

Lecture Notes in Artificial Intelligence 7175

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Michael Rosner Norbert E. Fuchs (Eds.)

Controlled
Natural Language

Second International Workshop, CNL 2010
Marettimo Island, Italy, September 13-15, 2010
Revised Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Michael Rosner
University of Malta
Department of Intelligent Computer Systems
Msida, Malta
E-mail: mike.rosner@um.edu.mt

Norbert E. Fuchs
University of Zurich
Department of Informatics
and Institute of Computational Linguistics
Zurich, Switzerland
E-mail: fuchs@ifi.uzh.ch

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-31174-1 e-ISBN 978-3-642-31175-8
DOI 10.1007/978-3-642-31175-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012939779

CR Subject Classification (1998): F.4.3, I.2.4, I.2.7, F.4, I.2, J.1, J.5, H.3, H.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The idea of holding a second workshop on Controlled Natural Language (CNL
2010) was conceived at the end of the first workshop held in 2009, and put into
practice a few months later when Norbert Fuchs asked for my collaboration. After
forming a programme committee, a call for submissions of extended abstracts
was sent out in April 2010. We decided that given the relatively young and
fluid status of Controlled Natural Languages (CNLs) as a discipline, it would
be unwise to focus on any one topic and so the call was oriented towards broad
coverage of the field, stressing theoretical and practical aspects of CNLs, relations
to other knowledge representation languages, tool support, and applications.

Altogether 17 extended abstracts were submitted, of which the programme
committee accepted 12. In contrast and in addition to the 2009 workshop, the
programme included four tutorials that were intended to attract students with-
out extensive experience in the area. These were:

• Rolf Schwitter, Controlled Natural Languages for Knowledge Representation
• Tobias Kuhn, An Introduction to AceWiki
• Aarne Ranta, Multilingual Controlled Language Packages: Implementation

and Applications
• Norbert E. Fuchs, First-Order Reasoning for Attempto Controlled English

The workshop took place 13–15 September 2010, once again at the magical venue
of Marettimo Island, where a collection of researchers that included a number of
PhD students successfully recreated that excellent combination of presentations,
discussions, recreation, and Mediterranean lifestyle that characterised the first
workshop.

Revised versions of the originally submitted abstracts were published in 2010
as a pre-proceedings (M. Rosner and N. E. Fuchs, editors. CNL 2010 Sec-
ond Workshop on Controlled Natural Languages, volume 622 of CEUR Work-
shop Proceedings, September 2010. http://ceur-ws.org/Vol-622/). Authors of
the original 12 papers were then asked to submit extended versions of their orig-
inal revised abstracts for a definitive version of the proceedings. Tutorial authors
were also invited to contribute. The result is the present volume containing ten
extended papers.

As programme co-chair I would like to take the opportunity to thank the
many people without whose support realisation of the workshop and creation
of the proceedings would not have been possible. First and foremost I have to
thank Norbert Fuchs for his inspiration, his unwavering support and generosity,
and also for his excellent sense of minimal but efficient administration which
enabled us to organise such an event at close to zero cost. He also took more
than his fair share of the burden with respect to the numerous communications,
written and spoken, that have led to the completion of this volume.

VI Preface

Secondly, I thank the members of the programme committee who carefully
reviewed all submissions: Johan Bos (University of Groningen, The Netherlands),
Peter E. Clark (The Boeing Company, Seattle, USA), Danica Damljanovic
(University of Sheffield, UK), Norbert E. Fuchs (University of Zurich, Switzer-
land), Albert Gatt (University of Malta, Malta), Alfio Gliozzo (CNR-ISTC
Rome, Italy), Siegfried Handschuh (DERI, University of Galway, Ireland),
Stefan Hoefler (University of Zurich, Switzerland), Kaarel Kaljurand (University
of Zurich, Switzerland), Peter Koepke (University of Bonn, Germany), Tobias
Kuhn (University of Malta, Malta), Gordon Pace (University of Malta, Malta),
Stephen Pulman (University of Oxford, UK), Aarne Ranta (Chalmers University
of Technology, Sweden), Uta Schwertel (Information Multimedia Communication
AG, Saarbrücken, Germany), Rolf Schwitter (Macquarie University, Australia),
Donia Scott (University of Sussex, UK), Harold Somers (Dublin City Univer-
sity, Ireland), Geoff Sutcliffe (University of Miami, USA), Silvie Spreeuwenberg
(LibRT B.V., Amsterdam, The Netherlands), Yorick Wilks (University of
Sheffield, UK), Adam Wyner (University of London, UK).

Thirdly, I have already alluded to the wonderful physical environment in
which the first two CNL workshops were held. The superb, invisible organi-
sation behind the breakfasts, coffee breaks, and banquet were a testimony to
the dedication of the people of the Marettimo Residence (Fausto and Federica
Goppo, Giacomo Sardina, Vito Torrente, Teresa Vaccaro) for hosting the work-
shop. I must also mention the crucial role of Vito Vaccaro and L’Associazione
Culturale, Sportiva, Ricreativa, Turistica Marettimo for generous support. To
all of these local people, and to those fishermen whose names we do not know
but who embody the spirit of the Mediterranean, tante grazie per tutto.

Finally, I am delighted to announce that Tobias Kuhn has taken up the gaunt-
let of chairing the third workshop on Controlled Natural Languages—CNL2012.
This will be held at the University of Zurich in August 2012.

January 2012 Mike Rosner
Norbert E. Fuchs

Organisation

Programme Committee

Johan Bos University of Groningen, The Netherlands
Peter Clark The Boeing Company
Danica Damljanovic University of Sheffield, UK
Norbert E. Fuchs University of Zurich, Switzerland
Albert Gatt University of Malta
Alfio Gliozzo CNR - ISTC, Italy
Siegfried Handschuh DERI, Galway, Ireland
Stefan Hoefler University of Zurich, Switzerland
Kaarel Kaljurand University of Zurich, Switzerland
Peter Koepke University of Bonn, Germany
Tobias Kuhn University of Zurich, Switzerland
Gordon Pace University of Malta
Stephen Pulman Oxford University, UK
Aarne Ranta Chalmers University of Technology, Sweden
Mike Rosner University of Malta
Uta Schwertel IMC, Saarbrücken, Germany
Rolf Schwitter Macquarie University, Australia
Donia Scott University of Sussex, UK
Harold Somers Dublin City University, Ireland
Silvie Spreeuwenberg LibRT B.V., Amsterdam, The Netherlands
Geoff Sutcliffe University of Miami, USA
Yorick Wilks University of Sheffield, UK
Adam Wyner University College London, UK

Additional Reviewers

Angelov, Krasimir
Dantuluri, Pradeep
Davis, Brian

Table of Contents

Typeful Ontologies with Direct Multilingual Verbalization 1
Krasimir Angelov and Ramona Enache

Controlling Ambiguities in Legislative Language . 21
Alexandra Bünzli and Stefan Höfler

Interpreting Plurals in the Naproche CNL . 43
Marcos Cramer and Bernhard Schröder

Engineering a Controlled Natural Language into Semantic
MediaWiki . 53

Pradeep Dantuluri, Brian Davis, Pierre Ludwick, and
Siegfried Handschuh

First-Order Reasoning for Attempto Controlled English 73
Norbert E. Fuchs

Codeco: A Practical Notation for Controlled English Grammars in
Predictive Editors . 95

Tobias Kuhn

Controlled Language for Everyday Use: The MOLTO Phrasebook 115
Aarne Ranta, Ramona Enache, and Grégoire Détrez

Controlled Natural Language in a Game for Legal Assistance 137
John J. Camilleri, Gordon J. Pace, and Michael Rosner

Working with Events and States in PENG Light . 154
Rolf Schwitter

Using CNL Techniques and Pattern Sentences to Involve Domain
Experts in Modeling . 175

Silvie Spreeuwenberg, Jeroen van Grondelle, Ronald Heller, and
Gartjan Grijzen

Author Index . 195

Typeful Ontologies with Direct Multilingual
Verbalization

Krasimir Angelov and Ramona Enache

Department of Computer Science and Engineering,
Chalmers University of Technology and University of Gothenburg

{krasimir,ramona.enache}@chalmers.se

Abstract. We have developed a methodology for representation of ontologies in
a strictly typed language with dependent types. The methodology is supported by
an experiment where we translated SUMO (Suggested Upper-Merged Ontology)
to GF (Grammatical Framework). The representation of SUMO in GF preserves
the expressivity of the original ontology, adding to this the advantages of a type
system and built-in support for natural language generation. SUMO is the largest
open-source ontology describing over 10,000 concepts and the relations between
them, along with a number of first-order axioms, which are further on used in
performing automated reasoning on the ontology. GF is a type-theoretical gram-
mar formalism mainly used for natural language applications. Through the logical
framework that it incorporates, GF allows a consistent ontology representation,
and thanks to its grammatical features the ontology is directly verbalized in a
number of controlled natural languages.

Keywords: ontologies, type theory, knowledge representation, automated rea-
soning, natural language generation.

1 Introduction

The constantly growing amount of formal knowledge has brought about the necessity
of a coherent and unambiguous representation of ontologies which can further be pro-
cessed automatically. As a consequence, a number of ontology description languages
like KIF [1], OWL [2], CycL [3] and Gellish [4] has emerged. However, the focus
in all these languages is on the knowledge representation and consequently, they are
mainly descriptive, leaving tasks such as consistency checking or natural language gen-
eration to external tools. Moreover, most languages are based on some kind of untyped
first-order logic with predicates which occasionally allows higher-order constructions.
They aim to maximize the expressivity with the cost of allowing set theoretical para-
doxes to be expressed (Section 3). Also, because of the lack of a type system, one can
easily extend such ontologies with axioms which are not well-formed. Although type
information in these languages is often provided in the form of logical assertions, the
validation of correctness is left to a reasoner which may or may not be able to find all
problems. Even with a complete and decidable reasoner, if the ontological language
has the open-world assumption, a potential problem might be left undiscovered, if it

M. Rosner and N.E. Fuchs (Eds.): CNL 2010, LNAI 7175, pp. 1–20, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 K. Angelov and R. Enache

is not stated explicitly that certain classes in the ontology are disjoint. This is a prob-
lem when dealing with large coverage ontologies. Or, for example, a predicate could be
applied to an argument of the wrong type, or a small change in the signature of a func-
tion could lead to the update of all its occurrences. If all these checks are manual, then
this is a resource-consuming and error-prone process. In contrast, database systems are
equipped with rigid database schemas which ensure that the information is always kept
consistent. The programming languages community was also dealing with that from the
very beginning of computer science and has developed many different type systems.

We have developed a methodology for encoding of ontologies in strictly typed lan-
guage based on type theory with dependent types. As a proof-of-concept, an experiment
with SUMO [5], the largest open-source ontology available today. The implementation
language of choice is GF [6]. The result is a controlled language which could be used to
formulate new axioms in SUMO or to render existing axioms in natural language. Fur-
ther on, we analyzed the difference of expressivity compared to the original ontology
and also the other benefits that one can get from encoding an ontology in GF.

SUMO consists of 2 upper-level ontologies (Merge, Mid-level-ontology) describing
general concepts, and 29 domain-specific ontologies for finances (FinancialOntology),
geographical concepts (Geography), and others. The ontology is written in a dialect
of KIF (Knowledge Interchange Format [1]), called SUO-KIF, which permits the dec-
laration of concepts in a human-readable form, featuring support for expressing first-
order predicate calculus constructions. However, due to the modelling of the hierarchy
in SUMO, which treats functions and relations as ordinary concepts, it is possible to
express second-order logic constructions in SUO-KIF, such as quantification over func-
tions and relations.

The SUMO ontology has natural language translations for the Merge module in 12
languages. The translations are based on a set of string templates, which are combined
by concatenation. They are hand-written and cover the ontology partially. However,
the templates are not expressive enough to handle various natural language phenomena
such as case and gender agreement or phonetic mutations. We will show how these
problems were solved by using GF.

GF is a type-theoretical grammar formalism which distinguishes between abstract
and concrete syntax. The abstract syntax is a logical framework based on Martin-
Löf’s type theory [7], in which the application domain can be described in an abstract
language-neutral manner. The concrete syntax is a mapping of the abstract syntax into
some controlled natural language. Since it is possible to have multiple concrete syn-
taxes, linked to the same abstract syntax, the abstract syntax acts as a semantic interlin-
gua which allows simultaneous translation into multiple controlled languages.

We consider the abstract syntax of GF as a kind of ontology description language
and translate some of the axioms from SUMO to statements in the abstract syntax of a
grammar. Other axioms, those related to the natural language generation from SUMO,
are used to generate the concrete syntax. The rest of the axioms are just converted to
abstract syntax trees and used in the automated theorem prover for reasoning.

The development of a grammar for a new controlled natural language from scratch
would involve an ad hoc implementation for low-level linguistic details such as word

Typeful Ontologies with Direct Multilingual Verbalization 3

order, agreement, etc. This is simplified by using the resource grammar library [8] de-
veloped in GF. The library provides an abstract syntax for common general-purpose
natural language constructions and concrete syntaxes corresponding to 16 languages.
The usage of the library ensures that the rendering is always syntactically correct and
reduces the development effort for new application grammars. The resource grammar
library was used for the generation of the concrete syntax of SUMO.

Another advantage of GF is the portability of the grammars, via PGF [9] – a runtime
binary format, which can be used by applications written in Haskell, Java, JavaScript,
C and Python - through the GF runtime system. In this way, the GF grammars can be
embedded in user applications. GF has been used in various large-scale projects such as
the dialogue system research project TALK [10], the educational project WebALT [11],
the verification tool KeY [12], and the project in multilingual translation MOLTO [13].

Regarding the automated reasoning and the checking for consistency [14], SUMO
was mapped to TPTP-FOF [15], a standard untyped first-order logic language, which
is accepted by most theorem provers. There is an annual competition held during the
premier conference in automated deduction, CADE1, which awards prizes for finding
inconsistencies in one of the two upper ontologies from SUMO, based on these map-
pings2. A similar translation from SUMO-GF to TPTP is provided. The translated ontol-
ogy is checked for consistency and is used for making inferences on the abstract syntax
trees or natural language, with the aid of an automated theorem prover (Section 6).

SUMO is also associated with a knowledge engineering environment – Sigma [16],
which can be used for intelligent browsing of the ontology, optimized natural language
generation and automated reasoning [17]. An alternative system with similar capabili-
ties is the KSMSA browser3. The web user interface of GF also evolved in the direction
of ontology browsing. Since his interface is still under development, we will give an
overview of it in Section 7.

From the total number of ontologies that SUMO provides, 17 were translated into
GF. These are: Merge and Mid-level-ontology – the upper ontologies and 12 domain on-
tologies. The remaining ontologies can also be ported to GF using the same techniques,
in a semi-automatic way.

The advantages of representing the SUMO ontology in GF are the possibility to
type-check the axioms and the definitions at an early stage and also to generate natu-
ral language of a higher syntactical quality. The translation to GF, is also an in-depth
analysis of SUMO and the benefits that a type system in general, and GF in particular,
could bring to ontology development.

2 The Abstract Syntax of SUMO-GF

The two languages SUO-KIF and GF have been created for different purposes and
have evolved in different ways. It is not surprising that the translation of SUMO from
SUO-KIF to an abstract syntax in GF is not trivial. Still we will show that the different

1 http://www.cadeinc.org/
2 http://www.cs.miami.edu/~tptp/Challenges/SUMOChallenge/
3 http://virtual.cvut.cz/ksmsaWeb/main

http://www.cadeinc.org/
http://www.cs.miami.edu/~tptp/Challenges/SUMOChallenge/
http://virtual.cvut.cz/ksmsaWeb/main

4 K. Angelov and R. Enache

ontological concepts - from classes and taxonomical relations to complex logical ax-
ioms have natural representations in GF.

2.1 The Taxonomy

The most central component of every ontology is the taxonomy of classes, and this is
the starting point from where we begin the ontology modelling in GF.

Knowledge representation languages like OWL, KIF and CycL do not set a sharp
border between classes and instances. In fact, the classes are just instances of one special
class which is the class of all classes. In SUMO the special class is called Class and there
is a predicate subclass which is used to assert the taxonomical relations. For example,
the axiom:

(subclass Human Hominid) (1)

asserts that the class Human is a subclass of Hominid. Furthermore, there is an ax-
iom stating that everything that is a subclass of Entity is also an instance of Class and
viceversa:

(<=> (instance ?CLASS Class)

(subclass ?CLASS Entity))

Since the subclass relation is transitive and Entity is the most general class, from the
axiom:

(subclass Class SetOrClass)

it follows that Class is itself an instance of Class:

(instance Class Class)

This kind of cyclic relations were proven to be inconsistent because they lead to differ-
ent kinds of paradoxes (Section 3). The other two popular languages OWL and CycL are
not exceptions and similar examples could be constructed in them as well. This seems
to be a common mistake because the first version of Martin-Löf’s [18] type theory suf-
fered from the same inconsistency which was first demonstrated with Girard’s paradox
[19]. The problem was resolved in the later versions of the theory [7] by introducing the
concepts of small and big types. In the context of SUMO, this would be translated as a
restriction which states that Class cannot be an instance of Class because it is too big to
fit as an instance of itself. The abstract syntax of GF is a logical framework consistent
with the modern type theory, so if we want to model ontologies like SUMO in GF we
have to resolve the conflict.

GF distinguishes between values and types. Every value belongs to some type but
none of the types could be a value as well, so it is not possible for a type to belong to
another type. The solution for the cyclic relation in SUMO is to declare that Class is a
type:

cat Class ;

Typeful Ontologies with Direct Multilingual Verbalization 5

Now the classes will be values of type Class. For instance:

fun Entity : Class ;

Hominid : Class ;

Human : Class ;

Essentially, we cut the class Class from the common hierarchy and move it to another
level (also known as universe in type theory).

Once we have a way to define classes in the abstract syntax we could also define the
taxonomy. In SUMO, the taxonomy is encoded by using the subclass predicate. In GF,
we can translate subclass either as a function or as a type. Since we want to be able to
statically check the axioms for well-formedness we choose to represent the predicate as
a type:

cat SubClass Class Class ;

then the human-hominid relation could be asserted as:

fun Human_Class : SubClass Human Hominid ; (2)

Here, the SubClass type is an example of a dependent type. The dependent types are not
just simple identifiers, but have in addition indices of some type. In this case, SubClass
is a type indexed by two values of type Class. In the case of Human_Class those are
Human and Hominid.

Note that while in the original SUMO axiom (1) we had just a logical assertion, in GF
we have to assign an unique identifier (Human_Class) to it. In type theory this is deeply
rooted in Curry—Howard’s correspondence, but it is interesting that a similar kind of
“labeling” of assertions is now emerging in OWL via the Named Graphs standard [20].

Semantically the subclass predicate in SUMO encodes the reflexive transitive closure
of the taxonomic relation, while the immediate subclass relation is encoded using the
predicate immediateSubclass. To take this into account we define one more type:

cat Inherits Class Class ;

Strictly speaking the SubClass type is the translation of the predicate immediateSub-
class and Inherits is the translation of subclass. However we choose to read simple sub-
class axioms such as (1) as assertions for immediate subclassing and thus the conversion
tool will generate the SubClass type in GF. The reason for this is that this would let us
do some reasoning with the ontology by using only the tools that are already available
in GF. Our intuition is that this still preserves the principal information from SUMO.

From the atomic SubClass axioms we can easily infer the reflexive-transitive closure
Inherits. All that is needed is to add two inference rules. The inference rules in type
theory are nothing else but functions with some specific type signatures:

fun inhz : (c : Class) → Inherits c c;

inhs : (c1, c2, c3 : Class) → SubClass c1 c2

→ Inherits c2 c3 → Inherits c1 c3;

6 K. Angelov and R. Enache

The type of function inhz states that every class c inherits itself, i.e. this is the reflexivity
axiom. The second function inhs expresses the transitivity over SubClass, i.e. if c1 is a
subclass of c2, and c2 inherits c3 then c1 inherits c3.

The inference rules can be applied using the inference engine built into GF. For
example, from the GF shell the user can use the gt command to generate an expression
of a given type:

SUMO> gt -cat="Inherits Human Hominid"
(inhs Human Hominid Hominid Human_Class (inhz Hominid))

In type theory the types are seen as logical propositions and the existence of a value of
a given type is interpreted as an evidence for the validity of the proposition. The value
is also a constructive recipe for building the proof from the axioms in the theory. In
Section 2.4 we will use it to generate explanations in natural language for the proofs.

Some of the classes in SUMO have two or more superclasses. For instance Human
is both a CognitiveAgent and a Hominid. In other situations it is necessary to quantify
over instances of the union of two or more classes. For that purpose we added two of
the primitive operations from description logic – intersection and union of classes:

fun both : Class → Class → Class ; – intersection

either : Class → Class → Class ; – union

With the help of these primitives, the full definition of the class Human is:

fun Human_Class : SubClass Human (both CognitiveAgent Hominid); (3)

The reasoning with these two new primitives can be axiomatized with three new infer-
ence rules:

fun bothL : (c1, c2 : Class) → SubClass (both c1 c2) c1;

bothR : (c1, c2 : Class) → SubClass (both c1 c2) c2;

eitherC : (c1, c2, c3 : Class) →
SubClass c1 c3 → SubClass c2 c3 → SubClass (either c1 c2) c3;

The first two state that the intersection class of any two classes c1 and c2 is a subclass
of both c1 (function bothL) and c2 (function bothR). The third function (eitherC) states
that if two classes c1 and c2 are both subclasses of c3, then their union class is also a
subclass of c3. Now, with the extended definition for Human (3), the proof that every
Human is a kind of Hominid will use the function bothR:

SUMO> gt -cat="Inherits Human Hominid"
(inhs Human (both CognitiveAgent Hominid) Hominid Human_Class
(inhs (both CognitiveAgent Hominid) Hominid Hominid
(bothR CognitiveAgent Hominid) (inhz Hominid)))

At least in some cases, the criterion which distinguishes the members of a given class
from the super class is formally specified. In this case the criterion is specified in SUMO
as an axiom. In our encoding we found it handy to use an encoding which uses the

Typeful Ontologies with Direct Multilingual Verbalization 7

KappaFn function. KappaFn is a function in SUMO which takes a logical formula and
returns the class of all instances for which the formula is valid. The type of the function
in GF is:

fun KappaFn : (c : Class) → (Var c → Formula) → Class ; (4)

It takes as arguments the superclass c and the logical formula and returns the subclass.
The type (Var c → Formula) indicates that the argument itself is a function which
takes a variable of class c and returns a formula. Every instance of c for which the
formula is true is also a member of the new subclass. Using KappaFn it is trivial to
define the class NegativeRealNumber as a subclass of RealNumber:

fun NegativeRealNumber : Class ;

def NegativeRealNumber = KappaFn RealNumber (\N → lessThan . . .);

Again for the inference of the transitive closure to work we need an inference rule:

fun kappa : (c : Class) → (p : Var c → Formula) →
SubClass (KappaFn c p) c;

which defines the semantics of KappaFn, i.e. that the new class is a subclass of the
argument of the function.

2.2 Instances

Once we have the taxonomy of the ontology we can proceed with adding some in-
stances. Similarly with the classes we will distinguish between direct instances of a
class and generalized instances. The instances will be defined as values of one of the
following types:

cat El Class ;

Ind Class ;

The type Ind c is assigned to all instances with principal class c, while El c is the
type of all direct instances of c together with the instances of its subclasses. There is an
injection between this two types:

fun el : (c1, c2 : Class) → Inherits c1 c2 → Ind c1 → El c2;

The function el injects an instance with principal class c1 into the type of the gener-
alized instances of c2, if there is an evidence that c1 is a subclass of c2 (the argument
Inherits c1 c2). For example in the CountriesAndRegions module of SUMO there is an
instance for the city of London:

fun LondonUnitedKingdom : Ind EuropeanCity ;

8 K. Angelov and R. Enache

The class EuropeanCity is a subclass of City so it is possible to do the coercion. The
following expression is the injection of LondonUnitedKingdom into the generalized
instances of City:

el EuropeanCity City

(inhs EuropeanCity City City EuropeanCity_Class (inhz City))

LondonUnitedKingdom

2.3 Functions, Predicates and Logical Formulas

In SUMO, all functions and predicates are represented as instances of a descendant of
Relation, and the expected classes of the arguments and the result are stated as axioms
in the ontology. For example the definition of the AbsoluteValueFn function is:

(instance AbsoluteValueFn UnaryFunction)

(domain AbsoluteValueFn 1 RealNumber)

(range AbsoluteValueFn NonnegativeRealNumber)

Here the predicates domain and range specify the class of the first argument and the
class of the returned value. The class of AbsoluteValueFn itself is UnaryFunction which
encodes the fact that this is a function with only one argument. From this SUMO axioms
we generate a type signature in GF:

fun AbsoluteValueFn : El RealNumber → Ind NonnegativeRealNumber ;

Note that with our implementation we impose the closed world assumption. The ar-
gument of AbsoluteValueFn is declared of type El RealNumber , and the only way to
construct a value of that type is to combine an instance of some subclass c of RealNum-
ber with a proof object of type:

Inherits c RealNumber

If this object cannot be constructed from the current state of the knowledge base then
the application of AbsoluteValueFn is not possible.

The predicates are declared in a way very similar to the functions. The only differ-
ence is that while the functions return some instance, the predicates are used to create
logical formulas. In the original ontology, there is already a class called Formula which
represents the class of all well-formed SUO-KIF formulas. In principle the predicates
could return Ind Formula but there are two reasons for which we choose not to do that.
The first reason is that if Formula is kept as a class then this would allow quantification
over logical formulas which is not supported in first-order logic. The second reason is
that when the logical axioms are translated to natural language then Formula will cor-
respond syntactically to a sentence while Ind corresponds to a noun phrase, and this
would make the verbalization of the ontology difficult. Instead we declared Formula as
a type:

cat Formula;

Typeful Ontologies with Direct Multilingual Verbalization 9

The last piece that is needed to be able to write logical axioms in GF is to add the
standard logical quantifiers and connectives:

cat Var Class ;

fun var : (c1, c2 : Class) → Inherits c1 c2 → Var c1 → El c2;

fun exists : (c : Class) → (Var c → Formula) → Formula;

forall : (c : Class) → (Var c → Formula) → Formula;

fun not : Formula → Formula;

and , or , impl , equiv : Formula → Formula → Formula;

The only specific thing here is how the variables are introduced by the quantifiers.
The first argument of the quantifier (function exists or forall) is the class over which
the function quantifies. The second argument is the formula over which it scopes. The
quantified variable itself is a high-order argument of type Var c. This type plays a
role similar to the role of El . While the former denotes some known instance, for Var
we neither know the instance, nor its principal class. This is reflected for example in
natural language generation where the grammatical gender is deduced from the class of
the variable instead of the instance itself. This special treatment of variables allows the
generation of more fluent natural language. Still the var function allows the coercion
from type Var to El.

With the usage of quantifiers and connectives all axioms from SUMO, which were
not already converted to type signatures in GF, can be converted to abstract syntax trees.
For example the SUO-KIF formula:

(=> (instance ?P Wading)

(exists (?W) (and (instance ?W BodyOfWater) (located ?P ?W))))

is converted to the following abstract syntax tree in GF:

forall Wading (\P → exists BodyOfWater (\W → located (var P) (var W)))

Note that this is more than just a syntactic conversion because the quantifiers in GF ex-
pect explicit class information while in SUMO this is encoded with instance predicates.

2.4 Proofs in Natural Language

As it was mentioned in Section 2.1, the proofs in GF are explicitly represented as ab-
stract syntax trees. Since the abstract syntax trees could also have linearizations in the
concrete syntax, it is possible to render the proofs in the same controlled natural lan-
guage encoding the ontology. For example the following command in the GF shell:

SUMO> gt -cat="Inherits Human Primate" | l -lang=SUMOEng

will derive a proof for Inherits Human Primate and will linearize the proof in English.
The text contains some HTML tags, so when it is rendered in a web browser it looks
like a bullet list:

10 K. Angelov and R. Enache

– human is a subclass of both cognitive agent and hominid
– hominid is a subclass of primate

The natural language rendering can be used to generate end-user explanations for the
inferences in the ontology.

3 Russell’s Paradox

Russell’s paradox [21] was first discovered in naïve set theory. It stems from the as-
sumption that for every logical proposition there is a set of entities which satisfy the
proposition. This was shown to be inconsistent with the example of the set of all sets
which are not members of themselves. Such a set cannot exist because then it will be si-
multaneously a member and not a member of itself. The design of SUMO follows naïve
set theory and the KappaFn function is exactly the way to build sets from propositions.
Using the function, the paradox can be expressed as:

(instance (KappaFn ”x” (not (instance x x)))

(KappaFn ”x” (not (instance x x))))

The reasoning with SUMO is sound only because the KappaFn function is not axioma-
tised and the automated theorem provers cannot make any inferences.

The paradox is principally avoided in the GF translation by first discarding the pred-
icate instance and second by making the class Class into a type. This results into a
completely different signature for KappaFn (4) which would make the above statement
incorrect even if we still had the predicate instance.

4 Verbalization

Apart from the advantages that the GF type system provides, for the natural language
generation the benefits of using GF are considerably more substantial. The present work
deals with the generation of natural language for the two upper ontologies - Merge
and Mid-level-ontology in 3 languages: English, Romanian and French, as a proof-of-
concept for the capabilities of GF to host a controlled language for ontologies.

For English, about 7,000 concepts and relations have been translated to natural lan-
guage. For Romanian and French, only a small number of examples, that illustrate the
advantages of GF over a template-based generation, were built. This is due to the fact
that there are no large coverage lexicons for those languages in GF yet.

A typical SUMO template is the predicate age expressed in English:

(format en age "the &%age of %1 is %n %2")

where %n will be replaced with "not" for the negation of the predicate, and with the
empty string for the affirmative form. The structure of the templates is rather simple,
and works reasonably just for morphologically simple languages, such as English. The
templates do not take into account the presence of declension forms for nouns, of the

Typeful Ontologies with Direct Multilingual Verbalization 11

gender agreement with verbs and prepositions or the various moods of a sentence, de-
pending on its usage.

This solution is not compositional and leads to incorrect constructions in languages
with a rich morphology such as Romanian. For example the verbalization of "the inverse
of the square root of X" in Romanian would require the combination of two templates
and would render: inversa lui rădăcina pătrată a lui X, which is considerably different
from the correct form - inversa rădăcinii pătrate a lui X. One reason is that the trans-
lation of "square root" should be in Genitive case, whereas the template only has the
Nominative one, and in Romanian the two forms are different. The second is the matter
of the possessive preposition, which in Romanian needs to agree with its object. The
template provides the masculine form as default, but rădăcina pătrată a lui X is fem-
inine. For French, although nouns do not have multiple declension forms, there is an
agreement in gender and number between nouns and other parts of speech that deter-
mines them, which cannot be handled by the SUMO templates. In addition to this, for
French there is also the problem of phonetic mutations, such as for the usage of a verb
with negative polarity. In case that the verb starts with a vowel, the form of the particles
used to express negation changes, and this is a mutation that SUMO doesn’t handle, be-
cause the templates provide only one value for the particles. It goes without saying that
the French and Romanian resource grammars offer solutions for these problems, so that
the natural language generation in SUMO-GF is syntactically correct for compositions
of patterns also.

Moreover, the feature that shows best the advantage of a typed system in general, and
of GF, in particular, over sets of templates is the assignment of a gender to the variables,
according to the gender of their type, for languages that have gender agreement [22].
This is a very common feature for Romance and Slavic languages, where there is a
gender differentiation. The SUMO templates simply assume that all the variables have
masculine gender, while in GF, the wrapper function var, that has access to the class of
the variable also, would assign a proper gender to the variable. Since variables can only
be used after being wrapped with var, they will have a correct gender for any usage
in a quantified formula. This behaviour shows the importance of separating between
variables and instances of a class. If Var and Ind or El would have been unified in
the same category, we could not use a wrapper function to change the gender, since we
might accidentally change the gender of an ordinary instance.

An example of how the gender variation feature works in the current implementation
is the GF axiom:

forall Animal (\A → exists Animal (\B → smaller (varB) (varA)))

which would be linearized in French as:

pour chaque animal A il existe un animal B tel que B est plus petit que A

where animal is of masculine gender in French. For a type of feminine gender, such as
house we would have that:

forall House (\A → exists House (\B → smaller (varB) (varA)))

which would be linearized in French as:

pour chaque maison A il existe une maison B telle que B est plus petite que A

12 K. Angelov and R. Enache

The axioms are not taken from SUMO, but they are just two examples that illustrate
this linguistic feature, and would not probably hold in general, as the set of animals and
the set of houses are finite, and hence noetherian.

The examples, although few, show the advantages of GF in developing a set of mul-
tilingual aligned syntactically-correct controlled languages for describing ontologies.

Besides axioms, we can also generate natural language for SubClass, Ind decla-
rations and higher-order functions. For example:

beverage is a subclass of food
blue is an instance of primary color
"x is equal to y" is an equivalence relation

Our work provides natural language generation in English for the two biggest modules
Merge and Mid-level-ontology and two domain specific: Elements - featuring chemical
substances and Mondial - featuring countries and cities of the world. As mentioned
before, a total of almost 7 000 objects and 500 relations from SUMO were verbalized.
This process is done automatically for objects and semi-automatically for relations, and
uses the GF resource grammar.

The automatic process takes advantage of the camel case representation of SUMO
concepts. For example, BodyOfWater will be rendered as ”body of water” and parsed by
GF as a noun phrase. Instances are parsed as GF noun phrases, while classes are parsed
as GF common nouns, which are similar to noun phrases, only that they have variable
number, gender and other morphological features. In this way, the representation of
BodyOfWater will also contain the plural form "bodies of water", which we can use for
generating natural language constructions. For functions and predicates the missing ar-
guments are replaced by some dummy variables and the procedure is semi-automatical,
using the original SUMO templates and hand-written verbalizations which are further
on parsed as noun phrases for functions and clauses with polarity for predicates. For
example, the binary predicate parent will be verbalized as "o1 is the parent of o2"
and parsed to a GF abstract syntax tree. This method allows generalizations, so the 2
negative forms are "o1 is not the parent of o2" and "o1 isn’t the parent of o2" are au-
tomatically obtained from this. For the two domain specific ontologies, the information
is extracted from the SUMO predicate name that gives the English verbalization of the
concepts. As a result, our approach renders verbalization of a large number of entries
from the ontology, with a high rate of automation, ensuring syntactical correctness of
the generated phrases. For example :

For every unique list LIST, every positive integer NUMBER2 and every positive inte-
ger NUMBER1, we have that if the element with number NUMBER1 in LIST is equal to
the element with number NUMBER2 in LIST, then NUMBER1 is equal to NUMBER2.

For the same axiom, the SUMO templates generate:

For all unique list ?LIST holds for all ?NUMBER1, ?NUMBER2 holds if ?NUM-
BER1th element of ?LIST is equal to ?NUMBER2th element of ?LIST, then ?NUMBER1
is equal to ?NUMBER2

Typeful Ontologies with Direct Multilingual Verbalization 13

The optimized natural language generation mechanism from the Sigma system would
render the axiom as:

* If a list is an instance of unique list
* then for all a positive integer and positive integer

◦ if positive integerth element of list is equal to positive integerth element of list
◦ then positive integer is equal to positive integer

Further optimizing of the code by anaphora generation and a list-like structure of the
arguments for better readibility is possible, like in the proof rendering.

5 Evaluation

During the translation of SUMO to GF, we discovered a number of small inconsis-
tencies in the original ontologies like mismatches between instances and classes, us-
age of undefined objects and usage of functions with a wrong number of arguments.
This represents almost 8% of the total number of axioms from SUMO and was deter-
mined automatically during the type-checking phase. In addition to this, we left out the
higher-order logic constructions such as quantifications on Formula or axioms with
higher-order functions.

However, there are some types of axioms which could not be ported to SUMO-
GF, such as the ones that use quantification over classes, negative type declarations
and axioms which use the predicates subclass, range or domain. In addition to
this, we mention the class of axioms which feature conditional type declarations. For
example:

(=> (and (instance ?DRINK Drinking)

(patient ?DRINK ?BEV))

(instance ?BEV ?Beverage))

The type declaration for BEV appears as a consequence of the fact that it is used in the
process of Drinking. The total number of axioms which are lost in translation is about
23%. Our observations suggests that those axioms could be paraphrased and incorpo-
rated in the type system but this would require manual work with every axiom.

6 Automated Reasoning in SUMO-GF

Since SUMO offers a generous amount of information in a first-order logic format,
it represents an excellent source for automated reasoning, especially in the context of
SUMO-GF where one can perform automated reasoning on natural language.

As mentioned before, the TPTP-FOF translations of the 2 upper SUMO ontologies
are used yearly in the ATP competition. We have shown already in Section 2 that a
limited kind of ontological reasoning is possible by using GF alone. Unfortunately, the
reasoner in GF is not as optimized as current state of the art theorem provers. However,
to take advantage of the tools that already exists, we translated the 17 SUMO-GF on-
tologies to TPTP-FOF, checked them for consistency and used them for solving small
inferences.

14 K. Angelov and R. Enache

Since TPTP is an untyped system, whereas GF is strongly typed, the information
about types needs to be reformulated, with the aid of an additional predicate hasType,
that resembles the original instance predicate from SUMO.

For subclasses, the translation reflects the possibility of coercing from the subclass
to the superclass:

fun Adjective_Class : SubClass Adjective Word ;

and would be translated to TPTP as:

fof(axMerge2, axiom, (![X]:
(hasType(type_Adjective, X)=>hasType(type_Word, X)))).

For instance declarations, we have a simpler translation pattern:

fun Flat : Ind ShapeAttribute;

will be translated to TPTP as:

fof(axMerge686, axiom,
hasType(type_ShapeAttribute, inst_Flat)).

A more commonly used approach for expressing typing declarations in first-order logic
is to create a predicate for each type, like:

type_ShapeAttribute (inst_Flat)

We did not choose this method, since the SUMO classes are not just used as types,
in typing declarations, but also as arguments for some functions. By using classes as
predicates, one couldn’t unify the two occurrences in first-order logic.

The functions that manipulate Formula objects, such as not, and, or, impl and equiv
have been translated into their corresponding first-order logic operators that are prede-
fined in TPTP: ∼, &, | and ⇒. For the both and either constructors, the built-in & and |
are used again:

fun Togo : Ind (both Country Nation);

will be translated to TPTP as:

fof(axmond72, axiom,
hasType(type_Country, inst_Togo) &

hasType(type_Nation, inst_Togo)).

As for the equality operator equal, the situation is more complicated. In SUMO, because
of the structure of the concepts, it could basically take any arguments, like classes, and
relations and instances. In GF the equal function would just take arguments of type
El Entity , so it would not be possible to test the equality of formulas, functions or
classes. In SUMO, equal is defined as an EquivalenceRelation, with some extra axioms,
for the various kinds of arguments that it might take. For instances, the axiom, that
verifies a property of equal objects:

(=> (equal ?THING1 ?THING2)

(forall (?CLASS)

(<=> (instance ?THING1?CLASS)

(instance ?THING2 ?CLASS))))

Typeful Ontologies with Direct Multilingual Verbalization 15

could not be translated to GF, as it contains a variable type declaration and quantification
over a class. Moreover, a more solid interpretation of equality would be using at least
a congruence relation, not just an equivalence one. SUMO does not have the concept
of congruence, while theorem provers that can process first-order logic with equality,
usually have specific mechanisms for dealing with the built-in equality from TPTP [23].
For these reasons, the translation from GF to TPTP, uses the default TPTP equality for
the equal function.

The existential and universal quantifiers from SUMO and GF, were translated as the
built-in quantifiers from TPTP. The type declarations are expressed with the function
hasType for consistency with the type declarations. For example, the axiom (??) was
translated to TPTP as:

fof(axMid9, axiom, ![Var_P]:
hasType(type_Wading, Var_P) => ?[Var_W]:
hasType(type_BodyOfWater, Var_W) & f_located(Var_P,Var_W)).

A special case is the translation of higher-order axioms to TPTP. In this case, the func-
tion call is replaced by the definition of the function, rendering a construction in first-
order logic. In this way the function name is used as a macro for its body. This is the
same approach as in [14].

The resulting files have been checked with the first-order theorem proverE [24]. E is
a multiple award-winning theorem prover which is freely available and is based on an
equational superposition calculus. It provides support for first-order logic with equality.
E has been used to check the consistency of the largest ontology currently available -
ResearchCyC [25]. The TPTP translations of the GF files were tested for consistency
with E, and no contradiction was found, given the time limit of 1 hour per file, which
was exceeded for the upper-ontologies, due to the increased complexity of the axioms
they contain.

Regarding typical inferences that could be solved on the existing data, we used the
problems from the SUMO webpage 4.

The category of axioms that the SUMO to TPTP translation can express, but the
SUMO-GF to TPTP cannot are mainly the ones that got lost in the SUMO to SUMO-
GF translation. In addition to this, there are the nested predicates, quantifications over
Formula and the class-forming function KappaFn. They are used in SUMO-GF only
for language generation. The loss is almost 23% of the total number of the axioms. The
coverage of the SUMO to GF to TPTP translation is comparable to the direct SUMO
to TPTP translation. It is worth mentioning that the first translation yields to a slightly
slower system because of the additional type declarations that need to be checked by
the theorem prover. However, it is worth investigating if the results could be better, if
one chooses the typed version of TPTP. 5.

7 End-User Interface

An important component of the GF distribution is the front-end user interface. While
the grammarians are supposed to use the GF shell plus some development environment

4 http://sigmakee.cvs.sourceforge.net/viewvc/sigmakee/KBs/tests/
5 http://www.cs.miami.edu/$~$tptp/TPTP/Proposals/TypedFOF.html

http://sigmakee.cvs.sourceforge.net/viewvc/sigmakee/KBs/tests/
http://www.cs.miami.edu/$~$tptp/TPTP/Proposals/TypedFOF.html

16 K. Angelov and R. Enache

for writing grammars, end users should have the option to use some more comfortable
interface. GF comes with a generic web-based interface [26] which could be specialized
further for particular applications. In relation with SUMO, the interface was extended
with features which make the relation of the ontology with the concrete syntax more
transparent.

While in Sigma the knowledge engineers are supposed to write the axioms in KIF,
in GF they could do it in a controlled natural language. The problem with all controlled
languages is that the user has to learn how to write content which is in the scope of the
grammar. The successful use of predictive editors in helping the users build construc-
tions within the bounds of the controlled language was investigated in [27]. In GF there
is a similar predictive editor (fig. 1) which guides the authoring by generation of sugges-
tions. In the example shown the user has just started adding a reference to a variable and
the editor suggests the list of all variables in the current scope which start with “NU”.
The same kinds of suggestions are offered for every word in the sentence. Furthermore,
the user could at any time select a phrase (the highlighted phrase on the picture) and

Fig. 1. Text editor for authoring SUMO axioms using controlled natural language

Fig. 2. Browser for combined ontology and syntax exploration

Typeful Ontologies with Direct Multilingual Verbalization 17

see in the upper-right corner the corresponding ontological type of the phrase (Class in
this case). If the axiom is not well-formed, i.e. contains a type error for example, then
the error is immediately reported and the corresponding phrase is underlined. This very
much resembles an IDE for programming languages, except for the fact that the input
is a kind of natural language.

For nontrivial ontologies of the scale of SUMO it is often helpful to have an over-
all view of the ontology. The browsing functionalities of Sigma very much fulfil the
requirements. A similar browser (fig. 2) for the abstract syntax of the grammars was
developed for GF. In the case of SUMO-GF, this corresponds exactly to the taxonomy
plus the signatures of all functions and predicates. The user sees the class hierarchy on
the left-hand side and can start with the exploration of any class, or could use the search
box in the upper-left corner to find a class or function by name.

8 Related Work

At the moment there exists a large number of applications dealing with ontologies and
building various applications on top of them. Regarding the languages that are used
to encode ontologies, as mentioned before, the most popular ones do not have a type
system.

A first exception is the programming language prototype Zhi#6, which is a novel
language for encoding ontologies. It has a static type-system and it is compiled to C#.
It benefits from using the C# built-in types and functions, but also the syntax looks
very much like C# and it is not very intuitive for most users.

A more notable example is CASL (Common Algebraic Specification Language)
[28]. It introduces the notions of strongly-typed and structured ontologies and provides
a strong formal structure for representing them. However, it deals only with the alge-
braic side of the specifications, whereas GF has a built-in natural language generation
component, in addition to the robust type system.

Compared to these languages, GF is the only system which combines a strongly
typed framework for ontology description with a direct multilingual verbalization. To
our knowledge, the current work is the first representation of an ontology in type the-
ory with dependent types. The benefits of dependent types are visible when expressing
the concepts and relations from SUMO in GF, as they provide better control on their
semantics. robustness to the representation.

Regarding natural language generation, there are many notable applications that ver-
balize ontologies. Most of them however, have only English as target. A notable ex-
ception is the KPML project [29], which provides natural language generation for 10
languages. Another interesting case is the Gellish ontology which provides direct ver-
balization for English, German and Dutch. However, there is considerably less progress
for Slavic and Romance languages, due to their complexity. The GF approach has built-
in mechanisms for verbalization via the resource grammars, which provide syntactically
correct translations. Moreover, GF also has support for multilingual translation.

Regarding automatic reasoning, there has been work for checking the consistency of
all the well-known ontologies. A notable example is the use of the E theorem prover for

6 http://www.alexpaar.de/zhimantic/ZhiSharp.pdf

http://www.alexpaar.de/zhimantic/ZhiSharp.pdf

18 K. Angelov and R. Enache

the ResearchCyC ontology [25]. However, SUMO is the most well-known case of an
ontology which is checked for consistency every year, as part of a CADE competition.
Compared to the official SUMO translation to TPTP, our approach has a comparable
expressivity, rejecting the ill-typed axioms at an earlier stage.

The project OntoNat [30] provides automated reasoning for the SUMO ontology
with KRHyper [31]. KRHyper is a theorem prover for first-order logic that implements
hyper tableaux, and a version of it that deals with equality is also available 7. The tool
can answer questions posed in normal English, by using the wordnet mappings and a
simple parser, in order to infer the SUMO expression that should be checked.

9 Future Work

The current work explores aspects of data modelling, compiling from an untyped sys-
tem to a typed one and from a typed system to first-order logic, type inference, natural
language generation, and automated reasoning. These directions can be extended in a
more comprehensive manner and lead to stand-alone projects.

One interesting possibility would be to generate higher-quality natural language, fol-
lowing the idea8 of truncating the hierarchy even more, separating attributes and
processes. Instances of attribute and its subclasses can be linearized as adjec-
tive phrases, while instances and subclasses of process are to be linearized as verb
phrases. In this way a predicate like:

(attribute ?X NonFullyFormed)

would not be linearized as non fully formed is an attribute of X but as X is not fully
formed. For a predicate like:

(agent Reasoning ?A)

we would obtain A reasons instead of A is an agent of reasoning.
Another interesting application would be to build a user interface, where users could

ask questions and get answers from the theorem prover via the GF to TPTP transla-
tion. If the prover provides a trace of the proof search, this could be converted back
to a GF tree and used for generation of proof explanations in natural language. When
dealing with more complex proofs, more work is needed for rendering readable natural
language. A comprehensive reference for natural language generation from proofs is
[32].

10 Conclusion

The work investigates the representation of upper ontologies in the type-theoretical
functional language GF, which provides mechanisms for direct verbalization as a con-
trolled language, having the SUMO ontology as a use case. The results obtained show

7 http://www.uni-koblenz.de/$~$bpelzer/ekrhyper/
8 http://www.ontologyportal.org/student.html

http://www.uni-koblenz.de/$~$bpelzer/ekrhyper/
 http://www.ontologyportal.org/student.html

Typeful Ontologies with Direct Multilingual Verbalization 19

a consistent improvement from the multilingual natural language generation point of
view, in terms of effort, scalability and syntactical correctness of the obtained text.
Moreover, the type system, while still preserving a comparable coverage, prevents type
errors that could lead to inconsistencies in the ontology. Also the editor makes it easier
for users to interact with the ontology by adding content in natural language. From a
knowledge engineering point of view, GF offers obvious advantages for encoding on-
tologies, as the framework defined and applied for SUMO is general enough to fit a
large range of ontologies.

References

1. Ganesereth, M.R., Fikes, R.E.: Knowledge interchange format. Technical Report Logic-92-1,
Stanford University (June 1992)

2. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL web ontology language reference (2009)

3. Cycorp: The syntax of CycL (2002)
4. Van Renssen, A.: Gellish: A Generic Extensible Ontological Language. PhD thesis, Delft

University, PhD thesis (2005)
5. Niles, I., Pease, A.: Towards a standard upper ontology. In: FOIS 2001: Proceedings of the

International Conference on Formal Ontology in Information Systems, pp. 2–9. ACM, New
York (2001)

6. Ranta, A.: Grammatical Framework: A Type-Theoretical Grammar Formalism. The Journal
of Functional Programming 14(2), 145–189 (2004)

7. Martin-Löf, P.: Constructive mathematics and computer programming. In: Cohen, Los,
Pfeiffer, Podewski (eds.) Logic, Methodology and Philosophy of Science VI, pp. 153–175.
North-Holland, Amsterdam (1982)

8. Ranta, A.: The GF resource grammar library. Linguistic Issues in Language Technology 2(2)
(2009)

9. Angelov, K., Bringert, B., Ranta, A.: PGF: A Portable Run-Time Format for Type-
Theoretical Grammars. Journal of Logic, Language and Information (2009)

10. Ljunglöf, P., Amores, G., Cooper, R., Hjelm, D., Lemon, O., Manchin, P., Perez, G., Ranta,
A.: Multimodal Grammar Library, TALK. Talk and Look: Tools for Ambient Linguistic
Knowledge. IST-507802. Deliverable 1.2b (2006)

11. Caprotti, O.: WebALT! Deliver Mathematics Everywhere. In: Proceedings of SITE 2006,
Orlando, March 20-24 (2006)

12. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W., Mostowski,
W., Roth, A., Schlager, S., Schmitt, P.H.: The key tool. Technical report in computing science
no. 2003-5, Department of Computing Science, Chalmers University and Göteborg Univer-
sity, Göteborg, Sweden (2003)

13. MOLTO - Multilingual Online Translation. European Project (2010-2012)
14. Pease, A., Sutcliffe, G.: First order reasoning on a large ontology. In: Proceedings of the

CADE-21 Workshop on Empirically Successful Automated Reasoning on Large Theories,
ESARLT (2007)

15. Sutcliffe, G.: The TPTP problem library and associated infrastructure. Journal of Automated
Reasoning 43, 337–362 (2009) 10.1007/s10817-009-9143-8

16. Pease, A.: The sigma ontology development environment. Working Notes of the IJCAI 2003
Workshop on Ontology and Distributed Systems, vol. 71 (2003)

20 K. Angelov and R. Enache

17. Trac, S., Sutcliffe, G., Pease, A.: Integration of the tptpworld into sigmakee. In: Proceed-
ings of IJCAR 2008 Workshop on Practical Aspects of Automated Reasoning (PAAR 2008),
vol. 373 (2009)

18. Martin-Löf, P.: A theory of types (1971) (unpublished)
19. Girard, J.Y.: Interpretation fonctionnelle et elimination des coupures de l’arithmetique

d’ordre superieur, Paris (1972)
20. W3C: Named graphs (2004)
21. Russell, B.: Principles of Mathematics. Cambridge University Press, Cambridge (2011)
22. Ranta, A.: Structures grammaticales dans le français mathématique. Mathématiques, infor-

matique et Sciences Humaines 138, 139, 5–56, 5–36 (1997)
23. Slagle, J.R.: Automatic theorem proving with built-in theories including equality, partial or-

dering, and sets. J. ACM 19, 120–135 (1972)
24. Schulz, S.: E - a brainiac theorem prover (2002)
25. Ramachandran, D., Reagan, P., Goolsbey, K.: First-orderized researchcyc: Expressivity and

efficiency in a common-sense ontology. Papers from the AAAI Workshop on Contexts and
Ontologies: Theory, Practice and Applications (2005)

26. Bringert, B., Angelov, K., Ranta, A.: Grammatical framework web service. In: EACL
(Demos), 9–12 (2009)

27. Schwitter, R., Ljungberg, A., Hood, D.: ECOLE — a look-ahead editor for a controlled
language. In: Proceedings of EAMT-CLAW 2003, pp. 141–150 (2003)

28. Lüttich, K.: Development of Structured Ontologies in CASL. PhD thesis, University of Bre-
men, PhD thesis (2007)

29. Bateman, J.A.: Enabling technology for multilingual natural language generation: the kpml
development environment. Nat. Lang. Eng. 3(1), 15–55 (1997)

30. Baumgartner, P., Suchanek, F.M.: Automated reasoning support for sumo/kif (2005);
(manuscript, Max-Planck Institute for Computer Science)

31. Wernhard, C.: System Description: KRHyper. Fachberichte Informatik 14-2003 (2003)
32. Fiedler, A.: Natural Language Proof Explanation. In: Hutter, D., Stephan, W. (eds.) Mecha-

nizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 342–363. Springer, Heidel-
berg (2005)

Controlling Ambiguities in Legislative Language

Alexandra Bünzli and Stefan Höfler

Institute of Computational Linguistics, University of Zurich
{buenzli,hoefler}@cl.uzh.ch

Abstract. Legislative language exhibits some characteristics typical of
languages of administration that are particularly prone to eliciting am-
biguities. However, ambiguity is generally undesirable in legislative texts
and can pose problems for the interpretation and application of codified
law. In this paper, we demonstrate how methods of controlled natu-
ral languages can be applied to prevent ambiguities in legislative texts.
We investigate what types of ambiguities are frequent in legislative lan-
guage and therefore important to control, and we examine which ambi-
guities are already controlled by existing drafting guidelines. For those
not covered by the guidelines, we propose additional control mechanisms.
Wherever possible, the devised mechanisms reflect existing conventions
and frequency distributions and exploit domain-specific means to make
ambiguities explicit.

1 Introduction

In many respects, legislative drafting constitutes an obvious field of application
for controlled natural languages. Legislative texts are produced in a well-defined
work process and go through several editorial cycles. Government agencies have
devised drafting guidelines meant to ensure the quality of the texts, especially
with regard to clarity and readability. To a certain extent, legislative language is
therefore already controlled. In this paper, we focus on Swiss legislative texts writ-
ten in German. Although most countries and legal systems face similar problems
when drafting legislation, the conventions and work processes differ substantially
from country to country. As a country with a long tradition in legislative drafting,
Switzerland has established a well-defined work cycle in which every federal leg-
islative text is edited by a specialized institution: the Federal Chancellery’s Cen-
tral Language Services [15]. This process aims at ensuring consistency between
the different language versions of a law, as each of the language versions is con-
sidered equally authentic and legally binding. This has led to relatively detailed
instructions and well-written legislative texts [11].

