
Chapter 3
Data Pre-Processing

3.1 Data Quality Issues Relevant to Data Matching

Most real-world databases contain noisy, inconsistent and missing data due to a
variety of factors [19, 135, 218]. It is generally accepted that low data quality costs
businesses and governments billions of lost revenue every year. It has been estimated
that data quality problems can result in up to 12 % lost revenue for businesses [177].
For any type of data analysis, processing and management, the garbage-in garbage-
out principle holds. If the quality of the input data is low, then the output generated
is normally not of high quality or accuracy either.

A large body of work has covered the various issues involved with data quality in
depth [19, 177, 218]. There are several dimensions to data quality. The ones relevant
to data matching are:

• Accuracy. How accurate are the attribute values in the database(s) used for match-
ing or deduplication? Is it known how the data have been entered or recorded? Have
data entry checks been performed, and have the data been verified for correctness
using external reference data (such as references of known and valid addresses)?

• Completeness. How complete are the data? How many attribute values are missing
in the databases used? Is it known why certain attribute values are missing? Are
attributes missing that would be of use for data matching?

• Consistency. How consistent are the values within a single database used for match-
ing or deduplication, and how consistent are values across two or more databases
used for matching? The format and coding of individual attributes even within a
single database can change over time. Is it known if the databases contain duplicate
records for the same entity (for example because a person moved to a different
address and therefore was recorded as a new separate customer)?

• Timeliness. How old are the data available? For the matching of two databases,
have the data been recorded at the same time or not? This can be a crucial factor to
a successful matching because personal information, such as people’s addresses,
telephone numbers, and even names, change over time. If the data to be matched

P. Christen, Data Matching, Data-Centric Systems and Applications, 39
DOI: 10.1007/978-3-642-31164-2_3, © Springer-Verlag Berlin Heidelberg 2012

40 3 Data Pre-Processing

have been recorded at different points in time then this needs to be taken into
account during the data matching process.

• Accessibility. Are all the data required available in the database to be deduplicated
or the databases to matched? Is there enough information in the form of attributes
that cover different aspects of the entities in the databases to allow detailed com-
parisons and accurate classification? If for example only names but no address
information is available then accurate matching of two large databases will be
impossible because many records might contain the names ‘John Smith’ or ‘Mary
Miller’.

• Believability. Can the values stored in the databases be regarded as credible or
true? Or is it possible that values are wrong or impossible?

Arguably the most important data quality dimensions for data matching and dedu-
plication are accuracy and consistency, because a large portion of efforts in the
indexing, comparisons and classification steps (that will be covered in Chaps. 4–6)
deal with inaccurate and inconsistent data. If data would be of perfect quality, then
data matching could be accomplished through straightforward database join opera-
tions and no sophisticated indexing techniques or approximate comparison functions
would be needed. As long as data are of imperfect quality, however, techniques are
needed that can deal with inaccurate and inconsistent data while still achieving high
matching quality.

Various root causes for data quality problems have been identified [177]. The ones
that are relevant to data matching are:

• Multiple data sources. If data are recorded by different organisations or different
systems, at different locations, at different points in time, or using different data
entry modes [72], then such data will likely be inconsistent.

• Subjective judgement of data production. If certain aspects of the entities in the
databases to be matched were not recorded because they were deemed not to be of
importance, then this information will be missing. This can potentially hamper data
matching, if not enough data are available to accurately compare and classify pairs
or groups of records. For example, if dates of birth have not been recorded then
the matching of two hospital patient databases might have to rely upon patient’s
name and address details only.

• Limited computing resources. As will be discussed in Chap. 4, data matching is
a computationally expensive process. If the databases to be matched are large
and not enough computing and storage power are available, then it might not be
feasible to run a sophisticated and accurate data matching algorithm. The results
achieved with a simpler matching algorithm might not be accurate enough for
certain applications. The use of cloud computing resources might be difficult for
data matching because of privacy and confidentiality concerns.

• Security/accessibility trade-off. This root condition is highly relevant when data-
bases that contain personal information are to be matched across organisations.
Privacy regulations or security concerns might prevent that data which contain
personal information can be accessed, thereby preventing certain data matching

http://dx.doi.org/10.1007/978-3-642-31164-2_4
http://dx.doi.org/10.1007/978-3-642-31164-2_6
http://dx.doi.org/10.1007/978-3-642-31164-2_4

3.1 Data Quality Issues Relevant to Data Matching 41

projects. The topic of privacy within the context of data matching will be covered
in detail in Chap. 8.

• Coded data across disciplines. This condition will affect the consistency of data
between different databases. If the databases to be matched originate in differ-
ent organisations or different disciplines, then careful mapping between different
formats and encodings is required before any matching can be attempted.

• Complex data representations. Many traditional data matching algorithms can
only be applied on data that are made of strings (such as name and address values)
or numerical values (such as dates or age values). Increasingly, however, entity
information is stored using more complex representations, such as XML schemas
[270], or it consists of different types of entities that are potentially linked with other
entities. Multi-relational, normalised databases are commonly used to represent
different types of entities in an organisation and their interactions or relationships.
Data matching algorithms must be able to deal with such types of complex data.
This topic will be further covered in Sect. 9.2.

• Volume of data. As the size of the databases held by many organisations are ever
increasing, deduplicating or matching them becomes more challenging, because
more computing resources and more time is required. Chapter 4 deals with the
topic of indexing for data matching, which is aimed at making the data matching
process more scalable to very large databases.

• Input rules too restrictive or bypassed. This root cause can result in data of low
quality because data are entered into fields or attributes that originally had a dif-
ferent purpose. For example, assume an emergency department’s patient database
where the personal details of emergency patients are recorded. The design of the
system does require a valid date of birth to be entered for each patient’s record.
Imagine some patients arriving semiconscious or unconscious and without any
identification documents. In such cases, no detailed information about their date
of birth will be available. The receptionist or nurse who enters the data will likely
be under time pressure. A simple solution for them to enter a valid record is to
guess a patient’s age and to then enter a date of birth value with the day and month
values set to ’01’. As a result, an unexpected high percentage of records in such a
database will have a date of birth of 1st January.

• Changing data needs. The information need of organisations often changes over
time, as they adapt to new regulations, implement new information systems,
restructure themselves, or as they merge with other organisations. Only data that
are useful and relevant for the operation of an organisation are normally collected,
and therefore what information is stored in databases changes over time. New
fields or attributes might be added to a database, attributes no longer considered
relevant might be removed, or formats and codes might change over time. If data
that have been recorded over time (or at different points in time) are being matched
or deduplicated, then these changes can make the matching challenging, because
only the information in attributes commonly available across time can be employed
in the matching process.

• Distributed heterogeneous systems. Data recorded and stored in different systems
potentially have different formats, different types and different values. When such

http://dx.doi.org/10.1007/978-3-642-31164-2_8
http://dx.doi.org/10.1007/978-3-642-31164-2_9
http://dx.doi.org/10.1007/978-3-642-31164-2_4

42 3 Data Pre-Processing

2 1976millerpeter

sydney3a42 main

name

42Main 3aApp.Rd.
MonthDay

dr
Title Surname

Sydeny 2006N.S.W.

Street Locality

29
YearGiven−

42Main Rd.App.

Date of BirthAddressName

29 Feb. 1976Doctor Peter Miller 3a;SydenyN.S.W.2006

LocalityUnit
number

apartmentroad

typenamenumber

name

nsw
PostcodeUnit type

2006
Wayfare Wayfare Wayfare Territory

Fig. 3.1 An example of data pre-processing applied to one record consisting of personal details.
Cleaning includes removing unwanted characters and converting all letters into lower case. Stan-
dardisation consists of correcting typographical errors such as replacing ‘sydeny’ with ‘sydney’,
and replacing abbreviations with standard forms. The third step is the segmentation of the input
into well-defined output fields that are then used as the actual attribute values in the deduplication
or data matching process

data are being matched, a careful analysis prior to matching is required to make
sure that the same type of information (that will be compared in detail between
records) is available in the same format and structure.

The remainder of this chapter covers in more detail how values in the input
database(s) can be pre-processed to make them suitable for data matching and dedu-
plication, as illustrated in Fig. 3.1. Data pre-processing for data matching consists
of four major steps, as will be discussed in Sect. 3.5. First, however, discussions on
the specific characteristics that names and other personal information pose to data
quality, and where variations and errors in names come from, are needed.

3.2 Issues with Names and Other Personal Information

Names and other personal details play a crucial role in daily life because people
are using them to identify individuals, ranging from family and friends, to work
colleagues, and all the way to politicians and celebrities. For organisations both in
the private and public sectors, names are often a primary source of identification of
the individuals they are in contact with.

Personal names are a major component of the information used in many data
matching or deduplication processes to identify records that refer to the same indi-
viduals. A large amount of the data collected by businesses and governments are
about people. The identifying data collected about individuals generally include
their names and addresses, dates of birth, social security or drivers license numbers,
telephone numbers, and email addresses.

