with inputs A and B and either an output X or an
exception E is represented in Fig. 2.

� A⊥, B⊥, X ⊕ E

Fig. 2.

More complicated cases can be represented in the same way. For example,
a service Pc with inputs A and B, and outputs X and Y that may throw an
exception E can be represented as shown in Fig. 3.

1 Note that, in CLL, � A⊥ `B⊥ and � A⊥, B⊥ are logically equivalent.

244 P. Papapanagiotou, J. Fleuriot, and S. Wilson

� A⊥, B⊥ (X ⊗ Y)⊕E

Fig. 3.

3 Proof-Based Diagrammatic Composition

As already mentioned, the core part of our composition methodology involves
finding a CLL proof that the requested composite service is achievable, using
the available services as assumptions. Thus, a diagrammatic interface should
allow us to drive the theorem prover to find similar mechanical proofs, thereby
guaranteeing the correctness of the graphical composition.

Although CLL allows for a wide range of formal statements, only a restricted
subset of these actually correspond to sensible web service specifications. This
makes our task more tractable (than if we had to deal with fully diagrammatic
CLL proofs) as we only need to capture a small set of generic actions that a user
needs when interactively composing web services in our diagrammatic interface.
Each of these actions corresponds to a custom, fully-automated, HOL Light proof
tactic that applies a number of CLL inference steps in order to generate the veri-
fied result at the logical level, thereby ensuring the action’s correctness. By using
these actions the user is relieved from the tedious process of applying a large num-
ber of primitive CLL rules since these are now subsumed by each action.

We next present three generic actions — JOIN, TENSOR, and WITH — that
are sufficient to accomplish non-trivial compositions. These correspond to three
generic types of compositions between two services, namely sequential, parallel,
and optional, respectively. Note that our system can be extended to accommo-
date other custom actions, provided a corresponding HOL Light proof tactic can
be constructed for each one.

3.1 The JOIN Action

The JOIN action is perhaps the most intuitive one when composing web services,
but also the most complicated one to handle in CLL. It reflects the connection
of two services in sequence, ie. where (some of) the outputs of a service are
connected to the corresponding inputs of another.

We illustrate it by means of an example: Let us assume the user wants to
connect the output of service P to service Q. At the diagrammatic level, the
user can accomplish the JOIN action by clicking on an edge that corresponds to
one of the outputs of P and then right-clicking on an edge that corresponds to
a matching input of Q.

In order to verify the result of this action in CLL, we have to consider different
cases of outputs for P , namely single (atomic) output, multiple (composite)
outputs, and optional outputs. Each of these cases is handled by a different set
of proof steps. The diagrammatic representation before and after the application

Diagrammatically-Driven Formal Verification of Web-Services Composition 245

(a) Before (b) After

� A⊥, B⊥, X � X⊥, Z

� A⊥, B⊥, Z
Cut

(c) Proof tree

Fig. 4. The JOIN action between service P with an atomic output and service Q with
a matching input

(a) Before (b) After

� A⊥, B⊥, X ⊗ Y

� X⊥, Y⊥, Z

� X⊥ ` Y ⊥, Z
`

� (X ⊗ Y)⊥, Z

neg eq

� A⊥, B⊥, Z
Cut

(c) Proof tree

Fig. 5. The JOIN action between service P with a composite output and service Q
with two matching inputs

of the JOIN action, as well as the corresponding proof tree2 for the various cases
are presented by means of a few examples next.

– If the output of P is atomic e.g. X and corresponds to the only input of Q,
then the JOIN action corresponds to a trivial application of the Cut rule in
CLL (Fig. 4).

– If the output of P is composite, for example X ⊗ Y and:

• Q has composite inputs that accept both X and Y as input, the action
will connect P and Q on both X and Y (Fig. 5).

• Q only has X as input then a connection happens with P on X , while
Y is simply buffered through Q (Fig. 6).

– If the output of P is optional, for example X ⊕ Y , and Q has X as input
then Q is modified so that it can accept and properly handle the optional
output. If Y is received by this modified version of Q, it is buffered through
together with any unused resources (from other inputs) of Q (Fig. 7).

2 We note that the neg eq step in some of these proofs is an abbreviation of the Cut
rule used with a lemma involving linear negation.

246 P. Papapanagiotou, J. Fleuriot, and S. Wilson

(a) Before (b) After

� A⊥, B⊥, X ⊗ Y

� X⊥, C⊥, Z � Y ⊥, Y
Id

� X⊥, C⊥, Y ⊥, Z ⊗ Y
⊗

� X⊥ ` Y ⊥, C⊥, Z ⊗ Y
`

� (X ⊗ Y)⊥, C⊥, Z ⊗ Y

neg eq

� A⊥, B⊥, C⊥, Z ⊗ Y
Cut

(c) Proof tree

Fig. 6. The JOIN action between service P with a composite output and service Q
with only one matching input

In the special case where Q has a single input X and its output is Y , then
the composition of P and Q will always generate Y (if P generates X then
Q converts X to Y , else Y is generated directly from P) (Fig. 8).

– Finally, if the output of P is a more complex combination of multiple compos-
ite and/or optional outputs, the above strategies are applied in a recursive,
bottom-up way.

3.2 The TENSOR Action

The TENSOR action corresponds to the parallel composition of two services.
This is particularly useful in cases where each of the components of a composite
output of a service needs to be handled by a different service. Composing these
handlers in parallel allows all the involved outputs to be handled simultaneously.

At the diagrammatic level, the user can accomplish the TENSOR action with
the simple gesture of clicking on a service and then right-clicking on another. In
the interface this creates a new outer box, representing the parallel composition
of the original services into a new, composite service, whose inputs and outputs
correspond to those of the original services. Note that this new box can be
collapsed, thus hiding its component services, in order to make the diagram
more concise.

In our CLL representation the TENSOR action can be easily verified based on
the appropriate application of the tensor (⊗) inference rule. The diagrammatic
representation and proof tree for a simple example involving the TENSOR action
on two services P and Q are given Fig. 9.

3.3 The WITH Action

The concept of the WITH action is similar to that of the TENSOR action. It
corresponds to the optional composition of two services. This type of composition

Diagrammatically-Driven Formal Verification of Web-Services Composition 247

(a) Before

(b) After

� A⊥, B⊥, X ⊕ E

� X⊥, C⊥, Z

� X⊥, C⊥, Z ⊕ (C ⊗ E)

⊕

� C⊥, C
Id

� E⊥, E
Id

� E⊥, C⊥, C ⊗ E

⊗

� E⊥, C⊥, Z ⊕ (C ⊗ E)

⊕

� X⊥ & E⊥, C⊥, Z ⊕ (C ⊗ E)
&

� (X ⊕ E)⊥, C⊥, Z ⊕ (C ⊗ E)

neg eq

� A⊥, B⊥, C⊥, Z ⊕ (C ⊗ E)
Cut

(c) Proof tree

Fig. 7. The JOIN action between service P with an optional output and service Q with
a matching input

is useful in cases where each of the components of an optional output of a service
needs to be handled by a different service.

For example, assume a service S has an optional output X ⊕ E where E is
an exception. We want X to be handled by some other service P while another
service Q plays the role of the exception handler for exception E. For this to
happen, we need to compose P and Q together using the WITH action so that
X ⊕ E from S can be dealt with in one go.

At the diagrammatic level, the user accomplishes the WITH action that will
compose P and Q by clicking on input X of P and then right-clicking on input E
of Q. In the interface, similarly to the TENSOR action, a new collapsible, dashed,
outer box is then created, representing a new composed service where either P
or Q will be executed (contrast this to the solid outer box of the TENSOR action
which, as explained before, consists of services that run in parallel).

Verifying this action in CLL is more challenging than for the TENSOR action.
The main reason is that in this case we need to account for (unused resources
from) other inputs. For example, if P has another input B, then the service
formed by the conditional composition of P and Q will also have this input.
Therefore, if exception E occurs and B is provided by another source, B will
not be consumed (since P will not be invoked). Thus, it needs to be buffered
through together with the output of Q that will handle E.

A more complicated example (where both P and Q have extra inputs B and
D respectively) and the corresponding proof tree, as well as the diagrammatic
representation are shown in Fig. 10.

248 P. Papapanagiotou, J. Fleuriot, and S. Wilson

(a) Before (b) After

� A⊥, B⊥, X ⊕ Y

� X⊥, Y � Y ⊥, Y
Id

� X⊥ & Y ⊥, Y
&

� (X ⊕ Y)⊥, Y

neg eq

� A⊥, B⊥, Y
Cut

(c) Proof tree

Fig. 8. The JOIN action between service P with an optional output X⊕Y and service
Q that only has X as input and Y as output

(a) Before (b) After

� A⊥, X � B⊥, Y

� A⊥, B⊥, X ⊗ Y
⊗

(c) Proof tree

Fig. 9. The TENSOR action on two services P and Q

4 Use Case: Home Purchasing

We consider the case of home purchasing as presented by Papapanagiotou and
Fleuriot [7]. In this, a set of ten web services representing both automated and
human agents involved in the various subtasks of purchasing a home is presented.
These can be summarized as follows:

– The Buyer service represents the client making an offer for a home he wishes
to purchase. For simplicity, in this example, we assume the point of view of
the buyer, in which case an offer is always made (otherwise the execution is
interrupted at that point).

– The HomeDir (home directory) service provides a list of available homes on
the market based on a set of user-defined criteria.

– The CriminalService provides the level of average criminal activity in a region.
– The HouseAlert service generates alerts to notify about homes that match

the given criteria.
– The EstateAgentSeller service represents the decision of an estate agent on a

purchase offer.
– The MortgageService may generate a mortgage preapproval for a client or an

exception if he is not eligible.
– The ContractService represents the notary that generates the contract be-

tween the estate agent and the buyer.
– The TitleSearch directory is used to retrieve the title and insurance informa-

tion of a home.

Diagrammatically-Driven Formal Verification of Web-Services Composition 249

(a) Before (b) After

� A⊥, B⊥, X � D⊥, D
Id

� A⊥, B⊥, D⊥, X ⊗ D

⊗

� A⊥, B⊥, D⊥, (X ⊗ D) ⊕ (Y ⊗ B)

⊕

� C⊥, D⊥, Y � B⊥, B
Id

� C⊥, B⊥, D⊥, Y ⊗ B

⊗

� C⊥, B⊥, D⊥, (X ⊗ D) ⊕ (Y ⊗ B)

⊕

� A⊥ & C⊥, B⊥, D⊥, (X ⊗ D) ⊕ (Y ⊗ B)
&

� (A ⊕ C)⊥, B⊥, D⊥, (X ⊗ D) ⊕ (Y ⊗ B)

neg eq

(c) Proof tree

Fig. 10. The proof tree and diagrammatic representation of the WITH action on input
A of service P and input C of service Q. A new outer box is created with optional
input (A⊕ C)⊥ allowing either P or Q to be executed.

– The HomeInsurance service can provide home insurance contracts.
– Finally, the Settlement service represents the agreement between the estate

agent and the buyer and the signing of the contracts.

Our goal, in this example, is to combine (graphically) this set of services in a
single, fully verified, composite service that acts as a single point with which the
end-user can interact and exchange information. In the composed service, the
information flow between the composed components is handled automatically,
thereby alleviating the need for the user to interact with each of the services
in the set individually. Our underlying proof-based methodology, which only
allows correct composition steps that eventually yield a verified result, can thus
provide trust to all involved parties that the finished composition is correct and
any exception or issue that arises will be handled or forwarded appropriately.
Furthermore, it is worth noting the possibility of verifying a number of properties
of the composed service by running model-checking tasks on the constructed
process calculus term that is extracted from the finished proof.

In this example, the requested service can be represented by the following
CLL statement:

� HC⊥, RE⊥, DCL⊥, CI⊥, S⊕?E

This corresponds to a composite service that given the user’s home criteria (HC),
selected region (RE), desired maximum criminal activity level (DCL), and client
information CI, generates a settlement (S) or an exception (?E). Note that ?E is
a metavariable that becomes instantiated during the proof and is not expected to
be known in advance. The binding for E will be automatically propagated to the
diagram and can simply be read-off the appropriate output edges by the user.

The entire proof of this statement, given that it involves ten services, is fairly
complicated and the resulting proof tree (not given here due to space limitations)
is large and convoluted to follow. The diagrammatic result, however, gives a much

250 P. Papapanagiotou, J. Fleuriot, and S. Wilson

Fig. 11. The diagrammatic representation of the resulting composition in our Real
Estate use case

clearer picture of how the services are composed together (see Fig. 11). The user
obtains a clear view of the information flow in the composite service, an aspect
that is completely obscured by the proof script.

In order to demonstrate the complexity of the proof and how it is abstracted
from and made easy for the user in our diagrammatic interface, we focus on
two particular examples of subproofs. Note that we only present enough details
of these subproofs to demonstrate the benefits gained from the diagrammatic
approach. For a more detailed discussion of the actual theorem proving, we refer
the reader to the relevant paper [7].

4.1 Example Sub-proof: Composite I/O

In our first example, we attempt to join the HouseAlert service to the Buyer
service. Given a home listing HL, the criminal activity level CL in its region,
and the desired criminal activity level DCL, the HouseAlert service produces
a triple output (HTID ⊗ HAID ⊗HDE) involving the home’s title database
ID (HTID), its estate agent database ID (HAID), and its description (HDE).
This can be described in CLL as follows:

� HL⊥, CL⊥, DCL⊥, (HTID⊗HAID ⊗HDE) (1)

The Buyer expects the home description in order to decide if they want to make
an offer HO. Therefore, we would like to connect output HDE from HouseAlert
to Buyer.

Accomplishing this in CLL is not as simple as it may sound. When connecting
the two services, all of the involved resources need to be accounted for. In short,
this means that the unused resources HTID and HAID need to be forwarded
through the Buyer using buffers. The proof tree that constructs this composition
is the following:

 HDE⊥, HO
Buyer

 HAID⊥, HAID
Id

 HAID⊥, HDE⊥, (HAID ⊗ HO)
⊗

 HTID⊥, HTID
Id

 HTID⊥, HAID⊥, HDE⊥, (HTID ⊗ HAID ⊗ HO)
⊗

 HTID⊥, (HAID⊥ ` HDE⊥), (HTID ⊗ HAID ⊗ HO)
`

 (HTID⊥ ` HAID⊥ ` HDE⊥), (HTID ⊗ HAID ⊗ HO)
`

 (HTID ⊗ HAID ⊗ HDE)⊥, (HTID ⊗ HAID ⊗ HO)
neg eq

 HL⊥, CL⊥, DCL⊥, (HTID ⊗ HAID ⊗ HO)
Cut w/ 1

(2)

Diagrammatically-Driven Formal Verification of Web-Services Composition 251

(a) Before (b) After

Fig. 12. The JOIN action between the HouseAlert and the Buyer services for the Home
Purchase use case

Using our interface, this composition can be accomplished with a single JOIN
action, by clicking on the dangling output edge labelled HDE of HouseAlert,
then right clicking on the corresponding input edge of Buyer. This will give us
the result shown in Fig. 12. The complex task of performing the proof (2) is
taken care of by the HOL Light tactic that corresponds to the JOIN action, thus
verifying the correctness of the result in the background.

4.2 Example Sub-proof: Optional I/O

A similar situation is encountered when joining the MortgageService to the Con-
tractService. The former generates a mortgage preapproval PA for the client
given the appropriate client information CI, but may throw an exception EXM
if the client is not eligible for mortgage. This service is expressed in CLL as
follows:

� CI⊥, (PA⊕ EXM) (3)

The ContractService expects a mortgage preapproval PA and an accepted offer
AO from an estate agent in order to produce the contract CO.

In order to compose these two services, one needs to account for unused re-
sources in the case of the exception. If EXM is thrown, the ContractService will
never be invoked because there will be no preapproval PA. Consequently, the
resulting composite process needs to forward the unused resource of the the ac-
cepted offer AO which is also part of its input. The CLL proof tree that performs
this composition is shown below:

 AO⊥, AO
Id
 EXM⊥, EXM

Id

 EXM⊥, AO⊥, AO ⊗ EXM
⊗

 EXM⊥, AO⊥, CO ⊕ (AO ⊗ EXM)
⊕

(4)

252 P. Papapanagiotou, J. Fleuriot, and S. Wilson

(a) Before

(b) After

Fig. 13. The JOIN action between the MortgageService and the ContractService for the
Home Purchase use case

 PA⊥, AO⊥, CO
ContractService

 PA⊥, AO⊥, CO ⊕ (AO ⊗ EXM)
⊕

 PA⊥ & EXM⊥, AO⊥, CO ⊕ (AO ⊗ EXM)
& w/ 4

 (PA ⊕ EXM)⊥, AO⊥, CO ⊕ (AO ⊗ EXM)
neg eq

 CI⊥, AO⊥, CO ⊕ (AO ⊗ EXM)
Cut w/ 3

(5)

Similarly to the previous example, this proof is constructed in the background
when the users joins the two services using a simple mouse gesture. The result
of this action in our interface is shown in Fig. 13.

5 The Diagrammatic Interface

A screenshot of our diagrammatic tool is shown in Fig. 14. The GUI is imple-
mented in Java where JGraph [6] is used for graph visualisation and layout.
Behind the scenes, interactions with the GUI involves sending commands to
an instance of HOL Light to construct proofs. Executed HOL Light commands
communicate their results back to the GUI via JSON [3] so that the state of the
current proof can be visualised. As all of the reasoning takes place within HOL
Light, this guarantees that any proof we complete is correct.

Before beginning a proof, the user first defines the atomic services they want
to use. A toolbar button is used to bring up a dialog for adding new services. The
user then specifies the inputs and outputs, and name for the service by filling in
text fields. The ⊗ and ⊕ operators are used to specify composite and optional
outputs respectively. The HOL Light command for creating a new service is then
executed in the background and an appropriate representation of the new service
is added to the graph displayed by the GUI.

Diagrammatically-Driven Formal Verification of Web-Services Composition 253

Fig. 14. A screenshot of our diagrammatic interface. The graph shows the current
state of a proof in progress. The list on the left contains a list of all the atomic and
composite services defined so far.

To start a proof, the same interface is used to specify a new composite service
with the addition that metavariables are allowed for as yet unknown outputs
(e.g. exceptions). The user must then manipulate the graph by applying actions
(see Section 3) to create a graph that represents this composite service.

Each action is triggered using a different GUI gesture which executes a HOL
Light tactic. When a tactic succeeds, the proof state of HOL Light is modified
and the result of the tactic is communicated back to the GUI. The corresponding
graph transformation to visualise this result is then applied.

For example, the tactic for the WITH action (see Section 3.3) is invoked when
the user left-clicks one service then right-clicks a second service. If the tactic
succeeds then 1) the graph nodes that represent these services are grouped to-
gether within a new outer node and 2) appropriate edges are added to this new
node that represent the inputs and outputs specified by the tactic result. Note
that should a service be required more than once in a proof, extra copies can be
added to the graph by clicking its entry in a list that details the services defined
so far (see Fig. 14).

Should the user wish to save their progress, a HOL Light proof script rep-
resenting the proof state is created. This can be then be loaded to restore the
GUI to the same state later. Using the same loading mechanism, the tool is
thus also capable of visualising existing HOL Light proof scripts concerning web
service composition that were written by hand directly in the theorem prover.
For advanced users, this provides the flexibility for editing proof scripts using a
combination of our interface and direct script manipulations.

254 P. Papapanagiotou, J. Fleuriot, and S. Wilson

6 Related Work

Using diagrams to describe CLL proofs is common in proof theory. Girard de-
veloped Proof-Nets, a geometric representation of CLL proofs that facilitates
proof theoretic analysis, such as proof equivalence, and cut elimination [4]. We
consider Proof-Nets to be a more general, complicated, and deeply theoretical
construction than the simpler visualisation of composite web services that we are
trying to achieve. Our aim is to construct a diagram that clearly demonstrates
the intuitive interpretation of CLL proofs as web services composition. As men-
tioned earlier, the web services context restricts these proofs to specific patterns
that our diagrams need to capture, as opposed to Proof-Nets that are designed
to represent any possible CLL proof. Moreover, the diagrams constructed by our
tool show the information flow in the resulting composition in a clear, straight-
forward way.

Web services are also often described using diagrams, and more specifically
workflows. The Business Process Execution Language (BPEL) [1] and Busi-
ness Process Modelling Notation (BPMN) [9] are among the most often used,
workflow-based languages to describe web services. The main aims of such
workflow-based specifications are to not only describe the web service infor-
mation and control flow, but also provide an executable model. In our case, we
focus mostly on the information flow, whereas the executable model is provided
in the extracted process calculus term (upon which we have not elaborated here,
but in the related papers [7,8]). We consider workflows as a more complete ap-
proach for the description of web services and consider an attempt to map our
diagrams to such workflows as future work.

7 Future Work

Having implemented the core features for formally verified, interactive web ser-
vices diagrammatic composition, there are several interesting topics and ideas to
explore next. Primarily, we aim to introduce more actions so as to cover other
specific cases of web services composition, such as the connection between a ser-
vice with an atomic output and a service with an optional input (where one of
the options matches the atomic output). Integrating the PiVizTool [2] for the
visualisation of the executable process calculus term that is extracted from our
proof is also among our immediate aims. As mentioned in the previous section,
introducing links between our diagrammatic visualisation and existing workflow
languages would help towards exporting a more concrete and reusable result.
Moreover, there are various ways of improving our tool, such as guiding the user
during the composition process, for example by highlighting matching inputs
when the mouse hovers over a specific output. We also note that we are cur-
rently in the process of taking the framework beyond web services composition
through some new work on the formal verification of collaborative healthcare
workflows. This task is greatly facilitated by our abstract diagrammatic tool,
enabling healthcare experts who have no prior knowledge of logic or theorem
proving to use it and understand the resulting compositions.

Diagrammatically-Driven Formal Verification of Web-Services Composition 255

8 Conclusion

We have described our efforts towards a diagrammatically-driven approach for
the formal verification of web services composition. We use an intuitive graphi-
cal notation in which nodes (boxes) represent web services and edges correspond
to inputs and outputs. Using simple mouse gestures, the user can apply prede-
fined graphical rules to compose the available services and implicitly guide HOL
Light into applying automatic procedures that verify the result of the compo-
sition steps in CLL. The interface provides a visualisation of the composition
by creating a workflow-like graph representing the information flow between the
component services. We evaluated our approach by developing a non-trivial ex-
ample involving web services for home purchasing fully diagrammatically. Based
on our previous experience on verifying this case-study directly in HOL Light, it
is clear that the diagrammatic approach greatly simplifies the verification process
by eliding the need for any direct proof derivation in CLL using (a wide variety
of) HOL Light commands. We believe our tool demonstrates that an intuitive,
diagrammatic approach to producing and visualising fully-verified composition
of web services is not only feasible but also effective.

References

1. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., et al.: Business process execution language
for web services, version 1.1. Standards proposal by BEA Systems, International
Business Machines Corporation, and Microsoft Corporation (2003)

2. Bog, A., Puhlmann, F.: A Tool for the Simulation of π-Calculus Systems. Open.
BPM (2006)

3. Crockford, D.: The application/json media type for JavaScript Object Notation
(JSON). Internet RFC 4627 (July 2006)

4. Girard, J.Y.: Proof-nets: the parallel syntax for proof-theory. Logic and Algebra,
97–124 (1995)

5. Harrison, J.: HOL Light: A Tutorial Introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

6. JGraph Ltd.: The JGraph homepage, http://www.jgraph.com/
7. Papapanagiotou, P., Fleuriot, J.: Formal verification of web services composition

using linear logic and the pi-calculus. In: 2011 Ninth IEEE European Conference on
Web Services (ECOWS), pp. 31–38. IEEE (September 2011)

8. Papapanagiotou, P., Fleuriot, J.: A theorem proving framework for the formal ver-
ification of web services composition. In: WWV 2011, vol. 61, pp. 1–16. EPTCS
(2011)

9. White, S., Miers, D.: BPMN modeling and reference guide. Future Strategies Inc.
(2008)

http://www.jgraph.com/

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 256–269, 2012.
© Springer-Verlag Berlin Heidelberg 2012

The Diagram of Flow: Its Departure from Software
Engineering and Its Return

S.J. Morris1 and O.C.Z. Gotel2

1 Department of Computing, City University London, UK
sjm@soi.city.ac.uk

2 Independent Researcher, New York, NY, USA
olly@gotel.net

Abstract. The first diagrammatic notation used in software engineering
represented the concept of flow. This paper considers the factors that affected
the apparent departure of the flowchart from software engineering practice
during the 1970s and 1980s and its subsequent return in the 1990s. A new
emphasis on hierarchy (as level of abstraction) and on data structure meant that
the general concept of flow was completely superseded, only to re-emerge later
as a new duality of control flow and data flow. This reappearance took a variety
of forms with varying semantics until its stabilisation in the latest version of the
Unified Modeling Language. Flow is there re-instated as a fundamental concept
in software engineering although its importance, and that of the activity
diagram used to represent it, diminished as a consequence of its becoming just
one among a wider set of paradigms for software systems development, each
associated with its own diagrams.

Keywords: Activity Diagram, Diagrammatic Notation, Flowchart, History,
Representation, Software Engineering.

1 Introduction

Earlier papers [1], [2] traced the history of flow diagrams from their early beginnings
as representations of flows in nature and industry, through the introduction by
Goldstine and von Neumann of a symbolic representation of sequence as a means of
machine control, and through the use of their new version of the flowchart as an
essential tool for programming and the automation of applied mathematics during the
1940s and 1950s, to the falling of the flowchart into disrepute as an unwieldy and
counterproductive assistant for programming. This paper continues this history by
considering the demise of the flowchart and its resurrection in the latest software
engineering modelling language in an altered form and less crucial role.

Section 2 contrasts examples of programming practice before and after the initial
demise of the flowchart and outlines the many factors leading to attempts to structure
what were becoming increasingly large and complex programs and systems design
projects. Section 3 considers the restructuring of representations of both program and
system design, at first by variants of the flowchart concepts, then by more radical

 The Diagram of Flow: Its Departure from Software Engineering and Its Return 257

hierarchical and data-centric approaches to the entire process. Section 4 deals first
with the emergence of the object-oriented paradigm for programming and systems
design and then considers two versions of one diagram in the Unified Modeling
Language (UML), now the prevailing standard for development support in an object-
oriented environment. Examination of this activity diagram shows how the concept of
flow remained, although concealed, only to re-emerge quite unmistakably following
significant revision of its original version. Section 5 presents general historical and
practical conclusions.

2 Replacement of Flow as Program Paradigm

2.1 Contrasting Practices

In 1958 Mike Woodger defined the essential stages of program development in
manuscripts that survive in the archive of the National Physical Laboratory (NPL)
where he worked from 1945 to 1983. These manuscripts include fully detailed
flowcharts of complex algorithms, one of which is reproduced in part in [1] and in full
in [2]. Woodger defined programming practice in an era when there was only the
particular code of a specific machine available to control it and when the programmer,
almost always a mathematician or scientist, was also solely responsible for memory
allocation and its manipulation. The flowchart then had a crucial role in the
representation of algorithms and hence of programs. The production of a flowchart
was an essential step following the analysis of the mathematical problem to be solved
and the choice of a suitable procedure. This approach had developed in part because
the most frequent tasks then involved complex mathematical tasks only made possible
by automated computation at high speed [2].

Another program written by Woodger, not later than 1976, “to allow a user with
VDU and keyboard to interrogate an existing stored body of information (about
fungi)” survives in its entirety with a full program listing and documentation [3]. He
uses it as an example in an article in which he again defines the steps of
programming, but now without any mention of flowcharts. He sets out as
programming principles the “separation of concerns”, the separation of what is to be
achieved from how it is to be achieved, and an “hierarchy of virtual machines”
containing objects at an appropriate level of abstraction with their associated
operations.

The process that Woodger defines and illustrates makes no use of diagrams. It
begins with a “rough planning stage” whose purpose is to define “what is to be done”.
The second stage consists of “Further detail: how is this purpose to be achieved”,
again principally defined as text. The process then switches from what had become
known as a top-down approach to the opposite bottom-up process. The final
implementation stage involves direct use of the available “programming language and
its implementation ... within the constraints of the OS”.

An eyewitness account of the practices in a major UK company, ICI (Imperial
Chemical Industries), during the intervening period indicates that it was a severe
shock for many that excellent programs could be written using a completely new

258 S.J. Morris and O.C.Z. Gotel

method. This writer, Ken Ratcliff, criticises such practices as leading to “indulgence
into flights of bit fiddling, or unnecessary pirouetting on a recently learned technique
of pointer arithmetic, cross-sectional definition of arrays, programmer controlled
allocation of storage independent of program block structure and other excesses of the
do-it-yourself type” [4]. The solution for ICI at the time was the rapid and
comprehensive introduction of the data-centric program design principles of Michael
Jackson with their emphasis on structure (See Section 3.4 below). This account also
indicates how important project and staff management issues had already become.

2.2 Structuring the Unstructured

By the early 1970s, the unstructured complexity of increasingly large programs gave
rise to reactions, at first little related to each other, under the titles of structured
programming and structured systems development. To place developments in
programming techniques and diagrammatic representations in context, the
conspicuous causes included a wide variety of factors having different effects:

• The ability to write increasingly complex programs using higher level languages
which used the original level of machine code as their basis and translators or
compilers to produce code executable on a particular machine;

• The introduction of operating system programs to remove much of the effort from
memory allocation, file management and the mechanics of input and output;

• The availability of mass storage devices (e.g., magnetic tape, drum or disk);
• The shift in commercial domains (and in other domains already exploiting rapid

mathematical computation) towards mass data transformations and manipulations;
• The general lack of experience in dealing with the problems of scaling;
• The craft nature of programming;
• The indications of a continuing and rapidly expanding demand for machines and

programming.

As discussions continued, the characteristics of structured programming coalesced
around a number of issues, exemplified by a list published in 1978 by Infotech
International [5]: structured analysis and design; structured coding; top-down
implementation and testing; Hierarchy, plus Input, Process, Output technique (HIPO);
team operations; project support libraries; structured walkthroughs; and project
management systems. The latter four issues concern improvements to the organisation
of programming personnel and the management of the programming process, and are
not associated with any particular diagrammatic forms. It was expected that the
solution of the former issues would draw on the increasing amount of material on
formal, procedural methods for the design and construction of programs.

There is a clearly perceived switch from sub-division of the total problem into
manageable parts to the use of formal criteria and techniques for decomposition and
design. In the code itself, elimination of the uncontrolled use of GOTO statements
was the benefit gained from the use of only three basic constructs (sequence, iteration
and selection), credited to Böhm and Jacopini [6]. Top-down implementation and

 The Diagram of Flow: Its Departure from Software Engineering and Its Return 259

testing accepted the principle that software development should proceed from the
highest control level modules downwards.

3 Restructuring the Representation of Program and System

3.1 Initial Responses

As they manifest themselves initially in program and systems design techniques, the
responses to these issues focused on two issues both in procedures and in graphical
representations: hierarchy (as level of abstraction) and data structure. The
consequence was the complete supersession of flowcharts as the principal basic
program design device (as used by Woodger in the 1950s) and its demotion to, at
best, a small low-level supporting role.

These responses appeared in a number ways: alterations to the basic flowchart to
accommodate some indication of hierarchy (e.g., Dill, Hopson and Dixon); more
radically different representations of nested structures (e.g., Chapin); completely data-
centric views of process (e.g., Jackson); and combinations of both data and
hierarchical approaches in complete system descriptions (e.g., HIPO).

