
Kinetic Pie Delaunay Graph

and Its Applications

Mohammad Ali Abam1,2, Zahed Rahmati3, and Alireza Zarei4

1 Dept. of Computer Engineering, Sharif University of Technology, Tehran, Iran
abam@sharif.edu

2 Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
abam@ipm.ir

3 Dept. of Computer Science, University of Victoria, Victoria, BC, Canada
rahmati@uvic.ca

4 Dept. of Mathematical Science, Sharif University of Technology, Tehran, Iran
zarei@sharif.edu

Abstract. We construct a new proximity graph, called the Pie Delau-
nay graph, on a set of n points which is a super graph of Yao graph
and Euclidean minimum spanning tree (EMST). We efficiently maintain
the Pie Delaunay graph where the points are moving in the plane. We
use the kinetic Pie Delaunay graph to create a kinetic data structure
(KDS) for maintenance of the Yao graph and the EMST on a set of n
moving points in 2-dimensional space. Assuming x and y coordinates of
the points are defined by algebraic functions of at most degree s, the
structure uses O(n) space, O(n log n) preprocessing time, and processes
O(n2λ2s+2(n)βs+2(n)) events for the Yao graph and O(n2λ2s+2(n))
events for the EMST, each in O(log2 n) time. Here, λs(n) = nβs(n)
is the maximum length of Davenport-Schinzel sequences of order s on
n symbols. Our KDS processes nearly cubic events for the EMST which
improves the previous bound O(n4) by Rahmati et al. [1].

Keywords: Euclidean minimum spanning tree, Yao graph, Pie Delau-
nay triangulation, kinetic data structures.

1 Introduction

Investigating geometric problems on moving points, known as kinetic geometric
problems, has been studied extensively in the past decade [2, 3, 4, 5]. In this
setting, the points are moving in the plane and our goal is to show a data
structure maintaining the combinatorial structure of a special attribute during
the motion. We assume that the trajectory of the point pi at time t (pi(t)) is
defined by two polynomial functions of maximum degree s for x and y coordinates
of pi (pi(t) = (xi(t), yi(t))).

In this paper, we present a simple kinetic data structure for maintenance of the
following proximity problems. In Euclidean space, for a set P = {p1, p2, . . . , pn}
of n points, there exists the complete graph G(V,E) where V = P and E is the

F.V. Fomin and P. Kaski (Eds.): SWAT 2012, LNCS 7357, pp. 48–58, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Kinetic Pie Delaunay Graph 49

set of edges in the graph such that the weight of each edge is the Euclidean dis-
tance between its two endpoints. An Euclidean minimum spanning tree (EMST)
of G is a connected sub-graph of G where the sum of the weights of its edges
is the minimum possible. The Yao graph [6] of P can be constructed by par-
titioning the plane, for each point, into k wedges with equal angles 2π/k and
connecting each point to the closest point in each of its k wedges. In the rest of
the paper when we talk about the Yao graph it means that k = 6.

We present a KDS for the Yao graph and a new KDS for the EMST which is
an improvement of the previous EMST KDS by Rahmati et al. [1] (our KDS pro-
cesses nearly cubic events but the KDS in [1] processes O(n4) events). Guibas et
al. [7] presented aKDS for Delaunay triangulation based on a circle, and Abam et
al. [2] presented a KDS based on a diamond. There we partition a disk into six
wedges with equal angles which creates six convex shapes; a Delaunay triangu-
lation is then constructed based on each of these wedges. The union of all these
triangulations is a sparse proximity graph. This new proximity graph, which we
call Pie Delaunay graph, is a super graph of the Yao graph and the EMST.

Notation. λs(n) is the maximum length of Davenport-Schinzel sequences of order
s on n symbols. Intuitively, if we have a set of n moving points where the
trajectory of each point is an algebraic function with at most degree s then
the number of changes for the lowest point along the y-axis is λs(n). Here,

βs(n) =
λs(n)

n and α(n) is the Inverse Ackermann function.