3.2 Issues with Names and Other Personal Information 43

Much of the daily news fed to us through different channels is also about people,
and therefore names commonly appear in news articles, on Web sites, and even most
scientific and technical documents include their authors’ names, affiliations, and
other contact details.

Personal names are frequently used in Web searches to find information about
individuals, in online stores to find movies, songs, albums or books by certain artists
or writers, and when querying digital libraries to find articles or documents written
by a specific author. The ten most popular query terms used with the Google Web
search engine over the past decade include several personal names (of certain popular
celebrities).1

Personal names and other identifying details have characteristics that make them
different from general text [40, 208, 210]. These characteristics need to be consid-
ered when databases are matched or deduplicated, because they will influence how
efficient and accurate the matching can be conducted. The following list highlights
some of the issues with names, with an emphasis on the characteristics of names
from English speaking and other Western countries.

• While in many languages for general words there is only one correct form, there
are often several variations for what is seen as the same personal name. For
example, there are more than forty variations of ‘Amelia’2: ‘Aemelia’, ‘Aimil-
iona’, ‘Amalea’, ‘Amalee’, ‘Amaleta’, ‘Amalia’, ‘Amalie’, ‘Amalija’, ‘Amalina’,
‘Amaline’, ‘Amalita’, ‘Amaliya’, ‘Amaly’, ‘Amalya’, ‘Amalyna’, ‘Amalyne’,
‘Amalyta’, ‘Amelie’, ‘Amelina’, ‘Ameline’, ‘Amelita’, ‘Ameliya’, ‘Amelya’, ‘Ame-
lyna’, ‘Amelyne’, ‘Amelyta’, ‘Amilia’, ‘Amy’, ‘Delia’, ‘Em’, ‘Emelie’, ‘Emelina’,
‘Emeline’, ‘Emelita’, ‘Emi’, ‘Emma’, ‘Emmeline’, ‘Emmi’, ‘Emmie’, ‘Emmy’,
‘Mali’, ‘Malia’, ‘Malika’, ‘Meelia’, ‘Melia’, ‘Meline’, ‘Millie’ and ‘Milly’.

• In daily life, people often use or are given nicknames, rather than the name they
were given by their parents at birth. Such nicknames can be short forms of their
given name (such as ‘Liz’ for ‘Elizabeth’, ‘Tina’ for ‘Christina’, or ‘Bob’ for
‘Robert’), they can be a variation of their surname of family name (such as ‘Vesty’
for ‘Vest’), or their nickname is based on some life event, physical characteristic
(‘Ginger’ for a red-haired person), or a character sketch of an individual [40].
Matching such nicknames can obviously be much more difficult than matching
small name variations like the ones shown above. In certain cases, it will be impos-
sible to find a match on a nickname at all.

• There are generally no legal regulations of what constitutes a name, with only some
specific restrictions with regard to religious, political, or historical characters in
certain countries.

• Names are language and culture specific [208]. In Anglo-Saxon countries (includ-
ing the UK, USA, Canada, South Africa, Australia, Ireland, and New Zealand),
names are made of a given or first name and a surname or family name, with an
optional middle name (or initial) in-between, and possibly a name prefix or suffix

1 See: http://www.google.com/press/zeitgeist.html.
2 See: http://www.thinkbabynames.com/meaning/0/Amelia.

http://www.google.com/press/zeitgeist.html
http://www.thinkbabynames.com/meaning/0/Amelia

44 3 Data Pre-Processing

(such as ‘Jr’ or ‘Snr’). In several European countries compound names are com-
mon, such as ‘Hans-Peter’ in Germany or ‘Jean-Pierre’ in France. Hispanic names
often consist of two surnames.

• People can change their names over time, most commonly when they get married
or divorced. While traditionally in many western countries a wife will take on the
surname of her husband, this tradition is changing rapidly and today a husband
might decide to take on his wife’s surname. Alternatively, a couple might decide
to compound their two surnames. For example, when ‘Sally Smith’ marries ‘John
Miller’ she changes her name to ‘Sally Smith-Miller’, while her husband changes
his name to ‘John Miller-Smith’. If they have children, they need to decide which
compound surname to give to their children.

• Outside of English speaking or Western cultures, each language has its own names
and its own naming conventions, with cultures within the same language having
their own ways of how names are selected for babies when they are born, and how
they can change over an individual’s life-time [40, 208].

• For languages that are based on characters different to the Roman alphabet, the
way names are transliterated into the Roman alphabet is crucial. There might be
several standards for transliterating for example Chinese, Japanese, Korean, Thai
or Arabic names into the Roman alphabet, leading to variations of the same name.
Individuals who are unfamiliar with standard transliteration systems might decide
on a Roman version of their name in an ad hoc fashion, or alternatively choose
or add a Western given name to their full name to better fit into a Western culture
[208]. Arabic names commonly consist of several components and can contain
various prefixes and suffixes that can be separated by hyphens or whitespaces, and
that change over an individuals life-time depending upon his or her circumstances.

All these issues make data matching or deduplication using personal names a
challenging undertaking, because the name values for the same individual might
differ across two databases, or even within a single database. In our increasingly
multicultural world where people are more mobile than ever before, where interna-
tional travels and living in a country different to one’s home country are common,
and with the globalisation of businesses, the appropriate cleaning and standardisa-
tion of names in databases used for data matching are crucial components to achieve
accurate matching results.

Besides names, addresses of where people live or where businesses are located,
are a second major component of the information used in data matching [76]. While
addresses are generally more standardised than names, there are several specific
issues that need to be considered.

Addresses in most countries consists of a locality component and a street compo-
nent, as illustrated in Fig. 3.1. The locality component generally contains a postcode
or zipcode which allows mail to be efficiently directed to the destination locality.
Postcodes and zipcodes are determined by a country’s postal organisation. In some
countries, such as Australia, each postcode covers an area of roughly the same num-
ber of households or businesses in order to allow a balanced handing of postal mail.
However, as new suburbs are being built and existing areas change their characters,

3.2 Issues with Names and Other Personal Information 45

postcode boundaries do change over time, and new postcodes are being generated. In
other countries, the area of individual postcodes can be vastly different from others,
and postcode boundaries do not change even when populations change.

The street component of an address usually consists of a street number, street
name, and a street type. Additional street address elements can include flat or apart-
ment numbers, floor numbers, and business or institution names. Alternatives to street
addresses are post boxes and road-side mailboxes. While postal services in individual
countries generally provide guidelines or standards of how a mailing address should
be written, even if an address on a letter or parcel does not follow such guidelines,
the item generally still arrives at its destination because the post man or woman or
courier uses their local knowledge when delivering mail.

Because people know their mail arrives even if the address they provide is not
totally accurate, a phenomena that has been reported is that individuals who reside
close to an area that has a higher social status (for example if it is known that more rich
people or celebrities live in that area) commonly use the name of the more prestigious
area rather than the name of the area they live in, in order to impress friends and
family. It is unlikely however that they would use such inaccurate address details
when providing information to government agencies.

The third component of personal information that is commonly used for data
matching are dates, such as dates of birth, dates of death, travel dates, or dates
of admission to a hospital, to name a few. The major issue with dates is that if an
individual does not know or does not remember a date when required, then commonly
some approximation of the true date is being recorded. This might happen when dates
are required from elderly people, or individuals need to report dates of other family
members. If an accurate date is unknown, a common placeholder is to use the first
day of the month (if the month of an event is known), or even the first day of January
if only the year of when an event occurred is known.

Both personal names and people’s addresses will likely change over time. Today,
though unlikely, even the gender of a person can change. The only pieces of demo-
graphic information for an individual that do not change are their date and place of
birth (that is why these two pieces of information are recorded on passports).

3.3 Types and Sources of Variations and Errors in Names

Given the many issues on name variations covered in the previous section, some dis-
cussion about studies that have investigated names variations and errors is required.

In an early study on spelling errors in general words, Damerau found that the
majority of errors, over 80 %, were single character errors [89]. These were either
a single letter that was deleted, an extra letter that was inserted, a letter that was
substituted with another letter, or two adjacent letters that were transposed. The most
common type of errors were character substitutions, followed by character deletions,
then character insertions and finally the transposition of two characters. Multiple
errors in a word were even less frequent than character transpositions. Damerau’s

46 3 Data Pre-Processing

work lead to the development of edit distance based approximate string comparison
function that aim to overcome such character-based variations, as will be described
in Sect. 5.3.