However, existing drafting guidelines [26,25,6,5,21,8] offer little or no advice
on how ambiguity must be controlled – beyond stating that, whenever possible,
it is to be avoided altogether. But due to some of its peculiarities, legislative
language is particularly prone to exhibit certain types of ambiguity. Like most
languages of administration, legislative language uses a style of writing using
complex nominals, which elicits a range of ambiguous constructions. Long and

M. Rosner and N.E. Fuchs (Eds.): CNL 2010, LNAI 7175, pp. 21–42, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

22 A. Bünzli and S. Höfler

complex noun phrases that are complemented with attributive adjectives or par-
ticiples, genitive attributes or prepositional phrases generate a high number of
attachment ambiguities. The frequent use of light verb constructions, which nor-
mally combine a verb with a prepositional phrase, further increases this number.
Moreover, the use of plurals instead of gender-specific singular forms, which is
also typical of contemporary legislative writing, is a prolific source of semantic
ambiguities.

Ambiguous constructions can pose a problem for the interpretation and appli-
cation of a legislative text. In the light of this fact, it is particularly unfortunate
that ambiguities are not always easy to detect for human editors. Since humans
unconsciously activate contextual knowledge when reading a text, they easily
overlook ambiguities and secondary interpretations that could become relevant
in a specific case. But ambiguities that go unnoticed in the drafting process can
later cause uncertainties with regard to the correct application of a statute or
regulation.1

In this paper, we show that the methods of controlled natural language can
provide means to tackle this problem. We first present the specific approach we
have developed for this particular task (section 2). We then give a brief overview
of the types of ambiguities that are already controlled by existing drafting guide-
lines and of those that are frequent in legislative language but still lack control
(section 3). We then illustrate how these latter types of ambiguity – specifi-
cally attachment and plural ambiguity – can be controlled by applying the pro-
posed methods (section 4). We conclude with a brief summary of our approach
(section 5).

2 Approach

Controlled natural languages are artificially designed subsets of natural languages.
Occasionally, a distinction is made between human-oriented controlled natural
languages and computer-oriented controlled natural languages [18,30,20,22].
Human-oriented controlled natural languages aim to improve the readability and
translatability of technical documents [22,35,2,14]; computer-oriented controlled
natural language are meant to serve as interfaces to some sort of formal logical
representation [9,28,7,33].

One main task of both classes of controlled natural languages is the reduction
of natural language ambiguity. While human-oriented controlled natural lan-
guages usually focus on lexical ambiguities, simple sentence constructions and
pragmatic issues, computer-oriented controlled natural languages aim at com-
pletely unambiguous constructions, which can be automatically translated into
a formal representation. They approach this task by either allowing only spe-
cific constructions (e.g. prohibiting the use of ambiguous constructions) or by

1 For an example of how attachment ambiguity can cause a legal dispute see the
Appellate Court of Illinois, Regency Commercial Assocs., LLC v. Lopax, Inc., 2007
Ill. App. LEXIS 476 (Ill. App. Ct. May 4, 2007).

Controlling Ambiguities in Legislative Language 23

assigning them a default interpretation and providing paraphrases for the other
readings.

We have adopted these methods to reduce ambiguity in legislative texts. While
some research has looked into the applicability of computer-oriented controlled
natural languages to the legal domain [19,10], the work presented in this paper
focuses on a human-oriented perspective. We therefore do not assign a formal
representation. Our aim is rather to systematically refine existing drafting guide-
lines by developing specific additional rules that deal with as yet uncontrolled
types of ambiguity. Our approach builds on [12] and [3], who propose to control
ambiguities by exposing the author or editor of a text to explicit paraphrases
for the individual readings of an ambiguous construction.

We propose a three-step procedure:

1. Conventional wording (C)
In a first step, drafters phrase the text they want to write within the bound-
aries defined by a set of construction rules. Such rules define which construc-
tions are allowed and which are prohibited. They may also prescribe that a
specific ambiguous constructions is only to be used in one particular sense
– thus taking the role of what is usually called an interpretation rule in the
context of controlled natural language.

The requirement of usability demands that the rules we develop closely
resemble conventional legislative language: drafters will only be able and
willing to apply a controlled version of legislative language if it is not sig-
nificantly different from what they have been used to. Its rules thus have to
be designed to mimic (i) the pragmatics of the text domain, (ii) historically
accrued conventions, iii) frequency distributions present in legislative texts,
as well as (iv) standards defined in existing drafting guidelines.

The problem with the requirement of conventionality is that users not
familiar with the rules and standards applied will still find many construc-
tions ambiguous – and likewise, drafters may still overlook such instances
of ambiguity or use ambiguous constructions in a sense other than the one
suggested by the rules.

2. Explicit paraphrase (E)
To tackle this problem, we define paraphrases that can be constructed deter-
ministically (either by hand or automatically) from the ambiguous construc-
tions of the conventional form. These paraphrases make the interpretation
the constructions would obtain according to the rules explicit. Drafters can
use this explicit form of the same text to verify if the interpretation they
intended complies with the usage suggested by the standard. They are thus
pointed to ambiguities they may have overlooked otherwise.

As they serve the purpose of visualization only, the explicit paraphrases
do not have to resemble conventional legislative language (or even sound
natural). Where it is not possible to make a specific reading explicit by using
the means of natural language only, they resort to non-linguistic means (e.g.
brackets) to achieve the task.

24 A. Bünzli and S. Höfler

3. Recommended wording (R)
The recommended version proposes a wording which is as explicit as
possible while still sounding natural. Like the explicit version, it can be
constructed deterministically from the conventional form. As the name sug-
gests, it is a recommendation and represents the wording the drafter should
usually choose. Depending on the constructions used, the recommended ver-
sion may be identical to the original conventional wording or to the explicit
paraphrase.

However, we let the drafter decide which version he adopts for the final
document: the recommended, the conventional or even the explicit version
if it does not use any non-linguistic means. Often, ambiguous constructions
are automatically disambiguated through contextual and world knowledge
and it is not necessary to use the most explicit version: as they choose from
the different versions, drafters can adapt to the specific situation, taking into
consideration the clearness and readability of the sentence at hand and the
text as a whole.

The following example will serve as an illustration of our approach:

(1) C: Die Kantone können Fachhochschulen einrichten. Sie werden selbst-
ständig geleitet.
‘The cantons may establish technical universities. They are governed au-

tonomously.’

E: [Die Kantone]1 können Fachhochschulen einrichten. [Sie]1 werden
selbstständig geleitet.
‘[The cantons]1 may establish technical universities. [They]1 are governed

autonomously.’

R: Die Kantone können Fachhochschulen einrichten. Die Kantone wer-
den selbstständig geleitet.
‘The cantons can establish technical universities. The cantons are governed

autonomously.’

We have adopted this example from a drafting guideline of the canton of Zurich
[21]. The drafting guideline states that sentences can only be introduced with
a pronoun if the pronoun refers to the subject of the immediately preceding
sentence. We have incorporated this as a drafting rule. The explicit version (E)
makes the interpretation explicit that the drafted conventional version C would
obtain if it complied to the drafting rule: the pronoun sie (‘they’) would refer
to die Kantone (‘the cantons’). It thus allows the drafter to verify if this is the
intended interpretation. The recommended version (R) does not use a pronoun.
This is due to the fact that this specific rule does not prevent ambiguity per se:
although the drafting rule theoretically prevents ambiguous readings, for a reader
not familiar with the rule, the sentence remains ambiguous in situations where,
as it is the case in example (2), another suitable referent exists. In such cases,
the drafter should either choose the recommended version or – realizing this
interpretation is not what he intended to say – rephrase the passage and make
Fachhochschulen (‘technical universities’) the subject of the second sentence.

Controlling Ambiguities in Legislative Language 25

In example (1) the explicit version used non-linguistic means such as indexes
and brackets to visualize the interpretation. Example (2)2 shows a case where
the interpretation can be made explicit without such non-linguistic means:

(2) C: Die Parteivertreter und -vertreterinnen haben sich durch eine Voll-
macht auszuweisen.
‘The party representatives have to identify themselves with a letter of

attorney.’

E: Jeder Parteivertreter und jede Parteivertreterin hat sich durch eine
Vollmacht auszuweisen.
‘Each party representative has to identify himself with a letter of attorney.’

R: Die Parteivertreter und -vertreterinnen haben sich durch eine Voll-
macht auszuweisen.
‘The party representatives have to identify themselves with a letter of

attorney.’

Before we further explicate this approach, we shortly discuss in what way leg-
islative language is already controlled through drafting guidelines and which
constructions are not controlled yet although they are frequent in legislative
language and potentially pose problems. In section 4 of the paper, we will then
discuss a number of real-case examples, the issues that arise in them and the
design decisions one has to make.

3 Status Quo in Legislative Drafting

In natural language, ambiguities exist on various levels: there is lexical, syntactic
and semantic ambiguity as well as ambiguity on the pragmatic and discourse
level. Governments have designed drafting guidelines that aim at ensuring the
comprehensibility of legislative texts and thus, among other things, try to control
some of these ambiguities.

These guidelines are – as the name indicates – mere recommendations and
have no absolute force. The control is therefore on a quite abstract level and
there is always a chance that an ambiguous structure could slip through the
editing process and be then constituted in the law.3 There is no systematic or
technical process to ensure compliance with the drafting guidelines.

Not every type of ambiguity gets the same amount of attention in the existing
drafting guidelines for legislative texts. In the remainder of this section, we will
thus give a brief overview of (i) the types of ambiguity that existing Swiss drafting
guidelines [26,25,6,21] deal with and (ii) those that are particularly frequent in
legislative texts but as yet lack control.

2 Example from Art. 40 Abs. 2 BGG.
3 It is not to be forgotten that legislative texts are written for humans and a lot of am-

biguities can be resolved through external knowledge such as situational knowledge
or world knowledge.

26 A. Bünzli and S. Höfler

3.1 Ambiguities Controlled by Existing Drafting Guidelines

Lexical ambiguity is probably the type of ambiguity that legal experts are most
aware of. As in every technical language, the use of exact terminology is essen-
tial; it is therefore not surprising that lexical ambiguity is the most controlled
type of ambiguity in the legal domain. Vast terminological databases exist, which
are especially important for interlingual and international translations and com-
munications. The same technical terms are often used quite differently by the
different governments, which makes a semantically correct translation very hard
and terminological control paramount. There is no controlled vocabulary in the
strict sense – the domain is too broad – but the use of specific words is regulated,
and existing drafting guidelines demand that terms have to be used consistently
and that, in order to avoid confusion, new or unclear terms have to be defined
in the regulation itself.

Syntactic ambiguity is not controlled explicitly. There is no real awareness of
the peculiarities of syntactic ambiguity among legal experts. However, certain
drafting guidelines indirectly control syntactic ambiguity: they state e.g. that
sentences should be short and concise and default sentence patterns should be
preferred. The last point is especially important as German has a relatively free
word order and agreement information is not always sufficient to unambigu-
ously identify the correct structure, as the following example from the drafting
guidelines of the canton of Zurich [21] demonstrates:

(3) Die Bewilligung erteilt das Amt.
Interpretation 1: ‘The permission grants the department.’

Interpretation 2: ‘The department grants the permission.’

In example (3), it is not clear which noun phrase constitutes the subject and
which the object. Syntactically, both interpretations are valid; semantically, the
second interpretation is clearly to be preferred. The sentence would be a lot
easier to understand if it followed the default sentence pattern subject � verb �
objects (Das Amt erteilt die Bewilligung) and thus actively support the correct
interpretation.

Another rule in existing guidelines demands that nominalizations should be
avoided. This rule is mainly designed to improve readability, but it also prevents
thematic ambiguities, which can arise from nominalizations of transitive verbs
that are accompanied by a genitive attribute. A classical example is die Unter-
suchung der Behörde (‘the inspection of the agency’), which does not specify if
the agency inspects or if it is itself the object of the inspection.

Other drafting guidelines suggest that complex sentences are formalised as
enumerations, a tool which is very frequently used in Swiss legislative language.
As complex sentences are more likely to contain attachment ambiguities, this
rule can also contribute to a reduction of ambiguity in a text.

Like syntactic ambiguity, semantic ambiguity is not controlled explicitly. But
there are some isolated rules which deal with semantic problems such as (i)
pronoun resolution and (ii) conjunctive vs. disjunctive enumerations. An exist-
ing rule to control pronoun resolution has already been discussed in section 2

Controlling Ambiguities in Legislative Language 27

above. The problem posed by ambiguities relating to conjunctive vs. disjunctive
readings of enumerations can be illustrated with the following example from a
regulations on weapons and ammunition:4

(4) Messer gelten als Waffen, wenn sie:

a. einen einhändig bedienbaren Spring- oder anderen automatischen
Auslösemechanismus aufweisen;

b. geöffnet insgesamt mehr als 12 cm lang sind; und
c. eine Klinge haben, die mehr als 5 cm lang ist.

‘Knives count as weapons if they

a. are equipped with a switchblade mechanism or any other automatic trigger
that can be operated with one hand;

b. are at least 12 cm long when opened; and
c. have a blade that is at least 5 cm long.’

Enumerations can be interpreted as conjunctions or as disjunctions. Legal ex-
perts are very much aware of this kind of ambiguity. Existing drafting rules state
that, if the intended reading is not clear from the context, the conjunctive or
disjunctive nature of an enumeration has to be made explicit: by inserting und
(‘and’) for a conjunctive reading or oder (‘or’) for an disjunctive reading after
the second last item. In example (4), und is thus required, as the enumeration
could otherwise be misinterpreted as a disjunction and consequently be applied
to more types of knives than actually intended.

3.2 Ambiguities Not Controlled by Existing Guidelines

While existing guidelines do control ambiguities to a certain extent, there are at
least two types of ambiguity that are not covered even though they are prevalent
in legislative texts and can give rise to severe misinterpretations: attachment
ambiguity and plural ambiguity.

Attachment ambiguities frequently arise when noun phrases in object positions
are followed by prepositional phrases, or when complex noun phrase coordina-
tions are accompanied by an attribute (a preceding adjective or participle, a
postpositional prepositional phrase or a relative clause). In the latter case, it is
often unclear if the attribute modifies the whole coordinated structure or only
the nearest element [16]. Example (5) shows how such an attachment ambiguity
can lead to a legal dispute.

(5) Seller will not after the date of this agreement sell, lease or permit to be
occupied any real estate which Seller owns, manages or otherwise controls
within one mile of the Land for the purpose of constructing, or having
conducted thereon, any fast food [. . .] restaurant or restaurant facility
whose principal food product is chicken on the bone, boneless chicken or
chicken sandwiches.

4 Art. 7 Abs. 1, SR 514.541, Verordnung über Waffen, Waffenzubehör und Munition,
Stand am 12. Dezember 2008.

28 A. Bünzli and S. Höfler

The above passage of a contract was the cause for a dispute which the Illinois
appellate court had to decide.5 The problem was caused by the uncertain attach-
ment of fast food.6 Does it only modify restaurant or restaurant facility as well?
Is a restaurant that is not a fast food restaurant, but serves primarily chicken,
permitted? It would be if fast food modifies both restaurant or restaurant facil-
ity, but it would not, if it only modifies restaurant. This ambiguity resulted in
a two year dispute and illustrates how important the controlling of attachment
ambiguities in legislative texts can be.

The frequency of plural ambiguities has especially increased with the introduc-
tion of gender neutral formulations. To facilitate grammatical agreement with
other constituents of a sentence, existing drafting guidelines suggest that gender-
neutral plural forms are used instead of coordinations of gender-marked singular
forms. The following (slightly adapted) example from the drafting guidelines of
the canton of Zurich [21] illustrates this point:

(6) Der Lehrer oder die Lehrerin sorgt für die zweckdienliche Einrichtung
seines oder ihres Schulzimmers. Er oder sie wird angehört, bevor die
Schulpflege bauliche Massnahmen beschliesst.
‘The teacher takes care of the appropriate equipment of his or her class room.

He or she will be heard before the School Board decides on constructional

measures.’

If the subject of the first sentence is transformed into a plural, the anaphoric
reference at the beginning of the second sentence becomes less cumbersome:

(7) Die Lehrerinnen und Lehrer sorgen für die zweckdienliche Einrichtung
ihrer Schulzimmer. Sie werden angehört, bevor die Schulpflege bauliche
Massnahmen beschliesst.
‘The teachers take care of the appropriate equipment of their class rooms. They

will be heard before the School Board decides on constructional measures.’

The problem is that by transforming the subject into plural, a new instance
of ambiguity is created, which yields two additional interpretations: it is now
unclear if, before any construction measure is taken, all the teachers have to be
heard as a group, or if every teacher has to be heard individually, or if only the
teacher of the class room concerned has to be heard.

Due to their relative frequency and their potential to cause misinterpretations,
attachment ambiguity and plural ambiguity clearly pose a problem for legislative
texts.

5 Case: Appellate Court of Illinois, Regency Commercial Assocs., LLC v. Lopax, Inc.,
2007 Ill. App. LEXIS 476 (Ill. App. Ct. May 4, 2007), retrieved from a legal blog:
http://www.adamsdrafting.com/2007/05/15/illinois-syntactic-ambiguity/

at March 10, 2011.
6 There is another attachment ambiguity in the sentence: the relative sentence at the

end of the passage could modify only restaurant facility or both restaurant and
restaurant facility, but this was not questioned, neither by the involved parties nor
by the court.

http://www.adamsdrafting.com/2007/05/15/illinois-syntactic-ambiguity/

Controlling Ambiguities in Legislative Language 29

4 Proposed Rules

In the following sections, we will demonstrate how the methods introduced in
section 2 can be applied to control attachment ambiguity and plural ambiguity.

4.1 Controlling Attachment Ambiguity

As alreadymentioned above, one of the most common causes for attachment ambi-
guity are prepositional phrases modifying a verb or a noun phrase coordination. A
study on Italian andEnglish legislative texts carried out byVenturi [34] shows that
prepositional phrases are particularly frequent in legislative texts. Similarly, Nuss-
baumer [17] points out that Swiss legal language is characterized (among other
things) by a relatively high frequency of prepositional phrases. He speculates that
this characteristic emerges froma conflict between the need to be brief and the need
to provide all important information. Therefore, the attachment of prepositional
phrases deserve special attention in the drafting process.

We will explain our approach to controlling the attachment ambiguity they
can cause with the following example from the Federal Supreme Court Act:7

(8) Das Bundesgericht deckt seinen Bedarf an Gütern und Dienstleistungen
im Bereich der Logistik selbständig.
‘The Federal Supreme Court covers its need for goods and services in the sector

of logistics autonomously.’

The example shows a short sentence with two prepositional phrases. While the
prepositional phrase an Gütern und Dienstleistungen depends on Bedarf and
thus has to follow right after it, the attachment of the prepositional phrase im
Bereich der Logistik constitutes a typical case of attachment ambiguity [10].
There are four possible antecedents to which it could theoretically attach: (a)
deckt, (b) Güter und Dienstleistungen, (c) Dienstleistungen and (d) Bedarf. The
respective four readings of the sentence are shown below, with the prepositional
phrase put in italics and the antecedent underlined:

(9) a. Das Bundesgericht deckt seinen Bedarf an Gütern und Dienstleis-
tungen im Bereich der Logistik selbständig.

b. Das Bundesgericht deckt seinen Bedarf an Gütern und Dienstleis-
tungen im Bereich der Logistik selbständig.

c. Das Bundesgericht deckt seinen Bedarf an Gütern und Dienstleis-
tungen im Bereich der Logistik selbständig.

d. Das Bundesgericht deckt seinen Bedarf an Gütern und Dienstleis-
tungen im Bereich der Logistik selbständig.

To get an idea of how these ambiguities are best controlled, we investigated (i)
under what conditions the attachment of the prepositional phrase would not be
ambiguous and (ii) how prepositional phrases that modify coordinated structures
(or components thereof) are prevalently used in legislative texts.

7 Art. 25a Abs. 2, Bundesgerichtsgesetz (BGG) of June 17, 2005 (status January 1,
2011).

30 A. Bünzli and S. Höfler

With regard to (i), we found that the attachment of the prepositional phrase
is highly ambiguous as long as the prepositional phrase follows a noun phrase; if
the prepositional phrase directly follows the verb, only one attachment is possi-
ble. In order to study (ii), we syntactically annotated a small corpus consisting
of two texts: the Federal Supreme Court Act (Bundesgerichtsgesetz, BGG) and
the Ordinance of the University of Zurich.8 The corpus consists of a total of
1,124 sentences (Federal Supreme Court Act: 776 sentences, Ordinance of the
University of Zurich: 348 sentences). We specifically looked at coordinated noun
phrases which are directly followed by a prepositional phrase. That is, we looked
at constructions in which the prepositional phrase was either attached to a co-
ordinated phrase or attached to the last element of a coordination. We found 52
attachments to the coordinated phrase and 39 attachments to the last element
of the coordination. Of the 39 attachments to the last element of a coordination,
9 were formulated according to our Rule 2 (see below); another 9 were formu-
lated according to Rule 3; in 6 cases, the noun selected the preposition (valency
information); in another 7 cases, semantics favored this attachment clearly; in
6 cases, the attachment was undecidable; and in the remaining 2 cases, some
special construction prohibited the attachment to the whole coordinated phrase.
On the basis of these findings, we have constructed new drafting rules (Rules 1
to 5 below).

Our first rule is a general instruction on where to attach constituents:

Rule 1. Attach to the nearest constituent
A prepositional phrase should only be attached to the nearest possible
antecedent. If that antecedent is a coordinated phrase, the prepositional
phrase should only be used if it refers to the whole coordinated phrase
rather than to its last conjunct.

Had sentence (8) been constructed according to this rule, reading (9-b) would be
its correct interpretation. Example (10) illustrates the explicit paraphrase and
the recommended wording that we defined for the rule.

(10) C: Das Bundesgericht deckt seinen Bedarf an Gütern und Dienstleis-
tungen im Bereich der Logistik selbständig.
‘The Federal Supreme Court supplies its need for goods and services in

the sector of logistics autonomously.’

E: Das Bundesgericht deckt seinen Bedarf an [[Gütern und Dien-
stleistungen] im Bereich der Logistik] selbständig.
‘The Federal Supreme Court supplies its need for [[goods and services]

in the sector of logistics] autonomously.’

R: Das Bundesgericht deckt seinen Bedarf an Gütern und Dienstleis-
tungen im Bereich der Logistik selbständig.
‘The Federal Supreme Court supplies its need for goods and services in

the sector of logistics autonomously.’

8 State: May 2010.

Controlling Ambiguities in Legislative Language 31

The explicit paraphrase uses brackets to visualize the attachment of the prepo-
sitional phrase. This non-linguistic means appears to be the simplest and most
comprehensible way to achieve the task. Alternatively, one could define an ex-
plicit version as shown in (11), where no non-linguistic means are used:

(11) E: Das Bundesgericht deckt seinen Bedarf an Gütern im Bereich der
Logistik und Dienstleistungen im Bereich der Logistik selbständig.
‘The Federal Supreme Court supplies its need for goods in the sector of

logistics and services in the sector of logistics autonomously.’

This alternative paraphrase could actually be used in legislative texts, if one
wanted to be as clear as possible. However, due to the repetitions, it sounds
cumbersome and is not recommended for use. Since there is no straightforward
way of making the conventional reading more explicit, the recommended wording
shown in (10) is identical to the original text.

To express the other three interpretations, the sentence has to be rephrased.
Reading (9-a), for instance, can be obtained by placing the prepositional phrase
right after the verb:

(12) C: Das Bundesgericht deckt im Bereich der Logistik seinen Bedarf an
Gütern und Dienstleistungen selbständig.
‘The Federal Supreme Court covers, in the sector of logistics, its need for

goods and services autonomously.’

E: Das Bundesgericht [deckt im Bereich der Logistik] seinen Bedarf
an Gütern und Dienstleistungen selbständig.
‘The Federal Supreme Court [covers, in the sector of logistics,] its need

for goods and services autonomously.’

R: Das Bundesgericht deckt im Bereich der Logistik seinen Bedarf an
Gütern und Dienstleistungen selbständig.
‘The Federal Supreme Court covers, in the sector of logistics, its need for

goods and services autonomously.’

Here, the recommended wording is the same as the conventional version because
the conventional wording is both natural and unambiguous. The explicit para-
phrase would thus actually not be needed. We provide a version with brackets
anyway to visualize the attachment for verification purposes and to raise aware-
ness of potential ambiguities in the drafter.

Reading (9-c) can be obtained by switching the order of the two conjuncts
and placing the prepositional phrase right after the new first conjunct (Dien-
stleistungen):

(13) C: Das Bundesgericht deckt seinen Bedarf an Dienstleistungen im Be-
reich der Logistik und Gütern selbständig.
‘The Federal Supreme Court covers its need for services in the sector of

logistics and (for) goods autonomously.’

E: Das Bundesgericht deckt seinen Bedarf an [Dienstleistungen im
Bereich der Logistik] und Gütern selbständig.
‘The Federal Supreme Court covers its need for [services in the sector

of logistics] and (for) goods autonomously.’

32 A. Bünzli and S. Höfler

R: Das Bundesgericht deckt seinen Bedarf an Dienstleistungen im Be-
reich der Logistik sowie an Gütern selbständig.
‘The Federal Supreme Court covers its need for services in the sector of

logistics as well as for goods autonomously.’

As before, the conventional wording is not ambiguous9; the explicit version sim-
ply serves the purpose of verification. But in contrast to the previous examples,
the recommended version differs from the conventional wording: on the one hand,
it suggests that the preposition an is repeated with the second conjunct; on the
other hand, the conjunction sowie (‘as well as’) replaces und (‘and’) to make
the structure of the sentence clearer.

The recommended version indicates that reading (9-c) can also be obtained
by exploiting another convention that already exists in legislative language: the
binding provided by the conjunction sowie (‘as well as’) is weaker than that of
the conjunction und (‘and’). We have constructed an actual drafting rule on the
basis of this implicit convention:10

Rule 2. Use sowie and oder aber as barriers
The conjunctions sowie and oder aber can be used instead of und and oder
respectively to introduce a barrier into a coordinated phrase in order to
prevent attachment to the elements on the other side of the barrier.

Example (14) shows how this rule can be applied to express reading (9-c); it is
now not necessary anymore to switch the order of the conjuncts:

(14) C: Das Bundesgericht deckt seinen Bedarf an Gütern sowie Dienstleis-
tungen im Bereich der Logistik selbständig.
‘The Federal Supreme Court covers its need for goods as well as services

in the sector of logistics autonomously.’

E: Das Bundesgericht deckt seinen Bedarf an Gütern sowie [Dien-
stleistungen im Bereich der Logistik] selbständig.
‘The Federal Supreme Court covers its need for goods as well as [services

in the sector of logistics] autonomously.’

R: Das Bundesgericht deckt seinen Bedarf an Gütern sowie an Dien-
stleistungen im Bereich der Logistik selbständig.
‘The Federal Supreme Court covers its need for goods as well as for ser-

vices in the sector of logistics autonomously.’

Example (14) expresses the same meaning as (13), but the order in which the
conjuncts are arranged make it sound more natural. This is due to the fact that,
in natural language, longer elements tend to be placed at the end of a list.

9 In the German version, Logistik and Gütern cannot be coordinated due to case
agreement. However, the English version is ambiguous: it is unclear if ‘goods’ is
coordinated with ‘services’ or ‘logistics’.

10 Our drafting rule was also discussed at a meeting of the German section of the
Federal Chancellery’s Central Language Services [4].

Controlling Ambiguities in Legislative Language 33

Again, the recommended wording suggests that the preposition an is repeated.
Like the use of sowie, the repetition of shared components is a common technique
to introduce a barrier into a coordinated phrase in order to prevent attachment
to the elements on the other side of the barrier. We have cast a new drafting
rule that reflects this phenomenon:

Rule 3. Use repetition as a barrier
The explicit repetition of shared components can be used to introduce a
barrier into a coordinated phrase in order to prevent attachment to the
elements on the other side of the barrier.

This drafting rule thus offers yet another way to express reading (9-c):

(15) C: Das Bundesgericht deckt seinen Bedarf an Gütern und seinen Be-
darf an Dienstleistungen im Bereich der Logistik selbständig.
‘The Federal Supreme Court covers its need for goods and its need for

services in the sector of logistics autonomously.’

E: Das Bundesgericht deckt seinen Bedarf an Gütern und seinen Be-
darf an [Dienstleistungen im Bereich der Logistik] selbständig.
‘The Federal Supreme Court covers its need for goods and its need for

[services in the sector of logistics] autonomously.’

R: Das Bundesgericht deckt seinen Bedarf an Gütern sowie seinen Be-
darf an Dienstleistungen im Bereich der Logistik selbständig.
‘The Federal Supreme Court covers its need for goods as well as its need

for services in the sector of logistics autonomously.’

To be as explicit as possible, the recommended wording suggests that the repe-
tition of shared components is combined with the use of sowie instead of und.

The last reading, (9-d), is not so easy to generate within the proposed rules.
There is no position at which the prepositional phrase im Bereich der Logistik
would unequivocally be attached to Bedarf ; the only possible one, the one imme-
diately after Bedarf, is already occupied by the prepositional phrase an Gütern
und Dienstleistungen. Thus, a more substantial rephrasing is needed. Reading
(9-d) can, for instance, be obtained by transforming the prepositional phrase in
question into an attributive structure that precedes the phrase it modifies:

(16) C: Das Bundesgericht deckt seinen im Bereich der Logistik vorhande-
nen Bedarf an Gütern und Dienstleistungen selbständig.
‘The Federal Supreme Court covers its logistics-related need for goods

and services autonomously.’

E: Das Bundesgericht deckt seinen [im Bereich der Logistik vorhan-
denen Bedarf] an [Gütern und Dienstleistungen] selbständig.
‘The Federal Supreme Court covers its [logistics-related need] for [goods

and services] autonomously.’

34 A. Bünzli and S. Höfler

R: Das Bundesgericht deckt seinen im Bereich der Logistik vorhande-
nen Bedarf an Gütern und Dienstleistungen selbständig.
‘The Federal Supreme Court covers its logistics-related need for goods

and services autonomously.’

This rephrasing strategy has led to another drafting rule:

Rule 4. Rephrase multiple attachments I
If two prepositional phrases should be attached to the same noun phrase,
one has to be rephrased as an adjectival or participial attribute.

In the discussed example (8), only two prepositional phrases where involved.
What to do if more than two occur in the same sentence? Even in the short exam-
ple we had problems to achieve reading (9-d), where both prepositional phrases
had to attach to the same constituent. With more prepositional phrases occur-
ring, the intended attachments often cannot be satisfactorily resolved through
basic means such as shifting of the prepositional phrase next to the modified
constituent.11 A more thorough paraphrasing step is needed. Take, for instance,
the following sentence from the Swiss Federal Supreme Court Act:12

(17) In Fünferbesetzung entscheiden sie ferner über Beschwerden gegen ref-
erendumspflichtige kantonale Erlasse und gegen kantonale Entscheide
über die Zulässigkeit einer Initiative oder das Erfordernis eines Referen-
dums.

‘In a composition of five, they further decide on appeals against cantonal de-

crees that are subject to referendum and against cantonal decisions on the

admissibility of an initiative or the necessity of a referendum.’

The nesting of multiple prepositional phrases in this sentence gives rise to a range
of interdependent attachment ambiguities. The main problem is that entscheiden
über, entscheiden gegen and entscheiden + noun phrase are all valid construc-
tions and every coordinated item can theoretically be attached to the verb. On
the other hand, they can also be attached to Beschwerden. The attachment
of the last noun phrase (das Erfordernis eines Referendums) is particularly
unclear: is it coordinated with Zulässigkeit einer Initiative and therefore at-
tached to Entscheide (über), or is it coordinated with the long prepositional
phrase über Beschwerden . . . einer Initiative and thus attached to the verb? Such
a sentence is not only hard to parse but also difficult to understand: many combi-
nations of attachment can only be ruled out if appropriate context knowledge is
accessible.

11 Interpretation rule 1 does, for example, not cover constructions where the preposi-
tional phrase itself is a coordinated structure: the conjuncts could either (i) both
separately modify the governing constituent or (ii) modify the governing constituent
as a whole. Additionally, with multiple nested coordinations, it must be decided
which items are mutually coordinated: ‘x and (y or z)’ vs. ‘(x and y) or z’.

12 Art. 20 Abs. 3 Bundesgerichtsgesetz.

Controlling Ambiguities in Legislative Language 35

Rule 5. Rephrase multiple attachments II
Use an enumeration (1) if there are four or more elements to a coordination
or (2) if the elements of the coordination are long, e.g. consist of noun
phrases with complex attributes, or (3) if the attachment of prepositional
phrases according to rules 1-4 results in a cumbersome wording.

Example (18) illustrates what the sentence looks like if it is rephrased according
to the rules we introduced. We do not show the recommended version as it uses
the same wording as the conventional version.

(18) C: In Fünferbesetzung entscheiden sie ferner über Beschwerden gegen:
a. referendumspflichtige kantonale Erlasse;
b. kantonale Entscheide über die Zulässigkeit einer Initiative;
c. kantonale Entscheide über das Erfordernis eines Referendums.
‘In a composition of five, they further decide on appeals against:

a. cantonal decrees that are subject to referendum;

b. cantonal decisions on the admissibility of an initiative;

c. cantonal decisions on the necessity of a referendum.’

E: In Fünferbesetzung entscheiden sie ferner über Beschwerden gegen:
a. referendumspflichtige kantonale Erlasse;
b. kantonale Entscheide [über die Zulässigkeit einer Initiative];
c. kantonale Entscheide [über das Erfordernis eines Referen-

dums].
‘In a composition of five, they further decide on appeals against:

a. cantonal decrees that are subject to referendum;

b. cantonal decisions [on the admissibility of an initiative];

c. cantonal decisions [on the necessity of a referendum].’

As the example shows, explicit enumerations remove a large number of attach-
ment ambiguities from sentences with complex, nested coordination structures
and thus make them easier to read and understand.

4.2 Controlling Plural Ambiguities

Authors often find it hard to spot plural ambiguities contained in their texts;
yet this particular type of semantic ambiguity is not only prevalent in legislative
writing [1] but can indeed lead to confusions with regard to the meaning of a
passage, as the following example illustrates:13

13 This genuine example is taken from a draft of the Swiss Regulation on Immigration
and Visa Granting (Art. 6 Abs. 3 Bst. e VEV).

36 A. Bünzli and S. Höfler

(19) [Von der Visumpflicht sind ausgenommen:]

e. Inhaberinnen und Inhaber eines [. . .] Sonderpasses, der von den in
Absatz 2 genannten Staaten ausgestellt wurde;

‘[Exempt from the visa requirement are:]

e. owners of a special passport that was issued by the states mentioned in

paragraph 2;’

Due to plural ambiguity, the correct interpretation of the noun phrase eines
Sonderpasses, der von den [. . .] genannten Staaten ausgestellt wurde (‘a special
passport that was issued by the states mentioned [. . .]’) is uncertain; it can have
at least the following meanings:

(20) a. ‘a special passport that was issued by one of the states mentioned’
(singular reading)

b. ‘a special passport that was issued by all of the states mentioned
together’ (collective plural reading)

c. ‘a special passport that was issued by each of the states mentioned
individually’ (distributive plural reading)

Reading (20-a) does not interpret the noun phrase die genannten Staaten (‘the
states mentioned’) as a plural at all: it rather assumes that the plural form of that
noun phrase is merely a projection from Inhaberinnen und Inhaber (‘owners’),
in whose scope it appears. Readings (20-b) and (20-c), in contrast, represent
the classical distributive and collective plural interpretations, as described e.g.
in [27]. In legislative texts, this classical plural ambiguity seems seldom of great
consequence: normally, world knowledge prevents a wrong interpretation, or the
distinction between a collective and a distributive reading is not relevant in the
first place and can thus be left underspecified. The distinction between a singular
and a plural interpretation, on the other hand, can prove to be critical for the
correct application of a statute or regulation.

Existing drafting guidelines such as [21] consequently suggest that reading
(20-a) should be expressed by a singular rather than a plural. We have incorpo-
rated this guideline:

Rule 6. Use singular forms for singular objects
A singular form should be used to refer to a singular object, even if it
occurs within the scope of a plural object.
Instead of an indefinite plural noun phrase, use an indefinite singular noun
phrase; instead of a definite plural noun phrase, use eine/r/s der and that
plural noun phrase.

Controlling Ambiguities in Legislative Language 37

The present example would thus have to be rephrased by replacing the plural
die genannten Staaten (‘the states mentioned’) with einer der genannten Staaten
(‘any/one of the states mentioned’) if reading (20-a) was intended:14

(21) C: Inhaberinnen und Inhaber eines Sonderpasses, der von einem der
in Absatz 2 genannten Staaten ausgestellt wurde
‘owners of a special passport that was issued by any of the states men-

tioned in paragraph 2’

E: jede Inhaberin und jeder Inhaber eines Sonderpasses, der von einem
der in Absatz 2 genannten Staaten ausgestellt wurde
‘every owner of a special passport that was issued by any of the states

mentioned in paragraph 2’

R: Inhaberinnen und Inhaber eines Sonderpasses, der von einem der
in Absatz 2 genannten Staaten ausgestellt wurde
‘owners of a special passport that was issued by any of the states men-

tioned in paragraph 2’

Note that the recommended version is identical to the drafted conventional ver-
sion. The explicit paraphrase only has to make the interpretation of the subject
explicit (see below); the noun phrase in question is unambiguous now.15

The method controlled natural languages typically choose to control the am-
biguity of ‘real’ plural noun phrases is to use markers such as je (‘each’) and
gemeinsam (‘together’) to distinguish between distributive and collective read-
ings [27]. However, as these markers do not modify the noun phrases in question
but rather the verb, the derivation of explicit paraphrases and recommended
wordings would not be trivial. We have thus chosen to take a different approach
by constructing drafting rules that are based on (i) existing frequency distribu-
tions and (ii) conventions already present in legislative language.

Our analysis of several legislative texts has shown that distributive interpre-
tations of plural noun phrases clearly occur more often than collective readings.
We have thus constructed a drafting rule that reflects this fact:

Rule 7. Use plurals distributively
Plurals should only be used in the distributive sense.

Example (19) illustrates how the usage requested by this rule is made explicit
and what wording is recommended for it:

14 It is indeed the intended reading as showed by the final and published version of the
Swiss Regulation on Immigration and Visa Granting (Art. 6 Abs. 3 Bst. e VEV).
The unclear passage was corrected by the Central Language Services during their
reviewing process.

15 Theoretically, there still is a scope ambiguity: do the owners of a special passport
each have their own passport or is there one specific passport that they all share?
In the context of legislative texts, the interpretation where the existential quantified
phrase gets wide scope without specifically being marked is very improbable and is
a mere theoretical possibility.

38 A. Bünzli and S. Höfler

(22) C: Inhaberinnen und Inhaber eines Sonderpasses, der von den in Ab-
satz 2 genannten Staaten ausgestellt wurde
‘owners of a special passport that was issued by the states mentioned in

paragraph 2’

E: jede Inhaberin und jeder Inhaber eines Sonderpasses, der von jedem
der in Absatz 2 genannten Staaten ausgestellt wurde
‘every owner of a special passport that was issued by each of the states

mentioned in paragraph 2’

R: Inhaberinnen und Inhaber eines Sonderpasses, der von jedem der
in Absatz 2 genannten Staaten ausgestellt wurde
‘owners of a special passport that was issued by each of the states men-

tioned in paragraph 2’

The distributive reading is made explicit by inserting jeder der (‘each of the’)
in front of the definite plural noun phrase. This paraphrase sounds more or less
natural and can be used in situations where it is essential to be precise and no
general world-knowledge prevents unwanted interpretations. It is therefore also
used in the recommended version.

Note that the subject of the sentence, Inhaberinnen und Inhaber (‘owners’),
is a plural noun phrase too and could thus also produce plural ambiguity. In the
paraphrase, the distributive usage recommended by the drafting rule is made
explicit by the insertion of jeder (‘every’) in front of it.16

To express the collective reading (20-b), we have adopted a convention that
already exists in legislative language: the use of abstract singular terms instead
of plurals. Legislative texts frequently coin and employ collective singular nouns
such as das Gericht (‘the court’), die Erbengemeinschaft (‘the community of
heirs’) or die Inhaberschaft (‘the ownership’). We have thus defined the follow-
ing drafting rule:

Rule 8. Use singular terms for collective readings
To express collective plural readings, abstract singular terms should be
used.

Example (23) illustrates how this rule can be applied. The collective plural read-
ing of sample sentence (19) is achieved by the singular term die Staatengemein-
schaft (‘the community of states’):

(23) C: Inhaberinnen und Inhaber eines Sonderpasses, der von der in Absatz
2 genannten Staatengemeinschaft ausgestellt wurde
‘owners of a special passport that was issued by the community of the

states mentioned in paragraph 2’

16 We have argued elsewhere that, in legislative texts, indefinite noun phrases in vorfeld
position can be considered to be implicitly universally quantified [10]. Legislative
texts state rules that apply to a certain group or set of objects. In Swiss German-
language legislative texts, this subject matter of a norm is usually mentioned in the
vorfeld position and must be interpreted in a definitional generic sense.

Controlling Ambiguities in Legislative Language 39

E: jede Inhaberin und jeder Inhaber eines Sonderpasses, der von der
in Absatz 2 genannten Staatengemeinschaft ausgestellt wurde
‘every owner of a special passport that was issued by the community of

the states mentioned in paragraph 2’

R: Inhaberinnen und Inhaber eines Sonderpasses, der von der in Absatz
2 genannten Staatengemeinschaft ausgestellt wurde
‘owners of a special passport that was issued by the community of the

states mentioned in paragraph 2’

Because of the use of a singular term, the noun phrase in question is not ambigu-
ous anymore. The explicit paraphrase thus only needs to make the interpretation
of the subject of the sentence explicit, and the recommended wording is identical
to the original conventional formulation.

5 Related Work

Ambiguity in law has been studied by several researchers, for the Anglo-American
legal system for example by Lawrence Solan [31,32] and Sanford Schane [23,24].
Government agencies and organizations such as the Plain English or Plain Lan-
guage initiative17 have addressed the problem in a fashion that is broadly similar
to the aforementioned guidelines [26,25,6,5,21,8]. However, these drafting man-
uals typically formulate general rules – for example, that the active voice should
be used or sentences should be short. They do not cover rules that require deeper
linguistic insight, although this would be desirable: Carl Vogel [36] presents a
study of statutory drafting in Ireland in which he argues that it is particularly
with regard to issues of natural language ambiguity that linguistics (and formal
semanticists) can make a pivotal contribution to legislative drafting.

Regarding controlled languages, there have only been very few attempts to
design controlled versions of German: “Siemens Dokumentationsdeutsch” [14]
and “Controlled German” [13]. All these attempts were concerned with technical
language, and, as far as we know, remained research prototypes. No effort has
been made to transfer these attempts to legal language, but some of the rules
could also be applied to legal texts.

Every authoring tool for controlled natural languages has to make the actual
interpretation explicit and doing this by paraphrasing ambiguous constructions is
not a new idea. It has been done in several approaches, for example for ACE [12],
PENG [29] and IBM’s Easy English [3]. However, the mentioned approaches rely
on a complete grammar and generate the paraphrases automatically. In contrast,
our rules are guidelines for humans. They are intended to help the drafter choose a
sensible phrasing and to make legislative texts more consistent by establishing new
interpretation rules.18 Establishing interpretation rules for specific constructions

17 http://www.plainenglish.co.uk, http://www.plainlanguage.gov
18 Some of our rules discussed in this paper have already had an impact on the drafting

process: there has been a thorough discussion about the proper use of “sowie” vs.
“und” [4].

http://www.plainenglish.co.uk
http://www.plainlanguage.gov

40 A. Bünzli and S. Höfler

is indeed quite common in the legal domain: interpretation principles are accepted
as a means to support deciding ambiguous or vague cases [36,24].

6 Conclusion

In this paper, we have shown how the methods of controlled natural language
can be applied to reduce ambiguity in legislative texts. We have introduced a
three-layer approach, in which we specify drafting rules for specific ambiguous
constructions. Sentences that are formulated according to these rules can be
transformed deterministically into pre-defined explicit paraphrases and recom-
mended wordings. At the moment, this transformation has to be done by hand.
However, the availability of deterministic mechanisms as proposed in this pa-
per constitutes a precondition for a future automatic processing. The proposed
drafting rules are designed to reflect conventions and frequency distributions that
already exist in legislative language and to exploit guidelines that have already
been issued by various government agencies. We have argued that two types
of ambiguity are in need of such additional control: attachment ambiguity and
plural ambiguity. Not only are these insufficiently covered by existing drafting
guidelines but they are also particularly frequent in legislative texts and prone
to causing problems for the correct interpretation of a statute or regulation.

A thorough application of drafting rules like the ones proposed in this paper
has several benefits: it helps drafters become aware of ambiguities hidden in their
texts, it helps them formulate sentences that are easier to understand and finally, it
can lead to a greater standardization of legislative language, especially with regard
to the phenomenon of ambiguity. Such a standardization can facilitate the inter-
pretation of legislative texts but it can also support their translation into other
languages – an aspect which is particularly relevant for multilingual countries like
Switzerland or for international organizations like the European Union.

References

1. Adams, K.A., Kaye, A.S.: Revisiting the ambiguity of “And” and “Or” in legal
drafting. St. John’s Law Review 80(4) (2006)

2. ASD: ASD Simplified Technical English: Specifications ASD-STE100. AeroSpace
and Defence Industries Association of Europe, Simplified Technical English Main-
tenance Group (ASD STEMG) (2005)

3. Bernth, A.: EasyEnglish: A tool for improving document quality. In: Proceedings
of the Fifth Conference on Applied Natural Language Processing, pp. 159–165.
Association for Computational Linguistics, Morriston (1997)

4. Bratschi, R.: “und” vs. “sowie”. Redaktionsbeispiel vom 19 (August 2010) (unpub-
lished)

5. Caussignac, G., Eberhard, C., Häusler, P., Kettiger, D., Pulitano, D., Schneider,
R.: Rechtsetzungsrichtlinien des Kantons Bern, Modul 3: Rechtsetzungstechnische
Richtlinien (RTR). Justiz-, Gemeinde- und Kirchendirektion und Staatskanzlei des
Kantons Bern, Bern (2000)

6. Caussignac, G., Eberhard, C., Häusler, P., Kettiger, D., Pulitano, D., Schneider, R.:
Rechtsetzungsrichtlinien des Kantons Bern, Modul 4: Sprache. Justiz-, Gemeinde-
und Kirchendirektion und Staatskanzlei des Kantons Bern, Bern (2000)

Controlling Ambiguities in Legislative Language 41

7. Clark, P., Harrison, P., Jenkins, T., Thompson, J., Wojcik, R.: Acquiring and using
world knowledge using a restricted subset of English. In: FLAIRS 2005, pp. 506–511
(2005)

8. Europäische Kommission, Luxemburg, Amt für amtliche Veröffentlichungen der
Europäischen Gemeinschaften: Gemeinsamer Leitfaden des Europäischen Parla-
ments, des Rates und der Kommission für Personen, die in den Gemeinschaftsor-
ganen an der Abfassung von Rechtstexten mitwirken (2003),
http://eur-lex.europa.eu/de/techleg/index.htm

9. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for Knowl-
edge Representation. In: Baroglio, C., Bonatti, P.A., Ma�luszyński, J., Marchiori, M.,
Polleres, A., Schaffert, S. (eds.) Reasoning Web 2008. LNCS, vol. 5224, pp. 104–124.
Springer, Heidelberg (2008)

10. Hoefler, S., Bünzli, A.: Controlling the language of statutes and regulations for
semantic processing. In: Proceedings of the LREC 2010 Workshop on Semantic
Processing of Legal Texts (SPLeT 2010), Valletta, Malta, pp. 8–15 (2010)

11. Iluk, J.: Die Verständlichkeit der deutschen, österreichischen, schweizerischen und
polnischen Verfassung, Versuch einer komparatistischen Analyse. In: Eichhoff-
Cyrus, K.M., Antos, G. (eds.) Verständlichkeit als Bürgerrecht? Die Rechts- und
Verwaltungssprache in der öffentlichen Diskussion, pp. 136–154. Dudenverlag,
Mannheim (2008)

12. Kaljurand, K.: Paraphrasing controlled English texts. In: Fuchs, N.E. (ed.) Pre-
Proceedings of the Workshop on Controlled Natural Language (CNL 2009). CEUR
Workshop Proceedings, vol. 448, CEUR-WS (April 2009)

13. Lehrndorfer, A.: Kontrolliertes Deutsch. Linguistische und sprachpsychologische
Leitlinien für eine (maschinell) kontrollierte Sprache in der Technischen Dokumen-
tation. No. 415 in Tübinger Beiträge zur Linguistik, Gunter Narr Verlag, Tübingen
(1996)

14. Lehrndorfer, A., Schachtl, S.: Controlled Siemens Documentary German and Top-
Trans. Technical Communicators Forum 3 (1998)

15. Lötscher, A.: Multilingual law drafting in Switzerland. In: Grewendorf, G., Rathert,
M. (eds.) Formal Linguistics and Law. Trends in Linguistics. Studies and Mono-
graphs, pp. 371–400. Mouton de Gruyter, Berlin (2009)

16. Nussbaumer, M.: Zwischen Rechtsgrundsätzen und Formularsammlung: Gesetze
brauchen (gute) Vagheit zum Atmen. In: Bhatia, V.K., Engberg, J., Gotti, M.,
Helier, D. (eds.) Vagueness in Normative Texts, Linguistic Insights. Studies in
Language and Communication, vol. 23, pp. 49–71. Peter Lang, Bern (2005)

17. Nussbaumer, M.: Rhetorisch-stilistische Eigenschaften der Sprache des Rechtswe-
sens. In: Fix, U., Gardt, A., Knape, J. (eds.) Rhetorik und Stilistik / Rhetoric
and Stylistics. Ein Internationales Handbuch Historischer und Systematischer
Forschung / An International Handbook of Historical and Systematic Research,
Handbücher zur Sprach- und Kommunikationswissenschaft / Handbooks of Lin-
guistics and Communication Science / [HSK] 31/2, ch. 128, vol. 2 (Halbband), pp.
2132–2150. Mouton de Gruyter (2009)

18. O’Brien, S.: Controlling controlled English: An analysis of several controlled lan-
guage rule sets. In: EAMT-CLAW-2003, pp. 105–114, Controlled language trans-
lation (2003)

19. Pace, G.J., Rosner, M.: A Controlled Language for the Specification of Contracts.
In: Fuchs, N.E. (ed.) CNL 2009. LNCS, vol. 5972, pp. 226–245. Springer, Heidelberg
(2010)

20. Pool, J.: Can controlled languages scale to the web? In: CLAW 2006 at AMTA
2006: 5th International Workshop on Controlled Language Applications (2006)

http://eur-lex.europa.eu/de/techleg/index.htm

42 A. Bünzli and S. Höfler

21. Regierungsrat des Kantons Zürich: Richtlinien der Rechtsetzung (2005)
22. Reuther, U.: Two in one - can it work? Readability and translatability by means

of controlled language. In: Proceedings of EAMT-CLAW (2003)
23. Schane, S.: Ambiguity and misunderstanding in the law. T. Jefferson L. Rev. 25,

167–649 (2002)
24. Schane, S.A.: Language and the law. Continuum International Publishing Group

(2006)
25. Schweizerische Bundeskanzlei, in Zusammenarbeit mit der Zürcher Hochschule

für Angewandte Wissenschaften: Geschlechtergerechte Sprache. Leitfaden zum
geschlechtergerechten Formulieren im Deutschen, 2 edn. (2009)

26. Schweizerisches Bundesamt für Justiz, Bern: Gesetzgebungsleitfaden: Leitfaden für
die Ausarbeitung von Erlassen des Bundes, 3 edn. (2007)

27. Schwertel, U.: Controlling plural ambiguities in Attempto Controlled English. In:
Proceedings of the 3rd International Workshop on Controlled Language Applica-
tions, Seattle, Washington (2000)

28. Schwitter, R., Tilbrook, M.: Let’s talk in description logic via controlled natural
language. In: Proceedings of the 3rd International Workshop on Logic and Engi-
neering of Natural Language Semantics, Tokyo, pp. 193–207 (2006)

29. Schwitter, R., Ljungberg, A., Hood, D.: ECOLE — a look-ahead editor for a con-
trolled language. In: Proceedings of EAMT-CLAW 2003, pp. 141–150 (2003)

30. Schwitter, R., Tilbrook, M.: Annotating websites with machine-processable infor-
mation in controlled natural language. In: Proceedings of the Second Australasian
Workshop on Advances in Ontologies, AOW 2006, vol. 72, pp. 75–84. Australian
Computer Society, Inc., Darlinghurst (2006)

31. Solan, L.M.: Linguistic principles as the rule of law. In: Pupier, P., Woehrling, J.
(eds.) Language and Law: Proceedings of the First Conference of the International
Institute of Comparative Linguistic Law. Wilson & Lafleur, Montreal (1989)

32. Solan, L.M.: Vagueness and ambiguity in legal interpretation. In: Bhatia, V.K.,
Engberg, J., Gotti, M., Helier, D. (eds.) Vagueness in Normative Texts, Linguistic
Insights. Studies in language and Communication, vol. 23, pp. 73–96. Peter Lang,
Bern (2005)

33. Sowa, J.F.: Common logic controlled English, draft, March 15 (2007),
http://www.jfsowa.com/clce/clce07.htm

34. Venturi, G.: Parsing legal texts. A contrastive study with a view to knowledge
management applications. In: LREC 2008 – W9 Workshop on Semantic Processing
of Legal Texts (2008)

35. Verbeke, C.: Caterpillar Fundamental English. A basic approach for multination
technical communication in an industry basic approach for multination technical
communication in an industry. Training and Development Journal 27(2), 36–40
(1973)

36. Vogel, C.: Law matters, syntax matters and semantics matters. In: Grewendorf,
G., Rathert, M. (eds.) Formal Linguistics and Law, Trends in Linguistics. Studies
and Monographs, vol. 212, pp. 25–54. Mouton de Gruyter, Berlin (2009)

http://www.jfsowa.com/clce/clce07.htm

Interpreting Plurals in the Naproche CNL

Marcos Cramer and Bernhard Schröder

University of Bonn and University of Duisburg-Essen
cramer@math.uni-bonn.de, bernhard.schroeder@uni-due.de

http://www.naproche.net

Abstract. The Naproche CNL is a controlled natural language for math-
ematical texts. A recent addition to the Naproche CNL are plural state-
ments. We discuss the collective-distributive ambiguity in the context of
mathematical language, as well as pairwise interpretations of collective
plurals. Additionally, we present a special scope ambiguity conjunctions
give rise to. Finally, we describe an innovative plural interpretation algo-
rithm implemented in Naproche for disambiguating plurals in DRT and
giving them the interpretation that would normally be preferred in a math-
ematical context.

Keywords: Naproche, CNL, plurals, DRT, distributive reading, collec-
tive reading.

1 Introduction

The Naproche CNL [2] is a controlled natural language for mathematical texts,
i.e. a controlled subset of the semi-formal language of mathematics (SFLM) as
used in mathematical journals and textbooks. The Naproche system translates
Naproche CNL texts first into Proof Representation Structures (PRSs, [2]), an
adapted version of Discourse Representation Structures, which are further trans-
lated into lists of first-order formulae which are used for checking the logical
correctness of a Naproche text using automated theorem provers.

The two main applications that we have in mind for Naproche are to make
formal mathematics more readable to the average mathematician, and to use
it as a tool that supports undergraduate students in writing formally correct
proofs and thus get used to (a subset of) SFML.