Related work. Fu and Lee (1991) [8] proposed the first algorithm for maintenance
the EMST on a set of moving points. The algorithm uses O(sn4 logn) prepro-
cessing time where s is the maximum degree of the algebraic functions defining
the trajectory of the points and uses O(m) space where m is the maximum
number of the changes of the EMST from time t = 0 to t = ∞. At any given
time, the algorithm constructs the EMST in linear time. Agarwal et al.(1998) [9]
proposed an algorithm for a restricted kinetic version of the EMST over a graph
where the distance between each pair of points in the graph is defined by linear
function of time. Processing time of the algorithm for each combinatorial change

of the EMST is O(n
1
2 log

3
2 n).

The kinetic data structure (KDS) framework was introduced by Basch
(1999) [10]. To maintain a special attribute of a set of moving points, a KDS
defines a set of certificates which certify the correctness of the attribute. During
the time when a certificate fails, one must update the value of the attribute and
then, build the new set of certificates to satisfy the correctness of the attribute.
Therefore, it suffices to compute the failure times of these certificates, events,
and put them in an event queue. Whenever the time of the next event in the
queue is equal to the current time, one invokes a repair mechanism to update
the value of the attribute and replace the failed certificate(s) with new valid
one(s). The set of data structures and the update mechanism used to update
these certificates and maintain the attributes is called a KDS. The kinetic data
structure framework has been used for solving many of the geometric problems
in kinetic environments.

50 M.A. Abam, Z. Rahmati, and A. Zarei

Basch et al. (1999)[11] presented an approximation algorithm for (1 + ε)-

EMST. Their KDS uses O(ε
−(d−1)

2 n logd−1 n) space, O(ε
−(d−1)

2 n logd−1 n) prepro-
cessing time, and processes O(ε−(d−1)n3) events, each in O(logd n) time where d
is the dimension of the points. Recently, Rahmati et al. (2011)[1] improved the
previous result by Fu and Lee [8]. They presented the exact KDS for maintenance
of the EMST on a set of n moving points in 2-dimensional space. They build
a KDS of space O(n) in O(n logn) preprocessing time and their KDS processes
O(n4) events, each in O(log2 n) time.

Our Results. We introduce the Pie Delaunay graph which is a super graph
of Yao graph. Since the set of EMST edges is a subset of the set of
Yao graph edges the Pie Delaunay graph includes the EMST. We maintain
the Pie Delaunay graph which enables us to maintain Yao graph and EMST.
Our KDS uses O(n) space, O(n log n) preprocessing time, and processes
O(n2λs(n)βs+2(n)) events for the Yao graph and O(n2λ2s+2(n)) events for the
EMST, each in O(log2 n) time.

We describe our KDS in two sections. Section 2 contains the construction
of the Pie Delaunay graph and its KDS; the KDS in this section maintains the
Pie Delaunay graph during the motion. Next, we show the application of the
Pie Delaunay graph in Section 3: first we construct the Yao graph and the EMST
and then in Subsection 3.2, we maintain the Yao graph based on the kinetic
Pie Delaunay graph and in Subsection 3.3, we present the kinetic EMST based
on the kinetic Yao graph.

2 Pie Delaunay Graph

In this section, we summarize the construction of the Pie Delaunay graph and
then we present a KDS for it.

2.1 The Construction of the Pie Delaunay Graph

Partition a disk into six wedges σ0, ..., σ5, each of angle π/3 and the origin as
their common apex, where σi spans the orientation [iπ/3, (i + 1)π/3], and call
any translated and scaled copy of σi an i-pie—see Fig. 1. Let P be a set of points
in the plane. We denote the constructed Delaunay triangulation of the point set

Fig. 1. Partitioning a circle into six pies and the 0-pie

Kinetic Pie Delaunay Graph 51

P based on σi by DT i(P) and define it as follow: For two points p, q ∈ P , the
edge pq is an edge in DT i(P) if and only if there is an i-pie where p and q
are on its boundary and it does not contain any other points from P . Fig. 2
shows DT 0(P). In this figure, pq, qr, rp and s1s2 are the edges of DT 0(P)
because for each of these edges there is a 0-pie which dose not contain any other
point from P . The Pie Delaunay graph (DG(P)) is the union of all DT i(P) for
i = 0, ..., 5. We denote the set of DG(P) edges by E(DG(P)). Then, pq is an
edge of DG(P) if and only if it is an edge in DT i(P) where 0 ≤ i ≤ 5. Each
wedge σi is a convex shape and so, using the approach of [12], its corresponding
Delaunay triangulation DT i(P) can be constructed (based on σi) in O(n log n)
time. Therefore, we can construct the Pie Delaunay graph in O(n logn) time.

