

Data-Centric Systems and Applications

Series Editors
M. J. Carey
S. Ceri

Editorial Board
P. Bernstein
U. Dayal
C. Faloutsos
J. C. Freytag
G. Gardarin
W. Jonker
V. Krishnamurthy
M.-A. Neimat
P. Valduriez
G. Weikum
K.-Y. Whang
J. Widom

For further volumes:
http://www.springer.com/series/5258

http://www.springer.com/series/5258

Peter Christen

Data Matching

Concepts and Techniques
for Record Linkage, Entity Resolution,
and Duplicate Detection

123

Peter Christen
Research School of Computer Science
The Australian National University
Canberra, ACT
Australia

ISBN 978-3-642-31163-5 ISBN 978-3-642-31164-2 (eBook)
DOI 10.1007/978-3-642-31164-2
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012942028

ACM Computing Classification (1998): H.2, H.3, I.2, I.5

� Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To Gail

Foreword

Early record linkage was often in the health area where individuals wanted to link
patient medical records for certain epidemiological research. We can imagine the
difficulty of comparing quasi-identifying information such as name, date of birth,
and other information from a single record against a large stack of paper records.
To facilitate the matching, someone might transfer the quasi-identifying infor-
mation from a set of records to a large typed list on paper and then, much more
rapidly, go through the large list. Locating matching pairs increases in difficulty
because individual records might have typographical error (‘Jones’ versus ‘Janes’,
‘March 17, 1922’ versus ‘March 27, 1922’ because handwriting was difficult to
read). Additional errors might occur during transcription to the typewritten list.

Howard Newcombe, a geneticist, introduced the idea of odds ratios into a
formal mathematics of record linkage. The idea was that less frequent names such
as ‘Zbigniew’ and ‘Zabrinsky’ (in English speaking countries) had more distin-
guishing power than more common names such as ‘John’ and ‘Smith’. Among a
pair of records that were truly matches, it was more typical to agree on several
quasi-identifying fields such as first name, day of birth, month of birth, and year of
birth than among a pair of records that had randomly been brought together from
two files.

Newcombe’s ideas were formulated in two seminal papers (Science, 1959;
Communications of the Association of Computing Machinery, 1962). These
papers contained a number of practical examples on combining the scores (odds
ratios) from comparisons of individual fields in a pair to a total score (or total
matching weight) associated with a pair. The combining of the logarithms of the
scores via simple addition is under conditional independence (or näıve Bayes in
machine learning). Pairs above a certain higher cutoff score were designated as
links (or matches); pairs below a certain lower score were designated as a non-link
(or non-match); and pairs between the upper and lower cutoff scores were known
as potential links (potential matches) and held for clerical review. During the
clerical review, the clerk might correct a name or date of birth by consulting an
alternative source (list) or the original form (that might have had typographical
error introduced during data capture to the computer files).

vii

Obtaining the odds–ratios for suitably high quality matching would have been
very difficult in most situations because training data were never available.
Newcombe had the crucial insight that it was possible to compute the desired
probabilities from large national files such as health or death indexes (or even
censuses). He obtained the probabilities associated with the linked pairs by summing
the valuespecific frequencies for individual first names, last names, etc., from the
large file. He used the frequencies from the cross-product of the files along with an
adjustment for those frequencies associated with linked pairs to get the appropriate
frequencies for non-linked pairs. Newcombe’s methods were robust with new pairs
of files because the ‘absolute’ frequencies from the large national files worked well.

Fellegi and Sunter (Journal of the American Statistical Association, 1969)
provided a formal mathematical model where they proved the optimality of
Newcombe’s rules under fixed upper bounds on the false link (match) rates and the
false non-link (non-match) rates. The methods were later rediscovered by Cooper
and Maron (Journal of the Association of Computing Machinery, 1977) without
proofs of optimality. Fellegi and Sunter extended the model with ideas of unsu-
pervised learning and extensions of value-specific frequency concepts with crude
(but effective) ideas for typographical error rates.

For more than a decade, most of the methodological research has been in the
computer science literature. Active areas are concerned with significantly
improving linking speed with parallel computing and sophisticated retrieval
algorithms, improving matching accuracy with better machine learning models or
third-party auxiliary files, estimating error rates (often without training data), and
adjusting statistical analyses in merged files to account for matching error.

Many applications are still in the epidemiological or health informatics literature
with most individuals using government health agency shareware based on the
Fellegi–Sunter model. Although individuals have introduced alternative classifi-
cation methods based on Support Vector Machines, decision trees and other
methods from machine learning, no method has consistently outperformed methods
based on the Fellegi–Sunter model, particularly with large day-to-day applications
with tens of millions of records.

Within this framework of historical ideas and needed future work, Peter Christen’s
monograph serves as an excellent compendium of the best existing work by computer
scientists and others. Individuals can use the monograph as a basic reference to which
they can gain insight into the most pertinent record linkage ideas. Interested
researchers can use the methods and observations as building blocks in their own
work. What I found very appealing was the high quality of the overall organization of
the text, the clarity of the writing, and the extensive bibliography of pertinent papers.
The numerous examples are quite helpful because they give real insight into a
specific set of methods. The examples, in particular, prevent the researcher from
going down some research directions that would often turn out to be dead ends.

Suitland, USA William E. Winkler
U. S. Census Bureau

viii Foreword

Preface

Objectives

Data matching is the task of identifying, matching, and merging records that
correspond to the same entities from several databases. The entities under con-
sideration most commonly refer to people, such as patients, customers, tax payers,
or travellers, but they can also refer to publications or citations, consumer prod-
ucts, or businesses. A special situation arises when one is interested in finding
records that refer to the same entity within a single database, a task commonly
known as duplicate detection. Over the past decade, various application domains
and research fields have developed their own solutions to the problem of data
matching, and as a result this task is now known by many different names. Besides
data matching, the names most prominently used are record or data linkage, entity
resolution, object identification, or field matching.

A major challenge in data matching is the lack of common entity identifiers in
the databases to be matched. As a result of this, the matching needs to be con-
ducted using attributes that contain partially identifying information, such as
names, addresses, or dates of birth. However, such identifying information is often
of low quality. Personal details especially suffer from frequently occurring typo-
graphical variations and errors, such information can change over time, or it is
only partially available in the databases to be matched.

There is an increasing number of application domains where data matching is
being required, starting from its traditional use in the health sector and national
censuses (two domains that have applied data matching for several decades),
national security (where data matching has become of high interest since the early
2000s), to the deduplication of business mailing lists, and the use of data matching
more recently in domains such as online digital libraries and e-Commerce.

In the past decade, significant advances have been achieved in many aspects of
the data matching process, but especially on how to improve the accuracy of data
matching, and how to scale data matching to very large databases that contain
many millions of records. This work has been conducted by researchers in various

ix

fields, including applied statistics, health informatics, data mining, machine
learning, artificial intelligence, information systems, information retrieval,
knowledge engineering, the database and data warehousing communities, and
researchers working in the field of digital libraries. As a result, a variety of data
matching and deduplication techniques is now available. Many of these techniques
are aimed at specific types of data and applications. The majority of techniques has
only been evaluated on a small number of (test) data sets, and so far no com-
prehensive large-scale surveys have been published that evaluate the various data
matching and deduplication techniques that have been developed in different
research fields.

The diverse and fragmented publication of work conducted in the area of data
matching makes it difficult for researchers to stay at the forefront of developments
and advances on this topic. This is especially the case for graduate and research
students entering this area of research. There are no dedicated conferences or
journals where research in data matching is being published. Rather, research in
this area is disseminated in data mining, databases, knowledge engineering, and
other fields as listed above. For practitioners, who aim to learn about the current
state-of-theart data matching concepts and techniques, it is difficult to identify
work that is of relevance to them.

While there is a large number of research publications on data matching
available in journals as well as conference and workshop proceedings, thus far
only a few books have been published on this topic. Newcombe [199] in 1988
covered data matching from a statistical perspective, and how it can be applied in
domains such as health, statistics, administration, and businesses. Published at
around the same time, the edited book by Baldwin et al. [16] concentrated on the
use of data matching in the medical domain. More recently, Herzog et al. [143]
discussed data matching as being one crucial technique required for improving
data quality (with data editing being the second technique). A similar approach
was taken by Batini and Scannapieco [19], who covered data matching in one
chapter of their recent book on data quality. While Herzog et al. approach the topic
from a statistical perspective, Batini and Scannapieco discuss it from a database
point of view. Published in 2011, the book by Talburt [249] discusses data
matching and information quality, and presents both commercial as well as open
source matching systems. Similarly, Chan et al. [51] present declarative and
semantic data matching approaches in several chapters in their recent book on data
engineering.

None of these books however cover data matching in both the depth and breath
this topic deserves. They either present only a few existing techniques in detail,
provide a broad but brief overview of a range of techniques, or they discuss only
certain aspects of the data matching process. The objectives of the present book are
to cover the current state of data matching research by presenting both concepts
and techniques as developed in various research fields, to describe all aspects of
the data matching process, and to cover topics (such as privacy issues related to
data matching) that have not been discussed in other books on data matching.

x Preface

Organization

This book consists of 10 chapters. Chapter 1 provides an introduction to data
matching (including how data matching fits into the broader topics of data inte-
gration and link analysis), a short history of data matching, as well as a series of
example applications that highlight the importance and diversity of data matching.
Chapter 2 then gives an overview of the data matching process and introduces the
major steps of this process. A small example is used to illustrate the different
aspects and challenges involved in each of these steps.

The core of the book is made of Chaps. 3–7. Each of these chapters is dedicated
to one of the major steps of the data matching process. They each present detailed
descriptions of both traditional and state-of-the-art techniques, including recently
proposed research approaches. Advantages and disadvantages of the various
techniques are discussed. Each chapter ends with a section on practical aspects that
are of relevance when data matching is employed in real-world applications, and
with a section on open problems that can be the basis for future research.

Chapter 3 discusses the importance of data pre-processing (data cleaning and
standardising), which often has to be applied to the input databases prior to data
matching in order to achieve matched data of high quality. The topic of Chap. 4 is
the different indexing (also known as blocking) techniques that are aimed at
reducing the quadratic complexity of the naive process of pair-wise comparing each
record from one database with all records in the other database. The actual
comparison of records and their attribute (or field) values is then covered in Chap. 5,
with an emphasis put on the various approximate string comparison techniques that
have been developed. How to accurately classify the compared record pairs into
matches and non-matches is then discussed in Chap. 6. Both supervised and
unsupervised classification techniques, and pair-wise and collective techniques are
presented. Finally, Chap. 7 describes how to properly evaluate the quality and
complexity of a data matching exercise. This chapter also covers the manual
clerical review process that traditionally has been (and commonly still is) used
within certain data matching systems, and the various publicly available test data
collections and data generators that can be of value to both researchers and
practitioners.

The final part of the book then covers additional topics, starting in Chap. 8 with
a discussion of the privacy aspects of data matching, which can be of importance
because personal information is commonly required for matching data. This
chapter also provides an overview of recent work into privacy-preserving data
matching (how databases can be matched without any private or confidential
information being revealed). Chapter 9 presents a series of topics that can be of
interest to both practitioners as well as the data matching research community.
These topics include matching geo-spatial data, matching unstructured or complex
types of data, matching data in real-time, matching dynamic databases, and con-
ducting data matching on parallel and distributed computing platforms. This
chapter also includes a list of open research topics. Finally, the book concludes in

Preface xi

http://dx.doi.org/10.1007/978-3-642-31164-2_1
http://dx.doi.org/10.1007/978-3-642-31164-2_12
http://dx.doi.org/10.1007/978-3-642-31164-2_3
http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://dx.doi.org/10.1007/978-3-642-31164-2_3
http://dx.doi.org/10.1007/978-3-642-31164-2_4
http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://dx.doi.org/10.1007/978-3-642-31164-2_6
http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://dx.doi.org/10.1007/978-3-642-31164-2_8
http://dx.doi.org/10.1007/978-3-642-31164-2_9

Chap. 10 with a checklist of how data matching systems can be evaluated, and a
brief overview of several freely available data matching systems.

Rather than providing definitions of relevant terms and concepts throughout the
book, a glossary is provided at the end of the book (on page 243 onwards) that can
help the reader to access the terms and concepts they are unfamiliar with.

Intended Audience

The aim of this book is to be accessible to researchers, graduate and research
students, and to practitioners who work in data matching and related areas. It is
assumed the reader has some expertise in algorithms and data structures, and
database technologies. Most chapters of this book end with a section that provides
pointers to further background and research material, which will allow the interested
reader to cover gaps in their knowledge and explore a specific topic in more depth.

This book provides the reader with a broad range of data matching concepts and
techniques, touching on all aspects of the data matching process. A wide range of
research in data matching is covered, and critical comparisons between state-of-the-
art approaches are provided. This book can thus help researchers from related fields
(such as databases, data mining, machine learning, knowledge engineering, infor-
mation retrieval, information systems, or health informatics), as well as students
who are interested to enter this field of research, to become familiar with recent
research developments and identify open research challenges in data matching.
Each of the Chaps. 3–9 contain a section that discusses open research topics.

This book can help practitioners to better understand the current state-of-the-art
in data matching techniques and concepts. Given that in many application domains
it is not feasible to simply use or implement an existing off-the-shelf data matching
system without substantial adaption and customisation, it is crucial for practitio-
ners to understand the internal workings and limitations of such systems. Practical
considerations are discussed in Chaps. 3–8 for each of the major steps of the data
matching process.

The technical level of this book also makes it accessible to students taking
advanced undergraduate and graduate level courses on data matching or data
quality. While such courses are currently rare, with the ongoing challenges that the
areas of data quality and data integration pose in many organizations in both the
public and private sectors, there is a demand worldwide for graduates with skills and
expertise in these areas. It is hoped that this book can help to address this demand.

Acknowledgments

I would like to start by thanking Tim Churches from the New South Wales
Department of Health and Sax Institute, for highlighting in 2001 to me and my

xii Preface

http://dx.doi.org/10.1007/978-3-642-31164-2_10
http://dx.doi.org/10.1007/978-3-642-31164-2_3
http://dx.doi.org/10.1007/978-3-642-31164-2_9
http://dx.doi.org/10.1007/978-3-642-31164-2_3
http://dx.doi.org/10.1007/978-3-642-31164-2_8

colleagues at the Australian National University that the area of data matching can
provide exciting research opportunities, and for supporting our research through
funding over several years. Without Tim, much of the outcomes we have
accomplished over the past decade, such as the FEBRL data matching system,
would not have been possible. Thanks goes also to Ross Gayler and Veda
Advantage, David Hawking and Funnelback Pty. Ltd., and Fujitsu Laboratories
(Japan). Without their support we would not have been able to continue our
research in this area. I also like to acknowledge the funding we received for our
research from the Australian Research Council (ARC) under two Linkage Projects
(LP0453463 and LP100200079), and from the Australian Partnership for
Advanced Computing (APAC).

Along the way, I received advice from experienced data matching practitioners,
including William Winkler and John Bass, who emphasized the gap between data
matching research and its practical application in the real world. A big thanks goes
also to all my students who contributed to our research efforts over the years:
Justin Xi Zhu, Puthick Hok, Daniel Belacic, Yinghua Zheng, Xiaoyu Huang, Agus
Pudjijono, Irwan Krisna, Karl Goiser, Dinusha Vatsalan, and Zhichun (Sally) Fu.

Large portions of this book were written while I was on sabbatical in 2011, and
I would like to thank Henry Gardner, Director Research School of Computer
Science at the Australian National University, for facilitating this relief from my
normal academic duties. My colleagues Paul Thomas and Richard Jones have
provided valuable feedback on early versions of this book, and I would like to
thank them for their efforts. Insightful comments by William Winkler, Warwick
Graco, and Vassilios Verykios helped to clarify certain aspects of the manuscript.

The list of research challenges and directions provided in Sect. 9.6 was compiled
with contributions from Brad Malin, Vassilios Verykios, Hector Garcia-Molina,
Steven (Euijong) Whang, Warwick Graco, and William Winkler (who gave the
striking comment that ‘‘if one goes back 50 + years, these five issues were present’’
regarding the major challenges of data matching from the perspective of an expe-
rienced practitioner).

I would also like to thank the two anonymous reviewers who provided valuable
detailed feedback and helpful suggestions. The task of proof-reading of the final
manuscript was made easier through the help of my colleagues and students Paul
Thomas, Qing Wang, Huizhi (Elly) Liang, Banda Ramadan, Dinusha Vatsalan,
Zhichun (Sally) Fu, Felicity Splatt, and Brett Romero, who all detected the small
hidden mistakes I had missed.

I also like to thank the editors of this book series, Mike Carey and Stefano Ceri,
and to Ralf Gestner from Springer, who all supported this book project right from
the start.

And finally, last but not least, a very big thanks goes to Gail for her love,
encouragement and understanding.

Canberra, 29 April 2012 Peter Christen

Preface xiii

http://dx.doi.org/10.1007/978-3-642-31164-2_9
http://dx.doi.org/10.1007/978-3-642-31164-2_9

Contents

Part I Overview

1 Introduction . 3
1.1 Aims and Challenges of Data Matching 3

1.1.1 Lack of Unique Entity Identifiers
and Data Quality . 5

1.1.2 Computation Complexity . 5
1.1.3 Lack of Training Data Containing the

True Match Status. 6
1.1.4 Privacy and Confidentiality 6

1.2 Data Integration and Link Analysis. 6
1.3 A Short History of Data Matching . 9
1.4 Example Application Areas . 11

1.4.1 National Census . 11
1.4.2 The Health Sector . 12
1.4.3 National Security . 13
1.4.4 Crime and Fraud Detection and Prevention 14
1.4.5 Business Mailing Lists . 15
1.4.6 Bibliographic Databases . 17
1.4.7 Online Shopping . 18
1.4.8 Social Sciences and Genealogy. 19

1.5 Further Reading . 20

2 The Data Matching Process . 23
2.1 Overview. 23

2.1.1 A Small Data Matching Example 23
2.2 Data Pre-Processing . 24
2.3 Indexing . 27
2.4 Record Pair Comparison . 29

xv

http://dx.doi.org/10.1007/978-3-642-31164-2_1
http://dx.doi.org/10.1007/978-3-642-31164-2_1
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec1
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec1
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec2
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec2
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec2
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec3
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec3
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec4
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec4
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec4
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec5
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec5
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec6
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec6
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec7
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec7
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec8
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec8
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec9
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec9
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec10
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec10
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec11
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec11
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec12
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec12
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec13
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec13
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec14
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec14
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec15
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec15
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec16
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec16
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec17
http://dx.doi.org/10.1007/978-3-642-31164-2_1#Sec17
http://dx.doi.org/10.1007/978-3-642-31164-2_2
http://dx.doi.org/10.1007/978-3-642-31164-2_2
http://dx.doi.org/10.1007/978-3-642-31164-2_2#Sec1
http://dx.doi.org/10.1007/978-3-642-31164-2_2#Sec1
http://dx.doi.org/10.1007/978-3-642-31164-2_2#Sec2
http://dx.doi.org/10.1007/978-3-642-31164-2_2#Sec2
http://dx.doi.org/10.1007/978-3-642-31164-2_2#Sec3
http://dx.doi.org/10.1007/978-3-642-31164-2_2#Sec3
http://dx.doi.org/10.1007/978-3-642-31164-2_2#Sec4
http://dx.doi.org/10.1007/978-3-642-31164-2_2#Sec4
http://dx.doi.org/10.1007/978-3-642-31164-2_2#Sec5
http://dx.doi.org/10.1007/978-3-642-31164-2_2#Sec5

2.5 Record Pair Classification . 32
2.6 Evaluation of Matching Quality and Complexity 34
2.7 Further Reading . 35

Part II Steps of the Data Matching Process

3 Data Pre-Processing . 39
3.1 Data Quality Issues Relevant to Data Matching 39
3.2 Issues with Names and Other Personal Information 42
3.3 Types and Sources of Variations and Errors in Names 45
3.4 General Data Cleaning Tasks . 48
3.5 Data Pre-Processing for Data Matching 51

3.5.1 Removing Unwanted Characters and Tokens 51
3.5.2 Standardisation and Tokenisation 53
3.5.3 Segmentation into Output Fields 55
3.5.4 Verification . 56

3.6 Rule-Based Segmentation Approaches. 58
3.7 Statistical Segmentation Approaches 60

3.7.1 Hidden Markov Model Based Segmentation. 62
3.8 Practical Considerations and Research Issues 65
3.9 Further Reading . 66

4 Indexing. 69
4.1 Why Indexing?. 69
4.2 Defining Blocking Keys . 70
4.3 (Phonetic) Encoding Functions . 74

4.3.1 Soundex. 74
4.3.2 Phonex . 75
4.3.3 Phonix. 76
4.3.4 NYSIIS . 76
4.3.5 Oxford Name Compression Algorithm. 77
4.3.6 Double-Metaphone . 78
4.3.7 Fuzzy Soundex . 78
4.3.8 Other Encoding Functions 79

4.4 Standard Blocking . 80
4.5 Sorted Neighbourhood Approach . 81
4.6 Q-Gram Based Indexing . 84
4.7 Suffix-Array Based Indexing . 86
4.8 Canopy Clustering . 89
4.9 Mapping Based Indexing . 92
4.10 A Comparison of Indexing Techniques 93
4.11 Other Indexing Techniques . 94

xvi Contents

http://dx.doi.org/10.1007/978-3-642-31164-2_2#Sec6
http://dx.doi.org/10.1007/978-3-642-31164-2_2#Sec6
http://dx.doi.org/10.1007/978-3-642-31164-2_2#Sec7
http://dx.doi.org/10.1007/978-3-642-31164-2_2#Sec7
http://dx.doi.org/10.1007/978-3-642-31164-2_2#Sec8
http://dx.doi.org/10.1007/978-3-642-31164-2_2#Sec8
http://dx.doi.org/10.1007/978-3-642-31164-2_3
http://dx.doi.org/10.1007/978-3-642-31164-2_3
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec1
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec1
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec2
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec2
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec3
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec3
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec4
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec4
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec5
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec5
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec6
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec6
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec7
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec7
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec8
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec8
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec9
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec9
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec10
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec10
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec11
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec11
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec12
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec12
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec13
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec13
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec14
http://dx.doi.org/10.1007/978-3-642-31164-2_3#Sec14
http://dx.doi.org/10.1007/978-3-642-31164-2_4
http://dx.doi.org/10.1007/978-3-642-31164-2_4
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec1
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec1
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec2
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec2
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec3
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec3
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec4
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec4
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec5
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec5
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec6
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec6
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec7
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec7
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec8
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec8
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec9
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec9
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec10
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec10
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec11
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec11
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec12
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec12
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec13
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec13
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec14
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec14
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec15
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec15
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec16
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec16
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec17
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec17
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec18
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec18
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec19
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec19

4.12 Learning Optimal Blocking Keys . 97
4.13 Practical Considerations and Research Issues 98
4.14 Further Reading . 100

5 Field and Record Comparison . 101
5.1 Overview and Motivation . 101
5.2 Exact, Truncate and Encoding Comparison 102
5.3 Edit Distance String Comparison . 103

5.3.1 Smith-Waterman Edit Distance String
Comparison . 105

5.4 Q-gram Based String Comparison. 106
5.5 Jaro and Winkler String Comparison 109
5.6 Monge-Elkan String Comparison . 111
5.7 Extended Jaccard Comparison . 112
5.8 SoftTFIDF String Comparison . 113
5.9 Longest Common Substring Comparison 114
5.10 Other Approximate String Comparison Techniques. 116

5.10.1 Bag Distance . 116
5.10.2 Compression Distance . 116
5.10.3 Editex . 117
5.10.4 Syllable Alignment Distance 118

5.11 String Comparison Examples . 118
5.12 Numerical Comparison . 121
5.13 Date, Age and Time Comparison . 122
5.14 Geographical Distance Comparison. 124
5.15 Comparing Complex Data . 124
5.16 Record Comparison . 125
5.17 Practical Considerations and Research Issues 126
5.18 Further Reading . 127

6 Classification . 129
6.1 Overview. 129
6.2 Threshold-Based Classification. 131
6.3 Probabilistic Classification. 133
6.4 Cost-Based Classification . 137
6.5 Rule-Based Classification . 139
6.6 Supervised Classification Methods . 142
6.7 Active Learning Approaches . 147
6.8 Managing Transitive Closure . 149
6.9 Clustering-Based Approaches. 150
6.10 Collective Classification . 154
6.11 Matching Restrictions and Group Linking 157
6.12 Merging Matches . 160

Contents xvii

http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec20
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec20
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec21
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec21
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec22
http://dx.doi.org/10.1007/978-3-642-31164-2_4#Sec22
http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec1
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec1
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec2
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec2
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec3
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec3
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec4
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec4
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec4
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec5
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec5
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec6
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec6
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec7
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec7
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec8
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec8
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec9
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec9
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec10
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec10
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec11
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec11
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec12
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec12
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec13
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec13
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec14
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec14
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec15
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec15
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec16
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec16
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec17
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec17
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec18
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec18
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec19
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec19
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec20
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec20
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec21
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec21
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec22
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec22
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec23
http://dx.doi.org/10.1007/978-3-642-31164-2_5#Sec23
http://dx.doi.org/10.1007/978-3-642-31164-2_6
http://dx.doi.org/10.1007/978-3-642-31164-2_6
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec1
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec1
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec2
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec2
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec3
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec3
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec4
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec4
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec5
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec5
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec6
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec6
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec7
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec7
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec8
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec8
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec9
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec9
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec10
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec10
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec11
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec11
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec12
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec12

6.13 Practical Considerations and Research Issues 161
6.14 Further Reading . 162

7 Evaluation of Matching Quality and Complexity 163
7.1 Overview. 163
7.2 Measuring Matching Quality . 165
7.3 Measuring Matching Complexity . 172
7.4 Clerical Review . 174
7.5 Public Test Data. 176
7.6 Synthetic Test Data. 178
7.7 Practical Considerations and Research Issues 183
7.8 Further Reading . 184

Part III Further Topics

8 Privacy Aspects of Data Matching. 187
8.1 Privacy and Confidentiality Challenges for Data Matching . . . 187

8.1.1 Requiring Access to Identifying Information 188
8.1.2 Sensitive and Confidential Outcomes

from Matched Data . 189
8.2 Data Matching Scenarios . 190
8.3 Privacy-Preserving Data Matching Techniques 193

8.3.1 Exact Privacy-Preserving Matching Techniques 196
8.3.2 Approximate Privacy-Preserving

Matching Techniques . 199
8.3.3 Scalable Privacy-Preserving Matching

Techniques. 203
8.4 Practical Considerations and Research Issues 205
8.5 Further Reading . 207

9 Further Topics and Research Directions 209
9.1 Geocode Matching . 209
9.2 Matching Unstructured and Complex Data 211
9.3 Real-time Data Matching. 213
9.4 Matching Dynamic Databases . 215
9.5 Parallel and Distributed Data Matching 217
9.6 Research Challenges and Directions 222

10 Data Matching Systems . 229
10.1 Commercial Systems and Checklist 229
10.2 Research and Open Source Systems 231

10.2.1 BigMatch. 231
10.2.2 D-Dupe . 232

xviii Contents

http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec13
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec13
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec14
http://dx.doi.org/10.1007/978-3-642-31164-2_6#Sec14
http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://dx.doi.org/10.1007/978-3-642-31164-2_7#Sec1
http://dx.doi.org/10.1007/978-3-642-31164-2_7#Sec1
http://dx.doi.org/10.1007/978-3-642-31164-2_7#Sec2
http://dx.doi.org/10.1007/978-3-642-31164-2_7#Sec2
http://dx.doi.org/10.1007/978-3-642-31164-2_7#Sec3
http://dx.doi.org/10.1007/978-3-642-31164-2_7#Sec3
http://dx.doi.org/10.1007/978-3-642-31164-2_7#Sec4
http://dx.doi.org/10.1007/978-3-642-31164-2_7#Sec4
http://dx.doi.org/10.1007/978-3-642-31164-2_7#Sec5
http://dx.doi.org/10.1007/978-3-642-31164-2_7#Sec5
http://dx.doi.org/10.1007/978-3-642-31164-2_7#Sec6
http://dx.doi.org/10.1007/978-3-642-31164-2_7#Sec6
http://dx.doi.org/10.1007/978-3-642-31164-2_7#Sec7
http://dx.doi.org/10.1007/978-3-642-31164-2_7#Sec7
http://dx.doi.org/10.1007/978-3-642-31164-2_7#Sec8
http://dx.doi.org/10.1007/978-3-642-31164-2_7#Sec8
http://dx.doi.org/10.1007/978-3-642-31164-2_8
http://dx.doi.org/10.1007/978-3-642-31164-2_8
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec1
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec1
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec2
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec2
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec3
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec3
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec3
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec4
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec4
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec5
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec5
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec6
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec6
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec7
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec7
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec7
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec8
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec8
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec8
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec9
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec9
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec10
http://dx.doi.org/10.1007/978-3-642-31164-2_8#Sec10
http://dx.doi.org/10.1007/978-3-642-31164-2_9
http://dx.doi.org/10.1007/978-3-642-31164-2_9
http://dx.doi.org/10.1007/978-3-642-31164-2_9#Sec1
http://dx.doi.org/10.1007/978-3-642-31164-2_9#Sec1
http://dx.doi.org/10.1007/978-3-642-31164-2_9#Sec2
http://dx.doi.org/10.1007/978-3-642-31164-2_9#Sec2
http://dx.doi.org/10.1007/978-3-642-31164-2_9#Sec3
http://dx.doi.org/10.1007/978-3-642-31164-2_9#Sec3
http://dx.doi.org/10.1007/978-3-642-31164-2_9#Sec4
http://dx.doi.org/10.1007/978-3-642-31164-2_9#Sec4
http://dx.doi.org/10.1007/978-3-642-31164-2_9#Sec5
http://dx.doi.org/10.1007/978-3-642-31164-2_9#Sec5
http://dx.doi.org/10.1007/978-3-642-31164-2_9#Sec6
http://dx.doi.org/10.1007/978-3-642-31164-2_9#Sec6
http://dx.doi.org/10.1007/978-3-642-31164-2_10
http://dx.doi.org/10.1007/978-3-642-31164-2_10
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec1
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec1
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec2
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec2
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec3
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec3
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec4
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec4

10.2.3 DuDe . 232
10.2.4 FEBRL . 234
10.2.5 FRIL . 236
10.2.6 Merge ToolBox . 238
10.2.7 OYSTER . 239
10.2.8 R RecordLinkage . 240
10.2.9 SecondString . 240
10.2.10 SILK. 240
10.2.11 SimMetrics . 241
10.2.12 TAILOR . 241
10.2.13 WHIRL . 241

Glossary . 243

References . 251

Index . 265

Contents xix

http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec5
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec5
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec6
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec6
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec7
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec7
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec8
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec8
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec9
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec9
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec10
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec10
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec11
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec11
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec12
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec12
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec13
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec13
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec14
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec14
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec15
http://dx.doi.org/10.1007/978-3-642-31164-2_10#Sec15

Part I
Overview

Chapter 1
Introduction

1.1 Aims and Challenges of Data Matching

Given the ever-increasing amount of data that are being collected, not just by busi-
nesses and government organisations but increasingly also by individuals, the past
decade has seen strong interest in novel techniques that allow the efficient processing,
management and analysis of large data collections. The fields of data warehousing
and data mining have gained immense interest in both academia and industry. While
data warehousing is concerned with the efficient processing, integration and storage
of large amounts of data into clean, consistent and persistent forms that enable basic
statistical analysis, data mining is aimed at discovering new and potentially valuable
information from such large data collections [135].

As businesses, public bodies and government agencies are drowning in an ever-
increasing deluge of data, the ability to analyse their data in a timely fashion can
provide a competitive edge to a commercial enterprise, lead to improved productivity
for government agencies and be of vital importance to national security. In many
large-scale information systems and data mining projects, data from multiple sources
need to be integrated and matched in order to improve data quality, enrich existing
data sources or facilitate data mining that is not feasible on a single database. The
analysis of data integrated from disparate sources, either within an organisation or
between different organisations, can lead to much improved benefits compared to
analysing databases in isolation. Integrated data can also allow types of data analyses
that are not feasible on individual databases, such as the identification of adverse drug
reactions in particular patient groups, or the detection of terrorism suspects through
the analysis of certain suspicious patterns of activities [44, 58, 103, 143].

Integrating data from different sources consists of three tasks. The first task
is schema matching [224], which is concerned with identifying database tables,
attributes and conceptual structures (such as ontologies, XML schemas and UML
diagrams) from disparate databases that contain data that correspond to the same type
of information. The second task, the topic of this book, is data matching, the task
of identifying and matching individual records from disparate databases that refer to

P. Christen, Data Matching, Data-Centric Systems and Applications, 3
DOI: 10.1007/978-3-642-31164-2_1, © Springer-Verlag Berlin Heidelberg 2012

4 1 Introduction

the same real-world entities or objects. A special case of data matching is duplicate
detection, the task of identifying and matching records that refer to the same entities
within a single database. The following Sect. 1.2 discusses how data matching fits
into the overall data integration process. The third task, known as data fusion [38],
is the process of merging pairs or groups of records that have been classified as
matches (i.e. that are assumed to refer to the same entity) into a clean and consistent
record that represents an entity. When applied on one database, this process is called
deduplication.

The records considered in data matching and deduplication generally refer to real-
world entities. The attribute values in these records are descriptions of the identifying
details of these entities, such as their names, addresses and so on. It is assumed
that these records are available already in a certain structured format, for example
consisting of a name attribute, an address attribute, a date-of-birth attribute, etc. Data
matching does not consider the extraction of entity information from unstructured
documents (such as e-mails, news articles, police reports or scientific publications),
or the scanning and optical character recognition (OCR) of names and addresses from
letters and parcels. It is assumed that these information extraction [230] steps have
already been conducted and that the records to be matched are stored in well-defined
files or database tables.

Most commonly, the records to be matched across two or more databases, or to
be deduplicated in a single database, correspond to people. They can, for example,
refer to customers in a business database, employees in a company data warehouse,
tax payers or welfare recipients in government databases, patients in hospital or
private health insurance databases, known criminals and terrorism suspects in law
enforcement and national security databases, or travellers in the databases held by
airlines, and government departments of immigration and homeland security.

Besides people, other entities that sometimes have to be matched include records
about businesses, publications and bibliographic citations, Web pages and Web search
results or consumer products. In applications such as Web search and digital libraries,
for example, it is important that duplicate documents (such as Web pages and bibli-
ographic citations) in the results returned by a search engine are removed before the
results are being presented to a user [131]. For automatic text indexing systems, it is
important that duplicates are eliminated before the indexing takes place in order to
reduce storage requirements and computational efforts [245].

With the increase in e-Commerce in recent years, another application where
data matching has become of importance is comparative online shopping. Because
consumer products in different online stores often have slightly different product
descriptions (such as ‘Canon PowerShot D10 Digital Camera’ or ‘Canon D10
12.1MP 3 × OPT ZOOMOIS Underwater Camera’), identifying which product
description corresponds to which actual product can become difficult [33].

The task of identifying and matching records that refer to the same entities within
one or across several databases is challenging for several reasons. The following
sections highlight some of the major challenges. They will be further discussed in
the relevant chapters later in this book.

1.1 Aims and Challenges of Data Matching 5

1.1.1 Lack of Unique Entity Identifiers and Data Quality

Generally, the databases to be matched (or deduplicated) do not contain unique
entity identifiers or keys. Examples of entity identifiers include unique patient or tax
payer numbers, or consumer product codes. If such identifiers are available in all the
databases to be matched, then the data matching task becomes a database join that
can be implemented efficiently through SQL statements.

Even when entity identifiers are available in the databases to be matched, one must
be absolutely confident in the accuracy, completeness, robustness and consistency
over time of these identifiers, because any error in such an identifier will result in
wrongly matched records.

As database owner, one must also be confident that there are no duplicate records
in a database where different identifiers are used for the same entity. This situation
is however common, for example in customer databases, where the same customer
can have several records due to name variations or address changes.

If no entity identifiers are available in the databases to be matched, then the
matching needs to rely upon the attributes that are common across the databases. If
the databases contain information about people, then these common attributes can be
names, addresses, dates of birth and other partially identifying personal details. The
quality of such information can however be low, as personal details can be wrong,
incomplete and they often change over time. Data matching based on such ‘dirty’
data is challenging, as will be discussed in Chaps. 3 and 5.

1.1.2 Computation Complexity

When matching two databases, potentially each record from one database needs to
be compared with all records in the other database in order to determine if a pair
of records corresponds to the same entity or not. When deduplicating a single data-
base, each record potentially needs to be compared with all others. The computation
complexity of data matching therefore grows quadratically as the databases to be
matched get larger.

On the other hand, the number of potential true matches (i.e. pairs or groups
of records that refer to the same entity) only grows linearly with the size of the
databases to be matched. If it is assumed that the databases to be matched do not
contain duplicate records, then the maximum possible number of true matches is
limited by the size of the smaller of the two databases.

This computational challenge is addressed by techniques that aim to efficiently
and effectively remove record pairs that likely do not refer to matches, while selecting
candidate record pairs for detailed comparison and classification that likely will be
matches. This topic is covered in detail in Chap. 4.

http://dx.doi.org/10.1007/978-3-642-31164-2_3
http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://dx.doi.org/10.1007/978-3-642-31164-2_4

6 1 Introduction

1.1.3 Lack of Training Data Containing the True Match Status

In many data matching applications, the true status of two records that are matched
across two databases is not known, i.e. there is no ground-truth or ‘gold standard’
data available that specifies if two records correspond to the same entity or not. This
is different from many other data mining or machine learning applications where
training data are readily available. Without extra information (such as contacting
individuals and asking for the correctness of their personal details) one cannot be
sure that the outcomes of a data matching project are correct. This is especially a
problem for large databases that cover large portions of a population, as is the case
in health or government data collections. In such applications, accurately assessing
data matching quality and completeness is challenging. Chapters 6 and 7 discuss this
challenge in depth.

1.1.4 Privacy and Confidentiality

As previously mentioned, with data matching commonly relying on personal
information such as names, addresses and dates of birth of individuals, privacy and
confidentiality need to be carefully considered. This is especially the case when
databases are matched between organisations, or when the outcomes (the matched
data set) are to be used by an external organisation or by individuals such as acad-
emic researchers. The analysis of matched data has the potential to uncover aspects
of individuals or groups of entities that are not obvious when a single database is
analysed separately.

For example, the outcomes of analysing matched health and population databases
can potentially lead to discrimination against certain groups of individuals, if it is
discovered that these people have a higher risk of getting a certain serious or infectious
disease. The discrimination could be in the form of higher life insurance premiums,
or even that these individuals would find it much harder to gain employment due to
their potentially increased risk of long-term illness.

In recent years, research into the development of techniques that facilitate privacy-
preserving record linkage has received attention from areas such as health informatics
and data mining. The aim of this research is to facilitate the matching of data across
organisations without compromising the privacy and confidentiality of the data to be
matched. Chapter 8 provides an overview of this challenging topic.

1.2 Data Integration and Link Analysis

Data matching is a commonly required step in the much larger process of data
integration [178]. While data matching is concerned with identifying and matching
individual records that refer to the same entities from disparate databases, data inte-

http://dx.doi.org/10.1007/978-3-642-31164-2_6
http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://dx.doi.org/10.1007/978-3-642-31164-2_8

1.2 Data Integration and Link Analysis 7

PatTbl
PatientID Name DOB Age Gender StreetAddress Suburb Postcode
P1273489 John Smith 8/10/1960 51 M 8/42 Miller Street Melbourne 3011
Q6549234-2 Mick Meyer 30/01/1948 63 M 10 Port Road Ferny Grove 7004
P7693427-8 Joanna Smith 12/11/1984 27 F 76 George Crest Sydeny 2020

AdmittedPatients Addresses
PID Surname GivenName BirthDate Sex AID AID Street Location
25198 Smith Jo Anna 19841112 1 A347 A135 42 Miller St 3000 Melbourne
55642 Smith John W. 19601008 0 A135 A347 16 George Crs 2000 Sydney
15907 Meier Michael 19480101 0 A810 A810 PO Box 553 7000 Brisbane
99801 Meyer Mike 19790320 0 A135

Fig. 1.1 Three example hospital database tables that illustrate commonly occurring challenges
with data integration. It is assumed that the PatTbl table originates from one database, while the
two tables AdmittedPatients and Addresses are sourced from a second database. The AID is a
unique identifier (key) for each address that links the AdmittedPatients table with the Addresses
table

gration is the overall process of integrating heterogeneous databases, data warehouses
or data repositories to provide a unified view of the available data. This process is
highly significant, for example, for company mergers, collaborative e-Commerce
projects, data mash-ups and scientific collaborations [24].

Data stored in disparate databases are usually heterogeneous not only at the record
(instance) level, but also at the structural database (table) level. As illustrated in
Fig. 1.1, the possible differences in the way data are represented and stored include
[224]:

• Tables that contain the same type of information can have different names, and
one table in one database can contain the same (or similar) type of information
as several tables in another database. In the given example, the PatTbl table con-
tains the details of hospital patients, as do the two tables AdmittedPatients and
Addresses. Detecting which table corresponds to which (combination of) other
table(s) is challenging if the number of tables in two databases is large.

• Attributes that contain the same type of information can have different names, and
even if they contain the same information their content can be formatted or encoded
differently. In the given example, the ‘DOB’ and ‘BirthDate’ attributes follow
different date conventions, the first being ‘DD/MM/YYYY’ and the second being
‘YYYYMMDD’, with ‘DD’ representing day numbers, ‘MM’ month numbers
and ‘YYYY’ year numbers. The ‘Gender’ attribute in the PatTbl table contains
the same information as the ‘Sex’ attribute in the AdmittedPatients table, but they
are encoded differently, with ‘M’ in the PatTbl table corresponding to ‘0’ in the
AdmittedPatients table, and ‘F’ to ‘1’.

• Attributes that contain compound information in one database can be split into
several attributes in another database, such as the ‘Location’ attribute from the
Addresses table which corresponds to the combined ‘Suburb’ and ‘Postcode’
attributes in the AdmittedPatients table.

8 1 Introduction

• Within one database, some attributes can be derived from other attributes that are
in different tables. For example, values in the ‘Age’ attribute in the PatTbl table
were calculated in 2011 based on the corresponding ‘DOB’ values in the same
table.

• Attribute values can also be recorded using different measurements, for example
dollar amounts in a multinational business database will potentially correspond to
national currencies such as US, Australian or New Zealand dollars.

• Entity identifiers, such as the shown ‘PatientID’ and ‘PID’ attributes, are poten-
tially not the same across two or more databases. Exemptions are national
identifiers such as social security, drivers licence or tax file numbers. In many
countries, however, the use of such identifiers for data integration is strictly regu-
lated or even prohibited.

As these examples show, data integration has many challenges, both at the database
structure and the record level. When matching schemas, a careful analysis of the
names, types of content and other meta-data of the available attributes can help to
identify which attributes correspond to each other [24, 224]. Meta-data can include
information such as the number of different values in an attribute and their frequency
distribution, descriptions of the sources of the attribute values, or their structure and
encoding (such as references to external encoding dictionaries).

Data integration should however not consider schema matching and data matching
independently, but rather in an integral fashion [299]. Commonly, data integration
is a semi-automated process, where human insight can provide initial information
about which database tables potentially correspond to each other. Such hints can then
be used to bootstrap a tool-supported integration process.

The content of attributes can help in the schema matching process. Correlation
analysis can help detect attributes that contain related information. Data matching
across two databases can identify records that correspond to the same entities, which
in turn can help identify which attributes correspond to each other [299]. For exam-
ple, if an approximate string matching algorithm (as will be discussed in Chap. 5)
is applied on the two attributes ‘StreetAddress’ and ‘Address’ in Fig. 1.1, the cor-
respondence of these two attributes can be inferred based on their similar content.
A process that exploits information both at the schema and the record level, and
iteratively refines the integration process, can therefore lead to efficient and accurate
data integration.

Once databases are matched at the schema level, individual records need to be
matched to identify which records in two or more databases correspond to the same
real-world entities. The remainder of this book covers this second data integration
task in detail.

The final task in the data integration process, after pairs or groups of records have
been identified that refer to the same entities, is to consolidate and merge matching
records into a single consistent and clean representation for each entity. This step is
also known as data fusion [38]. The major challenge of data fusion is how conflicts
are resolved when the records that correspond to one entity contain different attribute
values. Different aggregation functions can be applied, such as taking the minimum,

http://dx.doi.org/10.1007/978-3-642-31164-2_5

1.2 Data Integration and Link Analysis 9

the maximum, the oldest or the newest of a set of different attribute values, calculating
an average of values (if feasible), or taking the value from a data source that is more
trustworthy than another. Bleiholder and Naumann [38] provide an excellent survey
of data fusion and its challenges, and how fusion can be achieved within a database
framework using relational operators. Their survey also includes an overview of data
fusion systems.

Besides relational databases, recent interest in other structured types of data, such
as XML schemas and ontologies, has sparked the development of novel techniques
that are aimed at integrating and matching such types of data [24, 120, 270]. These
techniques commonly combine both semantic and syntactic similarities into one
overall similarity value which is used to detect similar entities. The outcomes of
such matching can, for example, help to detect ontologies that are variations of
others, or XML schemas that are parts of other, larger schemas.

Data matching is also an integral part of link analysis (or link mining or net-
work analysis) [296], techniques that are concerned with the exploration, modelling,
evaluation and prediction of connections between nodes in networks. In application
areas such as counter-terrorism, crime investigations and fraud detection, the nodes
(entities) in such networks commonly correspond to people, and the connections
(relationships) between these nodes refer to their interactions (such as phone calls,
financial transactions, shared addresses, shared activities and so on). Link analysis
often involves the interactive visualisation of a sub-graph of a network that is of
interest, for example for a criminal investigation. Data matching is an important
component of link analysis because it allows nodes to be identified that correspond
to the same real-world entities even though they have different attribute values.

1.3 A Short History of Data Matching

Data matching has a long history. Even before the invention of modern computers,
statisticians and public health researchers were interested in identifying records that
belonged to the same entity from a single or several disparate databases.

In 1946, Dunn used the term record linkage [97] to describe the idea of assembling
a book of life for every individual in the world. Each of these books would start with
a birth record and end with a death record, and in between it would consist of records
about an individual’s contacts with the health and social security systems, and also
include marriage and divorce records. Dunn realised that having such books of life
for all individuals in a population will provide a wealth of information that allows
governments to improve national statistics, better plan services and also improve the
identification of individuals. Dunn also recognised the difficulty of dealing with data
quality issues, such as common names, errors and variations in the data.

In the 1950s and early 1960s, Howard Newcombe et al. [197, 198] then proposed
the use of computers to automate the data matching process. He also developed the
basic ideas of the successful probabilistic record linkage approach. In his approach,
the phonetic Soundex [57, 201] encoding is applied to attributes such as surnames to

10 1 Introduction

overcome name variations. Based on the distribution of attribute values, match and
non-match weights (also called agreement and disagreement weights) are calculated
and used to decide if two records correspond to a match or not.

Based on Newcombe’s ideas, in 1969 the two statisticians Ivan Fellegi and Alan
Sunter published their seminal paper on probabilistic record linkage [108]. Their
theory proved that an optimal probabilistic decision rule can be found under the
assumption that the attributes used in the comparison of records are independent of
each other. This pioneering work has been the basis for many data matching systems
and software products, and it is still widely used today. The probabilistic record
linkage approach will be covered in detail in Chap. 6. Okner in 1974 summarised
several data matching projects in the taxation domain [203], and he described the
difficulties encountered with exact matching approaches.

Over the past few decades, the basic probabilistic approach has been extended
in various ways. Notable work was conducted by William Winkler and his col-
leagues at the US Census Bureau in the 1990s [286]. They developed techniques that
allowed for variations in strings through the use of approximate string comparison
functions [215], used frequency-based match and non-match weights, and employed
the expectation–maximisation (EM) algorithm [280] to improve the estimates of the
matching parameters required in the probabilistic record linkage approach.

Concurrently to the work done by statisticians and public health researchers,
the database community has developed techniques to find duplicate records in a
single database [140], and to improve the quality of databases as part of the data
cleaning process [224]. Duplicate records commonly occur in customer databases,
and as will be described in Sect. 1.4.5 below, identifying and removing duplicates
is an important task. The work conducted by database researchers was not based on
the probabilistic approach developed by Fellegi and Sunter. Rather, they employed
sorting of the databases according to the attributes to be compared in order to bring
similar records together [140, 141], and used string comparison functions to detect
approximate similarities [190, 191]. It is interesting to note that until the late 1990s
few cross-references could be found between computer science and statistical or
health publications in the area of data matching.

The last 10 years have seen a strong increase in data matching research in the
computer science domain, especially in areas like data mining, machine learning
and information retrieval, as well as the database and data warehousing communities
[103]. As larger databases have been collected by many organisations, and data
quality has been recognised as a major challenge to utilising these data [19, 177], the
task of identifying records that refer to the same entities in disparate databases has
become more pervasive than ever. In the past few years, novel techniques have been
developed that employ sophisticated machine learning, natural language processing
and graph-based approaches in order to improve both data matching quality and
enable the matching of very large databases that contain many millions of records.
Winkler in 2006 provided an excellent overview of work done both in the computer
science and statistical research domains [284].

A different avenue of data matching research in the past decade has been the
development of techniques that allow the matching of databases without the need of

http://dx.doi.org/10.1007/978-3-642-31164-2_6

1.3 A Short History of Data Matching 11

any private or confidential data to be exchanged between the organisations that con-
duct the matching. These techniques, known as privacy-preserving record linkage,
will be described in Chap. 8.

Because the task of data matching has been investigated independently in differ-
ent research domains, it has been given a variety of names. While health researchers
and statisticians speak of record or data linkage, computer scientists name the same
process as data, record or object matching, entity resolution, co-reference resolu-
tion, object identification, data reconciliation, citation or reference matching (when
applied to bibliographic databases [185]), identity uncertainty, duplicate detection
or deduplication (when applied to one database only), authority control, or approx-
imate string join in the context of databases. In the business-oriented processing of
databases and data-warehousing, data matching is also known as the merge/purge
problem, list washing, data cleansing or field scrubbing, and is seen as one crucial
step of the overall extraction, transformation and loading (ETL) process [224].

Today, there are dozens, if not hundreds, of commercial data matching and dedu-
plication products and solutions on the market. Many of these are either stand-alone
packages that are specialised for a certain type of application, such as the dedupli-
cation of mailing lists or the matching of health databases; or data matching is one
component of a much larger business intelligence, data integration, data quality or
customer relationship management system. Chapter 10 will further discuss commer-
cial as well as freely available data matching systems, and also provide a checklist
that can be used to evaluate the requirements of data matching systems. Most modern
commercial database systems also contain some functionality that can be used for data
matching, such as phonetic encoding and approximate string comparison functions.
These techniques will be presented in detail in Sect. 4.3 and Chap. 5, respectively.

1.4 Example Application Areas

The following sections describe several example application areas where data match-
ing is an important component of larger information systems, of government and
business processes, or of research endeavours. For each area, the unique aspects and
challenges encountered are discussed.

1.4.1 National Census

National census agencies around the world collect data about various aspects of the
population, culture, economy and the environment in their respective country. This
information is then collated into a diverse range of statistical reports that are used by
governments and businesses to plan the allocation of funding and resources.

Data matching has been recognised as an important tool for census statistics. It
allows the reuse of existing data sources to compile new statistical data sets, and thus

http://dx.doi.org/10.1007/978-3-642-31164-2_8
http://dx.doi.org/10.1007/978-3-642-31164-2_10
http://dx.doi.org/10.1007/978-3-642-31164-2_4
http://dx.doi.org/10.1007/978-3-642-31164-2_5

12 1 Introduction

reduces the costs and efforts required to conduct large-scale census collections [119].
It also helps to improve data quality and integrity, as matching data from different
census collections can help detect and correct conflicting or missing information, or
improve estimates of population sizes through capture–recapture techniques [282].

Data matching can also be used to generate longitudinal data sets, by matching
census data that have been collected at different instants in time (for example every
5 or 10 years). It is commonly recognised that longitudinal data are an important
source of information about how the characteristics of a population change over
time. Different countries have different laws and regulations that govern what kind
of data matching can be done. In Australia, for example, name and address details
collected in national censuses need to be destroyed within 1 year after collection
(both the physical paper-based census forms as well as any electronic versions of
these data). Such restrictions make it very challenging to create longitudinal data sets,
because the matching has to rely upon information such as age, gender, birthplace,
religion, highest educational qualification and so on [86].

The US Census Bureau has been one of the early adopters of data matching. Not
only has the Bureau applied existing data matching techniques on a regular basis,
it has also been at the forefront of data matching research and development over
several decades [215, 280, 286]. The size of the data collections the Bureau needs
to match can be in the order of several hundred millions of records, and therefore
it has also been developing large-scale and parallel data matching techniques [295].
The various techniques developed by the US Census Bureau will be described in the
corresponding chapters later in this book.

1.4.2 The Health Sector

Besides national censuses, the health sector has been a second application area that
has pioneered the use of data matching for several decades [97, 199]. Over the dura-
tion of a person’s life, the detailed information collected by doctors, hospitals, heath
insurers and pharmacies, results in a detailed picture of the health of an individual.
On a population scale, this information can be of high value.

Matched health data allow the reuse of existing data sources for new studies,
thereby reducing costs and efforts in data acquisition. For example, it enables the
investigation of adverse drug reactions in certain patient groups. Matching patient
addresses with spatial data can for example lead to the discovery of correlations
between environmental factors and local hot-spots of disease cases.

In the UK, the Oxford Record Linkage Study, which started in the 1960s, was
aimed at developing novel computer-based data matching techniques, and applying
these techniques on birth, death and hospital data of around 350,000 individuals
[119]. This allowed the study of associations between certain diseases, and using
longitudinal matched data enabled the analysis of occupational mortality, migration
and related socio-economic factors.

1.4 Example Application Areas 13

Arguably one of the most successful practical health data matching programs
worldwide has been conducted in Western Australia since the mid-1990s. Based on
a best-practice protocol of separating the personal identifiers required for matching
from the medical information needed for research studies [161], data from various
health (as well as non-health) sources have been matched, and a chain of records has
been generated for each individual person identified. A recent publication has sum-
marised over 700 outputs produced by this program from 1995 to 2003 [44]. Some of
the significant outcomes include improvements in health policies (like regular phys-
ical examination for mental health patients) and changes to clinical practise (like
installation of shock advisory defibrillators in all ambulances and hospital wards, or
community-based services for psychiatric patients at risk of suicide).

Several other countries have implemented similar health data matching programs.
However, the sensitivity of personal health records and privacy and confidentiality
concerns have thus far limited the application of data matching in the health sector
in many countries. Current research efforts aim to develop techniques that allow data
matching while at the same time preserving the privacy of the data to be matched.
Chapter 8 will discuss the topic of privacy within the domain of data matching in
more detail.

1.4.3 National Security

After the terrorism attacks on the US in 2001, the US government (as well as the
governments of other western countries) significantly increased their efforts and
funding into advanced analytics programs, with the aim to better detect and even
prevent future acts of terrorism. Compared to traditional armies, terrorists are much
harder to identify and track, because they are loosely organised in secret networks
and individual cells, they hide and strike infrequently, and they receive funding from
a variety of sources [213]. Nevertheless, terrorists do leave transactions and records
about their communications and activities in the online information space.

The objectives of counter-terrorism initiatives such as the total information aware-
ness (TIA) and the multistate anti-terrorism information exchange system (MATRIX)
programs [109] was to apply advanced techniques from domains including data
matching, data and link mining, biometrics, natural language processing and image
recognition, to detect unusual patterns within and across a variety of databases. The
databases that were to be accessed in these programs originate from both government
agencies as well as private organisations such as banks, airlines, flight schools and
car hire companies.

The challenges of applying data matching in such applications are manifold. The
databases to be matched are very large and contain many millions of records, and
they are also very diverse. Different details about individuals are stored within these
databases. The records of individuals are also likely collected at different points in
time, therefore address and name details for the same person might differ. Criminal

http://dx.doi.org/10.1007/978-3-642-31164-2_8

14 1 Introduction

individuals and terrorists are also likely to use faked or modified identities in order
to hide their activities [267].

Finding the very small number of potential terrorists out of a population of hun-
dreds of millions of individuals is akin to finding a needle in a very large haystack.
The accuracy of the data matching (and data mining) models need to be extremely
high, as otherwise the number of (potentially false) positive matches (records from
different databases that a model associates with the same individual) can become too
large, which prevents effective investigations [153]. Furthermore, the identification
of a suspect is often required in real-time by querying a large database with the
identity details of the suspect. The topic of real-time data matching will be covered
in more detail in Chap. 9.

It has been reported that by 2008, the number of individuals on US terrorism
watch lists was nearly 500,000 [171]. Most of them are likely ordinary citizens that
have some characteristics that make them suspects, or that at some time behaved in
such ways that was significantly different from what is normally expected behaviour.
Stories of innocent citizens being scrutinised each time they travelled via plane, and
concerns by the public about government agencies matching and analysing their data
and thus invading their privacy, lead to a backlash against programs such as TIA and
MATRIX, which had to be abandoned or modified. The issue of privacy with regard
to data matching will be further discussed in Chap. 8.

1.4.4 Crime and Fraud Detection and Prevention

Fighting crime and fraud today relies on sophisticated information systems that allow
the accurate identification of individuals that are suspects in a crime or fraud inves-
tigation [54]. Data matching techniques are integral parts of such modern crime
fighting information systems. Criminals commonly provide modified or even ficti-
tious identifying personal details when questioned by law enforcement officers [267].
These deceptive identity details can for example be addresses of acquaintances, dates
of birth of deceased persons, or faked social security or drivers license numbers.

A major challenge when applying data matching in the domain of crime and fraud
detection is therefore that, unlike in most other domains, variations and errors do not
just occur because of data entry errors and the changing nature of people’s personal
details, but because individuals deliberately modify their details because they do
not want to be identified. These deliberate changes are done in such ways that the
modified details look real (and possibly correspond to another individual), and like
‘innocent’ variations or errors that could have occurred by chance.

Data matching techniques can help to detect if these deceptive identity details do
refer to a real person or not. Using databases of known criminals and their aliases
allows law enforcement officers to identify an individual under questioning. To be
effective, data matching techniques in this application area must facilitate the detec-
tion of potentially matching records in (near) real-time, i.e. within a few seconds.

http://dx.doi.org/10.1007/978-3-642-31164-2_9
http://dx.doi.org/10.1007/978-3-642-31164-2_8

1.4 Example Application Areas 15

How to accomplish such real-time data matching in large databases will be discussed
in Chap. 9.

A similar application where data matching is increasingly being employed is
identity verification aimed at reducing identity crimes [212]. Identity crimes are on
the increase in many countries, resulting in losses of billions of dollars to financial
organisations and grave social implications for the individuals concerned [10]. An
identity crime occurs when a fraudster gains access to services and benefits by using
a false identity. With the increasingly widespread use of electronic financial trans-
actions and online government services it has become essential to verify the identity
of absent participants with a high level of certainty. Based on a statistical analysis
of 300 million accounts, it has recently been reported that around 90 % of success-
fully opened fraudulent bank accounts in the US used synthetic identities [206], with
almost 75 % of all dollars lost due to synthetic identity fraud.

Data matching is a crucial component to identity verification, as it allows match-
ing of the identifying details provided by an individual with a variety of databases
that contain verified and accurate entity records. Such databases can include voter
registrations (also known as electoral rolls), drivers license and social security num-
ber databases, and telephone directories. Matching records from these databases will
allow an overall picture to be built of the individual under consideration, and a risk
score can be calculated that provides an indicator of the likelihood that the presented
identity details do refer to a real person or not. Similar to data matching used in fight-
ing crimes, real-time matching of a stream of individual query records on several
large databases is required.

1.4.5 Business Mailing Lists

Many businesses spend significant amounts of resources and money on advertising
their products and services. They sometimes base their advertisement campaigns,
such as mailing out flyers (also known as handouts, leaflets, circulars or pamphlets),
on their databases of existing customers. The quality of the data a business has
collected about their customers is therefore of significant value. As can be seen from
the examples shown in Fig. 1.2, having several records about the same customer
results in money being wasted on mailing several copies of an advertisement flyer to
one individual.

There are several challenges businesses face when trying to maintain customer
databases of high quality. First of all, address details change when people move,
and when somebody gets married or divorced they might change their surname.
This can easily result in duplicate records about the same individual. Second, many
customers do not care if there are several duplicates about them in a business database,
as long as the products or services they bought from a business are being delivered.
A customer is also unlikely to complain when they receive several copies of the same
advertisement flyer.

http://dx.doi.org/10.1007/978-3-642-31164-2_9

16 1 Introduction

Fig. 1.2 Three real, scanned
address duplicates the author
received some years back in
the form of three copies of
an advertisement flyer by the
same company

A third challenge occurs when two or more businesses collaborate with each
other, for example on cross-marketing campaigns, and therefore customer records
from different sources need to be matched in order to build a combined database of
the individuals to whom advertisements shall be sent out. It will be likely that the
customer information from the different sources will have different formats, different
types of information will be available, and individual records will have been collected
at different points in time. This can make it difficult to identify if two or more records
correspond to the same customer or not.

The final challenge of data quality can be addressed by businesses themselves. As
more and more customers shop online, it is crucial to assure the information entered
by customers on Web forms is accurate, complete, and validated as much as possible.
The process of validating input values can include the verification of addresses and
their comparisons with a database of existing street addresses. The postal services
in many countries now provide databases that contain detailed street addresses that
allow checking if an entered address is valid, and if not alert the person entering the
data (either the customer or an employee of a business). Furthermore, addresses that
are segmented into specific input fields each containing a single piece of information,
rather than free-format text input fields, will lead to much improved data quality. Not
limiting the length of the data entered into an input field is another way to improve
data quality, as otherwise customers will be forced to abbreviate long names. This
will result in unusual and unstandardised values. When data are entered, they should
also be matched in real-time with records in a database of existing customers to
prevent duplicate records being created in the first place. This matching process can
be based on a known name and address combination, or a known telephone number,
or ideally a known customer identifier. The topics of data quality and of data entry
errors will be discussed in detail in Chap. 3.

http://dx.doi.org/10.1007/978-3-642-31164-2_3

1.4 Example Application Areas 17

1.4.6 Bibliographic Databases

Research in many domains is increasingly being disseminated electronically and
through online databases such as Springer Link,1 Elsevier Scopus,2 Thompson Web
of Knowledge,3 the ACM Digital Library,4 IEEE Xplore,5 or Google Scholar.6 These
databases allow researchers to access millions of publications. They also provide
services such as citation and impact analyses, alert services for new publications by
an author, and notifications of new citations for given publications.

While such bibliographic databases facilitate a much faster dissemination of new
knowledge, government funding agencies around the world also increasingly rely
upon these databases to calculate numerical metrics to assess the impact and sig-
nificance of individual researchers, research groups, faculties and even institutions.
These metrics are then used to allocate funding to individual research projects or insti-
tutions, as well as to support decision making within academic promotion processes.
Measures such as the h-index7 and its variations [144] calculate a single numerical
value for an individual researcher based on the number of citations their publications
have attracted. The quality of the data used in such evaluations need to be high,
otherwise these numerical impact measures will become questionable.

There are several challenges involved in creating and maintaining bibliographic
databases [176, 183]. One challenge is their size, with some of the larger of these
databases containing well above 25 million publications. However, the biggest chal-
lenge is that it is very common to have several researchers with the same surname
and the same initials in a database, some even working in the same research domain.
Even if full given names are provided, it is often not clear if two publications were
written by the same individual or not. Additionally, journal and conference names are
commonly abbreviated, not following a standardised format, and therefore different
variations of the same reference can often be found. Figure 1.3 shows an example
of three variations of a reference to the same journal article taken from the Cora
collection of machine learning publications [184]. In the domain of library research,
data matching is also known as authority control [183].

On the other hand, bibliographic data have characteristics that make them very
attractive for data matching research. Unlike other types of data that contain per-
sonal information, there are generally no privacy or confidentiality concerns when
publication data are being matched, because such data are already publicly available.
Additionally, such data contain information about several types of entities, including
authors, publication venues (journals, conferences and workshops) and affiliations

1 http://www.springerlink.com.
2 http://www.scopus.com.
3 http://apps.isiknowledge.com.
4 http://portal.acm.org.
5 http://http://ieeexplore.ieee.org.
6 http://scholar.google.com.
7 A researcher has an h-index of x if they have x publications that have each received at least x
citations.

http://www.springerlink.com
http://www.scopus.com
http://apps.isiknowledge.com
http://portal.acm.org
http://http://ieeexplore.ieee.org
http://scholar.google.com

18 1 Introduction

Kearns, M., Li, M., and Valiant, L: Learning boolean formulas ,
ACM 41 (1994a), 1298-1328

M. Kearns, M. Li and L. Valiant: Learning boolean formulas.
Journal of the ACM, 41, 1994; 1298-1328.

M. Kearns, M. Li, and L. Valiant: Learning boolean formulae.
Journal of the Association for Computing Machinery 41(6), 1995, pp. 1298–1328

Fig. 1.3 Three bibliographic records of the same machine learning publication, taken from the
Cora data set [184]

(the institutions where authors work). This information can be used to build a graph
of potentially matching entities, and evidence between one type of matching entity
can help to infer the matching across another type of entity. For example, it is more
likely that two authors with the same surname that work at the same university are
the same individual compared to two authors who work at different universities. This
type of information has been exploited by recent research into so-called collective
entity resolution. These techniques are based on relational clustering or graph tech-
niques, and they aim to find an overall optimal matching solution over a database of
entities [31, 155]. These techniques will be discussed in detail in Chap. 6.

As a cautionary note, however, it is important to understand that data matching
algorithms that were developed for the domain of bibliographic data should not be
directly used for the matching of databases that contain personal information. The
difference in the structure and content of the data in these two domains will require
a careful assessment of how algorithms developed in one domain can be employed
in another domain.

1.4.7 Online Shopping

As consumers worldwide tend to increasingly use online shopping for consumer
products and services, Web sites that provide price comparisons have become popu-
lar. These sites allow consumers to either query a certain product or browse product
categories, types and brands. A challenge for such comparison shopping sites is to
identify which product descriptions in different online stores do correspond to the
same item [33]. While certain types of items have unique identifiers, such as ISBN
numbers for books, and systems such as electronic product Code (EPC) that are based
on Radio Frequency Identification (RFID) codes are becoming more widespread, the
descriptions of the same product are often quite different across several online stores.
Figure 1.4 shows four example descriptions and product item numbers of the same
digital camera taken from four different online stores.

To allow accurate and comprehensive price comparisons for an individual con-
sumer product, a comparison shopping site needs to be able to accurately identify
which product descriptions refer to the same actual product. Compared to other types
of data that are commonly used for data matching (like name and address details of

http://dx.doi.org/10.1007/978-3-642-31164-2_6

1.4 Example Application Areas 19

Canon PowerShot G11 10 MP Compact Camera - 6.10mm-30.50mm Item # 927909
Canon – PowerShot G-11 10.0 Mega pixel Item# CANPSG11
PowerShot G11 Point & Shoot Digital Camera Canon 3632B001
Canon PowerShot G11 10 Megapixel Compact Camera MFG #: 3632B001

Fig. 1.4 Four descriptions of the same digital camera taken from different online stores. Not only
are the descriptions different but also the (internal) product item numbers used

people), the variations in the descriptions of consumer products require different sim-
ilarity measures. For example, the string similarities between the four descriptions
shown in Fig. 1.4 are quite obvious. On the other hand, the differences between a
description of this camera and its predecessor (‘Canon PowerShot G10’) might only
be the single difference between the ‘0’ and ‘1’ digit in the camera’s number. The
number of megapixels (10 for this camera) complicates the similarity calculations
for this example even further.

As this example highlights, data matching is often a very data dependent activity,
and techniques such as approximate comparison functions need to be specifically
designed for a certain task and data at hand. A wide range of such comparison
functions will be described in Chap. 5.

1.4.8 Social Sciences and Genealogy

In recent years there has been a shift in the way social science research is being con-
ducted. While traditionally small-scale surveys were the basis of most research stud-
ies in areas such as social welfare, political studies or demography, large population-
based data collections are increasingly being used. One advantage of such large data
collections is that they normally do not contain any bias that might have been intro-
duced by a small survey data collection. A second advantage of large population
databases is that they are being collected by government agencies as well as private
sector organisations for purposes other than social science-oriented data analysis,
and therefore often no costs are incurred by researchers.

In many cases, however, data from different sources need to be matched to allow
certain studies. Matching demographic and health data, for example, can be used
to analyse, among other things, epidemiological aspects of inherited disease pat-
terns [121], and trends in nutritional states, health, mortality and the processes of
ageing [111].

An important source of information for social scientists and lay people as well
is historical census data. Population census returns provide invaluable snapshots of
the state of a nation, and are the basis of modern public policy making. They help
researchers understand how our ancestors lived, and the social and demographic
changes in their societies. For individuals, online genealogical databases, either
provided by national census agencies or private companies such as http://Ancestry.
com, are a fascinating source of information that allows them to discover where their

http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://Ancestry.com
http://Ancestry.com

20 1 Introduction

ancestors came from. Such online genealogical databases are now a billion-dollar
industry.

Invaluable as they are, census returns are still only snapshots of moments in time,
and even online genealogical databases commonly require the manual exploration
and matching of census records across time. Matching records (that refer to the
same individuals, families or households) from several census returns across time
can greatly enhance their value [114–116]. Such matched data will provide social
scientists with new insights into the dynamic character of social, economic and
demographic changes [222, 227]. It will allow researchers to reconstruct the key
life course events of large numbers of individuals, households and families, and ask
new questions about changes in society and its history at levels of detail far beyond
the scope of traditional methods of historical research. Such data will even facilitate
epidemiological studies of the genetic factors of diseases such as cancer, diabetes or
mental illnesses [121].

Figure 1.5 shows an original historical census return from the 1900 US Census.
Matching such historical census data across time has many challenges. Data quality
(scanning, optical character recognition (OCR), transliteration and data entry errors)
is one obvious issue. Other problems occur due to the facts that historical addresses
were not detailed, not standardised and they changed significantly over time as street
names and numbers became more formalised. The frequency distributions of both
family and given names were very clustered in the nineteenth century. It was, for
example, not uncommon in the mid-nineteenth century in England that more than
10 % of the male population had the given name ‘John’, and more than 10 % of the
female population had the given name ‘Mary’. The discriminating power of name
and address values, when used in matching of such historical data collections, is
therefore quite different from their use in modern data collections.

1.5 Further Reading

Only a few books cover data matching in detail. Talburt [249] presents this topic as
being part of the wider issue of information quality. He focuses on algebraic solutions
and presents several systems, both commercial and open source. Similarly, Batini
and Scannapieco [19] cover data matching as part of their book on data quality. A
declarative approach to data matching was presented by Chan et al. [51], who also
discuss semantic data matching.

A basic introduction to duplicate detection was recently provided by Naumann
and Herschel [195], while the more traditional, statistical approach to data matching
is covered in detail by Herzog et al. [143]. Older books and reports on this topic
include Newcombe’s handbook on record linkage [199] and Gill’s report on using
data matching for national statistics [119].

Two excellent survey articles on data matching have recently been written by
Elmagarmid et al. [103], and Winkler [284], respectively. Bleiholder and Naumann

1.5 Further Reading 21

Fig. 1.5 An original historical census return form from the early twentieth century (sourced from
http://familypedia.wikia.com). Each row contains the handwritten details of an individual, including
their name, relation to head of household, gender, place of birth and occupation and education details.
The left side contains location information in the form of a unique number for each household. Such
census forms are the basis of modern genealogical databases. They are scanned, and often data are
entered manually. It is easy to see that data quality is a major issue when matching such historical
census data

provide an overview of data fusion and its application within relational database
frameworks [38].

Winkler and his colleagues from the US Census Bureau over the past few decades
have published a series of reports on using data matching for application within
national censuses [149, 215, 280, 284, 286, 295]. Within the biomedical research
literature, there is a very large body of studies that have been based on matched
health data sets. Unfortunately, not many of these provide much details about the data
matching techniques employed. Two recent comparisons of data matching systems

http://familypedia.wikia.com

22 1 Introduction

used in the health area are by Gomatam et al. [124], who compared a deterministic
with a commercial probabilistic system, and Campbell et al. [47], who evaluated
three data matching systems that are used in the biomedical domain.

Some technical aspects of the TIA program are presented by Poindexter et al.
[213], while Jonas [153] and Fienberg [109] discuss privacy and confidentiality
issues that can arise from such programs, as well as the actual challenges of being
able to accurately identify potential terrorists. An application of data matching aimed
at identifying deceptive criminal identities was described by Wang et al. [267].

Lee et al. [176] in their overview paper have covered the challenges involved in
matching bibliographic databases and digital libraries. Bilenko et al. [33] described
a technique to learn the characteristics of consumer products with the aim to improve
their matching across online shopping sites. Their work was based on data collected
from the Froogle comparison shopping site (now Google Product Search8). Ruggles
[227] described an initiative at the Minnesota Population Center (MPC) that is aimed
at matching individuals and families from the US census of 1880 to the censuses of
earlier and later decades. The unique challenges of data matching within the domain
of genealogical databases have also been discussed by Quass and Starkey [222].

8 http://www.google.com/shopping.

http://www.google.com/shopping

Chapter 2
The Data Matching Process

2.1 Overview

An overview of the data matching process with its five major steps is shown in
Fig. 2.1. The first step is the process of data pre-processing, which assures the data
from both sources are in the same format. The second step, indexing, aims to reduce
the quadratic complexity of the data matching process through the use of data struc-
tures that facilitate the efficient and effective generation of candidate record pairs
that likely correspond to matches (i.e. refer to the same real-world entity).

In the third step, the actual record pair comparison occurs, where candidate record
pairs are generated from the indexing data structures built in the previous step. These
pairs are compared using a variety of field and record comparison functions. In the
classification step, candidate record pairs are classified into matches, non-matches,
and potential matches (depending upon the decision model used [129]). If record
pairs are classified into potential matches, a manual clerical review process is needed
to decide their final match status (match or non-match). In the evaluation step, the
quality and completeness of the matched data, and the complexity of a data matching
exercise, are evaluated.

For the deduplication of a single database, all steps of the data matching process
are still applicable. Data pre-processing is important to assure the complete database
is in a standardised format. This is especially important if records have been added
to a database over time, potentially with changes in data entry techniques or methods
that lead to different data formats and encodings over time. The indexing step is also
of importance for deduplication, because comparing each record in a database with
all others has a quadratic computation complexity.

2.1.1 A Small Data Matching Example

To illustrate the various challenges and tasks involved throughout the data matching
process, an example consisting of two small database tables is used throughout this

P. Christen, Data Matching, Data-Centric Systems and Applications, 23
DOI: 10.1007/978-3-642-31164-2_2, © Springer-Verlag Berlin Heidelberg 2012

24 2 The Data Matching Process

Fig. 2.1 The general process of matching two databases. The section and chapter numbers shown
provide the road map through this chapter and Part II of this book

chapter. Figure 2.2 shows the two raw database tables that are to be matched. As can
be seen, while they both contain name, address, and date of birth information, the
structure of the two tables is different, as is the format of the values stored in the two
tables. Each record is identified through a unique value in the ‘RecID’ attribute.

2.2 Data Pre-Processing

As the database tables in Fig. 2.2 show, data that are used for data matching can vary
in format, structure and content. Because data matching commonly relies on personal
information, such as names, addresses, and dates of birth, it is important to make
sure that data sourced from different databases have been appropriately cleaned and
standardised. The aim of this process is to ensure that the attributes used for the

2.2 Data Pre-Processing 25

Database A
RecID Surname GivenName Street Suburb Postcode State DateOfBirth

a1 Smith John 42 Miller St O’Connor 2602 A.C.T. 12-11-1970
a2 Neighan Joanne Brown Pl Dickson 2604 ACT 8 Jan 1968
a3 Meyer Marie 3/12-14 Hope Cnr SYDNEY 2050 NSW 01-01-1921
a4 Smithers Lyn Browne St DIXON 2012 N.S.W. 13/07/1970
a5 Nguyen Ling 1 Milli Rd Nrth Sydeny 2022 NSW 10/08/1968
a6 Faulkner Christine 13 John St Glebe 2037 NSW 02/23/1981
a7 Sandy Robert RMB 55/326 West St Stuart Park 2713 NSW 7/10/1970

Database B
RecID Name Address BYear BMonth BDay

b1 Meier, Mary 14 (App 3) Hope Corner, Sydney 2000 1927 4 29
b2 Janice Meyer Bryan St, O’Connor ACT 2604 1968 11 20
b3 Jonny Smith 47 Miller Street, 2619 Canberra ACT 1970 12 11
b4 Lyng Nguyen 1 Millie Road, 2002 North Sydney, NSW 1968 8 10
b5 Kristina Fawkner 13 St John Street, 2031 Glebe 1981 2 23
b6 Bob Santi 55 East St; Stuart’s Point; NSW 2113 1970 12 11
b7 Lynette Cain 6 / 12 Hope Corner, 2020 Sydney N.S.W. 1970 7 13

Fig. 2.2 Two small example database tables that are to be matched

matching have the same structure, and their content follows the same formats. It has
been recognised that data cleaning and standardisation are crucial steps to successful
data matching [78, 143]. The raw input data need to be converted into well-defined
and consistent formats, and inconsistencies in the way information is represented
and encoded need to be resolved [76, 224].

There are various factors that influence data quality, including different types
of data entry errors, and the design of databases, such as the format and structure
of their attributes. Some data quality factors are specific to personal information
such as names and addresses. Name and address values are frequently entered either
from handwritten forms using optical character recognition (OCR) software, read
and typed, or typed as somebody speaks their personal information (possibly over
the telephone). These different data entry modes can lead to typing, scanning, or
phonetic errors [72]. How to deal with these challenges will be discussed in more
detail in Chap. 3.

There are three (for certain types of data possibly four) major steps involved in
data pre-preprocessing.

1. Remove unwanted characters and words. This step corresponds to an initial
cleaning, where characters such as commas, colons, semicolons, periods, hashes,
and quotes are removed. In certain applications, some words can also be removed
if it is known that they do not contain any information that is of relevance to the
data matching process. These words are also known as stop words [288].

2. Expand abbreviations and correct misspellings. This second step of data pre-
processing is crucial to improve the quality of the data to be matched. Commonly

http://dx.doi.org/10.1007/978-3-642-31164-2_3

26 2 The Data Matching Process

this step is based on look-up tables that contain name variations, nicknames, and
common misspellings, and their correct or expanded versions. The standardis-
ation of values conducted in this step will result in much reduced variations in
attributes that contain name values.

3. Segment attributes into well-defined and consistent output attributes. This step
deals with the common situation of database attributes that contain several pieces
of information, such as the ‘Address’ attribute of the second database in Fig. 2.2.
Finding a match between the content of this attribute and the content of the
corresponding set of attributes in the first database (‘Street’, ‘Suburb’, ‘Post-
code’ and ‘State’) is challenging. It is of advantage for data matching to split the
content of attributes that contain several pieces of information into a set of new
attributes that each contain one well-defined piece of information. The process
of segmenting attribute values is also called parsing [143]. It is of high impor-
tance for both names and addresses, but also for dates. Various techniques have
been developed to achieve such segmentation, either using rule-based systems or
employing probabilistic techniques such as hidden Markov models [76]. These
techniques will be covered in detail in Chap. 3.

4. Verify the correctness of attribute values. This last step can, for example, be
employed for addresses if an external database is available that contains all known
and valid addresses in a country or region. The detailed information in such an
external database should include the range of street numbers, and the street name
and type combinations that occur in towns and suburbs. Such a database will
allow the verification of addresses and potentially even their correction, if for
example it is known that there is no ‘Miller Corner’ in a certain town but only a
‘Millers Court’. Applying such verification and correction might even be possible
for name attributes, if, for example, a database of known residents is available that
contains their full name and address details. However, because people can move,
change their names, or might not even be registered (for example in a telephone
directory), such name verification and correction might not help much to improve
data quality. Rather, it might lead to wrong ‘corrections’ being introduced.

It is also possible, as illustrated in the pre-processed database tables in Fig. 2.3,
to add attributes that are derived from existing attributes. For example, the gender of
a person can often be correctly established from their given name (if a given name
is distinctively used for males or females only). Similarly, if a postcode (or zipcode)
value is missing in a record, its value could be extracted from the corresponding
suburb or town name in case there is a unique postcode and suburb name combination.