Several other studies that followed from Damerau’s work have reported similar
results with regard to the types and distributions of variations or errors [133, 172,
214]. However, a more recent study that investigated patient names within hospital
databases found different types and distributions of variations [113]. The most com-
mon type of variation, with 36 %, in these data were the insertion of an additional
name word, initial or title word. The second most common type with 14 % were
differences of several characters due to spelling mistakes or the use of nicknames.
Other types of variation were differences in punctuation (like in ‘O’Brian’, ‘OBrian’
or ‘O Brian’) with 12 % of all variations, and changed surnames for female patients
with 8 % of all variations. In this particular study, single character variations only
accounted for 39 % of all variations compared to the over 80 % reported by Damerau
[89]. This study highlights the differences between names and general text that was
discussed in the previous section.

These differences need to be considered when data matching algorithms are being
developed and employed on data that contain personal names. The most commonly
occurring variations and errors can be categorised into [175, 243]:

• Spelling variations due to typographical errors that do not affect the phonetical
structure of a name, such as ‘Meier’ and ‘Meyer’, or ‘Christina’ and ‘Kristina’.
These variations still pose a problem for data matching and need to be dealt with.

• Phonetic variations where the phonemes are modified for example through mis-
hearing during data entry, and the structure of a name is changed substantially,
such as from ‘Sinclair’ to ‘St. Clair’.

• Double names that might be given in full, only the first name but not the middle
name, or given as compound names (like ‘Peter Paul Miller’, ‘Peter Miller’, ‘Peter
Paul-Miller’ or ‘Peter-Paul Miller’. The variations here include potential different
separators, missing name components, or even swapped name components.

• Name alternatives such as nicknames, married names or other deliberate name
changes; and initials only (mainly for given and middle names).

A survey on spelling correction by Kukich has provided further details about
character level misspellings that occur during data entry of general text [172]. She
described three types of errors: (1) typographical errors, where the assumption is
that the individual who was doing the data entry knew the correct spelling of a word
but made a typing mistake (this author’s favourite such mistake is to type ‘Sydeny’
instead of ‘Sydney’); (2) cognitive errors, which are assumed to come from a lack of
knowledge of the correct spelling or from misconceptions; and (3) phonetic errors,
coming from the substitution of a correct spelling with a similar sounding one that
is also correct.

The second and third type of errors will be a major cause for name variations,
such as the many variations of the name ‘Amelia’ on p. 43, in databases where
values are entered manually. The combination of spelling variations and phonetic
and typographical errors further challenges data matching when using name data.

http://dx.doi.org/10.1007/978-3-642-31164-2_5

3.3 Types and Sources of Variations and Errors in Names 47

The major factor that causes different name variations and errors to occur, and
that determines their likely types and their distribution, is the nature of how data are
being entered [72]:

• With handwritten forms or texts that are scanned and where optical character
recognition (OCR) techniques are applied [133, 214], the types of error most
likely to occur will be substitutions between similar looking characters (such as
between ‘q’ and ‘g’ or ‘S’ and ‘5’), or substitutions of a character sequence with
a single character that looks similar (such as ‘m’ and ‘r n’, or ‘b’ and ‘l i’).

• When data are typed manually, then errors can occur that are specific to the layout
of the keyboard used, with neighbouring keys being hit by mistake more likely
(such as ‘n’ rather than ‘m’, or ‘e’ instead of ‘r’) than keys further apart. While in
certain cases this can be quickly corrected (because the resulting name or word is
clearly wrong), such errors can go unnoticed due to time pressure on or distraction
of the person who is doing the data entry. Spell checkers are only of limited
use for personal names. Data entered through mobile devices such as tablets or
smartphone will also have different error characteristics specific to the device and
its error prediction capabilities.

• If data are entered through dictation over the telephone, for example through a
survey study, then the dictation process is a confounding factor to the manual
keyboard based data entry. If there are ambiguities with a name, the person who
is doing the data entry might not request a spelling clarification or correction but
rather assume a default spelling which is based on their knowledge and cultural
background. Studies have shown that errors occur more likely for names that
come from a language or culture that is different to the one of the person who
is doing the data entry, or if names are long or complicated, such as for example
‘Kyzwieslowski’ [113].

• A limitation in the maximum length of characters allowed in an input field can
force the use of abbreviations, initials only, or even result in disregard of certain
name parts (such as middle names).

• As a final source of variations, individuals from time to time report their names
in different forms, depending upon the person or organisation they are in contact
with, or they deliberately provide wrong or modified names. This is commonly
the case in databases that are collecting crime and fraud related information, as
was discussed in Sect. 1.4.4. And while an individual might report their details
accurately and consistently and in good faith, somebody else might report a family
member’s or friend’s details inconsistently or wrongly either for malicious reasons
or simply because they do not know the correct details (for example only know a
person by their nickname).

For all the reasons described so far, in many situations it is not straightforward to
find the ‘correct’ variation of a name value that is misspelt or that contains mistakes.
Within the domain of data matching, one therefore has to deal with legitimate name
variations as well as errors introduced during data entry and recording. While the
former need to be preserved to improve data matching quality, the latter should be

http://dx.doi.org/10.1007/978-3-642-31164-2_1

48 3 Data Pre-Processing

corrected if possible [40]. The challenge lies in distinguishing between the two. In the
following four sections, different techniques for data pre-processing of names and
other personal details are presented. The objective of these techniques is to convert
the raw input data into a form that facilitates efficient and accurate data matching.

3.4 General Data Cleaning Tasks

Before discussing the specific steps of data pre-processing for data matching and
deduplication in Sect. 3.5, in this section the three main tasks that are involved in
data cleaning for any type of data analysis, mining, or processing, are presented. They
are (1) handling missing values, (2) smoothing noisy values, and (3) identifying and
correcting inconsistent values. Here, these three tasks are discussed with regard to
their application to data matching and deduplication.

In applications such as data mining, where the aim is to detect novel and useful
patterns in large databases [135], applying data cleaning can lead to much improved
analysis results if the cleaning is conducted appropriately to the data mining tech-
niques and algorithms employed. Missing values and noisy data such as outliers can
have severe effects on both unsupervised and supervised learning tasks. Outliers can
affect the results of data clustering, while missing values can lead to biased classifi-
cation results or frequent patterns that include missing values and that therefore are
not practically useful [135, 218].

When applied on data that are to be used for data matching or deduplication,
different criteria need to be considered. Rather than detecting patterns, classes, rules
or clusters in a database, data matching and deduplication are concerned with iden-
tifying individual records that refer to the same entities. Data cleaning must only
modify the data in ways that support the application of data matching techniques.
The following considerations for the three data cleaning tasks need to be taken into
account:

• Handling missing values. Different options can be employed to handle missing
values [135]:

– Remove a record if it contains missing values. For data matching, this option
will result in the removed records not being considered in the matching process
at all, thereby potentially missing true matches. This option however might have
to be taken if several crucial attribute values are missing in a certain record. For
example, if all name and address values are missing then it is unlikely that there
is enough information in other attributes to allow accurate matching.

– Remove an attribute that contains missing values altogether from an input data-
base, or do not use it for matching. For this option, if the attribute that contains
missing values is crucial for the matching, then not considering it might be
detrimental to matching quality. Even if many records have a missing value in
such an attribute, then for those records that do have a value in this attribute the
value should be used.

3.4 General Data Cleaning Tasks 49

– Filling in a missing attribute value manually. This option might be possible
for small databases or individual records, but this approach generally requires
domain knowledge and potentially external reference data in order to identify
the most likely value that should be inserted manually.

– Filling in a missing value automatically with a constant value. This option can
only be applied on attributes that contain numerical values, which are rarely
used for data matching or deduplication.

– Filling in a missing value with the attribute mean, median or mode. This option
can only be applied on attributes that contain numerical values.

– Filling in a missing value with the mean, median or mode of a certain class of
records for this attribute (for example, calculate and fill in the average salary
separately for records that have a male gender from those that have a female gen-
der). Again, this option can only be applied on attributes that contain numerical
values.

– Determine the most likely value to be filled in using a rule or classification based
approach. This approach is commonly used for data matching. The dependen-
cies between certain groups of attributes allows this approach to be carried out
with high efficiency and accuracy. For example, a missing gender value can be
inferred based on a given name that is uniquely male or female, such as ‘John’
or ‘Mary’. For other given names, such as ‘Ashley’, the gender might not be
so easily determined. Another example where missing values can be inferred
automatically are postcodes and suburb (or town) names. The postal services
in many countries publish look-up tables of all combinations of postcodes and
suburb names, and if one of these values is missing in a record and there is
a one-to-one correspondence between a postcode and a suburb name then the
correct value can be inferred from such look-up tables. These look-up tables can
also be useful to detect and correct inconsistent values within a single record as
will be discussed below.

Work on data editing and imputation has been pioneered by statisticians [107], and
rule-based techniques to find the optimal value to be filled into a missing attribute
value are commonly used by national census agencies to improve the quality of
their survey data [143].

