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Abstract. We consider range queries in arrays that search for low-
frequency elements: least frequent elements and α-minorities. An α-
minority of a query range has multiplicity no greater than an α fraction
of the elements in the range. Our data structure for the least frequent
element range query problem requires O(n) space, O(n3/2) preprocessing
time, and O(

√
n) query time. A reduction from boolean matrix multipli-

cation to this problem shows the hardness of simultaneous improvements
in both preprocessing time and query time. Our data structure for the
α-minority range query problem requires O(n) space, supports queries
in O(1/α) time, and allows α to be specified at query time.

1 Introduction

The frequency of an element x in a multiset stored as an array A[0 : n − 1],
denoted freqA(x), is the number of occurrences (i.e., the multiplicity) of x in
A. Given α ∈ [0, 1], an element x is an α-minority in A if 1 ≤ freqA(x) ≤ αn,
whereas x is an α-majority if freqA(x) > αn.

We examine two problems which involve preprocessing a given array A to
construct a data structure that can efficiently find low-frequency elements in
query ranges. A least frequent element range query specifies a pair of indices
(i, j) and returns a least frequent element that occurs in A[i : j]. An α-minority
range query specifies some α ∈ [0, 1] and a pair of indices (i, j), and returns
an element whose frequency in A[i : j] is at least 1 and at most α|j − i + 1|.
If no such element exists, the query must not return any element. Whenever
we discuss a data structure with a parameter β instead of α, β is fixed before
preprocessing. We do so to differentiate from the more challenging case in which
different parameter values can be specified at query time.

Several recent results examine the minimum, selection (including median),
mode (i.e., the most frequent element), β-majority, and α-majority range query
problems on arrays (e.g., [1–3, 5, 7–14, 16–18]). Most relevant to our low-
frequency query problems are results for their high-frequency analogues: an
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O(n)-space data structure that supports range mode queries in O(
√

n/ logn)
time [5], an O(n log(1/β + 1))-space data structure that supports β-majority
range queries in O(1/β) time [9], and a O(n log n)-space data structure that
supports α-majority range queries in O(1/α) time [11]. Related generalizations
include examinations of the the β-majority range query problem in the dynamic
setting [10] and the α-majority range query problem in two dimensions [11].
Greve et al. [13] give a lower bound of Ω(log n/ log(s ·w/n)) on the range mode
query time for any data structure that uses s memory cells of w bits in the cell
probe model; they show the same bound applies to the problem of determining
whether any element in a given query range has frequency exactly k, for any k
given at query time. Consequently, no O(n)-space data structure can support
constant-time (independent of α) α-minority queries.

Our low-frequency query problems have significant differences when compared
to their high-frequency analogues. For example, for any (i, j), the frequencies of
respective modes of A[i : j] and A[i : j + 1] differ by either zero or one. The
frequency of the mode of a set increases monotonically with the addition of new
elements into the set. Conversely, the frequencies of respective least frequent
elements of A[i : j] and A[i : j + 1] can differ by any value in {i − j, . . . , 0, 1}.
Similarly, if x is a mode of A[i : k] and A[k + 1 : j], then x is a mode of A[i : j],
whereas the analogous property does not hold for least frequent elements.

In Section 2 we consider the least frequent element range query problem. We
describe an O(n)-space data structure that identifies a least frequent element
in a query range in O(

√
n) time. This data structure is a variant of a previous

data structure of Chan et al. [5] for the range mode problem (which in turn was
an improvement of a previous data structure of Krizanc et al. [16]). In addition,
using an argument similar to that of Chan et al. [5], we present a reduction
from boolean matrix multiplication to the least frequent element range query
problem, showing the hardness of simultaneously improving our preprocessing
and query time bounds.

Section 3 contains the main result of this paper: an O(n)-space data structure
that supports α-minority range queries in O(1/α) time. Our technique is quite
different from the previous techniques of Durocher et al. [9] for β-majority range
queries and Gagie et al. [11] for α-majority range queries, which have worse space
bounds (O(n log(1/β + 1) and O(n logn), respectively).

In Section 4 we apply a variation of our technique to give an O(n log n)-
space data structure that supports α-majority range queries in O(1/α) time.
These space and time bounds match those achieved by a recent α-majority data
structure of Gagie et al. [11].