It is important to note that the data pre-processing process must not overwrite the
original input data. Once original values are overwritten (and if no backup has been
made), then there is often no way to retrieve the original values in case a mistake
was made during data pre-processing. Rather, new attributes should be created that
contain the cleaned and standardised data. Ideally, data pre-processing is done in
such a way that new database tables (or files) are generated that contain the cleaned
and standardised data in such a format and structure that it can be easily used for the
next step of the data matching process.

http://dx.doi.org/10.1007/978-3-642-31164-2_3

2.3 Indexing 27

Database A – Cleaned and standardised
RecID GivenName Surname Gender StrPrefix StrNum StrName StrType Suburb Postcode State BDay BMonth BYear

a1 john smith m 42 miller street oconnor 2602 act 12 11 1970
a2 joanne neighan f brown place dickson 2604 act 8 1 1968
a3 mary meier f 3 12-14 hope corner sydney 2050 nsw 1 1 1921
a4 lynette smithers f browne street dixon 2012 nsw 13 7 1970
a5 ling nguyen ? 1 milli road north sydney 2022 nsw 10 8 1968
a6 christine faulkner f 13 john street glebe 2037 nsw 23 2 1981
a7 robert sandy m rmb 55 326 west street stuart park 2713 nsw 7 10 1970

Database B – Cleaned and standardised
RecID GivenName Surname Gender StrPrefix StrNum StrName StrType Suburb Postcode State BDay BMonth BYear

b1 mary meier f apt 3 14 hope corner sydney 2000 nsw 29 4 1927
b2 janice meier f bryan street oconnor 2604 act 20 11 1968
b3 john smith m 47 miller street canberra 2619 act 11 12 1970
b4 lyng nguyen ? 1 millie road north sydney 2002 nsw 10 8 1968
b5 kristina fawkner f 13 saint john street glebe 2037 nsw 23 2 1981
b6 robert santi m 55 east street stuarts point 2113 nsw 11 12 1970
b7 lynette cain f 6 12 hope corner sydney 2020 nsw 13 7 1970

Fig. 2.3 The pre-processed (cleaned and standardised) versions of the two database tables from
Fig. 2.2. Both databases now consist of the same attributes. The format and content of these attributes
have been standardised in that various punctuations were removed, all letters were converted into
lower case, nicknames replaced by the corresponding proper names, typographical errors corrected,
dates and addresses were split into several well-defined fields, and contradicting data corrected
(such as the postcode for suburb ‘Glebe’ which has a correct value of ‘2037’ and not ‘2031’, as was
recorded in the original record ‘b5’). Additionally, the attribute ‘Gender’ was added. Its values are
based on the given name values of the corresponding records only for given names that are known
to be distinctively male or female

2.3 Indexing

The cleaned and standardised database tables (or files) are now ready to be matched.
Potentially, each record from one database needs to be compared with all records in
the other database to allow the calculation of the detailed similarities between two
records. This leads to a total number of record pair comparisons that is quadratic
in the size of the databases to be matched. Matching the example databases from
Fig. 2.3 leads to a total of 7×7 = 49 comparisons (between one record from database
A and one record from database B).

Clearly, this naïve comparison of all record pairs does not scale to very large
databases. Matching two databases with one million records each (as are common
in many public and private sector organisations today) will result in 1,000,000 ×
1,000,000 = 1,000,000,000,000, i.e. one trillion, record pair comparisons. Even
if 100,000 comparisons can be performed in one second (10 µs or 0.01 ms per
comparison), it would take 2,777.78 h, or nearly 116 days, to compare these two
databases.

The majority of the comparisons will be between two records that are clearly
not matches. As can be seen from Fig. 2.3, most record pairs have no or only a
small number of attribute values that are equal or highly similar with each other. For

28 2 The Data Matching Process

example, record ‘a1’ in database A has the same year of birth (1970) as records ‘b3’,
‘b6’, and ‘b7’ from database B, but it only has two other attribute values in common
with record ‘b6’ (gender ‘m’ and street type ‘street’), and no other attribute value in
common with record ‘b7’.

It is generally the case that when matching two databases, the potential number
of comparisons grows quadratically with the number of records in the databases
to be matched, while the number of possible true matches only increases linearly.
This is because it is likely that one record from database A only matches to a small
number of records from database B. In the case where both databases A and B do not
contain duplicate records (i.e. several records that refer to the same entity), then the
maximum number of true matches that are possible is always smaller than or equal
to the number of records in the smaller of the two databases.

To reduce the possibly very large number of pairs of records that need to be
compared, indexing techniques are commonly applied [64]. These techniques filter
out record pairs that are very unlikely to correspond to matches. They generate
candidate record pairs that will be compared in more detail in the comparison step of
the data matching process to calculate the detailed similarities between two records,
as will be described in the following section.

Various indexing techniques for data matching and deduplication have been devel-
oped [64]. The traditional approach to indexing is called blocking [20]. It splits each
database into smaller blocks according to some blocking criteria (generally known
as a blocking key). Only records from the two databases that have been inserted
into the same block, i.e. who share the same value for a blocking criteria (have the
same blocking key value), are compared with each other. An example blocking
criteria could be that records that have the same postcode value are inserted into
the same block, while another blocking criteria could be that records that have the
same phonetically encoded surname value are inserted into the same block. Such
phonetic encoding algorithms, like for example Soundex [57], are commonly used
in the indexing step to ensure that records are inserted into the same blocks even
if they have some typographical variations in the value of their blocking criteria.
Chapter 4 will discuss traditional blocking and several other indexing techniques
in more detail, and also provide an experimental evaluation of these techniques to
illustrate their performance on different types of data.

When the traditional blocking technique is applied to the cleaned and standardised
databases from Fig. 2.3 using the two blocking criteria (1) Soundex of surname values
(‘Sndx-SN’) and (2) taking the first three digits of postcode values (‘F3D-PC’), then
the blocks and candidate record pairs shown in Figs. 2.4 and 2.5 are generated.
As can be seen, from the full number of 49 record pairs (without indexing), only
12 candidate record pairs are generated. These candidate pairs will be compared in
detail, as will be described in the following section.

Looking at the candidate record pairs generated and comparing the corresponding
record pairs in Fig. 2.3, one can see that this specific blocking approach selects most
of the record pairs that likely refer to a match, such as (a1, b3) (‘John Smith’), (a3,
b1) (‘Mary Meier’), and (a5, b4) (‘Ling Nguyen’). This blocking approach does,
however, miss the pair (a4, b7) (‘Lynette Smithers’ / ‘Lynette Cain’) which is possibly

http://dx.doi.org/10.1007/978-3-642-31164-2_4

2.3 Indexing 29

Database A – Blocking information Database B – Blocking information
RecID Surname Sndx-SN Postcode F3D-PC RecID Surname Sndx-SN Postcode F3D-PC
a1 smith s530 2602 260 b1 meier m600 2000 200
a2 neighan n250 2604 260 b2 meier m600 2604 260
a3 meier m600 2050 205 b3 smith s530 2619 261
a4 smithers s536 2012 201 b4 nguyen n250 2002 200
a5 nguyen n250 2022 202 b5 fawkner f256 2037 203
a6 faulkner f425 2037 203 b6 santi s530 2113 211
a7 sandy s530 2713 271 b7 cain c500 2020 202

Fig. 2.4 The blocking key values (BKVs) generated from the two database attributes ‘Surname’
and ‘Postcode’. For surnames, BKVs are generated by applying Soundex encoding [57] on surname
values (labelled ‘Sndx-SN’), while the BKVs of postcodes are generated by taking their first three
digits only (labelled ‘F3D-PC’)

Candidate record pairs generated from Surname blocking
BKVs Candidate record pairs

m600 (a3, b1), (a3, b2)
n250 (a2, b4), (a5, b4)
s530 (a1, b3), (a1, b6), (a7, b3), (a7, b6)

Candidate record pairs generated from Postcode blocking
BKVs Candidate record pairs

202 (a5, b7)
203 (a6, b5)
260 (a1, b2), (a2, b2)

(a1, b2)
(a1, b3)
(a1, b6)
(a2, b2)
(a2, b4)
(a3, b1)
(a3, b2)
(a5, b4)
(a5, b7)
(a6, b5)
(a7, b3)
(a7, b6)

Fig. 2.5 The candidate record pairs generated from the BKVs that occur in both database A and
B. The table on the right-hand side shows the union of all generated candidate record pairs

the same woman because both records have the same given name and the same date
of birth. This woman might have married and changed her surname and address,
and is therefore missed by the two blocking criteria used. This example highlights
the careful need for domain and data matching knowledge when defining blocking
criteria. Both the quality and completeness, as well as the frequency distribution of
the values in an attribute need to be considered when attributes are selected to be
used as blocking keys. These issues will be further discussed in Chap. 4.

2.4 Record Pair Comparison

The candidate record pairs that were generated in the indexing step require detailed
comparisons to determine their overall similarity. Generally, the similarity between
two records is calculated by comparing several record attributes. Ideally, not just the
attributes used in the indexing step are used for this, but also other attributes that

http://dx.doi.org/10.1007/978-3-642-31164-2_4

30 2 The Data Matching Process

are available in the databases that are matched. In the running example used in this
chapter, while the blocking was based on the ‘Surname’ and ‘Postcode’ attributes,
the comparison should for example also include the attributes ‘GivenName’, ‘Street-
Num’, ‘StreetName’, ‘Suburb’, and the three date of birth attributes. The more similar
values two records have in common across these attributes, the more likely it will be
that they correspond to the same individual.

Even after records have been cleaned and standardised, it is possible that there are
different attribute values in the records that correspond to true matches (i.e. that refer
to the same entity). In the example, the records ‘a6’ and ‘b5’ very likely correspond
to the same individual. However, the given name, surname and street name values
of these two records are all slightly different. Rather than only conducting exact
matching between attribute values, it is therefore essential to conduct some form
of approximate comparison that for a compared pair of attribute values returns a
measure of their similarity.

Generally, similarity values are normalised numerical values, with a similarity
of 1.0 corresponding to an exact match between two attribute values, a similarity
of 0.0 corresponding to a total dissimilarity between two values, and similarities
in-between 0.0 and 1.0 corresponding to some degree of similarity between two
attribute values. Figure 2.6 shows the similarities calculated between attribute values
for the 12 candidate record pairs from Fig. 2.5.

Given different attributes contain various types of data, different approximate
similarity comparison functions are required [61]. For attributes that contain string
values, such as names and addresses, a large number of approximate string compari-
son functions is available [57]. Specific comparison functions for dates, ages, times,
locations and numerical values are used for attributes that contain such data [61].
For certain sets of attributes, such as given names, surnames, or dates (consisting of
a day, month and year value), it is also advisable to compare attributes as a group
rather than only individually. For example, for names from several Asian cultures,
certain name values can interchangeably be used as given name and surname (such
as ‘Qing Yang’ and ‘Yang Qing’). Therefore, comparing the given name value from
one record with the surname value from another record, and the other way round,
will help to detect pairs of records where these two name components have been
swapped. Similarly, dates can have their day and month values swapped as they are
recorded either following the American date format (MM/DD/YYYY) or the format
used in many other countries (DD/MM/YYYY). Chapter 5 covers a large number
of different comparison functions for different types of data, and highlights various
issues that need to be considered when using for example names and addresses for
data matching.

For each candidate record pair several attributes are generally compared, resulting
in a vector of numerical similarity values for each pair. These vectors are called
comparison vectors. They will be used in the classification step to decide if a record
pair is classified as a match or a non-match.

The comparison vectors resulting from the comparison of the 12 candidate records
pairs of the running example are shown in Fig. 2.6. Different approximate comparison
functions were used. The sum of all similarity values for each comparison vector is

http://dx.doi.org/10.1007/978-3-642-31164-2_5

2.4 Record Pair Comparison 31

RecID GivenName Surname StrNum StrName Suburb BDay BMonth BYear SimSum

a1 john smith 42 miller oconnor 12 11 1970
b2 janice meier bryan oconnor 20 11 1968

0.61 0.6 0.0 0.0 1.0 0.0 1.0 0.5 3.71

a1 john smith 42 miller oconnor 12 11 1970
b3 john smith 47 miller canberra 11 12 1970

1.0 1.0 0.5 1.0 0.6 0.5 0.5 1.0 6.10

a1 john smith 42 miller oconnor 12 11 1970
b6 robert santi 55 east stuarts point 11 12 1970

0.47 0.6 0.0 0.0 0.31 0.5 0.5 1.0 3.39

a2 joanne neighan brown dickson 8 1 1968
b2 janice meier bryan oconnor 20 11 1968

0.78 0.56 0.0 0.73 0.51 0.0 0.5 1.0 4.08

a2 joanne neighan brown dickson 8 1 1968
b4 lyng nguyen 1 millie north sydney 10 8 1968

0.47 0.64 0.0 0.0 0.45 0.0 0.0 1.0 2.56

a3 mary meier 12-14 hope sydney 1 1 1921
b1 mary meier 14 hope sydney 29 4 1927

1.0 1.0 0.4 1.0 1.0 0.0 0.0 0.75 5.15

a3 mary meier 12-14 hope sydney 1 1 1921
b2 janice meier bryan oconnor 20 11 1968

0.47 1.0 0.0 0.0 0.44 0.0 0.5 0.5 2.91

a5 ling nguyen 1 milli north sydney 10 8 1968
b4 lyng nguyen 1 millie north sydney 10 8 1968

0.83 1.0 1.0 0.94 1.0 1.0 1.0 1.0 7.78

a5 ling nguyen 1 milli north sydney 10 8 1968
b7 lynette cain 12 hope sydney 13 7 1970

0.6 0.47 0.5 0.0 0.5 0.5 0.0 0.5 3.07

a6 christine faulkner 13 john glebe 23 2 1981
b5 kristina fawkner 13 saint john glebe 23 2 1981

0.81 0.87 1.0 0.45 1.0 1.0 1.0 1.0 7.12

a7 robert sandy 326 west stuart park 7 10 1970
b3 john smith 47 miller canberra 11 12 1970

0.47 0.47 0.0 0.0 0.54 0.0 0.5 1.0 2.98

a7 robert sandy 326 west stuart park 7 10 1970
b6 robert santi 55 east stuarts point 11 12 1970

1.0 0.73 0.0 0.83 0.78 0.0 0.5 1.0 4.85

Fig. 2.6 Similarity values (comparison vectors) calculated using different approximate similarity
comparison functions for the 12 candidate record pairs from Fig. 2.5. For attributes containing
names, the Jaro–Winkler [215] approximate string comparison function was used, while for the
attributes that contain numbers the edit distance [89] function was employed

32 2 The Data Matching Process

shown on the right-hand end of each vector (SimSum). These sums can be used for a
simple threshold-based classification approach as will be described in the following
section.

2.5 Record Pair Classification

Classifying the compared record pairs based on their comparison vectors or their
summed similarities is a two-class (binary) or three-class classification task. In the
two-class case, each compared record pair is classified to be either a match or a
non-match. The first class contains the pairs of records that are assumed to refer
to the same real-world entity, while for the second class it is assumed that the two
records in a pair do not refer to the same entity. All record pairs that were removed by
the indexing step and that were not compared in the comparison step are implicitly
classified as non-matches.

In traditional data matching approaches, for example those based on probabilistic
record linkage [108, 143], record pairs are classified into one of three classes, rather
than only matches and non-matches. The third class are the potential matches. These
are the record pairs where the classification outcome is not clear, and where a manual
clerical review [143] is required to decide the final match status.

Most research in data matching in the past decade has concentrated on improv-
ing the classification accuracy of record pairs. Various machine learning techniques
have been investigated, both unsupervised and supervised [31, 59, 85, 102]. So called
active learning techniques have also been investigated [231, 252]. With these tech-
niques, a subset of (difficult to classify) record pairs is given for manual assessment
and classification (into matches and non-matches), and the resulting classified record
pairs are used to re-train a new and improved classifier. After several iterations, this
process can achieve an improved matching accuracy with much reduced manual
efforts compared to the traditional approach of full manual clerical review of all
potential matches.

The classification of each compared record pair can be based on either the
full comparison vectors or on only the summed similarities. Figure 2.6 shows the
12 compared record pairs, their comparison vectors and their summed similarities
(SimSum). The maximum possible summed similarity (of two records that are match-
ing exactly on all compared attributes) would be 8.0, because eight attributes are
compared each returning a similarity between 0 and 1. Figure 2.7 shows the out-
comes of a simple threshold-based classifier where all compared record pairs with a
SimSum value equal to or above 6 are classified as matches, all pairs with a SimSum
value between 4 and 6 as potential matches, and all other pairs as non-matches. As
a result, the three pairs (a1, b3), (a5, b4) and (a6, b5) will (presumably) be correctly
classified as matches. Of the three potential match pairs (a2, b2), (a3, b1) and (a7,
b6) given for manual clerical review, the second pair (a3, b1) will likely be classified
as a match, while the other two pairs might be classified as non-matches. Figure 2.8
shows the actual records of the three pairs that were classified as matches.

2.5 Record Pair Classification 33

Candidate pair SimSum Classification

(a1, b2) 3.71 Non-match
(a1, b3) 6.10 Match
(a1, b6) 3.39 Non-match
(a2, b2) 4.08 Potential match
(a2, b4) 2.56 Non-match
(a3, b1) 5.15 Potential match
(a3, b2) 2.91 Non-match
(a5, b4) 7.78 Match
(a5, b7) 3.07 Non-match
(a6, b5) 7.12 Match
(a7, b3) 2.98 Non-match
(a7, b6) 4.85 Potential match

Fig. 2.7 Three-class classification of the compared record pairs from Fig. 2.6 into matches (Sim-
Sum≥ 6.0), non-matches (SimSum≤ 4.0) and potential matches (6.0 > SimSum> 4.0)

Database A
RecID Surname GivenName Street Suburb Postcode State DateOfBirth

a1 Smith John 42 Miller St O’Connor 2602 A.C.T. 12-11-1970

Database B
RecID Name Address BYear BMonth BDay

b3 Jonny Smith 47 Miller Street, 2619 Canberra ACT 1970 12 11

Database A
RecID Surname GivenName Street Suburb Postcode State DateOfBirth

a5 Nguyen Ling 1 Milli Rd Nrth Sydeny 2022 NSW 10/08/1968

Database B
RecID Name Address BYear BMonth BDay

b4 Lyng Nguyen 1 Millie Road, 2002 North Sydney, NSW 1968 8 10

Database A
RecID Surname GivenName Street Suburb Postcode State DateOfBirth

a6 Faulkner Christine 13 John St Glebe 2037 NSW 02/23/1981

Database B
RecID Name Address BYear BMonth BDay

b5 Kristina Fawkner 13 St John Street, 2031 Glebe 1981 2 23

Fig. 2.8 The three record pairs that were classified as matches

The traditional approaches to record pair classification have the problem that each
record pair is classified independently of all others pairs based only on its comparison
vector (or its summed similarity). As a result, a single record from one database can
be matched with several records from the other database. In certain applications this
might not be permitted, for example if it is known that the two databases that are
matched each only contain one record per entity (i.e. no duplicate records). Recent

34 2 The Data Matching Process

research into collective classification techniques for data matching has aimed to
overcome this drawback by classifying record pairs not only based on their pair-wise
similarities, but also using information on how records are related or linked to other
records. These approaches apply relational clustering or graph-based techniques
[31, 155, 272] to generate a global decision model. Much improved matching results
have been achieved with these collective classification techniques. Their computa-
tional complexities, however, make scaling these techniques to the matching of very
large databases challenging [142]. These techniques, as well as the more traditional
pair-wise classification techniques, will be presented in detail in Chap. 6.

2.6 Evaluation of Matching Quality and Complexity

Once the compared record pairs are classified into matches and non-matches, the
quality of the identified matches needs to be assessed. Matching quality refers to
how many of the classified matches correspond to true real-world entities, while
matching completeness is concerned with how many of the real-world entities that
appear in both databases were correctly matched [71]. As will be discussed in detail
in Chap. 7, accuracy measures such as precision and recall, that are also used in fields
such as data mining, machine learning, and information retrieval, are commonly used
to assess matching quality

Both matching accuracy and completeness are affected by all steps of the data
matching process, with data pre-processing helping to make values that are different
to each other more similar, indexing filtering out pairs that likely are not matches,
and the detailed comparison of attribute values providing evidence of the similarity
between two records. While the accuracy of data matching is mostly influenced
by the comparison and classification steps, the indexing step will impact on the
completeness of a data matching exercise because record pairs filtered out in the
indexing step will be classified as non-matches without being compared.

The complexity of a data matching or deduplication project is generally measured
as the number of candidate record pairs that are generated by an indexing technique
compared to the number of all possible pairs that would be generated in the naive.
matching where no indexing is applied. For the running example shown in this
chapter, the naive full pair-wise comparison of all records from database A with
all records from database B would result in 7 × 7 = 49 record pair comparisons.
The indexing (blocking) applied in this example has reduced this number to the 12
candidate pairs shown in Fig. 2.5. This corresponds to a reduction of over 75 %.

To evaluate the completeness and accuracy of a data matching project, some form
of ground-truth data, also known as gold standard, are required. Such ground-truth
data must contain the true match status of all known matches (the true non-matches
can be inferred from them). However, obtaining such ground-truth data is difficult
in many application areas. For example, when matching a large tax payers database
with a social security database it is usually not known which record pair classified
as a match refers to a real, existing individual who has a record in both databases.

http://dx.doi.org/10.1007/978-3-642-31164-2_6
http://dx.doi.org/10.1007/978-3-642-31164-2_7

2.6 Evaluation of Matching Quality and Complexity 35

Only further investigations, such as checking extra data about the individual under
consideration, or even contacting them, can help determine the truth about such a
classified match.

A related problematic issue is the manual classification of potential matches
through clerical review. It is often difficult to make a manual match or non-match
decision with high confidence if the two records in a potential match pair contain sev-
eral attribute values that differ from each other. Without further external information,
a decision that was made manually might be wrong. Additionally, the manual clas-
sification of a large number of potential matches is a time-consuming, cumbersome
and error-prone process. Assuming that the manually classified potential matches
can be used as training data for supervised classification or even as gold standard for
another data matching project is dangerous. The issues relevant to evaluating data
matching will be discussed in detail in Chap. 7.

As the classification results in Fig. 2.7 show, even the matching of two small exam-
ple databases results in a quite imbalanced distribution of matches to non-matches
(four matches to eight non-matches after clerical review in this example). This class-
imbalance gets much worse as larger databases are being matched. The number of
matches generally grows linear (or even sublinear), while the number of non-matches
(even after indexing) grows subquadratic [71], as will be discussed further in Chap. 6.
When evaluating the results of a data matching or deduplication project, even when
ground-truth data are available, care must be taken. The normal accuracy measure
that is generally used for many classification tasks is not recommended. Various
measures that are suitable for assessing the quality and complexity of data matching
and deduplication will be presented in detail in Chap. 7.

2.7 Further Reading

The data matching process (with some variations to the steps described in this chapter)
is discussed in most books that cover data matching [19, 143, 195, 249], as well as in
several reports and overview articles [103, 119]. A recent survey of indexing
techniques is provided by Christen [64], while many surveys have been written
over the past decades on approximate string comparisons techniques [57, 84, 133,
152, 175, 196]. On the other hand, while many different classification techniques
have been explored within the domain of data matching, only a few publications
have comparatively evaluated several techniques [59, 102, 168]. The issues involved
in evaluating data matching results are being discussed in two recent publications
[71, 187].

http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://dx.doi.org/10.1007/978-3-642-31164-2_6
http://dx.doi.org/10.1007/978-3-642-31164-2_7

Part II
Steps of the Data Matching Process

Chapter 3
Data Pre-Processing

3.1 Data Quality Issues Relevant to Data Matching

Most real-world databases contain noisy, inconsistent and missing data due to a
variety of factors [19, 135, 218]. It is generally accepted that low data quality costs
businesses and governments billions of lost revenue every year. It has been estimated
that data quality problems can result in up to 12 % lost revenue for businesses [177].
For any type of data analysis, processing and management, the garbage-in garbage-
out principle holds. If the quality of the input data is low, then the output generated
is normally not of high quality or accuracy either.

A large body of work has covered the various issues involved with data quality in
depth [19, 177, 218]. There are several dimensions to data quality. The ones relevant
to data matching are:

• Accuracy. How accurate are the attribute values in the database(s) used for match-
ing or deduplication? Is it known how the data have been entered or recorded? Have
data entry checks been performed, and have the data been verified for correctness
using external reference data (such as references of known and valid addresses)?

• Completeness. How complete are the data? How many attribute values are missing
in the databases used? Is it known why certain attribute values are missing? Are
attributes missing that would be of use for data matching?

• Consistency. How consistent are the values within a single database used for match-
ing or deduplication, and how consistent are values across two or more databases
used for matching? The format and coding of individual attributes even within a
single database can change over time. Is it known if the databases contain duplicate
records for the same entity (for example because a person moved to a different
address and therefore was recorded as a new separate customer)?

• Timeliness. How old are the data available? For the matching of two databases,
have the data been recorded at the same time or not? This can be a crucial factor to
a successful matching because personal information, such as people’s addresses,
telephone numbers, and even names, change over time. If the data to be matched

P. Christen, Data Matching, Data-Centric Systems and Applications, 39
DOI: 10.1007/978-3-642-31164-2_3, © Springer-Verlag Berlin Heidelberg 2012

40 3 Data Pre-Processing

have been recorded at different points in time then this needs to be taken into
account during the data matching process.

• Accessibility. Are all the data required available in the database to be deduplicated
or the databases to matched? Is there enough information in the form of attributes
that cover different aspects of the entities in the databases to allow detailed com-
parisons and accurate classification? If for example only names but no address
information is available then accurate matching of two large databases will be
impossible because many records might contain the names ‘John Smith’ or ‘Mary
Miller’.

• Believability. Can the values stored in the databases be regarded as credible or
true? Or is it possible that values are wrong or impossible?

Arguably the most important data quality dimensions for data matching and dedu-
plication are accuracy and consistency, because a large portion of efforts in the
indexing, comparisons and classification steps (that will be covered in Chaps. 4–6)
deal with inaccurate and inconsistent data. If data would be of perfect quality, then
data matching could be accomplished through straightforward database join opera-
tions and no sophisticated indexing techniques or approximate comparison functions
would be needed. As long as data are of imperfect quality, however, techniques are
needed that can deal with inaccurate and inconsistent data while still achieving high
matching quality.

Various root causes for data quality problems have been identified [177]. The ones
that are relevant to data matching are:

• Multiple data sources. If data are recorded by different organisations or different
systems, at different locations, at different points in time, or using different data
entry modes [72], then such data will likely be inconsistent.

• Subjective judgement of data production. If certain aspects of the entities in the
databases to be matched were not recorded because they were deemed not to be of
importance, then this information will be missing. This can potentially hamper data
matching, if not enough data are available to accurately compare and classify pairs
or groups of records. For example, if dates of birth have not been recorded then
the matching of two hospital patient databases might have to rely upon patient’s
name and address details only.

• Limited computing resources. As will be discussed in Chap. 4, data matching is
a computationally expensive process. If the databases to be matched are large
and not enough computing and storage power are available, then it might not be
feasible to run a sophisticated and accurate data matching algorithm. The results
achieved with a simpler matching algorithm might not be accurate enough for
certain applications. The use of cloud computing resources might be difficult for
data matching because of privacy and confidentiality concerns.

• Security/accessibility trade-off. This root condition is highly relevant when data-
bases that contain personal information are to be matched across organisations.
Privacy regulations or security concerns might prevent that data which contain
personal information can be accessed, thereby preventing certain data matching

http://dx.doi.org/10.1007/978-3-642-31164-2_4
http://dx.doi.org/10.1007/978-3-642-31164-2_6
http://dx.doi.org/10.1007/978-3-642-31164-2_4

3.1 Data Quality Issues Relevant to Data Matching 41

projects. The topic of privacy within the context of data matching will be covered
in detail in Chap. 8.

• Coded data across disciplines. This condition will affect the consistency of data
between different databases. If the databases to be matched originate in differ-
ent organisations or different disciplines, then careful mapping between different
formats and encodings is required before any matching can be attempted.

• Complex data representations. Many traditional data matching algorithms can
only be applied on data that are made of strings (such as name and address values)
or numerical values (such as dates or age values). Increasingly, however, entity
information is stored using more complex representations, such as XML schemas
[270], or it consists of different types of entities that are potentially linked with other
entities. Multi-relational, normalised databases are commonly used to represent
different types of entities in an organisation and their interactions or relationships.
Data matching algorithms must be able to deal with such types of complex data.
This topic will be further covered in Sect. 9.2.

• Volume of data. As the size of the databases held by many organisations are ever
increasing, deduplicating or matching them becomes more challenging, because
more computing resources and more time is required. Chapter 4 deals with the
topic of indexing for data matching, which is aimed at making the data matching
process more scalable to very large databases.

• Input rules too restrictive or bypassed. This root cause can result in data of low
quality because data are entered into fields or attributes that originally had a dif-
ferent purpose. For example, assume an emergency department’s patient database
where the personal details of emergency patients are recorded. The design of the
system does require a valid date of birth to be entered for each patient’s record.
Imagine some patients arriving semiconscious or unconscious and without any
identification documents. In such cases, no detailed information about their date
of birth will be available. The receptionist or nurse who enters the data will likely
be under time pressure. A simple solution for them to enter a valid record is to
guess a patient’s age and to then enter a date of birth value with the day and month
values set to ’01’. As a result, an unexpected high percentage of records in such a
database will have a date of birth of 1st January.

• Changing data needs. The information need of organisations often changes over
time, as they adapt to new regulations, implement new information systems,
restructure themselves, or as they merge with other organisations. Only data that
are useful and relevant for the operation of an organisation are normally collected,
and therefore what information is stored in databases changes over time. New
fields or attributes might be added to a database, attributes no longer considered
relevant might be removed, or formats and codes might change over time. If data
that have been recorded over time (or at different points in time) are being matched
or deduplicated, then these changes can make the matching challenging, because
only the information in attributes commonly available across time can be employed
in the matching process.

• Distributed heterogeneous systems. Data recorded and stored in different systems
potentially have different formats, different types and different values. When such

http://dx.doi.org/10.1007/978-3-642-31164-2_8
http://dx.doi.org/10.1007/978-3-642-31164-2_9
http://dx.doi.org/10.1007/978-3-642-31164-2_4

42 3 Data Pre-Processing

2 1976millerpeter

sydney3a42 main

name

42Main 3aApp.Rd.
MonthDay

dr
Title Surname

Sydeny 2006N.S.W.

Street Locality

29
YearGiven−

42Main Rd.App.

Date of BirthAddressName

29 Feb. 1976Doctor Peter Miller 3a;SydenyN.S.W.2006

LocalityUnit
number

apartmentroad

typenamenumber

name

nsw
PostcodeUnit type

2006
Wayfare Wayfare Wayfare Territory

Fig. 3.1 An example of data pre-processing applied to one record consisting of personal details.
Cleaning includes removing unwanted characters and converting all letters into lower case. Stan-
dardisation consists of correcting typographical errors such as replacing ‘sydeny’ with ‘sydney’,
and replacing abbreviations with standard forms. The third step is the segmentation of the input
into well-defined output fields that are then used as the actual attribute values in the deduplication
or data matching process

data are being matched, a careful analysis prior to matching is required to make
sure that the same type of information (that will be compared in detail between
records) is available in the same format and structure.

The remainder of this chapter covers in more detail how values in the input
database(s) can be pre-processed to make them suitable for data matching and dedu-
plication, as illustrated in Fig. 3.1. Data pre-processing for data matching consists
of four major steps, as will be discussed in Sect. 3.5. First, however, discussions on
the specific characteristics that names and other personal information pose to data
quality, and where variations and errors in names come from, are needed.

3.2 Issues with Names and Other Personal Information

Names and other personal details play a crucial role in daily life because people
are using them to identify individuals, ranging from family and friends, to work
colleagues, and all the way to politicians and celebrities. For organisations both in
the private and public sectors, names are often a primary source of identification of
the individuals they are in contact with.

Personal names are a major component of the information used in many data
matching or deduplication processes to identify records that refer to the same indi-
viduals. A large amount of the data collected by businesses and governments are
about people. The identifying data collected about individuals generally include
their names and addresses, dates of birth, social security or drivers license numbers,
telephone numbers, and email addresses.

3.2 Issues with Names and Other Personal Information 43

Much of the daily news fed to us through different channels is also about people,
and therefore names commonly appear in news articles, on Web sites, and even most
scientific and technical documents include their authors’ names, affiliations, and
other contact details.

Personal names are frequently used in Web searches to find information about
individuals, in online stores to find movies, songs, albums or books by certain artists
or writers, and when querying digital libraries to find articles or documents written
by a specific author. The ten most popular query terms used with the Google Web
search engine over the past decade include several personal names (of certain popular
celebrities).1

Personal names and other identifying details have characteristics that make them
different from general text [40, 208, 210]. These characteristics need to be consid-
ered when databases are matched or deduplicated, because they will influence how
efficient and accurate the matching can be conducted. The following list highlights
some of the issues with names, with an emphasis on the characteristics of names
from English speaking and other Western countries.

• While in many languages for general words there is only one correct form, there
are often several variations for what is seen as the same personal name. For
example, there are more than forty variations of ‘Amelia’2: ‘Aemelia’, ‘Aimil-
iona’, ‘Amalea’, ‘Amalee’, ‘Amaleta’, ‘Amalia’, ‘Amalie’, ‘Amalija’, ‘Amalina’,
‘Amaline’, ‘Amalita’, ‘Amaliya’, ‘Amaly’, ‘Amalya’, ‘Amalyna’, ‘Amalyne’,
‘Amalyta’, ‘Amelie’, ‘Amelina’, ‘Ameline’, ‘Amelita’, ‘Ameliya’, ‘Amelya’, ‘Ame-
lyna’, ‘Amelyne’, ‘Amelyta’, ‘Amilia’, ‘Amy’, ‘Delia’, ‘Em’, ‘Emelie’, ‘Emelina’,
‘Emeline’, ‘Emelita’, ‘Emi’, ‘Emma’, ‘Emmeline’, ‘Emmi’, ‘Emmie’, ‘Emmy’,
‘Mali’, ‘Malia’, ‘Malika’, ‘Meelia’, ‘Melia’, ‘Meline’, ‘Millie’ and ‘Milly’.

• In daily life, people often use or are given nicknames, rather than the name they
were given by their parents at birth. Such nicknames can be short forms of their
given name (such as ‘Liz’ for ‘Elizabeth’, ‘Tina’ for ‘Christina’, or ‘Bob’ for
‘Robert’), they can be a variation of their surname of family name (such as ‘Vesty’
for ‘Vest’), or their nickname is based on some life event, physical characteristic
(‘Ginger’ for a red-haired person), or a character sketch of an individual [40].
Matching such nicknames can obviously be much more difficult than matching
small name variations like the ones shown above. In certain cases, it will be impos-
sible to find a match on a nickname at all.

• There are generally no legal regulations of what constitutes a name, with only some
specific restrictions with regard to religious, political, or historical characters in
certain countries.

• Names are language and culture specific [208]. In Anglo-Saxon countries (includ-
ing the UK, USA, Canada, South Africa, Australia, Ireland, and New Zealand),
names are made of a given or first name and a surname or family name, with an
optional middle name (or initial) in-between, and possibly a name prefix or suffix

1 See: http://www.google.com/press/zeitgeist.html.
2 See: http://www.thinkbabynames.com/meaning/0/Amelia.

http://www.google.com/press/zeitgeist.html
http://www.thinkbabynames.com/meaning/0/Amelia

44 3 Data Pre-Processing

(such as ‘Jr’ or ‘Snr’). In several European countries compound names are com-
mon, such as ‘Hans-Peter’ in Germany or ‘Jean-Pierre’ in France. Hispanic names
often consist of two surnames.

• People can change their names over time, most commonly when they get married
or divorced. While traditionally in many western countries a wife will take on the
surname of her husband, this tradition is changing rapidly and today a husband
might decide to take on his wife’s surname. Alternatively, a couple might decide
to compound their two surnames. For example, when ‘Sally Smith’ marries ‘John
Miller’ she changes her name to ‘Sally Smith-Miller’, while her husband changes
his name to ‘John Miller-Smith’. If they have children, they need to decide which
compound surname to give to their children.

• Outside of English speaking or Western cultures, each language has its own names
and its own naming conventions, with cultures within the same language having
their own ways of how names are selected for babies when they are born, and how
they can change over an individual’s life-time [40, 208].

• For languages that are based on characters different to the Roman alphabet, the
way names are transliterated into the Roman alphabet is crucial. There might be
several standards for transliterating for example Chinese, Japanese, Korean, Thai
or Arabic names into the Roman alphabet, leading to variations of the same name.
Individuals who are unfamiliar with standard transliteration systems might decide
on a Roman version of their name in an ad hoc fashion, or alternatively choose
or add a Western given name to their full name to better fit into a Western culture
[208]. Arabic names commonly consist of several components and can contain
various prefixes and suffixes that can be separated by hyphens or whitespaces, and
that change over an individuals life-time depending upon his or her circumstances.

All these issues make data matching or deduplication using personal names a
challenging undertaking, because the name values for the same individual might
differ across two databases, or even within a single database. In our increasingly
multicultural world where people are more mobile than ever before, where interna-
tional travels and living in a country different to one’s home country are common,
and with the globalisation of businesses, the appropriate cleaning and standardisa-
tion of names in databases used for data matching are crucial components to achieve
accurate matching results.

Besides names, addresses of where people live or where businesses are located,
are a second major component of the information used in data matching [76]. While
addresses are generally more standardised than names, there are several specific
issues that need to be considered.

Addresses in most countries consists of a locality component and a street compo-
nent, as illustrated in Fig. 3.1. The locality component generally contains a postcode
or zipcode which allows mail to be efficiently directed to the destination locality.
Postcodes and zipcodes are determined by a country’s postal organisation. In some
countries, such as Australia, each postcode covers an area of roughly the same num-
ber of households or businesses in order to allow a balanced handing of postal mail.
However, as new suburbs are being built and existing areas change their characters,

3.2 Issues with Names and Other Personal Information 45

postcode boundaries do change over time, and new postcodes are being generated. In
other countries, the area of individual postcodes can be vastly different from others,
and postcode boundaries do not change even when populations change.

The street component of an address usually consists of a street number, street
name, and a street type. Additional street address elements can include flat or apart-
ment numbers, floor numbers, and business or institution names. Alternatives to street
addresses are post boxes and road-side mailboxes. While postal services in individual
countries generally provide guidelines or standards of how a mailing address should
be written, even if an address on a letter or parcel does not follow such guidelines,
the item generally still arrives at its destination because the post man or woman or
courier uses their local knowledge when delivering mail.

Because people know their mail arrives even if the address they provide is not
totally accurate, a phenomena that has been reported is that individuals who reside
close to an area that has a higher social status (for example if it is known that more rich
people or celebrities live in that area) commonly use the name of the more prestigious
area rather than the name of the area they live in, in order to impress friends and
family. It is unlikely however that they would use such inaccurate address details
when providing information to government agencies.

The third component of personal information that is commonly used for data
matching are dates, such as dates of birth, dates of death, travel dates, or dates
of admission to a hospital, to name a few. The major issue with dates is that if an
individual does not know or does not remember a date when required, then commonly
some approximation of the true date is being recorded. This might happen when dates
are required from elderly people, or individuals need to report dates of other family
members. If an accurate date is unknown, a common placeholder is to use the first
day of the month (if the month of an event is known), or even the first day of January
if only the year of when an event occurred is known.

Both personal names and people’s addresses will likely change over time. Today,
though unlikely, even the gender of a person can change. The only pieces of demo-
graphic information for an individual that do not change are their date and place of
birth (that is why these two pieces of information are recorded on passports).

3.3 Types and Sources of Variations and Errors in Names

Given the many issues on name variations covered in the previous section, some dis-
cussion about studies that have investigated names variations and errors is required.

In an early study on spelling errors in general words, Damerau found that the
majority of errors, over 80 %, were single character errors [89]. These were either
a single letter that was deleted, an extra letter that was inserted, a letter that was
substituted with another letter, or two adjacent letters that were transposed. The most
common type of errors were character substitutions, followed by character deletions,
then character insertions and finally the transposition of two characters. Multiple
errors in a word were even less frequent than character transpositions. Damerau’s

46 3 Data Pre-Processing

work lead to the development of edit distance based approximate string comparison
function that aim to overcome such character-based variations, as will be described
in Sect. 5.3.

Several other studies that followed from Damerau’s work have reported similar
results with regard to the types and distributions of variations or errors [133, 172,
214]. However, a more recent study that investigated patient names within hospital
databases found different types and distributions of variations [113]. The most com-
mon type of variation, with 36 %, in these data were the insertion of an additional
name word, initial or title word. The second most common type with 14 % were
differences of several characters due to spelling mistakes or the use of nicknames.
Other types of variation were differences in punctuation (like in ‘O’Brian’, ‘OBrian’
or ‘O Brian’) with 12 % of all variations, and changed surnames for female patients
with 8 % of all variations. In this particular study, single character variations only
accounted for 39 % of all variations compared to the over 80 % reported by Damerau
[89]. This study highlights the differences between names and general text that was
discussed in the previous section.

These differences need to be considered when data matching algorithms are being
developed and employed on data that contain personal names. The most commonly
occurring variations and errors can be categorised into [175, 243]:

• Spelling variations due to typographical errors that do not affect the phonetical
structure of a name, such as ‘Meier’ and ‘Meyer’, or ‘Christina’ and ‘Kristina’.
These variations still pose a problem for data matching and need to be dealt with.

• Phonetic variations where the phonemes are modified for example through mis-
hearing during data entry, and the structure of a name is changed substantially,
such as from ‘Sinclair’ to ‘St. Clair’.

• Double names that might be given in full, only the first name but not the middle
name, or given as compound names (like ‘Peter Paul Miller’, ‘Peter Miller’, ‘Peter
Paul-Miller’ or ‘Peter-Paul Miller’. The variations here include potential different
separators, missing name components, or even swapped name components.

• Name alternatives such as nicknames, married names or other deliberate name
changes; and initials only (mainly for given and middle names).

A survey on spelling correction by Kukich has provided further details about
character level misspellings that occur during data entry of general text [172]. She
described three types of errors: (1) typographical errors, where the assumption is
that the individual who was doing the data entry knew the correct spelling of a word
but made a typing mistake (this author’s favourite such mistake is to type ‘Sydeny’
instead of ‘Sydney’); (2) cognitive errors, which are assumed to come from a lack of
knowledge of the correct spelling or from misconceptions; and (3) phonetic errors,
coming from the substitution of a correct spelling with a similar sounding one that
is also correct.

The second and third type of errors will be a major cause for name variations,
such as the many variations of the name ‘Amelia’ on p. 43, in databases where
values are entered manually. The combination of spelling variations and phonetic
and typographical errors further challenges data matching when using name data.

http://dx.doi.org/10.1007/978-3-642-31164-2_5

3.3 Types and Sources of Variations and Errors in Names 47

The major factor that causes different name variations and errors to occur, and
that determines their likely types and their distribution, is the nature of how data are
being entered [72]:

• With handwritten forms or texts that are scanned and where optical character
recognition (OCR) techniques are applied [133, 214], the types of error most
likely to occur will be substitutions between similar looking characters (such as
between ‘q’ and ‘g’ or ‘S’ and ‘5’), or substitutions of a character sequence with
a single character that looks similar (such as ‘m’ and ‘r n’, or ‘b’ and ‘l i’).

• When data are typed manually, then errors can occur that are specific to the layout
of the keyboard used, with neighbouring keys being hit by mistake more likely
(such as ‘n’ rather than ‘m’, or ‘e’ instead of ‘r’) than keys further apart. While in
certain cases this can be quickly corrected (because the resulting name or word is
clearly wrong), such errors can go unnoticed due to time pressure on or distraction
of the person who is doing the data entry. Spell checkers are only of limited
use for personal names. Data entered through mobile devices such as tablets or
smartphone will also have different error characteristics specific to the device and
its error prediction capabilities.

• If data are entered through dictation over the telephone, for example through a
survey study, then the dictation process is a confounding factor to the manual
keyboard based data entry. If there are ambiguities with a name, the person who
is doing the data entry might not request a spelling clarification or correction but
rather assume a default spelling which is based on their knowledge and cultural
background. Studies have shown that errors occur more likely for names that
come from a language or culture that is different to the one of the person who
is doing the data entry, or if names are long or complicated, such as for example
‘Kyzwieslowski’ [113].

• A limitation in the maximum length of characters allowed in an input field can
force the use of abbreviations, initials only, or even result in disregard of certain
name parts (such as middle names).

• As a final source of variations, individuals from time to time report their names
in different forms, depending upon the person or organisation they are in contact
with, or they deliberately provide wrong or modified names. This is commonly
the case in databases that are collecting crime and fraud related information, as
was discussed in Sect. 1.4.4. And while an individual might report their details
accurately and consistently and in good faith, somebody else might report a family
member’s or friend’s details inconsistently or wrongly either for malicious reasons
or simply because they do not know the correct details (for example only know a
person by their nickname).

For all the reasons described so far, in many situations it is not straightforward to
find the ‘correct’ variation of a name value that is misspelt or that contains mistakes.
Within the domain of data matching, one therefore has to deal with legitimate name
variations as well as errors introduced during data entry and recording. While the
former need to be preserved to improve data matching quality, the latter should be

http://dx.doi.org/10.1007/978-3-642-31164-2_1

48 3 Data Pre-Processing

corrected if possible [40]. The challenge lies in distinguishing between the two. In the
following four sections, different techniques for data pre-processing of names and
other personal details are presented. The objective of these techniques is to convert
the raw input data into a form that facilitates efficient and accurate data matching.

3.4 General Data Cleaning Tasks

Before discussing the specific steps of data pre-processing for data matching and
deduplication in Sect. 3.5, in this section the three main tasks that are involved in
data cleaning for any type of data analysis, mining, or processing, are presented. They
are (1) handling missing values, (2) smoothing noisy values, and (3) identifying and
correcting inconsistent values. Here, these three tasks are discussed with regard to
their application to data matching and deduplication.

In applications such as data mining, where the aim is to detect novel and useful
patterns in large databases [135], applying data cleaning can lead to much improved
analysis results if the cleaning is conducted appropriately to the data mining tech-
niques and algorithms employed. Missing values and noisy data such as outliers can
have severe effects on both unsupervised and supervised learning tasks. Outliers can
affect the results of data clustering, while missing values can lead to biased classifi-
cation results or frequent patterns that include missing values and that therefore are
not practically useful [135, 218].

When applied on data that are to be used for data matching or deduplication,
different criteria need to be considered. Rather than detecting patterns, classes, rules
or clusters in a database, data matching and deduplication are concerned with iden-
tifying individual records that refer to the same entities. Data cleaning must only
modify the data in ways that support the application of data matching techniques.
The following considerations for the three data cleaning tasks need to be taken into
account:

• Handling missing values. Different options can be employed to handle missing
values [135]:

– Remove a record if it contains missing values. For data matching, this option
will result in the removed records not being considered in the matching process
at all, thereby potentially missing true matches. This option however might have
to be taken if several crucial attribute values are missing in a certain record. For
example, if all name and address values are missing then it is unlikely that there
is enough information in other attributes to allow accurate matching.

– Remove an attribute that contains missing values altogether from an input data-
base, or do not use it for matching. For this option, if the attribute that contains
missing values is crucial for the matching, then not considering it might be
detrimental to matching quality. Even if many records have a missing value in
such an attribute, then for those records that do have a value in this attribute the
value should be used.

3.4 General Data Cleaning Tasks 49

– Filling in a missing attribute value manually. This option might be possible
for small databases or individual records, but this approach generally requires
domain knowledge and potentially external reference data in order to identify
the most likely value that should be inserted manually.

– Filling in a missing value automatically with a constant value. This option can
only be applied on attributes that contain numerical values, which are rarely
used for data matching or deduplication.

– Filling in a missing value with the attribute mean, median or mode. This option
can only be applied on attributes that contain numerical values.

– Filling in a missing value with the mean, median or mode of a certain class of
records for this attribute (for example, calculate and fill in the average salary
separately for records that have a male gender from those that have a female gen-
der). Again, this option can only be applied on attributes that contain numerical
values.

– Determine the most likely value to be filled in using a rule or classification based
approach. This approach is commonly used for data matching. The dependen-
cies between certain groups of attributes allows this approach to be carried out
with high efficiency and accuracy. For example, a missing gender value can be
inferred based on a given name that is uniquely male or female, such as ‘John’
or ‘Mary’. For other given names, such as ‘Ashley’, the gender might not be
so easily determined. Another example where missing values can be inferred
automatically are postcodes and suburb (or town) names. The postal services
in many countries publish look-up tables of all combinations of postcodes and
suburb names, and if one of these values is missing in a record and there is
a one-to-one correspondence between a postcode and a suburb name then the
correct value can be inferred from such look-up tables. These look-up tables can
also be useful to detect and correct inconsistent values within a single record as
will be discussed below.

Work on data editing and imputation has been pioneered by statisticians [107], and
rule-based techniques to find the optimal value to be filled into a missing attribute
value are commonly used by national census agencies to improve the quality of
their survey data [143].

• Smoothing noisy values. Noisy data can consist of random errors or variance in
values, or of outliers outside of an expected range of values (such as an age value of
more than 120). They are often handled through binning, regression or clustering
approaches that group similar values together and replace them by a central value
such as a bin average or median, or a cluster centroid [135].
Such approaches might not be suitable when data are cleaned for data matching,
because such a smoothing could result in many records having the same values
in a smoothed attribute. If the values in an age attribute, for example, are binned
into decades (i.e. all records with an age value from 0 to 9, 10 to 19, 20 to 29
and so on are replaced with their corresponding bin averages of 4.5, 14.5, or
24.5, respectively), then the age attribute would lose much of the discriminating
information that helps identify individuals that have the same age.

50 3 Data Pre-Processing

Even outliers can contain information that is relevant to data matching. Returning
to the example of an age value of 120 given before, if this age is based on a recorded
date of birth, for example 21/07/1891, then this could potentially be a data entry
error where the actual date could be 21/07/1981. Such data entry mistakes can be
handled by approximate comparison techniques as will be discussed in Chap. 5.
The standardisation of attribute values described in the following section can be
seen as a form of smoothing data, but applied specifically to the values in attributes
that contain names, addresses, or dates, for example.

• Identifying and correcting inconsistent values. Here, inconsistencies within a sin-
gle record and between different records need to be distinguished. The former
case can sometimes be dealt with through external look-up tables and rules that
(similar to filling in missing attribute values) can be used to detect if the values in
two attributes contradict each other (for example a record with given name ‘Paul’
and gender ‘F’). If such inconsistencies should be corrected or not depends upon
the data at hand, and any knowledge about the quality of the data and the way they
were entered. Section 3.5.4 further discusses this issue in the context of verifying
the consistency of addresses.
If the attribute values in a single record are inconsistent, then at least one value
needs to be changed (corrected). Unless there is certainty about which of two (or
more) values is most likely the wrong one, any such change can result in further
mistakes being introduced rather than corrected. In the above example, either it is
assumed that the ‘F’ gender value is wrong and should be changed into ‘M’, or
the given name value could be wrong and its correct value is actually ‘Paula’.
Because a major aspect of the steps involved in data matching is to be able to deal
with inconsistencies between attribute values, appropriate advice is to only change
inconsistent attribute values if there is certainty about which value is wrong and
needs to be corrected. If it is not possible to ascertain this, then the inconsistent
values should rather be kept, and appropriate approximate comparison and classi-
fication techniques need to be applied that can deal with such inconsistencies but
still achieve high matching accuracy. Such techniques are discussed in Chaps. 5
and 6.
Inconsistencies between different records should be corrected as much as possible
before data matching or deduplication is conducted. Different codings for the same
attribute, for example, either within a single database or across two databases,
should be converted into the same values. For a gender attribute, for example, if
one database uses the values ‘F’ and ‘M’ while the other database uses ‘1’ and
‘0’ then in a pre-processing step the values in either database need to be changed.
Ideally, values should be changed such that they become more easily to understand
and interpret [19].

Data exploration and profiling, supported through a variety of tools [19, 62, 278],
are important steps that help to establish the quality of the data at hand, and to decide
what types of data cleaning to employ on which parts of the data. Exploration and
profiling involves collecting basic summary statistics for all attributes in a database,
such as the minimum and the maximum values in an attribute, the most commonly

http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://dx.doi.org/10.1007/978-3-642-31164-2_6

3.4 General Data Cleaning Tasks 51

occurring values, the distribution of the occurrence of all values in an attribute, how
many records have a missing value in an attribute, and so on.

3.5 Data Pre-Processing for Data Matching

Data pre-processing refers to the tasks of converting the raw input data from the
databases to be matched or deduplicated into a format that allows efficient and
accurate matching [76]. Figure 3.1 on p. 42 illustrated this process on a single exam-
ple record. The example databases used in the previous chapter also illustrated the
process. Figure 2.2 on p. 25 shows the raw input databases, and Fig. 2.3 on p. 27 their
pre-processed versions.

It is assumed that the attributes (or fields) in the input database(s) contain values
that are separated by whitespace characters. These values are known as tokens. They
can be words, single characters (such as initials), numbers, or compound elements
such as apartment and street numbers concatenated by a slash (‘3/42’), or telephone
numbers made of concatenated groups of digits (‘045-768-2231’). How these tokens
are pre-processed is described in the following subsections.

3.5.1 Removing Unwanted Characters and Tokens

This first step of data pre-processing corresponds to a data cleaning step. The attribute
values in the input database(s) might contain certain individual characters, and certain
words, terms, or abbreviations, that do not contain information that is of use for data
matching or deduplication, and that can and should be removed from the attribute
values. Other characters or tokens need to be converted into a standardised form,
for example different types of parenthesis or quotes should be replaced with one
specific parenthesis or quote character, which will facilitate the standardisation and
segmentation applied to the cleaned attribute values in the next steps.

Either hard-coded rules or look-up tables, such as the example shown in Fig. 3.2,
are used to accomplish this first data pre-processing task. Look-up tables are gener-
ally easier to adjust to changing data needs compared to hard-coded rules, however
employing hard-coded rules can be more efficient and faster than using look-up
tables. For each record in the input database(s), its attribute values are scanned to see
if they contain any of the tokens that are to be removed or converted. If such a token
is found it is removed or converted. It is possible to have different look-up tables or
rules for different types of input attributes, for example one look-up table for name
attributes and one for address attributes.

Another component of this first pre-processing task is to convert all letters into
either lowercase or uppercase characters, and to convert Unicode characters into
ASCII characters or the other way around. Which format is chosen depends upon
the characteristics of the data at hand and the limitations and requirements of the

http://dx.doi.org/10.1007/978-3-642-31164-2_2
http://dx.doi.org/10.1007/978-3-642-31164-2_2

52 3 Data Pre-Processing

Remove characters and words from input
‘ ’ := ‘.’, ‘?’, ‘˜’, ‘:’, ‘;’, ‘ˆ’, ‘=’, ‘ na ’, ‘ n/a ’
‘ ’ := ‘ n.a. ’, ‘ c/o ’, ‘ c/- ’, ‘ also ’, ‘ name ’, ‘!’
‘ ’ := ‘ only ’, ‘ abbrev ’, ‘ locked ’, ‘ on ’, ‘ of ’
‘ ’ := ‘ unk ’, ‘ unkn ’, ‘ missing ’, ‘*’

Correct words and symbols
‘ roman catholic ’ := ‘ r/c ’, ‘ r / c ’, ‘ rc ’

‘ church of england ’ := ‘ c/e ’, ‘ c / e ’, ‘ c of e ’
‘ no fixed address ’ := ‘ nfa ’, ‘n/f/a ’, ‘ n.f.a.’

‘ nursing home ’ := ‘ n / home ’
‘ other territory ’ := ‘ o/t ’, ‘ o.t.’

‘ and ’ := ‘+’, ‘&’
‘ (’ := ‘<’, ‘(’, ‘[’, ‘{’
‘) ’ := ‘>’, ‘)’, ‘]’, ‘}’
‘ | ’ := ‘"’, ‘"’, ‘‘’, ‘||’, ‘|’, "’’"
‘ - ’ := ‘-’, ‘_’

Correct roman numbers
’ 1 ’ := ’ i ’
’ 2 ’ := ’ ii ’
’ 3 ’ := ’ iii ’
’ 4 ’ := ’ iv ’
’ 5 ’ := ’ v ’
’ 6 ’ := ’ vi ’
’ 7 ’ := ’ vii ’
’ 8 ’ := ’ viii ’
’ 9 ’ := ’ ix ’
’ 10 ’ := ’ x ’

Correct ordinal numbers
’ first ’ := ’ 1st ’
’ second ’ := ’ 2nd ’
’ third ’ := ’ 3rd ’
’ fourth ’ := ’ 4th ’
’ fifth ’ := ’ 5th ’
’ sixth ’ := ’ 6th ’

’ seventh ’ := ’ 7th ’
’ eighth ’ := ’ 8th ’
’ ninth ’ := ’ 9th ’
’ tenth ’ := ’ 10th ’

Fig. 3.2 An example correction look-up table as used by the FEBRL [62] system (described in
more detail in Sect. 10.2.4). The correction works by replacing any character sequence (string in
quotes) found in an attribute value of an input record that is listed on the right-hand side of a ‘:=’
with the character sequence on the left-hand side of the ‘:=’. As can be seen, a variety of characters
and words are replaced by a single whitespace character (i.e. they are removed from an attribute
value), while several variations of the same abbreviations or characters are replaced by an expanded
or standardised version. Lines starting with a ‘#’ character are comment lines

data matching or deduplication system used. A last component in this first task is to
replace all multiple occurrences of whitespace characters with a single whitespace
only, and to remove all leading and trailing whitespaces. For example, assuming a ‘ ’

http://dx.doi.org/10.1007/978-3-642-31164-2_10

3.5 Data Pre-Processing for Data Matching 53

symbolises a single whitespace character, the input string ‘ Paul Peter Miller ’
would be converted into ‘paul peter miller’.

3.5.2 Standardisation and Tokenisation

The second step of data pre-processing is the standardisation of the tokens in the
attribute values by detecting and correcting values that contain known typographical
errors or variations, expanding abbreviations and replacing them with standard forms,
and replacing nicknames with their proper name forms.

In this data pre-processing task, individual or groups of tokens are compared
with extensive look-up tables that contain values with variations and errors and
their corresponding standardised and corrected values. For addresses, for example,
separate such look-up tables are required for street names, locality names, state
and territory names, and country names; while for personal names look-up tables
are needed for title words, given names (ideally separate for female and male) and
surnames. Figure 3.3 shows such a table for locality names (suburbs, towns and
cities).

Such look-up tables can either be generated from databases within an organisation,
or be acquired from commercial providers, or (in the cases of address data) can
be available from national postal services. Look-up tables that contain common
typographical variations and errors, such as the examples shown in Fig. 3.3, can be
compiled from attribute values as they are entered into a database and flagged as
being an unknown value. An approximate string comparison function (which will be
discussed in Chap. 5) can for example be used to detect the correct value in a certain
attribute that is most similar to an unknown value. Candidate variations for a look-up
table can then be generated automatically to be validated by a domain expert before
being added into a tagging look-up table. For example, using the look-up table in
Fig. 3.3, if an input locality name ‘bewerly hills’ is entered by a client in a Web form,
the most similar valid locality name would be ‘beverly hills’, and therefore ‘bewerly
hills’ can be added as a possible variation of ‘beverly hills’ into the locality name
look-up table.

In the tokenisation process, each token is commonly assigned one or more tags
which designate the type of the token according to the look-up table(s) where this
token was found, or based on some hard-coded rules. The outcomes of this process
is illustrated in Fig. 3.4 assuming the look-up table from Fig. 3.3 is used. The tags
are used in the third data pre-processing step to segment the sequence of tokens in
an attribute value into their most appropriate output fields, as will be described in
the next subsection.

The tokenisation process is normally started with the first set of tokens on the
left of an attribute value. A sequence of one or several tokens is considered at any
time. The tokenisation is conducted in a ‘greedy’ fashion [76], in that longer token
sequences are considered first before shorter ones. If the longest token sequence in
any of the look-up tables used in a tokenisation process contains l tokens (for example

http://dx.doi.org/10.1007/978-3-642-31164-2_5

54 3 Data Pre-Processing

Locality names

tag=<LN> # Tag for locality name words
alexandria := alezandria

alfords point := alfonds point, alford point
alfords point := alforts point, alfrods point

beverley park := bevely park, bevelly park
beverley park := beverley park, beverlly park

beverly hills := beverley hills, beverly hill

sydney airport := syd inter airport, syd airport

the university of sydney := sydney university, sydney uni
the university of sydney := uni sydney, university sydney

Fig. 3.3 An example tagging look-up table as used by the FEBRL [62] system. The tag ‘LN’ is
used to designate all following entries in this look-up table as locality names. A sequence of tokens
that occurs in an attribute value that is listed on the right-hand side of the ‘:=’ will be replaced by
the sequence of tokens on the corresponding left-hand side, and the sequence of tokens is assigned
the ‘LN’ tag, as illustrated in Fig. 3.4

‘syd inter airport’ contains l = 3 tokens), then at any step of the process the next
l tokens in an input attribute value are considered. If the tokenisation process starts
from the left, then the first l tokens, denoted with t[1], t[2], . . . , t[l], are considered
to be the candidate set of tokens in the first step. If these l tokens match a token
sequence in any of the look-up tables, then they are replaced by the sequence of
corrected tokens, and the tag of this corrected sequence is assigned to the set of
tokens.

For example, using the look-up table from Fig. 3.3, if a token sequence starts with
‘syd inter airport’ then these three tokens are replaced by the standardised compound
token ‘sydney airport’ which is assigned an ‘LN’ tag to designate that it corresponds
to a known locality name. Note that even correct known token sequences that are
found in an input field, such as ‘sydney airport’, are assigned the corresponding tag.

If at any step in the tokenisation process no token sequence of length l is found in
the input attribute value, then the length of the candidate token sequence is reduced
from l to l −1 (i.e. tokens t[1] to t[l −1] are considered), and again all look-up tables
are searched for this token sequence. The length of the candidate token sequence is
reduced until either a token sequence is found in a look-up table, or a single token is
assigned an appropriate hard-coded tag (as for example listed in Table 3.1). It is also
possible that a token is assigned several tags if the token is found in several look-up
tables, as shown in Fig. 3.4.

It is important that longer candidate token sequences are considered first, such
that for example the token sequence ‘sydney uni’ is correctly identified to correspond
to the standardised locality name ‘the university of sydney’, rather than the single

3.5 Data Pre-Processing for Data Matching 55

Paul Peter Miller

paul peter miller

GM GM,SN SN

17 Epinng Rd Bevely Park N.S.W. 2011

17 epping road beverly park nsw 2011

NU LN,SN ST LN TR PC

Fig. 3.4 Two examples of input values, the first being a name and the second an address. The
first row in each example shows the raw uncleaned input, the second row shows the cleaned and
standardised tokens, and the third row shows the tag(s) assigned to each token that indicate their
type. A description of these tags is given in Table 3.1

token ‘sydney’ is assigned as locality name and then the second token ‘uni’ is left as
a potentially unknown token.

The standardisation and tokenisation process continues as long as there are
unprocessed tokens in an attribute value. At the end of the tokenisation process,
all tokens in an attribute value will have been replaced by corrected and standardised
forms, and they will have one or more tags assigned to them, as illustrated in Fig. 3.4.

3.5.3 Segmentation into Output Fields

The third step of data pre-processing is the segmentation of the tokenised and tagged
attribute values into well-defined output fields that are suitable for data matching or
deduplication, as was illustrated in Fig. 3.1. This step is the most challenging step in
data pre-processing, because often there are several possible assignments of tokens
to output fields. The challenge is to identify the most likely assignment. This task
is also known as parsing [143], and is related to the field of information extraction
which is concerned with identifying structured information in semi-structured or free
format text [230].

The objective of segmentation is to have each output field contain a single piece
of information, made of one or a small number of tokens, rather than having several
pieces of information in one field or attribute, as was illustrated in Fig. 3.1 on p. 42.
The values in these output fields are then used in the detailed pairwise comparison
of record pairs (as will be discussed in Chap. 5), which generally leads to much
improved matching quality compared to when the unstandardised and unsegmented
input attribute values would be used. The following lists show the output fields that
are commonly used for data matching or deduplication:

• Personal names. Title, name prefix, given or first name, initials, middle name,
family name or surname, alternative family name or surname, name suffix.

http://dx.doi.org/10.1007/978-3-642-31164-2_5

56 3 Data Pre-Processing

• Street addresses. Unit prefix, unit type, unit number, unit suffix, street or wayfare
number, street or wayfare name, street or wayfare type, building name, postal
address number, postal address type, institution name, institution type.

• Address localities. Locality or town name, territory or state name, postcode or
zipcode, country.

• Dates. Day, month, year.
• Telephone numbers. Country code, area code, number, extension.

Not all of these output fields will be available in all databases, and for many records
some of the fields will not contain a value. The actual output fields used and their
names also depends upon the data at hand and of course will differ from country to
country.

Challenges occur when there are ambiguities in a token sequence that is to be
segmented. For example, the middle name ‘Peter’ in the three name words ‘Paul
Peter Miller’ shown in Fig. 3.4 could either refer to this person’s middle name or
to his surname (with ‘Miller’ being a second surname from the original compound
surname ‘Peter-Miller’).

Different segmentation techniques have been developed for different types of
input data, such as personal names, business names, or addresses. Sections 3.6 and
3.7 will cover the two main types of techniques employed, rule-based and statistical,
in more detail.

The standardisation and segmentation steps in data pre-processing are not neces-
sarily independent of each other. They can be combined into one process, where the
segmentation is conducted on the unstandardised tokens first, and the standardisation
is applied based on the segmented tokens. For example, the abbreviation ‘St’ in an
address attribute can either stand for the street type word ‘Street’, or be part of a town
name such as ‘Saint Mary’, depending on the overall token sequence in the address.

3.5.4 Verification

A possible fourth step of data pre-processing is the verification of the correctness of
the values assigned to the different output fields, and the validation of value combi-
nations in several attributes. For names, for example, such verification can include
checking if the combination of values in the given name and gender attributes are
valid (a given name ‘John’ and gender value ‘F’ is generally not a valid combination),
or if a title word does contradict the given name value of a record (a title ‘Ms’ is not
valid for a record with given name ‘John’). Such tests can be based on look-up tables
of known give names that are uniquely male or female, as was previously discussed
in Sect. 3.4.

For addresses, testing the existence and correctness of address values can be
carried out using external reference databases, that, for example, contain all vali-
dated addresses in a country. Such reference databases are commonly available from
national postal services or commercial providers. They allow the verification of

3.5 Data Pre-Processing for Data Matching 57

Table 3.1 List of tags used by the data standardisation module of the FEBRL system [62]

Tag Description Component Based on

LQ Locality qualifier word Address Look-up table
LN Locality (town, suburb) name Address Look-up table
TR Territory (state, region) name Address Look-up table
CR Country name Address Look-up table
IT Institution type Address Look-up table
IN Institution name Address Look-up table
PA Postal address type Address Look-up table
PC Postcode (zipcode) Address Look-up table
N4 Numbers with four digits (not known postcodes) Address Hard-coded rule
UT Unit type (e.g. ‘flat’ or ‘apartment’) Address Look-up table
WN Wayfare (street) name Address Look-up table
WT Wayfare (street) type (e.g. ‘road’ or ‘place’) Address Look-up table
TI Title word (e.g. ‘ms’, ‘mrs’, ‘mr’, ‘dr’) Name Look-up table
SN Surname Name Look-up table
GF Female given name Name Look-up table
GM Male given name Name Look-up table
PR Name prefix Name Look-up table
SP Name separators and qualifiers (e.g. ‘aka’ or ‘and’) Name Look-up table
BO ‘baby of’ and similar values Name Look-up table
NE ‘nee’, ‘born as’ or similar values Name Look-up table
II Initials (one letter token) Name Hard-coded rule
ST Saint names (e.g. ‘saint george’ or ‘san angelo’) Address/name Look-up table
CO Comma, semi-colon, colon Address/name Hard-coded rule
SL Slash ‘/’ and back-slash ‘\’ Address/name Hard-coded rule
NU Other numbers Address/name Hard-coded rule
AN Alphanumeric tokens Address/name Hard-coded rule
VB Brackets, braces, quotes Address/name Hard-coded rule
HY Hyphen ‘–’ Address/name Hard-coded rule
RU Rubbish (for tokens to be removed) Address/name Look-up table
UN Unknown (none of the above) Address/name Hard-coded rule

This table is adapted from Table 3 in [76]. A ‘hard-coded rule’ refers to the cases where a specific
piece of program code is used to assign a tag to an input character or token. As can be seen, most
tags are based on look-up tables and specific to either addresses or names. Some of the hard-coded
tags take care of special characters or help to characterise tokens not found in any of the look-up
tables

different parts of a segmented address, including the verification of locality name
and postcode combinations, and if such a combination is known in a given territory
or state. Other verification steps for addresses include the test if a street name and
type combination occurs in the locality value given in a record, and even if a street
number occurs in the given street or not.

If an invalid combination is found then it can either be flagged for manual inspec-
tion, or be corrected automatically (but being aware of the potential that a correction
can introduce new errors, as was described on p. 51). In case no correction is being

58 3 Data Pre-Processing

made for an invalid combination, a flag can be added to the record indicating the
attributes that contain inconsistent values. This information can then be used in the
matching process to, for example, lower the similarity value between two records if
the flag indicates that some of the address values in a record might be wrong.

3.6 Rule-Based Segmentation Approaches

Rule-based techniques for segmentation of names and addresses have been employed
in the field of data matching for several decades. The basic idea of such techniques
is to process the list of tokens and tags either from left to right or from right to left,
and using hand-crafted or learned rules to assign the token or tokens covered by a
rule to their appropriated output field.

Processing token sequences starting from the left is appropriate for most name
values from Western countries, as well as the street component of addresses, while
processing token sequences starting from the right can be appropriate when locality
details (postcodes, suburb, state, and country names) are available in the attributes
to be standardised.

Rule-based approaches are best suited for input fields that contain controlled and
well-structured information, such as telephone numbers or names that are made of
only a small number of tokens [230]. For addresses, developing efficient and accurate
rule-based systems is much more difficult [76], because a much larger number of
rules is needed that can deal with the much larger variability in token sequences that
represent addresses.

A rule-based system is made of two parts. The first is a set of rules in the form of
‘if condition then action’ [217]. The condition of a rule tests for the occurrence of a
certain tag or tag sequence, and the action is the assignment of the tokens covered by
a rule into the appropriate output fields. The condition of a rule is generally testing
for tags rather than tokens, because tags are more general than tokens and therefore
rules based on tags can cover more variability in the input. If the condition of a rule
is true then the rule is ‘triggered’ or ‘fired’ and the action of the rule is executed.

The second part of a rule-based system is the ordering or the policies of which
rules should be fired first when the condition’s of several rules are true for a certain
sequence of tags. The ordering can either be based on the specificity of the rules,
in that rules that cover more tags are fired first, or it can be based on which output
fields are most important and should have values assigned to them (for example, the
given name and surname output fields are more important than the middle name or
name suffix fields), or the ordering can be based on a manual sorting of the rules
using domain knowledge. Often various heuristics are applied, and special cases are
handled with individuals rules [230].

Figure 3.5 shows an example subset of rules for segmenting name values. Rules are
normally applied on the tags (denoted with t[i]) that have been assigned to the tokens
(denoted with o[i]) in the tokenisation step as was described in Sect. 3.5.2. While the
eight rules shown may cover most known simple names in a database, more complex

3.6 Rule-Based Segmentation Approaches 59

if t[i] = ‘TI’ then title ← o[i]
if t[i] = ‘PR’ then name prefix ← o[i]

if t[i] = ‘GM’ and t[i+1] = ‘SN’ then given name ← o[i], surname ← o[i+1]
if t[i] = ‘GF’ and t[i+1] = ‘SN’ then given name ← o[i], surname ← o[i+1]
if t[i] = ‘SN’ and t[i+1] = ‘GM’ then given name ← o[i+1], surname ← o[i]
if t[i] = ‘SN’ and t[i+1] = ‘GF’ then given name ← o[i+1], surname ← o[i]

if t[i] = ‘UN’ and t[i+1] = ‘SN’ and i +1 = L then given name ← o[i], surname ← o[i+1]
if t[i] = ‘SN’ and t[i+1] = ‘UN’ and i +1 = L then given name ← o[i+1], surname ← o[i]

Fig. 3.5 A small example of a subset of rules used to segment a name input value using the tags
defined in Table 3.1. The sequence of tokens is denoted by o[i] and the corresponding sequence
of tags by t[i], with 1 ≤ i ≤ L and L being the number of tokens in the given name input value.
The first rule assigns a known title token into the ti tle output field, while the second rule assigns a
known name prefix into its appropriate output field. The next four rules assign known given name
and surname values into the appropriate fields, while the last two rules only assign given name and
surname values into the corresponding output fields if there is no other tag that follows. Only one
rule is applied on a tag (or tag sequence), and once the tag (or tag sequence) is covered by a rule it
is removed from the input tag sequence

names made of several components (name prefixes and suffixes, middle names, etc.)
will require many more specific rules.

When a rule-based system is developed based on hand-crafted rules, initially the
basic rules (such as the ones shown in Fig. 3.5) are implemented and applied on the
data that are to be standardised. All records that are not covered by any rule are
then used to develop additional rules. Such a failure driven iterative approach [217]
over time results in a rule-base that covers most if not all variations of tag sequences
that occur in an attribute. The manual investigation of the input values not covered
by any rule, and generating appropriate new rules for them, is however a labour
intensive task that needs to be repeated each time data with new characteristics are
to be standardised.

There are various ways of how rules can be represented, including regular expres-
sions, SQL statements, pattern items and lists, and even specific pattern languages
or scripts written in programming languages such as Java or C++ [230]. The early
AutoStan/AutoMatch [251] suite of data cleaning and matching software, developed
in the 1990s by Matthew Jaro (formerly of the US Census Bureau and founder of
MatchWare Technologies), for example, employed a look-up table based tokenisation
phase followed by a re-entrant regular-expression rule-based parsing and segmenta-
tion phase. Regular expressions allow for rules where tokens are checked for certain
string patterns (not just equality). For example, the test if o[i] = ‘stre?t’ then. . . will
return true for the two words ‘stret’ and ‘street’. The re-entrant approach of AutoStan
means that once a token (or token sequence) is covered by a rule (and assigned into an
output field), the token (or token sequence) is removed from the input token sequence
and the rule-base is applied on the new shorter token sequence. AutoStan rule-bases
employed for segmenting addresses could contain hundreds if not thousands of rules
for production systems.

60 3 Data Pre-Processing

An alternative to the labour intensive manual development of a rule-base is to
employ a rule-learning algorithm [230]. Rules can be learnt in an automatic fashion
if training data in the form of correctly segmented input examples are available.
Such training data can either be generated manually, or be the output of an earlier
segmentation of similar data. In its most general form, a rule learning system learns
individual rules that are disjunctions and that each cover a subset of the training data
set.

Assuming a training data set D is provided that contains n training records,
d1, . . . , dn , each made of a sequence of tags and the output fields they are assigned
to. Figure 3.6 shows three such training records. The objective of a rule learning
system is to learn a set of k rules r1, . . . , rk that cover all training records in D. The
condition part of each rule r covers a certain subset s(r) of all training records in D,
which is called the coverage of a rule. The action part of a rule will be correct for
some training records in s(r) and wrong for others. The subset of training records
where the action is correct is denoted with s′(r) ⊆ s(r). The precision of a rule is
calculated as p = |s′(r)|/|s(r)| [230].

The objective of a rule-learning system is to learn rules that provide good coverage
and have high precision, because such rules will be well suited for the segmentation
of new unsegmented input records. Finding the optimal set of rules for a given
training data set is intractable, therefore practical rule learning algorithms are based
on heuristic approaches [230]. The two broad categories of heuristics are bottom-up
and top-down approaches. In the first category, a very specific rule (that only covers
one training record) is made more general by removing a test from the condition of
the rule such that the coverage of the rule is increased (at the cost of likely loosing
some precision). In top-down approaches, general rules that cover many training
records but have low precision are made more specific by adding further tests to
the condition of the rule until some stopping criteria is reached. There are various
ways of how these approaches can be implemented and different algorithms have
been developed, including Rapier, (LP)2, FOIL and WHISK. An excellent survey of
rule-based approaches to information extraction is provided by Sarawagi [230].

3.7 Statistical Segmentation Approaches

A major drawback with rule-based approaches to data segmentation is that rules are
hard, meaning that they either fire or do not fire (i.e. cover a set of tokens in an input
sequence or not), depending upon if a certain condition is fulfilled [230]. In practice
this means that for unseen variations in the input data that are not covered by any rule
in a rule base, a new rule is required. Manually generating a comprehensive rule-base
is labour intensive and time consuming, and requires adjustments each time the data
to be segmented changes [217]. Techniques that learn rules from training data also
require training examples for any variation in the data in order to be able to learn the
rule or rules that cover these examples. Therefore, comprehensive training data sets
are required, which again can be expensive to generate or collect.

3.7 Statistical Segmentation Approaches 61

17 epping road beverly park nsw 2011
NU LN ST LN TR PC

Wayfare Wayfare Wayfare Locality Territory Postcode
number name type name

main street sydney nsw 2000
WN ST LN TR PC

Wayfare Wayfare Locality Territory Postcode
name type name

42 george ally newtown 2067
NU WN ST LN N4

Wayfare Wayfare Wayfare Locality Postcode
number name type name

Fig. 3.6 Three example training sequences of addresses consisting of tokens (top rows in each
example), tags (middle rows) and output fields (bottom rows). The tags are based on the list given in
Table 3.1, while the output fields correspond to those shown in Fig. 3.1. Each token is assigned one
tag only, and only the tags and names of output fields are used for training a rule-based or statistical
segmentation model, but not the actual tokens that make up an address

Statistical approaches to segmentation try to overcome the rigid decision making
of rule-based systems. They are instead based on probability distributions that provide
likelihoods of which token in an input should be assigned to which output field.
Similar to rule-based systems, these probabilities are learned from training data
that consist of segmented token and tag sequences where each token is assigned its
appropriated tag, as illustrated in the examples shown in Fig. 3.6. Similar to rule-based
systems, tag sequences rather than token sequences are used to train the statistical
segmentation models and to segment new input values [76].

The process of assigning tokens to output fields can be seen as a classification
process where each token is assigned to its most likely output field (more generally
called label) according to the learned model [230]. However, this task is following
an ordering, in that the classification of a token depends upon the classification of the
previous token(s) (assuming an assignment of tokens starts from the left of a token
sequence) and possibly also the following token(s).

Different statistical models have been developed that capture these dependencies
within tag sequences. The most popular techniques have been hidden Markov models
(HMMs) [223], maximum entropy Markov models (MEMMs), and more recently
Conditional Random Fields (CRFs). CRFs are capable of modeling a single joint dis-
tribution over the sequence of the predicted output fields for a given token sequence.
The dependency of the classified output field of a token is based on the adjacent
previous and next output fields. For HMMs, on the other hand, the classification of a
token only depends upon the classification of the previous token but not the following
one.

The process of training a statistical model for segmentation is based on either
calculating the maximum likelihood or maximum margins for all given tag sequences
in the training data. The detailed mathematical descriptions of these techniques are

62 3 Data Pre-Processing

outside the scope of this book, the interested reader is refereed to the excellent survey
given by Sarawagi [230]. In the remainder of this section, an example of an address
segmentation approach based on HMMs is provided, which previously has been
shown to outperform a manually developed rule-based approach [68, 76].

3.7.1 Hidden Markov Model Based Segmentation

Hidden Markov models [223] were developed in the 1960s and 1970s. They are
widely used in speech recognition and natural language processing. They are com-
putationally efficient to train and are able to handle new unknown sequences in a
robust fashion. They have been employed by several researchers for name and address
segmentation [41, 56, 68, 76, 240].

A HMM can be viewed as a probabilistic finite state machine that consists of
a set of (hidden) states, transition links between these states, and a set of output
(or observation) symbols. Each link between two states has a nonzero probability
assigned with it, and each state emits output symbols with a certain probability
distribution. The transition and output probabilities are stored in two matrices. A
simple example of a HMM for address segmentation, together with its transition and
output probability matrices, is shown in Fig. 3.7.

Two special states of a HMM are the Start and End state. Beginning with the Start
state, a trained HMM generates a sequence of output symbols O = o1, o2, . . . , ok by
making k −1 transitions from one state to another until the End state is reached. The
output symbol oi , 1 ≤ i ≤ k, generated in state i , is based on this state’s probability
distribution of the output symbols. The Start and End states are not actually stored
in a HMM because no output symbols are emitted in these states. Instead of the
Start state a list of initial state probabilities is used that provide the likelihoods that
a sequence starts with a certain state.

For a given trained HMM, it is possible that the same sequence of output symbols
can be generated by taking different paths through the HMM. Each path, however,
will have a different probability according to the transition probabilities between
the states in the path. Given a certain sequence of output symbols, for the task of
segmentation one is interested in the most likely path through a given HMM that
will generate this sequence. Using a dynamic programming approach, the Viterbi
algorithm is an efficient way to compute this most likely path for a given sequence
of output symbols [223].

Training data in the form of sequences of (state name, output symbol), possible
manually prepared, are required to learn the transition and output probabilities. Each
training record corresponds to a path through the HMM from the Start to the End
state. While the set of output symbols can be created using the training data, the states
of a HMM are generally fixed and are defined before training. When segmenting
addresses, for example, the set of states will correspond to all possible output fields
of an address, such as the ones listed on p. 56, while the output symbols correspond
to all possible tags (as for example listed in Table 3.1) that can occur with addresses.

