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Abstract. Assuming the AND-distillation conjecture, the Pathwidth

problem of determining whether a given graph G has pathwidth at most k
admits no polynomial kernelization with respect to k. The present work
studies the existence of polynomial kernels for Pathwidth with respect
to other, structural, parameters.

Our main result is that, unless NP ⊆ coNP/poly, Pathwidth ad-
mits no polynomial kernelization even when parameterized by the ver-
tex deletion distance to a clique, by giving a cross-composition from
Cutwidth. The cross-composition works also for Treewidth, improv-
ing over previous lower bounds by the present authors. For Pathwidth,
our result rules out polynomial kernels with respect to the distance to
various classes of polynomial-time solvable inputs, like interval or cluster
graphs.

This leads to the question whether there are nontrivial structural pa-
rameters for which Pathwidth does admit a polynomial kernelization.
To answer this, we give a collection of graph reduction rules that are
safe for Pathwidth. We analyze the success of these results and obtain
polynomial kernelizations with respect to the following parameters: the
size of a vertex cover of the graph, the vertex deletion distance to a
graph where each connected component is a star, and the vertex dele-
tion distance to a graph where each connected component has at most c
vertices.

1 Introduction

The notion of kernelization provides a systematic way to mathematically ana-
lyze what can be achieved by (polynomial-time) preprocessing of combinatorial
problems [1]. This paper discusses kernelization for the problem to determine
the pathwidth of a graph. The notion of pathwidth was introduced by Robertson
and Seymour in their fundamental work on graph minors [2], and is strongly
related to the notion of treewidth. There are several notions that are equivalent
to pathwidth including interval thickness, vertex separation number, and node
search number (see [3] for an overview). The problem to determine the pathwidth
of a graph is well studied, also under the different names of the problem.
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It is well known that the decision problem corresponding to pathwidth is
NP-complete, even on restricted graph classes such as bipartite graphs and
chordal graphs [4,5]. A commonly employed practical technique is therefore
to preprocess the input before trying to compute the pathwidth, by employ-
ing a set of (reversible) data reduction rules. Similar preprocessing techniques
for the Treewidth problem have been studied in detail [6,7], and their prac-
tical use has been verified in experiments [8]. Using the concept of kernel-
ization we may analyze the quality of such preprocessing procedures within
the framework of parameterized complexity. A parameterized problem is a lan-
guage Q ⊆ Σ∗ × N, and such a problem is (strongly uniform) fixed-parameter
tractable (FPT) if there is an algorithm that decides membership of an in-
stance (x, k) in time f(k)|x|O(1) for some computable function f . A kernel-
ization (or kernel) for Q is a polynomial-time algorithm which transforms each
input (x, k) into an equivalent instance (x′, k′) such that |x′|, k′ ≤ g(k) for some
computable function g, which is the size of the kernel. Kernels of polynomial size
are of particular interest due to their practical applications. To analyze the qual-
ity of preprocessing rules for Pathwidth we therefore study whether they yield
polynomial kernels for suitable parameterizations of the Pathwidth problem.

As the pathwidth of a graph equals the maximum of the pathwidth of its
connected components, the Pathwidth problem with standard parameteriza-
tion is AND-compositional and thus has no polynomial kernel unless the AND-
distillation conjecture does not hold [9]. We thus do not expect to have kernels
for Pathwidth of size polynomial in the target value for pathwidth k, and
we consider whether polynomial kernels can be obtained with respect to other
parameterizations.

As Pathwidth is known to be polynomial-time solvable when restricted
graph classes such as interval graphs [3], trees [10] and cographs [11], it seems
reasonable to think that determining the pathwidth of a graph G which is “al-
most” an interval graph should also be polynomial-time solvable. Formalizing the
notion of “almost” as the number of vertices that have to be deleted to obtain
a graph in the restricted class F , we can study the extent to which data reduc-
tion is possible for graphs which are close to polynomial-time solvable instances
through the following problem:

Pathwidth parameterized by a modulator to F
Instance: A graph G = (V,E), a positive integer k, and a set S ⊆ V
such that G− S ∈ F .
Parameter: � := |S|.
Question: pw(G) ≤ k?