3.2 Tree Chart

As a preamble to examining these new diagrams it is necessary to first review
another, the tree diagram or tree chart (Figure 1) to show the paradigmatic
representation of hierarchy and how it came to be interpreted in the context of
structured programming. The tree chart represents the results of the parsing of
functions, or functional decomposition, as usually credited to Knuth [7].

The execution or control sequence represented by the diagram of Figure 1 cannot
be, for example, A, C, J, P, A. The executing machine may or may not invoke the
execution of the connected functions on the next lower subordinate level (B, C, D or
E) in any sequence and any number of times. The essential proviso is that control
always returns to the invoking function or module. Likewise with B and its invocation
of F, G and H, and so on. This notion of nesting fundamentally altered program
structure and introduced hierarchical levels not present in earlier generation programs,
even if they made extensive use of routines and sub-routines. The value of
decomposition of this type to overcome problems of size and complexity was a
fundamental influence on the development of other diagrammatic representations.

Q

N

O

MLKJF G H I

EDC

A

P

Fig. 1. Hierarchical tree structure for program structure and control

260 S.J. Morris and O.C.Z. Gotel

TF

Ai+1Ai≤

Newswaps
Newswaps + 1

Repeat :

Nswaps . 0

i . 0

DO :

i i+1

Ai+1Ai&
Interchange

Until
Nswaps =0

Loop
exit

T

FWhile
i ≤ n.1

Loop
exit

Fig. 2. Flowchart with left-to-right levels of nesting

3.3 Flowcharts Adjusted and Block-Like Variants

The standard ANSI and ISO flowchart [8], [9] imposed no configuration constraints
other than a basic vertical sequence from top to bottom plus a reverse parallel path to
represent returns to earlier positions in the sequence. Subsidiary horizontal paths
served only to connect the single main parallel to its reverse companion(s). Such a
structure served well until decomposition demanded some representation of hierarchy.
Early attempts to do this, typified by the approach of Dill et al. [10], involved creating
a horizontal left-to-right hierarchy, an early version of the graphical trope now called
swim lanes. Loop exits now lead not directly back to a point above but to one to the
left in a level higher in a hierarchical rather than topographical sense. The diagram
shown in Figure 2 represents an exchange sort algorithm that repositions the numbers
in an array in ascending order.

An alternative view of nesting, which came to be known as the Chapin chart,
sacrificed all direct representation of flow and sequence in order to show nesting and
selection. The diagram of Figure 3 [11] represents the same exchange sort algorithm
as that described above. This innovative use of a two-dimensional space did not
however solve any of the problems of complexity and size in a conclusive manner.

 The Diagram of Flow: Its Departure from Software Engineering and Its Return 261

Repeat until nswaps = 0

Nswaps 0

Repeat for i = 1 to n.1

T >Ai+1Ai F

Ai+1Ai&Interchange

Newswaps
Newswaps + 1

Fig. 3. Internally nested representation of loops in a Chapin chart

3.4 Data-Centric Views

The most radical approach was to switch completely to a program structure not only
based on data but also independent of programming language, as exemplified by the
initial work of Jackson [12]. The force of its impact comes over clearly in the same
account from ICI UK [4]: “(He) casts many existing highly developed techniques to
the winds, making a clean start with the explicit principle that program structure
should be based on the structure of the data on which the program operates. To
facilitate this development he defines a simple but clear notation for the basic
components of structure, corresponding to the four constructs of structural coding and
called sequence, iteration, selection and the elementary components. Because of the
clear structure of stages, and the structure outlined, the design proceeds without the
help (or rather hinderance) of flow charts.”

F

G H I

E

DC

A

*

o o

Fig. 4. Data structure in JSD notation

Process
file

Process
group

*

Start
group

Process
group
data

End
group

Process
record

*

Fig. 5. Data-centric program structure

262 S.J. Morris and O.C.Z. Gotel

Figures 4 and 5 show the data and program structures as represented in a
contemporary paper of Jackson [13]. In both cases, these represent tree structures in
which elements annotated with a ‘0’ are alternatives and those annotated with a ‘*’
may be repeated 1 to n times.

3.5 Whole System Representation - HIPO

The Hierarchy, plus Input, Process, Output (HIPO) technique was intended to
describe a whole system in terms of inputs, outputs and constituent, intervening
processes. Originally developed at IBM for its own use [14], this takes the separation
of concerns and top-down development as fundamental principles. It was not intended
as a replacement for older techniques, rather as a means of system description at a
level that was not possible to achieve previously when using them.

Figure 6 shows the basic notation used to represent a hierarchy of process
components belonging to a main process P (in this case read at the subordinate level
from left to right with P2 following P1) and the data inputs A and B to process P and
its outputs C, D and E.

With the advent of techniques such as HIPO, and the many others that appeared
during the 1970s (see Davis [15] for a review), the displacement of the flowchart as
an essential programming tool was complete. Development of alternative
programming paradigms demanding completely different representations meant a
lapse into obscurity for the flowchart per se as a programming tool.

P

P1 P2

C

D

E

P
A

B

Fig. 6. Hierarchy of components in HIPO (left) Inputs to and Outputs from process P (right)

4 Flow Survives Object-Orientation

4.1 New Object-Oriented Approaches

From the earliest discussions of structured programming [16], basic concepts of
object-oriented programming were emerging in the form of discussion of data types
and their associated operations. The development of a completely different object-
oriented paradigm for programming, derived in part from such notions of abstract
data types, meant that a wholly new set of diagrams was created. In addition, a whole
new class of diagrams for data and database structuring were emerging, which are
outside the scope of this paper.

In a repeat of what had occurred in the 1960s and 1970s, there was again an
explosion of diagrammatic forms required to assist the development process and an
attempt to clarify complexity, leading to an effort to create initially a Unified Method

 The Diagram of Flow: Its Departure from Software Engineering and Its Return 263

[17] and then a Unified Modeling Language (UML) [18] for object-oriented
development. The UML has subsequently gone through many revisions, the latest
major revision being Version 2.4 [19].

Flow, in the sense of a sequence of activities needed to achieve a particular goal,
had not disappeared, nor had the need to represent notions of the selection of
alternative routes and the possible repetition of segments in such sequences. Hence
the many various uses of flowcharts continued outside the restricted domain of
algorithmic expression and computation.

Within the evolution of the UML the role of flow has gone through three phases. In
the first phase, flow played no recognised role at all in the semantics of the closest
relative of the flowchart, known from the outset as the activity diagram. In the second
phase, object flow became significant. In the third phase, object flow and the original
concept of control flow form a new duality and mark the re-emergence of a full role
for flow in the UML.

During the first and second phases, the principal underlying paradigm for
behaviour was the finite state machine (FSM): “a hypothetical machine that can be in
only one of a given number of states at any specific time. In response to an input, the
machine generates an output and changes state. Both the output and the next state are
purely functions of the current state and the input”. [15]. Its particular development in
the form of the state machines of Harel emphasises the importance of “the
hierarchical decomposition of finite state machines and a mechanism for
communication between concurrent finite state machines” [15]. This variant of the
FSM provided the initial formal semantic basis for the initial activity diagram while
another variant, the Petri net [20], contributed to its visual syntax. In the third phase,
this essentially transitional view of behaviour was displaced in the activity diagram by
the sequential view always implicit in the visual syntax. In the following sub-sections
we examine the details of UML development and show how this occurred.

4.2 Initial Version of the UML Activity Diagram

When what was to became known as the Unified Modeling Language (UML) was
proposed in 1995 [17], the software engineering community was presented with seven
different types of diagram for specifying and designing a software-intensive system
that would be implemented in an object-oriented manner (i.e., class, use case,
message trace, object message, state, module and platform diagrams). Notably absent
was any diagram specifically claiming to model the concept of flow.

The addendum to the initial version of the UML, known as Version 0.91 [18],
remarked that: “Sometimes it is useful to show the work involved in performing an
operation by an object.” Activity diagrams were introduced to fill this gap in the
emerging UML and therefore to provide a way to show the method for implementing
an operation visually (i.e., the steps that occur in the procedural implementation of an
operation). The activity diagram was not labelled as a flow diagram or flowchart;
rather, it was described as: “a special kind of state machine that describes the
implementation of an operation in terms of its sub-operations.” These sub-operations
were essentially the procedural activities internal to the object owning the activity

264 S.J. Morris and O.C.Z. Gotel

diagram and referred to as activity states. The semantics of the initial activity diagram
were explicitly grounded in those of state machines.

Examining the exemplar activity diagram in this addendum document, shown in
Figure 7, reveals a visual notation with distinct graphical icons for the following:

• Activity states - Rounded rectangles that contain the name of a single activity
inside. These model the individual steps (i.e., activities) in the implementation of
an operation.

• Transitions - Solid lines, with a single directional arrow on one end. These model
the sequencing between the activity states (i.e., the flow of control). The transitions
are implicitly triggered by the completion of the preceding activity state.

• Synchronization bars - Solid thick horizontal lines. These model either the
initiation or merging of concurrent control, the former when there are multiple
arrows leaving a synchronization bar and the latter when there are multiple arrows
entering it.

• Dummy nodes - Small hollow circles that chain guard conditions to model
complex conditions on a transition.

[no coffee]

[found coffee]

[no tea]

[found tea]

coffeePot.turnOn

light goes on

1 .. 4

1 .. 4

Person::Prepare Beverage

Get
Water

Make
Tea

Drink

Pour Coffee

Find
Beverage

Add Water
to Reservoir

Turn on
Machine

Brew coffee

Get
Cup

Put Coffee
in Filter

Put Filter
in Machine

Fig. 7. Earliest version of the UML activity diagram [18]

 The Diagram of Flow: Its Departure from Software Engineering and Its Return 265

• Start state - Small solid circle modelling the starting activity state in the
implementation of an operation.

• End state - Small bulls-eye circle modelling the ending activity state in the
implementation of an operation.

The activity diagram is read from the start state to the end state, and the exemplar
diagram in the addendum document shows the steps in the implementation of the
operation flowing down the page. The accompanying text also refers to the ability to
model interrupts to the normal procedural flow of control and to model wait states in
order to show operations external to the object but essential to the completion of the
modelled operation, though no additional graphical icons are provided.

4.3 A Flow Diagram by Any other Name?

While the first appearance of the UML activity diagram clearly does depict the flow
of control, it does not claim to use any of the standard flowcharting icons. Instead, the
activity diagram claims to borrow from the notation used by the early UML state
machine diagrams for representing its activity states, transitions, start state and end
state. It also adopts the bars of the Petri net notation for modelling synchronisation
[20], although Petri nets were not part of the syntax or semantics of the early UML.

However, in comparing the earliest incarnation of the activity diagram and the
flowchart standards it is clear that there are considerable similarities between the
concepts they model. Both activity diagrams and flowcharts model:

• Where the flow of control starts from and where the flow of control ends, though
using different icons;

• Discrete processing steps, the processing being decomposed in the activity diagram
into activities and represented in a homogeneous way using rounded rectangle
icons, while in the flowchart processing types are differentiated with generic
processing steps represented using rectangles, input/output represented using
parallelograms, and preparatory work represented using hexagons;

• The flow of control, both using solid lines with arrow heads, control passing to the
icon to which the arrow points;

• Parallel processing and concurrent control synchronisation, with activity diagrams
using a thick single bar icon and flowcharts using two parallel horizontal lines;

• Interrupts in the flow of control;
• Processing steps running down the page, with the ability to express a sequence of

operations, concurrent operations and branches in the flow of control, thus both
having the potential to express the algorithms of program design and workflow;

• Nested diagrams.

While the activity diagram was described as a specialised form of state machine
diagram in Version 0.9, it was evidently to be used to model a progression (or flow),
something that was more the remit of flowcharts than state machine diagrams.
Moreover, there was no explicit notion of progression in state machine semantics.
Given the similarity in the underlying concepts which the icons of both the early

266 S.J. Morris and O.C.Z. Gotel

activity diagrams and standard flowcharts were able to model, one could argue that it
was the denigrated status of the flowchart, along with the paradigm shift from
procedural to object-oriented development, that led to the redesign and renaming of a
diagram intended to model familiar concepts.

4.4 Incorporating More Features From Flowcharts

With the release of Version 1.0 of the UML in 1997 [21], the activity diagram was
firmly positioned as one of the core diagram types for modelling behaviour. The
activity diagram was expanded in scope and intended to be attached not only to the
implementation of operations, but also to classes and use cases, focusing on the flows
driven by internal processing (i.e., the procedural flow of control), and not on external
events. With a statement suggesting the “use (of) ordinary state diagrams in situations
where asynchronous events occur” the activity diagram became the de facto choice
for modelling all forms of synchronous behaviour.

In Version 1.0, the activity state was now relabelled as action state and the
transitions were elaborated to add optional actions in addition to guards. The original
icon for the dummy node, the small hollow circle, was replaced with a diamond
shaped icon to represent a decision point, the exact same symbol that had long been
used in traditional standard flowcharts. The action states could further be organised
into swim lanes, depicted by solid vertical lines running down the length of a page, to
allocate the actions to the objects responsible for their undertaking, reflecting the
growing popularity of the use of activity diagrams for business modelling. Such swim
lanes also reflect the structure of the much older flowchart variant shown in Figure 2.

In addition to the control flow indicated by the solid line transitions, object flow
also began to be modelled using dashed lines to show those objects responsible for
performing an action and those objects whose values are determined by an action.
This was effectively the modelling of object message passing. The state of an object
at any one time could further be described within a rectangular box. Additional icons
to model the sending and receipt of signals were also added to the visual notation as
its catalogue of icons began to grow. These were referred to as control icons from
Version 1.1 onwards and were intended to elaborate the information that could be
specified on a transition.

Thus the activity diagram steadily became more elaborate with each successive
revision of the UML. By Version 1.4.2 in 2004 (and an ISO standard in 2005 [22])
the main distinction had become a focus on the modelling of nested structures, with
both action states and sub-activity states being specified, along with new icons to
show this nesting. The diamond decision icon was also now being used to merge
decision branches, in addition to simply initiating them, introducing junction pseudo
states. The control icons also continued to multiply, in particular increasing support
for modelling concurrency. Throughout all these specification revisions, activity
diagrams remained defined as a specialised form of state machine diagram while,
according to anecdotal evidence, practitioners and tool vendors were coming to refer
to them as the flowchart of the UML.

 The Diagram of Flow: Its Departure from Software Engineering and Its Return 267

4.5 Acceptance of Flow in the UML

When UML Version 2.0 was released in 2005, activity diagrams were completely
reformulated based on the Petri net semantics of token flow. “By flow, we mean that
the execution of one node affects, and is affected by, the execution of other nodes,
and such dependencies are represented by edges in the activity diagram.” [23]. The
change in the base semantics was made to increase the number of flows that could be
modelled by the UML and perhaps to reflect increased interest in business process
and workflow modelling for systems development.

Version 2.0 specifically delineated the concepts of action (“the fundamental unit of
behaviour specification”) and activity, which provides the conditions and sequencing
information for coordinating the lower-level behaviours. The primary modelling
artefacts of the earlier activity diagram were renamed as activity nodes and activity
edges. Distinct icons were provided to indicate the various types of node (e.g., action
nodes with a rounded rectangle icon, control nodes with a regular rectangle icon and
five types of control node each with their individual associated icons). Concepts were
introduced to depict iteration and data storage, both common to flowcharting, and a
whole series of icons were introduced to model the concept of containment in activity
diagrams. Moreover, the traditional flowchart icons for collation and summing
junction were now being used to model accept event actions and final flow nodes.

[order
rejected]

Ship
Order

Close
Order

Fill
Order

Receive
Order

Send
Invoice

Make
Payment

Accept
Payment

[order
accepted]

Invoice

Fig. 8. Example of a UML activity diagram from UML Version 2.4 [19]

With UML Version 2.0, not only was the modelling of control flow and object
flow made quite explicit for the first time, but an unequivocal way to model data and
information flow was also provided. The latest version [19] defines an object flow as
"an activity edge that can have objects or data passing along it … which models the
flow of values to and from object nodes" and defines a control flow as "an edge that
starts an activity node after the previous one is finished … objects and data cannot
pass a control flow edge". The consequence of this change is a diagram that
represents, in both a semantic sense and in visual appearance, much of the essence of
the original flowchart. Figure 8, extracted from Figure 12.35 of the UML
Superstructure Specification Version 2.4 [19], provides an illustration.

As the UML continues to evolve the popularity of activity diagrams in industrial
practice is in no doubt, evidenced by its prominence in leading commercial tools.
These tools also show, however, that the status of flow has altered drastically. The
taxonomy of diagrams provided in UML Version 2.4 includes seven structure

268 S.J. Morris and O.C.Z. Gotel

diagrams (i.e., class, component, object, composite structure, deployment, package
and profile diagrams) and four behaviour diagrams (i.e., activity, use case, state
machine and interaction diagrams, for which there are four variants). While it is quite
clear that the concept of flow has re-emerged and that its value in the specification,
design and development of software systems has unequalled longevity, it has
completely lost the supremacy that it initially acquired and maintained for so long.

5 Conclusions

Understanding the concept of flow remains basic to software engineering. Data flow
has joined control flow to form a pair of concepts fundamental to the understanding of
programs and the design of software systems. The history of the representation of
these concepts shows how diagrams can reveal shifts of technology and changes in
the manner in which it is exploited. The succession of flow diagrams created and used
prior to the reinvention of Goldstine and von Neumann shows their importance to
industrial processes. The new form of flowchart invented to represent the flow of
control in the earliest automated computational machines then come to dominate
programming practice for more than two decades. Its use also spread to every field
where the flow of a sequence of decisions would benefit from being shown in a
simple diagram.

While this vernacular use continued, to the extent of misuse and caricature, the
original diagram acquired the status of an international standard but fell into disrepute
as a programming tool. The complexities of programs and the necessity to represent
other concepts, in particular data structure and other views of machine behaviour,
required the introduction of alternative concepts and diagrams and their promotion.
As a consequence, any assessment of the flowchart made now (if it is given at all),
emphasises its importance only outside the specialist field of software engineering
and programming practice.

Examination of contemporary practice and its conceptual support shows, however,
that flow and flow representations remain firmly entrenched albeit in a new role. The
history of diagrammatic notations has in this case revealed the continuing significance
of an important concept with the possible consequence of improving understanding
and practice. Further work will examine the introduction, development and use of
other concepts and diagrams that have been central to the history and progress of
software engineering.

References

1. Morris, S.J., Gotel, O.C.Z.: Flow Diagrams: Rise and Fall of the First Software
Engineering Notation. In: Barker-Plummer, D., Cox, R., Swoboda, N. (eds.) Diagrams
2006. LNCS (LNAI), vol. 4045, pp. 130–144. Springer, Heidelberg (2006)

2. Morris, S., Gotel, O.: The role of flow charts in the early automation of applied
mathematics. BSHM Bulletin. Journal of the British Society for the History of
Mathematics 26(1) (2011)

 The Diagram of Flow: Its Departure from Software Engineering and Its Return 269

3. Woodger, M.: The aims of structured programming. In: Structured Programming. Infotech
State of the Art Report. Infotech International Limited, Maidenhead (1976)

4. Infotech Management Report Structured Programming Practice and Experience. Vol. 1:
Management Guide to Techniques and Implementation Vol. 2: Management Report on
Implementation Practice. Infotech International Limited, Maidenhead (1978)

5. Infotech International Survey Structured Programming Practice and Experience. Vol. 1:
Overview of Structured Programming Vol. 2: Structured Programming Methodologies and
Techniques Vol. 3: International Survey and Analysis of User Experience. Infotech
International Limited, Maidenhead (1978)

6. Böhm, C., Jacopini, G.: Flow diagrams, Turing machines and languages with only two
formation rules. Communications of the ACM 9(5) (May 1966)

7. Knuth, D.E.: The art of computer programming - fundamental algorithms. Addison
Wesley, Reading (1968)

8. Chapin, N.: Flowcharting with the ANSI standard. A tutorial. Computing Surveys 2(2),
119–146 (1970)

9. International Organization for Standardization. Information Processing - Flowchart
symbols. ISO 1028 (1973)

10. Dill, J.M., Hopson, R.W., Dixon, D.F.: Design and documentation standards. Brown
University, Providence (1975)

11. Nassi, I., Shneiderman, B.: Flowchart techniques for structured programming. SIGPLAN
Notices 8(8) (August 1973)

12. Jackson, M.A.: Principles of Program Design. Academic Press, Orlando (1975)
13. Jackson, M.A.: Data structures as a basis for program design. In: Structured Programming.

Infotech State of the Art Report. Infotech International Limited, Maidenhead (1976)
14. HIPO - A Design Aid and Documentation Tool. Poughkeepsie, NY, IBM Corporation,

Form SR20 - 9413 (1973)
15. Davis, A.M.: Software Requirements Analysis and Specification. Prentice-Hall

International, Englewood Cliffs (1990)
16. Dahl, O.-J., Dikstra, E.W., Hoare, C.A.R.: Structured Programming. Academic Press,

London (1972)
17. Unified Method V0.8. Rational Software Corporation, Santa Clara (October 1995)
18. Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Modeling Language for Object-

Oriented Development. Documentation Set Version 0.91 Addendum. Rational Software
Corporation, Santa Clara (1996)

19. Object Management Group. OMG Unified Modeling LanguageTM (OMG UML), Version
2.4 (January 2011), http://www.omg.org/spec/UML/2.4/ (accessed July 26,
2011)

20. Peterson, J.: Petri Nets. ACM Computing Surveys 9(3) (September 1977)
21. Unified Modeling Language V1.0. Rational Software Corporation, Santa Clara (January

13, 1997)
22. International Organization for Standardization. Open Distributed Processing - Unified

Modeling Language (UML) Version 1.4.2. ISO/IEC 19501 (2005)
23. Unified Modeling Language Version 2.0. Object Management Group (August 2005)

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 270–276, 2012.
© Springer-Verlag Berlin Heidelberg 2012

DDA\Repository: An Associative, Dynamic
and Incremental Repository of Design Diagrams

Bharat Dave and Gwyllim Jahn

University of Melbourne, Parkville VIC 3010 Australia
b.dave@unimelb.edu.au, gwyllo@gmail.com

Abstract. This paper describes implementation of an online prototype that, on
the one hand, offers interactive diagramming support to externalize thinking
about design compositions and, on the other hand, acts also as an incremental
repository of diagrams that can be dynamically interrogated to find other prox-
imate compositional thinking and ideas related to a particular position. The pro-
totype helps both notate design thinking and draw out associations between
separately notated design compositions.

Keywords: design configurations; constructional logic; compositional
diagrams; knowledge accretion; associative thinking.

1 Introduction

Geometry serves a pivotal role in architectural design however the specific nature of
relationship between the two continues to be redefined over time. March and Stead-
man (1971) highlighted one such shift from the use of geometry “… to measure [me-
tric] properties of space such as area, volume, angle …” to descriptions of “structural
relationships” of space such as ‘adjacent to’, ‘contained by’. As an example, March
and Steadman analyse three very dissimilar architectural house plans by the American
architect Frank Lloyd Wright to reveal the presence of exactly the same spatial organ-
ization in all three houses, i.e. they are topologically equivalent.

The diffusion of computing in architectural design has fostered renewed explora-
tion of structural relationships as generators of spatial configurations. To facilitate
such higher level thinking among architecture students while designing by scripting,
we describe here DDA\Repository, an online repository of diagrams that is associa-
tive, incremental and dynamic.

2 Prototype Overview

The prototype DDA\Repository supports different functionalities and user profiles.
The stored diagrams and associated data are browsed via a dynamically generated
interface with image tiles of stored design projects (Fig. 1, left). Each tile is clickable
and leads to a second level display comprising two interface panes (Fig. 1, right). The

 DDA\Repository: An Associative, Dynamic and Incremental Repository 271

left-hand pane displays image(s) of the currently selected design project, textual anno-
tations and diagram(s) associated with a specific design developmental history. The
right-hand pane displays image tiles of the all other projects in the repository.

Fig. 1. Browsing in DDA\Repository

3 Motivating Context

The diffusion of computing in architectural design fosters cultural practices in which
representational tools demand even more attention than before. The greater expressive
power of contemporary modelers with multiple interaction modes including direct
manipulation, scripting, visual programming, and external plug-in architectures comes
at a cost. Users now need to cultivate mental models of more than one interaction
mode, each of which may operate in one or more representational spaces including
graphical, numeric, or symbolic.

Fig. 2. Spaghetti of symbolic representations

There is resurgent interest in visual programming to support interactive three di-
mensional modelling environments. Although these developments help flatten the
initial learning curves, anything but simple spatial compositions rapidly turn into
dense spaghetti of symbolic graphs (Fig. 2). Interdependencies become hard to follow
and trace, conflicts harder to resolve, and generalisable knowledge harder to distil.

These issues become more problematic when visual scripting environments be-
come embedded in existing design cultures. One central tenet of design is to imagine
that which does not yet exist. The process rarely follows a linear, uni-directional un-
folding; sometimes it revisits and retrieves discarded design fragments and paths. The
possibility to record sequential state histories in contemporary interactive systems

272 B. Dave and G. Jahn

might encourage divergent design exploration. However, complexities and effort re-
quired to manage visual representations of design scripts very often thrust projects
along a uni-directional developmental trajectory.

Similar problems arise when architecture students embrace scripting and computa-
tional thinking. Whereas traditional design development implicitly followed an intui-
tive blackbox model, now we require students to design by explicit scripting. The
challenges then become how to foster higher level compositional design knowledge
without being too closely tied to particular software, one that supports divergent
thinking and associative exploration of ideas, and one that can incrementally grow
over time. Further, we view design compositions as a process of making and not just
as a final state description as in traditional design drawings.

3.1 Related Ideas

Our work draws upon recurrent themes in development of computational approaches
suited to the designerly modes of thinking. The notion of design patterns appears in
vernacular architecture (Alexander, 1977) and formalized rule books (Durand, 2000).
The notion of levels of abstractions in design appears in cognitive studies of designers
(Gero, 1998) to pedagogical traditions in design (Fischer et. al., 2000). The notion of
internalizing and using design moves of various grain sizes appears elsewhere in how
designers think and develop models of software systems to effectively and efficiently
use those tools (Coyne el. al., 1993; Pantazi, 2008; 2010; Woodbury 2010).

4 Prototype Architecture

The prototype system uses standard WordPress installation as the primary backend
component to compose posts of different data including text, images, video, etc. Dia-
grams can be added to this collection of media using an interactive diagram builder
implemented in Flash. Diagrams can be grouped (displayed as tabbed pages) based on
a simple naming convention. The diagram builder is integrated with PhP which turns
text strings embedded within diagrams into tags similar to how they are used in the
standard WordPress metadata. The automatic tagging of text chunks in diagrams al-
lows specific instances of various data and also entire posts to be associated with each
other. The front end uses a combination of PhP scripts and JQuery functions to gener-
ate dynamic CSS/HTML code to format and render user-level information display.

5 Prototype Functionalities

The prototype system revolves around three kinds of users. The ‘reader’ role allows
anyone, anywhere on the net to browse and query different information chunks in-
cluding diagrams. The ‘creator’ role enhances ‘reader’ privileges with creation and
modification of diagrams and posts generated by registered users. The ‘admin’ role
has all the privileges including moderation and publishing of diagrams and posts.

 DDA\Repository: An Associative, Dynamic and Incremental Repository 273

5.1 Diagram Creation

The interactive diagram builder supports a small number of container nodes
(represented as rounded rectangles): data, function, object, image and fabricate. Data
nodes contain parameter(s) or variable(s) used by other nodes. Function nodes
represent a series of operations, possibly using data received from and passed to other
nodes. Object nodes represent repeatable elements, e.g. a panel or a rib, with variable
properties. Image nodes point to network-accessible image/video data to support
visual references within diagrams. Fabricate nodes represent specialised chunks of
operations to accommodate translation of generated geometry to the needs of specific
fabrication technologies, e.g. laser cutter, 3D printing, etc. Each node has two connec-
tors at top left and bottom left corners to represent input and output to/from nodes
respectively.

To create a new diagram, nodes are dragged out from a toolbar onto the blank can-
vas. Flow of information between nodes is represented by joining output connector of
one node to input connector of another node. Free form text annotations can be added
to a node and displayed inside its bounding rectangle. Nodes can be repositioned
anywhere on canvas; the connecting edges between nodes are maintained by the
system.

5.2 Uses and Benefits

The prototype implementation supports declaration of compositional intents prior to,
during and retrospective to a design project. It is facilitated by interactive composition
of a series of diagrams which are associated with other design diagrams via ‘tags’.

• Modular thinking. The use of diagrams fosters modular design moves in terms of
required design elements and operations on them (Fig. 3, left). It encourages a de-
gree of higher level meta-designing instead of being caught up with all the details
simultaneously at a small grain size. The explicit recognition of input and output
data reinforces the notion that design compositions are materialized outcomes of a
temporal assembly process and that correct sequence matters!

• Idea histories. A series of diagrams enables occasional look back and (re)tracing of
paths followed and perhaps discarded. The use of multiple, alternate diagrams (Fig.
3, right) encourages what-if explorations and provides a record of design history
that mitigates premature idea fixation and encourages reflective assessment.

• Proximate ideas. The tagged associations between diagrams bring to fore prox-
imate design ideas. When used as a search term (Fig. 4), the system highlights all
projects that are similarly tagged. When used from within diagrams by clicking on
a string, all similarly tagged projects are highlighted.

• Grain size of representations. Diagrams enforce choices about grain size of repre-
sentations and help generalize or disambiguate specific details. Since the diagram
builder provides only a limited canvas, users become selective about what to de-
scribe in diagrams with brevity and clarity. It also reinforces encapsulation of ideas
leading to clearer organization and definition of scripts.

274 B. Dave and G. Jahn

Fig. 3. Left: Sequenced and modular design moves. Right: Tabbed idea histories

Fig. 4. Query and display of proximate design ideas

Fig. 5. Pointers to local and remote data

• Recombinant fragments. Using tagged searches (Fig. 5), diagrams of design intents
and operations make possible creative exploration in which retrieved fragments
may suggest new compositions and novel design outcomes on the fly.

5.3 Evaluation

DDA\Repository has been used in a graduate subject that introduces scripting and
fabrication technologies to design purposely small scale projects, e.g. design of a
secondary skin over a surface. The students typically face two simultaneous demands:
learning to script while also developing design ideas that are to be generated using

 DDA\Repository: An Associative, Dynamic and Incremental Repository 275

scripts, and then fabricated and assembled. The students use DDA\Repository as an
ongoing part of project development. The following discussion draws upon feedback
provided by students using semi-structured interviews in the use of DDA\Repository.

There was a variable pattern to the use of diagrams by students. In the beginning,
most students employed diagrams retrospectively, closer to the end of their projects
rather than in the beginning. Other students found it useful to begin with graphical
sketches which were then transcribed into diagrammatic representations.

Some students tentatively explored the available range of operations in the script-
ing environment first, scoping out possible design configurations. Here the scripting
operations appear to act as symbolic ‘sketches’ though keeping a persistent record in
some form was not a priority for most students. As one student put it: “… I was new
to [scripting environment] … I didn’t know and needed to work out what I didn’t
know”. As a result, she used diagrams as “a description of process” rather than as a
“planning tool”. However, with experience, she also noted that “… thought was given
as to how to better plan the scripting process by using the logic diagram tools.”