Fig. 2. Delaunay Triangulation based on 0-pie

2.2 Kinetic Pie Delaunay Graph

Given E(DG(P)), we show how to maintain the Pie Delaunay graph with pro-
cessing time O(log n) for each certificate failure.

In our KDS we define two certificates NotInPie and NotInCone. Call the edges
on the boundary of DT i(P) i-hull edges. Every interior edge pq, which is not an
i-hull edge, is incident to two triangles. Call the two triangles a quadrilateral,
and let r and s be the two other vertices of the quadrilateral. For the convex
shape i-pie that passes through p, q, and r, we have a NotInPie certificate which
certifies that point s is outside of the pie, as shown in Fig. 2. When the certificate
fails, we replace pq by rs. In general, when a corresponding certificate of each
quadrilateral fails, we perform an edge flip.

Each i-pie has three edges. By removing one of the edges and extending the
other two edges a cone can be created, call these cones i-cones, see Fig. 3(a).
An edge pq is an i-hull edge if and only if there exists an i-cone such that p and
q are on its boundary and the i-cone does not contains any other points—see
the edge pq in Fig. 3(b). Each edge pq of the i-hull is incident to at most four
other i-hull edges, call them by ps1, ps2, qs3, qs4, and incident to at most one
triangle. Let r be the third vertex of this triangle if it exists; r can be one of the
si where 0 ≤ i ≤ 4. For the i-cone passing through p and q, we maintain at most
five NotInCone certificates certifying that r and si’s are outside of the i-cone.
Whenever a NotInCone certificate fails we either delete or insert a vertex into
the i-hull and then, we delete or insert an edge into the triangulation.

Thus, when a NotInCone certificate or a NotInPie certificate fails we replace
the invalid certificates with the new valid ones which causes a constant number

52 M.A. Abam, Z. Rahmati, and A. Zarei

Fig. 3. (a) An i-pie and the three types of cones defined by it. (b) A hull edge pq
corresponds to an i-cone.

of changes to the data structure, because the number of the invalid certificates
is constant. After the updating, we also have to calculate the next failure times
of the new valid certificates and place them in the queue which takes O(log n)
time; the first element of the queue shows the next time that a certificate will
be invalid. Thus, the following lemma results from the above discussion.

Lemma 1. A change in the Pie Delaunay graph happens when a NotInPie cer-
tificate or a NotInCone certificate is invalid. The Pie Delaunay graph can be
maintained kinetically in O(log n) time per event.

Proof. Each edge of the Pie Delaunay graph is either an interior edge or an
external (i-hull) edge. For the interior edge pq there exists an i-pie which p and
q are on its boundary and it does not contain any other points. If we scale the
i-pie such as p and q are on its boundary then a new point (r) will be incident to
the boundary of the i-pie. In this case we need to define a certificate certifying p,
q, and r are on the boundary of the i-pie and it does not contain any other points
from P (NotInPie certificate). Similarly, for the external edge p′q′, we define a
certificate certifying p′ and q′ are on the boundary of an i-cone and it does not
contain any other points (NotInCone certificate). Thus, it satisfies our definition
of the Pie Delaunay graph and for maintenance of the Pie Delaunay graph and
we just need to define two certificates NotInPie and NotInCone.

When one of these events happens we apply a constant number of edge inser-
tions and edge deletions into the Pie Delaunay graph and a constant number of
changes in the event queue. So, we maintain the Pie Delaunay graph kinetically
in O(1) time per each of these events, plus O(log n) time to update the event
queue. �
For a set of n points in the Euclidean plane, Guibas et al. [7] have shown that
the number of the combinatorial changes in the Delaunay triangulation based
on circle is O(n2λs(n)). We have the following theorem about the number of the
combinatorial changes of the DG(P) which is based on the i-pie.

Theorem 1. The number of all changes (edge insertions and edge deletions) of
the Pie Delaunay graph on a set of n moving points with trajectory of algebraic
function with at most degree s is O(n2λ2s+2(n)).