3.7 Statistical Segmentation Approaches 63

Start

Territory

End

Locality Postcode

Wayfare

Wayfare

number

name

type

name

0.85

0.97

0.03

0.1

0.03

Wayfare

0.03

0.04

0.45

0.93
0.05

0.9

0.07

0.85

0.9

0.1

0.15

0.17

0.35

0.03

To state
From Wayfare Wayfare Wayfare Locality Territory Postcode End
state number name type name

Start 0.85 0.1 0.0 0.05 0.0 0.0 0.0
Wayfare number 0.03 0.97 0.0 0.0 0.0 0.0 0.0
Wayfare name 0.0 0.03 0.9 0.07 0.0 0.0 0.0
Wayfare type 0.0 0.0 0.0 0.93 0.04 0.03 0.0
Locality name 0.0 0.0 0.0 0.03 0.35 0.45 0.17

Territory 0.0 0.0 0.0 0.0 0.0 0.85 0.15
Postcode 0.0 0.0 0.0 0.0 0.1 0.0 0.9

Output State
symbol Wayfare number Wayfare name Wayfare type Locality name Territory Postcode

NU 0.9 0.01 0.01 0.01 0.01 0.05
WN 0.01 0.5 0.01 0.1 0.01 0.01
WT 0.01 0.01 0.92 0.01 0.01 0.01
LN 0.01 0.1 0.01 0.8 0.01 0.01
TR 0.01 0.06 0.01 0.01 0.93 0.01
PC 0.03 0.01 0.01 0.01 0.01 0.8
N4 0.02 0.01 0.01 0.01 0.01 0.1
UN 0.01 0.31 0.02 0.05 0.01 0.01

Fig. 3.7 A simplified Hidden Markov model (top) for addresses, based on the output fields shown
in Fig. 3.1. The table in the middle shows the transition probabilities, while the table at the bottom
shows the output probabilities. Adapted from [76]

The training process iterates over all training records and adjusts the transition
and output probabilities according their output field and tag sequences. For example,
the transition probability of 0.93 from state ‘Wayfare type’ to ‘Locality name’ in
Fig. 3.7 results from 93 % of all training records containing these two output fields
in sequence, while only 4 % of training records had a value in the ‘Territory’ output
field directly after a value in the ‘Wayfare type’ output field, and only 3 % of training
records had a ‘Wayfare type’ output field that was directly followed by a ‘Postcode’
output field.

Instead of using the actual tokens found in an input field, the tag or tags that were
assigned to each token are used as the output symbols of the HMM [76]. This makes
a HMM more general and more robust, and also computationally more efficient
because the number of different tags is much smaller than the number of different
tokens that will be encountered in the input data.

64 3 Data Pre-Processing

Once a HMM is trained on a set of example input values, sequences of tags from
new records that are to be segmented into output fields can be segmented efficiently
using the Viterbi algorithm [223], which returns the most likely state sequence of the
given tag sequence through the HMM. This sequence of states, which corresponds
to a sequence of output fields, is then used to assign each token of an input value to
an output field. For example, consider the following token sequence from an address
with its corresponding tag sequence which is based on the tags from Table 3.1 on
p. 57:

32 Garden Place Brisbane 7014 Queensland
NU WN WT LN PC TR

Applying the Viterbi algorithm for this tag sequence on the example HMM from
Fig. 3.7 will lead to the following state sequence which has the highest likelihood:

Start → Wayfare number → Wayfare name → Wayfare type → Locality name

→ Postcode → Territory → End.

The tokens in this address will therefore be assigned to the following output fields:

Wayfare number: 32
Wayfare name: Garden
Wayfare type: Place

Locality name: Brisbane
Territory: Queensland
Postcode: 7014

When generating models for segmentation of address and other types of data,
a major issue in many application domains is how to collect appropriate training
data. Such training data need to be of high quality and be broad enough to cover the
diversity of input values that likely occur in the attributes that are to be segmented.

One possible approach is to bootstrap the training process by manually cleaning,
tokenising and segmenting a small number of input values and assigning each tag
to its most likely output field (such as the examples shown in Fig. 3.6), to then use
this small set of training data to train a first segmentation model (such as a first
rough HMM), and to then use this first model to segment a larger number of input
values [76, 230]. This second set of segmented input values will likely contain too
many wrongly segmented values, and careful manual inspection and correction of
these input values is required. Once done, a second training set of segmented input
values is available that can be used to train a second HMM. This second HMM will
likely be more accurate than the first one. This process of segmenting input values
using a HMM, correcting the wrongly segmented values, and using the new set of
segmented input values to train a more accurate HMM can be repeated until a HMM

3.7 Statistical Segmentation Approaches 65

of satisfactory quality is available. This approach has shown to be much less time
consuming compared to the manual generation of hand-crafted rules [76].

An alternative approach is to use cleaned and segmented input values that are
available either in a reference databases or from earlier segmentation of the same
types of data [5, 65]. The important aspect with this approach is that these data are
of high quality and contain a large diversity of attribute values, such that the trained
segmentation model is robust with regard to different unknown input addresses. For
addresses, such reference databases can either be obtained from national postal ser-
vice or they are already available in a database or data warehouse of an organisation.
The structure and attributes of these segmented addresses needs to be the same as the
desired structure of the addresses that are to be segmented. Having access to such
a reference database allows an automatic learning process of segmentation models
which can provide fully automated address standardisation [65].

3.8 Practical Considerations and Research Issues

An important initial activity in any data matching or deduplication project must be
the assessment of the quality of the data that are to be matched. Known as data
exploration or data profiling, this task can be achieved through a variety of tools that
are either integrated in a data matching software, are external standalone programs,
or are part of larger data processing, analysis or data warehousing systems.

At a minimum, for each attribute that will be used for matching, the number of
different attribute values and their frequency distribution, the type of values in an
attribute (such as string, number, date, etc.), as well as the number of records that
have an empty value in an attribute should be known. This information is relevant
when attributes are selected to be part of blocking keys during the indexing step
(as will be discussed in the following chapter), and when appropriate comparison
functions are chosen in the comparison step (as was covered in Chap. 5).

Many data cleaning and standardisation techniques rely heavily upon look-up
tables. These tables contain, for example, personal names and their variations and
common misspellings, or suburb, town, or state names, and postcodes from a certain
country. To achieve cleaned and standardised data that are of high quality, it is impor-
tant that these look-up tables are carefully customised according to where the data
to be matched are sourced from. This does not just hold for names used in addresses,
but also for given names and surnames which often have different spelling variations
in different countries (even for example within English speaking countries). While
such customisation of look-up tables will initially be a time consuming and labour
intensive process, in the end the effort will be worthwhile because of the improved
matching quality that can be achieved. Further on, the cleaned and standardised data
will likely be useful for other applications within an organisation as well. Besides
look-up tables, both the rules in rule-based segmentation systems and the training
data for statistical segmentation systems also need to be customised to the data that
are being matched or deduplicated.

http://dx.doi.org/10.1007/978-3-642-31164-2_5

66 3 Data Pre-Processing

What type of data cleaning and standardisation approach to use depends both
upon the quality of the raw input data, and the amount of resources (with regard to
labour, funding, and computing power) that is available for a given data matching or
deduplication project. A further practical consideration is if a matching or dedupli-
cation exercise on a certain set of data is a one-off project or if it is likely that the
data will be reused for future data matching projects. In the latter case it is worth to
invest more efforts into data pre-processing than in the first case, especially if the
matched data are used as an authoritative data repository (such as a master patient
index database) for different applications within an organisation, and any new data
will be matched with this authoritative data repository.

While data quality has been recognised as a massive problem that costs many
organisations large amounts in lost revenue and wasted resources, the amount of
research in the area of data pre-processing (cleaning and standardisation) is surpris-
ingly low. One reason for this might be that data pre-processing is a very domain
specific task that involves significant amounts of domain expertise and manual cus-
tomisation and intervention. How to automate data pre-processing techniques with
the aim to reduce manual efforts will be a valuable research undertaking.

Another interesting research direction will be to investigate how well different
data pre-processing techniques are able to improve the outcomes of matching or
deduplicating different types of data, and if there is a way to identify an optimal
approach to how data pre-processing should be applied. This question can only
be considered in combination with a specific data matching technique employed.
Still, a large comparative investigation of different data cleaning and standardisation
techniques applied on databases of different quality and with different characteristics
would lead to a much improved understanding of how data pre-processing affects
the outcomes of a data matching or deduplication exercise.

3.9 Further Reading

There is a large body of work available on the topic of data quality, addressing
the many issues and challenges involved in this topic from different angles. Batini
and Scannapieco [19] provide a detailed discussion of concepts, methodologies and
techniques that can be employed to assess and improve data quality. Pyle [218] covers
data quality and data preprocessing specifically for data mining applications. Lee et
al. [177] on the other hand provide a road map to data quality that covers this topic
at a less technical level more suitable for managers and practitioners that need to
implement systems where data quality is important.

The many different issues that can arise when dealing with names have been
discussed by various authors [40, 57, 72, 175, 208, 210, 243]. A large body of infor-
mation about names is also available in online resources that cover names and their
origins, names and their variations, and the changing popularity of baby names.

3.9 Further Reading 67

The interested reader is referred to Web sites such as: http://www.thinkbabynames.
com, http://www.babynames.com, http://www.rogerdarlington.co.uk/useofnames.
html, and http://en.wikipedia.org/wiki/Personal_name.

An excellent recent survey of information extraction techniques which is of rele-
vance to name and address segmentation is provided by Sarawagi [230]. Techniques
that specifically deal with data cleaning and standardisation for data matching are
presented by Churches et al. [76] and by Herzog et al. [143]. The use of reference
databases to automate the standardisation process of addresses has been described
by Agichtein and Ganti [5] and Christen and Belagic [65].

Two novel approaches to data cleaning have recently proposed by Arasu and
Kaushik [12] who used a grammar-based framework that can be used to reason
about and manipulate data representations, and Guo et al. [130] who employed latent
semantic association to conduct unsupervised address standardisation.

http://www.thinkbabynames.com
http://www.thinkbabynames.com
http://www.babynames.com
http://www.rogerdarlington.co.uk/useofnames.html
http://www.rogerdarlington.co.uk/useofnames.html
http://en.wikipedia.org/wiki/Personal_name

Chapter 4
Indexing

4.1 Why Indexing?

The simple example given in Chap. 2, specifically Figs. 2.4, 2.5 and 2.6 on pp. 29
and 31, helps to illustrate that even when matching small databases the majority of
comparisons between records will correspond to non-matches. These are compar-
isons between two records that each refers to a different entity. As will be covered
in Chap. 5, the detailed comparison of records can be a computationally expensive
undertaking, with some comparison functions having a computation complexity that
is quadratic in the lengths of the attribute values (that most commonly are strings) that
are compared. The comparison step is generally the computationally most expensive
step in the data matching process.

The aim of indexing in data matching is to reduce the number of record pairs
that are compared in detail as much as possible, by removing pairs that unlikely
correspond to true matches. At the same time, all record pairs that possibly correspond
to true matches (i.e. where the two records of a pair refer to the same entity) need to
be kept for detailed comparison. Without indexing, the matching of two databases
that contain m and n records, respectively, would result in m ×n detailed record pair
comparisons. For large databases, this is clearly not feasible.

Indexing can be seen as a filtering or searching step. Because it is mostly based
on some form of index data structure that brings ‘similar’ values together (what is
similar will be discussed below), the term indexing is commonly used to name this
step of the data matching process [64].

The general approach of indexing techniques is to process all records of the
databases to be matched and to either insert each record into one or several blocks,
lists or clusters, according to some criteria, or to sort the databases such that similar
records are moved closely together. The criteria used is commonly called a ‘blocking
key’ (the term used in this book) or ‘sorting key’. The blocking or sorting key values
are generated based on the values of either a single or from several attributes. These
values are often encoded, as will be discussed below. As an example blocking key, a
postcode (or zipcode) attribute could be used, such that all records that have the same

P. Christen, Data Matching, Data-Centric Systems and Applications, 69
DOI: 10.1007/978-3-642-31164-2_4, © Springer-Verlag Berlin Heidelberg 2012

http://dx.doi.org/10.1007/978-3-642-31164-2_2
http://dx.doi.org/10.1007/978-3-642-31164-2_2
http://dx.doi.org/10.1007/978-3-642-31164-2_2
http://dx.doi.org/10.1007/978-3-642-31164-2_2
http://dx.doi.org/10.1007/978-3-642-31164-2_5

70 4 Indexing

postcode value will be inserted into the same block or index list. For a sorting-based
indexing technique, using this sorting key the databases will be sorted according to
postcode values. This sorting will lead to records that have the same value in the
postcode attribute being next to each other.

A critical aspect for any indexing technique is the definition of the blocking
key or keys used. As will be further discussed in the following section, a major
consideration is the quality of the values in the attributes used as blocking keys,
especially their completeness (how many records have values in an attribute), and
the frequency distribution of the values in these attributes. Both these characteristics
affect the number of candidate record pairs that are generated, and their quality (i.e.
how many refer to true matches or not). This in turn will affect the overall accuracy
and completeness results of a data matching exercise.

Indexing is not just important for data matching, it also needs to be applied for
the deduplication of a single database. Without indexing, in a deduplication project
each record in a database would be compared with all others, resulting in a total of
n×(n−1)/2 record pair comparisons for a database that contains n records. Because
the comparison of two records is symmetric, each pair only needs to be compared
once. The indexing techniques used for the matching of two databases can also be
applied for the deduplication of a single database.

The question of how to evaluate indexing techniques will be discussed in detail in
Sect. 7.3. Three measures are generally used [71]. The first measure, known as reduc-
tion ratio, calculates how many candidate record pairs are generated by an indexing
technique compared to all possible record pairs (full naive pair-wise comparison
of all pairs). The second measure, called pairs completeness, calculates how many
record pairs that refer to known true matches are included in the candidate record
pairs (this measure corresponds to recall as used in information retrieval [288]). The
third measure, pairs quality, calculates how many of the candidate record pairs gen-
erated correspond to true matches (this measure corresponds to precision as used in
information retrieval). The last two measures require knowledge about the true match
status of all record pairs, which is commonly not available in real-world matching
or deduplication situations (a topic which will be covered in detail in Chap. 7).

4.2 Defining Blocking Keys

As a recent experimental survey highlighted [64], one of the most important aspects
of the indexing step is not which indexing technique is employed in a data matching
project, but the definition of the blocking key(s) that results in similar records being
successfully grouped into the same block(s).

At this point a discussion about what constitutes ‘similar records’ is warranted.
Depending upon the data to be matched, similarity between attribute values can refer
to phonetic similarity (for example how similar two names sound), character shape
similarity (for example how similar two written names look) or numerical similarity
(for example how close two age or date values are to each other). If it is known how

http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://dx.doi.org/10.1007/978-3-642-31164-2_7

4.2 Defining Blocking Keys 71

the data in the databases to be matched or deduplicated were recorded or entered,
then an appropriate encoding function can be applied on attribute values when the
blocking key values (BKVs) are generated from them. The aim of such an encoding
is to bring similar values together such that they are inserted into the same block.

The most common forms of data entry are manually typed values (from hand-
written or typed forms), values scanned and automatically recognised using OCR
technology, or values dictated and transcribed using an automatic speech recognition
system [72]. A widely used approach in indexing to convert ‘similar’ values into the
same BKV is to employ a phonetic encoding function, such as Soundex, NYSIIS or
Double-Metaphone [57]. These functions replace a (name) string with a code that
reflects how a name would sound if it is spoken. Names that sounds similar are con-
verted into the same code. The phonetic encoding functions most commonly used
for data matching are presented in the following section.

When blocking keys are defined based on the attributes available in the databases
to be matched or deduplicated, then several issues need to be considered.

• Attribute data quality: the quality of the values in an attribute will influence the
quality of the BKVs generated. If an attribute has a missing or empty value in a
large portion of records, then as a result many records will be added into a block
where the BKV is an empty value. This raises the question of whether having an
empty value in an attribute means that the records that have an empty value are
similar to each other or not.
Ideally, an attribute used to generate BKVs should be as complete as possible,
i.e. all records in a database should contain a value in this attribute. These values
should also be of high quality, because any error in a value that results in a different
BKV will mean that a corresponding record is inserted into the wrong block [71].
For example, if a postcode value is recorded wrongly as ‘2130’ rather than ‘2730’
(possibly an OCR mistake), then the corresponding record might be inserted into
the block with BKV ‘2130’ rather than ‘2730’, and therefore it would not be
compared with the records that it potentially matches with.

• Attribute value frequencies: the frequency distribution of the values in an attribute
used as part of a blocking key will influence the number of candidate record pairs
that are generated. If the frequency distribution is skewed such that some values
are very frequent, then these most frequent values will dominate the number of
candidate pairs that are generated.
For example, if an attribute that contains surnames is used to generate BKVs, then
the two blocks generated from the surname values ‘smith’ and ‘miller’ (two of the
most common surnames in many English speaking countries) will be large. If for
example two databases where each contains 1 million records are being matched,
and only one percent (10, 000 records) contains the surname ‘smith’, then this
single block will generate 10, 000 × 10, 000 = 100, 000, 000 candidate record
pairs that are to be compared in detail. This clearly would not make sense, and the
information contained in other attributes of these records (such as given name, age
or postcode values) would not only reduce the number of record pair comparisons,
but also increase the likelihood that the compared pairs do refer to the same person.

72 4 Indexing

The application of an encoding function, such as Soundex for example, can make
the problem of large blocks even worse, because several attribute values are mapped
into the same encoding value and therefore into the same block. This can result in
more records being inserted into the same block.
It is therefore of advantage to select attributes as blocking keys where attribute
values have a frequency distribution close to the uniform distribution, resulting in
blocks that are of equal sizes.

• Trade-off between number and size of blocks: the third issue that needs to be
considered is the trade-off between the number of BKVs (and thus the number of
blocks) and the size of the blocks generated (and thus the number of candidate
record pairs generated) [20, 64]. On the one hand, a small number of large blocks
will result in a larger number of candidate record pairs that likely contain more of
the true matching record pairs. On the other hand, a large number of small blocks
will lead to a smaller number of candidate record pairs (and thus a reduced run
time) at the cost of potentially missing more of the true matching pairs.
The more specific a blocking key definition is, the smaller the resulting blocks
will become and therefore less record pair comparisons need to be conducted. A
more specific blocking key definition can be achieved by concatenating values
from several attributes, possibly encoded first, as illustrated in Fig. 4.1.
As will be discussed later in this chapter, some of the presented indexing techniques
are more sensitive to the choice of blocking keys than others. Having a more
specific blocking key that leads to a larger number of smaller blocks is also of
advantage for indexing techniques that sort the databases according to the blocking
key (or sorting key), because a larger number of BKVs allows a more fine-grained
sorting of the records in a database. This will be described in detail in the relevant
sections later in this chapter.

As was discussed in the previous chapter, real-world data are commonly dirty
[140], and therefore the approach used to generate the BKVs must be able to deal
with data that contain errors and variations and still achieve the aims of the indexing
step, namely to put similar records into the same block, or closely together in the
sorted databases.

As the example given under the attribute quality issue described above illustrated,
an error in an attribute value used as a blocking key will lead to a record potentially
being inserted into a different block. A commonly used way to overcome this problem
is to define several different blocking keys, ideally based on different attributes, rather
than having one blocking key only. The union of all candidate record pairs generated
by each of the blocking key definitions is used in the comparison step to perform the
detailed comparisons between records. Figure 4.1 illustrates a set of four example
records and three blocking key definitions applied on them.

An alternative approach is to run the indexing step several times using different
blocking key definitions (sometimes called ‘blocking passes’ [287]), and to compare
and classify the generated candidate record pairs, with pairs classified as matches
being removed from the input databases (or their records flagged as being matched).

4.2 Defining Blocking Keys 73

RecID GivenName Surname Postcode Suburb

r1 peter christen 2010 north sydney
r2 paul smith 2600 canberra
r3 pedro kristen 2000 sydeny
r4 pablo smyth 2700 canberra sth

RecID PC+Sndx(GiN) Fi2D(PC)+DMe(SurN) La2D(PC)+Sndx(SubN)

r1 2010-p360 20-krst 10-n632
r2 2600-p400 26-sm0 00-c516
r3 2000-p360 20-krst 00-s530
r4 2700-p140 27-sm0 00-c516

Fig. 4.1 Example records in the upper table and their blocking key values (BKVs) in the lower table,
adapted from [64]. The first blocking key definition concatenates postcode (PC) values with Soundex
(Sndx) encoded given name (GiN) values, the second blocking key definition concatenates the first
two digits (Fi2D) of postcode values with Double-Metaphone (DMe) encoded surname (SurN)
values and the third concatenates the last two digits (La2D) of postcodes with Soundex encoded
suburb name (SubN) values. The hyphens (‘-’) in the BKVs are only shown for illustration, in real-
world applications they would not be inserted. The two bold highlighted pairs show that records r1
and r3 would be inserted into the block with key ‘20-krst’, and records r2 and r4 into the block with
key ‘00-c516’

This approach also allows that different comparison and classification functions can
be used in the different blocking passes.

The objective of using several blocking key definitions is that in at least one of
them no errors or variations occur in the BKV, and thus a record is inserted into the
‘correct’ block and compared with those records that likely match with it. A second
advantage of this approach is also that more selective blocking key definitions can
be used, as was discussed above in the description of the trade-off between block
numbers and their sizes. These will result in smaller blocks that are more specific and
group more similar records together. And because several blocking key definitions
are used, the likelihood increases that a pair of records that refers to a match has at
least one BKV in common, as illustrated in Fig. 4.1.

All the indexing techniques that will be discussed in the remainder of this chapter
do require the definition of a blocking or sorting key. An optimal definition of a
blocking key would result in (1) all true matches being included in the candidate
record pairs generated while (2) the total number of candidate record pairs generated
is kept as small as possible. Blocking keys should generally be defined by keeping
in mind the indexing technique that will be employed.

While traditionally blocking keys were defined manually by somebody who ide-
ally has expertise in both data matching techniques and the domain of the data that are
to be matched or deduplicated (especially the quality and characteristics of the data),
several techniques have recently been proposed that allow the learning of optimal
blocking keys from training data [34, 188]. These techniques are based on supervised
machine learning algorithms and require training data in the form of pairs of records
that are known to refer to true matches or true non-matches. Having such training

74 4 Indexing

data that need to be of high quality and diverse enough to cover as many true matches
as possible, are however hard to get in many practical data matching applications.
Therefore, the manual definition of blocking keys is still a widespread undertaking.
These learning-based techniques will be described in more detail in Sect. 4.12.

4.3 (Phonetic) Encoding Functions

Functions to (phonetically) encode attribute values before they are used as blocking
or sorting key values are commonly used in the indexing step of data matching and
deduplication to bring similar sounding string values, that are often assumed to refer
to names, into the same blocks. The records that contain these similar sounding
names will then be compared in detail in the comparison step.

Phonetic encoding functions can however also be used in the comparison step to
calculate the similarity between similar sounding string values, as will be discussed
further in Sect. 5.2.

The common idea behind all phonetic encoding functions is that they attempt to
convert a string, commonly assumed to refer to a name, into a code according to how
a name is pronounced, i.e. how a name would be spoken [57]. This encoding process
is often language dependent. Most techniques that have been developed (including
all techniques presented in this chapter), are based on the assumption that names
originate from the English language. Some of these techniques have been adapted for
other languages [175, 238]. Other techniques, such as Double-Metaphone discussed
below, can generate two encodings of a single name, depending upon whether there
are variations in the spelling of a name.

4.3.1 Soundex

The Soundex [145, 175, 302] algorithm is one of the oldest approaches. It was
developed and patented by Russell and Odell in 1918 [201], and is one of the best
known and most widely used phonetic encoding algorithm. Based on American-
English language pronunciation, it encodes name strings by keeping the first letter in
a string and converting the remaining characters of the string into numbers according
to the transformation table given in Fig. 4.2.

After transforming a string into digits, all zeros (which correspond to vowels
and ‘h’, ‘w’ and ‘y’) are removed from the encoded string, and all repetitions of
the same number are also removed. For example, an initial transformed encoding
of ‘p0330111’ is converted into ‘p31’, and the initial encoding ‘s550144042’ is
converted into ‘s5142’. If an encoding contains less than three digits (as the first
example), then the code is extended with zeros to a total length of three digits (so
‘p31’ becomes ‘p310’), while codes that contain more than three digits are truncated
to three digits only (thus the encoding ‘s5142’ becomes ‘s514’).

The advantages of Soundex are its simplicity and computational efficiency. A first
major drawback of Soundex is that a difference in the first letter of two name strings

http://dx.doi.org/10.1007/978-3-642-31164-2_5

4.3 (Phonetic) Encoding Functions 75

Table 4.1 Example name strings and their phonetic encodings. Variations of the same name are
grouped together

String Soundex Phonex Phonix NYSIIS Double Metaphone Fuzzy Soundex

peter p360 b360 p300 pata ptr p360
pete p300 b300 p300 pat pt p300
pedro p360 b360 p360 padr ptr p360
stephen s315 s315 s375 staf stfn s315
steve s310 s310 s370 staf stf s310
smith s530 s530 s530 snat sm0, xmt s530
smythe s530 s530 s530 snat sm0, xmt s530
gail g400 g400 g400 gal kl g400
gayle g400 g400 g400 gal kl g400
christine c623 c623 k683 chra krst k693
christina c623 c623 k683 chra krst k693
kristina k623 c623 k683 cras krst k693

results in different Soundex codes for these names, as can be seen in Table 4.1 for
the name strings ‘christina’ and ‘kristina’ with their corresponding Soundex codes
‘c623’ and ‘k623’, respectively. A second drawback is that Soundex codes are mostly
representing the beginning of name strings, and differences that appear towards the
end of two names are often not represented properly because they are pruned away
if the codes are too long. A commonly applied solution to both these drawbacks is
to not only generate the Soundex encodings of name strings, but also the encodings
of the reversed name strings. A name pair is then seen to be similar if either of the
two calculated encodings are the same.

4.3.2 Phonex

This encoding algorithm is a variation of the original Soundex approach [175]. It
aims to improve the quality of the calculated encodings through a pre-processing
step where name strings are modified according to their English pronunciation before
Soundex-like encodings are generated. The following modifications are applied to a
name string in the pre-processing step:

• All ‘s’ characters at the end are removed.
• A ‘kn’ character sequence at the beginning is replaced with a single ‘n’ character.
• A ‘ph’ character sequence at the beginning is replaced with a single ‘f’ character.
• A ‘wr’ character sequence at the beginning is replaced with a single ‘r’ character.
• An ‘h’ character at the beginning of a name string is removed.
• If the first character is a vowel (including ‘y’) then it is replaced with an ‘a’.
• If the first character is a ‘p’ then it is replaced by a ‘b’.
• If the first character is a ‘v’ then it is replaced by an ‘f’.
• If the first character is a ‘k’ or a ‘q’ then it is replaced by a ‘c’.

76 4 Indexing

• If the first character is a ‘j’ then it is replaced by a ‘g’.
• If the first character is a ‘z’ then it is replaced by an ‘s’.

After this initial pre-processing step, the processed name string is encoded similar
as with Soundex into a code made of the initial character followed by three digits.
The transformation from letters into digits is somewhat different from the original
Soundex transformation, because several transformation rules are taken into account.
Similar to the initial pre-processing done, these rules take character sequences into
account when converting letters into digits [175].

4.3.3 Phonix

The Phonix algorithm extends the idea of Phonex pre-processing of name strings
even further by applying more than a hundred transformation rules. These rules are
applied not only on a single character, but also on sequences of several characters.
While most rules are applied anywhere in a name string, 19 rules are only applied
if the character(s) appear(s) at the beginning of a string, 12 rules are applied only to
the middle of a string, and 28 rules only to the end of a string.

Similar to Soundex and Phonex, the transformed name string is encoded into a
code consisting of a starting letter followed by three digits (again removing zeros
and duplicate numbers). The transformation table is different from the one used in
Soundex, as can be seen from Fig. 4.3.

The larger number of transformation rules means that the Phonix algorithm is more
complex and thus slower than the Soundex and Phonex algorithms. An experimental
evaluation has shown that Phonix is around ten times slower than Soundex on different
data sets that contained several thousand name strings each [57].

4.3.4 NYSIIS

The New York State Identification and Intelligence System (NYSIIS) phonetic encod-
ing algorithm departs from the one-letter three-digit code and only returns an
encoding made of letters [40]. Similar to Phonex and Phonix, it applies various
rules to the input name string. These rules are:

• Transform various beginnings of the name string: ‘mac’ becomes ‘mcc’, ‘kn’
becomes ‘n’, ‘k’ is replaced with ‘c’, ‘ph’ and ‘pf’ are replaced with ‘ff’, and ‘sch’
with ‘sss’.

• Transform various endings of the name string: ‘ee’ and ‘ie’ are replaced with ‘y’,
while ‘dt’, ‘rt’, ‘rd’, ‘nt’ and ‘nd’ are all replaced with ‘d’ only.

• The first letter of the transformed name string now becomes the first letter of the
NYSIIS encoding.

• The remaining letters of the transformed name string are further transformed using
one of the following rules, applied starting from the beginning of the string:

4.3 (Phonetic) Encoding Functions 77

Fig. 4.2 Soundex encoding
transformation table

Fig. 4.3 Phonix encoding
transformation table

1. ‘ev’ is replaced by ‘af’.
2. ‘e’, ‘i’, ‘o’ and ‘u’ are replaced with ‘a’.
3. ‘q’ is replaced by ‘g’, ‘z’ is replaced by ‘s’ and ‘m’ is replaced by ‘n’.
4. ‘kn’ is replaced by ‘n’ and ‘k’ by ‘c’.
5. ‘sch’ is replaced by ‘sss’ and ‘ph’ by ‘ff’.
6. If the letter before or after an ‘h’ is not a vowel then the ‘h’ is replaced by the

letter before it.
7. If the letter before a ‘w’ is a vowel then the ‘w’ is replaced with ‘a’.
8. Only add the current processed letter to the NYSIIS encoding if it is different

from the previous letter in the encoding.

• Several rules are then applied to the end of the encoding:

1. If the last letter in the encoding is an ‘a’ or ‘s’ then remove it.
2. If the encoding ends with ‘ay’ replace it by ‘y’.

• Finally, if the length of the encoding is longer than six letters then truncate it to
the first six letters only.

Besides Soundex, the NYSIIS algorithm is the second most popular phonetic
encoding algorithm employed for data matching and deduplication, as well as other
applications that require the grouping of similar sounding names strings.

4.3.5 Oxford Name Compression Algorithm

The Oxford Name Compression Algorithm (ONCA) combines the NYSIIS and
Soundex algorithms [118, 119]. The ONCA has been used in the Oxford Record
Linkage System. In a first step, name strings are processed using a version of the
NYSIIS algorithm that was adapted for Anglo-Saxon and European names. The

78 4 Indexing

Table 4.2 Examples of the ONCA phonetic encoding algorithm, adapted from [119]

Original string NYSIIS encoding ONCA encoding

andersen, anderson andar a536
brian, brown, brun bran b650
capp, cope, copp, kipp cap c100
dane, dean, dent, dionne dan d500
smith, schmit, schmidt snat s530
truman, trueman tranan t655

resulting phonetic codes are further processed by applying the standard Soundex
algorithm on them. Table 4.2 shows several examples of the ONCA approach.

4.3.6 Double-Metaphone

A major drawback of the four phonetic encoding algorithms discussed so far is
that they are specifically aimed at English names, and are therefore not suitable
for databases that contain names from different languages. Many countries have
an increasingly multi-cultural population, and therefore non-English names appear
more frequently in many databases that contain detailed information about people.
It is therefore important that a phonetic encoding algorithm can accommodate non-
English names.

The Double-Metaphone algorithm attempts to accomplish this by better account-
ing for European and Asian names [211]. Similar to the Phonix and NYSIIS algo-
rithms, a large number of transformation rules are applied to a name string. These
rules take the position within a name string into account, and some rules also
consider the previous and following letters. In line with the NYSIIS encoding,
Double-Metaphone returns an encoding made of letters only. Different from the
NYSIIS algorithm, however, is that for certain name strings not only one phonetic
encoding is calculated but two. These two codes are based on the application of
different phonetic transformation rules. For example, the Polish name ‘kuczewski’
will be encoded as ‘kssk’ and ‘kxfsk’, accounting for different spelling variations of
this name. In general, Double-Metaphone seems to be generating encodings that are
closer to the correct pronunciation of names than NYSIIS.

4.3.7 Fuzzy Soundex

This algorithm combines a q-gram based pre-processing step with a Soundex like
transformation table [145]. Q-grams are substrings of length q. In the fuzzy Soundex
algorithm, q-grams of length 2 (bigrams) and 3 (trigrams) are applied similar to
the substitutions applied in Phonix, NYSIIS or Double-Metaphone. Some of these
substitutions are only applied at the beginning of a name string, while others are

4.3 (Phonetic) Encoding Functions 79

Fig. 4.4 Fuzzy Soundex
encoding transformation table

applied anywhere. The pre-processed name string is then converted into a one-letter
three-digit encoding using the transformation table shown in Fig. 4.4.

Fuzzy Soundex was developed within the information retrieval community with
the aim to improve the quality of Soundex-based retrieval [145]. Combined with a
q-gram based pattern matching algorithm, it achieved better retrieval results on a
database of over 30,000 names than the basic Soundex algorithm [210].

4.3.8 Other Encoding Functions

The encoding functions discussed so far are all aimed at the phonetic encoding of
strings that are assumed to be names, such as personal or address names. As different
types of data are commonly being used in data matching, some forms of encoding
functions (possibly not phonetic) need to be available for data that do not correspond
to names.

Recall that the objective of an encoding function is to bring ‘similar’ values
together. For data that are not name strings, a ‘binning’ type of encoding function
can be employed. Commonly used to smooth noisy data [135], binning puts numerical
values that are similar to each other into the same bin, an approach related to blocking.

For example, numerical age values (as years) can be binned by having one bin
(block) per age decade, thus inserting all records that have an age value from 0–9
into one bin, those with an age value of 10–19 into a second bin and so on. For
postcode values, as illustrated in Fig. 4.1, blocking can be achieved by only taking
a subset of the available digits, such as only the first two or only the last two out
of four postcode digits. This leads to a maximum of 100 bins. During the indexing
process, all records that have the same first two (or last two) digits in common are
inserted into the same block. If these blocks become too big, then taking the first or
last three digits (leading to maximum 1000 bins and blocks) is an alternative.

For date values, depending upon the distribution and spread of date values in a
database (i.e. the difference between the first and last date), either year values only,
or month and year values combined can be used as the encoding function, resulting
for example in blocking key values such as ‘jan2011’,‘feb2011’ and so on.

80 4 Indexing

Database A
RecID GivenName Surname Sndx(GiN) Sndx(SurN)

a1 peter myler p360 m460
a2 pedro smith p360 s530
a3 steve peters s315 p362
a4 gail smythe g400 s530
a5 christine miller c623 m460

Database B
RecID GivenName Surname Sndx(GiN) Sndx(SurN)

b1 kristina miller k623 m460
b2 stephen peter s315 p360
b3 kylie smith k400 s530
b4 pete myler p300 m460
b5 kellie roberts k400 r163

Candidate record pairs from GivenName
BKV Candidate record pairs

s315 (a3,b3)

Candidate record pairs from Surname
BKV Candidate record pairs

m460 (a1,b1), (a1,b4), (a5,b1), (a5,b4)
s530 (a2,b3), (a4,b3)

a5c623

a4g400

a1 a2p630

a3s315

p362 a3

a1

a2 a4

a5m460

s530

m460

s530

b1 b4

p360 b2

r163 b5

b3

s315

k400

k623

p300

b3

b1

b4

b3

b5

Blocks A: GivenName

Blocks A: Surname

Blocks B: GivenName

Blocks B: Surname

Fig. 4.5 Two example databases with their blocking key values (BKVs) based on the Soundex
(Sndx) encoded given name (GiN) and surname (SurN) values, the blocks generated using the
standard blocking approach, and the resulting candidate record pairs. The BKVs that are generated
from both databases are highlighted in boldface

4.4 Standard Blocking

This traditional indexing approach has been used in data matching and deduplication
for several decades [108]. The uniqueness of this approach is that the identifier of
each record is inserted into one block only. All other indexing techniques presented
in this chapter potentially insert a single record into several blocks.

Assuming a single blocking key has been defined, one blocking key value (BKV)
will be generated for each record in the input database(s). This BKV determines into
which block a record is inserted. All records that have the same BKV are inserted
into the same block. For the matching of two databases, pairs of candidate records are
generated from all records that have the same BKV across both databases. If a BKV
occurs in records from one database only, then no record pairs will be formed from
this block, as there are no records in the corresponding block in the other database.

For a deduplication, pairs of candidate records are generated from all unique
pairs of record identifiers within a block. Because the comparison of two records is

4.4 Standard Blocking 81

symmetric, each unique record pair only needs to be compared once. For example,
with a block that contains the three record identifiers ‘r1’, ‘r2’ and ‘r3’, the generated
record pairs for a deduplication would be (r1,r2), (r1,r3) and (r2,r3), but not (r2,r1),
(r3,r1) or (r3,r2).

An efficient way to implement standard blocking is to build an inverted index data
structure [288, 303], where each BKV becomes the key of an index list, and the iden-
tifiers of all records that are in the same block are inserted into the same inverted index
list. Figure 4.5 illustrates such inverted index lists for two small example databases.

As discussed in Sect. 4.2 before, several blocking keys are generally defined (often
on different attributes), and for each a separate index data structure is built. Candidate
record pairs are then generated independently when blocks are processed from each
index data structure. However, even if a candidate record pair is generated several
times, the corresponding record pair will only be compared once in the comparison
step.

The number of candidate record pairs that are generated with standard blocking
depends upon the frequency distribution of the BKVs [64]. The most frequent BKVs
will generate the most candidate record pairs. For a simplified estimate, a uniform
frequency distribution of BKVs can be assumed. If the number of records in the two
databases to be matched is denoted with m and n, respectively, and the number of
BKVs in common with b, then each block contains m/b or n/b records, respectively.
The total number of candidate record pairs generated, c, then is

c = b
(m

b
· n

b

)
= m · n

b
. (4.1)

For the deduplication of a single database that contains n records (and b BKVs),
the number of candidate record pairs generated, c, is

c = b

(
n

b
· n − 1

b

)
/2 = n · (n − 1)

2b
. (4.2)

A more detailed complexity analysis for other frequency distributions of the BKVs
can be found in the recent survey by Christen [64].

4.5 Sorted Neighbourhood Approach

The first alternative indexing technique to standard blocking was developed in the
mid-1990s by Hernandez and Stolfo [140, 141]. Rather than generating blocks
according to the BKVs, this approach sorts the databases to be matched accord-
ing to a ‘sorting key’ (which is generated in a similar way as a blocking key). A
sliding window of fixed size w (with w > 1) is then moved over the sorted databases,
and candidate record pairs are generated from the records that are in the window in
any given step.

82 4 Indexing

a10

a9

a8

a7

a6

a5

a4

a3

a2

a1

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

Standard Blocking

a10

a9

a8

a7

a6

a5

a4

a3

a2

a1

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

Sorted Neighbourhood

RecID BKV RecID BKV RecID SKV RecID SKV
a1 b400 b1 b400 a1 bail-mary b1 bayl-pete
a2 b400 b2 b400 a2 bayl-pete b2 bell-gary
a3 b400 b3 b400 a3 bell-robe b3 bell-robe
a4 m460 b4 b400 a4 mell-jame b4 boyl-jame
a5 m460 b5 m460 a5 mill-anne b5 mill-anna
a6 m460 b6 m460 a6 moli-fran b6 mill-thom
a7 p362 b7 p362 a7 patr-henr b7 patt-juli
a8 p362 b8 p362 a8 patt-jule b8 patt-sall
a9 s530 b9 p362 a9 smit-jonn b9 pete-brig
a10 s530 b10 s530 a10 smit-marg b10 smit-john

Fig. 4.6 Comparison of the candidate record pairs that are generated (shaded squares) with standard
blocking and the sorted neighbourhood approach. For standard blocking it is assumed the records
are sorted according to the BKVs to better illustrate the blocks generated. The window size for the
sorted neighbourhood approach is set to w = 3. Note that a different blocking key and sorting key
definition is used for the two approaches. For standard blocking, Soundex codes on surnames are
used, while for the sorted neighbourhood approach the sorting key values (SKVs) are the first four
letters of surnames concatenated with the first four letters of given names. The hyphen (‘−’) is only
used for illustration, in a practical implementation values would be concatenated directly

Figure 4.6 illustrates both the standard blocking and the sorted neighbourhood
approach. The first position of the sliding window, with w = 3, contains the records
‘a1’ to ‘a3’ and ‘b1’ to ‘b3’, and therefore the nine candidate record pairs (a1,b1),
(a1,b2), (a1,b3), (a2,b1), (a2,b2), (a2,b3), (a3,b1), (a3,b2) and (a3,b3) will be gener-
ated. In window position 2 (which contains records ‘a2’ to ‘a4’ and ‘b2’ to ‘b4’), the
four candidate record pairs (a2,b2), (a2,b3), (a3,b2) and (a3,b3) will again be gener-
ated. However, each unique candidate record pair will only be compared once in the
comparison step. The new candidate record pairs generated in the second window
position will be (a2,b4), (a3,b4), (a4,b2), (a4,b3) and (a4,b4).

In the approach originally proposed by Hernandez and Stolfo [140], both databases
are merged before they are sorted according to their sorting key values (SKVs), and
then the sliding window is moved over the combined SKVs. In this way, similar
records from both databases are moved closer together in the hope that they are
included in the same window.

The criteria used to define a good sorting key is different from the criteria used to
define a good blocking key. While a blocking key has to balance the quality of the

4.5 Sorted Neighbourhood Approach 83

candidate record pairs generated (how many true matches are included) with the size
of the blocks generated (and thus the number of resulting candidate record pairs),
the definition of a sorting key needs to be more specific and fine-grained, such that
sorting the databases brings similar records closer together.

An important consideration when defining a sorting key is that the sorting of the
databases is very sensitive to the beginning of the SKVs, especially the first character.
For example, the two similar given name values ‘christine’ and ‘kristina’ will not be
close to each other if the sorting is based on given names. Similar to the multiple
blocking key definitions commonly used for standard blocking, it is of advantage to
run several iterations of the sorted neighbourhood approach using different sorting
key definitions [140].

The number of candidate record pairs that will be generated with the sorted neigh-
bourhood approach does not depend upon the frequency distribution of the SKVs.
Assuming both databases to be matched contain n records, and the window size is
set to w, then there will be (n − w + 1) window positions. In the first position, the
number of candidate record pairs that are generated is w · w = w2, while in each of
the following positions w + (w − 1) = 2w − 1 new unique candidate pairs are added
to the set of candidate pairs (all other pairs in a certain window position have already
been generated in previous window positions). Overall, the total number of unique
candidate records pairs will be

c = w2 + (n − w)(2w − 1) = 2nw − 2w2 − n. (4.3)

For large databases, it holds that w � n, and therefore this process has a compu-
tation complexity of O(n), i.e. it is linear in the size of the databases to be matched.
The same holds for the deduplication of a single database. However, the sorting of
the SKVs must also be considered. This can be accomplished in O(n log n) steps.

An alternative of how the sorted neighbourhood approach can be implemented
was recently proposed [64]. Depending upon how the SKVs are defined, there might
be many SKVs that are the same, and therefore the sliding window will not cover all
records with the same SKV. For example, in a large database there might be many
records with surname ‘smith’ and given name ‘john’, resulting in many records
with SKV ‘smith-john’ (similar to the example shown in Fig. 4.6). The proposed
alternative is to generate an inverted index data structure (as can be done with standard
blocking), where the index keys are the unique SKV values. The index keys are then
sorted, and a sliding window is moved over the index key values rather than the
SKVs directly. Each unique SKV only appears once in the sorted index key values,
while with the original sorted neighbourhood approach an SKV occurred as many
times as a record in the database(s) contained the SKV. At any window position, the
union of the record identifiers from all inverted index lists in the current window will
be used to generate the candidate record pairs for that window position. Because the
inverted index lists can have different lengths, the number of candidate record pairs
that are generated depends upon the distribution of the attribute values used in the
SKVs rather than the window size only. Experimental results have shown that this
alternative approach can lead to more true matches being included into the set of

84 4 Indexing

candidate record pairs at the cost of a larger number of generated candidate pairs
[64].

A major drawback of the original sorted neighbourhood approach is that the fixed
window size can result in missed true matches if similar records are not close enough
in the sorted SKV array to be in the same window. This drawback has been addressed
by a recent approach that dynamically changes the window size w according to the
values of the SKVs [292]. The window size is increased as long as SKVs in the
sorted array are similar to each other according to an approximate string comparison
function (as will be discussed in Chap. 5). A window will cover a sequence of SKVs
(and their records) that have a similarity between each other above a certain similarity
threshold. A new window will be started at a ‘boundary pair’ where two consecutive
SKVs have an approximate string similarity below a certain similarity threshold.

Other recent work has generalised the standard blocking and sorted neighbour-
hood approach and shown that they can be two ends of the same approach [94].
Standard blocking can be seen as the sorted neighbourhood approach where the
window moves w positions forward rather than only 1, leading to non-overlapping
blocks. A novel indexing technique based on this approach has been proposed
that allows the specification of a desired overlap as well as window size [94]. An
experimental evaluation of this technique showed that the sorted neighbourhood
approach outperformed standard blocking, especially when blocks were set to a small
size [94].

4.6 Q-Gram Based Indexing

For data that are dirty and contain large amounts of errors and variations, both
standard blocking and the sorted neighbourhood approach might not be able to insert
records into the same blocks, for example if the beginning of a sorting key value
is different for two name variations. Q-gram based indexing aims to overcome this
drawback by generating variations of each BKV, and to use these variations as the
actual index keys for a standard blocking-based indexing approach. Each record is
inserted into several blocks according to the variations generated from its BKV [20].

Q-gram based indexing takes each blocking (or sorting) key value and converts
it into a list of q-grams. A q-gram (also known as n-gram [172]) is a substring of
length q characters. Common choices for q are q = 2 (called bigrams or digrams
[162]) or q = 3 (called trigrams [258]). A string s that is c = |s| characters long
contains k = c −q +1 q-grams. The list of q-grams of a string s is generated using a
sliding window approach that extracts q characters from s at any position from 1 to k
of the string. For example, the bigram list that is generated from the string ‘christen’
is [‘ch’, ‘hr’, ‘ri’, ‘is’, ‘st’, ‘te’, ‘en’].

To create variations of a BKV, sub-lists of the q-gram list are generated in a
recursive approach, as illustrated in Fig. 4.7. If the original q-gram list contains k
q-grams, then in the first step k sub-lists of length k − 1 q-grams are generated. In
each of these sub-lists, one q-gram is removed. The process is then applied to each

http://dx.doi.org/10.1007/978-3-642-31164-2_5

4.6 Q-Gram Based Indexing 85

RecID BKVs (Surname) Bigram sub-lists Index key values

r1 miller [mi,il,ll,le,er], ‘miilllleer’,
[il,ll,le,er], [mi,ll,le,er], [mi,il,le,er], ‘illlleer’, ‘millleer’,‘miilleer’,

[mi,il,ll,er], [mi,il,ll,le], ‘miilller’, ‘miilllle’,
[ll,le,er], [il,le,er], [il,ll,er], ‘llleer’, ‘illeer’, ‘illler’,

[il,ll,le], [mi,le,er], [mi,ll,er], ‘miller’, ‘illlle’, ‘mileer’,
[mi,ll,le], [mi,il,er], [mi,il,le], ‘millle’, ‘miiler’, ‘miille’,

[mi,il,ll] ‘miilll’
r2 muller [mu,ul,ll,le,er], ‘muulllleer’,

[ul,ll,le,er], [mu,ll,le,er], [mu,ul,le,er], ‘ulllleer’, ‘mullleer’,‘muulleer’,
[mu,ul,ll,er], [mu,ul,ll,le], ‘muulller’, ‘muulllle’,

[ll,le,er], [ul,le,er], [ul,ll,er], ‘llleer’, ‘ulleer’, ‘ulller’,
[ul,ll,le], [mu,le,er], [mu,ll,er], ‘muller’, ‘ulllle’, ‘muleer’,

[mu,ll,le], [mu,ul,er], [mu,ul,le], ‘mullle’, ‘muuler’, ‘muulle’,
[mu,ul,ll] ‘muulll’

Fig. 4.7 Q-gram based indexing with two surname values used as BKVs. Q-grams of length q = 2
(bigrams) are used, and the minimum threshold is set to t = 0.75. Duplicate q-gram sub-lists are
removed. The index key value that is generated for both records is highlighted in boldface

of these sub-lists in a recursive manner. A minimum threshold t (t < 1) is set by a
user to decide the minimum relative length, l, of the shortest q-gram sub-lists that
are to be generated. For a BKV that contains k q-grams and with a threshold set to
t , all sub-lists down to a length

l = max(1, �k · t�) (4.4)

are generated, with �. . .� denoting the rounding to the next lower integer value. All
sub-lists are then converted back into strings and used as the actual index keys in an
inverted index data structure, as described for standard blocking and illustrated in
Fig. 4.5. Each record is inserted into several inverted index lists, according to how
many index keys have been generated from its BKV [64].

As shown in Fig. 4.7, a major drawback of this indexing approach is that (even
with short BKVs) a large number of sub-lists (and thus index keys) are generated,
and each record is likely inserted into many blocks. The recursive generation of sub-
lists is a computationally expensive procedure, especially for long BKVs and low
threshold values.

The advantage of q-gram based indexing is that it can overcome errors and vari-
ations in the BKVs, and therefore records that refer to true matches are more likely
inserted into the same index list, even if their BKVs are different from each other.
This leads to more true matching records being compared and thus an improved
matching quality.

A recent theoretical and empirical evaluation of q-gram based indexing has illus-
trated that the drawback of having a high computation complexity outweighs the
advantage of being able to match data that are dirty [64]. Q-gram based indexing is

86 4 Indexing

not suitable for the matching or deduplication of large databases because generating
the many q-gram sub-lists takes a prohibitive amount of time.

An approximate string join technique within a database framework that is related
to q-gram based indexing was proposed by Gravano et al. [127]. It uses q-grams to
reduce the computation complexity of the naive pair-wise approach of comparing
all possible record pairs when joining two database tables. This technique augments
a database with a table that for each record contains tuples that are made of the
identifier of the record, the q-grams extracted from the record’s attribute value and
the positions of these q-grams within the attribute value (positional q-grams will
be discussed further in Sect. 5.4). Using this q-gram table, an SQL query is used to
only compare candidate record pairs that fulfil three filtering criteria. These criteria
limit the number of pairs that have to be compared using an expensive user-defined
function (UDF) such as edit distance (which will be discussed in Sect. 5.3). The first
criteria, count filtering, selects pairs that have a certain minimum number of q-grams
in common. The second criteria, position filtering, removes pairs where the common
q-grams are at positions too far apart. Finally, the third criteria, length filtering,
removes pairs that have a length difference of their corresponding strings above a
certain threshold. An experimental evaluation by the authors using a commercial
database showed that this proposed approach results in a very effective approximate
string join implemented completely within a relational database [127].

4.7 Suffix-Array Based Indexing

This indexing technique is related to q-gram based indexing. It also aims to overcome
errors and variations in the BKVs by generating suffix substrings (called suffixes) of
the BKVs. The suffixes of a string are all its substrings with one or more characters
at the beginning removed. For example, the suffixes of the string ‘peter’ are ‘eter’,
‘ter’, ‘er’ and ‘r’. Each unique suffix string becomes the key of an index block, and
all records that contain this suffix string are inserted into this block [7]. Similar to
q-gram based indexing, the identifier of a record will likely be inserted into several
inverted index lists. Figure 4.8 illustrates this approach on four example BKVs.

When applied for indexing, the shorter a suffix string is the more BKVs (and
thus more records) will contain this suffix. This will result in very large blocks. For
example, the identifiers of all records that contain a BKV that ends with the suffix
‘r’ will be inserted into the block with index key ‘r’. To prevent such large blocks to
occur, suffix-array based indexing has two parameters that influence the size of the
index blocks that are generated.

• The first parameter is the minimum suffix length, lmin . This parameter sets the
minimum length of suffix strings that are generated. With lmin = 4, for example,
for the string ‘christen’ the following suffixes will be generated: ‘hristen’, ‘risten’,
‘isten’ and ‘sten’. The identifier of each record that has the BKV ‘christen’ will
therefore be inserted into 5 blocks (the value ‘christen’ will also be used as a key of

http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://dx.doi.org/10.1007/978-3-642-31164-2_5

4.7 Suffix-Array Based Indexing 87

RecID BKVs (GivenName) Suffixes

r1 katherina katherina, atherina,
therina, herina,

erina, rina
r2 catrina catrina, atrina, trina,

rina
r3 catherine catherine, atherine,

therine, herine,
erine, rine

r4 catherina catherina, atherina,
therina, herina,

erina, rina
r5 katrina katrina, atrina,

trina, rina

Suffix RecID

atherina r1, r4
atherine r3
atrina r2, r5

catherina r4
catherine r3
catrina r2
erina r1, r4
erine r3
herina r1, r4
herine r3

katherina r1
katrina r5

rina r1, r2, r4, r5
rine r3

therina r1, r4
therine r3
trina r2, r5

Fig. 4.8 Suffix-array based indexing example of five given name values, adapted from [64]. The
minimum suffix length is set to lmin = 4 and the maximum block size to bmax = 3. As a result, the
block for suffix ‘rina’ is too large (because four records contain this suffix value) and it is deleted
before the candidate record pairs are generated

the inverted index). For BKVs that are shorter than lmin characters (such as ‘tan’),
only their actual value will be used as index key.
A BKV that is c characters long will result in k = (c − lmin + 1) suffix strings,
and therefore a record that has a BKV of length c will be inserted into k inverted
index lists and thus blocks. The longer a suffix string is, the less likely it will occur
frequently in all the BKVs in a database. For example, there will be more records
in a database that contain the suffix value ‘tina’ in their BKVs compared to ‘ttina’
(from given name ‘bettina’), because ‘christina’, ‘kristina’, ‘martina’ and ‘santina’
also contain the suffix ‘tina’.

• To limit the size of the generated blocks, the second parameter used in suffix-array
based indexing is the maximum block size that is allowed, bmax . Once the BKVs
and their suffix strings have been generated for all records in a database and the
record identifiers have been inserted into the suffix array index, then all index
blocks that contain more than bmax record identifiers will be deleted. These large
blocks were likely generated by short suffix strings that appear in many BKVs.
By removing these large blocks, the number of candidate record pairs that are
generated is limited. The idea of this pruning step is that each record identifier is
likely being inserted into several index blocks. Even after the large blocks have
been removed, a record identifier is still kept in one or more of the smaller blocks.
In case of where a large block is deleted, there is, however, a chance that such
a block contained record identifiers where their BKV was only inserted into this
large block (because the BKV for these records was of length lmin). As a result,
these records would not be part of any candidate record pair, and thus would not

88 4 Indexing

be compared with other records. Therefore, in such a case a large block should not
be deleted completely, but its size (number of record identifiers in it) be reduced
by only removing record identifiers that have the longest original BKV (i.e. that
have also been inserted in several other blocks).

Suffix-array based indexing has successfully been applied to the deduplication of
both English and Japanese bibliographic databases, where suffix arrays were created
based on English names and Japanese characters, respectively [7].

The number of candidate record pairs, c, that will be generated with this indexing
technique can be estimated assuming that all blocks that are generated contain the
maximum allowed number of record identifiers, bmax . If b such blocks are generated,
then in total

c = b · b2
max (4.5)

candidate record pairs are generated for the matching of two databases, and

c = b · (bmax (bmax − 1)) /2 (4.6)

for the deduplication of one database [64]. In practice this will likely be an upper
bound, because not all blocks will reach the maximum allowed size bmax . Compared
to standard blocking, the number of blocks b will also be much larger with suffix-array
based indexing, because each BKV used in standard blocking will likely generate
several different suffix values.

As Fig. 4.8 illustrates, the suffix-array based indexing technique has the draw-
back that variations or errors at the end of BKVs will lead to record identifiers being
inserted into different blocks, potentially resulting in missed true matches. This is
especially of concern as empirical studies have shown that more data entry errors
appear at the end of strings compared to their middle or beginning [214]. A mod-
ification to the suffix generation process can help overcome this drawback. Rather
than only generating the suffix strings of a BKV, all substrings down to the minimum
length lmin can be generated in a sliding window fashion (similar to the genera-
tion of q-grams). For example, for the string ‘christen’ and lmin = 5, this approach
would generate the substrings: ‘christen’ (length 8); ‘christe’ and ‘hristen’ (length
7); ‘christ’, ‘hriste’, and ‘risten’ (length 6); and ‘chris’, ‘hrist’, ‘riste’, and ‘isten’
(length 5) [64]. This approach can help to overcome errors both at the beginning
and end of BKVs, but the computational cost (similar to q-gram based indexing)
increases significantly because a larger number of substrings are generated, and a
record identifier is inserted into a larger number of blocks.

In an approach that is similar to the adaptive sorted neighbourhood technique
[292] discussed in Sect. 4.5, a recently developed improvement to suffix-array based
indexing is to merge blocks if their suffix values are similar to each other [265, 266].
This merging is based on an approximate string similarity function that calculates
the similarity between consecutive strings in the sorted array of suffix values. If the
similarity of a string pair is above a certain threshold, then their corresponding lists

4.7 Suffix-Array Based Indexing 89

of record identifiers are merged to form a new combined larger block. As a result,
suffix-array based indexing becomes more robust [265, 266].

As an example, assume the suffix array from the right-hand side of Fig. 4.8 has
been generated. If the edit distance string comparison function (which returns a
normalised similarity value between 0.0 and 1.0, as will be discussed in detail in
Sect. 5.3) with a minimum similarity threshold set to t = 0.85 is used, three pairs
of neighbouring suffix strings have a similarity above this threshold. The string pair
‘atherina’ and ‘atherine’ has a similarity s = 0.875, and thus their record identifier
lists are merged into the list [r1,r3,r4]. The pair ‘catherina’ and ‘catherine’ has a
similarity s = 0.889, and their lists are merged into [r3,r4]. Finally, the string pair
‘therina’ and ‘therine’ has a similarity s = 0.857 and their merged list is [r1,r3,r4].

A detailed theoretical analysis of this robust suffix-array based indexing technique
has been presented by the developers [265]. A recent extension of this technique is
to employ Bloom filters to improve the computational performance and reduce the
amount of main memory that is required [266]. An experimental evaluation showed
that with Bloom filters the number of database accesses needed during the generation
of the index data structure can be reduced by up to 70 %.

4.8 Canopy Clustering

The indexing step can be seen as a clustering of the records in the databases to be
matched or deduplicated in such a way that records that are similar to each other are
inserted into the same cluster. Many clustering algorithms have high computation
complexity [135]. Indexing, however, should be computationally cheap, and it must
be feasible to generate the candidate record pairs in a fast and scalable manner. The
canopy clustering approach achieves this goal by efficiently calculating distances
between the BKVs [85, 185], and inserting records into one or more overlapping
clusters. Each cluster then becomes a block from which candidate record pairs are
generated.

The similarities between BKVs are calculated using either the Jaccard or the
TF-IDF/Cosine (Term-Frequency / Inverse Document Frequency [288]) similarity
measures, using tokens generated from the BKVs. Both these measures are also used
in approximate string comparison functions, as will be described in detail in Chap. 5.
Jaccard similarity, sim Jaccard , is a measure based on the number of tokens two
BKVs, b1 and b2, have in common, normalised by the union of the tokens contained
in the two BKVs. If the function token(b) returns the set of tokens in the BKV b,
then the Jaccard similarity is calculated as

sim Jaccard = |token(b1) ∩ token(b2)|
|token(b1) ∪ token(b2)| , (4.7)

with | . . . | denoting the number of elements in a set [64]. When the TF-IDF/Cosine
similarity, simT F I DF , is used instead of the Jaccard similarity, then TF-IDF weight-

http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://dx.doi.org/10.1007/978-3-642-31164-2_5

90 4 Indexing

RecID BKVs (Surname) Sorted bigram lists

r1 hanlan [(an,2), (ha,1), (la,1), (nl,1)]
r2 gansan [(an,2), (ga,1), (ns,1), (sa,1)]
r3 gargan [(an,1), (ar,1), (ga,2), (rg,1)]

r1:2

r2:2

r3:1

r3:1

r3:2

an:3 ar:1 ga:2 ha:1

r2:1 r1:1

Fig. 4.9 Canopy clustering example with BKVs based on surnames. The tokens used are the
bigrams extracted from these surname values. The sorted bigram lists include Document Frequency
(DF) counts. The Term Frequency (TF) and DF counts in the inverted index data structure in the
right-hand side are used to calculate weights in the TF-IDF/Cosine similarity measure, while the
Jaccard similarity measure will be calculated based only on the bigrams in the inverted index lists.
This figure is adapted from [64]

ing (described below) is taken into account when the similarity between two BKVs
is calculated.

Depending upon the content of the BKVs, the tokens used in canopy clustering
can either be words or q-grams (substrings of length q, as was discussed in Sect. 4.6).
The canopy clustering indexing technique is based on an inverted index data structure
where the index keys are the tokens extracted from the BKVs, and the index lists
contain the identifiers of the records that contain this token in their BKVs. Figure 4.9
shows a small example of such a data structure. The Document Frequency (DF) is the
count of how many times a token appears in a BKV in a certain record. For example,
the token ‘an’ appears twice in the BKV of records ‘r1’ and ‘r2’ in the example.
The DF can be calculated as the BKV for each record is being processed. The Term
Frequency (TF), is the count of how many records in a database contain a certain token
(the token ‘an’ for example appears in all three records in Fig. 4.9). Once a database
has been loaded and the inverted index data structure for canopy clustering has been
generated, the TF values can be converted into Inverse Document Frequencies (IDF)
[288]. While there are several variations of how IDF can be calculated [135, 288],
the basic approach is using the following equation:

id f (t) = n

t f (t)
, (4.8)

where n is the number of records in the database and t f (t) is the number of records
in the database that contains the term t [288].

After the inverted index data structure is built, the canopy clustering indexing
algorithm can be started [64]. The algorithm iteratively generates overlapping clusters
by repeating the following steps [85].

1. The identifiers of all records in the databases to be matched are inserted into a
set, P .

2. One record identifier, rc, is randomly selected from P . This record identifier will
become the centroid of a new canopy cluster, Ci = {rc}.

3. Using the tokens in the BKV of record rc, either the Jaccard, sim Jaccard , or
TF-IDF/Cosine similarity, simT F I DF , is calculated with all records rx ∈ P

4.8 Canopy Clustering 91

that have at least one token in common with rc. Using the inverted index data
structure, this can be accomplished very efficiently.

4. All records rx that have a Jaccard or TF-IDF/Cosine similarity value above a loose
threshold, tl , are inserted in the canopy cluster Ci (i.e. either sim Jaccard(rc, rx) ≥
tl or simT F I DF (rc, rx) ≥ tl).

5. All records rx ∈ Ci that have a similarity with rc above a tight threshold, tt ,
are removed from the set P of records (i.e. either sim Jaccard(rc, rx) ≥ tt or
simT F I DF (rc, rx) ≥ tt). The cluster centroid, rc, is also removed from P .

6. As long as the set of records is not empty, P 	= ∅, go back to step 2.

The loose threshold, tl , needs to be smaller or equal to the tight threshold, tt , i.e.
tl ≤ tt . If both thresholds are set to the same value (tl = tt), then the generated canopy
clusters will not be overlapping, and each record identifier will only be inserted into
one cluster. If the thresholds are set to tl = tt = 1.0, then canopy clustering will
generate clusters that are the same as the blocks generated by standard blocking.

Each cluster generated by canopy clustering will become one block, and candi-
date record pairs will be generated from all pairs of record identifiers within each
cluster. Similar to the sorted neighbourhood approach, and q-gram and suffix-array
based indexing, a specific candidate record pair will likely be generated from several
clusters (blocks). However, each unique candidate record pair will only be compared
once in the comparison step.

One drawback with the threshold-based canopy clustering approach is that the
size of the generated clusters depends upon the distribution of BKVs, the similarity
function used and the setting of the two similarity thresholds. Besides setting the two
threshold values, there is no explicit way to limit the size of the generated clusters,
and therefore it is not possible to limit the number of candidate record pairs generated.

An alternative way of using the two similarity thresholds is to generate clusters
using a nearest-neighbour based approach [64]. Similar to the two thresholds tl and
tt , two nearest-neighbour parameters are required. The first, nl , is the number of
record identifiers whose records rx have the highest similarity values with the record
selected as cluster centroid, rc. These nl records are inserted into a canopy cluster
Ci in step 4 of the algorithm. Of these nl records, the nt (with nt ≤ nl) will then
be removed from the set P of all record identifiers in step 5 of the algorithm. This
approach requires that the nl records in the set P that are most similar to the centroid
record rc need to be identified in each iteration of the algorithm.

The advantage of this nearest-neighbour based approach is that each canopy clus-
ter generated will contain nl record identifiers. The two parameters nl and nt allow
explicit control of the number of candidate record pairs that will be generated. A
drawback of this approach is however that the fixed size of the generated clusters,
nl , might mean that records that are similar to each other are not inserted into the
same cluster. This drawback is similar to the drawback of the sorted neighbourhood
approach where a fixed window size can lead to true matches not being compared
with each other because they are not inserted into the same window. A recent exper-
imental study has shown that threshold-based canopy clustering can achieve better

92 4 Indexing

results than the nearest-neighbour based approach, especially as the databases to be
matched or deduplicated get larger [64].

4.9 Mapping Based Indexing

The idea behind mapping based indexing techniques is to convert the BKVs into
objects that are mapped into a multi-dimensional space, such that the original sim-
ilarities between BKVs are preserved [151]. Blocks are then generated similar to
canopy clustering by inserting similar objects into the same clusters [151].

The distances between strings are calculated using an approximate string com-
parison function which needs to be a metric distance function (discussed in Sect. 5.1),
such as one of the edit distance based functions (see Sect. 5.3 for details). The multi-
dimensional space generated by the mapping process is created one dimension after
another using a modification of the FastMap [105] algorithm called StringMap [151].
StringMap has a linear complexity in the number of strings that are mapped into the
multi-dimensional space. The set of strings this algorithm works on is the set of all
BKVs. Mapping based indexing consists of two phases.

• In the first phase, the algorithm iterates over the number of dimensions d (which
needs to be chosen by the user). For each dimension, StringMap selects two pivot
strings which ideally are far apart from each other measured using the selected
string similarity function. These two strings are used to form the orthogonal direc-
tions of the multi-dimensional Euclidean space that is generated.
An iterative farthest-first algorithm can be used to find the two pivot strings [151].
This algorithm starts by randomly selecting a string, and then finding the string
that is farthest away from the first string. In the second iteration, the string in the
set of all strings that is farthest away from the second string is found. This process
is repeated several times. The last two strings found will be selected as the two
pivot strings.
Once two pivot strings have been selected for a dimension, the coordinates of all
other strings for this dimension are calculated based on the two pivot strings. The
process is repeated until all dimensions d have been created and a d-dimensional
object has been generated for each string.
A crucial parameter required in this algorithm is the dimensionality d of the space
that is generated. Experiments by the developers of StringMap have shown that
good results can be achieved with 15 ≤ d ≤ 25 [151]. A second crucial issue
for mapping based indexing is the type of data structure that is used to store the
multi-dimensional objects.
The developers of StringMap have used an R-Tree [151], which is a popular data
structure for efficient storage and retrieval of multi-dimensional objects. How-
ever, like most tree-based multi-dimensional index data structures, the higher the
dimensionality of the objects to be stored is, the less efficient an R-Tree data struc-
ture becomes. The reason for this degradation in efficiency is that with increased

http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://dx.doi.org/10.1007/978-3-642-31164-2_5

4.9 Mapping Based Indexing 93

dimensionality, more subtrees in an R-tree need to be searched to find objects
that are similar to a query object. For dimensions larger than 15 to 20, nearly all
objects in a tree-based multi-dimensional index need to be accessed when simi-
larity searches are conducted [3]. This problem is commonly known as the curse
of dimensionality [135].

• In the second phase of mapping based indexing, similar to canopy clustering
based indexing, groups or clusters of objects (that refer to BKVs) are extracted
from the multi-dimensional index, and all records that contain any of these BKVs
are inserted into the same block. As with canopy clustering, clusters (and thus
blocks) can be generated using a similarity threshold or a nearest-neighbour based
approach [64]. It is difficult to predict the size of the generated blocks when using a
threshold based approach, because block sizes depend upon the distribution of the
objects in the multi-dimensional space. Their distribution depends upon the BKVs,
the string distance function employed in the mapping and the dimensionality d of
the space generated.

A double-embedding based approach to indexing has recently been proposed
[1]. The idea of this approach is to first map the BKVs into a space of k dimensions
using the StringMap algorithm [151]. This is followed by a mapping of the objects
in the k dimensional space into a lower dimensional space (with k′ < k dimensions)
using the FastMap algorithm [105]. A binary KD-tree data structure is combined
with a nearest neighbour based similarity approach to extract similar objects that are
then used to generate blocks [1]. An experimental evaluation by the developer of
this technique using names and addresses from a publicly available Canadian voter’s
database has shown improvements in the run-time of between 30 and 60 % reduction
compared to the original StringMap based mapping approach, while at the same time
achieving the same matching accuracies [1].

4.10 A Comparison of Indexing Techniques

To illustrate the differences in performance of the indexing techniques described in
this chapter, this section presents some experimental results of a recent comparative
evaluation [64]. This study was based on three small data sets that have previously
been used by the data matching community for comparative evaluations. These and
other data sets used in data matching research will be discussed in more detail in
Sect. 7.5. Table 4.3 provides basic details of these three data sets. They are all available
in the SecondString toolkit.1 The true match status of all record pairs is known in all
three data sets.

All indexing techniques described in Sects. 4.4–4.9 (and variations of them) have
been implemented in the programming language Python as part of the FEBRL2 open

1 http://secondstring.sourceforge.net
2 Available from: https://sourceforge.net/projects/febrl/

http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://secondstring.sourceforge.net
https://sourceforge.net/projects/febrl/

94 4 Indexing

Table 4.3 Details of the data sets used for the comparative evaluation presented in Fig. 4.10

Data set name Description Task Number of Total number of
records true matches

Census Synthetic data generated Linkage 449 / 327
by the US Census Bureau 392

Cora Bibliographic records of Deduplication 1,295 17,184
machine learning papers

Restaurant Records from Fodor and Deduplication 864 112
Zagat restaurant guides

source record linkage system [61]. FEBRL will be described in detail in Sect. 10.2.4.
The results presented here are based on experiments conducted on an otherwise idle
compute server with two 2.33 GHz quad-core CPUs and 16 GB of main memory,
running Linux 2.6.32 (Ubuntu 10.04) and using Python 2.6.5. Further results, such
as the quality of the candidate record pairs generated, are available in a detailed
experimental evaluation [64].

The results presented in Fig. 4.10 show the three basic measures time used, number
of candidate record pairs generated, and main memory required. Other measures that
are commonly used to evaluate indexing techniques will be discussed in Sect. 7.3.
As these results illustrate, there are large variations between the different indexing
techniques for all three measures. Not just are there differences between indexing
techniques, but also for the same technique when applied to different data sets.

Mapping based indexing is the overall slowest technique, followed by q-gram
based indexing, canopy clustering and two variations of suffix-array based indexing.
Mapping based indexing also produces a large number of candidate record pairs. The
more simpler techniques, such as standard blocking, the sorted neighbourhood based
approaches and suffix-array based indexing, are faster and require less memory. A
major result of this and other comparative studies [20, 64] is that an important factor
for successful indexing is the appropriated definition of blocking or sorting keys.
How to automatically generate optimal blocking keys based on supervised learning
approaches will be discussed in Sect. 4.12 below.

4.11 Other Indexing Techniques

Besides the indexing techniques (and their variations) covered in Sects. 4.4–4.9,
different approaches aimed at reducing the time needed to match two databases or
deduplicate a single database have been explored.

An iterative blocking technique has recently been proposed that uses the infor-
mation gained when records within a block are compared to improve the records
contained in other blocks [277]. For example, when two records in a block are com-
pared, the resulting merged record can contain information that leads to the merged

http://dx.doi.org/10.1007/978-3-642-31164-2_10
http://dx.doi.org/10.1007/978-3-642-31164-2_7

4.11 Other Indexing Techniques 95

Fig. 4.10 Experimental results for the three small data sets presented in Table 4.3. These results
are based on an earlier experimental evaluation by the author [64]. The abbreviations used for the
different indexing techniques are: ‘StdBlo’ refers to the standard blocking technique; ‘SorAr’ to
the array based sorted neighbourhood approach, ‘SorII’ to the inverted index based sorted neigh-
bourhood approach and ‘AdSor’ to the adaptive sorted neighbourhood technique; ‘QGr’ refers to
q-gram based indexing; ‘CaTh’ and ‘CaNN’ to the threshold and nearest-neighbour based canopy
clustering techniques; while ‘StMTh’ and ‘StMNN’ refer to the threshold and nearest-neighbour
based StringMap indexing techniques; finally, the three suffix-array based approaches are labelled
as ‘SuAr’ (the original suffix array technique), ‘SuArSu’ (the variation where all substrings are
generated), and ‘RoSuA’ refers to the robust suffix array approach

record being inserted into another block, because the merged record might have a
different BKV than the two original records. The issues involved in merging records
that have been classified as matches will be covered in Sect. 6.12. The process of
indexing a database into blocks (as discussed in Sect. 4.4) with this technique is
therefore not static and done only once, but rather blocks are iteratively refined as
record pairs are being compared and merged. The experimental evaluation presented
by the authors showed that such iterative blocking can be both more accurate and
faster at the same time [277].

While all indexing techniques discussed so far only use the attribute values in an
individual record to decide into which block to insert the record, a recently developed

http://dx.doi.org/10.1007/978-3-642-31164-2_6

96 4 Indexing

technique uses the relationship of a record with other records to improve the quality
of the indexing process [200]. The idea is to build a relationship graph where records
are nodes and relationships between records are vertices. A relationship can for
example be between individuals who live at the same address or who share the
same telephone number, or between co-authors who have contributed to the same
article. Blocks are then generated by randomly selecting a record (similar to canopy
clustering and mapping based indexing) and including all records into the block
that are connected to this record in the relationship graph. This so-called semantic
blocking approach achieved much improved matching quality on several data sets
while having similar computational requirements as standard blocking or the sorted
neighbourhood approach [200].

Techniques that are orthogonal to indexing (i.e. that can be employed comple-
mentary to indexing techniques) include running data matching or deduplication on
a parallel computer or in a distributed computing environment, where each process-
ing unit will conduct the matching of a subset of the original databases. This topic
will be further covered in Sect. 9.5. Related to parallel data matching is the BigMatch
technology developed by the US Census Bureau [295]. The challenge faced by this
organisation is that very large databases (some containing billions of records) need to
be matched with ‘smaller’ databases (still containing millions of records) on a regular
basis. The approach implemented in BigMatch is to load and process the ‘smaller’
of the two databases into an inverted-index based data structure [288], assuming
this data structure fits into the main memory of a large parallel compute server. The
indexing step can then be carried out by a single scan through the larger of the two
databases while still using several blocking criteria. For each of these blocking cri-
teria, a file will be written that contains plausible matches. Each of these files will
be smaller than the original large database. More detailed matching is then carried
out separately between the smaller database and each of the generated blocking files
[295].

Another approach is to reduce the time required in the expensive detailed compar-
ison of the candidate record pairs that are generated in the indexing step. Comparison
functions will be covered in detail in the following chapter. Many of these functions
are computationally expensive, so limiting the number of comparisons that need to be
conducted can provide substantial performance improvements. Two recently devel-
oped techniques [91, 193] explore how an early decision can be made if a candidate
record pair is classified as a non-match, and therefore does not need to be compared in
detail across many of its attributes. The first proposed approach assumes a distributed
environment (such as a crime investigation by a police officer who needs to gather
information from several distributed law enforcement databases). A matching tree
is developed (similar to a decision tree) that allows an early decision if a candidate
record pair will be a match or not. This technique can lead to a significant reduction
in communication overhead [91]. A second recent approach assesses the attribute
comparisons for a candidate record pair such that a match or non-match decision can
be made as early as possible [193]. This is achieved by an optimal ordering of the
attributes that are used in the comparison step. Such an optimisation is especially

http://dx.doi.org/10.1007/978-3-642-31164-2_9

4.11 Other Indexing Techniques 97

important if the records in the databases to be matched contain many attributes that
need to be compared.

Special indexing techniques have recently been proposed for real-time data match-
ing [69, 70], where the aim is to match a stream of query records that contain entity
information with a large database that contains records of known entities, such as
known criminals or people that have a bad credit history. If the matching of a query
record is required in (near) real-time, such as for a police investigation for example,
then the amount of permitted matching time for each query record is limited. The
matching task then becomes similar to the task of Web search which is successfully
carried out by various commercial search engines on very large data collections. The
topic of real-time matching will be further discussed in Sect. 9.3.

A large body of work related to indexing has also been conducted by the database
community. The two areas relevant to indexing are similarity joins and uncertain or
probabilistic databases. The objective of a similarity join is to enable an efficient and
scalable approximate join function that calculates the similarities between attribute
values in two database tables using a string similarity function such as edit distance or
Jaccard distance (to be discussed in the following chapter). Various techniques have
been developed that facilitate similarity joins within database environments [22, 127,
170, 232, 272, 289]. The area of uncertain or probabilistic databases is concerned
with information that is probabilistic in nature and thus has some uncertainty attached
to each value [2]. Indexing techniques for uncertain data have been developed based
on standard inverted index and tree-based approaches [216, 298]. Finding similarities
between objects in probabilistic databases has recently also received some attention
[28]. None of these techniques has however been directly applied in the domain of
data matching.

The information retrieval community, besides developing techniques to improve
inverted index based indexing for Web search [21], has also investigated techniques
to allow efficient detection of duplicate documents returned by Web search engines
[131]. Because Web documents are commonly much larger than the records used
in data matching and contain more detailed information, a main challenge is to
extract relevant parts of documents to allow efficient indexing for scalable duplicate
detection [139].

4.12 Learning Optimal Blocking Keys

The blocking or sorting keys that are required for all indexing techniques presented
in this chapter are traditionally being defined manually by data matching and domain
experts. As experimental evaluations have shown [20, 64], finding optimal blocking
key definitions that lead to high quality matching results is challenging. The aim of
a good blocking key definition is to get a set of candidate record pairs that includes
as many true matches as possible while at the same time keeping the total set of
candidate record pairs as small as possible. An alternative way to manually define
blocking keys is to learn them automatically from the data that are to be matched.

http://dx.doi.org/10.1007/978-3-642-31164-2_9

98 4 Indexing

Two machine learning based approaches to define optimal blocking keys have
recently been proposed [34, 188]. Both work in a supervised learning fashion and
require training data in the form of record pairs that correspond to true matches
and true non-matches. The learning process generates candidates of blocking keys,
and using those training examples the candidates that achieve the highest coverage
and highest accuracy are selected. The two measures coverage and accuracy are
commonly used to evaluate rule-based classification approaches [135]. Coverage
measures the number of true matching candidate record pairs in the training set that
are covered by a blocking key definition, while accuracy measures how many of the
candidate record pairs in the training set that are covered by a blocking key definition
correspond to true matches.

The approach developed by Michelson et al. [188] learns so-called blocking
schemes (blocking criteria) made of {method, attribute} tuples, where the method
is a function which compares the values of the given attribute from two records.
Example methods are first-1-match, which returns true if the first characters in the
attribute values of two records are the same and false otherwise; first-3-match, which
returns true if the first three characters are the same, or token-match, which returns
true if two attribute values have at least one token (word or q-gram) in common.
The actual learning algorithm is based on a variation of the sequential covering
algorithm [135]. This algorithm learns one rule (one blocking scheme) at a time. It
starts with a set of candidate blocking schemes that includes all possible methods
applied on all available attributes. The coverage and accuracy of each possible
{method, attribute} tuple is then calculated using the record pairs in the training
data. Individual tuples are combined into conjunctions to improve the accuracy of the
learned blocking schemes. The conjunction of {method, attribute} tuples with the
highest coverage and accuracy is selected, and the record pairs that are covered by
that conjunction of tuple are removed from the training data set [188]. The process
is continued until all training record pairs are covered by a tuple.

An approach similar to learning optimal blocking keys was presented by Bilenko
et al. [34]. Instead of learning one rule at a time using the sequential set covering
algorithm, blocking schemes are learned by solving an optimisation problem that
was shown to be equivalent to the red-blue set cover problem [34]. Both this and the
technique proposed by Michelson et al. [188] can in principle be employed with any
of the indexing techniques presented in this chapter.

4.13 Practical Considerations and Research Issues

The most important aspects to consider in the indexing step for a practical data
matching or deduplication exercise are how to define the blocking key or keys, and
what indexing technique to employ. The selection of which attributes to use in a
blocking key definition depends upon the number of unique values of an attribute,
their frequency distribution and also how many records have an empty value in
an attribute. These basic statistics can be gathered through data profiling or data

4.13 Practical Considerations and Research Issues 99

exploration tools, as was previously discussed in Chap. 3. Ideally, attributes that
have no missing values and that have a nearly uniform frequency distribution of their
values are preferred. The reason for this is that using such attributes will result in
blocks or clusters that are of similar sizes, compared to when the values of an attribute
follow for example a Zipf-like frequency distribution [64].

The number of blocks and the distribution of their sizes can be further influenced
by the use of a (phonetic) encoding function during the generation of BKVs. The
choice of a phonetic encoding function depends upon the language of the values that
will be used to generate the BKVs. Most phonetic encoding functions, including
those presented in Sect. 4.3, have been developed for English names only. For any
database that contains either name values from a language other than English, or that
contains multilingual name values, the use of phonetic encoding functions should be
carefully evaluated, and variations of such functions (that have been appropriately
adapted to a certain language) should be considered.

Which indexing technique to use for a certain data matching or deduplication
project is a second important practical aspect that needs to be carefully considered.
With different indexing techniques, there is usually a trade-off between how many
candidate record pairs are generated and the resulting quality of the achieved match-
ing. The more record pairs are removed by an indexing technique from the set of all
possible pairs, the more likely some true matching pairs will be removed as well.
For databases that contain data of low quality, employing an indexing technique
that inserts records into several blocks or clusters will be of advantage compared
to employing a technique that inserts each record into one block only. On the other
hand, if the data to be matched or deduplicated are of good quality, then using the
traditional blocking technique (that inserts each record into one block only) might
be appropriate.