Fig. 6. Abstracting and navigating different representational spaces

Having generated a series of diagrams, she “… understood a lot more” about both
the range of design possibilities she could explore and also alternative computational
procedures through which to realize them. This retrospective abstraction highlighted
that her initial efforts were limited by the handful of scripting functions she knew
which, in turn, limited her design ambitions. The use of diagrams allowed her to step
back from these limitations and reframe design intentions in a way that was independ-
ent of what she knew or the limits imposed by a particular scripting environment.

Another student employed groups of nodes distinguished by different colors to trans-
late back and forth between diagram and executable scripts (Fig. 6). The visual corre-
spondence between the two representations allowed him to develop a better documented
diagram and executable code with generalised, reusable design operations.

The use of “free-form” text in diagrams and its translation in executable scripts
made another student reflect on different ways to achieve similar geometric outcomes
by following different pathways. For example, operations of lofting and extrusion of
geometric primitives may result in visually similar shapes but each operation involves
very different parameters and intermediate processing steps.

276 B. Dave and G. Jahn

The use of diagrams offered others with scaffolding for design search. A student
with limited design and scripting experience noted: “… in the beginning, I have no
idea what I am doing or why”. The use of diagrams and free form text gave him
“goals … a direction”, helped by looking at others’ pseudo-code and diagrams.

6 Future Extensions

DDA\Repository is accretive, exploratory, and independent of particular software
environments. It is accretive and associative, i.e. accommodates work of multiple
authors with tagged connections between them. It is exploratory in that it fosters di-
vergent and lateral thinking rather than rapidly converging on to a solution. It fosters
higher-level compositional skills instead of being constrained by software.

We are aware of the potential trade-offs between formal syntactic specificity of
diagrams and designerly creativity as we consider the following future extensions.

• Enable levels of details for nodes to support embedding of diagrams within dia-
grams as a way to encourage problem subdivision.

• Allow diagram nodes to refer to structured pseudo-code. It will help explore alter-
native computational sequence of operations in a given design context.

• Add contextual pop-ups for interactive input of freeform text strings in diagram
nodes to suggest alternative visual examples and pseudo-code fragments.

• Develop a multi-level hierarchy in visual interface to cluster and organise design
examples and their display.

Acknowledgements. This project has benefited from the work and feedback from a
number of students enrolled in the subject Digital Design Applications during 2008-
2011. The current version of DDA\Repository is accessible online at
http://scripts.crida.net/gh/dda11.

References

1. Alexander, C.: A Pattern Language. Oxford University Press, New York (1977)
2. Coyne, R.F., Flemming, U., Piela, P., Woodbury, R.: Behavior Modeling in Design System

Development. In: CAAD Futures 1993, Pittsburgh, pp. 335–354 (1993)
3. Durand, J.-N.-L.: Précis of the lectures on architecture; with, Graphic portion of the lectures

on architecture. Getty Research Institute, Los Angeles (2000)
4. Fischer, T., Burry, M., Woodbury, R.: Object-Oriented Modelling Using XML in Comput-

er-Aided Architectural and Educational CAD. In: The Problem of Interoperability Exempli-
fied in Two Case Studies, CAADRIA 2000, Singapore, pp. 145–155 (2000)

5. Gero, J.: Concept formation in design. Knowledge-Based Systems 10(7-8), 429–435 (1998)
6. March, L., Steadman, P.: The geometry of environment. RIBA, London (1971)
7. Pantazi, M.: Using Patterns of Rules in the Design Process. In: Critical Digital: What Mat-

ters(s)?, pp. 349–356. Harvard University, Cambridge (2008)
8. Woodbury, R.: Elements of Parametric Design. Routledge, London (2010)

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 277–290, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Structure, Space and Time: Some Ways That
Diagrams Affect Inferences in a Planning Task

David L. Mason1, James E. Corter1, Barbara Tversky1,
and Jeffrey V. Nickerson2

1 Teachers College, Columbia University, New York, USA
{dlm2153,jec34}@columbia.edu,

btversky@stanford.edu
2 Stevens Institute of Technology, Hoboken, USA

jnickerson@stevens.edu

Abstract. An efficient way to notify a set of people is to use a calling tree,
where one person calls a few people who call others until everyone has been
notified. Calling trees are typical of a large class of planning tasks that entail
considering both the structure of agents and tasks in time. Participants were
asked to choose the optimal diagram for a calling tree problem, and to compute
the time needed to call everyone. Participants computed more accurately when
the tree diagrams were scaled to represent elapsed time as well as the connec-
tion structure of the callers. In addition to efficiency, both gestalt factors and
social equity considerations biased selection of the best diagram.

Keywords: diagram understanding, planning, inference, comprehension,
representing time.

1 Introduction

Planning requires representing actors, tasks, and their relationships in both space and
time. For complex planning tasks like business decisions, people often rely on exter-
nal representations to aid them in making, modifying, and using plans. These external
representations can be as simple as calendars, or as complex as charts of multi-year
plans for implementation of corporate mergers.

One class of planning problems is a distribution plan. A familiar example of this
class of problems is a calling tree. In a typical calling tree problem, information must
be distributed quickly and reliably to a predetermined group of people. The message
must be delivered in one-on-one conversations, to insure that the message has been
delivered, and perhaps because of technological limitations or concerns of security or
privacy. When more than a few people are involved, designing a calling tree is a non-
trivial task, in part because there are often multiple objectives that may be in opposi-
tion. Some goals make a tree with many callers more desirable, for example when all
people should be notified as quickly as possible or when sharing the burden of calling

278 D.L. Mason et al.

seems desirable. By contrast, other goals, such as concerns about security or possible
degradation of the message, favor a tree with few callers.

Many knowledge structures can be represented as network diagrams. Networks
consist of nodes and links, where the nodes represent concepts like agents, objects,
places, or ideas, and the links represent the relationships among them. A calling tree
can be represented as a specific kind of network diagram, a directed tree, where a
single message is to be propagated outwards from a single source. The nodes
represent the callers and/or callees and the directed links represent the direction of
calls. As such, the tree represents the structure of connections among the callers and
callees, explicitly showing the set of people called by each successive caller.

Two types of trees, seen in Fig. 1, can be used to represent a calling tree plan. Call-
ing Tree A, termed a uniform tree, emphasizes the structure of the calling plan, but
also shows the sequence of calls made. In the uniform tree the height of nodes on the
page is proportional to depth in the tree, or “generation” of each caller/callee. Howev-
er, because the time to complete all the calls can be important, a network diagram that
represents elapsed time directly would be useful. Calling Tree B, termed a time tree,
uses node height to explicitly represent the time elapsed before each callee is notified
(assuming that each call takes a constant amount of time). This tree gives more em-
phasis to the temporal structure of the calls, and demonstrates that calls by a single
caller happen sequentially, while calls by different callers can happen in parallel.

A B

Fig. 1. Two ways to represent the same eight-node calling plan as a tree: the “uniform tree” in
panel a lines up nodes on the vertical dimension according to generation or depth in the tree;
the “time tree” in panel b lines up nodes on the vertical dimension according to elapsed time
under the assumption that calls have equal durations

Representing elapsed time directly, as with the time tree in Figure 1b, should facili-
tate reasoning about the time to complete a task – in the case of calling trees,

 Structure, Space and Time: Some Ways That Diagrams Affect Inferences 279

informing everyone. In a time tree, the position of nodes along the vertical dimension
represents elapsed time. If all calls are assumed to take a constant amount of time,
then the set of people called by the same elapsed time are lined up horizontally, and
the sum of the number of units of time elapsed is directly indexed by the sum of the
levels of the tree. Metric time can be computed directly from a time tree by multiply-
ing the number of levels by the time required for a call. Calculating metric time from
a uniform tree is indirect and onerous. However, time trees are more complex than
uniform trees because the nodes and lines not only code spatial structure, the links
from caller to callee, but also code metric time.

Perhaps because of the extra complexity of time trees, when participants are asked
to produce representations of calling trees and use them to compute the time needed
to complete the calls, many of them draw networks that represent the structure and
order of calls, but do not represent time directly [1]. Participants for that previous
study, as for this one, were novices, with little if any experience constructing repre-
sentations for and solving planning problems. However, even novices may recognize
and understand the use of vertical position on the page to represent elapsed time. If so,
when time is directly represented, they should be better able to select optimal designs
among alternative calling tree designs and they should be better able to compute the
total time to complete the calling tree. Thus, in the present study we turn from produc-
tion to preference and performance. Participants will be asked to select alternative
calling tree designs either for a set of time trees or a set of uniform trees, and then to
compute total time. Although time trees allow more efficient calculation of total time,
they are more complex, hence harder to comprehend, so they might not be preferred,
and they might not facilitate computation.

The second goal of the present study is more exploratory. Diagrams can be a boon
to reasoning because they extract the essential information and present it directly,
using place in space and spatial relations to represent crucial aspects of problems [2].
However, diagrams are visual objects in themselves, and extraneous characteristics of
the spatial array may mislead participants [2-4]. A secondary goal of the present re-
search is to investigate whether a visually salient, rapidly recognized but irrelevant
feature of diagrams affects preference, namely, symmetry [5-8]. The significance of
symmetry in the human visual system is undoubtedly related to its importance as a
cue to recognizing biological entities, notably people, as well as artifacts designed to
serve people. More abstractly, symmetry connotes balance, the same features, the
same weight, on each side of the axis of symmetry. In the case of network diagrams, a
symmetric tree might suggest a balance of burden or responsibility. Another visual
aspect of a calling tree diagram that may affect preferences is the depth of the tree (in
the sense of the number of levels of the hierarchy). People may believe that the depth
of a tree can be used as a reliable cue to find the minimal-time plan, although because
of parallelism this is not always true. Finally, extraneous social-pragmatic concerns
might play a role in people’s judgment of an optimal calling plan [12]. Will symmetry
and other visual features of diagrams affect choice, even when irrelevant?

280 D.L. Mason et al.

1.1 Selecting and Using Planning Trees

The experiment was designed to investigate how specific aspects of the diagram
representing the calling tree plan would affect preferences and performance. Would
participants provided with diagrams representing time directly (“time trees”) more
often choose the diagram representing the best plan and calculate the time to affect
the plan more accurately, compared to participants provided with diagrams that only
represented the structure of the calling plan (“uniform trees”)? Next, would visual
aspects of the diagram irrelevant to the task, or related to measure of equity, affect
diagram selection? One group of participants selected from among five uniform trees
representing calling plans, then calculated the time required to complete the selected
plan; another group of participants selected among plans represented by time trees,
then calculated required time. We used three different sets of uniform trees and three
different sets of time trees (between participants) to ensure generalizability of our
results. Also, we were able to vary aspects of the trees such as symmetry, depth, and
equity across the distractor diagrams of each problem.

2 Method

2.1 Participants

Participants were recruited from a crowdsourcing website, Amazon’s Mechanical
Turk (AMT). This website is designed to allow “requesters” to pay volunteer workers
to complete tasks for which computers are ill equipped, so-called “human intelligence
tasks” or HITs. These tasks range from tagging images and websites for Internet
search optimization to simple psychological experiments and may take as little as 30
seconds to complete. There were N=139 participants. Based on participant answers to
several demographic questions, the sample was 54% female, and the mean age was 34
(with a range from 20 to 84). 75% of them reported English as their first spoken lan-
guage, and 91% of respondents had attended college. Some programming experience
was reported by 29%; only 9% had more than four years of such experience. Each
worker in AMT has a unique ID number; these were used to ensure that no worker did
the study more than once.

2.2 Stimuli

Each participant was presented with five diagrams that depicted different plans for
calling friends. These diagrams were presented either as “Uniform” trees or “Time”
trees. In the Uniform tree condition, the five calling-plan trees were presented so the
nodes in the tree were lined up vertically based on “generational” relationships. That
is, all the people called by a particular caller are represented as aligned on a horizontal

 Structure, Space and Time: Some Ways That Diagrams Affect Inferences 281

line. And all the callees called by callers in that row are represented on the next level,
so the relationships between callers and callees resemble a genealogical tree. In the
Time tree condition, the same calling plans were presented but the nodes were aligned
vertically according to the time they were actually called (participants were asked to
assume that all calls took 1 minute). That is, calls that occurred simultaneously are
represented by aligning them on the vertical axis so calls during the first minute are
aligned on the first horizontal line, those in the second minute on the second line, and
so on (please see Fig. 2 for examples of both conditions). The connectivity between
nodes and position on the horizontal axis remained identical between these conditions
– only the position on the vertical axis differed.

We designed these calling plan problems with seven, eight, or nine actors (factor
Nodes). Thus there were six conditions for the experiment: 7-Node Uniform, 7-Node
Time, 8-Node Uniform, 8-Node Time, 9-Node Uniform, 9-Node Time. Each of the
corresponding six problems presented five alternative diagrams to participants, mak-
ing thirty diagrams in total.

2.3 Procedure

Participants were randomly assigned to one of the six conditions. Each calling plan
problem was presented in the form of text that described the need to distribute infor-
mation and the task objectives. The problem text for the 8-node problem was:

Mary has invited 7 friends to a party tonight. But she just came
down with the flu and needs to contact them all to cancel. She
(and her friends) have only cell phones to communicate with.
Assume that her friends are willing to help her make the calls,
and each call will take approximately 1 minute. Design a plan to
notify everyone as quickly as possible by selecting which illu-
strates the fastest plan from the 5 diagrams below. (You may
mark more than one)

This problem text was identical across conditions except for the number of friends
Mary had to call. Additionally, to assure that participants interpreted both types of
tree as representing ordinal time relationships by the horizontal ordering of links, the
participants were informed that:

In the diagrams below, assume that the first call each caller
makes is represented by the left-most arrow in their branch and
the last call a caller makes is represented by the right-most ar-
row in their branch.

282 D.L. Mason et al.

Fig. 2. Alterative diagrams used for the 8-node problem. Left column: diagrams used in the
Uniform trees condition; Right column: diagrams used in the Time trees condition. The time for
all calls to be completed is in the Minutes column.

Min. Uniform Time

 3

 4
(a)

 4
(b)

 4
(c)

 5

 Structure, Space and Time: Some Ways That Diagrams Affect Inferences 283

This description was followed by presentation of five randomly ordered tree dia-
grams that depicted the different plans for calling friends. Participants were not given
explicit instruction in the meaning of alignment along the vertical axis; we were inter-
ested in whether they would spontaneously adopt the appropriate interpretation (as
evidenced by correct task performance).

After participants selected which of the five diagrams represented a calling plan
that would notify all the friends the fastest, they were asked to specify how long in
minutes the plan would take to complete (assuming that each call lasted approximate-
ly one minute). Lastly we asked participants the demographic questions. The entire
task took an average of three and a half minutes. Participants were paid $.25 for their
participation. Feedback from the participants, when offered, was entirely positive, to
the effect that the task was engaging and enjoyable.

3 Results

Two dependent variables are of interest: choice of the correct tree diagram (i.e., the
one that represents the plan with shortest completion time) and correctness of the
answer given to the time computation question (the actual time required for comple-
tion of the calling plan). Because we allowed participants to choose more than one of
the diagrams, a correct answer to the tree choice entails choosing only the correct
diagram. Results for the six conditions are shown in Table 1.

Table 1. Performance by condition: percentage correct for choice of best tree (“choice”) and
time computation (“time”), with percentage of respondents getting both questions correct
(“both”). Total N = 139

 7-node 8-node 9-node Overall

Uniform (N=36) (N=22) (N=20) (N=78)

 choice 36 27 40 35

 time 39 36 45 40

 both 28 23 25 26

Time (N=22) (N=16) (N=23) (N=61)

 choice 64 38 57 54

 time 55 44 61 54

 both 55 38 39 44

It can be seen from Table 1 that the time tree diagrams facilitated correct computa-

tion of the time needed for completion of all calls, greatly increasing the rate of
choosing the optimal tree (“choice”), of correctly answering the time inference ques-
tion (“inference”), and of correctly answering both questions (“both”). The advantage
of the time tree diagram was confirmed using a generalized linear model with a logit
link function, with Type of Tree (= uniform, time) and Nodes (= 7, 8, 9) as factors. In

284 D.L. Mason et al.

the analysis predicting whether participants chose the correct diagram and correctly
answered the time question, the effect of Type of Tree was significant, Wald
Χ2(d.f.=1) = 4.850, p=.028, while the effect of Nodes and the Type*Nodes interaction
were not significant.

Figure 3 shows that for all three calling tree problems (those with 7, 8, and 9
nodes) performance was improved when participants selected among time tree dia-
grams, compared to when they selected among uniform tree diagrams. Specifically, in
the Time Trees conditions more people chose the diagram illustrating the optimal
plan: the 7-node 3-minute plan (diagram “7_3), the 8-node 3-minute plan (“8_3”), and
the 9-node 4-minute plan (“9_4”). Furthermore, the Time Trees conditions decreased
the probability of selecting the incorrect diagrams (including the incorrect response of
selecting two or more diagrams as optimal, denoted “2+” in Fig. 3). However, there
were several exceptions, where incorrect alternatives were more often chosen with
time trees. These exceptions tend to be cases where the uniform tree is symmetric,
and the time tree is symmetric (but on a bias). One example is the 8-node 5-minute
plan (see Fig. 2), which was selected more often in the Time Trees condition. Another
example is the 9-node 5-minute plan shown in Fig. 4.

These results suggest that people are choosing diagrams without formally (or at
least correctly) optimizing the calling plan completion times: only 54% of respon-
dents select the optimal tree even in the Time Tree condition (and only 35% in the
Uniform Tree condition). If people are not correctly optimizing, on what basis do they
make their diagram choices? The finding mentioned in the previous paragraph, that
people can be misled by symmetric trees, suggests that people may sometimes use
heuristics to select a tree. In other words, people may be biased to select symmetric
trees, simply because a symmetric tree seems a good design that might be presumed
to be relatively efficient. Other aspects of the tree diagrams might also play a role in
choice heuristics: the overall depth of the tree (i.e., the length of the longest chain
from the root to any leaf) might influence participants, in that they might be disposed
to choose the shallowest trees (even though a shallow tree may correspond to a very
slow calling plan, as when the “root” caller calls all the friends one by one). Finally,
the rooting of this problem in a situated pragmatic context (of a calling tree to be
created among friends), may bias people towards certain types of solutions. As an
example, in this domain people might see an additional optimization criterion to be
taken into consideration, namely social equity. That is, it might be that people think,
consciously or unconsciously, that the burden of making the calls should be shared
across the members of the group, distributed as evenly as possible.

We investigated the idea that participants might be influenced in their choices by
these visual aspects of the diagrams and social-pragmatic aspects of the underlying
problem. To do so, we created a database of all 30 diagrams used in the present study,
plus another 25 diagrams used in our associated pilot studies (the pilot studies had
only trivial differences in stimuli, procedures, or instructions). First, we recorded the
optimality criterion that can be used to order the trees objectively (i.e., total comple-
tion time for the corresponding calling plan). Then we coded each diagram on certain
key visual properties, including the degree of symmetry of the graph, total depth of
the tree, and two alternative measures intended to capture the notion of social equity
(i.e., how evenly or unevenly the burden of making calls was spread among the
friends).

 Structure, Space and Time: Some Ways That Diagrams Affect Inferences 285

Fig. 3. Proportion of participants in each condition choosing each specific diagram (correct
diagram shown on left; participants choosing more than one diagram as “optimal” shown at
right, labeled “2+”). Diagrams are labeled as <Nodes_Time>, so Diagram “7_4_a” means the
7_node 4 minute tree (version a).

0%

20%

40%

60%

80%

100%

7_3 7_4_a 7_4_b 7_4_c 7_6 2+

7 nodes Uniform vs. Time

Uniform

Time

0%

20%

40%

60%

80%

100%

8_3 8_4_a 8_4_b 8_4_c 8_5 2+

8 nodes Uniform vs. Time

Uniform

Time

0%

20%

40%

60%

80%

100%

9_4 9_5_a 9_5_b 9_5_c 9_6 2+

9 nodes Uniform vs. Time

Uniform

Time

286 D.L. Mason et al.

9-node 5-minute (version c) Uniform tree 9-node 5-minute (version c) Time tree

Fig. 4. An incorrect diagram for the 9-node problem, chosen as optimal more often in the Time
Trees condition than in the Uniform condition

To explore reasons why participants err in selecting the optimal tree/plan, we de-
leted the optimal tree (i.e., the correct answer) for each problem, leaving N=44 incor-
rect diagrams in the database, then correlated the proportion of participants choosing
each incorrect diagram with certain visual characteristics of the tree diagram. The
results are shown in Table 2. Because the choice probabilities are not independent
across the 44 coded diagrams, the p-values in Table 2 cannot be interpreted as infe-
rential tests – they are shown for descriptive purposes only.

Table 2. Simple and partial correlations (N=44) between the proportion of participants
choosing an incorrect diagram and certain coded visual aspects of diagrams (see text). The
partial correlations were obtained in multiple regression analyses predicting the choice
proportion for each (incorrect) diagram from the named visual aspect and actual time required
for completion of the plan.

Aspect:
Simple corr. Partial corr.

R p R p

 Time -.266 .081 - -

 Symmetry .390 .009 .564 <.001

 Depth .408 .006 .320 .036

 Equity .398 .007 .347 .022

 N_callers .343 .022 .263 .088

The correlation of -.266 between Time and choice proportion shows that a shorter

completion time for a plan is only marginally correlated (p=.081) with the probability
that the corresponding (incorrect) diagram is chosen. Thus the objective criterion of
completion time does not seem to capture all, or even most, of the variance in the
choice proportions.

Symmetry was defined as a topological property of the tree, and was not defined to
be all-or-none, rather it was assessed separately at each level of the tree (below the

 Structure, Space and Time: Some Ways That Diagrams Affect Inferences 287

root), then the overall proportion of levels that showed symmetry was computed. For
example, in Fig. 4 both trees are balanced or symmetric at the two bottom levels, thus
they are given symmetry score 2/2 = 1.0. In Fig. 2, the 3-minute diagram has three
levels below the root. At the first level, the pattern of nodes is symmetric or balanced
around the vertical axis, while at the bottom two levels it is not, thus the symmetry
score for this diagram is 1/3 = 0.33. In Table 2, the positive correlation (r=.390) be-
tween choice probability and degree of symmetry of the diagram means that more
symmetric “distractor” diagrams are more often chosen; people seem to be attracted
to symmetric diagrams in choosing what they believe to be efficient distributions
plans. This positive relationship is not due to a correlation of symmetry with the ob-
jective criterion of required time – in fact, the relationship becomes even stronger
(r=.564, p<.001) when completion time is statistically controlled for in a multiple
linear regression predicting the choice proportion for each diagram (Table 2).

The depth of the tree, defined by the number of (vertical) levels of the uniform
tree, is also positively correlated with choice probability. The direction of the rela-
tionship means that “deeper” trees are more often chosen, or alternatively that partici-
pants avoid choosing broad shallow trees. This may happen because participants are
aware that parallelism is good: i.e., when a caller calls several friends (say, A then B
then C), callee A has time to make further calls while B and C are being contacted,
thus deeper trees (at least in these context sets) may tend to be the most efficient from
the standpoint of total elapsed time.

Two potential measures of social equity of the calling plan were devised. First,
note that the maximum number of callees of any caller (denote this quantity C) can be
taken as a rough measure of the social inequity of a calling plan. For example, dia-
gram 4(c) in Fig. 2 (C=4) seems more inequitable than diagram 4(b) (C=2), while the
7-node 6-minute tree in Fig. 5 (C=7) seems more inequitable than either. Thus, one
possible measure of social equity is simply: Equity = 1 - C. This measure is positively
correlated with a diagram’s probability of being chosen. Another rough measure of
equity, based on how widely distributed is the burden of making calls, can be calcu-
lated as simply the number of friends who take on the role of making calls. This
measure, denoted “N_callers”) is also positively correlated with the probability that a
particular incorrect diagram is chosen.

7-node 6-minute Uniform tree 7-node 6-minute Time tree

Fig. 5. An incorrect diagram for the 7-node problem, representing a highly inequitable plan

288 D.L. Mason et al.

4 Discussion

The problem of disseminating information quickly and accurately to a set of people, a
calling tree, is representative of many planning tasks. Designing an effective distribu-
tion plan involves reasoning about many components that may not be readily appar-
ent. In the case of calling trees, designers need to take account of the structure of
callers as well as the elapsed time. Designing effective distribution trees can be facili-
tated by expressing the problem in diagrams that use elements and their spatial rela-
tions to represent key aspects of the problem. When asked to produce diagrams of
specific calling trees, novice but educated designers typically create diagrams that
represent the structure of callers, but only rarely represent elapsed time explicitly
[12]. Diagramming spatial structures seems to take precedence over diagramming
temporal ones. Even young children readily diagram spatial structures earlier than
temporal ones [13]. Moreover, adjusting line lengths to represent both spatial and
temporal structure is complicated, and, as noted, few novices represented time.

Here we asked whether novices would recognize and use explicit representation of
time in order to select optimal designs and to compute the time to complete the calling
tree. The answers to both questions were positive. Participants more frequently se-
lected optimal designs and computed total time accurately when they chose among
diagrams that represented time directly than when they chose among diagrams that
did not represent time directly. This held despite the added complexity of the dia-
grams that represented time directly.

Performance in both tasks was far from perfect, even for diagrams that represented
time directly. The errors were revealing. Many appeared to stem from irrelevant but
salient visual features of the diagrams, notably symmetry. The bias toward symmetric
calling trees could be a purely visual preference driven by perceptual biases or esthet-
ic leanings, or it might be a more abstract inference that symmetry is a consequence
of desirable properties of a calling tree, for example, that effort is more evenly distri-
buted among the callers/callees. Support for the idea that participants were using this
abstract property of symmetry is provide by the finding that incorrect diagrams were
selected more often when they had a more equal, thus more equitable, distribution of
effort across actors. Thus, equity considerations seem to bias people towards plans
that distribute work responsibilities more broadly and more fairly, even though the
present task asked participants only to find the fastest plan. People were also biased
toward “deep” trees over broader shallower trees, even when the actual time required
by plans was statistically controlled in a multiple regression. This bias might again
reflect equity considerations, since very broad shallow trees are typically those in
which many calls are placed by the original source, or by the first few people con-
tacted. Shallow plans may be more efficient in terms of time, but may seem inequita-
ble in some social/pragmatic contexts.

Our previous studies showed that novice designers fail to produce good designs for
representing and solving problems because of failures of imagination; they represent
the spatial structure of participants in a calling tree but rarely represent elapsed time.
The present findings show that people do not always evaluate or use designs correct-
ly, a failure of comprehension or judgment. The failures of judgment may be due to

 Structure, Space and Time: Some Ways That Diagrams Affect Inferences 289

the sheer complexity of the diagrams, using lines for spatial structure and node posi-
tion on the page to represent elapsed time, but it is also seems to be due to invoking
irrelevant criteria, namely, equity considerations. However, the findings also show
that selecting the optimal diagram improves accuracy of problem solving. The impli-
cation is that ways to induce designers to select optimal designs must be sought, that
is, ways to insure comprehension of the relevant features of the diagrams and ignoring
of irrelevant features.

As such, these findings appear to have implications for other classes of problems
and for even other classes of diagrams. Networks and trees are used to represent
countless situations, traffic patterns on roadways and the internet, spread of disease
and rumors, distributing supplies and information. Salient but irrelevant visual factors
like symmetry and depth of tree are likely to affect reasoning in those situations as
well. More generally, many other types of planning and monitoring problems involve
multiple agents who must coordinate in both space and time. Sometimes the space is
physical space, sometimes virtual; the relevant structure may involve only spatial
relationships or connectivity as well. In these tasks one challenge is to find effective
diagrams that can represent structure and time simultaneously. Choosing an effective
representation is a crucial step in design, one that offers opportunities to improve
problem understanding and performance.

Acknowledgments. The authors are grateful to grants National Science Foundation
HHC 0905417, IIS-0725223, IIS-0855995, and REC 0440103, the Stanford Regional
Visualization and Analysis Center, and Office of Naval Research NOOO14-PP-1-
O649, N000140110717, and N000140210534 for partial support of the research
reported.

References

1. Nickerson, J.V., Tversky, B., Corter, J.E., Yu, L., Mason, D.: Thinking with Networks. In:
Carlson, L., Hoelscher, C., Shipley, T.F. (eds.) Proceedings of the 33rd Annual Conference
of the Cognitive Science Society, Austin, TX, pp. 2662–2667 (2011)

2. Tversky, B.: Visualizations of Thought. Topics in Cognitive Science 3, 499–535 (2011)
3. Corter, J.E., Mason, D.L., Tversky, B., Nickerson, J.V.: Identifying Causal Pathways With

and Without Diagrams. In: Carlson, L., Hoelscher, C., Shipley, T.F. (eds.) Proceedings of
the 33rd Annual Conference of the Cognitive Science Society, Austin, TX, pp. 2662–2667
(2011)

4. Landy, D., Goldstone, R.L.: How Abstract is Symbolic Thought? Journal of Experimental
Psychology: Learning, Memory, and Cognition 33(4), 720–733 (2007)

5. Freyd, J., Tversky, B.: The Force of Symmetry in Form Perception. American Journal of
Psychology 97, 109–126 (1984)

6. McBeath, M.K., Schiano, D.J., Tversky, B.: Three-dimensional Bilateral Symmetry Bias
in Judgments of Figural Identity and Orientation. Psychological Science 8, 217–223 (1997)

7. Wagemans, J.: Detection of Visual Symmetries. Spatial Vision 9(1), 9–32 (1995)
8. Wagemans, J.: Characteristics and Models of Human Symmetry Detection. Trends in

Cognitive Sciences 1(9), 346–352 (1997)

290 D.L. Mason et al.

9. Locher, P.J., Nodine, C.F.: Influence of Stimulus Symmetry on Visual Scanning Patterns.
Attention, Perception, & Psychophysics 13(3), 408–412 (1973)

10. Carmody, D.P., Nodine, C.F., Locher, P.J.: Global Detection of Symmetry. Perceptual Mo-
tor Skills 45(3 part 2), 1267–1273 (1977)

11. Roddy, G., Gurnsey, R.: Mirror Symmetry is Subject to Crowding. Symmetry 3, 457–471
(2011)

12. Yu, L., Nickerson, J.V., Corter, J.E., Tversky, B.: The Shifting Shape of Collaboration:
The Effect of Hierarchy on the Topology of Communication Plans. In: The Ninth Annual
SIG IS Cognitive Research Exchange Workshop (2010)

13. Tversky, B., Kugelmass, S., Winter, A.: Cross-cultural and Developmental Trends in
Graphic Productions. Cognitive Psychology 23, 515–557 (1991)

What Can Concept Diagrams Say?

Gem Stapleton1, John Howse1, Peter Chapman1,
Ian Oliver2, and Aidan Delaney1

1 Visual Modelling Group, University of Brighton, UK
{g.e.stapleton,john.howse,p.b.chapman,a.j.delaney}@brighton.ac.uk

2 Nokia Services, Finland
ian.oliver@nokia.com

Abstract. Logics that extend the syntax of Euler diagrams include
Venn-II, Euler/Venn, spider diagrams and constraint diagrams, which
are first-order. We show that concept diagrams can quantify over sets
and binary relations, so they are second-order. Thus, concept diagrams
are highly expressive compared with other diagrammatic logics.