A recent addition to the Naproche CNL are plural statements. By this we
mean not only statements involving nouns in the plural (e.g. “numbers”) and
verbs conjugated in plural forms (e.g. “are”), but also conjunctive coordinations
of noun phrases (e.g. “x+ y and x · y are even”). We discuss two kinds of ambi-
guities that originate from plural statements: the ambiguity between collective
and distributive readings of plurals, and a special scope ambiguity conjunctions
give rise to. Both ambiguities are resolved by an innovative plural interpretation
algorithm that is geared towards the use of plurals in mathematical texts, and
described in detail in this paper. Plural definite noun phrases (e.g. “the real num-
bers”) are not yet implemented in Naproche and are left out of the discussion
in this paper.

M. Rosner and N.E. Fuchs (Eds.): CNL 2010, LNAI 7175, pp. 43–52, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.naproche.net

44 M. Cramer and B. Schröder

2 Proof Representation Structures

Proof Representation Structures (PRSs) are Discourse Representation Struc-
tures, which are enriched in such a way as to represent the distinguishing charac-
teristics of the mathematical language. For the purpose of this paper, we present
a simplified definition of PRSs:

A PRS is a pair consisting of a list of discourse referents and an ordered list
of conditions,1 usually depicted as a box, similarly to a DRS:

d1, . . . , dm
c1
...
cn

Just as in the case of DRSs, PRSs and PRS conditions are defined recursively:
Let A,B be PRSs and d, d1, . . . , dn discourse referents. Then

– for any n-ary predicate p (e.g. expressed by adjectives and noun phrases in
predicative use and verbs in SFLM), p(d1, . . . , dn) is a PRS condition.

– A mathematical formula is a PRS condition.
– ¬A is a PRS condition, representing a negation.
– B ⇒ A is a PRS condition, representing an assumption (B) and the set of

claims made inside the scope of this assumption (A).
– static(A) is a PRS condition.

Accessibility in PRSs is defined analogously to accessibility in DRSs: Thus dis-
course referents introduced in conditions of the form ¬A or B ⇒ A are not
accessible from outside these conditions. We have introduced an additional con-
dition of the form static(A), which allows us to represent existential claims with
a static rather than a dynamic existential quantification: Thus discourse refer-
ent introduced in a condition of the form static(A) are also not accessible from
outside this condition.

3 Collective vs. Distributive Readings of Plurals

The following sentence is ambiguous:2

(1) Three men lifted a piano.

It can mean either that three men lifted a piano together (in a single lifting
act), or that there were three lifting acts, each of which involved a different
man lifting a piano. The first is called the collective reading, the second the

1 The use of ordered lists rather than sets in the definition of PRSs was motivated in
[2].

2 A comprehensive overview over plural readings is given by [6].

Plurals in Naproche 45

distributive reading.3 The ambiguity arises because the agent of a lifting event
can either be a collection of individuals or a single individual.

In SFLM, both the collective and the distributive reading exist:

(2) 12 and 25 are coprime.

(3) 2 and 3 are prime numbers.

Instead of (2), one could also say “12 is coprime to 25.” So the adjective “co-
prime” can be used in two grammatically distinct ways, but in both cases refers
to the same mathematical binary relation: either it is (predicatively or attribu-
tively) attached to a plural NP that gets a collective reading, or it has as a
complement a prepositional phrase with “to”. When used in the first way, we
call “coprime” a collective adjective, when used in the second way, a transitive
adjective. We say that the two logical arguments of “coprime” can be grouped
into one collective linguistic argument, a plural NP with a collective reading.
In general, mathematical adjectives expressing a symmetric binary relation have
these two uses (cf. “parallel”, “equivalent”, “distinct”, “disjoint”; in the case of
“distinct” and “disjoint”, the preposition used for the transitive case is “from”
rather than “to”). Other cases of grouped arguments are “x and y commute”
(cf. “x commutes with y”) and “x connects y and z” (cf. “x connects y to z”).
“x is between y and z” is an example of an expression with a grouped argument
for which there is no corresponding expression without grouped arguments.

Since “prime number” expresses a unary relation, it is not possible to group
two of its logical arguments into a single linguistic argument; this explains why
(3) can’t have a collective reading of the sort that (2) has. Which expressions
can have grouped arguments is coded into the lexicon of the Naproche CNL.

An ambiguity like that of (1) can only arise when an expression (here the verb
“to lift”) has a linguistic argument that can be either a collectively interpreted
plural NP or a singular NP (and can hence also be a distributively interpreted
plural NP). Such expressions are extremely rare in SFLM. One example that we
are aware of is the adjective “inconsistent”:

(4) ϕ and ψ are inconsistent.

(4) can be mean either that the set of formulae {ϕ, ψ} is an inconsistent set of for-
mulae, or that ϕ is inconsistent and ψ is inconsistent. This ambiguity is avoided
in Naproche by not marking “inconsistent” as an expression with grouped argu-
ments in our lexicon, so that (4) only has the distributive reading; the collective
reading can only be expressed with explicit set notation in Naproche.

4 Scope Ambiguity

Another kind of ambiguity of special interest for our treatment of plurals and
noun phrase conjunctions is a scope ambiguity that arises in certain sentences
containing a noun phrase conjunction and a quantifier:

3 We ignore cumulative readings here, because they play a negligible role in the math-
ematical contexts we have in mind.

46 M. Cramer and B. Schröder

(5) A and B contain some prime.

(5) can mean either that A contains a prime and B contains a (possibly different)
prime, or that there is a prime that is contained in both A and B. In the first
case we say that the scope of the noun phrase conjunction “A and B” contains
the quantifier “some”, whereas in the second case we say that the scope of
“some” contains the noun phrase conjunction. We call the first reading the wide-
conjunction-scope reading and the second the narrow-conjunction-scope reading.

Sometimes certain considerations of reference or variable range force one of
the two readings, as in (6) and (7).

(6) x and y are integers such that some odd prime number divides x+ y.

(7) x and y are prime numbers p such that some odd prime number q divides
p+ 1.4

(6) only has a narrow-conjunction-scope reading, because the existentially in-
troduced entity is linked via a predicate (“divides”) to a term (“x + y”) that
refers to the coordinated noun phrases individually. (7) on the other hand only
has a wide-conjunction-scope reading, because the variable p must range over
the values of both x and y, and q depends on p.

In general, there is, like in common language use, a strong tendency in SFLM
texts to resolve scope ambiguities by giving wider scope to a quantifier that is
introduced earlier in a sentence than to a quantifier introduced later in the sen-
tence. This is a principle that we have already long ago adopted into Naproche
in order to avoid scope ambiguities in the Naproche CNL. With the addition
of coordinated NPs, we extended this principle to their scopes, with the excep-
tion of the cases like (6) where another reading is forced by certain syntactical
considerations. Section 6 contains an account of how cases like (6) are identi-
fied.

5 Pairwise Interpretations of Collective Plurals

In SFLM texts, one often sees sentences like (8) and (9), which are interpreted
in a pairwise way as in (10) and (11):

(8) 7, 12 and 25 are coprime.

(9) All lines in A are parallel.

(10) coprime(7, 12) ∧ coprime(12, 25) ∧ coprime(7, 25)

4 Given that this example is made up, one might ask whether it really occurs in SFLM
texts that a plural noun followed by a variable is predicatively linked to a conjunction
of terms as in this example. One real example that we found comes from page 4 of [1]:
“Notice that 13, 37, 61, . . . , are primes p such that p3 +2 and p3 +1 are squarefree.”

Plurals in Naproche 47

(11) ∀x, y ∈ A (x 	= y → parallel(x, y))5

Sometimes, especially in connection with the negative collective adjectives “dis-
tinct” and “disjoint”, this interpretation is reinforced through the use of the
word “pairwise”, in order to ensure that one applies the predicate to all pairs
of objects collectively referred to by the plural NP. But given that this pairwise
interpretation is at any rate the standard interpretation of such sentences even
in the absence of the adverb “pairwise”, we decided not to require the use of the
word “pairwise” in the Naproche CNL.

The Naproche CNL allows only this pairwise interpretation for a plural NP
that is used as a grouped argument of such a collective adjective. (12) is a
sentence where another reading (14) might naturally be preferred to the pairwise
interpretation (13) that Naproche assigns to it:

(12) Some numbers in A and B are coprime.

(13) ∃n,m (number(n) ∧ n ∈ A ∧ n ∈ B ∧ number(m) ∧ m ∈ A ∧ m ∈ B ∧
coprime(n,m))

(14) ∃n,m (number(n) ∧ n ∈ A ∧ number(m) ∧m ∈ B ∧ coprime(n,m))

However, it seems to us that such sentences hardly appear in real mathematical
texts.

6 The Plural Interpretation Algorithm

In the Naproche system, the PRS construction algorithm for the representa-
tion of single sentences has been added to the standard threading algorithm
for DRS construction (see [4]), and is implemented in Prolog. The algorithm
can cope with plurals, plural ambiguity resolution and pairwise interpretations
as explained in the previous sections. We illustrate how the algorithm treats
plurals by considering the following example sentence:

(15) x and y are distinct primes p such that 2p+1 is a square number and some
odd prime divides x+ y.

This example has only one natural reading, and illustrates all the natural disam-
biguation methods mentioned in the previous sections: The plural construction
“x and y” is modified by one predicate (“distinct”) that needs to be interpreted
collectively and by one predicate (“prime”) that needs to be interpreted distribu-
tively. One of the existential NPs in the such-that clause (“a square number”)
has to be given a narrow scope, while the other (“some odd prime”) has to be

5 The distinctness condition here can be ignored in the case of reflexive relations
like “parallel”, but is certainly needed for non-reflexive relations like “coprime” or
“disjoint”.

48 M. Cramer and B. Schröder

given a wide scope. The algorithm specifies a formal procedure to attain this
natural reading.

The algorithm works by first producing a preliminary representation (Fig.1):

x, y, p

plural dref(p,[x,y])

plural(p,

a, b, c

distinct(p)
prime(p)
a = 2p + 1
square(a)
odd(b)
prime(b)
c = x + y
divide(b,c)

)

Fig. 1. Preliminary PRS

Here the NP conjunction gets a plural discourse referent (p in Fig. 1), which
is linked to the discourse referents of the conjuncts by a plural dref condition.
We give the NP conjunction wide scope over all quantifiers introduced later, and
all assertions made in the scope of the plural NP are inserted in a special plural
sub-PRS. The plural-dref and plural conditions used in such preliminary PRSs
are book-keeping devices and not part of the official PRS language.6

The goal of the algorithm is to eliminate the plural discourse referents in favour
of the singular discourse referents they subordinate. This has to be done sepa-
rately for the distributively and collectively interpreted parts. The distributive
interpretations opens a scopus, in which there may occur dependent variables.
The algorithm consists of five steps, which can be summarized as follows: For
each plural referent:

1. Mark the collective uses of the plural referent.
2. Mark the distributive uses of the plural referent and dependent variables.
3. Separate the scopus of distributive uses of the plural referent from the rest.
4. Replace collective variable occurrences.
5. Replace distributive variable occurrences.

Now we describe each of the steps more formally:

1. Marking the Collective Uses of the Plural Referent: In the plural sub-
PRS, we mark every PRS condition which consists of a predicate that has the

6 Alternatively, one may consider these conditions as extensions of the PRS language,
in which case the semantics of the plural condition has to be an underspecified
semantics in the sense of [3], which represents the different scopal interpretations of
the plural NP.

Plurals in Naproche 49

plural discourse referent as grouped argument (“distinct(p)” in the example PRS,
marked by boldface). That the plural discourse referent is a grouped argument
is derived from the fact that the number of arguments, with which the predicate
appears in the plural sub-PRS, is one less than its logical number of arguments
fixed in the lexicon, and from the fact that the lexicon specifies the possibility
of grouping two of its arguments into one.

x, y, p
plural dref(p,[x,y])

plural(p,

a, b, c
distinct(p)
prime(p)
a = 2p+ 1
square(a)
odd(b)
prime(b)
c = x+ y
divide(b,c)

)
�

x, y, p
plural dref(p,[x,y])

plural(p,

a, b, c
distinct(p)
prime(p)
a = 2p+ 1
square(a)
odd(b)
prime(b)
c = x+ y
divide(b,c)

)

2. Marking the Distributive Uses of the Plural Referent and Depen-
dent Variables: In the plural sub-PRS, we recursively mark (in the figure by
underlining) all PRS conditions that were not marked in step 1 and contain the
plural discourse referent or a marked discourse referent, and all discourse refer-
ents contained in a PRS condition marked in this way, until no more conditions
and discourse referents can be marked by this process:

x, y, p
plural dref(p,[x,y])

plural(p,

a, b, c
distinct(p)
prime(p)
a = 2p+ 1
square(a)
odd(b)
prime(b)
c = x+ y
divide(b,c)

)
�

x, y, p
plural dref(p,[x,y])

plural(p,

a, b, c
distinct(p)
prime(p)
a = 2p+ 1
square(a)
odd(b)
prime(b)
c = x+ y
divide(b,c)

)

3. Separating the Scopus of Distributive Uses of the Plural Refer-
ent from the Rest: All discourse referents and PRS conditions in the plural

50 M. Cramer and B. Schröder

sub-PRS not marked in step 2 get pulled out of the plural sub-PRS and inserted
into its super-PRS:7

x, y, p
plural dref(p,[x,y])

plural(p,

a, b, c
distinct(p)
prime(p)
a = 2p+ 1
square(a)
odd(b)
prime(b)
c = x+ y
divide(b,c)

)
�

x, y, p, b, c
plural dref(p,[x,y])
distinct(p)
odd(b)
prime(b)
c = x+ y
divide(b,c)

plural(p,

a
prime(p)
a = 2p+ 1
square(a)

)

4: Replacing Collective Variable Occurrences: For every PRS condition
p(d) with grouped argument d, and every pair d1, d2 of distinct discourse refer-
ents linked to d via a plural dref condition, we create a PRS condition of the
form p(d1, d2) and remove the original PRS condition p(d) (in our example this
amounts to replacing “distinct(p)” by “distinct(x, y)”):

x, y, p, b, c
plural dref(p,[x,y])
distinct(p)
odd(b)
prime(b)
c = x+ y
divide(b,c)

plural(p,

a
prime(p)
a = 2p+ 1
square(a)

)

�

x, y, p, b, c
plural dref(p,[x,y])
distinct(x, y)
odd(b)
prime(b)
c = x+ y
divide(b,c)

plural(p,

a
prime(p)
a = 2p+ 1
square(a)

)

5. Replacing Distributive Variable Occurrences: For every discourse ref-
erent d linked to the plural discourse referent p, we make a static copy of the
plural sub-PRS in which every instance of p is replaced by d, removing the
original plural sub-PRS:

7 Since this step moves discourse referents and conditions around, one might wonder
whether it can cause formally bound variables to become free. This, however, is
impeded by the recursive procedure in step 2: If a certain discourse referent stays
in the plural sub-PRS, no condition containing this discourse referent can be pulled
out of the plural sub-PRS.

Plurals in Naproche 51

x, y, p, b, c
plural dref(p,[x,y])
distinct(x, y)
odd(b)
prime(b)
c = x+ y
divide(b,c)

plural(p,

a
prime(p)
a = 2p+ 1
square(a)

)

�

x, y, b, c
distinct(x, y)
odd(b)
prime(b)
c = x+ y
divide(b,c)

static(

a
prime(x)
a = 2x+ 1
square(a)

)

static(

a
prime(y)
a = 2y + 1
square(a)

)

The final PRS corresponds to the natural reading of sentence (15) that we
described at the beginning of this section.

7 Related and Future Work

The syntax of Attempto Controlled English (ACE) allows plurals, which are inter-
preted inACE in anunambiguousway [8]. The disambiguationusedbyACE is very
distinct fromNaproche’s:whileNaproche gives preference todistributive andwide-
conjunction-scope readings, ACE allows only collective and narrow-conjunction-
scope readings, unless the word “each” is used. This difference is due to the fact
that for Naproche we focused on the interpretations common in SFLM, whereas
ACE took the English language as a whole into account. Our focus on mathemat-
ical language also made it important for us to treat “x and y are coprime” and “x
is coprime to y” as logically equivalent, which ACE does not do.

ForTheL, the controlled natural language of the System for Automated De-
duction (SAD), a project with similar goals to Naproche, already included the
two uses of words like “parallel” and “to commute” and produced the same
representation no matter in which way they were used [7].

At the moment, Naproche does not yet allow anaphoric pronouns like “it”
and “they”. When Naproche is extended to allow them, some rules specifying
how to control the many ways in which an anaphoric antecedent for “they” can
be chosen (see [5]) will have to be specified and implemented, again with special
attention to existing usage in SFLM.

8 Conclusion

We have implemented a plural intepretation algorithm that can handle a number
of constructs related to plurals in a way that seems desirable for a mathematical

52 M. Cramer and B. Schröder

CNL: While a distributive reading of plurals is preferred, a collective reading is
chosen for predicates with grouped arguments and the pairwise interpretation
of predicates with grouped arguments is chosen when feasible. Additionally, the
scope ambiguity that noun phrase conjunctions give rise to is disambiguated
with respect to the syntactic-semantic context.

References

1. Cohen, G.L.: Derived Sequences. Journal of Integer Sequences 6 (2003)
2. Cramer, M., Fisseni, B., Koepke, P., Kühlwein, D., Schröder, B., Veldman, J.:

The Naproche Project Controlled Natural Language Proof Checking of Mathemat-
ical Texts. In: Fuchs, N.E. (ed.) CNL 2009 Workshop. LNCS (LNAI), vol. 5972,
pp. 170–186. Springer, Heidelberg (2010)

3. Egg, M.: Semantic underspecification. In: Maienborn, C., von Heusinger, K., Port-
ner, P. (eds.) Semantics. HSK, vol. 33. De Gruyter Mouton (2011)

4. Johnson, M., Klein, E.: Discourse, anaphora and parsing. In: Proceedings of the
11th Coference on Computational linguistics (1986)

5. Kamp, H., Reyle, U.: From Discourse to Logic: Introduction to Model-theoretic
Semantics of Natural Language. Kluwer Academic Publisher (1993)

6. Link, G.: Plural. In: von Stechow, A., Wunderlich, D. (eds.) Semantics. HSK, vol. 6.
de Gruyter (1991)

7. Paskevich, A.: The syntax and semantics of the ForTheL language (2007)
8. Schwertel, U.: Plural Semantics for Natural Language Understanding – A Compu-

tational Proof-Theoretic Approach. PhD thesis. University of Zurich (2005)

Engineering a Controlled Natural Language

into Semantic MediaWiki

Pradeep Dantuluri, Brian Davis, Pierre Ludwick, and Siegfried Handschuh

Digital Enterprise Research Institute, National University of Ireland, Galway
{pradeep.varma,brian.davis,pierre.ludwick,siegfried.handschuh}@deri.org

Abstract. The Semantic Web is yet to gain mainstream recognition.
In part this is caused by the relative complexity of the various semantic
web formalisms, which act as a major barrier of entry to naive web
users. In addition, in order for the Semantic Web to become a reality,
we need semantic metadata. While controlled natural language research
has sought to address these challenges, in the context of user friendly
ontology authoring for domain experts, there has been little focus on
how to adapt controlled languages for novice social web users. The paper
describes an approach to using controlled languages for fact creation and
management as opposed to ontology authoring, focusing on the domain
of meeting minutes. For demonstration purposes, we developed a plug-
in to the Semantic MediaWiki, which adds a controlled language editor
extension. This editor aids the user while authoring or annotating in
a controlled language in a user friendly manner. Controlled content is
sent to a parsing service which generates semantic metadata from the
sentences which are subsequently displayed and stored in the Semantic
MediaWiki. The semantic metadata generated by the parser is grounded
against a project documents ontology. The controlled language modeled
covers a wide variety of sentences and topics used in the context of a
meeting minute. Finally this paper provides a architectural overview of
the annotation system.

1 Introduction

The Semantic web1 aims to simplify the process of building knowledge-based
applications by enabling a web of inter-operable and machine-readable data.
This is done by formalizing the descriptions of the structure and semantics of
the data available on the web. However creating and exposing semantic data is
a task that requires thorough knowledge of various technologies. The relative
complexity of the various semantic web formalisms, act as a major barrier of
entry to naive web users. A solution to this is to create technologies which enable
the average internet user to annotate and embed data in his/her own textual
resources.While controlled natural language research has sought to address these
challenges, in the context of user friendly ontology authoring for domain experts,

1 http://www.w3.org/2001/sw/

M. Rosner and N.E. Fuchs (Eds.): CNL 2010, LNAI 7175, pp. 53–72, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.w3.org/2001/sw/

54 P. Dantuluri et al.

there has been little focus on how to adapt CNLs for novice social web users for
fact creation and semantic annotation.

The paper describes an approach using controlled languages for fact creation
and management as opposed to ontology authoring. We explore the possibility
of using controlled natural languages (hereby referred to as CNL) as an inter-
face to semantic web applications, specifically targeting the domain of project
documents like meeting minutes, status reports, etc. The major goal is to enable
novice users to author and annotate text documents using a controlled language.
Furthermore, these documents can be parsed to extract the implicit knowledge
contained, due to the enforcement of a fixed grammar and vocabulary. The au-
thors have previously used this approach to build an annotation tool along with
prototypes of the grammar and ontologies for the meeting minutes domain [1].
Additionally, the controlled language allows users to create facts in two ways,
using the controlled language text and using declarative annotations with the
controlled language text, we call CNL snippets. Both of these methods are ex-
plained in further detail later. CNL snippets lie in the formality continuum as
mentioned in [2], where formal constraints are relaxed in favour of higher user
uptake by a reduction in knowledge capture.

CLANN (Controlled Language for ANNotation)2 builds on the experiences
gained from the previous work, by incorporating redesigned versions of the gram-
mar and the domain ontology. CLANN is designed to be an end-to-end semantic
web application complete with a domain ontology, a persistent layer based on
RDF3 and a user interface for editing and authoring documents. The domain
was expanded to include all the documents in a project specific setting (for ex-
ample, meeting minutes, status reports, etc). For demonstration purposes, we
developed a plug-in to the Semantic MediaWiki, which adds a controlled lan-
guage editor as an extension. This editor helps the user author or annotate in
controlled language in a user friendly manner. Controlled content is sent to a
parsing service which generates RDF metadata from the sentences which are
subsequently displayed and stored in the Semantic MediaWiki. The RDF gen-
erated by the parser is grounded against a project documents ontology. The
controlled language grammar, modeled using Link Grammar [3], covers a wide
variety of sentences and topics used in the context of a meeting minute.

The main contributions of the paper include

– Modeling an ontology for the domain of project documents .
– Design and implementation of the CLANN grammar using link grammars.
– Design and implementation of the CLANN Editor as a plugin to the Semantic

Mediawiki.

This paper is structured as follows. Section 2 introduces the CLANN software
and describes its various components : the CLANN editor, CLANN grammar
and the PDO ontology. Section 3 showcases the implementation details of the

2 In this document CLANN refers to the annotation platform as well as controlled
grammar.

3 Resource Description Framework - http://www.w3.org/RDF/

http://www.w3.org/RDF/

Engineering a Controlled Natural Language into Semantic MediaWiki 55

various components of the CLANN system. Section 4 discusses related work in
the fields of Controlled languages and Semantic Controlled.

2 CLANN System

The CLANN system is composed of a CLANN editor and a stand-alone server.
The Clann editor, a custom-built web-based editor, allows for easy editing and
correction of controlled language text, using auto-suggestions and sentence er-
ror corrections . The CLANN editor communicates with the server for parsing
the sentences and retrieving additional error information for incorrectly parsed
sentences. The user is allowed to iterate over several parses until he gets the
sentence correct. A successfully parsed sentence generates valuable information
as RDF triples, which are sent back to the editor.

2.1 CLANN Grammar

The CLANN grammar is designed to facilitate knowledge capture from every-
day, repetitive, domain-specific texts. To better explore the applicability, two
independent prototypes of the grammar were developed[1] focusing alternatively
on usability and expressivity. This work has eventually led to the CLANN gram-
mar, which is essentially a merge between the former two grammars, incorpo-
rating most of the advantages, albeit a few changes. The grammar is designed
with a focus on both usability and expressivity. Each sentence adheres to one of
the syntactic rules and uses a lenient vocabulary. This domain vocabulary was
derived by corpus analysis using Word Smith tools 4 on a corpus based on three
years of meeting minutes from the Nepomuk project. This ensured that most of
the sentences resembled normal English sentences. Examples of such syntactic
constructs are given in Table 1.

Table 1. Excerpt of CLANN grammar with examples

Sentence Pattern Example & Parsed pattern

<NP><VP><NP>(<PP>+) Ambrosia to submit her PhD Proposal by Friday.
(Ambrosia <NP>) (to submit <VP>)

(her PhD Proposal <NP>) (by (Friday <NP>)<PP>).

Mark attended CNL2010 in Sicily during the last week.
(Mark <NP>) (attended<VP>) (CNL2010 <NP>)

(in (Sicily <NP>) <PP>)(during (the last week

<NP>)<PP>).

The CLANN grammar differs from the conventional notion of CNL, whereby
the entire document is written in CNL, rather it allows the user to add snippets of

4 http://www.lexically.net/wordsmith/version5/index.html

http://www.lexically.net/wordsmith/version5/index.html

56 P. Dantuluri et al.

CNL text, enclosed in "[]", to the document or associate them to a particular
text in the document. These snippets act as annotations to the text preceding the
snippet. They should adhere to a Verb-Object syntax, where the subject is either
specified in the snippet or taken from the free text. This approach was inspired
by the CLOnE5 Language [4]. Examples of CLANN snippets are described in
Table 2.

Table 2. CLANN Snippets with examples

Sentence Pattern Example

<text>[is a <Class>]. Dirk[is a Person].

Creates an object of the class Person with label Dirk.

<text>[same as

<Instance>].

Brian[same as Brian Davis]

Annotates the text Brian with the instance Brian
Davis.

<text>[<property>

<object>].

Dirk[toComplete "PhD Proposal"]

Creates a triple which links the instances of Dirk
and PhD Proposal with the property toComplete.

The CLANN grammar, thus, makes use of two different modes to encode
knowledge into the text. They are the (i)CNL snippets (controlled language
snippets) and (ii)controlled english. The user can also mix both modes thus
enabling the user to bootstrap the vocabulary of the CNL in the second mode
using CNL snippets. Each of these are explained in further detail below.

2.1.1 CNL Snippets
Controlled Language snippets are used to explicitly add annotation to words in
the text. The text maybe uncontrolled or controlled. Snippets of text (enclosed
in "[]") can be appended to words in the document to explicitly add annota-
tions to the document. These snippets should adhere to a -verb-object syntax,
where the subject is text preceding the snippet. These snippets merely append
additional information within the sentence, but are not considered to be part of
the controlled language sentence. An example of the snippets is shown below.
Let us consider the sentence below

Brian went to Dublin for the weekend.

More information about ”Brian” and ”Dublin” can be added by using CL Snip-
pets.

Brian[same as Brian Davis] went to Dublin[is a City] for the weekend.

5 CLOnE - Controlled Language for Ontology Editing

Engineering a Controlled Natural Language into Semantic MediaWiki 57

Further new resources and links between existing resources can be defined. As-
suming livesIn is a property between Person and City pre-defined in the domain
ontology, we can express the following.

[City is a subclass of Place].

[Brian livesIn Dublin].

Brian[same as Brian Davis] went to Dublin[is a City] for the weekend.

The reader should note that any CNL Snippets ([...]) which are written are
hidden in the final published wiki page6.

2.1.2 Controlled English
The controlled english, developed during the process, forms the core of the
CLANN grammar. The structure of sentences of the controlled english are re-
stricted by a simple set of design principles described below.

– Every sentence should be declarative and in active voice.
– Every verb used should be either an infinitive (to - verb : to denote tasks)

or simple past tense (to denote reports)
– Every sentence should follow the Subject-Verb-Object pattern.
– Only prepositional clauses (prep NP : ”by next week”, etc) can be used to

append nouns.
– Include ”snippets” inline to add extra annotations

• Pradeep[is a Student]...

2.2 CLANN Editor

The CLANN editor is designed from ground up to be an extendable, customizable
and stand-alone controlled language editor. This allowed the editor to be easily
integrated into the Semantic MediaWiki platform as a plugin, thereby inheriting
the RDF support of the platform. The plugin adds an extra button to the edit
page of the Semantic MediaWiki, which, when clicked, opens the Clann Editor
in a separate dialog box. RDF data generated by the editor is stored natively
in the Semantic Mediawiki too. A screenshot of the interface integrated into the
Semantic Mediawiki is depicted in Figure 1.

As evident from the screenshot, users would be able to use the medaiwiki in
the usual way , creating and editing pages using the standard wiki markup7.
The screen shot shows the edit mode of a page describing meeting minutes . Ad-
ditionally the screenshot also shows a pop-up of the CLANN Editor interface,
which is used to add controlled language text. When a user wants to add con-
trolled language text , he click on the CNL button, which pops up the CLANN

6 The above guidelines are only easy-to-read restrictions of the grammar. For a more
complete specification of the grammar please refer to
http://smile.deri.ie/projects/clann

7 Mediawiki uses a very popular syntax for page formatting. More information avail-
able at http://en.wikipedia.org/wiki/Help:Wiki_markup

http://smile.deri.ie/projects/clann
http://en.wikipedia.org/wiki/Help:Wiki_markup

58 P. Dantuluri et al.

Fig. 1. Screenshot of the CLANN Editor Interface

editor in a separate frame. The user would be able to use this editor to add his
controlled text, which would appear within the wiki page within special tags :
<cnl> ... </cnl> . On saving the page, the CLANN plug-in for the Semantic
Mediawiki, picks up the text within the <cnl> tags and sends them to a server
which returns the appropriate RDF data for the sentences. This RDF data is
stored in the local RDF store and used to create additional pages in the Seman-
tic Mediawiki to reflect the concepts described in the data. Let us consider the
following example .

Pradeep is to submit a paper at CNL2011[is a Workshop].

The above sentence should be able to return the following RDF data.

:Sentence4567 rdf:type pdo:ActionItem;

pdo:mentions :Person9821, :Document5427, :Workshop8672;

pdo:hasText "Pradeep is to submit a paper at CNL2011[is a Workshop]".

:Person9821 rdf:type foaf:Person;

skos:altLabel "Pradeep",

:Document5427 rdf:type pdo:Document;

skos:altLabel "paper",

:Workshop8672 rdf:type bibo:Workshop;

skos:altLabel "CNL2011".

:Document5427 dc:contributor :Person9821;

Engineering a Controlled Natural Language into Semantic MediaWiki 59

This is a turtle8 representation of the data and parts of it are removed for
brevity. The sentence is recognized as an action item and an appropriate in-
stance is created. Additionally, Pradeep, paper and CNL2011 are recognized as a
Person, Document and Conference respectively and linked to the ActionItem in-
stance. Additionally, the verb to submit is mapped to the property dc:contributor,
linking the person and document instances. As you may notice several ontolo-
gies are used to describe the concepts, namely, foaf9 , bibo10, skos11, dc12 and
pdo13.

Semantic Mediawiki encodes the structure of the wiki, its various pages and
links between them as RDF data. This is done by interpreting the pages as
instances and links between them as properties. The CLANN plugin uses the
RDF data generated from the above sentence to create new pages for all the
new instances as well as the appropriate links between the pages to reflect the
relations between the instances in the data. Thus, new pages are created for
:Sentence4567, Pradeep, paper and CNL2011 and they are linked appropriately.
Hence, the original Wiki Page becomes semantically annotated. Storing this
valuable data as wiki pages and RDF data would now allow the user to use
all the capabilities provided by the Semantic Mediwiki to search, aggregate,
visualize and export this data.

2.3 PDO Ontology

The domain of meeting minutes and status reports was used to engineer an on-
tology for the purpose of knowledge management. The initial CLANN prototype
was bootstrapped using the the Nepomuk[5] ontologies14 and later extended by
MEMO(Meeting Minutes Ontology). However, the MEMO ontology was only
used as a proof-of-concept implementation of the domain. Later, this was com-
pletely redesigned and a new ontology PDO (Project Document ontology) was
developed in accordance with proper ontology design principles, specifically the
METHONTOLOGY approach outlined by [6]. The PDO ontology, described us-
ing RDFS15 and OWL-DL16, models the inherent structure and concepts of var-
ious documents in a project-specific setting, like meeting minutes, status reports
etc. A graphical representation of the ontology is shown in Figure 2. Document

is the central class which is subclassed by Minutes and StatusReport. Artefact is
the main place-holder class for various artefacts contained in a document, like

8 Turtle is a human-readable serialization of RDF, more information can be found at
http://www.w3.org/TeamSubmission/turtle/

9 Friend of a Friend ontology, used to describe persons and their profiles
10 Bibliography Ontology
11 Simple Knowledge Organization System
12 Dublin Core Terms ontology
13 Project Documents Ontology
14 http://www.semanticdesktop.org/ontologies/
15 RDFSchema http://www.w3.org/TR/rdf-schema
16 OWL (Web Ontology Language) has three flavours, OWL Lite, OWL DL and OWL

Full. http://www.w3.org/TR/owl-features/

http://www.w3.org/TeamSubmission/turtle/
http://www.semanticdesktop.org/ontologies/
http://www.w3.org/TR/rdf-schema
http://www.w3.org/TR/owl-features/

60 P. Dantuluri et al.

Fig. 2. Overview of the PDO ontology

AgendaItem, Poll, ActionItem, TravelReport, etc. A partial instantiation of the on-
tology is described in Turtle17 syntax in the Figure 3. For a complete specification
of the PDO ontology please refer to http://ontologies.smile.deri.ie/pdo#.

Fig. 3. Using the PDO Ontology

17 Turtle is an easy, human-readable serialization of RDF.
http://www.w3.org/TeamSubmission/turtle/

http://ontologies.smile.deri.ie/pdo#
http://www.w3.org/TeamSubmission/turtle/

Engineering a Controlled Natural Language into Semantic MediaWiki 61

The scope of this ontology was limited to modeling the discourse structure of
various project documents like meeting minutes, status reports, final reports, de-
liverables, etc. The content of these documents is not modeled, in order to make
the ontology very flexible and interoperable. Care was taken to ensure that other
domain ontologies can be easily integrated. So, for instance, a meeting minute note
might talk about anything from software projects to movie reviews but still be
modeled by the ontology, while using the respective domain ontologies of software
projects and movies. CLANN uses several external ontologies, which describe re-
lated domains. The current list of ontologies used are mentioned in Table 3. As
the software evolves, more domain ontologies would be added to this list.

Table 3. External Ontologies

Prefix Description

foaf Friend of a Friend Ontology describing people and profiles.
URL : http://xmlns.com/foaf/0.1/

event Event Ontology describing events.
URL : http://purl.org/NET/c4dm/event.owl#

bibo Bibliography Ontology describing bibliographic information.
URL : http://purl.org/ontology/bibo/

swrc Semantic Web for Research Communities, describes academic conferences
URL : <http://swrc.ontoware.org/ontology#

skos Simple Knowledge Organization System .
URL : http://www.w3.org/2004/02/skos/core#

time Time ontology describing people and profiles.
URL : http://www.w3.org/2006/time#

geo Geospatial vocabulary describing spatially located things.
URL : http://www.w3.org/2003/01/geo/wgs84_pos#

doap Description of a Project Ontology, describes sofware projects.
URL : http://usefulinc.com/ns/doap

3 Implementation

3.1 CLANN Grammar

3.1.1 Implementation of the Grammar
The previous prototypes of the grammar were developed using JAPE(Java Anno-
tation Patterns Engine) rules in GATE. JAPE provides finite state transduction
over annotations based on regular expressions[7].18 The ease of writing rules
in Jape coupled with the extensive support of the GATE platform immensely
helped in developing and testing rapid prototypes of the grammar. However
adding support for auto-completion, based on Jape rules proved to be much
harder. So we decided to explore other grammar formalisms which would take

18 Elaborating on JAPE is out of scope of this paper. For more information on the
subject the reader is referred to
http://gate.ac.uk/sale/tao/splitch8.html#chap:jape

http://xmlns.com/foaf/0.1/
http://purl.org/NET/c4dm/event.owl#
http://purl.org/ontology/bibo/
<http://swrc.ontoware.org/ontology#
http://www.w3.org/2004/02/skos/core#
http://www.w3.org/2006/time#
http://www.w3.org/2003/01/geo/wgs84_pos#
http://usefulinc.com/ns/doap
http://gate.ac.uk/sale/tao/splitch8.html#chap:jape

62 P. Dantuluri et al.

advantage of the restricted vocabulary of the grammar to produce efficient parses
along with support for auto-completion.

Various grammar formalisms have been used over the years for understand-
ing natural language. Phrase structure grammars (PSG), the most widely used
formalism, model the inherent structure of the sentences of a language by break-
ing it into different phrases. They belong to the class of generative grammars
and are composed of a set of productions or rules which break-up the sentences
into meaningful phrases. Dependency grammars(DG), however, concentrate on
the links between words without paying attention to the word order. Structure
of a sentence is not broken down into phrases, but determined by adding re-
lations between a head word and its dependent words. There have been many
variations of grammar formalisms, each based on either PSGs or DGs. The next
few sections describe one such variation of the dependency grammar, the Link
grammar, and justifies its selection.

3.1.2 Link Grammar
Link grammars, introduced by [3], are a variation of dependency grammars.
Similar to DGs, the link grammars use relations between words to generate a
structure for a sentence. However, unlike DGs, the links also encode informa-
tion about directionality and distance. Moreover, they do not enforce a head-
dependent relationship like the DGs.

[3] defines link grammar as follows:

A sequence of words is a sentence of the language if there is a way to draw
links between words in such a way that
– the linking requirements of all the words are satisfied,
– the links do not cross, and
– the words form a connected graph

The linking requirements of each word are specified as a dictionary, which forms
the basis of the link grammar. Each entry in the dictionary consists of a word
or a group of words belonging to the same grammatical category, appended on
the right-hand-side with its linking requirements. The linking requirements are
a series of connectors joined by the logical operators & and or. Each connector
denotes the type and direction of the link. It is a label followed by +/- . A
+ denotes a link to the right and - denotes a link to the left. For illustration
purposes, an example of a sentence parsed using a very simple link grammar is
provided in Figure 4, and an explanation of the same is provided below.

The D+ connector on the word the denotes that the is expecting a D link to
its right. So It can connect to any word which has a D- connector, which, in
this case, is either boy or apple. The word ate has an & operand on S- and O+.
This means, for the word ate to be part of a valid sentence, it should connect
to both an S connector to its left and an O connector to its right. The case for
the nouns boy and apple is more interesting. They have two expressions joined
by the or operand. On closer observation, the first one, (A- & D- & S+), models
the behavior of a subject noun and the second one, (D- & O-), models that of
an object noun. The reader should also note that the order of the connectors is

Engineering a Controlled Natural Language into Semantic MediaWiki 63

words linking requirements

the D+

small A+

ate S- & O+

boy apple (A- & D- & S+) or (D- & O-)

+-----D------+ +----O-----+

| +---A--+--S--+ +--D--+

| | | | | |

the small boy ate the apple

Fig. 4. A sample Link grammar and parse structure

also valuable. The expression (A- & D- & S+) also declares the order of linking.
So an A link should be made to a word closer than the D link. This is illustrated
in the parse structure shown in Figure 4.

3.1.3 Why Link Grammar?
The main design principles for the CLANN grammar are ease of use and the
ability to extend the ontology. However, the development of the grammar posed
different challenges.

One major priority was to extract RDF triples from the sentences. This works
very well with the link grammar parse, because the the triples can directly be
extracted by mapping the links. In the example shown in Figure 4, the triple boy

ate apple, can be easily extracted from the left and right links of the word ate. This
is not the case with phrase structure grammars, where extracting dependencies
requires detailed analysis of the tree structure.

Another major priority was to develop an intelligent editor on top of the
grammar, which supports auto-suggestion and sentence-completion. An intu-
itive editor which assists the user while writing the CNL sentences, is extremely
beneficial to the user in that it can help her to quickly learn the restrictions of
the grammar. This requires an ability to predict text and check the grammatical
correctness of partial sentences. The pre-existing dictionaries of the link gram-
mar provide valuable information about all the words of the language, which can
be exploited for the purpose.

3.2 Architecture

Although, the current CLANN system is developed for a very specific domain, i.e,
meeting minutes, the idea was to make the architecture flexible enough to allow
adapting the system to new domains. Every domain needs a specific grammar
and a set of ontologies tailored for that domain. Hence, a modular approach is
followed while reducing the coupling between the various modules to a minimum.
The architecture of the system is depicted in the Figure 5.

64 P. Dantuluri et al.

Fig. 5. CLANN Architecture

The architecture follows a layered approach where each layer interacts with the
layers above and below it. This provides flexibility to the whole design, making
it easy to change parts of it as required. The User Interface Layer consists of the
CLANN Editor interface which was implemented as a web-based editor pluggable
into Semantic Mediawiki. This Editor accesses the core business logic through a
set of RESTFul Web services. RESTful web services allow for stateless processing
of the sentences. The Core services include a Link Parser module, A SPARQL
Rule Engine and Grammar Builder Module.

The Link Parser module is responsible for generating an intermediate repre-
sentation, MLINK, of the parse result for a given sentence as input. MLINK
(Meta-Link) is an RDF vocabulary developed to model the grammatical con-
structs of a controlled language parse. An MLINK representation of sentence
similar to the one illustrated in Section 2.2 is provided below.

Pradeep to submit a paper[is a Document].

The above sentence should be able to return the following MLINK data as an
intermediate representation.

Engineering a Controlled Natural Language into Semantic MediaWiki 65

:Sentence4567 :hasRootNode [rdf:type :TextNode;

:hasText submit;

:hasSubType Verb;

:hasInfinitive [rdf:type :TextNode;

:hasText to];

:hasObject [rdf:type :TextNode;

:hasText paper;

:hasSubType Noun;

:hasDeterminer [rdf:type :TextNode;

:hasText a;

:hasSubType Article]];

:hasSnippet [rdf:type :ClassSnippet;

:containsClass foaf:Document]

:hasSubject [rdf:type :TextNode;

:hasText Pradeep;

:hasSubType Person;

].

This representation is, essentially, an RDF representation of the Link parse struc-
ture for the sentence mentioned above. This allows for flexibility with the kind
of grammar formalisms used. We currently use the Link grammar formalism, to
represent our grammar rules. However a different parser can be applied if the
parse structure of the new formalism is mapped to MLINK. This removes the
dependency of CLANN on Link Grammar.

4 Related Work

A plethora of tools exist for the manual or (semi-)automatic semantic annota-
tion of free text. To our knowledge, however, very little research exists involving
the application of CNL to semantic annotation. Our related work focuses on
controlled natural languages for knowledge creation but for a thorough survey
of manual and (semi-)automatic semantic annotation tools and platforms, we
refer the reader to [8]. In addition, the idea of latent annotation, blurring the
lines between authoring and annotation, has its origins in [9] as part of the
CREAM(CREAting Metadata) framework for (semi-automatic)semantic anno-
tation. However, the implementation is simplistic and implies dragging an RDF
Label for a given concept from the ontology viewer and essentially pasting the
label into the document.

“Controlled Natural Languages (CL)s are subsets of natural language whose
grammars and dictionaries have been restricted in order to reduce or eliminate
both ambiguity and complexity”[10]. They have also found favour in large multi-
national corporations, usually within the context of machine translation and
machine-aided translation of user documentation [10,11].

The application of CNLs for ontology authoring and instance population is
an active research area[12]. Attempto Controlled English19 (ACE) [13], is a popu-
lar CNL for ontology authoring. It is a subset of standard English designed for

19 http://www.ifi.unizh.ch/attempto/

http://www.ifi.unizh.ch/attempto/

66 P. Dantuluri et al.

knowledge representation and technical specifications, and is constrained to be
unambiguously machine-readable DRS - Discourse Representation Structure, a
form of first-order logic. It can also be re-targeted to other formal languages[14].
The Attempto Parsing Engine (APE) consists principally of a definite clause
grammar, augmented with features and inheritance and is written in Prolog [15].
ACE OWL, a sub language of ACE, proposes a means of writing formal, simul-
taneously human- and machine-readable summaries of scientific papers [16,17].

ACEView is a plugin for the Protégé editor20[18]. It empowers Protégé with
additional interfaces based on the ACE CNL in order to create, browse and
edit an ontology. The user can also query the ontology using ACE questions to
access newly asserted facts from the knowledge base. A recent development with
respect to ACE is the translation of a complete collection of pediatric guideline
recommendations into ACE[19].

The Rabbit CNL is a another well known implementation[20]. It is similar to
CLOnE in its implementation but is much more powerful with respect to gram-
mar expressiveness and ontology authoring capabilities. Rabbit was developed
by the national mapping agency of Great Britain - Ordnance Survey. Rabbit
can be converted in OWL21 to provide natural language support for ontology
authoring. OWL development is not the primary objective of Rabbit and not
all Rabbit expressions can be mapped into OWL. It is primarily a vehicle for
capturing, representing and communicating knowledge in a form that is easily
understood by domain experts.

In [21], the authors undertake a paraphrase-based evaluation to assess whether
domain experts without any ontology authoring development can author and un-
derstand declaration and axiom sentences in Rabbit. The experiment included 21
participants from the ordnance survey domain and a Rabbit language expert. The
participants were given a text that describes a fictional world and were asked to
make knowledge statements which were then compared to equivalent statements
created by the Rabbit expert. The sentences produced by non-experts were ana-
lyzed for correctness (with regard to the knowledge captured) by independent ex-
perts and were compared to those produced by the Rabbit expert. Interestingly, on
average 51% of the sentences generated at least one error. Furthermore, the most
common error was the omission of the quantifier “every” at the beginning of a sen-
tence. This observation was of statistical significance. Other user errors included:
confusing instances with subclass declarations, a tendency to omit intensional in-
formation as well difficulties modeling knowledge under the open world assump-
tion. The work of [20] and [21] is important in the context of CNL evaluation in
that we see the advent of the paraphrase-based approach to evaluating CNL’s.

Other work involves integrating Rabbit(as well as support for ACE) into
Semantic Media Wiki22, the purpose of which is user friendly collaborative

20 http://protege.stanford.edu/
21 http://www.w3.org/TR/owl-features/
22 More information about Semantic MediaWiki can be found at

http://semantic-mediawiki.org/

wiki/Help:Introduction to Semantic MediaWiki

http://protege.stanford.edu/
http://www.w3.org/TR/owl-features/
http://semantic-mediawiki.org/wiki/Help:Introduction_to_Semantic_MediaWiki
http://semantic-mediawiki.org/wiki/Help:Introduction_to_Semantic_MediaWiki

Engineering a Controlled Natural Language into Semantic MediaWiki 67

ontology authoring using multiple CNLs and template based language gener-
ation capabilities[22].

With respect to evaluation frameworks, Kuhn [23] describes an evaluation
framework for CNLs based on Ontographs. Ontographs are a graphical notation
to enable tool independent and reliable evaluation of the human understand-
ing of a given knowledge representation language. The author categorises CNLs
evaluations into (1)task-based, whereby users are provided with a specific task
to complete and (2) paraphrase-based which are are concerned with testing the
understandability of the CNL. Ontographs serve as a common basis for testing
and comparing the understandability of two different formal languages and facil-
itate the design of tool-independent and reliable experiments. The author claims
that Ontographs are simple and intuitive. They are useful for representing simple
logical forms but they do not cater for functions and are restricted to unary and
binary predicates. In short, Ontographs serve to test the relative understanding
of the core logic for two different formal languages.

A recent addition to the CNL field is GF - Grammatical Framework[24] and
[25], which is an implementation framework which the authors claim can cope
with a variety of CNLs as well as boost of the development of new ones. In
their paper, the authors reverse engineer ACE for GF in order to demonstrate
how portable CNLs are to the GF framework as well as how CNLs can be tar-
geted to other natural languages. In this case ACE is ported from English to
five other natural languages. In short, the core advantage of GF is its multilin-
gualism in that its primary task is domain specific knowledge based Machine
Translation (MT) of controlled natural languages. GF follows the functional
programming paradigm and began as an experimental system in 1998 at XE-
ROX Europe23[26]. The GF framework uses a logical framework based on Martin
Loef’s type theory[27] for building semantic models of languages. It adds a syntax
formalism to the logical framework which defines realizations of formal mean-
ings as concrete linguistic expressions. The semantic model is called the abstract

syntax while the syntactic realization functionality is called concrete syntax. A
substantial amount of linguistic competence and domain expertise is needed to
define a concrete syntax for a given source/target language. Consequently the
authors developed a collection of GF resource libraries to provide a language
engineering solution to this issue. The GF libraries now contain a collection of
wide coverage grammars for over 15 natural languages. One could view GF as
a general framework for developing and extending controlled languages, similar
to NLP architectures such as GATE.

The most closely related technologies our work specifically the CNL snip-
pets are semantic wikis, which have become a somewhat popular way of adding
semantics to user generated wiki pages. The term semantic wiki often implies ei-
ther ontology authoring or the semantic annotation of wiki content. A traditional
wiki creates links between pages without defining the kind of linkage between
pages. Semantic Media Wiki[28] allows a user to define the links semantically,
thereby adding meaning to links between pages. Each concept or an instance has

23 http://www.xrce.xerox.com/

http://www.xrce.xerox.com/

68 P. Dantuluri et al.

a page in Semantic Media Wiki(SMW), and each outgoing link from this page
is annotated with well-defined properties as links.

With respect to user evaluation,[29] describe observations regarding SMW
usage. They state first and foremost that the ‘majority of users will neglect an-
notation as it does not bear immediate benefit”. This is understandable given
any annotation context, whereby the benefits of annotation are not recognized
until the semantic search stage. In addition, they argue that “without conclusive
studies on the usage of wikis in general, any prediction on the effect of introduc-
ing semantics in the (wikipedia) environment lacks justifications”. In [29], the
authors base their wiki usage experiments on ontoworld.org, which is itself main-
tained by the authors. The site’s function is to collect information about semantic
web researchers, events and projects. The authors record 930 registered users, the
majority of which have contributed little to the total recorded 37,880 edits. The
semantic knowledge base of ontoworld.org, at the time, counted 17,562 property
annotations for 808 property edits. The majority of the properties have a page
in the wiki, while 50% are of type Page and are used to annotate hyper-links.
With respect to the usage of properties, they noted that 5% of the properties
accounted for over 74% of the annotations, whereas the least used 80% of the
properties accounted for less than 9% of all semantic statements. The authors
state that these results have very similar power-law distributions to those of
Wikipedia’s categories[29]. In conclusion, they argue that SMW features are at
least equivalent to Media WiKi functionality, however as the authors themselves
state “one cannot conclude whether or not the requested (annotation)functions
are actually considered useful for a given purpose” and that additional research
is needed to obtain definitive results. While the research is very important in
that it records observations with respect to SMW usage over a large user popu-
lations, one cannot conclude any specific user satisfaction rating with respect to
the users and further more the user group is arguably extremely biased to that
of the semantic web community.

Recent work by Pfisterer et al [30] reports better results, but it is in the context
of the interface extensions to SMW by AIFB24 in collaboration with Ontoprise
GmbH25. . The interface enhancements include: (1) a factbox which summarises
all facts, linked to a given article, (2) a semantic query interface with strong
auto-completion features, (3) an ontology browsing interface and (4) a Semantic
Tool-Bar, which seeks to ease the semantic annotation process, but a classical
a posteriori fashion and not at the editing/authoring stage. The Semantic Tool-
Bar, which is enabled by software derived from the HALO26 project, allows users
to add/change annotations, whereby the changes are written directly to the wiki
source text. They conducted two evaluations, whereby the shared scenario is the
creation of a scientific Semantic Wikipedia. They recruited seven test subject

24 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
http://www.aifb.kit.edu

25 http://www.ontoprise.de/
26 http://www.projecthalo.com/

http://www.aifb.kit.edu
http://www.ontoprise.de/
http://www.projecthalo.com/

Engineering a Controlled Natural Language into Semantic MediaWiki 69

matter experts consisting of two experts in physics, three in chemistry and two
in biology. The experts had little or no familiarity with semantic wikis and
had never edited a Wiki article before the evaluation. They participated in the
design and development of the enhanced SMW over a period of seven months.
With respect to both evaluations, they are more aligned to usability testing
rather than being able to make and statistically significant inferences about the
general target user population regarding the usability of their Wiki. A SUS[31]
questionnaire was administered to the group, once before and once after user
feedback had been integrated into the enhanced Wiki. The user satisfaction
was low prior to the enhancements and high, upon re-administration of the
questionnaire. The sample size, at seven, was too small to make any statistically
significant claims. More importantly, as the authors note, there are flaws in the
evaluation in that a portion of first questionnaire group intersected with the
second questionnaire group. This portion had been exposed to the enhanced
SMW for a few months, so the high user satisfaction observed is inaccurate.

With respect to the second of the two aforementioned user evaluations, forty-
two students from an introductory human-computer interaction class served as
the sample user population. Each subject, after being provided introductory
material, were asked to annotate a random wiki page in the enhanced SMW.
In addition, after completing this task they were asked to formulate a number
of queries to the SMW. This was followed by a SUS usabily questionnaire. The
resulting user satisfaction score was below the SUS baseline at 54.8%. In ad-
dition, on average each student created 4.2 annotations and only 50.3% were
fully correct. Errors were caused primarily by unrecognized characters or date
formats, which are rectifiable. The speed of the systems reaction accounted for
a large amount of negative feedback. However, performance limitations in speed
were undoubtably caused by over 20 users editing the SMW at the same time.
This would invariably have had an impact on user satisfaction scores. Neverthe-
less, no statistical tests are performed on the SUS results and no inferences are
made about the general target population. Despite the weak empirical results,
the work presented in [30] is very important in that in represents a shift towards
proper user evaluation and user centered design within the the semantic wiki
community. The authors themselves acknowledge that there is still a need to
provide more “concrete examples” with respect to application of user centered
design to semantic wikis.

Other flavours of semantic wikis include IkeWiki27[32] and KiWi28. One could
argue that Semantic Wikis are only usable by the Semantic Web community and
retain a significant formal barrier to a casual user or even an IT professional in
the industry. ACEWiki[33] attempts to circumvent this using the CNL ACE in
combination with a predictive editor as an interface to a Semantic Wiki. However
the task here is collaborative ontology authoring and not annotation, whereby
we seeks to provide wiki content with a semantic backbone.

27 http://ikewiki.salzburgresearch.at/
28 http://www.kiwi-project.eu/

http://ikewiki.salzburgresearch.at/
http://www.kiwi-project.eu/

70 P. Dantuluri et al.

5 Conclusion

In conclusion, we have set out to explore the possibility of using controlled
languages as interfaces to semantic web applications. We decided to narrow down
the domain to meeting minutes and status reports, and designed an ontology
representing the domain. We have developed the CLANN system for knowledge
acquisition along with the CLANN grammar, the PDO ontology,a smart CNL
text editor for novice users and packaging the CLANN module as an extension
to the Semantic MediaWiki. Future work will involve performing a user-based
evaluation on our work against other semantic wikis, to judge the feasibility of
this approach.