Both our data structures in Sections 3 and 4 make interesting use of existing
tools from computational geometry. Notably, we apply Chazelle’s hive graphs [6],
which were designed for a seemingly unrelated two-dimensional searching prob-
lem: preprocess a set of horizontal line segments so that we can report segments
intersecting a given vertical line segment or ray.
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2 Finding a Least Frequent Element

2.1 O(
√
n)-Time Data Structure

In this section we present an O(n)-space data structure that identifies a least
frequent element in a query range in O(

√
n) time and requires O(n3/2) prepro-

cessing time. Specifically, we will prove the following theorem that implies the
above result when s =

√
n:

Theorem 1. Given an array A[0 : n − 1] and any fixed s ∈ [1, n], there exists
an O(n+ s2)-space data structure that supports least frequent range query on A
in O(n/s) time and requires O(ns) preprocessing time.

Preprocessing.Given an arbitrary input arrayA[0 : n−1], we begin by building
an array B[0 : n − 1] such that B[x] is the rank of A[x] amongst the distinct
elements of A. We find the ranks of all the elements by sorting A. Thus, all
elements in B are in the range {0, . . . , Δ − 1}, where Δ denotes the number of
distinct elements in A. Furthermore, B[x] is a least frequent element in B[i : j]
if and only if A[x] is a least frequent element in A[i : j], for any i, j, and x.
Following Krizanc et al. [16] and Chan et al. [5], for each x ∈ {0, . . . , Δ − 1},
we define an array Qx such that Qx[k] stores the index of the kth instance of
x in B. Since each element in B is represented exactly once in Q0, . . . , QΔ−1,
the total space required by Q0, . . . , QΔ−1 is Θ(n). We also define a rank array
B′[0 : n − 1] such that for all b, B′[b] denotes the rank (i.e., the index) of b in
QB[b]. Therefore, QB[b][B

′[b]] = b. Using these arrays, Chan et al. observe the
following lemma (which follows by comparing QB[i][B

′[i] + q − 1] with j):

Lemma 1 (Chan et al. [5, Lemma 3]). Given an array B[0 : n − 1], there
exists an O(n)-space data structure that determines in O(1) time for any 0 ≤
i ≤ j ≤ n− 1 and any q whether B[i : j] contains at least q instances of element
B[i].

We also require the following lemma:

Lemma 2. Given an array B[0 : n−1], there exists an O(n)-space data structure
that computes in O(j − i+ 1) time for any 0 ≤ i ≤ j ≤ n− 1 the frequencies of
all elements in B[i : j]. In particular, a least frequent element in B[i : j] and its
frequency can be computed in O(j − i+ 1) time.

Proof. No actual preprocessing is necessary other than initializing an array C[0 :
Δ − 1] to zero. The query algorithm is similar to counting sort: compute a
frequency table for B[i : j] stored in C (i.e., for every x, C[x] corresponds to the
frequency of x in B[i : j]), then find a minimum element in C. The time required
to find the minimum is bounded by O(j−i+1) by comparing all frequencies C[x],
where x corresponds to an element in B[i : j] (these are exactly the elements of
C that have non-zero values). This procedure is repeated after identifying the
minimum to reset C to zero. ��
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We divide the array B into s blocks of size t = �n/s�. A query range B[i : j]
spans between 0 and s complete blocks. Let the span of B[i : j] be the sequence
of complete blocks contained within B[i : j]. Let the prefix and suffix of B[i : j]
be the elements of B[i : j] that respectively precede and succeed the span of
B[i : j]. We precompute the following data for each possible span S:

i. an element of minimum frequency and its frequency in S, among all elements
in S, and

ii. an element of minimum frequency and its frequency in S, among all elements
(if any) that appear in S but not in the blocks immediately adjacent to the
left and right of S.

Since s(s+1)/2 spans are possible, these data can be stored in a table D of size
Θ(s2). We construct this table in O(ns) time by repeatedly passing through the
entire array, starting at each of the s block boundaries. We will use the following
lemma:

Lemma 3. There exists a data structure maintaining an initially empty multiset
S of elements from {0, . . . , Δ−1}. It requires O(Δ) space and preprocessing time
and supports the following operations:

– Insert(S, e): Inserts element e into multiset S in O(1) time.
– LeastFrequentElement(S, k): Returns the k least frequent elements in S, along

with their frequencies, in O(k) time.