Many diagrammatic logics that have been developed to date are restricted to a
fragment of monadic first-order logic [1,3,5,6], but some include two-place pred-
icates symbols, such as constraint diagrams [2] which are equivalent to some un-
known fragment of dyadic first-order logic. Here, we focus on the expressiveness
of concept diagrams [4]. We demonstrate that concept diagrams can quantify
over sets and binary relations, as well as elements, thus significantly advancing
the state-of-the-art in terms of what can be expressed diagrammatically.

As an example, suppose that the individual Erica is a Person who is mar-
riedTo only the Person Peter and that Erica owns exactly two pets (identified
by the role ownsPet), both of which are Dogs, including a Beagle called Minnie.
A concept diagram asserting this information uses three closed curves to repre-
sent the concepts Person, Dog, and Beagle; see figure 1. The concepts Person
and Dog are disjoint and Beagle is a subsumed by Dog. The named individuals
are represented by labelled dots, with their location telling us of which concepts
they are instances; for example, Minnie is located inside the curve labelled Bea-
gle. The fact that Erica owns a set of Pets is visualized by the use of the arrow,
labelled ownsPet, hitting an unlabelled curve. This unlabelled curve is drawn
inside Dog, to assert that the image of the relation ownsPet, when its domain
is restricted to Erica, is subsumed by Dog. The fact that this unlabelled curve
contains two trees, called spiders, tells us that Erica owns two Dogs. Erica’s dog

Fig. 1. Visualizing roles Fig. 2. Arrows be-
tween boxes

Fig. 3. Free variables

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 291–293, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

292 G. Stapleton et al.

Fig. 4. Translating concept diagrams to second-order predicate logic

that is not called Minnie could be either a Beagle or not a Beagle. Shading is
used to assert that the only dogs owned by Erica are represented by the spiders:
in a shaded region, all elements must be represented by spiders.

The arrows convey information about the image of a role under a domain
restriction, such as Erica isMarriedTo Peter and only Peter. We use dashed
arrows to represent partial information, such as Erica loves some Person; Erica
may love many things, but all we know that she loves at least one Person.
Further, we do not know whether the Person Erica loves is distinct from herself.
A concept diagram expressing this is in figure 2. Note that the arrow connects
diagrammatic syntax placed in different boxes. This ensures that we have not
made any assertion about whether the Person Erica loves is distinct from Erica.

A concept diagram asserting that every Newspaper is readBy only a subset of
Person can be seen in figure 3. Here, the labelled dot inside the curve labelled
Newspaper is a free variable, and so is equivalent to a universally quantified
variable. The diagram expresses that if n is a Newspaper then the set of things
n is read by is subsumed by Person.

We now compare the expressiveness of concept diagrams with predicate logic.
The specific logic that we consider has as its terms, x = y where x and y are
either constants (individuals) or variables that represent elements. Formulae are
of three forms, where x and y are as previously stated: (a) c(x) where c is either
a monadic predicate symbol or a variable acting as a monadic predicate, (b)
r(x, y) where r is either a dyadic predicate symbol or a variable acting as a
dyadic predicate, and (c) formulae joined by the usual logical logical connectives
or quantified over by ∃ or ∀ using any one of the three types of variable.

We demonstrate how to translate concept diagrams into this second-order
predicate logic using figure 4. The lefthand diagram translates to the conjunction
of the following formulae:

1. All elements must lie in the sets represented by zones, so all elements must
‘lie in’ one of the disjuncts of the following:

∀i
((¬A(i)∧¬B(i)∧¬V (i)

)∨(
A(i)∧¬B(i)∧¬V (i)

)∨(
A(i)∧¬B(i)∧V (i)

)∨(¬A(i)∧B(i)∧¬V (i)
))

.

2. The shading tells us that all elements in shaded zones must be represented
by spiders: ∀i((A(i) ∧ V (i)) ⇒ (i = x ∨ i = y ∨ i = z)

)
.

3. Each spider represents an element in the set represented by the region in
which it is placed: A(x)∧¬B(x)∧V (x)∧¬A(y)∧¬B(y)∧¬V (y)∧¬A(z)∧
B(z) ∧ ¬V (z).

4. No two spiders represent the same element: x �= y ∧ x �= z ∧ y �= z.
5. The four arrows translate as follows:

What Can Concept Diagrams Say? 293

(a) the dashed arrow from x to y only tells us that x is related to (at least)
y under f : f(x, y)

(b) the dashed arrow from y to B tells us that y is related to at least the
elements in B (equivalently, everything in B is related to by y) under g:
∀i(B(i) ⇒ g(y, i)

)
(c) the dashed arrow from B to z tells us that at least one element in B is

related to z ∃i(B(i) ∧ h(i, z)
)

(d) the dashed arrow from B to V tells us that every element in V is related
to by at least one element in B under f−: ∀i(V (i) ⇒ ∃j(B(j)∧ f(i, j))

)
Diagram d2 has a translation similar to that of d1, differing only when we trans-
late the arrows because they are dashed rather than solid:

(a) f(x, y) ∧ ∀i(f(x, i) ⇒ i = y
)

(b) ∀i(B(i) ⇒ g(y, i)
) ∧ ∀i(g(y, i) ⇒ B(i)

)
(c) ∃i(B(i) ∧ h(i, z)

) ∧ ∀i∀j((B(i) ∧ h(i, j)) ⇒ j = z
)

(d) ∀i(V (i) ⇒ ∃j(B(j) ∧ f(i, j))
) ∧ ∀i∀j((B(i) ∧ f(j, i)) ⇒ V (j)

)
.

Second-order predicate logic formulae can also be translated to concept dia-

grams. The formula ∃r∀x∃y
(
¬(x = y) ⇒ (

A(x)∧X(x)∧ r(x, y)
))

translates to:

Theorem. Concept diagrams and second-order predicate logic with quantifica-
tion over elements, sets, and binary relations are equivalent in expressiveness.

This result demonstrates that concept diagrams are highly expressive. They are
more expressive than any other Euler diagram based logic.

References

1. Hammer, E.: Logic and Visual Information. CSLI Publications (1995)
2. Kent, S.: Constraint diagrams: Visualizing invariants in object oriented modelling.

In: Proceedings of OOPSLA 1997, pp. 327–341. ACM Press (1997)
3. Mineshima, K., Okada, M., Sato, Y., Takemura, R.: Diagrammatic Reasoning Sys-

tem with Euler Circles: Theory and Experiment Design. In: Stapleton, G., Howse,
J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 188–205. Springer,
Heidelberg (2008)

4. Oliver, I., Howse, J., Stapleton, G., Nuutila, E., Törma, S.: A proposed diagram-
matic logic for ontology specification and visualization. In: International Semantic
Web Conference (2009)

5. Shin, S.-J.: The Logical Status of Diagrams. Cambridge University Press (1994)
6. Swoboda, N., Allwein, G.: Using DAG transformations to verify Euler/Venn homo-

geneous and Euler/Venn FOL heterogeneous rules of inference. Journal on Software
and System Modeling 3(2), 136–149 (2004)

CDEG: Computerized Diagrammatic Euclidean

Geometry 2.0

Nathaniel Miller

University of Northern Colorado
nat@alumni.princeton.edu

Abstract. This paper briefly describes CDEG 2.0, a computerized for-
mal system for giving diagrammatic proofs in Euclidean geometry.

Keywords: diagrams, computer formal systems, Euclidean geometry.

This paper briefly describes the computer proof system CDEG, version 2.0.
CDEG stands for “Computerized Diagrammatic Euclidean Geometry.” This
computer proof system implements a diagrammatic formal system for giving
diagram-based proofs of theorems of Euclidean geometry that are similar to the
informal proofs found in Euclid’s Elements [1]. It is based on the diagrammatic
formal system FG, which is described in detail in my book,
Euclid and his Twentieth Century Rivals: Diagrams in the Logic of Euclidean
Geometry [10]. That book also describes an earlier version of CDEG; however,
CDEG has evolved significantly since the publication of the book. In particu-
lar, a beta version of CDEG is now publicly available, and can be downloaded
from http://www.unco.edu/NHS/mathsci/facstaff/Miller/personal/CDEG/. I en-
courage interested readers of this paper to download CDEG and to try it out
for themselves.

When we say that CDEG is a diagrammatic computer proof system, this
means that it allows its user to give geometric proofs using diagrams. It is based
on a precisely defined syntax and semantics of Euclidean diagrams. To say that
it has a precisely defined syntax means that all the rules of what constitutes a
diagram and how we can move from one diagram to another have been completely
specified. The fact that these rules are completely specified is perhaps obvious
if you are using the formal system on a computer, since computers can only
operate with such precisely defined rules. However, it was commonly thought for
many years that it was not possible to give Euclidean diagrams a precise syntax,
and that the rules governing the use of such diagrams were inherently informal.

To say that the system has a precisely defined semantics means that the mean-
ing of each diagram has also been precisely specified. In general, one diagram
drawn by CDEG can actually represent many different possible collections of
lines and circles in the plane. What these collections all share, and share with
the diagram that represents them, is that they all have the same topology. This
means that any one can be stretched into any other, staying in the plane. So,
for example, a diagram containing a single line segment represents all possible
single line segments in the plane, since any such line segment can be stretched

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 294–296, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

CDEG: Computerized Diagrammatic Euclidean Geometry 2.0 295

into any other. See [10] for more details concerning the syntax and semantics of
Euclidean diagrams, and see [9] for more details of how to CDEG can be used,
including a tutorial.

CDEG is essentially a computer implementation of the formal system FG
described in [10]. Actually implementing the formal system on a computer was
a highly non-trivial matter that took several years worth of work. Why would
we want to implement an existing formal system on a computer?

The first reason that we might want a computer implementation is to demon-
strate that this system really is completely formal: that the diagrams that are
being manipulated are, indeed, completely specified as formal objects, and that
the rules of the system are completely specified on these objects. With tradi-
tional, sentential formal systems, we do this by writing our axioms in a formal
language, and then carefully writing rules of inference as typographical manip-
ulations of sentences in this formal language. However, when our formal objects
are diagrams, it is difficult to achieve this level of specificity without a com-
puter implementation. Diagrams are complicated formal objects, and we have
very strong informal intuitions about how they should work that may cloud our
ability to judge if our rules have been completely formally specified.

Furthermore, even if our rules are completely formally specified, without a
computer implementation, it will be quite difficult to play with the formal system
to see what derivations are like, and to make sure that they really work the way
that we think they will. This is particularly true in geometry, where constructions
can lead to case branching, with a large number of cases that are virtually
impossible to keep track of without using a computer. Thus, we may not be able
to prove everything we think we can.

This worry is not just academic. Several other diagrammatic formal systems
have been proposed by other researchers and have appeared in print but have
later turned out to have ill-defined and/or unsound rules. For example, Isabel Lu-
engo’s formal system DS1, described in [4] and [3], turned out to be unsound,
as explained in [10, Appendix C]. Likewise, John Mumma’s Eu, described in
[6], [7], [8], and, at a previous conference in the Diagrams series, in [5], is also
unsound, as described in [11]. Neither of these proposed formal systems for ge-
ometry was implemented as a computer system, and neither worked quite in the
way that their designers intended. Furthermore, both systems were examined
by quite a number of article referees and dissertation committee members who
failed to notice their significant problems. Thus, we should approach any pro-
posed diagrammatic formal system with a certain amount of healthy skepticism.
A working computer system is one way to allay some of this skepticism.

Secondly, a computer system is the only way to make a formal system widely
available. Many potential users will not be able to make sense out of a formal sys-
tem that is just specified mathematically, but will be able to try out a computer
implementation.

The third reason for a computer implementation is to be able explore ex-
actly what the formal system is able to prove. CDEG’s rules of inference are
closely modeled on those found in Euclid’s Elements [1], and I therefore claim

296 N. Miller

that CDEG should be able to duplicate the first four books of Euclid’s Ele-
ments. The only way to verify this claim is to systematically go through each of
Euclid’s proofs, and to see how to duplicate it within CDEG. To date, I have
done this with many different proofs from Euclid’s Book I, but have not yet gone
systematically through all of Euclid’s proofs. This is a future project of mine, and
one that would be essentially impossible without the computer implementation.

As mentioned above, a previous version of CDEG, version 1.0, was discussed
in [10], but was never made publicly available, because it did not include a
stand-alone means of drawing its diagrams. The new version of CDEG relies on
OGDF (the “Open Graph Drawing Framework”) to lay out its diagrams, using
the mixed model algorithm of Gutwenger and Mutzel [2].

Other significant changes to CDEG include the addition of the triangle con-
gruence rules and rules for deleting pieces of diagrams, as well as numerous bug
fixes. It also now has the ability to draw its own output diagrams rather than
relying on an external program to do this. However, the version of CDEG that
is now available is a beta version and most likely still contains bugs. If you try
out CDEG and discover any bugs, please let me know by sending an email to
nat@alumni.princeton.edu.

References

1. Euclid: The Elements, 2nd edn. Dover, New York (1956); translated with intro-
duction and commentary by Heath, T.L.

2. Gutwenger, C., Mutzel, P.: Planar Polyline Drawings with Good Angular Resolu-
tion. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 167–182. Springer,
Heidelberg (1999)

3. Luengo, I.: Diagram. In: Geometry. Ph.D. thesis, Indiana University (1995)
4. Luengo, I.: A Diagrammatic Subsystem of Hilbert’s Geometry. In: Allwein, G.,

Barwise, J. (eds.) Logical Reasoning with Diagrams. Oxford University Press, New
York (1996)

5. Mumma, J.: Ensuring Generality in Euclid’s Diagrammatic Arguments. In: Sta-
pleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223, pp.
222–235. Springer, Heidelberg (2008)

6. Mumma, J.: Intuition formalized: Ancient and modern methods of proof in
elementary geometry. Ph.D. Dissertation, Carnegie Mellon University (2006),
http://www.contrib.andrew.cmu.edu/~jmumma/list.html (retrieved May 20,
2010)

7. Mumma, J.: Proofs, pictures, and Euclid. Synthese 175(2), 255–287 (2010),
doi:10.1007/s11229-009-9509-9

8. Mumma, J.: Review of Euclid and his twentieth century rivals: Diagrams in the
logic of Euclidean geometry. Philosophia Mathematica 16(2), 256–264 (2008)

9. Miller, N.: CDEGUser’s Manual,
http://www.unco.edu/NHS/mathsci/facstaff/Miller/personal/CDEG/

10. Miller, N.: Euclid and his twentieth century rivals: Diagrams in the logic of Eu-
clidean geometry. CSLI Press, Stanford (2007)

11. Miller, N.: On the Inconsistency of Mumma’s Eu. Notre Dame Journal of Formal
Logic (in press, 2012), preprint available at
http://www.unco.edu/NHS/mathsci/facstaff/Miller/personal/diagrams

http://www.contrib.andrew.cmu.edu/~jmumma/list.html
http://www.unco.edu/NHS/mathsci/facstaff/Miller/personal/CDEG/
http://www.unco.edu/NHS/mathsci/facstaff/Miller/personal/diagrams

Design and Implementation of Multi-camera

Systems Distributed over a Spherical Geometry

Hossein Afshari, Kerem Seyid, Alexandre Schmid, and Yusuf Leblebici

Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
first name.last name@epfl.ch

Abstract. The current trend in constructing high-end computing sys-
tems consists of parallelizing large numbers of processors. A similar trend
is observed in digital imaging where multiple camera inputs are uti-
lized to obtain multiple images of a scene and thus enhance the perfor-
mance envelope of the image capture. A methodology based on Voronoi
diagrams is presented for coverage analysis of multi-camera systems
mounted on spherical geometry. Interconnected network of camera con-
cept is introduced for the purpose of the application development of
multi-camera systems.

1 Introduction

Inspired from insects’ compound eyes a multi-camera system is devised by dis-
tributing camera modules over a spherical surface. This multi-camera system is
referred to as the Panoptic camera [1].

An arrangement of camera modules over a spherical surface is desired which
considers the mechanical spacing of the camera modules as major constraint.
Each camera position is modeled as a circular face with a constant radius. The
surface of a unit hemisphere is divided into latitude floors. Each floor is popu-
lated with identical camera positions to its maximum extent. A seven-floor built
prototype is shown in Fig. 1(a).

2 Omnidirectional Vision

The Panoptic camera can be used to emulate the omnidirectional vision of a
virtual observer located anywhere inside the hemisphere by combining the light
information collected by each camera. The principle method used in this process
is the interpolation of light information in the light-ray space domain (i.e., light
field [4]). For this purpose the omnidirectional view on a discretized sphere Sd is
estimated. The surface of the sphere can be discretized into an equiangular grid
with Nθ latitudes and Nφ longitudes pixels. An example of a discretized sphere
surface with sixteen spherical pixels for Nθ and Nφ is shown in Fig. 1(b).

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 297–299, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

298 H. Afshari et al.

(a) (b)

Nφ

Nθ

(c)

Fig. 1. Fabricated seven-floor Panoptic camera (a) side view (b) and internal view.
(c) Discretized sphere surface Sd with Nθ = 16 latitude and Nφ = 16 longitudes pixels.

3 Coverage Analysis

The surface of the Panoptic device hemisphere can be partitioned into set of
cells centered on the camera locations. Each cell defines the set of all points on
the hemisphere surface which are closer to its camera location than to any other
camera position. This definition falls into the category of Voronoi diagrams. The
farthest point of the largest cell (in terms of radius) is the direction of the virtual
view that is less covered by the Panoptic cameras. The top view of the Voronoi
diagram of the hemisphere structure with five-floors is shown in Fig. 2(a). The
utilization of individual imagers with limited angle-of-view implies that full-
view coverage of the surrounding with the Panoptic device is achievable from
a minimal distance and beyond. This distance is referred to as the Full-view
coverage Distance (FCD) of the Panoptic device. Using spherical trigonometric
identities and the position of the least covered direction on the Panoptic device,
the FCD of the Panoptic device is calculable.

4 Interconnection Network

An interconnection network is a programmable system capable of transport-
ing data between terminals [3]. A multi-camera system can be realized through
an interconnected network of cameras. An interconnected network of cameras,
where each of its cameras is provided processing and intelligence capability, is a
platform intended for distributed and parallel (i.e., running at the same time)
implementation of multi-camera system’s applications. Applications of multi-
camera system demand exchange of (image) information among the cameras.
Hence an interconnected network provides the means for this purpose.

The assignment of cameras to a target interconnected network nodes can be
defined in the context of a facility allocation problem known as the Quadratic
Assignment Problem [2]. Selection of cameras for direct access to a central unit
which is in charge of commanding and controlling the interconnected network
is mapped to another facility allocation problem known as the vertex p-center
problem. The utilization of these techniques also improve access time and overall
performance requirement of the interconnected network.

Design and Implementation of Multi-camera Systems 299

1

2
3

4
5

6

7

89
10

11

12

13
14 15

16

17

18

19

2021
22

23

24

25

26

27
28 29

30

31

32

33

34

35
3637

38

39

40

41

42

43

44 45
46

47

48

49

(a)

12 3 4

567

8 9

10 11

12 13

14

15

16

1718

19

20

21

22 23

24 25

26

27

28

293031

3233

34

35

36

37 38 39 40 41

42

43

44

4546474849

(b)

Fig. 2. (a) Top view of the Voronoi diagram of a five-floor Panoptic system containing
49 camera positions (b) The assigned 7×7 mesh topology interconnected network with
7 vertex p-centers

A QAP problem has been solved for assigning the cameras of the five-floor
Panoptic system containing 49 cameras to a 7×7 mesh topology graph as the tar-
get interconnection network topology. The assigned camera numbers of Fig.2(a)
is represented on the mesh graph shown in Fig. 2(b). A vertex-7 center problem
has also been applied on the mesh topology. The vertex centers are indicated
with bold edges in Fig. 2(b).

5 Conclusion

A method for estimating the minimum angle-of-view requirement and full cov-
erage distance of the Panoptic cameras is presented. To this aim the Voronoi
diagram and the are utilized as useful geometrical tools. Interconnection network
of camera concept is introduced as a novel implementation of multi-camera sys-
tems. Facility allocation methods of Quadratic Assignment Problem and vertex
p-center are shown as usefull optimization techniques for improving the access
time performance of interconnection network of cameras.

References

1. Afshari, H., Jacques, L., Bagnato, L., Schmid, A., Vandergheynst, P., Leblebici, Y.:
Hardware implementation of an omnidirectional camera with real-time 3d imaging
capability. In: 3DTV Conference: The True Vision - Capture, Transmission and
Display of 3D Video (3DTV-CON), pp. 1–4 (May 2011)

2. Burkard, R.E., Karisch, S., Rendl, F.: Qaplib-a quadratic assignment problem li-
brary. European Journal of Operational Research 55(1), 115–119 (1991)

3. Dally, W., Towles, B.: Principles and Practices of Interconnection Networks. Morgan
Kaufmann Publishers Inc., San Francisco (2003)

4. Levoy, M., Hanrahan, P.: Light Field Rendering. In: SIGGRAPH 1996, Proceedings
of the 23rd Annual Conference on Computer Graphics and Interactive Techniques,
pp. 31–42. ACM (1996)

Algebraic Aspects of Duality Diagrams

Lorenz Demey�

University of Leuven, Belgium
lorenz.demey@hiw.kuleuven.be

Abstract. Duality phenomena are widespread in logic and language;
their behavior is visualized using square diagrams. This paper shows
how our recent algebraic account of duality can be fruitfully used to
study these diagrams. A duality cube is constructed, and it is shown
that 14 duality squares can be embedded into this cube (two of which
were hitherto unknown). This number is also an upper bound.

Keywords: duality, negation, logic, linguistics, logical geometry.

Logicians and linguists use the term ‘duality’ to describe pairs of notions such as
conjunction/disjunction (∧/∨), universal/existential quantification (∀/∃), and
necessity/possibility (�/♦). Duality behavior is often visualized by means of
duality diagrams ;1 Fig. 1 shows three examples.2 Duality is also connected with
a well-known object from group theory: the Klein four-group V4 [1,4].

We have recently shown that this connection with V4 can be developed into a
full group-theoretical account of duality. Given expressions/operatorsO1 andO2,
we use L to say that they are each other’s external negation (O2 = L(O1) = ¬O1

and O1 = L(O2) = ¬O2), R to say that they are each other’s internal negation
(O2 = R(O1) = O1¬ and O1 = R(O2) = O2¬), and LR to say that they are
each other’s duals (O2 = LR(O1) = ¬O1¬ and O1 = LR(O2) = ¬O2¬). Adding
the identity operation I, we obtain the Klein four-group V4, whose composition
table is given in Fig. 2(a). It is well-known that V4 is isomorphic to the direct
product of Z2 with itself (V4

∼= Z2 ⊗ Z2). The group Z2 has domain {0, 1}; its
composition table is given in Fig. 2(b). The domain of Z2 ⊗Z2 is {0, 1}× {0, 1};
its composition table is given in Fig. 2(c). A concrete isomorphism between
V4 and Z2 ⊗ Z2 is given by: I ↔ (0, 0),L ↔ (1, 0),R ↔ (0, 1),LR ↔ (1, 1).
This is syntactically meaningful: 0 and 1 represent the number of negations
in a given ‘position’, and the left and right coordinates stand for the external
and internal position, respectively. For example, LR corresponds to (1, 1), which
represents 1 negation in the external position and 1 negation in the internal
position, i.e. duality. Representing V4 as Z2 ⊗ Z2 thus gives us a firm syntactic
handle on duality behavior: it shows how this behavior arises out of the interplay
of the independent behaviors of an external and an internal negation position.

� Thanks to Hans Smessaert for his extensive feedback. The author is financially sup-
ported by a PhD fellowship of the Research Foundation–Flanders (FWO).

1 Despite some superficial similarities, these duality diagrams are very different from
another type of diagrams in logic, viz. the Aristotelian squares of oppositions [3,6].

2 L stands for external negation, R for internal negation, and LR for duality.

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 300–302, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Algebraic Aspects of Duality Diagrams 301

Fig. 1. Duality squares for (a) universal and existential quantification, (b) conjunction
and disjunction, and (c) the natural language expressions ‘already’ and ‘still’

We now turn to composed operatorsO2◦O1; e.g.�◦∧ : (ϕ, ψ) !→ �(ϕ∧ψ). The
duality behavior of these operators is not described by V4, but rather by an 8-
element groupG8, which is isomorphic to Z2⊗Z2⊗Z2. Compared to V4, one more
copy of Z2 is thus added. This makes perfect syntactic sense: each copy of Z2

governs the behavior of one negation position, and by going from single operators
to composed operators, we have added one more negation position: not only
external (¬O2O1) and internal (O2O1¬), but also intermediate (O2¬O1). We
will use the letter M to denote intermediate negation (so M(O2, O1) = O2¬O1);
the group G8 can then be presented as {I, L, R, M, LR, LM, RM, LRM}. This
group is visualized by means of a cube; see Fig. 3(a) (diagonals are omitted
for reasons of visual clarity). Duality squares within this cube correspond to
4-element subgroups of G8. There are exactly 7 such subgroups [2]:

1. {I, L, R, LR}, {I, R, M, RM} and {I, L, M, LM},
2. {I, L, RM, LRM}, {I, R, LM, LRM} and {I, M, LR, LRM},
3. {I, LR, RM, LM}.

Each subgroup corresponds to two squares; hence, there exist exactly 14 squares
within the cube. The first three subgroups correspond to the cube’s outer faces;
for example, {I, L, M, LM} corresponds to the left and right face; see Fig. 3(b).
The next three subgroups correspond to the cube’s diagonal planes; e.g. {I,
L, RM, LRM} corresponds to the two ‘vertical’ diagonal planes; see Fig. 3(c).
Also the final group corresponds to two four-point ‘clusters’. Consider one such
cluster, e.g. {O2O1¬, O2¬O1,¬O2O1,¬O2¬O1¬}. Connecting all points with
straight lines does not yield a square, but rather a tetrahedron; see Fig. 3(d).
Such a tetrahedron can still be regarded as a square, albeit a ‘twisted’ one. To
see this, start with one of the cube’s three central symmetry planes; this plane
intersects the cube along a square; see Fig. 4(a). Rotate one side of this intersec-
tion square 45◦ clockwise, and the opposite side 45◦ counterclockwise; the result

(a) I L R LR (c) (0, 0) (1, 0) (0, 1) (1, 1)
I I L R LR (b) 0 1 (0, 0) (0, 0) (1, 0) (0, 1) (1, 1)
L L I LR R 0 0 1 (1, 0) (1, 0) (0, 0) (1, 1) (0, 1)
R R LR I L 1 1 0 (0, 1) (0, 1) (1, 1) (0, 0) (1, 0)
LR LR R L I (1, 1) (1, 1) (0, 1) (1, 0) (0, 0)

Fig. 2. Composition tables for (a) V4, (b) Z2, and (b) Z2 ⊗ Z2

302 L. Demey

Fig. 3. (a) The duality cube for G8. (b) The two squares for {I, L, M, LM}, and (c)
for {I, L, RM, LRM}. (d) One of the two tetrahedra for {I, LR, RM, LM}.

Fig. 4. (a) Intersection of the cube with one of its three central symmetry planes. (b)
‘Twisting’ the intersection square. (c) The three ‘twisted’ squares put together.

is a twisted square whose four corners are exactly our cluster; see Fig. 4(b). Do-
ing this for each of the cube’s three central symmetry planes yields three twisted
squares, which together ‘approximate’ the tetrahedron; see Fig. 4(c).

Our algebraic account is thus a powerful tool to study duality diagrams. The
first twelve squares were already known [5], but the final two are new discoveries
(and turn out to be very interesting). The limitative result is useful as well: there
cannot exist any squares within the cube beyond the 14 that we described.

References

1. van Benthem, J.: Linguistic universals in logical semantics. In: Zaefferer, D. (ed.)
Semantic Universals and Universal Semantics, pp. 17–36. Foris, Berlin (1991)

2. Călugăreanu, G.: The total number of subgroups of a finite Abelian group. Scientiae
Mathematicae Japonicae 60, 157–168 (2004)

3. Demey, L.: Structures of oppositions in public announcement logic. In: Béziau, J.-Y.,
Jacquette, D. (eds.) Around and Beyond the Square of Opposition. Springer (2012)

4. Löbner, S.: Wahr neben Falsch. Duale Operatoren als die Quantoren natürlicher
Sprache. Max Niemeyer Verlag, Tübingen (1990)

5. Moretti, A.: A cube extending Piaget-Gottschalk’s formal square (ms.)
6. Smessaert, H.: The classical Aristotelian hexagon versus the modern duality

hexagon. Logica Universalis (forthcoming), doi:101007/s11787-011-0031-8

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 303–305, 2012.
© Springer-Verlag Berlin Heidelberg 2012

The Use of Diagrams in Science

An Examination of Trends in Articles Published in Science
between 1880 and 2010

Lillian P. Fanjoy, A. Luke MacNeill, and Lisa A. Best

University of New Brunswick, Psychology Department, Box 5050, Saint John, NB E2L 4L5
{d9za0,s8me9,lbest}@unb.ca

Abstract. Scientists use inscriptions, such as tables, graphs, and illustrations to
provide readers with a visual representation of data. A sample of articles from
the journal, Science was collected and a random selection of eight articles was
drawn from each decade from inception to the present decade (2008 - 2010).
Overall, we found different trends in the use of graphs, tables, and non-graph
illustrations.

Keywords: Visual inscriptions, Trends over time, Science.

1 Scientific Inscriptions

A scientific inscription device is a specific type of visualisation aid that provides an
illustrative display in a scientific text [1]. Collection of empirical data began in the
middle ages [2], and, by the 17th century, scientists presented numerical information
in data tables [3] and used early graphical methods, including anatomical drawings,
geographical and astronomical maps, and geometric diagrams. Furthermore, mechani-
cal recording devices were created that produced moving line graphs of natural events
[2]. During this time, graphical methods were underutilized. Gross et al. [3] found that
only 38% of articles published in the 17th century contained a visual representation.

Founded in 1880, Science is a scientific journal with widespread readership and
appeal. Science reaches an estimated worldwide readership of more than 1,000,000
people, its articles consistently rank among the world’s most cited research, and each
year, less than 8% of submissions are published. Both the age and prestige of Science
make it an ideal focus for the sampling of historical graph use [4]. The primary pur-
pose of this study was to analyze the use of visual inscriptions in the Science, with a
particular emphasis on how the use of these figures has changed over time.

2 Methods

A sample of eight articles was randomly selected from Science for 14 time periods
(every ten years from 1880 to 2010). Book reviews, addendums, and errata were ex-
cluded from the sample, as the study focused solely on the use of visual inscriptions

304 L.P. Fanjoy, A.L. MacNeill, and L.A. Best

in scientific writings (empirical articles, experiments, etc.). Inscription information
was recorded, including the number and type of inscriptions, as well as the total area
and fractional area for each inscription. Information was recorded about three types of
inscriptions: visual inscriptions (included graphs and non-graph illustrations, NGI);
non-visual inscriptions (included tables and equations); and, montages (included two
or more types of inscriptions; see [5]).

3 Results

A total of 111 articles (only seven articles were selected from 1880, due to the dearth
of empirical articles) were sampled. Averaged over all decades, 33.33% of articles
contained at least one graph, 36.04% contained at least one table, and 35.14% con-
tained at least one illustration. Figure 1 shows trends in graph use, NGI use, and table
use.