The set S is a modulator to the class F . Observe that pathwidth should be
polynomial-time solvable on F in order for this parameterized problem to be
FPT. Our main result is a kernel lower bound for such a parameterization of
Pathwidth. We prove that despite the fact that the pathwidth of an inter-
val graph is simply the size of its largest clique minus one — which is very
easy to find on interval graphs — the Pathwidth problem parameterized by
a modulator to an interval graph does not admit a polynomial kernel unless
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NP ⊆ coNP/poly. In fact, we prove the stronger statement that, under the same
condition, Pathwidth parameterized by a modulator to a single clique (i.e., by
distance to F consisting of all complete graphs) does not admit a polynomial
kernel1 (Section 5). As the graph resulting from the lower-bound construction is
co-bipartite, its pathwidth and treewidth coincide [12]: a corollary to our theo-
rem therefore shows that Treewidth parameterized by vertex-deletion distance
to a clique does not admit a polynomial kernel unless NP ⊆ coNP/poly, thereby
significantly strengthening a result of our earlier work [6] where we only managed
to prove kernel lower bounds by modulators from cluster graphs and co-cluster
graphs.

Our kernel bound effectively shows that even in graphs which are cliques after
the deletion of k vertices, the information contained in the (non)edges between
these k vertices and the clique is such that we cannot decrease the size of the
clique to polynomial in k in polynomial time, without changing the answer in
some cases.

Faced with these negative results, we try to formulate safe reduction rules for
Pathwidth (Section 3). It turns out that many of the rules for Treewidth

(e.g., the rules involving (almost) simplicial vertices) are invalid when applied
to Pathwidth, and more careful reduction procedures are needed to reduce
the number of such vertices. We obtain several reduction rules for pathwidth,
and show that they lead to provable data reduction guarantees when analyzed
using a suitable parameterization (Section 4). In particular we prove that Path-
width parameterized by a vertex cover S (i.e., using F as the class of edgeless
graphs in the template above) admits a kernel with O(|S|3) vertices, that the
parameterization by a modulator S′ to a disjoint union of stars has a kernel
with O(|S′|4) vertices, and finally that parameterizing by a set S′′ whose dele-
tion leaves a graph in which every connected component has at most c vertices
admits a kernel with O(c · |S′′|3 + c2 · |S′′|2) vertices.

2 Preliminaries

In this work all graphs are finite, simple, and undirected. The open neighbor-
hood of a vertex v ∈ V in a graph G is denoted by NG(v), and its closed neigh-
borhood is NG[v]. For sets of vertices W ⊆ V we let NG[W ] =

⋃
v∈W NG[v]

and NG(W ) = NG[W ] \ W . If S ⊆ V is a vertex set then G − S denotes the
graph obtained from G by deleting all vertices of S and their incident edges.
For a single vertex v we write G− v instead of G− {v}. A vertex v is simplicial
in a graph G if NG(v) is a clique. A vertex v ∈ V is almost simplicial in a
graph G if v has a neighbor w such that NG(v)−{w} is a clique. In such a case,
we call w the special neighbor of v. For a set of verticesW ⊆ V , the subgraph ofG

1 For completeness we point out that Pathwidth parameterized by a modulator to
a clique is FPT: try all orderings in which the vertices from S can be introduced
and forgotten in a decomposition, and do a polynomial-time computation for each
ordering to find the best way to fit the clique G −X into the decomposition.
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induced by W is denoted as G[W ]. A path decomposition of a graph G = (V,E)
is a non-empty sequence (X1, . . . , Xr) of subsets of V called bags, such that:

–
⋃

1≤i≤r Xi = V ,
– for all edges {v, w} ∈ E there is a bag Xi containing v and w, and
– for all vertices v ∈ V , the bags containing v are consecutive in the sequence.

The width of a path decomposition is max1≤i≤r |Xi| − 1. The pathwidth pw(G)
of G is the minimum width of a path decomposition of G. Throughout the paper
we will often make use of the fact that the pathwidth of a graph does not increase
when taking a minor. We also use the following results.

Lemma 1 (Cf. [11]). If graph G contains a clique W then any path- or tree
decomposition for G has a bag containing all vertices of W .

Lemma 2. All graphs G admit a minimum-width path decomposition in which
each simplicial vertex is contained in exactly one bag of the decomposition.

