
D. Winkler, R.V. O’Connor, and R. Messnarz (Eds.): EuroSPI 2012, CCIS 301, pp. 181–192, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Using Functional Defect Analysis as an Input
for Software Process Improvement: Initial Results

Tanja Toroi1, Anu Raninen1,2, and Hannu Vainio1

1 University of Eastern Finland, School of Computing, Kuopio, Finland
{tanja.toroi,anu.raninen,hannu.vainio}@uef.fi

2 Lero – The Irish Software Engineering Research Centre, University of Limerick, Ireland

Abstract. In this paper we present how functional defect analysis can be ap-
plied for software process improvement (SPI) purposes. Software defect data is
shown to be one of the most important available management information
sources for SPI decisions. Our preliminary analysis with three software compa-
nies’ defect data (11653 defects in total) showed that 65% of all the defects are
functional defects. To better understand this mass, we have developed a detailed
scheme for functional defect classification. Applying our scheme, defects can
be classified with accuracy needed to generate practical results. The presented
scheme is at initial stages of validation and has been tested with one software
company’s defect data consisting of 1740 functional defects. Based on the clas-
sification we were able to provide the case organization with practical im-
provement suggestions.

Keywords: functional defects, defect data analysis, process improvement.

1 Introduction

Software defect analysis is recognized as an effective and important approach to
software process improvement (SPI) [1]. Robert Grady has stated that defect analysis,
tracking and removing the major sources of defects offer the greatest short-term po-
tential for improvements [2]. However, despite its importance the defect data is rarely
utilized in process improvement efforts of software companies [3].

Previous research has shown that the classification of defects is important when
aiming at measurement-based process and product improvement [4]. In addition, the
defect classifications can be used to identify product and process problems [5] and to
improve the testing and/or inspection activities [6]. There are numerous defect classi-
fication schemes available in the literature. To name a few, IEEE provides a Standard
Classification for Software Anomalies [7] and IBM has generated Orthogonal Defect
Classification (ODC) [8]. In addition, Beizer [9] and Humphrey [10] have presented
their defect classification schemes. Unfortunately, for our purposes, defect classifica-
tion schemes published are too general in nature and classify defects at a rough level.

Our preliminary analysis with three software companies’ defect data (11653 de-
fects in total) showed that 65% of the defects stored in the companies’ databases are
functional defects, i.e. defects in computation and/or functional logic [11]. In order to

182 T. Toroi, A. Raninen, and H. Vainio

be able to use the defect data for process improvement purposes the functional defects
had to be understood in more detail. To accomplish this, a more detailed defect classi-
fication of the functional defects was necessary to be conducted. However, there are
not many defect classification schemes available for this purpose.

Beizer has defined a defect taxonomy [9] in which functional defects are divided in
seven subclasses. We applied Beizer’s functional defect classification for one soft-
ware company’s defect data consisting of 1740 functional defects. After applying
Beizer’s classification we noticed that over half of the functional defects (58%) were
situated in one defect subtype, Feature/Function correctness. These results were not
very useful in practice; over half of the defects remain in a single class. Hence,
the functional defect classification was not detailed enough to identify the main
problem areas.

In this paper, we present a detailed scheme for the classification of functional de-
fects. The detailed classification scheme is an initial version based on analyzing de-
fect data from one software company, including 1740 functional defects. Applying the
classification scheme was encouraging: the result was easily recognizable inputs for
process improvement. It appears that applying our scheme, the problems areas of
software development and testing processes can be identified. Hence, testing can be
focused on certain major issues. In addition, process improvement actions can be
justifiably targeted to the problematic areas identified based on the defect data classi-
fication.

The aim of this paper is to present the initial results of applying our functional de-
fect classification scheme and make the scheme available for other researchers and
practitioners. We have already received feedback and improvement suggestions from
our first case organization and are currently validating the scheme with the more data
from other companies.

The overall structure of this paper is: Research setting is described in Section 2. In
section 3, we present the general defect classification scheme, Beizer’s functional
defect classifications and our own scheme. Section 4 describes the results of applying
the defect classifications. Section 5 gives process improvement suggestions based on
functional defect data analysis. The results are discussed in section 6 and section 7
provides the conclusion.