Fig. 1. Proportion of page space dedicated to tabular presentation (Panel A), equations used per
journal page (Panel B), and overall non-visual inscription use per page (Panel C)

 The Use of Diagrams in Science 305

As can be seen in the figure, the percentage of article space dedicated to graph use
increased significantly over time (r(14)=.89, p<.0001), the use of NGIs (r(14)=.277,
p=.39) and tables (r(14) = .06, p=.84) has been relatively stable. The overall use of
visual inscriptions has increased over time (r(14)=.74, p=.03), driven largely by the
increase of graphical data displays. During the early years of publication, graphs were
not used to present data but illustrations, tables, and equations were quite common.
After 1940, graphs became more and more popular while the use of tables declined.

4 Discussion

Funkhouser [2] called the period from 1860 to 1890 the “golden age of graphs”, but
he may have been somewhat premature. If the articles sampled from Science are any
indication, graph use did not see its sharpest increases until a full century later. In
fact, although the overall use of scientific inscriptions has increased since 1880, this
growth has been driven almost entirely by graph usage. The greatest increases in
graph use have occurred in recent decades and, presumably, part of this growth can be
attributed to the pervasiveness of computers and statistical software, which have made
graphs more accessible to researchers.

Although graph use has increased over the decades, the same cannot be said for
other scientific inscriptions. It appears that the use of illustrations has remained static
over the lifespan of Science. We found that the use of non-graph illustrations has un-
dergone very little fluctuation between 1880 and 2010. Table use, however, has de-
creased over time. These results support Bazerman [6] and Gross, Harmon, and Reidy
[3] who found that, although graph use in certain natural sciences has increased over
the past century, table use has remained stable or declined.

References

1. Latour, B.: Drawing things together. In: Lynch, M., Woolgar, S. (eds.) Representation in
Scientific Practice, pp. 19–68. MIT Press, Cambridge (1990)

2. Funkhouser, H.G.: Historical development of the graphical representation of statistical data.
Isis 3, 269–404 (1937)

3. Gross, A.G., Harmon, J.E., Reidy, M.: Communicating science: The scientific article from
the 17th century to the present. Oxford University Press, Oxford (2002)

4. Science. AAAS, http://www.sciencemag.org/site/about/index.xhtml
5. Arsenault, D.J., Smith, L.D., Beauchamp, E.A.: Visual Inscriptions in the Scientific Hie-

rarchy: Mapping the “Treasures of Science”. Sci. Comm. 27(3), 376–428
6. Bazerman, C.: Theoretical integration in experimental reports in twentieth-century physics:

Spectroscopic articles in Physical Review, 1893-1980. In: Bazerman, C. (ed.) Shaping Writ-
ten Knowledge, pp. 153–186. University of Wisconsin Press, Madison (1988)

A User Study on Curved Edges

in Graph Visualisation

Kai Xu, Chris Rooney, Peter Passmore, and Dong-Han Ham

Middlesex University, UK

1 Introduction

It seems that straight lines seldom occur in natural objects and that humans ac-
tually prefer curved lines [1]. Thus it may not seem surprising that in aesthetics,
curved lines are often to be preferred over straight ones, as found for example in
Hogarth’s serpentine Line of Beauty [2]. More recently a number of “confluent
drawings” [3] and “edge bundling” [4] methods have been proposed to reduce
edge clutter by using curved edges. Inspired by the work of Mark Lombardi,
there is also theoretical work [5] that uses curved edges to optimises angular
resolution, i.e., keep the angles between adjacent edge uniform.

Many examples are available to demonstrate the results of graph visualiza-
tion with curved edges. However, there has been little effort to empirically eval-
uate their effectiveness on common graph-related tasks. The only related ex-
periment [6] we are aware of is a qualitative study comparing hierarchical edge
bundling against node-link diagrams with five software developers. The data
used were not general graphs (directed acyclic graphs) and the tasks were soft-
ware engineering-specific. The results show that all participants strongly prefer
hierarchical edge bundling to node-link diagrams.

In this paper we describe our experiment studying the impact of edge curva-
ture on general graph readability. We wanted to avoid any confounding factors
and limit the difference in visualization to edge curvature only. Therefore, we did
not include edge bundling or confluent drawing methods, because they require
special layout methods that can not be applied to straight-line graphs.

2 Experiment and Results

A total of twenty-eight subjects voluntarily participated in the study. They were
from diverse social-economical background and included university students and
staff (both academic and non-academic), and general public. The graphs used
in the experiment were generated with the model proposed by Ware et al. [7].
The graphs have three sizes: 20, 50, and 100 nodes, and ten graphs were gener-
ated for each of the three sizes. The force-directed method [8] was then used to
generate graph layout. After applying the layout algorithm, three visualizations
were produced for each graph with straight, slightly curved, and heavily curved
edges (Figure 1). A four-point Bezier curve was plotted for the slight curve, and
three point Bezier curve was plotted for the heavy curve. The node positions

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 306–308, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A User Study on Curved Edges in Graph Visualisation 307

were kept unchanged. A within-subject design is used. During the experiment,
participants were asked to identify whether a path of length two existed between
two nodes (i.e., path-finding task).

(a) Straight edge (b) Slightly curved edge (c) Heavily curved edge

Fig. 1. Examples of graph visualizations used in the experiment

Hypothesis 1: Steeper arcs will be detrimental to performance as participants
will have to follow a longer path between nodes.

Hypothesis 2: Task time will increase with the graph size.
Hypothesis 3: Participants would prefer straight edge for effectiveness, but

slightly curved edges for aesthetics.

This study used two objective measures: time to answer (TIME) and the number
of correct answers (CORRECT)) and two subjective measures: user preference
on effectiveness (PREF-EFFECTIVE) and look (PREF-LOOK) of line type.
Table 1 summarizes the pairwise comparisons using Tukey test for TIME and
CORRECT. TIME: The ANOVA results showed that all the main effects were

Table 1. Pairwise comparisons of two objective measures

Line Type Number of Nodes

STL vs. SCL STL vs. HCL SCL vs. HCL 20 vs. 50 20 vs. 100 50 vs. 100

Log10(TIME) ** ** ** ** ** **

CORRECT ** ** *

* Significant at the α = 0.05 level; ** Significant at the α = 0.01 level

statistically significant at the 0.01 significance level (line type (F(2, 54) = 16.31,
p < 0.01) and number of nodes (F(2,54) = 26.64, p < 0.01). CORRECT: The
main effect of line type was statistically significant at the 0.01 significance level
(F(2,216) = 61.20, p < 0.01). The main effect of number of nodes was also
significant at the 0.05 level (F(2,216) = 3.05, p < 0.05). PREF-EFFECTIVE
and PREF-LOOK: For the two subjective measures, the Friedman test showed

308 K. Xu et al.

that there was a statistically significant difference among three line types (PREF-
EFFECTIVE (χ2

F = 16.83, p < 0.01; adjusted for ties) and PREF-LOOK (χ2
F =

16.83, p < 0.01; adjusted for ties)). STL is the most preferable line type in both
subjective measures.

3 Discussions

This study has found that edge curvature increase leads to longer task completion
time, which is in agreement with our Hypothesis 1. It is also found that correct
answer percentage decreases as curvature increases. These results indicate that
using curved edges alone does not improve graph readability. The results also
show that the time taken increases with the number of nodes for each curvature
condition, which agrees with our Hypothesis 2. Participants preferred the aes-
thetics of straight lines to curved ones, and judged them to be more effective for
the path finding task. This disagrees with Hypothesis 3 that curved lines would
be preferred and the previously cited studies that show humans prefer curved
contours. It is probable that any initial reaction is overridden by the require-
ments of our task. As a result, subjects prefer the look of straight lines when
they find them easier to use for the task.

References

1. Bar, M., Neta, M.: Humans prefer curved visual objects. Psychological Science 17(8),
645–648 (2006)

2. Hogarth, W.: The Analysis of Beauty. Yale University Press (1753)
3. Dickerson, M.T., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent Drawings:

Visualizing Non-planar Diagrams in a Planar Way. In: Liotta, G. (ed.) GD 2003.
LNCS, vol. 2912, pp. 1–12. Springer, Heidelberg (2004)

4. Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hi-
erarchical data. IEEE Transactions on Visualization and Computer Graphics 12,
741–748 (2006)

5. Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Lom-
bardi Drawings of Graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS,
vol. 6502, pp. 195–207. Springer, Heidelberg (2011)

6. Telea, A., Ersoy, O., Hoogendorp, H., Reniers, D.: Comparison of node-link and hier-
archical edge bundling layouts: A user study. In: Keim, D.A., Pras, A., Schönwälder,
J., Wong, P.C. (eds.) Visualization and Monitoring of Network Traffic. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009)

7. Ware, C., Bobrow, R.: Supporting visual queries on medium-sized node-link dia-
grams. Information Visualization 4(1), 49–58 (2005)

8. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall (1999)

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 309–311, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Truth Diagrams: An Overview

Peter C.-H. Cheng

Department of Informatics, University of Sussex, Brighton, BN1 9QH, UK
p.c.h.cheng@sussex.ac.uk

Abstract. Truth Diagrams, TDs, are a new diagrammatic notation for proposi-
tional logic. TDs provide: (1) representations of logical states of affairs and re-
lations; (2) operators on such relations; (3) a test of the validity of derivations.
A proof of one of de Morgan’s laws is given as an illustration of TDs.

Truth Diagrams (TDs) were invented as part of a programme of research on the Rep-
resentational Epistemic approach to the study of how notational systems encode
knowledge and the potential cognitive benefits that novel codifications of knowledge
may confer [1-3]. The core principle of the approach claims that effective representa-
tional systems should directly encode the fundamental conceptual structure of their
knowledge domains, using coherent notational schemes. TDs were designed as a
further test of this idea. The purpose here is simply to give an informal overview of
TDs by describing the derivation of one of de Morgan’s laws: –(PvQ) |– –P&–Q.

The derivation is shown in Fig. 1. The sequent to be derived is stated at the top;
columns C to H in row 1, or {C-H,1}. The derivation has three main parts: (a) the
construction of the TD for the assumption of the sequent, to the left of Fig. 1 {A-C,2-
6}; (b) the construction of the conclusion TD, on the right {H-J,2-6}; (c) a test of that
the assumption and the conclusion constitutes a tautology, as required for a valid de-
rivation, at the bottom of the diagram {F,7-8}.

TDs are configurations of lines and symbols that may be interpreted in three differ-
ent ways. First, TDs may represent logical states of affairs. There are ten such TDs
in Fig. 1; {A,2}, {C,2}}, {H,2}, {J,2}, {B,4}, {H,4}, {J,4}, {B,6}, {I,6}, and {F,8}.
The formula for the state of affairs represented by a TD is shown by the underlined
expression at the top of each TD; e.g., in {B,4} the relation is PvQ. A TD possess
one or more variables identified by the letter(s) in the middle of each diagram; in the
unary TD {A,2} the variable is P, and in the binary TD {B,4} they are P and Q. The
position of the end of a line next to a variable represents a truth-values assignment to
that variable: the top position stands for True and the bottom position stands for False.
For example, the top left of {B,4} is P=T and the bottom right is Q=F, and the top of
{A,2} is P=T and the bottom is P=F.

Within a TD, each line stands for particular set of truth-value assignments to the
variables, depending on the position of the ends of the line. For example, in {B,4} the
top horizontal line stands for (P=T, Q=T). The bottom (dashed) horizontal line
represents (P=F, Q=F). The descending and ascending diagonals represents (P=T,
Q=F) and (P=F, Q=T), respectively. The style of the line indicates whether the set of

310 P.C.-H. Cheng

assignments is itself T or F. A solid line assigns True to the set and is called a Tine.
A dashed line assigns False to the set and is called a Faint. For example, the descend-
ing diagonal Tine in {B,4} is (P=T, Q=F)=T and bottom Faint is (P=F, Q=F)=F. As
all the lines of {F,8} are tines, all possible sets of assignments are true, so this TD
stands for a tautology. The TDs in row {2} are simply unary variables, so by defini-
tion they have a Tine at the top and a Faint at the bottom.

The second interpretation is TDs as operators: {B,3}, {H,3}, {J,3}, {B,5} and
{I,5} in Fig. 1, which are enclosed by dashed rectangles. The symbol above the TD
identifies the operator. The bracketed formulas in the middle identify the argument
TDs to which the operator is applied. In Fig. 1 the argument and result TDs are
drawn just above and below the operator TD; e.g., {B,4} is the argument for operator
{B,5} and the result is {B,6}. The configuration of the lines within an operator TD
determines what the operator does. The position, either top or bottom, of the end of a
line is an instruction to find either a Tine or a Faint, respectively, in the relevant ar-
gument TD; e.g., lines ending at the bottom left of {B,3} means locate a Faint in the
TD for the expression [P]. In {B,5} the top position means find a Tine in the TD for
[PvQ]. The two ends of a line in a binary operator constitute a pair of instructions to
find the specified types of lines in each of the argument TDs; e.g., the ascending di-
agonal in {I,5} means find a Faint in the TD for [-P], {H,4}, and find a Tine in [-Q],
{J,4}. The actual type of a line in an operator TD specifies the type of line to be
drawn in the result TD; e.g., the negation operator {B,5} transforms all the Tines in
{B,4} into Faints in {B,6}, as there is a top Faint in {B,5}; and vice versa for the
Faint in {B,4} given the bottom Tine in {B,5}. The operator TD in {B,3} constructs
{B,4} from all the four possible combinations of the Tines and Faints in {A,2} and
{C,2}, with new Tines drawn whenever there is a Tine in either of the arguments.

On the left of the diagram, TDs for P and Q are disjunctively combined by the or
operator {B,3} and the result is negated by {B,5}, to give a TD for –(PvQ), {B,6}.
On the right, P and Q are individually negated before being conjunctively combined
by the and operator {I,5}, to give –P&–Q, {I,6}.

The tautology test of the assumption and the conclusion of a derivation is the third
interpretation of TDs. It applies the material implication TD in the solid rectangle
{F,7} to {B,6} and {I,6}, in the manner of any operator. As there is a Tine in the
same position in both {B,6} and {I,6}, a Tine is drawn in {F,8}, labeled ‘TT’. Simi-
larly, as Faints occur in all the same positions, Tines are also drawn for them in {F,8}
‘FF’, because the bottom line in {F,7} is a Tine. There are no combinations of a Tine
in the assumption and a Faint in the conclusion, so no faints occur in {F,8}. There-
fore, the test TD only has Tines, so it is a tautology and the derivation is thus valid.

The verbal descriptions of the interpretations of TDs given here do require some
effort to follow, but graphical explanations in fuller treatments of TDs are easier to
understand, because they can fully exploit the spatial structure of TDs.

Proofs that Truth Diagrams comprise a sound and complete system for proposi-
tional logic will be presented elsewhere, along with comparison of the relative bene-
fits of TDs in comparison to the conventional formula notation and truth tables.

 Truth Diagrams: An Overview 311

Fig. 1. TD derivation of one of de Morgan’s Laws

References

1. Cheng, P.C.-H.: Electrifying diagrams for learning: principles for effective representational
systems. Cognitive Science 26(6), 685–736 (2002)

2. Cheng, P.C.-H.: Probably good diagrams for learning: Representational epistemic re-
codification of probability theory. Topics in Cognitive Science 3(3), 475–498 (2011)

3. Cheng, P.C.-H., Barone, R.: Representing complex problems: A representational epistemic
approach. In: Jonassen, D.H. (ed.) Learning to Solve Complex Scientific Problems,
pp. 97–130. Lawrence Erlbaum Associates, Mahmah (2007)

P Q

PvQ

P

–P&–Q

Q

[–P] [–Q]

–(PvQ) |– –P&–Q

TT

FF

FF FF

Q

Q

P

P

Q

–Q

P

–P

Q

Q

P

P

¬

[P]

¬

[Q]

&

[P] [Q]

v

¬

[PvQ]

P

–(PvQ)

Q

[–P&–Q] [–(PvQ)]

–(PvQ) |– –P&–Q

→

A B C F H I J

1

2

3

4

5

6

7

8

True

False

T

F

T

F

T

F

Tine

Faint

Tine

Faint

T

F

T

F

T

F

T

F

T

F

Tine

Faint

Tine

Faint

Tine

Faint

Tine

Faint

T

F

P Q

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 312–314, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Are Teachers Aware of Students’ Lack of Spontaneity
in Diagram Use? Suggestions from a Mathematical

Model-Based Analysis of Teachers’ Predictions

Yuri Uesaka1, Emmanuel Manalo2, and Masanori Nakagawa3

1 Graduate School of Education, The University of Tokyo, Japan
2 Faculty of Science and Engineering, Waseda University, Tokyo, Japan

3 Graduate School of Decision Science & Technology,
Tokyo Institute of Technology, Tokyo, Japan

y_uesaka@p.u-tokyo.ac.jp, emmanuel.manalo@gmail.com,

nakagawa@nm.hum.titech.ac.jp

Abstract. Although many studies have shown that diagrams are effective tools
for problem solving, research evidence shows that students do not always use
diagrams effectively. One of the most serious problems is their lack of
spontaneity in diagram use. However, no previous studies have examined
whether teachers are adequately aware of this problem. In this investigation,
data were gathered on students’ mathematics performance (including their
spontaneous use of diagrams) and teachers’ predictions of the students’
performance. Using a mathematical model (Uesaka & Nakagawa, 2010) to
analyze the data, it was found that the parameter representing the accuracy of
teachers’ prediction was lower for their assessment of spontaneous diagram use
compared to other mathematical tasks. This suggests that spontaneity in
diagram use is an overlooked aspect in teachers’ view of student performance.

Keywords: spontaneous diagram use, math problem solving, teachers'
awareness, mathematical model based analysis.

1 Introduction

Constructing diagrams in problem solving is considered by both educators and
researchers to be an efficacious strategy [1]. Although teachers use a lot of diagrams
during instruction, researchers have noted that in contrast students lack spontaneity in
constructing and using diagrams [2]. Uesaka, Manalo & Ichikawa [2] suggested that
this is one primary reasons for student failure in problem solving. The lack of
spontaneity in diagram use basically means that students miss out on the benefits that
diagram use brings to problem solving and other learning tasks in school. A previous
study [3] using a newly developed assessment tool called COMPASS (a componential
assessment of students’ basic competence in mathematics) [4] has also revealed that
students’ performance was relatively poorer in tasks assessing the spontaneous
construction and use of diagrams. A key finding in this study [3] was that students
performed relatively better in a task that assessed their ability to interpret and
construct diagrams when they were given explicit instructions to do so. Thus, the issue
of spontaneity appears to be of particular concern. However, it is not clear whether
teachers are aware of the prevalence of this problem in spontaneity.

 Are Teachers Aware of Students’ Lack of Spontaneity in Diagram Use? 313

Thus this study explored the question of whether teachers are adequately aware of
diagram use problems that their own students might have. Examining this question is
important because awareness is crucial to enabling teachers to take the necessary
steps in formulating and using appropriate instructional strategies to address those
problems. To achieve this goal, the accuracy of teachers’ predictions about their own
students’ use of diagrams in designated tasks were examined and analyzed with the
use of a mathematical model.

Four tasks in COMPASS were used to assess students’ performance and examine
the accuracy of teachers’ predictions. If teachers’ predictions in the four tasks
distinguish between those that assess spontaneity in diagram use and those that do
not, it would empirically show that there is a problem in teachers’ awareness of the
spontaneity problem. To analyze the accuracy of teachers’ predictions, a model
proposed by Uesaka and Nakagawa [5] was used. This model can be used with
categorical data, and its advantage compared to other models is that it enables
comparison of accuracy of predictions between different tasks.

2 Method

The participants were 18 junior high school mathematics teachers, and 682 8th-grade
students (aged 13–14 years). The teacher and student participants came from four
schools selected from different prefectures in Japan.

Four tasks in COMPASS were used. To assess diagram use spontaneity, a diagram
self-construction task and a diagram utilization task were used. As comparison tasks
(to assess diagram use other than spontaneity), a simple calculation task, and an
interpretation and drawing task were used. The teachers were first asked to carry out
predictions of their own students’ performance in these tasks. After this, the students
were administered the tasks.

3 Results and Discussion

The data were analyzed using the following mathematical model [5]. In this model,
the teachers’ prediction is considered as a function of their students’ performance.
When Qijk is defined as the probability in category k of task i that teacher j predicts as
the percentage of students belonging to that category, and Pik is the real probability of
students in category k of task i, the mathematical model can be represented as follows
(with α and β as parameters to be estimated).

 [1-1]

Here, α represents the accuracy of the prediction: an α value closer to 1 suggests a
greater level of prediction accuracy. A one-way ANOVA, in which α estimates were
used as the dependent variable and task difference was the independent variable, was
conducted. The effect of task difference was found to be significant (F (3, 51)= 3.05, p <
.01). The difference of α between tasks was contrasted by using multiple t-test.
Firstly, α estimates for the two tasks assessing the spontaneous use of diagrams were
found to be significantly lower than the other two (t(51)= 2.71, p < .01). Secondly, no

Qijk = ij*Pik
ij

314 Y. Uesaka, E. Manalo, and M. Nakagawa

difference in α estimates between the two tasks assessing spontaneity in diagram use
was found (t (51)= .12, n.s.). Finally, no significant difference was found in comparing
the two tasks assessing other competencies (t(51)= .89, n.s.). In sum, the α estimates in
the two tasks involving spontaneous diagram use were lower that the α estimates in
the other two tasks. In addition, the α estimates in the two tasks relating to
spontaneous diagram use deviated more from 1 (cf. when β = 1, then α = 1 means
perfect fit), so the teachers’ predictions can be considered as significantly less
accurate where predicting students’ spontaneity in diagram use was concerned.

These results indicate that teachers were comparably poorer in predicting
performance in tasks assessing spontaneity in diagram use than in other tasks
assessing non-spontaneity aspects of diagram use. They suggest that the problem of
students’ lack of spontaneity in diagram use may be overlooked by teachers and thus
may require particular attention in teacher professional development.

Fig. 1. Teacher Predictions of α Values for the COMPASS Tasks

References

1. Cheng, P.C.H.: Electrifying Diagrams for Learning: Principles for Complex
Representational Systems. Cognitive Science 26, 685–736 (2002)

2. Uesaka, Y., Manalo, E., Ichikawa, S.: What Kinds of Perceptions and Daily Learning
Behaviors Promote Students’ Use of Diagrams in Mathematics Problem Solving? Learning
and Instruction 17, 322–335 (2007)

3. Uesaka, Y., Suzuki, M., Kiyokawa, S., Seo, M., Ichikawa, S.: Using COMPASS
(Componential Assessment) to Reveal Japanese Students’ Actual Competence in the
Fundamentals of Mathematics: Is it True that “Students are Generally Fine with the
Fundamentals, and that the Problems Exist Only in Applications”? (submitted)

4. Ichikawa, S., Haebara, T., Sugisawa, T., Seo, M., Kiyokawa, S., Inuzuka, M., Murayama,
K., Uesaka, Y., Kobayashi, H., Shinogaya, K.: Development of COMPASS: Componential
Assessment for Basic Competence and Study Skills in Mathematics. Cognitive
Studies 16(3), 333–347 (2009)

5. Uesaka, Y., Nakagawa, M.: Development and Application of Mathematical Model
Analyzing Teachers’ Accuracy of Predication of Students’ Performance: Proposing
Empirical Methods Detecting Overlooked Competences and Learning Skills. In: Paper in
Proceedings of the Annual Conference of the Japanese Cognitive Science Society, pp.
350–356 (2010)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Diagram Self-
Construction

Diagram
Utilization

Interpretation &
Drawing

Simple
Calculation

α
VA

LU
ES

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 315–317, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Modelling Delivery Information Flow:
A Comparative Analysis of DSMs, DFDs and ICDs

Christopher Durugbo1, Ashutosh Tiwari2, and Jeffrey R. Alcock2

1 Centre for Concurrent Enterprise, University of Nottingham, Nottingham, NG8 1BB, UK
christopher.durugbo@nottingham.ac.uk

2 School of Applied Sciences, Cranfield University, Cranfield, MK43 0AL, UK
{a.tiwari,j.r.alcock}@cranfield.ac.uk

Abstract. Following an initial review and evaluation of current techniques for
modelling delivery information flow in microsystems technology (MST) com-
panies, this article analyses the ‘information channel diagram’ (ICD) approach
– as a diagrammatical technique for modelling information flow through an
empirical study that compares the ICD with existing information flow models
used by MST companies.

Keywords: information flow, process modelling, conceptual design, function-
orientation, delivery phase, microsystems technology.

1 Introduction

In an online survey of 100 MST companies, Durugbo et al. [1] identified two main
formal techniques applied by analysts and managers to model information flow within
the MST domain: data flow diagrams (DFDs) and design structure matrices (DSMs).

However, for effective use of diagrammatic models, it has been suggested that ex-
isting diagrammatical techniques be assessed based on their ability to aid perceptual
(for thorough grasp of meaning) and conceptual (for hypotheses development) cogni-
tive processes [2]. This assessment aids designers and researchers in systematically
identifying modelling requirements of intended technique users that may then be ap-
plied in: selecting techniques that meet user requirements, combining techniques to
create a hybrid version for use in modelling organisation characteristics, modifying
techniques to meet user requirements, or developing new techniques to fill existing
gaps or fulfil user requirements.

The aim of this paper is to analyse the ‘information channel diagram’ (ICD) ap-
proach (introduced in [3]) – as a diagrammatic information flow modelling technique.
In order to accomplish this, models of delivery information flow created using DFDs,
DSMs and ICDs were compared in case studies of 3 MST firms. These firms are all
based in the United Kingdom with a targeted global market, and deliver MST based
products and services as business-to-business solutions for customers that are mainly
original equipment manufacturers or an academic institution.

316 C. Durugbo, A. Tiwari, and J.R. Alcock

2 Case Studies

In all cases (the companies where the interviews were conducted - Company A, Com-
pany B and Company C), 9 questions were used to assess the techniques face-to-face
with 18 company staff (6 from each company): (1) Can delivery personnel roles be
identified? (2) Can the delivery information flow paths be identified? (3) Can multiple
communication channels during delivery be identified? (4) Can delivery process tim-
ing be identified? (5) Can collaborative delivery processes be identified? (6) Can the
synchronisation of communication channels during delivery be identified? (7) Can the
internal and external delivery information flows be identified? (8) Can the context for
delivery information be identified? (9) Can the sharing of delivery information be
identified?

The scoring system used at each company, was calculated as a fraction of 54. This
is based on responses to the questions by the six participants from each company i.e. 6
participants × 9 questions = 54. This number represents the total number of possible
responses from each company for each compared technique.

At Company A, where designers and engineers are allowed to make use of intuitive
and individual approaches, ICD scored 50/54, DFD scored 16/54, and DSM scored
4/54. For Company B where the DFD is used in software design, ICD was selected
for each of the 9 questions posed to each of the 6 participants from Company B –
giving the ICD a score of 54 out of a possible 54 times. DFD scored 18/54 whereas
DSM scored 3/54. Company C had previously used DFD and DSM approaches and
the responses of participants revealed that ICD scored 42/54, DFD scored 20/54, and
DSM scored 4/54.

For the DFD, the main positive attribute highlighted by participants was serial re-
presentation that made the flow of information easy to follow. Negative attributes of
the DFD noted by participants included the absence of process times for establishing
the duration of tasks and the duplication of entities in produced diagrams.

In the case of the DSM, participants responded negatively towards the technique
with major difficulties in establishing the path and context for information flow. An
absence of entities or roles and insufficient level of detail was also a negative attribute
of the DSM noted by participants. However, participants commented positively on the
ease with which the flow captured by the DSM can be converted into a software code
(i.e. programmability) and the compact representation of the DSM.

For the ICD, the main positive attribute emphasised by participants was the ability
of the technique to clarify flow depiction through the use of colour and the distinc-
tion/demarcation of roles and jobs through the use of swim-lanes. Other positive at-
tributes of the technique commented on by participants included the depiction of
process times for capturing task durations and the depiction/description of media
forms for capturing the types of information content. Participants also commented on
the unsuitability of the ICD to model backend tasks and interactions such as manufac-
turing and assembly.

In terms of overall visualisation and potential use, the ICD scored highest in two
companies (Company A and Company B), as shown in Fig. 1. In the third company
(i.e. Company C), the ICD tied with the DFD approach.

 Modelling Delivery Information Flow: A Comparative Analysis 317

0

1

2

3

4

5

6

DFD DSM ICD DFD DSM ICD DFD DSM ICD

2

0

6

2

0

6

3

0

3

1 1

6

2

0

4

3

0

3
Number of responses
in favour of approach

Modelling technique

Best captures flow

Would consider using

Company A Company B Company C

Fig. 1. Responses from case companies

3 Conclusions

In this paper, the ‘information flow channel’ (ICD) approach, a diagrammatical
technique for modelling information flow, has been compared with data flow
diagrams and design structure matrices created in an empirical study of delivery
information flow in three United Kingdom based MST companies. Findings and
discussions with 18 participants that took part in the empirical study revealed that the
ICD scored highest in participant responses to questions involving roles of company
personnel, possible paths for information flow, the presence of multiple channels,
process times, collaborative processes, synchronised communication channels,
harmonised internal and external flows, information sharing and contextualised
information.

Acknowledgments. The authors would like to extend their sincere thanks to the En-
gineering and Physical Sciences Research Council (EPSRC), for its support via the
Cranfield Innovative Manufacturing Research Centre (CIMRC), towards the work
carried out in the preparation of this paper.

References

1. Durugbo, C., Tiwari, A., Alcock, J.R.: Survey of Media Forms and Information Flow Mod-
els in Microsystems Companies. In: Camarinha-Matos, L.M., Pereira, P., Ribeiro, L. (eds.)
DoCEIS 2010. IFIP AICT, vol. 314, pp. 62–69. Springer, Heidelberg (2010)

2. Hungerford, B.C., Hevner, A.R., Collins, R.W.: Reviewing software diagrams: a cognitive
study. IEEE T. Software Eng. 30, 82–96 (2004)

3. Durugbo, C., Hutabarat, W., Tiwari, A., Alcock, J.R.: Information Channel Diagrams: An
Approach for Modelling Information Flow. J. Intell. Manuf. (2012) doi:10.1007/s10845-
011-0523-7

Completeness Proofs for Diagrammatic Logics

Jim Burton, Gem Stapleton, and John Howse

Visual Modelling Group, University of Brighton, UK
{j.burton,g.e.stapleton,john.howse}@brighton.ac.uk

Abstract. We identify commonality in the completeness proof strate-
gies for Euler-based logics and show how, as expressiveness increases, the
strategy readily extends. We identify a fragment of concept diagrams, an
expressive Euler-based notation, and demonstrate that the completeness
proof strategy does not extend to this fragment.

1 Introduction

There have been a number of sound and complete logics based on Euler dia-
grams developed to date, such as [4,1]. All of the proofs of completeness have
used constructive strategies, providing a proof that the theorem follows from the
axioms. Moreover, they all adopt a similar framework, converting the diagrams
involved into normal forms that are easily comparable. The completeness proof
for each considered logic is an extension of the completeness proofs for its frag-
ments. We show this by detailing the strategies used for Euler diagrams [1] and
spider diagrams [2].