Proof. The number of convex-edge changes is O(n3) as three points are involved
in any convex change. Since n3 = O(n2λ2s+2(n)), we focus on the number of

Kinetic Pie Delaunay Graph 53

triangle changes in DT i(P). For each edge pq of a triangle, four different cases
are imaginable as shown in Fig. 4. It is easy to see for any triangle Δ, the case
(a) of Fig. 4 happens to one of its edge. We charge any change to Δ to this edge.
Therefore, we consider the number of the combinatorial changes of DT i(P) for
an arbitrary edge pq that satisfies case (a) of Fig. 4.

Two edges of an i-pie are line segments and one of them is an arc; call the
line segments by ow1 and ow2. Let Wi be a wedge whose sides are created by
removing the arc w1w2 of i-pie and extending the two line segments; the wedge
Wi is the area between two half-lines −−→ow1 and −−→ow2. Let V(Wi) be the set of all
points in the wedge Wi. In Fig. 4(a), a change for triangle pqr corresponding to
pq happens when for some t ∈ V(Wi), the length of the edge ot becomes smaller
than the length of the edge or.

Note that since the degree of each function describing each point’s motion
is at most s, each point of P except p and q, can be inserted inside the wedge
Wi s times. Summing over all points in P there are O(sn) insertion into V(Wi).
The distance of these points from the apex o creates O(sn) partial functions
with at most degree 2s. The number of the combinatorial changes corresponding
to an arbitrary edge pq equals λ2s+2(sn) which is equal to the number of the
breakpoints in the lower envelope of sn partial functions of at most degree 2s
(Theorem 2.5. [13]). Since the maximum degree s is a constant, λ2s+2(sn) =
O(λ2s+2(n)).

The number of all possible edges is O(n2) and therefore, the number of the
combinatorial changes corresponding to all edges is O(n2λ2s+2(n)).

Besides the above changes for the edge pq, there exist other changes that hap-
pen when a point, such as s passes through the segment op or the segment oq and
enters inside the area opq, see Fig. 4(a). Map each point p = (xp(t), yp(t)) to a
point p′ = (up(t), vp(t)) in a new parametric plane where up(t) = xp(t)+

√
3yp(t)

and vp(t) = xp(t)−
√
3yp(t). Passing the point s through the segment op or the

segment oq means that the point s′ changes its u-coordinate or its v-coordinate
with the u-coordinate or v-coordinate of p′ or q′, call these changes swap-changes.
That is, the number of all swap-changes for all possibles is bounded with the
number of all swaps between points in their ordering with respect to u-axis and
v-axis. The number of the all u-swaps and v-swaps between points is O(sn2). �

Fig. 4. Combinatorial changes for an arbitrary edge pq

54 M.A. Abam, Z. Rahmati, and A. Zarei

From this discussion, Lemma 1, and the Theorem 1:

Theorem 2. For a set of n points in the plane with the trajectories of algebraic
functions with maximum degree s, the kinetic Pie Delaunay graph uses linear
space and processes O(n2λ2s+2(n)) events, each in O(log n) time.

3 The Applications

In this section we introduce new constructions for the Yao graph and the EMST
and then, we consider the kinetic version of them.

3.1 The Constructions

For each point p ∈ P , partition the plane into k wedges W0(p), ...,Wk−1(p)
of angle 2π/k where p is origin of the wedges and Wi spans the orientation
[2πi/k, 2π(i + 1)/k]. The Yao graph can be constructed by finding the closest
point to p inside the wedge Wi(p) where 0 ≤ i ≤ k − 1. For constructing the
EMST, a version of the Yao graph where k = 6 is needed—we denote it by
YG(P) and the set of its edges by E(YG(P)). The following lemma shows that
the Pie Delaunay graph is a super graph of the Yao graph.

Lemma 2. E(YG(P)) ⊆ E(DG(P)).

