
Chapter 6
Classification

6.1 Overview

The classification of the candidate record pairs that were generated in the indexing
step (Chap. 4) and compared in detail in the comparison step (Chap. 5) is primarily
based on the similarity values in the comparison vectors of these record pairs, as
illustrated in Fig. 6.1. The general idea is that the more similar two records are, the
more likely they refer to the same real-world entity.

A classification approach can either be unsupervised or supervised. Unsupervised
approaches classify pairs or groups of records based on similarities between them
without having access to any information about the characteristics of true match-
ing and true non-matching record pairs. Supervised approaches, on the other hand,
require training data that are known true matches and true non-matches. Specifically,
a set of comparison vectors is required, each of which has a match status (match or
non-match) attached, to enable training of a supervised classifier. These comparison
vectors need to be generated using the same comparison functions as the ones that
will be used when pairs of records with unknown match status are compared. Obtain-
ing or generating such training data, that need to be of high quality and cover a large
variety of the possible similarity value combinations that can occur in comparison
vectors, can be difficult, as will be discussed further in Sect. 7.1 in the context of
evaluating the outcomes of data matching classification.

In certain matching situations, additional to the similarities between records, rela-
tional information between records might be available. Examples of such relational
information include the lists of co-authors of scientific publications, or people who
share the same land-line telephone number. Several recently developed classification
techniques for data matching take such relational links or connections into account
when building a clustering or graph-based classification model [31, 142, 155, 272],
as will be discussed in Sects. 6.9 and 6.10. An alternative approach to model such
relational information is to include it as exact similarities into the comparison vectors
for candidate record pairs. As was discussed in Sect. 5.2, an exact comparison would
for example, result in a normalised similarity value of 1.0 if two records have the

P. Christen, Data Matching, Data-Centric Systems and Applications, 129
DOI: 10.1007/978-3-642-31164-2_6, © Springer-Verlag Berlin Heidelberg 2012

http://dx.doi.org/10.1007/978-3-642-31164-2_4
http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://dx.doi.org/10.1007/978-3-642-31164-2_5

130 6 Classification

RecID GivenName Surname StrNum StrName Suburb BDay BMonth BYear SimSum

a1 john smith 18 miller st dickson 12 11 1970
b1 jonny smyth 73 miller st dixon 11 12 1970

0.6 0.8 0.0 1.0 0.6 0.5 0.5 1.0 5.0

a2 mary harris 42 swamp rd sydney 21 04 1918
b2 mandy garrett 42 smither pl sydenham 27 04 1979

0.6 0.4 1.0 0.4 0.6 0.5 1.0 0.5 5.0

Fig. 6.1 Example candidate record pairs and their comparison vectors as calculated in the com-
parison step (Chap. 5), and their summed similarity values (SimSum)

same telephone number, or if two publications have been written by the same two
co-authors.

When the classification into matches and non-matches is conducted independently
for individual candidate record pairs rather than in a collective fashion [31], then
several issues need to be considered. First, classifying each record pair independently
can lead to sub-optimal match decisions. For example, assume two databases are
matched, with the restriction that a record from the first database can only match to a
maximum of one record in the second database (a topic that will be discussed further
in Sect. 6.11). Now assume that record ‘a1’ (from the first database) is classified
to match with record ‘b4’ (from the second database). Later on in the classification
process, record ‘a9’ and ‘b4’ are also found to be a match, for example, if their
similarity is higher than the similarity between ‘a1’ and ‘b4’. The first classified match
between ‘a1’ and ‘b4’ is therefore not the best match. Such sub-optimal decisions
can occur if the classification is conducted in a greedy fashion where, once matched,
a pair of records is not reconsidered for other matches.

A second issue is that independent match decisions can lead to contradictions, an
issue known as transitive closure [190]. Assume in the deduplication of a database
two record pairs, ‘a1’ and ‘a2’, and ‘a1’ and ‘a3’, have both been classified as
matches, but the pair ‘a2’ and ‘a3’ has been classified as a non-match. This contradicts
the assumption that when a group of three or more records are classified as being
duplicates of each other, then none of the individual pairs in that group of records
should be classified as a non-duplicate. How to handle this situation will be further
discussed in Sect. 6.8.

After the classification step, depending upon the data matching or deduplication
situation, records that were matched in certain applications need to be merged into
compound new records [26]. This step itself is challenging, as it requires decisions to
be made about how to merge individual attribute values that potentially can contradict
with each other. A set of recently developed techniques to accomplish this will be
presented in Sect. 6.12.

http://dx.doi.org/10.1007/978-3-642-31164-2_5

6.2 Threshold-Based Classification 131

6.2 Threshold-Based Classification

The simplest way to classify candidate record pairs into the two classes of matches
and non-matches (and possibly the third class of potential matches) is to sum the
similarity values in their comparison vectors into a single total similarity value (called
‘SimSum’ in Fig. 6.1), and to then apply a similarity threshold (or two in the case
where potential matches are considered) to decide into which class a candidate record
pair belongs. Figure 6.2 shows an example histogram of the summed comparison
vectors obtained from a deduplication of a real health data set that contained 175,211
records.

With two classes (matches and non-matches), a single classification threshold, t ,
is needed for classifying a record pair (ri , r j):

SimSum[ri , r j] ≥ t ⇒ [ri , r j] → Match,

SimSum[ri , r j] < t ⇒ [ri , r j] → Non-Match. (6.1)

With three classes (matches, non-matches and potential matches), two classifi-
cation thresholds, tl (lower) and tu (upper), are needed, and a record pair (ri , r j) is
classified according to:

SimSum[ri , r j] ≥ tu ⇒ [ri , r j] → Match,

tl < SimSum[ri , r j] < tu ⇒ [ri , r j] → Potential Match, (6.2)

SimSum[ri , r j] ≤ tl ⇒ [ri , r j] → Non-Match.

Selecting a threshold (or thresholds) that results in high matching quality can either
be done manually or (if training data are available) be learned in such a way that
either the number of false matches or the number of false non-matches is minimised,
or that the sum of both false matches and false non-matches is minimised. When
candidate record pairs are also classified into potential matches, there is a trade-off
between the quality of the classified matches and non-matches and the amount of
manual clerical review of the potential matches that needs to be conducted. This
topic will be discussed in more detail in Sect. 7.4.

If tu = tl = t then the class of potential matches disappears and the classification
follows Eq. 6.1. Increasing the upper threshold tu and lowering the lower threshold
tl will result in less false matches and non-matches, but lead to a larger number of
potential matches that need to be inspected and classified manually. On the other
hand, lowering tu and increasing tl results in a smaller number of potential matches
but likely also in an increased number of false matches and non-matches. This issue
will be discussed further in Sect. 7.4.

The simple threshold-based classification has two major drawbacks. The first is
that, assuming all similarity values are normalised between 0 and 1, all attribute
similarities contribute in the same way towards the final summed similarity value.
The importance of different attributes, as well as their discriminative power with

http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://dx.doi.org/10.1007/978-3-642-31164-2_7

132 6 Classification

 1

 10

 100

 1000

 10000

 100000

-60 -40 -20 0 20 40 60 80 100 120

F
re

qu
en

cy

Summed similarities (SimSum)

MDC 1999 and 2000 deduplication (based on AutoMatch match status)

Duplicates
Non-duplicates

Fig. 6.2 Example histogram of the summed similarity values of a deduplication of a real health
data set using comparisons on twelve attributes, with different weights assigned to the various
comparisons. The true match status of this data set was determined earlier using the commercial
data matching software AutoMatch [251], while the comparison vectors for this deduplication were
generated using the FEBRL system [62]. A detailed description of the settings that were used for
this deduplication exercise is provided in [71], from where this figure has been adapted

regard to distinguishing matches from non-matches, is not considered by such a
simple summation approach. This drawback can be overcome by summing similarity
values that are weighted, with different attributes given different weights according
to their importance or discriminative power. The weighed sum is calculated by first
multiplying the similarity value calculated on a certain attribute with the weight value
for this attribute prior to the summation.

For example, assuming the following weights (empirically determined) are
assigned to the attributes of Fig. 6.1: wGivenName = 2, wSurname = 3, wStr Num = 1,
wStr Name = 3, wSuburb = 2, wB Day = 2, wB Month = 1, and wBY ear = 2.
The weighted summed similarities for the two given record pairs then become:
SimSum[a1, b1] = 2×0.6+3×0.8+3×1.0+2×0.6+2×0.5+1×0.5+2×1.0 =
11.3, and SimSum[a2, b2] = 2 × 0.6 + 3 × 0.4 + 1 × 1.0 + 3 × 0.4 + 2 × 0.6 + 2 ×
0.5 + 1 × 1.0 + 2 × 0.5 = 8.8. The question of how to choose good weight values
for the different attributes will be discussed in the next section.

The second drawback of summing similarities is that the detailed information
contained in the individual similarity values is lost in the summation step (with both
an unweighted or weighted approach). As the two example candidate record pairs in
Fig. 6.1 show, despite having different similarity values both result in an unweighted
sum of SimSum = 5.0. This is even though record pair (a2, b2) is unlikely to refer
to the same entity given the differences in the attribute values of these two records.
Giving different weights to attributes can to some degree overcome this drawback
and lead to better classification results. More sophisticated classifiers, presented later
in this chapter, are utilising the individual similarity values. This generally leads to
improved matching quality compared to the simple threshold-based approach using
summed similarities only.

6.3 Probabilistic Classification 133

6.3 Probabilistic Classification

This traditional classification approach to data matching, proposed in 1969 by Ivan
Fellegi and Alan Sunter in their seminal paper [108], is commonly known as ‘prob-
abilistic record linkage’. Many data matching and deduplication systems that have
been developed over the past four decades are based on the approach described in
this paper.

The basic ideas of probabilistic record linkage were introduced by Newcombe
et al. [198] in 1959 and detailed further by Newcombe and Kennedy in 1962 [197].
They recognised that in the absence of unique entity identifiers the attributes available
in common in two databases (such as the names, addresses, or dates of birth of patients
or customers) need to be used to match records. As the values in such attributes
can be wrong, missing, or out of data, and because the number of values and their
distributions can differ between attributes, different weights should be assigned to
different attributes when they are used to calculate the similarities between records (as
was discussed in the previous section). Newcombe and Kennedy also recognised that
such weights should not only depend upon the general characteristics of attributes,
but also on the actual attribute values in a certain candidate record pair. For example,
if two records have a surname value ‘Smith’ then the weight given for this agreement
of values should be smaller than the weight given to two records that both have a
surname value ‘Dijkstra’, assuming the number of people with surname ‘Dijkstra’ is
much smaller than the number of people with surname ‘Smith’ in the databases that
are matched. This is because the likelihood that two randomly picked records have a
surname value ‘Smith’ is much higher than the likelihood that they have a surname
value ‘Dijkstra’.