One avenue of research in the area of indexing could tackle the challenge of
developing multilingual phonetic encoding functions that can be applied on databases
that contain names from different languages and cultures. Another area of research is
the development of indexing techniques that are scalable, while at the same time also
highly efficient. This means that ideally the number of candidate record pairs that
are generated only increases linearly with the size of the databases that are matched,
while a high matching quality is still achieved by keeping all (or a very high portion
of) true matching record pairs in the generated candidate record pairs.

All the indexing techniques that have been presented in this chapter are heuristic
approaches. Their aim is to split the records in a database (or databases) into blocks or
clusters (that potentially overlap) in such a way that all records that match with each
other are inserted into the same block, and records that are not matching are inserted
into different blocks. An ultimate goal of research on indexing for data matching
is the development of techniques that generate blocks such that it can be proven
that (1) all comparisons between records within a block will have a certain minimum
similarity with each other (according to some similarity metric), and (2) the similarity
between records in different blocks is below this minimum similarity. Specifically,
if ri and r j are two records, and sim(ri , r j) is a similarity measure (such as one of
the techniques described in the following chapter) applied to a pair of records (with

http://dx.doi.org/10.1007/978-3-642-31164-2_3

100 4 Indexing

sim(ri , r j) = 1 if ri = r j and sim(ri , r j) = 0 if ri and r j are totally different from
each other), then an optimal indexing technique would generate blocks B such that
sim(ri , r j) ≥ t,∀ri , r j ∈ Bk , and sim(ri , r j) < t,∀ri ∈ Bk, r j ∈ Bl , Bk 	= Bl , for
some threshold 0 ≤ t ≤ 1.

4.14 Further Reading

A recent survey by the author arguably provides the most comprehensive comparison
of indexing techniques for data matching presented so far [64]. The survey analy-
ses the computation complexity of different indexing techniques, measured as the
number of candidate record pairs that are expected to be generated if certain data
distributions are assumed. A detailed experimental evaluation on both synthetic and
real-world data sets is also provided in this survey. These experiments are highlight-
ing the significant differences in both performance and accuracy that are achieved
by various indexing techniques.

Two publications discuss implementation details of how indexing techniques can
be employed in industry to match large databases. A TF-IDF based approach, that is
similar to canopy clustering described in Sect. 4.8, was used by Koudas et al. in an
SQL database environment to match customer information [170]. Various enhance-
ments were presented that can lead to significant performance improvements when
large databases are matched. More recently, Weis and Naumann discuss extensions to
the sorted neighbourhood approach to allow the scalable deduplication of a customer
relationship database containing records in XML format for more than 60 million
individuals [272]. The recent introductory book to duplicate detection by the same
two authors also contains a discussion of several indexing techniques [195].

Chapter 5
Field and Record Comparison

5.1 Overview and Motivation

As was discussed in Chap. 3, the data used in data matching can be of low quality.
They can contain errors and (typographical) variations, name and address values
can change over time, and for many personal and other names several valid forms
can exist. While this is mostly of concern for attributes such as personal names
and addresses, as the examples in Sect. 1.4.6 and 1.4.7 showed, low data quality
is also a critical issue for other types of data, including bibliographic databases and
consumer product descriptions. Even sophisticated data cleaning and standardisation
techniques are not always able to create high quality data that will convert values into
exactly the same form for all attributes in pair of records that refer to true matches.

Rather than comparing attribute values between two records using only an exact
comparison function (that returns a binary ‘same’ or ‘different’ value), it is vital for
data matching to employ comparison functions that return some indication of how
similar two attribute values are. Such comparison functions need to be tailored to the
type of data that are being compared.

Assume s = sim(ai , a j) is a similarity function that calculates the numerical
similarity s between two attribute values ai and a j , where ai and a j can be strings,
numbers, dates, times, ages, geographic locations, or even more complex values
such as text, XML documents, or even multimedia data. It is assumed that such a
similarity function sim generates a normalised similarity value s between 0 ≤ s ≤ 1.
The general requirements of such a function are:

• sim(ai , ai) = 1: The result of comparing a value with itself is an exact similarity.
• sim(ai , a j) = 0: The similarity of values that are completely different from each

other is 0. What accounts for ‘complete different’ depends upon the type of data
that are compared.

• 0 < sim(ai , a j) < 1: An approximate similarity between exact similarity and
total dissimilarity is calculated if two attribute values are somewhat similar to
each other. What accounts for ‘somewhat similar’ again depends upon the type of
data that are compared.

P. Christen, Data Matching, Data-Centric Systems and Applications, 101
DOI: 10.1007/978-3-642-31164-2_5, © Springer-Verlag Berlin Heidelberg 2012

http://dx.doi.org/10.1007/978-3-642-31164-2_3
http://dx.doi.org/10.1007/978-3-642-31164-2_1
http://dx.doi.org/10.1007/978-3-642-31164-2_1

102 5 Field and Record Comparison

There is a correspondence between a similarity function and the mathematical con-
cept of a distance function [135]. A distance function or distance metric dist(oi , o j)

between two points (or data objects) oi and o j must fulfil the four requirements:

1. dist(oi , oi) = 0: The distance from an object to itself is zero.
2. dist(oi , o j) ≥ 0: The distance between two objects is a non-negative number.
3. dist(oi , o j) = d(o j , oi): The distance between two objects is symmetric.
4. dist(oi , o j) ≤ dist(oi , ok) + dist(ok, o j): The triangular inequality must hold.

It states that the direct distance between two objects is never larger than the
combined distance when going through a third object ok .

To convert a distance value d into a similarity value s, one can either calculate
the similarity as s = 1.0

d , assuming d > 0, or as s = 1 − d, assuming the distance
value is normalised between 0 ≤ d ≤ 1.

As will be discussed throughout this chapter, not all similarity comparison func-
tions used for data matching are fulfilling the requirements of a distance function.
Some similarity functions are not symmetric, for example those that calculate the
inclusion of one attribute value in another. Other measures do not fulfil the triangular
inequality. The remainder of this chapter presents a variety of comparison functions
that are used in data matching.

5.2 Exact, Truncate and Encoding Comparison

The simple exact comparison of two attribute values (that are assumed to be strings)
s1 and s2 calculates an exact similarity only:

simexact(s1, s2) =
{

1.0 if s1 = s2,

0.0 if s1 �= s2.
(5.1)

For string attribute values, there are two variations of the exact comparison func-
tion. In the first variation, only the beginning (or end) of the two attribute values are
considered for exact comparison. If the first x characters of a string value are denoted
with s[1 : x] and the last y characters with s[y : n] (with n the number of characters
in a string) then two ‘truncate’ comparison functions can be defined as:

simtruncate_begin(x)(s1, s2) =
{

1.0 if s1[1 : x] = s2[1 : x],
0.0 if s1[1 : x] �= s2[1 : x]. (5.2)

simtruncate_end(y)(s1, s2) =
{

1.0 if s1[y : n] = s2[y : n],
0.0 if s1[y : n] �= s2[y : n]. (5.3)

A second variation of exact string comparison is to first encode the string values
s1 and s2 using a phonetic (or otherwise) encoding function, as discussed in Sect. 4.3.
These encodings replace the original string values with codes in such a way that sim-

http://dx.doi.org/10.1007/978-3-642-31164-2_4

5.2 Exact, Truncate and Encoding Comparison 103

0 1 2 3 4 0 1 2 3 4 5
g a i l p e t e r

0 0 1 2 3 4 0 0 1 2 3 4 5
1 g 1 0 1 2 3 1 p 1 0 1 2 3 4
2 a 2 1 0 1 2 2 e 2 1 0 1 2 3
3 y 3 2 1 1 2 3 d 3 2 1 1 2 3
4 l 4 3 2 2 1 4 r 4 3 2 2 2 2
5 e 5 4 3 3 2 5 o 5 4 3 3 3 3

Fig. 5.1 Levenshtein edit distance example for two pairs of similar name strings. In the first pair,
s1 = ‘gayle’ and s2 = ‘gail’, while in the second pair s1 = ‘pedro’ and s2 = ‘peter’. The bold
numbers show the paths to the final results. The bottom right corner of each matrix corresponds to
the edit distance between each pair of strings

ilar (sounding) strings are replaced with the same code. Assuming that encode(s) is
the encoding function, the resulting ‘encode’ comparison functions can be defined as

simencode(s1, s2) =
{

1.0 if encode(s1) = encode(s2),

0.0 if encode(s1) �= encode(s2).
(5.4)

All exact comparison functions fulfil the four requirements of a distance function
as listed in Sect. 5.1.

5.3 Edit Distance String Comparison

Approximate string comparison functions that are based on the concept of edit
distance count the smallest number of edit operations that are required to convert
one string into another [196]. Different implementations of this concept account for
different types of edit operations. The number of edits between two strings is a
distance which can be converted into a similarity, as will be detailed below.

The basic edit distance, also known as Levenshtein edit distance [196], is defined
as the smallest number of single character insertions, deletions and substitutions that
are required to convert one string into another. In its basic form, each edit has the
same unit cost 1 associated with it.

Using a dynamic programming algorithm [152], the distance (number of edits)
between two strings s1 and s2 can be calculated in time O(|s1| × |s2|) using
O(min(|s1|, |s2|)) space, with | · | denoting the length of a string in characters.
Figure 5.1 shows two string pairs and the corresponding matrices d that are used
to calculate the edit distance between them. A cell d[i, j] in row i (0 ≤ i ≤ |s1|)
and column j (0 ≤ j ≤ |s2|) in these matrices corresponds to the number of edits
required to convert the first i characters of string s1 (shown in the first column of a
matrix) into the string comprised of the first j characters of string s2 (shown in the
top row of a matrix). For example, cell d[4, 2] in the left matrix (with values 2) in
Fig. 5.1 corresponds to the number of edits required to convert string ‘gayl’ into ‘ga’
(two character deletions).

104 5 Field and Record Comparison

The dynamic programming algorithm starts by filling in the first row and first
column of the matrix with the corresponding column or row values. The cell d[0, j]
in row 0 and column j (0 ≤ j ≤ |s1|) is filled with the value j , and the cell d[i, 0]
in row i and column 0 is filled with the value i (0 ≤ i ≤ |s2|). The remaining cells
of the matrix are filled using the following recursive approach:

• If s1[i] = s2[j], then
d[i, j] = d[i − 1, j − 1].

• If s1[i] �= s2[j], then

d[i, j] = minimum

⎧
⎨
⎩

d[i − 1, j] + 1 a deletion,
d[i, j − 1] + 1 an insertion, or
d[i − 1, j − 1] + 1 a substitution.

(5.5)

As Eq. 5.5 shows, the dynamic programming approach used to calculate the
Levenshtein edit distance only requires two rows of the matrix d to be stored
at any time [196], and therefore O(min(|s1|, |s2|)) space is needed. The final
Levenshtein edit distance between s1 and s2 is the value in the lower right cor-
ner cell, distlevenshtein(s1, s2) = d[|s1|, |s2|]. It can be converted into a similarity
(between 0.0 and 1.0) using

simlevenshtein(s1, s2) = 1.0 − distlevenshtein(s1, s2)

max(|s1|, |s2|) . (5.6)

The Levenshtein edit distance is symmetric with respect to s1 and s2, and it always
holds that 0 ≤ distlevenshtein(s1, s2) ≤ max(|s1|, |s2|). The absolute difference in the
lengths of two strings is also a lower bound for the Levenshtein edit distance between
them: abs(|s1| − |s2|) ≤ distlevenshtein(s1, s2). This property allows quick filtering of
string pairs that have a large difference in their lengths without the need to fully
calculate the edit distance between them [128].

A variation of the Levenshtein edit distance, called the Damerau-Levenshtein edit
distance, adds as a fourth basic edit operation the transposition (swapping) of two
adjacent characters [89, 196]. Transpositions are common typing errors, such as, for
example, the variation ‘Sydeny’ for the city name ‘Sydney’ (a favourite typing error
of the author). The Damerau-Levenshtein edit distance, distdamerau_levenshtein(s1, s2),
of two strings s1 and s2 is always smaller or equal to the original Levenshtein edit
distance of the same pair of strings

distdamerau_levenshtein(s1, s2) ≤ distlevenshtein(s1, s2).

As a result, the Damerau-Levenshtein similarity, calculated in a similar way as
the Levenshtein similarity in Eq. (5.6) [89], is always equal to or larger than the
Levenshtein similarity

5.3 Edit Distance String Comparison 105

simdamerau_levenshtein(s1, s2) ≥ simlevenshtein(s1, s2).

Various improved algorithms have been proposed to reduce the quadratic com-
plexity of the basic Levenshtein edit distance algorithm and make it more efficient for
comparing longer strings [196]. Other extensions of the basic edit distance algorithm
allow different costs for the different edit operations [133], for example, a cost of 1.0
for insertions and deletions, and 0.5 for substitutions. These costs can be used in the
recursive calculations in Eq. (5.5). This can be useful where any change in the lengths
of a string is seen as a more severe error compared to a character change. Postcodes
or zipcodes can be types of data of where this could be appropriate. The interested
reader can refer to surveys of edit distance based approximate string comparison
functions [152, 196] for more detailed information.

It is even possible to have different costs for edits on different individual char-
acters. For example, a substitution from letter ‘q’ to ‘g’ might be given a smaller
edit cost compared to the cost of substituting ‘x’ to ‘i’, because the visual similarity
of the first character pair is much higher than for the second pair. Such an exten-
sion requires a transformation table, where each character pair has an associate cost
listed. These costs can be based on character shape (as shown above) to take care of
optical character recognition (OCR) errors, for example, or depend upon how similar
sounding two characters are (as discussed in Sect. 4.3 on phonetic encodings).

Extending on the idea of assigning specific costs to edits of individual character
pairs, several techniques have been developed in recent years which learn the optimal
costs of edits from training data [35, 84, 293, 300]. For such approaches, pairs of
strings are required that correspond to known true matches and non-matches, i.e.
pairs that refer to the same underlying entity or to two different entities (this will
be covered in more detail in Sect. 6.6). The frequencies of certain edits occurring in
matching and non-matching string pairs are used to calculate the costs associated
with an edit. An edit that occurs more frequently in non-matching pairs will have a
higher cost than an edit that is more frequent in matching pairs (and is thus deemed
to be a valid variation between two string values).

5.3.1 Smith-Waterman Edit Distance String Comparison

Another edit distance based approximate string comparison technique is the Smith-
Waterman edit distance [84, 191]. This algorithm was originally developed to find the
optimal alignment between biological sequences, such as DNA or protein sequences.
It is also based on a dynamic programming approach similar to the Levenshtein edit
distance, but it allows for gaps as well as character specific match scores or costs.

This algorithm has previously been employed in the domain of data matching, and
in the following description the parameter values (scores) presented by Monge and
Elkan [191] are used. The Smith-Waterman edit distance has five basic operations,
each with a different match score, ms:

• msm = 5: An exact match between two characters.

http://dx.doi.org/10.1007/978-3-642-31164-2_4
http://dx.doi.org/10.1007/978-3-642-31164-2_6

106 5 Field and Record Comparison

• mss = 2: An approximate match between two similar characters. Character simi-
larity can be based on letter groupings such as the ones generated from the Soundex
encoding (Fig. 4.2). Similar character pairs would then, for example, be ‘d’ and ‘t’
or ‘m’ and ‘n’.

• msd = −5: A mismatch between two different characters (that are neither equal
nor similar).

• msg = −5: A gap start penalty, where there is at least one character in one string
that does not appear in the other string.

• msc = −1: A gap continuation penalty, where a previously started gap (missing
character) continues.

The final, overall best score, bssmith_waterman is the highest value (rather than
the lowest as with the Levenshtein and Damerau-Levenshtein edit distances) within
the dynamic programming score matrix. From this best score a similarity value
simsmith_waterman(s1, s2) can be calculated using:

simsmith_waterman(s1, s2) = bssmith_waterman

divsmith_waterman × msm
, (5.7)

with msm the value when two characters match, and divsmith_waterman a factor that
can be calculated in one of three ways:

• divsmith_waterman = min(|s1|, |s2|),
• divsmith_waterman = max(|s1|, |s2|), or
• divsmith_waterman = |s1|+|s2|

2 .

The first factor corresponds to the overlap coefficient and the third factor to the Dice
coefficient, respectively, as will be discussed in the following section.

As it allows for gaps, the Smith-Waterman edit distance can, for example, be
suitable for compound names that contain initials or abbreviated names. A major
drawback of the algorithm is, however, its computation complexity. For calculating
the distance between two strings s1 and s2, the algorithm requires O(|s1|×|s2|) space,
and its time complexity is O(min(|s1|, |s2|) × |s1| × |s2|). Various improvements
to the basic Smith-Waterman algorithm have been developed which reduce the time
complexity to O(|s1| × |s2|) [196]. Many of these improved algorithms have been
developed by the bioinformatics community, where very long sequences (of genomes
and proteins) need to be compared.

5.4 Q-gram Based String Comparison

The idea behind q-gram based approximate string comparison is to split the two
input strings into short sub-strings of length q characters (called q-grams) using a
sliding window approach, and to count how many of these q-grams occur in both
input strings. Starting from the first position, q characters are selected into the first
q-gram, then starting from the second position q characters are selected into the

http://dx.doi.org/10.1007/978-3-642-31164-2_4

5.4 Q-gram Based String Comparison 107

String Bigrams Padded bigrams Positional bigrams Trigrams

gail ga, ai, il g, ga, ai, il, l (ga,1), (ai,2), (il,3) gai, ail
gayle ga, ay, yl, le g, ga, ay, yl, le, e (ga,1), (ay,2), (yl,3), (le,4) gay, ayl, yle

peter pe, et, te, er p, pe, et, te, er, r (pe,1), (et,2), (te,3), (er,4) pet, ete, ter
pedro pe, ed, dr, ro p, pe, ed, dr, ro, o (pe,1), (ed,2), (dr,3), (ro,4) ped, edr, dro

Fig. 5.2 Example of bigrams (q = 2), padded bigrams, positional bigrams and trigrams (q = 3)
for two pairs of name strings

second q-gram, and so on. The number c of q-grams in a string s equals to c =
|s|−q+1, where |s| is the number of characters in the string. Figure 5.2 illustrates this
process on two pairs of given name strings. Q-grams are also called n-grams [172].
The most commonly selected values of q for attributes used in data matching, such
as names and addresses, is q = 2 (called bigrams or digrams [162]) or q = 3 (called
trigrams [258]).

Once the q-grams of two strings, s1 and s2, are generated, the similarity between
s1 and s2 is calculated based on the number of q-grams the two strings have in
common. If ccomon denotes the number of q-grams in common between s1 and s2, c1
the number of q-grams in string s1, and c2 the number of q-grams in string s2, then
a normalised numerical similarity in the range of 0.0 ≤ s ≤ 1.0 can be calculated
using one of the following three methods:

Overlap coefficient: simoverlap(s1, s2) = ccommon

min(c1, c2)
, (5.8)

Jaccard coefficient: simjaccard(s1, s2) = ccommon

c1 + c2 − ccommon
, (5.9)

Dice coefficient: simdice(s1, s2) = 2 × ccommon

c1 + c2
. (5.10)

An extension of the Jaccard coefficient for multiword strings will be presented in
Sect. 5.7.

Taking the first string pair from Fig. 5.2 as an example, the only common bigram
is‘ga’, and thus ccommon = 1. The different q-gram based similarity values for this
pair are then calculated as:

simoverlap(‘gail’, ‘gayle’) = 1

3
= 0.333,

simjaccard(‘gail’, ‘gayle’) = 1

3 + 3 − 1
= 1

5
= 0.2,

simdice(‘gail’, ‘gayle’ = 2 × 1

3 + 4
= 2

7
= 0.286.

For trigrams, the similarity for this pair is 0.0 for all three methods, because no
trigram appears in common. The same occurs for the second string pair from Fig. 5.2,

108 5 Field and Record Comparison

illustrating the sensitivity of trigrams to single character differences when comparing
short strings.

There are two extensions to the basic q-gram based approach, as illustrated in
Fig. 5.2. In the first extension, q-grams are padded with q − 1 special characters at
the beginning and the end of each string before its q-grams are generated. The aim
of padding is to provide specific information about the start and end of string values.
The special characters should be different from the characters that are expected in an
attribute, so the start and end q-grams are different from any q-gram that is generated
from the actual string value. In Fig. 5.2, the � symbol represents the special start
character and ⊗ the special end character.

The similarity values calculated with padded q-grams will be larger for strings
that have the same beginning and end but errors in the middle, but will lead to lower
similarity values if there are different characters at the beginning or end. Empirical
studies have shown that padded q-grams can increase data matching quality [162].
The calculation of similarities using padded q-grams is the same as for non-padded
q-grams following one of Eqs. (5.8), (5.9) or (5.10).

The second extension, also shown in Fig. 5.2, is to add positional information to
q-grams. Each q-gram is given the position number where it occurs within a string.
When the number of q-grams in common between two strings is calculated, only
q-grams that are the same and that have a position value within a certain maximum
distance are considered. This maximum distance can either be an absolute value
that is independent of the lengths of the two strings that are compared, or it can be
adjusted according to the lengths of the two strings. For example, if the maximum
distance is set to 40 % of the average string length of a pair, then for the second
pair in Fig. 5.2 this distance would be 2. Therefore, the positional bigram (‘pe’,1)
would only be considered to be common with the other positional bigrams (‘pe’,1),
(‘pe’, 2) and (‘pe’, 3), but not with (‘pe’,4). Once the q-grams in common, ccommon,
have been calculated, then the three similarity measures in Eqs. (5.8), (5.9) or (5.10)
can be used to calculate the actual similarity value between two strings. Positional
q-grams can also be padded in a way similar to non-positional q-grams.

The computation complexity of q-gram based comparison functions in both time
and amount of memory needed is O(|s1| + |s2|). This is a much smaller complexity
compared to the edit distance based comparison functions, which makes q-gram
based string comparisons more efficient especially for longer strings.

A novel algorithm based on skip-grams was recently proposed, aimed at improv-
ing the matching within a cross-lingual information retrieval system [162]. The basic
idea of this approach is to not only form bigrams from two adjacent characters, but
also bigrams that skip characters (called skip-grams). So-called gram-classes are
defined to specify the type of skip-grams to be created. For example, for a gram-class
gc = {0, 1} and the string ‘pedro’, the following skip-grams are created: ‘pe’, ‘ed’,
‘dr’, ‘ro’ (0-skip grams, i.e. the normal bigrams) and ‘pd’, ‘er’, ‘do’ (1-skip grams
which skip one character). The properties of various gram-classes and how they relate
to character edits such as insertions, deletions and substitutions are discussed by the
developers of this approach [162]. Their experimental evaluation using multilingual
texts from different European languages showed improved matching results com-

5.4 Q-gram Based String Comparison 109

String 1 String 2 c t p csim sim jaro simwinkler simwinkler long simwinkler sim

shackleford shackelford 11 1 4 0 0.9697 0.9818 0.9886 0.9697
nichleson nichulson 8 0 4 0.3 0.9259 0.9556 0.9667 0.9481

jones johnson 4 0 2 0.3 0.7905 0.8324 0.8491 0.8248
massey massie 5 0 4 0.3 0.8889 0.9333 – 0.9222

jeraldine geraldine 8 0 0 0.3 0.9259 0.9259 0.9519 0.9481
michelle michael 6 0 4 0.3 0.8690 0.9214 0.9302 0.8958

Fig. 5.3 Example of the Jaro and Winkler string comparison functions for several pairs of name
strings. The characters in common in a string pair are shown in bold. The transposed characters in
the first name pair are ‘le’ and ‘el’. For the pair ‘massey’ and ‘massie’ the Winkler long adjustment
is not applied, while for the pair ‘jeraldine’ and ‘geraldine’ the Winkler prefix adjustment does not
change the basic Jaro similarity value because the first character of these two names is different

pared to bigrams, trigrams, edit distance and the longest common substring (LCS)
(discussed in Sect. 5.9) based approximate string comparison techniques.

5.5 Jaro and Winkler String Comparison

This family of approximate string comparison functions was developed by Matthew
Jaro and William Winkler from the US Census Bureau [149, 279]. These functions are
designed specifically for the comparison of names, and they take various heuristics
into account that are based on the experience of data matching conducted over many
years at the US Census Bureau.1

The basic Jaro comparison function combines edit distance and q-gram based
comparison techniques. It counts the number of characters that are common in two
strings within a certain window of characters, similar to the positional q-gram based
comparison approach. Specifically, the Jaro function counts the number of agreeing
characters c (characters that are the same) that are in common within half the length
of the longer string, and the number of transpositions t (two adjacent characters that
are swapped in the two strings, such as ‘pe’ and ‘ep’) in the sets of common strings.
Based on these two counts, the Jaro similarity value is calculated as [294]:

simjaro(s1, s2) = 1

3

(
c

|s1| + c

|s2| + c − t

c

)
. (5.11)

Several modifications have been introduced to the Jaro algorithm based on expe-
riences from data matching projects conducted by the US Census Bureau [294], as
well as empirical studies that have found that fewer errors appear at the beginning
of names compared to the middle or end [214].

1 It is interesting to note that until around ten years ago no references to the Jaro or Winkler string
comparators could be found in the computer science literature, although they have been developed
and used in the matching of census data since the 1980s

110 5 Field and Record Comparison

The first modification is to increase the similarity between two strings if their
beginning is the same and differences only occur toward the middle and end of the
two strings. The basic Winkler algorithm increases the Jaro similarity value for up to
four agreeing initial characters. The basic Winkler similarity is calculated as [294]:

simwinkler(s1, s2) = simjaro(s1, s2) + (1.0 − simjaro(s1, s2))
p

10
, (5.12)

with p (0 ≤ p ≤ 4) being the number of agreeing characters at the beginning of
two strings (common prefix). For example, for the name pair ‘peter’ and ‘petra’ the
common prefix is ‘pet’, and therefore p = 3.

The second modification further adjusts the similarity value for strings that are
both at least 5 characters long, and that have at least two common characters besides
the common prefix p [294]. If c is the number of common characters and p the
number of common characters in the prefix, then the conditions required to employ
this modification are:

min(|s1|, |s2|) ≥ 5,

c − p ≥ 2,

c − p ≥ min(|s1|, |s2|) − p

2
.

The third condition requires that besides the common prefix the two strings have at
least half of the remaining characters of the shorter string in common. If all three
conditions hold, then the similarity between two strings will be adjusted

simwinkler_long(s1, s2) = simwinkler(s1, s2) (5.13)

+ (1.0 − simwinkler(s1, s2))
c − (p + 1)

|s1| + |s2| − 2(p − 1)
.

A third modification, that is orthogonal to the previous two, is to adjust the simi-
larity value if the pair of strings contains characters that are similar, and thus are more
likely to be substituted with each other in misspellings [294]. A set of 36 character
pairs has, for example, been implemented in the BigMatch program of the US Census
Bureau [295]. Examples of such pairs include (‘a’,‘e’), (‘e’,‘u’), (‘w’,‘v’), (‘s’,‘z’)
or (‘5’,‘s’). This modification works by counting the number of similar characters
in the remainder of the two strings after the common characters have been removed.
For example, for the name pair ‘nichelson’ and ‘nichulson’ from Fig. 5.3, only the
character pair ‘e’ and ‘u’ is not in common. These two letters are a similar pair, and
therefore the similarity is increased.

Similar to the definition of common characters (only occurring within half the
string length) of the Jaro comparison function, similar characters are also only
searched within a certain distance. For each similar character pair that is found, the
count of common characters, c, is increased by 0.3. So if cs similar pairs have been
found, then csim = 0.3 × cs , and the basic Jaro similarity calculation is adjusted to:

5.5 Jaro and Winkler String Comparison 111

simwinkler_sim(s1, s2) = 1

3

(
(c + csim)

|s1| + (c + csim)

|s2| + c − t

c

)
. (5.14)

This similarity adjustment can be combined with the prefix and long string adjust-
ments by modifying Eqs. (5.12) and (5.13) accordingly.

The time and space complexities of both the Jaro and the Winkler algorithms are
O(|s1| + |s2|).

5.6 Monge-Elkan String Comparison

This approximate string comparison function was developed specifically for calculat-
ing the similarity of string values that contain several words [191, 192]. Such values
occur commonly in data matching of business names, addresses or where personal
names have not been standardised and segmented as discussed in Chap. 3.

The idea of this approach is to first extract the tokens (words or elements separated
by whitespace characters) in the two input strings, and then to find the best matching
pairs of tokens in the sets of tokens using a secondary similarity function sim′.
Specifically, following the notation used in [191], in this recursive matching scheme
the two strings, s1 and s2, are split into the two sets of tokens, A and B, and the
similarity between s1 and s2 is calculated as:

simmonge_elkan(s1, s2) = 1

|A|
|A|∑
i=1

|B|
max
j=1

sim′(Ai , B j), (5.15)

with |A| the number of tokens in s1, |B| the number of tokens in s2, and sim′ a
similarity function that calculates the actual numerical similarity value (between 0.0
and 1.0) of two tokens.

The computation complexity of this comparison function is quadratic in the num-
ber of tokens, because each token in A needs to be compared with every token in B.
If both A and B only contain one token, then the Monge-Elkan comparison function
reduces to the secondary similarity function sim′.

As an example, for the two strings ‘peter christen’ and ‘christian pedro’ and using
the Jaro comparison function as the secondary similarity function, sim′, the four
calculated similarities are:

jaro(‘peter’, ‘christian’) = 0.3741

jaro(‘peter’, ‘pedro’) = 0.7333

jaro(‘christen’, ‘christian’) = 0.8843

jaro(‘christen’, ‘pedro’) = 0.4417.

http://dx.doi.org/10.1007/978-3-642-31164-2_3

112 5 Field and Record Comparison

The two best matching pairs of tokens (names) are ‘peter’ with ‘pedro’, and ‘chris-
ten’ with ‘christian’, resulting in the final similarity simmonge_elkan(‘peter christen’,
‘christian pedro’)= 1

2 (0.7333 + 0.8843) = 0.8088.

5.7 Extended Jaccard Comparison

The basic Jaccard coefficient [195] (Eq. 5.9) calculates the similarity between two
sets of items (or tokens), A and B, as the number of items contained in the intersection
of the two sets divided by the number of items contained in the union of the two sets:

simjaccard(A, B) = |A ∩ B|
|A ∪ B| = |A ∩ B|

|A| + |B| − |A ∩ B| . (5.16)

This approach is also used in the q-gram based string comparison function
described in Sect. 5.4, where the tokens in A and B are the q-grams extracted from
the strings that are compared.

If the strings s1 and s2 that are compared contain several words, and thus
the tokens to be compared become words rather than q-grams, then the basic
Jaccard similarity can be extended in a similar way to the Monge-Elkan approach.
A secondary similarity function sim′ is used to calculate the similarity between all
pairs of tokens (words) in the two strings to be compared. Assuming that A is the set
of tokens extracted from string s1 and B the set of tokens extracted from string s2,
then the set of tokens shared between the two strings, S, is defined as [195]:

S = {(ai , b j)|ai ∈ A ∧ b j ∈ B : sim′(ai , b j) ≥ θ}, (5.17)

where θ is the similarity threshold (0 < θ < 1) that is used to decide if two tokens
are similar or not. Pairs of tokens with a similarity value above θ are classified as
matching and are included in the set S of shared tokens.

The set of tokens in A that are unique to string s1 (i.e. that are not in the set S)
is denoted with UA = {ai |ai ∈ A ∧ b j ∈ B ∧ (ai , b j) /∈ S}, and the set of tokens
unique to string s2 is denoted with UB = {b j |ai ∈ A ∧ b j ∈ B ∧ (ai , b j) /∈ S}.
An extended Jaccard similarity function can now be defined as [195]:

simjaccard_ext = |S|
|S| + |UA| + |UB | . (5.18)

A further extension is that weights are assigned to both the shared tokens as well
as the unique tokens [195]. The weights w(ai , b j) of the shared tokens in S can
be set to the similarity values calculated using the secondary similarity function,
w(ai , b j) = sim′(ai , b j), while the weights for the unique tokens can be set to
w(ai) = w(b j) = 1.0. Alternatively, weights can be assigned to the unique tokens
according to their importance or relevance. This idea is implemented in SoftTFIDF,
the comparison function described in the following section.

5.8 SoftTFIDF String Comparison 113

5.8 SoftTFIDF String Comparison

An approximate string comparison function that is related to the Monge-Elkan
approach has been proposed by Cohen et al. [84]. It is based on ideas that are
used in the field of information retrieval and is implemented in the SecondString
approximate string comparison library,2 which will be described in more detail in
Sect. 10.2.9.

The concept of using Term Frequency (TF) and inverse document frequency (IDF)
has been developed in the field of information retrieval to give weights to terms and
documents when calculating the similarities between a query and the documents
in a collection, for example, when conducting Web search [288]. Term frequency
gives a higher weight to terms that occur more frequently in a document, with the
underlying idea that the more frequent a term is in a document the more relevant it
is to that document. IDF, on the other hand, gives higher weights to terms that occur
less frequent in a document collection, with the idea that terms that are less frequent
in a collection are more important to distinguish documents that are more relevant to
this term from those documents that are less relevant. TF-IDF combines these two
weights into a single numerical value. There are different variations of how TF and
IDF can be calculated. The interested reader can refer to the book by Witten et al.
[288] for more details.

Each document, Di , in a collection is represented as a document vector, di . The
dimensionality of these vectors equals to the number of unique terms in the collection,
and each element (dimension) in these vectors corresponds to a unique term in the
collection, with the numerical value of the element being the TF-IDF weight of that
term in a document.

The similarity between two documents in a collection, or between a query (also
represented as document vector) and a document, can be calculated as the Cosine
similarity between their two document vectors. Cosine similarity is the angle between
two vectors in the high-dimensional space generated by the two vectors. Assuming
there are n unique terms in a document collection, and di = [wi,1, wi,2, . . . , wi,n] is
the vector of document Di and d j = [w j,1, w j,2, . . . , w j,n] the vector of document
D j , with wd,t the TF-IDF weight of term t in document d, then the Cosine similarity
is calculated as [288]:

simcosine(Di , D j) = 1

Wi W j

n∑
t=1

wi,t · w j,t , (5.19)

where

Wi =
√√√√

n∑
t=1

w2
i,t and W j =

√√√√
n∑

t=1

w2
j,t .

2 See: http://secondstring.sourceforge.net/

http://dx.doi.org/10.1007/978-3-642-31164-2_10
http://secondstring.sourceforge.net/

114 5 Field and Record Comparison

Applying this idea to records used in data matching, which are usually much
shorter than the documents used in Web search or in digital libraries, the
SoftTFIDF comparison function is defined similar to the Monge-Elkan comparison
function. Assuming A and B are the two sets of tokens in the strings s1 and s2, and a
secondary similarity function sim′ is used to calculate the similarities between indi-
vidual pairs of tokens (or words). Let CLOSE(θ, A, B) denote the set of tokens
ai ∈ A such that there is some token b j ∈ B that fulfils sim′(ai , b j) ≥ θ , and
for ai ∈ CLOSE(θ, A, B) let N (ai , B) = max({sim′(ai , b j)|b j ∈ B}) [192]. The
SoftTFIDF similarity is then defined as [84]:

simsofttfidf(s1, s2) =
∑

u∈CLOSE(θ,A,B)

V (u, A) · V (u, B) · N (u, B), (5.20)

where V (u, A) is the TF-IDF weight of token u in token-set A and V (u, B) the TF-
IDF weight of token u in token-set B. In the experiments presented by the authors of
SoftTFIDF [84], the Winkler string comparison function was used to calculate sim′,
with a threshold θ = 0.9.

One difficulty with SoftTFIDF is that the weights V (u, A) and V (u, B) need to
be calculated over the databases that are to be matched, requiring full scans of these
databases and storing these weights for all unique tokens that occur in the attributes
used from both databases. A recent comparison of the Monge-Elkan and SoftTFIDF
similarity functions highlighted that SoftTFIDF can potentially result in a similarity
value larger than 1.0, because the approximate matching does not prevent a token
b j ∈ B to be matched with more than one token ai ∈ A.

5.9 Longest Common Substring Comparison

The idea of this algorithm is to find and remove the longest substring sc that two
strings s1 and s2 have in common in an iterative fashion, as long as the common
substring found contains a minimum number of characters, lmin [113]. A substring
is defined as a consecutive sequence of characters.

The Longest Common Sub-String (LCS) algorithm starts by identifying the
longest substring, sc1 , that s1 and s2 have in common. This common substring is
then removed from the two input strings, resulting in two shorter strings s′

1 and s′
2.

The process is repeated, by finding the longest substring sc2 that s′
1 and s′

2 have in
common, and removing this common substring. The process stops when a substring
scn is found that contains less than lmin characters. The value for lmin is commonly
set to lmin = 2 or lmin = 3.

The total summed length of all found common substrings, lc = ∑n
i=1 |sci |, with n

the number of common substrings found, is then used to calculate a similarity value
between 0.0 and 1.0 using either the Overlap, Jaccard or Dice coefficient (similar to
Eqs. (5.8)–(5.10)):

5.9 Longest Common Substring Comparison 115

simlcs_overlap(s1, s2) = lc
min(|s1|, |s2|) , (5.21)

simlcs_jaccard(s1, s2) = lc
|s1| + |s2| − |lc| , (5.22)

simlcs_dice(s1, s2) = 2 × lc
|s1| + |s2| . (5.23)

With the example previously used in Sect. 5.6, s1 = ‘peter christen’ and s2 =
‘christian pedro’, and with a minimum common length lmin = 2, the LCS algorithm
in the first step will find the LCS sc1 = ‘christ’, leaving the two strings s′

1 = ‘peter
en’ and s′

2 = ‘ian pedro’. In the second iteration, the LCS sc2 = ‘pe’, leaving
the two strings s′′

1 = ‘ter en’ and s′′
2 = ‘ian dro’. No more common substring is

found, therefore lc = |‘christ’| + |‘pe’| = 6 + 2 = 8, resulting in LCS similarities
simlcs_overlap = 8

14 = 0.5714, simlcs_jaccard = 8
14+15−8 = 0.381, and simlcs_dice =

2×8
14+15 = 0.5517.

The LCS string comparison function is well suited for strings that contain several
words that potentially are not in the same order (such as given name and surname
values that are swapped). For example, the string pair ‘peter christen’ and ‘christen
peter’ have sc1 = ‘christen’ and sc2 = ‘peter’ in common (and so lc = 13 out of the
14 characters in these two strings), and because |s1| = |s2| both Eqs. (5.21) and (5.23)
will return simlcs_overlap = simlcs_dice = 13

14 = 0.929, while Eq. (5.22) will return
simlcs_jaccard = 13

(14+14−13)
= 13

15 = 0.867.
The implementation of the LCS string comparison function follows a dynamic

programming algorithm [113] with a time complexity of O(|s1| × |s2|) and using
O(min(|s1|, |s2|)) space. Because this dynamic programming approach starts from
the beginning of the strings, the resulting LCS similarity might not be symmetric if
the two input strings are swapped. For example, for the string pair s1 = ‘prap’ and
s2 = ‘papr’ and lmin = 2, sc1 = ‘pr’ will be selected, resulting in s′

1 = ‘ap’ and s′
2 =

‘pa’. As no more common substrings of minimum length 2 are available in s′
1 and

s′
2, the similarity of s1 and s2 is simlcs = 0.5. On the other hand, if the strings are

swapped, s1 = ‘papr’ and s2 = ‘prap’, then sc1 = ‘ap’ will be selected, resulting in
s′

1 = ‘pr’ and s′
2 = ‘pr’, and therefore a second common substring of length 2, sc2 =

‘pr’. The total length of the two-substrings is lc = 2 + 2 = 4, and thus simlcs = 1.0.
To overcome this situation, the LCS algorithm needs to be run twice with the input
strings swapped and the calculating similarities averaged.

A generalisation of the longest substring algorithm is to consider longest common
sub-sequences as well [27]. While a substring is a sequence of consecutive charac-
ters, a sub-sequence consists of characters that are not necessarily consecutive. For
example, the string ‘peter’ is a sub-sequence of the string ‘pedro foster’ (the under-
lined characters), while it is not a substring. A substring of a longer string is always
a sub-sequence of that string, however, a sub-sequence of a string is not always a
substring.

116 5 Field and Record Comparison

5.10 Other Approximate String Comparison Techniques

Various other techniques for approximate string comparison have been developed.
Some of them are specific to certain domains (such as personal names or biomedical
sequences), while others assume values are from a certain language. This section
briefly covers a few techniques that have been used in the domain of data matching.

5.10.1 Bag Distance

The bag distance has been proposed as a computationally cheap approximation to
edit distance [18]. A bag x is defined as the multi-set ms of the characters in a string s,
x = ms(s). A multi-set contains a character as many times as it occurs in the original
string. For example, if s1 = ‘peter’ then x = ms(s1) = {e, e, p, r, t}, while for s2 =
‘pedro’ then y = ms(s2) = {d, e, o, p, r}. The bag distance is then defined as:

distbag = max(|x − y|, |y − x |). (5.24)

Continuing the above example, |x − y| = |{e, t}| = 2 and |y−x | = |{d, o}| = 2, and
therefore distbag(s1, s2) = 2. Converting bag distance into a normalised numerical
similarity is then done based on Eq. (5.6):

simbag(s1, s2) = 1.0 − distbag(s1, s2)

max(|s1|, |s2|) . (5.25)

The developers of the bag distance have shown that the property distbag(s1, s2) ≤
distlevenshtein(s1, s2) always holds, and thus that simbag(s1, s2) ≥ simlevenshtein(s1, s2).
Because of this property, and because the computation complexity of the bag
distance is O(|s1|+|s2|), this distance can be used as an efficient filtering technique to
remove string pairs before they are being compared using the computationally more
complex Levenshtein edit distance. If one is, for example, only interested in pairs of
strings that have a minimum similarity of θ , with 0 < θ < 1, then all string pairs
s1 and s2 that have simbag(s1, s2) < θ can be removed after having been compared
using the bag distance.

5.10.2 Compression Distance

The idea of using a compression function for similarity calculations has recently
been proposed and investigated for application in areas such as clustering of
biological sequences, optical character recognition, and music [77]. The normalised
compression distance (NCD) has been defined as:

5.10 Other Approximate String Comparison Techniques 117

distncd(s1, s2) = |C(s1s2)| − min(|C(s1)|, |C(s2)|)
max(|C(s1)|, |C(s2)|) , (5.26)

with C being a compression function (e.g. Zlib or BZ2), | · | the length of a
compressed string, and s1s2 the concatenation of the two input strings s1 and s2 [77].
The theoretical properties of the NCD have been investigated with regard to the
performance of different compression algorithms [49]. These studies showed that,
depending upon the type of data at hand, a careful consideration of the compres-
sion algorithm is required. The NCD works best on data with some structure. Note
that the compression distance is not a proper mathematical distance metric as was
discussed in Sect. 5.1 on p. 102. Specifically, in practice, due to the imperfections of
the compressor C , the NCD can return a result in 0 ≤ distncd(s1, s2) ≤ 1 + ε, for
some small ε [77]. The compression based similarity is then calculated as:

simncd(s1, s2) = 1.0 − distncd(s1, s2). (5.27)

A recent study has shown that compression based similarity can be employed for
data matching [166], and that it is suitable for situations where the data contain large
amounts of noise in the form of typographical variations or errors. Compression
based similarity is best applied on full records that contain several attribute values
rather than on individual cleaned and standardised attributes. An additional aspect of
this similarity function is that, besides the choice of compression function, it does not
need any further parameters. This aspect makes compression distance an attractive
technique for systems where automated data matching is required.

5.10.3 Editex

Editex is an approximate string comparison function that combines the phonetic
information contained in two strings with edit distance based calculations [302].
Similar to Soundex (as was discussed in Sect. 4.3), the second and all following
characters in the two strings s1 and s2 are mapped into a Soundex-like numerical
code. As is done with edit distance, a dynamic programming approach is employed
with edit cost 0 if two characters are the same, cost 1 if two characters are in the same
phonetic group (i.e. have the same numerical code), and cost 2 if they are in different
groups. Similar to Levenshtein edit distance, the time and space complexities of
Editex are O(|s1| × |s2|) and O(min(|s1|, |s2|)), respectively.

While Editex was originally developed within an information retrieval
system [302], its properties of combining phonetic and edit distance based similarity
calculations can make it attractive for data matching of attributes that contain personal
names, because such names commonly contain phonetic variations. An experimen-
tal comparison by the developers of Editex using a database of 30,000 surnames
has shown that it can outperform other string comparison functions including edit
distance and q-gram based comparisons [302].

http://dx.doi.org/10.1007/978-3-642-31164-2_4

118 5 Field and Record Comparison

5.10.4 Syllable Alignment Distance

This technique, named Syllable Alignment Pattern Searching (SAPS) [125], also
combines phonetic information with edit distance based calculations. The basic idea
is to convert the strings to be compared into their corresponding sequences of sylla-
bles, and to calculate the number of edits that are required to convert one sequence
of syllables into the other. The Phonix (see Sect. 4.3.3) phonetic transformation rules
(without the final numerical encoding phase) are used to convert a string into an
encoding according to how the string would be spoken (i.e. how it sounds). A set of
linguistic rules are used to find the beginning of all syllables in a string, and using
these rules the string is split into its syllables.

To find the syllable alignment distance, a dynamic programming approach sim-
ilar to edit distance is then employed. Similar to the Smith-Waterman edit distance
function discussed in Sect. 5.3.1, seven edit (or alignment) operations are considered
with different edit scores, es:

• esm = 1: Two characters (not syllable starts) are the same (they match).
• esd = −1: Two characters (not syllable starts) are different.
• esas = −4: The alignment of a character with a syllable start.
• esss = 6: Two syllable starts that are the same.
• esds = −2: Two syllable starts that are different.
• esgc = −1:The alignment of a gap with a character (not a syllable start).
• esgs = −3: The alignment of a gap with a syllable start.

From the resulting distance, a similarity can be calculated in the same three ways as
for the Smith-Waterman edit distance described on p. 106.

The developers of SAPS [125] presented experiments indicated that this approx-
imate string comparison function performs better than Editex, edit distance and
Soundex, on the same database of names that was used for evaluating Editex [302].

5.11 String Comparison Examples

To illustrate how different approximate string comparison functions return different
numerical similarity values when applied on the same strings, Figs. 5.4 and 5.5 show
example results when comparing surnames and given names.

In Fig. 5.4, the similarity values calculated on selected individual name pairs are
shown. They illustrate how the different approximate string comparison functions
presented in this chapter return different similarity values for the same pair of name
strings. As can be clearly seen, there are some large differences in the similarity
values calculated on the same pair.

To get a more general picture of the similarity values calculated by the different
string comparison functions, Fig. 5.5 shows the results of the comparison of the 5,000
most frequent given names found in an Australian telephone directory database. Each

http://dx.doi.org/10.1007/978-3-642-31164-2_4

5.11 String Comparison Examples 119

St
ri

ng
1

St
ri

ng
2

Ja
ro

W
in

kl
er

B
ig

ra
m

Tr
ig

ra
m

PB
ig

ra
m

Sk
G

ra
m

L
E

-D
is

t
D

L
E

-D
is

t
B

ag
D

is
t

E
di

te
x

C
om

Z
ip

L
C

S2
L

C
S3

SW
-D

is
t

Sy
llA

D
is

t

sh
ac

kl
ef

or
d

sh
ac

ke
lf

or
d

0.
97

0
0.

98
2

0.
75

0
0.

69
2

0.
75

0
0.

82
1

0.
81

8
0.

90
9

1.
00

0
0.

80
6

0.
68

4
0.

81
8

0.
81

8
0.

69
1

0.
64

5
du

nn
in

gh
am

cu
nn

ig
ha

m
0.

89
6

0.
89

6
0.

66
7

0.
52

2
0.

66
7

0.
72

2
0.

80
0

0.
80

0
0.

80
0

0.
76

9
0.

72
2

0.
84

2
0.

84
2

0.
71

6
0.

67
8

ni
ch

le
so

n
ni

ch
ul

so
n

0.
92

6
0.

95
6

0.
70

0
0.

63
6

0.
70

0
0.

69
6

0.
77

8
0.

77
8

0.
88

9
0.

76
9

0.
64

7
0.

77
8

0.
77

8
0.

62
2

0.
69

8
jo

ne
s

jo
hn

so
n

0.
79

0
0.

83
2

0.
42

9
0.

25
0

0.
28

6
0.

35
5

0.
42

9
0.

42
9

0.
57

1
0.

50
0

0.
53

3
0.

33
3

0.
33

3
0.

33
3

0.
50

0
m

as
se

y
m

as
si

e
0.

88
9

0.
93

3
0.

57
1

0.
50

0
0.

57
1

0.
64

5
0.

66
7

0.
66

7
0.

83
3

0.
71

4
0.

71
4

0.
66

7
0.

66
7

0.
73

3
0.

77
4

ab
ro

m
s

ab
ra

m
s

0.
88

9
0.

92
2

0.
71

4
0.

62
5

0.
71

4
0.

67
7

0.
83

3
0.

83
3

0.
83

3
0.

88
9

0.
57

1
0.

83
3

0.
50

0
0.

90
0

0.
90

5
ha

rd
in

m
ar

ti
ne

z
0.

72
2

0.
72

2
0.

25
0

0.
00

0
0.

25
0

0.
30

6
0.

50
0

0.
50

0
0.

50
0

0.
54

2
0.

50
0

0.
57

1
0.

28
6

0.
62

9
0.

07
8

it
m

an
sm

it
h

0.
46

7
0.

46
7

0.
16

7
0.

00
0

0.
16

7
0.

11
5

0.
00

0
0.

00
0

0.
60

0
0.

13
3

0.
61

5
0.

40
0

0.
40

0
0.

40
0

0.
00

0
je

ra
ld

in
e

ge
ra

ld
in

e
0.

92
6

0.
92

6
0.

80
0

0.
72

7
0.

80
0

0.
84

8
0.

88
9

0.
88

9
0.

88
9

0.
92

6
0.

88
2

0.
88

9
0.

88
9

0.
93

3
0.

71
4

m
ar

ht
a

m
ar

th
a

0.
94

4
0.

96
1

0.
57

1
0.

50
0

0.
57

1
0.

71
0

0.
66

7
0.

83
3

1.
00

0
0.

76
5

0.
57

1
0.

50
0

0.
50

0
0.

50
0

0.
61

5
m

ic
he

ll
e

m
ic

ha
el

0.
86

9
0.

92
1

0.
58

8
0.

42
1

0.
58

8
0.

59
7

0.
62

5
0.

62
5

0.
75

0
0.

70
0

0.
62

5
0.

80
0

0.
53

3
0.

64
0

0.
93

0
ta

ny
a

to
ny

a
0.

86
7

0.
88

0
0.

66
7

0.
57

1
0.

66
7

0.
65

4
0.

80
0

0.
80

0
0.

80
0

0.
85

7
0.

76
9

0.
60

0
0.

60
0

0.
88

0
0.

86
7

dw
ay

ne
du

an
e

0.
82

2
0.

84
0

0.
46

2
0.

40
0

0.
46

2
0.

45
6

0.
66

7
0.

66
7

0.
66

7
0.

68
8

0.
57

1
0.

36
4

0.
36

4
0.

36
4

0.
75

9
se

an
su

sa
n

0.
78

3
0.

80
5

0.
54

5
0.

46
2

0.
54

5
0.

46
8

0.
60

0
0.

60
0

0.
60

0
0.

66
7

0.
61

5
0.

44
4

0.
44

4
0.

48
9

0.
52

9
jo

n
jo

hn
0.

91
7

0.
93

3
0.

66
7

0.
54

5
0.

66
7

0.
59

5
0.

75
0

0.
75

0
0.

75
0

0.
81

8
0.

66
7

0.
57

1
0.

57
1

0.
57

1
0.

88
9

br
oo

kh
av

en
br

ro
kh

av
en

0.
93

3
0.

94
7

0.
90

9
0.

75
0

0.
90

9
0.

84
3

0.
90

0
0.

90
0

0.
90

0
1.

00
0

0.
77

8
0.

90
0

0.
70

0
0.

80
0

0.
76

9
hi

gb
ee

hi
gh

ee
0.

88
9

0.
92

2
0.

71
4

0.
62

5
0.

71
4

0.
67

7
0.

83
3

0.
83

3
0.

83
3

0.
80

0
0.

57
1

0.
83

3
0.

50
0

0.
66

7
0.

31
2

cu
nn

in
gh

am
cu

nn
ig

ha
m

0.
96

7
0.

98
0

0.
85

7
0.

78
3

0.
85

7
0.

86
6

0.
90

0
0.

90
0

0.
90

0
0.

88
5

0.
72

2
0.

94
7

0.
94

7
0.

82
1

0.
94

9
ca

m
pe

ll
ca

m
pb

el
l

0.
95

8
0.

97
5

0.
82

4
0.

73
7

0.
82

4
0.

77
9

0.
87

5
0.

87
5

0.
87

5
0.

90
0

0.
68

8
0.

93
3

0.
93

3
0.

77
3

0.
57

8
ga

ll
ow

ay
ca

ll
ow

ay
0.

91
7

0.
91

7
0.

77
8

0.
70

0
0.

77
8

0.
82

9
0.

87
5

0.
87

5
0.

87
5

0.
89

5
0.

87
5

0.
87

5
0.

87
5

0.
87

5
0.

65
2

m
ic

he
le

m
ic

he
ll

e
0.

95
8

0.
97

5
0.

94
1

0.
84

2
0.

94
1

0.
85

7
0.

87
5

0.
87

5
0.

87
5

1.
00

0
0.

75
0

0.
80

0
0.

80
0

0.
80

0
1.

00
0

jo
na

th
on

jo
na

th
an

0.
91

7
0.

95
0

0.
77

8
0.

70
0

0.
77

8
0.

78
0

0.
87

5
0.

87
5

0.
87

5
0.

91
3

0.
75

0
0.

75
0

0.
75

0
0.

92
5

0.
92

9
di

ck
so

n
di

xo
n

0.
79

0
0.

83
2

0.
57

1
0.

50
0

0.
57

1
0.

38
7

0.
57

1
0.

57
1

0.
57

1
0.

68
4

0.
53

3
0.

66
7

0.
33

3
0.

33
3

0.
83

7
ga

il
ga

yl
e

0.
78

3
0.

82
7

0.
36

4
0.

30
8

0.
36

4
0.

42
6

0.
60

0
0.

60
0

0.
60

0
0.

64
3

0.
61

5
0.

44
4

0.
44

4
0.

44
4

0.
85

7
sy

dn
ey

sy
de

ny
0.

94
4

0.
96

1
0.

57
1

0.
50

0
0.

57
1

0.
71

0
0.

66
7

0.
83

3
1.

00
0

0.
66

7
0.

57
1

0.
50

0
0.

50
0

0.
50

0
0.

48
6

ts
et

un
g

ze
do

ng
0.

64
3

0.
64

3
0.

26
7

0.
23

5
0.

26
7

0.
23

9
0.

42
9

0.
42

9
0.

42
9

0.
57

1
0.

53
3

0.
30

8
0.

30
8

0.
58

5
0.

14
3

F
ig

.5
.4

E
xa

m
pl

e
st

ri
ng

pa
ir

s
an

d
th

e
si

m
ila

ri
tie

s
ca

lc
ul

at
ed

on
th

em
.‘

PB
ig

ra
m

’
st

an
ds

fo
r

po
si

tio
na

l
bi

gr
am

s,
‘S

kG
ra

m
’

fo
r

sk
ip

-g
ra

m
s,

‘L
E

-D
is

t’
fo

r
th

e
L

ev
en

sh
te

in
ed

it
di

st
an

ce
,

‘D
L

E
-D

is
t’

fo
r

th
e

D
am

er
au

-L
ev

en
sh

te
in

ed
it

di
st

an
ce

,
‘C

om
Z

ip
’

fo
r

co
m

pr
es

si
on

ba
se

d
si

m
ila

ri
ty

us
in

g
th

e
Z

L
ib

co
m

pr
es

so
r,

‘L
C

S2
’a

nd
‘L

C
S3

’f
or

th
e

lo
ng

es
tc

om
m

on
su

bs
tr

in
g

co
m

pa
ri

so
n

w
ith

th
e

m
in

im
um

le
ng

th
se

tt
o

2
an

d
3,

re
sp

ec
tiv

el
y,

‘S
W

-D
is

t’
de

no
te

s
th

e
Sm

ith
-W

at
er

m
an

ed
it

di
st

an
ce

an
d

‘S
yl

lA
D

is
t’

th
e

sy
lla

bl
e

al
ig

nm
en

td
is

ta
nc

e.
In

ea
ch

ro
w

,t
he

la
rg

es
ts

im
ila

ri
ty

va
lu

e
is

sh
ow

n
in

bo
ld

fa
ce

an
d

th
e

lo
w

es
ti

n
ita

lic
s

120 5 Field and Record Comparison

0.2 0.4 0.6 0.8 1.0

Similarity

102

103

104

105

106

107

Fr
eq

ue
nc

y
co

un
ts

 (
lo

g-
sc

al
e)

Distribution of similarity values

Jaro

Winkler

Winkler similar

0.2 0.4 0.6 0.8 1.0

Similarity

Fr
eq

ue
nc

y
co

un
ts

 (
lo

g-
sc

al
e)

Distribution of similarity values

Levenshtein distance

Damerau-Levenshtein distance

Smith-Waterman distance

Syllable alignment distance

0.2 0.4 0.6 0.8 1.0

Similarity

100

101

102

103

104

105

106

107

100

101

102

103

104

105

106

107

102

103

104

105

106

107

Fr
eq

ue
nc

y
co

un
ts

 (
lo

g-
sc

al
e)

Distribution of similarity values

Bigram

Padded bigram

Positional bigram

Padded positional bigram

0.2 0.4 0.6 0.8 1.0

Similarity

Fr
eq

ue
nc

y
co

un
ts

 (
lo

g-
sc

al
e)

Distribution of similarity values

Longest common sub-string

Bag distance

Compression distance

Editex

Fig. 5.5 The normalised similarity value distributions of 15 approximate string comparison func-
tions based on comparing 5,000 given name values with each other. The Dice coefficient was used
in all comparison functions that require the conversion of a set size into a similarity

given name in this database was compared with all others, and all similarity values
sim > 0.0 were recorded and rounded to one digit to smooth the result curves.
Because names in this database mostly consist of one short word only, results for the
Winkler long adjustment, and the multi-word comparison functions (Monge-Elkan,
SoftTFIDF and extended Jaccard) are not shown.

As can be seen, the different comparison functions have very different character-
istics in the average as well as the spread of similarity values they return. The Jaro,
Winkler and the compression based comparison functions have the highest average
similarity values, while the edit distance, the q-gram based and the LCS comparison
functions return much lower average similarities.

An important aspect when using different similarity functions together with a
threshold-based classifier (to be discussed in the following chapter) is that any
minimum similarity threshold used to classify candidate record pairs into matches
and non-matches needs to be adjusted, when different approximate string comparison
functions are employed.

5.12 Numerical Comparison 121

si
m

nu
m

_a
bs

d max0

1

0

1 2|n − n |

Fig. 5.6 Illustration of the linear extrapolation of the numerical absolute difference similarity given
in Eq. 5.28

5.12 Numerical Comparison

For certain applications, the data used in data matching not only contain string
values, but also attributes that contain numerical information. A commonly occurring
example is financial data such as salaries, savings, expenses or taxation amounts.

It is assumed two numerical values, n1 and n2, one each from the two records in
a candidate record pair, are compared with each other. If both values are the same,
n1 = n2, their similarity will be sim(n1, n2) = 1.0. Similar to approximate string
comparison functions, to allow for variations and errors in numerical data it must be
possible to calculate approximate similarities between numerical values. This can be
achieved with two different approaches.

In the first approach, a maximum absolute difference, dmax (dmax > 0), is tolerated
between the two values n1 and n2, independently of their actual values. For this
approach, the similarity between n1 and n2 is calculated as:

simnum_abs =
{

1.0 −
(|n1−n2|

dmax

)
if |n1 − n2| < dmax,

0.0 else.
(5.28)

For a pair of values that have an absolute difference smaller than what is tolerated,
i.e. |n1 − n2| < dmax, a linear extrapolation between exact similarity (1.0) and total
dissimilarity (0.0) is calculated with Eq. (5.28), as illustrated in Fig. 5.6.

For example, assume the maximum absolute difference in two salary values that
is to be tolerated is set to dmax = $1,000. If n1 = $2,000 and n2 = $2,500 then
simnum_abs($2,000, $2,500) = 1.0 − $500

$1,000 = 1.0 − 0.5 = 0.5. On the other hand,
if n1 = $450,000 and n2 = $450,250 then simnum_abs($450,000, $450,250) =
1.0 − $250

$1,000 = 1.0 − 0.25 = 0.75.
These two examples highlight an issue of this absolute difference approach.

The approximate similarity value calculated is independent of the numerical values
compared. In certain situations, rather than having an absolute difference tolerated,
a relative difference could be more appropriate. Such a relative numerical similarity
value can be calculated based on the percentage difference, pc, between two values,
n1 and n2, as:

pc = |n1 − n2|
max(|n1|, |n2|) · 100. (5.29)

122 5 Field and Record Comparison

Similar to the absolute numerical difference, dmax, a maximum percentage
difference, pcmax (0 < pcmax < 100) is used to calculate the approximate simi-
larity value:

simnum_perc =
{

1.0 −
(

pc
pcmax

)
if pc < pcmax,

0.0 else.
(5.30)

Using the same pair of example values from above, and setting pcmax = 33 %,
then for the first pair of values, n1 = $2,000 and n2 = $2,500, the numerical
percentage difference is calculated as pc = |$2,000−$2,500|

max($2,000,$2,500)
· 100 = $500

$2,500 · 100 =
1
5 · 100 = 20 %. From this, the numerical percentage similarity is then calculated
as simnum_perc($2,000, $2,250) = 1.0 − 20

33 = 1.0 − 0.606 = 0.394. On the other

hand, following similar calculations for the second pair gives pc = $250
$450,250 · 100 =

0.0555 %, and thus simnum_perc($450,000, $450,250) = 1.0 − 0.0555
33 = 1.0 −

0.0017 = 0.9983.
Which of these two approaches to use and what maximum absolute or percentage

differences to tolerate depend upon the data at hand and how much variation can be
tolerated for a given data matching application.

5.13 Date, Age and Time Comparison

Given data matching is commonly based on the comparison of personal information,
the ability to compare dates, times and age values are of importance. Dates can be
seen as a special case of numerical data.

For dates, the commonly used approach is to calculate the difference between two
dates in days, and then to employ an absolute day difference comparison based on the
numerical absolute difference approach described in Eq. (5.28) above. For example,
if an absolute difference of dmax = 30 days (around one month) is tolerated, and the
two dates to be compared are d1 = [11, 03, 2010] and d2 = [29, 03, 2010], with a
difference of 18 days, then the approximate similarity would be simday_abs(d1, d2) =
1.0 − 18

30 = 1.0 − 0.6 = 0.4.
Compared to generic numerical data, there are two special cases of errors that

frequently occur with dates, and that therefore need to be considered.

• If the day and month values are swapped in the date values in two records,
but the year value is the same, then an approximate similarity value should
be returned, for example, simday_abs = 0.5, even if the two dates have a day
difference outside of the maximum dmax. This situation can occur when the day
and month values are entered in the wrong order, or mistakenly entered in the
US format [MM, DD,YYYY] rather than the format used in many other coun-
tries, [DD, MM,YYYY], or the other way around. For example, [12,10,2010] and
[10,12,2010] could be two such dates where day and month values have been
swapped.

5.13 Date, Age and Time Comparison 123

The problem mainly occurs if both day and month values are between 1 and 12,
because in these situations it will not be possible to automatically detect an error.
If a month value entered is above 12, then it likely refers to the day value and the
person doing the data entry can either be alerted about this potential error, or the
day and month values can be swapped automatically.

• If the difference between two dates is only in the month value but both year and day
values are the same, and the day difference is larger than the maximum tolerated
value, dmax, then an approximate similarity value should be calculated that is larger
than the similarity calculated when day and month values are swapped. The reason
for this is that two out of three date elements are exact matches, such as in the
example [12,01,2010] and [12,07,2010]. As a full date consists of eight digits, and
only one or two of them are different in this situation, an approximate similarity
of at least simday_abs = 0.75 can be used.

An alternative way to compare date values that, for example, refer to dates of
birth, is to convert date values into age values which can be compared with a certain
percentage difference that is tolerated, as was discussed in the previous section. Age
values need to be calculated according to a certain fix date, which can either be the
date of when two databases are being matched, or any other specific date appropriate
to the matching problem at hand.

Ideally, dates are converted into a number of days or years, such as the number of
days or years since birth. Assuming d1 and d2 are the two day values that are being
compared, the age percentage difference, apc, is calculated similar to Eq. (5.29) as:

apc = |d1 − d2|
max(d1, d2)

· 100. (5.31)

Based on this age percentage difference, the age percentage similarity is then
calculated as:

simage_perc =
{

1.0 −
(

apc
apcmax

)
if apc < apcmax,

0.0 else,
(5.32)

with apcmax (0.0 < apcmax < 100) the maximum age percentage difference that is
tolerated.

There are also data matching applications where time values need to be compared.
This can be accomplished similar to dates using either an approach based on tolerating
absolute time differences (following Eq. (5.28)), or percentage differences relative
to a certain fix time (following Eq. (5.32)). Time differences used in the comparison
calculations can be calculated in hours, minutes or seconds, depending upon the
resolution required by a data matching application.

124 5 Field and Record Comparison

5.14 Geographical Distance Comparison

Increasingly, geographical information is becoming available in many applica-
tions, for example, in the form of geographic locations (longitude and latitude) for
addresses.

Rather than using only the similarity between address components (consisting of
strings), an alternative way to calculate the similarity between two addresses is to
calculate their geographical distance, and use this numerical value for a numerical
comparison as discussed in Sect. 5.12. Geographical distances are measured along
the surface of the Earth in kilometres or miles. A large body of work is available in
the geographical literature on how to calculate geographic distances based on various
projection methods. Freely available software libraries such as Geographiclib3 and
online tools4 can help implementing such comparison functions.

The topic of geocode matching, the matching of addresses to their geographic loca-
tions, will be further discussed in Sect. 9.1. Within the context of comparing addresses
according to their geographical locations, it is important to note that due to data
quality problems it is often not possible to obtain the exact and accurate location of
an address. If address details are missing (for example, no street number is given, or
only postcodes or zipcodes are available in a database), or if they contain erroneous
values, then the location might only be accurate at the level of a region, such as
a street or suburb. Regions can be represented through their bounding boxes, the
smallest rectangle that encloses a region, or by the location of the centre of a region
and its radius. The issues of geocode matching accuracy will be covered further in
Sect. 9.1.

5.15 Comparing Complex Data

While thus far only the comparisons of simple, atomic types of data have been
discussed, increasingly databases contain more complex objects such as XML
documents, or multimedia data (images, audio and video). When comparing such
complex data, an appropriate object description needs to be selected [195].

For XML data, one possible approach is to map XML documents into a
relational database table, where each document is split into several tuples, each
consisting of a value and a name type. The value is the actual data taken from an
XML element, while the name type identifies the type of the data [270]. Exam-
ples of such tuples are (Miller’,‘Name/Surname’), (‘42’,‘Address/StreetNumber’),
or (‘Main’,‘Address/StreetName’). The values in the tuples that have the same name
type are then compared pair-wise using one of the approximate string comparison
functions described in this chapter. For each pair of XML records an overall similarity
can be calculated based on the common or similar values they have in the same type.

3 See: http://geographiclib.sourceforge.net/
4 See: http://geographiclib.sourceforge.net/cgi-bin/Geod

http://dx.doi.org/10.1007/978-3-642-31164-2_9
http://dx.doi.org/10.1007/978-3-642-31164-2_9
http://geographiclib.sourceforge.net/
http://geographiclib.sourceforge.net/cgi-bin/Geod

5.15 Comparing Complex Data 125

RecID GivenName Surname StrNum StrName Suburb SimSum

a1 john smith 18 miller st dickson
b1 jonny smyth 73 miller st dixon

0.6 0.8 0.0 1.0 0.6 3.0

a2 mary harris 42 swamp rd sydney
b2 mandy garrett 42 smither rd sydenham

0.6 0.4 1.0 0.4 0.6 3.0

Fig. 5.7 Example comparison vectors and their summed similarities (SimSum), illustrating the loss
of detailed information that occurs when only summed similarity values, rather than full comparison
vectors, are used for classification. The first pair of records likely corresponds to the same individual,
as there are only small differences in the two name fields and the suburb field, and the different
digits in the street number could be due to optical character recognition mistakes. The second pair,
while having the same overall similarity value (SimSum), is unlikely to correspond to the same
person. All similarities in this example were calculated using the Levenshtein edit distance and
were rounded to 1 digit

Several other techniques have been developed to compare XML documents, the
interested reader can refer to the book by Naumann and Herschel [195] for details.

For calculating the similarity between multimedia data, various techniques are
available. They are based on the concept of extracting features from a media file,
for example, a colour histogram of an image, and to store such features into feature
vectors. Similarities are then calculated based on comparing these feature
vectors [135].

5.16 Record Comparison

For each candidate record pair that is compared, generally several attributes are
compared in detail, as illustrated in Fig. 2.6 on p. 31. A vector of numerical similarity
values, commonly called a ‘comparison vector’, is generated for each record pair.
These comparison vectors are the basis of most classification techniques for data
matching, as will be discussed in the following chapter.

While with traditional data matching approaches all values of a comparison
vector are summed into a single similarity for a candidate record pair (denoted
with ‘SimSum’ in Figs. 2.6 and 5.7), more advanced classification techniques can
provide a further weighting scheme to the basic normalised similarity values, giving
larger weights to attributes that contain information that is more distinctive. Surname
values, for example, are much better indicators if two records refer to the same or
different individuals compared to a gender value. The summation of all similarity
values in a comparison vector into a single similarity value results in a severe loss of
information, as the examples in Fig. 5.7 show.

http://dx.doi.org/10.1007/978-3-642-31164-2_2
http://dx.doi.org/10.1007/978-3-642-31164-2_2

126 5 Field and Record Comparison

5.17 Practical Considerations and Research Issues

One question that is sometimes difficult to answer in practical data matching and
deduplication projects is which of the many available comparison functions should
be used. While there is a limited number of comparison functions available for
numerical attributes, or for those that contain date, age, time or location values, for
attributes that contain strings the choice of comparison function can be rather large
(even though some commercial data matching systems might only contain a small
number of approximate string comparison functions).

A starting point is to explore the content of the string attributes that will be used
in the comparison. Do they only contain short strings made of one word (or token)
only, or do they contain longer strings consisting of several words? In the latter case,
a proper segmentation of the input data might be needed first (as was discussed in
Chap. 3), especially if the values in a single attribute consist of several pieces of
different information (for example, if full names or full addresses are contained in
one long string attribute). Alternatively, one of the comparison functions (such as
Monge-Elkan, SoftTFIDF and extended Jaccard) that can handle multiple words
(tokens) in the input strings can be employed.

For attributes that contain name values (such as given names, surnames, street
names, location/town names or state/territory names), it has been shown that
the Jaro-Winkler approximate string comparison function (discussed in Sect. 5.5)
performs better compared with other comparison functions [294]. For attributes
that contain shorter non-name string values, edit distance or q-gram based tech-
niques can be employed, with edit distance based techniques having a larger com-
putation complexity than q-gram based techniques. For longer strings, edit distance
based techniques will likely become too slow in practice. For attributes where string
values contain several words (or more generally several tokens), one of the functions
presented in this chapter that are specialised for multi-word comparisons will be the
best choice.

If the available data contain the true match status of record pairs, for example, from
a matching or deduplication exercise on an earlier version of the same database(s),
or from a manual evaluation of selected record pairs, then different comparison
functions can be applied in a series of test matching exercises. Such an evaluation
needs to be conducted on the set of record pairs where the match status is available.
The set of comparison functions that results in the best separation of matches from
non-matches can then be used for matching the full databases.

Research in the area of comparison functions for data matching can for example,
be aimed at tackling the problem of multi-lingual name values and how they are best
compared, such that variations of the same name result in high similarity values and
variations of different names result in low similarity values. As most data are changing
over time, developing comparison functions that adapt themselves to changing data is
another avenue for research. Such adaptive functions will likely need to have access
to training data in the form of true matching and true non-matching string pairs [35].

http://dx.doi.org/10.1007/978-3-642-31164-2_3

5.17 Practical Considerations and Research Issues 127

With regard to computation complexity, developing comparison functions that
have a complexity that is linear in the length of the two compared strings would lead
to a much improved scalability of data matching systems. Many of the comparison
functions presented in this chapter have a computation complexity that is quadratic in
the length of the two strings. Approximate or heuristic approaches can be investigated
to reduce this computation complexity.

A further investigation of heuristic adjustments, such as the Winkler adjustment
to the basic Jaro comparison function, based on studies of real-world data and their
errors and variations, could also lead to improved data matching quality. A related
topic is the investigation of how different approximate string comparison functions
can handle data with different types of errors (such as optical character recognition,
phonetic or manual key-board typing errors), and how string comparison functions
can be adapted to such different types of data characteristics.

Finally, the overall question of which comparison function is best suited for what
type of data could be investigated through large-scale experimental studies using a
variety of data sets with different content (such as personal names and addresses,
business names, consumer product names, details of scientific or technical publica-
tions and so on), different error characteristics and values from different languages.

5.18 Further Reading

Many surveys of approximate string comparison functions have been published over
the past three decades [57, 119, 133, 152, 172, 175, 195, 196, 243, 294]. There are
also several open source libraries available that implement a variety of comparison
techniques: SecondString5 [84], FEBRL6 [62], and SimMetrics7 are some of the
most popular ones. Many modern database systems also contain extensions that
allow approximate similarity calculations of strings.

A detailed description of the Jaro and Winkler approximate string comparison
functions is provided by Herzog, Scheuren and Winkler [143]. For the comparison
functions of other data types, such as numerical, date, age, time and geographical
distance, not many technical publications are available. However, such comparison
functions have been implemented and are used successfully in many (commercial)
data matching systems.

5 See: http://sourceforge.net/projects/secondstring/
6 See: http://sourceforge.net/projects/febrl/
7 See: http://sourceforge.net/projects/simmetrics/

http://sourceforge.net/projects/secondstring/
http://sourceforge.net/projects/febrl/
http://sourceforge.net/projects/simmetrics/

Chapter 6
Classification

6.1 Overview

The classification of the candidate record pairs that were generated in the indexing
step (Chap. 4) and compared in detail in the comparison step (Chap. 5) is primarily
based on the similarity values in the comparison vectors of these record pairs, as
illustrated in Fig. 6.1. The general idea is that the more similar two records are, the
more likely they refer to the same real-world entity.

A classification approach can either be unsupervised or supervised. Unsupervised
approaches classify pairs or groups of records based on similarities between them
without having access to any information about the characteristics of true match-
ing and true non-matching record pairs. Supervised approaches, on the other hand,
require training data that are known true matches and true non-matches. Specifically,
a set of comparison vectors is required, each of which has a match status (match or
non-match) attached, to enable training of a supervised classifier. These comparison
vectors need to be generated using the same comparison functions as the ones that
will be used when pairs of records with unknown match status are compared. Obtain-
ing or generating such training data, that need to be of high quality and cover a large
variety of the possible similarity value combinations that can occur in comparison
vectors, can be difficult, as will be discussed further in Sect. 7.1 in the context of
evaluating the outcomes of data matching classification.

In certain matching situations, additional to the similarities between records, rela-
tional information between records might be available. Examples of such relational
information include the lists of co-authors of scientific publications, or people who
share the same land-line telephone number. Several recently developed classification
techniques for data matching take such relational links or connections into account
when building a clustering or graph-based classification model [31, 142, 155, 272],
as will be discussed in Sects. 6.9 and 6.10. An alternative approach to model such
relational information is to include it as exact similarities into the comparison vectors
for candidate record pairs. As was discussed in Sect. 5.2, an exact comparison would
for example, result in a normalised similarity value of 1.0 if two records have the

P. Christen, Data Matching, Data-Centric Systems and Applications, 129
DOI: 10.1007/978-3-642-31164-2_6, © Springer-Verlag Berlin Heidelberg 2012

http://dx.doi.org/10.1007/978-3-642-31164-2_4
http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://dx.doi.org/10.1007/978-3-642-31164-2_5

130 6 Classification

RecID GivenName Surname StrNum StrName Suburb BDay BMonth BYear SimSum

a1 john smith 18 miller st dickson 12 11 1970
b1 jonny smyth 73 miller st dixon 11 12 1970

0.6 0.8 0.0 1.0 0.6 0.5 0.5 1.0 5.0

a2 mary harris 42 swamp rd sydney 21 04 1918
b2 mandy garrett 42 smither pl sydenham 27 04 1979

0.6 0.4 1.0 0.4 0.6 0.5 1.0 0.5 5.0

Fig. 6.1 Example candidate record pairs and their comparison vectors as calculated in the com-
parison step (Chap. 5), and their summed similarity values (SimSum)

same telephone number, or if two publications have been written by the same two
co-authors.

When the classification into matches and non-matches is conducted independently
for individual candidate record pairs rather than in a collective fashion [31], then
several issues need to be considered. First, classifying each record pair independently
can lead to sub-optimal match decisions. For example, assume two databases are
matched, with the restriction that a record from the first database can only match to a
maximum of one record in the second database (a topic that will be discussed further
in Sect. 6.11). Now assume that record ‘a1’ (from the first database) is classified
to match with record ‘b4’ (from the second database). Later on in the classification
process, record ‘a9’ and ‘b4’ are also found to be a match, for example, if their
similarity is higher than the similarity between ‘a1’ and ‘b4’. The first classified match
between ‘a1’ and ‘b4’ is therefore not the best match. Such sub-optimal decisions
can occur if the classification is conducted in a greedy fashion where, once matched,
a pair of records is not reconsidered for other matches.

A second issue is that independent match decisions can lead to contradictions, an
issue known as transitive closure [190]. Assume in the deduplication of a database
two record pairs, ‘a1’ and ‘a2’, and ‘a1’ and ‘a3’, have both been classified as
matches, but the pair ‘a2’ and ‘a3’ has been classified as a non-match. This contradicts
the assumption that when a group of three or more records are classified as being
duplicates of each other, then none of the individual pairs in that group of records
should be classified as a non-duplicate. How to handle this situation will be further
discussed in Sect. 6.8.

After the classification step, depending upon the data matching or deduplication
situation, records that were matched in certain applications need to be merged into
compound new records [26]. This step itself is challenging, as it requires decisions to
be made about how to merge individual attribute values that potentially can contradict
with each other. A set of recently developed techniques to accomplish this will be
presented in Sect. 6.12.

http://dx.doi.org/10.1007/978-3-642-31164-2_5

6.2 Threshold-Based Classification 131

6.2 Threshold-Based Classification

The simplest way to classify candidate record pairs into the two classes of matches
and non-matches (and possibly the third class of potential matches) is to sum the
similarity values in their comparison vectors into a single total similarity value (called
‘SimSum’ in Fig. 6.1), and to then apply a similarity threshold (or two in the case
where potential matches are considered) to decide into which class a candidate record
pair belongs. Figure 6.2 shows an example histogram of the summed comparison
vectors obtained from a deduplication of a real health data set that contained 175,211
records.

With two classes (matches and non-matches), a single classification threshold, t ,
is needed for classifying a record pair (ri , r j):

SimSum[ri , r j] ≥ t ⇒ [ri , r j] → Match,

SimSum[ri , r j] < t ⇒ [ri , r j] → Non-Match. (6.1)

With three classes (matches, non-matches and potential matches), two classifi-
cation thresholds, tl (lower) and tu (upper), are needed, and a record pair (ri , r j) is
classified according to:

SimSum[ri , r j] ≥ tu ⇒ [ri , r j] → Match,

tl < SimSum[ri , r j] < tu ⇒ [ri , r j] → Potential Match, (6.2)

SimSum[ri , r j] ≤ tl ⇒ [ri , r j] → Non-Match.

Selecting a threshold (or thresholds) that results in high matching quality can either
be done manually or (if training data are available) be learned in such a way that
either the number of false matches or the number of false non-matches is minimised,
or that the sum of both false matches and false non-matches is minimised. When
candidate record pairs are also classified into potential matches, there is a trade-off
between the quality of the classified matches and non-matches and the amount of
manual clerical review of the potential matches that needs to be conducted. This
topic will be discussed in more detail in Sect. 7.4.

If tu = tl = t then the class of potential matches disappears and the classification
follows Eq. 6.1. Increasing the upper threshold tu and lowering the lower threshold
tl will result in less false matches and non-matches, but lead to a larger number of
potential matches that need to be inspected and classified manually. On the other
hand, lowering tu and increasing tl results in a smaller number of potential matches
but likely also in an increased number of false matches and non-matches. This issue
will be discussed further in Sect. 7.4.

The simple threshold-based classification has two major drawbacks. The first is
that, assuming all similarity values are normalised between 0 and 1, all attribute
similarities contribute in the same way towards the final summed similarity value.
The importance of different attributes, as well as their discriminative power with

http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://dx.doi.org/10.1007/978-3-642-31164-2_7

132 6 Classification

 1

 10

 100

 1000

 10000

 100000

-60 -40 -20 0 20 40 60 80 100 120

F
re

qu
en

cy

Summed similarities (SimSum)

MDC 1999 and 2000 deduplication (based on AutoMatch match status)

Duplicates
Non-duplicates

Fig. 6.2 Example histogram of the summed similarity values of a deduplication of a real health
data set using comparisons on twelve attributes, with different weights assigned to the various
comparisons. The true match status of this data set was determined earlier using the commercial
data matching software AutoMatch [251], while the comparison vectors for this deduplication were
generated using the FEBRL system [62]. A detailed description of the settings that were used for
this deduplication exercise is provided in [71], from where this figure has been adapted

regard to distinguishing matches from non-matches, is not considered by such a
simple summation approach. This drawback can be overcome by summing similarity
values that are weighted, with different attributes given different weights according
to their importance or discriminative power. The weighed sum is calculated by first
multiplying the similarity value calculated on a certain attribute with the weight value
for this attribute prior to the summation.