Proof. Let Wi be a wedge whose sides are parallel to the sides of σi. For each
point p, qp is an edge of YG(P) where q is the closest point to p inside Wi(p),
see Fig. 5. This means that, there is an i-pie where p and q are on its boundary
and it dose not contain any other points of P . Therefore, pq ∈ E(DG(P)) and
so, the Pie Delaunay graph includes the Yao graph. �

Fig. 5. An edge of a Yao graph is an edge of the Pie Delaunay Graph

Denote the EMST edges by E(EMST). In previous section, we noticed, using the
approach of [12], DG(P) can be constructed in O(n logn) time. Cardinality of
the E(DG(P)) is O(n) and so, by a trace over the edges incident to each point of
DG(P), we can construct the YG(P) in O(n) time. E(EMST) ⊆ E(YG(P)) [6]
and since the number of edges in E(YG(P)) is linear, the EMST can be con-
structed in O(n log n) time using the Prim or Kruskal algorithm [14, 15] and so,
the following lemma results.

Lemma 3. Using linear space, the Yao graph and the EMST can be constructed
in O(n logn) time.

Kinetic Pie Delaunay Graph 55

3.2 Kinetic Yao Graph

Now, assume the points start moving. To maintain YG(P) during the motion
we introduce the kinetic tournament tree [4] which is a preliminary tool in the
kinetic data structure framework.

Using a kinetic tournament tree, we can maintain the lowest point among a
set of n moving points along the y-axis. The tournament tree on a set of n points
is a balanced tree with the points stored at its leaves (in an arbitrary order).
An internal node of the tournament tree maintains the lowest point between
two children; the root of the tournament tree maintains the lowest point among
all points. This tournament tree is known as kinetic tournament tree and the
number of changes to the value at the root of the kinetic tournament tree is
λs(n) [3, 10]. We use a kind of tournament structure which supports insertions
and deletions of points (dynamic kinetic tournament tree) [3]. The following
theorem can be concluded from the Theorem 3.1. in [3] and it bounds the total
number of events that may occur while inserting and deleting at most m points,
at arbitrary locations, into a dynamic kinetic tournament.

Theorem 3. A dynamic kinetic tournament, with a sequence of m insertions
and deletions whose maximum size at any time is n (assuming m ≥ n), generates
at most O(mβs+2(n)) events at the root. Processing an update or a tournament
event takes O(log2 n) worst-case time; the tournament on n elements can be
constructed in O(n) time.

Let E(Wi(p)) be the set of edges of the DG(P) inside the wedge Wi(p) and
incident to the point p. For each wedge Wi(p), we have to maintain the closet
point to p and so, corresponding to each Wi(p) we construct a dynamic kinetic
tournament (DKTi; i = 1, ..., 6n) whose elements are E(Wi(p)). Therefore, at any
time, the root of all dynamic kinetic tournaments are the edges of the Yao graph
and so, the following theorem is resulted.

Theorem 4. The KDS for maintenance of the Yao graph uses O(n) space
with preprocessing time O(n log n), and processes O(n2λ2s+2(n)βs+2(sn)) events,
each in O(log2 n) time.

Proof. We know that Pie Delaunay graph can be constructed in O(n log n) time
and the cardinality of E(DG(P)) is O(n). Each edge of the DG(P) is inserted
into at most two of the DKTi’s which i = 1, ..., 6n. Let ni be the number of
elements in DKTi. From Theorem 3, the construction time of DKTi on O(ni)
elements is O(ni) and so the construction time over all DKTi’s is O(n). Thus,
the KDS uses linear space with preprocessing time O(n log n).

Let mi be the number of insertions/deletions into the DKTi. From The-
orem 1 we know that Σ6n

i=1mi = O(n2λ2s+2(n)). According to the Theo-
rem 3, the number of all changes at the root of all DKTi for i = 1, ..., 6n is
Σ6n

i=1O(miβs+2(n)) = O(βs+2(n)Σ
6n
i=1mi) = O(n2λ2s+2(n)βs+2(n)) which each

one can be handled in O(log2 n) time. �
In our algorithm, we processed a nearly cubic number of events for maintenance
of the Yao graph but the exact number of changes to the Yao graph is nearly

56 M.A. Abam, Z. Rahmati, and A. Zarei

square. For linearly moving points in the plane, Katoh et al. [16] showed the
changes to the Yao graph is O(nλ4(n)). In the following theorem we bound the
number of the combinatorial changes of the Yao graph of a set of moving points
with the trajectory of algebraic function of at most degree s.

Theorem 5. The number of all changes in the Yao graph, when the points move
with polynomial trajectory of at most degree s, is O(nλ2s+2(n)).