2 Research Setting

It is shown that software defect data is one of the most important available manage-
ment information sources for software process improvement decisions [2]. We con-
ducted a preliminary study in spring in 2011 to find out what the most common defect
types are and how this information can be used in process improvement [11]. The
study was conducted using defect data from three software companies consisting of
11653 defects in total. Based on the results of the preliminary study it was noticed
that further research was needed. The defect classification scheme applied was too
general in order to provide detailed information to be applied for process improve-
ment purposes.

The initial study presented in this paper was conducted in one software company
in the beginning of 2012. The case organization of the study is a Finnish software

 Using Functional Defect Analysis as an Input for Software Process Improvement 183

company with 18 employees. The organization has 9 employees in development and
maintenance and 4-6 in testing. The company produces commercial off-the-shelf
(COTS) products. An open source, web-based defect tracking system Mantis1 is used
in the company.

The results of the preliminary study conducted in 2011 showed that over half of the
defects stored in the defect databases are functional defects (65%). In order to utilize
defect data for process improvement purposes, functional defects had to be unders-
tood in more detail. Hence, the research problem of the study is: How functional de-
fects should be classified so that the result provides practical inputs for software
process improvement? In addition, we wanted to test our functional defect classifica-
tion scheme and make the scheme available for other researchers and practitioners.

3 Functional Defect Classification

In this section we present the general defect distribution scheme applied in our pre-
vious study [11]. In addition, we present the functional defect classification by Beizer
[9] and our own more precise initial scheme based on it.

3.1 General Defect Distribution Scheme

The defect distribution scheme applied in our preliminary study [11] is presented in
Table 1. The scheme is a combination of the schemes by Beizer [9] and Humphrey
[10]. It divides defects in ten types. We applied the scheme for three software compa-
nies defect data consisting of 11653 defects (see Section 4.1). The most common
defects in every company were functional defects (65%), i.e. defects in computation
and/or functional logic. In order to find out the real problems behind these functional
defects they had to be investigated in more detail.

Table 1. General defect distribution scheme applied

ID Defect Class Description
1 Assignment Declaration, duplicate names, scope, limits
2 Build, package,

environment
Change management, library, version control

3 Checking Error messages, inadequate checks
4 Data Database structure and content
5 Documentation Comments and messages
6 Function Logic, pointers, loops, recursion, computation,

function defects
7 Integration Integration problems, component interface errors

8 Requirements Misunderstood customer requirements
9 System Configuration, timing, memory, hardware
10 User Interface Procedure calls and references, I/O, user formats

1 http://www.mantisbt.org/

184 T. Toroi, A. Raninen, and H. Vainio

3.2 Beizer’s Taxonomy for the Functional Defects

In the literature, only a few functional defect taxonomies exist. In order to classify the
functional defects in a more detailed manner, we applied Beizer’s taxonomy [9]
which has seven subcategories for functional defects. In addition to the functional
defects, Beizer’s taxonomy also includes structural defects. Structural defect type
includes “Control Flow and Sequencing” (e.g. path left out, unreachable code, impro-
per nesting loops) and “Processing” (algorithmic, arithmetic expressions, initializa-
tion) defects. We added the structural defect types to the classification because control
flow and sequencing, and processing defects are actually quite similar to functional
defects. Often failures that are caused by a sequencing defect appear as erroneous
system functionality. Hence, the failure is entered into the defect database as a func-
tional defect. Based on our experience, the defect types or descriptions of the defects
are seldom altered after being entered to the database. The Beizer’s taxonomy of the
functional and structural defects is presented in Table 2.

Table 2. Taxonomy of the functional and structural defects [9]

ID Defect type Description
21xx Feature/ Function

correctness
Feature not understood, feature interaction

22xx Feature Complete-
ness

Missing feature, duplicated, overlapped feature

23xx Functional Case
Completeness

Missing case, duplicated, overlapped case,
extraneous output data

24xx Domain bugs Domain misunderstood, boundary location error,
boundary closure

25xx User Messages and
Diagnostics

False warning, failure to warn, wrong message,
spelling, formats

26xx Exception Condition
Mishandled

Exception conditions are not correctly handled,
wrong exception-handling mechanisms used

29xx Other functional
bugs

Other functional bugs that are not mentioned in
the previous rows.