Acknowledgments. The work presented in this paper has been funded in part
by Science Foundation Ireland under Grant No. SFI/08/CE/I1380 (Ĺıon-2).

References

1. Davis, B., Dantuluri, P., Dragan, L., Handschuh, S., Cunningham, H.: On Design-
ing Controlled Natural Languages for Semantic Annotation. In: Fuchs, N.E. (ed.)
CNL 2009. LNCS, vol. 5972, pp. 187–205. Springer, Heidelberg (2010)

2. Kaufmann, E.: Talking to the semantic web: natural language query interfaces for
casual end-users. PhD thesis, Universität Zürich (2009)

3. Sleator, D.D.K., Sleator, C.F.D., Temperley, D.: Parsing english with a link gram-
mar. In: Third International Workshop on Parsing Technologies (1991)

4. Funk, A., Tablan, V., Bontcheva, K., Cunningham, H., Davis, B., Handschuh, S.:
CLOnE: Controlled Language for Ontology Editing. In: Aberer, K., Choi, K.-S.,
Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard,
D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC
2007. LNCS, vol. 4825, pp. 142–155. Springer, Heidelberg (2007)

5. Decker, S.: The social semantic desktop: Next generation collaboration infrastruc-
ture. Information Services and Use 26(2), 139–144 (2006)

6. Fernández-López, M., Gómez-Pérez, A., Juristo, N.: Methontology: from ontologi-
cal art towards ontological engineering. In: Proceedings of the AAAI 1997 Spring
Symposium, Stanford, USA, pp. 33–40 (March 1997)

7. Cunningham, H., Maynard, D., Tablan, V.: JAPE: a Java Annotation Patterns En-
gine, 2 edn., Research Memorandum CS–00–10, Department of Computer Science,
University of Sheffield (November 2000)

8. Uren, V.S., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E.,
Ciravegna, F.: Semantic annotation for knowledge management: Requirements and
a survey of the state of the art. J. Web Sem. 4(1), 14–28 (2006)

9. Handschuh, S., Staab, S.: Authoring and annotation of web pages in cream. In:
WWW, pp. 462–473 (2002)

10. Schwitter, R.: Controlled natural languages. Technical report, Centre for Language
Technology, Macquarie University (June 2007)

11. Adriaens, G., Schreurs, D.: From COGRAM to ALCOGRAM: Toward a controlled
English grammar checker. In: Conference on Computational Linguistics (COLING
1992), Nantes, France, pp. 595–601 (1992)

Engineering a Controlled Natural Language into Semantic MediaWiki 71

12. Smart, P.R.: Controlled natural languages and the semantic web. Technical report,
School of Electronics and Computer Science, University of Southampton (2008)
(unpublished)

13. Fuchs, N., Schwitter, R.: Attempto Controlled English (ACE). In: CLAW 1996:
Proceedings of the First International Workshop on Controlled Language Applica-
tions, Leuven, Belgium (1996)

14. Fuchs, N.E., Kaljurand, K., Kuhn, T., Schneider, G., Royer, L., Schröder, M.:
Attempto Controlled English and the semantic web. Deliverable I2D7, REWERSE
Project (April 2006)

15. Hoefler, S.: The syntax of Attempto Controlled English: An abstract grammar for
ACE 4.0. Technical Report ifi-2004.03, Department of Informatics, University of
Zurich (2004)

16. Kaljurand, K., Fuchs, N.E.: Bidirectional Mapping Between OWL DL and At-
tempto Controlled English. In: Alferes, J.J., Bailey, J., May, W., Schwertel, U.
(eds.) PPSWR 2006. LNCS, vol. 4187, pp. 179–189. Springer, Heidelberg (2006)

17. Kuhn, T.: Attempto Controlled English as ontology language. In: Bry, F., Schwer-
tel, U. (eds.) REWERSE Annual Meeting 2006 (March 2006)

18. Kaljurand, K.: ACE View — an ontology and rule editor based on Attempto
Controlled English. In: 5th OWL Experiences and Directions Workshop (OWLED
2008), Karlsruhe, Germany, October 26-27, 12 pages (2008)

19. Shiffman, R.N., Michel, G., Krauthammer, M., Fuchs, N.E., Kaljurand, K., Kuhn,
T.: Writing Clinical Practice Guidelines in Controlled Natural Language. In: Fuchs,
N.E. (ed.) CNL 2009. LNCS, vol. 5972, pp. 265–280. Springer, Heidelberg (2010)

20. Hart, G., Johnson, M., Dolbear, C.: Rabbit: Developing a Control Natural Lan-
guage for Authoring Ontologies. In: Bechhofer, S., Hauswirth, M., Hoffmann,
J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 348–360. Springer,
Heidelberg (2008)

21. Engelbrecht, P., Hart, G., Dolbear, C.: Talking Rabbit: A User Evaluation of Sen-
tence Production. In: Fuchs, N.E. (ed.) CNL 2009. LNCS, vol. 5972, pp. 56–64.
Springer, Heidelberg (2010)

22. Bao, J., Smart, P., Braines, D., Shadbolt, N.: A controlled natural language inter-
face for semantic media wiki using the rabbit language. In: Workshop on Controlled
Natural Language (CNL 2009) (March 2009)

23. Kuhn, T.: An Evaluation Framework for Controlled Natural Languages. In: Fuchs,
N.E. (ed.) CNL 2009. LNCS, vol. 5972, pp. 1–20. Springer, Heidelberg (2010)

24. Angelov, K., Ranta, A.: Implementing Controlled Languages in GF. In: Fuchs, N.E.
(ed.) CNL 2009. LNCS, vol. 5972, pp. 82–101. Springer, Heidelberg (2010)

25. Ranta, A.: Grammatical Framework: A Type-Theoretical Grammar Formalism.
Journal of Functional Programming 14(02), 145–189 (2004)

26. Dymetman, M., Lux, V., Ranta, A.: Xml and multilingual document author-
ing: convergent trends. In: Proceedings of the 18th Conference on Computational
Linguistics, vol. 1, pp. 243–249. Association for Computational Linguistics, Mor-
ristown (2000)

27. Nordstrom, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf’s Type
Theory: An Introduction. Oxford University Press, USA (1990)

28. Krötzsch, M., Vrandečić, D., Völkel, M.: Semantic MediaWiki. In: Cruz, I., Decker,
S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.)
ISWC 2006. LNCS, vol. 4273, pp. 935–942. Springer, Heidelberg (2006)

29. Krötzsch, M., Vrandečić, D., Völkel, M., Haller, H., Studer, R.: Semantic
Wikipedia. Journal of Web Semantics 5(4), 251–261 (2007)

72 P. Dantuluri et al.

30. Pfisterer, F., Nitsche, M., Jameson, A., Barbu, C.: User-Centered Design and Eval-
uation of Interface Enhancements to the Semantic MediaWik. In: Proceedings of
Semantic Web User Interaction at CHI 2008: Exploring HCI Challenges. CEUR
Workshop Proceedings (2008)

31. Brooke, J.: SUS: a “quick and dirty” usability scale. In: Jordan, P., Thomas, B.,
Weerdmeester, B., McClelland, A. (eds.) Usability Evaluation in Industry. Taylor
and Francis, London (1996)

32. Schaffert, S.: Ikewiki: A semantic wiki for collaborative knowledge management.
In: 1st International Workshop on Semantic Technologies in Collaborative Appli-
cations (STICA 2006) (2006)

33. Kuhn, T.: AceWiki: Collaborative Ontology Management in Controlled Natural
Language. In: Proceedings of the 3rd Semantic Wiki Workshop. CEUR Workshop
Proceedings (2008)

M. Rosner and N.E. Fuchs (Eds.): CNL 2010, LNAI 7175, pp. 73–94, 2012.
© Springer-Verlag Berlin Heidelberg 2012

First-Order Reasoning for Attempto Controlled English

Norbert E. Fuchs

Department of Informatics & Institute of Computational Linguistics
University of Zurich

fuchs@ifi.uzh.ch
http://attempto.ifi.uzh.ch/

Abstract. RACE is a first-order reasoner for Attempto Controlled English
(ACE) that can show the (in-) consistency of a set of ACE axioms, prove ACE
theorems from ACE axioms and answer ACE queries from ACE axioms. In
each case RACE gives a proof justification in ACE and full English. This paper
is a system description of RACE sketching its structure, its implementation, its
operation and its user interface. The power and the limitations of RACE are
demonstrated and discussed by concrete examples.

Keywords: controlled natural language, Attempto Controlled English, ACE,
first-order reasoning, RACE.

1 Introduction

Attempto Controlled English (ACE)1 is a logic-based knowledge representation
language that uses the syntax of a subset of English. ACE allows domain specialist to
represent formal knowledge in familiar English without having to resort to visibly
formal languages. Working with ACE is supported by a number of tools2, foremost by
the ACE Parsing Engine (APE)3 that translates an ACE text into a discourse
representation structure (DRS) that is expressed in a variant of the standard language
of first-order logic.

The DRS can be translated into other logic languages, for instance into the standard
and the clausal forms of first-order logic, into the TPTP4 notation, and – with some
syntactic restrictions – into the semantic web languages OWL and SWRL5.

Once you have knowledge expressed as an ACE text you may want to reason with
this knowledge, for instance to show its consistency. The large variety of logical
representations of an ACE text allows you to use existing reasoning tools for this
purpose. The translation of an ACE text into the TPTP notation gives you access to all
reasoning tools provided by the TPTP system. In fact, the TPTP web-interface already

1 http://attempto.ifi.uzh.ch/
2 http://attempto.ifi.uzh.ch/site/tools/
3 web-interface of APE: http://attempto.ifi.uzh.ch/ape/
4 http://www.cs.miami.edu/~tptp/
5 http://www.w3.org/TR/owl2-overview/,
http://www.w3.org/Submission/SWRL/

74 N.E. Fuchs

accepts input in ACE. The translation of an ACE text into OWL and SWRL makes all
theorem provers for these languages available. This approach is taken by Kaljurand’s
ontology editor ACE View6 and by Kuhn’s semantic wiki AceWiki7 both of which
also provide a back translation of the reasoning results into ACE.

This paper describes the reasoner RACE that allows users to show the (in-)
consistency of an ACE text, to deduce one ACE text from another one, and to answer
ACE queries from an ACE text.

RACE stands in the long tradition that investigates the relation between natural
language, reasoning and logic – a tradition that started in ancient Greece, continued
during the European middle ages, and thrived especially vigorously after the
formalisation of logic and the invention of the digital computer. Note, however, that
this paper is a system description of RACE. Thus the relation between natural
language and logic will be alluded to occasionally, but will not be discussed in depth.
Also you will not learn much about the state of the art of natural language processing
and of theorem proving. Nor will this paper introduce you to the language Attempto
Controlled English beyond what is needed to demonstrate features of RACE. To learn
more about ACE refer to the relevant documentation8.

The rest of this paper is organised as follows. In section 2, I will summarise
general features of RACE. Section 3 very briefly shows how one works with RACE
via its web-client. Section 4 gives a rather detailed look under the hood of RACE. In
section 5 I investigate how RACE handles some typical proofs and how RACE
processes specific ACE constructs. Section 6 discusses questions like decidability,
termination, looping and efficiency. Section 7 concludes with a discussion of RACE's
strengths and limitations, and with a preview of further research.

2 General Features of RACE

RACE has the following general features:

• RACE offers consistency checking, textual entailment and query answering of
ACE texts.

• Conforming to the goal of the Attempto project – provide formal methods clad
in (controlled) English – RACE does not presuppose any knowledge of formal
logic or theorem proving, does not require users to understand RACE's
workings, nor does it require users to control the reasoning process.

• All input is in ACE, all output is in ACE and full English.
• Consistency checking: For inconsistent ACE axioms RACE will list all

minimal subsets of the axioms that lead to inconsistency.
• Textual entailment and query answering: If the ACE axioms entail the ACE

theorems, respectively ACE queries, RACE will list all minimal subsets of the
axioms that entail the theorems, respectively queries.

6 http://attempto.ifi.uzh.ch/aceview/
7 http://attempto.ifi.uzh.ch/acewiki/,
https://launchpad.net/acewiki/

8 http://attempto.ifi.uzh.ch/site/docs/

 First-Order Reasoning for Attempto Controlled English 75

• Textual entailment and query answering: If the ACE axioms do not entail the
ACE theorems, respectively ACE queries, RACE will list all ACE words and
ACE language constructs of the theorems, respectively queries, that could not
be entailed.

• Textual entailment and query answering: If the ACE axioms are inconsistent,
RACE outputs a warning message, and reports the results found so far.

• Non-termination: ACE is a superset of a fragment of English that [5] proved to
be undecidable. For undecidable problems RACE terminates with a time-out.

• RACE covers the first-order subset of ACE, that is all ACE constructs with the
exception of imperative sentences, negation-as-failure and the modal operators
may and should. Currently RACE does not yet cover arithmetic, formulas and
operations on lists, sets and strings.

3 Working with RACE

RACE is implemented as a Prolog program and can be accessed remotely via its web-
client9 or via its web-service10. Both offer interfaces for consistency checking, textual
entailment and query answering. For convenience we will use screen-shots of the
web-client to give a first impression how to work with RACE.

The consistency checking of figure 1 shows that the minimal subset {Every man is
a human., John is a man., John is not a human.} of the axioms leads to inconsistency.

Fig. 1. Consistency checking

In the following I will restrict the screen-shots to the result window since it also
contains the input. Figure 2 shows that the theorem There is a human. is entailed by
two minimal subsets of the axioms, namely {Every man is a human., John is a man.}
and {Every woman is a human., Mary is a woman.}.

9 http://attempto.ifi.uzh.ch/race/
10 http://attempto.ifi.uzh.ch/ws/race/racews.perl

76 N.E. Fuchs

Fig. 2. Textual entailment

Figure 3 contains a case of query answering. The results show that the query Who
tires how? can be answered from the axioms {If John waits then he tires easily., John
waits.} Also, the query word who is substituted by the proper name John, and the
query word how by the positive form of the adverb easily. Note that the substitution
refers to how/when/where since these three query words are treated as equivalent.

Fig. 3. Query answering

As we have seen, RACE answers for succeeding proofs the question "Why?" by
listing the axioms that are inconsistent or that are needed to prove a theorem or
answer a query. For failing proofs RACE answers the question "Why Not?" by listing
the ACE words and ACE constructs of the theorem or query that could not be proved.
Figure 4 shows an example.

Fig. 4. "Why Not?" answer for a failing proof

 First-Order Reasoning for Attempto Controlled English 77

The proof failed, and RACE list the proper name Harry and the ACE construct
noun phrase conjunction as not provable. Since the proper name Harry was not found
in the ACE lexicon, a warning is generated that Harry was automatically interpreted
as proper name.

4 A Look under the Hood of RACE

Satchmo. RACE is implemented as a Prolog program on the base of the model
generator Satchmo [1]. Satchmo was chosen since it is available as a small Prolog
program (see figure 5) that lent itself to be locally modified and extended to provide
RACE's functionality. As will be seen in the next sections, RACE is not simply a
wrapper of Satchmo since the modifications applied concern also core functionality of
Satchmo.

Fig. 5. Satchmo model generator [1]

Satchmo works with first-order clauses of the form Body ---> Head where Body is
true or a conjunction of logical atoms, and Head is fail or a disjunction of logical
atoms. There is not explicit negation, instead one uses an implication to fail.

Satchmo executes the clauses by forward-reasoning. Once the Body of a clause can
be proved from the Prolog database, then its Head is asserted to the Prolog data base
if not already there. If the Head of a clause is fail then Satchmo backtracks, retracting
previously asserted atoms from the Prolog database.

Satchmo generates a minimal finite Herbrand model of the clauses – if finite
models exist [2]. If the model of the clauses is infinite then Satchmo loops. If the
clauses are unsatisfiable, Satchmo just fails. Satchmo is correct for unsatisfiablity if
the clauses are range-restricted, i.e. all variables of Head occur already in Body [1].
Satchmo is complete for unsatisfiability if it is used level-saturated, i.e. clauses are
tried bottom-up, level by level [1].

Satchmo is a very efficient program. Its efficiency can be enhanced in various
ways [1], most effectively when first-order clauses are replaced by Prolog clauses that
are directly executed without incurring the overhead of forward-reasoning.

78 N.E. Fuchs

From Satchmo to RACE. The modifications and extension applied to Satchmo in
order to achieve RACE's functionality resulted in a program that is two orders of
magnitude larger than Satchmo. All modifications and extensions of RACE take into
account the preservation of Satchmo’s theoretical attributes – correctness,
completeness, minimal model generation – though this has not yet been proven.

Here are the similarities and the main differences between Satchmo and RACE.

• Like Satchmo RACE works with first–order clauses.
• For satisfiable clauses both Satchmo and RACE generate minimal finite

Herbrand models – if they exists.
• For infinite models Satchmo loops, while RACE stops with a time-out.
• For unsatisfiable clauses Satchmo stops immediately when it detects unsatis-

fiability, while RACE finds all minimal unsatisfiable subsets of the clauses.
• While Satchmo works on clauses found in the Prolog data base and stores the

model of the clauses as Prolog facts, RACE translates ACE axioms, theorems,
and questions into clauses and outputs its results in ACE and full English.

• While Satchmo just succeeds or fails indicating that the clauses are satisfiable
or not, RACE generates for each sucessful proof a report showing which
minimal subsets of the ACE axioms are inconsistent, respectively entail the
ACE theorems or queries. For a failing proof RACE will list those ACE text
fragments of the theorems or queries that could not be proved.

In light of RACE’s additional functionality and increased size it is obvious that it
cannot be as efficient as Satchmo. Concerning RACE’s efficiency see section 6.

Structure and Operation of RACE. To best understand the structure and the operation
of RACE we will consider a concrete example.

Given the ACE text T
There is a cat. Every cat is an animal.
answer the ACE query Q
Is a cat an animal?

Fig. 6. RACE answers an ACE query Q from an ACE text T

 First-Order Reasoning for Attempto Controlled English 79

The query answering is summarised in Figure 6. In a first step both the ACE text T
and the ACE query Q are submitted to the Attempto Parsing Engine APE that translates
them into the Discourse Representation Structures DRST, respectively DRSQ.

DRST:
[A]
 object(A,cat,countable,na,eq,1)-1/4
 [B]
 object(B,cat,countable,na,eq,1)-2/2
 =>
 [C,D]
 object(C,animal,countable,na,eq,1)-2/5
 predicate(D,be,B,C)-2/3

DRSQ:
[]
 QUESTION
 [A,B,C]
 object(A,cat,countable,na,eq,1)-1/3
 object(B,animal,countable,na,eq,1)-1/5
 predicate(C,be,A,B)-1/1

These are pretty-printed versions of the DRSs internally represented as Prolog terms.
The language of the DRSs – described in Fuchs et al. [7] – uses a compact, reified
variant of the standard language of first-order logic. Countable noun phrases like a cat
are represented as object(Ref,Noun,countable,na,Operator,Count) where
object/6 is a predefined predicate, Ref is a quantified variable called discourse
referent, Noun stands for the represented noun, countable classifies the noun as a
countable common noun, na is a place-holder otherwise used for measurement nouns,
and Operator and Count express the cardinality. Transitive predicates like the
transitive form of to be are represented as predicate(Ref,Verb,Ref1,Ref2)where
predicate/3 is a predefined predicate, Ref is a discourse referent, Verb stands for the
represented transitive verb, and Ref1 and Ref2 are the discourse referents of two
object/6 definitions. The structure S/T attached to each logical atom indicates that
the atom was derived from token T in ACE sentence S. The sentence indices S are
later used by RACE to label individual axioms, theorems and queries.

In a next step the two DRSs are individually translated into the standard language
of first-order logic, and we get FOLT and FOLQ.

FOLT:
exists(A,&(object(World,A,cat,countable,na,geq,1)-axiom(1),forall(B,
=>(object(World,B,cat,countable,na,geq,1)-axiom(2),exists(C,exists(D,
&(object(World,C,animal,countable,na,geq,1)-axiom(2),
predicate(World,D,be,B,C)-axiom(2))))))))

FOLQ:
exists(A,exists(B,exists(C,&(object(World,A,cat,countable,na,geq,1)-
theorem(1),&(object(World,B,animal,countable,na,geq,1)-theorem(1),
predicate(World,C,be,A,B)-theorem(1))))))

During the translation each logical atom received an additional argument World that
stands for a possible world needed to process modality within first-order logic.

80 N.E. Fuchs

Operators eq were replaced by geq to express the meaning of, for instance, a cat as at
least one cat. Also the sentence indices of the logical atoms have been wrapped by
axiom/1, respectively theorem/1 to distinguish axioms from theorems.

In a final step the formula exists(World, FOLT & ¬ FOLQ) is translated into
clauses using a variant of the standard clausification procedure. The general form of
the clauses used by RACE is

satchmo_clause(Body, Head, Index)

where – as in Satchmo – Body is true or a conjunction of logical atoms and Head is
fail or a disjunction of logical atoms. Negation is expressed as implication to fail.
Body implies Head. Index is a list containing the term axiom(N) or theorem(N) where
N is the sentence index carried over from the DRS.

The three clauses derived from exists(World, FOLT & ¬ FOLQ) are

satchmo_clause(true, object(sk1, sk2, cat, countable, na, geq, 1),
[axiom(1)])

satchmo_clause(object(sk1, D, cat, countable, na, EQ, Count),
(object(sk1, sk3(D), animal, countable, na, EQ, Count), predicate(sk1,
sk4(D), be_NP, D, sk3(D))), [axiom(2)])

satchmo_clause((object(sk1, A, cat, countable, na, geq, 1), object(sk1,
B, animal, countable, na, geq, 1), predicate(sk1, C, be_NP, A, B)),
fail, [theorem(1)])

During clausification further transformations were performed. The argument World –
being existentially quantified – was skolemised. The arguments be were replaced by
be_NP – the reason for which is explained in section 5. The operator and count
arguments of the second clause – derived from Every cat is an animal. – were
replaced by the variables EQ, respectively Count. This allows RACE to flexibly match
the clause body to all values of operators and counts. Furthermore, clauses are
checked for range-restriction, i.e. all variables in the head of a clause must already
occur in its body.

Once we have the clauses we can call RACE's main predicate

satchmo(Clauses, Models, Inconsistencies)

where Clauses is a list of clauses, Models is a list of models of the clauses, and
Inconsistencies is a list of list of indices of clauses that led to inconsistency.

The predicate satchmo/3 executes clauses bottom-up by forward-reasoning. If the
Body of a clause satchmo_clause(Body, Head, Index) is true or can be proved from
the Prolog data base then Head is asserted to the Prolog database together with a list that
contains the element of Index plus the sentence indices of all clauses that were used to
prove Body. This amounts to building a proof-tree labelled with lists of indices. Range
restriction ensures that all atoms added to the Prolog data base are ground. If Head is a
disjunction – meaning that the proof-tree branches – then the asserted index list also
contains an identification of the respective disjunctive branch. If Head is false then
satchmo/3 backtracks and removes atoms added previously to the Prolog data base.
This also indicates that a branch of the proof-tree is closed, and the indices of the leaf of
the closed branch are stored. Forward-reasoning ends when no clause can be executed.
The result is either a set of ground atoms in the Prolog data base that constitute minimal

 First-Order Reasoning for Attempto Controlled English 81

models of Clauses or an empty Prolog data base plus a set of closed branches. In the
second case satchmo/3 checks whether all branches of the proof-tree are closed and
then collects in Inconsistencies the indices of the leaves of all closed branches. Thus
for terminating proofs we have the following outcomes:

• Clauses are consistent: Inconsistencies = []
• Clauses are inconsistent: Models = [], Inconsistencies ≠ []

Tracing a Proof. Here is an annotated proof of our example displaying the assertions
and retractions mentioned above. The argument Clauses of satchmo/3 is the list of
clauses derived before.

call: satchmo(Clauses, Models, Inconsistencies)

% satchmo_clause(true, object(sk1, sk2, cat, countable, na, geq, 1),
[axiom(1)]) can fire, yielding ...

Asserting Head and Indices:
object(sk1,sk2,cat,countable,na,geq,1),[axiom(1)]

% satchmo_clause(object(sk1, D, cat, countable, na, EQ, Count),
(object(sk1, sk3(D), animal, countable, na, EQ, Count), predicate(sk1,
sk4(D), be_NP, D, sk3(D))), [axiom(2)]) can fire, yielding ...

Asserting Head and Indices:
object(sk1,sk3(sk2),animal,countable,na,geq,1),[axiom(1),axiom(2)]

Asserting Head and Indices:
predicate(sk1,sk4(sk2),be_NP,sk2,sk3(sk2)),[axiom(1),axiom(2)]

% satchmo_clause((object(sk1, A, cat, countable, na, geq, 1),
object(sk1, B, animal, countable, na, geq, 1), predicate(sk1, C, be_NP,
A, B)), fail, [theorem(1)]) can fire, yielding ...

Asserting: closed_branch([axiom(1),axiom(2),theorem(1)])

Retracting Head and Indices:
predicate(sk1,sk4(sk2),be_NP,sk2,sk3(sk2)),[axiom(1),axiom(2)]

Retracting Head and Indices:
object(sk1,sk3(sk2),animal,countable,na,geq,1),[axiom(1),axiom(2)]

Retracting Head and Indices:
object(sk1,sk2,cat,countable,na,geq,1),[axiom(1)]

exit: satchmo(Clauses, [], [[axiom(1), axiom(2), theorem(1)]])

Since Models=[] and Inconsistencies=[[axiom(1), axiom(2), theorem(1)]]

satchmo/3 proved that the clauses derived from the two axioms and the theorem are
inconsistent, meaning that the ACE axioms There is a cat. Every cat is an animal.
answer the ACE query Is a cat an animal?.

Note that if the query could not have been answered, then the asserted logical
atoms Head would not have been retracted, and would have constituted a minimal
model of Clauses, respectively the ACE axioms.

Interface Predicates. RACE – for example its web-client – does not call satchmo/3
directly. The translation of ACE texts into clauses, the call of satchmo/3 and the back
translation of Inconsistencies into the respective ACE texts are performed by three

82 N.E. Fuchs

interface predicates that take care of the peculiarities of consistency checking,
theorem proving and query answering. These predicates are

• check_consistency(Axioms, Parameters, Messages, RunTime, AxiomsUsed)
that checks the consistency of a set of ACE Axioms and returns a list of lists
AxiomsUsed of all minimal inconsistent subsets of the Axioms.

• prove(Axioms, Theorems, Parameters, Messages, RunTime, AxiomsUsed,
WhyNot) proves a set of ACE Theorems from a set of ACE Axioms and returns
a list of lists AxiomsUsed that contains all minimal subsets of the Axioms
needed to prove the Theorems.

• answer_query(Axioms, Queries, Parameters, Messages, RunTime,
AxiomsUsed, WhyNot) answers a set of ACE Queries from a set of ACE
Axioms and return a list of lists AxiomsUsed that contains all minimal subsets
of the Axioms needed to answer the Queries. For wh-questions AxiomsUsed
contains also the substitutions of the query words.

RACE’s interface predicates have some common arguments. The argument
Parameters is a list containing RACE's parameters. Currently, there is but one
parameter raw used for testing. The argument Messages contains warning and error
messages produced during a run of RACE. If there are error messages then RACE
reports that the proof failed. The argument RunTime returns the overall run time in
milliseconds. If Axioms cannot be proved or Queries cannot be answered then the
argument WhyNot contains a list of ACE text fragments of the Theorems or Queries
that RACE was unable to prove on the basis of the Axioms. For demonstration
purposes here is the call of answer_query/7 for our example.

answer_query('There is a cat. Every cat is an animal.','Is a cat an
animal?', [], Messages, RunTime, AxiomsUsed, WhyNot).

Messages = []
RunTime = 0
AxiomsUsed = [proof(['1: There is a cat.', '2: Every cat is an
animal.'], [])]
WhyNot = []

Since the identification of the minimal subsets of inconsistent axioms, or the
identification of minimal subsets of axioms needed to entail a theorem or a query
depends essentially on the threading and processing of sentence indices one could say
that RACE uses a form of labelled deduction [3].

Auxiliary Axioms. RACE uses about 50 auxiliary axioms as meaning postulates for
plurals and singulars, to handle generalised quantifiers, to interpret the copula be that
in ACE is underspecified, for summation, for the substitution of query words, and for
other purposes. Auxiliary axioms are implemented as Prolog predicates that access
elements of the DRS representation of ACE texts. Being implemented in Prolog, the
auxiliary axioms do not participate in the eager forward-reasoning of the clauses, but
– called only on demand – are executed by lazy backward-reasoning. Auxiliary
predicates are also labelled, and the RACE parameter raw – introduced for testing
purposes – enables the output of the auxiliary axioms used together with the ACE
axioms. Individual auxiliary axioms will be presented in the next section.

 First-Order Reasoning for Attempto Controlled English 83

5 All Things Considered

In this section I will investigate in greater detail how RACE handles some typical
proofs and how RACE processes specific language constructs of ACE. I will use
RACE's interface predicates instead of the more space-consuming screen-shots of the
web-client. Irrelevant argument substitutions will be suppressed.

Plurals. As Schwertel discusses in great detail in her thesis [8], English plural nouns
are extremely complex. To eliminate some of this complexity, ACE offers only
collective and distributive plurals. The sentence

Three men lift two pianos.

introducing the collective plurals three men and two pianos describes a complex
lifting event involving a group of three men and a group of two pianos. The lifting
event is underspecified concerning the number of individual lifting actions and the
number of men and pianos involved in each lifting action. Compare this to the
sentence

Each of three men lifts each of two pianos.

involving the two distributive plurals each of three men and each of two pianos. The
lifting relation consists of six lifting actions each involving one of the three men and
one of the two pianos. One could say that the lifting relation is fully specified as far as
the number of lifting actions and the number of participants are concerned.

Deductions from Collective Plurals. Collective plurals like three men are ambiguous
between the reading at least 3 men and exactly three men (= at least three men and at
most three men). This ambiguity also affects the deductions that can be made from
collective plurals. Given the attempted deductions

(1) Three men lift a piano. |?- A man lifts a piano.

(2) Three men see a piano. |?- A man sees a piano.

humans – on the basis of their world knowledge – would probably consider deduction
(1) as incorrect and deduction (2) as correct.

The reasoner RACE does not have any world knowledge and thus needs to take
recourse to syntactic means to enable/disable deductions from collective plurals. By
default RACE interprets collective plurals like three men as at least 3 men. (Note that
ACE also provides the explicit construct at least 3 men.) The alternative "exactly"
reading is explicitly expressed as exactly three men. To enforce the expected
deductive behaviour we can reformulate the deductions (1) and (2) as

(1') Exactly three men lift a piano. |/- Exactly one man lift a piano.

(2') Three men see a piano. |- A man sees a piano.
 (= At least three men see a piano.|- At least one man see a piano.)

84 N.E. Fuchs

Note that the determiners a and one are treated as synonyms, that is a man and one
man get the same logical representation.

To perform deduction (2') RACE needs a meaning postulate relating the noun
phrases at least three men and at least one man. To formulate this meaning postulate
we rely on RACE's logical representations of noun phrases. As introduced in section
4, nouns are represented by the predefined predicate object/7, concretely

• at least three men as object(World, A, man, countable, na, geq, 3)
• at least one man as object(World, B, man, countable, na, geq, 1)

Thus at least three men and at least one man get the same representation with
appropriate cardinalities. This allows us to state the relation between singulars and
collective plurals of all countable nouns as the first-order formula ∀ A, Noun, N, M (object(World, A, Noun, countable, na, geq, N) ∧ N ≥ M

→
object(World, A, Noun, countable, na, geq, M))

where Noun stands for any noun, and N and M are the respective cardinalities. RACE
expresses this formula as the auxiliary Prolog axiom cd5

prolog_axiom(object(World,A,Noun,countable,na,geq,M), Block,
[prolog_axiom(cd5)|Indices]) :-
 nonvar(M),
 exists_asserted_atom(object(World,A,Noun,countable,na,geq,N), Indices),
 N>=1,
 M<N.

The logical atom object(World, A, Noun, countable, na, geq, M) can be
proved and gets the index [prolog_axiom(cd5)|Indices] if the logical atom
object(World, A, Noun, countable, na, geq, N) with the index Indices can be
found in the Prolog data base, and the conditions N>=1 and M<N are fulfilled. The
argument Block is used to block unwanted combinations of auxiliary axioms.

Calling the RACE interface predicate prove/7 with the parameter raw set we get
the expected results for deductions (1') and (2'). While (1') fails

prove('Exactly three men lift a piano.','Exactly one man lifts a
piano.', [raw], Messages, RunTime, AxiomsUsed, WhyNot).

WhyNot = ['countable common noun: (at least 1) man']

(2') succeeds with the help of auxiliary Prolog axiom cd5 as shown in the proof trace

prove('Three men see a piano.', 'A man sees a piano.', [raw], Messages,
RunTime, AxiomsUsed, WhyNot).

Clauses=[satchmo_clause(true, (object(sk1, sk2, man, countable, na, geq,
3), object(sk1, sk3, piano, countable, na, geq, 1), predicate(sk1, sk4,
see, sk2, sk3)), [axiom(1)]), satchmo_clause((object(sk1, A, man,
countable, na, geq, 1), object(sk1, B, piano, countable, na, geq, 1),
predicate(sk1, C, see, A, B)), fail, [theorem(1)])]

call: satchmo(Clauses, Models, Inconsistencies)

 First-Order Reasoning for Attempto Controlled English 85

Asserting Head and Indices:
object(sk1,sk2,man,countable,na,geq,3),[axiom(1)]

Asserting Head and Indices:
object(sk1,sk3,piano,countable,na,geq,1),[axiom(1)]

Asserting Head and Indices: predicate(sk1,sk4,see,sk2,sk3),[axiom(1)]

Auxiliary Prolog axiom cd5: Body object(sk1,sk2,man,countable,na,geq,1)
is proved from asserted atom object(sk1,sk2,man,countable,na,geq,3)

Asserting: closed_branch([axiom(1),prolog_axiom(cd5),theorem(1)])

Retracting Head and Indices: predicate(sk1,sk4,see,sk2,sk3),[axiom(1)]

Retracting Head and Indices:
object(sk1,sk3,piano,countable,na,geq,1),[axiom(1)]

Retracting Head and Indices:
object(sk1,sk2,man,countable,na,geq,3),[axiom(1)]

exit: satchmo(Clauses, [], [[axiom(1), prolog_axiom(cd5), theorem(1)]])

AxiomsUsed = [proof(['1: Three men see a piano.'], ['Prolog Axiom cd5:
at least M objects |- at least 1, 2, ..., M-1 objects'])]

Deductions from Distributive Plurals. As we have seen distributive plurals are fully
specified concerning the structure of the relation between the participants. Thus
deductions to distributive plurals with smaller cardinalities and to the singular are
always allowed. Again meaning postulates, i.e. auxiliary Prolog axioms, based on the
representation of distributive plurals are needed to enable the deductions. As a
demonstration an example using distributive plurals in four different syntactic roles.

prove('Each of 6 men gives each of 5 students each of 4 books on each of
3 mornings.', 'Each of 5 men gives each of 4 students each of 3 books on
1 morning.', [raw], Messages, RunTime, AxiomsUsed, WhyNot).

AxiomsUsed = [proof(['1: Each of 6 men gives each of 5 students each of
4 books on each of 3 mornings.'], ['Prolog Axiom cd0: enable deductions
from distributive plurals', 'Prolog Axiom cd1: each of M objects |- each
of M-1, ..., each of 2 objects, 1 object']), proof(['1: Each of 6 men
gives each of 5 students each of 4 books on each of 3 mornings.'],
['Prolog Axiom cd1: each of M objects |- each of M-1, ..., each of 2
objects, 1 object'])]

There are two results involving the auxiliary axioms cd0 and cd1.

Deductions Involving Collective and Distributive Plurals. Deductions from collective
to distributive plurals are not possible, while deductions from distributive to collective
plurals are allowed. Here are two examples demonstrating this behaviour. The first
example

prove('3 women wait.', 'Each of 3 women waits.', [raw], Messages,
RunTime, AxiomsUsed, WhyNot).

correctly fails. The second example shows the other direction

prove('Each of 3 women waits.', '3 women wait.', [raw], Messages,
RunTime, AxiomsUsed, WhyNot).

86 N.E. Fuchs

AxiomsUsed = [proof(['1: Each of 3 women waits.'], ['Prolog Axiom cd0:
enable deductions from distributive plurals'])],

This proof succeeds with the help of the auxiliary Prolog axiom cd0.

Deductions from Conjunctive Plurals. Collective and distributive plurals can also
be formed by conjunctions of noun phrases leading to so called conjunctive plurals.
Since conjuncts can again be plurals we may end up with rather complex plural
structures.

The first example with a collective conjunctive plural correctly fails – though in
full English the deduction is valid.

prove('John and Mary wait.', 'Mary waits.', [raw], Messages, RunTime,
AxiomsUsed, WhyNot).

Replacing the collective conjunctive plural by a distributive one the proof succeeds.

prove('Each of John and Mary waits.', 'Mary waits.', [raw], Messages,
RunTime, AxiomsUsed, WhyNot).

AxiomsUsed = [proof(['1: Each of John and Mary waits.'], ['Prolog Axiom
cd0: enable deductions from distributive plurals'])],

Finally an example with a complex conjunctive plural.

prove('Each of 2 men and 3 women waits.', 'A man waits.', [raw],
Messages, RunTime, AxiomsUsed, WhyNot).

AxiomsUsed = [proof(['1: Each of 2 men and 3 women waits.'], ['Prolog
Axiom cd0: enable deductions from distributive plurals', 'Prolog Axiom
cd1: each of M objects |- each of M-1, ..., each of 2 objects, 1
object'])],

Deductions from Generalised Quantifiers. RACE allows deductions involving
generalised quantifiers for both collective and distributive plurals if and only if the
mathematical relations between the generalised quantifiers are correct. But before we
come to this there is an additional aspect of generalised quantifiers to be taken into
account. ACE provides five generalised quantifiers that – according to their deductive
behaviour – can be split into three groups.

• monotone increasing: at least N, more than N
• monotone decreasing: at most N, less than N
• non-monotone: exactly N

A generalised quantifier Q is called monotone increasing if for all sets Smaller and
Larger with Smaller ⊆ Larger we have that Q(Smaller) entails Q(Larger). Here is an
example with the monotone increasing generalised quantifier at least where Smaller =
{3 tall men that John sees} and Larger= {3 men that John sees}.

prove('John sees at least 3 tall men.', 'John sees at least 3 men.', [],
Messages, RunTime, AxiomsUsed, WhyNot).

AxiomsUsed = [proof(['1: John sees at least 3 tall men.'], [])]

 First-Order Reasoning for Attempto Controlled English 87

A generalised quantifier Q is called monotone decreasing if for all sets Smaller and
Larger with Smaller ⊆ Larger we have that Q(Larger) entails Q(Smaller). Here is an
example with the monotone decreasing generalised quantifier at most where Smaller
= {3 tall men that John sees} and Larger= {3 men that John sees}.

prove('John sees at most 3 men.', 'John sees at most 3 tall men.', [],
Messages, RunTime, AxiomsUsed, WhyNot).

AxiomsUsed = [proof(['1: John sees at most 3 men.'], [])]

While RACE achieves the monotone increasing effect directly, the monotone
decreasing effect is created by interpreting at most N as not more than N and less than
N as not at least N – producing a deductive behaviour similar to the determiner no.

The generalised quantifier exactly N is neither monotone increasing nor monotone
decreasing. RACE interprets exactly N as at least N & at most N, i.e. as at least N &
not more than N. This explains why the generalised quantifier exactly N allows us
only to deduce a set from itself. While the following deduction succeeds

prove('John sees exactly 3 men.', 'John sees exactly 3 men.', [],
Messages, RunTime, AxiomsUsed, WhyNot).

AxiomsUsed = [proof(['1: John sees exactly 3 men.'], [])]

this one fails

prove('John sees exactly 3 men.', 'John sees exactly 2 men.', [],

WhyNot = ['countable common noun: (at least 2) man'].

Finally, one example demonstrating the mathematical properties of generalised
quantifiers.

prove('At least 3 boys run fast.', 'More than 2 boys run. A boy runs
fast.', [raw], Messages, RunTime, AxiomsUsed, WhyNot).

AxiomsUsed = [proof(['1: At least 3 boys run fast.'], ['Prolog Axiom
cd5: at least M objects |- at least 1, 2, ..., M-1 objects', 'Prolog
Axiom cd6: at least M objects |- more than 1, 2, ..., M-1 objects'])]

Summation. RACE performs summations on individuals found in an inheritance tree.
Here is a simple example showing that 2 male cats and 3 tricolor cats are 5 animals.

prove('There are at least 2 male cats. There are at least 3 tricolor
cats. Every tricolor cat is a female cat. Every male cat is a cat. Every
female cat is a cat. Every cat is an animal. No male cat is a female
cat.', 'There are at least 5 animals.', [raw], Messages, Time,
AxiomsUsed, WhyNot).

AxiomsUsed = [proof(['1: There are at least 2 male cats.', '2: There are
at least 3 tricolor cats.', '3: Every tricolor cat is a female cat.',
'4: Every male cat is a cat.', '5: Every female cat is a cat.', '6:
Every cat is an animal.', '7: No male cat is a female cat.'], ['Prolog
Axiom agg1: aggregation', 'Prolog Axiom c2: Identity of attributive
adjectives.'])]

88 N.E. Fuchs

animals

 |

cats

/ \

 (at least 2) male cats female cats

 |

 (at least 3) tricolor cats

Fig. 7. Inheritance tree of cats and animal

The proof uses the auxiliary Prolog axiom agg1 that implements the following
algorithm. First, agg1 extracts the inheritance tree (figure 7) from the axioms
checking that the classes involved – male cats and female cats – are disjoint. Then
agg1 adds the cardinalities of the leaf nodes. The runtime of this algorithm depends
on the size of the inheritance tree – for a tree with the height H and the width W the
worst-case runtime is O(H2 x W2) – and not on the cardinalities of the leaf nodes. If
the relevant classes are not disjoint then agg1 fails.

Modality. ACE provides modal constructs for possibility, necessity and sentence
subordination represented in the DRS language [7] by the three modal operators
diamond <>, box [] and colon :.

Modal logic can be mapped to first-order predicate logic via the so-called standard
translation11 that adds to each logical atom an argument that stands for a possible
world. Bos [4] extended the standard translation to cover also sentence subordination.

As mentioned in section 4, the possible world argument is added to each logical atom
during the translation of DRSs into FOL, meaning that RACE uses possible world
semantics even in the absence of modal constructs. This does not seem to have any
adverse effect on performance. Possible worlds are connected by a binary accessibility
relation that RACE assumes to be reflexive, symmetric and transitive, i.e. an equivalence
relation. The accessibility relation is expressed as three auxiliary Prolog axioms.

Here are three examples two of which simulate standard axioms of modal logic.

modality axiom: If A then it is possible that A.

prove('John waits patiently in the hall.', 'John can wait.', [raw],
Messages, RunTime, AxiomsUsed, WhyNot).

AxiomsUsed = [proof(['1: John waits patiently in the hall.'], ['Prolog
Axiom pw1: Accessibility relation is reflexive.'])]

modality axiom: If A is necessary then it is not possible that not A.

prove('John must wait.', 'It is not possible that John cannot wait.',
[raw], Messages, RunTime, AxiomsUsed, WhyNot).

AxiomsUsed = [proof(['1: John must wait.'], ['Prolog Axiom pw1:
Accessibility relation is reflexive.']), proof(['1: John must wait.'],
['Prolog Axiom pw1: Accessibility relation is reflexive.', 'Prolog Axiom
pw2: Accessibility relation is symmetric.'])]

11 https://secure.wikimedia.org/wikipedia/en/wiki/
Standard_translation

 First-Order Reasoning for Attempto Controlled English 89

sentence subordination

prove('John sincerely promises to wait for Mary.', 'John promises to
wait.', [raw], Messages, RunTime, AxiomsUsed, WhyNot).

AxiomsUsed = [proof(['1: John sincerely promises to wait for Mary.'],
[])]

Copula. In ACE the copula to be is used to express

• identity, for instance John is Harry.
• class membership, for instance Every cat is an animal.
• predication, for instance The cat is black. or John is in the garden.

To reason correctly, RACE needs to distinguish the various uses of the copula and to
support them by appropriate meaning postulates. During the translation into clauses
step RACE replaces the verb be by variants that express the respective use.
Concretely by

• be_MOD if the copula be is modified by adverbs or prepositional phrases
• be_ID if the copula be links two proper names or a proper name and

something/somebody
• be_NP if the copula be links a proper name or a noun phrase to a noun phrase
• be_ADJ if the copula be links a proper name or a noun phrase to an adjective

For each variant of the copula RACE provides respective meaning postulates in the
form of auxiliary Prolog axioms.

The variant be_NP can serve as a concrete example. Since be_NP is meant to
express class membership, it needs to have the attributes of a partial order, i.e. the
auxiliary axioms must ensure that be_NP behaves as a reflexive, antisymmetric and
transitive relation. While reflexivity is trivial, here are examples showing the
antisymmetry

prove('Every man is a male. Every male is a man.', 'Every man is a
man.', [raw], Messages, RunTime, AxiomsUsed, WhyNot).

AxiomsUsed = [proof(['1: Every man is a male.', '2: Every male is a
man.'], ['Prolog Axiom c1c: Identity of countable objects.']), ...]

and the transitivity

prove('Every man is a person. Every person is a human.', 'Every man is a
human.', [raw], Messages, RunTime, AxiomsUsed, WhyNot).

AxiomsUsed = [proof(['1: Every man is a person.', '2: Every person is a
human.'], ['Prolog Axiom c1c: Identity of countable objects.'])]

Obviously, if the need arose it would also be possible to interpret be_NP as an
equivalence relation by defining appropriate auxiliary Prolog axioms.

90 N.E. Fuchs

Variations of Query Answering. RACE allows for three different types of queries:
yes/no queries ask for the existence or non-existence of a specific situation, wh-
queries (who, whose, what, which) ask for noun phrases, and wh-queries (how, when,
where) ask for adverbs and prepositional phrases. Successful answers to wh-queries
not only report the axioms used during the proof, but also the substitutions of the
query words. For this purpose RACE uses yet another set of auxiliary Prolog
predicates.

Here are examples for each of the query types.

answer_query('A man sleeps. A woman does not sleep.', 'Is there somebody
who does not sleep?', [], Messages, RunTime, AxiomsUsed, WhyNot).

AxiomsUsed = [proof(['2: A woman does not sleep.'], [])]

answer_query('John sees a red book that lies on a table.', 'Who sees
which book?', [raw], Messages, RunTime, AxiomsUsed, WhyNot).

AxiomsUsed = [proof(['1: John sees a red book that lies on a table.',
'Substitution: who = John', 'Substitution: which = (at least 1) book,
(positive of) red'], ['Prolog Axiom w11: If there are countable objects
then the question "which" can be answered.', 'Prolog Axiom w2: If there
are named objects then the question "who" can be answered.'])]

answer_query('Mary sleeps silently. John sleeps with a heavy dream.',
'How does somebody sleep?', [], Messages, RunTime, AxiomsUsed, WhyNot).

AxiomsUsed = [proof(['1: Mary sleeps silently.', 'Substitution:
how/when/where = (positive of) silently'], []), proof(['2: John sleeps
with a heavy dream.', 'Substitution: how/when/where = (with) (at least
1) dream, (positive of) heavy'], [])]

answer_query('Mary sleeps silently. John sleeps in a bedroom.', 'Where
does somebody sleep?', [], Messages, RunTime, AxiomsUsed, WhyNot).

Messages = [message(warning, 'query answering', ''-'', 'The query word
"where" was interpreted as the query word "how".', '')]

AxiomsUsed = [proof(['1: Mary sleeps silently.', 'Substitution:
how/when/where = (positive of) silently'], []), proof(['2: John sleeps
in a bedroom.', 'Substitution: how/when/where = (in) (at least 1)
bedroom'], [])]

Note that the last proof generated a warning message. Since ACE does not use
thematic roles – that would allow RACE to distinguish location, time, manner,
instrument etc. – the where- and when-queries are interpreted as the less specific how-
query. As the example shows this can lead to possibly surprising answers.

 First-Order Reasoning for Attempto Controlled English 91

6 Decidability, Termination, Efficiency, Looping and All That

Decidability of ACE. Pratt-Hartman and Third [5] investigated several fragments of
natural language with respect to their complexity and decidability and found that the
fragment containing singular quantified nouns, predicative adjectives, copula
with/without negation, relative clauses, transitive verbs and reflexive/non-reflexive
pronouns as anaphors resolved by co-indexing is undecidable.

This means that ACE is undecidable since already its first-order subset is larger
than the above fragment. However, ACE contains some decidable – though less
expressive – subsets, for instance the subset defined by its translation into OWL.

Termination of RACE. Since ACE is not decidable, RACE would not terminate for
axioms with an infinite model. To prevent this, RACE is equipped with a time-out
whose limit depends on the size of the problem. Figure 8 shows a set of axioms –
originally devised by Pratt-Hartman and Third [5] and translated into ACE by Mandl
[6] – that would generate an infinite model, if not stopped by RACE after 10 s.

Fig. 8. Termination in spite of an infinite model

Efficiency of RACE. If RACE terminates then its run-time can mainly be attributed
to the forward-reasoning of clauses, i.e. to unifying logical atoms of clause bodies
with logical atoms previously asserted to the Prolog data base. If N is the number of
clauses, B is the average number of body atoms and A is the number of atoms
asserted to the Prolog data base, then in the worst-case O(N x AB) unifications are
required. To reduce this number, RACE uses the following means:

• The DRS representation of ACE texts is very compact reducing the number of
clauses and the number of body atoms.

• RACE represents auxiliary axioms as Prolog predicates instead of clauses thus
reducing the number of clauses, and furthermore replacing eager forward-
reasoning by lazy backward-reasoning.

• RACE reduces the number of clauses that at any moment participate in
forward-reasoning.

• RACE blocks after the first round of forward-reasoning the clauses
with the body true since these clauses are only used once.

• Before a clause is selected for execution RACE checks whether at
least one logical atom of the body of the clause was asserted to the

92 N.E. Fuchs

Prolog database in the preceding round; if not then the clause can
certainly not be executed.

• To minimise the number of atoms asserted to the Prolog data base RACE
ensures that no logical atom is asserted that would subsume an atom already in
the database.

• All remaining unifications profit from Prolog's indexing.

RACE's efficiency and scaling-up behaviour have not yet been systematically
investigated. On a MacBook Pro most examples presented in this paper use less than
10 ms, while Lewis Carroll's Grocer Puzzle

Given
Every honest and industrious person is healthy. No grocer is healthy. Every
industrious grocer is honest. Every cyclist is industrious. Every unhealthy cyclist is
dishonest. No healthy person is unhealthy. No honest person is dishonest. Every
grocer is a person. Every cyclist is a person.
show that
No grocer is a cyclist.

needs 40 ms. As figure 9 shows the Grocer Puzzle executed via the web-client needs
an order of magnitude more time because the RACE server runs on an older machine.
Note that RACE reports one proof based on five of the original nine axioms.

Fig. 9. Lewis Carroll's Grocer Puzzle

Loop Prevention. Forward-reasoning systems are prone to loops. Given the clauses

satchmo_clause(true, A, ...)
satchmo_clause(A, B, ...)
satchmo_clause(B, A, ...)

with the circular definitions A, A => B, B => A, RACE would loop infinitely
producing A, B, A, B, ... if it did not contain an effective way of loop prevention. This
loop prevention is the effect of functionality introduced for other purposes. RACE
uses a subsumption check to prevent asserting the same logical atom twice to the
Prolog data base, and selects a clause only if the body of the clause contains a logical
atom asserted to the Prolog database in the preceding round of forward-reasoning.
Thus in our example RACE prevents the second occurrence of A to be asserted to the

 First-Order Reasoning for Attempto Controlled English 93

database with the result that nothing is asserted and that no clause can be selected in
the next round. Figure 10 is an example showing that RACE can reason correctly
even in the presence of circular definitions.

Fig. 10. Deduction in the presence of loops

Inconsistent Axioms. From inconsistent axioms it is possible to deduce anything. If
RACE detects that the axioms are inconsistent then it outputs the generated results
together with a warning message.

... and All That. By default RACE uses the

• Unique name assumption, i.e. different proper names – Robert, Bob, ... – refer
to different entities unless explicitly stated otherwise, for instance by Robert is
Bob.

• Open world assumption, i.e. missing knowledge of the truth of an ACE
sentence A, respectively a failed proof of A, is not interpreted as ¬ A.

7 Conclusions

I presented the reasoner RACE that can show the (in-) consistency of a set of ACE
axioms, prove ACE theorems from ACE axioms and answer ACE queries from ACE
axioms. In each case RACE gives a proof justification in ACE and full English. Most
deductions are supported by auxiliary Prolog axioms that provide meaning postulates
and other functionality.

The next version of RACE will cover the still missing language features of ACE,
namely arithmetic, formulas, sets, lists and strings. Future extensions of RACE will
focus on executable specifications and temporal reasoning. This will also involve
larger examples possibly using external knowledge sources.

Furthermore, an open issue will have to be investigated that is due to RACE's
flexibility. Obviously, much of the reasoning power of RACE stems from the more
than 50 auxiliary Prolog axioms. The flexibility and power of Prolog allows us to
craft auxiliary axioms to virtually deduce anything. Thus what we actually can deduce
in a given situation raises not only the question of correctness and completeness, but
also the question of need and requirement, and consequently the question of the
availability of adequate auxiliary axioms.

94 N.E. Fuchs

Here is a case that illustrates this problem. Given that different proper names refer
to different entities unless explicitly stated otherwise, RACE could easily be extended
by an auxiliary axiom to perform the following two deductions.

Robert is a man. Bob is a man. |– There are two men.

Robert is a man. Bob is a man. Robert is Bob. |– There is one man.

This would introduce non-monotonic reasoning that the current version of RACE
does not support. Future research will decide whether non-monotonicity is needed.

Here is another case. While English provides query words for most constituents of
a sentence, it does not provide a query word for the verb. To get information on the
verb you have to formulate non-specific questions, for instance What does ... do?.
Given the sentence John stands at the window and looks into the garden. the question
What does John do? can be answered by a number of complete sentences that cover at
least part of the state of affairs. To equip RACE with this functionality we need
additional auxiliary axioms, and furthermore a standardisation of the questions that
can legitimately be asked. Again, future research will show whether this extension of
RACE is useful.

Acknowledgements. I very much appreciate the constructive comments and helpful
suggestions of the three reviewers of a previous version of this paper. Thanks also go
to my colleagues Kaarel Kaljurand, Tobias Kuhn, Ian Pratt-Hartmann, Aarne Ranta
and Rolf Schwitter for their valuable feedback.