Proof. Lemma 1 shows that for each simplicial vertex v, any path decomposition
of G has a bag containing the clique N [v]. As removal of v from all other bags
preserves the validity of the decomposition, we may do so independently for all
simplicial vertices to obtain a decomposition of the desired form. ��

3 Reduction Rules

In this section we give a collection of reduction rules. Formally, each rule takes as
input an instance (G,S, k) of Pathwidth parameterized by a modulator

to F , and outputs an instance (G′, S′, k′). With the exception of occasionally
outright deciding yes or no, none of our reduction rules change the modulator S
or the value of k. In the interest of readability we shall therefore be less formal in
our exposition, and make no mention of the values of S′ and k′ in the remainder.
We say that a rule is safe for pathwidth (or in short: safe) if for each input
(G,S, k) and output (G′, S′, k′), the pathwidth of G is at most k if and only
if the pathwidth of G′ is at most k′. Any subset of the rules gives a ‘safe’
preprocessing algorithm for pathwidth: apply the rules until no longer possible.
We will argue later that this takes polynomial time for our rules, and give kernel
bounds for some parameters of the graphs.

3.1 Vertices of Small Degree

We start off with a few simple rules for vertices of small degree. Note that,
necessarily, these rules are slightly more restrictive than for the treewidth case;
e.g., we cannot simply delete vertices of degree one since trees have treewidth
one but unbounded pathwidth. The first rule is trivial.

Rule 1. Delete any vertex of degree zero.

Rule 2. If two degree-one vertices share their neighbor then delete one of them.
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Correctness of Rule 2 follows from insights on the pathwidth of trees, pioneered
by Ellis et al. [10]. A self-contained proof is provided in the full version.

The following rule handles certain vertices of degree two; a correctness proof
is given in the full version.

Rule 3. Let v, w be two vertices of degree two, and suppose x and y are common
neighbors to v and w with x ∈ S. Then remove w and add the edge {x, y}.

3.2 Common Neighbors and Disjoint Paths

Rule 4 in this section also appears in our work on kernelization for treewidth [6]
and traces back to well-known facts about treewidth (e.g.,[13,14]). It is also safe
in the context of pathwidth; the safeness proof is identical to when dealing with
treewidth and is hence deferred to the full version.

Lemma 3. Let v and w be nonadjacent vertices. Suppose there are at least k+1
internally vertex disjoint paths from v to w in (V,E). Then the pathwidth of G
is at most k, if and only if the pathwidth of G′ = (V,E ∪ {{v, w}}) is at most k.

A special case of Lemma 3, and the implied Rule 4, is when v and w have at least
k+1 common neighbors. As we do not want to increase the size of a modulator,
we only add edges between pairs of vertices with at least one endpoint in the
modulator; thus G− S remains unchanged.

Rule 4 (Disjoint paths (with a modulator)). Let v ∈ S be nonadjacent to
w ∈ V , and suppose there are at least k+1 paths from v to w that only intersect
at v and w, where k denotes the target pathwidth. Then add the edge {v, w}.

3.3 Simplicial Vertices

In this section, we give a safe rule that helps to bound the number of simplicial
vertices of degree at least two in a graph. Recall that we already have rules for
vertices of degree one and zero, which are trivially simplicial.

v

Fig. 1. An example of an application of the Simplicial vertex rule
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Lemma 4. Let G = (V,E) be a graph, and let v ∈ V be a simplicial vertex
of degree at least two. If for all x, y ∈ NG(v) with x �= y there is a simplicial
vertex w �∈ NG[v] such that x, y ∈ NG(w), then pw(G) = pw(G− v).

Proof. As G− v is a subgraph of G, we directly have that pw(G− v) ≤ pw(G).
For the converse, let (X1, . . . , Xr) be an optimal path decomposition of G − v.
Using Lemma 2, we assume that for each simplicial vertex x, there is a unique
bag Xix with NG[x] ⊆ Xix .

Let C = NG(v). A bag that contains C is called a C-bag. As C is a clique,
Lemma 1 shows there is at least one C-bag. The C-bags must be consecutive
in the path decomposition; let them be Xi1 , . . . , Xi2 . We will first show there is
a vertex w �∈ NG[v] which is simplicial in G − v, and is contained in a C-bag.
Let x, y ∈ C (possibly with x = y) be vertices such that x does not occur in bags
with index smaller than i1, and y does not occur in bags of index larger than i2.

If x �= y then let w �∈ NG[v] be simplicial in G such that x, y ∈ NG(w), whose
existence is guaranteed by the preconditions. As w is also simplicial in G− v it
occurs in a unique bag, which must be a C-bag since it must meet its neighbors x
and y there. If x = y then, as v has degree at least two, there is a vertex w �∈
NG[v] which is simplicial in G and adjacent to x; hence its unique occurrence is
also in a C-bag.

