
Reverse Engineering of Microprocessor Program
Code

Andrzej Kwiecień, Michał Maćkowski, and Krzysztof Skoroniak

Silesian University of Technology, Institute of Computer Science,
Akademicka 16, 44-100 Gliwice, Poland

{akwiecien,michal.mackowski,krzysztof.skoroniak}@polsl.pl
http://www.polsl.pl/

Abstract. This paper has an experimental character. Theoretical back-
grounds presented here allow creating a research method. The research
focus on analysis of microprocessor voltage supply changes. Such anal-
ysis based on the presented research assumptions allowed for a rather
high efficiency of decoding program without interference in the internal
structure of microprocessor. The obtained results show, that there is a
possibility of uncontrolled access to program codes. Thus, it is neces-
sary to search for and develop appropriate methods used for protecting
program.

Keywords: reverse engineering, program code, microcontroller, con-
ducted emission, electromagnetic disturbances, Hamming distance, em-
bedded system.

1 Introduction

The current continual trend towards more and more miniaturization and in-
tegration has led to existence a very large scale integration circuits. In recent
years, SOC (System On Chip) which merge into one chip analog, digital, mixed-
signal, and often radio-frequency functions, has become very popular solutions
– especially in embedded systems. This may indicate a present level of advance-
ment of production technology of integrated units. The high integration scale
and continuous increase of microprocessor circuit frequency cause the current
peaks to be generated with higher amplitudes and shorter rise times on power
supply and I/O lines of the electronic circuits. Such impulses are generated by
thousands/millions of transistors inside the integrated unit, which are switching
simultaneously. Propagation of such currents through wires and paths on a PCB
(Printed Circuit Board) to other electronic systems may cause the problems with
their normal functioning. On the other hand, the total current drawn by all the
gates during execution of a single instruction, may indicate what instruction is
currently executed.

During the analysis of microprocessor program code based on the measure-
ment of power supply changes, the system is treated as “a black box” executing
a sequence of instructions stored in a program memory. In idealistic approach

A. Kwiecień, P. Gaj, and P. Stera (Eds.): CN 2012, CCIS 291, pp. 191–197, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.polsl.pl/


192 A. Kwiecień, M. Maćkowski, and K. Skoroniak

it can be assumed that the operation of the implemented algorithm consists of
processing some input data and returning the result without any interaction
between the device and environment. In fact, any device powered by electric
energy and processing digital signals affects the environment and other devices
through the emission of electromagnetic disturbances in the way of conducted
and radiated emission [1,2,3,4]. Changes in power consumption of the device and
emitting the electromagnetic field can be described as side effects of realization
of the algorithm, which make up affiliate channel providing additional knowledge
about the algorithm.

The paper deals with an aspect of this problem resulting from the fact, that for
example an author of software of embedded system is not aware of the possibility
to recognize, to a certain extent, a program code without direct interference
into microcontroller program memory. Microprocessor units currently used in
network devices as network controllers can be also considered as advanced chips
being responsible for data processing and reconstruction of transmitting frames.
Such units can also be source of electromagnetic disturbances. The authors in
previous papers [5,6] presented the research referring to analysis of the influence
of data bus, instruction operand, its result and address in memory to the supply
power line during subsequence instruction cycles and recognition of instruction
that are realized with the arguments with the value of zero.

In this paper, the authors analyze 8-bit microprocessor program code based on
the power supply changes, and focus on recognition of instructions that operate
on arguments with the value of any kind.

2 Test Bench and the Research Procedure

Test bench consisted of Microchip microprocessor with PIC16F84A signature,
connected to the power supply and an external square-wave generator with a fre-
quency of 250 kHz. To supply the microprocessor Agilent stabilized power sup-
ply was used. Oscilloscope probe was connected to microcontroller supply lines
to monitor voltage drop during realization of following instructions. The test
bench, for the period of research was placed in shielded cell – GTEM (Giga-
hertz Transverse ElectroMagnetic) which provided total separation of measuring
area from external electromagnetic influences. The exact description of the test
bench, methods used to measure voltage disturbances and ways to analyze the
obtained results in the time and frequency domain, have been presented in the
previous papers of the authors [6,7].

In papers [5,8] the authors developed a method for recognizing instructions
that operate on arguments with the value of zero, based on the analysis of volt-
age disturbances. The first step to do this is to measure the microprocessor
voltage supply waveform while running the entire program. The next step is to
cut the part of time waveform referring to the instruction being tested. Then
the minimum and maximum value of the voltage for the first three machine cy-
cles is saved – a total of six values are saved. In this way the sample database
was created, in which each microprocessor instruction is characterized by 6



Reverse Engineering of Microprocessor Program Code 193

points – three maximum and three minimum values of voltage, measured in
particular machine cycles Q1, Q2, and Q3. Based on the obtained results, it
was proved that the method developed to recognize instructions operating on
arguments with the value of zero, is effective in 91%.