Proof. We construct a doubly-linked list L, where each node contains a frequency
f and a doubly-linked sublist of all distinct elements with frequency f . The nodes
of L are sorted in the ascending order of frequency. Nodes for the sublists are
taken from an array N [0 : Δ − 1] of nodes for each distinct element. Each of
these sublist nodes contains a pointer to its containing sublist. It can be verified
that an insertion of an element e causes only local changes around N [e] that run
in O(1) time. To find the k least frequent elements, we simply iterate through L
and its sublists until we have reported k elements or there are no more elements
to report. ��
During each pass we incrementally build a multiset using the data structure
of Lemma 3. At every block boundary (i.e., every t elements) we obtain the
least frequent element of the multiset in O(1) time. We must also find the least
frequent element excluding the elements contained in two blocks. This set of
excluded elements has size O(t) and so the element for which we are searching
must appear amongst the O(t) least frequent elements of the multiset, which we
can find in O(t) time. The total cost of a single pass is thus O(n + st) = O(n)
time. Therefore, the s passes altogether require O(ns) time.

Query Algorithm. Consider arbitrary indices 0 ≤ i ≤ j ≤ n − 1 and the
corresponding query range R = B[i : j]. If the prefix and suffix are empty, then
the query can be answered in O(1) time by referring to table D. By Lemma 2,
if j − i + 1 < 2t, then the range query can be answered in O(t) = O(n/s) time.
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Now consider the case j − i + 1 ≥ 2t. In this case, the span, denoted S, must
be non-empty. We denote the prefix by P1 and the suffix by P2. Let P

′
1 and P ′

2

denote the respective blocks that contain P1 and P2. We now treat R, S, P1,
P2, P

′
1, P

′
2 as multisets. Let P denote the union of P1 and P2. Similarly, let P ′

denote the union of P ′
1 and P ′

2. We partition the elements of R into four groups
(see Figure 1) and find an element of minimum frequency among those in each
group:

Case 1. elements of R that are in P but not S,
Case 2. elements of R that are in S and P ,
Case 3. elements of R that are in S and P ′, but not P , and
Case 4. elements of R that are in S but not P ′.

2P’

2P1P

B

ji

2 31 4 8 10 11 13 1495 12 16156 191817 20 21 232270

query range R = B[i:j]

span S
suffixprefix

S

P

P’

PP’ 321 4

1P’

Fig. 1. Every element in the query range R (shaded) is in P or S, partitioned into sets
1–4

We first show how to determine which elements of P ′ fall into Cases 1, 2, and 3.
It suffices to determine for each element of P ′ whether or not the element appears
in P and whether or not the element appears in S. We determine which elements
appear in P by simply iterating through P . To determine which elements appear
in S, we first find the closest occurrence of each element to S in a scan through
P ′. Assume that we have one such closest element B[x] at index x. Assume
without loss of generality that it appears in P ′

1. The next occurrence of element
B[x] is at index x′ = QB[x][B

′[x] + 1], which we compute in O(1) time. Thus, S
contains an occurrence of element B[x] if and only if x′ lies inside S.

The least frequent element in R is given by the least frequent of those found
in each of the four cases defined above:

Case 1. By Lemma 2, we compute the frequencies of all elements in P1 in O(t)
time, omitting the final step of resetting the frequency table to zero. We then
repeat for P2 so that the frequency table contains aggregate data for all of P .
Consider all elements that occur in P but not in S. For each such element e,
freqR(e) = freqP (e). So, the least frequent of these elements in R is the element
with minimum non-zero entry in the frequency table.

Case 2. Let f denote the precomputed minimum frequency of any element in
S, which is stored in table D. The minimum frequency in R of any element
present in both S and P is at least f and at most f+2t. For each element e that
occurs in both S and P1, we find the leftmost occurrence of e within P1 in a scan
through P1. We repeat in a symmetric fashion in P2. Then, by Lemma 1, we can
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check in O(1) time whether an element e in both S and P has frequency in R
less than some threshold. We begin with a threshold of f +2t+1. If an element
e has frequency less than the threshold, we find its actual frequency by iterating
through Qe (forward or backwards depending on whether we are considering an
element in P1 or P2) until reaching an index within R. This frequency becomes
our new threshold. We repeat with all other elements that occur in both S and P .
The last element to change the threshold is the least frequent of these elements.
Since the threshold can decrease to at most f , the total time spent finding exact
frequencies is O(t).