Thus we have established there is a vertex w �∈ NG[v] which is simplicial
in G − v and is contained in exactly one bag, which is a C-bag Xi. Now insert
a new bag just after Xi, with vertex set Xi − {w} ∪ {v}. As Xi − {w} contains
all v’s neighbors, this gives a path decomposition of G without increasing the
width, and concludes the proof. ��
Lemma 4 directly shows that Rule 5 is safe for Pathwidth.

Rule 5. For each e ∈ E, compute span(e) as the number of simplicial vertices
that are adjacent to both endpoints of the edge. If v ∈ V is a simplicial vertex of
degree at least two such that each edge between a pair of neighbors of v has span
at least 2, then remove v.

3.4 Simplicial Components

Let S be the set of vertices used as the modulator. We say that a set of verticesW
is a simplicial component ifW is a connected component in G−S andNG(W )∩S
is a clique. Our next rule deals with simplicial components.

Rule 6 (Simplicial components of known pathwidth). Let S ⊆ V be the
modulator and let k denote the target pathwidth. Suppose that for each pair v, w ∈
S∩NG(W ) (including v = w), there are at least 2k+3 simplicial components Z �=
W such that {v, w} ⊆ NG(Z) and pw(G[Z]) ≥ pw(G[W ]). Then remove W and
its incident edges.

Note that we have to include the case v = w to ensure correctness for simplicial
components which are adjacent to exactly one vertex in the modulator. The
safeness proof for Rule 6 is given in the full version.
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Fig. 2. The vertices marked with a square box form a simplicial component

Let us briefly discuss the running time of this reduction rule. As the modulator
ensures that G− S is contained in the graph class F , the rule can be applied in
polynomial time if the pathwidth of graphs in F can be determined efficiently. In
the setting in which we apply the rule, the graphs in F are either disjoint unions
of stars (which are restricted types of forests, allowing the use of the linear-time
algorithm of Ellis et al. [10]), or F has constant pathwidth which means that
the FPT algorithm for k-Pathwidth [13] runs in linear time.

3.5 Almost Simplicial Vertices

For almost simplicial vertices, we have a rule that replaces an almost simplicial
vertex by a number of vertices of degree two. In several practical settings, the
increase of number of vertices may be undesirable; the rule is useful to derive
some theoretical bounds.

v

w
w

x x

y y

z z

vw,x
vw,y

vw,z vx,y vy,z
vx,z

Fig. 3. An example of an application of the rule for almost simplicial vertices

Lemma 5. Let G = (V,E) be a graph and let v ∈ V be an almost simplicial
vertex of degree at least three, with special neighbor w. Let G′ be obtained by
deleting v and by adding a vertex vp,q with neighbors p and q for any p, q ∈ NG(v)
with p �= q. Then pw(G) = pw(G′).

The proof of the lemma is postponed to the full version. The lemma justifies
the following reduction rule, by observing that an almost simplicial vertex v
with degG(v) > k+ 1 means that pw(G) > k, as NG[v]−w then forms a clique
of size at least k + 2.



Kernel Bounds for Structural Parameterizations of Pathwidth 359

Rule 7. Let v ∈ V \ S be an almost simplicial vertex of degree at least three
with special neighbor w. Let k be the target pathwidth. If degG(v) > k + 1 then
output no. Otherwise, delete v and add a vertex vp,q with neighbors p and q for
any p, q ∈ N(v) with p �= q.

As a simplicial vertex is trivially almost simplicial, note that — in comparison
to Rule 5 — the previous rule gives an alternative way of dealing with simplicial
vertices.

4 Polynomial Kernelizations

For each of the safe rules given in the previous section, there is a polynomial
time algorithm that tests if the rule can be applied, and if so, modifies the
graph accordingly. (We assume that for Rule 6 the bound � on the pathwidth of
the components is a constant.) The following lemma shows that any algorithm
that exhaustively applies (possibly just a subset of) these reduction rules can be
implemented to run in polynomial time.

Lemma 6. Each input instance (G,S, k) is exhaustively reduced by O(n2+nk2)
applications of the reduction rules.

Proof. First we note that for non-trivial instances, Rule 4 does not add edges
to a vertex of degree at most two. In particular, no rule increases the number
of vertices of degree at least three. So, we have at most n applications of a rule
that removes a vertex of degree at least three, and O(n2) applications of Rule
4. Rule 7 is therefore executed at most n times in total, and thus the number of
vertices of degree two that are added in these steps is bounded by O(nk2). As
each other rule removes at least one vertex, the total number of rule applications
in G is bounded by O(n2 + nk2). ��
By analyzing our reduction rules with respect to different structural parameters,
we get the following results.