References

1. Manthey, R., Bry, F.: SATCHMO: A Theorem Prover Implemented in Prolog. In: Lusk, E.,
Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 415–434. Springer, Heidelberg
(1988)

2. Bry, F., Yahya, A.: Positive Unit Hyperresolution Tableaux and Their Application to
Minimal Model Generation. Journal of Automated Reasoning 25, 35–82 (2000)

3. Basin, D., D’Agostino, M., Gabbay, D.M., Matthews, S., Viganò, L. (eds.): Labelled
Deduction. Applied Logic Series, vol. 17. Springer (2000)

4. Bos, J.: Computational Semantics in Discourse: Underspecification, Resolution, and
Inference. Journal of Logic, Language and Information 13, 139–157 (2004)

5. Pratt-Hartmann, I., Third, A.: More fragments of language. Notre Dame Journal of Formal
Logic 47(2), 151–177 (2006)

6. Mandl, M.: Zur Komplexität des Erfüllbarkeitsproblems von Sprachfragmenten,
Hauptseminar Kontrollierte Sprache CIS, SS 2010. Universität München (2010)

7. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Discourse Representation Structures for ACE 6.6,
Technical Report ifi-2010.0010, Department of Informatics, University of Zurich (2010)

8. Schwertel, U.: Plural Semantics for Natural Language Understanding — A Computational
Proof-Theoretic Approach, PhD thesis, University of Zurich (2004)

Codeco: A Practical Notation for Controlled

English Grammars in Predictive Editors�

Tobias Kuhn1,2

1 Department of Informatics & Institute of Computational Linguistics,
University of Zurich, Switzerland

2 Department of Intelligent Computer Systems,
University of Malta

kuhntobias@gmail.com

http://www.tkuhn.ch

Abstract. This paper introduces a new grammar notation, called Co-
deco, designed for controlled natural language (CNL) and predictive ed-
itors. Existing grammar frameworks that target either formal or natural
languages do not work out particularly well for CNL, especially if they
are to be used in predictive editors and if anaphoric references should be
resolved in a deterministic way. It is not trivial to build predictive editors
that can precisely determine which anaphoric references are possible at
a certain position. This paper shows how such complex structures can
be represented in Codeco, a novel grammar notation for CNL. Two dif-
ferent parsers have been implemented (one in Prolog and another one
in Java) and a large subset of Attempto Controlled English (ACE) has
been represented in Codeco. The results show that Codeco is practical,
adequate and efficient.

1 Introduction

Controlled natural languages (CNL) have been proposed to make knowledge
representation systems more user-friendly [25,15]. The scope of this work is re-
stricted to controlled natural languages with a direct and deterministic mapping
to some kind of formal logic, like Attempto Controlled English (ACE) [8].

One of the main problems of CNL is that it can be very difficult for users to
write statements that comply with the restrictions of CNL. Three approaches
have been proposed so far to solve this problem: error messages [3], language
generation [24], and predictive editors [26,15]. Each of the approaches has its
own advantages and drawbacks. The work presented here follows the predictive
editor approach, where the editor shows all possible continuations of a partial
sentence. However, implementing lookahead features (i.e. retrieving the possible
continuations for a given partial sentence on the basis of a given grammar) is not

� The work presented here was funded by the research grant (Forschungskredit) pro-
grams 2006 and 2008 of the University of Zurich.

M. Rosner and N.E. Fuchs (Eds.): CNL 2010, LNAI 7175, pp. 95–114, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.tkuhn.ch

96 T. Kuhn

a trivial task, especially if the grammar describes complex nonlocal structures
like anaphoric references. Furthermore, good tool integration is crucial for CNL,
no matter which approach is followed. For this reason, it is desirable to have a
simple grammar notation that is fully declarative and can easily be implemented
in different kinds of programming languages.

In the remainder of this paper, the relevant background is discussed and the
problems we are facing are explained (Sect. 2). Then, the Codeco grammar no-
tation is introduced, which is designed to solve the identified problems (Sect.
3). Next, two implementations of Codeco are presented (Sect. 4) and a specific
grammar written in this notation is introduced (Sect. 5). Finally, several evalu-
ation results of the approach are shown (Sect. 6) and the conclusions are drawn
(Sect. 7).

This paper is built from a chapter of the author’s doctoral thesis [17], which
gives more information about the details of the approach and about the concrete
application in specific tools. The Codeco notation was outlined in the extended
abstract of this full paper [16].

2 Background

Below, a number of requirements for controlled English grammars are intro-
duced. Then, different kinds of existing grammar frameworks are discussed:
frameworks for natural languages, parser generators, and definite clause gram-
mars (DCG). Finally, related work is introduced in the form of the Grammatical
Framework.

2.1 Requirements for Controlled English Grammars

What follows is a list of requirements that grammars of controlled English have
to meet if they are to be defined, implemented, used, and reused efficiently,
under the assumption that the predictive editor approach is followed and that
the language supports complex phenomena like anaphoric references.

Concreteness. Concreteness is an obvious requirement. Due to their practi-
cal and computer-oriented nature, CNL grammars should be concrete, i.e. fully
formalized to be read and interpreted by computer programs.

Declarativeness. As a second requirement, CNL grammars should be declar-
ative, i.e. defined in a way that does not depend on a concrete algorithm or
implementation. Declarative grammars can be completely separated from the
parser that processes them. This makes it easy for such grammars to be used by
other programs, to replace the parser, or to have different parsers for the same
language. Declarative grammars are easy to change and reuse and can be shared
easily between different parties using the same CNL.

A Practical Notation for Controlled English Grammars in Predictive Editors 97

Lookahead Features. Predictive editors require the availability of lookahead
features, i.e. the possibility to find out how a partial text can be continued. For
this reason, CNLs must be defined in a form that enables the efficient imple-
mentation of such lookahead features. Concretely, this means that a partial text,
for instance “a brother of Sue likes ...”, can be given to the parser and that the
parser is able return the complete set of words that can be used to continue the
partial sentence according to the grammar. For the given example, the parser
might say that “a”, “every”, “no”, “somebody”, “John”, “Sue”, “himself” and
“her” are the possibilities to continue the partial sentence.

Anaphoric References and Scopes. CNLs that support anaphoric references
raise special requirements. For such languages, it should be possible to describe
the circumstances under which anaphoric references are allowed in an exact,
declarative, and simple way that — in order to have a clear separation of syntax
and semantics — does not depend on the semantic representation. Concretely, a
CNL should allow the use of a referential expression like “it” only if a matching
antecedent (e.g. “a country”) can be identified in the preceding text. Every sen-
tence that contains an expression that can only be interpreted in a referential
way but cannot be resolved must be considered syntactically incorrect. In other
words, CNL grammars must be able to represent the fact that only resolvable
anaphoric references are allowed.

The resolvability of anaphoric references depends on the scopes of the preced-
ing text. Scopes are raised by certain structures like negation, and they cover
certain areas of the text that denote the range of influence of the respective
expression. While scopes in natural language can be considered a semantic phe-
nomenon, they have to be treated as a syntactic issue in CNLs if the restrictions
on anaphoric references are to be described appropriately. Thus, a grammar
that defines the syntax of a CNL needs to specify anaphoric references, their
antecedents, and the positions at which scopes are opened and closed.

Implementability. Finally, a CNL grammar notation should be easy to imple-
ment in different programming languages. As a consequence, a CNL grammar
notation should be neutral with respect to the programming paradigm of its
parser.

The implementability requirement is motivated by the fact that the usability
of CNL heavily depends on good integration into user interfaces like predictive
editors. For this reason, it is desirable that the CNL parser is implemented in
the same programming language as the user interface component.

Another reason why implementability is important is that the parser is often
not the only tool that needs to know the CNL grammar. There can be many
other tools besides the parser that need to read and process the grammar, e.g. ed-
itors [26], paraphrasers [12] and verbalizers1. Furthermore, more than one parser
might be necessary for practical reasons. For example, a simple top-down parser
may be the best option for simple grammars when used for parsing large texts

1 see e.g. http://attempto.ifi.uzh.ch/site/docs/owl_to_ace.html

http://attempto.ifi.uzh.ch/site/docs/owl_to_ace.html

98 T. Kuhn

in batch mode and for doing regression tests (e.g. through language generation).
On the other hand, a chart parser is better suited for complex grammars and
for providing lookahead capabilities.

2.2 Natural Language Grammar Frameworks

A large number of grammar frameworks exist to process natural languages.
Some of the most popular ones are Head-Driven Phrase Structure Grammars
(HPSG) [23], Lexical-Functional Grammars [13], and Tree-Adjoining Grammars
[11]. More of them are discussed by Cole et al. [5]. Most of these frameworks are
defined in an abstract and declarative way. Concrete grammar definitions based
on such frameworks, however, are often not fully declarative.

Despite many similarities, a number of important differences between natural
language grammars and grammars for CNLs can be identified that have the
consequence that the grammar frameworks for natural languages do not work
out very well for CNLs. Most of the differences originate from the fact that
the two kinds of grammars are the results of opposing goals. Natural language
grammars are language descriptions : they describe existing phenomena. CNL
grammars, in contrast, are language definitions : they define something new.

Obviously, grammars for natural languages and those for CNLs differ in com-
plexity. Natural languages are very complex and so must be the grammars that
thoroughly describe such languages. CNLs are typically much simpler and aban-
don natural structures that are difficult to process.

Partly because of the high degree of complexity, providing lookahead features
on the basis of those frameworks is very hard. Another reason is that lookahead
features are simply not relevant for natural language applications, and thus no
special attention has been given to this problem. The difficulty of implementing
lookahead features with natural language grammar frameworks can be seen by
the fact that no predictive editors exist for CNLs that emerged from an NLP
background like CPL [4] or CLOnE [9].

The handling of ambiguity is another important difference. Natural language
grammars have to deal with the inherent ambiguity of natural languages. Con-
text information and background knowledge can help resolving ambiguities, but
there is always a remaining degree of uncertainty. Natural language grammar
frameworks are designed to be able to cope with such situations, can repre-
sent structural ambiguity by using underspecified representations, and require
the parser to disambiguate by applying heuristic methods. In contrast, CNLs
(the formal ones on which this paper focuses) remove ambiguity by their design,
which typically makes underspecification and heuristics unnecessary.

Finally, the resolution of anaphoric references to appropriate antecedents is
another particularly difficult problem for the correct representation of natural
language. In computational linguistics, this problem is usually solved by apply-
ing complex algorithms to find the most likely antecedents (see e.g. [19]). The
following example should clarify why this is such a difficult problem: An ana-
phoric pronoun like “it” can refer to a noun phrase that has been introduced in
the preceding text but it can also refer to a broader structure like a complete

A Practical Notation for Controlled English Grammars in Predictive Editors 99

sentence or paragraph. It is also possible that “it” refers to something that has
been introduced only in an implicit way or to something that will be identi-
fied only in the text that follows later. Furthermore, “it” can refer to something
outside of the text, meaning that background knowledge is needed to resolve
it. Altogether, this has the consequence that sentences like “an object contains
it” have to be considered syntactically correct even if no matching antecedent
for “it” can be clearly identified in the text. In order to address the problem of
anaphoric references, natural language grammar frameworks like HPSG estab-
lish “binding theories” [2,23] that consist of principles that describe under which
circumstances two components of the text can refer to the same thing. Applying
these binding theories, however, just gives a set of possible antecedents for each
anaphor and does not deal with deterministic resolution of them.

2.3 Parser Generators

A number of systems exist that are aimed at the definition and parsing of formal
languages (e.g. programming languages). In the simplest case, such grammars are
written in Backus-Naur Form [21,14]. Examples of more sophisticated grammar
formalisms for formal languages — called parser generators — include Yacc [10]
and GNU bison2. Some CNLs like Formalized-English [20] are defined in such
parser generator notations.

The general problem of these formalisms is that context-sensitive constraints
cannot be defined in a declarative way. Simple context-free languages can be de-
scribed in a declarative and simple way by using plain Backus-Naur style gram-
mars. However, such grammars are very limited and even very simple CNLs can-
not be defined appropriately. It is possible to describe more complex grammars
containing context-sensitive elements with such parser generators. However, this
has to be done in the form of procedural extensions that depend on a particular
programming language to be interpreted. Thus, the property of declarativeness
gets lost when more complex languages are described.

When discussing lookahead capabilities of parser generators, it has to be noted
that the term lookahead has a different meaning in the context of parser gener-
ators: lookahead denotes how far the parsing algorithm looks ahead in the fixed
token list before deciding which rule to apply. Lookahead in our sense of the word
— i.e. predicting possible next tokens — is not directly supported by existing
parser generators. However, as long as no procedural extensions are used, this is
not hard to implement. Actually, a simple kind of lookahead (in our sense of the
word) is available in many source code editors in the form of code completion
features.

2.4 Definite Clause Grammars

Definite clause grammars (DCG) [22], finally, are a simple but powerful way to
define grammars for natural and formal languages and are mostly written in

2 http://www.gnu.org/software/bison/

http://www.gnu.org/software/bison/

100 T. Kuhn

logic-based programming languages like Prolog. In fact, many of the grammar
frameworks for natural languages introduced above are usually implemented on
the basis of Prolog DCGs.

In their core, DCGs are fully declarative and can thus in principle be pro-
cessed by any programming language. Since they build upon the logical concept
of definite clauses, they are easy to process for logic-based programming lan-
guages. In other programming languages, however, a large overhead is necessary
to simulate backtracking and unification.

DCGs are good in terms of expressivity because they are not necessarily
context-free but can contain context-sensitive elements. Anaphoric references,
however, are again a problem. Defining them in an appropriate way is difficult
in plain DCG grammars. The following two exemplary grammar rules show how
antecedents and anaphors could be defined:

np(Agr, Ante-[Agr|Ante]) --> determiner(Agr), noun(Agr).

np(Agr, Ante-Ante) --> ana_pron(Agr), { once(member(Agr,Ante)) }.

The code inside the curly brackets defines that the agreement structure of the
pronoun is unified with the first possible element of the antecedent list.

This approach has some problems. First of all, the curly brackets contain code
that is not fully declarative. A more serious problem, however, is the way how
connections between anaphors and antecedents are established. The accessible
antecedents are passed through the grammar by using input and output lists of
the form “In-Out” so that new elements can be added to the list whenever an
antecedent occurs in the text. The problem that follows from this approach is
that the definition of anaphoric references cannot be done locally in the grammar
rules that actually deal with anaphoric structures but they affect almost the
complete grammar, as illustrated by the following example:

s(Ante1-Ante3) --> np(Agr, Ante1-Ante2), vp(Agr, Ante2-Ante3).

As this example shows, anaphoric references also have to be considered when
writing grammar rules that have otherwise nothing to do with anaphors or an-
tecedents. This is neither convenient nor elegant.

Different DCG extensions have been proposed in order to describe natural
language in a more appropriate way. Assumption Grammars [6], for example,
are motivated by natural language phenomena that are hard to express other-
wise, like free word order. Simple anaphoric references can be represented in a
very clean way, but there are problems with more complex anaphor types like
irreflexive pronouns.

A further problem with the DCG approach concerns lookahead features. In
principle, it is possible to provide lookahead features with standard Prolog
DCGs, as shown in previous work conducted with Rolf Schwitter [18]. How-
ever, this approach is not very efficient and can become impractical for complex
grammars and long sentences.

A Practical Notation for Controlled English Grammars in Predictive Editors 101

2.5 Related Work

The Grammatical Framework (GF) [1] is the only existing grammar framework
(to the author’s knowledge) that has a specific focus on CNL. Apart from the
fact that it has no particular support for describing the resolvability of ana-
phoric references on the syntactic level, GF fulfills the requirements introduced
above. With extensions (perhaps inspired by Codeco), it could become a suitable
grammar notation for the specific problem described in this paper.

3 The Codeco Notation

On the basis of the aforementioned requirements, a grammar notation called
Codeco, which stands for “concrete and declarative grammar notation for con-
trolled natural languages”, is introduced here.

The Codeco notation has been developed with ACE in mind, and the elements
of Codeco will be motivated by ACE examples. Nevertheless, this notation should
be general enough for other controlled subsets of English, and for controlled sub-
sets of other languages. Codeco can be conceived as a proposal for a general CNL
grammar notation. As I will show, it works well for a large subset of ACE, but
it cannot be excluded that extensions or modifications would become necessary
to be able to express the syntax of other CNLs.

Below, the different elements of the Codeco notation are introduced, i.e. gram-
mar rules, grammatical categories, and certain special elements. After that, the
issue of reference resolution is discussed.

3.1 Simple Categories and Grammar Rules

Grammar rules in Codeco use the operator “
:−→” (where the colon on the arrow

is needed to distinguish normal rules from scope-closing rules as they will be
introduced later on):

vp
:−→ v np

Terminal categories are represented in square brackets:

v
:−→ [does not] verb

In order to provide a clean interface between grammar and lexicon, Codeco has
a special notation for pre-terminal categories, being marked with an underline:

np
:−→ [a] noun

Pre-terminal categories are conceptually somewhere between non-terminal and
terminal categories, in the sense that they can be expanded but only to terminal
categories. This means that pre-terminal categories can occur on the left hand
side of a rule only if the right hand side consists of exactly one terminal category.

102 T. Kuhn

Such rules are called lexical rules and are represented with a plain arrow, for
instance:

noun → [person]

Lexical rules can be stored in a dynamic lexicon but they can also be part of the
static grammar.

In order to support context-sensitivity, non-terminal and pre-terminal cate-
gories can be augmented with flat feature structures. They are shown here using
the colon operator “:” with the name of the feature to the left and its value to
the right. Values can be variables, which are displayed as boxes:

vp

(
num: Num

neg: Neg

)
:−→ v

⎛
⎝num: Num

neg: Neg

type: tr

⎞
⎠ np

(
case: acc

)

v

(
neg: +
type: Type

)
:−→ [does not] verb

(
type: Type

)

np
(
noun: Noun

)
:−→ [a] noun

(
text: Noun

)

An important restriction is that feature values cannot be feature structures
themselves. This means that feature structures in Codeco are always flat. This
restriction has practical reasons. It should keep Codeco simple and easy to im-
plement, but it can easily be dropped in theory.

3.2 Normal Forward and Backward References

So far, the introduced elements of Codeco are quite straightforward and not
very specific to CNL or predictive editors. The support for anaphoric references,
however, requires some novel extensions.

In principle, it is easy to support sentences like

A country contains an area that is not controlled by the country.

where “the country” is a resolvable anaphoric reference. However, given that we
only have the Codeco elements introduced so far, it is not possible to suppress
sentences like

Every area is controlled by the country.

where “the country” is not resolvable. This can be acceptable, but in many
situations there are good reasons to disallow such non-resolvable references.

In Codeco, the use of anaphoric references can be restricted to positions where
they can be resolved. This is done with the help of the special categories “>”
and “<”, which describe nonlocal dependencies across the syntax tree, as the
following illustration shows:

A Practical Notation for Controlled English Grammars in Predictive Editors 103

s

vp

vp

np

ref

n

area

det

the

v

tv

control

aux

does not

conj

and

vp

np

n

area

det

an

v

tv

contains

np

>n

country

det

A

>

<

“>” represents a forward reference and marks a position in the text to which
anaphoric references can refer, i.e. “>” stands for antecedents. “<” represents
a backward reference and refers back to the closest possible antecedent, i.e. “<”
stands for anaphors. These special categories can have feature structures and
they can occur only in the body of rules, for example:

np
:−→ [a] noun

(
text: Noun

)
>

(
type: noun
noun: Noun

)

ref
:−→ [the] noun

(
text: Noun

)
<

(
type: noun
noun: Noun

)

The forward reference of the first rule establishes an antecedent to which later
backward references can refer. The second rule contains such a backward refer-
ence that refers back to an antecedent with a matching feature structure. In this
example, forward and backward references have to agree in their type and their
noun (represented by the features “type” and “noun”). This has the effect that
“the country”, for example, can refer to “a country”, but “the area” cannot.

Forward references always succeed, whereas backward references succeed only
if a matching antecedent in the form of a forward reference can be found some-
where to the left in the syntax tree.

In order to distinguish these simple types of forward and backward references
from other reference types that will be introduced below, they are called normal
forward references and normal backward references, respectively.

Altogether, these special categories provide a very simple way to establish
nonlocal dependencies in the grammar for describing anaphoric references. How-
ever, as we will discover, these simple kinds of references are not general enough
for all types of references we would like to represent. We need more reference
types, but first accessibility constraints have to be discussed.

3.3 Scopes and Accessibility

As already pointed out, anaphoric references are affected by scopes. References
are resolvable only to positions in the previous text that are accessible, i.e. that
are not inside closed scopes. An example is

Every man protects a house from every enemy and does not destroy ...

104 T. Kuhn

where one can refer to “man” and to “house” but not to “enemy” (because “every”
opens a scope that is closed after “enemy”). The Codeco elements introduced so
far do not allow for such restrictions. Additional elements are needed to define
where scopes open and where they close.

The position where a scope opens is represented in Codeco by the special
category “�” called scope opener, for example:

quant
(
exist: –

)
:−→ � [every]

Scopes that are open have to be closed somewhere. In contrast to the opening po-
sitions of scopes, their closing positions can be far away from the scope-triggering
structure. For this reason, the closing positions of scopes cannot be defined in
the same way as their opening positions. Instead, the positions where scopes
close are defined in Codeco by the use of scope-closing rules “

∼−→”, for instance:

vp
(
num: Num

) ∼−−→ v

⎛
⎝neg: +

num: Num

type: tr

⎞
⎠ np

(
case: acc

)

This rule states that any scope that is opened by the direct or indirect children
of “v” and “np” is closed at the end of “np”. If no scopes have been opened,
scope-closing rules simply behave like normal rules.

In contrast to most other approaches, scopes are defined in a way that is
completely independent from the semantic representation.

3.4 Position Operators

With the introduced Codeco elements, anaphoric definite noun phrases like “the
area” can be restricted to positions where they are resolvable. However, it is not
possible so far to define, for example, that a reflexive pronoun like “herself” is
allowed only if it refers to the subject of the respective verb phrase. Concretely,
we cannot distinguish the following two cases:

A woman helps herself.
* A woman knows a man who helps herself.

The problem is that there is no way to check whether a potential antecedent is
the subject of a given anaphoric reference or not. What is needed is a way of
assigning an identifier to each antecedent.

To this aim, Codeco employs the position operator “#”, which takes a variable
and assigns it an identifier that represents the respective position in the text.
The following picture visualizes how position operators work:

s

vp

np

ref

herself

v

tv

helps

np

prop

Maryp0 p1 p2 p3

#

#

A Practical Notation for Controlled English Grammars in Predictive Editors 105

With the use of position operators, reflexive pronouns can be defined in a way
that excludes unresolvable pronouns, i.e. excludes pronouns that do not match
with the subject of the given verb phrase:

np
(
id: Id

)
:−→ # Id prop

(
human: H

)
>

⎛
⎝id: Id

human: H

type: prop

⎞
⎠

ref
(
subj: Subj

)
:−→ [itself] <

(
id: Subj

human: –

)

Position operators allow us to use identifiers — e.g. for identifying the subject of
a verb phrase — in a very simple and declarative way. As we will see, however, a
further extension is needed for the appropriate definition of irreflexive pronouns.

3.5 Negative Backward References

A further problem that has to be solved concerns variables as they are supported,
for instance, by ACE. Phrases like “a person X” can be used to introduce a
variable “X”. A problem arises if the same variable is introduced twice:

* A person X knows a person X.

One solution is to allow such sentences and to define that the second introduction
of “X” overrides the first one so that subsequent occurrences of “X” can only
refer to the second one. In first-order logic, for example, variables are treated
this way. In CNL, however, the overriding of variables can be confusing to the
readers. ACE, for example, does not allow variables to be overridden.

Such restrictions cannot be defined with the Codeco elements introduced so
far. Another extension is needed: the special category “≮” that can be used to
ensure that there is no matching antecedent. This special category establishes
negative backward references, which can be used — among other things — to
ensure that no variable is introduced twice:

newvar
:−→ var

(
text: V

)
≮

(
type: var
var: V

)
>

(
type: var
var: V

)

The special category “≮” succeeds only if there is no accessible forward reference
that unifies with the given feature structure.

3.6 Complex Backward References

The introduced Codeco elements are still not sufficient for expressing all the
things we would like to express. As already mentioned, there is still a problem
with irreflexive pronouns like “him”. While reflexive pronouns like “himself” can
be restricted to refer only to the respective subject, the introduced Codeco el-
ements do not allow for preventing irreflexive pronouns from referring to the
subject as well:

106 T. Kuhn

John knows Bill and helps him.
* John helps him.

These two cases cannot be distinguished so far. It thus becomes necessary to in-
troduce complex backward references, which use the special structure “<+...−...”.
Complex backward references can have several feature structures: one or more
positive ones (after the symbol “+”), which define how a matching antecedent
must look like, and zero or more negative ones (after “−”), which define how the
antecedent must not look like. The symbol “−” can be omitted if no negative
feature structures are present.

In this way, irreflexive pronouns can be correctly represented, for instance:

ref
(
subj: Subj

)
:−→ [he] <+

(
human: +
gender: masc

)
−
(
id: Subj

)

Complex backward references refer to the closest accessible forward reference
that unifies with one of the positive feature structures but is not unifiable with
any of the negative ones.

Complex backward references are a powerful construct, with which anaphoric
references can be restricted in a very general way. The following example —
which is rather artificial and would probably not be very useful in practice —
illustrates the general nature of complex backward references: One might want
to define that the word “this” can be used to refer to something which is neuter
and has no variable attached or which is a relation (whatever that means), but
which is not the subject and is not a proper name. This complex behavior could
be achieved with the following rule:

ref
(
subj: Subj

)
:−→ [this] <+

(
hasvar: –
human: –

)(
type: relation

)
−
(
id: Subj

)(
type: prop

)

Complex backward references that have exactly one positive feature structure
and no negative ones are equivalent to normal backward references.

3.7 Strong Forward References

Finally, one last extension is needed in order to handle antecedents that are not
affected by the accessibility constraints. For example, proper names are usually
considered accessible even if under negation:

Mary does not love Bill. Mary hates him.

In such situations, the special category “�” can be used, which introduces a
strong forward reference:

np
(
id: Id

)
:−→ prop

(
human: H

)
�
⎛
⎝id: Id

human: H

type: prop

⎞
⎠

Strong forward references are always accessible even if they are within closed
scopes. Apart from that, they behave like normal forward references.

A Practical Notation for Controlled English Grammars in Predictive Editors 107

3.8 Principles of Reference Resolution

The resolution of references in Codeco requires some more explanation. All three
types of backward references (normal, negative and complex ones) are resolved
according to the three principles of accessibility, proximity and left-dependence.

Accessibility. The principle of accessibility states that one can refer to forward
references only if they are accessible from the position of the backward reference.
A forward reference is accessible only if it is not within a scope that has been
closed before the position of the backward reference, or if it is a strong forward
reference.

This accessibility constraint can be visualized in the syntax tree. The syntax
tree for the partial sentence shown in Section 3.3 could look as follows:

s ∼

vp

vp ∼

np

ref

...

v

tv

destroy

aux

does not

conj

and

vp

pp

np

>n

enemy

det

every

prep

from

np

n

house

det

a

v

tv

protects

np

n

man

det

Every

pp

np

>n

enemy

det

every

∼

�

�

�

((()

>

>

<

All nodes that represent the head of a scope-closing grammar rule are marked
with “∼”. The positions in the text where scopes open and close are marked
by parentheses. In this example, three scopes have been opened but only the
second one (the one in front of “every enemy”) has been closed (after “enemy”).
The shaded area marks the part of the syntax tree that is covered by this closed
scope.

As a consequence of the accessibility constraint, the forward references for
“man” and “house” are accessible from the position of the backward reference
at the very end of the shown partial sentence. In contrast, the forward reference
for “enemy” is not accessible because it is inside a closed scope. The possible
references are shown as dashed lines. Thus, the partial sentence can be continued
by the anaphoric references “the man” or “the house” (or equivalently “himself”
or “it”, respectively) but not by the reference “the enemy”.

Proximity. Proximity is the second principle for the resolution of backward
references. If a backward reference could potentially point to more than one
forward reference then, as a last resort, the principle of proximity defines that the
textually closest forward reference is taken. Or more precisely, when traversing
the syntax tree starting from the backward reference and going back in a right-
to-left, depth-first manner, the first matching and accessible forward reference
is taken. This ensures that every backward reference resolves deterministically
to exactly one forward reference.

108 T. Kuhn

In the following example, the reference “it” could in principle refer to three
antecedents:

s

s

...

...

np

ref

pn

it

conj

then

s

vp

np

n

error

det

an

v

tv

causes

np

pp

np

n

machine

det

a

prep

of

n

part

det

a

conj

If

>

>

> <

The pronoun “it” could refer to “part”, “machine”, or “error”. According to the
principle of proximity, the closest antecedent is taken, i.e. “error”.

Left-Dependence. The principle of left-dependence, finally, means that ev-
erything to the left of a backward reference is considered for its resolution but
everything to its right is not. The crucial point is that variable bindings entailed
by a part of the syntax tree to the left of the reference are considered for its
resolution, whereas variable bindings that would be entailed by a part of the
syntax tree to the right are not considered.

The following example illustrates why the principle of left-dependence is im-
portant:

ref
:−→ [the] <

(
type: noun
noun: N

)
noun

(
text: N

)

ref
:−→ [the] noun

(
text: N

)
<

(
type: noun
noun: N

)

These are two versions of the same grammar rule. The only difference is that
the backward reference and the pre-terminal category “noun” are switched. The
first version is not a very sensible one: the backward reference is resolved without
considering how the variable “N” is bound by the category “noun”. The second
version is much better: the resolution of the reference takes into account which
noun has been read from the input text.

As a rule of thumb, backward references should generally follow the textual
representation of the anaphoric reference and not precede it.

3.9 Restriction on Backward References

In order to provide proper and efficient lookahead algorithms that can handle
backward references, their usage must be restricted: Backward references must
immediately follow a terminal or pre-terminal category in the body of grammar
rules. Thus, they are not allowed at the initial position of the rule body and they
must not follow a non-terminal category.

However, the algorithms that process Codeco also work for grammars that
do not follow this restriction. Only the lookahead feature would not work as
expected.

A Practical Notation for Controlled English Grammars in Predictive Editors 109

4 Implementations

The Codeco notation currently has two implementations: one that transforms
it into Prolog DCG grammars to be executed as Prolog programs, and another
one that executes Codeco grammars in Java with a chart parsing algorithm.

The Prolog DCG implementation is primarily intended for running parsing
and generation tasks in batch mode. As we will see, it is very fast, but it lacks
lookahead features. Chart parsers are a good choice for such lookahead features,
and this is the approach of the second implementation: Codeco grammars are
executed in Java following the Earley chart parsing algorithm [7]. The Java
implementation is slower than the one in Prolog (see below), but it has lookahead
support (i.e. it can list all possible next tokens for partial sentences) and enables
Java applications to run Codeco grammars without Prolog.

Both implementations can not only be used to parse but also to automatically
generate all syntactically correct sentences up to a certain sentence length. The
details of these implementations, including the lookahead algorithm and the
necessary extensions for the Earley algorithm, can be found in the author’s
doctoral thesis [17].

The web applications AceWiki [15] and the ACE Editor3 both use the Codeco
notation. The Prolog implementation is used for regression testing, and the Java
implementation is used by their predictive editors for the lookahead features.

5 ACE Codeco Grammar

The introduced Codeco notation has been used to describe a large subset of
ACE, to be called ACE Codeco. This grammar consists of 164 grammar rules4

and is used by the ACE Editor mentioned above.
The ACE Codeco grammar covers a large part of ACE including count-

able nouns, proper names, intransitive and transitive verbs, adjectives, adverbs,
prepositions, plurals, negation, comparative and superlative adjectives and ad-
verbs, of -phrases, relative clauses, modality, numerical quantifiers, coordination
of sentences / verb phrases / relative clauses, conditional sentences, and ques-
tions. Anaphoric references are possible by using simple definite noun phrases,
variables, and reflexive and irreflexive pronouns. However, there are some con-
siderable restrictions with respect to the full language of ACE. Mass nouns,
measurement nouns, ditransitive verbs, numbers and strings as noun phrases,
sentences as verb phrase complements, Saxon genitive, possessive pronouns, noun
phrase coordination, and commands are not covered at this point.

Nevertheless, this subset of ACE defined by the Codeco grammar is probably
the broadest unambiguous subset of English that has ever been defined in a con-
crete and fully declarative way and that includes complex issues like anaphoric
references.

3 http://attempto.ifi.uzh.ch/webapps/aceeditor/
4 See [17] for the complete grammar.

http://attempto.ifi.uzh.ch/webapps/aceeditor/

110 T. Kuhn

When sentences are generated for evaluation purposes from a grammar in an
exhaustive manner then one quickly encounters a combinatorial explosion on
the number of generated sentences. In practice, this means that one can only
use a subset of the grammar for such evaluations. Such an evaluation subset
has been defined for ACE Codeco, using a minimal lexicon and only 97 of the
164 grammar rules. These 97 grammar rules are chosen in a way that reduces
combinatorial explosion but retains the complexity of the language.

6 Evaluation

On the basis of the ACE Codeco grammar and its evaluation subset, a number
of tests can be performed. On the one hand, it can be evaluated whether the
language described by ACE Codeco has the desired properties. On the other
hand, it can be taken as a test case to evaluate the Codeco notation and the two
implementations thereof.

Ambiguity Check of ACE Codeco. Languages like ACE are designed to be
unambiguous on the syntactic level. This means that every valid sentence must
have exactly one syntax tree according to the given grammar. By exhaustive
language generation, the resulting sentences can be checked for duplicates. Sen-
tences generated more than once have more than one possible syntax tree and
are thus ambiguous.

Up to the length of ten tokens, the evaluation subset of ACE Codeco generates
2’250’869 sentences, which are all distinct. Thus, at least a large subset of ACE
Codeco is unambiguous for at least relatively short sentences.

Subset Check of ACE Codeco and Full ACE. The ACE Codeco grammar
is designed as a proper subset of ACE. It can now be checked automatically
whether this is the case, at least for the evaluation subset of ACE Codeco and
up to a certain sentence length.

Every sentence up to the length of ten tokens was submitted to the ACE
parser (APE) and parsing succeeded in all cases. Since APE is the reference
implementation of ACE, this means that these sentences are syntactically correct
ACE sentences.

Equivalence Check of the Implementations. Since both implementations
support language generation, we can check whether the two implementations
accept the same set of sentences, as they should, for the ACE Codeco grammar.

The Java implementation has been used to generate all sentences up to the
sentence length of eight tokens. Since the Java implementation is slower than
the one based on Prolog DCGs (see below), the former cannot generate as long
sentences as the latter within reasonable time. The resulting set of sentences
generated by the Java implementation is identical to the one generated by the
Prolog DCG. This is an indication that the two implementations contain no
major bugs and that they interpret Codeco grammars in the same way.

A Practical Notation for Controlled English Grammars in Predictive Editors 111

Table 1. These are the results of a performance test of the two implementations of
Codeco. As a comparison, the performance of the existing ACE parser (APE) is shown
for the parsing task.

time in seconds
task grammar implementation overall average

generation ACE Codeco eval. subset Prolog DCG 40.8 0.00286
generation ACE Codeco eval. subset Java Earley parser 1040. 0.0730
parsing ACE Codeco eval. subset Prolog DCG 5.13 0.000360
parsing ACE Codeco eval. subset Java Earley parser 392. 0.0276
parsing full ACE Codeco Prolog DCG 20.7 0.00146
parsing full ACE Codeco Java Earley parser 1900. 0.134
parsing full ACE APE 230. 0.0161

Performance Tests of the Implementations. Finally, the performance of
the two implementations can be evaluated and compared. Both can be used for
parsing and for generation, and thus the runtimes in these two disciplines can
be compared.

The first task was to generate all sentences of the evaluation subset of ACE
Codeco up to the length of seven tokens. The second task was to parse the
sentences that result from the generation task. This parsing task was performed
in two ways for both implementations: once using the evaluation subset and once
using the full ACE Codeco grammar. The restricted lexicon of the evaluation
subset was used in both cases. These tests were performed on a MacBook Pro
laptop computer having a 2.4 GHz Intel Core 2 Duo processor and 2 GB of main
memory. Table 1 shows the results of these performance tests.

The generation of the resulting 14’240 sentences only requires about 41 sec-
onds in the case of the Prolog DCG implementation. This means that less than
3 milliseconds are needed on average for generating one sentence. The Java
implementation, in contrast, needs about 17 minutes for this complete genera-
tion task, which corresponds to 73 milliseconds per sentence. Thus, generation
is about 25 times faster when using the Prolog DCG version compared to the
Java implementation. These results show that the Prolog DCG implementation
is well suited for exhaustive language generation. The Java implementation is
much slower but the time values are still within a reasonable range.

The Prolog DCG approach is amazingly fast for parsing the same set of sen-
tences using the evaluation subset of the grammar. Here, parsing just means
detecting that the given statements are well-formed according to the grammar.
Altogether only slightly more than 5 seconds are needed to parse the complete
test set, i.e. less than 0.4 milliseconds per sentence. When using the full ACE
Codeco grammar for parsing the same set of sentences, altogether 21 seconds
are needed, i.e. about 1.5 milliseconds per sentence. The Java implementation is
again much slower and requires almost 30 milliseconds per sentence when using
the grammar of the evaluation subset, which leads to an overall time of more
than 6 minutes. For the full grammar, 134 milliseconds are required per sentence
leading to an overall time of about 32 minutes. Thus, the Java implementation is

112 T. Kuhn

76 to 92 times slower than the Prolog DCG for the parsing task. Because all time
values are clearly below 1 second per sentence, both parser implementations can
be considered fast enough for practical applications.

The fact that the Java implementation requires considerably more time than
the Prolog DCG is not surprising. DCG grammar rules in Prolog are directly
translated into Prolog clauses and generate only very little overhead. Java, in
contrast, has no special support for grammar rules: they have to be implemented
on a higher level. The same holds for variable unifications, which come for free
with Prolog but have to be implemented on a higher level in Java.

As a comparison, the existing parser APE — the reference implementation
of ACE — needs about 4 minutes for the complete parsing task. Thus, it is
faster than the Java implementation but slower than the Prolog DCG version
of Codeco. However, it has to be considered that APE does more than just
accepting well-formed sentences. It also creates a DRS representation and a
syntax tree.

7 Conclusions

In summary, the Codeco notation allows us to define controlled natural lan-
guages in a convenient and adequate way, including complex nonlocal phenomena
like anaphoric references. The resulting grammars have a declaratively defined
meaning, can be interpreted in different kinds of programming languages in an
efficient way, and allow for lookahead features, which are important for predic-
tive editors. Furthermore, Codeco enables automatic grammar testing, e.g. by
exhaustive language generation, which can be considered very important for the
development of reliable practical applications. Altogether, Codeco embodies a
more engineering focused approach to CNL.

Codeco is a proposal for a general CNL grammar notation. It cannot be
excluded at this point that extensions become necessary to express the syntax
of other CNLs, but Codeco has been shown to work very well for a large subset
of ACE, which is one of the most advanced CNLs to date.

References

1. Angelov, K., Ranta, A.: Implementing Controlled Languages in GF. In: Fuchs, N.E.
(ed.) CNL 2009. LNCS, vol. 5972, pp. 82–101. Springer, Heidelberg (2010)

2. Chomsky, N.: On binding. Linguistic Inquiry 11(1), 1–46 (1980)
3. Clark, P., Chaw, S.-Y., Barker, K., Chaudhri, V., Harrison, P., Fan, J., John,

B., Porter, B., Spaulding, A., Thompson, J., Yeh, P.: Capturing and answering
questions posed to a knowledge-based system. In: K-CAP 2007: Proceedings of the
4th International Conference on Knowledge Capture, pp. 63–70. ACM (2007)

4. Clark, P., Harrison, P., Jenkins, T., Thompson, J., Wojcik, R.H.: Acquiring and
using world knowledge using a restricted subset of English. In: Proceedings of the
Eighteenth International Florida Artificial Intelligence Research Society Confer-
ence (FLAIRS 2005), pp. 506–511. AAAI Press (2005)

A Practical Notation for Controlled English Grammars in Predictive Editors 113

5. Cole, R., Mariani, J., Uszkoreit, H., Varile, G.B., Zaenen, A., Zampolli, A., Zue, V.
(eds.): Survey of the State of the Art in Human Language Technology. Cambridge
University Press (1997)

6. Dahl, V., Tarau, P., Li, R.: Assumption grammars for processing natural language.
In: Naish, L. (ed.) Proceedings of the Fourteenth International Conference on Logic
Programming, pp. 256–270. MIT Press (1997)

7. Earley, J.: An efficient context-free parsing algorithm. Communications of the
ACM 13(2), 94–102 (1970)

8. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for Knowledge
Representation. In: Baroglio, C., Bonatti, P.A., Ma�luszyński, J., Marchiori, M.,
Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 104–124.
Springer, Heidelberg (2008)

9. Funk, A., Tablan, V., Bontcheva, K., Cunningham, H., Davis, B., Handschuh, S.:
CLOnE: Controlled Language for Ontology Editing. In: Aberer, K., Choi, K.-S.,
Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard,
D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC
2007. LNCS, vol. 4825, pp. 142–155. Springer, Heidelberg (2007)

10. Johnson, S.C.: Yacc: Yet another compiler-compiler. Computer Science Technical
Report 32, Bell Laboratories, Murray Hill, NJ, USA (July 1975)

11. Joshi, A.K., Levy, L.S., Takahashi, M.: Tree adjunct grammars. Journal of Com-
puter and System Sciences 10(1), 136–163 (1975)

12. Kaljurand, K.: Paraphrasing controlled English texts. In: Pre-Proceedings of the
Workshop on Controlled Natural Language (CNL 2009). CEUR Workshop Pro-
ceedings, vol. 448, CEUR-WS (April 2009)

13. Kaplan, R.M., Bresnan, J.: Lexical-functional grammar: A formal system for gram-
matical representation. In: Bresnan, J. (ed.) The Mental Representation of Gram-
matical Relations, pp. 173–281. MIT Press (1982)

14. Knuth, D.E.: Backus normal form vs. backus naur form. Communications of the
ACM 7(12), 735–736 (1964)

15. Kuhn, T.: How controlled English can improve semantic wikis. In: Proceedings of
the Forth Semantic Wiki Workshop (SemWiki 2009). CEUR Workshop Proceed-
ings, vol. 464, CEUR-WS (2009)

16. Kuhn, T.: Codeco: A grammar notation for controlled natural language in predic-
tive editors. In: Pre-Proceedings of the Second Workshop on Controlled Natural
Languages (CNL 2010). CEUR Workshop Proceedings, vol. 622, CEUR-WS (2010)

17. Kuhn, T.: Controlled English for Knowledge Representation. PhD thesis, Faculty of
Economics, Business Administration and Information Technology of the University
of Zurich (2010)

18. Kuhn, T., Schwitter, R.: Writing support for controlled natural languages. In:
Proceedings of the Australasian Language Technology Association Workshop 2008,
pp. 46–54 (December 2008)

19. Lappin, S., Leass, H.J.: An algorithm for pronominal anaphora resolution. Com-
putational Linguistics 20(4), 535–561 (1994)

20. Martin, P.: Knowledge Representation in CGLF, CGIF, KIF, Frame-CG and
Formalized-English. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002.
LNCS (LNAI), vol. 2393, pp. 77–91. Springer, Heidelberg (2002)

21. Naur, P., Backus, J.W., Bauer, F.L., Green, J., Katz, C., McCarthy, J., Perils,
A.J., Rutishauser, H., Samelson, K., Vauquois, B., Wegstein, J.H., van Wijngaar-
den, A., Woodger, M.: Revised report on the algorithmic language ALGOL 60.
Communications of the ACM 6(1), 1–17 (1963)

114 T. Kuhn

22. Pereira, F., Warren, D.H.D.: Definite clause grammars for language analysis.
In: Readings in Natural Language Processing, pp. 101–124. Morgan Kaufmann
Publishers (1986)

23. Pollard, C., Sag, I.: Head-Driven Phrase Structure Grammar. Studies in Contem-
porary Linguistics. Chicago University Press (1994)

24. Power, R., Stevens, R., Scott, D., Rector, A.: Editing OWL through generated
CNL. In: Pre-Proceedings of the Workshop on Controlled Natural Language (CNL
2009). CEUR Workshop Proceedings, vol. 448, CEUR-WS (April 2009)

25. Schwitter, R., Kaljurand, K., Cregan, A., Dolbear, C., Hart, G.: A comparison
of three controlled natural languages for OWL 1.1. In: Proceedings of the Fourth
OWLED Workshop on OWL: Experiences and Directions. CEUR Workshop Pro-
ceedings, vol. 496, CEUR-WS (2008)

26. Schwitter, R., Ljungberg, A., Hood, D.: ECOLE — a look-ahead editor for a
controlled language. In: Controlled Translation — Proceedings of the Joint Con-
ference Combining the 8th International Workshop of the European Association
for Machine Translation and the 4th Controlled Language Application Workshop
(EAMT-CLAW 2003), Ireland, pp. 141–150. Dublin City University (2003)

Controlled Language for Everyday Use:
The MOLTO Phrasebook

Aarne Ranta, Ramona Enache, and Grégoire Détrez

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract. Controlled languages are usually targeted for technical domains and
designed to be unambiguous. This paper presents a controlled language whose
domain is touristic phrases, aimed to be usable by anyone without prior training.
Despite its informal nature, the language of phrases has a firm notion of seman-
tics, defining the correctness of translations. However, this semantics is formu-
lated in terms of context and situation rather than by logical formulas. Moreover,
the language is often ambiguous, and the translation may depend on resolving the
ambiguity. This paper shows how to formalize a semantics for tourist phrases and
implement it in 15 languages, how to deal with the ambiguities, and how to make
the system available for layman users on the web and on mobile phones. While
a useful application as such, the Phrasebook also paves the way for an extended
notion of controlled language, and the techniques are aimed to be general enough
to support many such extensions.

Keywords: controlled language, Grammatical Framework, multilingual gram-
mar, tourist phrasebook, mobile translation application.

1 Introduction

Controlled languages are typically designed for use on technical domains. Their users
are experts such as aircraft engineers [1], medical doctors [2], and topographers [3].
The language is typically a natural-language image of a formal system, such as pred-
icate logic in [4] or OWL (Web Ontology Language) [5] in [6]. The purpose of these
controlled languages is to support knowledge representation, reasoning, and mechani-
cal checking of correctness; the main point of using a natural language fragment rather
than a formalism is to have a notation that is readable without special training. When
there is no underlying formalism, as in [1], the purpose is to eliminate the ambiguity,
vagueness, and unclarity of uncontrolled natural language.

However, the notion of controlled language can be given a wider interpretation: it
can be just any fragment of natural language specified with a formal set of rules. Ac-
tually it can be seen as the technological counterpart of Wittgenstein’s philosophical
notion of language games [7], which are systems of rules specifying how language is
used for performing different tasks. In the tradition represented by Wittgenstein and his
followers, language games are the very essence of language: they should not be seen
as mere fragments of an underlying total system, but as the building blocks that actu-
ally constitute the thing called language. Very little can be rigorously said about natural

M. Rosner and N.E. Fuchs (Eds.): CNL 2010, LNAI 7175, pp. 115–136, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

116 A. Ranta, R. Enache, and G. Détrez

language as a whole, whereas these limited fragments are units that (at least in many
cases) permit a formal description and—consequently—a computer implementation.

When we start looking at language from the language game point of view, we sud-
denly begin to see “formal systems” everywhere. One of the most basic ones is the
social game of greetings and politeness phrases. For instance, when I ask for some-
thing, I attach the word please. When you hand it over to me, you say here we are, to
which I should say thank you, and you can conclude by replying you’re welcome. These
four phrases get their precise meanings in the context of this game. Actually, each of
them could be used in some other context and mean something different. This is seen
clearly when we look at their translations. Here is a simple dialogue in three languages:

English Swedish German
A beer please. En öl tack. Ein Bier bitte.
Here we are. Var så god. Bitte.
Thank you. Tack. Danke.
You’re welcome. Var så god. Bitte.

English makes most distinctions here, by using a different phrase for each of the four
moves of the game. Swedish uses tack for both asking and thanking. German uses dif-
ferent phrases for these two, but the word bitte (literally, “I request”) is otherwise used
for everything! Nevertheless, there’s no problem in translating Swedish and German
phrases to English, as soon as we know what move they express in the language game.

Of course, it is just a coincidence that English has unambiguous phrases for all lan-
guage game moves here. English, and all other languages, are full of ambiguities, if we
look only at the syntax without context. This is not just a feature of everyday language
but even of mathematics, as convincingly shown in [8]. But the ambiguities are almost
always easily resolved by looking at the context of use.

An ambiguity specific to English is generated from the word you. It has two trans-
lations in Swedish (the familiar singular du, the plural or formal singular ni), three in
German (the familiar singular du, the familiar plural ihr, and the formal Sie), and up to
eight in languages like Spanish (singular/plural, familiar/formal, masculine/feminine).
For instance, the English phrase are you German has eight translations in Spanish. The
translation is determined by the context of use—basically, by the addressee.

The “language game” of social phrases is not only a philosophical experiment, but
also a lucrative business. Phrasebooks like Berlitz and Lonely Planet are still sold in
millions of copies, although electronic phrasebooks running on mobile phones are tak-
ing more and more of the market share. A typical electronic phrasebook is just a digital
version of the printed book: a collection of phrases that can be looked up either by typ-
ing search strings or by browsing in hierarchic menus. A particularly smart example is
the Chinese iPhone application YoChina1, which puts each phrase into a context and
also shows a set of responses from which the interlocutor can choose.

Even the most sophisticated commercial phrasebooks are still just collections of
canned phrases: fixed strings, which, even though there might be thousands of them,
don’t cover all possible combinations of the concepts involved. A different approach can

1 http://www.yocoy.com

http://www.yocoy.com

Controlled Language for Everyday Use: The MOLTO Phrasebook 117

be taken by using machine translation; thus Google Translate2 is available as a mobile
phone application that actually translates each individual phrase separately. While this
is the most natural and powerful approach to the problem, it still has open issues. The
first issue is quality: even though Google Translate often does a good job, it can just as
easily produce something totally wrong, and this can lead to embarrassing situations if
used in a social context of communication (mostly resolved by a good laugh, of course).
In particular, Google Translate is based on a generic, statistical language model which
cannot make distinctions like the ones needed for the different uses of German bitte.
The second issue with Google Translate as used by a traveller far away from home is
the cost of mobile data transfer. It may just be too expensive to use the service.

In this paper, we will introduce a controlled language translator approach to tourist
phrasebooks. We will show a formal semantic model, which unambiguously specifies
an infinite class of phrases. Then we will show how the semantic model is translated
to phrases in 15 natural languages. The translations are reversible, which means that
the phrasebook can both generate natural language from the formal semantics and in-
terpret it in the formal semantics. The combination of generation and interpretation is
translation; our phrasebook is able to translate equally well with all of the 14*15=210
language pairs. The translator runs as an off-line application on Android mobile phones
and can be downloaded free of charge from Android Market3. The phrasebook is also
available as a web application4.

Figure 1 (left) shows the web interface to the phrasebook. The user has constructed
the English sentence how far is the Russian restaurant, which the system has translated
to the other 14 languages. The construction is carried out by a predictive parser [9],
which predicts the set of possible next words at each point. The input can be made
by typing text (in the white slot on the right) or by clicking at one of the rectangles
showing a word. The possible continuations here are ? (to terminate the phrase), by (as
in by tram), and from (as in from the hotel). As soon as there is enough input to translate,
the translations are shown. Figure 1 (right) shows the Android mobile application. For
size reasons, the application shows only one target language at a time. As a bonus, it
has speech synthesizer output for some languages.

Touristic phrases are a rich domain, and one could easily spend a lifetime on building,
refining, and extending an electronic phrasebook. What we want to show in this paper
is a technology that gives maximal support to this work. The technology is based on
GF (Grammatical Framework, [10]), which is a grammar formalism designed for sup-
porting multilingual grammars of controlled languages. In addition to a programming
language, GF provides RGL (Resource Grammar Library, [11]), which encapsulates the
low-level linguistic knowledge of morphology and syntax that is needed when building
high-quality translation systems.

In addition to the grammar engineering tools, GF has a set of tools supporting run-
time applications. These include libraries for web servers and clients [12] and, most
importantly for the current purpose, a Java-based run-time system for Android phones.

2 http://translate.google.com
3 https://market.android.com/details?id=
org.grammaticalframework.android.apps.phrasedroid

4 http://www.grammaticalframework.org/demos/phrasebook/

http://translate.google.com
https://market.android.com/details?id=org.grammaticalframework.android.apps.phrasedroid
https://market.android.com/details?id=org.grammaticalframework.android.apps.phrasedroid
http://www.grammaticalframework.org/demos/phrasebook/

118 A. Ranta, R. Enache, and G. Détrez

Fig. 1. The MOLTO Phrasebook as a web application (left) and as an Android mobile application
(right)

Thus, at the same time as the phrasebook is a practical help for tourists, it is a
showcase for a powerful general technology. This technology is being developed in
the European MOLTO project 5). In addition to using GF, MOLTO explores ways to
use statistical translation models to help the construction and improve the coverage of
grammar-based systems. The MOLTO Phrasebook is a first experiment of this: some
of the languages involved were implemented by programmers not knowing the lan-
guage at all, but using a statistical model to bootstrap the grammar and a native-speaker

5 MultilingualOn-LineTranslation,http://www.molto-project.eu

Multilingual On-Line Translation, http://www.molto-project.eu

Controlled Language for Everyday Use: The MOLTO Phrasebook 119

informant to evaluate it. This was developed into a general method that will be usable
for any further project of building multilingual controlled language systems.

The structure of the paper is as follows: Section 2 specifies the coverage of the
MOLTO phrasebook by giving an overview of its semantic model. Section 3 shows ex-
amples of how the different languages are implemented by using GF and RGL. Section
4 shows how ambiguities are displayed to users by means of disambiguation grammars.
Section 5 introduces the method of example-based grammar writing using statistical
models and human informants. Section 6 explains the Java run-time system of GF and
the architecture of the mobile Android application. Section 7 presents some results from
evaluation, and Section 8 concludes.

2 The Semantic Model

In GF, a semantic model is called an abstract syntax. It is defined by giving a set of
categories (keywordcat) and a set of functions (keywordfun), which together define
the notion of well-typed trees. For instance, the phrases in the beer-ordering dialogue
above can be given the following abstract syntax:

cat
Phrase ; Item

fun
GivePlease : Item -> Phrase
HereWeAre : Phrase
ThankYou : Phrase
YouAreWelcome : Phrase
ABeer : Item

The model could be made more precise by specifying that these phrases must appear
in a certain order to constitute a valid dialogue. But for the purposes of a phrasebook,
it is enough to specify uniquely each type of phrase by giving it a function name. All
functions in this simple model are actually constants, i.e. they take no arguments—
except GivePlease, which takes an Item as its argument.

The linguistic realizations of the semantic model are specified by a concrete syntax,
which tells how trees formed in abstract syntax are linearized into strings in different
languages. We will return to the details of linearization in Section 3; just to give an
example, the following linearization rules (lin) could be given for German:

lin
GivePlease item = item ++ "bitte"
HereWeAre = "bitte"
ThankYou = "Danke"
YouAreWelcome = "bitte"
ABeer = "ein Bier"

All linearization rules in GF can be also used for parsing, that is, converting strings to
trees. This tiny example clearly shows that parsing can be ambiguous, that is, return
more than one tree. The everyday counterpart of parsing ambiguity is shown by the

120 A. Ranta, R. Enache, and G. Détrez

situation where someone asks: “What is bitte in English?” The correct answer is that it
depends on context: it may mean please or here we are or you are welcome.