• Smoothing noisy values. Noisy data can consist of random errors or variance in
values, or of outliers outside of an expected range of values (such as an age value of
more than 120). They are often handled through binning, regression or clustering
approaches that group similar values together and replace them by a central value
such as a bin average or median, or a cluster centroid [135].
Such approaches might not be suitable when data are cleaned for data matching,
because such a smoothing could result in many records having the same values
in a smoothed attribute. If the values in an age attribute, for example, are binned
into decades (i.e. all records with an age value from 0 to 9, 10 to 19, 20 to 29
and so on are replaced with their corresponding bin averages of 4.5, 14.5, or
24.5, respectively), then the age attribute would lose much of the discriminating
information that helps identify individuals that have the same age.

50 3 Data Pre-Processing

Even outliers can contain information that is relevant to data matching. Returning
to the example of an age value of 120 given before, if this age is based on a recorded
date of birth, for example 21/07/1891, then this could potentially be a data entry
error where the actual date could be 21/07/1981. Such data entry mistakes can be
handled by approximate comparison techniques as will be discussed in Chap. 5.
The standardisation of attribute values described in the following section can be
seen as a form of smoothing data, but applied specifically to the values in attributes
that contain names, addresses, or dates, for example.

• Identifying and correcting inconsistent values. Here, inconsistencies within a sin-
gle record and between different records need to be distinguished. The former
case can sometimes be dealt with through external look-up tables and rules that
(similar to filling in missing attribute values) can be used to detect if the values in
two attributes contradict each other (for example a record with given name ‘Paul’
and gender ‘F’). If such inconsistencies should be corrected or not depends upon
the data at hand, and any knowledge about the quality of the data and the way they
were entered. Section 3.5.4 further discusses this issue in the context of verifying
the consistency of addresses.
If the attribute values in a single record are inconsistent, then at least one value
needs to be changed (corrected). Unless there is certainty about which of two (or
more) values is most likely the wrong one, any such change can result in further
mistakes being introduced rather than corrected. In the above example, either it is
assumed that the ‘F’ gender value is wrong and should be changed into ‘M’, or
the given name value could be wrong and its correct value is actually ‘Paula’.
Because a major aspect of the steps involved in data matching is to be able to deal
with inconsistencies between attribute values, appropriate advice is to only change
inconsistent attribute values if there is certainty about which value is wrong and
needs to be corrected. If it is not possible to ascertain this, then the inconsistent
values should rather be kept, and appropriate approximate comparison and classi-
fication techniques need to be applied that can deal with such inconsistencies but
still achieve high matching accuracy. Such techniques are discussed in Chaps. 5
and 6.
Inconsistencies between different records should be corrected as much as possible
before data matching or deduplication is conducted. Different codings for the same
attribute, for example, either within a single database or across two databases,
should be converted into the same values. For a gender attribute, for example, if
one database uses the values ‘F’ and ‘M’ while the other database uses ‘1’ and
‘0’ then in a pre-processing step the values in either database need to be changed.
Ideally, values should be changed such that they become more easily to understand
and interpret [19].

Data exploration and profiling, supported through a variety of tools [19, 62, 278],
are important steps that help to establish the quality of the data at hand, and to decide
what types of data cleaning to employ on which parts of the data. Exploration and
profiling involves collecting basic summary statistics for all attributes in a database,
such as the minimum and the maximum values in an attribute, the most commonly

http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://dx.doi.org/10.1007/978-3-642-31164-2_6

3.4 General Data Cleaning Tasks 51

occurring values, the distribution of the occurrence of all values in an attribute, how
many records have a missing value in an attribute, and so on.

3.5 Data Pre-Processing for Data Matching

Data pre-processing refers to the tasks of converting the raw input data from the
databases to be matched or deduplicated into a format that allows efficient and
accurate matching [76]. Figure 3.1 on p. 42 illustrated this process on a single exam-
ple record. The example databases used in the previous chapter also illustrated the
process. Figure 2.2 on p. 25 shows the raw input databases, and Fig. 2.3 on p. 27 their
pre-processed versions.

It is assumed that the attributes (or fields) in the input database(s) contain values
that are separated by whitespace characters. These values are known as tokens. They
can be words, single characters (such as initials), numbers, or compound elements
such as apartment and street numbers concatenated by a slash (‘3/42’), or telephone
numbers made of concatenated groups of digits (‘045-768-2231’). How these tokens
are pre-processed is described in the following subsections.

3.5.1 Removing Unwanted Characters and Tokens

This first step of data pre-processing corresponds to a data cleaning step. The attribute
values in the input database(s) might contain certain individual characters, and certain
words, terms, or abbreviations, that do not contain information that is of use for data
matching or deduplication, and that can and should be removed from the attribute
values. Other characters or tokens need to be converted into a standardised form,
for example different types of parenthesis or quotes should be replaced with one
specific parenthesis or quote character, which will facilitate the standardisation and
segmentation applied to the cleaned attribute values in the next steps.

Either hard-coded rules or look-up tables, such as the example shown in Fig. 3.2,
are used to accomplish this first data pre-processing task. Look-up tables are gener-
ally easier to adjust to changing data needs compared to hard-coded rules, however
employing hard-coded rules can be more efficient and faster than using look-up
tables. For each record in the input database(s), its attribute values are scanned to see
if they contain any of the tokens that are to be removed or converted. If such a token
is found it is removed or converted. It is possible to have different look-up tables or
rules for different types of input attributes, for example one look-up table for name
attributes and one for address attributes.

Another component of this first pre-processing task is to convert all letters into
either lowercase or uppercase characters, and to convert Unicode characters into
ASCII characters or the other way around. Which format is chosen depends upon
the characteristics of the data at hand and the limitations and requirements of the

http://dx.doi.org/10.1007/978-3-642-31164-2_2
http://dx.doi.org/10.1007/978-3-642-31164-2_2

52 3 Data Pre-Processing

Remove characters and words from input
‘ ’ := ‘.’, ‘?’, ‘˜’, ‘:’, ‘;’, ‘ˆ’, ‘=’, ‘ na ’, ‘ n/a ’
‘ ’ := ‘ n.a. ’, ‘ c/o ’, ‘ c/- ’, ‘ also ’, ‘ name ’, ‘!’
‘ ’ := ‘ only ’, ‘ abbrev ’, ‘ locked ’, ‘ on ’, ‘ of ’
‘ ’ := ‘ unk ’, ‘ unkn ’, ‘ missing ’, ‘*’

Correct words and symbols
‘ roman catholic ’ := ‘ r/c ’, ‘ r / c ’, ‘ rc ’

‘ church of england ’ := ‘ c/e ’, ‘ c / e ’, ‘ c of e ’
‘ no fixed address ’ := ‘ nfa ’, ‘n/f/a ’, ‘ n.f.a.’

‘ nursing home ’ := ‘ n / home ’
‘ other territory ’ := ‘ o/t ’, ‘ o.t.’

‘ and ’ := ‘+’, ‘&’
‘ (’ := ‘<’, ‘(’, ‘[’, ‘{’
‘) ’ := ‘>’, ‘)’, ‘]’, ‘}’
‘ | ’ := ‘"’, ‘"’, ‘‘’, ‘||’, ‘|’, "’’"
‘ - ’ := ‘-’, ‘_’

Correct roman numbers
’ 1 ’ := ’ i ’
’ 2 ’ := ’ ii ’
’ 3 ’ := ’ iii ’
’ 4 ’ := ’ iv ’
’ 5 ’ := ’ v ’
’ 6 ’ := ’ vi ’
’ 7 ’ := ’ vii ’
’ 8 ’ := ’ viii ’
’ 9 ’ := ’ ix ’
’ 10 ’ := ’ x ’

Correct ordinal numbers
’ first ’ := ’ 1st ’
’ second ’ := ’ 2nd ’
’ third ’ := ’ 3rd ’
’ fourth ’ := ’ 4th ’
’ fifth ’ := ’ 5th ’
’ sixth ’ := ’ 6th ’

’ seventh ’ := ’ 7th ’
’ eighth ’ := ’ 8th ’
’ ninth ’ := ’ 9th ’
’ tenth ’ := ’ 10th ’

Fig. 3.2 An example correction look-up table as used by the FEBRL [62] system (described in
more detail in Sect. 10.2.4). The correction works by replacing any character sequence (string in
quotes) found in an attribute value of an input record that is listed on the right-hand side of a ‘:=’
with the character sequence on the left-hand side of the ‘:=’. As can be seen, a variety of characters
and words are replaced by a single whitespace character (i.e. they are removed from an attribute
value), while several variations of the same abbreviations or characters are replaced by an expanded
or standardised version. Lines starting with a ‘#’ character are comment lines

data matching or deduplication system used. A last component in this first task is to
replace all multiple occurrences of whitespace characters with a single whitespace
only, and to remove all leading and trailing whitespaces. For example, assuming a ‘ ’

http://dx.doi.org/10.1007/978-3-642-31164-2_10

3.5 Data Pre-Processing for Data Matching 53

symbolises a single whitespace character, the input string ‘ Paul Peter Miller ’
would be converted into ‘paul peter miller’.