For example, assuming the following weights (empirically determined) are
assigned to the attributes of Fig. 6.1: wGivenName = 2, wSurname = 3, wStr Num = 1,
wStr Name = 3, wSuburb = 2, wB Day = 2, wB Month = 1, and wBY ear = 2.
The weighted summed similarities for the two given record pairs then become:
SimSum[a1, b1] = 2×0.6+3×0.8+3×1.0+2×0.6+2×0.5+1×0.5+2×1.0 =
11.3, and SimSum[a2, b2] = 2 × 0.6 + 3 × 0.4 + 1 × 1.0 + 3 × 0.4 + 2 × 0.6 + 2 ×
0.5 + 1 × 1.0 + 2 × 0.5 = 8.8. The question of how to choose good weight values
for the different attributes will be discussed in the next section.

The second drawback of summing similarities is that the detailed information
contained in the individual similarity values is lost in the summation step (with both
an unweighted or weighted approach). As the two example candidate record pairs in
Fig. 6.1 show, despite having different similarity values both result in an unweighted
sum of SimSum = 5.0. This is even though record pair (a2, b2) is unlikely to refer
to the same entity given the differences in the attribute values of these two records.
Giving different weights to attributes can to some degree overcome this drawback
and lead to better classification results. More sophisticated classifiers, presented later
in this chapter, are utilising the individual similarity values. This generally leads to
improved matching quality compared to the simple threshold-based approach using
summed similarities only.

6.3 Probabilistic Classification 133

6.3 Probabilistic Classification

This traditional classification approach to data matching, proposed in 1969 by Ivan
Fellegi and Alan Sunter in their seminal paper [108], is commonly known as ‘prob-
abilistic record linkage’. Many data matching and deduplication systems that have
been developed over the past four decades are based on the approach described in
this paper.

The basic ideas of probabilistic record linkage were introduced by Newcombe
et al. [198] in 1959 and detailed further by Newcombe and Kennedy in 1962 [197].
They recognised that in the absence of unique entity identifiers the attributes available
in common in two databases (such as the names, addresses, or dates of birth of patients
or customers) need to be used to match records. As the values in such attributes
can be wrong, missing, or out of data, and because the number of values and their
distributions can differ between attributes, different weights should be assigned to
different attributes when they are used to calculate the similarities between records (as
was discussed in the previous section). Newcombe and Kennedy also recognised that
such weights should not only depend upon the general characteristics of attributes,
but also on the actual attribute values in a certain candidate record pair. For example,
if two records have a surname value ‘Smith’ then the weight given for this agreement
of values should be smaller than the weight given to two records that both have a
surname value ‘Dijkstra’, assuming the number of people with surname ‘Dijkstra’ is
much smaller than the number of people with surname ‘Smith’ in the databases that
are matched. This is because the likelihood that two randomly picked records have a
surname value ‘Smith’ is much higher than the likelihood that they have a surname
value ‘Dijkstra’.

Fellegi and Sunter formalised these ideas and they developed a theory for record
linkage that allows the calculation of weights for agreeing and disagreeing pairs of
attribute values, which leads to an optimal decision making when record pairs are
classified [108]. Probabilistic record linkage considers two databases (or files), A
and B, and record pairs in the product space A × B that are to be classified into three
classes: Matches (links), non-matches (non-links) and potential matches (potential
links) [108, 143]. Record pairs classified as potential matches need to be manually
assessed and classified in a clerical review process, as will be described in Sect. 7.4.
Each record pair in A × B is assumed to correspond to either a true match or a true
non-match. The space A × B is therefore partitioned into the set M of true matches
and the set U of true non-matches. Formally,

A × B = {(a, b); a ∈ A, b ∈ B} (6.3)

consists of the two disjoint sets

M = {(a, b); a = b, a ∈ A, b ∈ B} (6.4)

http://dx.doi.org/10.1007/978-3-642-31164-2_7

134 6 Classification

of true matches (also called the matched set), where both records a and b refer to the
same real-world entity, and

U = {(a, b); a �= b, a ∈ A, b ∈ B} (6.5)

of true non-matches (also called the unmatched set), where the two records a and b
refer to two different real-world entities.

The assumption is that records in A and B were generated based on one process
for each of the two databases. Each record is assumed to refer to an individual
in a population, such as a patient, customer, citizen and so on. The records in the
two databases are drawn from two populations that have some overlap. For each
member of the two populations, it is assumed that a record was generated with certain
characteristics (such as certain name values, a certain date of birth and so on). The
record generation process also led to errors and missing values in the records with
certain distributions. As a result, it is possible that unmatched entities in A and B can
be represented by two records that both have the same values in all their attributes.
On the other hand, two records in A and B that refer to the same entity can have
different values in some of their attribute.

When record pairs are compared (as was discussed in Chap. 5), a comparison
vector, γ , is generated for each record pair. In the basic formulation of probabilistic
record linkage, only binary comparisons are considered (with similarity value 1
when two attribute values are the same and 0 otherwise) [108]. Therefore, each γ

corresponds to an agreement pattern in a comparison space, Γ . If each record pair
was compared using K comparison functions, then each γ consists of a vector of K
agreement or disagreement values. In total, assuming binary comparisons (i.e. exact
matching) only, there will be 2K different possible patterns.

For a given candidate record pair, r , probabilistic record linkage classification
considers ratios of conditional probabilities, P(·|·), of the form

R = P(γ ∈ Γ |r ∈ M)

P(γ ∈ Γ | r ∈ U)
(6.6)

where γ is an arbitrary agreement pattern in a comparison space Γ . Fellegi and
Sunter [108] then propose the following decision rule:

R ≥ tu ⇒ r → Match,

tl < R < tu ⇒ r → Potential Match, (6.7)

R ≤ tl ⇒ r → Non-Match.

The two cutoff thresholds tl and tu are determined by a priori error bounds on false
matches and false non-matches [108, 143]. It is easy to see that the three rules in Eq.
6.7 make intuitive sense. If γ for a certain candidate record pair r mostly consists
of agreements, then the ratio R in Eq. 6.6 would be large, because it is more likely
that r ∈ M rather than r ∈ U , and the pair is more likely designated as a match. On

http://dx.doi.org/10.1007/978-3-642-31164-2_5

6.3 Probabilistic Classification 135

the other hand, for a γ that primarily consists of disagreements the ratio R would be
small, because it is more likely that r ∈ U rather than r ∈ M , and thus the pair will
be designated as a non-match.

Fellegi and Sunter showed that with fixed bounds on the errors in the match and
non-match regions of R the decision rule in Eq. 6.7 is optimal, in that the middle
region of potential matches is minimised [108].

Calculating the conditional probabilities in Eq. 6.6 is a crucial aspect of the prob-
abilistic record linkage approach. It is commonly assumed that these probabilities
are conditionally independent for the different attributes that are used in the compar-
ison step to calculate the agreement patterns γ . Under this assumption, an individual
agreement weight, wi , 1 ≤ i ≤ K can be calculated for each attribute (or field) i
based on the m- and u-probabilities

mi = P([ai = bi , a ∈ A, b ∈ B] | r ∈ M), (6.8)

and
ui = P([ai = bi , a ∈ A, b ∈ B] | r ∈ U), (6.9)

where ai and bi are the values in attribute i that are being compared. Equation 6.8
is the probability that two records have the same value in attribute i given the pair is
a true match (i.e. both records refer to the same entity). On the other hand, Eq. 6.9
is the probability that two records have the same value in attribute i given the pair is
a true non-match (i.e. the two records refer to different entities).

The probabilities in Eqs. 6.8 and 6.9 are called the m- and u-probabilities, respec-
tively, and they are also known as the matching parameters [143]. Based on these
two probabilities, the individual weight wi for attribute i is calculated as:

wi =
{

log2(
mi
ui

) if ai = bi ,

log2(
(1−mi)
(1−ui)

) if ai �= bi .
(6.10)

To make a simple example, assume the two databases A and B contain an
attribute ‘MonthOfBirth’ (MoB) with twelve possible values ‘January’ to ‘Decem-
ber’. Assume also that it is known that in both A and B this attribute contains 3 %
errors, i.e. 3 % of all month of birth values have been recorded wrongly. The likeli-
hood that two records, a ∈ A and b ∈ B, that are known to refer to the same entity
((a, b) ∈ M) have the same month of birth value is 97 %. Therefore, mMoB = 0.97.
The likelihood that two records referring to the same entity have a different month
of birth is (1 − mMoB) = 0.03 (3 %). For two records a ∈ A and b ∈ B that
are known to refer to two different entities ((a, b) ∈ U), the likelihood that their
month of birth value is the same is 1/12 = 0.083, because there is a 1/12 (8.3 %)
chance that two randomly picked individuals in a population have the same month
of birth. Therefore, uMoB = 0.083. Conversely, the likelihood that two randomly
picked records that refer to two different entities have a different month of birth is
11/12 = 0.917 = (1−uMoB) (91.7 %). Using Eq. 6.10, if two records have the same

136 6 Classification

value in the ‘MonthOfBirth’ attribute, then the corresponding weight (called match
or agreement weight) is calculated as wMoB = log2(0.97/0.083) = 3.54, while if
two records have different month of birth values then the weight (called non-match
or disagreement weight) is calculated as wMoB = log2(0.03/0.917) = −4.92.

Assuming conditional independence, the overall weight for a record pair r can
be calculated by summing the weights wi over the K attribute match/non-match
weights:

log2(R) =
K∑
i

wi . (6.11)

Figure 6.2 shows an example histogram of such summed weights for the dedupli-
cation of a real health data set. As can be seen, the number of non-matches (non
duplicates) is much larger than the number of matches (duplicates), as would be
expected.

In real-world data, it is likely that there are some dependencies between attributes.
For example, records that have the same post- or zipcode with a high likelihood will
also have the same locality (suburb or town) name, because in many countries most
post- or zipcodes are contained within a certain locality. Records that have the same
post- or zipcode then potentially also more likely have the same street name. However,
despite most real-world data violating the conditional independence assumption,
practical data matching projects have shown that good matching quality can still be
achieved under this assumption [143].

One of the difficulties with probabilistic record linkage is the accurate calcula-
tion or estimation of the error rates required in Eqs. 6.8 and 6.9. Sometimes these
probabilities are known from the manual assessment of the quality of the databases
to be matched, or from a manual evaluation of an earlier matching of the same
databases. Alternatively, these estimates can be calculated based on population esti-
mates, like in the month of birth example given above. Herzog et al. [143] discuss
in detail how the mi and ui parameters can be estimated using either data from prior
data matching projects or by employing the unsupervised expectation–maximisation
(EM) algorithm.

Extensions to the basic Fellegi and Sunter approach to probabilistic record link-
age include allowing for approximate comparisons of attribute values that result in
similarity values in the agreement patterns γ rather than only agreement and dis-
agreement values. Porter and Winkler [215, 279, 286] showed that modifying the
m- and u-probabilities in Eqs. 6.8 and 6.9 using the normalised similarities (between
0.0 and 1.0) calculated by approximate string comparison algorithms can lead to
significant improvements in matching quality.

The second extension is concerned by taking the frequency of attribute values
into account when calculating the m- and u-probabilities [108, 286]. The intuition
behind this idea is that the more frequent an attribute value is in a database, the less
discriminative this value is for classifying a record pair as a match or non-match. The
example using the surname values ‘Smith’ and ‘Dijkstra’ given at the beginning of
this section has already illustrated this issue. Match and non-match weights should

6.3 Probabilistic Classification 137

be adjusted according to the frequency of occurrence of individual attribute values,
with lower m-probabilities for more frequent attribute values [108]. Herzog et al.
[143] provide a detailed discussion of how frequency-based matching parameters
can be calculated.

Winkler developed a method that combines the traditional Fellegi and Sunter
approach to probabilistic record linkage with Bayesian networks [281]. Bayesian
networks [138] can model selected dependencies between attributes. In general they,
however, require training data (in the case of data matching in the form of record
pairs with known true match status). Using both labelled and unlabelled training
data, a modification of the EM algorithm was used by Winkler to estimate parameter
settings. Viewing probabilistic record linkage from a Bayesian perspective has also
been discussed by Fortini et al. [112] and Herzog et al. [143].

6.4 Cost-Based Classification

In the traditional probabilistic record linkage approach the two thresholds tl and tu are
set such that the overall number of misclassified candidate record pairs is minimised.
Two types of errors can occur (as will be further discussed in Chap. 7). First, a pair
of records that refers to the same real world entity (and therefore is a true match)
is classified as a non-match. Second, a pair of records that refers to two different
entities (and thus is a true non-match) is classified as a match. Traditionally, it is
assumed both types of errors have the same costs.

In many data matching and deduplication applications, however, these two types
of errors have different costs [129, 263]. For example, imagine a health applica-
tion where patient data from several databases (that contain information, for exam-
ple, about prescriptions, hospital admissions and doctor consultations) are matched.
Assuming these databases were matched such that each patient in the matched data-
base is assumed to have a serious illness based on their medical history. These patients
are invited by the hospital for a series of special medical tests to confirm if they do
have this illness or not. Testing a patient for this illness will incur a certain amount of
money, possibly in the hundreds or even thousands of dollars. Therefore, each patient
that has been matched falsely will mean an increase in costs for an additional test that
might have been unnecessary. On the other hand, each patient that was not classified
as a match but who potentially has this serious illness might die because they are not
given the medical test that could confirm if they have the illness or not. The costs for
such a missed true match can therefore be the loss of life of an individual.

Another, less dramatic, example can be found in marketing, where often databases
are matched to generate mailing lists of potential customers who are interested in
certain topics, based on their shopping history (like sporting, gardening, music or
reading). The cost of sending an advertisement flyer about a certain topic to somebody
who is not interested in this topic is very small, compared to not sending the flyer
to somebody who will probably respond to the advertisement [263]. Missing such a
customer can potentially result in a significant loss in profit.

http://dx.doi.org/10.1007/978-3-642-31164-2_7

138 6 Classification

Table 6.1 Costs associated with various matching decisions as proposed by Verykios et al. [263]

Cost Classification True match status

cU,M Non-Match True match (M)
cU,U Non-Match True non-match (U)
cP,M Potential Match True match (M)
cP,U Potential Match True non-match (U)
cM,M Match True match (M)
cM,U Match True non-match (U)

As shown in these two examples, clearly there can be different costs associated
with false matches and false non-matches. A cost-optimal decision model based on
a Bayesian approach has been developed by Verykios et al. [263]. In this approach,
the decision rule for an agreement pattern γ in Eq. 6.7 is formulated in a Bayesian
setting:

P(γ ∈ Γ |r ∈ M) ≥ P(γ ∈ Γ |r ∈ U) ⇒ r → Match, (6.12)

P(γ ∈ Γ |r ∈ M) < P(γ ∈ Γ |r ∈ U) ⇒ r → Non-match.

As shown in Table 6.1, different costs can be assigned to each of the six decision
outcomes in the traditional Fellegi and Sunter model, where record pairs are classified
into matches, non-matches and potential matches. The objective of a cost optimal
decision rule is then to minimise the overall cost c:

c =cU,M · P(r ∈ Non-Match, r ∈ M) + cU,U · P(r ∈ Non-Match, r ∈ U)+
cP,M · P(r ∈ Potential Match, r ∈ M) + cP,U · P(r ∈ Potential Match, r ∈ U)+
cM,M · P(r ∈ Match, r ∈ M) + cM,U · P(r ∈ Match, r ∈ U), (6.13)

where P(x, y) is the joint probability that a record pair r has been classified into
class x (with x ∈ {Non-Match, Potential Match, Match}) while the true match status
of r is y (with y ∈ {M, U }). Bayes theorem can then be applied to replace these six
probabilities with the probabilities of a certain match decision, given the true match
status and the a priori probabilities of P(M) and P(U):

P(r = x, r = y) = P(r = x | r = y) · P(r = y), (6.14)

with x and y being a value of the corresponding two sets given above. The probabilities
P(r = x | r = y) and P(r = y) can both be estimated using training data that are
available in the form of record pairs with known true match status [263]. An optimal
decision rule, similar to the one given in Eq. 6.7, can then be developed, which for
different values of the different costs provides an overall cost-optimal decision [263].

Cost-based classification is not just possible for the probabilistic record linkage
approach as was presented in this section, but for other classification techniques
for data matching as well. In rule-based classifiers (discussed next), rules can for

6.4 Cost-Based Classification 139

example, be reordered such that the rules that classify candidate record pairs into
matches are evaluated before rules that classify them into non-matches, while for
many supervised machine learning classifiers different costs for different classes can
be incorporated into the learning process.

6.5 Rule-Based Classification

A rule-based classification approach is different to the probabilistic approaches pre-
sented in the previous two sections. It employs rules that classify candidate record
pairs into matches and non-matches (and maybe potential matches that are passed
on for manual clerical review) [82, 141, 195]

A rule-based classifier can be applied on the similarity values of the comparison
vectors generated in the comparison step. Rules are made of individual tests on certain
similarity values that are combined with conjunctions (logical and), disjunctions
(logical or) and negations (logical not). Figure 6.3 shows an example set of such
rules.

The form of a rule is P ⇒ C , where P is a predicate that is applied on the
similarity values (as available in a comparison vector) for a record pair (ri , r j), and
C is the classification outcome of the pair (ri , r j). The predicate P is a boolean
expression of the general form:

P = (term1,1 ∨ term1,2 ∨ . . .) ∧ . . . ∧ (termn,1 ∨ termn,2 ∨ . . .). (6.15)

P is written in conjunctive normal form as a conjunction of disjunctions of terms
[195]. Each term is a test applied on the similarity value of a single element in a
comparison vector of the record pair (ri , r j). For example, a term can be a test such
as s(GivenName)[ri , r j] ≥ 0.7), i.e. if the similarity value for the record pair ri

and r j for the given name attribute is equal to or greater than 0.7. In Fig. 6.3, each
disjunction only contains one term.

The classification outcome C of a rule assigns a candidate record pair into the
class given in C when a rule is triggered (i.e. when the predicate P is true). A rule
system can either consist of rules that classify record pairs into matches only, or of
rules that classify pairs into matches, non-matches and even potential matches. In the
first case, all record pairs that are not covered by any rule will implicitly be classified
as non-matches. For the second case, a rule set needs to cover all possible values
in the similarity values of the comparison vectors, as there is no default class, or a
default class needs to be set explicitly (for example in the form of a rule with an
empty predicate P and where C classifies a record pair as a non-match).

If a rule set only contains rules that classify candidate record pairs as matches,
then the ordering of these rules is irrelevant. On the other hand, if a rule set consists
of rules that classify record pairs into more than one class, then the ordering of rules
is crucial. For a given record pair, the first rule where the predicate P becomes true
(the first rule that is triggered or ‘fired’) is the rule that classifies the pair.

140 6 Classification

s GivenName ri, r j 0.9 s Surname ri, r j 1.0
s BMonth ri, r j 1.0 s BYear ri, r j 1.0 ri, r j Match

s GivenName ri, r j 0.7 s Surname ri, r j 0.8
s BDay ri, r j 1.0 s BMonth ri, r j 1.0

s BYear ri, r j 1.0 ri, r j Match

s GivenName ri, r j 0.7 s Surname ri, r j 0.8
s StrName ri, r j 0.8 s Suburb ri, r j 0.8 ri, r j Match

s GivenName ri, r j 0.7 s Surname ri, r j 0.8
s BDay ri, r j 0.5 s BMonth ri, r j 0.5

s BYear ri, r j 0.5 ri, r j Non-Match

s GivenName ri, r j 0.7 s Surname ri, r j 0.8
s StrName ri, r j 0.6 s Suburb ri, r j 0.6 ri, r j Non-Match

Fig. 6.3 An example set of classification rules that could be applied on the comparison vectors
from Fig. 2.6 shown on page 31. Conjunctions (logical and) are shown as ∧ and disjunctions (logical
or) as ∨. ‘s(·)’ refers to a similarity value taken from the comparison vector for a given record pair.
The first three rules classify a pair of records ri and r j as a match if their name values are similar,
and either their dates of birth or their addresses are similar as well. On the other hand, the last two
rules classify a pair as a non-match if their name is similar but they have either a different date of
birth or a different address

Ideally, each rule in a set of rules should be of high accuracy and high coverage
[135]. A high accuracy means that a rule that classifies record pairs into a certain
class should mostly cover pairs that do belong to this class but not pairs that belong
into another class. In order to be able to assess the accuracy of rules, candidate record
pairs and their true match status (match or non-match) must be available. Without the
true match status it is not possible to assess the accuracy of rules. A high coverage
means that the predicate P of a rule covers a large portion of all candidate record
pairs. A rule which has a coverage of 10 % is triggered (i.e. its predicate P is true)
for 10 % of all candidate record pairs. A rule with an empty predicate P (i.e. no
test on any similarity value) would have a coverage of 100 %. The more specific a
rule is (i.e. the more conditions are tested in the predicate P) the lower the coverage
of a rule generally becomes. More specific rules are usually more accurate, while
less specific rules often have lower accuracy because they cover a larger number of
candidate record pairs that are in both the match and non-match classes.

The quality of a rule set can be measured by its overall accuracy and its coverage
[135]. Additionally, a smaller rule set is generally preferable over a larger rule set,
because a smaller number of rules is easier to maintain. Because rules are depending
upon the characteristics and the quality of the data that are matched or deduplicated,
either a new set of rules needs to be developed for each new database, or an existing
set of rules needs to be adjusted when data with different characteristics are matched
or deduplicated.

This raises the question of how a set of rules can be generated to achieve a
high classification accuracy of the compared candidate record pairs. The two basic

http://dx.doi.org/10.1007/978-3-642-31164-2_2

6.5 Rule-Based Classification 141

approaches are to either develop a rule set manually or to learn a set of rules from
training data.

• The traditional approach to generating rules is to manually develop them based
on domain knowledge of the databases to be matched or deduplicated. Develop-
ing such rules is usually done hand in hand with selecting appropriate indexing
approaches and comparison functions, because both of these will affect the candi-
date record pairs that are generated and the similarity values in their corresponding
comparison vectors.
Manually generating rules is a labour-intensive process that is generally iterated
over many variations of potential rules. These rules need to be tested and manually
evaluated using some form of training data that contain the true match status of
candidate record pairs. If such training data are not available (as is the case in
many real world data matching situations, as will be discussed further in Chap. 7),
then the evaluation of each rule requires manual inspection of all candidate record
pairs that are covered by a rule, and for each covered pair it needs to be manually
decided if the classification is correct or not. This is a tedious and labour-intensive
process.

• An alternative approach to generating a set of rules is to learn them from training
data that consist of candidate record pairs and their true match status. Similar to
the learning of blocking keys discussed in Sect. 4.12, the learning of rules can be
accomplished by employing a sequential covering algorithm [135], where a set
of rules that cover one class (usually the candidate record pairs that correspond
to matches) is learned first, followed by rules that cover the other class (the non-
matches).
One rule is learned after another, by starting with an empty predicate P for a rule
and evaluating its accuracy and coverage. Candidate rules are then generated by
adding a term to P based on the similarity values in the different elements of
comparison vectors. Such candidate rules could for example be (similar to the
example given in Fig. 6.3):

(s(GivenName)[ri , r j] = 1.0) ⇒ [ri , r j] → Match

(s(Surname)[ri , r j] = 1.0) ⇒ [ri , r j] → Match

(s(StrName)[ri , r j] = 1.0) ⇒ [ri , r j] → Match

(s(Suburb)[ri , r j] = 1.0) ⇒ [ri , r j] → Match

The best candidate rule (according to some criteria that takes accuracy and cov-
erage into account [135]) is selected, and this becomes the new base rule which
will be expanded with new candidate terms in the next step [135]. Assuming for
example, that the first of the four above rules was the best candidate, the next set
of expanded candidate rules could consist of:

http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://dx.doi.org/10.1007/978-3-642-31164-2_4

142 6 Classification

(s(GivenName)[ri , r j] = 1.0) ∧ (s(Surname)[ri , r j] ≥ 0.8) ⇒ [ri , r j] → Match

(s(GivenName)[ri , r j] = 1.0) ∧ (s(StrName)[ri , r j] ≥ 0.8) ⇒ [ri , r j] → Match

(s(GivenName)[ri , r j] = 1.0) ∧ (s(Suburb)[ri , r j] ≥ 0.8) ⇒ [ri , r j] → Match

This process of testing candidate rules and expanding the best candidate with
another term is repeated until a stopping criteria is fulfilled. All candidate record
pairs that are covered by the latest generated rule are then removed from the
training set, and if candidate record pairs are left in the training set then a new rule
is learned.

Two data matching research prototypes were developed in the late 1990s that
were employing rule-based classification approaches. A system based on an exten-
sion of SQL that allows rule-based matching operators to be defined was proposed
by Galhardas et al. [117]. These matching operators included similarity predicates,
the setting of thresholds, as well as normal SQL statements. Complex matching
statements were therefore written using SQL statements. A related approach was the
WHIRL system developed by Cohen [81], which combined similarity calculations
based on cosine similarity (described in Sect. 5.8) with conjunctive rules applied on
record attributes.

More recently, Schewe and Wang [236] proposed a reasoning approach to acquire
knowledge about entities stored in different databases by identifying objects through
knowledge patterns. Such patterns can capture details such as abbreviations and
variations in title, name and address values. An advantage of knowledge patterns is
that they can capture knowledge at different levels of abstractions (i.e. not just at
the level of individual entities but also at the level of attributes), and by using the
contexts of where patterns occur (i.e. taking the relations between different patterns
into account). Knowledge patterns allow a user to identify, for example, the types
of name and address variations that commonly occur in two databases that are to be
matched, which in turn can facilitate the development of rule-based classifiers that
determine if two records correspond to the same entity or not depending upon the
variations in their attribute values.

6.6 Supervised Classification Methods

When the compared candidate record pairs are only classified into matches and non-
matches (but not potential matches), then this classification is known as a binary
classification problem. Further, if training data in the form of record pairs with their
true match status (match or non-match) are available, then a supervised classification
approach can be employed to train a classification model using these training data.
The trained model is then used to classify record pairs with an unknown match
status into matches and non-matches. Many binary classification techniques have
been developed by the AI, machine learning and data mining communities over the
past few decades [135, 189], and several of these techniques have been applied in the

http://dx.doi.org/10.1007/978-3-642-31164-2_5

6.6 Supervised Classification Methods 143

area of data matching and deduplication. This section provides an overview of this
work and highlights important issues that need to be considered when a supervised
classification technique is used to classify record pairs.

Most classification techniques (including the probabilistic record linkage, cost-
based and rule-based approaches discussed earlier in this chapter), classify each
compared record pair individually and independently from all other record pairs
(Sect. 6.10 below covers techniques that are aimed at classifying all compared record
pairs in a collective approach). From the classification point of view, each com-
pared record pair is represented by its comparison vector that contains the individual
similarity values that were calculated in the comparison step (as was discussed in
Sect. 5.16). These comparison vectors correspond to the feature vectors (the notation
used in machine learning or data mining) that are employed to train a classification
model, and to classify record pairs with unknown match status. Figure 6.4 shows such
a set of comparison vectors and their true match status. A supervised classification
approach consists of three steps [135].

1. A supervised classification technique is selected and a classification model is
built by training the classifier using available training data which include the
known true match status of candidate record pairs. Overviews of supervised
classification techniques are provided in text books on machine learning and
data mining [135, 189]. Most classification techniques require a user to tune a
variety of parameters to achieve high classification accuracy. Selecting appro-
priate parameter values can be conducted either via a guided search through the
parameter space or via manual tuning.

2. The accuracy of the built classification model is evaluated using a set of testing
data that must be in the same format and structure as the training data (i.e. these
data must be comparison vectors that were generated using the same comparison
functions as the comparison vectors in the training data). These testing data must
also contain the known true match status of record pairs, so that the match or
non-match decision of the trained classifier can be compared with the true match
status (this topic is covered in more detail in Sect. 7.2).
It is important that the testing data are different from the training data, because
otherwise over-fitting can occur [135]. Over-fitting refers to the issue that the
accuracy of a classification model as measured on the training data is very high,
because the model will learn the intrinsic characteristics of the training data.
Testing a model on data sets that are different from the training data set is more
meaningful and more realistic, because in practice the data upon which a classifier
is applied on will be different from the data the classifier was trained on. The
accuracy reported using a testing data set is therefore closer to the accuracy that
can be expected when the classification model is applied on new, unseen data
where the match status of candidate record pairs is unknown.
If the accuracy reported on the testing data is not good enough according to some
criteria set for a certain data matching exercise, then one needs to go back to step
1 and either change some of the parameter settings used when the classifier was
trained, or alternatively employ a different classification technique altogether.

http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://dx.doi.org/10.1007/978-3-642-31164-2_7

144 6 Classification

RecPairID GivenName Surname StrNum StrName Suburb BDay BMonth BYear Class

(a1,b1) 0.6 0.8 0.0 1.0 0.6 0.5 0.5 1.0 M
(a1,b2) 0.0 0.15 0.0 0.5 0.0 0.5 0.0 0.75 U
(a2,b1) 0.2 0.0 0.0 0.1 0.15 0.0 0.0 0.75 U
(a2,b2) 0.0 0.25 1.0 0.4 0.6 1.0 1.0 0.75 M

Fig. 6.4 Example comparison vectors based on records shown in Fig. 6.1 and their true match
status (the column ‘Class’, where M corresponds to matches and U corresponds to non-matches),
which can be used to train a supervised classifier

NoYes

s(Suburb) >= 0.6

NoYes

NoYes

Match

Match s(Surname) > 0.15Non−Match

Non−Match

Non−Match

s(BDay) >= 0.5

Fig. 6.5 Two example decision trees resulting from the four training comparison vectors from
Fig. 6.4. The tests are conducted on the similarity values (indicated by ‘s(·)’ in the tree nodes) for
certain attributes. The leaf nodes correspond to the two classes into which record pairs are classified.
Clearly, the tree on the left side is better as it is not only smaller (less tests) and thus faster when new
candidate record pairs with unknown match status are to be classified, but also more robust. The
test ‘s(Surname) > 0.15’, which is a very low threshold, is unlikely to lead to accurate matching
results. Rather, the tree on the right-hand side is over-fitting the training data shown in Fig. 6.4

It is important to note that the selection of the best classification technique is
dependent on the data that are to be classified [80]. For different types of data
different techniques might perform best.

3. Once a satisfactory accuracy has been achieved with a trained classification
model, in the third step the model is applied to classify new unseen data, i.e.
comparison vectors that correspond to candidate record pairs where the match
status is not known.

In the following, two popular supervised classification techniques that have been
employed in the area of data matching and deduplication are described in more detail.

• Decision tree induction: Decision tree induction is one of the most popular super-
vised classification techniques used in data mining and machine learning [135].
Decision trees, as the example shown in Fig. 6.5 illustrates, are favoured by many
researchers and practitioners over other techniques because they can be visualised
easily and are thus understandable even by people who are not data mining or
machine learning experts. Additionally, decision trees can be directly converted
into a set of rules. The two trees from Fig. 6.5 for example, can be converted into
the following two sets of rules:

6.6 Supervised Classification Methods 145

(s(Suburb)[ri , r j] ≥ 0.6) ⇒ [ri , r j] → Match

(s(Suburb)[ri , r j] < 0.6) ⇒ [ri , r j] → Non-Match

(s(BDay)[ri , r j] ≥ 0.5) ∧ (s(Surname)[ri , r j] > 0.15) ⇒ [ri , r j] → Match

(s(BDay)[ri , r j] ≥ 0.5) ∧ (s(Surname)[ri , r j] ≤ 0.15) ⇒ [ri , r j] → Non-Match

(s(BDay)[ri , r j] < 0.5) ⇒ [ri , r j] → Non-Match

Like with the rule-based classification approach described in the previous section,
each internal node of a decision tree corresponds to a test on a similarity value in
a comparison vector for a certain attribute, as illustrated in Fig. 6.5. Each internal
node therefore corresponds to a test in the predicate of a rule, where the leaf nodes
in a tree correspond to the possible classification outcome of a rule. In the case of
data matching, the two possible outcomes are the match and non-match classes.
In the learning phase, a tree is built recursively, starting with an empty tree. At
each step in the tree generation process, an attribute that results in the purest split
of the training data set is selected (such that matches are moved into one branch of
the tree and non-matches into the other branch). Different decision tree algorithms
and splitting criteria have been developed. The interested reader is referred to text
books in machine learning or data mining, such as the ones by Mitchell [189] or
Han and Kamber [135].
An early work that used a decision tree classifier for data matching was presented
by Cochinwala et al. [80]. Their work aimed at matching two databases with
customer records. They manually generated training data in the form of sampled
pairs of records that were then used to train a Classification and Regression Tree
(CART) classifier [42]. Once a tree was generated, they applied tree pruning in
order to reduce the complexity of the rules that were extracted from the tree, and
to make these rules more robust. The reduced tree not only generated less complex
rules (i.e. rules made of a smaller number of tests), it also lead to rules that were
more robust when applied to matching the full customer record databases [80].
Elfeky et al. implemented the ID3 decision tree algorithm into their TAILOR
data matching tool box [102]. They provided two approaches to generate training
data. In the first approach, selected candidate record pairs are manually classified
as matches and non-matches by a domain expert, and the comparison vectors of
these record pairs are then used to train a decision tree. The second approach aims
to overcome the manual step by first applying a clustering technique to group all
candidate record pairs into three clusters based on their comparison vectors. The
first cluster corresponds to the class of matches, the second cluster to the class
of non-matches, and the third cluster to the class of potential matches. The com-
parison vectors in the match and non-match clusters are then used to train the
decision tree classifier. In their experimental study, the authors found that both
the decision tree based on manual training data generation and the one based on
the cluster pre-processing (called the ‘hybrid classification approach’) achieved

146 6 Classification

better matching quality than the threshold-based probabilistic record linkage clas-
sifier described in Sect. 6.3.

• Support vector machine (SVM): This relatively recent classification technique,
developed in the 1990s [259], is based on the idea of mapping the training data set,
which consists of comparison vectors and their class labels (match or non-match),
into a multi-dimensional vector space in such a way that the training records from
the two classes are separated and the gap between the two classes is made as wide
as possible.
This idea is illustrated in Fig. 6.6. A decision boundary corresponds to a hyper-
plane in the high-dimensional space (a line in two dimensions or a plane in
three dimensions), and the optimal decision boundary is the one which has the
widest margins to training records in both classes. The mapping from the original
input space (i.e. the comparison vectors containing similarity values) into a high-
dimensional space is conducted using a kernel function, which allows the efficient
calculation of the dot product required in the training process of a SVM. This
training process corresponds to solving a quadratic optimisation problem [259],
for which efficient techniques are available.
Bilenko et al. [35] employed a SVM classifier to learn the costs for edit operations
(such as character inserts, deletes or substitutions) within the Levenshtein edit dis-
tance approximate string comparison function (which was presented in Sect. 5.3).
Learning these costs allows a better separation of the string pairs that correspond
to matches from those that correspond to non-matches. The training data required
for this approach consist of pairs of strings and their match status.
Christen [59, 60] developed an automatic classification approach for data match-
ing based on a SVM, which is similar to the clustering-based hybrid approach
developed by Elfeky et al. [102] described above. In a first step, training exam-
ples that clearly correspond to matches and non-matches are selected from the set
of all comparison vectors. Clear match examples are comparison vectors where
all similarity values are equal to or very close to the exact similarity of 1, while
clear non-match examples are comparison vectors where all similarity values are
equal to or close to 0. Based on this initial training set, a first SVM is trained. All
comparison vectors that are not in one of the two training sets are classified using
this initial SVM. In the second step, the comparison vectors that were classified
to be furthest away from the SVM decision boundary are added into one of the
two training sets (depending upon if they are located on the side of matches or on
the side of non-matches), and a second SVM is trained on these enlarged train-
ing sets. This process of adding more comparison vectors into the training sets
followed by training a new SVM is repeated until a stopping criteria is fulfilled.
In an experimental study, this automatic classification approach outperformed a
basic clustering approach as well as the hybrid approach by Elfeky et al. [102] in
experiments on several data sets.

Employing supervised classification techniques for data matching has several
challenges. First, classifying candidate record pairs is often an imbalanced problem,
in that there are many more record pairs that correspond to true non-matches com-

http://dx.doi.org/10.1007/978-3-642-31164-2_5

6.6 Supervised Classification Methods 147

0

1

0
1

s(
S

u
rn

am
e)

s(Suburb)

(a1,b1)

(a2,b2)

(a1,b2)

(a2,b1)

Fig. 6.6 A simplified illustration of a 2D vector space (made of the similarities of the attributes
‘Surname’ and ‘Suburb’), containing the similarity values of the four comparison vectors from
Fig. 6.4, and three decision boundaries (dotted lines) that correspond to three trained support vector
machine (SVM) classifiers. The thick dotted line is the SVM which has the widest margins to both
the class of matches (circles) and non-matches (squares)

pared to the number of record pairs that correspond to true matches. This holds even
after some form of indexing has been applied. As a result, a classification technique,
as well as the measure(s) used to evaluate how good a trained classification model
is, must be able to handle imbalanced classes. The way training data are generated
can help to overcome this problem, for example by sampling the same number of
training examples from both the match and non-match classes. This issue will be
discussed further in Sect. 7.1.

The second issue is the difficulty to generate, obtain, select or sample training
data that are representative of the actual data that are to be matched. Good training
data will more likely result in a robust and accurate classification model. Acquir-
ing or manually generating training data can be quite costly and time-consuming.
As a result, training data sets are often small compared to the databases that are to
be matched or deduplicated. Training data should, however, represent the detailed
characteristics of the full database(s) as much as possible. An alternative to train a
supervised classifier using a large training data set is to create training data interac-
tively using an active learning approach, as will be discussed next.

6.7 Active Learning Approaches

A major drawback of supervised classification techniques is their need for training
data sets, made of comparison vectors that correspond to matches and non-matches,
that represent the characteristics of the full database(s) to be matched or deduplicated.
An alternative to generating or obtaining such comprehensive training data sets is
to use a classification approach that only requires a small amount of training data

http://dx.doi.org/10.1007/978-3-642-31164-2_7

148 6 Classification

in order to achieve high classification accuracy. Based on an initial small training
data set, a classification model is built interactively by asking an experienced user
for further training examples that help to improve the classification model. Such
interactive approaches are known as active learning [11, 231, 252].

An active learning classifier starts by building a first classification model using a
small set of seed training examples. These can, for example, be comparison vectors
that correspond to clear matches and clear non-matches. This initial classification
model will likely have a low classification accuracy. Specifically, it will have difficul-
ties to classify comparison vectors with certain characteristics, such as comparison
vectors that do not correspond to clear matches or non-matches. If a SVM classifier
is used, for example, then the comparison vectors that are located closest to the deci-
sion boundary (see Fig. 6.6) correspond to matches or non-matches with almost equal
likelihood. A manual classification of the candidate record pairs that correspond to
these comparison vectors can be highly beneficial to improve the accuracy of the
classification model.

An active learning classifier works iteratively by (1) training a classification model,
(2) classifying all comparison vectors not in the training set as matches or non-
matches, (3) asking a user to provide manual classification of the candidate record
pairs that were most difficult to classify, (4) adding these manually classified compar-
ison vectors to the corresponding training data set (of either matches or non-matches)
and (5) training the next, improved, classification model. This process is repeated
until a certain stopping criteria is met. This stopping criteria either terminates this
process after a maximum number of iterations, or more commonly when the last
trained classifier achieves a certain matching quality on the testing data set.

The following three classification approaches using active learning have been
proposed in the area of data matching and deduplication.

• Sarawagi et al. [231] presented the ALIAS system, which is an interactive
deduplication system that (similar to the traditional probabilistic record linkage
classification approach discussed in Sect. 6.3) works with the three classes of
matches, non-matches and potential matches. Rather than building only one clas-
sification model, a set of several models is trained on the training data set, each
of them with a randomised choice of parameter setting. Three decision trees were
used in ALIAS. For those comparison vectors where different decisions were made
by the three trained decision trees (for example, two classify a comparison vector
as a match and one as a non-match), a manual decision is required by the user.
According to this manual classification, comparison vectors are added into either
the training set of matches or the set of non-matches, and the next set of classifiers
is trained on this enhanced data set.

• A similar approach was presented by Tejada et al. [252] aimed at integrating data
objects from different Web sources. Their system, called Active Atlas,1 learns
mapping rules using an active learning approach. These mapping rules include
tests for string equality, string prefix or string suffix equality, or if two strings

1 It is interesting to note that both the ALIAS and Active Atlas systems were presented in the same
year (2002) and at the same conference.

6.7 Active Learning Approaches 149

contain the same abbreviations or acronyms (like ‘IBM’ vs. ‘International Business
Machines’). Similar to the ALIAS system, a committee of three decision tree
classifiers was used to learn the rules that best distinguish matches from non-
matches, with a manual classification required for pairs of strings where the three
decision trees returned different classification outcomes.

• More recently, Arasu et al. [11] presented a novel approach to active learn-
ing specifically designed for data matching. Their technique integrates indexing
with active learning. Either a decision tree or SVM classification model can be
employed, and a user can specify the minimum precision (to be discussed in
Sect. 7.2) the final classification model must achieve. The active learning process
then aims to achieve a high recall for the classification model while reducing the
number of examples to be classified manually as much as possible. Experiments
on two large databases showed that this proposed new technique outperformed
both ALIAS [231] and Active Atlas [252].

6.8 Managing Transitive Closure

The result of the classification of individual candidate record pairs into matches
and non-matches is often not the final outcome of a data matching or deduplication
exercise. If candidate record pairs are classified individually, each record can be part
of a match with several other records, as illustrated in Fig. 6.7. In certain situations,
however, a one-to-one match restriction has to be applied, as will be further discussed
in Sect. 6.11. If multiple matches are allowed, then the issue of transitive closure
needs to be addressed.

Transitive closure refers to the situation where two record pairs, (ri ,r j) and (ri ,rk),
have been classified as matches but the pair (r j ,rk) has been classified as a non-match.
This contradicts the intuition that if record ri is considered to be a match with record
r j (i.e. referring to the same entity) and record r j is considered to be a match with
rk , then record ri must also be considered a match with rk . Applying the transitive
closure refers to changing the match status of record pairs such that no contradictions
of the match status within groups of records occurs [195].

The transitivity of matches can also lead to problems in that ‘chains’ of records,
where individual pairs are classified as matches, are formed. The records at the two
ends of a chain can, however, be quite different from each other, and they would
not be considered to correspond to a match. For example, consider the four records
‘a1’ to ‘a4’ in Fig. 6.7, where the three individual pairs (a1,a2), (a2,a3) and (a3,a4)
have been classified as matches, but the summed similarities between other pairs
is below the match classification threshold t = 5. Pair (a1,a4), for example, only
has a summed similarity of SimSum(a1, a4) = 1.15, and it is unlikely that these
two records refer to the same individual. The clustering approaches discussed in the
following section aim to overcome this problem of chains of matching records.

In real-world databases, the problem of record chains being generated by a pair-
wise classification technique seems to occur only rarely because the space of all

http://dx.doi.org/10.1007/978-3-642-31164-2_7

150 6 Classification

RecID GivenName Surname StrNum StrName Suburb BDay BMonth BYear

a1 john smith 18 miller st dickson 12 11 1970
a2 jonny smith 73 miller st dixon 11 10 1970
a3 joan smith 73 dawson cr lyneham 11 12 1979
a4 max miller 73 dawson cr lyneham 11 2 1969
a5 sal bass 67 milles rd ainslie 28 5 1981
a6 sally bass 64 miles rd ainsile 23 5 1981

Candidate pair SimSum Classification

(a1, a2) 5.20 Match
(a1, a3) 3.30 Non-match
(a1, a4) 1.15 Non-match
(a2, a3) 5.05 Match
(a2, a4) 2.70 Non-match
(a3, a4) 5.25 Match
(a5, a6) 6.20 Match

a6
a5

a2
a1

a3
a4

Fig. 6.7 An example of the transitive closure problem for a set of six records (top row table, ‘a1’
to ‘a6’). It is assumed the summed nonzero similarities SimSum for the candidate record pairs
in the lower left table have been calculated, and a simple classification threshold-based classifier
with threshold t = 5.0 has been applied to classify each record pair individually. The result of
this classification are two groups of records (possibly corresponding to two entities). The transitive
closure would require that the record pairs (a1,a3), (a1,a4) and (a2,a4) are also considered to
be matching (illustrated with dotted lines), even though their summed similarities are below the
classification threshold

possible values in the different record attributes is very large. The likelihood that
records that are not matching have a high similarity with each other is therefore very
small [140, 190, 191]. Clustering and collective classification algorithms, which will
be discussed in the following two sections, deal with the problem of transitivity by
default, by classifying groups of records as matches rather than individual pairs of
records only.

6.9 Clustering-Based Approaches

So far all techniques presented have viewed the problem of deciding which candi-
date record pairs correspond to matches and which to non-matches as a traditional
classification problem. An alternative approach is to view this classification as a
clustering (grouping) approach, where each cluster consists of records that refer to
one entity. Clustering is the process of grouping data objects that are similar to each
other according to some criteria into the same cluster [135]. The aim of clustering
is to generate clusters that have high intra-cluster similarity and low inter-cluster
similarity. This means all data objects within a cluster should be similar with each
other, while data objects in different clusters should be dissimilar to each other.

6.9 Clustering-Based Approaches 151

Clustering is generally conducted in an unsupervised fashion, and therefore no
training data in the form of record pairs with known true match status are required.
Many different clustering techniques have been developed by the statistics, machine
learning and data mining communities [135]. Different clustering techniques employ
different heuristics to guide the clustering process [135]. They either partition data
objects into a fixed number of clusters or into a hierarchy of clusters, or they generate
graphs that correspond to clusters (to be discussed in more detail below), or they
generate clusters that correspond to dense areas where many data objects are located
close to each other. In data matching, the data objects to be clustered correspond to
the records that represent entities.

A clustering-based approach is clearly suited for deduplication, where all records
to be matched are stored in one database. For the matching of two or more databases,
however, all records first need to be inserted into one common set. This can be
accomplished by assigning each record a unique identifier which not only identifies
the record but also the source database from where the record has originated.

Because each entity in a database will ideally be represented by one cluster, the
number of clusters is not only unknown at the beginning of a clustering process, it will
also be very large when the databases that are deduplicated or matched contain many
entities. Partitioning based clustering algorithms [135], which require the number of
clusters to be specified at the beginning, are therefore not applicable for clustering
records in data matching or deduplication applications.

The clusters generated in data matching are generally very small, containing only
a few records. Some, potentially many, clusters will only consist of a single record,
if there is only one record in the database(s) that corresponds to this entity.

Different clustering approaches for data matching and deduplication have been
investigated. In the following, five different approaches are discussed in more detail.

• In an early clustering approach, Monge [190] proposed an adaptive deduplication
system where records are clustered according to some similarity measure, and a
priority queue is kept in memory consisting of the most recently formed clusters.
Each cluster corresponds to an entity, and is made of one or several records that
represent this entity. To save memory, however, not necessarily all records that
refer to an entity are kept in memory for a given cluster. Initially all records to be
deduplicated or matched are sorted according to a sorting key (as was discussed
in Sects. 4.2 and 4.5). One record in the sorted database is then processed after
another. Each record is compared with the records stored in the priority queue. If
a match is found the current record is attached to the matching cluster, and this
cluster is put at the top of the priority queue. If no match is found then a new cluster
is formed made of the current record only. To make sure that only a certain amount
of memory is used, the oldest cluster is removed from the end of the priority queue
if a new cluster is generated and the queue exceeds a maximum length limit.
The experimental results of this combined sorted-neighbourhood and clustering
technique presented by Monge showed that the approach can achieve matching
accuracies similar to the basic sorted-neighbourhood approach [140, 141]. It can,
however, reduce the number of record pair comparisons that are conducted by upto

http://dx.doi.org/10.1007/978-3-642-31164-2_4
http://dx.doi.org/10.1007/978-3-642-31164-2_4

152 6 Classification

75 %, because each record is only compared to a small number of representative
records in a cluster.

• Clustering can also be applied as a post-processing step after the pair-wise classi-
fication of record pairs has been conducted, and a graph of all matching records,
as for example shown in Fig. 6.7, has been generated. The aim of clustering using
such a graph is to decide for each sub-graph (consisting of connected records)
which record subsets correspond to the actual entities that are to be matched or
deduplicated [140, 195]. For example, the sub-graph made of the four records ‘a1’
to ‘a4’ from Fig. 6.7 is unlikely to refer to one but rather to three entities (only ‘a1’
and ‘a2’ seem to be duplicate records of the same individual).
One approach to reducing the size of sub-graphs (and thus the number of records
that can correspond to the same entity) is to iteratively remove edges between two
nodes (corresponding to a record pair classified as a match) starting from the edge
that has the lowest similarity in a sub-graph. For the sub-graph made of records
‘a1’ to ‘a4’ in Fig. 6.7, the edge from ‘a2’ to ‘a3’ has the lowest similarity (5.05),
therefore this edge would be removed first, leaving two new smaller sub-graphs.
This process can be repeated until either each sub-graph only contains edges with
a certain minimum intra-cluster similarity value tc, until the transitive closure
property has been fulfilled, or alternatively until each sub-graph contains no more
than a maximum number nc of records [195]. Which of these stopping criteria is
best suited depends upon the requirements of the data matching or deduplication
application.
Continuing on with the example from Fig. 6.7, if the minimum intra-cluster thresh-
old is set to tc = 5.25, then the link between records ‘a2’ and ‘a3’ is removed first.
The link between records ‘a1’ and ‘a2’ will also be removed, resulting in three
separate entities (which possibly corresponds to a missed true match), while the
link between records ‘a3’ and ‘a4’ is kept as a match (possibly a wrong match).
On the other hand, if the maximum size of a sub-graph is set to nc = 2, then the
record pair ‘a1’ and ‘a2’ is considered as one entity and the pair ‘a3’ and ‘a4’ as
another entity, and only the link between ‘a2’ and ‘a3’ is removed.

• Another approach to clustering a graph of matching record pairs is to find centres
within each sub-graph and to then assign nodes (records) to their closest centre,
i.e. the centre record they are most similar to. This approach, named CENTER
[137], first sorts the edges of a sub-graph in descending order of their similarities.
The first time a record ri , appears in an edge of the sub-graph it is assigned as the
centre of a cluster. All records r j that appear in edges (ri ,r j) later on in the sorted
list are then assigned to this cluster, but not to any other clusters [195].
When this clustering technique is applied on the sub-graph of records ‘a1’ to
‘a4’ from Fig. 6.7, the sorted list of edges is: (a3,a4), (a1,a2) and (a2,a3), with
similarities 5.25, 5.20 and 5.05, respectively. If node ‘a3’ is marked as the centre
then ‘a4’ is obviously considered to be part of this cluster. In the next e.g., (a1,a2),
neither ‘a1’ nor ‘a2’ have been marked as centres or as being part of a cluster,
and so ‘a1’ is marked as a new centre. In the third e.g., (a2,a3), both nodes have
already been assigned to clusters and so this edge is not considered. As a result,
the clustering of this sub-graph leads to two sub-graphs that correspond to two

6.9 Clustering-Based Approaches 153

entities, one consisting of records ‘a1’ and ‘a2’ and the other of records ‘a3’ and
‘a4’. The selection of which node in a pair becomes the centre of a new cluster
obviously affects the final clustering outcome. One approach to overcoming this
problem, called MERGE-CENTER [137], is to merge two clusters if their centres
are very similar to each other.

• The two previously described approaches to clustering are based on a graph of
matching candidate record pairs which was built using a pair-wise comparison
and classification technique. A drawback of these approaches is that the minimum
similarity threshold that has been used to classify record pairs into matches and
non-matches is determining the structure of the cluster graph. This threshold is
a global parameter applied to all compared record pairs. An alternative approach
is to cluster the set of records based on all similarity values calculated between
pairs of records (not just the ones classified as matches), and to guide the clustering
based on records that are similar to each other relative to the number of records that
are located in the neighbourhood around them [195]. This is an approach similar
to density based clustering [135].
Chaudhuri et al. [52] proposed such an approach based on the concepts of compact
sets and sparse neighbourhoods. A compact set, C S, is a group of records that are
all more similar with each other (i.e. have small distances dist (·) with each other)
than they are similar to any other records. Specifically, for all pairs of records
ri , r j ∈ C S : dist (ri , r j) < dist (ri , rk) ∀ rk /∈ C S. The neighbourhood set of a
record ri is defined as N (ri) = p · nn(ri), where nn(ri) is the distance of record
ri to its closest neighbour and p determines the size of the radius around ri that
is considered. The neighbourhood of ri is defined to be sparse if the number of
records in the set N (ri) is below a certain constant threshold [52]. The advantage
of this clustering approach is that clusters of records are generated depending upon
the number and density of their neighbouring records, rather than based on a global
threshold.

• A different clustering approach was proposed by Verykios et al. [261] and Elfeky
et al. [102]. Rather than clustering the actual records based on the similarities
calculated between them, clustering was applied on the comparison vectors that are
generated in the comparison step. Specifically, comparison vectors were inserted
into three clusters, one each corresponding to matches, non-matches and potential
matches, similar to the traditional probabilistic record linkage approach presented
in Sect. 6.3. Identifying the clusters that correspond to matches and non-matches
is easy because they will either have a centroid vector that is close to an exact
match (with comparison vector [1.0, . . . , 1.0]) or a centroid vector that is close
to a total non-match (with comparison vector [0.0, . . . , 0.0]), respectively. In the
second step of this approach, the comparison vectors in the match and non-match
clusters were used as training data for a decision tree classifier, as was previously
discussed in Sect. 6.6.

154 6 Classification

6.10 Collective Classification

Pair-wise classification techniques make a match or non-match decision indepen-
dently for each compared candidate record pair, and clustering techniques further
refine the classification of groups of records that likely correspond to the same entity.
With both these approaches, decisions about the match status of a pair or a group of
records are made independently from all other records or groups in the database(s)
that are matched or deduplicated. These techniques therefore make local decisions
without taking the characteristics of all records in the full database(s) into account.

New techniques have been proposed in the past few years that aim to make a
decision about which records are matching in an overall collective fashion over all
pairs or groups of records in the database(s) that are matched. These techniques are
known as ‘collective entity resolution’ techniques, and they employ either iterative
or hierarchical clustering [31, 181], or graph-based approaches [93, 155, 195]. All of
these collective classification approaches have been developed for, and evaluated on,
databases that contain different types of entities, where certain relationships between
entities are known. These relationships can be represented in a relationship graph, as
illustrated in Fig. 6.8. The most popular type of such data are bibliographic databases
where the entity types include authors, institutions (or affiliations), venues (journals,
conferences and workshops), and the actual papers (or articles) [31, 155].

The basic idea of collective classification approaches is to calculate the similarities
of all connections (links) in the relationship graph that are ambiguous (such as the
dotted links in Fig. 6.8) using information from the known relationships (the ‘hard’
connections between different entities). Because different types of entities are avail-
able, the known relationships between one type of entities can help to disambiguate
(i.e. decide the match status) of other types of entities.

The first step in collective classification techniques is to generate the relationship
graph, which can consist of relations between different types of entities. These rela-
tions can either be ‘hard’ connections (where a relationship is known without doubt
from the data), or connections that have a probability or weight attached to them if
it is not clear if a relationship exists or not. These probabilities or weights can, for
example, be based on similarities calculated when pairs of records are compared,
as was discussed in Chap. 5. The collective classification task is then to decide if
these possible relationships correspond to matches or non-matches based on other
connections in the relationship graph. This is generally accomplished through an
iterative approach that updates the weights (or probabilities) on the connections that
determine the matching outcomes. Note that while in Fig. 6.8 only one type of con-
nection needs to be classified, in the most general case not just connections between
different types of entities, but also different types of connections, are available in a
relationship graph.

The main differences between the various collective classification techniques are
(1) how the relationship graph is generated from the underlying database(s) and
(2) how the iterative update of the probabilities or weights in the graph, and their
classification into matches (i.e. a connection exists between two nodes) or non-

http://dx.doi.org/10.1007/978-3-642-31164-2_5

6.10 Collective Classification 155

AuthorID Author name Affiliation

a1 Dave Smith Purdue
a2 Don Smith Patras
a3 Susan Miles Stanford
a4 John Black Stanford
a5 Joe Green ?
a6 Liz Redman ?

PaperID Co-author names

p1 John Black, Don Smith
p2 Susan Miles, D Smith
p3 Dave Smith
p4 Don Smith, Joe Green
p5 Joe Green, Liz Redman
p6 Liz Redman, D Smith

? ?

John Black p1 p4

p3

p6

p5

w3=?

w2=?

w1=?

w4=?
Stanford

Patras

Purdue

Joe Green

Dave Smith

Don Smith

Liz RedmanSusan Miles

p2

?

?

Fig. 6.8 Example of a graph-based collective matching approach of bibliographic records, adapted
from [155]. The task is to identify (disambiguate) if the author ‘D Smith’ in papers ‘p2’ and ‘p6’
refers to either ‘Don Smith’ or ‘Dave Smith’. Given Don Smith has co-authored paper ‘p1’ with
‘John Black’, who is affiliated with ‘Stanford’, and ‘Susan Miles’ is also affiliated with ‘Stanford’,
there is a higher likelihood that ‘Don Smith’ rather than ‘Dave Smith’ is a co-author of paper ‘p2’,
because ‘Dave Smith’ does not have any other connection with ‘Stanford’. Similarly, given ‘Don
Smith’ has written paper ‘p4’ with ‘Joe Green’, who has co-authored paper ‘p5’ with ‘Liz Redman’,
there is a higher likelihood that ‘Don Smith’ is also the second co-author of paper ‘p6’ rather than
‘Dave Smith’ who has no connection to ‘Joe Green’

matches (no connection exists between two nodes) is conducted. In the following,
the major approaches to collective classification techniques are described in more
detail.

• Kalashnikov and Mehrotra [155] build a relationship graph between different types
of entities and with different relations, as the example graph in Fig. 6.8 shows.
The disambiguation of connections between entities, i.e. their classification as
being matches or non-matches, is conducted in an iterative approach where the
unknown weights (such as ‘w1’ to ‘w4’ in Fig. 6.8) are updated based on the
number of connections in the path that needs to be covered to get from one end
of the connection under question to the other. For example, in Fig. 6.8, the path
from ‘Don Smith’ via connection ‘w4’ continues onto ‘p6’, ‘Liz Redman’, ‘p5’,
‘Joe Green’, ‘p4’ and then back to ‘Don Smith’. On the other hand, the only path
starting from ‘Dave Smith’ would go via all other authors and even another path
with unknown weight (‘w1’), which is much less likely than the first path because
it is a much longer path. Therefore, the weight for ‘w4’ can be set to a higher
value than the weight for ‘w3’. Kalashnikov and Mehrotra formalise this principle
as the context attraction principle [155], and using this principle the unknown
connection weights in the relationship graph are updated in an iterative fashion.
An experimental evaluation on bibliographic data confirmed that this approach

156 6 Classification

can lead to more accurate matching results compared to a pair-wise classification
approach [155].

• Dong et al. [93] tackle the problem of collective classification of entities from
multiple classes (types) by generating a dependency graph rather than a relation-
ship graph. A node in the graph represents the similarity between a pair of entities
of the same type, and a connection between nodes occurs when this similarity
depends upon the similarity of another pair of entities. For example, the similarity
between two papers (articles) depends upon the similarity between the titles, years
of publication, page numbers, the authors listed with the two papers, as well as the
similarity of the venues where the two papers have been published. A change in the
similarity of authors or venues, for example, will affect the similarity calculated
for the pair of papers.
The collective classification task is conducted iteratively by initially marking all
nodes as active. An active node is then selected, and depending upon the similarity
in that node, it is either marked as merged (if its similarity is above a certain sim-
ilarity threshold) or as inactive (otherwise). All neighbours of this just processed
node that have a similarity below 1.0 (i.e. which do not have exact similarity) are
then set as active. A queue of active nodes is maintained throughout the process,
and in each iteration the similarity of the node at the top of the queue is recalcu-
lated. This process continues until no active node is left in the queue and all nodes
are either marked as merged or inactive. This approach outperformed pair-wise
classification techniques in experiments using several data sets [93].

• A machine learning based technique to collective classification has been proposed
by Bhattacharya and Getoor [31]. In this approach, a relationship graph is built
where the records (viewed as references to entities) are the nodes, and edges
connect nodes if there is a relationship between them. For example, similar as
shown in Fig. 6.8, the names of authors will be nodes in a reference graph, and
all co-authors of a paper will be connected through an edge. These edges can
be between more than two nodes, in which case they are called hyper-edges. If,
for example, a paper was written by three co-authors, then one edge connects
the three nodes that correspond to these co-authors. The similarity between two
nodes is calculated as the weighted sum between the attribute value similarity and
the relational similarity, where the latter considers the connectivity of two nodes
through their hyper-edge as well as the connectivity of the neighbouring nodes they
are connected to. Different relational similarity measures have been investigated
[31].
The collective classification is conducted using a priority queue that contains tuples
made of two cluster identifiers and the similarity between the two clusters, sorted
according to highest similarities first. An iterative algorithm merges clusters and
updates the similarities between newly formed clusters as long as there are pairs
of clusters in the queue that have a certain minimum similarity. When two nodes
or clusters are merged, the similarities between the newly formed cluster and all
its neighbours in the relational graph are updated, and the similarities between
older clusters and the new cluster are added into the priority queue. The algo-
rithm stops when no more clusters can be merged because the similarity between

6.10 Collective Classification 157

them is below the minimum threshold set by the user. Experiments on three dif-
ferent bibliographic databases showed that this approach is superior to pair-wise
classification, however, at the cost of longer run times [31].
A variation of this relational clustering approach has been developed by
Bhattacharya and Getoor to allow query-time collective classification [32]. A sin-
gle query record is matched to a database that contains entity records and that can
include duplicates. Using a collective classification approach, the query record
is matched with the full database. While the reported matching accuracy of this
approach is again very high, the matching time for a single query record was
reported as being around 30 s, making this approach not suitable for real-time data
matching (a topic that will be covered in detail in Sect. 9.3).

While collective classification techniques have shown to result in improved match-
ing quality compared to pair-wise classification techniques, these improvements
come at the cost of a higher computation complexity and thus reduced scalability to
large databases. Recent work has aimed to improve the scalability of collective clas-
sification techniques by running a collective matching process many times on small
subsets of records that are in the same neighbourhood of the data [225]. These inde-
pendent collective matching instances exchange messages about the local matches
found, and the results of all matching instances are combined into a final overall
solution.

Thus far collective classification techniques for data matching have mostly been
applied on databases that contain bibliographic data, or other data that contain several
types of entities. It is not clear if and how collective classification techniques can be
applied on data that only contain one type of entities, such as databases containing
records about individuals.

6.11 Matching Restrictions and Group Linking

The classification of pairs or groups of records into the class of matches and non-
matches discussed so far has not taken into account that in certain data matching
applications there are restrictions with regard to the number of matches a single
record can be involved in. The three possible scenarios when matching two databases,
A and B, are:

• One-to-one: A record from A can match at most one record from B.
• One-to-many: A record from A can match at most one record from B, while a

record from B can be involved in none, one or several matches with records from
A. The one-to-many scenario is symmetric by swapping the databases A and B.

• Many-to-many: A record from A can match none, one, or several records from
B, and a record from B can match none, one, or several records from A.

A one-to-one matching restriction is, for example, required when records from
(historical) census databases are matched across time, and each record corresponds

http://dx.doi.org/10.1007/978-3-642-31164-2_9

158 6 Classification

Candidate pair SimSum

(a1,b2) 4.5
(a1,b4) 5.5
(a2,b3) 5.9
(a2,b5) 4.9
(a3,b2) 5.8
(a3,b4) 4.7
(a4,b1) 5.3
(a4,b5) 6.0
(a5,b5) 5.1 b5

b4

b3

b2

b1a1

a2

a3

a4

a5

Optimal

b5

b4

b3

b2

b1a1

a2

a3

a4

a5

Greedy

Fig. 6.9 Examples of two approaches to enforcing a one-to-one assignment of matched candi-
date record pairs. The thicker lines between records illustrate the matched (assigned) records. The
‘Optimal’ approach aims to maximise the overall sum of the similarities (SimSum) over all matched
record pairs, while the ‘Greedy’ approach matches candidate record pairs starting from the pair that
has the highest similarity value until no more un-assigned records can be matched. In this example,
the sum of similarity values for the matched (assigned) record pairs with the optimal approach is
27.6 while for the greedy approach the sum is only 23.2

to one individual [115, 116]. Because it is assumed that each census database only
contains a single record per individual, one record in one census database (for exam-
ple from 1900) can only match at most one record from another census database (for
example from 1910).

A one-to-many matching restriction could be appropriate in a scenario where a
client database of a government agency (that only contains one record per client)
is updated with a set of new records that refer to individuals who in the recent
past have been in contact with this agency. This new set of records can potentially
contain several records for an individual because there might be several contact
points for this government agency (online, telephone and face-to-face), and because
this agency provides several programs (like a social security agency that provides
housing, disability, unemployment and childcare support programs). Therefore, one
client record in the cleaned and deduplicated client database maintained by this
government agency can potentially match with several records in the set of new
records.

A many-to-many matching is, for example, appropriate when two bibliographic
databases are matched with the aim to identify and match all publications that refer
to the same author, and there can be several records in each database that corre-
spond to publications by one author. Returning to the example of matching census
data, when the objective is to match households or families across census databases,
rather than individuals, then a many-to-many matching scenario needs to be followed
[114, 115].

While the clustering-based and collective classification techniques discussed in
the previous two sections are mostly aimed at the many-to-many matching scenarios,
the classification techniques presented in Sects. 6.2–6.7 classify individual record
pairs independently from all others. Any one-to-one or one-to-many matching restric-
tion can then be applied as a post-classification step on the set of candidate record
pairs that were classified as matches.

6.11 Matching Restrictions and Group Linking 159

A one-to-one matching restriction corresponds to finding an optimal solution to
the problem of assigning individual records from the two databases into pairs (with
one record originating in each database) based on the classified matched record pairs,
such that the number of confirmed matched pairs and the sum of their similarities
are maximised. As Fig. 6.9 illustrates, solving this problem corresponds to finding a
solution to the maximum weighted bipartite graph matching problem [273].

A simple if not optimal approach to one-to-one matching is to sort the matched
candidate record pairs according to their similarity values, and to assign pairs into the
set of confirmed matches in a greedy fashion, as shown in the left graph in Fig. 6.9.
The record pair with the highest similarity value is confirmed as a match first, and
the two records of that pair are marked as being assigned matches (thick line). They
can therefore not be part of any other matching pair. Then the next record pair (where
both records are unassigned) with the highest similarity is confirmed as a match, and
its two records are assigned as matches. This process is repeated as long as there
are unassigned records that can be assigned to a record pair. For example, the pair
(a4, b5) in Fig. 6.9 has the highest similarity value, SimSum = 6.0, and is therefore
assigned as a confirmed match first. This, however, means that neither record ‘a4’
nor record ‘b5’ can be part of any other assigned pair. While this is a simple and
fast approach (only requiring sorting the matching record pairs according to their
similarities followed by a linear scan through that sorted list), this greedy approach
is unlikely to produce a good solution because it is likely that not all records can be
assigned into matching pairs. In Fig. 6.9, for example, the greedy approach cannot
assign records ‘a5’ and ‘b1’ into a matching record pair.

Finding an optimal solution to the problem of assigning records into matching
pairs is known as solving the assignment problem. Various algorithms have been
developed to solve this problem [273]. One early approach is the so-called Hungarian
algorithm, while another class of algorithms can solve this problem by viewing it as
an auction problem [30]. The objective of an auction algorithm is to assign a group
of people who all bid for several objects such that overall the highest profit can be
obtained. People have maximum prices they are willing to pay for certain objects.
When such an auction problem is mapped to the one-to-one matching restriction
problem, people correspond to the records from one database, objects to the records
from the second database, and the maximum prices to the similarities between pairs
of records. Assignment algorithms are computationally more costly than the simply
greedy approach presented before. Specifically, an auction algorithm has a compu-
tation complexity of the order O(m × n), where m is the number of links between
records and n is the number of records involved [204, 205]. When a one-to-one
matching restriction is required in data matching, then each subset of connected
record pairs can be solved independently from all other subsets using an assignment
algorithm applied on this subset only.

In some applications where many-to-many matchings are permissible, the main
aim of a matching exercise is to identify groups of records that match across two
databases rather than individual records [204, 205]. Groups can be defined according
to some criteria, such as the value of a group identifier attribute. Example applications
where such group linkage techniques are useful include the matching of families and

160 6 Classification

households between census databases collected at different points in time [114, 115,
116], or the matching of bibliographic databases where sets of records correspond
to the publications of one author [205]. The objective of group linkage is to identify
an optimal matching of groups of records across two databases based on similarities
calculated between individual pairs of records as well as a similarity measure that
can be calculated for groups of individual record pairs. Both the Jaccard coefficient
and a weighted bipartite graph matching approach have been successfully employed
for the group linkage problem [204, 205].

6.12 Merging Matches

Thus far, it was assumed that the data matching process is completed once pairs
or groups of records have been classified into matches and non-matches (with an
acceptable quality as will be discussed in Chap. 7). In certain data matching and
deduplication situations, however, matched records also need to be merged (in some
way) before the matched data can be used further, either for data analysis or data
mining, or for further data processing such as generating mailing lists. In this last
example, the objective of a data matching exercise is to create a database that contains
complete, accurate and up-to-date address and name details for all records in a mailing
list. Achieving this goal means that the values in certain attributes for the matched
records need to be merged.

While traditionally the merging of matched records has not been considered by
most research in data matching, a recent research project has investigated how this
merging step can be best incorporated into the overall data matching process. The
Stanford Entity Resolution Framework (SERF) project [25, 26, 186] has developed
generic data matching techniques that assume the actual matching of records as a
black-box approach, represented as a function match(ri , r j), which returns true if
two records are matching and false otherwise. An additional black-box function,
merge(ri , r j), is defined on matching record pairs. It returns a new record that is
generated by (somehow) merging the content of records ri and r j . While the actual
merge function is domain and application specific, a merge domination is defined
as the situation when for two records ri and r j it holds merge(ri , r j) = r j . When
the merge function corresponds to combining attribute values from ri and r j , r j

dominating ri means that ri does not contribute any new attribute value(s) to the
merged record beyond what r j already contains.

The generic entity resolution process on a database consists of an iterative match-
ing and merging approach which results in a set of merged records that cannot be
further matched or merged with each other, and no merged record is dominated by
another merged record [26]. Based on these assumptions, a set of entity resolution
algorithms (named G-Swoosh, R-Swoosh, F-Swoosh, D-Swoosh, and P-Swoosh)
were developed by the SERF project. The G-Swoosh algorithm has no particular
requirements on the match and merge functions. It helps to illustrate the process
of entity resolution. In the R-Swoosh algorithm, if two matched records ri and r j

http://dx.doi.org/10.1007/978-3-642-31164-2_7

6.12 Merging Matches 161

are merged into ri, j , i.e. ri, j = merge(ri , r j), then the new record ri, j is added into
the set of all records and the two original records ri and r j are removed from this
set. This approach also means that dominated records do not need to be explicitly
removed from the set of all records as they are eliminated in the merge and removal
step.

The F-Swoosh algorithm improves performance by taking feature (attribute value)
comparisons into account such that each pair of features is only compared once.
D-Swoosh [25] and P-Swoosh [160] are algorithms aimed at distributed and parallel
computing environments, respectively. Both these algorithms are described further
in Sect. 9.5.

A more recently proposed approach is to employ locality sensitive hashing (LSH)
for quick iterative blocking of the records in a databases [164]. All records hashed
into the same bucket (block) by the hash-algorithm are matched and merged, and the
merged records are re-hashed. This process is repeated until either no more matches
and merges are found, the reduced number of record pairs reaches a certain minimum
number, or a specified maximum number of iterations has been reached. The authors
proposed several variations of their approach depending upon if the databases to be
matched contain duplicates or not. Experimental results on a bibliographic database
showed that this hash-based approach is able to achieve better scalability to large
databases compared to the R-Swoosh algorithm [164].

6.13 Practical Considerations and Research Issues

The choice of what type of classification technique to employ for a certain data
matching or deduplication exercise depends upon various factors, including the clas-
sification techniques available in the matching software that is used (or the techniques
that can be implemented), and the type of data that are to be matched or dedupli-
cated. If a supervised classification technique is to be used, training data in the form
of record pairs with their known match status are needed.

A suggested approach is to evaluate different classification techniques, and in the
case where no training data are available, to manually generate a set of record pairs
(together with their match status) that represent the characteristics of the data (such
as the distribution of values, and the types and distribution of errors and variations in
the data that are to be matched). While time-consuming and labour-intensive, such an
approach will enable an evaluation and comparison of the classification accuracies
of different data matching algorithms.

Unfortunately, no comprehensive survey of classification techniques for data
matching and deduplication has so far been published. What is needed is an experi-
mental evaluation of different techniques on a variety of test data sets from different
domains and of different sizes. These data sets should contain the true match status
of record pairs so that the resulting matching quality can be evaluated. Data sets
of different sizes are required so that the scalability with regard to training time,
classification time and memory usage can be evaluated.

http://dx.doi.org/10.1007/978-3-642-31164-2_9

162 6 Classification

Future research in the area of classification for data matching and deduplication
should be aimed at investigating if and how collective classification techniques can
be applied to data that do not contain different types of entities (for example, data
containing personal details such as names and addresses), and how classification
techniques can be employed on very large databases that contain many millions of
records. Given the difficulties of obtaining or generating training data (as will be
discussed further in Chap. 7), a major focus of research should be on unsupervised
and automatic classification techniques that do not require manual preparation of
training data.

Another area of future research is the development of adaptive classification tech-
niques, given that in many application areas data matching is no longer employed
in batch mode and on static databases. Rather, in many modern information systems
data matching and deduplication functionalities are integrated into larger systems
where new records that contain the details of entities are being added into databases
or data warehouses in an ongoing basis. Matching in real time and matching dynamic
databases will be discussed further in Sects. 9.3 and 9.4.

6.14 Further Reading

The book by Herzog, Scheuren and Winkler [143] contains arguably the most accessi-
ble and detailed description of the probabilistic record linkage approach. Issues such
as the conditional independence assumption and parameter estimation are discussed
in detail and illustrated via examples. Further examples of probabilistic record link-
age applications are also provided. Talburt nicely explains the Swoosh-based entity
resolution approaches using several small example databases [249]. He also describes
an algebraic model for data matching. For general introductions to classification tech-
niques, the reader is referred to textbooks in the areas of machine learning or data
mining [135, 189].

Naumann and Herschel [195] cover graph-based and collective classification tech-
niques, as well as clustering and rule-based approaches (even though in their book
rules-based approaches are discussed under the topic of comparison functions). Batini
and Scannapieco [19] also provide an overview of different techniques, including a
brief comparison with regard to the requirements (such as expected input, gener-
ated output and classification objectives with regard to a quality metric) of different
classification techniques for data matching.

The best coverage of the topic of how to merge pairs or groups of records that have
been classified as matches is provided by Benjelloun et al. [25] in their description
of the techniques developed in the SERF project. Data fusion more generally is
covered in the recent survey by Bleiholder and Naumann [38]. For a tutorial on
the assignment problem that can be employed to finding a solution to the one-to-
one matching problem the reader is referred to the excellent tutorial provided by
Bertsekas [30].

http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://dx.doi.org/10.1007/978-3-642-31164-2_9
http://dx.doi.org/10.1007/978-3-642-31164-2_9

Chapter 7
Evaluation of Matching Quality and Complexity

7.1 Overview

Over the past decades, as the previous chapter has shown, various classification tech-
niques for data matching have been developed. The main objective of these techniques
is to achieve high matching quality. Similar to other classification problems, in order
to be able to assess the quality of the matched data for a certain data matching project,
ground-truth data, also known as ‘gold standard’ data, are required. The character-
istics of such ground-truth data must be as close as possible to the characteristics of
the data that are to be matched.

To summarise, if a record pair has been classified as a match, then the assumption
is that both records in the pair refer to the same real-world entity. For a record pair
classified as a non-match, on the other hand, the two records in the pair are assumed
to refer to two different real-world entities. Thus if a ground-truth data set with
known true matching and non-matching record pairs is available, then similar to
other classification problems in machine learning and data mining [135], a variety
of measures can be calculated on the outcomes of the classification process. Several
such measures are discussed in this chapter.

The question now arises: how to acquire such ground-truth data for a certain data
matching exercise. In many if not most data matching situations no ground-truth data
are readily available. There are several approaches of how ground-truth data can be
generated.

One possibility is that the results from a previous data matching project in the
same domain (ideally an earlier version of the same databases) are available, and
that these databases have been manually evaluated with regard to the quality of
the previous matching outcomes. For example, domain experts might have detected
wrongly matched as well as missed true matching pairs of records as they have
worked with the matched databases. The quality of previously matched data might
however not be good enough to be used as training data, especially if a more simpler
matching approach was previously employed. Additionally, the manual inspection
and possible correction of matches are often not 100 % correct, and it is therefore

P. Christen, Data Matching, Data-Centric Systems and Applications, 163
DOI: 10.1007/978-3-642-31164-2_7, © Springer-Verlag Berlin Heidelberg 2012

164 7 Evaluation of Matching Quality and Complexity

likely that the databases used as ground-truth data contain mistakes with regard to
the match status of certain record pairs.

Another approach to obtain ground-truth data is to manually generate such data
by sampling pairs of records from the two databases that are to be matched (or pairs
from the single database that is to be deduplicated), and to manually classify these
pairs as being either a match or a non-match. This approach has two difficulties.

The first is similar to the drawbacks described above when a previously matched
database is used as ground-truth data, in that the manual classification of record pairs
is unlikely to always be correct. Some mistakes will potentially be introduced by a
human classification. These mistakes will not be in the record pairs that are easy to
classify. Two records that differ in all attribute values are very obviously not a match.
Similarly, two records where all attribute values are the same or only contain minor
differences can be manually classified as a match with high confidence. These two
types of record pairs can also be easily classified automatically, as was discussed in
the previous chapter.

However, the record pairs that contain variations or differences in several of their
attribute values are hard to classify. These variations include ambiguous names, or
changed name or address values that are due to a person having married or moved
to a new address. Often, additional information is required so an accurate manual
classification can be performed. Section 7.4 will further cover this topic in the context
of manual clerical review of potential matches.

The second drawback when manually generating ground-truth data based on sam-
pling record pairs from the databases to be matched is the overall distribution of
matches and non-matches in the classified record pairs. Assuming no indexing or
blocking (as discussed in Chap. 4) has been applied, the matching of two databases
that contain m and n records, respectively, will generate m ×n record pairs that need
to be classified. If it is assumed that both databases have been deduplicated prior to
the matching, then a maximum of min(m, n) true matching record pairs are contained
in the m ×n record pairs. The number of true matches is therefore much smaller than
the number of non-matches, especially as the size of the databases increases. The
same holds for the deduplication of a single database that contains m records, where
(without indexing) m(m − 1)/2 record pairs need to be compared, but where the
maximum number of true matches will be m − 1 (in the unlikely case where m − 1
records are duplicates of one single record). The sizes of the match and non-match
classes are therefore often very imbalanced in data matching. Even if some form of
indexing has been applied, the number of candidate record pairs generated is very
likely to be much larger than the number of true matches contained in them.

Using simple random sampling of candidate record pairs and manually classifying
the sampled pairs to generate a ground-truth data set will therefore result in a sampled
set that mostly contains non-matching record pairs. A stratified sampling approach
can be employed, such that a balanced number of true matches and non-matches
is sampled from all record pairs. This can for example be achieved by binning the
comparison vectors of record pairs according to their summed similarities, and then
sample the same number of comparison vectors from each bin.

http://dx.doi.org/10.1007/978-3-642-31164-2_4

7.1 Overview 165

A third approach to obtain data that contain the true match status of record pairs
is to use one of the small number of publicly available test data sets that have been
generated by researchers to test their algorithms. An overview of such data sets is
given later in this chapter in Sect. 7.5. Finally, a fourth approach is to use synthetically
generated data that have similar characteristics as the real databases that are to be
matched. This approach will be discussed further in Sect. 7.6. For these last two
approaches, the match status of record pairs is generally known. If it makes sense
to use public or synthetic data sets to evaluate a certain data matching system in
practice depends upon the actual situation in which a data matching system will be
employed.

7.2 Measuring Matching Quality

Assuming some ground-truth data sets with the true match status of all its possible
record pairs is available and a matching has been conducted on these data sets,
each compared and classified record pair is assigned into one of the following four
categories [71]:

• True positives. These are the record pairs that have been classified as matches and
that are true matches. These are the pairs where both records refer to the same
entity.

• False positives. These are the record pairs that have been classified as matches,
but they are not true matches. The two records in these pairs refer to two different
entities. The classifier has made a wrong decision with these record pairs. These
pairs are also known as false matches.

• True negatives. These are the record pairs that have been classified as non-matches,
and they are true non-matches. The two records in pairs in this category do refer
to two different real-world entities.

• False negatives. These are the record pairs that have been classified as non-matches,
but they are actually true matches. The two records in these pairs refer to the same
entity. The classifier has made a wrong decision with these record pairs. These
pairs are also known as false non-matches.

Figure 7.1 illustrates these four outcomes. The true positives are the intersection
of the true matches and classified matches. It is common to illustrate these four
possible outcomes of a classification in a confusion or error matrix [135], as shown
in Fig. 7.2.

As was discussed previously, the number of true negatives in data matching sit-
uations will often be much larger than the sum of the number of true positives,
false negatives and false positives. The reason for this is the nature of the compari-
son process, because there are many more pairs where the two records refer to two
different entities than there are pairs where both records refer to the same entity [71].