Fellegi and Sunter formalised these ideas and they developed a theory for record
linkage that allows the calculation of weights for agreeing and disagreeing pairs of
attribute values, which leads to an optimal decision making when record pairs are
classified [108]. Probabilistic record linkage considers two databases (or files), A
and B, and record pairs in the product space A × B that are to be classified into three
classes: Matches (links), non-matches (non-links) and potential matches (potential
links) [108, 143]. Record pairs classified as potential matches need to be manually
assessed and classified in a clerical review process, as will be described in Sect. 7.4.
Each record pair in A × B is assumed to correspond to either a true match or a true
non-match. The space A × B is therefore partitioned into the set M of true matches
and the set U of true non-matches. Formally,

A × B = {(a, b); a ∈ A, b ∈ B} (6.3)

consists of the two disjoint sets

M = {(a, b); a = b, a ∈ A, b ∈ B} (6.4)

http://dx.doi.org/10.1007/978-3-642-31164-2_7

134 6 Classification

of true matches (also called the matched set), where both records a and b refer to the
same real-world entity, and

U = {(a, b); a �= b, a ∈ A, b ∈ B} (6.5)

of true non-matches (also called the unmatched set), where the two records a and b
refer to two different real-world entities.

The assumption is that records in A and B were generated based on one process
for each of the two databases. Each record is assumed to refer to an individual
in a population, such as a patient, customer, citizen and so on. The records in the
two databases are drawn from two populations that have some overlap. For each
member of the two populations, it is assumed that a record was generated with certain
characteristics (such as certain name values, a certain date of birth and so on). The
record generation process also led to errors and missing values in the records with
certain distributions. As a result, it is possible that unmatched entities in A and B can
be represented by two records that both have the same values in all their attributes.
On the other hand, two records in A and B that refer to the same entity can have
different values in some of their attribute.

When record pairs are compared (as was discussed in Chap. 5), a comparison
vector, γ , is generated for each record pair. In the basic formulation of probabilistic
record linkage, only binary comparisons are considered (with similarity value 1
when two attribute values are the same and 0 otherwise) [108]. Therefore, each γ

corresponds to an agreement pattern in a comparison space, Γ . If each record pair
was compared using K comparison functions, then each γ consists of a vector of K
agreement or disagreement values. In total, assuming binary comparisons (i.e. exact
matching) only, there will be 2K different possible patterns.

For a given candidate record pair, r , probabilistic record linkage classification
considers ratios of conditional probabilities, P(·|·), of the form

R = P(γ ∈ Γ |r ∈ M)

P(γ ∈ Γ | r ∈ U)
(6.6)

where γ is an arbitrary agreement pattern in a comparison space Γ . Fellegi and
Sunter [108] then propose the following decision rule:

R ≥ tu ⇒ r → Match,

tl < R < tu ⇒ r → Potential Match, (6.7)

R ≤ tl ⇒ r → Non-Match.

The two cutoff thresholds tl and tu are determined by a priori error bounds on false
matches and false non-matches [108, 143]. It is easy to see that the three rules in Eq.
6.7 make intuitive sense. If γ for a certain candidate record pair r mostly consists
of agreements, then the ratio R in Eq. 6.6 would be large, because it is more likely
that r ∈ M rather than r ∈ U , and the pair is more likely designated as a match. On

http://dx.doi.org/10.1007/978-3-642-31164-2_5

6.3 Probabilistic Classification 135

the other hand, for a γ that primarily consists of disagreements the ratio R would be
small, because it is more likely that r ∈ U rather than r ∈ M , and thus the pair will
be designated as a non-match.

Fellegi and Sunter showed that with fixed bounds on the errors in the match and
non-match regions of R the decision rule in Eq. 6.7 is optimal, in that the middle
region of potential matches is minimised [108].

Calculating the conditional probabilities in Eq. 6.6 is a crucial aspect of the prob-
abilistic record linkage approach. It is commonly assumed that these probabilities
are conditionally independent for the different attributes that are used in the compar-
ison step to calculate the agreement patterns γ . Under this assumption, an individual
agreement weight, wi , 1 ≤ i ≤ K can be calculated for each attribute (or field) i
based on the m- and u-probabilities

mi = P([ai = bi , a ∈ A, b ∈ B] | r ∈ M), (6.8)

and
ui = P([ai = bi , a ∈ A, b ∈ B] | r ∈ U), (6.9)

where ai and bi are the values in attribute i that are being compared. Equation 6.8
is the probability that two records have the same value in attribute i given the pair is
a true match (i.e. both records refer to the same entity). On the other hand, Eq. 6.9
is the probability that two records have the same value in attribute i given the pair is
a true non-match (i.e. the two records refer to different entities).

The probabilities in Eqs. 6.8 and 6.9 are called the m- and u-probabilities, respec-
tively, and they are also known as the matching parameters [143]. Based on these
two probabilities, the individual weight wi for attribute i is calculated as:

wi =
{

log2(
mi
ui

) if ai = bi ,

log2(
(1−mi)
(1−ui)

) if ai �= bi .
(6.10)

To make a simple example, assume the two databases A and B contain an
attribute ‘MonthOfBirth’ (MoB) with twelve possible values ‘January’ to ‘Decem-
ber’. Assume also that it is known that in both A and B this attribute contains 3 %
errors, i.e. 3 % of all month of birth values have been recorded wrongly. The likeli-
hood that two records, a ∈ A and b ∈ B, that are known to refer to the same entity
((a, b) ∈ M) have the same month of birth value is 97 %. Therefore, mMoB = 0.97.
The likelihood that two records referring to the same entity have a different month
of birth is (1 − mMoB) = 0.03 (3 %). For two records a ∈ A and b ∈ B that
are known to refer to two different entities ((a, b) ∈ U), the likelihood that their
month of birth value is the same is 1/12 = 0.083, because there is a 1/12 (8.3 %)
chance that two randomly picked individuals in a population have the same month
of birth. Therefore, uMoB = 0.083. Conversely, the likelihood that two randomly
picked records that refer to two different entities have a different month of birth is
11/12 = 0.917 = (1−uMoB) (91.7 %). Using Eq. 6.10, if two records have the same

136 6 Classification

value in the ‘MonthOfBirth’ attribute, then the corresponding weight (called match
or agreement weight) is calculated as wMoB = log2(0.97/0.083) = 3.54, while if
two records have different month of birth values then the weight (called non-match
or disagreement weight) is calculated as wMoB = log2(0.03/0.917) = −4.92.

Assuming conditional independence, the overall weight for a record pair r can
be calculated by summing the weights wi over the K attribute match/non-match
weights:

log2(R) =
K∑
i

wi . (6.11)

Figure 6.2 shows an example histogram of such summed weights for the dedupli-
cation of a real health data set. As can be seen, the number of non-matches (non
duplicates) is much larger than the number of matches (duplicates), as would be
expected.

In real-world data, it is likely that there are some dependencies between attributes.
For example, records that have the same post- or zipcode with a high likelihood will
also have the same locality (suburb or town) name, because in many countries most
post- or zipcodes are contained within a certain locality. Records that have the same
post- or zipcode then potentially also more likely have the same street name. However,
despite most real-world data violating the conditional independence assumption,
practical data matching projects have shown that good matching quality can still be
achieved under this assumption [143].

One of the difficulties with probabilistic record linkage is the accurate calcula-
tion or estimation of the error rates required in Eqs. 6.8 and 6.9. Sometimes these
probabilities are known from the manual assessment of the quality of the databases
to be matched, or from a manual evaluation of an earlier matching of the same
databases. Alternatively, these estimates can be calculated based on population esti-
mates, like in the month of birth example given above. Herzog et al. [143] discuss
in detail how the mi and ui parameters can be estimated using either data from prior
data matching projects or by employing the unsupervised expectation–maximisation
(EM) algorithm.

Extensions to the basic Fellegi and Sunter approach to probabilistic record link-
age include allowing for approximate comparisons of attribute values that result in
similarity values in the agreement patterns γ rather than only agreement and dis-
agreement values. Porter and Winkler [215, 279, 286] showed that modifying the
m- and u-probabilities in Eqs. 6.8 and 6.9 using the normalised similarities (between
0.0 and 1.0) calculated by approximate string comparison algorithms can lead to
significant improvements in matching quality.

The second extension is concerned by taking the frequency of attribute values
into account when calculating the m- and u-probabilities [108, 286]. The intuition
behind this idea is that the more frequent an attribute value is in a database, the less
discriminative this value is for classifying a record pair as a match or non-match. The
example using the surname values ‘Smith’ and ‘Dijkstra’ given at the beginning of
this section has already illustrated this issue. Match and non-match weights should

6.3 Probabilistic Classification 137

be adjusted according to the frequency of occurrence of individual attribute values,
with lower m-probabilities for more frequent attribute values [108]. Herzog et al.
[143] provide a detailed discussion of how frequency-based matching parameters
can be calculated.

Winkler developed a method that combines the traditional Fellegi and Sunter
approach to probabilistic record linkage with Bayesian networks [281]. Bayesian
networks [138] can model selected dependencies between attributes. In general they,
however, require training data (in the case of data matching in the form of record
pairs with known true match status). Using both labelled and unlabelled training
data, a modification of the EM algorithm was used by Winkler to estimate parameter
settings. Viewing probabilistic record linkage from a Bayesian perspective has also
been discussed by Fortini et al. [112] and Herzog et al. [143].

6.4 Cost-Based Classification

In the traditional probabilistic record linkage approach the two thresholds tl and tu are
set such that the overall number of misclassified candidate record pairs is minimised.
Two types of errors can occur (as will be further discussed in Chap. 7). First, a pair
of records that refers to the same real world entity (and therefore is a true match)
is classified as a non-match. Second, a pair of records that refers to two different
entities (and thus is a true non-match) is classified as a match. Traditionally, it is
assumed both types of errors have the same costs.

In many data matching and deduplication applications, however, these two types
of errors have different costs [129, 263]. For example, imagine a health applica-
tion where patient data from several databases (that contain information, for exam-
ple, about prescriptions, hospital admissions and doctor consultations) are matched.
Assuming these databases were matched such that each patient in the matched data-
base is assumed to have a serious illness based on their medical history. These patients
are invited by the hospital for a series of special medical tests to confirm if they do
have this illness or not. Testing a patient for this illness will incur a certain amount of
money, possibly in the hundreds or even thousands of dollars. Therefore, each patient
that has been matched falsely will mean an increase in costs for an additional test that
might have been unnecessary. On the other hand, each patient that was not classified
as a match but who potentially has this serious illness might die because they are not
given the medical test that could confirm if they have the illness or not. The costs for
such a missed true match can therefore be the loss of life of an individual.