3.5.2 Standardisation and Tokenisation

The second step of data pre-processing is the standardisation of the tokens in the
attribute values by detecting and correcting values that contain known typographical
errors or variations, expanding abbreviations and replacing them with standard forms,
and replacing nicknames with their proper name forms.

In this data pre-processing task, individual or groups of tokens are compared
with extensive look-up tables that contain values with variations and errors and
their corresponding standardised and corrected values. For addresses, for example,
separate such look-up tables are required for street names, locality names, state
and territory names, and country names; while for personal names look-up tables
are needed for title words, given names (ideally separate for female and male) and
surnames. Figure 3.3 shows such a table for locality names (suburbs, towns and
cities).

Such look-up tables can either be generated from databases within an organisation,
or be acquired from commercial providers, or (in the cases of address data) can
be available from national postal services. Look-up tables that contain common
typographical variations and errors, such as the examples shown in Fig. 3.3, can be
compiled from attribute values as they are entered into a database and flagged as
being an unknown value. An approximate string comparison function (which will be
discussed in Chap. 5) can for example be used to detect the correct value in a certain
attribute that is most similar to an unknown value. Candidate variations for a look-up
table can then be generated automatically to be validated by a domain expert before
being added into a tagging look-up table. For example, using the look-up table in
Fig. 3.3, if an input locality name ‘bewerly hills’ is entered by a client in a Web form,
the most similar valid locality name would be ‘beverly hills’, and therefore ‘bewerly
hills’ can be added as a possible variation of ‘beverly hills’ into the locality name
look-up table.

In the tokenisation process, each token is commonly assigned one or more tags
which designate the type of the token according to the look-up table(s) where this
token was found, or based on some hard-coded rules. The outcomes of this process
is illustrated in Fig. 3.4 assuming the look-up table from Fig. 3.3 is used. The tags
are used in the third data pre-processing step to segment the sequence of tokens in
an attribute value into their most appropriate output fields, as will be described in
the next subsection.

The tokenisation process is normally started with the first set of tokens on the
left of an attribute value. A sequence of one or several tokens is considered at any
time. The tokenisation is conducted in a ‘greedy’ fashion [76], in that longer token
sequences are considered first before shorter ones. If the longest token sequence in
any of the look-up tables used in a tokenisation process contains l tokens (for example

http://dx.doi.org/10.1007/978-3-642-31164-2_5

54 3 Data Pre-Processing

Locality names

tag=<LN> # Tag for locality name words
alexandria := alezandria

alfords point := alfonds point, alford point
alfords point := alforts point, alfrods point

beverley park := bevely park, bevelly park
beverley park := beverley park, beverlly park

beverly hills := beverley hills, beverly hill

sydney airport := syd inter airport, syd airport

the university of sydney := sydney university, sydney uni
the university of sydney := uni sydney, university sydney

Fig. 3.3 An example tagging look-up table as used by the FEBRL [62] system. The tag ‘LN’ is
used to designate all following entries in this look-up table as locality names. A sequence of tokens
that occurs in an attribute value that is listed on the right-hand side of the ‘:=’ will be replaced by
the sequence of tokens on the corresponding left-hand side, and the sequence of tokens is assigned
the ‘LN’ tag, as illustrated in Fig. 3.4

‘syd inter airport’ contains l = 3 tokens), then at any step of the process the next
l tokens in an input attribute value are considered. If the tokenisation process starts
from the left, then the first l tokens, denoted with t[1], t[2], . . . , t[l], are considered
to be the candidate set of tokens in the first step. If these l tokens match a token
sequence in any of the look-up tables, then they are replaced by the sequence of
corrected tokens, and the tag of this corrected sequence is assigned to the set of
tokens.

For example, using the look-up table from Fig. 3.3, if a token sequence starts with
‘syd inter airport’ then these three tokens are replaced by the standardised compound
token ‘sydney airport’ which is assigned an ‘LN’ tag to designate that it corresponds
to a known locality name. Note that even correct known token sequences that are
found in an input field, such as ‘sydney airport’, are assigned the corresponding tag.

If at any step in the tokenisation process no token sequence of length l is found in
the input attribute value, then the length of the candidate token sequence is reduced
from l to l −1 (i.e. tokens t[1] to t[l −1] are considered), and again all look-up tables
are searched for this token sequence. The length of the candidate token sequence is
reduced until either a token sequence is found in a look-up table, or a single token is
assigned an appropriate hard-coded tag (as for example listed in Table 3.1). It is also
possible that a token is assigned several tags if the token is found in several look-up
tables, as shown in Fig. 3.4.

It is important that longer candidate token sequences are considered first, such
that for example the token sequence ‘sydney uni’ is correctly identified to correspond
to the standardised locality name ‘the university of sydney’, rather than the single

3.5 Data Pre-Processing for Data Matching 55

Paul Peter Miller

paul peter miller

GM GM,SN SN

17 Epinng Rd Bevely Park N.S.W. 2011

17 epping road beverly park nsw 2011

NU LN,SN ST LN TR PC

Fig. 3.4 Two examples of input values, the first being a name and the second an address. The
first row in each example shows the raw uncleaned input, the second row shows the cleaned and
standardised tokens, and the third row shows the tag(s) assigned to each token that indicate their
type. A description of these tags is given in Table 3.1

token ‘sydney’ is assigned as locality name and then the second token ‘uni’ is left as
a potentially unknown token.

The standardisation and tokenisation process continues as long as there are
unprocessed tokens in an attribute value. At the end of the tokenisation process,
all tokens in an attribute value will have been replaced by corrected and standardised
forms, and they will have one or more tags assigned to them, as illustrated in Fig. 3.4.

3.5.3 Segmentation into Output Fields

The third step of data pre-processing is the segmentation of the tokenised and tagged
attribute values into well-defined output fields that are suitable for data matching or
deduplication, as was illustrated in Fig. 3.1. This step is the most challenging step in
data pre-processing, because often there are several possible assignments of tokens
to output fields. The challenge is to identify the most likely assignment. This task
is also known as parsing [143], and is related to the field of information extraction
which is concerned with identifying structured information in semi-structured or free
format text [230].

The objective of segmentation is to have each output field contain a single piece
of information, made of one or a small number of tokens, rather than having several
pieces of information in one field or attribute, as was illustrated in Fig. 3.1 on p. 42.
The values in these output fields are then used in the detailed pairwise comparison
of record pairs (as will be discussed in Chap. 5), which generally leads to much
improved matching quality compared to when the unstandardised and unsegmented
input attribute values would be used. The following lists show the output fields that
are commonly used for data matching or deduplication:

• Personal names. Title, name prefix, given or first name, initials, middle name,
family name or surname, alternative family name or surname, name suffix.

http://dx.doi.org/10.1007/978-3-642-31164-2_5

56 3 Data Pre-Processing

• Street addresses. Unit prefix, unit type, unit number, unit suffix, street or wayfare
number, street or wayfare name, street or wayfare type, building name, postal
address number, postal address type, institution name, institution type.

• Address localities. Locality or town name, territory or state name, postcode or
zipcode, country.

• Dates. Day, month, year.
• Telephone numbers. Country code, area code, number, extension.

Not all of these output fields will be available in all databases, and for many records
some of the fields will not contain a value. The actual output fields used and their
names also depends upon the data at hand and of course will differ from country to
country.

Challenges occur when there are ambiguities in a token sequence that is to be
segmented. For example, the middle name ‘Peter’ in the three name words ‘Paul
Peter Miller’ shown in Fig. 3.4 could either refer to this person’s middle name or
to his surname (with ‘Miller’ being a second surname from the original compound
surname ‘Peter-Miller’).

Different segmentation techniques have been developed for different types of
input data, such as personal names, business names, or addresses. Sections 3.6 and
3.7 will cover the two main types of techniques employed, rule-based and statistical,
in more detail.

The standardisation and segmentation steps in data pre-processing are not neces-
sarily independent of each other. They can be combined into one process, where the
segmentation is conducted on the unstandardised tokens first, and the standardisation
is applied based on the segmented tokens. For example, the abbreviation ‘St’ in an
address attribute can either stand for the street type word ‘Street’, or be part of a town
name such as ‘Saint Mary’, depending on the overall token sequence in the address.

3.5.4 Verification

A possible fourth step of data pre-processing is the verification of the correctness of
the values assigned to the different output fields, and the validation of value combi-
nations in several attributes. For names, for example, such verification can include
checking if the combination of values in the given name and gender attributes are
valid (a given name ‘John’ and gender value ‘F’ is generally not a valid combination),
or if a title word does contradict the given name value of a record (a title ‘Ms’ is not
valid for a record with given name ‘John’). Such tests can be based on look-up tables
of known give names that are uniquely male or female, as was previously discussed
in Sect. 3.4.