Theorem 1. Pathwidth parameterized by a modulator to F admits
polynomial kernels for the following choices of F :

1. A kernel with O(�3) vertices when F is the class of all independent sets, i.e.,
if the modulator S is a vertex cover.

2. A kernel with O(c · �3+ c2 · �2) vertices when F is the class of all graphs with
connected components of size at most c.

3. A kernel with O(�4) vertices when F is the class of all disjoint unions of
stars.

Proof. We show Part 3 followed by Part 2. Part 1 follows from the latter since
it is a special case corresponding to c = 1.

(Part 3.) As stars have pathwidth one, graphs with a modulator S of size �
to a set of stars have pathwidth at most � + 1. Thus, if k ≥ � + 1, we return a
dummy yes-instance of constant size. Now, assume k ≤ �.
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Our kernelization applies Rules 1–6 while possible, and applies Rule 7 to all
vertices which have at most one neighbor in G−S. (Applying the rule to vertices
with more neighbors in G− S might cause the resulting graph G′ − S not to be
a disjoint union of stars.) Recall for Rule 6 that pw(G− S) ≤ 1.

Let (G,S, k) be a reduced instance. We will first bound the number of con-
nected components of G−S, with separate arguments for simplicial and nonsim-
plicial components. Each component is a star, i.e., it is a single vertex or a K1,r

for some r (a center vertex with r leaves). Note that in this proof the term leaf
refers to a leaf of a star in G−S, independent of its degree in G (and all degrees
mentioned are with respect to G).

Associate each nonsimplicial component C of G − S to an arbitrary pair of
nonadjacent neighbors of C in S. It is easy to see that each such component
provides a path between the two chosen neighbors, and that for different com-
ponents these paths are internally vertex disjoint. Thus, since Rule 4 does not
apply, no pair of vertices of S has more than k components associated to it.
Hence there are at most k · |S|2 = O(�3) nonsimplicial components.

Now consider a simplicial component W of G−S, and note that pw(G[W ]) ≤
1. As Rule 6 does not apply, there is a pair v, w ∈ S ∩ NG(W ) (possibly v =
w) such that there are strictly less than 2k + 3 simplicial components W ′ �=
W with pw(G[W ′]) ≥ pw(G[W ]) and {v, w} ⊆ NG(W

′). Associate W to the
pair v, w. It follows immediately that no pair of vertices of S has more than 2k+3
components associated to it, which gives a bound of (2k + 3) · |S|2 = O(�3) on
the number of simplicial components.

Thus we find that G− S has a total of O(�3) connected components (each of
which is a star). This bounds the number of centers of stars by O(�3). It remains
to bound the total number of leaves that are adjacent to those centers.

Clearly, each star center has at most one leaf which has degree one (in G).
Each leaf of degree two has exactly one neighbor in S in addition to its adjacent
star center. Since Rule 3 does not apply, no two leaves of degree two can have
the same star center and neighbor in S; thus there are at most O(�4) leaves of
degree two.

Now, we are going to count the number of leaves (of stars) that are of degree
more than two. For each such leaf, one neighbor is the center of its star and all
other neighbors are in S. If its neighbors in S would form a clique, then the leaf
would be almost simplicial in G (with the star center as the special neighbor)
and Rule 7 would apply. Hence, as G is reduced, we can associate each such
leaf to a nonadjacent pair of vertices in S. As Rule 4 cannot be applied, we
associate O(k) vertices to a pair, and thus the number of such leaves is bounded
by O(k · �2) = O(�3).

Thus, the total number of vertices in G is bounded by O(�4). By Lemma 6
the reduction rules can exhaustively be applied in polynomial time. As the rules
preserve the fact that G − S is a disjoint union of stars, the resulting instance
is a correct output for a kernelization algorithm. This completes the proof of
Part 3.
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(Part 2.) Fix some constant c and let F be the class of all graphs of compo-
nent size at most c. Let (G,S, k) be an input instance. Note that the pathwidth
of G is bounded by c+ |S| − 1, since each component of G−S has pathwidth at
most c − 1. We assume that k ≤ c + |S| − 2; otherwise the instance is yes and
we may return a dummy yes-instance of constant size.