Another, less dramatic, example can be found in marketing, where often databases
are matched to generate mailing lists of potential customers who are interested in
certain topics, based on their shopping history (like sporting, gardening, music or
reading). The cost of sending an advertisement flyer about a certain topic to somebody
who is not interested in this topic is very small, compared to not sending the flyer
to somebody who will probably respond to the advertisement [263]. Missing such a
customer can potentially result in a significant loss in profit.

http://dx.doi.org/10.1007/978-3-642-31164-2_7

138 6 Classification

Table 6.1 Costs associated with various matching decisions as proposed by Verykios et al. [263]

Cost Classification True match status

cU,M Non-Match True match (M)
cU,U Non-Match True non-match (U)
cP,M Potential Match True match (M)
cP,U Potential Match True non-match (U)
cM,M Match True match (M)
cM,U Match True non-match (U)

As shown in these two examples, clearly there can be different costs associated
with false matches and false non-matches. A cost-optimal decision model based on
a Bayesian approach has been developed by Verykios et al. [263]. In this approach,
the decision rule for an agreement pattern γ in Eq. 6.7 is formulated in a Bayesian
setting:

P(γ ∈ Γ |r ∈ M) ≥ P(γ ∈ Γ |r ∈ U) ⇒ r → Match, (6.12)

P(γ ∈ Γ |r ∈ M) < P(γ ∈ Γ |r ∈ U) ⇒ r → Non-match.

As shown in Table 6.1, different costs can be assigned to each of the six decision
outcomes in the traditional Fellegi and Sunter model, where record pairs are classified
into matches, non-matches and potential matches. The objective of a cost optimal
decision rule is then to minimise the overall cost c:

c =cU,M · P(r ∈ Non-Match, r ∈ M) + cU,U · P(r ∈ Non-Match, r ∈ U)+
cP,M · P(r ∈ Potential Match, r ∈ M) + cP,U · P(r ∈ Potential Match, r ∈ U)+
cM,M · P(r ∈ Match, r ∈ M) + cM,U · P(r ∈ Match, r ∈ U), (6.13)

where P(x, y) is the joint probability that a record pair r has been classified into
class x (with x ∈ {Non-Match, Potential Match, Match}) while the true match status
of r is y (with y ∈ {M, U }). Bayes theorem can then be applied to replace these six
probabilities with the probabilities of a certain match decision, given the true match
status and the a priori probabilities of P(M) and P(U):

P(r = x, r = y) = P(r = x | r = y) · P(r = y), (6.14)

with x and y being a value of the corresponding two sets given above. The probabilities
P(r = x | r = y) and P(r = y) can both be estimated using training data that are
available in the form of record pairs with known true match status [263]. An optimal
decision rule, similar to the one given in Eq. 6.7, can then be developed, which for
different values of the different costs provides an overall cost-optimal decision [263].

Cost-based classification is not just possible for the probabilistic record linkage
approach as was presented in this section, but for other classification techniques
for data matching as well. In rule-based classifiers (discussed next), rules can for

6.4 Cost-Based Classification 139

example, be reordered such that the rules that classify candidate record pairs into
matches are evaluated before rules that classify them into non-matches, while for
many supervised machine learning classifiers different costs for different classes can
be incorporated into the learning process.

6.5 Rule-Based Classification

A rule-based classification approach is different to the probabilistic approaches pre-
sented in the previous two sections. It employs rules that classify candidate record
pairs into matches and non-matches (and maybe potential matches that are passed
on for manual clerical review) [82, 141, 195]

A rule-based classifier can be applied on the similarity values of the comparison
vectors generated in the comparison step. Rules are made of individual tests on certain
similarity values that are combined with conjunctions (logical and), disjunctions
(logical or) and negations (logical not). Figure 6.3 shows an example set of such
rules.

The form of a rule is P ⇒ C , where P is a predicate that is applied on the
similarity values (as available in a comparison vector) for a record pair (ri , r j), and
C is the classification outcome of the pair (ri , r j). The predicate P is a boolean
expression of the general form:

P = (term1,1 ∨ term1,2 ∨ . . .) ∧ . . . ∧ (termn,1 ∨ termn,2 ∨ . . .). (6.15)

P is written in conjunctive normal form as a conjunction of disjunctions of terms
[195]. Each term is a test applied on the similarity value of a single element in a
comparison vector of the record pair (ri , r j). For example, a term can be a test such
as s(GivenName)[ri , r j] ≥ 0.7), i.e. if the similarity value for the record pair ri

and r j for the given name attribute is equal to or greater than 0.7. In Fig. 6.3, each
disjunction only contains one term.

The classification outcome C of a rule assigns a candidate record pair into the
class given in C when a rule is triggered (i.e. when the predicate P is true). A rule
system can either consist of rules that classify record pairs into matches only, or of
rules that classify pairs into matches, non-matches and even potential matches. In the
first case, all record pairs that are not covered by any rule will implicitly be classified
as non-matches. For the second case, a rule set needs to cover all possible values
in the similarity values of the comparison vectors, as there is no default class, or a
default class needs to be set explicitly (for example in the form of a rule with an
empty predicate P and where C classifies a record pair as a non-match).

If a rule set only contains rules that classify candidate record pairs as matches,
then the ordering of these rules is irrelevant. On the other hand, if a rule set consists
of rules that classify record pairs into more than one class, then the ordering of rules
is crucial. For a given record pair, the first rule where the predicate P becomes true
(the first rule that is triggered or ‘fired’) is the rule that classifies the pair.

140 6 Classification

s GivenName ri, r j 0.9 s Surname ri, r j 1.0
s BMonth ri, r j 1.0 s BYear ri, r j 1.0 ri, r j Match

s GivenName ri, r j 0.7 s Surname ri, r j 0.8
s BDay ri, r j 1.0 s BMonth ri, r j 1.0

s BYear ri, r j 1.0 ri, r j Match

s GivenName ri, r j 0.7 s Surname ri, r j 0.8
s StrName ri, r j 0.8 s Suburb ri, r j 0.8 ri, r j Match

s GivenName ri, r j 0.7 s Surname ri, r j 0.8
s BDay ri, r j 0.5 s BMonth ri, r j 0.5

s BYear ri, r j 0.5 ri, r j Non-Match

s GivenName ri, r j 0.7 s Surname ri, r j 0.8
s StrName ri, r j 0.6 s Suburb ri, r j 0.6 ri, r j Non-Match

Fig. 6.3 An example set of classification rules that could be applied on the comparison vectors
from Fig. 2.6 shown on page 31. Conjunctions (logical and) are shown as ∧ and disjunctions (logical
or) as ∨. ‘s(·)’ refers to a similarity value taken from the comparison vector for a given record pair.
The first three rules classify a pair of records ri and r j as a match if their name values are similar,
and either their dates of birth or their addresses are similar as well. On the other hand, the last two
rules classify a pair as a non-match if their name is similar but they have either a different date of
birth or a different address

Ideally, each rule in a set of rules should be of high accuracy and high coverage
[135]. A high accuracy means that a rule that classifies record pairs into a certain
class should mostly cover pairs that do belong to this class but not pairs that belong
into another class. In order to be able to assess the accuracy of rules, candidate record
pairs and their true match status (match or non-match) must be available. Without the
true match status it is not possible to assess the accuracy of rules. A high coverage
means that the predicate P of a rule covers a large portion of all candidate record
pairs. A rule which has a coverage of 10 % is triggered (i.e. its predicate P is true)
for 10 % of all candidate record pairs. A rule with an empty predicate P (i.e. no
test on any similarity value) would have a coverage of 100 %. The more specific a
rule is (i.e. the more conditions are tested in the predicate P) the lower the coverage
of a rule generally becomes. More specific rules are usually more accurate, while
less specific rules often have lower accuracy because they cover a larger number of
candidate record pairs that are in both the match and non-match classes.

The quality of a rule set can be measured by its overall accuracy and its coverage
[135]. Additionally, a smaller rule set is generally preferable over a larger rule set,
because a smaller number of rules is easier to maintain. Because rules are depending
upon the characteristics and the quality of the data that are matched or deduplicated,
either a new set of rules needs to be developed for each new database, or an existing
set of rules needs to be adjusted when data with different characteristics are matched
or deduplicated.

This raises the question of how a set of rules can be generated to achieve a
high classification accuracy of the compared candidate record pairs. The two basic

http://dx.doi.org/10.1007/978-3-642-31164-2_2

6.5 Rule-Based Classification 141

approaches are to either develop a rule set manually or to learn a set of rules from
training data.

• The traditional approach to generating rules is to manually develop them based
on domain knowledge of the databases to be matched or deduplicated. Develop-
ing such rules is usually done hand in hand with selecting appropriate indexing
approaches and comparison functions, because both of these will affect the candi-
date record pairs that are generated and the similarity values in their corresponding
comparison vectors.
Manually generating rules is a labour-intensive process that is generally iterated
over many variations of potential rules. These rules need to be tested and manually
evaluated using some form of training data that contain the true match status of
candidate record pairs. If such training data are not available (as is the case in
many real world data matching situations, as will be discussed further in Chap. 7),
then the evaluation of each rule requires manual inspection of all candidate record
pairs that are covered by a rule, and for each covered pair it needs to be manually
decided if the classification is correct or not. This is a tedious and labour-intensive
process.

• An alternative approach to generating a set of rules is to learn them from training
data that consist of candidate record pairs and their true match status. Similar to
the learning of blocking keys discussed in Sect. 4.12, the learning of rules can be
accomplished by employing a sequential covering algorithm [135], where a set
of rules that cover one class (usually the candidate record pairs that correspond
to matches) is learned first, followed by rules that cover the other class (the non-
matches).
One rule is learned after another, by starting with an empty predicate P for a rule
and evaluating its accuracy and coverage. Candidate rules are then generated by
adding a term to P based on the similarity values in the different elements of
comparison vectors. Such candidate rules could for example be (similar to the
example given in Fig. 6.3):

(s(GivenName)[ri , r j] = 1.0) ⇒ [ri , r j] → Match

(s(Surname)[ri , r j] = 1.0) ⇒ [ri , r j] → Match

(s(StrName)[ri , r j] = 1.0) ⇒ [ri , r j] → Match

(s(Suburb)[ri , r j] = 1.0) ⇒ [ri , r j] → Match

The best candidate rule (according to some criteria that takes accuracy and cov-
erage into account [135]) is selected, and this becomes the new base rule which
will be expanded with new candidate terms in the next step [135]. Assuming for
example, that the first of the four above rules was the best candidate, the next set
of expanded candidate rules could consist of:

http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://dx.doi.org/10.1007/978-3-642-31164-2_4

142 6 Classification

(s(GivenName)[ri , r j] = 1.0) ∧ (s(Surname)[ri , r j] ≥ 0.8) ⇒ [ri , r j] → Match

(s(GivenName)[ri , r j] = 1.0) ∧ (s(StrName)[ri , r j] ≥ 0.8) ⇒ [ri , r j] → Match

(s(GivenName)[ri , r j] = 1.0) ∧ (s(Suburb)[ri , r j] ≥ 0.8) ⇒ [ri , r j] → Match

This process of testing candidate rules and expanding the best candidate with
another term is repeated until a stopping criteria is fulfilled. All candidate record
pairs that are covered by the latest generated rule are then removed from the
training set, and if candidate record pairs are left in the training set then a new rule
is learned.