For addresses, testing the existence and correctness of address values can be
carried out using external reference databases, that, for example, contain all vali-
dated addresses in a country. Such reference databases are commonly available from
national postal services or commercial providers. They allow the verification of

3.5 Data Pre-Processing for Data Matching 57

Table 3.1 List of tags used by the data standardisation module of the FEBRL system [62]

Tag Description Component Based on

LQ Locality qualifier word Address Look-up table
LN Locality (town, suburb) name Address Look-up table
TR Territory (state, region) name Address Look-up table
CR Country name Address Look-up table
IT Institution type Address Look-up table
IN Institution name Address Look-up table
PA Postal address type Address Look-up table
PC Postcode (zipcode) Address Look-up table
N4 Numbers with four digits (not known postcodes) Address Hard-coded rule
UT Unit type (e.g. ‘flat’ or ‘apartment’) Address Look-up table
WN Wayfare (street) name Address Look-up table
WT Wayfare (street) type (e.g. ‘road’ or ‘place’) Address Look-up table
TI Title word (e.g. ‘ms’, ‘mrs’, ‘mr’, ‘dr’) Name Look-up table
SN Surname Name Look-up table
GF Female given name Name Look-up table
GM Male given name Name Look-up table
PR Name prefix Name Look-up table
SP Name separators and qualifiers (e.g. ‘aka’ or ‘and’) Name Look-up table
BO ‘baby of’ and similar values Name Look-up table
NE ‘nee’, ‘born as’ or similar values Name Look-up table
II Initials (one letter token) Name Hard-coded rule
ST Saint names (e.g. ‘saint george’ or ‘san angelo’) Address/name Look-up table
CO Comma, semi-colon, colon Address/name Hard-coded rule
SL Slash ‘/’ and back-slash ‘\’ Address/name Hard-coded rule
NU Other numbers Address/name Hard-coded rule
AN Alphanumeric tokens Address/name Hard-coded rule
VB Brackets, braces, quotes Address/name Hard-coded rule
HY Hyphen ‘–’ Address/name Hard-coded rule
RU Rubbish (for tokens to be removed) Address/name Look-up table
UN Unknown (none of the above) Address/name Hard-coded rule

This table is adapted from Table 3 in [76]. A ‘hard-coded rule’ refers to the cases where a specific
piece of program code is used to assign a tag to an input character or token. As can be seen, most
tags are based on look-up tables and specific to either addresses or names. Some of the hard-coded
tags take care of special characters or help to characterise tokens not found in any of the look-up
tables

different parts of a segmented address, including the verification of locality name
and postcode combinations, and if such a combination is known in a given territory
or state. Other verification steps for addresses include the test if a street name and
type combination occurs in the locality value given in a record, and even if a street
number occurs in the given street or not.

If an invalid combination is found then it can either be flagged for manual inspec-
tion, or be corrected automatically (but being aware of the potential that a correction
can introduce new errors, as was described on p. 51). In case no correction is being

58 3 Data Pre-Processing

made for an invalid combination, a flag can be added to the record indicating the
attributes that contain inconsistent values. This information can then be used in the
matching process to, for example, lower the similarity value between two records if
the flag indicates that some of the address values in a record might be wrong.

3.6 Rule-Based Segmentation Approaches

Rule-based techniques for segmentation of names and addresses have been employed
in the field of data matching for several decades. The basic idea of such techniques
is to process the list of tokens and tags either from left to right or from right to left,
and using hand-crafted or learned rules to assign the token or tokens covered by a
rule to their appropriated output field.

Processing token sequences starting from the left is appropriate for most name
values from Western countries, as well as the street component of addresses, while
processing token sequences starting from the right can be appropriate when locality
details (postcodes, suburb, state, and country names) are available in the attributes
to be standardised.

Rule-based approaches are best suited for input fields that contain controlled and
well-structured information, such as telephone numbers or names that are made of
only a small number of tokens [230]. For addresses, developing efficient and accurate
rule-based systems is much more difficult [76], because a much larger number of
rules is needed that can deal with the much larger variability in token sequences that
represent addresses.

A rule-based system is made of two parts. The first is a set of rules in the form of
‘if condition then action’ [217]. The condition of a rule tests for the occurrence of a
certain tag or tag sequence, and the action is the assignment of the tokens covered by
a rule into the appropriate output fields. The condition of a rule is generally testing
for tags rather than tokens, because tags are more general than tokens and therefore
rules based on tags can cover more variability in the input. If the condition of a rule
is true then the rule is ‘triggered’ or ‘fired’ and the action of the rule is executed.

The second part of a rule-based system is the ordering or the policies of which
rules should be fired first when the condition’s of several rules are true for a certain
sequence of tags. The ordering can either be based on the specificity of the rules,
in that rules that cover more tags are fired first, or it can be based on which output
fields are most important and should have values assigned to them (for example, the
given name and surname output fields are more important than the middle name or
name suffix fields), or the ordering can be based on a manual sorting of the rules
using domain knowledge. Often various heuristics are applied, and special cases are
handled with individuals rules [230].

Figure 3.5 shows an example subset of rules for segmenting name values. Rules are
normally applied on the tags (denoted with t[i]) that have been assigned to the tokens
(denoted with o[i]) in the tokenisation step as was described in Sect. 3.5.2. While the
eight rules shown may cover most known simple names in a database, more complex

3.6 Rule-Based Segmentation Approaches 59

if t[i] = ‘TI’ then title ← o[i]
if t[i] = ‘PR’ then name prefix ← o[i]

if t[i] = ‘GM’ and t[i+1] = ‘SN’ then given name ← o[i], surname ← o[i+1]
if t[i] = ‘GF’ and t[i+1] = ‘SN’ then given name ← o[i], surname ← o[i+1]
if t[i] = ‘SN’ and t[i+1] = ‘GM’ then given name ← o[i+1], surname ← o[i]
if t[i] = ‘SN’ and t[i+1] = ‘GF’ then given name ← o[i+1], surname ← o[i]

if t[i] = ‘UN’ and t[i+1] = ‘SN’ and i +1 = L then given name ← o[i], surname ← o[i+1]
if t[i] = ‘SN’ and t[i+1] = ‘UN’ and i +1 = L then given name ← o[i+1], surname ← o[i]

Fig. 3.5 A small example of a subset of rules used to segment a name input value using the tags
defined in Table 3.1. The sequence of tokens is denoted by o[i] and the corresponding sequence
of tags by t[i], with 1 ≤ i ≤ L and L being the number of tokens in the given name input value.
The first rule assigns a known title token into the ti tle output field, while the second rule assigns a
known name prefix into its appropriate output field. The next four rules assign known given name
and surname values into the appropriate fields, while the last two rules only assign given name and
surname values into the corresponding output fields if there is no other tag that follows. Only one
rule is applied on a tag (or tag sequence), and once the tag (or tag sequence) is covered by a rule it
is removed from the input tag sequence

names made of several components (name prefixes and suffixes, middle names, etc.)
will require many more specific rules.

When a rule-based system is developed based on hand-crafted rules, initially the
basic rules (such as the ones shown in Fig. 3.5) are implemented and applied on the
data that are to be standardised. All records that are not covered by any rule are
then used to develop additional rules. Such a failure driven iterative approach [217]
over time results in a rule-base that covers most if not all variations of tag sequences
that occur in an attribute. The manual investigation of the input values not covered
by any rule, and generating appropriate new rules for them, is however a labour
intensive task that needs to be repeated each time data with new characteristics are
to be standardised.

There are various ways of how rules can be represented, including regular expres-
sions, SQL statements, pattern items and lists, and even specific pattern languages
or scripts written in programming languages such as Java or C++ [230]. The early
AutoStan/AutoMatch [251] suite of data cleaning and matching software, developed
in the 1990s by Matthew Jaro (formerly of the US Census Bureau and founder of
MatchWare Technologies), for example, employed a look-up table based tokenisation
phase followed by a re-entrant regular-expression rule-based parsing and segmenta-
tion phase. Regular expressions allow for rules where tokens are checked for certain
string patterns (not just equality). For example, the test if o[i] = ‘stre?t’ then. . . will
return true for the two words ‘stret’ and ‘street’. The re-entrant approach of AutoStan
means that once a token (or token sequence) is covered by a rule (and assigned into an
output field), the token (or token sequence) is removed from the input token sequence
and the rule-base is applied on the new shorter token sequence. AutoStan rule-bases
employed for segmenting addresses could contain hundreds if not thousands of rules
for production systems.

60 3 Data Pre-Processing

An alternative to the labour intensive manual development of a rule-base is to
employ a rule-learning algorithm [230]. Rules can be learnt in an automatic fashion
if training data in the form of correctly segmented input examples are available.
Such training data can either be generated manually, or be the output of an earlier
segmentation of similar data. In its most general form, a rule learning system learns
individual rules that are disjunctions and that each cover a subset of the training data
set.