Our algorithm uses Rules 1, 2, 4, 5, and 6. Consider a graph G where none
of these rules can be applied. The bounds for the number of simplicial and
nonsimplicial components ofG−S work analogously to Part 3; there areO(k|S|2)
components of the respective types. This gives a total ofO(|S|+c·(c+|S|)·|S|2) =
O(c2|S|2 + c|S|3) vertices in G, using that k ≤ c + |S| − 2. This completes the
proof of Part 2. ��

5 Lower Bounds: Modulator to a Single Clique

We show that the problems Treewidth parameterized by a modulator to

a single clique (TWMSC) and Pathwidth parameterized by a modula-

tor to a single clique (PWMSC) do not admit a polynomial kernel unless
NP ⊆ coNP/poly. In fact, we show that the results hold when restricted to co-
bipartite graphs; as for these graphs the pathwidth equals the treewidth [12], the
same proof works for both problems. The problems are covered by the general
template given in the introduction, when using F as the class of all cliques.

To prove the lower bound we employ the technique of cross-composition
[15], starting from the following NP-complete version [16, Corollary 2.10] of the
Cutwidth problem:

Cutwidth on cubic graphs (CUTWIDTH3)

Instance: A graph G on n vertices in which each vertex has degree at
least one and at most three, and an integer k ≤ |E(G)|.
Question: Is there a linear layout of G of cutwidth at most k, i.e., a
permutation π of V (G) such that maxni=1 |{{u, v} ∈ E(G) | π(u) ≤ i <
π(v)}| ≤ k?

As space restrictions prohibit us from presenting the full proof in this extended
abstract, we will sketch the main ideas. To obtain a kernel lower bound through
cross-composition, we have to embed the logical OR of a series of t input in-
stances of CUTWIDTH3 on n vertices each into a single instance of the target
problem for a parameter value polynomial in n+ log t. At the heart of our con-
struction lies an idea of Arnborg et al. [4] employed in their NP-completeness
proof for Treewidth. They interpreted the treewidth of a graph as the mini-
mum cost of an elimination ordering on its vertices2, and showed how for a given
graph G a co-bipartite graph G∗ can be created such that the cost of elimination
orderings on G∗ corresponds to the cutwidth of G under a related ordering.

2 To eliminate a vertex in a graph means to remove it while completing its open
neighborhood into a clique. When eliminating the vertices of a graph in the order
given by π, the cost of the elimination ordering π is the maximum degree of a vertex
at the time it is eliminated.
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We extend their construction significantly. By the degree bound, instances
with n vertices have O(n2) different degree sequences. The framework of cross-
composition thus allows us to work on instances with the same degree sequence
(and same k). By enforcing that the structure of one side of the co-bipartite
graph G∗ only has to depend on this sequence, all inputs can share the same
“right hand side” of the co-bipartite graph; this part will remain small and act as
the modulator. By a careful balancing act of weight values we then ensure that
the cost of elimination orderings on the constructed graph G∗ are dominated
by eliminating the vertices corresponding to exactly one of the input instances,
ensuring that a sufficiently low treewidth is already achieved when one of the
input instances is yes. On the other hand, the use of a binary-encoding repre-
sentation of instance numbers ensures that low-cost elimination orderings for G∗

do not mix vertices corresponding to different input instances. The remaining
details can be found in the full version of this paper. Our construction yields the
following results.

Theorem 2. Unless NP ⊆ coNP/poly, Pathwidth and Treewidth do not
admit polynomial kernels when parameterized by a modulator to a single clique.

Interestingly, the parameter at hand is nothing else than the size of a vertex
cover in the complement graph.

6 Conclusions

In this paper, we investigated the existence of polynomial kernelizations for
Pathwidth. Taking into account that the problem is already known to be AND-
compositional with respect to the target pathwidth — thus excluding polynomial
kernels under the AND-distillation conjecture — we study alternative, structural
parameterizations.

Our main result is that Pathwidth admits no polynomial kernelization with
respect to the number of vertex deletions necessary to obtain a clique, unless
NP ⊆ coNP/poly. This rules out polynomial kernels for vertex deletion distance
from various interesting graph classes on which Pathwidth is known to be
polynomial-time solvable, like chordal and interval graphs.

On the positive side we develop a collection of safe reduction rules for Path-
width. Analyzing the effect of the rules we show that they give polynomial ker-
nels with respect to the following parameters: vertex cover (i.e., distance from
the class of independent sets), distance from graphs of bounded component size,
and distance from disjoint union of stars.

It is an interesting open problem to determine whether there is a polynomial
kernel for Pathwidth parameterized by the size of a feedback vertex set. For the
relatedTreewidth problem, a kernel withO(|S|4) vertices is known [6], where S
denotes a feedback vertex set. Regarding Pathwidth, long paths in G− S are
the main obstacle that needs to be addressed by additional reduction rules.
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