Two data matching research prototypes were developed in the late 1990s that
were employing rule-based classification approaches. A system based on an exten-
sion of SQL that allows rule-based matching operators to be defined was proposed
by Galhardas et al. [117]. These matching operators included similarity predicates,
the setting of thresholds, as well as normal SQL statements. Complex matching
statements were therefore written using SQL statements. A related approach was the
WHIRL system developed by Cohen [81], which combined similarity calculations
based on cosine similarity (described in Sect. 5.8) with conjunctive rules applied on
record attributes.

More recently, Schewe and Wang [236] proposed a reasoning approach to acquire
knowledge about entities stored in different databases by identifying objects through
knowledge patterns. Such patterns can capture details such as abbreviations and
variations in title, name and address values. An advantage of knowledge patterns is
that they can capture knowledge at different levels of abstractions (i.e. not just at
the level of individual entities but also at the level of attributes), and by using the
contexts of where patterns occur (i.e. taking the relations between different patterns
into account). Knowledge patterns allow a user to identify, for example, the types
of name and address variations that commonly occur in two databases that are to be
matched, which in turn can facilitate the development of rule-based classifiers that
determine if two records correspond to the same entity or not depending upon the
variations in their attribute values.

6.6 Supervised Classification Methods

When the compared candidate record pairs are only classified into matches and non-
matches (but not potential matches), then this classification is known as a binary
classification problem. Further, if training data in the form of record pairs with their
true match status (match or non-match) are available, then a supervised classification
approach can be employed to train a classification model using these training data.
The trained model is then used to classify record pairs with an unknown match
status into matches and non-matches. Many binary classification techniques have
been developed by the AI, machine learning and data mining communities over the
past few decades [135, 189], and several of these techniques have been applied in the

http://dx.doi.org/10.1007/978-3-642-31164-2_5

6.6 Supervised Classification Methods 143

area of data matching and deduplication. This section provides an overview of this
work and highlights important issues that need to be considered when a supervised
classification technique is used to classify record pairs.

Most classification techniques (including the probabilistic record linkage, cost-
based and rule-based approaches discussed earlier in this chapter), classify each
compared record pair individually and independently from all other record pairs
(Sect. 6.10 below covers techniques that are aimed at classifying all compared record
pairs in a collective approach). From the classification point of view, each com-
pared record pair is represented by its comparison vector that contains the individual
similarity values that were calculated in the comparison step (as was discussed in
Sect. 5.16). These comparison vectors correspond to the feature vectors (the notation
used in machine learning or data mining) that are employed to train a classification
model, and to classify record pairs with unknown match status. Figure 6.4 shows such
a set of comparison vectors and their true match status. A supervised classification
approach consists of three steps [135].

1. A supervised classification technique is selected and a classification model is
built by training the classifier using available training data which include the
known true match status of candidate record pairs. Overviews of supervised
classification techniques are provided in text books on machine learning and
data mining [135, 189]. Most classification techniques require a user to tune a
variety of parameters to achieve high classification accuracy. Selecting appro-
priate parameter values can be conducted either via a guided search through the
parameter space or via manual tuning.

2. The accuracy of the built classification model is evaluated using a set of testing
data that must be in the same format and structure as the training data (i.e. these
data must be comparison vectors that were generated using the same comparison
functions as the comparison vectors in the training data). These testing data must
also contain the known true match status of record pairs, so that the match or
non-match decision of the trained classifier can be compared with the true match
status (this topic is covered in more detail in Sect. 7.2).
It is important that the testing data are different from the training data, because
otherwise over-fitting can occur [135]. Over-fitting refers to the issue that the
accuracy of a classification model as measured on the training data is very high,
because the model will learn the intrinsic characteristics of the training data.
Testing a model on data sets that are different from the training data set is more
meaningful and more realistic, because in practice the data upon which a classifier
is applied on will be different from the data the classifier was trained on. The
accuracy reported using a testing data set is therefore closer to the accuracy that
can be expected when the classification model is applied on new, unseen data
where the match status of candidate record pairs is unknown.
If the accuracy reported on the testing data is not good enough according to some
criteria set for a certain data matching exercise, then one needs to go back to step
1 and either change some of the parameter settings used when the classifier was
trained, or alternatively employ a different classification technique altogether.

http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://dx.doi.org/10.1007/978-3-642-31164-2_7

144 6 Classification

RecPairID GivenName Surname StrNum StrName Suburb BDay BMonth BYear Class

(a1,b1) 0.6 0.8 0.0 1.0 0.6 0.5 0.5 1.0 M
(a1,b2) 0.0 0.15 0.0 0.5 0.0 0.5 0.0 0.75 U
(a2,b1) 0.2 0.0 0.0 0.1 0.15 0.0 0.0 0.75 U
(a2,b2) 0.0 0.25 1.0 0.4 0.6 1.0 1.0 0.75 M

Fig. 6.4 Example comparison vectors based on records shown in Fig. 6.1 and their true match
status (the column ‘Class’, where M corresponds to matches and U corresponds to non-matches),
which can be used to train a supervised classifier

NoYes

s(Suburb) >= 0.6

NoYes

NoYes

Match

Match s(Surname) > 0.15Non−Match

Non−Match

Non−Match

s(BDay) >= 0.5

Fig. 6.5 Two example decision trees resulting from the four training comparison vectors from
Fig. 6.4. The tests are conducted on the similarity values (indicated by ‘s(·)’ in the tree nodes) for
certain attributes. The leaf nodes correspond to the two classes into which record pairs are classified.
Clearly, the tree on the left side is better as it is not only smaller (less tests) and thus faster when new
candidate record pairs with unknown match status are to be classified, but also more robust. The
test ‘s(Surname) > 0.15’, which is a very low threshold, is unlikely to lead to accurate matching
results. Rather, the tree on the right-hand side is over-fitting the training data shown in Fig. 6.4

It is important to note that the selection of the best classification technique is
dependent on the data that are to be classified [80]. For different types of data
different techniques might perform best.

3. Once a satisfactory accuracy has been achieved with a trained classification
model, in the third step the model is applied to classify new unseen data, i.e.
comparison vectors that correspond to candidate record pairs where the match
status is not known.

In the following, two popular supervised classification techniques that have been
employed in the area of data matching and deduplication are described in more detail.

• Decision tree induction: Decision tree induction is one of the most popular super-
vised classification techniques used in data mining and machine learning [135].
Decision trees, as the example shown in Fig. 6.5 illustrates, are favoured by many
researchers and practitioners over other techniques because they can be visualised
easily and are thus understandable even by people who are not data mining or
machine learning experts. Additionally, decision trees can be directly converted
into a set of rules. The two trees from Fig. 6.5 for example, can be converted into
the following two sets of rules:

6.6 Supervised Classification Methods 145

(s(Suburb)[ri , r j] ≥ 0.6) ⇒ [ri , r j] → Match

(s(Suburb)[ri , r j] < 0.6) ⇒ [ri , r j] → Non-Match

(s(BDay)[ri , r j] ≥ 0.5) ∧ (s(Surname)[ri , r j] > 0.15) ⇒ [ri , r j] → Match

(s(BDay)[ri , r j] ≥ 0.5) ∧ (s(Surname)[ri , r j] ≤ 0.15) ⇒ [ri , r j] → Non-Match

(s(BDay)[ri , r j] < 0.5) ⇒ [ri , r j] → Non-Match

Like with the rule-based classification approach described in the previous section,
each internal node of a decision tree corresponds to a test on a similarity value in
a comparison vector for a certain attribute, as illustrated in Fig. 6.5. Each internal
node therefore corresponds to a test in the predicate of a rule, where the leaf nodes
in a tree correspond to the possible classification outcome of a rule. In the case of
data matching, the two possible outcomes are the match and non-match classes.
In the learning phase, a tree is built recursively, starting with an empty tree. At
each step in the tree generation process, an attribute that results in the purest split
of the training data set is selected (such that matches are moved into one branch of
the tree and non-matches into the other branch). Different decision tree algorithms
and splitting criteria have been developed. The interested reader is referred to text
books in machine learning or data mining, such as the ones by Mitchell [189] or
Han and Kamber [135].
An early work that used a decision tree classifier for data matching was presented
by Cochinwala et al. [80]. Their work aimed at matching two databases with
customer records. They manually generated training data in the form of sampled
pairs of records that were then used to train a Classification and Regression Tree
(CART) classifier [42]. Once a tree was generated, they applied tree pruning in
order to reduce the complexity of the rules that were extracted from the tree, and
to make these rules more robust. The reduced tree not only generated less complex
rules (i.e. rules made of a smaller number of tests), it also lead to rules that were
more robust when applied to matching the full customer record databases [80].
Elfeky et al. implemented the ID3 decision tree algorithm into their TAILOR
data matching tool box [102]. They provided two approaches to generate training
data. In the first approach, selected candidate record pairs are manually classified
as matches and non-matches by a domain expert, and the comparison vectors of
these record pairs are then used to train a decision tree. The second approach aims
to overcome the manual step by first applying a clustering technique to group all
candidate record pairs into three clusters based on their comparison vectors. The
first cluster corresponds to the class of matches, the second cluster to the class
of non-matches, and the third cluster to the class of potential matches. The com-
parison vectors in the match and non-match clusters are then used to train the
decision tree classifier. In their experimental study, the authors found that both
the decision tree based on manual training data generation and the one based on
the cluster pre-processing (called the ‘hybrid classification approach’) achieved

146 6 Classification

better matching quality than the threshold-based probabilistic record linkage clas-
sifier described in Sect. 6.3.