In the full MOLTO Phrasebook, none of the 15 languages is unambiguous. What we
need is an abstract syntax that formalizes all possible distinctions, so that each abstract
syntax tree has a unique linearization in every language. Now, capturing all relevant
distinctions in 15 languages might sound like a hopeless task, but in fact the semantic
model scaled up quite well when the grammar was extended language by language.
After a careful initial design (with awareness of what typically happens in languages),
almost no changes were needed in the abstract syntax when new languages were added.

Printed phrasebooks have canned, static phrases, whereas a digital grammar-based
phrasebook has rules for forming phrases from smaller expressions. The MOLTO Phrase-
book has 42 categories and 290 functions. Of the functions, 130 take arguments and 160
are constants, which means that they are either lexical items or canned phrases. What is
a lexical item in one language can be a multiword phrase in another language, as shown
for instance by bitte vs. here we are. The number of phrases is infinite because of recur-
sion, but on the reasonable level of tree depth 3, the Phrasebook has 484,938 abstract
syntax trees of phrases.

The full code of the phrasebook, with some documentation, can be found on-line6.
We will here show a sample of the coverage, and then focus on a few interesting prob-
lems created by some of the constructions. Table 1 gives some of the categories, and
Table 2 some of the combination functions.

For a detailed sample, let us focus on the category Action, and the ways of asking
persons for information about themselves and what they do. The complete Phrase
corresponding to the question

Are you Swedish?

has the tree (in GF’s LISP-like notation)

PQuestion (QProp (PropAction
(ACitizen YouFamMale (CitiNat Swedish))))

This tree is formed by the functions

PQuestion : Question -> Phrase
QProp : Proposition -> Question
PropAction : Action -> Proposition
ACitizen : Person -> Citizenship -> Action
YouFamMale : Person
CitiNat : Nationality -> Citizenship
Swedish : Nationality

But thinking in terms of reliable translations, there are many more trees, resulting from
the semantic ambiguity of English you. Of these, the Phrasebook deals with dimensions

6 http://www.grammaticalframework.org/examples/phrasebook/
doc-phrasebook.html

http://www.grammaticalframework.org/examples/phrasebook/doc-phrasebook.html
http://www.grammaticalframework.org/examples/phrasebook/doc-phrasebook.html

Controlled Language for Everyday Use: The MOLTO Phrasebook 121

Table 1. Some of the 42 categories of the Phrasebook

category explanation example
Phrase complete phrase, unit of translation Where are you?
Greeting idiomatic greeting hello
Sentence declarative sentence I am in the bar
Question question, either yes/no or wh where are you
Proposition can be used as sentence or question this pizza is good
Object object of wanting, ordering, etc two pizzas and a beer
Item a single entity this pizza
Kind a type of an item pizza
Quality qualification of an item very good
Place location the bar
PlaceKind type of location bar
Person agent wanting or doing something you
Action proposition about a Person you are here
Nationality complex of language, property, country Swedish, Sweden
Language language (can be without nationality) Flemish
Citizenship property (can be without language) Belgian
Country country (can be without language) Belgium
Currency currency Swedish crown
Number number expression in words two hundred and five
Price price (number + currency) sixty-five dollars

of gender and politeness; plural you is not covered by the current version (mostly be-
cause it is not so frequently needed). Thus you corresponds to four constants of type
Person,

YouFamMale, YouFamFemale, YouPolMale, YouPolFemale

Varying this constant in the above tree gives four French linearizations:

YouFamMale: Est-ce que tu es suédois ?
YouFamFemale: Est-ce que tu es suédoise ?
YouPolMale: Est-ce que vous êtes suédois ?
YouPolFemale: Est-ce que vous êtes suédoise ?

Although German also has gender, it makes no difference in this example. Thus we
obtain

YouFamMale, YouFamFemale: Bist du schwedisch?
YouPolMale, YouPolFemale: Sind Sie schwedisch?

One challenge in the Phrasebook is to communicate the ambiguities to the end user:
when she types in Are you Swedish?, she should get a list of the alternatives in the
desired target language, with explanations that enable her to decide which alternative to
choose in her situation of use. We will return to this question in Section 4.

As Action is a subcategory of Proposition, it can be used for both questions
and assertions, both positive and negated. Thus the functions involved in the question

122 A. Ranta, R. Enache, and G. Détrez

Table 2. Some of the 130 combination rules of the Phrasebook

arguments value examples
Number, Kind Object five pizzas
Quality, Kind Kind Italian pizza
Kind Item this pizza, the pizzas
PlaceKind Place the bar, a bar
Proposition Sentence the bar is open, the bar isn’t open
Proposition Question is the bar open
Action Proposition I speak Polish
Person, Object Action you have beer, you have no beer
Person, Citizenship Action you are German
Person, Place Action you are in the bar
Person, Sentence Action you know that I am in the bar
Person, Person Action you know my wife
Person, Question Action you know how far the bar is
Person, Number Action I am seventy years old
Person, Number Action I have six children
Person, Name Action my name is Bond
Person Action I am hungry
Person, Item Action I like this pizza
Person, Country Action I live in Sweden
Person, Language Action I speak Polish
Person, Currency Action I have Swedish crowns
Person, Object Action I want two apples
Person, Place Action I want to go to the hospital
Person Question how old are you
Item Question how much does the pizza cost
Item, Price Proposition the pizza costs five euros
Place Proposition the museum is open
Place, Date Proposition the museum is open today
Place, Day Proposition the museum is open on Mondays
Place, Date Greeting see you in the bar on Monday
Person Person my wife, your husband
Number, Currency Proposition five euros
Place Question how far is the zoo
Place, Place Question how far is the centre from the hotel
Transport, Place Question which bus goes to the hotel

can be reused for sentences like I am not Swedish, which has two French translations. In
general, the design of the abstract syntax follows two principles, which can be explained
via geometrical metaphors:

– Convexity: For any two phrases contained, also all phrases “between” them (i.e.
combining their concepts in different ways) are contained. This principle guaran-
tees that the users can easily learn what to expect from the phrasebook, and their
expectations will be fulfilled.

– Orthogonality: Phrases are built from the least number of independent compo-
nents.

Controlled Language for Everyday Use: The MOLTO Phrasebook 123

While convexity is a great help for the user of the phrasebook, orthogonality helps the
developer by giving her the minimum of concepts to implement for each language. A
user who knows that the Phrasebook contains the property Swedish and the country
France will, by convexity, expect it also to contain the property French and the country
Sweden. The category Nationality is used to guarantee this, as it collects triples of
language, property, and country. These triples can often be formed by a systematic word
formation mechanism (e.g. Swedish, Swedish, Sweden), which helps the developer.

As a downside, abstract concepts like Nationality may be more complex to im-
plement than more specific concepts like Language,Citizenship, and Country.7

Often there is no regular word formation mechanism, and there are countries and lan-
guages that do not fit into the “national state” concept. For instance, the languages
spoken in Belgium are Flemish and French. Thus in the Phrasebook, Belgium is a coun-
try without a lexically associated language, whereas Flemish is a language without a
lexically associated country.

The set of combination rules in the Phrasebook is quite useful as it is, but the set
of lexical items is still small and a little random. Therefore an obvious next step in
developing the Phrasebook is to add words for drinks, food, nationalities, places, and
so on. Keeping all this in synchrony for 15 simultaneous languages is not trivial.

3 Concrete Syntax

Constant phrases, such as thank you and please, are easy to define for all languages.
Combination rules are more tricky: even in the small fragment covered by the Phrase-
book, linguistic problems such as inflection, agreement, and word order arise, and
require expertise in the grammar of each of the target languages. Fortunately for the
Phrasebook, this expertise was readily available in the GF Resource Grammar Library
(RGL). This is of course not just a lucky coincidence—it is more proper to say that the
Phrasebook was built as a showcase of GF in general and of the RGL in particular.

A concrete syntax has two components. One is linearization rules (lin) as shown
above, telling how abstract trees are mapped into strings. The other one is the lin-
earization types of categories (lincat). These types are linguistic categories such
as sentences, noun phrases, and adjectives. In the lin rule examples so far, only one
linearization type was used: the type Str of strings. But this is usually not enough. For
instance, to account for all combinations of a German noun, we need the type

{s : Number => Case => Str ; g : Gender}

that is, a record with a string depending on number and case (the component s), and
a gender (component g). In other languages, nouns can have other linearization types,
and the features number, case and gender can get other values than in German. But in
RGL, all this complexity is defined internally, and the user only needs to know that the
type CN covers common nouns in all RGL languages.8

7 The terminological choice between “Nationality” and “Citizenship” is of course arbitrary, and
only an implementation detail not visible to the end user.

8 See http://grammaticalframework.org/lib/doc/synopsis.html for RGL
categories and functions.

http://grammaticalframework.org/lib/doc/synopsis.html

124 A. Ranta, R. Enache, and G. Détrez

To give a sample of linearization types used in the Phrasebook, let us consider the
categories needed in the example Are you Swedish?:

category linearization type explanation
Phrase Text text
Question QS question
Proposition Cl clause
Person NP noun phrase
Action Cl clause
Citizenship A adjective
Nationality {l : NP ; p : A ; c : NP} NP, adjective, NP

All these types are standard linguistic categories of RGL, except the one of
Nationality, which uses a record consisting of a language noun phrase l, a property
adjective p, and a country noun phrase C. This record is, so to say, the linguistic repre-
sentation of the complex concept of a nationality, thus representing a lexical family.

The linearization rules are specified by RGL functions, most of which have the name
mkC for the value category C. Thus we have

PQuestion q = mkText q
QProp p = mkQS (mkQCl p)
PropAction a = a
ACitizen p c = mkCl p c
YouFamMale = youSg_Pron
CitiNat n = n.p
Swedish = mkNationality "Sweden" "Swedish"

The last rule uses the operation mkNationality, which takes a string for a noun and
for an adjective, to form the country name from the noun (Sweden) whereas both the
property and the language use the adjective (Swedish). This is the only English-specific
rule in this set. Other languages have different ways of defining this lexical family.
Finnish, for instance, uses the country name as the language name, just spelled with a
small initial.

Another example of a lexical family is types of locations. They are defined

PlaceKind = {name : CN ; at : Prep ; to : Prep}

Thus places have associated prepositions, used for expressing location and direction.
For instance, in English we have in the bar, at the station for the location and to express-
ing the direction for both. In Finnish, prepositions are expressed by cases, so that “bar”
uses so-called internal cases (baarissa “in the bar” inessive, baariin “to the bar” illa-
tive) whereas “station” uses external cases (asemalla “at the station” adessive, asemalle
“to the station” allative). Sometimes even more fine-grained distinctions are needed; for
instance, in Swedish “to the toilet” is expressed as på toaletten in phrases relating to the
function (“I want to go to the toilet”), whereas phrases expressing pure direction say till
toaletten.

The prepositions are thus stored in the record as lexical properties of the places; they
are idiomatic in each language and highly unpredictable. GF provides ways to express

Controlled Language for Everyday Use: The MOLTO Phrasebook 125

them on a reasonably high level, so that just the minimal information need be given in
the lexicon: thus in Finnish, we just need the noun and an identifier ssa or lla which
is conventionally used for indicating the type of local case:

Bar = mkPlace (mkN "baari") ssa
Station = mkPlace (mkN "asema") lla

To determine this little piece of information—the proper case or preposition for each
location—is linguistic knowledge that turned out to be possessed only by native speak-
ers, who made several corrections to the initial grammars.

As the RGL has a common API for the syntax functions of the 18 languages included,
combination rules in application grammars can in principle be expressed by code that
is common to all languages. This is technically implemented by the use of functors
([10], chapter 5), and it is the technique used, for instance, in the GF implementation
of Attempto Controlled English [13]. The use of a functor means that the languages
use the same syntactic structures to express the meanings. For instance, all languages
in the Phrasebook use an equivalent of you know that I am in the bar to express this
proposition. However, the Phrasebook domain is particularly rich of idioms that the
languages express by different syntactic means. This was a challenge we expected, and
one of the reasons why the Phrasebook was an interesting case study for multilingual
translation in the first place. Thus, of the 130 combination rules, only 96 (74%) are
implemented by a functor; usually the percentage is close to 100.

Some typical examples of non-functorial expressions are the following:

– I am fifty years old: French j’ai cinquante ans (“I have fifty years”).
– my name is Bond: German ich heisse Bond (“I have-name Bond”), French

je m’appelle Bond (“I call myself Bond”).
– I am hungry: French j’ai faim (“I have hunger”), Finnish minun on nälkä (“of-me

is hunger”).
– I like this pizza: Italian questa pizza mi piace (“this pizza pleases me”).
– I am married: Finnish olen naimisissa (“I am in-marriage”, with a special adver-

bial).
– how old are you: French combien d’ans as-tu (“how many years do you have”).
– how far is the station: French à quelle distance est la gare (“at what distance is the

station”), Italian quanto dista la stazione (“how much does the station distance”,
with a special verb).

Most of these variations are clustered in systematic ways, so that for instance all Ro-
mance languages use the same structure and all Germanic languages (except perhaps
English) another structure. The construct how with an adjective or adverb does not exist
in Romance languages, and is hence not even a part of the RGL API.

4 Ambiguity and Disambiguation

The abstract syntax is by definition unambiguous. Therefore the main way in which a
grammar developer can analyse the ambiguity of a string is by inspecting the abstract

126 A. Ranta, R. Enache, and G. Détrez

syntax trees. But this device is of course not appropriate for a tourist phrasebook: it
would be awkward and often useless to show the syntax trees to the user.

Fortunately, the technique of multilingual grammars provides a straightforward,
declarative way to display ambiguities: one can write for each language a special con-
crete syntax, which is like the original grammar except that it eliminates its ambiguities
by using alternative (although less idiomatic and often longer) expressions—a disam-
biguation grammar. For example, the original English grammar linearizes each of
the four abstract variants of you as just you, but the disambiguation grammar attaches
an explanation in parentheses: you (familiar,male), you(polite,female), etc. This idea is
inspired by the notion of feedback texts of the WYSIWYM system [14].

The implementation of a disambiguation grammar can be written on top of the base
grammar by using restricted inheritance: it inherits everything from the base grammar
except those rules that need disambiguation. Those rules can then be replaced by other
rules. The following module is a complete code for a disambiguation grammar for the
phrasebook dealing with the four you’s. The unambiguous variants are formed from you
by attaching an adverbial to it.

concrete DisambPhrasebookEng of Phrasebook = PhrasebookEng -
[YouFamMale, YouFamFemale, YouPolMale, YouPolFemale]

** open SyntaxEng, ParadigmsEng in {
lin

YouFamMale = mkNP you_NP (mkAdv "(familiar,male)") ;
YouFamFemale = mkNP you_NP (mkAdv "(familiar,female)") ;
YouPolMale = mkNP you_NP (mkAdv "(polite,male)") ;
YouPolFemale = mkNP you_NP (mkAdv "(polite,female)") ;

}

In the full Phrasebook, the number of ambiguous constructs is between 10 and 20 for
each language. An ambiguity shared by all languages is the notion of the currency
crown, as used for the currency of different Scandinavian countries. In the normal us-
age, one says crown rather than e.g. Danish crown, if it is clear from the context that
one is speaking about Danish crowns. The implementation of this does not use the dis-
ambiguation grammar, because both expressions make sense in the base grammar as
well. Thus the base grammar defines crowns by using the variants construct of GF
(expressed by |):

DanishCrown =
mkCN (mkA "Danish") (mkN "crown") | mkCN (mkN "crown")

SwedishCrown =
mkCN (mkA "Swedish") (mkN "crown") | mkCN (mkN "crown")

and similarly in all languages.
Since the abstract syntax encodes all interpretations that are relevant in any of the

languages, it can lead to spurious ambiguities when applied to any particular language
pairs. For instance, the familiar you is sinä and the polite you is Te in Finnish, without
the gender distinction involved anywhere in the sentence. Hence, when translating from
English to Finnish, only two alternatives should be displayed. The same thing may

Controlled Language for Everyday Use: The MOLTO Phrasebook 127

happen in Italian, where the masculine and feminine forms of some adjectives are the
same. Thus are you Swedish has only two translations (sei/è svedese) even though are
you Italian has four (sei/è italiano/italiana).

In the Phrasebook, the user should of course not see spurious ambiguities but only
relevant ones. This is guaranteed by the following modification of GF’s translation al-
gorithm, which otherwise shows as many translation strings as there are parse results.
Each translation is equipped by the set of those disambiguating expressions that give
rise to it. The translation algorithm is as follows:

1. parse the source sentence to obtain trees t1, . . . , tn
2. for each target language Li:

(a) for each tree tj : linearize tj in Li

(b) group trees with the same linearization sk into the pair < sk, {t | t∗ = sk} >
(c) return each sk together with the linearizations of the associated trees in the

disambiguation grammar of the target language

Here is an example of the algorithm at work:

English input:
– Are you Swedish?

French output:
– Est-ce que tu es suédois ? (Are you (Familiar,Male) Swedish?)
– Est-ce que tu es suédoise ? (Are you (Familiar,Female) Swedish?)
– Est-ce que vous êtes suédois ? (Are you (Polite,Male) Swedish?)
– Est-ce que vous êtes suédoise ? (Are you (Polite,Female) Swedish?)

Italian output:
– Sei svedese? (Are you (Familiar,Male) Swedish? / Are you (Familiar,Female)

Swedish?)
– È svedese? (Are you (Polite,Male) Swedish? / Are you (Polite,Female)

Swedish?)

As a further optimization, the algorithm could compress the alternatives (Familiar,Male)
and (Familiar,Female) to just (Familiar). This would be helped by a disambiguation
grammar that has more structure than just the unanalysed strings in parentheses. One
could also achieve this by some hand-written code in the phrasebook application; how-
ever, this would be against the purpose of developing the Phrasebook as a show-case
for a general technology.

5 Example-Based Grammar Writing

In previous projects, the typical author of a GF concrete syntax is fluent in the target
language and has GF skills which are directly proportional to the complexity of the ab-
stract syntax to implement. However, when dealing with 15 languages and a reasonably
rich semantic interlingua, the task of finding such people is a difficult one. When adding
the time constraints yielded by the MOLTO deadlines and the time needed to improve a
native speaker’s GF skills or a GF programmer’s knowledge of a language that she had
little to no skill in before, the task seemed to be a mission impossible. This was the case

128 A. Ranta, R. Enache, and G. Détrez

for German, Dutch, Danish, Norwegian and Polish. As a solution to this, we devised the
example-based grammar learning system, that is meant to automate a significant part of
the grammar writing process and ease grammar development. The two main usages of
the system are, first, to reduce the amount of GF programming necessary in develop-
ing a concrete grammar, and, secondly and more importantly, to make the extraction of
certain features of a language automatic for grammar development.

In the last years, the GF community has constantly increased and so has the num-
ber of languages in the resource library and the number of application grammars using
them. The writer of a concrete application grammar is typically different from the writer
of the resource grammar for the same language, has less GF skills and is most likely un-
aware of the almost 300 constructors that the resource grammars implement for building
various syntactical constructions [11]. In order to hide this detail, an API is provided so
that the domain grammar writer only needs to know the GF categories and look up how
they can be built from each other.

For example, the sentence my name is John is parsed to the following abstract syntax
tree:

PredVP (DetCN (DetQuant (PossPron i_Pron) NumSg)
(UseN name_N)) (UseComp (CompNP (UsePN john_PN)))

If we use the API constructors, the abstract syntax tree is simpler and more intuitive, as
the structure is flatter and each function has an easily memorable name:

mkCl (mkNP (mkQuant i_Pron) name_N) (mkNP john_PN)

The example-based grammar learning system aims to make one step more in this di-
rection and reduce the need for using even the API functions. The key idea is based on
parsing, followed by compilation to API. It provides considerable benefits, especially
for idiomatic grammars such as the Phrasebook, where the abstract syntax trees are
considerably different.

For example, when asking for a person’s name in English the question what is her
name has the syntax trees shown above. On the other hand, in French the question would
be translated to je m’appelle John (literally, “I call myself John”), which is parsed to:

PredVP (UsePron i_Pron)
(ComplSlash (SlashV2 appeler_V2) (UsePN john_PN))

and corresponds to the following API abstract tree:

mkCl i_NP appeler_V2 (mkNP john_PN)

By replacing i_NP and john_PN with variables, this tree can be used as the lineariza-
tion of a two-place predicate:

lin HasName x y = mkCl x appeler_V2 (mkNP y)

Figure 2 shows the algorithm for example-based grammar writing. It shows the con-
struction steps of the concrete syntax of the Phrasebook grammar for the language X,

Controlled Language for Everyday Use: The MOLTO Phrasebook 129

Fig. 2. The example-based grammar learning schema

where the developer has basic or no skills in the language. In our experiment X was one
of Danish, Dutch, German, Norwegian, and Polish. The arrows represent the main steps
of the process, whereas the circles represent the initial and final results after each step
of the process. For every step, the estimated time is given. This is variable and greatly
influenced by the features of the target language and the semantic complexity of the
phrases and would only hold for the Phrasebook grammar.

Initial Resources

– English Phrasebook
– resource grammar for X
– script for generating the inflection forms of words and the corresponding lineariza-

tions of the lexical entries from the Phrasebook in the language X. For example, in
the case of the nationalities, since we are interested in the names of countries, lan-
guages and citizenship of people and places, we would generate constructions like
"I am English. I come from England. I speak English. I go to an English restaurant"
and from the results of the translation we will infer the right form of each feature.
In English, in most cases there is an ambiguity between the name of the language
and the citizenship of people and places, but in other languages all three could have
completely different forms. This is why it is important to make the context clear
in the examples, so that the translation will be more likely to succeed. The correct
design of the test of examples, is language dependent and assumes analysis of the
resource grammar, also. For example, in some languages we need only the singular
and the plural form of a noun in order to build its GF representation, whereas in
other languages such as German, in the worst case we would need 6 forms which
need to be rendered properly from the examples.

130 A. Ranta, R. Enache, and G. Détrez

– script for generating random test cases that cover all the constructions from the
grammar. It is based on the current state of the abstract syntax and it generates for
each abstract function some random parameters and shows the linearization of the
construction in both English and language X, along with the abstract syntax tree
that was generated.

Example-Based Concrete Grammar Learning Algorithm

– Step 1: Analysis of the target grammar and lexicon acquisition
The first step assumes an analysis of the resource grammar and extracts the infor-
mation needed by the functions that build new lexical entries. A model is built so
that the proper forms of the word can be rendered, and additional information, such
as gender, can be inferred. The script applies these rules to each entry that we want
to translate into the target language, and one obtains a set of constructions.

– Step 2: Generation of examples in the target language
The generated constructions are given to an external translator tool (Google trans-
late) or to a native speaker for translation. One needs the configuration file even if
the translator is human, because formal knowledge of grammar is not assumed.

– Step 3: Parsing and decoding the examples with GF
The translations into the target language are further more processed in order to
build the linearizations of the categories first, decoding the information received.
Furthermore, having the words in the lexicon, one can parse the translations of
functions with the GF parser and generalize from that.

– Step 4: Evaluation and correction of the resulting grammar
The resulting grammar is tested with the aid of the testing script that generates
constructions covering all the functions and categories from the grammar, along
with some other constructions that proved to be problematic in some language. A
native speaker evaluates the results and if corrections are needed, the algorithm runs
again with the new examples. The examples validated by the native informant are
kept for regression testing of the future results. The algorithm is repeated as long
as corrections are needed.

It is worth noting that the time needed for preparing the configuration files for a gram-
mar will not be repeated, since the files are available for future usage. The time for
the second step can be saved if automatic tools, like Google translate are used. This
is only possible in languages with large corpora available. Good results were obtained
for German and Dutch with Google translate, but for languages like Polish, which are
both complex and lack enough resources, the results are discouraging. If the statistical
oracle works well, the only step where the presence of a human translator is needed is
the evaluation and feedback step. An average of 4 hours per round and 2 rounds were
needed for the languages for which we performed the experiment. The final results are
comparable to a grammar developed by a native speaker GF programmer.

However, one can already remark that the success of this method also depends highly
on the lexicon acquisition, which we perform in the first step. What is more is that the
lexicon is language-dependent, and is not alignable. Also, without previous knowledge
of all the languages, one cannot foresee what words we would need to use, and since

Controlled Language for Everyday Use: The MOLTO Phrasebook 131

they are not used in all languages, it wouldn’t make sense to have them all in a multilin-
gual aligned lexicon. For the moment, this task was solved by either guessing the cor-
rect part-of-speech based on a similar concrete grammar already developed(for example
Danish and Norwegian were bootstrapped from Swedish) or by having the lexicon built
and POS-tagged with the aid of native informants.

Among the 5 languages considered, a concrete Phrasebook grammar was success-
fully built for Danish, Dutch, German and Norwegian, whereas for Polish, it was not
possible to get through the first and most difficult step—target grammar analysis and
lexicon acquisition, because of the complex morphology of the language and the lack
of available resources. In the end the concrete grammar was developed by the writer of
the resource grammar.

The experiment involved 7 programmers with basic or advanced GF skills that wrote
10 resource grammars, whereas for the 4 languages mentioned before, the example-
based algorithm was used. The approximate development total time is 1 person month
for the whole Phrasebook, or 1.5 days per language on the average.

Based on this case study, we roughly estimated the effort used in constructing the
necessary sources for each new language and compiled Table 3.

Table 3. Development effort for the Phrasebook

Language Fluency GF skills Inf. dev. Inf. testing Ext. tools RGL edits Effort
Bulgarian ### ### - - - # ##
Catalan ### ### - - - # #
Danish - ### + + + ## ##
Dutch - ### + + + # ##

English ## ### - + - - #
Finnish ### ### - - - # ##
French ## ### - + - # #
German # ### + + + ## ###
Italian ### # - - - ## ##

Norwegian # ### + + + # ##
Polish ### ### + + + # ##

Romanian ### ### - - + ### ###
Spanish ## # - - - - ##
Swedish ## ### - + - - ##

Explanation of the Scores

– Grammarian’s language skills:
• - : no skills
• # : basic skills(general knowledge of the grammar)
• ## : medium skills(fluent)
• ### : advanced skills(native speaker)

– Grammarian’s GF skills
• — : no skills
• # : basic skills(simple GF exercises)

132 A. Ranta, R. Enache, and G. Détrez

• ## : medium skills(more comprehensive GF exercises)
• ### : advanced skills(resource grammar writer/substantial contributor)

– Informant needed for development/Informant needed for testing
• —: no
• + : yes

– Changes on the resource grammars
• —: no changes
• # : 1-3 minor changes
• ## : 4-10 minor changes, 1-3 medium changes
• ### : >10 changes of any kind

– Overall effort
• # : less than 8h/person
• ## : 8-24h/person
• ### : >24h/person

This experiment is significant because it is a showcase for the ongoing work on example-
based concrete grammar learning technology which will make GF grammar writing
easier in terms of adding more languages and developing larger grammars, but also be-
cause it represents an analysis on the possible interaction of GF with other available
translation tools, which will ease the work of both beginners and advanced users of the
technology.

6 The Mobile Application

If one wants to build a tool for a controlled language for everyday usage, it seems
logical for this tool to be as unobtrusive as possible. Moreover, since our language is
targeting tourists, we have to take into account a particular setting where people, when
going on vacation, may not have access to a computer and access to Internet can be
very limited due to low coverage or prohibitive costs. This are the criteria that we tried
to meet when building PhraseDroid, an application that works offline, on smartphone
devices and with a simple user interface. Moreover, we wanted to do this by creating
a technology that is as general as possible, and in fact applies to any multilingual GF
grammar.

PhraseDroid is an Android application, that can be used on handheld devices running
the Android operating system. Figure 1 shows a screen shot of the application in its
current state. As you can see, the application is using the same “magnet interface” as
the web application. This permits the user to compose a sentence while staying in the
coverage of the grammar. Moreover, this kind of interaction works well on devices
with touch screens because the magnets are large enough to be able to be selected with
fingers.

What is more is that the Android platform provides a high-quality speech synthesis
for several of the languages covered by the grammar, which can be plugged into our
application. This gives clear benefits compared to a traditional (paper) phrasebook.

As mentioned in Section 1, there are more and more phrasebook applications devel-
oped for smartphones nowadays. They can be divided in two main categories:

Controlled Language for Everyday Use: The MOLTO Phrasebook 133

1. The finite phrasebook. Those are usually made of a list of sentences translated in
one, or more, foreign languages. Those phrasebooks are lacking from the point of
view of expressivity since it isn’t possible to change a sentence as needed, even if
a very similar sentence is covered by the phrasebook.

2. The application providing machine translation through an on-line service. The
Google Translate application (and the various applications that are just front-ends
to it) is the best example in this category. This kind of applications can obviously
be used while traveling, but they require the possibility to connect to the Inter-
net, which is not guaranteed when one is travelling abroad due to technological or
economical reasons. In addition, unlike in our application, the translation engine
is not tailored toward tourist usage but is generic, which can lead so sub-optimal
translation in many cases.

In contrast, our application, once installed, works off-line and features a grammar de-
sign specifically for tourist translations. And since the user inputs the sentence to be
translated herself, it allows a great deal of variation and fine-tuned translation for a
given situation.

The application is based on a Java interpreter for GF’s binary grammar format, called
PGF [15]. Therefore the application is very modular: adapting the application to a dif-
ferent controlled language requires little more than dropping a new pgf file in the right
folder. This means that one can in no time create a translation application for another
controlled language given that a GF grammar for this language has been written.

Thus an important part of the process of creating the application was to write a
library in Java that provides the functions needed in the application. Its usage is not
limited to Android phones, but it can also be plugged in into any Java program, whether
on a desktop computer, or a web browser plug-in. In the current state, the Java library
supports (predictive) parsing, linearization, and random generation of well-typed trees.
This is less than the features available in the full GF interpreter, written in Haskell, but
it is sufficient for machine translation and lots of other uses.

7 Evaluation

7.1 Translation Quality

This is the first criterion of evaluation. It was first assessed by the systematic use of
native speaker testers, and later by comments collected from more random users of the
web demo and the Android application. The goal has been what might be called perfect
quality, in terms of meaning-preservation, grammaticality, idiomaticity, and fluency.
Hence all errors found in earlier versions were corrected immediately. With the first
“official version” (the one also running on Android), few direct errors have been found,
but there are some inadequacies that appear in reports:

– Some sentences permitted by the abstract syntax are semantically anomalous, e.g.
is there an airplane to the toilet. This could be fixed by using a more strict type
system; however, we consider this to be less important as long as the translations
are correct.

134 A. Ranta, R. Enache, and G. Détrez

– The choice of prepositions is not always fine-grained enough; for instance the dis-
tinction between gå till toiletten and gå på toaletten (both “go to the toilet”) in
Swedish is not handled (cf. Section 4).

– The usage of nationality adjectives for persons is not always optimal, but nouns
should be introduced in the lexical family. Thus I am a Finn would be better than I
am Finnish, with corresponding variations in many languages.

7.2 Coverage

There is no end of conceivable extensions if we want to cover everything that a tourist
might want to say. The syntactic combination rules are sufficient for many situations,
but they should definitely be extended with more vocabulary. For instance,

– drinks, food, currencies, countries
– time expressions like half past eight
– free-string input for names of places and persons

7.3 Engineering Effort

One of the main goals of the MOLTO project is to improve the productivity of GF-based
translation systems "by an order of magnitude". This means that the development time
of translation systems should be shortened to 10% of the original. The development time
for the Phrasebook was two working days per language on average. If this is the baseline
to be compared with at the end of the project (in 2013), then a new language should be
possible to add in a couple of hours. Some of this improvement can be possible to reach
by a better use of example-based grammar writing.

However, some parts of the grammar may be inherently difficult, due to idiomatic
structures. Another way to interpret the productivity improvement would then be in
terms of the concepts covered. If the first Phrasebook built in two days covers hundreds
of concepts, a realistic goal could be to cover thousands of concepts in the same time. To
this end, methods of automatic lexicon extraction are being developed, with ontologies,
terminologies, and statistical translation models as sources.

7.4 Usability

The size of the run-time PGF grammar is 500 kB. It runs smoothly on both web appli-
cations and mobile phones. For mobiles, a substantial optimization effort was needed,
but it was made on the level of GF and will therefore benefit all future applications.

The web application provides the input method of typing strings, which the mobile
doesn’t have. This will certainly become an issue when the Phrasebook is extended to
contain thousands of concepts. It will also become an issue how to navigate in the large
space of words to find exactly the phrase one wants to use. A hierarchical approach
similar to syntax editors [16] will probably be introduced as a useful complement to
string-based input.

The mobile application has some usability issues reported by users, which will have
to be addressed in future releases.

Controlled Language for Everyday Use: The MOLTO Phrasebook 135

8 Conclusion

We have explained a controlled language approach to a multilingual tourist phrasebook,
covering 15 languages. While intending to build a useful application for travellers, we
have also seen it as an experiment to extend the notion of controlled language and scale
it up in various respects:

– extending the notion of semantics from logic to “language games” (Section 2)
– porting a controlled language from one language to many (Section 3)
– coping with ambiguity, rather than banning it (Section 4)
– making it easier to implement controlled languages, in terms of both effort and skill

(Section 5)
– building applications for laymen rather than specialists, and making them run on

light devices (Section 6)

Our conclusion is that there is a lot of potential in controlled languages to become more
useful in everyday life, the multilinguality aspect being at least as interesting for laymen
as the traditional reasoning aspect is.

Acknowledgements. The MOLTO Phrasebook is a collaborative project. In addition to
the authors of this paper, it has involved Krasimir Angelov, Olga Caprotti, Thomas Hall-
gren, Inari Listenmaa, Jordi Saludes, Adam Slaski, and Shafqat Virk as programmers
and Richard Bubel, Rise Eilert, Karin Keijzer, Michał Pałka, Willard Rafnsson, and
Nick Smallbone as testers and informants. The research leading to these results has re-
ceived funding from the European Union’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement n:o FP7-ICT-247914.

References

1. The Boeing Company: Boeing Simplified English Checker. (2001),
http://www.boeing.com/assocproducts/sechecker/

2. Shiffman, R.N., Michel, G., Krauthammer, M., Fuchs, N.E., Kaljurand, K., Kuhn, T.: Writ-
ing Clinical Practice Guidelines in Controlled Natural Language. In: Fuchs, N.E. (ed.) CNL
2009. LNCS, vol. 5972, pp. 265–280. Springer, Heidelberg (2010)

3. Hart, G., Johnson, M., Dolbear, C.: Rabbit: Developing a Control Natural Language for Au-
thoring Ontologies. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.)
ESWC 2008. LNCS, vol. 5021, pp. 348–360. Springer, Heidelberg (2008)

4. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for Knowledge Represen-
tation. In: Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M., Polleres, A., Schaffert,
S. (eds.) Reasoning Web 2008. LNCS, vol. 5224, pp. 104–124. Springer, Heidelberg (2008)

5. Dean, M., Schreiber, G.: OWL Web Ontology Language Reference (2004),
http://www.w3.org/TR/owl-ref/

6. Gruzitis, N., Barzdins, G.: Towards a More Natural Multilingual Controlled Language In-
terface to OWL. In: 9th International Conference on Computational Semantics (IWCS),
pp. 335–339 (2011),
http://www.aclweb.org/anthology/W/W11/W11-0138.pdf

7. Wittgenstein, L.: Philosophical Investigations. Basil Blackwell, Oxford (1953)

http://www.boeing.com/assocproducts/sechecker/
http://www.w3.org/TR/owl-ref/
http://www.aclweb.org/anthology/W/W11/W11-0138.pdf

136 A. Ranta, R. Enache, and G. Détrez

8. Ganesalingam, M.: The Language of Mathematics. PhD thesis, Department of Computer Sci-
ence, University of Cambridge (2010), http://people.pwf.cam.ac.uk/mg262/

9. Angelov, K.: Incremental Parsing with Parallel Multiple Context-Free Grammars. In: Pro-
ceedings of EACL 2009, Athens (2009)

10. Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars. CSLI Pub-
lications, Stanford (2011) ISBN-10: 1-57586-626-9 (Paper), 1-57586-627-7 (Cloth)

11. Ranta, A.: The GF Resource Grammar Library. Linguistics in Language Technology 2 (2009),
http://elanguage.net/journals/index.php/lilt/
article/viewFile/214/158

12. Bringert, B., Angelov, K., Ranta, A.: Grammatical Framework Web Service. In: System
demo, Proceedings of EACL 2009, Athens (2009)

13. Angelov, K., Ranta, A.: Implementing Controlled Languages in GF. In: Fuchs, N.E. (ed.)
CNL 2009. LNCS, vol. 5972, pp. 82–101. Springer, Heidelberg (2010)

14. Power, R., Scott, D.: Multilingual authoring using feedback texts. In: COLING-ACL 1998,
Montreal, Canada (1998)

15. Angelov, K., Caprotti, O., Enache, R., Hallgren, T., Listenmaa, I., Ranta, A., Saludes, J.,
Slaski, A.: D10.2 molto web service, first version (D10.2) (June 2010)

16. Khegai, J., Nordström, B., Ranta, A.: Multilingual Syntax Editing in GF. In: Gelbukh, A.
(ed.) CICLing 2003. LNCS, vol. 2588, pp. 453–464. Springer, Heidelberg (2003),
http://www.cs.chalmers.se/~aarne/articles/mexico.ps.gz

http://people.pwf.cam.ac.uk/mg262/
http://elanguage.net/journals/index.php/lilt/article/viewFile/214/158
http://elanguage.net/journals/index.php/lilt/article/viewFile/214/158
http://www.cs.chalmers.se/~aarne/articles/mexico.ps.gz

Controlled Natural Language
in a Game for Legal Assistance

John J. Camilleri, Gordon J. Pace, and Michael Rosner

University of Malta

Abstract. This paper addresses the design of an automated legal assistant cap-
able of performing a logical analysis of legal documents and using natural lan-
guage as a medium of communication with a human client. We focus on the
interplay between natural language in which the legal document is expressed
and the formal logic used for reasoning about it — ideally approached using a
controlled natural language (CNL) together with an appropriately chosen logic
for analysis and reasoning. In translating from CNL to logic, information about
the CNL structure is lost. For example, the CNL might contain legal clause num-
bers, whilst the logic might not. This can lead to problems when for example the
reasoning system discovers an inconsistency in the contract and needs to explain
its whereabouts to the client. Below we discuss the issues affecting the choice of
logic, arguing in favour of keeping certain structural information during formal
analysis of legal documents to be able to refer to that structure when interacting
with the user.

We present a framework in which to experiment and seek solutions to these
issues. Having identified a sufficiently restricted domain of application we also
report on the development of a CNL to interact with a variant of the game Nomic
— a game based on the notion of contract specification and amendment — and
argue how this game provides an ideal platform to explore the use of structure
information in the domain of legal analysis.

1 Introduction

In practice, the notion of legal assistance is extremely broad, encompassing a range of
possible activities involving a legal expert, who offers the assistance, and a client who
receives it. These activities will vary according to the type of legal expert in question
(e.g. a barrister; a notary; a solicitor), the client (e.g. another lawyer; the victim of
a crime; a multi-national company), and the nature of the law in question (criminal;
civil; international). A barrister, for example, being a lawyer qualified to present cases
in court, must be familiar with court procedures and in a position to offer advice with
respect to those procedures. The kind of advice would be different for the victim of a
crime, than for the lawyer in charge of the office who is engaging him to work on a
case. In the first case, it might be important to warn the victim about tricky questions
that might be asked by the defense lawyer, whilst in the second, the cost of the case, its
duration, and its chances of success might be more to the point.

In this paper we present our long-range aim towards the creation of an artificial legal
assistant that is capable of performing a useful legalistic task on behalf of a human
client, and of being able to carry out that task using natural language as a medium of

M. Rosner and N.E. Fuchs (Eds.): CNL 2010, LNAI 7175, pp. 137–153, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

138 J.J. Camilleri, G.J. Pace, and M. Rosner

communication. We have had to make a whole series of strong assumptions in order
to develop a working model. These centre around (i) the choice of a suitable subarea
within which the notion of assistance can be developed, (ii) a formal model of legalistic
reasoning which will underpin the whole enterprise, and (iii), an appropriate setting in
which to investigate the practical issues by building a testable artifact. The major chal-
lenge lies in the interaction of the natural language descriptions and the formal reason-
ing about legal tests. While much work has been done in both fields, a legal assistant
needs to be positioned in between — on one hand processing natural language legal
texts and explaining the results of analysis in natural language, while on the other hand
performing formal analyses for issues such as contract inconsistencies and calculating
consequences of a course of action. In order to explain consequences with respect to
the original text, it is crucial to keep track of its structure.

In section 2 we briefly survey the natural language issues, concentrating on legal
contracts. Two particular aspects of legal assistance are developed in this section. One
concerns the notion of assistance itself; the other concerns the medium in which con-
tracts are expressed, and with respect to which assistance is offered. For the purpose
of putting an upper bound on the complexity of the assistance problem, we have de-
veloped a CNL called BanaL, discussed in section 3.3, capable of expressing certain
key contract-related concepts. Section 3 relates these issues to the controlled, interact-
ive setting in which we have chosen to carry out initial experiments. The control is
enforced in terms of a CNL that is used for communication, and the interactivity is con-
trolled by embedding the interaction within a simple rule-based internet-based game
called BanaNomic. This environment has been designed to raise the level of access to
a live but non-specialist audience. We believe that such settings not only lower the bar-
rier to participation in a general sense, but provide a good setting in which to carry
out much-needed evaluation activities. We then turn our focus to the challenge of deal-
ing with layout and structural information in section 4 — a little-studied phenomenon
which plays a crucial role in making written contracts understandable. We thus briefly
survey the work that has been carried out from a linguistic perspective on layout and
outline a way of dealing with this issue from a semantic point of view.

The aim of the paper is to highlight the challenges in formal reasoning about legal
texts through a CNL interface, and set out a framework in which to experiment with
and seek solutions to these issues, as stated in the conclusion appearing in section 5.

2 Artificial Legal Assistance

Clearly, in order to develop the area of automated legal assistance, we need to further
narrow our view and focus our attention upon an area of which offers a set of non-
trivial problems and use-cases for us to study in detail, and which is simple enough
for a set of computationally plausible methods to be brought to bear. In an earlier
paper we took a first step in this direction by focusing on assistance with respect to
contracts (Pace and Rosner [PR09]). The reasons for focusing on contracts are first
that contracts are less complex than the law in general, and second that they are are
legal documents agreed between parties which regulate the future behaviours of those

Controlled Natural Language in a Game for Legal Assistance 139

parties1. A key characteristic is that they make good candidates for formalisation: at-
tempts have been made at giving a formal analysis to all the italicised words in the
present paragraph, i.e.

– Legal documents are finitely expressed as texts in natural language. Computational
linguistics and natural language processing are devoted to the problem of develop-
ing computational machinery to handle just these kinds of text.

– Parties, whether simple or complex, animate or inanimate, be represented as logical
individuals, to which variables over certain domains can be bound. In this way we
have a kind of minimal requirement for further analysis. As individuals, we can
given them any properties we please. We can elaborate relationships between such
individuals, or between individuals and other kinds of entity that we are prepared to
talk about, such as goods and services. We can model intentions in terms of goals
that are “possessed” by such individuals – and hence we can involve individuals in
different kinds of intentional behaviour or action.

– Behaviours along with actions have long been an object of study in Artificial Intel-
ligence (cf. Pat Hayes [Hay71]) where typically, they have been conceptualised as
state-to-state functions, or as “events” à la Davidson in his much-cited essay ‘The
Logical Form of Action Sentences [Dav67].

2.1 Legal Assistance with Contracts

So, how can we elaborate legal assistance with respect to contracts? Daskalopulu and
Sergot [DS97] distinguish between two main kinds of activity associated with contracts:
contract formation and contract performance. During contract formation, the parties
specify what they want the contract to express, ensure that it is accurately expressed,
and finally arrive at an agreement of some kind with respect to a representation of the
contract, which is normally a document of some kind. Contract performance, on the
other hand, takes place after the contract is in place. Consequently we might envisage
two kinds of tool that respectively address these two aspects.

– Contract formation tools, which are designed to support the process of producing
a document that is correct both in the syntactic sense, with respect to form, and
in the semantic sense of being true to the intentions of the parties. Typically, we
can imagine an incremental approach in which the final contract emerges out of a
dialogue with the client involving a series of successive approximations to the final
contract.

– Contact performance tools, on the other hand, provide advice about the current state
of execution of the contract offering suitable reminders to the parties whenever
non-compliance is detected, possibly suggesting remedial action if this has been
explicitly foreseen in some part of the contract. The BanaNomic game described in
section 3.1 below is an example of a tool that falls into this category.

1 Contracts are defined at http://legal-dictionary.thefreedictionary.com/contract as “an agree-
ment with specific terms between two or more persons or entities in which there is a promise
to do something in return for a valuable benefit known as a consideration”.

140 J.J. Camilleri, G.J. Pace, and M. Rosner

Central to both kinds of tool is the ability to provide explanations to the client about
specific contract-related issues.

At the contract formation stage, it is fundamental that all parties to a contract under-
stand the terms included in a contract as well as the rights and responsibilities to which
they bind themselves. Thus the client might need different kinds of explanations e.g.
concerning

– terminology:, Given the complexity of legal terminology, a glossary capability
could provide for the explanation of technical terms - with highlighting of instances
of those terms in the emerging contract.

– understandability:. A contract is understandable if and only if each of its parts are
understandable. Therefore if the user does not understand the contract, there must
be at least one part that the user does not understand. Therefore a coarse strategy
for this kind of explanation would be to (i) identify the part or parts that that are not
understood and (ii) explain the content of the part. Of course the kind of explanation
would depend on the nature of the part (e.g. a clause; a section; a sentence; a phrase)
and the nature of the client’s lack of understanding (e.g. incomprehension versus
misunderstanding versus disagreement).

– consistency: i.e concerning the consistency with respect to possible actions that a
party might allow. A party might wish to know whether a contract permits, obliges
or forbids a certain action from being executed or a state of affairs from coming
into existence. The party might claim that the contract is impossible to satisfy, in
which case the expert should demonstrate circumstances that satisfy it (or rephrase
the contract if the client turns out to be right!).

At the contract performance stage, the two main activities are monitoring and commu-
nication.

– Monitoring involves keeping track of all obligations and prohibitions that the con-
tract imposes on the parties. The heart of this activity revolves around the detection
or measurement of concrete observables, which can be formulated in terms of either
actions or states.

In the action-based formulation, obligations and prohibitions are phrases in
terms of actions that must be carried out - like paying a certain amount or delivering
a certain document. In the state-based formulation, it is the presence or absence of
properties of states that must be maintained, e.g. the a party shall maintain a pos-
itive bank balance. The choice between actions and states depends on the domain
being dealt with. In the second case, for example, we are probably more interested
in the state of having a negative balance than in the exact action which causes the
account to become negative.

In addition to keeping track, the monitoring process has to take special actions
when things go wrong. Many contracts specify contrary-to-duty obligations which
are imposed when a party fails to carry out an obligation. In such cases we would
expect the monitoring process to keep track not only of the failed obligations, but of
the newly imposed ones (this issue is discussed further in Pace and Rosner [PR09]).
In the example cited, a negative balance could trigger an obligation to pay interest
at an exhorbitant rate.

Controlled Natural Language in a Game for Legal Assistance 141

– Communication is necessary in order to inform the client about the dynamically
changing state of current obligations. The bank balance goes negative, so the client
must be informed that a new obligation to pay interest has arisen. Several issues
surround such an act of communication, not the least of which is the timing. In
the case cited, the timing would coincide with the moment at which the change of
state took place – in other words after the action that broke the existing obligation.
In other cases it might be possible or even necessary to issue a warning before
the action takes place in order to avoid the imposition of penalties. Another issue
concerns explanation. Suppose the client wants a justification or simply further
elaboration of the newly imposed obligation. Then the tool would need to provide
an explanation, referring back to relevant part of the contract.

The above remarks suggest that for the two kinds of assistance we have considered,
contract formation and contract monitoring, explanation enters into the picture. One
of the main claims of this paper is that successful explanation requires knowledge of
structure and of the way in which the structure relates to the underlying semantics that
defines the legal concepts involved. These considerations are further elaborated in the
next section.

3 CNLs, Contracts and Games

The use of CNLs to enable processing of and formal reasoning about statements in a
particular domain is an established approach [Sch08, BSBS09]. By constraining the
language, together with the structural complexity of the grammar, one obtains a means
to make statements about the underlying domain, without moving too far off from a nat-
ural language description, so that it remains understandable to native language speakers.
At the same time it is easy to translate into an suitable logic.

In identifying an appropriate domain-specific CNL, one faces two primary chal-
lenges — that of identifying the basic underlying concepts in the domain, and secondly
that of selecting an appropriate and sufficiently rich grammar through which to combine
these basic concepts. Going further, and enabling formal reasoning and manipulation of
statements made in the CNL is further hindered by the fact that typically, relating the
basic concepts together requires much tedious and error-prone work. Some work has
been carried out on CNLs for contracts [PR09]. The primary concepts of interest here
are deontic ones, namely obligations, permissions and prohibitions on actions or states.
In practice, using a CNL for contracts requires not only semantics of the language op-
erators, but also the underlying implicit concepts that the contract mentions.

Once the CNL has been defined, one also needs to define a setting in which the
effectiveness of a CNL for contracts can be investigated empirically. In this paper we
investigate the use of a CNL to describe game rules. In particular, to enable interesting
cases, and the need for consistency checking of the rules, we apply the technique to
implement a variant of the game of Nomic — a game in which changing the rules is
part of the game itself.

142 J.J. Camilleri, G.J. Pace, and M. Rosner

3.1 Nomic and BanaNomic

Nomic is a game of self-amendment [Sub90] — starting with an initial rule set, each
player takes their turn changing the game’s rules through a system of rule proposals
and player voting. What makes Nomic so particular is that everything is theoretically
up for amendment during the game, including the voting system itself and what players
need to do to win. Despite the popularity of the game, only one Nomic variant could be
found which uses automated rule processing. The game is encoded and played directly
in Perl [PB05], and circumvents the contract specification and processing by identifying
the contract with the Perl program governing the voting process — what the program
accepts (or rejects) is considered to be the semantics of the program. Encoding the
full game of Nomic with natural language contracts is particularly challenging, since it
combines challenges in natural language analysis and formal reasoning about contracts.
In this section, we show the challenges in combining formal reasoning with controlled
natural language reasoning in the game, without the use of (i) layout information; and
(ii) macro definitions. We then argue why we believe that the use of these will enhance
the game and its interface.

The major challenges in Nomic playing using natural language contracts are twofold:
(i) formulating a language in which the contract clauses are expressed — rich enough to
be able to reason about notions such as permission and obligation; and (ii) the contracts
frequently refer to statements about the real world which require a strong semantic
framework (‘Players wearing glasses cannot propose amendments to clauses labelled
by a prime number’). The former problem we have addressed by developing a CNL
called BanaL, which we discuss more concretely in the next section, and the latter was
circumvented by reducing the domain of the game to a simpler setting.

BanaNomic is a more concrete version of Nomic, in which players represent mon-
keys living in a tree, fighting to pick bananas and defend their stash. The constitution
corresponds to the rules of the jungle — and can refer to the state of affairs (e.g. how
many bananas a player owns) and actions possible in this limited setting (e.g. climbing
up the tree). The rules cannot be violated, but the monkeys are allowed to add and re-
move rules at will. During each turn, the players may carry out actions and modify the
constitution. The game is governed by banana-time, thus enabling constitution clauses
to refer to time.

3.2 A Deontic Contract Logic and Language for BanaNomic

Typically, most logics allow reasoning about a state of affairs — studying the con-
sequences of what predicates hold or otherwise in a particular situation. In computer
science, one finds various extensions of this notion to deal with the need for interac-
tion with the actual state of the system. For instance, in runtime verification [HR01],
one typically identifies properties using an appropriate logic, together with actions to
be triggered upon violation of these properties. Reasoning about these extended sys-
tems presents an extended challenge due to the feedback between the properties and
actions applied to the system behaviour. Similarly, legal reasoning deals with con-
sequences of violations with respect to the state and actions of an entity, thus requiring
this additional layer of cognition. In contrast with runtime monitoring, however, most

Controlled Natural Language in a Game for Legal Assistance 143

of the consequences of violations are new (or modified) legal statements. For instance,
the consequence of violating the obligation to pay one’s subscription leads to a permis-
sion on the service provider to cancel the service and a further obligation to pay the
due amount with additional interest. For millennia, effective reasoning about such con-
tracts and legal texts has proved to be a major challenge for philosophers; more recently
computer scientists have also become involved with the issues.

Moral and normative notions such as obligation, permission and intention, have been
studied as far back as the time of Aristotle. The first formal analysis can be attributed
von Wright [Wri51] in 1951 (although some authors identify Mally’s work in 1926 to
be a precursor of this [Mal26]). This family of logics, called deontic logics, allow for
reasoning at least about the notions of permission, obligation and prohibition. However,
it turns out that even restricting the logic to these notions exposes various challenges
and choices [McN06]. One is the inclusion of constructs to deal with contract viola-
tion, such as the concepts of contrary-to-duty obligations (CTD) and contrary-to-duty
prohibitions (CTP). CTDs state the consequences of not respecting an obligation while
CTPs similarly deal with prohibitions that might be violated. In both cases, one specifies
the resulting clauses which are to be fulfilled as reparations in case of violation.

Two main approaches taken in the literature turn on whether the deontic notions are
attached to actions or to states. Is one to be prohibited from moving the opponent’s
pieces (action-based) or is one to be prohibited from having more than 16 pieces on the
board at the same time (state-based)? Although both approaches and their combination
have been shown to be useful in practice for different domains, in our game setting, we
adopt an action-based approach to avoid having to talk about causality of who brought
about which parts of the state, and is thus responsible for the consequences.

The contract grammar used for BanaNomic is based on the deontic logic used in
[PR09]. The deontic logic is based on three fundamental deontic modal operators:
obligation O, permission P and prohibition F, and is action-based, in that all the de-
ontic operators act on action expressions. Furthermore, all actions are tagged by their
subject and object (if relevant) e.g. the action throwBanana takes both the name of
the monkey throwing the banana, and the monkey at whom it is being thrown —
throwBanana(Michael,Gordon). These basic actions can be combined together using
sequential composition (;) and choice (+) to obtain action expressions such as:

(throwBanana(Michael,Gordon); eatBanana(Gordon)) + eatBanana(Michael)
To enable quantification over actors, rather than introducing explicit quantifiers, we

borrow the notation used for polymorphic type place-holders from type systems, and en-
able quantification by using a name placeholder * e.g.: F(throwBanana(∗, John)) would
be the statement saying that everyone is forbidden from throwing a banana at John.
Ideally, in such a logic we would allow for different variable names, allowing us to
unify different actors in a statement, but for the sake of a more direct mapping to and
from the CNL, we assume that the instances of * all refer to different variables.