Proof. For an arbitrary point p ∈ P , each of other points of P can be inserted
inside the wedge Wi(p) s times and so, there exist O(sn) insertion into the wedge
Wi(p). The distance of these points from p creates O(sn) partial functions with
at most degree 2s; the lowest envelope of these partial functions corresponds to
the closest point to p inside the wedge Wi(p). The number of all changes in the
lower envelope of sn partial functions with at most degree 2s corresponding to
the point p is λ2s+2(n) (Theorem 2.5. [13]). Hence, the number of all changes
to the Yao graph on a set of n moving points is O(nλ2s+2(n)). �

3.3 Kinetic EMST

Our approach to maintain the EMST is based on the fact that the edges of the
EMST are a subset of the edges of the Yao graph; A change in the combinatorial
structure of the EMST depends on the orderings of the edge weights of the
Yao graph edges.

Here, we maintain the edges of YG(P) (which are the root of DKTi where
i = 1, ..., 6n) in a sorted list (LYG) and whenever the ordering of two edges in
this list is changed, we apply the required changes to the EMST. Therefore, we
need to track these changes to update and maintain the EMST of a set of moving
points. In particular, to maintain the EMST there exists two kinds of events that
we should consider:

(a) edge insertion and edge deletion from LYG , and
(b) the change between two consecutive edges in LYG .

In the case (a), as soon as an edge is deleted from LYG the new one is inserted;
both of the deleted edge and the inserted edge are in the same dynamic ki-
netic tournament and have a common endpoint, call them by pq and pr. In this
case, the deleted edge pq can be one of the EMST edges and so, we have to
find a new edge reconstructing the EMST. It’s easy to show that the new edge
reconstructing the EMST is pr.

Now, we consider the case (b). Let path(pi, pj) be the simple path between
pi and pj in the EMST and |e| be the Euclidean length of e. A change in LYG
corresponds to a pair of edges e and e′ in E(YG(P)) where at time t−, |e| < |e′|,
and at time t+, |e| > |e′|. Then, at time t, e may be replaced by e′ in E(EMST).
It is simple to prove the following lemma:

Lemma 4. EMST changes if and only if at time t−, |e| < |e′|, e ∈ E(EMST),
e′ /∈ E(EMST), and e ∈ path(pi, pj) where pi and pj are the end points of e′ and
at time t+, |e| > |e′|.

Kinetic Pie Delaunay Graph 57

Such events can be detected and maintained within O(log n) time per operation
using the link-cut tree data structure of [17].

Theorem 6 below bounds the number of the events of the EMST in our KDS.

Theorem 6. The number of the combinatorial changes of the EMST in our
KDS is O(n2λ2s+2(n)).

Proof. The set of Yao graph edges is a superset of the set of the EMST edges
and any change in the order of the consecutive edges in the sorted list of the
Yao graph edges may change the EMST. Precisely, any change in the Yao graph
causes insertion/deletion into the sorted list and each insertion may causes O(n)
changes in the EMST. The number of all insertions and deletions into the sorted
list LYG is O(nλ2s+2(n)), see Theorem 5, and therefore, in our data structure,
the number of the combinatorial changes of the EMST is O(n2λ2s+2(n)). �
We summarize all results of our KDS in the following theorem.

Theorem 7. For a set of n moving points with polynomial trajectory of at
most degree s, our KDS uses linear space and requires O(n log n) preprocessing
time. The KDS processes O(n2λ2s+2(n)βs+2(n)) events for the Yao graph and
O(n2λ2s+2(n)) events for the EMST and each of these events can be handled in
the worst case time O(log2 n).

4 Conclusion

In the paper, we presented the new proximity graph Pie Delaunay graph and
then we maintained the kinetic data structure for the Yao graph. In our KDS,
we process the number of nearly cubic events for the kinetic Yao graph but the
exact number of the changes in the Yao graph is nearly square and so, finding a
KDS which processes only nearly square events is a future direction.

For kinetic EMST, we handle a nearly cubic upper bound of topological
changes but the tight upper bound is not known. For linearly moving points
in the plane, Katoh et al. [16] proved an upper bound of O(n32α(n)) for the
number of the combinatorial changes of the EMST which was later improved to
O(n8/32α(n) log4/3 n) by combining the results of Chan [18], and Marcus and Tar-
dos [19]. Finding the tight upper bound for the combinatorial changes (events)
of the EMST and finding a KDS for EMST processing the number of sub-cubic
events are other future directions.