31xx Control Flow and
Sequencing

(Structural bug) Path left out, unreachable code,
improper nesting loops, loop termination criteria
incorrect

32xx Processing (Structural bug) Algorithmic, arithmetic expres-
sions, initialization, cleanup, precision

3.3 Improved Functional Defect Classification Scheme

The main problem with applying Beizer’s taxonomy was that it is not detailed enough
to identify the practical targets for process improvement. The defect type “Fea-
ture/Function correctness” included most of the defects in the end. In addition, a

 Using Functional Defect Analysis as an Input for Software Process Improvement 185

“Feature completeness” defect is often hard to distinguish from a “Function/Feature
correctness” defect. Further, due to the nature of the defect data analyzed, a “Func-
tional case completeness” defect was quite impossible to detect.

To avoid the problems stated above, we developed a more detailed scheme in
which a “Feature/Function correctness” defect type is divided into subtypes. In addi-
tion, we added “Control flow and sequencing” and “Processing” defect types to our
functional defect scheme. Further, in our scheme “Domain bugs” refer to application
domain defects not value ranges of the variables. Our initial functional defect classifi-
cation scheme is presented in Table 3.

Table 3. Initial functional defect scheme

6 Functional defect type Description

 6.1 Control flow and sequenc-
ing

Defects in control flow (e.g. path left out,
unreachable code, improper nesting loops,
loop termination criteria incorrect)

 6.2 Domain Bugs Application domain bugs, subcategories vary
between companies (e.g. taxes, allowances,
materials)

 6.3 Exception condition mi-
shandled

Defects in exception handling.

 6.4 Feature Completeness Feature is executed inadequately.

 6.5 Feature / Function Cor-
rectness

Implementation of feature / function is incor-
rect.

 6.5.1 Copying data Defects in copying data between systems /
databases. Difficulties in making backups.

 6.5.2 Default values and initial
states

Defects in programs default values e.g. pro-
grams default selection causes failures in
software.

 6.5.3 Installation Problems during installation of the developed
program.

 6.5.4 Retrieval, update and
removal of data

Relates to refreshing the screen. Data inputs
from user doesn’t update properly to the
screen.

 6.5.5 Saving data Data doesn’t save to system. Data can’t be
saved when it should be possible or it can be
saved when it shouldn't be able.

 6.5.6 Utilizing operating system
services

Problems related to operating systems (e.g.
Windows), e.g. mouse commands, tab order,
and other features provided by the OS.

 6.6 Processing Defects in processing, calculations.

 6.7 User messages and diag-
nostics

User messages are incorrect. Printing on
screen / paper, defects in reports.

186 T. Toroi, A. Raninen, and H. Vainio

4 Applying Functional Defect Analysis in Process Improvement

In this Section we present the results of the defect classification after the first general
classification, after applying Beizer’s taxonomy, and after applying our initial func-
tional defect scheme. In addition, improvement suggestions collected from the case
organization are discussed.

4.1 General Defect Distribution

In our preliminary study [11] we applied the general defect classification scheme
presented in Table 1 for three software companies defect data consisting of 11653
defects. The result of the defect classification is presented in Figure 1. From the Fig-
ure, it can be seen that by far the most common defect type in every company is
“Function” defect type (total of 7574, 65%). The second most common defect types
are “User Interface” (total of 1870 defects, 16%), “Assignment” (total of 700 defects,
6%) and “Checking” (total of 688 defects, 5.9%). “Requirements” (total of 24 defects,
0.2%) and “Documentation” (total of 47 defects, 0.4%) are the rarest defect types.

Fig. 1. Defect distribution after the first classification

4.2 Functional Defects Classified According to Beizer’s Taxonomy

In order to make the defect classification data usable in practice, we needed to better
understand what the mass of functional defects consisted of. Hence, we applied func-
tional defect taxonomy by Beizer [9] to classify the defects in a more precise manner.
The preliminary classification was conducted for one software company’s defect data
consisting of 1740 functional defects.