The contract is modelled as a function from the natural numbers to clauses, and is
interpreted as the conjunction of all clauses. The clauses can be (i) deontic statements
over action expressions; (ii) temporal operators — �[b, e]C says that from time b to
time e clause C will always be enforced and ♦[b, e]C says that at some time between
time b and e, clause C will hold; (iii) choice operators — C1 + C2 says that one of C1
and C2 must hold and C1 �� q ��C2 checks whether query q holds (queries are boolean

144 J.J. Camilleri, G.J. Pace, and M. Rosner

Table 1. Example of the rules enacted during a four-turn sequence of BanaNomic, showing rule
clauses in formal notation along with their natural language linearisations. Other turn actions are
omitted.

Player Rule enacted

1. George F(pickBanana(Paul))
Paul is forbidden to pick a banana

2. Paul ♦ [0, 9]O(throwBanana(φ,George))
At some point before time 9 every player is obliged to throw a banana at George

3. George F(abolish(Paul, ∗) � P(enact(George, ∗, ∗)) �Ok
If George is permitted to enact a rule then Paul is forbidden to abolish any rule

4. Paul � [0,∞] F(enact(George, ∗, ∗))
At all times George is forbidden to enact a rule

expressions over the state of the game — how many bananas each player has, the height
in the tree where each player can be found, etc) and enacts C1 or C2 accordingly; (iv)
a consequence operator C1 �DE �C2 which checks for the existence of deontic clause
DE and enacts clause C1 or C2 accordingly; and (v) the conjunction of two clauses
C1 ∧ C2. The syntax of the logic is as follows:

ActionExp ::= Action | ActionExp; ActionExp | ActionExp + ActionExp

DeonticExp ::= O(ActionExp) | F(ActionExp) | P(ActionExp)

Clause ::= Ok | Fail | DeonticExp | Clause ∧ Clause | Clause + Clause

| Clause ��Query ��Clause | Clause �DeonticExp �Clause

| � [Time,Time] Clause | ♦ [Time,Time] Clause

Two of the basic actions which can be used in action expressions are enact and abolish,
which refer to a particular player enacting or abolishing an existing clause. When used
in conjunction with the deontic operators, one can express clauses about power e.g.
F(enact(John, ∗, ∗)) says that John is not allowed to enact any clause anywhere in the
contract. Using the logic defined above, a few example contracts and their natural lan-
guage readings are given in table 1.

The clauses are given an operational semantics, defining a relation C
a−→σ C′ which

says that when in game state is σ and upon action a, contract C evolves to C′ advancing

forward in time. For example, � [0, 7]O(a)
a−→σ � [0, 6]O(a). The main advantage of

adopting this approach is the also the reason it is frequently adopted for monitoring of
systems: we can progressively consume actions coming from the players, updating the
active game contract as required. The semantics of a number of the operators are given
below to illustrate how the rules are defined.

Basic clauses: The base clauses Ok and Fail denote the trivial cases of the clause which
can never be violated and the clause which will always lead to a violation. The rules
for these clauses are rather straightforward:

Controlled Natural Language in a Game for Legal Assistance 145

Ok
a−→σ Ok Fail

a−→σ Fail

Obligation: If we are obliged to match an action expression e, then upon receiving
action a, we have three possible situations: (i) a matches the expression e, in which
case the obligation can be discharged; (ii) after consuming a, one is still obliged
to match action expression e′ (for example receiving a when obliged to perform
a; b + a; c + d; e will result in an obligation to perform b + c); and (iii) a cannot
match action expression e, resulting in a violation:

O(e)
a−→σ Ok

e
a−→ �

O(e)
a−→σ O(e′)

e
a−→ e′

O(a)
a−→σ Fail

e
a−→ ×

Conjunction: For the case of clause conjunction, we have special cases for the differ-
ent cases when either conjunct reduces to Ok or Fail:

C1
a−→σ Ok C2

a−→σ C′2
C1 ∧ C2

a−→σ C′2

C1
a−→σ Fail

C1 ∧ C2
a−→σ Fail

C1
a−→σ C′1 C2

a−→σ Ok

C1 ∧ C2
a−→σ C′1

C1
a−→σ C′1 C2

a−→σ C′2
C1 ∧ C2

a−→σ C′1 ∧ C′2
C′1, C′2 � {Ok, Fail}

Queries: The rules for queries use the game state σ to choose which branch to follow:

C1 � q �C2
a−→σ C1

σ(q)
C1 � q �C2

b−→σ C2

¬σ(q)

The semantics of a contract made up of indexed clauses is then simply the lifting of
these semantics over the clause locations.

3.3 BanaL, a CNL for BanaNomic User Input

We have developed BanaL — a CNL for BanaNomic, designed as an application-
specific method of natural language representation based on the syntax of the logic.
This has the effect of making the conversion from contract logic to natural language
and back (linearisation and analysis, respectively) very simple and deterministic. The
Grammatical Framework (GF) [Ran04] was adopted for the guided-input methods it
facilitates (see below), and its support for sophisticated forms of language generation
— thus future-proofing the design so that subsequent versions of BanaL could easily be
extended to include much more intelligent natural language realisation choices.

GF is a specialised functional language for defining grammars, having separate ab-
stract/concrete syntax rules, a strong type system, and inherent support for multilingual-
ity. GF grammars are declarative in nature, with a primary focus on the linearisation of
syntax trees. By writing an abstract GF grammar and defining how it should be ex-
pressed in one or more natural languages (concrete grammars), GF is able to derive
both a generator and a parser for each of those languages [Ran04].

146 J.J. Camilleri, G.J. Pace, and M. Rosner

Given the declarative nature of GF grammars, the abstract syntax of BanaNomic
could very easily be implemented on the basis of its formal logic. For example, the
abstract GF equivalent for the definition of the Clause category would be as follows:
cat

DeonticExp ; Time ; Clause ;

fun

C_Deontic : DeonticExp -> Clause ;

C_Always : Time -> Time -> Clause -> Clause ;

C_Conditional : DeonticExp -> Clause -> Clause -> Clause ;

...

For the design of the concrete grammar, each of the functions from the abstract syn-
tax is given a template-like linearisation. While suitable for many cases, certain con-
structs required a more subtle approach in order to produce phrases which still sound
natural. Nested phrases were particularly problematic to express unambiguously (‘Paul
is allowed to pick a banana and climb the tree or climb down the tree’), and the use of
pronouns was avoided altogether.

A major part of GF is its partial evaluation algorithm (or incremental parser), which
gives rise to interesting guided-input possibilities. By presenting the user with a list
of possible words which may come next in a partial sentence, they are able to con-
struct grammatical sentences in an auto-complete fashion. This is highly useful as it
ensures that only syntactically-correct phrases are entered first-time round, and will
avoid user frustration of trying to construct parseable sentences in free-text. The guided
input methods developed for BanaNomic are based on the drop-down suggestions (fig-
ure 1a) and the “fridge magnets” (figure 1b) — developed by the GF team. These input
methods are of particular interest to the area of CNLs, as they help avoid the problem
of users having to know what is grammatical in a particular CNL.

(a) Drop-down suggestions (b) Fridge magnets

Fig. 1. Guided input methods used in BanaNomic

3.4 Discussion

As should be evident from this section, the combination of CNL and formal reasoning
in this setting is crucial, yet extremely challenging. From the implementation of the
game, it is evident that the major issue is one of giving feedback and explanations to the
users. While parsing of the CNL input and executing the formal semantics of the logic
can be done using standard techniques, explaining the consequences of a rule, and how
the rules change through the advancement of time is particularly challenging due to the
flat nature of the contract language and logic. Allowing the CNL rules to be tagged
with layout information is necessary to allow players to deal with longer, and thus more
intricate, rules. However, explanations must then be adapted to maintain and refer to this
structure as required. Another issue which hampered strategies in the game was the low-
level nature of the logic constructs. Advanced players would benefit from the ability to

Controlled Natural Language in a Game for Legal Assistance 147

define macros to be able to build rules of higher complexity, without a proportionate
increase in their length. As in the case of layout information, it is however crucial that
the use of these macros in the rules is to be appropriately handled in user explanations.
It is in this manner that we believe that the use of the techniques proposed in this paper
will enable more complex strategies to be more tractable for human players.

4 Explanation, Structure and Layout

In the development of Nomic, we kept a simple contract layout, encoded as an enumer-
ated list of clauses. Cross referencing was limited to references to locations of clauses,
and due to the nature of the game, the clauses themselves were typically kept simple
by the players. However, in real-world contracts, layout and cross-references play a
much more important role. Also, certain contract structures recur multiple times, and
would ideally be defined as syntactic sugar above the basic logic. Both these layers
of non-functional information do not change the behaviour of the contract — whether
a conjunction is enumerated or not, and when syntactic sugar is unrolled should not
change the semantics of the contract. However, it changes the way natural language
would be generated from the clauses in order to interact with the user. In this section
we look at the challenges this poses, both from a CNL and logic perspective.

4.1 Layout and Presentation

An important aspect of contracts already alluded to is that they have a characteristic
structure and layout which explanations must exploit in order to be successful. The
dimension of layout arises because written text appears on a page and must therefore
have visual characteristics which include not only structuring devices such as paragraph
division and indentation but (e.g. in presentations) other structures such as bullet points.
Of particular interest are ordered lists, whose internal structure and outward appearance
are close the clause and section structure which characterises the presentation of many
legal documents.

The question is where to look for further details of that structure. Legal textbooks
provide a high-level overview. Under English Law, for example, we know that every
contract includes four essential components: an offer, an acceptance, a consideration
(the requirement of reciprocal obligations on the parties to a contract) and an intention
to create legal relations between the parties. The lower level structure bottoms out in
terms of sections and clauses, which, as we have said, closely resemble ordered lists.

Contracts display what might be called a macro structure and a micro structure. The
macro structure deals with the main sections etc. and depends on the kind of contract
under consideration. Vella [Vel10] for instance, studied several hundred property sale
contracts under Maltese law and found that they always comprised a number of sections
including

– a description of the parties;
– a description of the property;
– a description of the financial arrangements;
– the signatures of the parties;
– a date.

148 J.J. Camilleri, G.J. Pace, and M. Rosner

Apart from the fact that each of these sections played a distinct legal role (and can be
related to the essential high-level components just mentioned), they were each charac-
terised by the use of particular phrases, and also certain layout conventions including
the use of certain keywords, phrases, fonts and capitalisation.

Clearly, different kinds of contract will have different macro structures, and these
to a large extent could be successfully represented in the form of document templates,
style sheets, etc. These can be very concrete (e.g. word template files) or else more
abstract structures which have the advantage of being platform independent. There is a
movement towards the formal representation of legal documents using XML2.

The micro structure, on the other hand, concerns a level of presentation correspond-
ing roughly to a collection of legal clauses. This transcends sentence structure, since a
single clause be realised by two simple sentences in preference one complex sentence.
It includes the order in which sentence forms occur, since this can reflect the order in
which actions might have to be carried out. For example, under Maltese Law, you are
obliged to pay all outstanding fines before applying for a road licence. It has to be in
that specific order else the application will fail.

The micro structure also addresses punctuation. One of the problems with punctu-
ation is that nobody can agree on the range of phenomena it includes. Is it just the use
of certain punctuation symbols, or does it also include, say, list markers, indentation,
text styles, fonts, etc? This is not just a theoretical discussion, since the way we answer
this question will determine whether it can properly be referred to in explanations.

Opinions differ as to the importance of punctuation marks in legal texts, where tra-
ditionally, they are used sparsely. Nunberg [Nun90] argued strongly against a “tran-
scriptional” view (Crystal and Davy [CD69]) according to which punctuation has an
essentially secondary role. Instead, he claims that punctuation properly belongs to a
distinct level of linguistic structure that is peculiar to the written language - text struc-
ture - that no less important that traditional sentence structure and exists alongside it.
Nunberg introduces what we feel is an important distinction between this abstract text
structure and the concrete graphical devices used to express it.

A practical application based on Nunberg’s ideas is offered by Power-et-al [PSBA03],
which describes a system, ICONOCLAST, for the generation of text structures of the
kind mentioned from a meaning representation that includes not just propositional in-
formation, but the rhetorical function of that information.

The input to ICONOCLAST takes the form of a tree whose leaves are proposi-
tions, and whose nodes indicate the rhetorical relation between them. The latter is based
on Mann and Thompson’s Rhetorical Structure Theory (RST) [Man88], an attempt to
provide a formal and computational basis for the description of rhetorical function. A
simple example of such a structure is

concession(ban(fda,elixir),approve(fda,exlixirplus))

where concession is the rhetorical relation holding between the propositions
ban(fda,elixir) (the FDA3 banned the drug Elixir) and approve(fda,

elixirplus) (the FDA approved the drug Elixirplus).

2 Legal XHTML - see http://www.hypergrove.com/legalxhtml.org
3 Federal Drug Association

Controlled Natural Language in a Game for Legal Assistance 149

The process of transforming such a rhetorical-semantic message into a document in-
volves not only realising the basic propositions, but solving a series of realisation con-
straints holding between nodes of rhetorical tree and text-structures. Several solutions
are possible and are in fact generated by ICONOCLAST:

– The FDA approves ElixirPlus, although it bans Elixir.
– Although the FDA bans Elixir, it approves ElixirPlus.
– The FDA bans Elixir, but it approves ElixirPlus.
– The FDA bans Elixir; but it approves ElixirPlus.
– The FDA bans Elixir. But it approves ElixirPlus.

The main claim underlying Power et. al.’s work is that to handle the phenomena present
in the above sentences it is necessary to distinguish a third level of structure – rhetorical
structure. This level is over and above the abstract and concrete levels of text structure
postulated by Nunberg.

Finally, no discussion of the issue of layout could be complete without mention-
ing the ambitious research agenda of Bateman and colleagues [BKKR01]. Bateman’s
work addresses “the desirability of combining text, layout, graphics, diagrams, ‘punc-
tuation’ and typesetting” for the most effective presentation of information. The scope
is thus wider than Power-et. al.’s, but the general methodology is similar insofar as in
both cases, the message to be conveyed is expressed using a rhetorical structure tree.
The main difference is that whilst Power is concerned with transforming this into a
text-structure, Bateman’s concerns a wider-ranging layout structure whose nodes cor-
respond to blocks that will be realised as regions on the printed page. Blocks may be
realised by text-structures, but may also be expressed with different kinds of graphics
such as images. Furthermore, blocks can participate in graphic relations, such as prox-
imity, similarity of style, etc.

Power and Bateman have effectively both added a semantic basis in the form of
the underlying layer of RST. It is the RST structure which defines what any potential
realisation is supposed to express. The two approaches differ in the range of realisation
phenomena considered. Power only considers text structures, whilst Bateman includes
in addition other kinds of layout device.

4.2 Syntactic Sugar and Semantics

Well-formed contracts abiding by the syntactic rules of the domain may have multiple
semantic interpretations depending on their application. For instance, to print out a con-
tract, layout information plays a crucial role while the distinction between an obligation
and a prohibition is limited to a superficial change in the symbol used. On the other
hand, to monitor behaviour with respect to a contract, we require a semantic interpret-
ation in which the distinction between obligation and prohibition is a major one, while
layout information can be discarded without any loss of information. This approach
of having multiple semantic interpretations of the same syntax is a well-known one in
other domains, such as embedded languages [Hud96]. For instance, in [CSS03], circuit
descriptions have multiple interpretations, depending on how they are intended to be
used. To print out a circuit, layout information is sufficient, while for the simulation
or model checking of circuits, an interpretation which discards layout information, but

150 J.J. Camilleri, G.J. Pace, and M. Rosner

uses the semantics of logic gates and latches is required. For other analysis, such as sig-
nal delay propagation (due to the gates and wire length) both types of information must
be retained. The solution usually adopted, is to give independent semantics for each of
these applications.

In the case of contracts, the main challenge comes with the need for explanation.
Clearly, the original contract one starts off with, fully annotated with layout informa-
tion, may use the annotations for explanations. However, as already discussed, contract
performance requires the keeping track of obligations, prohibitions and permissions
which might appear over time as the contract evolves. For instance, consider a clause
which states that after three consecutive occurrences of action bad-password, the user
is obliged to answer a captcha4. Explaining the state of the contract after two consec-
utive bad passwords, one would have to say that if one more wrong password is given,
the user will have the obligation to answer a captcha. If this clause occurs within an
extensive contract, giving this explanation, without giving a reference to the location
of the clause, or presenting the ‘evolved’ clause as part of the contract as a whole will
not be of much help to the person reading the explanation. Similarly, consider a conflict
analysis procedure, which given a contract returns whether the contract may lead to a
conflicting state e.g. having an action obliged and prohibited at the same time. Such
potential conflicts are typically explained by giving a trace of actions which leads to
the problem, and the conflict itself. However, in the case of extensive contracts, simply
telling the user ‘After the actions 〈a, b, c〉, action d is both obliged and prohibited’, is
not of much use, since which parts of the contract give rise to these clauses may not be
obvious. A better explanation would include information as to which parts of the con-
tract led these clauses, or better still, allow the visualisation of how the contract evolves
as the trace is traversed, finally highlighting the parts which have led to a conflict.

A related issue with human readability of contracts is that of syntactic sugar. Al-
though the core logic one reasons in may just have a handful of constructs, one would
typically have various compound constructs used in the contract, and which are defined
in terms of the underlying basic ones. For instance, in a contract logic which allows for
sequential composition, one may define the repetition of a contract n times by unrolling
it using sequential composition. As in the case of layout information, one would thus
lose all such high-level constructs at the reasoning level thus hampering the explanation
given back to the user when the need arises.

Both layout information and macro-definitions typically have no consequences on
whether a trace leads to a violation of a contract, or whether a contract contains a con-
flict. Due to this, semantics of violation and conflict-analysis typically apply Occam’s
razor, ignoring all such information. The dilemma is that, although the layout inform-
ation is irrelevant to answer questions such as ‘Does a conflict exist?’, it is relevant
in explaining the result. One would like to be able to ensure that (i) the semantics ex-
tended to handle layout and macro-definition context information does not change the
trace (and hence conflict) interpretation of a contract; and (ii) the logic retains as much
of this information as possible, in order to aid the explanation process.

4 A captcha is a transformed visual representation of text, intended to identify non-human ac-
cess to a resource. They are frequently used to avoid posting of spam and repeated password
attempts from automated scripts.

Controlled Natural Language in a Game for Legal Assistance 151

Adding layout information within the context-free structure of the logic involves
having an additional constructor tagt(C), which tags contract C with tag t ∈ Tag.

Clause ::= tagTag(Clause) | Ok | Fail | . . .
Thus, as a simple example, we can add information about enumerated clauses using
tags in a formula of the form: taglst(taglst:1(O(a)) ∧ taglst:2(F(b))). Tags can be given a
semantics to enable the transformation of such a clause into an enumerated list. Note
that, even if one applies some analysis which commutes the conjunction operator to
transform the clause into taglst(taglst:2(F(b)) ∧ taglst:1(O(a))), the originally intended
description can still be achieved.

Although these tags may have a layout semantics of their own, the addition of these
tags will not change the normative semantics of the contract — which can be handled
by the following rule:

C
a−→σ C′

tagt(C)
a−→σ tagt(C)

For instance, upon receiving an action c, one can show that the enumerated contract we
saw earlier, behaves as follows:

taglst(taglst:1(O(a)) ∧ taglst:2(F(b)))
c−→ taglst(taglst:1(Fail) ∧ taglst:2(Ok))

With the tags included one can still provide information regarding which of the sub-
clauses failed due to action c. On its own, however, this rule is not sufficient to handle
tags as one would expect. The problem is that by keeping the tag, other rules may be
inhibited from firing. For example, the expression we obtain after action c cannot be
reduced to taglst(Fail), as one would it expect it to. The only solution is such cases is to
discard a tag within any syntactic context α by performing an internal action τ:

α(tagt(C))
τ−→σ α(C)

deadlockσ(α(C))

The side-condition deadlock(α(C)) is used delay untagging until no other external ac-
tions are possible5.

In this manner, we can extend the syntax and semantics of a logic in such a manner
to retain as much information as possible to be used for explanations. By refining and
generalising the approach proposed here, one can retain much information, without the
need for redefining the semantics from scratch. If the semantics of contracts remains
unchanged under the addition of tags, one can perform all analysis in the untagged lo-
gic, and use the tagged inference rules only once a scenario or counter-example is dis-
covered, which is to be explained in a controlled natural language. This approach can be
ideal in a setting where the transitions system semantics of the logic with no annotations
is automatically extended to maintain the necessary information for explanations.

A related problem is that of the use of syntactic sugar or macros which is also ideally
kept for explanations. For instance, one can define a macro soon(C) which allows con-

tract C to be satisfied either now or in 5 time units: soon(C)
d f
= C + �[5, 5]C. As with

tags, one can add new syntax to the logic and allow for keeping the macros intact. How-
ever, more caution needs to be put in to avoid unsound inferences from being made.

5 The predicate deadlockσ(C) can be defined as ¬∃a,C′ ·C a−→σ C′.

152 J.J. Camilleri, G.J. Pace, and M. Rosner

5 Conclusions

One of the primary challenges we have found when supporting reasoning through the
use of a CNL is the domain to which the language is applied — controlling the structure
of the sub-language ensures that a mapping to and from the operators of the formal
underlying representation is possible. On the other hand, if the domain of the basic
terms is not carefully controlled, the reasoning one can perform is strictly limited. In
this paper we have investigated the use of a controlled domain of application for BanaL,
a CNL to specify contract clauses as input to the game BanaNomic, in which the basic
actions and state queries are limited. The CNL has been used as a front end input to a
web-based version of BanaNomic, with players taking turns to change the constitution
and take actions — as regulated by the current contract.

The tractability of legal documents from a human perspective much depends on the
way in which the legal clauses are organised, and the use of definitions to avoid lengthy
identical descriptions in different contexts. Collapsing even a fraction of a legal agree-
ment into one long paragraph of text, transforms a document from one which can be
followed by a human expert to one which is unintelligible. However, since this struc-
ture is void of legal meaning, formal reasoning typically discards this information. The
main challenge is to maintain this structure in such a manner as to enable feedback and
explanation of the outcome of formal reasoning back in a natural language setting. We
are currently looking into how these notions can be incorporated into BanaNomic so
as to enrich the game, by enabling more complex rule sets which are still tractable to
human players.

The conclusion here is that assistance comes in two flavours, so to speak. Assistance
with the strictly logical properties requires an underlying semantic model. However,
when assistance takes the form of explanation it is invaluable to be able to refer to
identifiable parts of the document structure. Here layout is crucial.

References

[BKKR01] Bateman, J., Kleinz, J., Kamps, T., Reichenberger, K.: Towards Constructive Text,
Diagram, and Layout Generation for Information Presentation. Computational Lin-
guistics 27, 409–449 (2001)

[BSBS09] Bao, J., Smart, P.R., Braines, D., Shadbolt, N.R.: A Controlled Natural Language
Interface for Semantic Media Wiki Using the Rabbit Language. In: CNL (2009)

[CD69] Crystal, D., Davy, D.: Investigating English style. Studies in the History and Theory
of Linguistics. Indiana University Press (1969)

[CSS03] Claessen, K., Sheeran, M., Singh, S.: Functional Hardware Description in Lava.
In: The Fun of Programming, Cornerstones of Computing, pp. 151–176. Palgrave
(2003)

[Dav67] Davidson, D.: The Logical Form of Action Sentences. In: Rescher, N. (ed.) The
Logic of Decision and Action. University of Pittsburgh Press (1967)

[DS97] Daskalopulu, A., Sergot, M.: The Representation of Legal Contracts. AI and Soci-
ety 11, 6–17 (1997)

[Hay71] Hayes, P.J.: A Logic of Actions. In: Meltzer, B., Michie, D. (eds.) Machine Intelli-
gence 6, pp. 495–520. Edinburgh University Press (1971)

Controlled Natural Language in a Game for Legal Assistance 153

[HR01] Havelund, K., Rosu, G.: Monitoring Programs Using Rewriting. In: Proceedings of
the 16th IEEE International Conference on Automated Software Engineering, ASE
2001, pp. 135–143. IEEE Computer Society, Washington, DC (2001)

[Hud96] Hudak, P.: Building domain-specific embedded languages. ACM Computing Sur-
veys 28, 196 (1996)

[Mal26] Mally, E.: Grundgesetze des Sollens. Elemente fer Logik des Willens. Leuschner &
Lubensky, Graz (1926)

[Man88] Mann, W.C., Thompson, S.A.: Rhetorical Structure Theory: Toward a functional the-
ory of text organization. Text 8(3), 243–281 (1988)

[McN06] McNamara, P.: Deontic Logic. In: Gabbay, D.M., Woods, J. (eds.) Handbook of the
History of Logic, vol. 7, pp. 197–289. North-Holland Publishing (2006)

[Nun90] Nunberg, G.: The Linguistics of Punctuation (Center for the Study of Language and
Information - Lecture Notes) (August 1990)

[PB05] Phair, M.E., Bliss, A.: PerlNomic: Rule Making and Enforcement in Digital Shared
Spaces. In: Online Deliberation 2005 / DIAC 2005, Stanford, CA, USA (2005)

[PR09] Pace, G.J., Rosner, M.: A Controlled Language for the Specification of Contracts. In:
Fuchs, N.E. (ed.) CNL 2009. LNCS, vol. 5972, pp. 226–245. Springer, Heidelberg
(2010) ISBN: 978-3-642-14417-2

[PSBA03] Power, R., Scott, D., Bouayad-Agha, N.: Document Structure. Computational Lin-
guistics 29, 211–260 (2003)

[Ran04] Ranta, A.: Grammatical Framework: A Type-Theoretical Grammar Formalism.
Journal of Functional Programming 14(02), 145–189 (2004)

[Sch08] Schwitter, R.: A Controlled Natural Language for the Semantic Web. Journal of In-
telligent Systems 17(1-3), 125–141 (2008)

[Sub90] Suber, P.: Nomic: A Game of Self-Amendment. In: The Paradox of Self-
Amendment. Peter Lang Publishing (1990)

[Vel10] Vella, G.: Automatic Summarisation of Legal Documents. Master’s thesis, Univ-
erisity of Malta, Dept Intelligent Computer Systems, University of Malta, Msida
MSD2080, Malta (2010)

[Wri51] Von Wright, G.H.: Deontic Logic. Mind 60, 1–15 (1951)

Working with Events and States in PENG Light

Rolf Schwitter

Centre for Language Technology
Macquarie University

Sydney 2109 NSW, Australia
Rolf.Schwitter@mq.edu.au

Abstract. In this paper I discuss how the controlled natural language
PENG Light can be modified so that it can serve as a high-level interface
language to the Event Calculus. The Event Calculus is a narrative-based
formal language for reasoning about events, their effects and timepoints,
and can be used for various reasoning tasks where a representation of
time is important. Using a scenario from a dynamic domain, I show what
kind of modifications are necessary on the level of the controlled natural
language to specify the background knowledge that is required to deal
with direct and indirect effects of events and with continuous change in
that domain. I discuss how the output of the controlled natural language
processor of PENG Light that distinguishes between events and states
can be aligned with the input language of the Event Calculus, and then
be used for automated reasoning. Finally, I show how the Event Calculus
can be used to support the question answering process and then evaluate
its reasoning capabilities using a number of benchmark questions stated
in controlled natural language.

1 Introduction

Over the last decade, a number of controlled natural languages have been de-
veloped that can serve as high-level knowledge representation and specification
languages for various application domains [27]. These controlled natural lan-
guages look seemingly informal since they are subsets of natural languages and
have the advantage over full natural languages that they can often be translated
unambiguously into a formal target language. Controlled natural languages are
particularly attractive because they can balance most disadvantages that nat-
ural languages and formal languages have when they are used as specification
languages: in particular, they are easy to read and understand by subject mat-
ter experts [14], and they have the same formal properties as their formal target
languages [4].

With the exception of Computer Processable English [2] that uses the Knowl-
edge Machine system [1] that implements a version of the Situation Calculus [16]
to perform temporal projection, not a lot of attention has been paid so far by
the research community to the use of controlled natural languages for dynamic
domains. The description of dynamic domains usually requires a lot of complex
background knowledge in order to predict what happens at a given point in time,

M. Rosner and N.E. Fuchs (Eds.): CNL 2010, LNAI 7175, pp. 154–174, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Rolf.Schwitter@mq.edu.au

Working with Events and States in PENG Light 155

to fill in the semantic gaps if some information is missing, and to reason back-
wards from effects to possible causes – if necessary. What seems to be simple for
humans at first glance, turns out to be surprisingly hard for a machine.

In order to process a sequence of events in a dynamic domain and to an-
swer questions about the effects of these events at various points in time, I use
a logic programming implementation of the Event Calculus [10,28,30] as start-
ing point and show how the controlled natural language PENG Light [37] that
distinguishes between verbs that denote events and states can be modified and
interfaced with the Event Calculus. These modifications are necessary so that
it becomes possible to express the relevant background knowledge about events
and their direct and indirect effects as well as the knowledge that is required
to deal with continuous change. As we will see, the Event Calculus is a very
flexible formal language for encoding reasoning about action and change, and
it can be used for making inferences about events, their effects and timepoints
using various forms of reasoning, in particular deduction and abduction, but also
induction (see [19] or [29] for an introduction).

There exist a number of other formalisms (e.g., the Situation Calculus [16], the
Fluent Calculus [32], and Temporal Action Logics [3]) to reason about actions
and about how these actions change the state of the world. In particular, the
differences between the Event Calculus and the Situation Calculus have been in-
vestigated in a number of comparative studies [12,13,23,35], and the development
of action formalisms and the assessment of the correctness of these formalisms is
still a very active research topic [33]. The Event Calculus is particularly interest-
ing in our context because of its commitment to an explicit narrative description
of events where information about conditions that can change over time can be
derived immediately from the narrative discourse.

Instead of using the formal notation of the Event Calculus directly to describe
a scenario and to specify the relevant background knowledge for this scenario, I
modify the controlled natural language PENG Light in such a way that it can
serve as a high-level interface language to the Event Calculus. That means in-
stead of writing axioms in a formal notation that is potentially difficult to learn
and understand for a subject matter expert, the author writes a specification
in controlled natural language and is supported by an intelligent authoring tool
that guides the writing process. The language processor of PENG Light resolves
anaphoric references on the fly and generates look-ahead information that in-
forms the author about the words and phrases that can follows the current input.
The evolving specification is incrementally translated into discourse representa-
tion structures [7] and then into the input language of the Event Calculus where
the formal representation can be used for deductive and abductive reasoning
tasks, in particular for question answering.

The rest of this paper is structured as follows: In Section 2, I discuss the
characteristics of the controlled natural language PENG Light, then I illustrate
how the writing process of a specification is supported by a predictive authoring
tool, and show how verbs are classified into event and state verbs. In Section 3,
I introduce a short scenario written in PENG Light together with a number of

156 R. Schwitter

benchmark questions. Answering these benchmark questions requires additional
background knowledge and a suitable inference mechanism. In Section 4, I intro-
duce the Event Calculus as such an inference mechanism, present the language
of the Simplified Event Calculus in detail, and discuss a number of modifications
that are required to interface the formal output of the controlled natural language
processor of PENG Light with the language of the Simplified Event Calculus. In
Section 5, I show what kind of background knowledge is necessary in order to
answer the benchmark questions and what kind of extensions are required on the
level of the controlled natural language to express this background knowledge.
In Section 6, I replace the Simplified Event Calculus that is based on the Horn
clause subset of the Predicate Calculus augmented with negation-as-failure by
an Event Calculus planner that is able to find explanations to questions and to
deal with negative information. In Section 7, I summaries the advantages of the
presented approach and conclude.

2 Controlled Natural Languages (CNLs)

Controlled natural languages are engineered subsets of full natural languages
whose grammar and vocabulary have been restricted to reduce both ambiguity
and complexity of full natural languages. Recently, a number of general-purpose
controlled natural languages such as Attempto Controlled English (ACE) [4,5],
Processable English (PENG) [25,37], and Boeing’s Computer-Processable Lan-
guage (CPL) [2,6] have been designed and used as high-level interface and specifi-
cation languages for various knowledge acquisition and representation tasks [27].

Controlled natural languages can significantly improve the knowledge acqui-
sition process and the understandability of a specification text compared to
specifications written in formal languages [6,14], in particular if the writing pro-
cess of these specifications is supported by an intelligent authoring tool [26,34]
that provides a feedback mechanism and communicates the interpretation of the
machine back to the author.

2.1 PENG Light

PENG Light is a controlled natural language designed for writing unambiguous
and precise specification texts [37]. PENG Light covers a strict subset of stan-
dard English and is defined by a controlled grammar and a controlled lexicon.
The controlled lexicon consists of domain-dependent content words, predefined
function words, a number of predefined fixed phrases, and an open list of exclu-
sion words. The author can access and inspect these words and phrases via an
authoring tool during the writing process (see Section 2.3 for details).

Similar to ACE and CPL, simple PENG Light sentences have the following
functional structure:

1. subject + verb + [complements] + { adjuncts }

Working with Events and States in PENG Light 157

Complements depend on the verb and are necessary constituents to establish
a well-formed sentence. For example, an intransitive verb (2) does not take a
complement; a transitive verb (3) takes one complement (a direct object); a
ditransitive verb (4) takes two complements (an indirect object and a direct
object); and a copular verb (5) links the subject with a subject complement:

2. An aircraft arrives.

3. The bus leaves the airport.

4. The booking clerk sells John a ticket.

5. John is the president of ALTA.

In contrast to complements, adjuncts are optional constituents, removing them
leaves a grammatically well-formed sentence behind. In PENG Light, adjuncts
are used to establish the circumstances under which the information expressed
by a verb takes place. Adjuncts can be realised by adverbial phrases in the form
of a prepositional phrase (6), an adverb (7), a sequence of prepositional phrases
(8), or an adverb followed by one or more prepositional phrases (9):

6. John arrives with Flight AZ1777.

7. The bus stops abruptly.

8. John arrives at 10:10 with Flight AZ1777 at the airport of Palermo.

9. The bus stops abruptly at 11:50 in Alcamo.

While adverbial phrases in adjunct position always modify the verb in PENG
Light, relative sentences always modify a noun, for example:

10. The bus that is at the terminal A leaves the airport at 10:30.

This brings us to complex sentences: complex sentences are built from simpler
sentences in a principled way through coordination, subordination, quantifica-
tion, and negation. The structure of these sentences is enforced by an authoring
tool as we will see in more detail in Section 2.3.

2.2 The Language Processor of PENG Light

The language processor of PENG Light uses a unification-based phrase structure
grammar and a chart parser. The chart parser processes the input sentences
incrementally and generates a discourse representation structure [7] during the
parsing process. This discourse representation structure is then translated into
a first-order logic notation and is further processed by a model builder [37]. In
this paper, I work first with a subset of PENG Light that can be translated into
Horn clause logic [9], modify the controlled language and the processing of the

158 R. Schwitter

controlled language so that the output of the language processor can be aligned
with the input language of the Simplified Event Calculus. Later I use a more
expressive version of the Event Calculus that can deal with negative information.

In contrast to ACE and CPL, the processing of syntactic, semantic as well
as pragmatic information is done in parallel in PENG Light. Apart from a dis-
course representation structure, the language processor generates look-ahead
information as well as a paraphrase, and resolves anaphoric references during
the parsing process. The look-ahead information instructs the author about the
restrictions of the controlled natural language, and the paraphrase points out
the interpretation of the machine. PENG Light allows only for restricted forms
of anaphoric references, namely via definite noun phrases, proper names, and
variables. In PENG Light, variables are normally introduced in apposition to a
noun and can then be used later anaphorically and unambiguously instead of
personal pronouns. The result of the anaphora resolution process is displayed as
a paraphrase that the author can inspect.

2.3 Writing Support for PENG Light

Writing a specification in controlled natural language is not an easy task without
the assistance of an intelligent authoring tool because the author would have to
learn and remember the restrictions of the controlled language. For this reason,
we support the writing process of a specification in PENG Light by a predic-
tive authoring tool that guides the author and enforces the restrictions of the
controlled language. That means the author of a PENG Light specification does
not need to know the grammatical restrictions of the controlled language explic-
itly. The authoring tool clarifies these restrictions with the help of look-ahead
information while the specification text is written.

In our case, the language processor communicates with a web-based authoring
tool that displays look-ahead information for each syntactic category that can
follow the current input. Figure 1 shows a simple web-based prototype of this
authoring tool. The text field of the authoring tool accepts sentences and displays
a new set of look-ahead categories whenever the author completes a word form.
The author can either directly enter a word form that falls under one of these
categories or click on the name of one of these categories and then select a word
form from an ordered menu. The selected word form is then inserted directly into
the text field. The current version of the authoring tool displays the emerging
specification together with the corresponding paraphrase. The author can inspect
the syntax tree, the discourse representation structure (DRS) as well as the
Simplified Event Calculus (SEC) representation. It is important to note that
there is no need to resort to this formal level of the representation since the entire
specification can be developed on the level of the controlled natural language,
and the author can ask questions about the specification in controlled natural
language. If a domain-dependent content word is not available in the lexicon and
is not in the list of exclusion words, then the author can add this word to the
user lexicon using minimal linguistic knowledge as proposed in [26].

Working with Events and States in PENG Light 159

Fig. 1. Web-based Authoring Tool of PENG Light

2.4 Events and States in PENG Light

In contrast to the current version of ACE [5], PENG Light distinguishes on the
semantic level between verbs that denote events and verbs that denote states.
This distinction is based on a semantic theory [22] that argues for subatomic
quantification over events and states in order to account for the behaviour of
modifiers. In PENG Light, event verbs can be used to express what happens
at a given point in time and state verbs can be used to express what holds
from a given timepoint onwards. Each occurrence of a verb in PENG Light is
implicitly or explicitly related to a timepoint, and the textual order establishes
the temporal order of the associated event or state. For example, the following
two sentences are temporally ordered, the first one (11) uses an event verb while
the second one (12) uses a state verb:

11. John gets on a bus at 10:30.

12. John is in the bus.

One problem with this approach is that it does not pay attention to the effects
of events. It does not tell us anything about how events are related to states
and how states are updated when new information becomes available. We will
discuss how we can fix this problem in Section 4.

In PENG Light, each verb is classified in the lexicon as an ‘event verb’ or a
‘state verb’. Event verbs include intransitive, most transitive, and all ditransitive
verbs; state verbs include intransitive verbs and some transitive verbs but also
copula constructions; for example, the copular verb be plus an adjective as in
(13) or the copular verb be plus a prepositional phrase as in (14):

160 R. Schwitter

13. The weather is bad.

14. John is at the airport of Palermo.

The classification of verbs into ‘event verb’ and ‘state verb’ is a basic one; there
exist more detailed classifications, in particular event verbs are often further
classified as activities (e.g., run, drive), accomplishments (e.g., paint, build), and
achievements (e.g., recognise, notice) [36] depending on their interaction with
aspectual and temporal modifiers. We will see that our basic classification is
sufficient for our context, and it has the advantage that it can be carried out
without a lot of additional linguistic knowledge. This is important because an
author of a PENG Light specification should be able to add new verbs to the
lexicon and classify them correctly. For this purpose, the author can use a simple
test that makes it possible to distinguish between event verbs and state verbs [22].
This test uses a pseudo-cleft construction and distinguishes between things that
are done (events) and things that are not done (states). The following pseudo-
cleft construction is well-formed for event verbs (15) but not for state verbs
(16):

15. What John does is to get on the bus. – event verb

16. *What John does is to have a ticket. – state verb

In PENG Light, thematic relations [8,22] are used to connect the events and
states with other entities that are described in a sentence. These thematic re-
lations are derived from mandatory and optional surface level constituents and
from their position in the sentence. In the case of mandatory constituents, the
thematic relations (plus information about events or states) are stored together
with the verb in the lexicon. For example, the lexical entry for the verb form
gets on of sentence (11) looks as follows in PENG Light:

17. lexicon([cat:tv,
wfm:[gets, on],
syn:[vform:fin, agr:[pers:third, num:sg, case:nom],

agr:[pers:_, num:_, case:acc]],
sem:[event:E, arg:[ind:I1], arg:[ind:I2]],
con:[theta(E, agent, I1), event(E, getting_on),

theta(E, theme, I2)]]).

That means gets on is a transitive verb that is associated with two thematic
relations: an agent and a patient. To complete the picture for sentence (11):
the optional prepositional phrase at 10:30 results in the additional thematic
relation time that is derived from the preposition and the temporal expression.
Sentence (11) is then translated via discourse representation structures into a
set of facts:

18. named(sk1, john).
theta(e1, agent, sk1).

Working with Events and States in PENG Light 161

event(e1, getting_on).
theta(e1, theme, sk2).
object(sk2, bus).
theta(e1, time, sk3).
timex(sk3, ‘10:30’).

These facts consist of a small number of predefined predicates (e.g., named/2,
theta/3, event/2, object/2, timex/2). The constant e1 in (18) is a Skolem
constant and stands for an event token of a certain type. The constants sk1,
sk2, and sk3 are Skolem constants that stand for different entities. The predicate
theta/3 connects the Skolem constant for the event e1 via thematic relations
(e.g., agent, theme, time) with the Skolem constants for the other entities
that take part in this event.

3 A Scenario in PENG Light

Let us assume the following scenario consisting of a sequence of unfolding events
that an agent can observe and monitor in controlled natural language while these
events occur:

19. John arrives at 10:10 with Flight AZ1777 at the airport of Palermo.

20. There is a bus at the terminal A of the airport and John gets on that bus.

21. The bus leaves the airport at 11:30 and arrives at the port of Trapani at
13:05.

22. John gets off the bus at the port and stays in Trapani.

Let us further assume that we have some additional information about what
might happen later depending on the weather conditions:

23. If the weather is good then John boards the hydroplane and travels to Maret-
timo Island.

24. If the weather is bad then John stays in Trapani and goes to the Albergo
Maccotta.

As the scenario proceeds over time, we would like to be able to answer the
following benchmark questions (25-30) expressed in controlled natural language:

25. When does John arrive at the airport?

26. Where is John now?

27. When does John get on the bus?

28. Where is John at 11:45?

162 R. Schwitter

29. How many kilometers is John away from the airport?

30. Why is John in Trapani at 15:00?

The first question (25) is easy to answer since the answer is part of the textual
information, and we can look it up directly in the knowledge base. Finding an
answer to the second question (26) is more difficult, since the answer depends on
the timepoint of the question and additional background knowledge; the machine
needs to know, for example, that John is at the airport after the arrival of the
aircraft and before the departure of the bus, or that John is in the bus after
boarding the bus. Answering the third question (27) in a precise way is not
possible without recording the time when the actual event occurs, although a
human can figure out the timespan relatively easily from the text. In order to
find an answer to the fourth question (28), the machine needs to be able to
look back in most cases in order to find out what happened before the current
point in time. Answering the fifth question (29) is difficult since we need at least
some knowledge about the average speed of the bus and need to be able to deal
with continuous change. And finally, answering the sixth question (30) requires
the machine to come up with an explanation taking incomplete information into
account.

As these examples illustrate, answering the questions (26-30) automatically
requires complex background knowledge about the effects that events initiate
and terminate at a given point in time, information about timepoints when
events occur, background knowledge about continuous change, and background
knowledge about how to reason backwards from effects to causes. Apart from
this background knowledge, we need a reasoning mechanism that can handle
these phenomena. We show in the next section that a simplified version of the
Event Calculus is a good starting point to solve these problems and to answer the
benchmark questions (26-29); finally, an extension of the Event Calculus based
on abduction (presented in Section 6) will provide us then with the machinery
for processing why-questions such as (30).

4 The Event Calculus (EC)

The Event Calculus (EC) is a logic-based formalism for representing and reason-
ing about events, their effects and the timepoints for which these effects hold.
The EC was originally introduced by Kowalski and Sergot [10] as a logic pro-
gramming framework with a particular focus on database updates and narrative
discourses [11]. Since then many alternative axiomatisations have been developed
for the EC, and the EC has been used in many different application domains; for
example, for workflow modelling, cognitive robotics, abductive reasoning, legal
reasoning, mathematical modelling, and story understanding (see [18,20,21] for
an overview).

4.1 The Simplified Event Calculus (SEC)

Over the time, it turned out that a simpler form of the original Event Calculus,
known as the Simplified Event Calculus (SEC), can be used as a starting point

Working with Events and States in PENG Light 163

for many interesting applications [24,28]. The SEC can be extended in a system-
atic way so that it can deal with indirect effects, continuous change and other
phenomena. The basic components of the SEC are events, fluents and timepoints.
An event represents an action that may happen in the world at a given point
in time. A fluent is a time-varying property that depends on an event, and a
timepoint represents an instant of time on a time line. The language of the SEC
allows us to specify knowledge about the effects of events on fluents, in particular
knowledge about events that initiate and terminate fluents at a specific point in
time. The SEC distinguishes for this purpose between domain-independent and
domain-dependent axioms and is characterised by the following six predicates:

– holds_at(F, T) represents that the fluent F is true at the timepoint T.

– happens(E, T) represents that the event E occurs at the timepoint T.

– initiates(E, F, T) represents that the event E initiates the fluent F at the
timepoint T.

– terminates(E, F, T) represents that the event E terminates the fluent F
at the timepoint T.

– T1 < T2 represents that the timepoint T1 is before the timepoint T2.

– initially(F) represents that the fluent F holds from the timepoint zero.

Note that the variable E stands for an event token in these predicates, the variable
F – in our case – for a list of complex terms, and the variables T, T1 and T2 for
numbers. As we will see in the next section, we have to interface the language of
the SEC with the output that the controlled language processor generates and
want to do this in a direct way. For the time being, it is important to note that
the variable F stands for a list of complex terms. Instead of representing a fluent
as a simple function, we have to take special care of the particular notation that
PENG Light uses for representing states including their thematic relations, and
we use therefore a list as data structure. We then interpret the states in PENG
Light as fluents that can be updated and can change over time. Additionally, we
have to take special care of temporal expressions that occur in the standard 24
hour format in our scenario (e.g., 10:10). We translated these expressions into
POSIX time format (defined as the number of seconds elapsed since January 1,
1970 (UTC)).

4.2 The SEC at Work

The SEC relies on a number of domain-dependent axioms that monitor the
effects of the events, a fixed number of domain-independent core axioms that
process the domain-dependent axioms, and a few auxiliary axioms that interface
the SEC with the knowledge base. In the simplest case, the domain-dependent
axioms are expressed as positive and negative effect axioms. It is important to

164 R. Schwitter

note that fluents are subject to the commonsense law of inertia [28] which states
that the truth value of a fluent persists unless the fluent is affected by an event.
With the help of the two effect predicates initiates/2 and terminates/2, we
specify which fluents become true and which ones false when an event occurs. In
order to demonstrate how these effect predicates are used in the SEC, we stick –
for the time being – to the formal notation of the SEC and specify the following
two clauses (31) and (32):

31. initiates(E,
[theta(sk(E, ...), experiencer, X),
state(sk(E, ...), being),
theta(sk(E, ...), location, Y)], T) :-

object(X, person),
theta(E, agent, X),
event(E, arriving),
theta(E, location, Y),
object(Y, location),
theta(E, time, Z),
timex(Z, T).

32. terminates(E,
[theta(S, experiencer, X),
state(S, being),
theta(S, location, Y)], T) :-

object(X, person),
theta(E, agent, X),
event(E, leaving),
theta(E, theme, Y),
object(Y, location),
theta(E, time, Z),
timex(Z, T).

The first clause (31) initiates a fluent; it uses the term sk(E, ...) in the head
of the clause. This term is simply an abbreviation for a Skolem function applied
to all quantified variables in the clause. This Skolem function serves as a unique
identifier for the fluent. The second clause (32) terminates a fluent and uses a
variable (S) instead of an identifier since this clause picks up an existing fluent
and checks if there is an event (E) in the knowledge base that terminates that
fluent. Let us assume that the first sentence (19) of our scenario here repeated
as (33):

33. John arrives at 10:10 with Flight AZ1777 at the airport of Palermo.

has already been processed by the language processor of PENG Light and that
the following facts are available in the knowledge base:

Working with Events and States in PENG Light 165

34. named(sk1, john).
theta(e1, agent, sk1).
event(e1, arriving).
theta(e1, time, sk2).
timex(sk2, 1304849400).
theta(e1, instrument, sk3).
named(sk3, az1777).
theta(e1, location, sk4).
object(sk4, airport).
associated_with(sk4, sk5).
named(sk5, palermo).

In order to trigger the effect axioms (31) and (32), we need additional rules
that interface the predicates in the body of these clauses with the facts in the
knowledge base. For example, in the case of the effect axiom (31) and the facts
in (34), we need to allow for the inference that John is a person (35) and that
every airport is a location (36):

35. object(X, person) :- named(X, john).

36. object(X, location) :- object(X, airport).

Let us now introduce the core axioms of the SEC. The following two clauses
(37) and (38) implement these core axioms and are used to process the domain-
dependent clauses. The first clause (37):

37. holds_at(F, T2) :-
happens(E, T1),
T1 < T2,
initiates(E, F, T1),
\+ clipped(T1, F, T2).

says that a fluent F holds at timepoint T2, if an event E happens at the timepoint
T1, and T1 is before T2, and the event E initiates the fluent F after T1, if the
fluent F has not been clipped between T1 and T2. The second clause (38):

38. clipped(T1, F, T3) :-
happens(E, T2),
T1 < T2, T2 < T3,
terminates(E, F, T2).

states that a fluent F is clipped between the timepoints T1 and T3, if an event
E happens at the timepoint T2, and T2 is between T1 and T3, and the event E
terminates the fluent F at T2.

In order to interface the predicate happens/2 that occurs in the core axioms
with the information about events and their temporal modifiers in the knowledge
base, we need an auxiliary clause of the following form:

166 R. Schwitter

39. happens(E, T) :-
event(E, N),
theta(E, time, Y),
timex(Y, T).

It is often convenient to use an additional core axiom to specify the initial sit-
uation of a scenario with the help of the predicate initially/1 in the body of
the clause. The following clause (40) does this; it specifies that a fluent F holds
at the timepoint T, if it held initially and has not been clipped between the
timepoint 0 and T:

40. holds_at(F, T) :-
initially(F),
\+ clipped(0, F, T).

Also the predicate initially/1 that occurs in the body of (40) needs to be
interfaced with the information in the knowledge base (if some initial information
is available there):

41. initially(
[theta(S, R1, X),
state(S, T),
theta(S, R2, Y)]) :-

theta(S, R1, X),
state(S, T),
theta(S, R2, Y),
X \= Y.

Given the translation (34) of the first sentence of the scenario together with the
effect axioms (31, 32), the core axioms (37, 38) of the SEC, and the auxiliary
axioms (35, 36, 39), we can now investigate which fluents hold at a given point
in time. Still working on the formal level, we can use Prolog’s built-in predicate
findall/3 and the user-defined predicate get_current_time/1 that returns the
current timepoint for this purpose:

42. ?- get_current_time(T), findall(F, holds_at(F, T), FL).
FL = [theta(sk(e1, ...), experiencer, sk1),

state(sk(e1, ...), being),
theta(sk(e1, ...), location, sk4)].

Of course, we can refine this query and other queries are possible at differ-
ent timepoints as the scenario proceeds depending on the effect axioms. In the
next section, we show how we can express the scenario and the required domain-
dependent axioms of the SEC in controlled natural language. This has the advan-
tage that a subject matter expert does not need to encode the relevant knowledge
in a formal notation [4,31].

Working with Events and States in PENG Light 167

5 Specifying Background Knowledge in PENG Light

As we have seen in the last section, the SEC provides a general framework for
reasoning about events, their effects and timepoints where the effects of events
are described with the help of positive and negative effect axioms. We need
a way to express these axioms unambiguously in PENG Light and be able to
distinguish between positive and negative effects, indirect effects and to deal
with knowledge about continuous change.

5.1 Specifying Axioms for Direct Effects in PENG Light

We can use direct effects axioms to predict the outcome of an event. Direct
effect axioms can capture the effects that an event has on a fluent. They can
take the conditions into account under which an event occurs and update the
fluents that will be holding or will no longer be holding when the event has
been performed. We use conditional sentences for this purpose and employ the
continuous future tense in the consequence of these conditional sentences in order
to make the status of the fluent explicit; for example, instead of (31) and (32)
in SEC notation, we write these axioms as follows in PENG Light:

43. If a person arrives at a location then the person will be at that location.

44. If a person leaves a location then the person will no longer be at that location.

The two expressions will be and will no longer be in the consequence of these con-
ditional sentences correspond to the underlying initiates/2 and terminates/2
predicates in the SEC notation. The positive effect axiom (43) and the negative
effect axiom (44) are written in a way that abstracts away from a specific person
and a specific location (as already illustrated in (31) and (32)). Therefore, we
need additional terminological statements about the domain that will trigger
the inference process. These terminological statements can be expressed directly
in PENG Light and correspond to the two clauses (35) and (36) in the SEC
notation:

45. Whoever is John is a person.

46. Every airport is a location.

Given this kind of background knowledge, we can now successfully answer the
benchmark question (26), repeated here as (47):

47. Where is John now?

In PENG Light, questions are translated via discourse representation structures
into Prolog queries that can then be answered with the help of the SEC axioms.
The translation of question (47) results among other things in a holds_at/2
predicate that takes a template for a fluent and the current timepoint (now =
1304851800) as input:

168 R. Schwitter

48. ?- named(X, john),
holds_at(
[theta(S, experiencer, X),
state(S, being),
theta(S, location, Y)], 1304851800),

(object(Y, O) ; named(Y, N)).

We can now also answer the benchmark question (27), but this is not directly
dependent on these effect axioms but rather a side-effect of our decision to time-
stamp all events that occur without an explicit temporal marker in the scenario.

5.2 Specifying Axioms for Indirect Effects in PENG Light

Let us consider the case where John gets on a bus and the bus leaves the airport.
The second event has the indirect effect that John will no longer be at the airport.
The problem of representing and reasoning about indirect effects of events is
known as the ramification problem [15] that is strongly related to the frame
problem [28]. Recall fluents normally obey the commonsense law of inertia in
the EC. This law states that a fluent stays the same unless it is directly initiated
or terminated by an event, but this is not the case if John is in the bus and the
bus leaves the airport, since John will no longer be at the airport.

There exist a number of methods for dealing with the ramification prob-
lem [19]; one method is to explicitly release a fluent from the commonsense law
of inertia when a specific event occurs, and to make the fluent subject to a state
constraint, and later when another event occurs to restore this law again. This
method would require the addition of a new core axiom to the SEC that releases
a fluent from inertia and can be used to restore that fluent again.

Another method of dealing with the ramification problem is to represent indi-
rect effects in the same way as direct effects, namely with the help of positive and
negative effect axioms [19]. While the first method allows for a more abstract
representation, the second method is simpler to understand for a subject matter
expert, since it does not require the explicit release and restoration of fluents
from the commonsense law of inertia.

We use the second method for specifying indirect effects in PENG Light,
choose again a suitable level of abstraction for our context, and write:

49. If a person is at a location and a vehicle is at that location and the person
gets on the vehicle then the person will be in the vehicle.

50. If a person is in a vehicle and the vehicle leaves a location then the person
will no longer be at that location and the vehicle will no longer be at that
location.