Euler diagrams are comprised of closed curves, each with a label. Examples
can be seen in figure 1, where d expresses that (the sets) A and C are disjoint,
B is a subset of A, and D is a subset of C. The diagram d′ expresses that D
is a subset of C. To prove completeness of this logic, Hammer [1] proceeds by
constructing a proof-writing algorithm: given an axiom d and a theorem d′, carry
out the following steps to prove d′ follows from d. First, add one curve labelled
L for each curve label, L, in d′ that is not in d, to give a diagram dc. Next,
erase all curves from dc that have labels not appearing in d′, to give a diagram
de. Finally, add minimal regions to de until it is the same as d′. The proof of
completeness shows that it is possible to apply this algorithm whenever d � d′

(i.e. d semantically entails d′), thus establishing that d � d′ (i.e. there is a proof

Fig. 1. Three Euler diagrams

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 318–320, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Completeness Proofs for Diagrammatic Logics 319

Fig. 2. Three spider diagrams

that d′ follows from d). We observe that we can interchange the last two steps
in the completeness proof without significantly impacting its details. Thus, we
maximise the syntax in the axiom diagram so that only inference steps that
erase syntax are required in order to obtain d′.

Spider diagrams extend the Euler diagram logic by adding spiders, shading
and logical connectives between diagrams. Examples of spider diagrams can be
seen in figure 2 where d1 expresses – using spiders – that there are at least two
elements, one of which is in B and the other of which is in B ∪D. Diagram d1
also expresses – using shading – that no further elements are in B.

The completeness proof strategy for spider diagrams, from [2], starts with ax-
iom d and theorem d′, so d � d′. In brief, the process starts off by converting d to
a normal form where the only logical connective used is ∨ and the spiders each
comprise just a single node, giving diagrams we will denote by dNF and d′NF .
Furthermore, dNF and d′NF are the disjunction of sets of diagrams, {d1, . . . , di}
and {d′1, . . . , d′i} respectively where, for each di and d′i in dNF and d′NF respec-
tively, the sets of regions are the same. We then begin to add the spiders and
shaded regions which are present in d′NF but not dNF until it can be established
that each unitary diagram, di, in the axiom logically entails a unitary diagram,
d′i, in the theorem. Once this maximal form is achieved it is merely a matter
of erasing syntax from di to obtain d′i. Then we have di � d′NF and it can be
trivially shown that dNF � d′NF , as required. We refer to [2] for full details.

2 More Expressive Notations and the End of the Strategy

Concept diagrams [3] build on spider diagrams by adding further syntax: arrows,
to place constraints on binary relations, and unlabelled curves. The diagrams in
figure 3 are concept diagrams. Diagram d expresses that there are two sets, x
and y, which are disjoint subsets of A, that the image of the relation f , when
its domain is restricted to A, is B, and that there is an element in x such that
the image of f , when its domain is restricted to that element, is the empty set.

It is possible to extend the notion of maximality to concept diagrams by taking
arrows into account, using the notion of injective mappings from the arrows of
one diagram to another. The process of obtaining the maximal form of a diagram,
then, includes the task of adding as many arrows as is possible without changing
the meaning of the diagram. We call these arrows potential arrows.

In figure 3, d � d′ but there is no mapping from the arrows of d′ to d, and so we
maximise d by adding potential arrows. The arrows (f, x,B) in diagram d1 and

320 J. Burton, G. Stapleton, and J. Howse

Fig. 3. Four concept diagrams

(f, y, B) in diagram d2 are potential arrows for d, since either arrow can be added
to d without changing its meaning. After adding either arrow, however, the other
arrow ceases to be a potential arrow. If we are to extend the completeness proof
strategy by adding arrows to the axiom, all of the diagrams obtained from d
using this process must have an arrow set that can be injectively mapped to by
the arrows of d′ in the appropriate way; this is because the diagrams obtained
are semantically equivalent to d and, therefore, semantically entail d′. We can
see that we can remove syntax from d2 to obtain d′, but there is no general
strategy that can be used to transform d1 into d′, even though d1 � d′.

3 Conclusion

We have identified commonality in the completeness proof strategies of various
logics based on Euler diagrams. As expressiveness increases the strategy read-
ily extends in some cases, but breaks down for concept diagrams, which are
syntactically richer and more expressive than earlier logics based on Euler dia-
grams. Thus, we have established that the existing completeness proof strategies
are limited. The non-unique ways of adding syntax to concept diagrams results
from the syntactic richness of the notation and from their expressiveness power.
We believe that the same phenomena will arise in equally expressive logics.

References

1. Hammer, E.: Logic and Visual Information. CSLI Publications (1995)
2. Howse, J., Stapleton, G., Taylor, J.: Spider diagrams. LMS Journal of Computation

and Mathematics 8, 145–194 (2005)
3. Howse, J., Stapleton, G., Taylor, K., Chapman, P.: Visualizing Ontologies: A Case

Study. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy,
N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 257–272. Springer,
Heidelberg (2011)

4. Shin, S.-J.: The Logical Status of Diagrams. Cambridge University Press (1994)

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 321–323, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Modelling Information Flow:
Improving Diagrammatic Visualisations

Christopher Durugbo

Centre for Concurrent Enterprise, University of Nottingham, Nottingham, NG8 1BB, UK
christopher.durugbo@nottingham.ac.uk

Abstract. In this paper, the needs and modelling considerations of diagrammat-
ic representations of information flow are assessed. It presents the main
recommendations of 18 engineers, scientists, and managers during case studies
involving 3 semiconductor companies. The study shows that effective model-
ling processes and primitives require the effective use of colour coding within
diagrams, identification of dichotomies for information classification, simplifi-
cation of information content and communication, and the case-by-case use of
tool during modelling. The paper concludes by discussing the implications of
the findings for research and practice.

Keywords: information flow, flow analysis, conceptual modelling, process
modelling, diagrammatic reasoning, communication.

1 Introduction

The use of diagrams to model information flow makes it easier for organisational
personnel to relate to and understand organisational requirements [1]. This offers a
unique opportunity to gain insights into activities and interactions that impact on op-
erations, management and support processes. A combination of strategies for re-
engineering information and information flows can then be leveraged to improve
organisational performance.

The process of modelling information flows for organisations is important for three
main reasons. Firstly, it aids organisations to analyse their current state of information
flow. Secondly, it enables organisations to identify and eliminate redundant and inef-
fective information flows as well as minimising the duplication of information. Third-
ly, it helps an organisation to make assessments and recommendations for improving
future internal/external communication and overall organisational performance. This
activity is useful for implementing organisational strategies such as resource alloca-
tion and job description.

Driven by insights from a comparative analysis of diagrammatic information flow
models, this paper seeks to offer fresh insights into the visualisation and analysis
needs of information flow diagrams.

322 C. Durugbo

2 Information Flow Diagrammatic Modelling Needs

In an empirical study of 3 companies within the semiconductor domain [2], the needs
of diagrammatic representations was analysed with 18 participants (engineers, scien-
tists, and managers) through face-to-face semi-structured interviews. To initiate dis-
cussions on the modelling needs of information flow diagrams, participants were
presented with 3 modelling tools (data flow diagrams (DFDs), design structure ma-
trices (DSMs) and information channel diagrams (ICDs)), as described in [2]. The
main points from these discussions were:

• Colour coding effectiveness,
• Simplification of information,
• Information classification dichotomies, and
• Case-by-case tool use.

The use of colour in representations was generally favoured by participants of the
study. Within the ICD, use of colours reinforces the different roles of personnel. Par-
ticipants however cautioned on the use of colour because individual colours could
symbolise different properties and may have different roles in other tools used by
engineers and scientists. For instance, the colour red, as noted by a scientist within the
study, could be perceived as important roles or associated with critical tasks such as in
the project evaluation and review technique.

The study found simplification as an important factor in the presentation of infor-
mation content and means for communication. The suggestion was that models must
be free of clutter and simplified as much as possible if they are to be useful. However,
this conflicts with the findings of the comparison of [2] where the DSM, a tool that
was conceived to minimise clutter (see for instance [4]), scored lowest among the
compared tools. Comments by participants offered clues to this contradictory finding.
Firstly, participants noted that although the compactness of the DSM makes it simple,
the tool lacks enough primitives to characterise ‘what was going on’. Secondly, the
DSM according to some participants was difficult to understand and follow.

Two managers noted that interactions involving information flow with customers
and staff can be modelled according to front-end flows for administrative, accounting,
distribution and sales functions and back-end flows for design, manufacturing and
technical service functions. Similarly, the technological/business distinction of data
content aided the case companies in maintaining their day-to-day operations. Business
content largely relate to data from front-end interactions whereas technological con-
tent is mainly associated with back-end interactions.

Participants noted that in day-to-day operations, the choice and use of diagrams
must be based on a case-by-case basis depending on the level of complexity of con-
cepts and system implementation. This is because the compared tools (DFDs, DSMs
and ICDs) all depict the flow of information in different ways. Furthermore, in prac-
tise, groups (such as manufacturers) or users (such as customers) are typically only
concerned with some aspects of the information model. This supports the idea that an
all-encompassing information model is unnecessary and impractical for designers [3].

 Modelling Information Flow: Improving Diagrammatic Visualisations 323

3 Implications for Researchers and Practitioners

In this paper, an attempt has been made to assess the needs and modelling considera-
tions of diagrammatic representations of information flow. It concludes with the fol-
lowing implications for researchers and practitioners:

─ Information flow for firms is non-monolithic and dependent on companies’ strate-
gies for maintaining firm competitiveness. During the discussions with participants,
different starting points for information flows were identified. These points varied
for the individual companies and were intended to establish industry scopes ac-
cording to focus on customer requests, service contracts and work product releases.
However, the general purpose of each flow was to maintain the competitiveness of
the company with a view to maintaining sustainable operations.

─ A demarcation of roles is vital to modelling information flow. This is because a
wide range of information flows to and from companies during day-to-day opera-
tions. These flows are managed by roles and systems that coordinate interactions
between information sources and destinations. Consequently, depictions to analyse
information flow for organisations must include the information source, destination
and management roles.

─ The use of colour enriches representations. Colours offer opportunities for charac-
terising the properties of concepts such as processes, objects and materials. Partici-
pants particularly favoured the use of colour in the ICD because it improved visual
perception and reinforced the role of personnel.

─ Simplified communications and organisational models are necessary for effective
operations. Modern day businesses, in an attempt to remain competitive, undertake
processes and projects that may be complex and/or large in scale. Communication
and models of information flow if complicated in these cases creates additional
tasks, wastes company time and reduces overall productivity.

Acknowledgments. The authors would like to extend their sincere thanks to Prof.
Ashutosh Tiwari, Dr Jeffrey Alcock and the Engineering and Physical Sciences Re-
search Council (EPSRC), for their support via the Cranfield Innovative Manufactur-
ing Research Centre (CIMRC), towards the work carried out for this research.

References

1. Sen, T.: Diagrammatic knowledge representation. IEEE T. Syst. Man Cyb. 22, 826–830
(1992)

2. Durugbo, C., Tiwari, A., Alcock, J.R.: Modelling Delivery Information Flow: a Compara-
tive Analysis of DSMs, DFDs and ICDs. In: Cox, P., Rodgers, P., Plimmer, B. (eds.) Dia-
grams 2012. LNCS (LNAI), vol. 7352, pp. 315–317. Springer, Heidelberg (2012)

3. Durugbo, C., Tiwari, A., Alcock, J.R.: A review of information flow diagrammatic models
for product-service systems. Int. J. Adv. Manuf. Technol. 52, 1193–1208 (2011)

4. Steward, D.V.: The design structure system: a method for managing the design of complex
systems. IEEE T. Eng. Manage. 28, 71–74 (1981)

A Graph Calculus for Proving Intuitionistic

Relation Algebraic Equations�

Renata de Freitas and Petrucio Viana

Institute of Mathematics and Statistics,
UFF: Universidade Federal Fluminense, Niterói, Brazil

Abstract. In this work, we present a diagrammatic system in which
diagrams based on graphs represent binary relations and reasoning on
binary relations is performed by transformations on diagrams. We proved
that if a diagram D1 can be transformed into a diagram D2 using the
rules of our system, under a set Σ of hypotheses, then it is intuitionis-
tically true that the relation defined by diagram D1 is a sub-relation of
the one defined by diagram D2, under the hypotheses in Σ.

Keywords: Proofs with graphs, Relation algebra, Intuitionistic logic.

Introduction. Boolean reasoning, i.e. reasoning involving plain sets and the
Boolean operations of union, intersection and complement, may be performed
through the algebraic language of Boolean algebras [1]. Relational reasoning,
i.e. reasoning involving relations, the Boolean operations, and the Peircean op-
erations of composition and conversion, may be performed through the more
elaborated algebraic language of De Morgan-Peirce-Schröder-Tarski relation al-
gebras [5]. A main difference between these environments arises from the fact
that, although there is a number of algorithms to decide validity or perform
inferences in the calculus with sets [1], the analogous tasks for the relational
language are highly undecidable [6]. Hence, the problem of building mechanisms
which may help in the design of relational algebraic proofs from scratch arises
(cf. [4,2]).

A mechanism based on diagrams to perform relational reasoning is proposed
in [3]. In that work, we handle inclusions rather than equalities, and we use
diagrams in the left and right hand sides of an inclusion, instead of relation
algebraic terms. Starting with the diagram in the left hand side of the target
inclusion, by successive applications of our transformation rules, mediated by
the inclusions taken as hypotheses, either we end up with the diagram in the
right hand side of the target inclusion, when the inclusion is a consequence of the
hypotheses or, otherwise, build a possibly very large non constructive counter
model (cf. [3] for details). In this work, we modify that system to deal with
intuitionistic relational algebraic inferences.

Example. A diagrammatic proof that r−1 ◦ tC ⊆ sC is an intuitionistic con-
sequence of r ◦ s ⊆ t is displayed in Figure 1. The tag ∗ is introduced in the

� Research partially sponsored by CNPq and FAPERJ.

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 324–326, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Graph Calculus for Proving Intuitionistic Relation 325

D1 : − +
r−1◦tC ��

� Composition

D2 : − • +
r−1 �� tC ��

� Conversion;Negation

D3 : − • +
r�� ��

− +
t ��

⇓ Complementary alternatives

D4 :

∗

− +
t ��

−

+•
r ��

��

s

�������������

− +
t ��

−

+•
r ��

��������������� − +
s ��

⇓ Hypothesis (r ◦ s ⊆ t)

D5 :

∗

− +
t ��

−

+•
r ��

t
����

s

�������������

− +
t ��

−

+•
r ��

��������������� − +
s ��

⇓ Contradiction

D6 :

− +
t ��

−

+•
r ��

��������������� − +
s ��

⇓ Cover

D7 : − +��
− +

s ��

� Negation

D8 : − +
sC ��

Fig. 1. Diagrammatic proof of r ◦ s ⊆ t �i r−1 ◦ tC ⊆ sC

proof when we apply the rule that allows transforming a diagram by breaking
it in two parts, each one containing alternative complementary information: one
positive and the other negative. This passage occurs in the example when we
transform diagram D3 into diagram D4. The tag labels the subdiagram which

326 R. de Freitas and P. Viana

does not have the occurrence of the negative information, expressed in the form
of a boxed term or diagram. The tag is erased by the application of the rule that
allows erasing contradictory subdiagrams. This passage occurs in the example
when we transformed diagram D5 into diagram D6.

The part of the diagrammatic proof which consists of the tagged subdiagrams
resembles the intuitionistic reductio ad absurdum. The appearance of the arc
labeled by s in the tagged subdiagram of D4 corresponds to “assume (−,+) ∈ s
for a contraction”. When a contradiction arises, at the tagged subdiagram of
D5, we derive the complementary alternative, (−,+) �∈ s, represented by the arc

labeled by − s→ + in D6.

Soundness. We have defined a translation of diagrams D into first-order for-
mulas tD and proved soundness of this calculus by showing that, given a di-
agrammatic proof of D′ from D based on a set of hypotheses Γ , i.e. a se-
quence of diagrams (D1, . . . , Dn) s.t. each diagram Di+1 is obtained from Di

by the application of some rule of the calculus, one can transform the sequence
(tD1, . . . , tDn) of first-order formulas into an intuitionistic proof that the rela-
tion represented by D′ contains the relation represented by D. (For details, cf.
www.uff.br/grupodelogica/FV12a.pdf)

Summary. The main characteristic of the system presented in [3], besides its
accordance with reasoning from hypotheses, is an explicit diagrammatic repre-
sentation of complement. One of the main transformation rules of that system
allows us to change any given diagram into another one, by reproducing it in
two parts, representing two complementary alternatives: some relation or its
complement holds between some pair of points in the domain. In this work, we
introduce tags in the diagrams occurring in proofs to distinguish intuitionistic
from non intuitionistic applications of that rule.

References

1. Brown, F.M.: Boolean reasoning: the logic of Boolean equations. Dover (2003)
2. Foster, S., Struth, G., Weber, T.: Automated Engineering of Relational and Al-

gebraic Methods in Isabelle/HOL. In: de Swart, H. (ed.) RAMICS 2011. LNCS,
vol. 6663, pp. 52–67. Springer, Heidelberg (2011)

3. de Freitas, R., Veloso, P.A.S., Veloso, S.R.M., Viana, P.: A Calculus for Graphs with
Complement. In: Goel, A.K., Jamnik, M., Narayanan, N.H. (eds.) Diagrams 2010.
LNCS(LNAI), vol. 6170, pp. 84–98. Springer, Heidelberg (2010)

4. von Oheimb, D., Gritzner, T.F.: RALL: Machine-Supported Proofs for Relation
Algebra. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 380–394. Springer,
Heidelberg (1997)

5. Schmidt, G., Ströhlein, T.: Relation and Graphs: discrete mathematics for computer
scientists. Springer, Berlin (1993)

6. Tarski, A., Givant, S.: A Formalization of Set Theory Without Variables. American
Mathematical Society (1987)

Genetic Algorithm for Line Labeling

of Diagrams Having Drawing Cues

Alexandra Bonnici and Kenneth Camilleri

Department of Systems and Control Engineering, University of Malta, Malta
{alexandra.bonnici,kenneth.camilleri}@um.edu.mt

Abstract. Drawings are an integral part of the design process, helping
designers communicate abstract concepts to others. In this paper we
propose a genetic algorithm that successfully exploits cues present in
drawings in a line labeling algorithm for sketches.

Keywords: genetic algorithms, line labeling, drawing cues.

1 Introduction

Cues help artists portray intent and hence aid the drawing interpretation. Cues
may include line phrasing where designers adjust the stroke width according to
the depth of the object edge[3], table lines which indicate the spatial relation of
the object with respect to its background and tone or illumination changes. In
pen-and-paper sketches, tone changes are created by hatching techniques [4] and
serve to give the impression of depth as well as to emphasize the shape and form
of the object and its spatial relationship with other objects in the sketch. Here
we propose a method to exploit such cues in an off-line line labeling algorithm
suitable for hand-drawn sketches.

2 Genetic Algorithm Approach for Line Labeling

Line labeling algorithms are used to describe each edge in the drawing in relation
to its neighbouring edges. Huffman [5] and Clowes [1] created a junction dictio-
nary Γ by which these edge can be labeled. Waltz [8] and Cooper [2] enhanced the
labeling by introducing hard constraints that determine the appropriate edge la-
bel in scenes containing shadows and contrast failures. However, hard constraints
are inappropriate for use with concept sketches where cues may be geometrically
incorrect. Hancock and Myers [7] propose the use of a genetic algorithm (GA) to
determine the edge labels, representing edges as an arbitrarily ordered sequence
of genes forming a fixed length chromosome. Each gene may take a value λi ∈ Λ
where Λ is the list of all possible edge labels such that a chromosome is defined
by E = {λ1, λ2, · · ·λN}, where N is the number of edges in the drawing. The
drawing can be described as a list of junctions Jk, k = 1 · · ·K, where K is the
number of junctions. The edge labels E(Jk) ∈ E therefore list the edge labels
of edges forming junction Jk in chromosome E. The fitness of the chromosome
is then defined as the Hamming distance between the possible labels defined in
junction dictionary Γ and E(Jk) in chromosome E [7].

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 327–329, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

328 A. Bonnici and K. Camilleri

3 Introducing Drawing Cues to Enhance Line Labeling

The GA of [7] may converge to a legal labeling which does not match the design
intent portrayed by the cues. We enhance this GA such that drawing cues may
guide it towards an intended solution. We focus here on three cues, namely
cast and attached shadows and table lines which are predominantly used in
drawings [6].

Cues constrain the relevant edges to assume a subset of allowed labels. These
constraints have been used to compile a cue constraint filter (CCF) to restrict
the allowed edge labels of the corresponding edges. This CCF is used to limit
the possible edge labels of each gene gn in the chromosomes that form the initial
population, thus obtaining an initial population which is close to the expected
solution. Since the GA is allowed to change the chromosome through cross-over
and mutation operations, the initial information prompted by the cues may be
lost through the evolutionary process. For this reason, besides applying the CCF
to the initial population, it is also used to obtain a subset of labels Λ(n) from
Λ that may be assigned to a gene gn given the set of cues C(n) that bear upon
the edge represented by gn. This is represented as CCF (Λ|gn, C(n)) = Λ(n).
We then define a penalty function as Pn = { 1

N ifΛ(n) �= ∅λi �∈ Λ(n); otherwise0}
which acts as a soft constraint on the edge label. The fitness function is then
defined as

F (E) = α

(
1

2N

K∑
k=1

min
l=1,··· ,|Γ|

H(E(Jk),Γ)

)
− (1 − α)

(
N∑

n=1

Pn

)
(1)

H denotes the Hamming distance and α is a weight factor that determines the
confidence in the cues. The value of α was arbitrarily set to 0.6.

4 Results and Discussion

The cue-based GA was evaluated on diagrams such as those shown in Fig. 1
depicting drawings which, although having the same geometric shape, have dif-
ferent cues and require different interpretations. The GA was implemented with
proportionate fitness selection, a 1-point crossover with a rate of 0.9 and a mu-
tation rate of 0.03. The cue-based GA was performed over 50 trials of 500 gen-
erations each and performance was compared to a cue-less GA implementation
with the same parameters.

In the cue-less GA, all the trials converged to a mean maximum fitness of
1, achieving geometrically correct solutions in all trials. However, only 18%
achieved the intended solution portrayed by the cues. In contrast, the cue-based
GA achieved a mean maximum fitness of 0.9889 with an average of 76% converg-
ing to the intended solution with the remaining 27% converging to a solution
which, although geometrically correct, was contradictory to the cues. In the case
of Fig. 1(c), which is an example of an ambiguous drawing, 46% of the trials
disregarded the evidence of cue (2) which is in conflict with the other cues while

GA for Line Drawing Labeling 329

(a)

(1)

(b)

(2)

(3)

(1)

(c)

Fig. 1. A sample of diagrams on which the cue-based GA has been tested. Diagram
(b) has a missing cast shadow at (1) and Diagram (c) has conflicting cast shadows at
(1), (2) and (3)

the remaining 54% match all the cues but in so doing create mismatches with the
junction dictionary. This experiment shows that the proposed GA may handle
ambiguous drawings gracefully.

5 Conclusion

The results obtained encourage the use of cues in the interpretation of the draw-
ings and give scope for future work to this effect. One possible improvement to
this approach is to make use of a mechanism that would allow the cue-based
interpretation of the edge to co-evolve with the junction interpretation of the
drawing. This would allow stronger cooperation between the two aspects of the
population fitness, hence enhancing the chances of identifying solutions that
match the interpretations implied by the cues in the drawing.

References

[1] Clowes, M.B.: On seeing things. Artificial Intelligence 2(1), 76–116 (1971)
[2] Cooper, M.: The interpretation of line drawings with contrast failure and shadows.

International Jouranl on Computer Vision 43(2), 75–97 (2001)
[3] Costa Sousa, M., Prusinkiewicz, P.: A few good lines: Suggestive drawing of 3d

models. Computer Graphics Forum 22(3), 381–390 (2003)
[4] Guptill, A.L.: Rendering in Pen and Ink. Watson-Guptill (1997)
[5] Huffman, D.A.: Impossible objects as nonsense sentences. Machine Intelligence 6,

295–323 (1971)
[6] Mamassian, P., Knill, D.C., Kersten, D.: The perception of cast shadows. Trends

in Cognitive Sciences 2(8), 288–295 (1998)
[7] Myers, R., Hancock, E.R.: Genetic algorithms for ambiguous labelling problems.

Pattern Recognition 33(4), 685–704 (2000)
[8] Waltz, D.: Understanding line drawings of scenes with shadows. In: The Psychology

of Computer Vision, 2nd edn., pp. 19–91. McGraw-Hill (1975)

A Logical Investigation on Global Reading

of Diagrams

Ryo Takemura1, Atsushi Shimojima2, and Yasuhiro Katagiri3

1 College of Commerce, Nihon University, Japan
2 Faculty of Culture and Information Science, Doshisha University, Japan

3 Department of Complex and Intelligent Systems, Future University Hakodate

Abstract. We call the extraction of higher-level information from dia-
grams “global reading,” and investigate it from the viewpoint of logic.

Introduction. By “global objects,” we mean those patterns or structures in
diagrams (e.g., multiple dots in a scatter plot; multiple columns in a vertical bar
graph; rows of cells in a table; sequences of edges in a directed graph, etc.) that
allow the extraction of higher-level information about the represented domain.
The extraction has been variously called “macro reading” [8], “pattern percep-
tion” [2], “direct translation” [5], and “cognitive integration” [6], and contrasted
to the extraction of more concrete information from local objects (such as in-
dividual dots, bars, cells, edges, etc.). Although both designers and researchers
agree that the former largely accounts for the inferential advantages of infor-
mation graphics [1,8,5,9,3,2,6], few attempts have been made to flesh out what
exact computational advantages it provides.

We call the extraction of higher-level information from diagrams “global read-
ing.” One of the difficulties in studying global reading is to define which collec-
tion of components of a diagram is regarded in general as a meaningful unit,
i.e., a global object. Given a diagram, we may find a variety of global objects
that could be interpreted and used to help reasoning. As a first step toward
understanding the rich potential of global reading, we confine ourselves to an
investigation of one of the most abstract global objects—not all those that are
visually meaningful, but those that are invariant under any representation in the
given diagrammatic system. We call these invariant global objects “units,” and
define units for systems of tables, directed graphs, and Euler diagrams, as they
are broadly conceived. Then, we give a mathematical characterization of units
of our diagrams, and study relationships between these units.

The idea is to compare, from a mathematical point of view, different diagram-
matic systems for (1) their potentials of global reading and (2) the computational
advantages resulting from them. For (1), we define a common set of basic data
and, for representations thereof, we introduce abstract syntax for respective di-
agrammatic systems. The common basic data and abstract syntax based on
them reveal abstract structures of units in different systems, and make it pos-
sible to study relationship between them. As for (2), we apply the complexity
analysis in computer science. Investigations on algorithms and data structures

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 330–333, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Logical Investigation on Global Reading of Diagrams 331

x y z w

a a :x a� :y a :z a� :w
b b :x b :y b :z b� :w
c c� :x c :y c :z c� :w
d d� :x d :y d :z d :w

�
�

�
�row(a)

�

�

�

	

col(y)

Fig. 1.

a �
�

x
�

b

� �
�
z c�

	y

d

��

� w�

reachfrom(a)

reachto(y)

Fig. 2.

•a
�
x
�

•b
� �

z

•c
�
y

�

•d�
w

�

Fig. 3.

(such as arrays, lists, and trees etc.) are well-developed in the literature on
computer science. Our work is unique in applying this aspect of computer sci-
ence to the analysis on actual human reasoning that exploit units in diagrams.
Our general finding is that units in a diagram considerably reduce the number
of steps required in searching objects by putting some objects together, which
helps reasoning tasks associated with that diagram. (See [7] for the detail of our
study.)

Basic Data. Our basic data are a :x (meaning “a is x”) and a� :x (“a is not x”)
with a ∈ A (the set of “objects”) and x ∈ X (the set of “properties”). A basic
data set is represented by a sequence of data as follows:
{a :x, c :z, b :z, a� :w, a :z, d :y, c� :x, d :w, a� :y, c� :w, d� :x, b� :w, d :z, c :y, b :y, b :x}

Our reasoning tasks are enumerations of some data from a given sequence of
basic data or a given diagram: Enumeration of all properties that an object a
has (a is �x); Enumeration of all objects that satisfy a property x (All of �a are x);
Enumeration of all properties that are implied by x (x is �x); Enumeration of all
properties each of which implies x (All of �x are x).

The most basic and intuitive algorithm to enumerate target data from a given
sequence of data is the so-called sequential search. Given a sequence of l×k data
(with l = |A| and k = |X |), we look through the sequence from the left to right.
Hence, the search space, i.e., the number of data to be searched in a single
search, or equivalently the number of steps required in a single search, of a basic
data set is l× k in general. One of the remarkable features of our basic data set
is the difficulty to read off relationships between properties.

Tables. Our table is defined as an A×X-matrix over a basic data set, that is,
a rectangular arrangement of basic data in which rows and columns are indexed
by sets A and X , respectively. We regard each collection row(a) of data in a row
and col(x) of data in a column as a unit in a table as illustrated in Fig. 1.

In general, for reasoning tasks involving a table, we first focus on a row (resp.
a column) by looking through all l rows (resp. k columns), and then enumerate
target data from all k data of the row (resp. l data of the column). Hence, the
search space of a table is generally l+ k. As with a basic data set, it is not easy
to read off relationships between properties by using a table.

Directed Graphs. Our directed graphs, called P-graphs (cf. Fig. 2), are es-
sentially so-called Hasse diagrams for posets. Among various candidates for units,

332 R. Takemura, A. Shimojima, and Y. Katagiri

we define a unit in a P-graph as the set reachfrom(x) of nodes that are reachable
from a node x by traversing →-edges. In view of the theory of ordered sets, the
set reachfrom(x) is exactly the principal filter (or upset) generated by x.

In general, for reasoning tasks involving a P-graph, we first look through all
l+ k nodes, i.e., units, and focus on the target. Then, we enumerate target data
by searching the unit consisting at most of k nodes. Hence, the typical search
space of a P-graph is (l+k)+k. In contrast to data sets and tables, it is relatively
easy in P-graphs to derive relationships among properties.

Euler Diagrams. We define Euler diagrams following [4], in which a diagram is
specified by the set of inclusion and exclusion relations holding between circles
and points in the diagram. We define a unit circle(x) of an Euler diagram as
the set of circles and points that are inside a circle x. It is shown that the unit
corresponds, in view of the theory of ordered sets, to the principal ideal generated
by x, which is the dual notion of the principal filter, and it corresponds, in view
of a P-graph, to the set reachto(x) of nodes reachable to x. (Cf. Fig. 3.)

In general, in a reasoning task involving an Euler diagram, we first focus on a
target circle by looking through all k circles, i.e., units. Then, by looking through
a maximum of k circles or l points in the unit, i.e., inside the circle, we enumerate
target data. Hence, the typical search space is k + k or k + l. Since our units in
Euler diagrams are the dual of units in P-graphs, they work effectively in tasks
that have dual forms with respect to the successful tasks with P-graphs.