Case 3. Consider all elements that occur in both S and P ′ but not in P . As
in Case 2, their frequencies in R are bounded between f and f + 2t. We can
thus apply the same technique as in Case 2. However, for each element, instead
of finding the leftmost occurrence in P1 or the rightmost occurrence in P2 from
which to base the queries of Lemma 1, we find the rightmost occurrence in P ′

1

or the leftmost occurrence in P ′
2.

Case 4. Consider all elements that occur in S but not in P ′. For each such
element e, freqR(e) = freqS(e). The least frequent of these elements has been
precomputed and can be found in table D in O(1) time.

Analysis. In addition to the arrays A, B, and B′ (each O(n) space), the data
structure stores the tables Q0, . . . , QΔ−1 (O(n) total space), the tables D (O(s2)
space), and a frequency table (O(Δ) ⊆ O(n) space). Populating, scanning, and
resetting the frequency table during a query requires O(t) = O(n/s) time. The
query algorithm involves a constant number of scans of the blocks P ′

1 and P ′
2.

Each element is processed in O(1) amortized time, resulting in O(t) total time.
Thus, the data structure has space O(n + s2) and supports queries in O(t) =
O(n/s) time in the worst case. This completes the proof of Theorem 1.

2.2 Reduction from Boolean Matrix Multiplication

We follow the technique of Chan et al. [5] to multiply two n×n boolean matrices
L and R via least frequent element range queries. In particular, we build an array
A of size n′ ∈ O(n2), and after preprocessing the array in P (n′) time we perform
n2 least frequent element queries, each in Q(n′) time, to calculate M = LR. The
result is Theorem 2.

Theorem 2. Given a data structure for least frequent element query in an array
of n elements with P (n) preprocessing time and Q(n) query time, there exists
an algorithm for boolean matrix multiplication of two n × n matrices that runs
in O(P (n2) + n2Q(n2)) time.

Thus, a data structure for least frequent element with P (n) ∈ o(n3/2−ε) and with
Q(n) ∈ o(n1/2−ε) would yield an algorithm for boolean matrix multiplication
that runs in o(n3−2ε) time, via purely combinatorial means.

The technique of Chan et al. [5] first reduces boolean matrix multiplication to
set disjointness queries between sets encoding the rows of L and the columns of
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R. Let U = {1, . . . , n} be our ground set. We are left with the following problem:
given sets L1, . . . , Ln ⊆ U and R1, . . . , Rn ⊆ U , determine whether Li ∩Rj = ∅
for all i, j ∈ {1, . . . , n}.

Our construction of A involves creating 2n+ 1 blocks of n elements: a block
for each set Li, followed by a block containing each element of U , followed by a
block for each set Rj . The block for set Li contains all elements of Li followed
by all elements of U \ Li. The block for set Rj contains all elements of U \ Rj

followed by all elements of Rj .
We determine whether or not Li and Rj are disjoint via a single least frequent

element query from the leftmost element of U \ Li to the rightmost element of
U \Rj . This query range contains i+ j− 1 > 0 complete blocks, each containing
some permutation of U . If Li and Rj are disjoint, then every element of U
occurs either in U \ Li or U \Rj . Thus, in this case, the least frequent element
has frequency greater than i + j − 1. If Li and Rj are not disjoint then some
element occurs in neither U \ Li nor U \ Rj , and thus has the lowest possible
frequency of i+ j− 1. Thus, Li ∩Rj = ∅ if and only if the frequency of the least
frequent element in the range is exactly i+ j − 1.

In total we must preprocess A, which has size O(n2) and perform n2 least
frequent element queries in this array, resulting in an algorithm that requires
O(P (n2) + n2Q(n2)) time. This completes the proof of Theorem 2.

3 Range Minority

In this section we describe an O(n)-space data structure that identifies an α-
minority element, if any exists, in a query range in O(1/α) time. We first reduce
this α-minority range query problem to the problem of identifying the leftmost
occurrences of the k leftmost distinct elements on or to the right of a given query
index. We call the latter problem distinct element searching and we require that
k can be specified at query time.