166 7 Evaluation of Matching Quality and Complexity

True matches True non−matches

non−matches
Classified

Classified matches

TP FP

TNFN

Fig. 7.1 Example illustration of the classification outcomes for data matching. TP refers to true
positives, FP to false positives, TN to true negatives and FN to false negatives, as discussed in
Sect. 7.2

Predicted classes
Matches Non-matches

Matches True Positives False Negatives
Actual (true matches) (false non-matches)
classes Non-Matches False Positives True Negatives

(false matches) (true non-matches)

Fig. 7.2 Error or confusion matrix illustrating the outcomes of a data matching classification. As
discussed in Sect. 7.2, the aim of the classification is to identify and correctly classify as many true
matches as possible while keeping the number of false positives and false negatives as small as
possible

An ideal outcome of a data matching project is to correctly classify as many of
the true matches as true positives, while keeping both the number of false positives
and false negatives small.

Based on the number of true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN), different quality measures can be calcu-
lated [71]. The following list presents the measures most commonly used with data
matching, and discusses their characteristics and their suitability for assessing the
quality of data matching and deduplication.

• Accuracy. This quality measure is calculated as

acc = TP + TN

TP + FP + TN + FN
. (7.1)

This measure is most widely used for binary as well as multi-class problems in
the fields of machine learning and data mining [135]. Accuracy is mainly useful
for situations where the classes are balanced, i.e. where the number of instances
(record pairs in the case of data matching) are more or less the same for both
classes (matches and non-matches).

7.2 Measuring Matching Quality 167

As was previously discussed, balanced classes are rare in data matching and dedu-
plication classification, in that the majority of record pairs corresponds to true
non-matches (true negatives). As a result, the accuracy measure is not suitable
to properly assess matching quality. The value of TN in Eq. 7.1 dominates the
calculation of accuracy.
For example, assume two databases with 1,000,000 records each are matched, and
the indexing step resulted in 50,000,000 candidate record pairs that were gener-
ated. Now assume that there are 500,000 true matches between these two databases.
Also assume a classifier has classified 600,000 record pairs as matches, and of these
400,000 correspond to true matches. As a result, there will be TP = 400,000,
FN = 100,000, FP = 200,000 and TN = 49,300,000. The accuracy calculated
on these values then is: acc = 400,000+49,300,000

50,000,000 = 0.994, which corresponds to
99.4 % accuracy. Clearly, this is not a meaningful measure, because only 400,000
of the 500,000 true matches were classified correctly. Even a simple classification
of all candidate record pairs as non-matches (TP = 0, FN = 500,000, and FP = 0)
will still result in a very high accuracy value.
As a result, because of the imbalanced classification problem that data matching
and duplication commonly pose, accuracy is not a suitable quality measure and
should not be used. The following measures are more appropriate alternatives.

• Precision. This is a measure commonly used in information retrieval to assess the
quality of search results [288]. It is calculated as

prec = TP

TP + FP
. (7.2)

Because precision does not include the number of true negatives, it does not suffer
from the class imbalance problem in the way accuracy does. Precision calculates
the proportion of how many of the classified matches (TP + FP) have been correctly
classified as true matches (TP). It thus measures how precise a classifier is in
classifying true matches. Precision is also known as the positive predictive value
(PPV) in the medical literature [37].
Using the same numerical values as in the example above, precision can be cal-
culated as: prec = 400,000

400,000+200,000 = 0.667, which corresponds to a precision of
66.7 %. This means that two-thirds of the record pairs this classifier has classified
as matches correspond to true matches, while a third corresponds to false matches.

• Recall. This is a second measure that is commonly used in information retrieval
[288]. It is calculated as

rec = TP

TP + FN
. (7.3)

Similar to precision, because recall does not include the number of true negatives,
this measure does not suffer from the class imbalance problem. It measures the
proportion of true matches (TP + FN) that have been classified correctly (TP).
It thus measures how many of the actual true matching record pairs have been

168 7 Evaluation of Matching Quality and Complexity

correctly classified as matches. Recall is also known as the true positive rate or
the hit rate, while in the medical literature it is known as sensitivity [301] and
commonly used to assess the results of epidemiological studies.
Continuing the numerical example, the recall of this classification outcome can
be calculated as: rec = 400,000

400,000+100,000 = 0.8, which corresponds to a recall of
80.0 %. This means that this classifier has correctly classified four out of every
five true matching record pairs.
It should be noted that there is a trade-off between precision and recall. Depending
upon the data matching or deduplication situation, it might be more important to
achieve matching results with high precision but accept a lower recall, while in
other data matching situations having a low precision is acceptable but a high
recall is required.
For example, for a crime investigation where certain suspect individuals need to be
matched with a large database of people, a high recall is desired to make sure that
it is likely that the individuals one is looking for are included in the matched record
pairs, even if there is a larger number of matches that need to be investigated. On
the other hand, high precision is required in many public health studies where
each match would correspond, for example, to a patient with certain medical
characteristics who needs to be included into a cohort study. In this situation one
wants to be sure to only include patients into the set of matched record pairs who
do have the medical condition one is interested in.

• F-measure. This measure, also known as f-score or f1-score, calculates the har-
monic mean between precision and recall [195]:

fmeas = 2 ×
(

prec × rec

prec + rec

)
. (7.4)

The f-measure combines precision and recall and only has a high value if both
precision and recall are high. Aiming to achieve a high f-measure requires to find
the best compromise between precision and recall [15].
With the continuing numerical example, with prec = 0.667 and rec = 0.8, then
fmeas = 2 × (0.667×0.8

0.667+0.8) = 0.727.
• Specificity. This measure is also known as the true negative rate and it is commonly

used in the medical literature [301]. It is calculated as

spec = TN

TN + FP
. (7.5)

Because this measure includes the number of true negatives (TN), it suffers from
the same problem as accuracy, and should not be used for data matching or dedu-
plication. If the number of false positives (FP) is small compared to the number of
TN (which it likely is because of the class imbalance in data matching), then the
calculated specificity will be dominated by the number of TN.
For the numerical example, specificity is calculated as spec = 49,300,000

49,300,000+200,000 =
0.996, which corresponds to 99.6 %.

7.2 Measuring Matching Quality 169

• False positive rate. This measure is also known as fall-out in information retrieval
[288]. It is measured as

fpr = FP

TN + FP
. (7.6)

Note that fpr = (1 − spec). Because this measure includes the number of true
negatives (TN), it suffers from the same problem as accuracy and specificity, and
should not be used for data matching.
Continuing the numerical example, the false positive rate is calculated as fpr =

200,000
49,300,000+200,000 = 0.004, which is a very low 0.4 %. This very low value does
not reflect that this classifier classified 80 % of the true matches correctly.

The measure most commonly used in the computer science literature for assessing
the quality of data matching has been accuracy [102, 129, 155, 231, 252, 301]. How-
ever, precision [29, 83, 185], recall [129, 185, 301] and the f-measure [31, 85, 185]
have also been used, and they have gained popularity in recent years as researchers
have become more aware of the pitfalls of using the accuracy measure [71].

While the above measures provide a single number of the matching quality
achieved by a single classifier, most classification techniques described in Chap. 6
have one or several parameters that can be modified and tuned. Depending upon the
value(s) of such parameter(s), a classifier will have a different performance, leading
to different numbers of true and false positives and negatives. Rather than a single
value for a quality measure using a certain parameter setting, a series of values can
be generated for a certain measure using different parameter settings. The resulting
values can then be visualised in various ways to illustrate the performance of a cer-
tain classifier over a range of parameter settings. Such visualisations also allow more
detailed comparisons of the performance of several classification techniques. The
following three visualisations (also shown in the example in Fig. 7.3) are commonly
used to illustrate the outcomes of the classification of candidate record pairs.

• Precision–recall graph. In this visualisation the values of precision and recall
are plotted against each other as generated by a classifier with different parameter
settings. This type of graph is commonly used in the field of information retrieval to
visualise, for example, the quality of results returned by a Web search engine [288].
Figure 7.3b shows an example of a precision–recall graph.
For each selected parameter setting of a classification model, the precision and
recall values are calculated resulting in a single point in the precision–recall graph.
Recall is plotted along the horizontal axis (or x-axis) of the graph, while precision
is plotted against the vertical axis (or y-axis). As parameter values are changed,
the resulting precision and recall values generally change as well.
Commonly, a high precision of a classifier will result in a low recall value and
vice versa. Therefore, in precision–recall graphs there is often a curve starting in
the upper left corner moving down to the lower right corner. Ideally, a classifier
should achieve both high recall and high precision and therefore the curve should
be as high up in the upper right corner as possible.

http://dx.doi.org/10.1007/978-3-642-31164-2_6

170 7 Evaluation of Matching Quality and Complexity

(a)

(c)
(d)

(b)

Fig. 7.3 An example of simulated classification results assuming 200 true matching and 1000
true non-matching record pairs, and three possible visualisations of the quality results of such
a classification. Plot a shows the distribution of the comparison vectors summed into similarity
values SimSum (as was previously illustrated in Fig. 2.6 on page 31). As discussed in this chapter,
the majority of the compared record pairs refer to true non-matches. Plots b to d show the different
quality graphs that can be generated from the summed similarities in Plot a. a Summed Similarities
b. Precision-Recall c. F-measure d. ROC curve

• F-measure graph. An alternative to plotting two quality measures (such as preci-
sion and recall) against each other is to plot the values of one or several measures
with regard to the setting of a certain parameter, for example a single threshold
used to classify candidate record pairs according to their summed comparison
vectors, as was discussed in Sect. 6.2. This is shown in Fig. 7.3c. In this graph,
the horizontal axis shows the summed similarity score (SimSum) that is used as
classification threshold. For each threshold value, all record pairs with a summed
similarity below that threshold will be classified as non-matches and all other pairs
as matches. As the threshold is increased from 0 to 3, for this example, the num-
ber of record pairs classified as non-matches increases (and thus the number of
TN and FN increases), while the number of TP and FP decreases.

http://dx.doi.org/10.1007/978-3-642-31164-2_2
http://dx.doi.org/10.1007/978-3-642-31164-2_6

7.2 Measuring Matching Quality 171

Any of the above discussed quality measures can be plotted in such a graph.
An often used combination is to show precision, recall and the f-measure in the
same graph, as illustrated in Fig. 7.3c. As the classification threshold is increased,
the value of recall gets lower (because less of the true matches, those with a lower
overall similarity, are classified as matches), while precision gets higher (because
less true non-matches are classified as matches with higher similarity threshold).

• ROC curve. Similar to the precision–recall graph, the receiver operating charac-
teristic (ROC) curve is plotted as the values of two quality measures against each
other [106]. The horizontal axis is the false positive rate while the vertical axis is
the true positive rate (which is the recall). The closer an ROC curve is to the top
left corner the better a classifier is, because this means it can achieve a high recall
with a small number of false positives.
While the use of ROC curves is being promoted to be robust against imbalanced
classes (as is common in data matching and deduplication) [106], the problem
when applying them in data matching is that the number of true negatives, which
is a factor only when the false positive rate is calculated, will lead to too optimistic
ROC curves because the false positive rate will be calculated to be very low.
The use of ROC curves for data matching should therefore be carefully assessed.
Plotting several ROC curves generated by different classifiers can certainly help
to compare their performance over a range of parameter settings.
Based on an ROC curve, a numerical measure called the area under the curve
(AUC) can be calculated. This is basically the area of an ROC graph that lies in
the lower right area of the graph below the curve. The closer an ROC curve is to
the upper left corner the larger its AUC value becomes, and therefore the better a
classifier performs over a range of parameter values. Note that the value of AUC is
always between 0.5 ≤ auc ≤ 1.0, because even a random classifier (which would
have an ROC curve that is the diagonal in the ROC graph) has an AUC value of
auc = 0.5, while a perfect classifier will have an AUC of auc = 1.0.

The issue of how to evaluate the merging of matched records into new compound
records has recently been investigated by Menestrina et al. [187]. In their work,
the authors compare different measures that have been used by researchers in data
matching. They show that assessing the outcomes of a data matching project using
different measures can lead to different rankings of the matched record pairs, and
thus to different matching outcomes. The merging of records into entities is viewed
as a clustering process. Each clustering result is compared to the ground-truth data
(gold standard). A generalised merge distance (GMD), defined by the authors, is used
to assess how close a certain clustering is to the known true clustering of records
into entities (where each cluster refers to one entity). The GMD is related to the
edit distance, as discussed in Sect. 5.3, in that it assigns costs to merging a cluster of
records or splitting a cluster. The smaller the number of merges or splits is from a
given set of clusters (the results of a data matching classification) to the true clustering
result, the smaller the GMD is. The authors also show that precision, recall and thus
the f-measure (Eqs. 7.2–7.4), can all be calculated easily from the GMD.

http://dx.doi.org/10.1007/978-3-642-31164-2_5

172 7 Evaluation of Matching Quality and Complexity

7.3 Measuring Matching Complexity

Besides the quality of the record pairs classified as matches and non-matches within
a data matching or deduplication project, a second major aspect is the efficiency and
effectiveness of data matching techniques or systems. One obvious approach would
be to simply measure the run-time on different data sets to compare which technique
or system is faster. The results of such an assessment would be very specific to the
computing hardware used, such as the speed of its processors, and its memory and I/O
bandwidths. A platform-independent way to compare systems or techniques would
be of advantage because results would be more generalisable. One possibility is to
count the number of candidate record pairs generated by an indexing technique, and
use this number to calculate a measure of how complex a data matching exercise is.
Three such approaches to measuring the efficiency and complexity of data matching
and deduplication have been proposed [71].

Following the notation given in previous publications [20, 64, 71, 102, 128], the
total number of matched and non-matched record pairs are denoted with nM and nN ,
respectively, with nM + nN = m × n for the matching of two databases that contain
m and n records, respectively, and nM + nN = m(m − 1)/2 for the deduplication
of one database that contains m records. Note that these numbers correspond to the
full comparison space of all possible record pairs, i.e. when no indexing has been
applied. The number of true matched and true non-matched candidate record pairs
generated by an indexing technique is denoted with sM and sN , respectively, with
sM + sN ≤ nM + nN . Three measures can now be defined.

• Reduction ratio. This measure provides information about how many candidate
record pairs were generated by an indexing technique compared to all possible
record pairs, without assessing the quality of these candidate record pairs. Reduc-
tion ratio is calculated as

rr = 1 −
(

sM + sN

nM + nN

)
. (7.7)

The reduction ratio therefore measures the relative reduction of the comparison
space of a data matching or deduplication exercise. A high reduction ratio means
an indexing technique has removed many record pairs from the full comparison
space, while a low reduction ratio means that a larger number of candidate record
pairs have been generated.

• Pairs completeness. This measure takes the true match status of candidate record
pairs into account. It is calculated as

pc = sM

nM
. (7.8)

7.3 Measuring Matching Complexity 173

Pairs completeness corresponds to recall (Eq. 7.3) discussed previously. It is the
number of true matching record pairs that have been generated by an indexing
technique divided by the total number of true matching pairs in the full comparison
space. The lower the pairs completeness value is the more true matches have been
removed by an indexing technique. This leads to lower matching quality, because
the record pairs removed in the indexing step are implicitly classified as non-
matches without being compared in detail.
There is a trade-off between reduction ratio and pairs completeness [20], i.e.
between the number of record pairs that are removed in the indexing step and
the number of missed true matches. No indexing technique is perfect in only
removing record pairs that correspond to non-matches. Some record pairs that
correspond to true matches are likely removed as well in the indexing step. Using
an indexing technique that has a lower reduction ratio will mean that a smaller
number of candidate pairs is removed in the indexing step. This can often lead to
an increased pairs completeness value.

• Pairs quality. This third measure, which also takes the quality of candidate record
pairs into account, is calculated as

pq = sM

sM + sN
. (7.9)

It is the number of candidate record pairs that correspond to true matches that
were generated by an indexing technique, divided by the total number of candidate
record pairs that were generated. It corresponds to the measure precision (Eq. 7.2)
presented previously. A high pairs quality value means that an indexing technique
is successful in generating candidate record pairs that mostly correspond to true
matches, while keeping the number of candidate pairs that correspond to non-
matches low. Similar to the trade-off between precision and recall, there is normally
a trade-off between pairs completeness and pairs quality. Aiming for an increase
in one of these two measures generally results in a decrease in the value of the
other measure.

None of these three measures is taking any computational resources into account,
such as processing time or main memory usage. These are dependent upon the actual
implementation of a data matching system and the computing platform used.

Similar to all quality measures discussed in Sect. 7.2 above, being able to calculate
both the pairs completeness and pairs quality measures does require knowledge about
the true match status of record pairs. If this information is not available for a given
data matching or deduplication exercise, then only the reduction ratio, as well as
run-time and memory usage, can be reported. This prohibits a proper assessment of
a data matching technique or system.

174 7 Evaluation of Matching Quality and Complexity

7.4 Clerical Review

The traditional classification model of probabilistic record linkage (discussed in
Sect. 6.3) that has been used in data matching for several decades (and that is imple-
mented in various data matching systems) classifies the compared candidate record
pairs into matches, non-matches, as well as potential matches, as Fig. 2.1 on page
24 shows. The class of potential matches consists of record pairs where a decision
model was not able to make a clear decision on if they correspond to matches (where
both records refer to the same entity) or non-matches (where the two records refer
to two different entities) [129].

A manual classification is required for candidate record pairs that have been
inserted into the class of potential matches. This manual classification requires a
clerical review where each record pair is assessed visually and a match decision is
made manually. Figure 7.4 provides an example that illustrates how a pair of records
might be presented to a person who conducts such a manual review. Smith and
Newcombe in an early study using health records showed that a computer-based
probabilistic data matching system can result in more reliable, consistent and more
cost effective matching results compared to a fully manual approach [241, 242].

The manual clerical review of potential matches can be a tedious, time-consuming
and labour intensive process, especially in cases where the matching of two databases
has resulted in a large number of record pairs that were classified as potential matches.
This can either be because the databases were large, the data were difficult to classify,
or the classification model was not able to accurately discriminate matches from non-
matches.

Several aspects make manual clerical review a difficult process. First of all, look-
ing at Fig. 7.4, one can see that even for an experienced domain and data matching
expert it can be difficult to make an accurate manual classification when assessing
a single record pair in isolation. Other records might be similar and have charac-
teristics that also make them potential match candidates even though they have a
lower overall similarity. For the given example, there might be another record with
surname ‘Stevens’, given name ‘Sal’ and age ‘17’ but with a missing gender value,
and an overall similarity of 72 %. This could well be a better matching record. Ide-
ally, therefore, a system that facilitates manual clerical review should visualise not
just a pair of records but a whole group of similar records, for example in the same
way as a Web search engine presents a list of query results ranked according to
relevance. Alternatively, having access to external data that can help validate if a
pair of records corresponds to a match or non-match can be highly beneficial in the
manual decision-making process. Such external data can for example be a database
that contains the known previous addresses or telephone numbers of individuals, or
their known nicknames and previous surnames.

A second issue that makes clerical review a difficult process is that the manual
match or non-match decision made can differ not only from reviewer to reviewer, but
even the same reviewer might make different decisions depending upon their mood,
time of day and concentration level. The same reviewer in the morning might classify

http://dx.doi.org/10.1007/978-3-642-31164-2_6
http://dx.doi.org/10.1007/978-3-642-31164-2_2

7.4 Clerical Review 175

Stephens

Stephens

GIVEN NAMERECORD ID

a116

b342

SURNAME GENDER

F

F

AGE Similarity

75%

Non−MatchMatch

Sally

S

16

18

Fig. 7.4 Example for a clerical review of a record pair classified as a potential match with an overall
similarity calculated to be 75 %. The fields (or attributes) where values are different are shown with
a larger font to grab the attention of a reviewer. The ‘Match’ and ‘Non-Match’ buttons allow a
reviewer to make their manual classification decision

a pair as a match, but if they would see the same pair late in a day’s work might decide
it is a non-match based on their mood and desire to finish a day’s work. It is therefore
of advantage to have more than one reviewer assessing the same set of record pairs,
so that in case of a conflicting classification of a certain pair an additional review
can be asked for. This of course prolongs the review process and also makes it more
costly. As with many aspects of data matching and deduplication, the application of
where the matched records will be used dictates how accurate the matched data need
to be and how costly a false match or a false non-match will be.

One advantage of the clerical review process is that it can help generate training
data of record pairs that are difficult to classify. Such manually generated training
examples can flow back into the classification step as illustrated in Fig. 2.1 on page
24. It is however important to be aware of the above discussed issues, and that the
class of potential matches does contain the most difficult to classify record pairs.
The confidence one can have on the manually classified record pairs depends upon
the thoroughness of the manual review process, the system used to present potentially
matched pairs to the reviewer, the domain expertise of the reviewers, and if they had
access to any external data that supported their decisions. Using manually classified
pairs as training data for a record pair classifier therefore needs to be considered
carefully.

One way to reduce the possibly large number of potential matches that need to
be classified manually is to employ an active learning approach as was discussed in
Sect. 6.7. With active learning, only a small number of hard to classify record pairs
are manually classified in each iteration, and a new classifier is trained using training
data that include these manually classified pairs. The same careful consideration as
mentioned before about the confidence one has into the manually classified pairs
needs to be considered when active learning techniques are employed. Ideally, an
active learning classifier should be able to take a confidence level of the manually
classified record pairs into account, as illustrated in Fig. 7.5.

http://dx.doi.org/10.1007/978-3-642-31164-2_2
http://dx.doi.org/10.1007/978-3-642-31164-2_6

176 7 Evaluation of Matching Quality and Complexity

Stephens

Stephens

GIVEN NAMERECORD ID

a116

b342

SURNAME GENDER

F

F

AGE Similarity

75%

Clear match Likely match Clear non−matchLikely non−match

16Sally

8S

Fig. 7.5 A variation of Fig. 7.4 that allows a reviewer to provide feedback about the confidence of
their manual classification decision

7.5 Public Test Data

As discussed in Sect. 7.2, knowing the true match status of record pairs is a require-
ment for being able to measure the matching quality of a data matching or dedu-
plication system for a certain data set. For many real-world applications, however,
it is very difficult to obtain or create such ground-truth data. Even if significant
manual resources are put into a manual training process (which is similar to the
manual clerical review process described in the previous section), then for many of
the record pairs added to the training set the match status might not be known with
high confidence.

For researchers, who might be working in an academic environment without close
collaboration with an organisation that has real data and that is prepared to provide
these data for research, it is generally very difficult to get access to any real-world
data sets.

As an alternative, researchers have investigated public sources of data that can be
used to test and evaluate data matching and deduplication techniques. Because of
the private nature of personal information (such as names, addresses, date of birth
and so on), data that contain information other than personal details are commonly
used by researchers. The issues involved with privacy in data matching are covered
further in Chap. 8.

Over the years, a collection of test data sets have been used by various researchers
in the field of data matching. The most common of these data sets are described in
the following list:

• Cora. This data set contains 1,295 bibliographic records of machine learning
articles that correspond to 189 actual real publications. A total of 17,184 out
of 1,295 × 1,294/2 pairs of records correspond to true matches (assuming no
indexing is applied). Each record in this data set contains the publication name,
the publication year, one or more author names (sometimes only surnames and
initials) and the conference or journal name (or their abbreviation only) where an
article was published.

• Restaurant. This small data set contains 864 records of restaurant names, addresses,
telephone numbers and food style (French, Italian, Japanese, etc.) taken from the
Fodor and Zagat restaurant guides. In total, 752 different restaurants are included
in this data set, and there are 112 restaurants that appear twice.

http://dx.doi.org/10.1007/978-3-642-31164-2_8

7.5 Public Test Data 177

• Census. This is a pair of small data sets that contain synthetic census records
generated by the US Census Bureau. The first data set contains 449 records while
the second data set contains 392 records. The number of matching records is 327.
Each record consists of the attributes first and last name, middle initials, a street
number and a street name.

• UCD people. This is a data set which contains the names of people working at the
University College in Dublin. Each person is represented by a single string that
contains the person’s given name and surname, as well as optional titles and a role
or position description such as ‘Head of Department’ or ‘Newman Scholar’. Each
individual is assigned a unique identifier.

• CDDB. This data set consists of 9,763 records with details of compact disc albums
(CDs), such as their artist, title, genre and the year when the CD was published.
These records were randomly selected from the FreeCD database [195]. A time-
consuming manual process lead to the detection of 298 true duplicates in this
data set (with a total of 607 true matching record pairs, assuming no indexing is
applied). Each unique CD was given a unique identifier.

• DBLP. This online database containing computer science journals and conference
and workshop proceedings with over a million articles has been used by several
data matching research groups for their experimental studies. Each record consists
of an article’s name, details of the publication venue, its year of publication and the
names of the author(s) of that publication. An XML version of this database1 can
be freely downloaded. A drawback of this database is however that the true match
status is not known, and therefore it is difficult to use this database to evaluate
the accuracy of data matching techniques without some initial processing and
generation of some form of ground-truth data.

• IMDB. The Internet movie database2 is another popular source of data used to
evaluate data matching and deduplication techniques. The database contains details
about different types of entities, such as people (actors, producers, directors, etc.),
movies, companies, as well as movie ratings and plot descriptions. Similar to
DBLP, no ground-truth data are available. However, compared to DBLP, where it
is likely that duplicate records exist for the same article, in the IMDB database it is
more likely that several records with the same name refer to different individuals
(there are, for example, more than 20 people with the name ‘Bill Murray’ listed
in IMDB), or that several movies have the same name. Researchers commonly
corrupt the data they download from IMDB to generate duplicate records. This
approach to artificially generating data is discussed further in the next section.

The Cora, UCD people, Restaurant and Census data sets are available in several
repositories and open source data matching systems, including the RIDDLE reposi-
tory3 the SecondString toolkit,4 and the FEBRL system.5 Note that there are various

1 http://dblp.uni-trier.de/xml/
2 http://www.imdb.com/interfaces
3 http://www.cs.utexas.edu/users/ml/riddle/
4 http://secondstring.sourceforge.net
5 http://sourceforge.net/projects/febrl/

http://dblp.uni-trier.de/xml/
http://www.imdb.com/interfaces
http://www.cs.utexas.edu/users/ml/riddle/
http://secondstring.sourceforge.net
http://sourceforge.net/projects/febrl/

178 7 Evaluation of Matching Quality and Complexity

versions of the Cora data set in different repositories. Some have been pre-processed
and cleaned further than the original version. The CDDB and Cora data sets (as
well as some other useful data sets) are available from the repository maintained by
Naumann6 [195]. Koepcke et al. [169] recently conducted an evaluation of several
data matching systems using a set of four real data sets which the authors have made
publicly available as part of their framework for evaluation data matching system,
FEVER.7

It is important to note that these data sets provide only limited amount of infor-
mation about the performance (with regard to matching quality and complexity) of
data matching and deduplication systems or techniques. First, the data sets where
the match status is known are all fairly small, therefore limiting the evaluation of
scalability of a techniques or system. Second, each of these data sets contains a very
specific type of data. Any results achieved on them should not be generalised to other
types of data, even to data from the same domain but with different characteristics
(such as different error characteristics or different attributes).

A comparison of different indexing techniques on three of the above listed data
sets (Cora, Restaurant, and Census) is presented in Sect. 4.10, based on experiments
recently presented by Christen [64]. As this evaluation illustrates, different index-
ing techniques perform quite differently on these three data sets with regard to the
time required to build an index data structure, the number of candidate record pairs
generated, and also the amount of memory required.

Despite all their limitations, the use of publicly available test data sets in data
matching research has the advantage that researchers can (to some degree) compare
their new algorithms and techniques to other existing algorithms and techniques. This
is a much better approach for scientific progress compared to the use of proprietary
or confidential data that cannot be given away, thereby making any evaluation of
published research results and any comparison between techniques difficult. Ideally,
research publications in data matching and deduplication that contain empirical eval-
uations should have been conducted on different data sets that are publicly available
to illustrate how generalisable a novel data matching technique is.

7.6 Synthetic Test Data

An alternative to using publicly available test data sets, which have limitations in
their size and content, is to generate data that can be used to test and evaluate data
matching and deduplication systems or techniques. Such synthetic data should have
characteristics that are representative for the real data on which a data matching
system will be applied. This means that synthetic data should contain the same
or at least similar attributes, the values in these attributes should follow frequency
distributions close to those in corresponding real data, and the data should also have

6 http://www.hpi.uni-potsdam.de/naumann/projekte/repeatability/datasets
7 http://dbs.uni-leipzig.de/de/research/projects/object_matching/fever

http://dx.doi.org/10.1007/978-3-642-31164-2_4
http://www.hpi.uni-potsdam.de/naumann/projekte/repeatability/datasets
http://dbs.uni-leipzig.de/de/research/projects/object_matching/fever

7.6 Synthetic Test Data 179

similar error characteristics as one would expect in real data from the same domain.
For example, an attribute that contains given names should contain strings that follow
a frequency distribution similar to given names in a real database (such that ‘Thomas’
and ‘Emily’ occur more frequently than ‘Aidyn’ and ‘Roberta’, following current
popular baby name distributions, as was discussed in Sect. 3.2) and also contain
nicknames that can occur in given name attributes (like ‘Bob’ and ‘Liz’).

Generating such ‘real’ synthetic data can be a challenging undertaking. There are
two basic approaches of how synthetic data can be created [56, 72].

• In the first approach, complete data sets are generated using (1) look-up tables
that contain real attribute values and possibly their frequency distributions, and
(2) rule-based techniques that generate attribute values according to rules that
specify the length, distribution and content of these values. The first method is
mainly suitable for attributes that contain a large number of different values, such
as personal name and street and location name attributes. The second method, on
the other hand, is suitable for attributes such as telephone, drivers or social security
numbers which contain more structured values.
Records consisting of a set of attributes can be generated using look-up tables and
rule-sets appropriate to the content of the attributes. Various parameters have to
be set by a user for example to specify the size of the database(s) to be generated
and what look-up tables and rule-sets to use to generate the synthetic records.
Because in real data there are commonly dependencies between attributes (for
example, the given name of a person is highly dependent on their gender, while
surnames depend upon the cultural background of an individual), it is of advantage
if such dependencies can be modelled when data are generated. However, the more
such dependencies are introduced the more complex the data generation process
becomes, and the more parameter settings are required. The danger then is that a
user simply leaves these parameters at their default values, rather than carefully
adjusting them to their needs.
In order to create variations of the generated records (which will then constitute
the known true matching records or duplicates), variations and errors need to be
introduced. Again, such errors need to follow the characteristics of real-world
errors as much as possible. The conditions that govern such error imputation, such
as manual keyboard data entry or optical character recognition, have been discussed
in Chap. 3 in the context of data pre-processing. Essentially, the corruption of the
generated records to create approximate matching records or duplicates needs to
introduce variations that model the errors that occur in a real-world data entry
process [72].
Specific error parameters that a user should be able to set individually for each
attribute should include: the likelihood for an attribute value to be modified in
some way; the likelihood for an attribute value to be removed (i.e. set to a missing
value); the likelihood to change an attribute value with a new value from the
same attribute; and the likelihood to introduce character modifications such as
edits (inserts, deletes, substitutions and transpositions), keyboard typing errors
(replacing a character with a character neighbouring on a typical keyboard, such

http://dx.doi.org/10.1007/978-3-642-31164-2_3
http://dx.doi.org/10.1007/978-3-642-31164-2_3

180 7 Evaluation of Matching Quality and Complexity

as ‘z’ and ‘x’), or scanning errors (replacing a character with a similar looking
character, like ‘S’ and ‘5’). For character level edits, the distribution of where
modifications are applied should also be based on a parameterised model, because
studies have shown that errors in real-world data do not occur randomly at any
position. For manually typed names, for example, they occur mostly towards the
end of names [214].
For certain types of modifications, such as nicknames and common name variations
or misspellings, having large look-up tables of known variations of values can help
to generate more realistic data compared to simply inserting random modifications.

• An alternative approach to generating synthetic data from scratch, based only on
look-up tables and rule-sets, is to use a real-world data set that contains records
with the required content. Such data can be sourced either from a database within
an organisation (such as the name and address details of all customers from a
cleaned data warehouse) or from a publicly available data source (such as voters
registration lists or telephone directories which are available to the public in certain
countries). Such real data sets are a realistic source of variations and frequency
distributions of values.
However, because such data sets are generally well cleaned and deduplicated (one
would hope especially for electoral rolls [9]), the same data corruption process
described above needs to be employed to generate records that contain variations
and errors that can be used in the data matching process.

Figure 7.6 shows three sets of example records that were generated with the
FEBRL data set generator [56, 72]. This generator works by first creating a set
of original records (indicated by the string ‘org’ in their record identifier) in the first
step, followed by their modification into duplicate records (indicated by the string
‘dup’ and a number as there can be several duplicates generated from the same orig-
inal record) in the second step. This generator allows a large number of parameters
to be set so that data of different error characteristics can be generated [72].

Compared to using publicly available or proprietary and confidential data sets for
testing and evaluating data matching or deduplication systems and techniques, the
use of synthetic data has various advantages [72].

• Because the data have been explicitly generated, each record can be given a unique
identifier and each modified record (approximate match or duplicate) that is based
on a certain generated record can be given an identifier that refers back to the
‘original’ record it is based on. Therefore, when such data are used to test a data
matching system, the match status of each candidate record pair is known and
both matching quality and complexity, as discussed in Sects. 7.2 and 7.3, can be
calculated. This allows the performance of data matching systems to be evaluated
in detail.

• The size of the data generated and their characteristics with regard to content
and variability (types and likelihoods of errors and modifications) can be fully
controlled by the user. It is therefore possible to generate data that have very specific
error characteristics, and to test and evaluate how well different data matching
systems and techniques can handle such data. The scalability, a major challenge

7.6 Synthetic Test Data 181

rec id, age, given name, surname, street number, address 1, address 2, state, suburb, postcode

rec-1-org, 33, madison, solomon, 35, tazewell circuit, trail view, vic, beechboro, 2761
rec-1-dup-0, 33, madison, solomon, 35, tazewell circ, trail view, viv , beechboro, 2761
rec-1-dup-1, 33, madison, solomon, 35, tazewell crct, trail view, vic, bechboro, 2761
rec-1-dup-2, , madison, solomon, 36, tazewell circuit, trail view, vic, beechboro, 2716
rec-1-dup-3, 33, madisoi, solomon, 35, tazewell circuit, trail view, vic, beech boro, 2761

rec-2-org, 29, soida, perera, 416, marchant place, weemilah, nsw, belmont, 2280
rec-2-dup-0, 29, soida, perera, 414, marchant place, wemilah, nsw, belmont, 2280
rec-2-dup-1, 92, soida, perera, 416, marchant place, weemilah, naw, belmont, 2280

rec id, age, given name, surname, street number, address 1, address 2, state, suburb, postcode

rec-3-org, 29, jalisa, wane, 25, prisk place, seabank, , wa, latham, 6616
rec-3-dup-0, 29, ghialisa, wane, 25, prisk place, zeabank, , wa, latham, 6616
rec-3-dup-1, 29, jalisa, whane, 25, prisc place, seabank, , wa, latham, 6616
rec-3-dup-2, 29, jalissa, wane, 25, prisk place, seapank, , wa, latham, 6616

rec-4-org, 39 , desirae, contreras, 44, maltby street, phillip lodge, nsw, burrawang, 3172
rec-4-dup-0, 39, desirae, kontreras, 44, maltby street, phillip lodge, nsw, burrawank , 3172
rec-4-dup-1, 39, desirae, contreras, 44, maltby street, fillip lodge, nsw, buahrawang , 3172

rec id, age, given name, surname, street number, address 1, address 2, state, suburb, postcode

rec-5-org, 28, phyliss, winter, 20, aspinall road, , qld, wairewa, 3887
rec-5-dup-0, 28, phyliss, winter, 20, aspinaIl road, , qld, wairewa, 3881
rec-5-dup-1, 28, phyl’lss, winter, 20, aspinall road, , qld, wajrewa, 3887

rec-6-org, 81, madisyn, sergeant, 6, howitt street, creekside cottage, vic, nangiloc, 3494
rec-6-dup-0, 87, madisyn, sergeant, 6, howitt street, creekside cottage, vic, nanqiloc, 3494
rec-6-dup-1, 81, madisvn, sergeant, 6, hovitt street, creekside cottage, vic, nangiloc, 3494

Fig. 7.6 Three examples of records created with the FEBRL data generator with different error
types [72]. Original values that were modified are highlighted in bold-italics and their corresponding
modified values are underlined. Two modifications were introduced into each duplicate record. The
data used to generate these records consisted of name and address values taken from an Australian
telephone database a. Typographic errors b. Phonetic errors c. OCR errors

in data matching and deduplication, can also be tested by generating data sets of
different sizes.

• The generated data sets can be published openly so that other researchers can
conduct comparative evaluations on these data sets and reproduce results from
other research studies. This makes research in data matching and deduplication
more meaningful compared to the situation where researchers only evaluate their
new algorithms and techniques on their own (possibly not published) data sets.

• The program used to generate synthetic data can be published itself, allowing other
researchers and practitioners working in the field of data matching and dedupli-
cation to generate their own data that are tailored specifically to their need. For

182 7 Evaluation of Matching Quality and Complexity

example, data specific to a country, culture or language can be easily generated by
using appropriate look-up tables and parameter settings for errors and variations.

Even though synthetic data have all these advantages, the main problem with
such data is still that, even with sophisticated look-up tables, attribute dependency
and corruption models, such data will never be able to fully represent all the intrinsic
characteristics of real-world data that make accurate and efficient data matching and
deduplication such challenging problems.

Several data generators specifically aimed at generating data for data matching
and deduplication have been developed. A first such generator was presented by
Hernandez and Stolfo in 1995 [140]. It is known as UIS DBGen and is available from
the RIDDLE repository.8 This generator allows a user to create records and duplicates
of these records using lists of names, cities, states and postcodes. It however cannot
deal with frequency information for these values. This means that the frequency
distribution of values will be uniform and therefore not follow the likely frequency
distributions of real data. A user can set the number of records that are to be generated,
the percentage and distribution of duplicates to be generated, as well as the types and
amounts of errors to be introduced.

An improved generator was described by Bertolazzi et al. in 2003 [29]. It allows
parameter settings that control if values in certain attributes become missing, and
it also improves the variability of the created values by providing a larger number
of modification and error types that can be introduced when duplicate records are
generated. It is not clear if this data generator can handle frequency information, as
not many details were published by the authors.

The FEBRL data matching system, described in detail in Sect. 10.2.4, includes a
data generator [56, 72] that improves both the generator developed by Hernandez and
Stolfo and the one developed by Bertolazzi et al. The FEBRL generator allows many
parameters to be set with regard to the types, locations and likelihood of modifications
applied to attribute values when duplicate records are created. Besides frequency
look-up tables of attribute values, this generator also allows nickname and name
variation look-up tables, as well as the specification of individual probabilities of
certain types of errors, such as phonetic, keyboard and optical character recognition
(OCR) errors, as Fig. 7.6 illustrates. The latest version of this generator [72] also
allows dependencies between attributes to be specified (such as between a gender
and a given name attribute), and it can even generate groups of records that correspond
to a family. For such groups, the number of records in them, as well as their age and
gender values, are drawn from specific distributions to allow realistic generation of
parents and their children.

A generator similar to the one implemented in FEBRL was recently described
by Talburt et al. [250]. This generator allows the creation of sequences of records
that correspond to the occupancy of people as they live at different addresses over a
certain period of time. The generator first creates a record that corresponds to an indi-
vidual based on real data (such as publicly known real addresses). Two scenarios are
possible, the first is for a single individual while the second scenario models couples

8 Available from: http://www.cs.utexas.edu/users/ml/riddle/data.html

http://dx.doi.org/10.1007/978-3-642-31164-2_10
http://www.cs.utexas.edu/users/ml/riddle/data.html

7.6 Synthetic Test Data 183

living together. Sequences of records (each with a time stamp) are then generated for
each individual according to the selected scenario and by introducing variations into
both the name and address attribute values over time based on variations collected
from real data sources.

Other data generators that can create or corrupt data in XML format have also been
developed [195]. Further to the generators used in data matching and deduplication,
generators for specific types of data (such as relational database tables or biological
sequences) have been developed by researchers in their respective communities.

7.7 Practical Considerations and Research Issues

The most important consideration when evaluating the outcomes of a data matching
project is if ground-truth data (gold standard) in the form of known true matches and
true non-matches are available or not. If no such training data are available, then the
next question is if there is a practical way to obtain or create such data that are of
high quality within a reasonable amount of efforts. In some circumstances, a data
matching system can be assessed using either synthetically generated data or using
one of the various test data sets that have been published. For both of these the true
match status of record pairs is generally known.

As was described in Sect. 7.2, the commonly used quality measure of accuracy
should not be used in the context of data matching, due to the much larger number of
non-matches compared to matches that are normally contained in the set of candidate
record pairs. Precision and recall, as well as the f-measure, are suitable measures to
assess data matching quality.

Besides the actual run-time of a data matching system on certain data sets, the
number of candidate record pairs generated, or the measures of reduction ratio, pairs
quality, and pairs completeness, allow the measurement of the complexity of a data
matching system and its effectiveness. These three measures also allow hardware-
independent comparisons of different data matching systems.

When synthetic or publicly available test data sets are used to evaluate a data
matching system or technique, then it is important to be aware of the limitations
of such data, and the results achieved with them should not be generalised. The
performance of a data matching system or technique is dependent on the type and
the characteristics of the data that are matched. Having good domain knowledge will
be of high value to achieve good matching or deduplication results.

Research efforts should be aimed at developing large test collections for data
matching and deduplication in a similar fashion as has been accomplished in areas
of information retrieval (such as the Text REtrieval Conference (TREC) data collec-
tion9), or machine learning and data mining (for example the University of California
Irvine (UCI) repository10). Such data collections should contain both synthetic and

9 http://trec.nist.gov/
10 http://archive.ics.uci.edu/ml/

http://trec.nist.gov/
http://archive.ics.uci.edu/ml/

184 7 Evaluation of Matching Quality and Complexity

real-world data sets if feasible. Data containing personal information generally can-
not be made publicly available due to privacy concerns as will be discussed in the
following chapter.

An alternative to a data repository is the development of a test environment where
researchers can upload their data matching algorithms. These algorithms are then
evaluated on different data sets against a set of benchmark algorithms [195]. The
results of such evaluations are being returned to researchers and potentially also
published on a type of leader-board, indicating the performance achieved by different
algorithms on various types of data matching problems.

In order to allow such a test framework to operate, an implementation-independent
description of data matching algorithms is required. Similar to the predictive model
markup language (PMML) initiative by the Data Mining Group,11 an XML-based
descriptive language of data matching algorithms would need to be developed.

7.8 Further Reading

The introductory book on duplicate detection by Naumann and Herschel [195] nicely
covers the topics of quality measures, real-world and synthetic data sets, and data
generators. The authors also discuss issues related to benchmarking data matching
and deduplication techniques.

Christen and Goiser have provided a book chapter [71] that discusses in detail
the issues involved in measuring data matching quality and complexity, and they
provide an overview of a number of different quality measures. More recently,
Menestrina et al. [187] discuss a novel approach on how to measure the quality
of the record merging step, where records that have been classified as matches are
merged into new combined records.

11 http://www.dmg.org/

http://www.dmg.org/

Part III
Further Topics

Chapter 8
Privacy Aspects of Data Matching

8.1 Privacy and Confidentiality Challenges for Data Matching

Existing data matching techniques assume that all data that are required for the
matching are available in their original form (unencoded and unencrypted) to
the organisation that conducts the matching. In many applications the databases
to be matched contain records about individuals (such as patients, customers, trav-
ellers, students, etc.). Due to the lack of unique entity identifiers, the matching of
such databases needs to be based on the personal details of the individuals whose
records are stored in these databases. These details can consist of people’s names,
addresses, telephone, social security or driver’s license numbers, or their dates of
birth or death.

If data matching is conducted within a single organisation and between databases
owned by this organisation, then privacy and confidentiality are generally not of
concern. One can assume that the individuals who conduct data matching projects
within an organisation are aware of all relevant policies and regulations with regard
to handling the private and confidential data that are being matched, and that they do
not have malicious intents to take identifying or other sensitive information, or the
matched data, outside of their organisations for personal gain.

If matched data are used for purposes internal to an organisation only, such as
for internal fraud detection, generating customer mailing lists, or internal research
studies, then no privacy or confidentiality concerns will occur, assuming the necessary
steps have been taken to prevent unauthorised access to the matched data and no
detailed results of a matching exercise are made public.

On the other hand, if matched data are being passed on to another organisation,
or if (parts of) the matched data are to be made publicly available, for example to
researchers at different universities as part of a public health study, then the rele-
vant privacy and confidentiality regulations need to be taken into account. In many
countries, only data that do not allow the identification of individuals can be made
publicly available [194]. In the USA, for example, health data that contain identify-
ing information are covered by the Health Insurance Portability and Accountability

P. Christen, Data Matching, Data-Centric Systems and Applications, 187
DOI: 10.1007/978-3-642-31164-2_8, © Springer-Verlag Berlin Heidelberg 2012

188 8 Privacy Aspects of Data Matching

Act (HIPPA), which regulates what kind of matching and analysis can be conducted
with health data, and at what level of detail health data can be published. Gliklich
and Dreyer provide an extensive discussion of the various aspects that need to be
considered when data from health registries are matched [122]. Laws similar to the
HIPPA govern data publishing and sharing in many other countries.

Privacy concerns also arise when data matching is being conducted across data-
bases that are held by different organisations, and when the matching requires iden-
tifying data to be shared and exchanged between organisations. As will be shown
in Sect. 8.2, there are various scenarios where such inter-organisational data match-
ing can lead to great benefits, but where privacy and confidentiality concerns or
regulations limit or even prevent data matching projects.

The two major aspects with regard to privacy and confidentiality when databases
are matched across organisations are that (1) traditional data matching techniques
require that all data needed for the matching are given to the organisations that
undertake the matching, and (2) the results of a data matching exercise using data
from different organisations can reveal sensitive or confidential information that is
not available in the data held by a single organisation [58].

8.1.1 Requiring Access to Identifying Information

If data that contain personal details need to be communicated from the organisa-
tion that holds the database needed for matching (named the database owner) to
the organisation that will conduct the matching (named the matching unit), then the
database owner will loose control over their data. Access to sensitive and confiden-
tial information and how it can be used is generally regulated through laws, and
by policies and procedures internal to an organisation. Additionally, confidentiality
agreements are commonly signed by all parties that are involved in a data matching
project and by the individuals who have access to the data to be matched. Public
research organisations furthermore have institutional review boards or ethics com-
mittees that assess projects that deal with personally identifying information. They
only approve research where the public benefit outweighs the risk to privacy or confi-
dentiality of the individuals whose records are stored in the databases to be matched.

While data are generally encrypted during the communication between organ-
isations, if the matching requires access to the original unencrypted data then the
database owner needs to trust the matching unit to be able to maintain the secure
storage and processing of their data, and limit access to their data only to individuals
involved in a data matching project. The security of the IT system at the matching
unit must be able to prevent any unauthorised external access, as well as assure that
no unauthorised internal access can occur.

Ideally, therefore, would be data matching techniques that do not require that any
identifying data from a database owner need to be given to any other party involved in
an inter-organisational data matching project, while still allowing that accurate data

8.1 Privacy and Confidentiality Challenges for Data Matching 189

matching can be achieved on large databases. Such privacy-preserving data matching
techniques will be discussed in Sect. 8.3.

8.1.2 Sensitive and Confidential Outcomes from Matched Data

The record pairs classified as matches in a data matching project can contain infor-
mation that is not available in the individual source databases that were matched.
The combined information can be highly sensitive. As an example, assume different
health databases are matched and it is detected that a high profile individual (such
as a politician or movie star) has a serious health problem in the form of a conta-
gious disease [53]. While such highly sensitive information will not be made public
directly, there is a risk that it is being revealed through gossip or by somebody taking
personal advantage of this information. Another example occurs in situations where
the matching is conducted with the aim to identify individuals who might have been
involved in crimes or fraudulent activities, or who might be planning terrorist attacks.
Here a falsely matched pair of records could result in an individual being accused of a
crime they did not commit, or being added to a terrorism watch list. This can severely
impact on somebody’s life, including their travels or credit worthiness [153].

Even when identifying details are removed from matched data, for example before
they are given to researchers for further analysis or made publicly available, it is
possible in certain situation that individual entities can be re-identified [180]. This
was demonstrated by Sweeney, who successfully matched “de-identified” medical
records that were publicly available back to individuals, including the governor of
Massachusetts [247, 248]. Sweeney also showed that even when using only the three
attributes zipcode (5-digits), gender, and date of birth, nearly 90 % of the popula-
tion of the USA (216 out of 248 million individuals) had a unique combination of
these three values. Therefore, these three attributes can be used to uniquely identify
nearly everybody in the population of the USA. Generally, even an attribute that
is deemed not to be identifying can, in combination with other attributes, become
identifying [194].

Not only can matched data be sensitive with regard to individual records and
the entities they represent, but also with regard to groups of records that refer to
groups of individuals with certain characteristics. For example, assume the matching
of two databases, one containing medical details of patients and the other containing
socio-economic information such as income, race, and the cultural background of
people. The results from matching these two databases might reveal that there is
a significantly higher prevalence of a certain contagious disease for people from a
specific racial or cultural background living in a certain area. If such a result becomes
public knowledge it could lead to stigmatisation of this group of people, and diminish
their chances of obtaining employment or certain types of insurances.

How to prevent the re-identification of individuals from matched data that have
been made public is an activity that has been investigated by research into statistical
disclosure control [92, 253, 254]. By applying data matching techniques and using

190 8 Privacy Aspects of Data Matching

different publicly available pieces of information, it can be shown that in certain
cases high re-identification rates are possible [92]. Such re-identification techniques
can also be used by criminals whose aim is to collect and match enough identifying
information to allow them to commit identity fraud [10, 206].

8.2 Data Matching Scenarios

While matching databases across different organisations can lead to benefits in appli-
cation areas such as health, crime and fraud detection, and national security, as was
discussed in the previous section there are concerns about the sharing and matching
of databases that contain personal information across organisations. Matched data
has the potential to reveal sensitive private or confidential information that is not
available otherwise, information that can be misused and that can lead to damages
to both individuals and organisations [58, 75, 79, 134]. This can lead to the rejection
of data matching techniques, and result in the reluctance of organisations in both the
private and public sectors to employ data matching.

The following scenarios from a diverse range of application areas illustrate the
impact data matching can have on privacy and confidentiality when data are being
matched between different organisations [58]. Various real-world stories related to
privacy and data matching have also been described by Clifton et al. [79] and by
Fienberg [110].

• Public health research: A research project aims to investigate the effects that
different types of car accidents have on the public health system. The questions
this research aims to answer include which kinds of injuries are most common
with what type of car accident; the characteristics of the drivers and cars involved
in serious accidents; when and where accidents occurred, and what the road and
weather conditions were at the time of the accident; the general health of people
who were involved in a car accident one, two, five and ten years after their accident;
and the financial burden of different types of car accidents upon the public health
system. Such research can lead to policy changes that potentially can save many
lives [44, 78].
To enable this research, the research team requires data from hospitals (both public
and private), doctors (general practitioners as well as specialists), private health
insurers, government health departments, private car insurers, road and traffic
authorities, and the police. Legal and commercial restrictions will prevent some
of these organisations from sharing their data with the research team. A technique
is therefore needed that allows matching all of these databases such that (1) no
database owner is able to learn anything about any of the other databases that are
being matched; (2) no external adversary is able to learn anything about the source
databases even if they would get access to any data exchanged between the parties
involved in the matching; and (3) only selected attributes of the matched records

8.2 Data Matching Scenarios 191

are revealed to the research team (such as age and gender, and medical, car and
accident details, but not names or addresses).
The current practice for dealing with such situations is that all required databases
are sent to a trusted data matching unit, which, for example, is run by a government
health agency [44]. This data matching unit will conduct the matching and send
the required attributes of the matched records to the research team. All communi-
cations between the organisations involved in such a protocol will be encrypted,
and all parties involved will have strict confidentiality requirements they need to
follow, and the research will require approval by an institutional review board or
ethics committee. Under such a strict regulatory framework the above described
research project might be feasible. If a best practice approach is followed [161],
only personal identifying information will be sent to the data matching unit to
conduct the matching, but medical or otherwise confidential information of the
matched records will be directly given to the research team [73].
Various countries have successfully set-up such institutional data matching units
and corresponding matching protocols [161]. However, the weakness of such an
approach is that all identifying data need to be sent to the organisation which will
conduct the matching. While the communication is encrypted, the actual matching
can only be conducted on the original unencrypted attribute values. The security
of such a data matching unit therefore needs to be very high, and complete trust
is required by all parties involved that the individuals who conduct the matching
will not misuse the data they have access to, that proper access controls have been
arranged, and that the IT systems used for the matching are secure. Any breach and
compromise of sensitive information will likely lead to a backlash by the public
which could result in the closure of such data matching activities in the area of
public health.

• Business collaborations: Two companies plan to consolidate their businesses. They
would like to know how many customers and suppliers they have in common,
without having to share their complete confidential databases with each other.
A technique is required that identifies the common entities stored in their databases,
without revealing any other information to either business. Because of different
database schemas and different formatting and encoding standards, some form of
approximate matching is required to identify pairs of records from the databases
of the two businesses that have high similarities. For confidentiality reasons and
because of the danger of collusion, the involvement of a third party to conduct the
matching of the data is not desired [79].
In this scenario, techniques are needed that allow the sharing of large amounts
of data between two organisations in such a way that (1) only records in the two
databases that are similar with each other according to some similarity function and
corresponding minimum similarity threshold are identified; and (2) the identities
of these records and their similarities are revealed to both organisations. Neither
of the two parties must be able to learn anything else about the other party’s
confidential data.
Compared to the public health scenario discussed previously, the competitive com-
mercial environment might prohibit the use of a third party to conduct the matching,

192 8 Privacy Aspects of Data Matching

because collusion between one of the database owners (the first business) and the
matching unit (or an employee of the matching unit) could reveal all confidential
information of the second database owner (the other business) to the first one.
The potential of security breaches by intruders at the matching unit could also be
deemed to be too high a risk. This scenario therefore requires a secure two-party
data matching protocol.

• National security: For a terrorism related investigation, a national security agency
requires access to both commercial and government databases, for example from
financial institutions, car rental companies, airlines, immigration agencies, and
residency agencies. If these databases would be queried by the national secu-
rity agency with the details of suspect individuals, then their identities would be
revealed to the owners of all databases that are being queried. This could com-
promise the investigation and seriously affect the lives of the individuals under
investigation (of whom most will be innocent).
A technique is required that allows querying these different databases such that
neither the details of the query nor the answers (the matching records) are being
revealed to the database owners [55]. The actual matching of individual records
(that contain details about an entity) with several very large databases that contain
records of many millions of entities needs to be conducted in real-time to provide
fast query responses. Section 9.3 will further discuss the challenges of real-time
data matching.

• Geocode matching: Cancer registries in many countries collect information about
the occurrences of different types of cancer. Medical information about cancer
patients is often collected together with their demographic details (their age, gen-
der, address, and so on). Cancer registries are often small organisations that are
partially funded by governments but otherwise rely upon public and private dona-
tions. Imagine such a cancer registry plans to match the addresses in their database
to geographic locations (a process known as “geocoding,” a topic that will be fur-
ther covered in Sect. 9.1) [228]. The aim of such a geocoding project is to create a
database that allows the spatial analysis of where different types of cancer occur,
and if there are clusters of certain types of cancer or correlations with environmen-
tal factors (such as a chemical factory or nuclear facility that is located in proximity
to where a group of cancer patients live or work). Because of their limited finan-
cial resources, the cancer registry cannot invest in an in-house geocoding system
(i.e. software and personnel) but has to rely on an external company to conduct
the geocode matching.
The legal or regulatory framework might not allow the cancer registry to send their
data to an external organisation for geocoding. Even if allowed, complete trust is
needed in the capabilities of the geocoding company to conduct accurate matching,
and to properly destroy the registry’s address database afterwards. An alternative
approach (if available) would be for the cancer registry to use the geocoding service
offered by a trusted external organisation such as a government health department.
In both cases, the addresses of cancer patients have to be made available to the
outside organisation that performs the geocoding.

http://dx.doi.org/10.1007/978-3-642-31164-2_9
http://dx.doi.org/10.1007/978-3-642-31164-2_9

8.2 Data Matching Scenarios 193

(3)(3)

(2) (2)

(1)
Alice

Carol

Bob

Fig. 8.1 Schematic view of a basic three-party protocol for privacy-preserving data matching. In
the first communication step, the two database owners, Alice and Bob, exchange in a secure fashion
information such as the parameter values and functions used in the protocol. In the second step they
send their (somehow) encoded databases to the third party, Carol, which will conduct the matching.
In the third communication step, Carol returns information about which records were classified
as matches back to the two database owners. The exact content of each of these communication
steps, and the computations done by the parties involved in the protocol, depend upon the actual
privacy-preserving data matching protocol employed, as described in Sect. 8.3

This scenario requires a technique that facilitates accurate matching of addresses to
locations in a secure way, such that no details of the addresses stored in the cancer
registry’s database are revealed to any external organisation [63]. The matching
needs to be able to take variations, errors and missing values in addresses into
account and allow some form of approximate matching suitable for address details.

As these scenarios highlight, there is a need for techniques that allow data match-
ing in such ways that the database owners do not have to reveal any of their sen-
sitive private or confidential data to any other organisation involved in a matching
exercise, and only the matched records are being disclosed to the organisation(s) or
individual(s) that require them. Research into such privacy-preserving data match-
ing techniques has been conducted over the past decade, and the following section
provides an overview of these techniques.

8.3 Privacy-Preserving Data Matching Techniques

The problem that privacy-preserving data matching aims to address is how two or
more organisations can determine if their databases contain records that refer to
the same real-world entities without revealing any information besides the matched
records to each other or to any other organisation [104].

As the scenarios in the previous section have illustrated, there are two basic
protocols of how privacy-preserving matching between two organisations can be
achieved, as will be described below. Following the notation used in the cryptographic
literature [237], the two owners of the databases that are to be matched are named
Alice and Bob. Note that they do not need to correspond to individuals but more
commonly they refer to organisations such as businesses or government agencies.

• Three-party protocol: In the first protocol, a third party, named Carol, is employed
to conduct the matching. The general approach of this protocol is illustrated in
Fig. 8.1. It consists of three primary communication steps (individual protocols
might have additional steps). In the first step the two database owners exchange

194 8 Privacy Aspects of Data Matching

details such as which database attributes to use for a matching, the techniques
to be used to pre-process and encode or encrypt their data, and any encoding or
encryption keys required. These encoding or encryption keys must be kept secret
from any other party and any external adversary or attacker. In the second step the
(somehow) encoded databases are sent to the matching unit, Carol, which conducts
the matching by calculating the similarities between records. In the third step the
identifiers of the record pairs that have been classified as matches (i.e. the records
that have high similarity with each other) are sent back to the two database owners,
Alice and Bob. Depending upon the aim of the data matching exercise, the two
database owners can now decide to either exchange details of the matched records,
or to send the values of selected attributes of the matched records to another party,
such as a research team.
The use of a third party is a general drawback of three-party protocols. Even though
Carol does not receive any unencoded data (and therefore does not learn the content
of individual records, such as their attribute values), there is the potential that one
of the database owners (who knows the functions and keys used to encode the data
before they are sent to Carol) is colluding with the matching unit. This would allow
the colluding parties to decode all private and confidential information of the other
database owner. Another way of how confidential information could be revealed
is when one of the database owners is able to get access to Carol’s IT system in
a malicious way, which will again allow this database owner access to the other
database owner’s confidential information. A third way of a security breach occurs
if an external attacker gets access to the IT system of one database owner and also
to Carol’s IT system, which will allow this attacker to infer information about the
second database owner’s data.

• Two-party protocol: An alternative to three-party protocols is to remove the third
party such that only the two database owners communicate directly with each
other, as illustrated in Fig. 8.2. Two-party protocols also have a first communication
step where details are exchanged about the attributes and the pre-processing and
encoding or encryption functions that will be used in the protocol. The second
and third communication steps are similar to the steps in three-party protocols,
however in two-party protocols these steps are often repeated several times. While
two-party protocols are generally more secure (because there is no possibility of
collusion with a third party), they often require more sophisticated encoding or
encryption techniques because the two database owners must hide their private or
confidential data from each other. This makes two-party protocols computationally
more complex in general.

Various techniques to facilitate privacy-preserving data matching have been inves-
tigated. Some of the key concepts used include one-way hash-encoding, secure
multi-party computation (SMC) approaches such as commutative and homomor-
phic encryption and split data, Bloom filters, differential privacy, mapping attribute
values into multi-dimensional spaces, and the use of public reference values. These
concepts will be explained and illustrated further in the following sections.

8.3 Privacy-Preserving Data Matching Techniques 195

(1)

(2)
(2)

(3) (3)

BobAlice

Fig. 8.2 Schematic view of a basic two-party protocol for privacy-preserving data matching. The
protocol consists of the same three basic communication steps as the three-party protocol shown in
Fig. 8.1. Step two is often repeated several times, as many two-party protocols are based on only
exchanging parts of their data in each communication step. The actual data exchanged and the way
they are encoded or encrypted depend upon the specific privacy-preserving data matching protocol
employed, as described in Sect. 8.3

There are two security models of how the parties in a protocol are assumed to
behave. In the first model, known as the “semi-honest” [123] or “honest but curi-
ous” [134] model, it is assumed that all parties that take part in a protocol follow the
steps of the protocol, but they store all the data they receive from any other party and
all the results of the computations they carry out. Using this information, a party then
might try to infer any sensitive knowledge of any of the other parties. For example,
the data communicated might allow a party to compile statistics of the frequency
distributions of (encoded) attribute values, which can be used in a frequency analysis
(also known as a frequency attack) where the frequencies of external data (for exam-
ple name values from a public telephone directory) are matched with the frequencies
of the encoded attribute values.

In the second security model, known as the “malicious” model [123, 134], it is
assumed that the parties that take part in a protocol do not necessarily follow the steps
of the protocol, but they might maliciously communicate either wrong or modified
data in order to be able to infer any sensitive information from any of the other parties.
For example, assume prior to starting the matching protocol, database owner Alice
inserts an extra record with specific values (such as a name “John Dijkstra”) into her
database (even though no individual with these values exists in her database). If this
record is then matched with a record from Bob’s database, then Alice has learned
that Bob’s database contains a record with these specific values (i.e. there is a record
for “John Dijkstra” in Bob’s database).

Most approaches to privacy-preserving data matching have been developed
assuming the semi-honest rather than the malicious model, because the former holds
for many real-world situations where all parties involved in a data matching exer-
cise have an interest in achieving the outcomes of the matching rather than mali-
ciously trying to deceive the other parties. Additionally, protocols developed for the
malicious model generally have much higher communication and computation com-
plexities than protocols developed for the semi-honest model, because the model
requires much more sophisticated encryption and encoding technology to assure any
malicious behaviour is detected or prevented [123].

196 8 Privacy Aspects of Data Matching

String SHA1 hash MD5 hash

Peter 64ca93f83bb29b51d8cbd6f3e6a8daff2e08d3ec 6fa95b1427af77b3d769ae9cb853382f
peter 4b8373d016f277527198385ba72fda0feb5da015 51dc30ddc473d43a6011e9ebba6ca770
Pete ec81523bfe26c5232d53a01df4efae048badf1d1 fbf3589622d820bd28023c7b2d7b91ac
pete e3b6cda228242c30b711ac17cb264f1dbadfd0b6 858d41c9e397b8fa34bb046d8055f276
gail 18a6b6530e7d44721f6f34abe94a0522fd4265c5 9d1568a5ff0b38c3b26b52ed987c36db

gayle dde891995ff68fdfd84b08dea441e9df3f63b6e6 1c73180795ad6ee7dc6a6d342b23dbd2
gale b449ee4c45fcb7757e9582ced52f803f22153791 fdbd3cd60f63ebe9505bb7e0310a73d2
gael e7582b9507331a5564b63863c9f53d17cb7fc228 87931780ab7fb3123b2d1ce18a95970e

Fig. 8.3 Example hash-codes using the SHA1 and MD5 one-way hash-encoding functions [237].
As can be seen, even a single character difference, or a different ASCII code (upper/lower case
letter) results in a completely different hash-code. This makes the approximate matching of strings
using their hash-codes unfeasible

8.3.1 Exact Privacy-Preserving Matching Techniques

The idea of conducting data matching between different organisations without the
need of any identifying data having to be exchanged between the organisations was
first explored by French health researchers in the mid 1990s [219, 220, 221]. One
proposed approach is to convert each input string into a code based on polynomial
coefficients such that different strings are represented by different codes [221]. With
this approach, it is important that the likelihood of two strings being converted into
the same code (known as a “collision” in the context of hashing) is minimised, and
also that an adversary cannot infer the input string from the code only.

This initial approach was then improved by using a one-way hash-encoding func-
tion, such as the “secure hash algorithm” (SHA) or a “message digest” (MD) func-
tion [237], for the encoding of the input strings [219, 220]. A one-way hash-encoding
function allows the efficient encoding of an input string into a hash-code, however
having only access to a hash-code it is impossible with current computing techniques
to find the plain-text string in a reasonable amount of time.

Figure 8.3 shows the SHA1 and MD5 hash encodings for two groups of example
strings. As can be seen, even a single character difference (in the ASCII code value
of a character) results in a completely different hash-code. The straight application
of one-way hash-encoding therefore only allows exact matching. A possible way to
improve this is to pre-process and standardise the input strings in a similar way as
is done for phonetic encoding algorithms, as was discussed in Sect. 4.3. The idea of
such pre-processing is to convert the input strings into new strings that are the same
for similar (sounding) names. Name variations are converted into a standardised form
using look-up tables (for example, “gael,” “gayle” and “gale” can all be replaced by
“gail”), and nicknames need to be expanded into their full names (so “bob” becomes
“robert” and “liz” becomes “elizbeth”). Quantin et al. [221] present a pre-processing
approach specialised for French names that consists of eleven steps. While such
pre-processing can improve the matching quality for data that are dirty, it can also
result in a higher false match rate (see Sect. 7.2), as more record pairs are classified

http://dx.doi.org/10.1007/978-3-642-31164-2_4
http://dx.doi.org/10.1007/978-3-642-31164-2_7

8.3 Privacy-Preserving Data Matching Techniques 197

as matches because their original attribute values have been pre-processed into the
same standard form.

Once the hash-encoding has been applied by both database owners on the attributes
that are used for the matching, only the hash-codes together with their (encrypted)
record identifiers need to be communicated, by sending them to the matching party,
Carol, in a three-party protocol. The matching of two databases is then based only
on hash-codes that are exact matches. If several attributes are used in the matching,
then for each attribute where the hash-codes are the same for a given record pair, the
corresponding similarity for this pair is increased (by 1 if normalised similarity values
are assumed). The pairs with a total summed similarity above a certain threshold are
then classified as matches, in the same way as was discussed in Sect. 6.2.

Within a two-party protocol, the hash-encoding of attribute values does not hide
information from the two database owners about the values in their respective data-
bases. Because both database owners know the one-way hash-encoding function
used, they can mount a “dictionary attack” [237] on the hash-codes received from
the other database owner. A dictionary attack works by a party hash-encoding all the
values in its database, or potentially even the values obtained from an external source
(such as a public telephone directory that contains most given name and surname
values in a country). The party can then conduct exact matching of these hash-codes
with all hash-codes it has received from the other party, and thus it learns which
values occur in records of the other party. Because of this, simple hash-encoding
approaches to privacy-preserving matching can only work for three-party protocols.

However, in a three-party protocol even the matching unit can potentially mount
a dictionary attack using external data sources by applying known hash-encoding
functions (such as SHA1 or MD5) on a public database (such as a telephone directory)
and checking for matching hash codes. A way to overcome this problem is to add a
secret key k to each string s in a database before it is hash-encoded. This key needs
to be agreed upon by the two database owners in a secret way at the beginning of
the protocol such that the matching party, Carol, does not know the value of the key
k. Rather than hash-encoding a string s by itself, h = H(s), with H(·) being the
one-way hash-encoding function (like SHA or MD5) and h the resulting hash-code
of s, the string concatenated with the secret key is encoded, h = H(k ⊕ s), with ⊕
denoting a string concatenation. Because the matching unit, Carol, does not know
the value of k she cannot mount a dictionary attack.

However, the matching unit can still mount a frequency attack, where she counts
how often a certain hash-code h occurs in a certain attribute in the data that she
receives from the database owners. She can then compare the distribution of these
frequency counts with the frequency distributions of attribute values in a public
database. If for example the frequency distribution of the hash-encoded values in
an attribute are similar to the frequency distribution of surname values, then she
can identify that the most commonly occurring hash-codes correspond to the most
commonly occurring surname values (which might be “Smith” or “Miller”). Based
on this information, the matching unit can aim to identify the value of the key k by
trying a large number of possible values for k until she finds a k that together with

http://dx.doi.org/10.1007/978-3-642-31164-2_6

198 8 Privacy Aspects of Data Matching

a given hash-encoding function leads to hash-codes that match the most frequent
hash-codes from the database owners.

Agrawal et al. [6] view the problem of matching values across two databases as
the intersection of two sets of attribute values. They developed several two-party
protocols that allow this set intersection to be computed securely, such that only
the values in the intersection become available to the two database owners. Their
protocols are based on a commutative encryption scheme, where for two encryption
functions, f (·) and g(·) it holds f (g(s)) = g(f (s)) for any value of s. Using such an
approach, neither of the two parties can calculate the encryption of a value s without
the help of the other party. Both set intersection and equijoin protocols are then
presented, and their security and their communication and computation complexities
are analysed [6].

Privacy-preserving matching in the context of secure searching of keywords in
databases was explored by Song et al. [244]. Their approach was to encrypt each
word (assumed to be of a fixed length of characters) using a stream cipher (i.e. a
pseudo-random number generator) [237] such that Bob, who will store the encrypted
database, does not learn anything about the actual words in that database, and he also
does not learn for which word Alice is searching when she is querying the database.
This scenario is desirable when sensitive data need to be stored on a remote server
or in the cloud. While the basic approach developed by Song et al. only supports
exact querying of words, they discuss the possibility of wildcard searches of regular
expressions based on the idea of generating all possible instantiations of a regular
expression, and querying the database with all of them. For example, assuming only
lowercase letters are used, a regular expression of the form “?bc,” where the “?”
represents a single character, would be expanded into the 26 query words “abc,”
“bbc,” “cbc,” . . ., “zbc.” This approach can clearly only be applied on a very limited
set of wildcards, and it does not allow full approximate matching. This approach
of generating all possible forms of a query can also be applied to an edit distance
based approach. For example, again assuming only lowercase letters, with a three
characters long string and a maximum edit distance of 1, a total of 182 variations of
this string will need to be generated (3 deletes, 25 substitutions per character, and
four positions to insert a character). For a four characters long string, the number
increases to 234 variations, and with five characters there will be 286 variations.
From the number of queries Alice will post for a wildcard search, Bob will be able
to learn some information about the original string.

A different line of work was conducted by O’Keefe et al. [202], who developed
protocols that allow the secure extraction of records from database tables such that
the database owner does not learn which records were matched and extracted. The
protocol requires three parties and is based on an “oblivious transfer” protocol [237]
where the sender of a set of messages (records in the case of data matching) does
not know which messages were chosen by the receiver of the messages, and the
receiver obtains from the sender only the messages it selected but no others. While
this protocol can solve a challenging problem for example in the heath area (to extract
patients with certain sensitive characteristics from a database), it can only find exact
matching values.

8.3 Privacy-Preserving Data Matching Techniques 199

To summarise, while simple one-way hash encoding allows efficient privacy-
preserving data matching across organisations, the main limitation of these approaches
is that they can only find exact matches. Even if some form of data pre-processing is
applied, only certain types of variations will be converted into the same hash-codes.
As was however discussed in Chap. 3, most real-world data are dirty and contain
a variety of errors and variations. To achieve high quality data matching within a
privacy-preserving framework, approximate comparison functions, such as the ones
presented in Chap. 5, need to be available for privacy-preserving data matching. Such
techniques will be presented in the following section.

8.3.2 Approximate Privacy-Preserving Matching Techniques

Most research in privacy-preserving data matching so far has concentrated on devel-
oping techniques that allow the approximate matching of strings or sequences
between organisations without the need that these values are being revealed to any
party involved in the matching. Several surveys have recently provided comparative
evaluations of the developed techniques [99, 158, 255, 262]. In this section a selected
few key techniques are presented in order for the reader to gain an understanding of
the main approaches to approximate privacy-preserving data matching.

In 2003, Attalah et al. [14] proposed a two-party protocol for securely calculat-
ing the edit distance (as presented in Sect. 5.3) between strings or sequences. The
approach is based on a dynamic programming algorithm that generates a matrix
that contains the number of edits required between two sub-strings, as illustrated in
Fig. 5.1 on page 104. This matrix M is stored in a shared fashion between the two
database owners, where Alice stores a matrix MA (known only to Alice) and Bob
stores a matrix MB (known only to Bob) such that M = MA + MB. These two matri-
ces are generated iteratively throughout the protocol, and at the end of the protocol
only the final edit distance (the value in the lower right corner of the matrix M) is
exchanged between the two parties. They therefore both learn the final edit distance
between two strings but not the intermediate distances between sub-strings which
would allow them to reconstruct the other party’s string. Generating the matrix M
is based on a homomorphic encryption approach and a minimum finding protocol
for shared data. As a basic building block, for a vector of values c = a + b, where
Alice stores a = [a1, a2, . . . , an] and Bob stores b = [b1, b2, . . . , bn], this protocol
securely identifies which element in c is the minimum value without revealing any
other information. In order to find out if ci ≥ c j is true or not, Alice and Bob can
compare ai −a j (known only to Alice) and b j −bi (known only to Bob) which follows
from ci ≥ c j ⇔ (ai − a j) ≥ (b j − bi). This simple approach however reveals the
index of the minimum value in a vector to the other party. This drawback can be over-
come by applying a random permutation to the vectors before the comparison [14],
which however increases the communication and computation complexities of the
protocol. Using this basic secure comparison step, the calculations in Equation 5.5
on page 104 which find the minimum of three cells in the matrix M can be carried out
such that neither Alice nor Bob learn each other’s values. While this protocol allows

http://dx.doi.org/10.1007/978-3-642-31164-2_3
http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://dx.doi.org/10.1007/978-3-642-31164-2_5

200 8 Privacy Aspects of Data Matching

the calculation of edit distance between two parties without the need to reveal the
actual strings or sequences that are compared, the main drawback of the protocol is
that it requires one communication step for each element of the edit distance matrix,
and therefore a quadratic number of communication steps for the comparison of two
strings or sequences.

In 2004, Churches and Christen [74, 75] presented a privacy-preserving approach
to calculate the Dice coefficient (see Equation 5.10 on page 107) in a three-party
setting. Named “blindfolded record linkage” [75], their approach is based on the
idea of hash-encoding q-gram lists rather than full string values (as was discussed
in the previous section), and to send these hash-encoded q-gram lists together with
information about the number of q-grams in the strings to the matching unit (the
third party Carol) which can calculate the Dice coefficient by counting the number
of hash-encoded q-grams that two strings have in common (and multiplying this
number by two) divided by the number of q-grams contained in the two strings.
In order to allow fuzzy matching, not just complete hash-encoded q-gram lists are
sent to the matching unit, but also sub-lists of these hash-encoded q-gram lists where
one or more q-grams have been removed. For example, assume Alice has the value
“peter” in her record “a1” and Bob has a value “pete” in his record “b2.” Using
bigrams (q = 2), Alice generates the bigram list [“pe,” “et,” “te,” “er”] and Bob
generates the list [“pe,” “et,” “te”]. Alice next generates all sub-lists of her bigram
list with one bigram removed, and Bob does the same with his bigram list, resulting
in the following bigram sublists (with the original bigram lists included):

Alice: [“pe,” “et,” “te,” “er”], [“et,” “te,” “er”], [“pe,” “te,” “er”], [“pe,” “et,” “er”],
[“pe,” “et,” “te”]

Bob: [“pe,” “et,” “te”], [“et,” “te”], [“pe,” “te”], [“pe,” “et”]

The bigram sub-list in common is highlighted in bold font. Alice and Bob now
each converts their q-gram sub-lists into hash-codes by first converting each list back
into a string (and concatenating the string with a secret key) and applying a one-way
hash-function that was agreed upon by the two database owners. They then send
these hash-codes together with the number of q-grams in the sub-list, the record
identifier, and the total number of q-grams in the string value to the matching unit.
For the above example, and assuming simplified shortened hash-codes, Alice and
Bob will send the following tuples to the matching unit Carol:

Alice: (“7d44721f6f34,” 4,“a1,” 4)
(“23b2dce7d424,” 3,“a1,” 4)
(“49ee4c45fcb7,” 3,“a1,” 4)
(“6d342b23dbd2,” 3,“a1,” 4)
(“1c73180795ad”, 3, “a1,” 4)

Bob: (“1c73180795ad”, 3, “b2,” 3)
(“820bd28023c7,” 2, “b2,” 3)
(“6fa95b1427a3,” 2, “b2,” 3)
(“34bb046d8055,” 2, “b2,” 3)

http://dx.doi.org/10.1007/978-3-642-31164-2_5

8.3 Privacy-Preserving Data Matching Techniques 201

For each hash-code that appears in both Alice’s and Bob’s tuples, the matching
unit can now calculate the Dice coefficient between the string values these hash-codes
are based on. For the given example, only the encoding “1c73180795ad” (shown in
bold font), which is based on a three q-gram sub-list, appears in common. The Dice
coefficient of these two tuples can be calculated as 2·3

3+4 = 6
7 , which corresponds

to the similarity between “peter” and “pete.” 3 and 4 are the lengths (number of
q-grams in the bigram lists) taken from the corresponding two tuples shown above.
The biggest drawback of this approach to privacy-preserving approximate string
matching is the need to generate sub-lists of q-gram lists. If the string values to be
matched are long, then a large number of such sub-lists need to be generated. This
results in a large number of tuples that have to be communicated to the matching unit.
Experiments using an Australian database that contained surnames and suburb (town)
names showed that the overhead of this approach compared to communicating the
unencoded values only (for a non privacy-preserving matching) ranged from around
400 to over 4,300 [74].

Also in 2004, a two-party protocol for computing string distance measures such
as SoftTFIDF (described in Sect. 5.8) as well as Euclidean distance was presented by
Ravikumar et al. [226]. Their approach is based on a secure protocol for calculating
the scalar or dot product between two vectors (a · b = ∑n

i=1 ai · bi). A secure scalar
product can be calculated using a secure set intersection protocol [4] and a stochastic
approach that samples elements of the two vectors whose similarity is to be calculated.
Specifically, if k < n is the number of samples to be used, then both database owners
first normalise their vectors a and b, respectively, and then sample k elements in these
vectors such that the probability of an element being sampled is proportional to the
value of the element. Each database owner then adds the indices of the sampled vector
elements (i ∈ {1, . . . , n}) into a set, and the secure set intersection protocol is applied
on these two sets of indices. The resulting intersection of the two sets is multiplied
by the normalisation coefficients to get the final result which approximates the dot
product between the two vectors. Experiments on matching bibliographic records
taken from the Cora data set (see Sect. 7.5) showed that with around 1,000 samples
this secure scalar product achieves an accuracy comparable to the scalar product
using the full vectors. The number of communication steps in this protocol scales
linearly with the number of samples used.

Pang et al. [207] in 2009 proposed a three-party protocol that is based on the
idea of using a set of reference values that are available to both database owners (for
example given names and surnames extracted from a public telephone database).
The two database owners individually calculate the distances between all of their
attribute values and these reference values. They then send these distances together
with the encoded attribute and reference values to a third party. For each unique pair
of attribute values the triangular inequality (as discussed on page 102) is used to
find an upper bound on the distance between the two attribute values. If more than
one reference value is used then the minimum of the distance estimates is taken.
For example, assume sA and sB are the strings held by the database owners, Alice
and Bob, respectively. They both have access to two reference values r1 and r2.
Independently they can calculate the distances (such as edit distance, discussed in

http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://dx.doi.org/10.1007/978-3-642-31164-2_7

202 8 Privacy Aspects of Data Matching

pe et te

et te er

1 1

1 1

1

1

1

1

pe

1

1

0

0

0

0

0

0

0

0

1

0

0 0 0 1

00 0 0

Fig. 8.4 An example pair of Bloom filters consisting of 14 bits and with each bigram being hashed
with two hash-functions. As can be seen, a collision happens in the seventh bit (shown in italic font)
where two different bigrams are hashed into the same bit. Five bits set to 1 (shown in bold font)
are in common in both Bloom filters, with the Bloom filter that corresponds to the first string value
(“peter”) having seven bits set and the Bloom filter of the second string value (“pete”) having five
bits set. The Dice coefficient is therefore 2·5

7+5 = 10
12

Sect. 5.3 and denoted here with ed) between their string and the two reference val-
ues. Alice calculates dA,1 = ed(sA, r1) and dA,2 = ed(sA, r2) and Bob calculates
dB,1 = ed(sB, r1) and dB,2 = ed(sB, r2). They then send the encoded attribute values
(denoted by e(s)) and the distances to the matching unit, Carol, which can calculate
an estimated distance ed(e(sA), e(sB)) ≤ dmin = min(dA,1 + dB,1, dA,2 + dB,2).
If the distance dmin lies below a given threshold then the two corresponding attribute
values are classified as a match. The performance of this three-party protocol with
regard to matching accuracy depends upon the set of reference values selected.

More recently, several researchers have investigated the use of Bloom filters [39]
to conduct approximate matching within a privacy-preserving framework [98, 173,
239]. Bloom filters are bit-arrays, where a bit is set to 1 if a hash-function maps
an element of a set (such as the set of all possible q-grams) into this bit. Formally,
let l be the number of bits in the Bloom filter, and k be the number of independent
hash-functions, h1(·) to hk(·), that are used to map elements of the set U into the
Bloom filter. An element u ∈ U (such as a q-gram) is hashed k times using gi (u) =
hi (u) mod l, i = 1, . . . , k, with 0 ≤ gi (u) < l being the bit number in the Bloom
filter that is set to 1. If a bit was already set to 1 it is left unchanged if it is set
by another hash function (this is known as a collision). Figure 8.4 illustrates this
approach, where a Bloom filter of length l = 14 bits and two hash-functions (k = 2)
are used. Q-gram based similarities, as presented in Sect. 5.4, can be calculated based
on the number of bits set to 1 at the same positions in two Bloom filters.