Assuming a training data set D is provided that contains n training records,
d1, . . . , dn , each made of a sequence of tags and the output fields they are assigned
to. Figure 3.6 shows three such training records. The objective of a rule learning
system is to learn a set of k rules r1, . . . , rk that cover all training records in D. The
condition part of each rule r covers a certain subset s(r) of all training records in D,
which is called the coverage of a rule. The action part of a rule will be correct for
some training records in s(r) and wrong for others. The subset of training records
where the action is correct is denoted with s′(r) ⊆ s(r). The precision of a rule is
calculated as p = |s′(r)|/|s(r)| [230].

The objective of a rule-learning system is to learn rules that provide good coverage
and have high precision, because such rules will be well suited for the segmentation
of new unsegmented input records. Finding the optimal set of rules for a given
training data set is intractable, therefore practical rule learning algorithms are based
on heuristic approaches [230]. The two broad categories of heuristics are bottom-up
and top-down approaches. In the first category, a very specific rule (that only covers
one training record) is made more general by removing a test from the condition of
the rule such that the coverage of the rule is increased (at the cost of likely loosing
some precision). In top-down approaches, general rules that cover many training
records but have low precision are made more specific by adding further tests to
the condition of the rule until some stopping criteria is reached. There are various
ways of how these approaches can be implemented and different algorithms have
been developed, including Rapier, (LP)2, FOIL and WHISK. An excellent survey of
rule-based approaches to information extraction is provided by Sarawagi [230].

3.7 Statistical Segmentation Approaches

A major drawback with rule-based approaches to data segmentation is that rules are
hard, meaning that they either fire or do not fire (i.e. cover a set of tokens in an input
sequence or not), depending upon if a certain condition is fulfilled [230]. In practice
this means that for unseen variations in the input data that are not covered by any rule
in a rule base, a new rule is required. Manually generating a comprehensive rule-base
is labour intensive and time consuming, and requires adjustments each time the data
to be segmented changes [217]. Techniques that learn rules from training data also
require training examples for any variation in the data in order to be able to learn the
rule or rules that cover these examples. Therefore, comprehensive training data sets
are required, which again can be expensive to generate or collect.

3.7 Statistical Segmentation Approaches 61

17 epping road beverly park nsw 2011
NU LN ST LN TR PC

Wayfare Wayfare Wayfare Locality Territory Postcode
number name type name

main street sydney nsw 2000
WN ST LN TR PC

Wayfare Wayfare Locality Territory Postcode
name type name

42 george ally newtown 2067
NU WN ST LN N4

Wayfare Wayfare Wayfare Locality Postcode
number name type name

Fig. 3.6 Three example training sequences of addresses consisting of tokens (top rows in each
example), tags (middle rows) and output fields (bottom rows). The tags are based on the list given in
Table 3.1, while the output fields correspond to those shown in Fig. 3.1. Each token is assigned one
tag only, and only the tags and names of output fields are used for training a rule-based or statistical
segmentation model, but not the actual tokens that make up an address

Statistical approaches to segmentation try to overcome the rigid decision making
of rule-based systems. They are instead based on probability distributions that provide
likelihoods of which token in an input should be assigned to which output field.
Similar to rule-based systems, these probabilities are learned from training data
that consist of segmented token and tag sequences where each token is assigned its
appropriated tag, as illustrated in the examples shown in Fig. 3.6. Similar to rule-based
systems, tag sequences rather than token sequences are used to train the statistical
segmentation models and to segment new input values [76].

The process of assigning tokens to output fields can be seen as a classification
process where each token is assigned to its most likely output field (more generally
called label) according to the learned model [230]. However, this task is following
an ordering, in that the classification of a token depends upon the classification of the
previous token(s) (assuming an assignment of tokens starts from the left of a token
sequence) and possibly also the following token(s).

Different statistical models have been developed that capture these dependencies
within tag sequences. The most popular techniques have been hidden Markov models
(HMMs) [223], maximum entropy Markov models (MEMMs), and more recently
Conditional Random Fields (CRFs). CRFs are capable of modeling a single joint dis-
tribution over the sequence of the predicted output fields for a given token sequence.
The dependency of the classified output field of a token is based on the adjacent
previous and next output fields. For HMMs, on the other hand, the classification of a
token only depends upon the classification of the previous token but not the following
one.

The process of training a statistical model for segmentation is based on either
calculating the maximum likelihood or maximum margins for all given tag sequences
in the training data. The detailed mathematical descriptions of these techniques are

62 3 Data Pre-Processing

outside the scope of this book, the interested reader is refereed to the excellent survey
given by Sarawagi [230]. In the remainder of this section, an example of an address
segmentation approach based on HMMs is provided, which previously has been
shown to outperform a manually developed rule-based approach [68, 76].

3.7.1 Hidden Markov Model Based Segmentation

Hidden Markov models [223] were developed in the 1960s and 1970s. They are
widely used in speech recognition and natural language processing. They are com-
putationally efficient to train and are able to handle new unknown sequences in a
robust fashion. They have been employed by several researchers for name and address
segmentation [41, 56, 68, 76, 240].

A HMM can be viewed as a probabilistic finite state machine that consists of
a set of (hidden) states, transition links between these states, and a set of output
(or observation) symbols. Each link between two states has a nonzero probability
assigned with it, and each state emits output symbols with a certain probability
distribution. The transition and output probabilities are stored in two matrices. A
simple example of a HMM for address segmentation, together with its transition and
output probability matrices, is shown in Fig. 3.7.

Two special states of a HMM are the Start and End state. Beginning with the Start
state, a trained HMM generates a sequence of output symbols O = o1, o2, . . . , ok by
making k −1 transitions from one state to another until the End state is reached. The
output symbol oi , 1 ≤ i ≤ k, generated in state i , is based on this state’s probability
distribution of the output symbols. The Start and End states are not actually stored
in a HMM because no output symbols are emitted in these states. Instead of the
Start state a list of initial state probabilities is used that provide the likelihoods that
a sequence starts with a certain state.

For a given trained HMM, it is possible that the same sequence of output symbols
can be generated by taking different paths through the HMM. Each path, however,
will have a different probability according to the transition probabilities between
the states in the path. Given a certain sequence of output symbols, for the task of
segmentation one is interested in the most likely path through a given HMM that
will generate this sequence. Using a dynamic programming approach, the Viterbi
algorithm is an efficient way to compute this most likely path for a given sequence
of output symbols [223].

Training data in the form of sequences of (state name, output symbol), possible
manually prepared, are required to learn the transition and output probabilities. Each
training record corresponds to a path through the HMM from the Start to the End
state. While the set of output symbols can be created using the training data, the states
of a HMM are generally fixed and are defined before training. When segmenting
addresses, for example, the set of states will correspond to all possible output fields
of an address, such as the ones listed on p. 56, while the output symbols correspond
to all possible tags (as for example listed in Table 3.1) that can occur with addresses.

3.7 Statistical Segmentation Approaches 63

Start

Territory

End

Locality Postcode

Wayfare

Wayfare

number

name

type

name

0.85

0.97

0.03

0.1

0.03

Wayfare

0.03

0.04

0.45

0.93
0.05

0.9

0.07

0.85

0.9

0.1

0.15

0.17

0.35

0.03

To state
From Wayfare Wayfare Wayfare Locality Territory Postcode End
state number name type name

Start 0.85 0.1 0.0 0.05 0.0 0.0 0.0
Wayfare number 0.03 0.97 0.0 0.0 0.0 0.0 0.0
Wayfare name 0.0 0.03 0.9 0.07 0.0 0.0 0.0
Wayfare type 0.0 0.0 0.0 0.93 0.04 0.03 0.0
Locality name 0.0 0.0 0.0 0.03 0.35 0.45 0.17

Territory 0.0 0.0 0.0 0.0 0.0 0.85 0.15
Postcode 0.0 0.0 0.0 0.0 0.1 0.0 0.9

Output State
symbol Wayfare number Wayfare name Wayfare type Locality name Territory Postcode

NU 0.9 0.01 0.01 0.01 0.01 0.05
WN 0.01 0.5 0.01 0.1 0.01 0.01
WT 0.01 0.01 0.92 0.01 0.01 0.01
LN 0.01 0.1 0.01 0.8 0.01 0.01
TR 0.01 0.06 0.01 0.01 0.93 0.01
PC 0.03 0.01 0.01 0.01 0.01 0.8
N4 0.02 0.01 0.01 0.01 0.01 0.1
UN 0.01 0.31 0.02 0.05 0.01 0.01

Fig. 3.7 A simplified Hidden Markov model (top) for addresses, based on the output fields shown
in Fig. 3.1. The table in the middle shows the transition probabilities, while the table at the bottom
shows the output probabilities. Adapted from [76]

The training process iterates over all training records and adjusts the transition
and output probabilities according their output field and tag sequences. For example,
the transition probability of 0.93 from state ‘Wayfare type’ to ‘Locality name’ in
Fig. 3.7 results from 93 % of all training records containing these two output fields
in sequence, while only 4 % of training records had a value in the ‘Territory’ output
field directly after a value in the ‘Wayfare type’ output field, and only 3 % of training
records had a ‘Wayfare type’ output field that was directly followed by a ‘Postcode’
output field.