• Support vector machine (SVM): This relatively recent classification technique,
developed in the 1990s [259], is based on the idea of mapping the training data set,
which consists of comparison vectors and their class labels (match or non-match),
into a multi-dimensional vector space in such a way that the training records from
the two classes are separated and the gap between the two classes is made as wide
as possible.
This idea is illustrated in Fig. 6.6. A decision boundary corresponds to a hyper-
plane in the high-dimensional space (a line in two dimensions or a plane in
three dimensions), and the optimal decision boundary is the one which has the
widest margins to training records in both classes. The mapping from the original
input space (i.e. the comparison vectors containing similarity values) into a high-
dimensional space is conducted using a kernel function, which allows the efficient
calculation of the dot product required in the training process of a SVM. This
training process corresponds to solving a quadratic optimisation problem [259],
for which efficient techniques are available.
Bilenko et al. [35] employed a SVM classifier to learn the costs for edit operations
(such as character inserts, deletes or substitutions) within the Levenshtein edit dis-
tance approximate string comparison function (which was presented in Sect. 5.3).
Learning these costs allows a better separation of the string pairs that correspond
to matches from those that correspond to non-matches. The training data required
for this approach consist of pairs of strings and their match status.
Christen [59, 60] developed an automatic classification approach for data match-
ing based on a SVM, which is similar to the clustering-based hybrid approach
developed by Elfeky et al. [102] described above. In a first step, training exam-
ples that clearly correspond to matches and non-matches are selected from the set
of all comparison vectors. Clear match examples are comparison vectors where
all similarity values are equal to or very close to the exact similarity of 1, while
clear non-match examples are comparison vectors where all similarity values are
equal to or close to 0. Based on this initial training set, a first SVM is trained. All
comparison vectors that are not in one of the two training sets are classified using
this initial SVM. In the second step, the comparison vectors that were classified
to be furthest away from the SVM decision boundary are added into one of the
two training sets (depending upon if they are located on the side of matches or on
the side of non-matches), and a second SVM is trained on these enlarged train-
ing sets. This process of adding more comparison vectors into the training sets
followed by training a new SVM is repeated until a stopping criteria is fulfilled.
In an experimental study, this automatic classification approach outperformed a
basic clustering approach as well as the hybrid approach by Elfeky et al. [102] in
experiments on several data sets.

Employing supervised classification techniques for data matching has several
challenges. First, classifying candidate record pairs is often an imbalanced problem,
in that there are many more record pairs that correspond to true non-matches com-

http://dx.doi.org/10.1007/978-3-642-31164-2_5

6.6 Supervised Classification Methods 147

0

1

0
1

s(
S

u
rn

am
e)

s(Suburb)

(a1,b1)

(a2,b2)

(a1,b2)

(a2,b1)

Fig. 6.6 A simplified illustration of a 2D vector space (made of the similarities of the attributes
‘Surname’ and ‘Suburb’), containing the similarity values of the four comparison vectors from
Fig. 6.4, and three decision boundaries (dotted lines) that correspond to three trained support vector
machine (SVM) classifiers. The thick dotted line is the SVM which has the widest margins to both
the class of matches (circles) and non-matches (squares)

pared to the number of record pairs that correspond to true matches. This holds even
after some form of indexing has been applied. As a result, a classification technique,
as well as the measure(s) used to evaluate how good a trained classification model
is, must be able to handle imbalanced classes. The way training data are generated
can help to overcome this problem, for example by sampling the same number of
training examples from both the match and non-match classes. This issue will be
discussed further in Sect. 7.1.

The second issue is the difficulty to generate, obtain, select or sample training
data that are representative of the actual data that are to be matched. Good training
data will more likely result in a robust and accurate classification model. Acquir-
ing or manually generating training data can be quite costly and time-consuming.
As a result, training data sets are often small compared to the databases that are to
be matched or deduplicated. Training data should, however, represent the detailed
characteristics of the full database(s) as much as possible. An alternative to train a
supervised classifier using a large training data set is to create training data interac-
tively using an active learning approach, as will be discussed next.

6.7 Active Learning Approaches

A major drawback of supervised classification techniques is their need for training
data sets, made of comparison vectors that correspond to matches and non-matches,
that represent the characteristics of the full database(s) to be matched or deduplicated.
An alternative to generating or obtaining such comprehensive training data sets is
to use a classification approach that only requires a small amount of training data

http://dx.doi.org/10.1007/978-3-642-31164-2_7

148 6 Classification

in order to achieve high classification accuracy. Based on an initial small training
data set, a classification model is built interactively by asking an experienced user
for further training examples that help to improve the classification model. Such
interactive approaches are known as active learning [11, 231, 252].

An active learning classifier starts by building a first classification model using a
small set of seed training examples. These can, for example, be comparison vectors
that correspond to clear matches and clear non-matches. This initial classification
model will likely have a low classification accuracy. Specifically, it will have difficul-
ties to classify comparison vectors with certain characteristics, such as comparison
vectors that do not correspond to clear matches or non-matches. If a SVM classifier
is used, for example, then the comparison vectors that are located closest to the deci-
sion boundary (see Fig. 6.6) correspond to matches or non-matches with almost equal
likelihood. A manual classification of the candidate record pairs that correspond to
these comparison vectors can be highly beneficial to improve the accuracy of the
classification model.

An active learning classifier works iteratively by (1) training a classification model,
(2) classifying all comparison vectors not in the training set as matches or non-
matches, (3) asking a user to provide manual classification of the candidate record
pairs that were most difficult to classify, (4) adding these manually classified compar-
ison vectors to the corresponding training data set (of either matches or non-matches)
and (5) training the next, improved, classification model. This process is repeated
until a certain stopping criteria is met. This stopping criteria either terminates this
process after a maximum number of iterations, or more commonly when the last
trained classifier achieves a certain matching quality on the testing data set.

The following three classification approaches using active learning have been
proposed in the area of data matching and deduplication.

• Sarawagi et al. [231] presented the ALIAS system, which is an interactive
deduplication system that (similar to the traditional probabilistic record linkage
classification approach discussed in Sect. 6.3) works with the three classes of
matches, non-matches and potential matches. Rather than building only one clas-
sification model, a set of several models is trained on the training data set, each
of them with a randomised choice of parameter setting. Three decision trees were
used in ALIAS. For those comparison vectors where different decisions were made
by the three trained decision trees (for example, two classify a comparison vector
as a match and one as a non-match), a manual decision is required by the user.
According to this manual classification, comparison vectors are added into either
the training set of matches or the set of non-matches, and the next set of classifiers
is trained on this enhanced data set.

• A similar approach was presented by Tejada et al. [252] aimed at integrating data
objects from different Web sources. Their system, called Active Atlas,1 learns
mapping rules using an active learning approach. These mapping rules include
tests for string equality, string prefix or string suffix equality, or if two strings

1 It is interesting to note that both the ALIAS and Active Atlas systems were presented in the same
year (2002) and at the same conference.

6.7 Active Learning Approaches 149

contain the same abbreviations or acronyms (like ‘IBM’ vs. ‘International Business
Machines’). Similar to the ALIAS system, a committee of three decision tree
classifiers was used to learn the rules that best distinguish matches from non-
matches, with a manual classification required for pairs of strings where the three
decision trees returned different classification outcomes.

• More recently, Arasu et al. [11] presented a novel approach to active learn-
ing specifically designed for data matching. Their technique integrates indexing
with active learning. Either a decision tree or SVM classification model can be
employed, and a user can specify the minimum precision (to be discussed in
Sect. 7.2) the final classification model must achieve. The active learning process
then aims to achieve a high recall for the classification model while reducing the
number of examples to be classified manually as much as possible. Experiments
on two large databases showed that this proposed new technique outperformed
both ALIAS [231] and Active Atlas [252].

6.8 Managing Transitive Closure

The result of the classification of individual candidate record pairs into matches
and non-matches is often not the final outcome of a data matching or deduplication
exercise. If candidate record pairs are classified individually, each record can be part
of a match with several other records, as illustrated in Fig. 6.7. In certain situations,
however, a one-to-one match restriction has to be applied, as will be further discussed
in Sect. 6.11. If multiple matches are allowed, then the issue of transitive closure
needs to be addressed.

Transitive closure refers to the situation where two record pairs, (ri ,r j) and (ri ,rk),
have been classified as matches but the pair (r j ,rk) has been classified as a non-match.
This contradicts the intuition that if record ri is considered to be a match with record
r j (i.e. referring to the same entity) and record r j is considered to be a match with
rk , then record ri must also be considered a match with rk . Applying the transitive
closure refers to changing the match status of record pairs such that no contradictions
of the match status within groups of records occurs [195].

The transitivity of matches can also lead to problems in that ‘chains’ of records,
where individual pairs are classified as matches, are formed. The records at the two
ends of a chain can, however, be quite different from each other, and they would
not be considered to correspond to a match. For example, consider the four records
‘a1’ to ‘a4’ in Fig. 6.7, where the three individual pairs (a1,a2), (a2,a3) and (a3,a4)
have been classified as matches, but the summed similarities between other pairs
is below the match classification threshold t = 5. Pair (a1,a4), for example, only
has a summed similarity of SimSum(a1, a4) = 1.15, and it is unlikely that these
two records refer to the same individual. The clustering approaches discussed in the
following section aim to overcome this problem of chains of matching records.

In real-world databases, the problem of record chains being generated by a pair-
wise classification technique seems to occur only rarely because the space of all

http://dx.doi.org/10.1007/978-3-642-31164-2_7

150 6 Classification

RecID GivenName Surname StrNum StrName Suburb BDay BMonth BYear

a1 john smith 18 miller st dickson 12 11 1970
a2 jonny smith 73 miller st dixon 11 10 1970
a3 joan smith 73 dawson cr lyneham 11 12 1979
a4 max miller 73 dawson cr lyneham 11 2 1969
a5 sal bass 67 milles rd ainslie 28 5 1981
a6 sally bass 64 miles rd ainsile 23 5 1981

Candidate pair SimSum Classification

(a1, a2) 5.20 Match
(a1, a3) 3.30 Non-match
(a1, a4) 1.15 Non-match
(a2, a3) 5.05 Match
(a2, a4) 2.70 Non-match
(a3, a4) 5.25 Match
(a5, a6) 6.20 Match

a6
a5

a2
a1

a3
a4

Fig. 6.7 An example of the transitive closure problem for a set of six records (top row table, ‘a1’
to ‘a6’). It is assumed the summed nonzero similarities SimSum for the candidate record pairs
in the lower left table have been calculated, and a simple classification threshold-based classifier
with threshold t = 5.0 has been applied to classify each record pair individually. The result of
this classification are two groups of records (possibly corresponding to two entities). The transitive
closure would require that the record pairs (a1,a3), (a1,a4) and (a2,a4) are also considered to
be matching (illustrated with dotted lines), even though their summed similarities are below the
classification threshold

possible values in the different record attributes is very large. The likelihood that
records that are not matching have a high similarity with each other is therefore very
small [140, 190, 191]. Clustering and collective classification algorithms, which will
be discussed in the following two sections, deal with the problem of transitivity by
default, by classifying groups of records as matches rather than individual pairs of
records only.