Conclusion. The relationship among our units in respective diagrams as well
as their well-established mathematical counterparts are summarized as follows:

Tables P-graphs Euler diagrams Mathematical counter part

row(a) � reachfrom(a) principal filter
� dual � dual

col(x) � reachto(x) � circle(x) principal ideal

Our computational complexity analysis are summarized as follows.

a is 	x All of 	a are x x is 	x All of 	x are x

Set l × k l × k (((l × k)× 2)× l)× k (((l × k) × 2) × l) × k

Table l + k l + k k + (((l + k)× l)× k) k + (((l + k)× l) × k)

P-graph l + k + k (l + k + k)× l l + k + k (l + k + k)× k

Euler (k + l)× k k + l (k + k)× k k + k

Research on visual processing have mostly focused on perceptual mechanisms
underlying visual object identification and recognition, and interaction between
higher level cognitive processes and lower level perceptual processes have not
studied extensively. Logical reasoning with diagrams provides us with a good
domain to investigate the interaction by integrating logical, computational and
psychological approaches.

A Logical Investigation on Global Reading of Diagrams 333

References

1. Bertin, J.: Graphics and Graphic Information. Walter de Gruyter, Berlin (1981)
(originally published in France in 1977)

2. Cleveland, W.S.: The Elements of Graphing Data. Hobart Press, Summit (1994)
3. Guthrie, J., Weber, S., Kimmerly, N.: Searching Documents: Cognitive Processes

and Deficits in Understanding Graphs, Tables, and Illustrations. Contemporary Ed-
ucational Psychology 18, 186–221 (1993)

4. Mineshima, K., Okada, M., Takemura, R.: A Diagrammatic Inference System with
Euler Circles. Journal of Logic, Language and Information, doi:10.1007/s10849-012-
9160-6

5. Pinker, S.: A Theory of Graph Comprehension. In: Freedle, R. (ed.) Artificial Intel-
ligence and the Future of Testing, pp. 73–126. L. Erlbaum Associates (1990)

6. Ratwani, R.M., Trafton, J.G., Boehm-Davis, D.A.: Thinking Graphically: Connect-
ing Vision and Cognition During Graph Comprehension. Journal of Experimental
Psychology: Applied 14(1), 36–49 (2008)

7. Takemura, R., Shimojima, A., Katagiri, Y.: A logical investigation on global reading
of diagrams, technical note (2012),
http://abelard.flet.keio.ac.jp/person/takemura/index.html

8. Tufte, E.R.: Envisioning Information. Graphics Press, Cheshire (1990)
9. Wainer, H.: Understanding Graphs and Tables. Educational Researcher 21, 14–23

(1992)

http://abelard.flet.keio.ac.jp/person/takemura/index.html

Pictures Are Visually Processed;

Symbols Are also Recognized

Peter W. Coppin

Faculty of Information, University of Toronto
Toronto Ontario, Canada

peter.coppin@utoronto.ca

www.petercoppin.org/academic

Abstract. What makes a representation pictorial? I respond to this
question as a small step toward a perceptual-cognitive understanding of
graphic representation properties that play important roles in the usabil-
ity of information systems. Here, I focus to capabilities that play a role
in whether material objects are visually processed or recognized as picto-
rial or symbolized representations. I distinguish pictorial and symbolized
information in terms of how each makes use of “less-learned” perceptual
emulation capabilities that evolved to enable reaction to real-time en-
vironmental changes, and more-learned capabilities to recognize features
in order to predict and plan (“simulate”) future changes from memory
traces of past percepts. Pictorial information makes use of these capabili-
ties to cause perceptual emulation of environmental surfaces that are not
part of the marked surface and are referred to here as “pictured.” Sym-
bolized (visual) information is conceived here as visual information from
a visual representation, that, through learning and recognition, causes
retrieval of memory traces that serve as resources for the construction of
mental simulations beyond (or other than) what is pictured. By locat-
ing information and representation at the intersection of perceiver and
environment, a preliminary model to address the perplexing problem of
distinguishing pictorial from symbolized representations is introduced.

1 Introduction

You are reading a “sentence.” Previously you might have been viewing “pic-
tures,” or clicking an “icon.” These graphic representations play important roles
in the usability of information systems. Sentences, relative to pictures, seem
“symbolic,” “language-like,” and “more-learned.” But to what degree are sym-
bols unlike pictures? Are icons pictures, or are they symbols? I ask: What prop-
erties distinguish pictorial graphic representations from symbolized ones?

Understanding what properties distinguish symbolized and pictorial represen-
tations, and the role that learned, or less-learned, possibly biologically grounded,
capabilities play in their effectiveness would be an important step toward devel-
oping a scientific framework to inform the design and evaluation of information
displays. In visual information design, the majority of the research, training, and

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 334–336, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Pictures Are Visually Processed; Symbols Are also Recognized 335

practice is focused on the techniques for creating graphic representations, such
as how to draw them, arrange them, or create computer programs to generate
them. Typically, very little effort is put into understanding how and why peo-
ple perceive, cognitively process, react to, and socially interact through, graphic
representations [8]. In the absence of a scientific understanding of graphic rep-
resentation properties, and how those properties engender perceptual-cognitive
reactions in audiences, rules of thumb are used instead (see [2,6,9] for examples).

As graphic representations play crucial roles in critical information systems,
through human-computer interfaces, visual modeling languages, and information
visualizations, there is a growing demand for a scientific understanding that could
inform their design, and serve as a principled approach to evaluate their usability,
or effectiveness [11,7]. It is within this gap, between applied visual information
design and the science of perception and cognition, that seeks to understand
why and how humans and other organisms interact with the world, where my
response to this question resides.

Thesis. Here, I argue that the properties of graphic representations, and their
affordances, emerge at the intersection of our capabilities to visually process and
recognize physical properties, such as marks on a surface, intentionally config-
ured, to cause an intended percept. In particular, the framework distinguishes
graphic representation types in terms of two interrelated perceptual-cognitive ca-
pabilities: less-learned perceptual emulation and more-learned predictive mental
simulation. I conceptualize these as capabilities that enable reactions to envi-
ronmental changes in dynamic environments with two distinct, but interrelated,
properties: current change, that impinges on an organism in real-time, and that
the organism must react to in real-time; and future possible changes, that the
organism must predict, and plan reactions to, using mental simulation.

– I conceive of pictorial information, as visual information, that makes use
of less-learned visual processing capabilities, to isomorphically perceptually
emulate a current change in order to react to a current change.

– I conceive of symbolized information, as visual information, that makes use
of more-learned recognition capabilities, to non-isomorphically mentally sim-
ulate (“predict”) a possible change.

Outline. First, I use literatures from the applied graphic arts (e.g., [6]) to iden-
tify issues to be addressed by using literatures from the science of perception and
cognition as basic ingredients (e.g., [3,4,5,1]). To discuss representations as arti-
facts that appeal to biologically grounded perceptual, recognition-oriented, and
predictive capabilities, I talk of perception by assuming a roughly homeostatic
conception of organisms in their environments (e.g., [10]). I will view organisms
as perceiving information from their environments in order to react to environ-
mental changes so that they can maintain their internal conditions required for
their survival (adapted from [4]).

Next, I will discuss “less-learned” capabilities to perceive “real-time” environ-
mental changes, and learned capabilities that produce predictions from memory
traces of past percepts to respond to dynamic changes that are unlike past changes.

336 P.W. Coppin

Having conceived of the perception and prediction of information in general,
I discuss visual information in particular, conceived here as a way to perceive
and predict environmental changes. I will talk of representations that are in-
tentionally created to make use of these “less-learned” perceptual and learned
predictive capabilities.

From here, the stage will be set for a discussion of visual representation, taken
here as a particular subset of representations that produce visual information
for perception. I will focus on pictorial graphic information, conceived here as a
type of information that appeals to “less-learned” perceptual abilities, and sym-
bolized graphic information, conceived here is a type of information that appeals
to “more-learned” learned capabilities that evolved to support recognition and
prediction, but that are made use of by authors of graphic representations. These
explanations and distinctions are then used to describe affordances of pictorial
and symbolized graphic representations, such as why and how each type requires
more or less mental work, relative to a context and purpose. Finally, comparisons
to semiotics, and to the distinction between icons and symbols (and signs), as
well as the distinction between data structures and knowledge representations,
will be made.

References

1. Barsalou, L.W.: Simulation, situated conceptualization, and prediction. Philosoph-
ical Transactions of the Royal Society B: Biological Sciences 364(1521), 1281 (2009)

2. Bertin, J.: Semiology of graphics: diagrams, networks, maps. University of Wiscon-
sin Press (1983)

3. Gibson, J.J.: The ecological approach to the visual perception of pictures.
Leonardo 11(3), 227–235 (1978)

4. Goodale, M.A., Króliczak, G., Westwood, D.A.: Dual routes to action: contribu-
tions of the dorsal and ventral streams to adaptive behavior. Progress in Brain
Research 149, 269–283 (2005)

5. Kosslyn, S.M., Thompson, W.L., Ganis, G.: The case for mental imagery, vol. 39.
Oxford University Press, USA (2006)

6. McCloud, S.: Understanding comics: The invisible art. HarperPerennial (1993)
7. Moody, D.: Theory development in visual language research: Beyond the cogni-

tive dimensions of notations. In: Proceedings of the 2009 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), pp. 151–154. IEEE
Computer Society (2009)

8. Ramadas, J.: Visual and spatial modes in science learning. International Journal
of Science Education 31(3), 301–318 (2009)

9. Tufte, E.R., Robins, D.: Visual explanations, vol. 25. Graphics Press, New York
(1997)

10. Varela, F.J., Thompson, E., Rosch, E.: The embodied mind: Cognitive science and
human experience. MIT press (1999)

11. Zuk, T., Schlesier, L., Neumann, P., Hancock, M.S., Carpendale, S.: Heuristics for
information visualization evaluation. In: Proceedings of the 2006 AVI Workshop on
BEyond Time and Errors: Novel Evaluation Methods for Information Visualization,
pp. 1–6. ACM (2006)

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 337–339, 2012.
© Springer-Verlag Berlin Heidelberg 2012

How Do Viewers Spontaneously Segment Animated
Diagrams of Mechanical and Biological Subject Matter?

Jean-Michel Boucheix1 and Richard Lowe,2

1 University of Burgundy, France
Jean-Michel.Boucheix@u-bourgogne.fr

2 Curtin University, Australia
r.k.lowe@curtin.edu.au

Abstract. A challenges for learning from animated diagrams is to first parse the
continuous flow of information into discrete event units. Inadequacies in this
parsing process can prejudice the quality of the mental model constructed from
the depiction. One approach that has been proposed for ameliorating such
problems is for the designer to pre-segment the animation. However, the pre-
segmentation techniques used tend to be either intuitive or based on an expert's
understanding of the subject matter. Neither of these approaches takes proper
account of the psychological processing that must occur for an external
animation to be properly internalized. This poster reports a study of the
processes that learners spontaneously use when asked to segment whole
animations into events. It compared segmentation of two contrasting diagram
types, one representing a mechanical system and the other a biological system.
The number of events identified was low relative to the number that were
actually present. There were deficiencies in participants' placement of event
boundaries and in their characterization of inter-event relationships.
Identification of events in the mechanical system proceeded from micro to
macro, this order was reversed with the biological system.

Keywords: Animation, parsing, segmentation, events units, mechanical system,
biological system, boundaries, macro-events, micro-events.

1 Introduction

Animated diagrams represent dynamics explicitly. However, the benefits anticipated
from such animations too often fail to materialize [1]. In an attempt to fulfill their
educational potential, techniques such as cueing and segmentation have been applied
to animations [1] but with limited success. Fundamental problems remain with how
learners process animations. According to the Animation Processing Model [2], a key
step in learning from animation is its initial parsing into events units (i.e., entities plus
their associated behavior). The transient nature of such depictions means that
segmentation of animations is challenging for learner. One approach for addressing
these issues is to pre-segment animations before they are presented to learners [3]. It
is quite possible that the segmentation so applied could conflict with the unaided
parsing that occurs when learners try to understand the animation themselves. The

338 J.-M. Boucheix and R. Lowe,

present research therefore investigated how event units are identified in an animation
and how well the relations between them are characterized.

2 Materiel and Method

Two types of animation were used, a mechanical and a biological system: Newton’s
Cradle and Kangaroo hopping (with normalized times, see Figure 1). 34
undergraduate French students (M = 20.5 years) participated in this study. Each
participant (with no domain-specific prior knowledge) segmented both animations,
with the presentation order being counterbalanced across all participants. A T120 eye
tracker was used to log eye movements and participants’ verbal descriptions of their
segmentation activities were recorded. Cards were supplied upon which participants
wrote the names of events identified, and then sorted them into an event hierarchy.

Fig. 1. Frames from Newton’s Cradle and Kangaroo animations (also showing areas of interest
used for eye tracking)

2.1 Procedure, Analysis and Scoring

The procedure had 4 stages. (i) In the training stage, before commencing the main
segmentation tasks, participants were trained in the required procedure using videos
of a ball race device (mechanical) and a high-jumping athlete (biological). (ii) In the
main segmentation of animations task into events, participants were instructed to keep
their eyes on the screen the whole time while breaking the animation into as many
component events as possible and naming each of the events found. They undertook
four sets of trials within which each animation was presented three times (including a
confirmation of event names). (iii) In the nomination of event boundaries stage,
participants used a computer program to scroll freely through the animation frames in
order to determine the starting and ending boundaries if each previously identified
event. These boundary frames were recorded on cards. (iv) In the grouping of events
stage, participants used the record cards to classify the events identified and sort them
(with no access to the animation) across time in order to generate ‘families’ of events.

3 Results

(i) Number and scale of events identified. The number of events identified by
participants was low relative to the number of events present in each animation: for
Newton's Cradle, M = 6.05/13 (46.54%) and for Kangaroo, M = 4.78/9 (25.16%).

How Do Viewers Segment Animated Diagrams of Mechanical and Biological Subject Matter 339

Percents were higher for Newton's cradle than for Kangaroo (t(33) = 2.98, p < .01).
(ii) Scale of the events. Figure 1 shows the sequence in which macro and micro events
were identified. For the biological system, macro events were identified before micro-
events, (Cochran q(1) = 8, p < .05 and q(1) = 7.63, p < .05). This order was reversed
for the mechanical system (q(1) = 6.23, p < .05 and q(1) = 10, p < .05).

Kangaroo animation Newton's cradle animation

Fig. 2. Mean number of macro and micro events identified as a function of their identification
order during the event segmentation task

(iii) Events boundaries and relation between events. The number of right
boundaries was higher than the number of wrong boundaries, for the kangaroo, M
correct = 2.79, M no-correct = 1.88, (t(33) = 4,56, p < 0,01); and for the Newton's
cradle, M correct = 5.31, M no-correct = 1.55, (t(33) = 3,74, p < 0,01). However,
participants did not always identify event boundaries correctly. They identified a
mean of 5.94 relations (2.85 correct) for the Kangaroo and a mean of 7.47 relations
(4.40 correct) for the Newton's cradle animation. Participants’ difficulties also
extended to characterizing how those events are related.

4 Conclusion

Breaking down an animation into its component event units is a non-trivial task. Both
the correct identification of event boundaries and the establishment of relationships
between the depicted events are challenging activities. Further, the scale at which
viewers begin their segmentation of an animation was content-dependent.

References

1. Bétrancourt, M., Tversky, B.: Effect of computer animation on users’ performance: A
review. Le Travail Humain 63(4), 311–329 (2000)

2. Lowe, R., Boucheix, J.-M.: Learning from Animated Diagrams: How Are Mental Models
Built? In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223,
pp. 266–281. Springer, Heidelberg (2008)

3. Spanjers, I.A.E., van Gog, T., van Merrienboer, J.J.G.: A theoretical analysis of how
segmentation of dynamic visualizations optimizes students’ learning. Educational
Psychology Review (2010)

0

0.5

1

1 2 3 4 5 6 7 8 9

Macro-
events

Micro-
events 0

0.5

1

1 2 3 4 5 6 7 8

Macro-
events

Micro-
events

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 340–342, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Which Diagrams and When?
Health Workers’ Choice and Usage of Different Diagram Types

for Service Improvement

Gyuchan Thomas Jun1, Cecily Morrison2, Christopher O'Loughlin3,
and P. John Clarkson2

1 Loughborough Design School, Loughborough University, Loughborough, UK
g.jun@lboro.ac.uk

2 Engineering Design Centre, University of Cambridge, Cambridge, UK
{cpm38,pjc10}@cam.ac.uk

3 Cambridge Intake and Treatment Team,Cambridge and Peterborough NHS trust, UK
Christopher.O'Loughlin@cpft.nhs.uk

Abstract. Diagrammatic representations, such as process mapping and care
pathways, have been often used for service evaluation and improvement in
healthcare. While a broad range of diagrammatic representations exist, their ap-
plication in healthcare has been very limited. There is a lack of understanding
about how and which diagrams could be usable and useful to health workers. In
this study, ten mental health workers were asked to discuss positive and nega-
tive issues around their service delivery using one or two diagrams of their
choice out of seven different diagrams representing their service: care pathway
diagram; organisation diagram; communication diagram; service blueprint; pa-
tient state transition diagram; free form diagram; geographic map. Their interac-
tions with diagrams were video-taped for analysis. The patient state transition
diagram was the most popular choice in spite of relatively low previous fami-
liarity. The overall findings provided insight into a better use of diagrams in
healthcare.

Keywords: diagrams, problem identification, healthcare, service design.

1 Introduction

In a domain like engineering design, there has been a long tradition of using diagrams
to understand, communicate and design complex systems [2]. On the other hand, the
usage of diagramming for complex healthcare service design has been very limited to
flowchart-based representation. Given the complex arrangement of technology,
information and people in health service delivery, the need has been raised for better
application of diagrammatic representations to the design of healthcare service deli-
very [1]. However, diagrammatic representations, if they were to be used for the de-
sign of healthcare service, need to be usable and useful to clinicians and healthcare
managers. Jun et al. [3] made some previous effort to evaluate the usability and utility
of a broader range of diagram types in healthcare, but it was based on the perception

 Which Diagrams and When? 341

of healthcare professionals rather than real application. Therefore, this study aims to
investigate which diagrams(s) healthcare professionals actually choose and how they
use diagrams for service improvement.

2 Methods

A case study was carried out with a team which provides adult mental health service
for intake and treatment. Three major stages of the case study were service delivery
understanding for diagramming, diagramming and diagram evaluation. First, two
semi-structured interviews with a psychiatric consultant were carried out to collect
information on how the service delivery works. Based on this initial information,
seven different diagrams were generated or prepared including organisation diagram,
communication diagram, service blueprint, state transition diagram, geographic map
(added on the request by the psychiatric consultant) and care pathway (pre-existing in
the team); Table 1 shows the composition of each diagram. Through diagram-based
one-to-on interviews, ten healthcare professionals of the team with various expe-
riences in the NHS and diagrams were introduced to the seven diagrams and asked to
discuss service-related issues (either negative or positive) using a diagram or two of
their choice. The way they use the diagrams and their comments were videotaped for
analysis.

3 Results and Discussion

Table 1 shows the participants’ previous familiarity to each diagram type, their choice
and positive (+) and negative (−) comments. The patient state transition diagram was
again found the most popular choice for health service evaluation, which coincides
with the previous perception-based diagram evaluation study [3]. Two major factors
which influenced the participants’ diagram choice include how much diagrams are
consistent with participants’ mental model diagrams and how relevant diagrams are to
the discussion topic. One of the participants, clinical psychologist, clearly indicated
that her choice of the state transition diagram was based on its consistency with her
existing mental model of feedback loops in care processes. On another occasion, a
participant indicated that he chose the organisation diagram to discuss good collabora-
tion among various team members because it was considered to best represent various
specialties of the team members.

From the analysis of the recorded video clips, it was found that the participants
commonly used diagrams as structured headlines for a big picture understanding ra-
ther than accurate descriptions of the reality. What is missing from the diagrams was
filled in by questions and detailed verbal explanation. Given the same organization
diagram was positively (simple and easy to follow) and negatively (too simplistic)
commented for its simplicity by different participants, the participants had different
preference for what headlines should look like. How different factors (diagrams, par-
ticipants, reality) influence the diagram choice and usage by different individuals
remain to be further researched.

342 G.T. Jun et al.

Table 1. Participants‘ familiarity, choice and comments (+: positive. −: negative)

Diagram type Diagram composition
of participants

Participants comments familiar choose
1. Care Pathway Timeline, action, outcome

and facilitator
+ Very familiar
− Not detail enough
− No feedback loops

2. Organisation
Diagram

Hierarchical structure of
teams and staff members

+ Straight and simple
− Too simplistic

3. Communicatio
n Diagram

Information flows
between people, teams
and organisations

+ Easy to follow
+ Relevant to issues
− Too simplistic

4. Service
Blueprint

Interfaces between
actions of service user
and providers

− Inconsistent with mental
models

5. State Transition
Diagram

Patient’s state changes
and transition conditions
and actions

+ Consistent with mental
models
− Confusing feedback loops

6. Free Form
Diagram

Random combination of
information, actions,
decisions and teams

+ Explicit description
− Potentially confusing to
new staff

7. Geographic Map Geographic boundaries
and locations of service
providers

− Irrelevant to issues

Acknowledgement. ‘The research (was funded by and) took place at the National
Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health
Research and Care based at Cambridgeshire and Peterborough. The views expressed
are those of the author(s) and not necessarily those of the NHS, the NIHR or the De-
partment of Health.’

Reference

1. Clarkson, P.J., Buckle, P., Coleman, R., et al.: Design for Patient Safety: A Review of the
Effectiveness of Design in the UK Health Service. J. Eng. Des. 15, 123–140 (2004)

2. Friedenthal, S., Moore, A., Steiner, R.: A practical guide to SysML: The systems modeling
language. Morgan Kaufmann (2008)

3. Jun, G.T., Ward, J., Clarkson, P.J.: Systems Modelling Approaches to the Design of Safe
Healthcare Delivery: Ease of use and Usefulness Perceived by Healthcare Workers. Ergo-
nomics 53, 829–847 (2010)

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 343–345, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Eye Movement Patterns
in Solving Scientific Graph Problems

Miao-Hsuan Yen, Chieh-Ning Lee, and Yu-Chun Yang

Graduate Institute of Science Education, National Taiwan Normal University, Taipei, Taiwan
myen@ntnu.edu.tw

Abstract. Eye movement patterns of science- and non-science students in solv-
ing scientific graph problems were compared. Experts (science-students) tended
to spend more time, compared to novices, to comprehend the questions during
the first run / inspection. Concerning the main graph region, both the True and
False subregions (corresponding to correct and wrong answer choices, respec-
tively) were inspected carefully during the first run. Significant differences
were observed in the second run, in which the False region was fixated longer
when participants made wrong responses.

Keywords: graph comprehension, expertise, eye movements.

1 Introduction

Interpreting scientific graphs (evidence) to evaluate the validity of claims (theory) is
an important process skill in science education. In this preliminary study, how
science-major college students solve scientific graph problems was compared with
that by non-science-major students. Their eye movements were recorded to reveal the
relevant areas inspected for graph comprehension as suggested by the findings in the
literature that experts attend more to relevant areas (Gegenfurtner, Lehtinen & Säljö,
2011; Jarodzka, Scheiter, Gerjets, & van Gog, 2010).

2 Method

The independent variable was expertise (experts vs. novices) in scientific descriptions
and graphs. Twenty college or graduate students participated in this experiment. Half
of them majored in science or engineering and were considered as experts, while the
other half were considered as novices in the present study.

All participants viewed the same 9 graphs with their eye movements being record-
ed. As is shown in figures 1 (a)-(c), a graph was presented on the monitor with a
three-line multiple choice question. The first line mentioned the variables depicted in
the graph. The second line was a question about the graph and the third line was com-
posed of 3 choices. Three types of graphs / questions were created focusing on (a)
the rate of change in the x-y relationship, (b) the rate of change in a contour map or
isothermal chart, and (c) inference from two lines depicted (e.g., inferring population
growth rate from birth and death rates). There were 3 trials for each type.

344 M.-H. Yen, C.-N. Lee, and Y.-C. Yang

Fig. 1. Three types of graphs used in the experiment

Eye movements were recorded with an EyeLink 1000 desktop mount eye tracker.
The sampling rate was 1000 Hz. The graphs were displayed on a 19-inch monitor at a
resolution of 1024 × 768. The viewing distance was about 70 cm.

Participants were tested individually and instructed to comprehend the graphs care-
fully at their own pace to answer the questions. After camera setting, a 9-point cali-
bration was conducted, followed by a validation routine and a practice trial. Each trial
began with a fixation dot at the first character in the 3-line question. Then, the expe-
rimenter initiated the presentation of the material. The participants pressed one of the
three answer buttons to end the trial. The experiment lasted about 20 minutes.

3 Results and Discussion

3.1 Interest Areas

Four interest areas were identified; namely, questions (the first two lines), answer
choices (the third line), axes and main graph regions. Because reaction time differed
among trials and participants, viewing time and numbers of fixation in each interest
area were normalized by considering RT and all fixations in the trial. Fixations in
each interest area can be further grouped as first-run and second-run fixations, which
were separated by leaving and re-entering (if any) the interest area. Trials (28.5%) in
which participants selected the wrong answer were excluded from this analysis.

Independent-sample T tests were conducted. As is shown in Table 1, experts spent
significantly more time than novices in the question regions during the first run and
the entire trial (ps < 0.05). In addition, they spent slightly less time in the answer re-
gions than novices (p > 0.7). Other comparisons were not significant. The results
suggest that experts spent time to interpret the questions thoroughly, especially during
the first run. However, there was no difference in time spent in the graph region.

3.2 Responses and Inspection Regions in the Main Graph

In the main graph, Ture and False subregions were defined according to the correct
and wrong answer choices, respectively. Normalized viewing time and numbers of
fixations were calculated seperately for each subregion and according to the
participants‘ response (correct or wrong) in each trial. Three way ANOVAs
(responses × subregions × expertise) were conducted.

 Eye Movement Patterns in Solving Scientific Graph Problems 345

Concerning viewing time, significant interaction between response and subregion
was found in total time and second-run viewing time (Fs > 5, ps < 0.05). All other
comparisons were not significant. A similar pattern of results was observed for
numbers of fixations. When participants made wrong responses, there were more and
longer fixations in the False regions. Note that there was no difference during the first
run, presumably because both subregions had to be inspected carefully to determine
the correct answer. Differences emerged during the subsequent viewing.

Table 1. Mean proportion of viewing time and proportion of fixations in 4 interest areas

 Interest area Question Answer Axes Main graph
 Expertise Exp Nov Exp Nov Exp Nov Exp Nov

Viewing
time (%)

First run 15.5 9.8 1.5 2.6 5.0 4.5 4.2 5.3
Second run 6.7 5.7 1.8 2.2 3.2 2.7 5.2 4.4
All 30.6 22.3 7.3 8.1 12.4 11.7 25.8 24.6

Numbers of
fixation (%)

First run 14.2 10.4 1.8 2.6 5.4 4.9 4.3 5.3
Second run 6.3 5.9 2.1 2.1 3.5 2.8 5.0 4.2
All 28.8 23.1 7.9 7.3 13.4 12.3 25.3 23.5

Table 2. Mean proportion of viewing time and proportion of fixations in True and False
subretions as a function of participants‘ responses

 Response Wrong Correct
 Subregion False True False True
 Expertise Exp Nov Exp Nov Exp Nov Exp Nov

Viewing
time (%)

First run 4.2 4.0 4.4 3.4 2.9 3.5 2.6 3.9
Second run 3.6 5.1 2.4 3.4 2.8 3.1 3.8 3.2
All 18.7 24.4 16.6 14.7 14.3 14.7 17.6 19.0

Numbers of
fixation (%)

First run 3.7 3.8 4.3 3.7 3.1 3.6 2.5 3.8
Second run 3.6 4.6 2.7 2.8 2.8 3.2 3.6 2.8
All 18.3 22.3 16.4 13.8 14.2 14.3 17.3 18.2

Reference

1. Gegenfurtner, A., Lehtinen, E., Säljö, R.: Expertise differences in the comprehension of vi-
sualizations: A meta-analysis of eye-tracking research in professional domains. Educational
Psychology Review 23(4), 523–552 (2011)

2. Jarodzka, H., Scheiter, K., Gerjets, P., van Gog, T.: In the eyes of the beholder: How ex-
perts and novices interpret dynamic stimuli. Learning and Instruction 20(2), 146–154
(2010)

Formalising Simple Codecharts

Jon Nicholson and Aidan Delaney

Visual Modelling Group, University of Brighton
{j.nicholson,a.j.delaney}@brighton.ac.uk

Abstract. Codecharts are a formal diagrammatic language for speci-
fying the structure of object-oriented design patterns, frameworks, and
programs. Codecharts are attractive for applications in both forward
(e.g. design verification) and reverse engineering (e.g. program visualiza-
tion). Although the definition of Codecharts has been adequate for these
applications, there is a need to develop the language further in more
precise terms. This paper outlines our work in refining the definition of
Codecharts. We informally describe the concrete syntax and semantics
of Codecharts, and provide a new formal abstract syntax. We conclude
with a brief discussion on future work.

Codecharts are a formal diagrammatic language for use in tasks such as software
design and re-engineering of legacy source-code [1]. In particular, Codecharts can
be used to represent software design patterns [2]. Given a Codechart representa-
tion of a pattern we can reason where implementations exist in legacy codebases.
We provide an abstract syntax for Codecharts following the approach discussed
in [3], in which the concrete and abstract syntax for a diagrammatic logic are
considered separately.

Figure 1a is an example Codechart. Informally, this Codechart tells us that
both the classes WhiteRhino and BlackRhino inherit from Animal. Further-
more, the classes WhiteRhino and BlackRhino have the property that they are
Endangered. Codecharts use rectangles to represent single classes and rectangles
with an offset to represent sets of classes. The set of classes that appear in the
diagram is denoted R. The set consisting of WhiteRhino and BlackRhino is an
element of OR. Relationships between classes and sets of classes are represented
by labelled arrows. In this case, the arrow is an element of the set of single-
headed arrows, denoted A▸. Unary predicates, such as Endangered, represented
by inverted triangles are elements of the set denoted T▿.

The example in figure 1b introduces triangles, ellipses and double-headed ar-
rows. The triangle labelled (Animal, {WhiteRhino,BlackRhino}) states that
WhiteRhino and BlackRhino are classes within the inheritance class hierarchy
(hierarchy) rooted at Animal. Such a hierarchy is an element of the set denoted
by T▵. The ellipse labelled eat states that all classes in the respective hierarchy
contain a method with the signature eat. The relationship between such method
signatures and the classes they are attached to is denoted byM, and E is the set
of all method signatures that can appear in the diagram. The double-headed ar-
row labelled givesBirth represents a specific relation which can be restricted to

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 346–348, 2012.
� Springer-Verlag Berlin Heidelberg 2012

Formalising Simple Codecharts 347

(a) (b)

Fig. 1. Two example Codecharts

a bijective function. In this case, it provides the information that a WhiteRhino,
and similarly BlackRhino, can give birth to something of the same class. How-
ever, it also allows modelling of the case where the rhinos interbreed. That is
to say, each type of animal can give birth to one type, however there can be
cases where one type of animal can give birth to another. Considering a different
example, a donkey can give birth to a donkey, or a hinny (female donkey crossed
with a male horse). The set of such relations are represented by double-headed
arrows is denoted by A▸▸.