Schnell et al. [239] presented a three-party protocol using such a Bloom fil-
ter approach, and they showed that precision and recall results can be achieved
using encrypted Bloom filters that are close to the results that can be achieved with
unencoded q-grams. Durham et al. [98] confirmed that Bloom filter based match-
ing can significantly outperform a binary comparisons approach. More recently,
Kuzu et al. [173] showed that, depending upon the length of the Bloom filter and
the number of hash-functions used, the Bloom filter approach proposed by Schnell
et al. [239] can be attacked using a vigorous frequency analysis combined with a
constrained satisfaction solver that allows the assignment of individual encoded val-

http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://dx.doi.org/10.1007/978-3-642-31164-2_5

8.3 Privacy-Preserving Data Matching Techniques 203

ues to unencoded attribute values from the two source databases. Durham in her
recent thesis [100] examined how record-level Bloom filters, that are based on bits
sampled from field-level (attribute-level) Bloom filters, can improve the security of
privacy-preserving data matching.

8.3.3 Scalable Privacy-Preserving Matching Techniques

The techniques presented in the previous section provide solutions for the approx-
imate matching of strings or sequences between organisations without the need of
having to reveal these strings or sequences. These techniques however do not take into
consideration the overall computation and communication complexity of the match-
ing of databases that potentially can be very large. As was discussed in Chap. 4,
non privacy-preserving data matching generally applies some form of indexing to
reduce the number of record pairs that need to be compared. Recent research in
privacy-preserving data matching has investigated how to improve the efficiency of
privacy-preserving matching and make it scalable to large databases.

Al-Lawati et al. [8] in 2005 were the first to investigate indexing in the context of
privacy-preserving data matching. They proposed three secure approaches to stan-
dard blocking (as presented in Sect. 4.4) within a three-party protocol. In this protocol,
the similarities between records are calculated using the TF-IDF distance function
based on hash-signatures. The blocking is based on tokens, for example q-grams,
such that only record pairs that have a token in common become candidate record
pairs that are being compared. In the first of the three proposed blocking approaches,
called simple blocking, the data sets are blocked using the hash-signatures generated
from the record values, and each record is inserted into several blocks, leading to
a potentially large number of candidate record comparisons. The second approach
overcomes this drawback by adding the record identifiers into the calculation of hash-
signatures. This maintains the uniqueness of each record pair. In the third secure
blocking approach, Alice and Bob first conduct a secure set intersection protocol
to identify which blocks they have in common. They then only send these common
blocks to the matching unit Carol, thereby reducing the amount of communica-
tion and computation required. Experimental results by the authors showed that this
secure blocking can reduce the total run time required by up-to two thirds [8].

Scannapieco et al. [234] addressed both the problem of private schema and private
data matching. The basic idea of their three-party approach is to map records into
a multi-dimensional metric space using the SparseMap algorithm, which is similar
to the approach on mapping based indexing that was discussed in Sect. 4.9. Strings
are embedded into the metric space using a set of random reference strings. These
reference strings are shared between the two database owners. The distances between
the actual attribute values (assumed to be strings) and the reference strings in the
metric space are then sent to the matching unit, which can calculate the similarities
between values in the metric space. Matches are classified as the pairs of values that
have a distance below a certain maximum threshold. The schema matching approach

http://dx.doi.org/10.1007/978-3-642-31164-2_4
http://dx.doi.org/10.1007/978-3-642-31164-2_4
http://dx.doi.org/10.1007/978-3-642-31164-2_4

204 8 Privacy Aspects of Data Matching

Fig. 8.5 Example of k-
anonymity generalisation
of a small database table as
used by the hybrid approach
to privacy-preserving data
matching proposed by Inan
et al. [146] (figure adapted
from [146])

RecID Education Age RecID Education Age
r1 9th 22 r1’ Secondary [1–32]
r2 10th 16 r2’ Secondary [1–32]
r3 12th 27 r3’ Secondary [1–32]
r4 Masters 33 r4’ Masters [33–39]
r5 Masters 39 r5’ Masters [33–39]
r6 Masters 34 r6’ Masters [33–39]

works by the third party sending a global schema as well as a hash-encoding function
to the two database owners, which can then map their own schema onto this global
schema and hash-encode their local mappings. By using a secret key known only
to the two database owners, each of them encodes their local schema mappings and
sends them to the matching unit, which can calculate the intersection of attributes the
two database owners have in common without knowing the names of these attributes.

Yakout et al. [290] converted the three-party protocol proposed by Scannapieco
et al. [234] into a two-party protocol. In a first step, record pairs that likely refer
to matches are generated by converting the values in the multi-dimensional metric
space into complex numbers. These complex numbers are then exchanged between
the database owners, so they each can generate the pairs of complex numbers that are
within a maximum distance from each other. These are the record pairs that likely
correspond to matches. In the second step of the approach, the two database owners
calculate the actual distances between the vectors of all likely matched pairs using a
secure scalar product protocol.

A different approach to scalable privacy-preserving data matching was presented
by Inan et al. [146] in 2008 who combined data sanitisation techniques (such as
k-anonymity or adding random noise) with a SMC protocol [123]. In this proposed
three-party protocol, in the first step k-anonymity [248] is applied by the two data-
base owners on their attributes that are used for the matching, resulting in modified
databases where values have been generalised. Figure 8.5 shows an example of both
an original and resulting generalised small database table. The hash-encoded gener-
alised values are sent to the matching unit which can classify pairs into non-matches
and potential matches depending upon how many generalised attribute values two
records have in common. Non-matches are those pairs where the number of different
hash-encoded values is above a certain threshold. For the potential matches, a more
expensive SMC step based on homomorphic or commutative encryption is employed
to calculate the actual similarity between record pairs [146]. An advantage of this
approach is that a threshold setting allows a user to trade-off between precision and
recall of the resulting matched record pairs.

More recently Inan et al. [147] proposed an approach to privacy-preserving data
matching based on differential privacy. The aim of differential privacy is to provide
accurate statistical information from databases while at the same time minimising
the chances that individual records can be identified [101]. In the proposed two-
party approach, differential privacy is employed in the blocking step (compared to
k-anonymity used in the previous work by the same authors [146]), while the actual

8.3 Privacy-Preserving Data Matching Techniques 205

matching of records within each block is performed using SMC based on homomor-
phic encryption to calculate the Euclidean distance between attribute values. The
approach uses specialised tree data structures to improve scalability. It however has
a trade-off between accuracy and privacy [147].

Karakasidis and Verykios [157] have recently investigated how phonetic encod-
ing algorithms, such as Soundex presented in Sect. 4.3, can be employed to accom-
plish scalable privacy-preserving approximate matching. While originally employed
mostly in the indexing step to split the databases to be matched into smaller blocks, the
one-to-many properties of phonetic encoding algorithms, their abilities to group sim-
ilar values into the same phonetic code, and especially their computational efficiency
make them suitable for privacy-preserving approximate matching. In this proposed
three-party protocol, Soundex encodings are generated for several record attribute
values. Each Soundex code is then replaced with a unique random number. To further
improve the security, each database owner inserts extra faked records into their data-
base. The encoded databases are then sent to the third party which can calculate the
similarities between record pairs based on how many Soundex codes (represented by
random numbers) a pair has in common. The identifiers of the record pairs that have
a similarity above a certain threshold are then returned back to the database owners.
In a follow-up paper, different strategies for adding extra faked records with different
distributions of values is explored [159], highlighting that different data distributions
can result in different levels of privacy preservation.

A two-party protocol that is different from all so far presented techniques was
recently proposed by Vatsalan et al. [260]. Their idea assumes that the databases to
be matched are large and therefore contain a large portion of all the possible values
that can occur in an attribute in a population. For example, a large hospital database
might contain most possible given names and surnames. The two database owners can
therefore calculate the similarities between attribute values individually without hav-
ing to communicate these values with each other or with a third party. Each database
owner generates a data structure which contains these pre-calculated similarities.
Using a set of reference values (similar as was proposed earlier by Scannapieco
et al. [234] and Pang et al. [207]) and the triangular inequality and reverse triangular
inequality then allows the database owners to find upper and lower bounds for the
similarities between records. To hide the actual similarity values (which could reveal
details about the actual attribute values), binned similarity values are exchanged
between the database owners to identify which record pairs have a high similarity
with each other. This approach was evaluated on a database containing nearly two
million records, indicating its suitability for the privacy-preserving matching of large
databases [260].

8.4 Practical Considerations and Research Issues

Privacy-preserving data matching is a relatively young area of research, and most
techniques proposed so far (as discussed in the previous section) have not been

http://dx.doi.org/10.1007/978-3-642-31164-2_4

206 8 Privacy Aspects of Data Matching

implemented into commercial or other operational systems. There has been one
commercial system by a big vendor that provides a technique for anonymous data
matching, however not many technical details are available (some form of hash-
encoding is applied in this system combined with sophisticated and domain specific
data pre-processing). Practitioners who aim to implement privacy-preserving data
matching are therefore likely required to implement a system by themselves. The
three major criteria that need to be considered are (1) the sizes of the databases that
are to be matched, (2) if a third-party can be employed to conduct the matching or
not, and (3) how secure a protocol needs to be with regard to how much information
about the databases can be revealed to the parties involved in the protocol.

There are still several challenges that have to be solved to make privacy-preserving
data matching feasible for practical applications. The main areas that need to be
investigated are scalability to matching large databases, being able to match different
types of data, accurate and automated matching, and how to assess the completeness
and quality of matched data in a privacy-preserving framework.

Being able to match databases that contain many millions of records in a privacy-
preserving fashion is one of the most crucial issues that must be solved, because
many real-world databases do contain such large numbers of records, and therefore
it must be possible to match such databases in a reasonable amount of time. Most
current techniques for privacy-preserving data matching have only been evaluated
on small databases that contain less than a million records.

As was described in Chap. 5, data matching commonly relies upon the comparison
of different types of data, including strings (such as names and addresses), numbers
(like dates, ages or salaries), and other more specific data types (such as postcodes,
or telephone, social security, or driver’s license numbers). For privacy-preserving
data matching to become practical, it must be possible that these different types of
data can be compared in a secure fashion.

Techniques are required that allow the accurate classification of the compared
record pairs into matches and non-matches within a privacy-preserving framework.
Because it is unlikely that training data in the form of matches and non-matches
are available, no supervised classification techniques can be employed. Privacy and
confidentiality concerns will prevent that training data such as unencoded attribute
values (like personal names and addresses) can be given to the party (or parties) that
undertake(s) the matching. Rather, unsupervised techniques, such as clustering, need
to be employed.

Finally, probably the most difficult challenge is how to assess the quality and
completeness of the records that were classified as being matches within a privacy-
preserving setting, where it is unlikely that the actual unencoded records will be
available for manual inspection. Statistical estimates based on data distributions
can provide some approximate value of matching quality. Another possible way to
overcome this challenge would be to first conduct a matching using synthetic data
that are closely modelled on the real data that are to be matched. However, as was
discussed in the previous chapter, generating realistic synthetic data is in itself a
formidable challenge. There has been one publication recently by Barone et al. [17]
who investigated how accuracy and completeness of data can be assessed within

http://dx.doi.org/10.1007/978-3-642-31164-2_5

8.4 Practical Considerations and Research Issues 207

a privacy-preserving framework. This work was however not specific to privacy-
preserving data matching.

While the protocols discussed in this chapter were mostly aimed at scenarios where
two or three parties are involved in the matching, further challenges will arise when
more than three parties aim to match their databases in a privacy-preserving fashion,
as is for example required for the first scenario given in Sect. 8.2. The problem of
collusion between any pair of parties, or even a group of parties, with the objective
to learn about another party’s data will need to be considered carefully in such multi-
party matching scenarios.

8.5 Further Reading

A good starting point to learn more about privacy aspects of data matching and to
learn about different privacy-preserving data matching techniques is to read the recent
reviews by Trepetin [255], Verykios et al. [262], Karakasidis and Verykios [158], and
Durham et al. [99]. These reviews all discuss the advantages and drawbacks of differ-
ent privacy-preserving data matching techniques. Clifton et al. [79], Fienberg [110]
and Christen [58, 63] discuss various real-world data matching scenarios that illus-
trate different issues with regard to privacy and data matching.

For application of data matching in the biomedical area, and issues relevant to
privacy and confidentiality that need to be considered, the interested reader is referred
to the articles by Kelman et al. [161], Churches [73], Rushton et al. [228], Chaytor
et al. [53], Durham et al. [98], Malin et al. [182], and Gliklich and Dreyer [122].
Narayanan and Shmatikov recently provided some general insight into what person-
ally identifying information is, and myth and fallacies surrounding such informa-
tion [194].

There is currently no book dedicated to privacy-preserving data matching,
however there are several books on the related topic of privacy-preserving data min-
ing [4, 257]. Many techniques developed in privacy-preserving data mining are also
employed in privacy-preserving data matching.

Also related to privacy-preserving data matching are techniques that allow secure
querying of a database in such ways that the database owner does not learn which
records were matched with a given query. Du et al. [96] investigated this topic for
different scenarios, including exact and approximate pattern matching. Similar work
has also been conducted in the area of private information retrieval [55].

Chapter 9
Further Topics and Research Directions

9.1 Geocode Matching

Geocode matching, also known as geocoding, is the process of matching geograph-
ical information (such as addresses, postcodes or zipcodes, or points of interests)
to geographical locations. These locations are commonly expressed as coordinates
(latitude and longitude), which correspond to a point or area on the Earth’s surface.
Records that have geocodes attached to them can then be loaded into geographical
information systems (GIS) and used for spatial data analysis. Geocoded records can
also be inserted into the metadata of multimedia files, such as images or videos,
a process known as ‘geotagging’. An analysis conducted by the US Federal Geo-
graphic Data Committee estimated that between 80 and 90 % of all governmen-
tal databases contain geographical location details in some form or another [256].
In most cases, these locations correspond to the addresses of individuals or busi-
nesses, or points of interest for certain applications.

Geocoding has been employed in many application areas for quite some time.
In the health sector, for example, the geocoding of patient databases has been used
to analyse local clusters of diseases, or to visualise where certain disease cases
occur. Rushton et al. [228] have recently reviewed how geocoding can be employed
in cancer research to identify geographical correlations between cancer cases and
nearby environmental factors (such as chemical factories, or sources of radiation) that
might influence the occurrence of certain types of cancers. Geocode matching is also
used by businesses to better understand where their customers live, and for example
where to open new stores. Similarly, national statistical agencies use geocoding to
assign households into local statistical areas (or census areas). These areas are often
the basis of statistical analyses, and they are used by governments to plan where new
facilities such as schools, hospitals, shopping centres or roads are required to deal
with future population growth.

Compared to general data matching, the process of geocode matching has several
special characteristics that need to be considered. The first of these is in what form
the location data are available, because this will dictate how the geocode matching

P. Christen, Data Matching, Data-Centric Systems and Applications, 209
DOI: 10.1007/978-3-642-31164-2_9, © Springer-Verlag Berlin Heidelberg 2012

210 9 Further Topics and Research Directions

Fig. 9.1 An example of
the two main geocoding
techniques: Property centre
based (circles numbered 1–
9) and street segment based
(the thick dark lines and dots
numbered 10–17), with the
dotted lines corresponding to
a global street offset. Adapted
from [63]

1

4
6

2

3

5
7

8

9

13

10

12

15

17

11.
.
.
.

.
.

can be conducted. As Fig. 9.1 illustrates, there are two basic approaches to geocode
matching. In the first, a database containing cleaned and standardised addresses and
their geographical locations (the latitudes and longitudes of the centres of properties)
is available that covers a region or even a country [67]. For such property centre or
‘property parcel’ based geocode matching, ideally a database contains all known
addresses in a certain geographical area. The second approach is to use a street-

centreline database, which is made of the geographical locations of small street
segments. When an address is matched to such a street segment, its geographical
location is extrapolated based on the start and end locations of the street segment
and the corresponding start and end street numbers, as well as a street offset (usually
in the range of 10–20 m). As Fig. 9.1 shows, the street-centreline based approach
can lead to locations being extrapolated into the wrong area (for example a different
property), as is the case with property numbers 10, 12 and 17.

Depending upon the quality and coverage of the reference database used for
geocoding (either property parcel or street-centreline based), the resulting matching
quality can be quite different, as several studies have shown [48, 67, 246]. Property
parcel based geocode matching often leads to higher quality geocoding results, espe-
cially in rural areas where properties are located at irregular intervals, and where
street segments can be of lower accuracy compared to urban areas [48]. Even a small
difference in a calculated location can lead to a record being inserted into the wrong
local statistical area, and this can have significant implications for the results of any
follow-up data analysis that is based on these local statistical areas [67].

The actual geocode matching process is generally based on detailed address infor-
mation, such as street number, street name, and street type; and town or suburb name,
postcode or zipcode, and state or territory name. The general data quality issues that
have been discussed in Chap. 3, and especially in Sect. 3.2 on p. 44, that are relevant
to geocoding include missing address details, typographical errors and variations in
street and town names, and out-of-date addresses. Depending upon how address data
have been entered (scanned from handwritten forms, dictated over the telephone,
or hand typed), a geocode matching rate of around 70 % is sometimes seen to be
acceptable [209].

http://dx.doi.org/10.1007/978-3-642-31164-2_3
http://dx.doi.org/10.1007/978-3-642-31164-2_3

9.1 Geocode Matching 211

A difference to general data matching is that geocode matching can be accom-
plished using a hierarchical approach [67]. Ideally, a given address in a user database
is matched exactly to an address in the reference database, leading to an exact geocode
location. This corresponds to an exact match in general data matching. Even with
small variations in the user address (such as a typographical variation in a street
name), an exact address match can often be found. However, if a user address does
not include a street number, or if a given street number does not exist in the refer-
ence database, then either only an extrapolated location (between the nearest existing
addresses) or the ‘centre’ location of the street can be assigned to that address. If even
the street address cannot be matched, then only the centre of the postcode or suburb
area can be assigned to the user address. An alternative to assigning the ‘centre’ of a
street, postcode or suburb as the location to a record (which is often quite meaning-
less) is to assign a bounding box which either includes the street area of the given
user address, or its full postcode or suburb area. Such a bounding box consists of the
locations of four points that completely include either a street or even a postcode or
suburb area.

As has previously been discussed in Sect. 8.2, geocode matching can have impli-
cations with regard to privacy and confidentiality of the data that is being geocoded,
because knowing the locations of where cancer patients live, for example, might
reveal their identity. The issues of geocoding techniques with regard to personal pri-
vacy have been discussed by Armstrong and Ruggles [13]. A topic of more recent
interest that also has implications with regard to the privacy of individuals is ‘reverse
geocoding’, the technique of assigning an address to a point on a map [45, 46, 87,
268]. With the increased public availability of digital maps that show details of, for
example, certain crimes or disease cases, it is becoming easier to find out who lives at
the addresses that correspond to these locations. Further work is required to develop
both technologies as well as regulations that assure private information cannot be
identified through such reverse geocoding techniques.

9.2 Matching Unstructured and Complex Data

Traditional data matching techniques commonly assume that the data to be matched
consists of records that are stored in flat database tables, spreadsheets or text files
(such as comma separated values (CSV) or tabulator separated values). Each such
record refers to one entity, it contains the same attributes, and there is no hierarchical
structure between the attributes in these records. Commonly, the data to be matched
also only contains one type of entity.

Modern information systems, however, consist of data that are stored in formats
different from such single database tables. Relational database systems are generally
normalised, such that different components are stored in different tables that are
linked with each other through unique keys. For customer or patient databases, for
example, the addresses of where people live are likely stored in a table that is separate
from the names and dates of birth of these individuals. Records to be used for data

http://dx.doi.org/10.1007/978-3-642-31164-2_8

212 9 Further Topics and Research Directions

matching need to be extracted from such normalised databases through queries that
combine the required attributes from different tables into a single table or view.

Increasingly, data are stored in repositories and formats different from relational
databases. Two types of data formats that have gained popularity in recent times are
Extensible Markup Language (XML) and Resource Description Framework (RDF).
Many different XML-based schema languages have been developed for different
application areas. An advantage of data stored as XML documents (in text format)
is that they can easily be interchanged between different applications that support
parsing of XML documents. A schema language specifies the set of elements that can
be included in an XML document for that language, the relationship between these
elements, and what attributes can be applied to them. Schema languages are described
either as Document Type Definition (DTD) or XML Schema. XML documents can
be represented in a tree structure, where elements can consist of subelements. For
example, a person element can contain a name and an address element. The name
element might contain subelements such as title, given name, middle name, initials
and surname, while the address element contains many subelements that correspond
to address components such as those shown in Fig. 3.1 on p. 42.

Weis and Naumann developed techniques to exploit the hierarchical structure of
XML documents to improve the detection of duplicates in XML databases [195, 269,
270]. Specifically, in their approaches the comparison of XML documents proceeds
in a top-down approach, such that documents that do not match at a certain level
in the tree structure are not compared further [195]. The idea behind this approach
is that, for example, if the country values of two XML records are different, then
even if the city values are the same the records are unlikely to be representing the
same entity. This makes intuitive sense, in that cities with the same name can occur
in different countries. There is, for example a ‘Melbourne’ in Florida, USA, as well
as in Australia, towns named ‘Newcastle’ are located in the UK, the USA (at least
six of them) and Australia, and there is a town called ‘Springfield’ in nearly every
English speaking country.

The RDF format to store data has recently gained a lot of interest from the semantic
Web and linked data communities. The RDF data format consists of triples made of
a subject, a predicate, and an object. The subject refers to a resource, usually a
Uniform Resource Identifier (URI); the predicate denotes an aspect of the resource
and also describes the relationship between the subject and the object. As a simple
example, assume one wants to store the given name ‘peter’ and surname ‘miller’ of
a record with identifier ‘a1’ into two RDF triples. The subject for both triples is ‘a1’,
the predicate for the first triple is ‘has given name’ and its object is ‘peter’, while
the predicate for the second triple is ‘has surname’ and its object is ‘miller’. Volz
et al. [264] and Jentzsch et al. [150] describe a data matching framework that can
match data stored as RDF tuples, while allowing the specification of indexing and
approximate string comparison functions through XML documents. This framework
is further described in Sect. 10.2.10.

For data that are stored in free text format without any specific attributes, such
as data extracted from Web pages, emails or news articles, information extraction
techniques, such as parsing and segmentation [230], generally need to be applied

http://dx.doi.org/10.1007/978-3-642-31164-2_3
http://dx.doi.org/10.1007/978-3-642-31164-2_10

9.2 Matching Unstructured and Complex Data 213

before such data can be used for data matching applications. As was discussed in
Chap. 3, the quality of such data pre-processing is crucial in order to achieve high
quality matched data.

Yakout et al. proposed a data matching approach not on databases that contain
records that refer to entities, but rather on databases where each entity is represented
by a set of transactions, each consisting of a time-stamp and a set of features [291].
These transactions can for example correspond to market baskets consisting of items
a customer bought in a shop. The matching is based on extracting patterns (such as
the weekly shopping behaviour of customers). For each entity, a behaviour matrix is
extracted from the transactional database that characterises which actions (such as
items bought) were performed by an entity at what time (or on which day). These
matrices are then further transformed into a condensed behaviour representation, and
a similarity score is calculated between pairs of entities based on their condensed
representation. Experiments by the authors using a real-world data set sourced from
the Walmart retailer showed the feasibility of their proposed approach on using
transactional data for data matching [291].

9.3 Real-time Data Matching

Much of recent research in data matching has concentrated on the development of
sophisticated classification techniques that improve data matching quality compared
to the basic threshold-based probabilistic approach, as was discussed in Chap. 6. In
practical applications of data matching, however, accurate matching is only one of
several issues that must be addressed. Commonly, practical applications will need to
involve a trade-off between matching accuracy and qualities such as matching speed,
scalability to very large databases, and increasingly, real-time matching capabilities.

Most existing data matching and deduplication techniques are aimed at the offline
batch processing of static databases. Many organisations, however, are challenged by
the task of having a stream of query records that contains information about entities
that need to be matched to one or several databases of known entities.

An example of real-time data matching can be found in the area of consumer credit
applications, where a database that contains information about credit cards, loans and
other consumer credit details is being queried with records that correspond to credit
checks, identity checks, changes in the personal details of existing consumers, or
new customers that are being added [212]. These query records will be supplied by
different customers, such as banks and other financial institutions. The organisation
which holds this consumer credit database (sometimes called a ‘credit bureau’) must
be able to provide responses to queries in (near) real time, ideally within a few
seconds at most.

Similar real-time data matching requirements can be found in online government
services (where the identity of a citizen needs to be verified in real time), or in law
enforcement or national security database systems where police officers or intelli-

http://dx.doi.org/10.1007/978-3-642-31164-2_3
http://dx.doi.org/10.1007/978-3-642-31164-2_6

214 9 Further Topics and Research Directions

gence agents need to be able to find the details of suspects in real time while at the
same time allowing approximate matching of personal details [54, 91, 267].

Real-time data matching has much in common with the functionality of text and
Web search engines [21, 43, 303]: real-time and approximate matching and ranking
of results. However, the databases upon which data matching is commonly applied
do not contain documents that provide a rich feature space. Rather, these databases
are made of structured records with well-defined attributes that often only contain
short strings or numbers, such as the names or other personal details of people.

The first approach to ‘query-time’ data matching was proposed by Bhattacharya
and Getoor [32] based on a collective classification approach, which was presented
in Sect. 6.10. The idea of this approach is to conduct the matching for each query
record in the raw ‘unresolved’ database that might contain duplicate entity records.
While this approach can improve the matching quality significantly compared to
simple pair-wise matching on the same database, due to the complexity of the col-
lective classification approach the matching was not feasible in real time. An average
matching time of 31 s per query record was reported when this approach was applied
on a database consisting of 831, 991 records [32].

Christen et al. approached the challenge of real-time matching from an information
retrieval angle by pre-calculating the similarities between attribute values and storing
them into a set of specialised data structures [69, 70]. At query time, these pre-
calculated similarity values can be efficiently retrieved, and the overall similarity
between the values in a query record and the relevant database records is calculated.
The data structures employed consist of one inverted index [288], which contains
the blocked attribute values (using standard blocking as was described in Sect. 4.4);
a second data structure in the form of another inverted index which contains attribute
values as keys and lists of other attribute values they are similar to; and a third
inverted index data structure which for each unique attribute value consists of a list
of all record identifiers that contain this value. The experimental results reported
by the authors showed that such an index-based approach can reduce the matching
time by over two orders of magnitude compared to a traditional matching technique
[69, 70]. The reported matching time for a query record on a database with nearly 7
million entity records was below 0.1 s in average.

More recently, Ioannou et al. proposed an entity-aware query processing system
which works on probabilistic databases where each record is assigned an uncertainty
probability that is used in the matching process [148]. Similar to the work by Christen
et al. [69, 70], possible matches (which have a likelihood weight attached to them)
between records are stored in a database, and the attributes of all records have them-
selves likelihoods attached. These likelihoods reflect the confidence one has in the
correctness of the attribute values given in a record. Lower likelihood values can for
example be assigned to records which have been sourced from untrusted databases,
or which contain inconsistent values. When a query record is given to such a proba-
bilistic database, a matching and merging step of entity records is conducted based
on the given likelihood values, and all merged entity records that fulfil the query
terms are being returned to the user. In order to achieve efficient and fast query-time
processing, a dynamic index data structure is maintained, which contains subsets of

http://dx.doi.org/10.1007/978-3-642-31164-2_6
http://dx.doi.org/10.1007/978-3-642-31164-2_4

9.3 Real-time Data Matching 215

entities that are connected with each other. This data structure is updated as entity
records are added or removed (a topic that will be further discussed in the following
section). The authors reported matching times of around 70 ms per query record on
databases consisting of around 50,000 entity records [148].

The latest work relevant to real-time data matching is an approach proposed by
Dey et al. who developed a matching tree for efficient online data matching [91].
Their basic idea is to limit the amount of communication required when records
are matched between disparate databases by re-ordering the comparisons that are
conducted between record attributes, such that a match or non-match decision can
be made as quickly as possible without the need to compare all attribute values
between records. Their approach is a modification of the traditional threshold-based
probabilistic record linkage technique that was described in Sect. 6.3. The authors
illustrate the significance of their approach through two example applications, the
first coming from the area of insurance claim processing, where health insurance
claims sometimes have to be processed by several insurers, and data matching is
required to make sure no double billing is happening. The second application is in
the area of crime investigations, where police officers in the field need to be able to
query databases from different municipality in order to identify a potential suspect.
Real-time and approximate matching is required in this application, and the amount
of communication of such queries should be as small as possible. The matching
tree developed by Dey et al. is trained in an offline phase from both matching and
non-matching examples, such that in the online (query) phase a match or non-match
decision can be made quickly. Experiments conducted by the authors showed that
their approach can significantly reduce the communication overhead without any
loss in matching quality [91].

9.4 Matching Dynamic Databases

Related to real-time matching is the issue of dynamic databases. As the example of
consumer credit applications in the previous section has shown, modern information
systems do not simply consist of static databases, but rather these databases are
modified on an ongoing basis. These modifications can either be inserts of records
that correspond to new entities (new customers, babies born, new students, new
employees, and so on); the removal (or inactivation) of old records that correspond
to entities that are not relevant anymore for a certain application (such as people who
have died); and updates of the personal details (like name or address changes) or
other application specific details (like student enrolment status or employment level)
of entity records. In many applications, the latter category of modifications is the
most frequently occurring one.

Dynamic databases require that all steps of the data matching process can handle
modifications. While data pre-processing can be conducted independently for every
record before it is added into a database or used to update an existing record, the
indexing, comparison, and classification steps need to be modified. The data struc-

http://dx.doi.org/10.1007/978-3-642-31164-2_6

216 9 Further Topics and Research Directions

tures used for indexing (often based on inverted indexes [288, 303]) must facilitate
that new values can be added, old values can be removed, and that weights stored in
these indexes (such as term-frequencies and document frequencies [288, 303]) can
be modified efficiently. The indexing technique used in real-time data matching will
determine which new records will be compared with records that are already stored
in the entity database. The same comparison functions as used with standard static
data matching can therefore be employed to compare records. However, for cer-
tain applications it might be advisable to modify the calculated similarities between
records according to the time when these records were added to a database or when
they were last modified. Such temporal information is captured by a time-stamp for
each record in a database.

For example, when addresses are compared, depending upon the application, it
might be sensible to discount matches with addresses that are more than a few years
old. This is because the longer ago an address was recorded for an individual the
higher the likelihood is that the person since then has moved to a different address.
Discounting matches with older records, similar as for example is done in data stream
processing [179], is one possible approach on how temporal aspects can be taken into
account. It might, for example, be more appropriate to have a query record match
with a more recent database record rather than more older ones, even though older
records have higher similarities with the query record.

The classification step, finally, requires that the classification model can be dynam-
ically updated as new records are added into a database or existing records are
modified. The alternative of re-calculating (periodically) from scratch a classifica-
tion model might be too time consuming and also lead to a drop in matching accuracy
as the classification model gets older, an issue known as concept drift [136].

Research into data matching on dynamic databases has only recently started to
gain attention. The work by Ioannou et al. [148], which was already discussed in the
previous section, allows dynamic updates of the data structures used as new records
are added into the probabilistic database on which this approach is based upon.

Whang and Garcia-Molina developed an approach to data matching that allows
matching rules to evolve over time as new data become available [274]. Rather
than having to conduct a full data matching process from scratch each time new
records are added into a database, their approach is based on materialised matching
results in the form of sets of records that are classified as matches. It is assumed
that matching rules (as was discussed in Sect. 6.5) are provided by a user who over
time refines these rules, for example because they are not happy with the results of
a data matching, or because data with new characteristics are added to the databases
which requires modified rules. The authors propose efficient algorithms for clustering
based data matching classifiers using either match-based clustering or distance-based
clustering. An experimental evaluation on real shopping and travel data showed that
their approach can speed-up data matching when rules evolve compared to the naive
restarting of the full data matching process [274].

Li et al. more recently investigated how temporal information available in the
databases to be matched can improve the matching quality [179]. They specifically
investigated bibliographic data where the dates of publications are included, and how

http://dx.doi.org/10.1007/978-3-642-31164-2_6

9.4 Matching Dynamic Databases 217

this information can be used. In their data, each author is affiliated with a certain
institution over a period of time. This information is used in the similarity calculation
between records. Additionally, their approach modifies similarities between records
according to a time decay, where candidate record pairs that have larger differences
between their time-stamps have their dissimilarities penalised less because it is more
likely that values change over time (such as the affiliations of authors). On the other
hand, agreements are more penalised over longer time differences as it is less likely
that the same entity will keep the same value over a long time period. While their
approach does not directly address the issue of dynamically changing data (they
assume the data to be matched are static but each record contains a time-stamp),
the idea of decay rates for similarities and dissimilarities could also be applied for
dynamic databases, by adaptively adjusting decay rates according to new data that
are added to the databases to be matched.

The approach proposed by Yakout et al. [291] on conducting data matching based
on transactional records that correspond to the behaviour of entities rather than the
actual entity records, as was already discussed in Sect. 9.2, also takes temporal aspects
of transactions into account. While their approach is not specifically aimed at dynamic
databases, similar to the work by Li et al. [179] described above, an extension to
this behavioural data matching approach would allow the dynamic adaption of the
calculations of similarity scores between sets of transactions as new data become
available.

9.5 Parallel and Distributed Data Matching

As modern databases are becoming larger, deduplicating or matching them requires
increasingly large amounts of computing power and storage resources. Researchers
have begun to investigate how modern parallel and distributed computing
environments can be employed to reduce the time required to conduct large-scale
data matching projects [25, 66, 88, 160, 163, 165]. Several approaches to parallel data
matching aimed at different computing platforms (such as multi-core machines or
distributed processors) and parallel programming environments (such as the Message
Passing Interface (MPI) or Map-Reduce) have been investigated.

The major distinctions in parallel architectures are (1) if all processors have access
to the same shared memory or not; (2) if all processors have access to the same
file system or not (shared or distributed I/O); (3) if the same program runs on all
processors (data parallelism) applied on different subsets of the data, or if different
programs run on different processors (task parallelism), either applied on all data
or on different subsets of the data; and (4) how the processors are connected with
each other (network topology) [126]. Parallel programs are either implemented in a
master-worker style, where a master process assigns tasks to worker processes; or
in a single-program multiple-data (SPMD) style where all processors run the same
program on different subsets of the data, but no single process controls the overall
parallel execution.

218 9 Further Topics and Research Directions

Load balancing is a crucial aspect that needs to be carefully considered in order to
achieve scalable parallel programs. All processors of a parallel computing platform
need to be occupied all the time, as otherwise one processor might finish its task
before others and therefore potentially has to wait for other processors to finish
before a next computation phase can be started. Good load balance can be difficult
to achieve for applications where the distribution of data to processors depends upon
the actual values of the data, which can be irregular or skewed. As will be further
discussed below, this is often the case for data matching applications.

Parallel performance is generally measured as the speedup in run-time achieved
when more than one processor is employed, tp, compared to the run-time of the same
program on a single processor, ts . Speedup is calculated as s = ts/tp. For example, if
the matching of two databases on one processor takes 45 min and 12 min when four
processors are used, then the speedup is s = 45/12 = 3.75. Ideally, speedup should
be as close to the number of processors used, especially as the number of processors
is increased. In order to achieve a speedup that scales linearly with the number of
processors that are being used, all components of a program need to be parallelisable
efficiently. If a program contains a component which cannot be parallelised, then
this will severely impact on the speedup that can be achieved. Such components can
consist of the program initialisation, the loading of data at one processor only, or the
communication between the processors to exchange intermediate results.

For example, assume 10 % of the time required by a data matching program cannot
be parallelised (denoted with tseq) and 90 % can (denoted with tpar). The parallel
run-time when using p processors can then be calculated as tp = tseq + tpar/p.
Assuming the sequential (p = 1) execution of this program takes 45 min, with
p = 2 processors the parallel execution time (with tseq = 4.5 min) is reduced to
tp = 4.5 + 40.5/2 = 24.75 min (speedup s = 45/24.75 = 1.82). When p = 5
processors are used, tp = 4.5 + 40.5/5 = 12.6 min (speedup s = 3.57), and with
p = 10 processors tp = 4.5 + 40.5/10 = 8.55 min (speedup s = 5.26). Even with
p = 100, the parallel run-time would be tp = 4.9 min and the speedup would only
be s = 9.17. As this example shows, in order to achieve a parallel program that
is scalable to a number of processors, all components of the program need to be
parallelisable efficiently.

In order to achieve scalable speedups for data matching and deduplication systems,
it is necessary that each step of the data matching process (as was illustrated in Fig. 2.1
on p. 24) needs to be parallelisable. The following list discusses this requirement for
each of these steps:

• Data Pre-Processing: In this first step, each record can generally be processed
independently from all others. Given that data pre-processing relies heavily upon
dictionaries and look-up files that contain spelling variations, nickname expansions
and so on, each processor must be able to access these files. This can be accom-
plished either via direct access to these files, or by communicating the required
information from one processor (such as a master process) to all other processors
via broadcast communication. Assuming the time required to pre-process is the
same for each database record, a uniform distribution of records onto processors

http://dx.doi.org/10.1007/978-3-642-31164-2_2

9.5 Parallel and Distributed Data Matching 219

can achieve an evenly balanced workload on all processors (i.e. each of the p
processors will pre-process n/p of the n database records).

• Indexing: As was discussed in Chap. 4, indexing is a crucial step to reduce the
number of record comparisons that need to be conducted. The sizes of the blocks
or clusters generated by most indexing techniques depend upon the distribution
of the actual attribute values in the records, which for certain attributes can be
highly skewed (such as for surnames or given names). The major challenge in
parallelising an indexing technique is therefore to achieve good load balancing
across all processors. This can be achieved by splitting the databases to be matched
into blocks or clusters that will lead to an equal number of record pair comparisons
to be conducted on each processor. The second issue in the indexing step is how the
databases to be matched are accessed (i.e. can all processors read the full database
or only a portion of it), and how candidate record pairs are being communicated
between processors to achieve the required balanced workload.

• Field and Record Comparison: The comparison of each individual pair of records
can be accomplished independently from all others. If the distribution of record
pairs done in the indexing step has led to a balanced distribution of candidate
pairs, then the comparison step can be efficiently conducted in parallel assuming
that all processors have access to the actual attribute values of the records they are
comparing.

• Classification: When a classification technique for data matching is being par-
allelised, the major concern is if either each compared record pair is classified
independently from all others, or if some form of clustering or collective classi-
fication technique is applied (as was discussed in Chap. 6). For the classification
of individual record pairs, each processor only needs to know the classification
model and its parameter settings (such as thresholds or rules). It can then classify
individual pairs and either store the classification results into a file that is being
merged at the end of the classification step, or sent as a message to a coordinating
process (such as the master process).
On the other hand, the parallelisation of classification techniques that are based
on groups or clusters of records, that generate global graphs of possibly matching
records, or that consider the transitive closure of record groups (as was covered in
Sects. 6.8–6.11) requires more sophisticated approaches. Research conducted in
parallel data mining [297], such as parallel clustering algorithms, can be applied
for parallel classification in data matching. Such algorithms commonly include
complex communication patterns, because intermediate results often need to be
exchanged between processors that hold certain subsets of the data (the compared
candidate record pairs in the case of data matching).

• Evaluation: The final evaluation of the quality and complexity of a data matching
exercise generally needs to be conducted on a single processor in order to obtain
the overall final result. Each processor can however calculate these measures on
the portion of the data they hold, and send the results to a coordinating process
which aggregates all individual results.

http://dx.doi.org/10.1007/978-3-642-31164-2_4
http://dx.doi.org/10.1007/978-3-642-31164-2_6
http://dx.doi.org/10.1007/978-3-642-31164-2_6
http://dx.doi.org/10.1007/978-3-642-31164-2_6

220 9 Further Topics and Research Directions

This final step will also require that the actual result files (that contain the matched
record pairs or groups) are collected from the different processors and merged into
one single result file that can be used further.

Hernandez and Stolfo [140] in 1995 presented a parallel version of their sorted
neighbourhood indexing approach (which was discussed in Sect. 4.5). Using a par-
allel machine where memory was not shared between processors, they employed a
master-work approach where the master process distributes the database, the worker
processes sort their subset of the data, and the master process joins the sorted subsets.
Experimental results on up to six processors showed a sublinear speedup due to the
requirement of the master process to read, distribute and collect the database subsets.

A description of a data matching system that uses data parallelism was provided
by Christen et al. [66]. This system employed the Message Passing Interface (MPI)
library for communication between processors in a distributed environment where
each processor only has access to its own memory and disc. Experimental results
confirmed that it is more difficult to achieve scalable speedups for the indexing step,
however the comparison and pair-wise classification steps can achieve nearly optimal
speedups. The majority of time, between 94 and 98 %, in the experiments conducted
was spent in the comparison and classification steps, resulting in a nearly linear
overall speedup [66].

Benjelloun et al. [25] proposed a family of algorithms based on the Swoosh algo-
rithm (which was presented in Sect. 6.12) that facilitate distributed data matching.
D-Swoosh, as it is called, is using a generic ‘scoop’ function which determines how
records are mapped onto processors, and a ‘resp’ function which designates which
processor is responsible for a certain record. Each processor runs the R-Swoosh [26]
algorithm on its subset of the data. Each matched and merged set of records is com-
municated to all processors that hold a record that is affected by a merge. Different
strategies for choosing the ‘scoop’ and ‘resp’ functions were considered, and an
experimental evaluation was presented using a real comparison shopping data set.
These experiments showed that D-Swoosh with certain parameter settings was able
to achieve a nearly linear speedup on a parallel platform consisting of 16 processors
[25]. A master-worker approach of D-Swoosh, called P-Swoosh, was implemented
by Kawai et al. [160]. Different ways of how matching record sets are distributed
onto processors (and in certain cases replicated) were explored. Two different load
balancing techniques were investigated, one with a static distribution and the other
with an adaptive distribution. The speedup results of experiments, that were using
the same data set that was used by Benjelloun et al. [25], were comparable to the
results achieved with the D-Swoosh approach.

Kim and Lee [163] investigated different approaches to match and merge data sets
that are either clean (i.e. the two source data sets do not contain duplicate records)
or dirty (i.e. the source data sets can contain duplicate records). The general idea of
their approach is that the smaller of the two data sets to be matched, A, is replicated
on each processor. The larger data set, B, is however distributed. In the first step,
each processor conducts the matching and merging of records between A and its
subset of B. In the second step, the results of the first step are exchanged between

http://dx.doi.org/10.1007/978-3-642-31164-2_4
http://dx.doi.org/10.1007/978-3-642-31164-2_6

9.5 Parallel and Distributed Data Matching 221

processors as required, and a matching and merging of the exchanged records is
conducted. The second step is repeated until no more merges can be conducted. In
order to achieve good load balancing, the number of record pair comparisons that
need to be conducted is estimated based on the size of the data stored at a processor.
This estimate is used to distribute the actual data across processors. The proposed
algorithm was implemented in a distributed Matlab environment. Experiments on
synthetic bibliographic data showed that this approach can achieve speedups of up to
7.5 on 8 processors, and that it is between 11 and 18 % more efficient than P-Swoosh
[163].

More recently, Kirsten et al. proposed different strategies of how to distribute data
to generate independent matching tasks that can be executed on different processors
[165]. This data parallelism approach specifically aims to set the number of partitions
and their sizes in an optimal way with regard to both communication overhead
and memory requirements. A master-worker program style was adapted where the
master processor (called the workflow service) calculates the number and sizes of
partitions which are then distributed to the workers (called the match services) by
a data service. This data service also collects the individual results from all match
services. Two partitioning approaches are proposed. The first is based on the full
Cartesian product of all possible record pairs that can be generated from the two
databases that are being matched (i.e. no indexing is applied). The second partitioning
approach assumes that an indexing technique is used (this partitioning is independent
of the actual indexing technique employed). Because the size of blocks depends on
the data to be matched, the indexing based partitioning approach splits large blocks
into smaller ones and merges small blocks into larger ones in order to achieve better
load balancing between the different processors. Experimental results using a real
data set of consumer products from a comparison shopping Website on a parallel
platform with 16 processors showed that good speedup results can be achieved by
both partitioning approaches [165].

A data parallelism approach for multi-core computing platforms based on the
Map-Reduce programming model was recently presented by Dal Bianco et al. [88].
They proposed an efficient indexing approach based on standard blocking that, similar
to the approach presented by Kirsten et al. [165], in the first step generates larger
blocks that have lower similarities using a less specific blocking key definition.
Because such large blocks can lead to imbalanced workloads, in the second step
the blocks that are too large according to some criteria are split into smaller blocks
using a more specific blocking key definition. After this indexing step, the generated
and compared record pairs on each processor are formed from the records stored on
that processor, and the results are merged into a single output file. Synthetic data sets
consisting of up to 4 million records that were created with the FEBRL data generator
(described in Sect. 7.6) were used to evaluate the proposed approach. Speedup results
of between 3 and 3.5 were reported on a multi-core machine with four processors
[88].

Kolb et al. [167] recently proposed a similar approach to parallel data matching
also based on the Map-Reduce programming model. However, instead of using the
standard blocking technique they developed two efficient parallel variations of the

http://dx.doi.org/10.1007/978-3-642-31164-2_7

222 9 Further Topics and Research Directions

sorted neighbourhood indexing technique that was discussed in Sect. 4.5. In the first
approach, multiple Map-Reduce processes are employed, while the second approach
employed a tailored data replication to improve performance. A pre-processing step
was applied on the data to be matched that calculates a matrix that contains informa-
tion about how many entities are given per blocking key. Based on this information
an efficient load balancing of entities onto processors can be achieved. A data set con-
taining around 1.4 million bibliographic records was used to evaluate the proposed
approach, and speedup results of around 7 on 8 processors were reported [167].

9.6 Research Challenges and Directions

This section provides a discussion of current challenges and directions for future
research in the area of data matching. The topics listed have been compiled with
the help of some of the world’s leading data matching researchers and practitioners.
The aim of this list is to provide researchers and graduate students who are entering
the area of data matching with some ideas for potential research topics. The interested
reader is also referred to Winkler’s report on research directions published in 2006
[284]. Most of the topics described in his report are still valid in 2012.

The given list is ordered following the structure of the book, i.e. starting with
topics that refer to the different steps of the data matching process, and ending with
topics related to privacy and the topics discussed earlier in this chapter.

• A unifying framework for data matching: While a variety of data matching proto-
type systems has been developed in recent years [168], it is currently not possible
to easily compare these systems because they employ different methodologies and
evaluation measures, and different test data sets have been used for their evalua-
tion. What is required is a unifying framework for data matching that allows the
integration of different algorithms such that comparative evaluations can be con-
ducted more easily. Such frameworks must allow the different functionalities of
the data matching process (implemented as methods, functions or modules) to be
exchanged between prototypes, and facilitate that new algorithms and techniques
can be plugged into existing systems. Frameworks in the areas of data mining
and machine learning, such as the WEKA toolbox [132], have shown to be very
successful both for research and education in these areas.

• A specification language for data matching: Related to the previous topic is the
desire to have a language that allows specifications, models and parameters for
all steps of the data matching process to be written in an implementation inde-
pendent way. Such a language will allow the exchange of specifications across
different data matching systems, facilitate comparative evaluation, and improve
portability. In other domains, such specification languages have attracted inter-
est both from academia and industry. One example is the Predictive Model

http://dx.doi.org/10.1007/978-3-642-31164-2_4

9.6 Research Challenges and Directions 223

Markup Language (PMML)1 developed by the Data Mining Group. PMML allows
cross-platform data mining model development and deployment. A standardised
specification language for data matching will help to bridge the gap between data
matching research and commercial products, because it will facilitate for example
the exchange of practical data matching specifications from industry into acad-
emia, thereby making academic research more relevant for solving real-world
data matching problems.

• Data pre-processing to achieve a certain match quality: When the quality of data
is assessed for the first time prior to their use in data matching, it is generally
not known how much efforts in data pre-processing (cleaning, standardisation and
segmentation) are required to convert the input data into a form that will lead to data
matching results of high quality. Given data pre-processing is a time-consuming
and often labour intensive process, techniques are required that provide an estimate
of how much effort should be spent on data pre-processing in order to achieve data
matching results of a certain quality. For some data matching applications extensive
data pre-processing might not even be required.

• Incremental data pre-processing: Related to the previous topic is the question
of how data pre-processing can be conducted incrementally, for example if the
outcomes of a data matching exercise require further data pre-processing to be
conducted in order to improve matching quality. For certain applications, an itera-
tive approach to data pre-processing might be appropriate, where the results of the
first matching iteration are used to conduct further data pre-processing, which in
turn can lead to improved matching quality in the second iteration, and so on. Such
an approach that conducts the two steps data pre-processing and data matching
iteratively until a certain match quality is achieved will require techniques that
allow dynamic adjustments of data pre-processing and data matching algorithms
and their parameters. Ideally, these parameters are learnt automatically throughout
this process.

• Domain specific data pre-processing: Because most data pre-processing is do-
main specific, techniques are required that take domain knowledge into account
both to improve the quality of the pre-processed data as well as to reduce the
manual efforts required in the data pre-processing process. Domain knowledge
needs to be exploited and represented such that it can easily be reused and modified
when different data are to be pre-processed. One way to achieve this could be to
encapsulate domain knowledge into a specification language that can be used by
different data matching systems.

• Using external data sources for automatic data pre-processing: With the avail-
ability of an increasingly large and diverse amount of information from different
data sources, the question is how can data quality be improved through techniques
that automatically (or semi- automatically) exploit such external data. Because the
quality of external data might be questionable, the confidence one has in such data
sources needs to be taken into account during the data pre-processing process.

1 http://www.dmg.org/

http://www.dmg.org/

224 9 Further Topics and Research Directions

• Handling missing data: How to efficiently deal with missing data is a fundamental
question in data matching. There are different reasons why missing data can occur.
Some missing values might refer to truly unknown or non-existing values (such as
a person who does not have a middle name), while others might be due to data entry
errors, equipment malfunctioning, or simply because it was decided a certain value
does not need to be recorded. Depending upon the reason why missing data occur,
the parameters used in data matching algorithms might have to be modified for
individual records. A question is if it is known why a certain record has a missing
value or not (for example from meta-data that provides details about the data entry
conditions). Such information could be used in the comparison and classification
steps to adjust the similarity calculated between attribute values, or to decide the
match status of a candidate record pair.

• Estimating match and non-match rates: Because in many data matching situations
no ground-truth data are available, it can be challenging to estimate the accuracy
of record pairs that have been classified as matches or non-matches. Statisticians
have worked on the problem of estimating match and non-match rates for many
years [23, 283, 285]. Because the candidate record pairs generated depend upon
the indexing technique used in a data matching exercise, and their classification
is influenced by both the comparison functions and the classification technique
used, the assessment of match rates needs to take all these techniques and their
parameters into account. If no ground-truth data are available, data from external
sources, earlier matching projects on the same data, or synthetic data that have
similar characteristics as the real data that are to be matched, can potentially be
used to estimate match and non-match rates. Sampling of candidate record pairs
and their manual evaluation seems to be a viable alternative [283]. Further research
is required into how such estimates can be used with the advanced classification
techniques for data matching that have been developed in recent times (such as
collective classification).

• Adjusting statistical analyses for matching errors: When matched data are used
for further statistical analysis, it is important to know the error rate that has been
introduced in the matching process. However, as was discussed in the previous
topic, an exact value of this rate is often not known and needs to be estimated.
Based on such estimates, any follow-up statistical analysis needs to be adjusted
accordingly. Work in this area has again been conducted by statisticians [50, 174,
235], however it seems the computer science community, for example researchers
in the fields of data mining and machine learning, has so far not investigated this
topic. In these fields, it is generally assumed that a matched data set is accurate
and complete. This means the records in a matched data set correspond to correct
matches, and that the matched data set contains all true matches between the two
source data sets.

• Improved classification: Current classification techniques for data matching are
generally based on the similarity values obtained from the comparison functions
when records are compared with each other, and from additional relational infor-
mation which links records with certain common characteristics with each other.
Classification techniques that select the best available features to make accurate

9.6 Research Challenges and Directions 225

match and non-match decisions could help to improve the match quality that can
be achieved, while feature selection techniques can help to decide which features
(i.e. which comparison functions applied on which attributes) have the highest
discriminating power to distinguish between matches and non-matches. Novel
techniques that allow classifications to be made as quickly as possible without the
need to compare all attributes between two records have already helped to improve
the performance of data matching systems [91, 193].
Extending data matching from relational data to more complex types of data (as
was already discussed in Sect. 9.2) will require novel comparison as well as classi-
fication techniques that can integrate different types of data, including text, images,
video, as well as spatial (such as geo-referenced) and temporal data.

• Incremental data matching:As was previously discussed in Sect. 9.4, there is a
move away from matching static databases towards online and real-time data
matching systems, where the underlying databases are constantly modified with
new and updated records. Data matching techniques applied on such databases
must be able to deal with the dynamic nature of these data. It must be feasible
to dynamically update the classification models used, for example by adjusting
parameters or updating rules [275]. How such model adjustments can be best
achieved in a running environment while keeping high matching performance is
an open research question.

• Semantic matching: Current data matching techniques are mostly based on the
syntactic matching of attribute values that are available in the databases that
are matched, and potentially by using additional relational information between
records. Semantic matching [299] requires techniques that can detect which
attribute(s) in one database correspond(s) to which attribute(s) in another data-
base (similar to schema matching techniques [224]). Because large real-world
database systems can be very complex and consist of hundreds of tables, manually
determining which tables correspond to each other will likely be very expensive.
Semi-automatic techniques that explore correspondences and correlations between
tables and their attributes are required [24].

• Incorporating user knowledge: With many commercial data matching systems
being either based on rules or ad hoc implementations that have been hand-crafted
and improved over long periods of time, it is important that the human knowl-
edge and expertise encapsulated in these systems are not lost (for example when
an experienced data matching expert retires from an organisation). Most of this
knowledge is very domain specific, and it changes over time. Some rule-based
data matching systems consist of hundreds if not thousands of rules that have
been carefully manually designed. For many organisations these rules are very
valuable as they encapsulate important aspects of their business intelligence. It is
therefore crucial that such human expertise can be captured and transformed into
representable knowledge such that it can be ported to other data matching systems
or even be incorporated into future systems.

• Matching across many different data sources: In certain applications, data from
more than two sources need to be matched, for example in situations where several
government departments work together to identify individuals who might have

226 9 Further Topics and Research Directions

committed fraud, or where medical records of patients who potentially have been
admitted to several hospitals need to be combined. Records that correspond to
the same individual will likely have been recorded at different points in time, and
therefore potentially have different attribute values (such as a changed address or
surname). The various databases might also have different structures and formats,
and the records stored in them can contain different types of information (i.e.
different attributes according to the need of the application the data was collected
for). The quality of the data, as well as the confidence one can have in their
correctness will likely also differ.
In other applications, databases that contain different types of entities might need
to be matched, for example scientific publications that are matched with authors
or institutions to help assess the impact of researchers and the organisations they
are working for.
When several databases are to be matched, the matches identified between records
from two databases can help to inform the matching of records from other data-
bases [276]. Even when only two databases are matched, information from external
data sources, sometimes called ‘bridging files’ [284], can be used to find matches
that are not obvious from the records in the two databases only. Such a bridging
file might contain the details of the last three addresses of people and the time peri-
ods when they lived at these addresses. This information will facilitate matching
between databases that were recorded at different points in time.
The techniques used in the indexing, comparison, classification, and evaluation
steps of the data matching process need to be reconsidered carefully when data
from more than two sources are being matched, and new efficient approaches
need to be developed. Some initial work in this direction has recently been con-
ducted by Sadinle et al. [229] who investigated how the traditional Fellegi and
Sunter approach to threshold-based probabilistic classification (as was presented
in Sect. 6.3) can be extended to more than two data sources.

• Efficient clerical review methods: In traditional data matching systems where
individual pairs of records are classified into matches, non-matches and potential
matches (as was discussed in Sect. 6.2), the manual clerical review of pairs that
were classified as potential matches can be conducted via simple user interfaces
such as the ones presented in Figs. 7.4 and 7.5 on p. 175 and 176. The problem with
such a simple approach is that the context of the record pair under review is not
shown to the person undertaking the review (such as how many other people in the
same database have the same name). In a similar way as collective classification and
clustering techniques can improve data matching quality, improved visualisation
techniques for the clerical review process need to be developed. One such recent
effort is the D-Dupe prototype system presented in Sect. 10.2.2 [36].
Ideally, a clerical review system needs to visualise a pair or group of records which
allows viewing them as being part of a network, connected to other records through
matching attribute values and their similarities. For example, different colours of
connected records could illustrate which attributes are matching between records
(for example green if there is an address match, red for a name match or blue for
a date of birth match), while the thickness of a connection between records in the

http://dx.doi.org/10.1007/978-3-642-31164-2_6
http://dx.doi.org/10.1007/978-3-642-31164-2_6
http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://dx.doi.org/10.1007/978-3-642-31164-2_4

9.6 Research Challenges and Directions 227

network illustrates the similarity between them. Such improved user interfaces for
clerical review will allow reviewers to make better informed decisions about the
match status of pairs or groups of records. Graphical interfaces can also be used to
highlight records that have been matched but where some type of contradictions
in the match status with other records might occur, such as a violated transitive
closure condition, as was discussed in Sect. 6.8.

• Scalability and speed of computation: As databases are getting larger, deduplicat-
ing and matching them requires increased computational efforts, and larger storage
and memory resources. The development of novel efficient indexing techniques is
crucial to make the data matching process scalable to very large databases. Ideally,
the number of candidate record pairs that are generated by an indexing technique
should only scale linearly with the size of the databases to be matched. As was
discussed in the previous section, the development of techniques that allow the
efficient parallelisation of data matching is a current research topic [25, 66, 88, 160,
163, 165, 167]. Parallel approaches that make use of modern computing platforms,
such as multi-core processors or grid- and cloud-based systems, will facilitate data
matching on very large databases. When external services, such as those offered
by cloud computing providers, are employed for data matching, then privacy and
confidentiality become crucial aspects that need to be considered. The second issue
is in which step of the data matching process to best spend funding for computing
services, assuming a commercial cloud service will be charging according to the
amount of computing services that are required by a certain process.
A different approach to improve the computational efficiency of data matching is
to better couple data matching techniques into relational database systems, and
to better exploit the mature optimisation techniques that have been developed by
the database community over the past decades. Using for example an efficient
nested loop join algorithm and disc based indexes that are implemented in modern
databases systems could potentially lead to large performance gains.

• Effective benchmarks and test data collections: A major obstacle for data
matching research is the lack of large test data collections and publicly avail-
able benchmark data sets that allow the comparative evaluation of data matching
algorithms and methods. Researchers commonly use either their own data sets for
testing, use one of the several small test data sets that are publicly available (as
was discussed in Sect. 7.5), or they generate their data using one of the data gen-
erators presented in Sect. 7.6 or their own data generation program. Koepcke et al.
recently discussed the issues related to evaluating data matching systems in more
detail [169]. Privacy and confidentiality are the main reasons that no large real
databases that contain personal information have been made publicly available for
research purposes. Nevertheless, without large-scale benchmarks, the outcomes
of data matching research will continue to be difficult to evaluate comparatively.
As a result it will be difficult to identify significant advances in data matching
technologies.
An alternative approach to developing test data collections is to set-up online
test environments where researchers can submit their data matching algorithms,
which are then evaluated on a set of standardised benchmark data sets using a

http://dx.doi.org/10.1007/978-3-642-31164-2_6
http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://dx.doi.org/10.1007/978-3-642-31164-2_7

228 9 Further Topics and Research Directions

variety of evaluation measures. Weis et al. proposed such a system to evaluate the
deduplication of XML data sets [271]. An extension of such a benchmark system
to different types of data and its actual implementation and use by researchers
would be a big step towards efficient and objective comparison of data matching
algorithms and techniques.

• Multi-party privacy-preserving data matching: When data from more than two
sources are to be matched and privacy and confidentiality need to be considered (for
example because each data source might be located in a different organisation and
the data contain sensitive information that cannot be given to other organisations
in plain-text as was discussed in the first example scenario given in Sect. 8.2), then
not only the issues regarding matching of more than two data sources discussed
previously need to be considered, but also how such multi-party matching can be
conducted while privacy is preserved. Issues that need to be considered include
how collusion between (subsets of) parties can be prevented. Given the generally
high computation and communication requirements of privacy-preserving data
matching techniques even for matching data between two parties, new efficient
protocols need to be developed.

http://dx.doi.org/10.1007/978-3-642-31164-2_8

Chapter 10
Data Matching Systems

10.1 Commercial Systems and Checklist

The number of commercial products that provide some form of data matching or
deduplication capabilities is hard to judge, because there is no clear distinction of
when a software should be judged as a data matching system or not. Certain products
offer only some functionalities related to data matching (such as approximate string
comparison functions), while others provide functions for most or even all steps
of the data matching process. Some products are small innovative stand-alone soft-
ware packages or libraries, while others are large systems that are aimed at business
data integration, business intelligence, or customer relationship management. Data
matching and deduplication are only a small component of such large systems. Most
commercial database systems also provide various extensions to the standard SQL
language that allow phonetic string encoding such as Soundex or NYSIIS (as was
covered in Sect. 4.3), or approximate matching of string values using for example an
edit distance based approach (as was discussed in Sect. 5.3).

The large number of commercial systems, and the dynamic nature of the IT market,
make it difficult to provide an overview of specific commercial data matching systems
that continue to be available after the release of this book. Smaller companies are
often bought by bigger companies that operate in the same space, and that try to
increase their market share and provide novel and innovative products.

A further difficulty is that for most commercial products in this area not many
technical details are published that would allow an objective technical discussion
and comparison of their capabilities. Often only white papers and sales brochures
are available from a vendor of a commercial data matching system. Such white
papers do generally not contain any details about the algorithms or technologies
implemented in a product, which is understandable given most commercial systems
are based on some sort of proprietary technology developed by the companies that
sell the product.

P. Christen, Data Matching, Data-Centric Systems and Applications, 229
DOI: 10.1007/978-3-642-31164-2_10, © Springer-Verlag Berlin Heidelberg 2012

http://dx.doi.org/10.1007/978-3-642-31164-2_4
http://dx.doi.org/10.1007/978-3-642-31164-2_5

230 10 Data Matching Systems

Herzog et al. [143] have provided a comprehensive checklist for evaluating com-
mercial data matching software, which is based on an extensive earlier report and
checklist by Day [90]. They key questions covered by these checklists are:

• What type of data matching can be conducted by a product? Deduplication of one
file or database, and/or matching of two (or more) files or databases?

• Does the product include any functionality to pre-process (clean, standardise, and
segment) data before matching?

• What indexing (blocking) techniques and what comparison functions are imple-
mented in a product?

• What is the underlying matching technique or methodology used? Probabilistic
record linkage, rule-based, or an advanced (machine learning) based approach?
What parameters are available to the user, how well are they described, and are
there mechanisms that support the tuning of these parameters to achieve an optimal
matching outcome?

• Is the product specialised for a certain application domain or generally applicable?
Special domains can include the deduplication of (business) mailing lists, the
matching of health databases, or name matching for identity verification.

• Is there a limitation of the product in the size of the files or databases that can be
handled, or is the limitation only based on the computing platform used?

• On what computing system can the product run, and what are the hardware require-
ments? Does the product make use of modern processors by exploiting multi-core
parallelism or distributed systems?

• What types of data can be accessed? This can include comma or tabulator separated
text files, fixed column width text files, spreadsheets, proprietary binary files, or
database access through Open Database Connectivity (ODBC) or via a standard
SQL interface.

• Does the product provide a graphical user interface, a command line interface,
and/or an Application Programming Interface (API) that allows matching routines
to be called from other programs?

• Are the licencing arrangements limiting what kind of data can be matched, and
how many users can work with a product at any one time?

• How well is the product documented, what are the support arrangements by the
supplier of the product, and what are the costs (both purchase upfront as well as
annual licencing and support fees)?

A search for ‘deduplication software’ or ‘data matching software’ on any major
Web search engine will provide a large number of links to products and services that
offer deduplication or matching capabilities.

A valuable resource for practitioners working in the area of data matching and
deduplication is the Data Matching group of the LinkedIn professional online
network, which is accessible at: http://www.linkedin.com/groups/Data-Matching-
2107798.

http://www.linkedin.com/groups/Data-Matching-2107798
http://www.linkedin.com/groups/Data-Matching-2107798

10.2 Research and Open Source Systems 231

10.2 Research and Open Source Systems

The following sections provide an overview of freely available data matching systems
that have mostly been developed by researchers as part of their work of inventing
new and improved data matching algorithms and techniques. Some of these systems
include graphical user interfaces and extensive documentation, while others are more
basic research prototypes consisting of a set of program codes only. A comprehen-
sive list to data matching software implementations is also available at: http://en.
wikipedia.org/wiki/record_linkage.

The systems presented in the following sections are alphabetically ordered. Only
systems for which implementations are available are covered. A recent survey by
Köpcke and Rahm also provides a comparative evaluation of eleven data matching
systems [168]. The comparison criteria in this survey include both the functionali-
ties provided by the different systems with regard to the different steps of the data
matching process, as well as their performance with regard to matching accuracy
and complexity measured on several data sets from different domains.

10.2.1 BigMatch

The BigMatch system has been developed and is being used by the US Census
Bureau to match very large census data collections [295]. BigMatch is not a full data
matching system, rather it is a program that can be used to extract plausible (potential)
matches from very large files that otherwise could not be processed. These plausible
matches are saved into several smaller files so that they can be individually processed
with a proper data matching system later on.

BigMatch assumes the matching of a very large file, called the ‘Record’ file, with
a smaller file, called the ‘Memory’ file. As the name indicates, the second file will
be fully loaded into the main memory of a large compute server using efficient index
data structures. The main ‘Record’ file then only needs to be read and processed once.
Each record in this larger file is compared with the records stored in main memory,
and all plausible matches are saved into new smaller result files. The matching of the
‘Record’ file with the ‘Memory’ file is conducted using a standard blocking approach
with several blocking criteria, as was discussed in Sects. 4.2 and 4.4. For each record
in the large ‘Record’ file that has a blocking key value that also occurs in the smaller
‘Memory’ file, a match similarity value is calculated and saved into a result file.

The BigMatch program is written in C, and in 2007 it was reported that it can
match around 300,000 record pairs per second when using ten blocking criteria
[295]. The program does not include a graphical user interface, rather it is controlled
using two text based configuration files. The first configuration file simply contains
the paths and names of the input files, while the second configuration file contains
the parameters that control the running of the program. These parameters include
the number of blocking criteria, the number of attributes in the input files, flags for

http://en.wikipedia.org/wiki/record_linkage
http://en.wikipedia.org/wiki/record_linkage
http://dx.doi.org/10.1007/978-3-642-31164-2_4
http://dx.doi.org/10.1007/978-3-642-31164-2_4

232 10 Data Matching Systems

output cut-off values, and (if known) the number of records in the input files. For
each blocking criteria, the parameter file then contains details about which attributes
to use for a blocking pass. Next, the details about which attributes are to be compared
and how (exact or approximate string comparison, numerical age or numerical year
comparison) need to be provided in the parameter file. The input files themselves are
assumed to be flat text files with fixed record length. Parallel versions of BigMatch
have been developed by the US Census Bureau and they are in use for large production
data matching projects. Further information about BigMatch is available from the
developers [295].

10.2.2 D-Dupe

D-Dupe is a graphical tool developed by the Department of Computer Science at
the University of Maryland that allows the interactive exploration of networks that
contain duplicates [36, 156]. It combines data matching algorithms with network
visualisations. Users can explore subnetworks that potentially contain duplicates,
and the tool will highlight relationships in these subnetworks. Further duplicates
might be revealed when a user merges a pair of nodes in a network (labels them
as being a unique entity). This approach improves the efficiency of the interactive
deduplication conducted by a user.

Figure 10.1 shows the main screen of the D-Dupe system. Both string and rela-
tional comparison functions are implemented. The former include the edit distance,
Jaro, Jaccard and Monge-Elkan comparison functions described in Chap. 5. Rela-
tional similarities are calculated based on the overlap of their common neighbouring
entities [156]. To narrow down the search of duplicates, an indexing technique based
on standard blocking has been implemented in the D-Dupe tool. A user can also
directly edit the actual attribute values in a data set.

The D-Dupe software (as Windows binary), related publications, and a video
demonstration is available from: http://www.cs.umd.edu/projects/linqs/ddupe/.

D-Dupe is implemented in C#, and for approximate string comparison functions
is uses the SimMetrics package described in Sect. 10.2.11 [156]. Licencing options
for both commercial and non-commercial use are available.

10.2.3 DuDe

The ‘Duplicate Detection’ (DuDe) system is a toolkit developed at the University
of Potsdam [95]. DuDe contains several modules each with a well-defined interface.
The ‘DataSource’ module provides methods to access to comma separated values
(CSV) files, XML documents, JSON files, and bibliographies in Bibtex format. The
‘Preprocessor’ module is optional, in that it only is required if statistics about the input
data sets are to be gathered, such as the frequency distributions of attribute values

http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://www.cs.umd.edu/projects/linqs/ddupe/

10.2 Research and Open Source Systems 233

Fig. 10.1 A screenshot of the graphical user interface of the D-Dupe system which allows the
interactive exploration of networks that can contain duplicates. The user can select various com-
parison functions, and manually merge two nodes if they correspond to the same entity. Potential
duplicates are shown in the upper left area, while the network in the upper right area shows the
relational contexts of the selected two records (in this example their co-author relationship). Details
of the actual records are shown in the lower right area

needed to calculate for example the term-frequencies required for certain approx-
imate string comparison functions. The main ‘Algorithm’ module then contains a
series of indexing techniques that generate candidate record pairs from the input
data sets. These pairs are then compared in the ‘SimilarityFunction’ module, which
contains various types of comparison functions, as well as functions that aggregate
similarity values. The ‘Postprocessor’ module allows calculation of the transitive
closure, as well as gathering various statistics. Finally, the ‘DuDeOutput’ module
provides functions to write the results of a deduplication or data matching project
into different types of output formats, including CSV and JSON files.

The modular structure of the DuDe system allows users to develop their own code
to replace or extend the functionality provided by DuDe, for example by developing
a new indexing or comparison function. The DuDe system is written in Java and is
available from: http://www.hpi.uni-potsdam.de/naumann/projekte/dude_duplicate_
detection.html.

DuDe does not include a graphical user interface, rather it is configured using Java
programs that define data access, and which algorithms to use for indexing, attribute

http://www.hpi.uni-potsdam.de/naumann/projekte/dude_duplicate_detection.html
http://www.hpi.uni-potsdam.de/naumann/projekte/dude_duplicate_detection.html

234 10 Data Matching Systems

Fig. 10.2 A screenshot of the graphical user interface of the FEBRL data matching system, shown
with two data sets initialised for a matching (Linkage) project. The data sets shown are based on
the ‘Census’ data set described in Sect. 7.5

similarity comparisons, classification, and evaluation. The basic idea is for a user
to write a Java program which uses the functionality of the modules provided by
DuDe. Extensive user documentation, including example programs, are available on
the DuDe Website given above. Three test data sets together with their gold standard
(known matching results) are also included in the DuDe toolkit [95].

10.2.4 FEBRL

The ‘Freely Extensible Biomedical Record Linkage’ (FEBRL) system is an open
source data matching system that has been developed since 2003 at the Australian
National University as part of a collaborative research project with the New South
Wales Department of Health [61, 62, 66]. The aims of this project were to develop
techniques for improved data pre-processing, deduplication and data matching. While
the focus of the project was on the application of these techniques to health databases,
the FEBRL software itself is not limited to health data but is applicable to data from
other domains as well. FEBRL is hosted on the Sourceforge.Net open source software
repository, and it is available from: https://sourceforge.net/projects/febrl/.

http://dx.doi.org/10.1007/978-3-642-31164-2_7
https://sourceforge.net/projects/febrl/

10.2 Research and Open Source Systems 235

Fig. 10.3 A screenshot of the graphical user interface of the FEBRL data matching system, showing
the definitions of three different comparison functions applied on the SURNAME, SUBURB and
ZIPCODE attributes

FEBRL contains modules for data pre-processing of names, addresses, telephone
numbers, and dates (based on rules and hidden Markov models as was discussed
in Chap. 3); indexing (with seven indexing and eight phonetic encoding techniques
implemented); comparisons (containing 26 comparison functions for strings, num-
bers, date, times and geographic locations); classification (with six classifiers); and
evaluation. In its current version it allows access to text data sets in CSV, tabulator
separated values (TAB), and fixed column width (COL) formats.

The software is written in the Python1 programming language, which is an ideal
language for rapid prototype development. Python can efficiently handle large data
sets consisting of strings (which is the most common data type required for data
matching), and it also provides modules for database access, parallel computing,
Web programming, and for the development of graphical user interfaces (GUIs).

Users can inspect all source code modules of FEBRL, which allows them to learn
about the different data matching techniques implemented in FEBRL. Due to its
modular structure, FEBRL also allows new algorithms to be implemented and tested
rapidly. FEBRL includes a GUI which allows non-expert users to experiment with
different data matching techniques without the need to understand the details of the
Python programming language. Figures 10.2, 10.3 and 10.4 show several screenshots
of the FEBRL GUI.

FEBRL contains a selection of small test data sets, including the first four data
sets described in Sect. 7.5. Additionally, FEBRL includes a data generator which

1 http://www.python.org.

http://dx.doi.org/10.1007/978-3-642-31164-2_3
http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://www.python.org

236 10 Data Matching Systems

Fig. 10.4 A screenshot of the graphical user interface of the FEBRL data matching system, showing
the histogram of similarity values (‘Matching weight’) resulting from the matching of the two
‘Census’ data sets that were initialised in Fig. 10.2. Because the true match status was not known in
this example, only the complexity measure ‘Reduction ratio’ (Eq. 7.7 on p. 174) could be calculated

allows the creating of data sets according to a large number of parameters that can
be set by the user [56, 72], as was previously discussed in Sect. 7.6.

10.2.5 FRIL

The ‘Fine-Grained Records Integration and Linkage’ (FRIL) tool was developed as
part of a collaboration between Emory University and the Centers for Disease Control
and Prevention (CDC) [154]. FRIL contains an extensive collection of parameters that
can be set by the user, allows schema reconciliation as well as data matching, contains
several indexing methods (including standard blocking described in Sect. 4.4 and
the sorted neighbourhood approach described in Sect. 4.5), a variety of comparison
functions, and a parameter tuning approach based on the expectation maximisation
(EM) algorithm. FRIL can be run on multi-core systems and it contains a GUI that
allows users to easily set-up and customise deduplication or data matching projects.
Figures 10.5, 10.6 and 10.7 show different screenshots of the FRIL system. FRIL is
written in Java and available for download from: http://fril.sourceforge.net/.

FRIL allows a user to select parameters such as matching fields, comparison
functions, matching weights, indexing functions, and which evaluation metrics to
employ. It also allows the pre-processing of attributes through the use of regular
expressions to standardise the input data, and to split and merge attributes before
they are used for matching. Multi-core parallelisation is transparent to the user,

http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://dx.doi.org/10.1007/978-3-642-31164-2_4
http://dx.doi.org/10.1007/978-3-642-31164-2_4
http://fril.sourceforge.net/

10.2 Research and Open Source Systems 237

Fig. 10.5 A screenshot of the main FRIL window configured for the linkage of two data sets. The
icons shown allow the configuration of different aspects of the data matching process

Fig. 10.6 A screenshot of the FRIL window that allows the configuration of the matching (join)
conditions to be specified. As can be seen, different comparison functions are available, and weights
can be assigned to individual attribute comparisons. The expectation–maximisation (EM) algorithm
can be employed to tune parameter values. Also shown is the configuration of how the matched
data are to be written into an output file

238 10 Data Matching Systems

Fig. 10.7 A screenshot of the FRIL clerical review window, where pairs of records and their attribute
values are shown. Cells in green indicate the same attribute values while red cells highlight different
values. Each record pair is also given a value of confidence that corresponds to the likelihood that
the two records refer to the same entity

which means that FRIL will detect if it is run on a multi-core system and therefore
run its algorithms in parallel. An ‘Analysis Window’ allows the inspection of the
parameters used by FRIL and their effect on the matching process prior to running
the actual matching on the full data sets. This will allow a user to efficiently tune
parameters for a given data matching project to optimise its performance.

10.2.6 Merge ToolBox

The ‘Merge ToolBox’ (MTB) developed at the University Duisburg-Essen [238]
is a Java program with a GUI (Fig. 10.8) that implements both probabilistic and
distance-based data matching and deduplication. It allows access to STATA2 and
text files in the CSV format. The program and a manual are available (for free
only for academic use) for download at: http://www.uni-due.de/soziologie/schnell_
forschung_safelink_mtb.php.

The MTB implements a variety of comparison and phonetic encoding functions
(including a German variation of Soundex called the ‘Kölner Phonetik’), as well as
the standard blocking technique described in Sect. 4.4. For probabilistic data match-
ing, the match and non-match parameters (described in Sect. 6.3) can either be set
manually or by using the EM algorithm.

A unique feature of the MTB is its ability to incorporate a privacy-preserving data
matching approach based on hash-encoded Bloom filters [239]. The implementation

2 www.stata.com.

http://www.uni-due.de/soziologie/schnell_forschung_safelink_mtb.php
http://www.uni-due.de/soziologie/schnell_forschung_safelink_mtb.php
http://dx.doi.org/10.1007/978-3-642-31164-2_4
http://dx.doi.org/10.1007/978-3-642-31164-2_6
www.stata.com

10.2 Research and Open Source Systems 239

Fig. 10.8 A screenshot of the ‘Merge ToolBox’ user interface showing the configuration of com-
parison functions to be used on three different input attributes. As can be seen, approximate string
comparison functions as well as phonetic encoding functions can be used to compare attribute val-
ues, and match (m) and non-match (u) parameters can be set to be used in the probabilistic matching
approach (as was described in Sect. 6.3) implemented in the ‘Merge ToolBox’

of this approach, called ‘Safelink Prototype Software’, is available from: http://www.
uni-due.de/soziologie/schnell_forschung_safelink_software.php.

Both Java and Python implementations of this prototype are available.

10.2.7 OYSTER

The ‘Open sYSTem Entity Resolution’ (OYSTER) system has been developed by the
University of Arkansas, originally designed to provide entity resolution for student
records and to allow longitudinal studies [249]. OYSTER can be run in several
modes to conduct operations such as data matching/merge-purge, identity capture,
and identity resolution. It contains modules for probabilistic matching, finding the
transitive closure of matched record sets, and indexing. No internal database is used
and all index data structures are kept in main memory. OYSTER is available under
an open source software licence from: http://sourceforge.net/projects/oysterer/.

OYSTER is written in Java and uses XML sripts customised by the user to define
entity attributes, the table layout of the data sources, and identity rules for resolv-
ing reference sources. The core of the OYSTER system is based on the R-Swoosh
algorithm to entity resolution described in Sect. 6.12, but with an identity manage-
ment system added. A detailed description of OYSTER, including example scripts

http://dx.doi.org/10.1007/978-3-642-31164-2_6
http://www.uni-due.de/soziologie/schnell_forschung_safelink_software.php
http://www.uni-due.de/soziologie/schnell_forschung_safelink_software.php
http://sourceforge.net/projects/oysterer/
http://dx.doi.org/10.1007/978-3-642-31164-2_6

240 10 Data Matching Systems

and screenshots are provided by Talburt [249], one of the main developers of the
OYSTER system.

10.2.8 R RecordLinkage

The ‘RecordLinkage’ package [233] is a collection of scripts written in the R sta-
tistical language.3 The two main functions of this package allow the deduplication
of one data set or the matching of two data sets. The package, example data sets,
and a reference manual are available from: http://cran.r-project.org/web/packages/
RecordLinkage/index.html.

Alternatively, the package can be installed from within the R statistical language
using the command: install.packages(‘RecordLinkage’).

Functions for standard blocking, and several phonetic encoding and string com-
parison methods, are included as well. The probabilistic matching approach described
in Sect. 6.3 is implemented together with the EM algorithm to facilitate parameter
estimation. Both supervised and unsupervised classification techniques (as available
through R packages) can be employed, and an edit function facilitates manual clerical
review of potential matches, as was discussed in Sect. 7.4.

10.2.9 SecondString

The SecondString toolkit is a set of Java classes that implement many approxi-
mate string comparison functions [84], including most of the comparisons functions
described in Chap. 5. The software and documentation can be downloaded from:
http://sourceforge.net/projects/secondstring/.

Besides basic string comparison functions, SecondString also contains implemen-
tations of the SoftTFIDF and the Monge-Elkan multi-word comparisons functions
(as described in Sects. 5.8 and 5.6), and a combined adaptive string distance learner
which can be trained using example pairs of strings that are known to either corre-
spond to true matches or true non-matches.

10.2.10 SILK

SILK is a system developed at the Free University of Berlin that allows the discovery
of relationships in data within the Linked Data framework [150, 264]. These data are
assumed to be represented as RDF (Resource Description Framework) tuples. This

3 http://www.r-project.org/.

http://cran.r-project.org/web/packages/RecordLinkage/index.html
http://cran.r-project.org/web/packages/RecordLinkage/index.html
http://dx.doi.org/10.1007/978-3-642-31164-2_6
http://dx.doi.org/10.1007/978-3-642-31164-2_7
http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://sourceforge.net/projects/secondstring/
http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://www.r-project.org/

10.2 Research and Open Source Systems 241

means that data publishers can employ SILK to match their RDF data with data from
other sources. SILK is available at: http://www4.wiwiss.fu-berlin.de/bizer/silk/.