6.9 Clustering-Based Approaches

So far all techniques presented have viewed the problem of deciding which candi-
date record pairs correspond to matches and which to non-matches as a traditional
classification problem. An alternative approach is to view this classification as a
clustering (grouping) approach, where each cluster consists of records that refer to
one entity. Clustering is the process of grouping data objects that are similar to each
other according to some criteria into the same cluster [135]. The aim of clustering
is to generate clusters that have high intra-cluster similarity and low inter-cluster
similarity. This means all data objects within a cluster should be similar with each
other, while data objects in different clusters should be dissimilar to each other.

6.9 Clustering-Based Approaches 151

Clustering is generally conducted in an unsupervised fashion, and therefore no
training data in the form of record pairs with known true match status are required.
Many different clustering techniques have been developed by the statistics, machine
learning and data mining communities [135]. Different clustering techniques employ
different heuristics to guide the clustering process [135]. They either partition data
objects into a fixed number of clusters or into a hierarchy of clusters, or they generate
graphs that correspond to clusters (to be discussed in more detail below), or they
generate clusters that correspond to dense areas where many data objects are located
close to each other. In data matching, the data objects to be clustered correspond to
the records that represent entities.

A clustering-based approach is clearly suited for deduplication, where all records
to be matched are stored in one database. For the matching of two or more databases,
however, all records first need to be inserted into one common set. This can be
accomplished by assigning each record a unique identifier which not only identifies
the record but also the source database from where the record has originated.

Because each entity in a database will ideally be represented by one cluster, the
number of clusters is not only unknown at the beginning of a clustering process, it will
also be very large when the databases that are deduplicated or matched contain many
entities. Partitioning based clustering algorithms [135], which require the number of
clusters to be specified at the beginning, are therefore not applicable for clustering
records in data matching or deduplication applications.

The clusters generated in data matching are generally very small, containing only
a few records. Some, potentially many, clusters will only consist of a single record,
if there is only one record in the database(s) that corresponds to this entity.

Different clustering approaches for data matching and deduplication have been
investigated. In the following, five different approaches are discussed in more detail.

• In an early clustering approach, Monge [190] proposed an adaptive deduplication
system where records are clustered according to some similarity measure, and a
priority queue is kept in memory consisting of the most recently formed clusters.
Each cluster corresponds to an entity, and is made of one or several records that
represent this entity. To save memory, however, not necessarily all records that
refer to an entity are kept in memory for a given cluster. Initially all records to be
deduplicated or matched are sorted according to a sorting key (as was discussed
in Sects. 4.2 and 4.5). One record in the sorted database is then processed after
another. Each record is compared with the records stored in the priority queue. If
a match is found the current record is attached to the matching cluster, and this
cluster is put at the top of the priority queue. If no match is found then a new cluster
is formed made of the current record only. To make sure that only a certain amount
of memory is used, the oldest cluster is removed from the end of the priority queue
if a new cluster is generated and the queue exceeds a maximum length limit.
The experimental results of this combined sorted-neighbourhood and clustering
technique presented by Monge showed that the approach can achieve matching
accuracies similar to the basic sorted-neighbourhood approach [140, 141]. It can,
however, reduce the number of record pair comparisons that are conducted by upto

http://dx.doi.org/10.1007/978-3-642-31164-2_4
http://dx.doi.org/10.1007/978-3-642-31164-2_4

152 6 Classification

75 %, because each record is only compared to a small number of representative
records in a cluster.

• Clustering can also be applied as a post-processing step after the pair-wise classi-
fication of record pairs has been conducted, and a graph of all matching records,
as for example shown in Fig. 6.7, has been generated. The aim of clustering using
such a graph is to decide for each sub-graph (consisting of connected records)
which record subsets correspond to the actual entities that are to be matched or
deduplicated [140, 195]. For example, the sub-graph made of the four records ‘a1’
to ‘a4’ from Fig. 6.7 is unlikely to refer to one but rather to three entities (only ‘a1’
and ‘a2’ seem to be duplicate records of the same individual).
One approach to reducing the size of sub-graphs (and thus the number of records
that can correspond to the same entity) is to iteratively remove edges between two
nodes (corresponding to a record pair classified as a match) starting from the edge
that has the lowest similarity in a sub-graph. For the sub-graph made of records
‘a1’ to ‘a4’ in Fig. 6.7, the edge from ‘a2’ to ‘a3’ has the lowest similarity (5.05),
therefore this edge would be removed first, leaving two new smaller sub-graphs.
This process can be repeated until either each sub-graph only contains edges with
a certain minimum intra-cluster similarity value tc, until the transitive closure
property has been fulfilled, or alternatively until each sub-graph contains no more
than a maximum number nc of records [195]. Which of these stopping criteria is
best suited depends upon the requirements of the data matching or deduplication
application.
Continuing on with the example from Fig. 6.7, if the minimum intra-cluster thresh-
old is set to tc = 5.25, then the link between records ‘a2’ and ‘a3’ is removed first.
The link between records ‘a1’ and ‘a2’ will also be removed, resulting in three
separate entities (which possibly corresponds to a missed true match), while the
link between records ‘a3’ and ‘a4’ is kept as a match (possibly a wrong match).
On the other hand, if the maximum size of a sub-graph is set to nc = 2, then the
record pair ‘a1’ and ‘a2’ is considered as one entity and the pair ‘a3’ and ‘a4’ as
another entity, and only the link between ‘a2’ and ‘a3’ is removed.

• Another approach to clustering a graph of matching record pairs is to find centres
within each sub-graph and to then assign nodes (records) to their closest centre,
i.e. the centre record they are most similar to. This approach, named CENTER
[137], first sorts the edges of a sub-graph in descending order of their similarities.
The first time a record ri , appears in an edge of the sub-graph it is assigned as the
centre of a cluster. All records r j that appear in edges (ri ,r j) later on in the sorted
list are then assigned to this cluster, but not to any other clusters [195].
When this clustering technique is applied on the sub-graph of records ‘a1’ to
‘a4’ from Fig. 6.7, the sorted list of edges is: (a3,a4), (a1,a2) and (a2,a3), with
similarities 5.25, 5.20 and 5.05, respectively. If node ‘a3’ is marked as the centre
then ‘a4’ is obviously considered to be part of this cluster. In the next e.g., (a1,a2),
neither ‘a1’ nor ‘a2’ have been marked as centres or as being part of a cluster,
and so ‘a1’ is marked as a new centre. In the third e.g., (a2,a3), both nodes have
already been assigned to clusters and so this edge is not considered. As a result,
the clustering of this sub-graph leads to two sub-graphs that correspond to two

6.9 Clustering-Based Approaches 153

entities, one consisting of records ‘a1’ and ‘a2’ and the other of records ‘a3’ and
‘a4’. The selection of which node in a pair becomes the centre of a new cluster
obviously affects the final clustering outcome. One approach to overcoming this
problem, called MERGE-CENTER [137], is to merge two clusters if their centres
are very similar to each other.

• The two previously described approaches to clustering are based on a graph of
matching candidate record pairs which was built using a pair-wise comparison
and classification technique. A drawback of these approaches is that the minimum
similarity threshold that has been used to classify record pairs into matches and
non-matches is determining the structure of the cluster graph. This threshold is
a global parameter applied to all compared record pairs. An alternative approach
is to cluster the set of records based on all similarity values calculated between
pairs of records (not just the ones classified as matches), and to guide the clustering
based on records that are similar to each other relative to the number of records that
are located in the neighbourhood around them [195]. This is an approach similar
to density based clustering [135].
Chaudhuri et al. [52] proposed such an approach based on the concepts of compact
sets and sparse neighbourhoods. A compact set, C S, is a group of records that are
all more similar with each other (i.e. have small distances dist (·) with each other)
than they are similar to any other records. Specifically, for all pairs of records
ri , r j ∈ C S : dist (ri , r j) < dist (ri , rk) ∀ rk /∈ C S. The neighbourhood set of a
record ri is defined as N (ri) = p · nn(ri), where nn(ri) is the distance of record
ri to its closest neighbour and p determines the size of the radius around ri that
is considered. The neighbourhood of ri is defined to be sparse if the number of
records in the set N (ri) is below a certain constant threshold [52]. The advantage
of this clustering approach is that clusters of records are generated depending upon
the number and density of their neighbouring records, rather than based on a global
threshold.

• A different clustering approach was proposed by Verykios et al. [261] and Elfeky
et al. [102]. Rather than clustering the actual records based on the similarities
calculated between them, clustering was applied on the comparison vectors that are
generated in the comparison step. Specifically, comparison vectors were inserted
into three clusters, one each corresponding to matches, non-matches and potential
matches, similar to the traditional probabilistic record linkage approach presented
in Sect. 6.3. Identifying the clusters that correspond to matches and non-matches
is easy because they will either have a centroid vector that is close to an exact
match (with comparison vector [1.0, . . . , 1.0]) or a centroid vector that is close
to a total non-match (with comparison vector [0.0, . . . , 0.0]), respectively. In the
second step of this approach, the comparison vectors in the match and non-match
clusters were used as training data for a decision tree classifier, as was previously
discussed in Sect. 6.6.

154 6 Classification

6.10 Collective Classification

Pair-wise classification techniques make a match or non-match decision indepen-
dently for each compared candidate record pair, and clustering techniques further
refine the classification of groups of records that likely correspond to the same entity.
With both these approaches, decisions about the match status of a pair or a group of
records are made independently from all other records or groups in the database(s)
that are matched or deduplicated. These techniques therefore make local decisions
without taking the characteristics of all records in the full database(s) into account.

New techniques have been proposed in the past few years that aim to make a
decision about which records are matching in an overall collective fashion over all
pairs or groups of records in the database(s) that are matched. These techniques are
known as ‘collective entity resolution’ techniques, and they employ either iterative
or hierarchical clustering [31, 181], or graph-based approaches [93, 155, 195]. All of
these collective classification approaches have been developed for, and evaluated on,
databases that contain different types of entities, where certain relationships between
entities are known. These relationships can be represented in a relationship graph, as
illustrated in Fig. 6.8. The most popular type of such data are bibliographic databases
where the entity types include authors, institutions (or affiliations), venues (journals,
conferences and workshops), and the actual papers (or articles) [31, 155].

The basic idea of collective classification approaches is to calculate the similarities
of all connections (links) in the relationship graph that are ambiguous (such as the
dotted links in Fig. 6.8) using information from the known relationships (the ‘hard’
connections between different entities). Because different types of entities are avail-
able, the known relationships between one type of entities can help to disambiguate
(i.e. decide the match status) of other types of entities.