As these examples illustrate, we make sure that the person is wherever the vehi-
cle is – as long as the person is in the vehicle. Of course, we need also additional
assertional and terminological knowledge and have to specify, for example, that

Working with Events and States in PENG Light 169

the bus is at the airport and that every bus is a vehicle in order to relate the infor-
mation expressed in the scenario with the effect axioms. Given this background
knowledge, we can now successfully answer the benchmark question (28).

5.3 Specifying Axioms for Continuous Change in PENG Light

Let us now consider the case where the bus leaves the airport, and we want to
find out how far away the bus is from the starting point. Answering this kind of
questions requires us to deal with continuous change. If we know that a vehicle
is travelling with a fixed velocity of, let’s say 75 km/h, then we can calculate
the distance from the starting point with the help of the following conditional
sentence in PENG Light:

51. If a vehicle is travelling and the vehicle is X km away from a starting point
at a timepoint T1 and [Y is X + (75 * (T2 - T1) / 3600)] then the
vehicle will be Y km away from the starting point at the timepoint T2.

We can embed simple arithmetic expressions that basically follow Prolog syntax
into the controlled natural language. These arithmetic expressions are parsed and
maintained in a list in the discourse representation structure. The syntax of these
arithmetic expressions is enforced by the look-ahead editor in a similar way as the
syntax for the linguistic expressions. The left argument of the is operator in (51)
has to be a variable and the right argument has to be a mathematical function.
Arithmetic expressions can only occur in the conditions of conditional sentences
and have to be embedded in square brackets. The variables on the right-hand side
of such an arithmetic expression need to be instantiated before the expression
can be evaluated. Note that the variables in the arithmetic expression interact
with the variables in the conditional sentence; for example in (51), the variables
X and T1 are introduced in the text and then used in the arithmetic expression
while the variables Y and T2 are introduced in the arithmetic expression and
then used in the consequence of the conditional sentence. The language processor
then generates a paraphrase that shows all anaphoric relations that occur in this
sentence in curly brackets:

52. If a vehicle is travelling and { the vehicle } is X km away from a starting
point at a timepoint T1 and [Y is { X } + (75 * (T2 - { T1 }) / 3600)]
then { the vehicle } will be { Y km } away from { the starting point } at {
the timepoint T2 }.

The translation of (51) results in a new SEC predicate (trajectory(F1, T1,
F2, T2)). This predicate extends the SEC and is used in the head of a clause, in
a similar way as the effect predicates introduced in Section 4.2. It represents that
if a discrete fluent F1 has been initiated by an event at the timepoint T1, then the
continuous fluent F2 holds at the timepoint T2. The trajectory predicate depends
on further conditions and a continuous function in the body of the clause as the
translation of (51) illustrates:

170 R. Schwitter

53. trajectory(
[theta(S1, experiencer, A),
state(S1, being),
theta(S1, predicate, travelling)], T1,

[theta(sk(S2, ...), experiencer, A),
state(sk(S2, ...), being),
theta(sk(S2, ...), origin, B),
theta(sk(S2, ...), direction, away),
theta(sk(S2, ...), quantity, [eq, Y, km])], T2) :-

object(A, vehicle),
object(B, starting_point),
holds_at(
[theta(S2, experiencer, A),
state(S2, being),
theta(S2, origin, B),
theta(S2, direction, away),
theta(S2, quantity, [eq, X, km])], T1),

Y is X + 75 * ((T2 - T1) / 3600).

In order to process the trajectory axiom (53), we need to add an additional
domain-independent core axiom to the SEC. This core axiom deals with the
trajectory of a continuously changing quantity and makes sure that the fluent F1
is first initiated by an event E before it is processed by the trajectory predicate:

54. holds_at(F2, T2) :-
happens(E, T1),
T1 < T2,
initiates(E, F1, T1),
trajectory(F1, T1, F2, T2),
\+ clipped(T1, F1, T2).

Additionally, we need to specify on the level of the controlled natural language
the initial distance (55) and describe what happens when a discrete fluent is
turned into a continuous one and vice versa (56-59). We do this with the help
of the following statements in PENG Light:

55. The bus is 0 km away from the airport.

56. If a vehicle leaves a location then the vehicle will be travelling.

57. If a vehicle stops then the vehicle will no longer be travelling.

58. If a vehicle is X km away from a starting point and stops then the vehicle
will be X km away from the starting point.

59. If a vehicle leaves a starting point then the vehicle will no longer be X km
away from the starting point.

Given this kind of background knowledge (51, 55-59) written in controlled nat-
ural language, the new core axiom (54), and additional terminological axioms
that relate an airport to a starting point and a starting point to a location, then
we can successfully answer the benchmark question (29). Note that as soon as
we state that the bus stops, the distance does not change anymore.

Working with Events and States in PENG Light 171

6 Finding Explanations via Abduction

As we have seen, the SEC can be used to solve prediction problems through
deduction. Deductive reasoning is sound and makes explicit what is already
implicitly present in the premises; it is the only form of allowed reasoning in
fields where rigorous arguments are required.

Sometimes, however, we have to deal with incomplete information and make
assumptions in order to reach a conclusion. This is in particular the case, if we
want to get an explanation for an observation. In such a situation, we usually
start from a set of observed facts (= observation) and use the given clauses (=
theory) to derive the relevant conditions (= explanation) that can explain the
observed facts. This form of reasoning is known as abductive reasoning [17].
Abductive reasoning is not sound, but it captures many aspects of human rea-
soning. It can be used to find possible explanations and has successfully been
used to solve planning problems with the help of an abductive version of the
Event Calculus [30].

Let us take again the initial scenario as starting point where we can observe
that John stays in Trapani. Given this information and the following effect axiom
(60), plus the triggering axiom (61):

60. If a person stays at a location then the person will be at that location.

61. If the sirocco wind blows then the weather is bad.

together with the necessary terminological information, we want to answer the
why-question (30) – here repeated as (62):

62. Why is John in Trapani?

and abduce the preconditions of (61) – the sirocco wind blows – as a possible
explanation. Note that this information has not been previously asserted as a
set of facts to the knowledge base.

In order to abduce explanations, we take up an idea from Shanahan [30] and
compile the core axioms of the SEC into meta-level clauses implementing an ab-
ductive planner in form of a meta-interpreter. The task of this meta-interpreter
is to collect those predicates that cannot be proved from the object-level pro-
gram. The following meta-level clause implements the core axiom (37) of the
SEC and takes part in the generation of an explanation:

63. abduce([holds_at(F, T2)|Goals1],
Residue1, Residue5, NGoals1, NGoals4) :-

abresolve(initiates(E, F, T1), Goals3, Residue1, Residue1),
abresolve(happens(E, T1), Goals2, Residue1, Residue2),
abresolve(before(T1, T2), [], Residue2, Residue3),
append(Goals2, Goals3, Goals4),
append(Goals4, Goals1, Goals5),
add_neg([clipped(T1, F, T2)], NGoals1, NGoals2),

172 R. Schwitter

abduce_nafs(NGoals2, Residue3, Residue4, NGoals2, NGoals3),
abduce(Goals5, Residue4, Residue5, NGoals3, NGoals4).

The variables Residuex are used to collect the abducible predicates during the
question answering process (= proof). There are two technical details that are
important here. Firstly, special care needs to be taken of the negation as failure
operator (\+) that occurs in the core axiom (37) and of the execution order of the
subgoals. Since we are working here on the meta-level, negated goals (NGoalsx)
need to be recorded and checked each time the residue is modified. Secondly,
the subgoals (initiates/3 and happens/2) on the right hand side of the clause
are not executed in the same order as in (37); this is to prevent looping during
abductive reasoning. The meta-interpreter can be extended to handle negative
information so that we can also specify, for example, that John is not in Palermo.
This results in two EC axioms that use the predicate holds_at(neg(F), T) with
a neg function on the object-level which gives us additional expressiveness since
these axioms are outside of the Horn clause fragment [30]. These predicates are
then again compiled into a meta-level clauses, similar to (63), and are part of
the abductive meta-interpreter.

7 Conclusions

For the descriptions of many dynamic problems that occur in the real world,
an expressive specification language is required that can be used to describe
knowledge about events and their effects in a way that is on the one hand easy to
understand by a subject matter experts and on the other hand fully processable
by a machine. In this paper, I worked towards such a specification language
and showed how the controlled natural language PENG Light can be modified
and used as a high-level interface language to the Event Calculus. The Event
Calculus is a powerful logic-based formalism for reasoning about events, their
effects and timepoints and can be used for deductive and abductive reasoning
tasks, in particular for question answering. I showed with the help of a scenario
written in PENG Light that there is in principle no need to express this scenario
and the required background knowledge in a formal notation. Instead the entire
specification can be written in controlled natural language and then be translated
automatically via discourse representation structures into the input language of
the Event Calculus. In particular, I showed how PENG Light can be used to
state direct and indirect effect axioms, how to express axioms for continuous
change, and how to answer a number of benchmark questions. To the best of
my knowledge, PENG Light is the first controlled natural language that allows
an author to write a specification text for the Event Calculus in a subset of
English. There are many interesting phenomena that require further research
like the processing of compound events, nondeterministic and concurrent events.

Working with Events and States in PENG Light 173

References

1. Clark, P., Porter, B.: KM – The Knowledge Machine 2.0: Users Manual. Depart-
ment of Computer Science, University of Texas at Austin (2004)

2. Clark, P., Harrison, P., Jenkins, T., Thompson, J., Wojcik, R.H.: Acquiring and Us-
ing World Knowledge using a Restricted Subset of English. In: Russell, I., Markov,
Z. (eds.) Proceedings FLAIRS 2005, pp. 506–511 (2005)

3. Doherty, P., Gustafsson, J., Karlsson, L., Kvarnström, J.: Temporal action log-
ics (TAL): Language specification and tutorial. Linköping Electronic Articles in
Computer and Information Science 3(15) (1998)

4. Fuchs, N.E., Schwertel, U., Schwitter, R.: Attempto Controlled English – Not Just
Another Logic Specification Language. In: Flener, P. (ed.) LOPSTR 1998. LNCS,
vol. 1559, pp. 1–20. Springer, Heidelberg (1999)

5. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for Knowledge
Representation. In: Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M.,
Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 104–124.
Springer, Heidelberg (2008)

6. Gunning, D., Chaudhri, V.K., Clark, P.K., Barker, K., Chaw, S.-Y., Greaves, M.,
Grosof, B., Leung, A., McDonald, D.D., Mishra, S., Pacheco, J., Porter, B., Spauld-
ing, A., Tecuci, D., Tien, J.: Project Halo Update – Progress Toward Digital Aris-
totle. AI Magazine 31(3), 33–58 (2010)

7. Kamp, H., Reyle, U.: From Discourse to Logic. Kluwer, Dordrecht (1993)
8. Kipper, K., Korhonen, A., Ryant, N., Palmer, M.: Extending VerbNet with Novel

Verb Classes. In: Proceedings of LREC 2006, Genoa, Italy (May 2006)
9. Kowalski, R.: Logic for Problem Solving. Elsevier North Holland, New York (1979)

10. Kowalski, R., Sergot, M.: Logic-Based Calculus of Events. New Generation Com-
puting 4, 67–95 (1986)

11. Kowalski, R.: Database Updates in the Event Calculus. Journal of Logic Program-
ming 12, 121–146 (1992)

12. Kowalski, R., Sadri, F.: The Situation Calculus and Event Calculus Compared. In:
Proceedings of ILPS, pp. 539–553 (1994)

13. Kowalski, R., Sadri, F.: Reconciling the Event Calculus with the Situation Cal-
culus. Journal of Logic Programming, Special Issue: reasoning about action and
change 31(1-3), 39–58 (1997)

14. Kuhn, T.: Controlled English for Knowledge Representation. Doctoral Thesis, Uni-
versity of Zurich (2010)

15. McCain, N., Turner, H.: A Causal Theory of Ramifications and Qualifications. In:
Proceedings of 14th IJCAI, pp. 1978–1984 (1995)

16. McCarthy, J., Hayes, P.J.: Some Philosophical Problems from the Standpoint of
Artificial Intelligence. In: Michie, D., Meltzer, B. (eds.) Machine Intelligence 4,
pp. 463–502. Edinburgh University Press (1969)

17. McKaughan, D.J.: From Ugly Duckling to Swan: C. S. Peirce, Abduction, and
the Pursuit of Scientific Theories. Transactions of the Charles S. Peirce Society: A
Quarterly Journal in American Philosophy 44(3), 446–468 (2008)

18. Miller, R., Shanahan, M.: Some Alternative Formulations of the Event Calculus.
In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and
Beyond, Part II. LNCS (LNAI), vol. 2408, pp. 452–490. Springer, Heidelberg (2002)

19. Mueller, E.T.: Commonsense Reasoning. Morgan Kaufmann Publishers (2006)
20. Mueller, E.T.: Event Calculus. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.)

Handbook of Knowledge Representation, ch. 17, pp. 671–708 (2008)

174 R. Schwitter

21. Mueller, E.T.: Automating Commonsense Reasoning Using the Event Calculus.
Communications of the ACM 52(1), 113–117 (2009)

22. Parsons, T.: Events in the Semantics of English: A Study in Subatomic Semantics.
Current Studies in Linguistics. MIT Press (1994)

23. Pinto, J., Reiter, R.: Temporal Reasoning in Logic Programming: A Case for the
Situation Calculus. In: Proceedings of ICLP, pp. 203–221 (1993)

24. Sadri, F., Kowalski, B.: Variants of the Event Calculus. In: Proceedings of ICLP,
pp. 67–81 (1995)

25. Schwitter, R.: English as a Formal Specification Language. In: Proceedings of
DEXA 2002, Aix-en-Provence, France, September 2-6, pp. 228–232. NLIS (2002)

26. Schwitter, R., Ljungberg, A., Hood, D.: ECOLE – A Look-ahead Editor for a
Controlled Language. In: Controlled Translation, Proceedings of EAMT-CLAW
2003, May 15-17, Dublin City University, Ireland, pp. 141–150 (2003)

27. Schwitter, R.: Controlled Natural Language for Knowledge Representation. In:
Proceedings of COLING 2010, pp. 1113–1121 (2010)

28. Shanahan, M.P.: Solving the Frame Problem. A Mathematical Investigation fo the
Common Sense Law of Inertia. MIT Press, Cambridge (1997)

29. Shanahan, M.P.: The Event Calculus Explained. In: Veloso, M.M., Wooldridge,
M.J. (eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430.
Springer, Heidelberg (1999)

30. Shanahan, M.P.: An Abductive Event Calculus Planner. Journal of Logic Program-
ming 44(1-3), 207–240 (2000)

31. Sowa, J.F.: Architectures for Intelligent Systems. IBM Systems Journal 41(3),
331–349 (2002)

32. Thielscher, M.: Introduction to the fluent calculus. Electronic Transactions on Ar-
tificial Intelligence 2(3-4), 179–192 (1998)

33. Thielscher, M.: A Unifying Action Calculus. Artificial Intelligence 175(1), 120–141
(2010)

34. Thompson, C.W., Pazandak, P., Tennant, H.: Talk to Your Semantic Web. IEEE
Internet Computing 9(6), 75–78 (2005)

35. Van Belleghem, K., Denecker, M., De Schreye, D.: Combining Situation Calculus
and Event Calculus. In: Proceedings of ICLP, pp. 83–97 (1995)

36. Vendler, Z.: Verbs and times. The Philosophical Review 66(2), 143–160 (1957)
37. White, C., Schwitter, R.: An Update on PENG Light. In: Pizzato, L., Schwitter,

R. (eds.) Proceedings of ALTA 2009, Sydney, Australia, pp. 80–88 (2009)

Using CNL Techniques and Pattern Sentences

to Involve Domain Experts in Modeling

Silvie Spreeuwenberg1, Jeroen van Grondelle2,
Ronald Heller2, and Gartjan Grijzen2

1 LibRT, Amsterdam, The Netherlands
silvie@librt.com

2 Be Informed, Apeldoorn, The Netherlands
{j.vangrondelle,r.heller,g.grijzen}@beinformed.com

Abstract. Involving domain experts in modeling is important when
knowledge needs to be captured in a model and only domain experts
can establish whether the models are correct. We have experienced that
a natural language based representation of a model helps them to under-
stand the semantics of a model and has advantages over a visual repre-
sentation. Therefore a controlled natural language (CNL) is designed for
our existing semantic reasoning tool Be Informed, which is based on con-
ceptual graphs. The resulting CNL has a formal logical basis but the goal
of the CNL representation is to improve readability for human readers.
We report on the challenge to develop a CNL that 1) is easy and intu-
itively readable for domain experts with no background in formal logics,
2) can be easily generated from the formal representation and 3) can be
easily adjusted for other natural languages and cultural preferences. The
solution uses patterns to represent the CNL that map to the conceptual
graph. The patterns are based on SBVR’s RuleSpeak and can be easily
adjusted for local differences.

Keywords: Controlled Natural Language, Business Rules, Specifica-
tions, Knowledge Representation, CNL Design and Evaluation, SBVR,
RuleSpeak.

1 Need for Controlled Natural Languages in Modeling

The adoption of model driven technologies such as Enterprise Decision Man-
agement and Business Process Management is growing. As a result, involving
business users in modeling is more important than ever. Their ability to capture
business knowledge in models correctly is a key factor in the adoption of these
technologies. The main challenge in involving business users in knowledge mod-
eling is the fact that most business users are not trained in formal knowledge
representation techniques. A formal, concise, visual representation can be quite
intimidating to the uninitiated. Consequently, they will not be able to verify the
accuracy of the model directly.

Typically, the business users involved in modeling are experts in their domain,
acting in positions that are vital to the execution of their business, such as

M. Rosner and N.E. Fuchs (Eds.): CNL 2010, LNAI 7175, pp. 175–193, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

176 S. Spreeuwenberg et al.

for instance public sector organizations dealing with benefits and permits and
financial institutions in areas such as insurance and pensions. They typically
represent business owners, whose main concern is whether the services based on
the modeling will help, both in daily operations and in reaching the organizations
goals. They are typically highly educated, very experienced and respected in their
field. Yet they have no training or experience in formal representation techniques.
And often, they are somewhat technology averse. Whether the result of role
perception, or earlier experiences in classical system development projects, it’s
this combination of skills and mindset towards modeling that poses challenges
in involving business users at the right level.

The ultimate ambition in business user involvement is often having business
users model their own business. This suggests maximum ownership for the busi-
ness units and would allow for a single step implementation process for changing
business policies: The policy owner can just alter the models used himself. Al-
though designing and creating a sizable business ontology will remain out of
reach in many cases, or at least will require extensive patterns to abstract away
from the modeling, there are excellent examples of business users taking active
ownership of models and maintaining and altering them with minimal involve-
ment of information professionals.

Probably even more important, and within reach in almost all phases of busi-
ness modeling, is involving business users in a number of roles that do not involve
actual modeling.

1. Enable business users to review models for accuracy of representation. In this
way, trained professionals perform the modeling work, but business users
are able to review their work and provide specific feedback on modeling
constructs that they do not agree with;

2. Enable dissemination and communication: Sharing the models among stake-
holders, both in the modeling phase and later on, when the models are used
to drive business processes and decision making;

3. Explaining individual cases that were treated based on the rules in the mod-
els. Often, decisions have to be explained in for instance rejection letters.
If the decision is taken based on models, the explanation should be derived
from those same models;

4. If business services and applications are executed based on models, users of
these applications should be enabled to provide feedback from their operation
perspective on how models could be improved to meet their needs.

Typically, graph oriented representations are not suitable for any of these tasks.
Early in Be Informed’s existence, experiments were performed to use natural
language to facilitate business users in participating in modeling efforts.

A first triple-oriented textual representation was used to communicate a risk
taxonomy to classify shipments of goods to insurance underwriters. Although the
sentences produced were very basic and consisted of just the subject and object
of a triple with a verb in between encoding the relation type, the underwriters
immediately spotted constructs that appeared odd to them. This resulted in an
improved recall rate of modeling errors.

Using CNL Techniques and Pattern Sentences to Involve Domain Experts 177

This early success has motivated further research and the development of a
pattern oriented approach. A next version of the text generator [5] was used
at the Dutch Immigration Office [9] to validate candidate policy decisions for
consistency before they are accepted. In workshops with business representatives
and legal advisors, the policy is defined in the tool that also will be used to
execute this policy. Both a visual graph oriented representation and the textual
representation discussed in this paper were used. It is important to note that
the parties involved here were unfamiliar with formal representation techniques
and would normally express any policy in unrestricted, natural language. The
expectation that the textual representation was preferred over the diagrams
was confirmed by the participants. An interesting new observation was that the
sentence should be a grammatically correct sentence: Even small errors, which
did not seem to obfuscate the meaning of the sentence at all, made sentences
less effective and less acceptable to their audience.

In parallel, some techniques were evaluated in the area of Domain Specific Lan-
guages. Originating in software development, they aim to create small, problem
centric languages that meet a single problem domain well. Technologies, as for
instance developed in the Eclipse Modeling Project [3], are available to develop
editors with both visual and textual grammars. The textual grammars developed
in this community often stay close to programming languages, with respect to
their syntax and formatting conventions. As a consequence, these experiments
suffered from the same weaknesses that the graphical notation does: Business
users regard them as technical artifacts, and do not adopt them naturally.

This paper reports on the design and implementation of a CNL that helps Be
Informed customers to actively participate in modeling knowledge.

2 Related Work

Controlled languages are often classified in one of two categories, as described for
instance by Clark [2]: those that improve readability for human readers and those
that enable reliable automatic semantic analysis of the language. The language
that we designed has a basis in formal logic. But all too often languages in the
second category do not read very naturally. The challenge for Be Informed was
to design a language that can be easily generated from a conceptual graph and
is natural for people to read and understand.

2.1 Syntax Based Approaches

Using CNLs to represent ontologies has been done before, for instance in
Attempto Controlled English [11] and CLOnE [4]. They both use natural lan-
guage generation (NLG) to create a textual representation and natural language
processing (NLP) to roundtrip the ontology based on the changed text.

The textual syntax definition proposed in this paper is quite similar to the
definition used in CLOnE. Our approach towards editing a model based on a
natural language representation does not use NLP and has more in common

178 S. Spreeuwenberg et al.

with Conceptual Authoring [16]. Editing is not performed by manipulating text
but by performing editing operations at the concept level, with the text being
updated to reflect concept-level changes.

2.2 Pattern Based Approaches

Our current mechanism is based completely on pattern sentences. Reiter wrote
an interesting paper [17] on the differences, pros and cons of pattern oriented
approaches vs NLG. We propose some future work on hybrid approaches in
Section 6.

The use of pattern sentences positions our work in the tradition of NLG and
template filling. A drawback of this approach is that we need pattern templates
for each language as described by [10]. We propose future work (see Section 6) to
research issues with contextual translation and to minimize the effort for pattern
development. Compared to Terry Halpins work on (automated) verbalization
of ORM models [7] [8] our work follows a similar approach but our patterns
are not as generic. We create domain specific grammars that result in domain
specific patterns that help domain experts familiar with the specific domain to
express additional knowledge. In our example (see Section 3) we provide patterns
for a product domain to add knowledge about different kinds of products and
product discounts. The choice for domain specific patterns is based on the fact
that they are easier for domain experts to understand and learn, but increases
the work to develop patterns. Consequently in our future work section we focus
on approaches to minimize the pattern development work effort.

2.3 Textual versus Graphical Representations

We started with a graphical representation of our ontologies and described our
extension to a textual representation. This relates our work to a debate with a
long history on when a textual model is preferable to a graphical model and vice
versa. A discussion in [6] concludes that there is some evidence that text-based
modeling constitutes a noteworthy alternative to graphical modeling because of
its simple usage, scalability and easy development and reuse of tool support.
Although this is a claim in favor of our choice for textual modeling, it does not
align with our motivation. We are motivated by the fact that legal advisors and
business people are used to information in textual form. We have experienced
graphical representations as a barrier for them. The graphical models may still
be useful for another audience to show the general picture. There are not many
empirical studies comparing the graphical approach with the textual approach.
Since our tool will support both approaches it may be used to support such
studies.

3 Using Pattern Sentences to Verbalize Models

We want to bridge the gap between formal and natural approaches, so our chal-
lenge is to design a language that can be easily generated from a conceptual
graph and still is natural and understandable for human users.

Using CNL Techniques and Pattern Sentences to Involve Domain Experts 179

3.1 Separating Syntax from Semantics

Be Informed develops a software suite that is used by complex, knowledge in-
tensive organizations to capture their business knowledge and run model driven
services based on these knowledge models. Knowledge representation in Be In-
formed is based on conceptual graphs, containing concepts, relations between
concepts and properties of both concepts and relations. To add semantics, the
concepts, relations and properties are typed, using types from a meta model
associated with the graph.

For the purpose of presenting and editing these models, they are visualized to
users using a syntax that matches the semantic information in the meta model.
These syntaxes can be both graphical and textual, as is visualized in Figure 1.
For instance, the default visualization in Be Informed is a graphical visualization,
based on a visual syntax that maps iconography, line styles and colors to meta
model types.

Textual syntax

Formal model

Textual visualization

Concept
Property 1
Property 2

Concept
Property 1
Property 2

Concept
Property 1
Property 2

Iconography
Line styles

Labels

Graphical visualization

Visual syntax

Pattern
Sentences

Fig. 1. Visualizing models using both visual and textual syntaxes

This paper proposes an alternative visualization of the graph based on natural
language pattern sentences. The visualization is defined by a grammar of pattern
sentences, which consists of natural language text with placeholders that map to
the graph’s concepts and properties by their types and relations. These sentences
are handcrafted to communicate the semantics of the graph constructs they
represent and are based on the best practices in the Business Rule community like
for example RuleSpeak. This approach brings us several additional advantages:

1. Multiple visualisations: All kinds of textual constructs or graphical visualiza-
tions that are valid representations of the formal model can be constructed
in order to be ’fit for purpose’.

180 S. Spreeuwenberg et al.

2. Multiple languages: the pattern sentences are mapped to the formal model,
and therefore it is possible to implement pattern sentences in other languages
for the same formal model.

3. Multiple target groups: like multilinguality, the language levels are a major
factor in communication. One could create multiple sentence templates for
different CEF levels (Common European Framework Levels). An example
would be the vocabulary used by helpdesk employees versus the vocabulary
of domain experts.

3.2 Mapping between Graphs and Pattern Sentences

When visualizing a graph, the structural mapping constraints that are part of
the pattern sentences are applied to the graph’s concepts and relations. These
pattern sentences are expressed in terms of the types in the meta model. Then,
instances of the pattern sentences are shown for instances of the meta model
types, which are the concepts and relations in the graph. These relations are
visualized in Figure 2.

Concept Graph

Grammar of
Pattern Sentences

Meta Model

Sentence
Representation

Fig. 2. Pattern based generation approach

Pattern sentences consist of different kinds of parts. They have their own
properties that are used as constraints when mapping the pattern sentences to
a graph, as seen in Figure 3.

1. Static text fragments contain the wording of the sentences;
2. Subject placeholders map to concepts that act as the subject of a sentence

and include its label in the text;
(a) The subject placeholder maps to subjects of specified type;

3. Object placeholders map to the objects of the sentences’ subject relations
and include their label in the text;
(a) The object placeholder maps to objects of specified type;
(b) The object placeholder maps to objects of relations with the subject of

specified type;
(c) The object placeholder concatenates the objects labels according to the

number of objects and with configurable infixes;

Using CNL Techniques and Pattern Sentences to Involve Domain Experts 181

Legend

 Concept

 Property

 Static text fragment

 Placeholder

Fig. 3. Mapping pattern sentences to a concept graph

4. Property placeholders map to the subject’s properties and include their value
in the text;

(a) The property placeholder maps to properties of specified type.

Fragments and placeholders are grouped into sentence parts, in order to make
certain parts of the sentence optional. If the graph construct they map to does
not exist, the other parts of the sentence might still apply and form a valid
textual representation.

Pattern sentences have to deal with cardinality in the (meta)model. In a
trivial case, where sentences encode for one relation instance only, having more
than one relation is represented in language by introducing a sentence for each
relation. Pattern sentences can also represent multiplicity within a sentence, so
that one sentence encodes a number of relations and concepts. A grammar can
contain one sentence to encode for more multiple relations of the same type.
For any subject, all these relations are then represented in a single sentence
with the objects of the relations enumerated inside. A sentence can also encode
for relations of more than one type. In that case, sentence parts encode for the
different relation types, and they are concatenated into a single sentence.

3.3 Example: A Telecom Product Model

In this section we present an example based on the product model of a telecom
provider.

The meta model in Figure 4 is based on typical taxonomical structures for
modeling products and associated discounts. The requirement relations connect
the discounts with the products, or combinations of products they apply to. This
basic meta model enables the modeling of both the provider’s product portfolio
structure and the requirements its client must meet to apply for specific target
group discounts.

An example of a product and discount model in the traditional graphical
notation is given in Figure 5. It describes the telephone, television and internet
products the provider has and how customers apply for specific discounts. For
example, a consumer ordering all three products (Internet, Telephone and TV)
applies for a triple play discount.

182 S. Spreeuwenberg et al.

Product Class

Product

Option

Discount Class

Discount

subclass of subclass of
instance of

option for

instance of

requires

requires

Fig. 4. Meta model for the Telecom example

Product Class
Portfolio

Product Class
Internet

Product Class
TV

Product
Light ADSL

Product
Fast ADSL

Product
Analog TV

Product
Digital TV

Product
Basic Telephony

Product Class
Telephony

Discount
Early Adopter

Discount
Triple Play

Discount Class
Consumer

Option
VOIP

subclass of subclass ofsubclass of

instance of instance of instance of instance of instance of

instance of instance of

requires requires requires requires

requires

option for

Fig. 5. Product model for the Telecom example

To visualize the product model in natural language, we need to specify a gram-
mar of pattern sentences first; such a grammar should mirror the information in
the meta model shown in Figure 4. The example grammar introduces product
classes and individual products in short, structural sentences. The following two
patterns are possible parts of this grammar:

1. “There is a class of products named <ProductClass>.” ↔
{ProductClass}.

2. “The product <Product> is a <ProductClass> product.”

↔ {Product, instanceof, ProductClass}.

Using CNL Techniques and Pattern Sentences to Involve Domain Experts 183

The first sentence pattern can be used to declare a class of products, while the
second is meant to declare a specific product and to which class it belongs. The
following two sentences are examples of such a specific declaration:

I There is a class of products named Internet.

II The product Fast ADSL is an Internet product.

Introducing discounts requires a more complex structure of several sentence parts
that can be linked together.

3. a) “The discount <Discount> is a <DiscountClass> discount,”

↔ {Discount, instanceof,DiscountClass}
b) “and customers apply for it by ordering [the product/all of

the products] <Product>,” ↔ {Discount, requires, Product}
c) “with the option[s] <Option>.” ↔ {Discount, requires,Option}

The first part introduces a discount and encodes for its type relation, as it is
mandatory. The second part encodes for the products required to apply for the
discount. The third part encodes for the options that are required to apply for
the discount, if any. Based on the product model from Figure 5, the following
textual representation of the two types of discounts can be constructed:

III The discount Triple Play is a Consumer discount, and customers

apply for it by ordering all of the products Fast ADSL, Digital
TV and Basic Telephony.

IV The discount Early Adopter is a Consumer discount, and cus-

tomers apply for it by ordering the product Basic Telephony,
with option VOIP.

3.4 Example: Verbalizing a Process Ontology

In this second example, we show how a similar approach can be applied to
an ontology of process concepts. In this example, the process of applying for a
subsidy is described in terms of a case oriented meta model as shown in Figure 6.
It introduces concepts for the activities that are performed, the prerequisites that
have to be met for each activity to be performed and the consequences that each
activity has, in terms of decisions taken and artifacts like documents and notes
created.

The graphical visualization of the process of applying for a subsidy is shown
in Figure 7. The example introduces four activities within the system. It is is
not a classic process conceptualization in terms of activities and their order of
execution, however. Note that the precondition is directed to the artifact of the
previous activity and not the previous activity itself. This implicitly expresses an
order relation too, but it also allows for exception flows and interventions, where
pre conditions are met some other way, without the corresponding activities
being performed.

184 S. Spreeuwenberg et al.

Case

Activity

Decision

Document

Document

Note

performs

decides

creates

creates

requires

Fig. 6. Graphical representation of the process meta model

To visualize this process model in natural language, we again need to specify
a grammar. This grammar verbalizes all constructs introduced by the used meta
model shown in Figure 6.
1. “After the Case <Case> is completed:” ↔ {Case}.

(a) “the activity <Activity> is completed.”

↔ {Case, performs,Activity}.
2. “The activity <Activity> may be performed if:” ↔ {Activity}.

(a) “a document <Document> is already present”

↔ {Activity, requires,Document}.
3. “After the activity <Activity> is completed:” ↔ {Activity}.

(a) “a document of type <Document> is created”

↔ {Activity, creates,Document}
(b) “the decision <Decision> is taken”

↔ {Activity, decides,Decision}.

Case
Subsidy

Application

Activity
Submit Request

Activity
Send

Acknowlegment

Document
Subsidy
Request

Activity
Assess Request

Activity
Publish Decision

Document
Acknowledgment

Note
Assessment

Report

Document
Publication of

Decision

Document
Payment Order

Decision
Eligibility for

Subsidy

Decision
Height of
Subsidy

performs performs performs performs

creates creates creates

creates

createsrequires requires requires

decidesdecides

Fig. 7. Graphical representation of subsidy application process

Using CNL Techniques and Pattern Sentences to Involve Domain Experts 185

The model from Figure 7 is then serialized into natural language as follows.
“Subsidy Application” cases are completed by performing all four activities.

I After the Case Subsidy Application is completed:

(a) the activity Submit Subsidy Request is completed

(b) the activity Send Acknowledgement is completed

(c) the activity Assess Subsidy Request is completed

(d) the activity Publish Decision is completed.

The activity called “Assess Subsidy Request” is defined as an activity that can
be performed if an “Acknowledgment” document is present. After completion,
both eligibility and height of the subsidy is decided on, and a Assessment Report
is written. The first sentence verbalizes the preconditions:

II The activity Assess Subsidy Request may be performed if :

(a) an Acknowledgement document is already present.

The consequences or postconditions are verbalized by the second pattern:

III After the activity Assess Subsidy Request is completed:

(a) a note Assessment Report is created

(b) the decision Eligibility for Subsidy is available

(c) the decision Height of Subsidy is available

Being able to review these kind of process rules is important as Be Informed’s
Case Management environment executes actual processes based on ontologies,
like the one from this example.

4 Choosing Pattern Sentences

For this representation to enable business users to be involved in the relevant
tasks, the pattern sentences have to be chosen carefully. Based on the presented
examples, we will show how applying best practices from different fields can help
to choose the most effective pattern sentences.

4.1 Structuring the Use of Natural Language

Methods such as RuleSpeak [18] and the OMG standard SBVR [15] have ra-
tionalized the use of natural language for the business by introducing syntactic
guidelines and best practices. The two standards SBVR and RuleSpeak are re-
lated. Both are initiated by practitioners in the business rules community. Where
SBVR provides a meta model that defines the semantics of vocabulary and rules,
RuleSpeak is a set of sentence patterns and guidelines following that meta model.
RuleSpeak differs from SBVR structured English (a non-normative appendix of
the SBVR standard) in that it is pattern based and chooses readability over
unambiguity.

To involve business users in the roles discussed earlier, it is important that
the representation has the following features:

186 S. Spreeuwenberg et al.

– does not require extensive training;
– is intuitive;
– emphasizes the meaning of the sentence;
– is a starting point to ask further questions;
– is precise and formal.

Early experiments with the patterns that are presented in Section 3.3 and 3.4
already demonstrate some of the above features. But it was also noted that a
sentence that is not grammatically correct, for instance when patterns do not
deal well with gender or plural forms as discussed in Section 3.2, or are just “not
the way I would say it” disturbs the focus on the task at hand.

4.2 RuleSpeak Sentence Patterns

The most important guideline of RuleSpeak is that a sentence that expresses a
rule must have a modal verb to indicate that something is required, obligatory
or permitted. Among the different modal verbs available, RuleSpeak has chosen
the verbs “must” and “may only” for obligations1.

The practical value of having only 2 choices to express an obligatory modality
is that all sentences follow a very similar pattern and readers quickly adopt to
the specific semantics. The choice for modal verbs with a strict interpretation
(“must”, while the less stricter “should” is used by many requirements man-
agement practitioners) has the important benefit that it is a starting point for
further questions and analysis.

The following sentence would be the RuleSpeak alternative for the pattern
sentence from the example in Section 3.3:

Original The discount Early Adopter is a Consumer discount, and

customers apply for it by ordering the product Basic Telephony,
with option VOIP.

RuleSpeak “The Consumer discount Early Adopter must be applied

when a customer orders the product Basic Telephony, with op-

tion VOIP.”

Let’s suppose that there are additional criteria to apply for the discount and the
author of the rule was not aware of them. Since the second version of the rule is
stronger it is more likely that the business expert will question the RuleSpeak
sentence. Our practical experience confirms this intuition.

4.3 RuleSpeak Guidelines

RuleSpeak also provides guidelines that can be incorporated in the patterns.
One guideline states that a rule may only state one modality. So if two things
are obligatory, make two rules.

1 In the SBVR appendix on RuleSpeak other verbs for permissions and necessities
are included but they are not relevant for the scope of this article and therefore not
further discussed.

Using CNL Techniques and Pattern Sentences to Involve Domain Experts 187

Continuing on the example in the previous paragraph applying this guideline
would result in the following two rules:

1. “The Early Adopter discount must be applied when a customer

orders the product Basic Telephony, with option VOIP.”
2. “The Early Adopter discount must be considered a consumer dis-

count.”

Another RuleSpeak guideline that is applicable to the example rules from Sec-
tion 3.3 requires avoiding long strings of “and-ed” and “or-ed” conditions. They
can be extremely hard to follow. Instead, eliminate all significant conjunctions
in a Business Rule Statement following the RuleSpeak guidelines above and use
indentation for separate bullet lists as necessary. Applying this guideline on the
following example from section 3.3

Original The discount Triple Play is a Consumer discount, and cus-

tomers apply for it by ordering all of the products Fast ADSL,
Digital TV and Basic Telephony.

RuleSpeak The discount Triple Play must be applied when a cus-

tomer orders all of the following products:

– Fast ADSL,
– Digital,
– TV,
– Basic Telephony.

The RuleSpeak keyword “the following” is used to set off the list. This approach
avoids ambiguity and allows for easier modification. In practice the business
expert may use the list as a checklist during validation sessions or to assess
individual cases.

5 Human Interfaces Based on Pattern Sentences

Based on the experiences with the representation described, user interfaces were
developed to enable Be Informed users to use the natural language representa-
tions in their work.

5.1 Using Language Representation in Knowledge Base Access

Often, the results of knowledge representation efforts are published online to
assist reviewing and querying of the models. Typically, such an interface is based
on directory-style navigation and search. A concept, or topic, is represented
by a page, containing all its properties and resources and navigation links to
other related topics, as can be seen in Figure 8. The types of both concepts
and relations are visualized through for instance icons or by grouping items
in categories. The natural language representation presented in Section 3 can
be integrated into such an interface. On each page, a textual representation of

188 S. Spreeuwenberg et al.

Fig. 8. Multi syntax knowledge base: Navigation, natural language and visual

its concept and all its relations is shown. The textual representation can offer
hyperlinks for the concepts in the sentences, linking to their respective knowledge
base pages.

The wiki-like interface presented here might be extended to allow editing of
the models, in a similar way as editing is done in Ace Wiki [12]. As shown in
Section 3.1, multiple representations can be presented in parallel. Even the vi-
sual graph representation can be integrated into a knowledge base, which can
be useful if the knowledge base is used for analysts as well as end users. Typ-
ically, the appropriate representation is selected based on user profile or roles.
However, adding representations in parallel allows users to focus on the repre-
sentation of their personal choice, while possibly getting familiar with the other
representations.

5.2 Editing Models by Manipulating Sentences

We have also developed an editor for knowledge models based on the pattern
sentences representation. It uses the interaction metaphor of a text document
with sentences, however without the cursor as the main means of manipulating
the document. Instead, the user can edit the model by adding and removing
pattern sentences and filling in the placeholders of these pattern sentences.

The biggest interaction challenge in such an interface is supporting users in
selecting the pattern sentences that match the knowledge they want to express.
At modeling time, users have little freedom in creating their own sentences, so
only a carefully designed grammar that is offered to the user in a very contextual
way leads to a good user experience.

Using CNL Techniques and Pattern Sentences to Involve Domain Experts 189

Fig. 9. Task centric and word processor style editing

In the current editor, available pattern sentences are offered to the user in two
ways. The pattern sentences are offered in a task centric way in a Tool Palette,
as displayed in Figure 9. Users can drag available pattern sentences from the
palette onto the document, where they appear with variable parts that need to
be completed. The Tool Palette presents the pattern sentences by a task-oriented
name, that summarizes the effect or goal of the particular sentence.

They are also offered in a more word processor style: By typing at the end
of the document, pattern sentences matching the typed text are presented in a
popup menu. Selecting a pattern sentence from the menu inserts it into the doc-
ument. As a result, the editor offers deep predictive behavior. Compared to more
constraint free environments, prediction is trivial compared to grammar based
look ahead, but the predictions are typically much deeper. Creating references
to other concepts is also performed by combo boxes that show a relevant subset
of the available concepts based on typed text and placeholder constraints.

Fig. 10. Contextual controls and embedded error messages

190 S. Spreeuwenberg et al.

To offer the user the experience of a text document, all controls are embedded
in the document and are only visible when a specific sentence part or placeholder
is selected, as seen in Figure 10. Error feedback is provided by showing annota-
tions inside the text document. Sentence parts containing warnings or errors are
underlined, orange and red respectively.

6 Conclusions and Future Work

In this paper we have presented a mechanism for representing formal concept
graphs as natural language, using natural language pattern sentences. In its
current form, it has already proven to be a valuable tool to our clients. First
evaluations show it helps them to get in control in a model driven environment,
by validating and communicating the models that drive the services they use in
their daily operations.

The RuleSpeak sentence patterns and writing guidelines have helped to im-
prove the quality of the generated text. The new patterns make sentences easier
to read and place a natural and intuitive emphasis on the fact that the sentence
introduces an obligation (and is not “just” a potential statement) for business
experts with no background in formal logics. The sentence patterns also provide
guidance to direct people into being more formal and precise.

We intend to integrate this technology into our product suite and to put it
to broader use. In this paper, we applied it to the verbalization of knowledge
models. In an in-house prototype, we have experimented with explaining the
behavior of the services that are based on the models. As a consequence, we
are then able to explain individual cases as they are handled by the services.
For instance, the outcome of a decision that is taken based on models can be
explained to the applicant.

The intended audience of these explanations range from business users respon-
sible for modeling their business, employees such as call centre agents that have
to explain the products and processes to their clients and ultimately the clients
themselves, for instance in letters sent to them to communicate decisions. For
generated texts to be acceptable to these different stakeholders, the generated
texts must be of high quality.

The mechanism we have presented has some limitations in terms of the gram-
matical quality of generated text. Addressing in pattern sentences the variations
that follow for instance from multiplicity and gender often leads to the creation of
large numbers of patterns, and unacceptable amounts of work as a consequence.

Discussions at the workshop have convinced us that technologies presented
there, such as the Grammatical Framework [1] currently being developed in
the Molto Project [13], could help us face these challenges. We would like to
investigate hybrid scenario’s where the mechanism we presented is enriched with
NLG technology to:

1. Better deal with morphology aspects, such as, verb forms, plurals and gender;
2. Remove sentence planning aspects from the patterns: As we generate sen-

tences based on graphs, we typically have a lot of triple-related text

Using CNL Techniques and Pattern Sentences to Involve Domain Experts 191

fragments to combine. Doing this inside the sentence pattern has proven
to be impractical and probably language specific. Using small patterns to
generate a number of small sentences for each triple and having GF consol-
idate those into larger sentences looks promising.

3. Deal with the lexical properties of the labels that are to be included in the
pattern: When the concepts in the ontology have real names, these are often
used as label and they are easily included into a pattern sentence because
they are often nouns. However, often legal objects such as norms do not have
names and are referred to by a definition, i.e. “Applicants must be over 25”.
Including them into an abstract syntax tree requires additional linguistic
processing.

4. Provide the verbalization in multiple languages: Special attention is needed
for the challenge of contextual translation. Many multilingual NLG tech-
nologies are based on aligned lexicons, which potentially is a problem when
conceptualizations do not align well across different languages. This chal-
lenge is the scope of the Monnet Project [14], and its work could help to
solve this challenge.

5. Generate sentence variants as they are used in end user dialog: An important
part of ontology verbalization in service context is supporting dialog with
users. This requires ontology based sentences to be available in different
form, also referred to as mood. For instance “Applicants must be over 25”
may be rewritten to “Is the applicant over 25?” when asked,“Applicant is
over 25” when explained, or also “Applicant is not over 25”, when explaining
failure to comply (or even “Applicant is 25 or younger”). When explaining
an individual case, it could read “Mr Johnson is over 25”. Initial work in
this area is already being performed within the mentioned Monnet Project.

We would like to study how to deal with the trade-off that is inherent to the
restriction to a well defined domain defined by a pattern sentences grammar.
Although the resulting consistency and productivity in authoring is an important
asset to the approach, being able to express knowledge outside the scope of
the pattern sentence grammar could sometimes be useful. The Ace Wiki [12]
demonstrated at the workshop showed a relatively constraint free environment
to express English sentences. In a hybrid approach, pattern sentences would
allow for deep editing prediction, while still being able to express facts that are
not covered by the current pattern sentences grammar. In addition, mining the
sentences in such a knowledge base could be a way to maintain the pattern
sentences catalog by suggesting frequently used patterns in the texts present in
the database.

Finally, when these challenges in verbalization are dealt with, it would be
interesting to study the performance of textual vs graphical model visualization
in a more systematical way. Especially, we are very interested in studying which
representation is most suitable to which type of user, as evaluated in the context
of their specific tasks. These might range from both domain experts and infor-
mation professionals modeling knowledge to consumers and citizens interpreting
the explanation of decisions taken for them based on this formal knowledge.

192 S. Spreeuwenberg et al.

Acknowledgements. The authors would like to thank Norbert Fuchs and Mike
Rosner for organizing the CNL workshop. It has proven to be a productive
environment for discussion and creation of new ideas. Also, the fact that both
industry and academics participate has been of great value. Although aims and
methods may differ, the synergy is obvious. Moreover, cooperation is necessary
for the adoption of a maturing domain like CNL.

The authors also wish to gratefully acknowledge the support for this work by
the EuropeanCommission (EC). This work was partially funded by the ECwithin
the EU FP7 Multilingual Ontologies for Networked Knowledge (MONNET)
Project under Grant Agreement No. 248458.

References

1. Angelov, K., Ranta, A.: Implementing Controlled Languages in GF. In: Fuchs, N.E.
(ed.) CNL 2009. LNCS (LNAI), vol. 5972, pp. 82–101. Springer, Heidelberg (2010)

2. Clark, P., Murray, W.R., Harrison, P., Thompson, J.: Naturalness vs. Predictabil-
ity: A Key Debate in Controlled Languages. In: Fuchs, N.E. (ed.) CNL 2009. LNCS,
vol. 5972, pp. 65–81. Springer, Heidelberg (2010)

3. Eclipse Modeling Project, http://www.eclipse.org/modeling/
4. Funk, A., Tablan, V., Bontcheva, K., Cunningham, H., Davis, B., Handschuh, S.:

CLOnE: Controlled Language for Ontology Editing. In: Aberer, K., Choi, K.-S.,
Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard,
D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC
2007. LNCS, vol. 4825, pp. 142–155. Springer, Heidelberg (2007)

5. van Grondelle, J., Heller, R., van Haandel, E., Verburg, T.: Involving Business Users
in Formal Modeling Using Natural Language Pattern Sentences. In: Cimiano, P.,
Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp. 31–43. Springer, Heidelberg
(2010)

6. Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: Text-based Mod-
eling. In: Proceedings of the 4th International Workshop on Software Language
Engineering (2007)

7. Halpin, T.: Business Rule Verbalization. In: Proceedings of ISTA (2004)
8. Halpin, T., Curland, M.: Automated Verbalization for ORM 2. In: Meersman,

R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops, Part II. LNCS, vol. 4278,
pp. 1181–1190. Springer, Heidelberg (2006)

9. Heller, R., van Teeseling, F., Gülpers, M.: A Knowledge Infrastructure for the
Dutch Immigration Office. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A.,
Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS,
vol. 6089, pp. 386–390. Springer, Heidelberg (2010)

10. Jarrar, M., Keet, M., Dongilli, P.: Multilingual verbalization of ORM conceptual
models and axiomatized ontologies. Technical report. STARLab, Vrije Universiteit
Brussel (2006)

11. Kaljurand, K., Fuchs, N.E.: Verbalizing OWL in Attempto Controlled English. In:
Proceedings of Third International Workshop on OWL: Experiences and Direc-
tions, Innsbruck, Austria (2007)

12. Kuhn, T.: AceWiki: Collaborative Ontology Management in Controlled Natural
Language. In: Proceedings of the 3rd Semantic Wiki Workshop. CEUR Workshop
Proceedings (2008)

http://www.eclipse.org/modeling/

Using CNL Techniques and Pattern Sentences to Involve Domain Experts 193

13. Molto Project: Multilingual On-Line Translation,
http://www.molto-project.eu/

14. Monnet Project: Multilingual Ontologies for Networked Knowledge,
http://www.monnet-project.eu/

15. Object Management Group: Semantics of Business Vocabulary and Rules (2008),
http://www.omg.org/spec/SBVR/1.0

16. Power, R., Scott, D., Evans, R.: What you see is what you meant: direct knowl-
edge editing with natural language feedback. In: Proceedings of the 13th Biennial
European Conference on Artificial Intelligence, Brighton, UK, pp. 675-681 (1998)

17. Reiter, E.: NLG vs. Templates. In: Proceedings of the 5th European Workshop on
Natural Language Generation, Leiden, The Netherlands, pp. 95–105 (1995)

18. Ross, R.G.: RuleSpeak (2009), http://www.rulespeak.com

http://www.molto-project.eu/
http://www.monnet-project.eu/
http://www.omg.org/spec/SBVR/1.0
http://www.rulespeak.com

Author Index

Angelov, Krasimir 1

Bünzli, Alexandra 21

Camilleri, John J. 137
Cramer, Marcos 43

Dantuluri, Pradeep 53
Davis, Brian 53
Détrez, Grégoire 115

Enache, Ramona 1, 115

Fuchs, Norbert E. 73

Grijzen, Gartjan 175
Grondelle, Jeroen van 175

Handschuh, Siegfried 53
Heller, Ronald 175
Höfler, Stefan 21

Kuhn, Tobias 95

Ludwick, Pierre 53

Pace, Gordon J. 137

Ranta, Aarne 115
Rosner, Michael 137

Schröder, Bernhard 43
Schwitter, Rolf 154
Spreeuwenberg, Silvie 175

	Title
	Preface
	Organisation
	Table of Contents
	Typeful Ontologies with Direct Multilingual Verbalization
	Introduction
	The Abstract Syntax of SUMO-GF
	The Taxonomy
	Instances
	Functions, Predicates and Logical Formulas
	Proofs in Natural Language

	Russell's Paradox
	Verbalization
	Evaluation
	Automated Reasoning in SUMO-GF
	End-User Interface
	Related Work
	Future Work
	Conclusion
	References

	Controlling Ambiguities in Legislative Language
	Introduction
	Approach
	Status Quo in Legislative Drafting
	Ambiguities Controlled by Existing Drafting Guidelines
	Ambiguities Not Controlled by Existing Guidelines

	Proposed Rules
	Controlling Attachment Ambiguity
	Controlling Plural Ambiguities

	Related Work
	Conclusion
	References

	Interpreting Plurals in the Naproche CNL
	Introduction
	Proof Representation Structures
	Collective vs. Distributive Readings of Plurals
	Scope Ambiguity
	Pairwise Interpretations of Collective Plurals
	The Plural Interpretation Algorithm
	Related and Future Work
	Conclusion
	References

	Engineering a Controlled Natural Language into Semantic MediaWiki
	Introduction
	CLANN System
	CLANN Grammar
	CLANN Editor
	PDO Ontology

	Implementation
	CLANN Grammar
	Architecture

	Related Work
	Conclusion
	References

	First-Order Reasoning for Attempto Controlled English
	Introduction
	General Features of RACE
	Working with RACE
	A Look under the Hood of RACE
	All Things Considered
	Decidability, Termination, Efficiency, Looping and All That
	Conclusions
	References

	Codeco: A Practical Notation for Controlled English Grammars in Predictive Editors
	Introduction
	Background
	Requirements for Controlled English Grammars
	Natural Language Grammar Frameworks
	Parser Generators
	Definite Clause Grammars
	Related Work

	The Codeco Notation
	Simple Categories and Grammar Rules
	Normal Forward and Backward References
	Scopes and Accessibility
	Position Operators
	Negative Backward References
	Complex Backward References
	Strong Forward References
	Principles of Reference Resolution
	Restriction on Backward References

	Implementations
	ACE Codeco Grammar
	Evaluation
	Conclusions
	References

	Controlled Language for Everyday Use: The MOLTO Phrasebook
	Introduction
	The Semantic Model
	Concrete Syntax
	Ambiguity and Disambiguation
	Example-Based Grammar Writing
	The Mobile Application
	Evaluation
	Translation Quality
	Coverage
	Engineering Effort
	Usability

	Conclusion
	References

	Controlled Natural Language in a Game for Legal Assistance
	Introduction
	Artificial Legal Assistance
	Legal Assistance with Contracts

	CNLs, Contracts and Games
	Nomic and BanaNomic
	A Deontic Contract Logic and Language for BanaNomic
	BanaL, a CNL for BanaNomic User Input
	Discussion

	Explanation, Structure and Layout
	Layout and Presentation
	Syntactic Sugar and Semantics

	Conclusions
	References

	Working with Events and States in PENG Light
	Introduction
	Controlled Natural Languages (CNLs)
	PENG Light
	The Language Processor of PENG Light
	Writing Support for PENG Light
	Events and States in PENG Light

	A Scenario in PENG Light
	The Event Calculus (EC)
	The Simplified Event Calculus (SEC)
	The SEC at Work

	Specifying Background Knowledge in PENG Light
	Specifying Axioms for Direct Effects in PENG Light
	Specifying Axioms for Indirect Effects in PENG Light
	Specifying Axioms for Continuous Change in PENG Light

	Finding Explanations via Abduction
	Conclusions
	References

	Using CNL Techniques and Pattern Sentences to Involve Domain Experts in Modeling
	Need for Controlled Natural Languages in Modeling
	Related Work
	Syntax Based Approaches
	Pattern Based Approaches
	Textual versus Graphical Representations

	Using Pattern Sentences to Verbalize Models
	Separating Syntax from Semantics
	Mapping between Graphs and Pattern Sentences
	Example: A Telecom Product Model
	Example: Verbalizing a Process Ontology

	Choosing Pattern Sentences
	Structuring the Use of Natural Language
	RuleSpeak Sentence Patterns
	RuleSpeak Guidelines

	Human Interfaces Based on Pattern Sentences
	Using Language Representation in Knowledge Base Access
	Editing Models by Manipulating Sentences

	Conclusions and Future Work
	References

	Author Index