Acknowledgments. We thank Valerie King, Frank Ruskey, and Sue Whitesides
for their useful conversations and comments.

References

[1] Rahmati, Z., Zarei, A.: Kinetic Euclidean Minimum Spanning Tree in the Plane. In:
Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2011. LNCS, vol. 7056, pp. 261–274.
Springer, Heidelberg (2011)

58 M.A. Abam, Z. Rahmati, and A. Zarei

[2] Abam, M.A., de Berg, M., Gudmundsson, J.: A simple and efficient kinetic span-
ner. Comput. Geom. Theory Appl. 43, 251–256 (2010)

[3] Alexandron, G., Kaplan, H., Sharir, M.: Kinetic and dynamic data structures for
convex hulls and upper envelopes. Comput. Geom. Theory Appl. 36(2), 144–158
(2007)

[4] Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. In:
Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 1997, pp. 747–756. Society for Industrial and Applied Mathematics,
Philadelphia (1997)

[5] Kaplan, H., Rubin, N., Sharir, M.: A kinetic triangulation scheme for moving
points in the plane. Comput. Geom. Theory Appl. 44(4), 191–205 (2011)

[6] Yao, A.C.C.: On constructing minimum spanning trees in k-dimensional spaces
and related problems. SIAM J. Comput. 11(4), 721–736 (1982)

[7] Guibas, L.J., Mitchell, J.S.B.: Voronoi Diagrams of Moving Points in the Plane.
In: Schmidt, G., Berghammer, R. (eds.) WG 1991. LNCS, vol. 570, pp. 113–125.
Springer, Heidelberg (1992)

[8] Fu, J.J., Lee, R.C.T.: Minimum spanning trees of moving points in the plane.
IEEE Trans. Comput. 40(1), 113–118 (1991)

[9] Agarwal, P.K., Eppstein, D., Guibas, L.J., Henzinger, M.R.: Parametric and ki-
netic minimum spanning trees. In: FOCS, pp. 596–605. IEEE Computer Society
(1998)

[10] Basch, J.: Kinetic data structures. PhD Thesis, Stanford University (1999)
[11] Basch, J., Guibas, L.J., Zhang, L.: Proximity problems on moving points. In:

Proceedings of the Thirteenth Annual Symposium on Computational Geometry,
SCG 1997, pp. 344–351. ACM, New York (1997)

[12] Chew, L.P., Dyrsdale III, R.L.S.: Voronoi diagrams based on convex distance
functions. In: Proceedings of the First Annual Symposium on Computational Ge-
ometry, SCG 1985, pp. 235–244. ACM, New York (1985)

[13] Agarwal, K.P., Sharir, M.: Davenport–schinzel sequences and their geometric ap-
plications. Technical report, Durham, NC, USA (1995)

[14] Kruskal, J.B.: On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem. Proceedings of the American Mathematical Society, 7 (1956)

[15] Prim, R.C.: Shortest connection networks and some generalizations. Bell Systems
Technical Journal, 1389–1401 (November 1957)

[16] Katoh, N., Tokuyama, T., Iwano, K.: On minimum and maximum spanning trees
of linearly moving points. In: Proceedings of the 33rd Annual Symposium on Foun-
dations of Computer Science, SFCS 1992, pp. 396–405. IEEE Computer Society,
Washington, DC (1992)

[17] Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.
Sci. 26(3), 362–391 (1983)

[18] Chan, T.M.: On levels in arrangements of curves. Discrete and Computational
Geometry 29, 375–393 (2003)

[19] Marcus, A., Tardos, G.: Intersection reverse sequences and geometric applications.
J. Comb. Theory Ser. A 113(4), 675–691 (2006)

	Kinetic Pie Delaunay Graph and Its Applications
	Introduction
	Pie Delaunay Graph
	The Construction of the Pie Delaunay Graph
	Kinetic Pie Delaunay Graph

	The Applications
	The Constructions
	Kinetic Yao Graph
	Kinetic EMST

	Conclusion
	References