The first step in collective classification techniques is to generate the relationship
graph, which can consist of relations between different types of entities. These rela-
tions can either be ‘hard’ connections (where a relationship is known without doubt
from the data), or connections that have a probability or weight attached to them if
it is not clear if a relationship exists or not. These probabilities or weights can, for
example, be based on similarities calculated when pairs of records are compared,
as was discussed in Chap. 5. The collective classification task is then to decide if
these possible relationships correspond to matches or non-matches based on other
connections in the relationship graph. This is generally accomplished through an
iterative approach that updates the weights (or probabilities) on the connections that
determine the matching outcomes. Note that while in Fig. 6.8 only one type of con-
nection needs to be classified, in the most general case not just connections between
different types of entities, but also different types of connections, are available in a
relationship graph.

The main differences between the various collective classification techniques are
(1) how the relationship graph is generated from the underlying database(s) and
(2) how the iterative update of the probabilities or weights in the graph, and their
classification into matches (i.e. a connection exists between two nodes) or non-

http://dx.doi.org/10.1007/978-3-642-31164-2_5

6.10 Collective Classification 155

AuthorID Author name Affiliation

a1 Dave Smith Purdue
a2 Don Smith Patras
a3 Susan Miles Stanford
a4 John Black Stanford
a5 Joe Green ?
a6 Liz Redman ?

PaperID Co-author names

p1 John Black, Don Smith
p2 Susan Miles, D Smith
p3 Dave Smith
p4 Don Smith, Joe Green
p5 Joe Green, Liz Redman
p6 Liz Redman, D Smith

? ?

John Black p1 p4

p3

p6

p5

w3=?

w2=?

w1=?

w4=?
Stanford

Patras

Purdue

Joe Green

Dave Smith

Don Smith

Liz RedmanSusan Miles

p2

?

?

Fig. 6.8 Example of a graph-based collective matching approach of bibliographic records, adapted
from [155]. The task is to identify (disambiguate) if the author ‘D Smith’ in papers ‘p2’ and ‘p6’
refers to either ‘Don Smith’ or ‘Dave Smith’. Given Don Smith has co-authored paper ‘p1’ with
‘John Black’, who is affiliated with ‘Stanford’, and ‘Susan Miles’ is also affiliated with ‘Stanford’,
there is a higher likelihood that ‘Don Smith’ rather than ‘Dave Smith’ is a co-author of paper ‘p2’,
because ‘Dave Smith’ does not have any other connection with ‘Stanford’. Similarly, given ‘Don
Smith’ has written paper ‘p4’ with ‘Joe Green’, who has co-authored paper ‘p5’ with ‘Liz Redman’,
there is a higher likelihood that ‘Don Smith’ is also the second co-author of paper ‘p6’ rather than
‘Dave Smith’ who has no connection to ‘Joe Green’

matches (no connection exists between two nodes) is conducted. In the following,
the major approaches to collective classification techniques are described in more
detail.

• Kalashnikov and Mehrotra [155] build a relationship graph between different types
of entities and with different relations, as the example graph in Fig. 6.8 shows.
The disambiguation of connections between entities, i.e. their classification as
being matches or non-matches, is conducted in an iterative approach where the
unknown weights (such as ‘w1’ to ‘w4’ in Fig. 6.8) are updated based on the
number of connections in the path that needs to be covered to get from one end
of the connection under question to the other. For example, in Fig. 6.8, the path
from ‘Don Smith’ via connection ‘w4’ continues onto ‘p6’, ‘Liz Redman’, ‘p5’,
‘Joe Green’, ‘p4’ and then back to ‘Don Smith’. On the other hand, the only path
starting from ‘Dave Smith’ would go via all other authors and even another path
with unknown weight (‘w1’), which is much less likely than the first path because
it is a much longer path. Therefore, the weight for ‘w4’ can be set to a higher
value than the weight for ‘w3’. Kalashnikov and Mehrotra formalise this principle
as the context attraction principle [155], and using this principle the unknown
connection weights in the relationship graph are updated in an iterative fashion.
An experimental evaluation on bibliographic data confirmed that this approach

156 6 Classification

can lead to more accurate matching results compared to a pair-wise classification
approach [155].

• Dong et al. [93] tackle the problem of collective classification of entities from
multiple classes (types) by generating a dependency graph rather than a relation-
ship graph. A node in the graph represents the similarity between a pair of entities
of the same type, and a connection between nodes occurs when this similarity
depends upon the similarity of another pair of entities. For example, the similarity
between two papers (articles) depends upon the similarity between the titles, years
of publication, page numbers, the authors listed with the two papers, as well as the
similarity of the venues where the two papers have been published. A change in the
similarity of authors or venues, for example, will affect the similarity calculated
for the pair of papers.
The collective classification task is conducted iteratively by initially marking all
nodes as active. An active node is then selected, and depending upon the similarity
in that node, it is either marked as merged (if its similarity is above a certain sim-
ilarity threshold) or as inactive (otherwise). All neighbours of this just processed
node that have a similarity below 1.0 (i.e. which do not have exact similarity) are
then set as active. A queue of active nodes is maintained throughout the process,
and in each iteration the similarity of the node at the top of the queue is recalcu-
lated. This process continues until no active node is left in the queue and all nodes
are either marked as merged or inactive. This approach outperformed pair-wise
classification techniques in experiments using several data sets [93].

• A machine learning based technique to collective classification has been proposed
by Bhattacharya and Getoor [31]. In this approach, a relationship graph is built
where the records (viewed as references to entities) are the nodes, and edges
connect nodes if there is a relationship between them. For example, similar as
shown in Fig. 6.8, the names of authors will be nodes in a reference graph, and
all co-authors of a paper will be connected through an edge. These edges can
be between more than two nodes, in which case they are called hyper-edges. If,
for example, a paper was written by three co-authors, then one edge connects
the three nodes that correspond to these co-authors. The similarity between two
nodes is calculated as the weighted sum between the attribute value similarity and
the relational similarity, where the latter considers the connectivity of two nodes
through their hyper-edge as well as the connectivity of the neighbouring nodes they
are connected to. Different relational similarity measures have been investigated
[31].
The collective classification is conducted using a priority queue that contains tuples
made of two cluster identifiers and the similarity between the two clusters, sorted
according to highest similarities first. An iterative algorithm merges clusters and
updates the similarities between newly formed clusters as long as there are pairs
of clusters in the queue that have a certain minimum similarity. When two nodes
or clusters are merged, the similarities between the newly formed cluster and all
its neighbours in the relational graph are updated, and the similarities between
older clusters and the new cluster are added into the priority queue. The algo-
rithm stops when no more clusters can be merged because the similarity between

6.10 Collective Classification 157

them is below the minimum threshold set by the user. Experiments on three dif-
ferent bibliographic databases showed that this approach is superior to pair-wise
classification, however, at the cost of longer run times [31].
A variation of this relational clustering approach has been developed by
Bhattacharya and Getoor to allow query-time collective classification [32]. A sin-
gle query record is matched to a database that contains entity records and that can
include duplicates. Using a collective classification approach, the query record
is matched with the full database. While the reported matching accuracy of this
approach is again very high, the matching time for a single query record was
reported as being around 30 s, making this approach not suitable for real-time data
matching (a topic that will be covered in detail in Sect. 9.3).

While collective classification techniques have shown to result in improved match-
ing quality compared to pair-wise classification techniques, these improvements
come at the cost of a higher computation complexity and thus reduced scalability to
large databases. Recent work has aimed to improve the scalability of collective clas-
sification techniques by running a collective matching process many times on small
subsets of records that are in the same neighbourhood of the data [225]. These inde-
pendent collective matching instances exchange messages about the local matches
found, and the results of all matching instances are combined into a final overall
solution.

Thus far collective classification techniques for data matching have mostly been
applied on databases that contain bibliographic data, or other data that contain several
types of entities. It is not clear if and how collective classification techniques can be
applied on data that only contain one type of entities, such as databases containing
records about individuals.

6.11 Matching Restrictions and Group Linking

The classification of pairs or groups of records into the class of matches and non-
matches discussed so far has not taken into account that in certain data matching
applications there are restrictions with regard to the number of matches a single
record can be involved in. The three possible scenarios when matching two databases,
A and B, are:

• One-to-one: A record from A can match at most one record from B.
• One-to-many: A record from A can match at most one record from B, while a

record from B can be involved in none, one or several matches with records from
A. The one-to-many scenario is symmetric by swapping the databases A and B.

• Many-to-many: A record from A can match none, one, or several records from
B, and a record from B can match none, one, or several records from A.

A one-to-one matching restriction is, for example, required when records from
(historical) census databases are matched across time, and each record corresponds

http://dx.doi.org/10.1007/978-3-642-31164-2_9

158 6 Classification

Candidate pair SimSum

(a1,b2) 4.5
(a1,b4) 5.5
(a2,b3) 5.9
(a2,b5) 4.9
(a3,b2) 5.8
(a3,b4) 4.7
(a4,b1) 5.3
(a4,b5) 6.0
(a5,b5) 5.1 b5

b4

b3

b2

b1a1

a2

a3

a4

a5

Optimal

b5

b4

b3

b2

b1a1

a2

a3

a4

a5

Greedy

Fig. 6.9 Examples of two approaches to enforcing a one-to-one assignment of matched candi-
date record pairs. The thicker lines between records illustrate the matched (assigned) records. The
‘Optimal’ approach aims to maximise the overall sum of the similarities (SimSum) over all matched
record pairs, while the ‘Greedy’ approach matches candidate record pairs starting from the pair that
has the highest similarity value until no more un-assigned records can be matched. In this example,
the sum of similarity values for the matched (assigned) record pairs with the optimal approach is
27.6 while for the greedy approach the sum is only 23.2

to one individual [115, 116]. Because it is assumed that each census database only
contains a single record per individual, one record in one census database (for exam-
ple from 1900) can only match at most one record from another census database (for
example from 1910).

A one-to-many matching restriction could be appropriate in a scenario where a
client database of a government agency (that only contains one record per client)
is updated with a set of new records that refer to individuals who in the recent
past have been in contact with this agency. This new set of records can potentially
contain several records for an individual because there might be several contact
points for this government agency (online, telephone and face-to-face), and because
this agency provides several programs (like a social security agency that provides
housing, disability, unemployment and childcare support programs). Therefore, one
client record in the cleaned and deduplicated client database maintained by this
government agency can potentially match with several records in the set of new
records.

A many-to-many matching is, for example, appropriate when two bibliographic
databases are matched with the aim to identify and match all publications that refer
to the same author, and there can be several records in each database that corre-
spond to publications by one author. Returning to the example of matching census
data, when the objective is to match households or families across census databases,
rather than individuals, then a many-to-many matching scenario needs to be followed
[114, 115].