 Using Functional Defect Analysis as an Input for Software Process Improvement 187

The defect distribution is presented in Figure 2. In practice, we ended up format-
ting Beizer’s taxonomy. We did not include “Other functional defects” because this is
too vague to tell anything about the defects nature. In addition, we did not identify a
single “Functional case completeness” defect. This may be due to the cursory descrip-
tion of the defect type. From the Figure 2, it can be seen that the defect type “Fea-
ture/Function correctness” is remarkably more common than the other defect types.
“Feature/Function correctness” includes 58% of the defects. The rest of the defect
types include evenly from 4 to 13 percent of the defects. One exception is “Exception
condition mishandled” type which includes only 0.29% of the defects.

Fig. 2. Functional defect distribution classified according to Beizer’s taxonomy

4.3 Functional Defects Classified According to Our Own Defect Scheme

The defect classification according to Beizer’s taxonomy was still not detailed enough
for process improvement purposes of the case organization. They wanted to find out
what the “Feature/Function correctness” issues are, in order to improve their devel-
opment and testing processes. In order to figure this out, we defined a more detailed
scheme for the functional defects. The scheme is presented in Table 3. We applied the
scheme for the same 1740 defects as with the Beizer’s taxonomy. The results can be
seen in Figure 3.

The distribution of the defects is notably more even applying our scheme. The
most common functional defect type is “Retrieval, update and removal of data” (24%
of the defects). The second most common defect types are “Processing” (13%) and
“Default values and initial states” (13%). “Exception condition mishandled” is the
most uncommon defect type (only 0.3% of the defects).

188 T. Toroi, A. Raninen, and H. Vainio

Fig. 3. Functional defect distribution classified according to our own scheme

4.4 Further Development of the Functional Defect Scheme

The functional defect scheme presented in this paper is an initial version and applied
only to one software company’s defect data. The goal of the classification scheme is
to be general enough to be applied in most software companies. To achieve this, the
classification scheme must be documented unambiguously. In addition, the defect
types must be general enough to be applied in several companies. Yet, the defect
types must be particular enough to get significant results out of the classification ex-
ercise. In order to improve the functional defect classification scheme, we collected
feedback from our case organization.

The feedback was collected in a three hour workshop organized in the premises of
the case organization. In the workshop the classification scheme and result of the
classification were presented for the participants from the case organization and then
discussed in detail.

Mainly the case organization was happy with the classification scheme and the re-
sult of the classification. However, there were two defect types that caused confusion.
The case organization had problems understanding the defect types “6.5.6 Utilizing
operating system services” and “6.5.2 Default values and initial states”. The repre-
sentatives of the case organization questioned whether these two types were already
included in the higher level of the classification. They wanted to know what was the
difference between “6.5.6 Utilizing operating system services” and “10 User Inter-
face” defect types. Also, they wanted to know why “6.5.2 Default values and initial
states” defects were not included in the “4 Data” type.

 Using Functional Defect Analysis as an Input for Software Process Improvement 189

Based on the feedback the description of these two defect types was written in
more detail. The improved descriptions that highlight the difference between these
defect types are presented in Table 4.

Table 4. The difference between defect types Data & Default values and initial states and
User Interface & Utilizing operating system services

Defect Type Description
4 Data (see Table 1)
vs.

6.5.2 Default values and
initial states (see Table 3)

Database structure and content.
For example; bug due to error in the structure of
the database, bug due to the availability of the
data, bug due to difficulties in obtaining the data
from the database.
Defects related to default values and initial status-
es of the software. Default values or initial states
that prevent the user from using the system as
intended. For example; the user is presented with
wrong and/or wrong sized screens as a default.

6.5.2 Distinguishes from type 4: Default values
and initial states are different from data defects as
they are regarded different by nature. All default
values do not necessarily derive from database.