Concrete Codecharts are formed from syntactic elements including labelled
rectangles, triangles and ellipses: each of which can be drawn with an offset.
Two types of arrows, single headed and double headed, and inverted triangles
complete the set of syntactic elements as seen in figure 2a. As already seen, rect-
angles represent object-oriented classes, ellipses represent method signatures and
triangles represent hierarchies. Offsets represent a set, thus an offset rectangle
represents a set of classes. Offset triangles represent sets of hierarchies and offset
ellipses represent sets of method signatures. Furthermore, we allow arrows to
be sourced and targeted at any syntactic element other than arrows themselves
or inverted triangles. Ellipses, offset ellipses and inverted triangles must overlap
a single rectangle, triangle or offset of such. Other syntactic elements may not
overlap. The examples in figure 2b demonstrate non well-formed diagrams.

The abstract syntax of a Codechart can be defined by the tuple

(R,T▵,E ,OR,OT▵,OE ,M,T▿,A▸,A▸▸).

As we have seen in the example, where R is a set of classes, the set OR is a set
of sets of classes. The same holds for T▵, the set of class name hierarchies, and
OT▵ the set of sets of class name hierarchies. Again, similarly, E is the set of
method signatures, and OE the set of sets of method signatures. We now present
the abstract syntax of the first of our example diagrams.

Let D1 be the abstract Codechart in figure 1a. Then the abstract syntax of
D1 includes:

348 J. Nicholson and A. Delaney

(a) (b)

Fig. 2. Syntactic elements of codecharts and examples of non well-formed Codecharts

– R = {WhiteRhino,BlackRhino,Animal} the finite set of class names that
appear in the diagram.

– OR = {{WhiteRhino,BlackRhino}} is a subset of the powerset of class
names, labelling the offset rectangle.

– T▿ = {(Endangered,{WhiteRhino,BlackRhino})} is an association of the
unary predicate Endangered with the set of classes represented by the offset
rectangle.

– A▸ = {({WhiteRhino,BlackRhino},“is a”,Animal)} is a single headed ar-
row sourced on the set of class names {WhiteRhinos,BlackRhinos} in the
concrete syntax, and targeted on Animal.

In this example, the sets T▵,E ,OT▵,OE ,M and A▸▸ are empty.
In this paper we have presented a formal syntax for abstract Codecharts. In

future work we will present a formal concrete syntax and a formal model-based
semantics.

References

1. Eden, A.H., Nicholson, J.: Codecharts: Roadmaps and Blueprints for Object-
Oriented Programs. Wiley-Blackwell (April 2011)

2. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software, 1st edn. Addison-Wesley Professional (Novem-
ber 1994)

3. Howse, J., Molina, F., Taylor, J., Shin, S.-J.: Type-syntax and token-syntax in di-
agrammatic systems. In: Proceedings of the International Conference on Formal
Ontology in Information Systems, FOIS 2001, vol. 2001, pp. 174–185. ACM, New
York (2001)

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 349–351, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Notes about the London Underground Map
as an Iconic Artifact

Breno Bitarello1, Pedro Atã2, and João Queiroz2,*

1 State University of Rio de Janeiro, Superior School of Industrial Design,
Rio de Janeiro, Brazil

2 Federal University of Juiz de Fora, Institute of Arts and Design, Juiz de Fora, Brazil
queirozj@pq.cnpq.br

Abstract. The icon is defined as a sign whose manipulation reveals, by direct
observation of its intrinsic property, some information on its object. The Lon-
don Underground Map is an example of an artifact used to represent part-
part/part-whole relations of the largest underground systems of the world. It
provides a powerful semiotic niche built for extraction and manipulation of re-
lations. This paper explores the design of the London Underground Map
through the notion of iconic artifact.

Keywords: diagram, information design, cognitive artifacts, cognitive niche.

1 Iconic Operacionality of London Underground Map

The icon is operationally defined as a sign whose manipulation reveals, by direct
observation of its intrinsic property, some information on its object [4]. This opera-
tional definition of the icon focuses solely on the capability of a sign to enclose in-
formation about its object, and represents a detrivialization of the concept of an icon
as a similar entity. However, a second, stricter notion of icon have also been identified
which allow considerations such as immediacy of the information presented and
economy of elements. This stricter notion have been termed “optimal” iconicity. [4]
As soon as an icon can be considered as consisting of interrelated parts, and since
these relations are subject to experimental manipulation governed by laws, we are
working with diagrams [2-3]. The London Underground Map provides a powerful
semiotic niche built for extraction and manipulation of relations: “The Underground
Diagram is more than a simplification of Underground railway routes. For most Lon-
doners, it is an essential simplification of the city itself” [1: p.5]. Semiotically speak-
ing, the London Underground Map is deeply dependent on the formal and material
properties from which it was made: first of all, it’s material features bear isomorphism
to the environment (the same number of stations and the same possibilities of connec-
tions between the stations), making it capable of providing relevant information for
users. Additionally, it has visual features destined to facilitate the process of

* Corresponding author.

350 B. Bitarello, P. Atã, and J. Queiroz

uncovering the required information, i.e. it doesn’t only regard that an isomorphism
exist between the map and Underground system, but how both are connected.

2 London Underground Map: A Cognitive Tool for its Users

Using a diagram such as the London Underground Diagram commonly involves to
depart from a set of information provided, to follow some general rules and -- hope-
fully – to arrive at some information desired. This process is dependent of inferential
properties of diagrams and icons [4], namely, the inference to make explicit informa-
tion that is implicit in the representation. According to Stjernfelt [4: pp. 397-398]: “in
order to discover these initially unknown pieces of information about the object in-
volved in the icon, some deductive experiment on the icon must be performed”. In
this process, the information provided includes where the user is at the moment. He or
she is aided to discover it by the colors of lines (by knowing the color of the line be-
ing traveled one is easily able to stay up to date with his/her current position by
following the sequence of stations), as well as by the fact that in spite of its simplifi-
cation, the diagram retains some of the spatial relationships of the physical world.
Colors are also an example of how the diagram itself provides some of the rules that
guides the inference from the information provided to the information desired: they
help to figure out the different steps of the journey by breaking general goals (for
example, how to get to the Picadilly Circus station) into minor strategic goals (how to
get to the blue line, where the Picadilly Circus station is).

Fig. 1. Relations between the central area in a geographically accurate underground map of
London (left) and in a standard Underground Map (right). Image adapted from:
http://diagrams.org/fig-pages/f00022.html.

A distinctive trait of the modern version of the Underground route guide, however,
concern not the color of the lines nor some spatial relationship correspondence with
the physical world. The former was already present in the previous version of the
guide and the latter was actually sacrificed by its redesign: before 1933, the guide was
faithful to the actual physical location of stations and lines, as wells as the distances
between then. The innovation of Henry Charles Beck was to favor clarity, by simpli-
fying the lines only in verticals, horizontals and diagonals and expanding the central
area [5]. In comparison to its predecessor, Beck’s diagram has diminished the amount
of implicit reachable information in the map, reducing the number of possible opera-
tions to be performed (to know about real distances, for example). Beck has added

 Notes about the London Underground Map as an Iconic Artifact 351

features that don’t increase the amount of information, but rather decrease the diffi-
culty of the search for the proper information, which influences in the whole process
of problem-solving. That means to say that the behavior of the user as well as the task
itself, are constrained and to a certain extent defined by the material iconic features of
the representation. This redefinition of behaviors and tasks actually transforms the
perception of city itself. According to Garland [1: p. 7], when the diagram was
created, even the most experienced Londoners could not tell you where the center of
London was.

3 Diagram as a Mind-Tool

Assuming that it is impossible for the user to keep and learn all the relations between
all stations and lines of the Underground in an internal image or internal mind repre-
sentation, we view the Underground Diagram as an external representation distribut-
ing the cognitive effort of the user. The London Underground Map is a powerful
mind-tool changing radically how users move around the urban space. Diagrams can
be viewed as a form of representation that provides new routes of problem-solving in
specific contexts. The everyday users are influenced by the access to the transport
system and the way he deals with it. In other words, acting as a navigation tool, the
Underground Map makes the citizen more suited to the urban environment. We ex-
plored the London Underground Diagram in terms of ‘semiotic artifacts’ through the
notions of 'cognitive external artifacts' which allow easy navigation through the object
represented (London Railway System). This study also constitute an interesting ex-
ample for the analysis of the interplay of different notions of iconicity: although Beck
has reduced the ‘similarity’ between representation and object, he has increased the
representation efficiency. As the possible uses of the guide were narrowed, it became
more specialized, creating for the users an unprecedented understanding of the city
itself. Future approaches will examine how these different notions of iconicity may be
related to problem-solving efficiency of representations and the creation of new
cognitive niches, through the exploration of other examples and concepts found in
literature.

References

1. Garland, K.: Mr. Beck’s Underground Map. Capital Transport Publishing, London (1994)
2. Hookway, C.: Truth, Rationality, and Pragmatism – Themes from Peirce. Oxford University

Press, Oxford (2002)
3. Stjernfelt, F.: Diagrammatology - An Investigation on the Borderlines of Phenomenology,

Ontology, and Semiotics. Springer, Heidelberg (2007)
4. Stjernfelt, F.: On operational and optimal iconicity in Peirce’s diagrammatology. Semióti-

ca 186, 395–419 (2011)
5. Walker, J.: The London Underground Diagram: a semiotic analysis. Icographic 14/15

(1979)

The Efficacy of Diagrams in Syllogistic

Reasoning: A Case of Linear Diagrams

Yuri Sato and Koji Mineshima

Department of Philosophy, Keio University
{sato,minesima}@abelard.flet.keio.ac.jp

Abstract. We study the efficacy of external diagrams in syllogistic rea-
soning, focusing on the effectiveness of a linear variant of Euler diagrams.
We tested subjects’ performances in syllogistic reasoning tasks where
linear diagrams were externally supplied. The results indicated that the
linear diagrams work as effectively as Euler diagrams. It is argued that
the relational information such as inclusion and exclusion is crucial for
understanding the efficacy of diagrams in syllogistic reasoning.

1 Introduction

In psychology of deduction, it has long been known that solving categorical syl-
logisms is a difficult task for those who are untrained in logic. Certain external
representations such as Euler and Venn diagrams are traditionally regarded as
effective tools to support deductive reasoning. However, it is still open to dis-
cussion whether and how such diagrams could aid untrained people to conduct
deductive reasoning in a successful way. For instance, Calvillo et al. [1] reported
some negative effects of traditional Euler diagrams in syllogistic reasoning.

Sato et al. [4] examined the efficacy of Euler diagrams in solving syllogisms,
in comparison to sentential reasoning and reasoning with Venn diagrams. In the
experiments of [4], subjects were divided into three groups, the Euler group, the
Venn group, and the Linguistic group. The Euler and Venn groups were presented
with two sentential premises, together with the corresponding two diagrams, and
asked to choose a valid conclusion. The Linguistic group was presented only with
sentential premises and asked to choose an answer without any aid of diagrams.
The results indicated that the performance of the Euler and Venn groups was
significantly better than that of the Linguistic group, and that the performance
of the Euler group was significantly better than that of the Venn group.

The differences in performance between the three groups can be explained
on the basis of the dual roles played by diagrams in the overall process of rea-
soning, namely, interpretational and inferential roles [4,5]. More specifically, a
categorical sentence in syllogisms is intended to be interpreted as denoting a
relation between sets. Thus, a universal sentence of the form All A are B is to
be interpreted as expressing A ⊆ B, i.e. the inclusion relation, and No A are B
as A ∩ B = ∅, i.e. the exclusion relation. Such relational semantic information

P. Cox, B. Plimmer, and P. Rodgers (Eds.): Diagrams 2012, LNAI 7352, pp. 352–355, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Efficacy of Diagrams in Syllogistic Reasoning 353

All A are B.

A B

No C are B.

C B

�
��

�
��Unification

C A B

No C are A.

Fig.1. Solving a syllogism with linear dia-
grams

All B are A.

All C are B.

B A

C B

1. All C are A.
2. No C are A.
3. Some C are A.
4. Some C are not A.
5. None of them.

Correct answer: 1

Fig.2. An example of a syllogistic
reasoning task in the Linear group

is often not directly accessible to untrained reasoners [4]. Euler and Venn dia-
grams could then help the reasoners realize the semantic relationships implicit in
quantificational sentences in terms of the spatial relationships between objects
(circles or points), and thereby avoid reasoning errors due to misinterpretation.
For the inferential side, note first that a deductive reasoning task in general re-
quires the reasoner to assemble the information contained in the premises. In the
case of the Euler group, then, such a task could naturally be replaced with the
task of manipulating diagrams, specifically, of unifying premise diagrams and ex-
tracting information [5]. Moreover, the manipulations of diagrams are expected
to be spontaneously triggered without much effort, if the spatial relations hold-
ing on external diagrams are governed by natural constraints—constrains that
depend solely upon spatial properties of diagrams so that they are accessible
even to untrained users. By contrast, Venn diagrams lack this kind of infer-
ential efficacy, due largely to the fact that the manipulation of them to solve
deductive reasoning tasks requires prior understanding of some conventions (cf.
[4,5]).

The key assumption here is that the form of diagrams mirrors the seman-
tic information required in a given reasoning task, specifically, the relational
information in the case of syllogisms. If this is correct, then it is expected
that any diagram which can make explicit the relational information encoded
in a categorical sentence would be effective in supporting syllogistic reason-
ing. The aim of the present study is to investigate whether this holds good
of a linear variant of Euler diagrams, where set-relationships are represented by
one-dimensional lines, rather than by circles in a plane. Although it is known
that linear diagrams have limited expressive power (cf. [2]), they are expres-
sive enough to represent categorical syllogisms. We hypothesize that linear di-
agrams would be effective ways of representing relational structures and of
reasoning about them. An example of linear diagrams and the process of solv-
ing a syllogism with them are indicated in Fig. 1 (cf. the case with Euler
diagrams in [4]). Here by unifying the two linear diagrams in premises the rea-
soner could almost automatically obtain the desired information about the re-
lationship between A and C. If such linear diagrams would work as effectively
as Euler diagrams, it could count as evidence that the effectiveness of external
diagrams in syllogistic reasoning is not due to particular shapes such as circles
of Euler diagrams.

354 Y. Sato and K. Mineshima

2 Experiment and Result

The semantics of the linear diagrams used is essentially the same as that of Euler
diagrams in [4,3]. The experiment was conducted in the same manner as that
of [4]; the only difference is that in syllogistic reasoning tasks, Euler diagrams
associated with premises are replaced by the corresponding linear diagrams.
Note that we adopted a system of categorical syllogisms without the existential
import, hence in the syllogism of Fig. 2 we do not count 3 as a correct answer.

Method. Thirty-three undergraduates (mean age 22.72± 8.72 SD) participated
in the experiment, which we call the Linear group. Of them, we excluded five
students who did not follow our instruction. Subjects were first provided with
an instruction on the meaning of linear diagrams, and asked to take a pretest
to check whether they understood the instruction correctly. Then the subjects
were asked to solve syllogistic reasoning tasks supported by linear diagrams.
An example is shown in Fig. 2. In this task, the subjects were presented with
two sentential premises and asked to choose a correct answer. We presented 31
syllogisms in total. The test was a 20-minute test.

Result. In the following analysis, we exclude the seven subjects who failed the
pretest. The average accuracy rate of the total 31 tasks in the Linear group was
80.7%. The data were compared with those of the Linguistic group, the Venn
group, and the Euler groups reported in [4] by one-way Analysis of Variance.
There was a significant main effect, F (3, 140) = 37.734, p < .001. Multiple com-
parison tests by Ryan’s procedure yield the following results. (i) The accuracy
rate of the Linear group was higher than that of the Linguistic group: 46.7% for
the Linguistic group (F (1, 64) = 7.112, p < .001.). (ii) The accuracy rate of the
Linear group was higher than that of the Venn group: 66.5% for the Venn group
(F (1, 49) = 2.741, p < .05.). (iii) There was no significant difference between
the accuracy rate of the Linear group and that of the Euler group: 85.2% for the
Euler group. It should be noted that if we include those subjects who failed the
pretest, we still obtain similar results in each comparison: for (i) and (ii), there
were significant differences, p < .001; for (iii), there was no significant difference.

These results support our prediction that linear diagrams work as effectively
as Euler diagrams in syllogistic reasoning. This in turn provides evidence that the
efficacy of external diagrams in syllogistic reasoning depends upon the fact that
the diagrams make explicit the semantic relations such as inclusion and exclusion
relations in such a way that they are suitable for syntactic manipulation.

References

1. Calvillo, D.P., DeLeeuw, K., Revlin, R.: Deduction with Euler Circles: Diagrams
That Hurt. In: Barker-Plummer, D., Cox, R., Swoboda, N. (eds.) Diagrams 2006.
LNCS (LNAI), vol. 4045, pp. 199–203. Springer, Heidelberg (2006)

2. Lemon, O., Pratt, I.: On the insufficiency of linear diagrams for syllogisms. Notre
Dame Journal of Formal Logic 39(4), 573–580 (1998)

The Efficacy of Diagrams in Syllogistic Reasoning 355

3. Mineshima, K., Okada, M., Takemura, R.: A diagrammatic reasoning system with
Euler circles. Journal of Logic, Language and Information (to appear, in press)

4. Sato, Y., Mineshima, K., Takemura, R.: The Efficacy of Euler and Venn Diagrams in
Deductive Reasoning: Empirical Findings. In: Goel, A.K., Jamnik, M., Narayanan,
N.H. (eds.) Diagrams 2010. LNCS(LNAI), vol. 6170, pp. 6–22. Springer, Heidelberg
(2010)

5. Sato, Y., Mineshima, K., Takemura, R.: Constructing internal diagrammatic proofs
from external logic diagrams. In: Proceedings of 32nd Annual Conference of the
Cognitive Science Society, pp. 2668–2673 (2010b)

Author Index

Acartürk, Cengiz 95
Afshari, Hossein 297
Alcock, Jeffrey R. 315
Atã, Pedro 349

Barker-Plummer, Dave 3
Best, Lisa A. 7, 303
Bitarello, Breno 349
Bonnici, Alexandra 327
Bottoni, Paolo 148
Boucheix, Jean-Michel 233, 337
Bradley, Michael T. 117
Brand, Andrew 117
Burch, Michael 102
Burns, Richard 8
Burton, Jim 318

Camilleri, Kenneth 327
Carberry, Sandra 8
Chapman, Peter 4, 291
Cheng, Peter C.-H. 178, 309
Chester, Daniel 8
Clarkson, P. John 340
Coppin, Peter W. 334
Corter, James E. 23, 277
Costagliola, Gennaro 148
Cox, Richard 5

Dave, Bharat 270
Delaney, Aidan 291, 346
Demey, Lorenz 300
Durugbo, Christopher 315, 321

Elzer, Stephanie 8
Ernstbrunner, Christian 80
Etchemendy, John 3

Fanjoy, Lillian P. 303
Fish, Andrew 148
Fleuriot, Jacques 241
Flower, Jean 163
Freeman, Euan 200
Freitas, Renata de 324

Goncu, Cagatay 6
Gotel, O.C.Z. 256
Greis, Miriam 102

Ham, Dong-Han 306
Hamer, John 200
Hanxleden, Reinhard von 65
Howse, John 291, 318

Jahn, Gwyllim 270
Jamnik, Mateja 163
Jun, Gyuchan Thomas 340

Katagiri, Yasuhiro 124, 330
Klauske, Lars Kristian 65

Leblebici, Yusuf 297
Lee, Chieh-Ning 343
Lowe, Richard 233, 337
Lueder, Christoph 214

MacNeill, A. Luke 117, 303
Manalo, Emmanuel 35, 312
Marriott, Kim 6, 51
Mason, David L. 23, 277
Micallef, Luana 4
Miller, Nathaniel 294
Mineshima, Koji 352
Morris, S.J. 256
Morrison, Cecily 340
Murray, Michael 3

Nakagawa, Masanori 312
Nicholson, Jon 346
Nickerson, Jeffrey V. 23, 277

Oliver, Ian 291
O’Loughlin, Christopher 340

Papapanagiotou, Petros 241
Passmore, Peter 306
Pease, Emma 3
Pichler, Josef 80
Plaisant, Catherine 1
Purchase, Helen C. 200

358 Author Index

Queiroz, João 349

Raschke, Michael 102
Rooney, Chris 306

San Diego, Jonathan 5
Sato, Yuri 352
Schmid, Alexandre 297
Schulze, Christoph Daniel 65
Seyid, Kerem 297
Shimojima, Atsushi 124, 330
Smessaert, Hans 193
Spönemann, Miro 65
Stapleton, Gem 163, 291, 318
Stuckey, Peter J. 51
Sugio, Takeshi 124
Swoboda, Nik 3

Takemura, Ryo 132, 330
Tiwari, Ashutosh 315
Tversky, Barbara 23, 277

Uesaka, Yuri 35, 312
Urbas, Matej 163

Viana, Petrucio 324

Weiskopf, Daniel 102
Wilson, Sean 241
Wybrow, Michael 51

Xu, Kai 306

Yang, Yu-Chun 343
Yen, Miao-Hsuan 343
Yu, Lixiu 23

	Title
	Preface
	Organization
	Table of Contents
	Keynote
	Life on the Line: Interacting with Temporal Event Sequence Representations
	Interactive Environments
	References

	Tutorial
	Learning to Use the Openbox: A Framework fort he Implementation of Heterogeneous Reasoning
	Description

	Workshops
	3rd International Workshop on Euler Diagrams
	Technology Enhanced Diagrams Research Workshop
	Accessible Graphics: Graphics for Vision Impaired People
	Introduction

	Graduate Student Symposium
	Graduate Student Symposium of Diagrams 2012

	Psychological and Cognitive Issues
	Automatically Recognizing Intended Messages in Grouped Bar Charts
	Introduction
	Messages
	Messages
	Annotation

	Communicative Signals
	Salience via Visual Signals
	Linguistic Signals
	Relative Perceptual Effort as a Communicative Signal

	Recognizing the Intended Message
	System Architecture
	Extracting Evidence
	Training
	Current Performance and Discussion

	Conclusion
	Future Work
	Summary

	References

	Representing Category and Continuum: Visualizing Thought
	Introduction
	Experiment 1: Performance
	Method
	Results
	Discussion

	Experiment 2: Preference
	Method
	Results
	Discussion

	General Discussion
	References

	Elucidating the Mechanism of Spontaneous Diagram Use in Explanations: How Cognitive Processing of Text and Diagrammatic Representations Are Influenced by Individual and Task-Related Factors
	Introduction
	Cognitive Processing of Text and Diagrammatic Representations
	Individual and Task-Related Factors that Influence Resource Allocation
	Overview and Predictions of the Present Study

	Method
	Participants
	Materials
	Procedure

	Results
	Discussion
	References

	Diagram Layout
	Orthogonal Hyperedge Routing
	Introduction
	Interaction Model and Problem Statement
	Semi-automatic Routing
	Fully Automatic Routing
	Heuristic 1: Sequential Construction of MTST
	Heuristic 2: Interleaved Construction of SPTF and MTST

	Evaluation
	Conclusion
	References

	Improved Layout for Data Flow Diagrams with Port Constraints
	Introduction
	Data Flow Models
	Simulink
	Ptolemy

	Related Work
	Definitions
	The KLay Algorithm
	Side Ports
	Inverted Ports
	Hierarchical Ports

	Evaluation
	Conclusion
	References

	Aesthetic Layout of Wiring Diagrams
	Introduction
	Problem Statement
	Positioning of Diagram Elements
	Connector Routing
	Evaluation
	Conclusion
	References

	Diagrams and Data Analysis
	Points, Lines and Arrows in Statistical Graphs
	Introduction
	Experiment
	Participants, Materials and Design
	Results

	Discussion
	Conclusion and Future Work
	References

	Enriching Indented Pixel Tree Plots with Node-Oriented Quantitative, Categorical, Relational, and Time-Series Data
	Introduction
	Related Work
	Data Model and Indented Metaphor
	Data Model
	Indented Plot Generation
	Visual Interpretation of an Indented Plot

	Combination with Additional Node-Associated Data
	Indented Bar Diagram
	Indented Timeline Diagram
	Indented Matrix Diagram
	Interactive Features

	Case Study
	File Systems
	Dynamic Water Levels

	Conclusion and Future Work
	References

	Interpreting Effect Size Estimates through Graphic Analysis of Raw Data Distributions
	Introduction
	Three Examples of Effect Size Sensitivity
	Conclusion
	References

	Psychological Evidence of Mental Segmentation in Table Reading
	Introduction
	Experiment
	Method
	Results
	Discussion

	Conclusion
	References

	Venn and Euler Diagrams
	Proof-Theoretical Investigation of Venn Diagrams: A Logic Translation and Free Rides
	Introduction
	Venn Diagrammatic System
	Venn Diagrams
	Venn Diagrammatic Inference System

	Translation of Venn Diagrammatic System
	Resolution Calculus
	Translation of V

	Free Ride in Venn Diagrammatic System
	A Comparison of Venn Diagrams and Euler Diagrams
	Free Rides in Euler Diagrammatic System
	Discussion and Future Work

	References

	Euler Diagram Encodings
	Introduction
	Preliminaries
	The Static Code
	Incremental Curve Addition
	Encoding Zones
	Discussion and Conclusions
	References

	Reasoning with Diagrams
	Speedith: A Diagrammatic Reasoner for Spider Diagrams
	Introduction
	Spider Diagrams: Syntax and Semantics
	Speedith's Inference Rules
	Architecture of Speedith
	Abstract Representation
	The Reasoning Kernel
	Verification with External Tools

	Diagram Visualisation
	Results and Related Work
	Future Work and Conclusion
	References

	Algebra Diagrams: A HANDi Introduction
	Introduction
	HANDi Expressions
	Basic Operators
	Equation
	Identities and Inverse Operations
	Negative and Imaginary Numbers – Unary Turn Operators
	Combined Unary and Higher Order Operators
	Repeated Operations – Recursive Addition and Powers

	Elementary HANDi Transformation Rules
	Derived Proofs and Composite Transformation Rules
	HANDi Design
	References

	Boolean Differences between Two Hexagonal Extensions of the Logical Square of Oppositions
	Introduction: The Aristotelian Square of Oppositions
	Sesmat-Blanché: From Square to SB-Hexagon
	Sherwood-Czeżowski: From Square to SC-Hexagon
	Boolean Closure of the SC-Hexagon
	Hexagonal Closure of the Three SC-squares
	Three More Hexagonal Closures

	Isomorphisms and the Rhombic Dodecahedron
	Conclusions
	References

	Investigating Aesthetics
	An Exploration of Visual Complexity
	Introduction
	Background
	Interface Aesthetics
	Visual Perception of Web Pages
	Visual Complexity

	Method
	Objective Measures of Complexity
	Subjective Perception of Complexity
	The Data

	Analysis
	Consistency
	Computational Predictors of Visual Complexity
	Testing the Model

	Discussion
	Conclusion
	References

	Diagram Ecologies − Diagrams as Science and Game Board
	The Relational Identity of Diagrams
	Scientific / Heuristic Diagram and the Myth of Its Transparency
	Syntactic Diagram and Game Board
	Scientific and Syntactic Diagram in Digital Context
	References

	Dynamic Diagrams: A Composition Alternative
	Introduction
	Decomposition versus Composition
	Composition Components
	Sequencing Composition
	Conclusion
	References

	Applications of Diagrams
	Diagrammatically-Driven Formal Verification of Web-Services Composition
	Introduction
	Representation
	Classical Linear Logic Specifications
	Diagrammatic Notation

	Proof-Based Diagrammatic Composition
	The JOIN Action
	The TENSOR Action
	The WITH Action

	Use Case: Home Purchasing
	Example Sub-proof: Composite I/O
	Example Sub-proof: Optional I/O

	The Diagrammatic Interface
	Related Work
	Future Work
	Conclusion
	References

	The Diagram of Flow: Its Departure from Software Engineering and Its Return
	Introduction
	Replacement of Flow as Program Paradigm
	Contrasting Practices
	Structuring the Unstructured

	Restructuring the Representation of Program and System
	Initial Responses
	Tree Chart
	Flowcharts Adjusted and Block-Like Variants
	Data-Centric Views
	Whole System Representation - HIPO

	Flow Survives Object-Orientation
	New Object-Oriented Approaches
	Initial Version of the UML Activity Diagram
	A Flow Diagram by Any other Name?
	Incorporating More Features From Flowcharts
	Acceptance of Flow in the UML

	Conclusions
	References

	DDA\Repository: An Associative, Dynamic and Incremental Repository of Design Diagrams
	Introduction
	Prototype Overview
	Motivating Context
	Related Ideas

	Prototype Architecture
	Prototype Functionalities
	Diagram Creation
	Uses and Benefits
	Evaluation

	Future Extensions
	References

	Structure, Space and Time: Some Ways That Diagrams Affect Inferences in a Planning Task
	Introduction
	Selecting and Using Planning Trees

	Method
	Participants
	Stimuli
	Procedure

	Results
	Discussion
	References

	Posters
	What Can Concept Diagrams Say?
	References

	CDEG: Computerized Diagrammatic Euclidean Geometry 2.0
	References

	Design and Implementation of Multi-camera Systems Distributed over a Spherical Geometry
	Introduction
	Omnidirectional Vision
	Coverage Analysis
	Interconnection Network
	Conclusion
	References

	Algebraic Aspects of Duality Diagrams
	References

	The Use of Diagrams in $Science$
	Scientific Inscriptions
	Methods
	Results
	Discussion
	References

	A User Study on Curved Edges in Graph Visualisation
	Introduction
	Experiment and Results
	Discussions
	References

	Truth Diagrams: An Overview
	References

	Are Teachers Aware of Students’ Lack of Spontaneity in Diagram Use? Suggestions from a Mathematical Model-Based Analysis of Teachers’ Predictions
	Introduction
	Method
	Results and Discussion
	References

	Modelling Delivery Information Flow: A Comparative Analysis of DSMs, DFDs and ICDs
	Introduction
	Case Studies
	Conclusions
	References

	Completeness Proofs for Diagrammatic Logics
	Introduction
	More Expressive Notations and the End of the Strategy
	Conclusion
	References

	Modelling Information Flow: Improving Diagrammatic Visualisations
	Introduction
	Information Flow Diagrammatic Modelling Needs
	Implications for Researchers and Practitioners
	References

	A Graph Calculus for Proving Intuitionistic Relation Algebraic Equations
	References

	Genetic Algorithm for Line Labeling of Diagrams Having Drawing Cues
	Introduction
	Genetic Algorithm Approach for Line Labeling
	Introducing Drawing Cues to Enhance Line Labeling
	Results and Discussion
	Conclusion
	References

	A Logical Investigation on Global Reading of Diagrams
	References

	Pictures Are Visually Processed; Symbols Are also Recognized
	Introduction
	References

	How Do Viewers Spontaneously Segment Animated Diagrams of Mechanical and Biological Subject Matter?
	Introduction
	Materiel and Method
	Procedure, Analysis and Scoring

	Results
	Conclusion
	References

	Which Diagrams and When? Health Workers’ Choice and Usage of Different Diagram Types for Service Improvement
	Introduction
	Methods
	Results and Discussion
	Reference

	Eye Movement Patterns in Solving Scientific Graph Problems
	Introduction
	Method
	Results and Discussion
	Interest Areas
	Responses and Inspection Regions in the Main Graph

	Reference

	Formalising Simple Codecharts
	References

	Notes about the London Underground Map as an Iconic Artifact
	Iconic Operacionality of London Underground Map
	London Underground Map: A Cognitive Tool for its Users
	Diagram as a Mind-Tool
	References

	The Efficacy of Diagrams in Syllogistic Reasoning: A Case of Linear Diagrams
	Introduction
	Experiment and Result
	References

	Author Index