Lemma 4. Given a data structure D for distinct element searching that requires
SD(n) space and QD(n, k) query time to report k elements, there exists a data
structure for the α-minority range query problem that requires O(SD(n) + n)
space and O(QD(n, 1/α) + 1/α) query time.

Proof. As described in Section 2.1, suppose we store in an array B′, for each
index i of A, a count of the number of times A[i] occurs previously in A, and
for each distinct element x ∈ {0, . . . , Δ− 1}, a sorted array Qx of all the indices
where x occurs in A. These arrays require O(n) space. By Lemma 1, we can
check in O(1) time whether there are at least q instances of A[i] in the range
A[i : j] for any q ≥ 0 and j ≥ i.

Observe that any element in a range is either an α-majority or an α-minority
for the range and fewer than 1/α distinct elements can be α-majorities. Thus, if
we can find 1/α distinct elements in a range, then at least one of them must be
an α-minority.
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Given a query range A[i : j], we use data structure D to find the leftmost
occurrences of the 1/α leftmost distinct elements on or to the right of index i in
Q(n, 1/α) time. Some of these leftmost occurrences may lie to the right of index
j; we can ignore these elements as no occurrence of these elements lies in A[i : j].
There are O(1/α) remaining leftmost occurrences of leftmost distinct elements.
Consider such an occurrence at index �. Since this is the first occurrence of A[�]
on or after index i, the frequency of A[�] in A[� : j] is equal to the frequency
of A[�] in A[i : j]. We can then check whether or not A[�] is an α-minority in
A[i : j] in O(1) time by setting q = α(j − i + 1) + 1 in Lemma 1. Repeating for
all leftmost occurrences requires O(1/α) time.

If we find an α-minority we are done. If we do not find an α-minority, then
there must not have been 1/α distinct elements to check. In that case, we checked
all distinct elements in A[i : j] so there cannot be an α-minority. ��
We can now focus on distinct element searching. If all queries use a common fixed
k (as is the case if our goal is to solve just the range β-minority problem), there
is a simple data structure that requires O(n) space and O(k) query time: for
each i that is a multiple of k, store the k leftmost distinct elements to the right
of index i; then for an arbitrary index i, we can answer a query by examining
the k elements stored at j′ = �i/k�k in addition to the O(k) elements in A[i : j′].
However, it is not obvious how to extend this solution to the general problem
for arbitrary k, without increasing the space bound.

In Lemma 5, we will map this problem to a 2-dimensional problem in com-
putational geometry that can be solved by Chazelle’s hive graph data structure
[6]. Given n horizontal line segments, the hive graph allows efficient intersection
searching along vertical rays. Finding the first horizontal line intersecting a verti-
cal ray requires an orthogonal planar point location query; however, subsequent
intersections can be found in sorted order in constant time each. The hive graph
requires O(n) space.

Lemma 5. There exists a data structure for distinct element searching that re-
quires O(n) space and O(k) query time.

Proof. Let Li be the set of indices in A that are associated with the leftmost
occurrence of an element on or after index i. We can find the leftmost occurrences
of the k leftmost distinct elements on or after index i by iterating through Li in
sorted order. However,

∑n−1
i=0 |Li| can be Ω(n2) so we cannot afford to explicitly

store all these sets.
Consider an index �. Clearly, � ∈ L� and � /∈ Li for i > �. Consider the first

occurrence of A[�] to the left of index � at index �′, if it exists. Then � /∈ Li

for i ≤ �′. However, for �′ < i ≤ �, � ∈ Li. We associate � with a horizontal
segment with x-interval (�′, �] and with y-value �. If no such index �′ exists,
then we associate � with a horizontal segment with x-interval (−∞, �] and with
y-value �. We thus have n horizontal segments. We build Chazelle’s hive graph
data structure [6] on these segments.