In this paper the authors extended the scope of the research already discussed
in [5] by taking into consideration both instruction and the instruction operand.
In case of compiling the database of samples used for recognizing instructions
that operate on arguments with the value of any kind, it is required to take
into consideration not only the instruction code but also instruction argument
and its result. Hence, the procedure of compiling the samples is a very time
consuming process and requires a careful synthesis of each instruction, which is
based not only on technical specification, but also on changes in voltage supply.
Therefore, in the process of compiling the database of samples the study focuses
on ten instructions of the microprocessor instruction list: ADDLW, ANDWF,
BSF, CLRF, COMF, INCF, MOVF, MOVLW, NOP, and XORLW.

In previous research the authors showed that the voltage waveform during re-
alization of the first and third machine cycle is not directly affected by instruction
argument and the result of operation. It appears that the voltage waveform dur-
ing realization of instruction cycle, is affected not only by the operation code, but
also by the differences between the state of data bus and instruction argument
(machine cycle Q1), and between instruction argument and the result of opera-
tion (machine cycle Q3). These differences can be measured by using Hamming
distance parameter. In this case a schema based on Hamming distance calcu-
lated for instruction arguments, can be used to create database of samples. This
information allows for a significant simplification of the construction of database
used in the process of instruction recognition.

Figure 1 presents the schema of database construction and the process of rec-
ognizing instructions that operate on arguments with the value of any kind. The
database consists of samples which describe 10 instructions, where samples from
1 to N describe instruction 1, next M samples describe instruction 2, etc. In this
way, it was possible to create a database for the previously mentioned instruc-
tions, consisting of 1935 samples and used then in the process of recognition of
microprocessor program code.

Having compiled the database, three test programs consisting of 100 instruc-
tions were generated. They were used to determine the effectiveness of method
for instruction recognition. The programs were created by using the same 10 in-
structions, which were previously used in the process of compiling database.
Both, the order of instructions in the test programs, as well as instruction argu-
ments were selected at random.

3 The Research Results

According to research procedure, each instruction included in test program was
compared to 1935 samples compiled in database.

Figure 2 presents the numbers of correctly recognized instructions in sub-
sequent instructions proposition, which were received as a result of a method



194 A. Kwiecień, M. Maćkowski, and K. Skoroniak

Sample database

Sample 1
Instruction 1 (HD = 0)

Sample 2
Instruction 1 (HD = 1)

Sample N
Instruction 1 (HD = X)

Sample 1935
Instruction 10 (HD = Z)

Test program

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 100

Recognition

Sample X1

Sample X2

Sample X3

Sample X4

Sample X5

Sample X6

Sample X7

Sample XN

Sample N+1
Instruction 2 (HD = 0)

Sample N+2
Instruction 2 (HD = 1)

Sample N+M
Instruction 2 (HD = Y)

 

Fig. 1. The process of recognizing instructions

used for all three test programs. Further analysis of the bar chart reveals that
the largest number of instructions was correctly recognized in the first three
propositions. Table 1 presents the number of correctly recognized instructions in
following instructions suggestions and their average values for test programs 1,
2 and 3. Based on the obtained research results it can be stated that for the first
three propositions it was possible to recognize on average 33.67%, 22.00%, and
16.67% of instructions in the test programs. For the next columns the average
number of correctly recognized instructions was less than 10%.

Table 2 presents the effectiveness of the method used for instruction recogni-
tion. Efficiency is the ratio of the numbers of instructions correctly recognized in
one of the first three instructions propositions, to the total number of samples in
test program. For the test program 1, in 72% of cases the correctly recognized
instruction was among the suggestions of the first three the most similar instruc-
tions, returned as a result of the method used in the research. For the other test
programs the achieved effectiveness of instruction recognition is about 74 and 71%.

Table 1. Number of correctly recognized instructions in the subsequent instructions
propositions and their average values for test programs 1, 2 and 3

Number of correctly recognized instructions
Instr. 1 Instr. 2 Instr. 3 Instr. 4 Instr. 5 Instr. 6 Instr. 7

Test program 1 35 22 15 9 9 10 0
Test program 2 37 20 17 9 11 6 0
Test program 3 29 24 18 11 8 9 1
Average value 33.67 22.00 16.67 9.67 9.34 8.34 0.34



Reverse Engineering of Microprocessor Program Code 195

35
37

29

22
20

24

15
17 18

9 9
11

9
11

8
10

6

9

0 0 10 0 00 0 00 0 0
0

5

10

15

20

25

30

35

40

Test program 1 Test program 2 Test program 3

N
um

be
r o

f c
or

re
ct

ly
 re

co
gn

ize
d 

in
st

ru
ct

io
ns

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8

Instruction 9

Instruction 10

Proposition: 

Fig. 2. Number of correctly recognized instructions in the subsequent instructions
propositions, received as a result of method used for test programs 1, 2 and 3