SILK is implemented in Java and contains indexing and approximate string com-
parison functions, and it facilitates parallel execution using the Map-Reduce frame-
work. The string comparison module of the FEBRL data matching system (presented
in Sect. 10.2.4) is used for the approximate string comparison functionality in SILK.
Matching conditions can be specified by a user using a declarative link specifica-
tion language, detailing what conditions must be fulfilled in order for RDF tuples of
different types to be classified as matches.

10.2.11 SimMetrics

Similar to SecondString, SimMetrics is a Java package containing a large number
of approximate string comparison functions. It is available on Sourceforge.Net at:
http://sourceforge.net/projects/simmetrics/.

While the original Website of SimMetrics is no longer available, both the Java
source code as well as its documentation are available at the above URL.

Besides string comparison functions that are commonly used for data matching,
SimMetrics also includes several functions that are more suitable for comparing
long sequences (like genome sequences), such as the Needleman–Wunsch, Smith–
Waterman–Gotoh, and the Smith–Waterman algorithms, the latter of which was
previously described in Sect. 5.3.1.

10.2.12 TAILOR

The ‘RecOrd LinkAge Toolbox’ (TAILOR) was developed at Purdue University in
the early 2000 [102] as an extensible toolbox that allows different indexing, com-
parison, and classification techniques, as well as various evaluation methods, to be
integrated. Standard blocking and the sorted neighbourhood approach are imple-
mented in TAILOR, as are several comparison and phonetic encoding functions.
With regard to classification techniques, TAILOR contains both unsupervised (clus-
tering) and supervised (decision tree) techniques, as was described in Sects. 6.6 and
6.9. The user can interact with TAILOR either through a definition language or via a
GUI. TAILOR is written in Java and is available by contacting the developers [102].

10.2.13 WHIRL

The ‘Word-Based Heterogeneous Information Representation Language’ (WHIRL)
system [81, 82] was developed by William Cohen in the late 1990s. WHIRL can be

http://www4.wiwiss.fu-berlin.de/bizer/silk/
http://sourceforge.net/projects/simmetrics/
http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://dx.doi.org/10.1007/978-3-642-31164-2_6
http://dx.doi.org/10.1007/978-3-642-31164-2_6

242 10 Data Matching Systems

seen as a ‘soft’ database management system that allows various similarity compar-
ison functions (similarity joins) to be applied on textual data, which are represented
using the vector space model that was discussed in Sect. 5.8. The WHIRL system is
written in C++ and available from: http://www.cs.cmu.edu/~wcohen/whirl/.

The data model used in WHIRL, called ‘Storing Texts In Relations’ (STIR),
together with a query language that allows conjunctive queries, is an approach similar
to the rule-based classification approach that was discussed in Sect. 6.5. The results
of a ‘matching’ in WHIRL is a ranked list of answers (database records or tuples) in
a similar way as Web search engines return a ranked list of search results relevant to
a query.

http://dx.doi.org/10.1007/978-3-642-31164-2_5
http://www.cs.cmu.edu/~wcohen/whirl/
http://dx.doi.org/10.1007/978-3-642-31164-2_6

Glossary

The following glossary draws from earlier glossaries on data matching that
were provided by Newcombe (1988) [199], Day (1995) [90], Gill (2001) [119],
Blakely and Salmond (2002) [37], and Talburt (2011) [249]. The description of
terms follows these earlier glossaries, however, various modifications have
been made to improve the consistency of the terminology used. New terms that
are not listed in previous glossaries, but that are relevant to the topics covered in
this book, have been added. Any occurrence of a term that is also described in
the glossary is shown in italics.

Active learning A type of classifier that builds a classification model based on the
similarity values in comparison vectors and optionally the relationships
between pairs or groups of records. In order to improve its classification model,
an active learning classifier asks for manual feedback on the match status of
selected candidate record pairs (that are difficult to classify). An iterative
process of manual feedback and building an improved classification model is
carried out until a certain stopping criterion has been achieved.

Agreement weight See match weight.

Approximate match The status of a candidate record pair that has been com-
pared using an approximate matching process, and where one or several
attribute values that have been compared are different between the two records.

Approximate matching The process by which candidate record pairs are com-
pared using a set of comparison functions that allows for approximate (not
exact) similarities.

Attribute A column in a database table, file, or spreadsheet, that contains a well-
defined type of data, such as strings, numbers, dates, times and so on.

Attribute value A value stored in a specific attribute and a specific record in a
database, file or spreadsheet.

P. Christen, Data Matching, Data-Centric Systems and Applications,
DOI: 10.1007/978-3-642-31164-2, � Springer-Verlag Berlin Heidelberg 2012

243

Blocking A type of indexing technique that has traditional been employed in data
matching to reduce the number of record pairs that need to be compared.
Blocking splits the input database(s) according to a blocking key. Only records
that have the same blocking key value are inserted into the same block. Can-
didate record pairs are formed from all records in the same block.

Blocking key Also called ‘blocking variable’, a blocking key defines how one or
more attribute values from records in the input database(s) are processed (often
using phonetic encoding algorithms) and concatenated into blocking key values
during the indexing step of the data matching process. A good blocking key
should lead to records that are similar with each other to be inserted into the
same block, and records that are dissimilar to each other to be inserted into
different blocks.

Blocking key value A string value for an individual record in an input database
which has been generated using a blocking key definition. The blocking key
value for a record determines into which block(s) the record is being inserted
during the indexing step of the data matching process.

Candidate record pair A record pair that is formed from the records that have
been inserted into the same block (or cluster or window) by an indexing
technique. All candidate record pairs are compared in detail in the comparison
step of the data matching process using various comparison functions.

Classification model A model that determines how candidate record pairs are
classified into matches, non-matches and optionally potential matches. A
classification model is generated by a classifier algorithm.

Classifier A type of algorithm that builds a classification model based on an
supervised learning, unsupervised learning or active learning approach.

Cleaning The process of removing unwanted characters and tokens (alphanu-
merical words) from the attribute values in the input database(s) during the data
pre-processing step of the data matching process.

Clerical review The process of manually assessing and classifying as matches or
non-matches the candidate record pairs that have been classified as potential
matches in a classifier such as probabilistic record linkage or a related
approach.

Clustering A type of algorithm that groups similar data objects (records in the
case of data matching) together according to the similarities calculated between
these objects. In data matching and deduplication, the similarities between
records are captured in the comparison vector for each candidate record pair.
The objectives of clustering in data matching and deduplication are to (1) have
each generated cluster to correspond to one entity, and (2) each entity stored in
the database(s) that are matched or deduplicated is assumed to be represented
by one cluster only.

244 Glossary

Collective entity resolution A type of algorithm that aims to solve the entity
resolution problem in an overall collective fashion by considering the rela-
tionships between the records stored in the database(s) to be matched or de-
duplicated as a graph. Based on such a relationship graph, a collective entity
resolution approach classifies groups of records into matches and non-matches.
This approach is in contrast to the pair-wise classification of individual record
pairs.

Comparison function A function that has as input two attribute values (which
can be strings, numbers, dates, times or more complex objects) and that cal-
culates a similarity between these two values. The comparison can either be
exact or allow for approximate similarity. An exact comparison function gen-
erally returns a similarity value of 0 if the two attribute values are different from
each other, or a similarity value of 1 if they are the same. An approximate
comparison function generally returns a normalised numerical similarity value
between 0 and 1 that indicates the similarity between the two attribute values,
with a larger similarity value indicating a higher similarity between the two
attribute values. If only exact comparison functions are used when attribute
values are compared then this process corresponds to exact matching, while
when approximate comparison functions are used the process corresponds to
approximate matching. A popular class of approximate comparison functions
are approximate string comparison functions.

Comparison vector The vector of similarity values generated for a candidate
record pair when one or more attributes of the pair are compared using com-
parison functions that are appropriate to the content of the attributes. If n com-
parison functions are used then the resulting comparison vector will contain
n similarity values.

Data linkage The name used by statisticians, and health and biomedical
researchers and practitioners, for the process of data matching.

Data matching The process of comparing records from two or more databases
with the objective to identify pairs or groups of records that refer to the same
entity. These pairs or groups of records are known as matches.

Data pre-processing The process of cleaning, standardising, and segmenting, the
attribute values stored in the input database(s) to be matched or deduplicated,
with the general aim to improve data quality, and more specifically, to improve
the outcomes of the data matching or deduplication process.

Deduplication The process of duplicate detection followed by a process which
for each entity in a database either merges the identified duplicate records into
one combined record, or removes some records from the database until it only
contains a single record for each entity.

Disagreement weight See non-match weight.

Glossary 245

Duplicates The presence in a single database of multiple records that refer to the
same entity.

Duplicate detection The process of comparing records from a single database
with the objective to identify pairs or groups of records that refer to the same
entity. These pairs or groups of records are known as duplicates.

Entity A real-world subject or object, such as an individual person, business,
publication or consumer product, that has a unique identity and that can be
distinguished from any other entity.

Entity identifier A number, code or string that uniquely identifies a single entity
within the database(s) that are matched or deduplicated.

Entity resolution The process of comparing records from one or more databases
with the objective to identify pairs or groups of records that refer to the same
entity, to classify these pairs or groups as matches (and pairs or groups of
records that do not refer to the same entity as non-matches), and to merge all
records that refer to the same entity into a new combined record. The result of
an entity resolution process is a set of combined records that each corresponds
to one entity, and each of the entities stored in the database(s) that were mat-
ched is represented by a single combined record only. Entity resolution applied
on a single database is also known as deduplication.

Exact match The status of a candidate record pair that has been compared using
either an exact matching or an approximate matching process, and where all
attribute values that have been compared are the same in both records of the
pair.

Exact matching The process by which candidate record pairs are compared
using a set of comparison functions that only permit exact similarities.

False match A record pair that is classified as a match where, however, the two
records of the pair refer to two different entities. In the context of classification
a false match is also known as a false positive.

False non-match A record pair that is classified as a non-match where, however,
both records in the pair correspond to the same entity. In the context of clas-
sification a false non-match is also known as a false negative.

Indexing The process of splitting a database into smaller blocks or clusters, or
sorting a database, with the aim to reduce the number of record pair com-
parisons that are conducted. Records that have the same blocking key value are
inserted into the same block or cluster, or they are sorted close to each other if
they have the same or a very similar sorting key value. Candidate record pairs
are formed from all records that are in the same block or cluster, or that appear
in the same window. The traditional approach used for indexing has been
blocking.

246 Glossary

Information extraction The process of identifying and extracting instances of
particular classes of entities, events, or relationships, from unstructured data
such as natural text, and their transformation into a structured representation
such as a database record.

Match A pair or group of records that is classified as referring to the same entity.

Match status The outcome of applying a classification model on a candidate
record pair. This outcome can be that the record pair is classified as a match, a
non-match, and (optionally) as a potential match. For a classifier such as
probabilistic record linkage or a related approach, the potential matches are the
candidate record pairs that are not clear matches or non-matches. These pairs
need to be manually assessed and classified in a clerical review process.

Match weight In probabilistic record linkage and related classifier approaches, a
match weight is a numerical value that is assigned to a certain attribute where
the attribute values are the same or similar to each other (assumed to be in
agreement). A match weight is also called an agreement weight. Match weights
are calculated as the likelihood that two attribute values are in agreement
assuming that both records in a candidate record pair correspond to the same
entity, divided by the likelihood that two attribute values are in agreement
assuming that the two records in a candidate record pair correspond to different
entities.

Merge/purge The name used by database and data warehousing researchers and
practitioners for the process of data matching and deduplication.

Non-match A pair or group of records that is classified as referring to different
entities.

Non-match weight In probabilistic record linkage and related classifier approa-
ches, a non-match weight is a numerical value that is assigned to a certain
attribute where the attribute values are different from each other (not assumed
to be in agreement). A non-match weight is also called a disagreement weight.
Non-match weights are calculated as the likelihood that two attribute values are
in disagreement assuming that both records in a candidate record pair corre-
spond to the same entity, divided by the likelihood that two attribute values are
in disagreement assuming that the two records in a candidate record pair cor-
respond to different entities.

Pair-wise classification A type of algorithm that classifies individual candidate
record pairs into matches, non-matches, and (optionally) into potential mat-
ches, without taking the match status of other candidate record pairs into
account. This classification approach is in contrast to collective entity resolution
techniques that aim to classify all candidate record pairs collectively in an
overall optimal fashion.

Parsing See segmenting.

Glossary 247

Phonetic encoding A type of algorithm that converts a string (generally assumed
to correspond to a name) into a code that represents the pronunciation of that
string. Popular phonetic encoding algorithms include Soundex, NYSIIS,
ONCA, Phonex, Phonix and Double-Metaphone.

Potential match A candidate record pair that is classified in probabilistic record
linkage or a related classifier approach to data matching as potentially referring
to the same entity. The final match status for these candidate record pairs is
determined through a manual assessment in a clerical review process.

Privacy-preserving data matching Also known as privacy-preserving record
linkage, this is the process of matching databases from different organisations
such that none of the database owners has to reveal any of their private or
confidential data, and at the end of the matching process only limited infor-
mation, such as the number of records that have been classified as matches, or
only their record identifiers, is being revealed to the database owners.

Probabilistic record linkage A statistical classifier approach to data matching
published by Fellegi and Sunter in 1969 [108]. This approach calculates match
weights and non-match weights based on error probabilities and frequency
distributions of attribute values in the input databases. Candidate record pairs
are classified based on their weight vectors into either matches, non-matches, or
potential matches, using a threshold-based and pair-wise classification
approach.

Record A row in a database table, file, or spreadsheet, that contains values in a set
of attributes. It is assumed that each record represents one entity, but that an
entity can be represented by more than one record in a database, file or
spreadsheet.

Record identifier A number, code, or string, that uniquely identifies a single
record in a database. A record identifier is different from an entity identifier.

Record linkage See data linkage.

Record pair Two records, for the process of data matching one record from each
of the two input databases that are matched, while for the deduplication of one
database both records are sourced from the single input database.

Searching An alternative name for the indexing step of the data matching pro-
cess. It is a term that is sometimes used for the process that is concerned with
the reduction of the number of candidate record pairs that are generated. The
aim of searching is to find candidate record pairs that likely refer to matches.
Examples of searching techniques include blocking, sorting and hashing.

Segmenting The process of separating the tokens (white-space separated alpha-
numeric words) contained in an attribute value in the input database(s) into
well-defined elements during the data pre-processing step of the data matching

248 Glossary

process. Segmenting is commonly based on some type of information extrac-
tion technique.

Similarity function See comparison function.

Sorting key Similar to a blocking key, a sorting key defines how the input
database(s) are sorted for the sorted neighbourhood indexing technique [64,
140, 141]. A sorting key determines how values from certain attributes from the
records in the input database(s) will be used to sort the databases. The aim of a
sorting key is for similar records to be located closely to each other in the sorted
database(s).

Standardisation The process of converting the attribute values in an input
database into a standard format during the data pre-processing step of the data
matching process, by, for example, converting all letters into lower or upper
case, by correcting misspellings and replacing nicknames with their proper
names, and by expanding abbreviations into full words.

String comparison function A type of comparison function that takes as input
two strings and that returns an exact similarity value (exact matching) or an
approximate similarity value (approximate matching) calculated for the two
input strings.

Supervised learning A type of classifier algorithm that builds a classification
model based on the similarity values in comparison vectors and optionally the
relationships between pairs or groups of records. A supervised classification
model is built based on training data that are in the form of pairs or groups of
records where their match status (true match and true non-match) is known.

Transitive closure The process of deciding the match status for all candidate
record pairs in a group of records as matches, where some but not all individual
pairs of records have been classified as matches, following the transitivity
property of the match classification [195].

True match A record pair that is classified as a match, where both records in the
pair correspond to the same entity. In the context of classification a true match
is also known as a true positive.

True non-match A record pair that is classified as a non-match, where the two
records in the pair correspond to two different entities. In the context of clas-
sification a true non-match is also known as a true negative.

Weight vector A vector containing numerical values for a candidate record pair.
Weight vectors are used by probabilistic record linkage and related classifier
approaches to decide the match status of candidate record pairs. The values in
the weight vector of a candidate record pair are calculated by combining for
each compared attribute the match weight (if attribute values are the same or
similar) or non-match weight (if attribute values are different) for that attribute

Glossary 249

with the similarity value for that attribute taken from the pair’s comparison
vector.

Unsupervised learning A type of classifier algorithm that builds a classification
model based on the similarity values in comparison vectors and optionally the
relationships between pairs or groups of records. The classification model is
built without knowing the true match status of these pairs or groups of records.
A popular type of unsupervised learning algorithm is clustering.

250 Glossary

References

1. Adly, N.: Efficient record linkage using a double embedding scheme. In: DMIN,
pp. 274–281. Las Vegas (2009)

2. Aggarwal, C.C.: Managing and Mining Uncertain Data, Advances in Database Systems, vol.
35. Springer (2009)

3. Aggarwal, C.C., Yu, P.S.: The IGrid index: Reversing the dimensionality curse for
similarity indexing in high dimensional space. In: ACM SIGKDD, pp. 119–129. Boston
(2000)

4. Aggarwal, C.C., Yu, P.S.: Privacy-preserving data mining: models and algorithms,
Advances in Database Systems, vol. 34. Springer (2008)

5. Agichtein, E., Ganti, V.: Mining reference tables for automatic text segmentation. In: ACM
SIGKDD, pp. 20–29. Seattle (2004)

6. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private databases. In:
ACM SIGMOD, pp. 86–97. San Diego (2003)

7. Aizawa, A., Oyama, K.: A fast linkage detection scheme for multi-source information
integration. In: WIRI, pp. 30–39. Tokyo (2005)

8. Al-Lawati, A., Lee, D., McDaniel, P.: Blocking-aware private record linkage. In:
International Workshop on Information Quality in Information Systems, pp. 59–68 (2005)

9. Alvarez, R., Jonas, J., Winkler, W., Wright, R.: Interstate voter registration database
matching: the Oregon-Washington 2008 pilot project. In: Workshop on Trustworthy
Elections, pp. 17–17. USENIX Association (2009)

10. Anderson, K., Durbin, E., Salinger, M.: Identity theft. The Journal of Economic
Perspectives 22(2), 171–192 (2008)

11. Arasu, A., Götz, M., Kaushik, R.: On active learning of record matching packages. In: ACM
SIGMOD, pp. 783–794. Indianapolis (2010)

12. Arasu, A., Kaushik, R.: A grammar-based entity representation framework for data
cleaning. In: ACM SIGMOD, pp. 233–244. Providence, Rhode Island (2009)

13. Armstrong, M.P., Ruggles, A.J.: Geographic information technologies and personal privacy.
Cartographica: The International Journal for Geographic Information and Geovisualization
40(4), 63–73 (2005)

14. Atallah, M., Kerschbaum, F., Du, W.: Secure and private sequence comparisons. In:
Workshop on Privacy in the Electronic Society, pp. 39–44. ACM (2003)

15. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley
Longman Publishing Co., Boston (1999)

16. Baldwin, J., Acheson, E., Graham, W.: Textbook of medical record linkage. Oxford
University Press (1987)

P. Christen, Data Matching, Data-Centric Systems and Applications,
DOI: 10.1007/978-3-642-31164-2, � Springer-Verlag Berlin Heidelberg 2012

251

17. Barone, D., Maurino, A., Stella, F., Batini, C.: A privacy-preserving framework for
accuracy and completeness quality assessment. Emerging Paradigms in Informatics,
Systems and Communication p. 83 (2009)

18. Bartolini, I., Ciaccia, P., Patella, M.: String matching with metric trees using an
approximate distance. In: String Processing and Information Retrieval, LNCS 2476,
pp. 271–283. Lisbon, Portugal (2002)

19. Batini, C., Scannapieco, M.: Data quality: Concepts, methodologies and techniques. Data-
Centric Systems and Applications. Springer (2006)

20. Baxter, R., Christen, P., Churches, T.: A comparison of fast blocking methods for record
linkage. In: ACM SIGKDD Workshop on Data Cleaning, Record Linkage and Object
Consolidation, pp. 25–27. Washington DC (2003)

21. Bayardo, R., Ma, Y., Srikant, R.: Scaling up all pairs similarity search. In: WWW,
pp. 131–140. Banff, Canada (2007)

22. Behm, A., Ji, S., Li, C., Lu, J.: Space-constrained gram-based indexing for efficient
approximate string search. In: IEEE ICDE, pp. 604–615. Shanghai (2009)

23. Belin, T., Rubin, D.: A method for calibrating false-match rates in record linkage. Journal of
the American Statistical Association pp. 694–707 (1995)

24. Bellahsene, Z., Bonifati, A., Rahm, E.: Schema Matching and Mapping. Data-Centric
Systems and Applications. Springer (2011)

25. Benjelloun, O., Garcia-Molina, H., Gong, H., Kawai, H., Larson, T., Menestrina, D.,
Thavisomboon, S.: D-Swoosh: A family of algorithms for generic, distributed entity
resolution. In: International Conference on Distributed Computing Systems, pp. 37–37 (2007)

26. Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S., Widom, J.: Swoosh:
a generic approach to entity resolution. The VLDB Journal 18(1), 255–276 (2009)

27. Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms.
In: String Processing and Information Retrieval, pp. 39–48. A Curuna, Spain (2000)

28. Bernecker, T., Kriegel, H.P., Mamoulis, N., Renz, M., Zuefle, A.: Scalable probabilistic
similarity ranking in uncertain databases. IEEE Transactions on Knowledge and Data
Engineering 22(9), 1234–1246 (2010)

29. Bertolazzi P De Santis L, S.M.: Automated record matching in cooperative information
systems. In: Proceedings of the international workshop on data quality in cooperative
information systems. Siena, Italy (2003)

30. Bertsekas, D.P.: Auction algorithms for network flow problems: A tutorial introduction.
Computational Optimization and Applications 1, 7–66 (1992)

31. Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. ACM
Transactions on Knowledge Discovery from Data 1(1) (2007)

32. Bhattacharya, I., Getoor, L.: Query-time entity resolution. Journal of Artificial Intelligence
Research 30, 621–657 (2007)

33. Bilenko, M., Basu, S., Sahami, M.: Adaptive product normalization: Using online learning
for record linkage in comparison shopping. In: IEEE ICDM, pp. 58–65. Houston (2005)

34. Bilenko, M., Kamath, B., Mooney, R.J.: Adaptive blocking: Learning to scale up record
linkage. In: IEEE ICDM, pp. 87–96. Hong Kong (2006)

35. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string similarity
measures. In: ACM SIGKDD, pp. 39–48. Washington DC (2003)

36. Bilgic, M., Licamele, L., Getoor, L., Shneiderman, B.: D-dupe: An interactive tool for entity
resolution in social networks. In: IEEE Symposium on Visual Analytics, Science and
Technology, pp. 43–50 (2006)

37. Blakely, T., Salmond, C.: Probabilistic record linkage and a method to calculate the positive
predictive value. International Journal of Epidemiology 31:6, 1246–1252 (2002)

38. Bleiholder, J., Naumann, F.: Data fusion. ACM Computing Surveys 41(1), 1–41 (2008)
39. Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Communications of

the ACM 13(7), 422–426 (1970)

252 References

40. Borgman, C.L., Siegfried, S.L.: Getty’s synonameTM and its cousins: A survey of
applications of personal name-matching algorithms. Journal of the American Society for
Information Science 43(7), 459–476 (1992)

41. Borkar, V., Deshmukh, K., Sarawagi, S.: Automatic segmentation of text into structured
records. ACM SIGMOD Record 30(2), 175–186 (2001)

42. Breiman, L., Freidman, J., Olshen, R., Stone, C.: Classification and regression trees.
Chapman and Hall/CRC (1984)

43. Broder, A., Carmel, D., Herscovici, M., Soffer, A., Zien, J.: Efficient query evaluation using
a two-level retrieval process. In: ACM CIKM, pp. 426–434. New Orleans (2003)

44. Brook, E., Rosman, D., Holman, C.: Public good through data linkage: measuring research
outputs from the Western Australian data linkage system. Australian and New Zealand
journal of public health 32(1), 19–23 (2008)

45. Brownstein, J.S., Cassa, C., Kohane, I.S., Mandl, K.D.: Reverse geocoding: Concerns about
patient confidentiality in the display of geospatial health data. In: AMIA Annual
Symposium Proceedings, p. 905. American Medical Informatics Association (2005)

46. Brownstein, J.S., Cassa, C., Mandl, K.D.: No place to hide-reverse identification of patients
from published maps. New England Journal of Medicine 355(16), 1741–1742 (2006)

47. Campbell, K., Deck, D., Krupski, A.: Record linkage software in the public domain: a
comparison of Link Plus, The Link King, and a basic deterministic algorithm. Health
Informatics Journal 14(1), 5 (2008)

48. Cayo, M.R., Talbot, T.O.: Positional error in automated geocoding of residential addresses.
International Journal of Health Geographics 2(10) (2003)

49. Cebrián, M., Alfonseca, M., Ortega, A.: Common pitfalls using the normalized compression
distance: What to watch out for in a compressor. Communications in Information and
Systems 5(4), 367–384 (2005)

50. Chambers, R.: Regression analysis of probability-linked data. Official Statistics Research
Series 4 (2008)

51. Chan, Y., Talburt, J., Talley, T.: Data Engineering. Springer (2010)
52. Chaudhuri, S., Ganti, V., Motwani, R.: Robust identification of fuzzy duplicates. In: IEEE

ICDE, pp. 865–876. Tokyo (2005)
53. Chaytor, R., Brown, E., Wareham, T.: Privacy advisors for personal information

management. In: SIGIR Workshop on Personal Information Management, pp. 28–31.
Seattle, Washington (2006)

54. Chen, H., Chung, W., Xu, J., Wang, G., Qin, Y., Chau, M.: Crime data mining: a general
framework and some examples. IEEE Computer 37(4), 50–56 (2004)

55. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. Journal of
the ACM (JACM) 45(6), 965–981 (1998)

56. Christen, P.: Probabilistic data generation for deduplication and data linkage. In: IDEAL,
Springer LNCS, vol. 3578, pp. 109–116. Brisbane (2005)

57. Christen, P.: A comparison of personal name matching: Techniques and practical issues. In:
Workshop on Mining Complex Data, held at IEEE ICDM. Hong Kong (2006)

58. Christen, P.: Privacy-preserving data linkage and geocoding: Current approaches and
research directions. In: Workshop on Privacy Aspects of Data Mining, held at IEEE ICDM.
Hong Kong (2006)

59. Christen, P.: Automatic record linkage using seeded nearest neighbour and support vector
machine classification. In: ACM SIGKDD, pp. 151–159. Las Vegas (2008)

60. Christen, P.: Automatic training example selection for scalable unsupervised record linkage.
In: PAKDD, Springer LNAI, vol. 5012, pp. 511–518. Osaka (2008)

61. Christen, P.: Febrl: An open source data cleaning, deduplication and record linkage system
with a graphical user interface. In: ACM SIGKDD, pp. 1065–1068. Las Vegas (2008)

62. Christen, P.: Development and user experiences of an open source data cleaning,
deduplication and record linkage system. SIGKDD Explorations 11(1), 39–48 (2009)

References 253

63. Christen, P.: Geocode matching and privacy preservation. In: Workshop on Privacy,
Security, and Trust in KDD, pp. 7–24. Springer (2009)

64. Christen, P.: A survey of indexing techniques for scalable record linkage and deduplication.
IEEE Transactions on Knowledge and Data Engineering X(Y) (2011)

65. Christen, P., Belacic, D.: Automated probabilistic address standardisation and verification.
In: AusDM, pp. 53–67. Sydney (2005)

66. Christen, P., Churches, T., Hegland, M.: Febrl—A parallel open source data linkage system.
In: PAKDD, Springer LNAI, vol. 3056, pp. 638–647. Sydney (2004)

67. Christen, P., Churches, T., Willmore, A.: A probabilistic geocoding system based on a
national address file. In: AusDM. Cairns (2004)

68. Christen, P., Churches, T., Zhu, J.: Probabilistic name and address cleaning and
standardization. In: Australasian Data Mining Workshop. Canberra (2002)

69. Christen, P., Gayler, R.: Towards scalable real-time entity resolution using a similarity-
aware inverted index approach. In: AusDM, CRPIT, vol. 87, pp. 51–60. Glenelg, Australia
(2008)

70. Christen, P., Gayler, R., Hawking, D.: Similarity-aware indexing for real-time entity
resolution. In: ACM CIKM, pp. 1565–1568. Hong Kong (2009)

71. Christen, P., Goiser, K.: Quality and complexity measures for data linkage and
deduplication. In: F. Guillet, H. Hamilton (eds.) Quality Measures in Data Mining,
Studies in Computational Intelligence, vol. 43, pp. 127–151. Springer (2007)

72. Christen, P., Pudjijono, A.: Accurate synthetic generation of realistic personal information.
In: PAKDD, Springer LNAI, vol. 5476, pp. 507–514. Bangkok, Thailand (2009)

73. Churches, T.: A proposed architecture and method of operation for improving the protection
of privacy and confidentiality in disease registers. BioMed Central Medical Research
Methodology 3(1) (2003)

74. Churches, T., Christen, P.: Blind data linkage using n-gram similarity comparisons. In:
PAKDD, Springer LNAI, vol. 3056, pp. 121–126. Sydney (2004)

75. Churches, T., Christen, P.: Some methods for blindfolded record linkage. BioMed Central
Medical Informatics and Decision Making 4(9) (2004)

76. Churches, T., Christen, P., Lim, K., Zhu, J.X.: Preparation of name and address data for
record linkage using hidden Markov models. BioMed Central Medical Informatics and
Decision Making 2(9) (2002)

77. Cilibrasi, R., Vitányi, P.M.: Clustering by compression. IEEE Transactions on Information
Theory 51(4), 1523–1545 (2005)

78. Clark, D.E.: Practical introduction to record linkage for injury research. Injury Prevention
10, 186–191 (2004)

79. Clifton, C., Kantarcioglu, M., Doan, A., Schadow, G., Vaidya, J., Elmagarmid, A., Suciu,
D.: Privacy-preserving data integration and sharing. In: ACM SIGMOD workshop on
Research issues in Data Mining and Knowledge Discovery, pp. 19–26 (2004)

80. Cochinwala, M., Kurien, V., Lalk, G., Shasha, D.: Efficient data reconciliation. Information
Sciences 137(1–4), 1–15 (2001)

81. Cohen, W.: The WHIRL approach to data integration. IEEE Intelligent Systems 13(3),
20–24 (1998)

82. Cohen, W.: Data integration using similarity joins and a word-based information
representation language. ACM Transactions on Information Systems 18(3), 288–321 (2000)

83. Cohen, W.: Integration of heterogeneous databases without common domains using queries
based on textual similarity. In: ACM SIGMOD, pp. 201–212. Seattle (1998)

84. Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string distance metrics for name-
matching tasks. In: Workshop on Information Integration on the Web, held at IJCAI,
pp. 73–78. Acapulco (2003)

85. Cohen, W., Richman, J.: Learning to match and cluster large high-dimensional data sets for
data integration. In: ACM SIGKDD, pp. 475–480. Edmonton (2002)

254 References

86. Conn, L., Bishop, G.: Exploring methods for creating a longitudinal census dataset. Tech.
Rep. 1352.0.55.076, Australian Bureau of Statistics, Canberra (2005)

87. Curtis, A.J., Mills, J.W., Leitner, M.: Spatial confidentiality and GIS: Re-engineering
mortality locations from published maps about Hurricane Katrina. International Journal of
Health Geographics 5(1), 44–56 (2006)

88. Dal Bianco, G., Galante, R., Heuser, C.: A fast approach for parallel deduplication on
multicore processors. In: ACM Symposium on Applied, Computing, pp. 1027–1032 (2011)

89. Damerau, F.J.: A technique for computer detection and correction of spelling errors.
Communications of the ACM 7(3), 171–176 (1964)

90. Day, C.: Record linkage i: evaluation of commercially available record linkage software for
use in NASS. Tech. Rep. STB Research Report STB-95-02, National Agricultural Statistics
Service, Washington DC (1995)

91. Dey, D., Mookerjee, V., Liu, D.: Efficient techniques for online record linkage. IEEE
Transactions on Knowledge and Data Engineering 23(3), 373–387 (2010)

92. Domingo-Ferrer, J., Torra, V.: Disclosure risk assessment in statistical microdata protection
via advanced record linkage. Statistics and Computing 13(4), 343–354 (2003)

93. Dong, X., Halevy, A., Madhavan, J.: Reference reconciliation in complex information
spaces. In: ACM SIGMOD, pp. 85–96. Baltimore (2005)

94. Draisbach, U., Naumann, F.: A comparison and generalization of blocking and windowing
algorithms for duplicate detection. In: Workshop on Quality in Databases, held at VLDB.
Lyon (2009)

95. Draisbach, U., Naumann, F.: Dude: The duplicate detection toolkit. In: Workshop on
Quality in Databases, held at VLDB. Singapore (2010)

96. Du, W., Atallah, M., Kerschbaum, F.: Protocols for secure remote database access with
approximate matching. In: First ACM Workshop on Security and Privacy in E-Commerce
(2000)

97. Dunn, H.: Record linkage. American Journal of Public Health 36(12), 1412 (1946)
98. Durham, E., Xue, Y., Kantarcioglu, M., Malin, B.: Private medical record linkage with

approximate matching. In: AMIA Annual Symposium Proceedings, p. 182. American
Medical Informatics Association (2010)

99. Durham, E., Xue, Y., Kantarcioglu, M., Malin, B.: Quantifying the correctness,
computational complexity, and security of privacy-preserving string comparators for
record linkage. Information Fusion In Press (2011)

100. Durham, E.: A framework for accurate, efficient private record linkage. Ph.D. thesis, Faculty
of the Graduate School of Vanderbilt University, Nashville, TN (2012)

101. Dwork, C.: Differential privacy. Automata, languages and programming pp. 1–12 (2006)
102. Elfeky, M.G., Verykios, V., Elmagarmid, A.K.: TAILOR: A record linkage toolbox. In:

IEEE ICDE, pp. 17–28. San Jose (2002)
103. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.: Duplicate record detection: A survey.

IEEE Transactions on Knowledge and Data Engineering 19(1), 1–16 (2007)
104. Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it.

Communications of the ACM 39(5), 77–85 (1996)
105. Faloutsos, C., Lin, K.I.: Fastmap: A fast algorithm for indexing, data-mining and

visualization of traditional and multimedia datasets. In: ACM SIGMOD, pp. 163–174. San
Jose (1995)

106. Fawcett T: ROC Graphs: Notes and practical considerations for researchers. Tech. Rep.
HPL-2003-4, HP Laboratories, Palo Alto (2004)

107. Fellegi, I.P., Holt, D.: A systematic approach to automatic edit and imputation. Journal of
the American Statistical Association pp. 17–35 (1976)

108. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. Journal of the American Statistical
Association 64(328), 1183–1210 (1969)

109. Fienberg, S.: Homeland insecurity: Datamining, terrorism detection, and confidentiality.
Bull. Internat. Stat. Inst (2005)

References 255

110. Fienberg, S.: Privacy and confidentiality in an e-commerce world: Data mining, data
warehousing, matching and disclosure limitation. Statistical Science 21(2), 143–154 (2006)

111. Fogel, R.: New sources and new techniques for the study of secular trends in nutritional
status, health, mortality, and the process of aging. NBER Historical Working Papers (1993)

112. Fortini, M., Liseo, B., Nuccitelli, A., Scanu, M.: On Bayesian record linkage. Research in
Official Statistics 4(1), 185–198 (2001)

113. Friedman, C., Sideli, R.: Tolerating spelling errors during patient validation. Computers and
Biomedical Research 25, 486–509 (1992)

114. Fu, Z., Christen, P., Boot, M.: Automatic cleaning and linking of historical census data
using household information. In: Workshop on Domain Driven Data Mining, held at IEEE
ICDM. Vancouver (2011)

115. Fu, Z., Christen, P., Boot, M.: A supervised learning and group linking method for historical
census household linkage. In: AusDM, CRPIT, vol. 125. Ballarat, Australia (2011)

116. Fu, Z., Zhou, J., Christen, P., Boot, M.: Multiple instance learning for group record linkage.
In: PAKDD, Springer LNAI. Kuala Lumpur, Malaysia (2012)

117. Galhardas, H., Florescu, D., Shasha, D., Simon, E.: An extensible framework for data
cleaning. In: IEEE ICDE. San Diego (2000)

118. Gill, L.: OX-LINK: The Oxford medical record linkage system. In: Proc. IntGI Record
Linkage Workshop and Exposition, pp. 15–33. Arlington, Virginia (1997)

119. Gill, L.: Methods for automatic record matching and linking and their use in national
statistics. Tech. Rep. Methodology Series, no. 25, National Statistics, London (2001)

120. Giunchiglia, F., Yatskevich, M., Shvaiko, P.: Semantic matching: Algorithms and
implementation. Journal on Data Semantics IX pp. 1–38 (2007)

121. Glasson, E., De Klerk, N., Bass, A., Rosman, D., Palmer, L., Holman, C.: Cohort profile: the
Western Australian family connections genealogical project. International Journal of
epidemiology 37(1), 30–35 (2008)

122. Gliklich, R., Dreyer, N. (eds.): Registries for Evaluating Patient Outcomes: A UserGs
Guide. No.10-EHC049. AHRQ, Publication (2010)

123. Goldreich, O.: Secure multi-party computation. Tech. rep., Department of Computer
Science and Applied Mathematics, Weizmann Institute of Science, Israel (2002)

124. Gomatam, S., Carter, R., Ariet, M., Mitchell, G.: An empirical comparison of record linkage
procedures. Statistics in Medicine 21(10), 1485–1496 (2002)

125. Gong, R., Chan, T.K.: Syllable alignment: A novel model for phonetic string search. IEICE
Transactions on Information and Systems E89-D(1), 332–339 (2006)

126. Grama, A., Karypis, G., Kumar, V., Gupta, A.: Introduction to parallel computing, 2 edn.
Addison-Wesley Longman Publishing Co., Inc. (2003)

127. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S., Srivastava, D.:
Approximate string joins in a database (almost) for free. In: VLDB, pp. 491–500. Roma
(2001)

128. Gu, L., Baxter, R.: Adaptive filtering for efficient record linkage. In: SIAM international
conference on data mining. Orlando, Florida (2004)

129. Gu, L., Baxter, R.: Decision models for record linkage. In: Selected Papers from AusDM,
Springer LNCS 3755, pp. 146–160 (2006)

130. Guo, H., Zhu, H., Guo, Z., Zhang, X., Su, Z.: Address standardization with latent semantic
association. In: ACM SIGKDD, pp. 1155–1164. Paris (2009)

131. Hajishirzi, H., Yih, W., Kolcz, A.: Adaptive near-duplicate detection via similarity learning.
In: ACM SIGIR, pp. 419–426. Geneva, Switzerland (2010)

132. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA data
mining software: an update. ACM SIGKDD Explorations 11(1), 10–18 (2009)

133. Hall, P.A., Dowling, G.R.: Approximate string matching. ACM Computing Surveys 12(4),
381–402 (1980)

134. Hall, R., Fienberg, S.: Privacy-preserving record linkage. In: Privacy in Statistical
Databases, Springer LNCS 6344, pp. 269–283. Corfu, Greece (2010)

256 References

135. Han, J., Kamber, M.: Data mining: concepts and techniques, 2 edn. Morgan Kaufmann
(2006)

136. Hand, D.: Classifier technology and the illusion of progress. Statistical Science 21(1), 1–14
(2006)

137. Hassanzadeh, O., Miller, R.: Creating probabilistic databases from duplicated data. The
VLDB Journal 18(5), 1141–1166 (2009)

138. Heckerman, D.: Bayesian networks for data mining. Data mining and knowledge discovery
1(1), 79–119 (1997)

139. Henzinger, M.: Finding near-duplicate web pages: a large-scale evaluation of algorithms.
In: ACM SIGIR, pp. 284–291. Seattle (2006)

140. Hernandez, M.A., Stolfo, S.J.: The merge/purge problem for large databases. In: ACM
SIGMOD, pp. 127–138. San Jose (1995)

141. Hernandez, M.A., Stolfo, S.J.: Real-world data is dirty: Data cleansing and the merge/purge
problem. Data Mining and Knowledge Discovery 2(1), 9–37 (1998)

142. Herschel, M., Naumann, F., Szott, S., Taubert, M.: Scalable iterative graph duplicate
detection. IEEE Transactions on Knowledge and Data Engineering X(Y) (2011)

143. Herzog, T., Scheuren, F., Winkler, W.: Data quality and record linkage techniques. Springer
Verlag (2007)

144. Hirsch, J.: An index to quantify an individual’s scientific research output. Proceedings of the
National Academy of Sciences of the United States of America 102(46), 16,569–16,572
(2005)

145. Holmes, D., McCabe, C.M.: Improving precision and recall for Soundex retrieval. In:
Proceedings of the IEEE International Conference on Information Technology—Coding and
Computing. Las Vegas (2002)

146. Inan, A., Kantarcioglu, M., Bertino, E., Scannapieco, M.: A hybrid approach to private
record linkage. In: IEEE ICDE, pp. 496–505 (2008)

147. Inan, A., Kantarcioglu, M., Ghinita, G., Bertino, E.: Private record matching using
differential privacy. In: International Conference on Extending Database Technology,
pp. 123–134 (2010)

148. Ioannou, E., Nejdl, W., Niederée, C., Velegrakis, Y.: On-the-fly entity-aware query
processing in the presence of linkage. Proceedings of the VLDB Endowment 3(1) (2010)

149. Jaro, M.A.: Advances in record-linkage methodology a applied to matching the 1985
Census of Tampa, Florida. Journal of the American Statistical Association 84, 414–420
(1989)

150. Jentzsch, A., Isele, R., Bizer, C.: Silk-generating RDF links while publishing or consuming
linked data. In: Poster at the International Semantic Web Conference. Shanghai (2010)

151. Jin, L., Li, C., Mehrotra, S.: Efficient record linkage in large data sets. In: DASFAA,
pp. 137–146. Tokyo (2003)

152. Jokinen, P., Tarhio, J., Ukkonen, E.: A comparison of approximate string matching
algorithms. Software—Practice and Experience 26(12), 1439–1458 (1996)

153. Jonas, J., Harper, J.: Effective counterterrorism and the limited role of predictive data
mining. Policy Analysis (584) (2006)

154. Jurczyk, P., Lu, J., Xiong, L., Cragan, J., Correa, A.: FRIL: A tool for comparative record
linkage. In: AMIA Annual Symposium Proceedings, p. 440. American Medical Informatics
Association (2008)

155. Kalashnikov, D., Mehrotra, S.: Domain-independent data cleaning via analysis of entity-
relationship graph. ACM Transactions on Database Systems 31(2), 716–767 (2006)

156. Kang, H., Getoor, L., Shneiderman, B., Bilgic, M., Licamele, L.: Interactive entity
resolution in relational data: A visual analytic tool and its evaluation. IEEE Transactions on
Visualization and Computer Graphics 14(5), 999–1014 (2008)

157. Karakasidis, A., Verykios, V.: Privacy preserving record linkage using phonetic codes. In:
Fourth Balkan Conference in Informatics, pp. 101–106. IEEE (2009)

References 257

158. Karakasidis, A., Verykios, V.: Advances in privacy preserving record linkage. In: E-activity
and Innovative Technology, Advances in Applied Intelligence Technologies Book Series,
pp. 22–34. IGI Global (2010)

159. Karakasidis, A., Verykios, V., Christen, P.: Fake injection strategies for private phonetic
matching. In: International Workshop on Data Privacy Management. Leuven, Belgium
(2011)

160. Kawai, H., Garcia-Molina, H., Benjelloun, O., Menestrina, D., Whang, E., Gong, H.:
P-Swoosh: Parallel algorithm for generic entity resolution. Tech. Rep. 2006–19, Department
of Computer Science, Stanford University (2006)

161. Kelman, C.W., Bass, J., Holman, D.: Research use of linked health data—A best practice
protocol. Aust NZ Journal of Public Health 26, 251–255 (2002)

162. Keskustalo, H., Pirkola, A., Visala, K., Leppanen, E., Jarvelin, K.: Non-adjacent digrams
improve matching of cross-lingual spelling variants. In: String Processing and Information
Retrieval, LNCS 2857, pp. 252–265. Manaus, Brazil (2003)

163. Kim, H., Lee, D.: Parallel linkage. In: ACM CIKM, pp. 283–292. Lisboa, Portugal (2007)
164. Kim, H., Lee, D.: Harra: fast iterative hashed record linkage for large-scale data collections.

In: International Conference on Extending Database Technology, pp. 525–536. Lausanne,
Switzerland (2010)

165. Kirsten, T., Kolb, L., Hartung, M., Gross, A., Köpcke, H., Rahm, E.: Data partitioning for
parallel entity matching. Proceedings of the VLDB Endowment 3(2) (2010)

166. Klenk, S., Thom, D., Heidemann, G.: The normalized compression distance as a distance
measure in entity identification. Advances in Data Mining. Applications and Theoretical
Aspects pp. 325–337 (2009)

167. Kolb, L., Thor, A., Rahm, E.: Multi-pass sorted neighborhood blocking with Map-Reduce.
Computer Science-Research and, Development pp. 1–19 (2011)

168. Köpcke, H., Rahm, E.: Frameworks for entity matching: A comparison. Data and
Knowledge Engineering 69(2), 197–210 (2010)

169. Köpcke, H., Thor, A., Rahm, E.: Evaluation of entity resolution approaches on real-world
match problems. Proceedings of the VLDB Endowment 3(1–2), 484–493 (2010)

170. Koudas, N., Marathe, A., Srivastava, D.: Flexible string matching against large databases in
practice. In: VLDB, pp. 1086–1094. Toronto (2004)

171. Krouse, W., Elias, B.: Terrorist Watchlist Checks and Air Passenger Prescreening.
RL33645. Congressional Research Service (2009). CRS Report for Congress

172. Kukich, K.: Techniques for automatically correcting words in text. ACM Computing
Surveys 24(4), 377–439 (1992)

173. Kuzu, M., Kantarcioglu, M., Durham, E., Malin, B.: A constraint satisfaction cryptanalysis
of Bloom filters in private record linkage. In: Privacy Enhancing Technologies,
pp. 226–245. Springer (2011)

174. Lahiri, P., Larsen, M.: Regression analysis with linked data. Journal of the American
statistical association 100(469), 222–230 (2005)

175. Lait, A., Randell, B.: An assessment of name matching algorithms. Tech. rep., Department
of Computer Science, University of Newcastle upon Tyne (1993)

176. Lee, D., Kang, J., Mitra, P., Giles, C.L., On, B.W.: Are your citations clean?
Commununications of the ACM 50, 33–38 (2007)

177. Lee, Y., Pipino, L., Funk, J., Wang, R.: Journey to data quality. The MIT Press (2009)
178. Lenzerini, M.: Data integration: A theoretical perspective. In: ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, pp. 233–246. Madison (2002)
179. Li, P., Dong, X., Maurino, A., Srivastava, D.: Linking temporal records. Proceedings of the

VLDB Endowment 4(11) (2011)
180. Malin, B.: K-unlinkability: A privacy protection model for distributed data. Data and

Knowledge Engineering 64(1), 294–311 (2008)
181. Malin, B., Airoldi, E., Carley, K.: A network analysis model for disambiguation of names in

lists. Computational and Mathematical Organization Theory 11(2), 119–139 (2005)

258 References

182. Malin, B., Karp, D., Scheuermann, R.: Technical and policy approaches to balancing patient
privacy and data sharing in clinical and translational research. Journal of investigative
medicine: the official publication of the American Federation for Clinical Research 58(1),
11 (2010)

183. Manghi, P., Mikulicic, M.: PACE: A general-purpose tool for authority control. Metadata
and Semantic Research pp. 80–92 (2011)

184. McCallum, A., Nigam, K., Rennie, J., Seymore, K.: Automating the construction of Internet
portals with machine learning. Information Retrieval 3(2), 127–163 (2000)

185. McCallum, A., Nigam, K., Ungar, L.H.: Efficient clustering of high-dimensional data sets
with application to reference matching. In: ACM SIGKDD, pp. 169–178. Boston (2000)

186. Menestrina, D., Benjelloun, O., Garcia-Molina, H.: Generic entity resolution with data
confidences. In: First International VLDB Workshop on Clean Databases. Seoul, South
Korea (2006)

187. Menestrina, D., Whang, S., Garcia-Molina, H.: Evaluating entity resolution results.
Proceedings of the VLDB Endowment 3(1–2), 208–219 (2010)

188. Michelson, M., Knoblock, C.A.: Learning blocking schemes for record linkage. In: AAAI.
Boston (2006)

189. Mitchell, T.M.: Machine Learning. McGraw Hill (1997)
190. Monge, A.E.: Matching algorithms within a duplicate detection system. IEEE Data

Engineering Bulletin 23(4), 14–20 (2000)
191. Monge, A.E., Elkan, C.P.: The field-matching problem: Algorithm and applications. In:

ACM SIGKDD, pp. 267–270. Portland (1996)
192. Moreau, E., Yvon, F., Cappé, O.: Robust similarity measures for named entities matching.

In: 22nd International Conference on Computational Linguistics-Volume 1, pp. 593–600.
Association for Computational Linguistics (2008)

193. Moustakides, G.V., Verykios, V.: Optimal stopping: A record linkage approach. Journal
Data and Information Quality 1, 9:1–9:34 (2009)

194. Narayanan, A., Shmatikov, V.: Myths and fallacies of personally identifiable information.
Communications of the ACM 53(6), 24–26 (2010)

195. Naumann, F., Herschel, M.: An introduction to duplicate detection, Synthesis Lectures on
Data Management, vol. 3. Morgan and Claypool Publishers (2010)

196. Navarro, G.: A guided tour to approximate string matching. ACM Computing Surveys
33(1), 31–88 (2001)

197. Newcombe, H., Kennedy, J.: Record linkage: making maximum use of the discriminating
power of identifying information. Communications of the ACM 5(11), 563–566 (1962)

198. Newcombe, H., Kennedy, J., Axford, S., James, A.: Automatic linkage of vital records.
Science 130(3381), 954–959 (1959)

199. Newcombe, H.B.: Handbook of record linkage: methods for health and statistical studies,
administration, and business. Oxford University Press, Inc., New York, NY, USA (1988)

200. Nin, J., Muntes-Mulero, V., Martinez-Bazan, N., Larriba-Pey, J.L.: On the use of semantic
blocking techniques for data cleansing and integration. In: IDEAS, pp. 190–198. Banff,
Canada (2007)

201. Odell, M., Russell, R.: The soundex coding system. US Patents 1261167 (1918)
202. O’Keefe, C., Yung, M., Gu, L., Baxter, R.: Privacy-preserving data linkage protocols. In:

ACM Workshop on Privacy in the Electronic Society, pp. 94–102. Washington DC (2004)
203. Okner, B.: Data matching and merging: An overview. NBER Chapters pp. 49–54 (1974)
204. On, B.W., Elmacioglu, E., Lee, D., Kang, J., Pei, J.: Improving grouped-entity resolution

using quasi-cliques. In: IEEE ICDM, pp. 1008–1015 (2006)
205. On, B.W., Koudas, N., Lee, D., Srivastava, D.: Group linkage. In: IEEE ICDE, pp. 496–505.

Istanbul (2007)
206. Oscherwitz, T.: Synthetic identity fraud: unseen identity challenge. Bank Security News

3(7) (2005)

References 259

207. Pang, C., Gu, L., Hansen, D., Maeder, A.: Privacy-preserving fuzzy matching using a public
reference table. Intelligent Patient Management pp. 71–89 (2009)

208. Patman, F., Thompson, P.: Names: A new frontier in text mining. In: ISI-2003, Springer
LNCS 2665, pp. 27–38 (2003)

209. Paull, D.: A geocoded national address file for Australia: The G-NAF what, why, who and
when? PSMA Australia Limited, Griffith, ACT, Australia (2003)

210. Pfeifer, U., Poersch, T., Fuhr, N.: Retrieval effectiveness of proper name search methods.
Information Processing and Management 32(6), 667–679 (1996)

211. Philips, L.: The double-metaphone search algorithm. C/C++ User’s Journal 18(6) (2000)
212. Phua, C., Smith-Miles, K., Lee, V., Gayler, R.: Resilient identity crime detection. IEEE

Transactions on Knowledge and Data Engineering 24(3) (2012)
213. Poindexter, J., Popp, R., Sharkey, B.: Total information awareness (TIA). In: IEEE

Aerospace Conference, 2003, vol. 6, pp. 2937–2944 (2003)
214. Pollock, J.J., Zamora, A.: Automatic spelling correction in scientific and scholarly text.

Communications of the ACM 27(4), 358–368 (1984)
215. Porter, E.H., Winkler, W.E.: Approximate string comparison and its effect on an advanced

record linkage system. Tech. Rep. RR97/02, US Bureau of the Census (1997)
216. Prabhakar, S., Shah, R., Singh, S.: Indexing uncertain data. In: C.C. Aggarwal (ed.)

Managing and Mining Uncertain Data, Advances in Database Systems, vol. 35,
pp. 299–325. Springer (2009)

217. Prasad, K., Faruquie, T., Joshi, S., Chaturvedi, S., Subramaniam, L., Mohania, M.: Data
cleansing techniques for large enterprise datasets. In: SRII Global Conference, pp. 135–144.
San Jose, USA (2009)

218. Pyle, D.: Data preparation for data mining. Morgan Kaufmann (1999)
219. Quantin, C., Bouzelat, H., Allaert, F., Benhamiche, A., Faivre, J., Dusserre, L.: How to

ensure data quality of an epidemiological follow-up: Quality assessment of an anonymous
record linkage procedure. International Journal of Medical Informatics 49(1), 117–122
(1998)

220. Quantin, C., Bouzelat, H., Allaert, F.A., Benhamiche, A.M., Faivre, J., Dusserre, L.:
Automatic record hash coding and linkage for epidemiological follow-up data
confidentiality. Methods of Information in Medicine 37(3), 271–277 (1998)

221. Quantin, C., Bouzelat, H., Dusserre, L.: Irreversible encryption method by generation of
polynomials. Medical Informatics and the Internet in Medicine 21(2), 113–121 (1996)

222. Quass, D., Starkey, P.: Record linkage for genealogical databases. In: ACM SIGKDD
Workshop on Data Cleaning, Record Linkage and Object Consolidation, pp. 40–42.
Washington DC (2003)

223. Rabiner, L.: A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

224. Rahm, E., Do, H.H.: Data cleaning: Problems and current approaches. IEEE Data
Engineering Bulletin 23(4), 3–13 (2000)

225. Rastogi, V., Dalvi, N., Garofalakis, M.: Large-scale collective entity matching. VLDB
Endowment 4, 208–218 (2011)

226. Ravikumar, P., Cohen, W., Fienberg, S.: A secure protocol for computing string distance
metrics. In: Workshop on Privacy and Security Aspects of Data Mining held at IEEE ICDM,
pp. 40–46. Brighton, UK (2004)

227. Ruggles, S.: Linking historical censuses: A new approach. History and Computing 14(1–2),
213–224 (2002)

228. Rushton, G., Armstrong, M., Gittler, J., Greene, B., Pavlik, C., West, M., Zimmerman, D.:
Geocoding in cancer research: A review. American Journal of Preventive Medicine 30(2),
S16–S24 (2006)

229. Sadinle, M., Hall, R., Fienberg, S.: Approaches to multiple record linkage. Proceedings of
International Statistical Institute (2011)

260 References

230. Sarawagi, S.: Information extraction. Foundations and Trends in Databases 1(3), 261–377
(2008)

231. Sarawagi, S., Bhamidipaty, A.: Interactive deduplication using active learning. In: ACM
SIGKDD, pp. 269–278. Edmonton (2002)

232. Sarawagi, S., Kirpal, A.: Efficient set joins on similarity predicates. In: ACM SIGMOD,
pp. 754–765. Paris (2004)

233. Sariyar, M., Borg, A.: The RecordLinkage package: Detecting errors in data. The R Journal
2(2), 61–67 (2010)

234. Scannapieco, M., Figotin, I., Bertino, E., Elmagarmid, A.: Privacy preserving schema and
data matching. In: ACM SIGMOD, pp. 653–664 (2007)

235. Scheuren, F., Winkler, W.: Regression analysis of data files that are computer matched.
Statistics of income: Turning administrative systems into information systems 1299(1), 131
(1993)

236. Schewe, K., Wang, Q.: On the decidability and complexity of identity knowledge
representation. In: Database Systems for Advanced Applications, Springer LNCS 7238,
pp. 288–302. Busan, South Korea (2012)

237. Schneier, B.: Applied cryptography: Protocols, algorithms, and source code in C, 2 edn.
John Wiley and Sons, Inc., New York (1996)

238. Schnell, R., Bachteler, T., Bender, S.: A toolbox for record linkage. Austrian Journal of
Statistics 33(1& 2), 125–133 (2004)

239. Schnell, R., Bachteler, T., Reiher, J.: Privacy-preserving record linkage using Bloom filters.
BioMed Central Medical Informatics and Decision Making 9(1) (2009)

240. Seymore, K., McCallum, A., Rosenfeld, R.: Learning hidden Markov model structure for
information extraction. In: AAAI Workshop on Machine Learning for Information
Extraction, pp. 37–42 (1999)

241. Smith, M., Newcombe, H.: Methods for computer linkage of hospital admission-separation
records into cumulative health histories. Methods of Information in Medicine 14(3),
118–125 (1975)

242. Smith, M., Newcombe, H.: Accuracies of computer versus manual linkages of routine health
records. Methods of Information in Medicine 18(2), 89–97 (1979)

243. Snae, C.: A comparison and analysis of name matching algorithms. International Journal of
Applied Science, Engineering and Technology 4(1), 252–257 (2007)

244. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In:
IEEE Symposium on Security and Privacy, pp. 44–55 (2000)

245. Su, W., Wang, J., Lochovsky, F.H.: Record matching over query results from multiple web
databases. IEEE Transactions on Knowledge and Data Engineering 22(4), 578–589 (2009)

246. Summerhayes, R., Holder, P., Beard, J., Morgan, G., Christen, P., Willmore, A., Churches,
T.: Automated geocoding of routinely collected health data in New South Wales. New
South Wales Public Health Bulletin 17(4), 33–38 (2006)

247. Sweeney, L.: Computational disclosure control: A primer on data privacy protection. Ph.D.
thesis, Massachusetts Institute of Technology, Dept. of Electrical Engineering and
Computer Science (2001)

248. Sweeney, L.: K-anonymity: A model for protecting privacy. International Journal of
Uncertainty Fuzziness and Knowledge Based Systems 10(5), 557–570 (2002)

249. Talburt, J.: Entity Resolution and Information Quality. Morgan Kaufmann (2011)
250. Talburt, J.R., Zhou, Y., Shivaiah, S.Y.: SOG: A synthetic occupancy generator to support

entity resolution instruction and research. In: International Conference on Information
Quality, pp. 91–105. Potsdam, Germany (2009)

251. Technologies, M.: AutoStan and AutoMatch, User’s Manuals (1998). Kennebunk, Maine
252. Tejada, S., Knoblock, C.A., Minton, S.: Learning domain-independent string transformation

weights for high accuracy object identification. In: ACM SIGKDD, pp. 350–359. Edmonton
(2002)

References 261

253. Torra, V., Domingo-Ferrer, J.: Record linkage methods for multidatabase data mining.
Studies in Fuzziness and Soft Computing 123, 101–132 (2003)

254. Torra, V., Domingo-Ferrer, J., Torres, A.: Data mining methods for linking data coming
from several sources. In: Third Joint UN/ECE-Eurostat Work Session on Statistical Data
Confidentiality, Eurostat. Monographs in Official Statistics. Luxembourg (2004)

255. Trepetin, S.: Privacy-preserving string comparisons in record linkage systems: a review.
Information Security Journal: A Global Perspective 17(5), 253–266 (2008)

256. US Federal Geographic Data Committee. Homeland Security and Geographic Information
Systems: How GIS and mapping technology can save lives and protect property in post-
September 11th America. Public Health GIS News and, Information (52), 21–23 (2003)

257. Vaidya, J., Clifton, C., Zhu, M.: Privacy preserving data mining, vol. 19. Springer (2006)
258. Van Berkel, B., De Smedt, K.: Triphone analysis: A combined method for the correction of

orthographical and typographical errors. In: Second Conference on Applied Natural
Language Processing, pp. 77–83. Austin (1988)

259. Vapnik, V.: The nature of statistical learning theory. Springer (2000)
260. Vatsalan, D., Christen, P., Verykios, V.: An efficient two-party protocol for approximate

matching in private record linkage. In: AusDM, CRPIT, vol. 121. Ballarat, Australia (2011)
261. Verykios, V., Elmagarmid, A., Houstis, E.: Automating the approximate record-matching

process. Information Sciences 126(1–4), 83–98 (2000)
262. Verykios, V., Karakasidis, A., Mitrogiannis, V.: Privacy preserving record linkage

approaches. Int. J. of Data Mining, Modelling and Management 1(2), 206–221 (2009)
263. Verykios, V., George, M.V., Elfeky, M.G.: A Bayesian decision model for cost optimal

record matching. The VLDB Journal 12(1), 28–40 (2003)
264. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk—a link discovery framework for the

web of data. In: Second Linked Data on the Web Workshop (2009)
265. de Vries, T., Ke, H., Chawla, S., Christen, P.: Robust record linkage blocking using suffix

arrays. In: ACM CIKM, pp. 305–314. Hong Kong (2009)
266. de Vries, T., Ke, H., Chawla, S., Christen, P.: Robust record linkage blocking using suffix

arrays and Bloom filters. ACM Transactions on Knowledge Discovery from Data 5(2) (2011)
267. Wang, G., Chen, H., Atabakhsh, H.: Automatically detecting deceptive criminal identities.

Communications of the ACM 47(3), 70–76 (2004)
268. Wartell, J., McEwen, T.: Privacy in the information age: A guide for sharing crime maps

and spatial data. Institute for Law and Justice, NCJ 188739 (2001)
269. Weis, M., Naumann, F.: Detecting duplicate objects in xml documents. In: International

Workshop on Information Quality in Information Systems, pp. 10–19. Paris (2004)
270. Weis, M., Naumann, F.: Dogmatix tracks down duplicates in XML. In: ACM SIGMOD,

pp. 431–442. Baltimore (2005)
271. Weis, M., Naumann, F., Brosy, F.: A duplicate detection benchmark for XML (and

relational) data. In: Workshop on Information Quality for Information Systems (IQIS).
Chicago (2006)

272. Weis, M., Naumann, F., Jehle, U., Lufter, J., Schuster, H.: Industry-scale duplicate
detection. Proceedings of the VLDB Endowment 1(2), 1253–1264 (2008)

273. West, D.: Introduction to graph theory, 3 edn. Prentice Hall (2007)
274. Whang, S., Garcia-Molina, H.: Entity resolution with evolving rules. Proceedings of the

VLDB Endowment 3(1–2), 1326–1337 (2010)
275. Whang, S.E., Garcia-Molina, H.: Developments in generic entity resolution. IEEE Data

Engineering Bulletin 34(3), 51–59 (2011)
276. Whang, S.E., Garcia-Molina, H.: Joint entity resolution. In: IEEE ICDE. Arlington, Virginia

(2012)
277. Whang, S.E., Menestrina, D., Koutrika, G., Theobald, M., Garcia-Molina, H.: Entity

resolution with iterative blocking. In: ACM SIGMOD, pp. 219–232. Providence, Rhode
Island (2009)

278. Williams, G.J.: Rattle: a data mining GUI for R. The R Journal 1(2), 45–55 (2009)

262 References

279. Winkler, W.: String comparator metrics and enhanced decision rules in the Fellegi-Sunter
model of record linkage. In: Proceedings of the Section on Survey Research Methods,
pp. 354–359. American Statistical Association (1990)

280. Winkler, W.E.: Using the EM algorithm for weight computation in the Fellegi-Sunter model
of record linkage. Tech. Rep. RR2000/05, US Bureau of the Census, Washington, DC (2000)

281. Winkler, W.E.: Methods for record linkage and Bayesian networks. Tech. Rep. RR2002/05,
US Bureau of the Census, Washington, DC (2001)

282. Winkler, W.E.: Record linkage software and methods for merging administrative lists.
Tech. Rep. RR2001/03, US Bureau of the Census, Washington, DC (2001)

283. Winkler, W.E.: Approximate string comparator search strategies for very large
administrative lists. Tech. Rep. RR2005/02, US Bureau of the Census, Washington, DC
(2005)

284. Winkler, W.E.: Overview of record linkage and current research directions. Tech. Rep.
RR2006/02, US Bureau of the Census, Washington, DC (2006)

285. Winkler, W.E.: Automatic estimation of record linkage false match rates. Tech. Rep.
RR2007/05, US Bureau of the Census, Washington, DC (2007)

286. Winkler, W.E., Thibaudeau, Y.: An application of the Fellegi-Sunter model of record
linkage to the 1990 U.S. decennial census. Tech. Rep. RR1991/09, US Bureau of the
Census, Washington, DC (1991)

287. Winkler, W.E., Yancey, W.E., Porter, E.H.: Fast record linkage of very large files in support
of decennial and administrative records projects. In: Proceedings of the Section on Survey
Research Methods, pp. 2120–2130. American Statistical Association (2010)

288. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes, 2 edn. Morgan Kaufmann (1999)
289. Xiao, C., Wang, W., Lin, X.: Ed-join: an efficient algorithm for similarity joins with edit

distance constraints. Proceedings of the VLDB Endowment 1(1), 933–944 (2008)
290. Yakout, M., Atallah, M., Elmagarmid, A.: Efficient private record linkage. In: IEEE ICDE,

pp. 1283–1286 (2009)
291. Yakout, M., Elmagarmid, A., Elmeleegy, H., Ouzzani, M., Qi, A.: Behavior based record

linkage. Proceedings of the VLDB Endowment 3(1–2), 439–448 (2010)
292. Yan, S., Lee, D., Kan, M.Y., Giles, L.C.: Adaptive sorted neighborhood methods for

efficient record linkage. In: ACM/IEEE-CS joint conference on Digital Libraries,
pp. 185–194 (2007)

293. Yancey, W.E.: An adaptive string comparator for record linkage. Tech. Rep. RR2004/02,
US Bureau of the Census (2004)

294. Yancey, W.E.: Evaluating string comparator performance for record linkage. Tech. Rep.
RR2005/05, US Bureau of the Census (2005)

295. Yancey, W.E.: BigMatch: A program for extracting probable matches from a large file for
record linkage. Tech. Rep. RRC2007/01, US Bureau of the Census (2007)

296. Yu, P., Han, J., Faloutsos, C.: Link Mining: Models, Algorithms, and Applications. Springer
(2010)

297. Zaki, M., Ho, C.: Large-scale parallel data mining. Springer LNCS 1759 (2000)
298. Zhang, Y., Lin, X., Zhang, W., Wang, J., Lin, Q.: Effectively indexing the uncertain space.

IEEE Transactions on Knowledge and Data Engineering 22(9), 1247–1261 (2010)
299. Zhao, H.: Semantic matching across heterogeneous data sources. Communications of the

ACM 50(1), 45–50 (2007)
300. Zhu, J.J., Ungar, L.H.: String edit analysis for merging databases. In: KDD workshop on

text mining, held at ACM SIGKDD. Boston (2000)
301. Zingmond, D., Ye, Z., Ettner, S., Liu, H.: Linking hospital discharge and death records—

accuracy and sources of bias. Journal of Clinical Epidemiology 57, 21–29 (2004)
302. Zobel, J., Dart, P.: Phonetic string matching: Lessons from information retrieval. In: ACM

SIGIR, pp. 166–172. Zürich, Switzerland (1996)
303. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Computing Surveys 38(2),

6 (2006)

References 263

Index

A
Abbreviation, 25, 25, 47, 51, 53, 56, 106
Agreement pattern, 134, 135, 137
Ancestry.com, 19
Application programming interface (API), 230
Approximate string join, 86
Assignment problem, 159
Attribute comparison, 5, 29, 101, 125, 131
AutoMatch, 59, 132

B
Batch processing, 213
Bayes theorem, 138
Bayesian network, 137
BigMatch, 96, 110, 231
Binning, 49, 79
Bioinformatics, 106
Blocking

criteria, 28, 69, 98, 231
overlapping block, 84
pass, 72, 231

Blocking key, 28, 69, 81
definition, 70-73, 82, 84
learning, 73, 97

Bloom filter, 89, 202
Bootstrapping, 64
Bounding box, 124, 211
Bridging file, 226
Business data integration, 229
Business intelligence, 229
BZip, 117

C
Candidate record pair, 28, 81, 82, 83, 94, 129
Candidate rule, 141, 142

Capture-recapture, 11
Census statistics, 11
Classification

active, 147
adaptive, 162
binary, 32, 142
collective, 32, 129, 154, 155, 161
imbalanced, 35, 146, 164
model, 143, 144, 146, 148, 216, 219, 225
pair-wise, 130, 149, 154
rule based, 139, 145, 242
supervised, 129, 142
threshold based, 131, 134, 169
unsupervised, 129, 150

Classification and regression tree (CART), 145
Clerical review, 32, 35, 226, 238, 240
Cloud computing, 227
Clustering, 145, 150

relational, 156
Collective entity resolution, 32, 154
Collusion, 191, 194
Colour histogram, 125
Comparison function

age, 123
date, 30, 122
exact, 101, 102, 103
geographic, 124
Jaro, 109, 111, 126
longest common sub-sequence, 115
longest common sub-string, 114
Monge-Elkan, 111, 113, 114, 240
numerical absolute, 121
numerical percentage, 121
phonetic, 103
SoftTFIDF, 113, 201, 240
string, 30, 53, 89, 103, 240, 241
time, 123

P. Christen, Data Matching, Data-Centric Systems and Applications,
DOI: 10.1007/978-3-642-31164-2, � Springer-Verlag Berlin Heidelberg 2012

265

C (cont.)
truncate, 102
Winkler, 10, 109, 114, 126

Comparison vector, 30, 32, 125, 129, 134, 139,
141, 143, 146, 148, 164

Compound surname, 44
Concept drift, 216
Conditional independence, 136
Conditional random field, 61
Confidential outcome, 189
Confusion matrix, 165, 166
Coverage, 98
Curse of dimensionality, 93
Customer relationship management, 229

D
D-Dupe, 232
Data cleaning, 51, 179
Data corruption, 180
Data editing, 49
Data entry, 14, 23, 39, 46

dictation, 47
error, 25, 49, 179, 210, 224
manual typing, 47, 179

Data exploration, 50
Data fusion, 4, 7, 8
Data generalisation, 204
Data generator, 180, 182, 227

FEBRL, 182
UIS DBGen, 182

Data imputation, 49
Data integration, 6
Data matching, 3, 11

framework, 178, 212, 222
process, 23, 69, 160, 215, 222, 226, 227

Data mining, 3, 183, 222, 223
parallel, 219

Data parsing, 26, 55, 212
Data pre-processing, 223
Data profiling, 50
Data quality, 42, 44, 45, 101, 210

root causes, 40
Data quality dimension, 39

accessibility, 40
accuracy, 39
believability, 40
completeness, 39
consistency, 39
timeliness, 40

Data segmentation, 26, 55, 58, 212
rule based, 58
statistical, 60

Data set, 177

CDDB, 177
Census, 93, 177
Cora, 93, 176
DBLP, 177
IMDB, 177
Restaurant, 93, 176
UCD people

Data standardisation, 53
Data verification, 26, 56
Data warehousing, 3
Database

bibliographic, 88
dynamic, 215, 225
external reference, 57, 65
genealogical, 19
probabilistic, 97, 214
relational, 211, 227
static, 213
voter registration, 15

Database join, 5, 40
Database modification, 215
Database owner, 5, 188, 191, 193, 194, 197
Decay rate, 216
Decision boundary, 146
Decision tree induction, 144, 148, 149
Deduplication, 4, 11, 83
Demography, 19
Dice coefficient, 106, 107, 114, 200
Dictionary attack, 197
Differential privacy, 204
Dirty data, 39
Distance function, 102

bag, 116
edit, 89, 92, 103, 146, 199
Euclidean, 92, 201
string, 92

Distributed computing, 217
Document frequency, 90
Document vector, 113
Domain expert, 53, 66, 97, 145, 163, 174
Domain knowledge, 141, 223, 49
Double-metaphone, 78
DuDe, 232
Duplicate detection, 3, 11, 97, 232
Dynamic programming algorithm, 103, 199

E
Edit cost, 105, 117

learning, 105
Edit distance

Damerau-Levenshtein, 104
Levenshtein, 103, 116, 117
Needleman-Wunsch, 241

266 Index

Smith-Waterman, 105, 118, 241
syllable alignment, 118

Edit operation, 89, 92, 103, 146, 199
deletion, 103
gap, 106
insertion, 103
substitution, 103
transposition, 104

Editex, 117, 118
Electoral roll, 15
Encryption

commutative, 198, 204
homomorphic, 199, 204

Encryption key, 193
Entity resolution, 11, 154, 160
Error cost, 137
Ethics committee, 188, 191
Expectation-maximisation algorithm, 136,

236, 238, 240

F
False negative, 165, 166
False positive, 165, 166, 168, 171
FastMap, 92, 93
Feature vector, 125, 143
FEBRL, 93, 177, 180, 221, 234, 241
Fellegi, Ivan, 10, 133
FEVER, 178
Free format text, 55, 212
Frequency attack, 195, 197
FRIL, 236

G
Garbage-in garbage-out, 39
Geocode matching, 192, 209, 210
Geographic location, 124
Geographical information system, 209
Geographiclib, 124
Google Zeitgeist, 43
Graphical user interface (GUI), 230, 235
Ground-truth data, 34, 163, 164, 165, 176, 183,

224
Group linkage, 159

H
h-index, 17
Hash function

collision, 196
MD5, 196
one way, 196, 197

secure hash algorithm (SHA), 196
Hidden Markov model, 61, 62, 234
HIPPA, 187
Historical census data, 20
Household, 20, 158, 159, 182, 209
Hungarian algorithm, 159
Hyper-edge, 156

I
Identifier

entity, 5, 133, 187
record, 80, 151, 180

Identifying information, 188
Inconsistent data, 50
Indexing, 69, 203

adaptive sorted neighbourhood, 84, 88
canopy clustering, 89, 95
evaluation, 70, 93, 172
iterative blocking, 94
mapping based, 92
q-gram based, 84
robust suffix array, 88
scalable, 227
semantic blocking, 95
sorted neighbourhood, 81
standard blocking, 28, 80, 88
suffix array, 86, 88

Information extraction, 4, 55, 212
Information retrieval, 70, 79, 97, 108, 167,

169, 183, 214
Inverse document frequency, 90, 113
Inverted index, 81, 83, 84, 90, 97
IT security, 188, 194

J
Jaccard coefficient, 89, 107, 114
Java, 233, 236, 238-241

K
k-anonymity, 204
KD-tree, 93
Kernel function, 146

L
Latitude, 124, 209
Learning

active, 32, 147, 175
rule based, 59, 98, 141
supervised, 97, 129

Index 267

L (cont.)
unsupervised, 129, 150

Link analysis, 9
Linked data, 240
LinkedIn, 230
Load balancing, 217, 220
Local statistical area, 209
Longitude, 124, 209
Longitudinal data, 12

M
m-probability, 135, 136
Map-reduce, 217, 221, 241
Match

approximate, 114, 136, 179, 193
classified, 165
exact, 10, 30, 123, 134, 153, 211
false, 137, 165
potential, 32, 35, 131, 174, 226
status, 70
true, 133, 165
weight, 125, 236

Matching
accuracy, 34
approximate, 30, 102, 103, 179, 191, 199,

203
completeness, 34
complexity, 34
exact, 30, 102, 134, 196, 210
frequency-based, 137
many-to-many, 157, 158
one-to-many, 157, 158
one-to-one, 157, 158
quality, 206, 223
query-time, 157, 214
real-time, 97, 192, 213, 214, 215
restriction, 157
rule based, 225
run, 72

Matching unit, 188, 191, 193, 194, 197
Maximum entropy Markov model, 61
Measure

accuracy, 98, 166
area under curve, 171
f-measure, 168, 170
fall-out, 169
false positive rate, 169
hit rate, 167
pairs completeness, 172
pairs quality, 173
positive predictive value, 167
precision, 167

precision-recall graph, 169
recall, 167
reduction ratio, 172
roc curve, 171
sensitivity, 167
specificity, 168
true negative rate, 168
true positive rate, 167

Memory usage, 94
Merge ToolBox, 238
Merging records, 4, 94, 160, 171, 214
Message digest, 196
Message passing interface, 217, 220
Meta-data, 8
Missing data, 39, 46, 48, 224
Multi-core parallelism, 217, 221, 230, 236
Multi-database matching, 226, 228
Multi-dimensional index, 92
Multi-dimensional mapping, 92, 203
Multi-party protocol, 207
Multimedia data, 125

N
Naive record comparison, 27, 34, 69
Name transliteration, 44
Name variation, 25, 43, 45, 46, 84, 180, 182,

196
Nearest-neighbour, 91
Newcombe, Howard, 9, 133
Nickname, 25, 43, 46, 174, 179
Non-match

false, 137, 165
true, 134, 165
weight, 136

Normalised compression distance, 116
NYSIIS, 76-78

O
Object description, 124
Oblivious transfer protocol, 198
ONCA, 77
Open database connectivity (ODBC), 230
Optical character recognition (OCR), 4, 20, 25,

47, 71, 105, 179
Optimal stopping, 97
Outlier, 48, 49
Over-fitting, 143
Overlap coefficient, 106, 107, 114
Overlapping cluster, 89
Oxford Record Linkage Study, 12
OYSTER, 239

268 Index

P
Parallel computing, 96, 217, 227
Parallel speedup, 218
Parallelism

data, 217
task, 217

Personal information, 5, 25, 42, 45, 184, 190
Phonetic encoding, 28, 71, 74, 103, 205
Phonetic variation, 46, 117
Phonex, 75, 76
Phonix, 76, 118
Population survey, 19
Predictive Model Markup Language, 223
Privacy concern, 188, 211, 228
Property parcel, 210
Public health research, 12, 190
Python, 235, 239

Q
q-gram, 84, 106

bigram, 78, 84, 106, 200
padded, 108
positional, 108
skip-gram, 108
trigram, 84, 106

q-gram list, 84, 200
Quadratic complexity, 69

R
R, 240
R-tree, 92
Raw input data, 24
Re-identification, 189
Record linkage, 9, 11

privacy-preserving, 6, 11, 189, 193, 196
probabilistic, 69, 32, 133, 136, 174

RecordLinkage package, 240
Red-blue set cover, 98
Reference set, 201, 205
Regular expression, 198
Relational information, 129
Relationship graph, 95, 154
Resource description framework (RDF), 212,

240
Reverse geocoding, 211
Review board, 188, 191
RIDDLE repository, 177, 182
Rule

accuracy, 140
coverage, 60, 140
evolving, 216
hand-crafted, 59

learning, 59, 98, 141
precision, 60

Run time, 94, 173, 183

S
Sampling

record pair, 164
stratified, 164

Sanitisation technique, 204
Schema matching, 3, 7
SecondString, 93, 177, 240
Secure cohort extraction, 198
Secure database access, 198
Secure multi-party computation, 204
Secure set intersection, 198, 201
Security model

honest-but-curious, 194
malicious, 195
semi-honest, 194

Semantic matching, 225
Sequential covering algorithm, 98, 141
SILK, 240
Similarity

character shape, 70
cosine, 89, 91, 113, 142
numerical, 70
phonetic, 70

Similarity calculation, 30
Similarity function, 101, 240, 241

secondary, 111, 114
Similarity join, 97
Similarity-aware index, 205
SimMetrics, 232, 241
Sliding window, 81, 83
Smoothing data, 49
Social science, 19
Sorted neighbourhood, 151, 220
Sorting key, 69, 82
Soundex, 9, 28, 74, 76, 78, 117, 118, 205

fuzzy, 78
Sourceforge.Net, 234, 236, 239-241
Spelling error, 25, 45, 46, 65, 110
SQL, 86, 230
Stanford Entity Resolution Framework, 160
Statistical disclosure control, 189
Stop word, 25
STATA, 238
Stream cipher, 198
Street address, 16, 44, 45, 210
Street centreline, 210
StringMap, 92
Suffix array, 86, 88
Suffix string, 86

Index 269

S (cont.)
Sunter, Alan, 10, 133
Support vector machine, 146, 148, 149
Swoosh, 160, 220, 221, 239

T
TAILOR, 145, 153, 241
Temporal data matching, 216
Term frequency, 90, 113
Test data set

public, 164, 227
synthetic, 164, 179, 224, 227

Testing data, 143, 148, 180, 227
tf-idf, 89
Three-party protocol, 193, 197
Time-stamp, 213, 216, 217
Tokenisation, 53, 55, 64
Total Information Awareness, 13
Training data, 6, 35, 59, 60, 62, 64, 73, 98,

105, 129, 137, 138, 140, 142, 143, 146,
147, 148, 161, 175

Transactional data, 213, 217
Transitive closure, 130, 149, 227
Triangular inequality, 102
True negative, 165, 166
True positive, 165, 166
Two-party protocol, 194, 197
Typographical error, 46, 101

U
u-probability, 135, 136
Uncertain data, 97
US Census Bureau, 12, 21, 109, 117, 231

V
Visualisation, 9, 169, 226, 232
Viterbi algorithm, 62, 63

W
Web search, 43, 97, 214
Weight vector, 136
WEKA, 222
WHIRL, 241
Winkler, William, 10, 12

X
XML, 9, 41, 124, 183, 212, 228, 232, 239

Z
ZLib, 117

270 Index

	Data Matching
	Foreword
	Preface
	Contents
	Part I Overview
	Part II Steps of the Data Matching Process
	Part III Further Topics
	Glossary
	References
	Index