By the construction of the x-intervals of our segments, a segment intersects
the vertical line y = i if and only if it is associated with an index � such that
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� ∈ Li. Since the y-value of a segment associated with � is �, the segments are
sorted along the vertical line in the order of their associated indices. Thus, to
find the k leftmost indices in Li, we query the hive graph for the horizontal
segments with a vertical ray from (i, 0) to (i,∞). The cost of Chazelle’s query
algorithm is O(tPL(n)+k) time, where tPL(n) denotes the cost of a point location
query in an orthogonal subdivision of size O(n). The overall query time would
then be O(log logn+ k) if we use the best known linear-space data structure for
orthogonal point location of Chan [4].

To reduce the query time to O(k), our key idea is to observe that there are
only n distinct vertical rays with which we query the hive graph, and hence only
n distinct points with which we do point location. Thus, we can perform the
orthogonal point location component of each query during preprocessing and
store each resulting node in the hive graph in a total of O(n) space. (In fact,
since all the query rays originate from points on the x-axis, the batched point
locations are one-dimensional and can be handled easily in our application.) ��
Corollary 1. There exists a data structure for the α-minority range query prob-
lem that requires O(n) space and O(1/α) query time.

Proof. By Lemmas 4 and 5. ��

4 Range Majority

We now consider the α-majority range query problem. Recently, Gagie et al. [11]
describe an O(n log n)-space data structure that supports α-majority in O(1/α)
time, where α is specified at query time. In this section we describe a different α-
majority range query data structure whose asymptotic space and time costsmatch
those of Gagie et al. Previous work by Durocher et al. [9] considers the β-majority
range query problem, where β is specified during preprocessing; their data struc-
ture requiresO(n log(1/β + 1)) space and supports queries in O(1/β) time.

We begin by noting that a β-majority data structure can be adapted to sup-
port α-majority at the cost of increased space. Consider logn instances of the
β-majority data structure of Durocher et al. [9], each with respective values
β = 2−i, for i = 1, . . . , logn, for a total of O(n log2 n) space. For any query with
parameter α, there is a data structure for which 1/α ≤ 1/β but 1/β ∈ O(1/α).
Querying this data structure results in a superset of the α-majorities of size
O(1/α). The data structure, having counted the frequencies of each of these
elements, can then filter out the α-minorities in O(1/α) time. Our effort now
turns to solving the problem in O(n logn) space and O(1/α) query time using
an entirely different approach.

Next we consider a related problem: reporting the top k most frequent ele-
ments in a query range where k is specified at query time. We call this problem
the top-k range query problem while warning the reader not to confuse it with
reporting the top k highest valued elements. We use a variation on the tech-
nique of Lemma 5 in order to support one-sided queries in O(n) space and O(k)
query time. We note that the resulting data structure is a persistent version of
Lemma 3 in which all updates are provided offline.
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Lemma 6. There exists a data structure for the one-sided top-k range query
problem that requires O(n) space and O(k) query time.

Proof. Assume our one-sided queries take the form A[0 : i] for 0 ≤ i ≤ n − 1.
Consider the frequencies of the elements as we enlarge the one-sided range from
left to right. Say an element has frequency f for ranges A[0 : i] through A[0 : j]
and this range of ranges is maximal. We construct a horizontal segment with
x-interval [i, j + 1) and with y-value f . We repeat for all elements and for all
f > 0 and arbitrarily perturb the y-values for any segments that overlap.

In total, we construct Δ ≤ n segments with y-value 0: one segment corre-
sponding to each distinct element having frequency 0 in a vacuous subarray.
Each element of A causes a single change in frequency of a single element, which
results in one additional segment. So, in total we construct O(n) segments. We
build Chazelle’s hive graph data structure [6] on these segments.

For every distinct element e in A[0 : i] there is a horizontal segment with
x-interval [�, r + 1) intersecting the vertical line y = i with A[�] = e and
freqA[0:i](e) = f . These horizontal segments are sorted along the vertical line
in the order of frequency. To find the k most frequent elements in A[0 : i], we
query the hive graph for the first k horizontal segments intersecting the vertical
ray from (i, n) to (i,−∞). As in Lemma 5, there are only n distinct queries to
the hive graph, so we can perform the orthogonal point location component of
each query during preprocessing at a cost of O(n) space to store the resulting
nodes of the hive graph. For each segment that the hive graph reports, we report
A[�] where � is the left x-coordinate of the segment. ��
Observe also that the index of the leftmost endpoint of the horizontal segment
associated with a reported element is the index of the rightmost occurrence
of the element in A[0 : i]. Top-k queries are not decomposable in the sense
that, given a partition of a range R into two subranges R1 and R2, there is
no relationship between the top k most frequent elements in R1, R2, and R.
As observed by Karpinski and Nekrich [15], given the same partition of R, an
α-majority in R must either be an α-majority in R1 or R2. Since α-majority
queries are decomposable in this way, and since all α-majorities are amongst the
top 1/α most frequent elements, we can now apply the range tree to support
two-sided α-majority queries.