10 User Interface
(see Table 1)
vs.

6.5.6 Utilizing operating
system services
(see Table 3)

Procedure calls and references, I/O, user formats.
For example; incorrect output data from the user
point of view, a problem with usability and/or
trivial defect in layout (e.g. overlapping windows)
Defects related to utilizing the services of the
operating system of the computer on which the
software is installed. For example; defects due to
applying the monitors, printers and other peri-
pherals. A defect related to Windows system (e.g.
tab-order).
6.5.6 Distinguishes from type 10: User Interface
defects are more often cosmetic defects, for ex-
ample, typing errors in user interface.

5 Process Improvement Suggestions Based on Functional
Defect Data Analysis

Based on the functional defect data classification, the case organization is able to see
their software engineering problem points from the defect point of view. The classifi-
cation shows that the most troublesome issues are related to retrieving, updating and
removing data, default values of the variables and forms, processing i.e. calculation,
and user messages and diagnostics. The most common functional defect types of the
case organization are presented in Figure 4.

190 T. Toroi, A. Raninen, and H. Vainio

Fig. 4. The most common functional defect types in the case organization’s defect data

Based on the results of the defect classification improvement suggestions were
given to the case organization. The suggestions are presented in Table 5.

Table 5. Improvement suggestions related to the most common defect types

Defect Type Improvement suggestions
Retrieval, up-
date and re-
moval of data

Stress the importance of unit testing. Data retrieval, updat-
ing and deletion defects could be detected already in the unit
testing phase during which it would be cheaper to fix them.
Conduct pair programming. Previous research has found
that programmers working in pairs produce fewer bugs, than
programmers working alone [12].

Processing Conduct code inspections in order to reduce the amount of
bugs due to carelessness. Processing bugs are often due to the
software engineer not being careful enough while coding the
calculation rules to the software. Inspection is proved to be
effective at identifying defects [13].

Default values
and initial states

Conduct code inspections and pair programming.
Take test automation in use. Test automation does not pre-
vent the defects but would make it easier and more cost-
effective to detect them from the code [14].

User messages
and diagnostics

Conduct usability testing. This could help to find defects in
user messages. Inspect end user reports in order to find ano-
malies and bugs in them.

6 Discussion

Our preliminary analysis with three software companies’ defect data (11653 defects)
showed that 65% of the defects were functional defects [11]. We wanted to find out

 Using Functional Defect Analysis as an Input for Software Process Improvement 191

what the real problems are behind these functional defects in order to enable process
improvement based on defect data. Defect data is one of the most important available
management information sources for software process improvement decisions [2].
Yet, defect data is rarely utilized properly in process improvement efforts [3].

However, in the literature, there are only a few functional defect classifications
available. Beizer has developed a defect taxonomy which has subcategories for func-
tional defects [9]. We applied Beizer’s taxonomy for functional defect data (1740
functional defects). However, the results were not satisfying, over half of the defects
still remained of one defect type, “Feature/Function correctness”. Beizer’s taxonomy
was not able to properly make the problem areas of the process visible.

The main problem with applying Beizer’s taxonomy was that it is not detailed
enough to identify the tangible targets for process improvement. Namely, the “Fea-
ture/Function correctness” defect type is so general that far too many of the defects
are of this type. In addition, “Feature completeness” type is often impossible to dis-
tinguish from the defect type “Function/Feature correctness”. When the defect has
been entered to the database it cannot often be known whether the feature causing a
defect has been properly completed or incorrectly coded. Further, a “Functional case
completeness” defect is quite difficult to identify from the defect data.

To avoid the problems stated above and to better identify the problem areas of the
processes we defined a more detailed functional defect classification in which the
defect type “Feature/Function correctness” is refined in more detail. We applied our
scheme for one software company’s functional defect data and received a more diver-
sified defect distribution. Based on the functional defect analysis, practical process
improvement suggestions could be provided. It was suggested that the company
should conduct code inspections to identify simple errors earlier. In addition, they
should stress the importance on unit testing to the programmers.

Further, the results of the functional defect data classification can be utilized in
making decisions on whether testing should be automated. It is important for the test
team to manage automated testing expectations and to outline the potential benefits of
automated testing [14]. Overall, the functional defect analysis can be used in justifica-
tion when more resources for verification and validation processes are required.