Table 2. Comparison of the method effectiveness used for instructions recognition,
that operate on arguments with the value of any kind, for test programs 1, 2 and 3

Number of instructions in the first three The effectiveness
instructions suggestions of method used for

correctly incorrectly recognizing
recognized recognized instructions

Test program 1 72 28 72%
Test program 2 74 26 74%
Test program 3 71 29 71%

Decrease of effectiveness of instructions recognition, presented in this paper,
compared to the effectiveness of instructions recognition that operate on argu-
ments with the value of zero, is caused in this case by the influence of data
processing on the voltage supply waveform when a particular instruction is exe-
cuted. The result is that various instructions of microprocessor unit for specific
values, such as: state of data bus, instruction argument and result of operation,
can have the same or very similar voltage waveforms measured in microprocessor
power circuit. Based on the database of samples, the research method returns
propositions of instructions which were recognized correctly together with the
value of similarity for each instruction in the test program. The study assumes
that the effectiveness of method for recognizing microprocessor program code
will be determined based on the numbers of recognized instructions in the first
three instructions suggestions.



196 A. Kwiecień, M. Maćkowski, and K. Skoroniak

4 Conclusion

The paper concerns the problem of microprocessor systems security, and in par-
ticular the threats to the programs stored in memory of such systems, and in-
formation they process.

The authors proved the possibility of partial recognition of the instruction cur-
rently executed based on the changes of microprocessor voltage supply. More-
over, the authors indicate that it is possible to determine to a certain extent
Hamming distance between the state of data bus and instruction argument, and
between instruction argument and result of operation. Such possibility in this
case refers to the recognition of numbers of bits changes on instruction argument,
in consequence of instruction realization.

As a result of conducted research, a database consisted of 1935 samples was
compiled, and then was compared to three test programs. Each test program
consisted of 100 instructions and arguments which both were selected at random.
It was assumed that if the instruction after having been compared to the samples
database is in one of the first three places, then it was correctly recognized. With
such assumptions, the effectiveness of the presented method for the following test
programs is: 72%, 74% and 71%. Results of research can be generalized to other
microprocessor systems executing program code stored in the memory.

Results of research can be also generalized to other microprocessor units with
very similar internal architecture which execute program code stored in the mem-
ory. In case of microcontrollers with completely different datapaths, such as
multiple cycle and pipeline, to fetch and execute instructions it is necessary to
conduct further research.

This study and the results presented here should be considered also as an at-
tempt to draw attention to the threats resulting from the phenomena of emana-
tion emission, or any kind of unintended signals, which in case of being captured
and analyzed reveal the information processed by the device. Moreover, several
questions arise. The first is, whether obtained results have only to draw atten-
tion to the risk of decoding programs with the use of presented method? Another
refers to the necessity of improving the method described above (or develop a new
one) to get more effectiveness, and thereby indicate threats in a more precise
way, and at the same time to build protection against unauthorized access to the
source version (following assembler instructions) of a software. Finding answers
to these questions is so far an open issue.

References

1. Bao, F., Deng, R.H., Han, Y., Jeng, A., Narasimhalu, A.D., Ngair, T.: Breaking
Public Key Cryptosystems on Tamper Resistant Devices in the Presence of Tran-
sient Faults. In: Christianson, B., Lomas, M. (eds.) Security Protocols 1997. LNCS,
vol. 1361, pp. 115–124. Springer, Heidelberg (1998)

2. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)



Reverse Engineering of Microprocessor Program Code 197

3. Maćkowski, M.: The Influence of Electromagnetic Disturbances on Data Transmis-
sion in USB Standard. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2009. CCIS,
vol. 39, pp. 95–102. Springer, Heidelberg (2009)

4. Mangrad, S., Oswald, E., Popp, T.: Power Analysis Attacks – Revaling the Secrets
of Smart Cards. Springer (2007)

5. Kwiecień, A., Maćkowski, M., Skoroniak, K.: Instruction Prediction in Microproces-
sor Unit. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2011. CCIS, vol. 160, pp.
427–433. Springer, Heidelberg (2011)

6. Kwiecień, A., Maćkowski, M., Skoroniak, K.: The Analysis of Microprocessor In-
struction Cycle. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2011. CCIS, vol. 160,
pp. 417–426. Springer, Heidelberg (2011)

7. Maćkowski, M., Skoroniak, K.: Instruction Prediction in Microprocessor Unit Based
on Power Supply Line. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2010. CCIS,
vol. 79, pp. 173–182. Springer, Heidelberg (2010)

8. Maćkowski, M., Skoroniak, K.: Electromagnetic Emission Measurement of Micro-
processor Units. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2009. CCIS, vol. 39,
pp. 103–110. Springer, Heidelberg (2009)


	Reverse Engineering of Microprocessor Program Code
	Introduction
	Test Bench and the Research Procedure
	The Research Results
	Conclusion
	References