While the clustering-based and collective classification techniques discussed in
the previous two sections are mostly aimed at the many-to-many matching scenarios,
the classification techniques presented in Sects. 6.2–6.7 classify individual record
pairs independently from all others. Any one-to-one or one-to-many matching restric-
tion can then be applied as a post-classification step on the set of candidate record
pairs that were classified as matches.

6.11 Matching Restrictions and Group Linking 159

A one-to-one matching restriction corresponds to finding an optimal solution to
the problem of assigning individual records from the two databases into pairs (with
one record originating in each database) based on the classified matched record pairs,
such that the number of confirmed matched pairs and the sum of their similarities
are maximised. As Fig. 6.9 illustrates, solving this problem corresponds to finding a
solution to the maximum weighted bipartite graph matching problem [273].

A simple if not optimal approach to one-to-one matching is to sort the matched
candidate record pairs according to their similarity values, and to assign pairs into the
set of confirmed matches in a greedy fashion, as shown in the left graph in Fig. 6.9.
The record pair with the highest similarity value is confirmed as a match first, and
the two records of that pair are marked as being assigned matches (thick line). They
can therefore not be part of any other matching pair. Then the next record pair (where
both records are unassigned) with the highest similarity is confirmed as a match, and
its two records are assigned as matches. This process is repeated as long as there
are unassigned records that can be assigned to a record pair. For example, the pair
(a4, b5) in Fig. 6.9 has the highest similarity value, SimSum = 6.0, and is therefore
assigned as a confirmed match first. This, however, means that neither record ‘a4’
nor record ‘b5’ can be part of any other assigned pair. While this is a simple and
fast approach (only requiring sorting the matching record pairs according to their
similarities followed by a linear scan through that sorted list), this greedy approach
is unlikely to produce a good solution because it is likely that not all records can be
assigned into matching pairs. In Fig. 6.9, for example, the greedy approach cannot
assign records ‘a5’ and ‘b1’ into a matching record pair.

Finding an optimal solution to the problem of assigning records into matching
pairs is known as solving the assignment problem. Various algorithms have been
developed to solve this problem [273]. One early approach is the so-called Hungarian
algorithm, while another class of algorithms can solve this problem by viewing it as
an auction problem [30]. The objective of an auction algorithm is to assign a group
of people who all bid for several objects such that overall the highest profit can be
obtained. People have maximum prices they are willing to pay for certain objects.
When such an auction problem is mapped to the one-to-one matching restriction
problem, people correspond to the records from one database, objects to the records
from the second database, and the maximum prices to the similarities between pairs
of records. Assignment algorithms are computationally more costly than the simply
greedy approach presented before. Specifically, an auction algorithm has a compu-
tation complexity of the order O(m × n), where m is the number of links between
records and n is the number of records involved [204, 205]. When a one-to-one
matching restriction is required in data matching, then each subset of connected
record pairs can be solved independently from all other subsets using an assignment
algorithm applied on this subset only.

In some applications where many-to-many matchings are permissible, the main
aim of a matching exercise is to identify groups of records that match across two
databases rather than individual records [204, 205]. Groups can be defined according
to some criteria, such as the value of a group identifier attribute. Example applications
where such group linkage techniques are useful include the matching of families and

160 6 Classification

households between census databases collected at different points in time [114, 115,
116], or the matching of bibliographic databases where sets of records correspond
to the publications of one author [205]. The objective of group linkage is to identify
an optimal matching of groups of records across two databases based on similarities
calculated between individual pairs of records as well as a similarity measure that
can be calculated for groups of individual record pairs. Both the Jaccard coefficient
and a weighted bipartite graph matching approach have been successfully employed
for the group linkage problem [204, 205].

6.12 Merging Matches

Thus far, it was assumed that the data matching process is completed once pairs
or groups of records have been classified into matches and non-matches (with an
acceptable quality as will be discussed in Chap. 7). In certain data matching and
deduplication situations, however, matched records also need to be merged (in some
way) before the matched data can be used further, either for data analysis or data
mining, or for further data processing such as generating mailing lists. In this last
example, the objective of a data matching exercise is to create a database that contains
complete, accurate and up-to-date address and name details for all records in a mailing
list. Achieving this goal means that the values in certain attributes for the matched
records need to be merged.

While traditionally the merging of matched records has not been considered by
most research in data matching, a recent research project has investigated how this
merging step can be best incorporated into the overall data matching process. The
Stanford Entity Resolution Framework (SERF) project [25, 26, 186] has developed
generic data matching techniques that assume the actual matching of records as a
black-box approach, represented as a function match(ri , r j), which returns true if
two records are matching and false otherwise. An additional black-box function,
merge(ri , r j), is defined on matching record pairs. It returns a new record that is
generated by (somehow) merging the content of records ri and r j . While the actual
merge function is domain and application specific, a merge domination is defined
as the situation when for two records ri and r j it holds merge(ri , r j) = r j . When
the merge function corresponds to combining attribute values from ri and r j , r j

dominating ri means that ri does not contribute any new attribute value(s) to the
merged record beyond what r j already contains.

The generic entity resolution process on a database consists of an iterative match-
ing and merging approach which results in a set of merged records that cannot be
further matched or merged with each other, and no merged record is dominated by
another merged record [26]. Based on these assumptions, a set of entity resolution
algorithms (named G-Swoosh, R-Swoosh, F-Swoosh, D-Swoosh, and P-Swoosh)
were developed by the SERF project. The G-Swoosh algorithm has no particular
requirements on the match and merge functions. It helps to illustrate the process
of entity resolution. In the R-Swoosh algorithm, if two matched records ri and r j

http://dx.doi.org/10.1007/978-3-642-31164-2_7

6.12 Merging Matches 161

are merged into ri, j , i.e. ri, j = merge(ri , r j), then the new record ri, j is added into
the set of all records and the two original records ri and r j are removed from this
set. This approach also means that dominated records do not need to be explicitly
removed from the set of all records as they are eliminated in the merge and removal
step.

The F-Swoosh algorithm improves performance by taking feature (attribute value)
comparisons into account such that each pair of features is only compared once.
D-Swoosh [25] and P-Swoosh [160] are algorithms aimed at distributed and parallel
computing environments, respectively. Both these algorithms are described further
in Sect. 9.5.

A more recently proposed approach is to employ locality sensitive hashing (LSH)
for quick iterative blocking of the records in a databases [164]. All records hashed
into the same bucket (block) by the hash-algorithm are matched and merged, and the
merged records are re-hashed. This process is repeated until either no more matches
and merges are found, the reduced number of record pairs reaches a certain minimum
number, or a specified maximum number of iterations has been reached. The authors
proposed several variations of their approach depending upon if the databases to be
matched contain duplicates or not. Experimental results on a bibliographic database
showed that this hash-based approach is able to achieve better scalability to large
databases compared to the R-Swoosh algorithm [164].

6.13 Practical Considerations and Research Issues

The choice of what type of classification technique to employ for a certain data
matching or deduplication exercise depends upon various factors, including the clas-
sification techniques available in the matching software that is used (or the techniques
that can be implemented), and the type of data that are to be matched or dedupli-
cated. If a supervised classification technique is to be used, training data in the form
of record pairs with their known match status are needed.

A suggested approach is to evaluate different classification techniques, and in the
case where no training data are available, to manually generate a set of record pairs
(together with their match status) that represent the characteristics of the data (such
as the distribution of values, and the types and distribution of errors and variations in
the data that are to be matched). While time-consuming and labour-intensive, such an
approach will enable an evaluation and comparison of the classification accuracies
of different data matching algorithms.

Unfortunately, no comprehensive survey of classification techniques for data
matching and deduplication has so far been published. What is needed is an experi-
mental evaluation of different techniques on a variety of test data sets from different
domains and of different sizes. These data sets should contain the true match status
of record pairs so that the resulting matching quality can be evaluated. Data sets
of different sizes are required so that the scalability with regard to training time,
classification time and memory usage can be evaluated.

http://dx.doi.org/10.1007/978-3-642-31164-2_9

162 6 Classification

Future research in the area of classification for data matching and deduplication
should be aimed at investigating if and how collective classification techniques can
be applied to data that do not contain different types of entities (for example, data
containing personal details such as names and addresses), and how classification
techniques can be employed on very large databases that contain many millions of
records. Given the difficulties of obtaining or generating training data (as will be
discussed further in Chap. 7), a major focus of research should be on unsupervised
and automatic classification techniques that do not require manual preparation of
training data.

Another area of future research is the development of adaptive classification tech-
niques, given that in many application areas data matching is no longer employed
in batch mode and on static databases. Rather, in many modern information systems
data matching and deduplication functionalities are integrated into larger systems
where new records that contain the details of entities are being added into databases
or data warehouses in an ongoing basis. Matching in real time and matching dynamic
databases will be discussed further in Sects. 9.3 and 9.4.

6.14 Further Reading

The book by Herzog, Scheuren and Winkler [143] contains arguably the most accessi-
ble and detailed description of the probabilistic record linkage approach. Issues such
as the conditional independence assumption and parameter estimation are discussed
in detail and illustrated via examples. Further examples of probabilistic record link-
age applications are also provided. Talburt nicely explains the Swoosh-based entity
resolution approaches using several small example databases [249]. He also describes
an algebraic model for data matching. For general introductions to classification tech-
niques, the reader is referred to textbooks in the areas of machine learning or data
mining [135, 189].

Naumann and Herschel [195] cover graph-based and collective classification tech-
niques, as well as clustering and rule-based approaches (even though in their book
rules-based approaches are discussed under the topic of comparison functions). Batini
and Scannapieco [19] also provide an overview of different techniques, including a
brief comparison with regard to the requirements (such as expected input, gener-
ated output and classification objectives with regard to a quality metric) of different
classification techniques for data matching.

The best coverage of the topic of how to merge pairs or groups of records that have
been classified as matches is provided by Benjelloun et al. [25] in their description
of the techniques developed in the SERF project. Data fusion more generally is
covered in the recent survey by Bleiholder and Naumann [38]. For a tutorial on
the assignment problem that can be employed to finding a solution to the one-to-
one matching problem the reader is referred to the excellent tutorial provided by
Bertsekas [30].

http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://dx.doi.org/10.1007/978-3-642-31164-2_9
http://dx.doi.org/10.1007/978-3-642-31164-2_9

	6 Classification
	6.1 Overview
	6.2 Threshold-Based Classification
	6.3 Probabilistic Classification
	6.4 Cost-Based Classification
	6.5 Rule-Based Classification
	6.6 Supervised Classification Methods
	6.7 Active Learning Approaches
	6.8 Managing Transitive Closure
	6.9 Clustering-Based Approaches
	6.10 Collective Classification
	6.11 Matching Restrictions and Group Linking
	6.12 Merging Matches
	6.13 Practical Considerations and Research Issues
	6.14 Further Reading