Theorem 3. There exists a data structure for the α-majority range query prob-
lem that requires O(n log n) space and O(1/α) query time.

Proof. We build the data structure of Lemma 6 on array A. We divide A into
two halves and recurse in both halves to create a range tree. The total space
consumption of all top-k data structures is thus O(n logn). We also include a
data structure for lowest common ancestor queries in the range tree. We use
this data structure to decompose a two-sided query into one-sided queries in
two nodes of the range tree. There are succinct data structures for LCA that
require only O(n) bits of space and O(1) time (e.g., [19]). We also build the
arrays required to support the queries of Lemma 1.
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We decompose a two-sided query into one-sided queries in two nodes of the
range tree in O(1) time. For each one-sided query we find the 1/α most frequent
elements using the top-k data structures in O(1/α) time. By the decompos-
ability of α-majority queries as observed by Karpinski and Nekrich [15], our
O(1/α) most frequent elements in both one-sided ranges are a superset of the
α-majorities of the original two-sided query. Since the top-k data structures re-
port for each element occurrences that are closest to one of the boundaries of
the two-sided range, we can apply Lemma 1 to check which of the O(1/α) most
frequent elements are in fact α-majorities in constant time each. ��

5 Discussion

Using binary rank and select data structures and bit packing, Chan et al. [5] re-
duce the range mode query time from O(

√
n) to O(

√
n/ logn) without increas-

ing the data structure’s space beyond O(n). Unlike the frequency of the mode,
the frequency of the least frequent element does not vary monotonically over a
sequence of elements. Furthermore, unlike the mode, when the least frequent ele-
ment changes, the new element of minimum frequency is not necessarily located
in the block in which the change occurs. Consequently, the techniques of Chan et
al. do not seem immediately applicable to the least frequent range query problem;
it remains open whether o(

√
n) query time is possible in O(n) space.

We have described a data structure for the range least frequent element prob-
lem achieving O(

√
n) query time with O(n3/2) preprocessing time, and given

a lower bound by reduction from boolean matrix multiplication under which
least frequent element with o(n1/2−ε) query time and o(n3/2−ε) preprocessing
time would imply matrix multiplication in o(n3−2ε) time by purely combinato-
rial means. We have also given a data structure achieving O(1/α) query time in
O(n) space on the range α-minority problem; and one achieving O(1/α) query
time in O(n log n) space on the range α-majority problem, matching the bounds
achieved by that of Gagie et al. [11]. The greater space required by current
α-majority data structures compared to that required by current α-minority
data structures suggests that further improvement may be possible; whether α-
majority range queries can be supported in o(n logn) space and O(1/α) query
time remains open.

Acknowledgements. The authors thank Patrick Nicholson for insightful dis-
cussion of the α-majority range query problem.
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vol. 5721, pp. 1–6. Springer, Heidelberg (2009)

13. Greve, M., Jørgensen, A.G., Larsen, K.D., Truelsen, J.: Cell Probe Lower Bounds
and Approximations for Range Mode. In: Abramsky, S., Gavoille, C., Kirchner,
C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS,
vol. 6198, pp. 605–616. Springer, Heidelberg (2010)

14. Jørgensen, A.G., Larsen, K.D.: Range selection and median: Tight cell probe lower
bounds and adaptive data structures. In: Proc. ACM-SIAM SODA, pp. 805–813
(2011)

15. Karpinski, M., Nekrich, Y.: Searching for frequent colors in rectangles. In: Proc.
CCCG, pp. 11–14 (2008)

16. Krizanc, D., Morin, P., Smid, M.: Range mode and range median queries on lists
and trees. Nordic J. Computing 12, 1–17 (2005)

17. Petersen, H.: Improved Bounds for Range Mode and Range Median Queries. In:
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