7 Conclusion

In this paper we have presented how functional defect classification can be applied as
an input for process improvement. A functional defect classification scheme is pre-
sented and applied for one software company’s defect data (1740 functional defects).
Based on the results of the defect analysis, process improvement suggestions are pro-
vided. Applying our scheme, the problems areas of the development and testing
processes can be identified and testing can be focused on certain major issues. In ad-
dition, process improvement actions can be targeted to the areas identified based on
the defect data classification.

192 T. Toroi, A. Raninen, and H. Vainio

Our scheme is an initial version. Due to promising results reached applying it to
one company’s data we are currently validating it via applying it to additional compa-
nies’ defect databases and collecting feedback from the companies.

Acknowledgements. This research was funded by the Finnish Funding Agency for
Technology and Innovation (Tekes) with grant 70030/10 for METRI (Metrics Based
Failure Prevention in Software Engineering) project and supported, in part, by
Science Foundation Ireland grant 03/CE2/I303 1 to Lero - the Irish Software Engi-
neering Research Centre (www.lero.ie).

References

1. Vinter, O.: Experience-Based Approaches to Process Improvement. In: Proceedings of the
13th International Software Quality Week, San Francisco, USA (2000)

2. Grady, R.B.: Practical software metrics for project management and process improvement.
Prentice Hall, New Jersey (1992)

3. Fredericks, M., Basili, V.: Using Defect Tracking and Analysis to Improve Software Qual-
ity. DoD Data & Analysis Center for Software (DACS) (1998)

4. El Emam, K., Wieczorek, I.: The repeatability of code defect classifications. In: Proceedings
of the Ninth International Symposium on Software Reliability Engineering, pp. 322–333
(1998)

5. Bhandari, I., Halliday, M.J., Chaar, J., Chillarege, R., Jones, K., Atkinson, J.S., Lepori-
Costello, C., Jasper, P.Y., Tarver, E.D., Lewis, C.C., Yonezawa, M.: In-process improve-
ment through defect data interpretation. IBM Systems Journal 33(1), 182–214 (1994)

6. Freimut, B.: Developing and using defect classification schemes. Fraunhofer IESE IESE-
Report No. 72 (2001)

7. IEEE standard classification for software anomalies. IEEE Std 1044-2009 (Revision of
IEEE Std 1044-1993), pp. C1–C15, 7 (2010)

8. Chillarege, R., Bhandari, I., Chaar, J., Halliday, M., Moebus, D., Ray, B., Wong, M.-Y.:
Orthogonal defect classification – a concept for in-process measurements. IEEE Transac-
tions on Software Engineering 18(11), 943–956 (1992)

9. Beizer, B.: Software Testing Techniques. International Thomson Computer Press (1990)
10. Humphrey, W.: A discipline for software engineering. Addison-Wesley (2007)
11. Raninen, A., Toroi, T., Vainio, H., Ahonen, J.J.: Defect Data Analysis as Input for Soft-

ware Process Improvement. In: TBP 13th International Conference on Product-Focused
Software Development and Process Improvement, PROFES 2012 (2012)

12. Cockburn, A., Williams, L.: The Costs and Benefits of Pair Programming. In: Succi, G.,
Marchesi, M. (eds.) Extreme Programming Examined, pp. 223–243 (2001)

13. Gilb, T., Graham, D.: Software inspection. Addison-Wesley, Great Britain (1993)
14. Dustin, E., Rashka, J., Paul, J.: Automated Software Testing: Introduction, Management,

and Performance. Addison-Wesley (1999)

	Using Functional Defect Analysis as an Input for Software Process Improvement: Initial Results
	Introduction
	Research Setting
	Functional Defect Classification
	General Defect Distribution Scheme
	Beizer’s Taxonomy for the Functional Defects
	Improved Functional Defect Classification Scheme

	Applying Functional Defect Analysis in Process Improvement
	General Defect Distribution
	Functional Defects Classified According to Beizer’s Taxonomy
	Functional Defects Classified According to Our Own Defect Scheme
	Further Development of the Functional Defect Scheme

	Process Improvement Suggestions Based on Functional Defect Data Analysis
	Discussion
	Conclusion
	References