Instead of using the actual tokens found in an input field, the tag or tags that were
assigned to each token are used as the output symbols of the HMM [76]. This makes
a HMM more general and more robust, and also computationally more efficient
because the number of different tags is much smaller than the number of different
tokens that will be encountered in the input data.

64 3 Data Pre-Processing

Once a HMM is trained on a set of example input values, sequences of tags from
new records that are to be segmented into output fields can be segmented efficiently
using the Viterbi algorithm [223], which returns the most likely state sequence of the
given tag sequence through the HMM. This sequence of states, which corresponds
to a sequence of output fields, is then used to assign each token of an input value to
an output field. For example, consider the following token sequence from an address
with its corresponding tag sequence which is based on the tags from Table 3.1 on
p. 57:

32 Garden Place Brisbane 7014 Queensland
NU WN WT LN PC TR

Applying the Viterbi algorithm for this tag sequence on the example HMM from
Fig. 3.7 will lead to the following state sequence which has the highest likelihood:

Start → Wayfare number → Wayfare name → Wayfare type → Locality name

→ Postcode → Territory → End.

The tokens in this address will therefore be assigned to the following output fields:

Wayfare number: 32
Wayfare name: Garden
Wayfare type: Place

Locality name: Brisbane
Territory: Queensland
Postcode: 7014

When generating models for segmentation of address and other types of data,
a major issue in many application domains is how to collect appropriate training
data. Such training data need to be of high quality and be broad enough to cover the
diversity of input values that likely occur in the attributes that are to be segmented.

One possible approach is to bootstrap the training process by manually cleaning,
tokenising and segmenting a small number of input values and assigning each tag
to its most likely output field (such as the examples shown in Fig. 3.6), to then use
this small set of training data to train a first segmentation model (such as a first
rough HMM), and to then use this first model to segment a larger number of input
values [76, 230]. This second set of segmented input values will likely contain too
many wrongly segmented values, and careful manual inspection and correction of
these input values is required. Once done, a second training set of segmented input
values is available that can be used to train a second HMM. This second HMM will
likely be more accurate than the first one. This process of segmenting input values
using a HMM, correcting the wrongly segmented values, and using the new set of
segmented input values to train a more accurate HMM can be repeated until a HMM

3.7 Statistical Segmentation Approaches 65

of satisfactory quality is available. This approach has shown to be much less time
consuming compared to the manual generation of hand-crafted rules [76].

An alternative approach is to use cleaned and segmented input values that are
available either in a reference databases or from earlier segmentation of the same
types of data [5, 65]. The important aspect with this approach is that these data are
of high quality and contain a large diversity of attribute values, such that the trained
segmentation model is robust with regard to different unknown input addresses. For
addresses, such reference databases can either be obtained from national postal ser-
vice or they are already available in a database or data warehouse of an organisation.
The structure and attributes of these segmented addresses needs to be the same as the
desired structure of the addresses that are to be segmented. Having access to such
a reference database allows an automatic learning process of segmentation models
which can provide fully automated address standardisation [65].

3.8 Practical Considerations and Research Issues

An important initial activity in any data matching or deduplication project must be
the assessment of the quality of the data that are to be matched. Known as data
exploration or data profiling, this task can be achieved through a variety of tools that
are either integrated in a data matching software, are external standalone programs,
or are part of larger data processing, analysis or data warehousing systems.

At a minimum, for each attribute that will be used for matching, the number of
different attribute values and their frequency distribution, the type of values in an
attribute (such as string, number, date, etc.), as well as the number of records that
have an empty value in an attribute should be known. This information is relevant
when attributes are selected to be part of blocking keys during the indexing step
(as will be discussed in the following chapter), and when appropriate comparison
functions are chosen in the comparison step (as was covered in Chap. 5).

Many data cleaning and standardisation techniques rely heavily upon look-up
tables. These tables contain, for example, personal names and their variations and
common misspellings, or suburb, town, or state names, and postcodes from a certain
country. To achieve cleaned and standardised data that are of high quality, it is impor-
tant that these look-up tables are carefully customised according to where the data
to be matched are sourced from. This does not just hold for names used in addresses,
but also for given names and surnames which often have different spelling variations
in different countries (even for example within English speaking countries). While
such customisation of look-up tables will initially be a time consuming and labour
intensive process, in the end the effort will be worthwhile because of the improved
matching quality that can be achieved. Further on, the cleaned and standardised data
will likely be useful for other applications within an organisation as well. Besides
look-up tables, both the rules in rule-based segmentation systems and the training
data for statistical segmentation systems also need to be customised to the data that
are being matched or deduplicated.

http://dx.doi.org/10.1007/978-3-642-31164-2_5

66 3 Data Pre-Processing

What type of data cleaning and standardisation approach to use depends both
upon the quality of the raw input data, and the amount of resources (with regard to
labour, funding, and computing power) that is available for a given data matching or
deduplication project. A further practical consideration is if a matching or dedupli-
cation exercise on a certain set of data is a one-off project or if it is likely that the
data will be reused for future data matching projects. In the latter case it is worth to
invest more efforts into data pre-processing than in the first case, especially if the
matched data are used as an authoritative data repository (such as a master patient
index database) for different applications within an organisation, and any new data
will be matched with this authoritative data repository.

While data quality has been recognised as a massive problem that costs many
organisations large amounts in lost revenue and wasted resources, the amount of
research in the area of data pre-processing (cleaning and standardisation) is surpris-
ingly low. One reason for this might be that data pre-processing is a very domain
specific task that involves significant amounts of domain expertise and manual cus-
tomisation and intervention. How to automate data pre-processing techniques with
the aim to reduce manual efforts will be a valuable research undertaking.

Another interesting research direction will be to investigate how well different
data pre-processing techniques are able to improve the outcomes of matching or
deduplicating different types of data, and if there is a way to identify an optimal
approach to how data pre-processing should be applied. This question can only
be considered in combination with a specific data matching technique employed.
Still, a large comparative investigation of different data cleaning and standardisation
techniques applied on databases of different quality and with different characteristics
would lead to a much improved understanding of how data pre-processing affects
the outcomes of a data matching or deduplication exercise.

3.9 Further Reading

There is a large body of work available on the topic of data quality, addressing
the many issues and challenges involved in this topic from different angles. Batini
and Scannapieco [19] provide a detailed discussion of concepts, methodologies and
techniques that can be employed to assess and improve data quality. Pyle [218] covers
data quality and data preprocessing specifically for data mining applications. Lee et
al. [177] on the other hand provide a road map to data quality that covers this topic
at a less technical level more suitable for managers and practitioners that need to
implement systems where data quality is important.

The many different issues that can arise when dealing with names have been
discussed by various authors [40, 57, 72, 175, 208, 210, 243]. A large body of infor-
mation about names is also available in online resources that cover names and their
origins, names and their variations, and the changing popularity of baby names.

3.9 Further Reading 67

The interested reader is referred to Web sites such as: http://www.thinkbabynames.
com, http://www.babynames.com, http://www.rogerdarlington.co.uk/useofnames.
html, and http://en.wikipedia.org/wiki/Personal_name.

An excellent recent survey of information extraction techniques which is of rele-
vance to name and address segmentation is provided by Sarawagi [230]. Techniques
that specifically deal with data cleaning and standardisation for data matching are
presented by Churches et al. [76] and by Herzog et al. [143]. The use of reference
databases to automate the standardisation process of addresses has been described
by Agichtein and Ganti [5] and Christen and Belagic [65].

Two novel approaches to data cleaning have recently proposed by Arasu and
Kaushik [12] who used a grammar-based framework that can be used to reason
about and manipulate data representations, and Guo et al. [130] who employed latent
semantic association to conduct unsupervised address standardisation.

http://www.thinkbabynames.com
http://www.thinkbabynames.com
http://www.babynames.com
http://www.rogerdarlington.co.uk/useofnames.html
http://www.rogerdarlington.co.uk/useofnames.html
http://en.wikipedia.org/wiki/Personal_name

	3 Data Pre-Processing
	3.1 Data Quality Issues Relevant to Data Matching
	3.2 Issues with Names and Other Personal Information
	3.3 Types and Sources of Variations and Errors in Names
	3.4 General Data Cleaning Tasks
	3.5 Data Pre-Processing for Data Matching
	3.5.1 Removing Unwanted Characters and Tokens
	3.5.2 Standardisation and Tokenisation
	3.5.3 Segmentation into Output Fields
	3.5.4 Verification

	3.6 Rule-Based Segmentation Approaches
	3.7 Statistical Segmentation Approaches
	3.7.1 Hidden Markov Model Based Segmentation

	3.8 Practical Considerations and Research Issues
	3.9 Further Reading

